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ABSTRACT

We use a partially observable Markov decision process (POMDP) framework to design

a resource allocation policy for downlink transmit beamforming at a multi-antenna BS

that is equipped with a massive number of antennas and only a limited number of RF

chains. Considering that channels evolve according to a Markov process and that only

partial CSI is available, we use a POMDP framework for antenna selection with the aim to

maximize the expected long-term data rate. To avoid the high computational complexity

of the value iteration algorithm, we focus on the myopic policy to design a simple yet

optimal algorithm. We prove that in the case of a positively correlated two-state Markov

channel model, the myopic policy is optimal for antenna selection (for both in massive

MISO and MU-MIMO systems) for any number of RF chains. Based on this finding, for

general fading channels, we propose to quantize each channel into two levels and apply the

myopic policy for antenna selection. Our simulation results show that using this two-level

channel quantization for antenna selection results in only a small loss in performance,

as compared to the antenna selection technique which use full CSI without quantization.

We then utilize a POMDP framework to formulate the joint antenna selection and user

scheduling (JASUS) problem for a BS, equipped with a limited number of RF chains that

is to serve a large number of single-antenna users in a cell. To do so, we assume that the

users are served in a frame, where each frame contains of a finite number of time slots.

At the beginning of each frame, given that only partial CSI is available, the BS schedules

each user to a time slot, and selects a subset of antennas to serve the scheduled users at

that time slot. Considering a positively correlated two-state channel model, we prove the

optimality of the myopic policy for our JASUS problem. For Rayleigh fading channels,

we devise a low-complexity JASUS algorithm for massive MU-MIMO systems.

Keywords: Antenna selection; joint antenna selection and user scheduling; massive

MIMO; partially observable Markov decision process (POMDP); myopic policy
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Chapter 1

Introduction

1.1 Overview

Massive multi-input multi-output (MIMO) systems play an important role in the

5-th generation wireless networks as such systems provide the ability to serve multi-

ple users using the same time and frequency resource blocks. The extensive studies

conducted on massive MIMO systems show that deploying large-scale antenna ar-

rays at the base stations (BSs) increases the achievable sum-rate and improves the

performance in terms of spectral and energy efficiency [1–4]. However, increasing

the number of RF chain, exponentially increases the hardware complexity, cost, and

computational complexity [5]. Thus, it may not be practical to have a dedicated RF

chain per antenna element in the massive MIMO BSs. To benefit from the advan-

tages offered by using large-scale antenna arrays at the BSs, and at the same time,

to overcome hardware complexity, antenna selection techniques have been proposed

in the literature [6–9]. Antenna selection is a decision-making technique that selects

a subset of available antennas to transmit data at each time slot. By applying the

antenna selection techniques, the number of required RF chains can be reduced to

the number of selected antennas, leading to reduced RF circuit power consumption,

size, price, and hardware complexity [6, 8, 10]. The extensive studies conducted in

this area show that when the number of available antennas is more than the number

of RF chains, the antenna selection technique can improve data rate and energy ef-
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ficiency, compared with a system where the number of antennas is as limited as the

same number of RF chains [11,12]. Many studies have aimed at proposing antenna

selection algorithms that maximize the sum-rate for massive MIMO systems [13–19].

However, there are still some critical issues that must be addressed. One such is

the assumption of the availability of full CSI for designing their algorithms. More

technical details are provided in Section 1.2. To overcome the issues and challenges

of the existing antenna selection algorithms, we explain our proposed methodology

in Section 1.3, for both MISO systems and multi-user MIMO systems. Note that in

multi-user massive MIMO schemes, zero-forcing beamforming is often proposed to

null the inter-user interference. To fully cancel out the inter-user interference, the

number of served users should be less than the number of active antennas (here,

the number of active antennas is the same as the number of RF chains). Thus,

when the number of users is larger than the number of RF chains, the joint antenna

selection and users scheduling (JASUS) needs to be addressed in multi-user massive

MIMO systems. Note that there aren’t any existing studies that design a JASUS

algorithm for massive MIMO systems. However, there are limited existing studies

that only addressed the joint antenna and user selection (JAUS) problems in mas-

sive MIMO systems. The details of the existing JAUS algorithms are explained in

Chapter 2. We also explain why the proposed JAUS algorithms are not applicable

for our JASUS problem in Section 1.2.

In this dissertation, considering that the channels evolve according to a finite

state Markov process, we first aim to design POMDP-based antenna selection algo-

rithms for both massive MISO, and multi-user massive MIMO systems. We then,

assume a scenario where the number of available users is larger than the number

of active antennas, meaning that serving all users at the same time results in low

quality of service. Thus, to maintain the high quality of service in multi-user mas-

sive MIMO systems that the BS (equipped with limited RF chains) serves a large

number of users, joint antenna selection and user scheduling (JASUS) is required.
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To do so, we assume that users receive data in a frame, which each frame contains a

finite number of time slots. At the beginning of each frame, the BS schedules each

user to a time slot in a frame and selects a subset of antennas to serve the scheduled

users at that time slot. Note that the number of scheduled users at each time slot

is bigger than one and less than the number of RF chains. Here, we aim to design

a JASUS algorithm in multi-user massive MIMO systems for time-varying channels

when only partial CSI is available at the BS.

In the remaining of this chapter, we first present the challenges of the antenna

selection and JASUS techniques and elaborate on what motivated us to conduct

this research. Later on, for each scenario (i.e., antenna selection in massive MISO

systems, antenna selection in multi-user massive MIMO systems, and JASUS in

multi-user massive MIMO systems), we define the objective function of the corre-

sponding problem and present the proposed method to solve it.

1.2 Challenges and Motivations

For designing the antenna selection algorithms for massive MU-MIMO systems,

one common assumption is that the channels over all antennas are fully observable,

meaning that full channel state information (CSI) can be obtained or estimated.

For massive MIMO systems, this assumption is not practical, since it requires either

an RF chain for each antenna or switching available RF chains among antennas for

training and channel estimation. With limited RF chains, the latter approach adds

to the time required for channel estimation and, at the same time, complicates the

hardware by adding switching circuitry. Moreover, switching RF chains exacerbates

the problem of outdated CSI. Another common assumption in the existing studies

of the antenna selection problem is that the channels remain over time slot [20–23].

As a result, in previous studies, the properties of time-varying fading channels have

not been completely exploited [24].

Given the above discussion, our motivation is to study the problem of antenna
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selection for a base station (BS) downlink transmission to a user in a massive MISO

(or multiple users in massive MU-MIMO ) system under the assumption that only a

finite number of RF chains are available for transmission and CSI acquisition. More

specifically, given that at each time slot only partial CSI (that is acquired over the

previously selected set of antennas) is available, the BS decides which antennas to

select and sends data in the next downlink time slot via transmit beamforming over

those selected antennas. Under the assumption that the channel over each antenna

evolves according to a Markov chain, this problem can be formulated using a par-

tially observed Markov decision process (POMDP) framework. In the literature,

there are extensive studies that utilize a POMDP framework to design resource

allocation algorithms (see Chapter 2). However, the designed POMDP-based algo-

rithms for antenna selection can be applied to only a limited number of antennas

and RF chains, when channels evolve as a two-state channel model (see Chapter 2

for more details). Here, for time-varying continuous-valued channels, we aim to

design a POMDP-based antenna selection algorithm, where the decisions are made

based on partial CSI and can be applied to any number of antennas and RF chains.

Our objective is to maximize the expected long-term sum-rate. Note that in multi-

user massive MIMO systems, zero-forcing beamforming is often used to nullify the

inter-user interference. To fully cancel out inter-user interference, the number of

users should be less than the number of RF chains. Therefore, when a large number

of users is available in the cell (i.e., the number of users is more than the number

of RF chains), we must address joint antenna selection and user scheduling (JA-

SUS) in multi-user massive MIMO systems. To the best of our knowledge, currently

there is no study to design JASUS algorithms for time-varying channels, such that

the decisions are made based on partial CSI (for more details see Chapter 2). In

this dissertation, motivated by the above explanations, we formulate the JASUS

problems using a POMDP framework to design a low-complexity JASUS algorithm

that can be applied to actual Rayleigh fading channels, when only partial CSI is
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available at the BS. In the next section, we define our resource allocation problems

(i.e., antenna selection in massive MISO systems, antenna selection in multi-user

massive MIMO systems, and JASUS in massive MIMO systems), and explain our

proposed methodology to design a low-complexity algorithm for each one of the

defined problems.

1.3 Objective and Methodology

In this section, we provide an overview on the main objective and proposed method-

ology of our study presented in each chapter of this dissertation.

1.3.1 Antenna Selection in Massive MISO Systems

Objective

In Chapter 4, we consider the antenna selection design for the BS downlink trans-

mission to a user in a massive MIMO system under the assumption that only a

finite number of RF chains is available for transmission and CSI acquisition. We

assume the system operates in the time division duplexing (TDD) mode, and there-

fore, the CSI acquisition for downlink transmission is performed using the uplink

channel measurements. Based on the partial CSI and the history of the CSI of other

antennas, the BS makes the new antenna selection decision and sends data in the

next downlink time slot via transmit beamforming. Given the underlying fading

channels are correlated over time and evolve according to a Markov chain, we aim

to find the optimal decision for antenna selection at each time slot under partial

CSI with the goal of maximizing the expected long-term MISO data rate.

Methodology

In Chapter 4, we use the POMDP framework to devise an optimal antenna selection

policy for the BS transmit beamforming to a single-antenna user. Assuming a TDD

system with uplink-downlink channel reciprocity and that the MISO channel state
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evolves according to a finite-state Markov process, we exploit partial observation of

the channel coefficients from uplink CSI training. Thus, at each time slot, the BS

uses the obtained partial CSI (the channel coefficients of the previous selected an-

tennas) for antenna selection to maximize the long-term expected data rate achieved

in the downlink transmission. The solution to this POMDP-based dynamic antenna

selection problem can be obtained using the value iteration algorithm. However,

the computational complexity of this algorithm is very high for practical implemen-

tation, specially for a large state space and/or for a large number of antennas. As

such, the myopic policy could offer a computationally attractive solution. While

a myopic policy may not always be optimal, we prove rigorously that if the chan-

nels over different BS antennas are independent and evolve according to the same

positively correlated two-state Markov process, then the myopic policy is optimal for

antenna selection under any number of RF chains. We obtain this conclusion by

showing that the expected long-term data rate is a regular function of the belief

vector. To benefit from the optimality of the myopic policy for general fading chan-

nels, we propose an antenna selection algorithm such that each channel coefficient

is quantized into two levels only for the purpose of antenna selection. We study the

impact of the quantization threshold value on the performance of the proposed my-

opic policy algorithm for antenna selection. We show that, for time-correlated slow

fading channels (modeled as a first-order Gauss-Markov process) and for a properly

chosen threshold value, the performance of the myopic policy is close to the antenna

selection scheme which uses full perfect CSI. Finally, we evaluate the performance of

the proposed myopic policy for the imperfect CSI scenario in the presence of channel

estimation error.
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1.3.2 Antenna Selection in Massive MU-MIMO Systems

Objective

In Chapter 5, considering the TDD mode, we aim to design an antenna selection

policy for a multi-user massive MIMO BS downlink transmission to multiple single-

antenna users under the assumption that the BS is equipped with a finite number

of RF chains. Thus, at each time slot only a subset of antennas is available for data

transmission and CSI acquisition from downlink transmission. At each time slot,

using the obtained partial CSI from the selected antennas and the history of the

CSI of other antennas, the BS selects a new subset of antennas to participate in

data transmission in this time slot. Note that here we assume the number of users

are less than the number of RF chains. In Chapter 5, we aim to design a real-time

decision making algorithm for the antenna selection problem, under obtained partial

CSI, such that by selecting the best subset of antennas at each time slot, we can

maximize the expected long-term sum-rate.

Methodology

In Chapter 5, considering that the underlying fading channels evolve according to

a Markov chain, we formulate this problem using a POMDP framework. Here,

zero-forcing beamforming is used to null the inter-user interference. In our defined

POMDP-based antenna selection problem the reward function is defined as the

upper bound of the achievable sum-rate. Furthermore, we assume i.i.d positively

correlated two-state channel model. We then first prove the optimality of the myopic

policy for our defined antenna selection problem and then propose a novel antenna

selection algorithm that can be implemented for the Rayleigh fading channel model.

To do so, we propose to quantize the channel gain of each antenna into two levels

only for the sake of antenna selection, while all the performance evaluation is based

on the non-quantized channel coefficients. In addition to that, we propose an offline

learning algorithm to obtain a look-up table for finding the optimal threshold value
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for channel gain quantization.

1.3.3 JASUS in Massive MU-MIMO Systems

Objective

In Chapter 6, we study the joint antenna and user scheduling (JASUS) problem for a

multi-user massive MIMO system, in which a BS is equipped with a massive number

of antennas and a limited number of RF chains to serve a large number of single-

antenna users in a cell. The number of available users is larger than the number of

available RF chains. Here, we assume that the system operates in TDD mode and

CSI can be obtained from the uplink measurements. Furthermore, we assume that

users receive data in a time frame, where each frame contains of a finite number of

time slots. In addition to that, we assume that the channels evolves according to

a Markov chain at the beginning of each frame and remains unchanged during the

entire time frame. Note that, at each time slot only partial CSI is available due to

the limited number of RF chains. In chapter 6, we aim to design a low-complexity

JASUS algorithm (that at the beginning of each frame, schedule each user in a time

slot, and selected the optimal subset of antennas to serve scheduled users at that

time slot) to maximize the expected long-term sum-rate over frame.

Methodology

In Chapter 6, assuming that channels evolve according to a finite-state Markov

process, and only partial CSI is available, we formulate the JASUS problem using

a POMDP framework with the main goal of maximizing the expected long-term

sum-rate. Here, we assume that the users are served in a frame, and each frame

contains a finite number of time slots. According to our proposed algorithm, based

on available partial CSI and the history of our past actions and channel observations,

at the beginning of each frame, the BS schedules each user to a time slot in a frame to

be served and select a subset of antennas to participate in data transmission at each
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time slot. Note that we assume the state evolves at the beginning of each frame and

remains unchanged during the entire frame. We further assume that all users receive

data once until the end of the frame such that the number of scheduled users at each

time slot is bigger than one and less than the number of RF chains. We show that

for positively correlated two-state channel models, the myopic policy provides the

optimal solution to our JASUS problem. Furthermore, we use a first-order Gauss

Markov channel model and devise a myopic policy algorithm for Rayleigh fading

channels that provides a low-complexity suboptimal solution for JASUS problem in

multi-user massive MIMO system.

1.4 Summary of Contributions

The main contribution of this study is reducing the hardware complexity and cost

of the massive MIMO BS in the 5G network by designing a simple yet optimal

POMDP-based antenna selection algorithm and POMDP-based JASUS algorithm,

that can be easily implemented for large-scale antenna arrays with any given number

of antennas and available RF chains. Furthermore, given that at each time slot only

a subset of antennas is available for data transmission (partial CSI is available), we

aim to design an antenna selection/JASUS policy that provides a high quality of

service for the available users. More specifically, given that the underlying fading

channels are correlated over time, and only partial CSI is available, at each time

slot the BS makes an optimal decision (selecting a subset of antennas in antenna

selection policy or selecting a subset of antennas and scheduling users in JASUS

policy) to maximize the expected long-term sum rate. To do so, considering that

channels evolve as a finite-state Markov process, we use a POMDP framework to

formulate our resource allocation problems (antenna selection/JASUS). Here, we

use the myopic policy to propose a computationally affordable resource allocation

algorithms. In the following sequel, we present the contributions of our studies.
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• In the first part of our study, we use a POMDP framework to formulate the

antenna selection problem for uplink/downlink massive MISO schemes, where

the channel coefficients evolve according to a Markov process. We show that if

the channels over different BS antennas are independent and evolve according

to the same positively correlated two-state Markov process, then the myopic

policy is optimal for antenna selection under any number of RF chains. We

obtain this conclusion by showing that the expected long-term data rate is a

regular function of the belief vector. Note that here, unlike all the previous

studies that consider a simple reward function in the POMDP formulation of

their resource allocation problems (see Chapter 2), we define the actual data

rate as the reward function (which is a complex and realistic function). We

then utilize the optimality of the myopic policy to devise an efficient POMDP-

based antenna selection technique for time-varying continuous fading channels.

To do so, we propose to quantize each channel coefficient into two levels only

for the purpose of antenna selection. Interestingly, our simulation results show

that using this two-level coarse channel quantization for antenna selection

results in a small performance loss that is only within 0.5 (bcu), from the

upper bound which can be achieved only by using full (non-quantized) CSI

for antenna selection. We also evaluate the affect of the channel estimation on

the performance of our antenna selection algorithm.

• We formulate the antennas selection problem for a BS (equipped with a mas-

sive number of antennas and a limited number of RF chains) that serves a

multiple single-antenna users by utilizing a POMDP framework. In this sce-

nario, we assume that the number of available users is less than the number

of RF chains. Here, we use zero-forcing beamforming to eliminate the inter-

user interference. In this scenario, an antenna selection policy, which accounts

for the channel quality of all users is needed. Here, we assume that channels

evolve according to a Markov process. Note that for a positively correlated
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two-state channel model, the second condition of the optimality of the myopic

policy is the regularity of the reward function. However, here the obtained

sum rate is not a regular function anymore. In our POMDP formulation, we

define the reward function as the upper-bound achievable sum rate, and show

that the expected immediate reward function is regular. Thus, the myopic pol-

icy can provide the optimal solution for POMDP-based antenna selection for

any number of antennas, any number of RF chains, and any number of users.

We propose a low-complexity myopic policy antenna selection algorithm that

can be implemented for Rayleigh fading channels. According to our proposed

algorithm, in the selection stage, the channel gain of each antenna is quantized

to two levels, allowing us to benefit from the optimality of the myopic policy

for i.i.d positively correlated two-state channel models. In addition to that,

we propose an offline learning algorithm to obtain a look-up table for finding

the optimal threshold value for channel gain quantization. To the best of our

knowledge, this is the first study, that propose a low-complexity antenna se-

lection algorithms that its decisions are only relies on partial CSI that can be

implemented to the actual Rayleigh fading channels.

• We study the problem of joint antenna selection and user scheduling (JASUS)

problem in multi-user massive MIMO systems. In this scenario, we assume

that a BS, equipped with a massive number of antennas and a limited number

of RF chains, is to serve a large number of single-antenna users in a cell (the

number of available users is larger than the number of RF chains). Note that in

multi-user MIMO systems, zero-forcing beamforming is often used to eliminate

inter-user interference, meaning that at each time slot the number of served

users should be equal to or less than the number of RF chains. Thus, when

a large number of users is available in a cell (and the BS is equipped with

limited RF chains) JASUS must be addressed. We use a POMDP framework

to formulate the JASUS problem for a multi-user massive MIMO system,
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where the number of available users is larger than the number of RF chains.

To guarantee that all users will receive data, we assume that users are served

in a frame, where each frame contains of a finite number of time slots. In

our POMDP formulation, we define the reward function and the objective

function as the upper-bound achievable data rate and the expected long term

sum-rate over frame, respectively. Assuming that at the beginning of each

frame channels evolve according to a positively correlated two-state Markov

chain, and remain unchanged during the entire frame, we show that the myopic

policy provides the optimal solution to our JASUS POMDP-based problem.

Furthermore, we model the Rayleigh fading channels as a first-order Gauss

Markov channel model and devise a low-complexity myopic policy JASUS

algorithm for multi-user massive MIMO systems.
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1.6 Outline of Dissertation

This dissertation is organized as follows. In Chapter 2, we first review the traditional

small-scale antenna selection algorithms, and then, provide a brief overview on sev-

eral existing studies on suboptimal solutions for large antenna selection problems

under the assumption of the availability of full CSI. In Section 2.2 of this chapter,

we present a survey on studies that existing antenna selection algorithms when only

partial CSI is available. In Section 2.3, we overview some other resource allocation

algorithms that aim to design a decision making algorithm under the assumption

of partial CSI using POMDP framework. And finally, in Section 2.4, we review the
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limited existing studies on joint antenna selection and user scheduling problem in

massive MU-MIMO systems.

In Chapter 3, we first describe the POMDP model and the required tuple to

define a POMDP formulation. We then illustrate the policy, the objective function

of the stochastic optimization problem in a general POMDP framework. In the final

section of this chapter, we present the value iteration algorithm which provides the

optimal solution for a POMDP problem.

In Chapter 4, we describe the MISO system model and the POMDP formulation

for the antenna selection problem in Sections 4.1 and 4.2, respectively. In Section

4.3, we show the optimality of the myopic policy for a two-state positively correlated

channel model. In Section 4.4, we present the myopic policy for antenna selection

algorithm for the first-order Gauss-Markov Rayleigh fading channel models. Simu-

lation and performance analysis are presented in Section 4.5.

In Chapter 5, our multi-user massive MIMO system model, problem formulation,

and POMDP formulation for the antenna selection are presented in Sections 5.1, 5.2,

and 5.3, respectively. In Section 5.4, we provide the proof of the optimality of the

myopic policy for our the antenna selection. In Section 5.5, we propose our myopic

policy based antenna selection algorithm for first-order Gauss-Markov channels. In

Section 5.6, we propose an offline algorithm for obtaining the optimal threshold

value for channel quantization. Simulation and evaluation analysis are illustrated

in Section 5.7.

In Chapter 6, we describe the multi-user massive MIMO system model, problem

formulation and the POMDP formulation (for JASUS problem) in Sections 6.1,

6.2, and 6.3, respectively. In Section 6.4, we show the optimality of the myopic

policy for a positively correlated two-state channel model for our POMDP-based

JASUS problem. In Section 6.5, we present the myopic policy JASUS algorithm

and implement it on the first-order Gauss-Markov Rayleigh fading channel model.

Simulation and performance analysis are presented in Section 6.6.

14



Finally, in Chapter 7 we first conclude this dissertation and then present several

ideas and open problems for future work.

1.7 Notations

Upper-case and lower-case bold letters are used to represent matrices and vectors,

respectively; calligraphic fonts (e.g., S) signify sets; and Sans-serif fonts identify ran-

dom vectors (e.g,. s) and random scalars (e.g., s). The transpose and the Frobenius

norm of a vector/matrix are shown as (·)T , ‖ · ‖ respectively; the ℓ1 and ℓ2 norms

of vector s are denoted as ‖s‖1 and ‖s‖2 respectively; diag(s) stands for a diagonal

matrix whose diagonal entries are given by vector s. The notation E{·} represents

the mathematical expectation; 1N identifies an N × 1 vector with 1 in all elements.

The notation |S| stands for the cardinality of set S.
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Chapter 2

Literature Review

In this chapter, we first review traditional optimal antenna selection methods in

Section 2.1, for MIMO systems (for selection among small number of antennas). We

then briefly review some of the existing sub-optimal antenna selection algorithms

that are computationally affordable for massive MIMO systems and are designed

under the assumption of the availability of the full CSI. Next, in Section 2.2, we

review the studies that devised antenna selection algorithms when partial CSI is

available. We then offer an overview on the studies that used POMDPs for designing

various resource allocation methods in Section 2.3. Finally, in Section 2.4, we review

the existing works that studied the joint antenna and user selection (JAUS) problem

for multi-user massive MIMO systems.

2.1 Traditional Antenna Selection Methods

Antenna selection has been extensively studied in the literature for MIMO systems

with a small number of antennas [7, 13, 25]. The optimal antenna selection algo-

rithms for MIMO systems involve an exhaustive search over all possible selections

of antennas and finding the antenna subset which maximizes the signal-to-noise-

ratio (SNR) or the capacity [8,26,27]. Note that exhaustive search methods are not

practical for massive MIMO systems due to the high computational complexity of

the existing search algorithms. Hence, alternative low-complexity antenna selection
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algorithms have been sought for massive MIMO systems [14–18]. In [14], the au-

thors developed an iterative antenna selection algorithm which relying on ranking

antennas based on their channel gains. In [15], the author proposed to solve massive

antenna selection problem using a convex relaxation technique. Considering both

single-cell and multi-cell massive MIMO systems, the authors in [16] introduced the

so-called trace-based algorithm to reduce the antenna selection problem complex-

ity. In [17], a low-complexity two-step antenna selection algorithm is proposed for

a massive MIMO system. The purposed sub-optimal algorithm of [17] consists of

a coarse selection of a subset of antennas based on the channel gains followed by a

refined selection of antennas from this subset based on the CSI. In [18], the authors

used a Monte Carlo tree search algorithm to design a low-complexity suboptimal

antenna selection algorithm for massive MIMO systems. In the proposed method,

the antenna selection problem is formulated as a decision making problem, where

linear regression is used to update the probability of selecting the correct subset of

antennas by utilizing the defined features of CSI.

A major issue with the algorithms proposed in [7, 8, 13–18] is that these algo-

rithms rely on the full channel state information (CSI) assumption, meaning that

the BS has the knowledge of all antenna channel coefficients. This assumption is not

practical for massive MIMO systems. This is due to the fact that this assumption

requires a dedicated RF chain per antenna element, which is not possible when the

number of RF chains is limited. One may suggest to tackle this issue by switching

available RF chains among all available antennas for training purposes and channel

estimation. Note however that adding switches increases the hardware complexity

and at the same time switching RF chains exacerbates the problem of outdated CSI.

In [28] and [19], the authors propose an efficient switching algorithm for transceivers

equipped with a massive number of antennas. However, the proposed algorithms

still suffer from the fact that switching RF chains exacerbates the problem of out-

dated CSI. In [19], the authors use the channel capacity as the optimality criterion
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and design a switching network where each RF chain can be connected to a prede-

fined subset of antennas to reduce the complexity of switching. Although such an

algorithm can reduce the required switching RF chains for full CSI acquisition pro-

cedures at each symbol time, it provides a suboptimal antenna selection algorithm

due to the limited connectivity and access to the individual antennas.

Given the above discussion, it is required to design a low-complexity antenna

selection policy which only relies on partial CSI to avoid the need for using switching

RF chains for full CSI acquisition.

2.2 Antenna Selection Relying on Partial CSI

As we explained in the previous section, obtaining full CSI is not practical for mas-

sive MIMO systems with a limited RF chains at the BS. More specifically, to obtain

full CSI, switching RF chains is required which in turns adding switches compli-

cate the circuit, and also results in outdate CSI . To tackle this issue, the authors

in [29], proposed a Thompson sampling technique that only relies on partial CSI

to solve the antenna selection problem for massive MIMO system. However, the

authors show that this technique can achieve high data rates for static scenarios

(with zero-velocity users), but in the dynamic scenarios, this technique performs

only slightly better than the random selection scheme. In [30], considering time-

varying channels such that the dynamic of channels evolve according to a positively

correlated Gilbert-Elliot model, and only partial CSI is available, the authors for-

mulated the antenna selection problem as a partially observable Markov decision

process (POMDP) framework. In [30], the authors defined the problem of select-

ing only an antenna among available antennas at a receiver as POMDP and show

the optimality of myopic policy algorithm with the goal of minimizing the packet

error rate (PER). In [31], we utilize the POMDP frame work to design an antenna

selection algorithm for massive MISO system when only partial CSI is availbel and

channel evolves according to the same positively correlated two-state Markov chan-

18



nel model. In our proposed algorithm, the optimal policy can be obtained for any

arbitrary number of antennas and RF chains.

Since POMDP is a powerful framework to design a decision making policy under

uncertainly, researchers applied this framework for different applications in commu-

nication systems. In the following section, we review some studies that focus on

solving the resource allocation problems by using a POMDP framework.

2.3 POMDP-based Resource Allocation Methods

By modeling the dynamics of fading channels as either continuous Gauss-Markov

models [32, 33], or finite-state Markov chains [34, 35], some existing studies formu-

late their corresponding control decision policy as an MDP [36] or as a POMDP

[30, 37–41], when the feedback to the transmitter provides full CSI or partial CSI.

The authors of [36] provide the design of the optimal opportunistic feedback de-

cision policy for transmit beamforming in the frequency division duplexing (FDD)

mode and validate that the underlying feedback control problem for transmit beam-

forming with throughput maximization over Gauss-Markov channels is an MDP

problem. In [30, 37–41], the authors formulate the problem of selecting a subset of

available channels or antennas using a POMDP framework, when the state evolves

as a Markov process and when limited feedback on CSI is available.

For cognitive radio systems, the authors of [37] used the POMDP framework to

address the problem of dynamic spectrum sensing and spectrum allocation to a sec-

ondary user. Assuming that each of the available channels follows the same two-state

Markov process, the authors devise POMDP-based spectrum sensing and spectrum

access policies for the user to decide which channel to sense and which channel to

access. Using a simplified unit reward for a successful access, the authors establish

the optimality of the myopic sensing policy for the case of two available channels,
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which follow positively correlated 1 two-state Gilbert-Elliot channel model. Under

this very same model, the studies in [38] and [39] present the proof of optimality of

the myopic policy for sensing and selecting one out of an arbitrary number of avail-

able channels. In [38], a unit reward is assumed upon successful access and in [39],

the reward is the number of bits delivered to a secondary user over the selected

channel.

Using a POMDP framework for antenna selection has been considered in [30,40].

In [30], focusing on a single-user data downlink transmission, the authors formulate

the antenna selection problem at a multi-antenna receiver with a single RF chain

as a POMDP problem with the goal of minimizing the packet error rate (PER).

Considering perfect CSI for the selected antenna and assuming positively correlated

Gilbert-Elliot channel model, the authors consider the simplified unit reward, when

the packet is correctly received, otherwise the reward is zero. The authors show that

under such a reward function model, the myopic policy is the optimal solution for

the considered antenna selection problem. The authors of [40] prove the optimality

of the myopic policy for an extended case where a user is allowed to access a subset of

available i.i.d. two-state channels. In [40], one unit of reward is collected when each

selected channel is indeed in good state. Under a slightly different structure for the

reward function, the optimality of the myopic policy may no longer hold [42]. Thus,

the structure of the expected long-term reward function plays an important role in

the optimality of the myopic policy. The authors of [41] derive sufficient conditions

for the expected long-term reward function that guarantee the optimality of the

myopic policy for the general POMDP framework. These conditions state that if

the expected long-term reward function is a regular function, and for positively

correlated two-state channel models, the myopic policy is optimal.

Note that, aside from the difference in the applications, our study in this disser-

1A two-state Gilbert-Elliot channel model is called positively correlated if the probability of
channel changing from bad state to good state is less than that of staying in the good state.
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taion (see [30]) differs from [30, 37–39] is that these studies, study the problem of

selecting one spectral channel for the positively correlated two-state channel, unlike

the previous works in [30,37–39], that only provided the optimality of myopic policy

for selecting one channel/antenna out of an arbitrary number of channels/antennas,

we show that in our antenna selection problem, for any different numbers of available

antennas and RF chains, the defined expected long-term reward satisfies the condi-

tions of the optimality of myopic policy. Although [40] has studied the optimality

of myopic policy of selecting a subset of available channels, the defined reward is

a simple collecting one unit of reward for selecting good state channels, while our

defined collected reward is the actual data rate.

In the following section, we review the studies that consider a more complicated

scenario, such that the number of available users that demand data at the same

time, is larger than the number of active antennas (number of available RF chains).

In this case, to increase the sum-rate, both antenna and user scheduling techniques

are required to be applied.

2.4 Joint Antenna and User Scheduling Methods

In multi-user MIMO systems, when a large number of users is available to receive

data, user scheduling is required to provide and maintain a high quality of service

[43,44]. In user scheduling technique, available users can be grouped in finite number

of clusters to be served at different frequencies [43–45] or different time slots [46–

48]. Note that the mentioned user scheduling algorithms in [43–48] dealt with only

user scheduling problem under the assumption that all available antennas at BS

participates in data transmission. However, as we explained before, due to cost and

computational complexity, antenna selection technique is required in massive MIMO

systems. In this dissertation, we aim to design a policy to solve the JASUS problem

in multi-user massive MIMO systems. Due to the high computational complexity of
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solving the JASUS problem, there are only limited number of studies [20–24] that

proposed only joint antenna and user selection (JAUS) algorithms. In the following

sequel, we explain the critical issues of the proposed JAUS algorithms in [20–24],

and explain why it can not be applied to our defined JASUS problem. In [20],

the authors proposed to first select the semi-orthogonal users to receive data, and

then use an iterative algorithm that starts with all available antennas and ends

with the best subset of antennas with the same size of the number of RF chains by

deactivating an antenna at each iteration. Note that the main goal of the JAUS

problem in [20], is to maximize the sum-rate. In [21], the authors proposed another

iterative search algorithm to solve JAUS problem with the goal of maximizing the

sum-rate per unit energy consumption. According to the purposed algorithm in [21],

at the first, users with high channel gain are selected, and then an iterative search

algorithm are designed to deactivate an antenna at each iteration until the number of

selected antennas is same as the number of RF chains. Note that, the computational

complexity of the proposed algorithms in [20, 21], limits their application to small

number of users and RF chains. To address this issue, considering a single-cell

scenarios, the authors in [22], proposed low-complexity JAUS algorithms. However,

the proposed algorithms achieve low data rate. In [23], the authors extend the

system model to a multi-cell scenario and utilized an Adaptive Markov Chain Monte

Carlo method to devise a low-complexity algorithm for JAUS problem with the

main goal of sum-rate maximization. However, the authors in [24], pointed a few

critical issues in [20–23], which are the assumption of static channel model and

ignoring fair user scheduling in their proposed JAUS algorithms. To resolve these

issues, with considering time-varying fading channels, the authors in [24], devised a

suboptimal greedy JAUS algorithm with the goal of maximizing the sum-rate, while

it guarantees a minimum average data rate for all available users in a cell. However,

in the proposed algorithm in [24], same as other mentioned JAUS algorithm in

[20–23], the authors assume that the full CSI is available. Such an assumption is

22



not practical due to the limited number of available RF chains at the BS.

Motivated by the above explanations, in Chapter 6, considering a time division

duplexing (TDD) mode, we study JASUS problem for a multi-user massive MIMO

system, in which a BS is equipped with massive number of antennas and limited

number of RF chains to serve large number of single-antenna users in a cell. We

assume that users receive data in a time frame, where each frame contains finite

number of time slots. Furthermore, we assume that the channels evolve according

to a Markov chain at the beginning of each frame and remains unchanged during

the entire frame. Since at each time slot, only partial CSI is available (due to the

limited number of RF chains), we formulate the joint antenna and user scheduling

problem as a POMDP framework with the main goal of maximizing the expected

long-term sum-rate.
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Chapter 3

Partially Observable Markov
Decision Process

Partially observable Markov decision processes (POMDPs) is a generalization of a

Markov decision processes (MDPs) when only partial information about the current

state is available. One of the common applications of POMDPs were in the control

theory [30, 37–41] with the main purpose of modeling the stochastic dynamic of

a system as a POMDP to design an optimal decision making policy. Later on,

POMDP became a powerful framework as a learning tool under the uncertainty,

in the artificial intelligence area [49–52]. POMDP is known as a powerful tool

in decision theory because of its well-defined problem formulation. Note that the

computational complexity of finding an optimal policy for a POMDP-based problem

exponentially increases with the number of state and action space [53,54].

In this chapter, we first describe the POMDP model, and then we illustrate

the value iteration algorithm which obtain the optimal solution of the POMDP

problems.

3.1 POMDP Model

We represent a POMDP framework by the following tuple

(S,A,T, R(s, a),O,O(o, a),b) (3.1)
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where S is the state space, A is the action space; T is the state transition probability

matrix, R(s, a) is the reward at state s when action a is taken, O is the observation

space, O(o, a) is the matrix of conditional probability of observing o at different

states, given action a is taken, and b is the belief vector. In the sequel, we elaborate

more on these components.

State space

An environment can be modeled by state space S, which contains the possible states.

Although, the number of states can be infinite (states can be continuous), here we

focus on finite state space for the sake of simplicity. We can write the state space

as

S ! {s1, s2, . . . , s|S|}, (3.2)

where si, is the i-th state in the state space for i = 1, 2, . . . , |S|. Here,we use st to

denote the random state at time t, where st can take any state in the state space.

Action space

Possible actions that an agent can take in an environment are stored in the actio

set denoted as A. Here, our action space A contains finite number of actions that

the agent can make based on received partial information about the current state.

Roughly speaking, the main goal here is to define a policy that can select the best

action in set A, according to the partial observation of the current state to achieve

the desired results. We can write the action space as

A = {a1, a2, . . . , a|A|}, (3.3)

where, ai is the i-th action in the action space for i = 1, 2, . . . , |A|. We use at to

denote the random action at time t, where it can take any action in the action space.
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Transition matrix

Since POMDP model an environment, with finite number of states, the transition

matrix denoted as T, represents the state evolution. Meaning that the state transi-

tion can be mathematically described by the transition matrix. Note that, making

an action can affect the state transition, and thus action effects should be cap-

tured in the transition matrix. However, in this dissertation, the state evolution

is independent of the action (i.e., channel variation is independent of the selected

antennas). Thus, we can write the transition probability matrix as an |S| × |S|
matrix whose (i, j) element, denoted as Tij , is the probability of the state at time

t being sj, given that the state at time t − 1 is si and action a is taken.

Reward function

The reward function denoted as R(s, a) indicates the earned reward utility when

action at = a is performed in the state st = s. Defining a proper reward function

can results in accurate environment modeling, and thus devising an efficient decision

making policy.

Observation space

The partial observation (or a noisy observation) can be obtained from current state

after executing an action in set A. The observation space denoted as O contains all

possible observations. We can write the observation space as

O = {o1,o2, . . . , o|O|}, (3.4)

where oi is the i-th possible observation in the observation space for i = 1, 2, . . . , |O|.
We use ot to denote the random observation at time t. Note that, in this dissertation,

considering a finite state space, the observation space is finite as well.
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Observation probability

The conditional observation probability matrix O(o, a), is an |S| × |S| diagonal

matrix and is defined as O(o, a) = diag
(

Pr
{

ot = o|st = si, at = a
}|S|

i=1

)

, whose i-th

diagonal element is the probability of observing o ∈ O at time t, given state si and

action a at time t.

Belief vector

The belief vector at time t is defined as bt ! [b1,t b2,t · · · b|S|,t]
T , where bj,t is the

probability of the state st at time t being sj ∈ S, given all the action and observation

history until time t. If we use Ht−1 to represent the action and observation history

until time t − 1, we can write

bj,t = Pr{st = sj|Ht−1}. (3.5)

Here, Ht−1 represents the action and observation history until time t − 1, where

Ht−1 ! {ot−1, at−1,Ht−2}. (3.6)

We also define the belief space as B !
{

b ∈ R|S| : 1Tb = 1,b " 0
}

. As shown in

Appendix A (also, in [31]), using Bayes’ rule, we can obtain bt from bt−1 as

bt = g(ot−1, at−1,bt−1), (3.7)

where we define g(o, a,b) ! O(o,a)Tb

g(o,a,b)
, and g(o, a,b) ! 1TO(o, a)Tb, for o ∈ O and

a ∈ A. It is well-known that bt is a sufficient statistic to make decision at time

t [55]. Note that instead of given realization observation ot−1, if we consider the

observation vector ot−1 which is a random vector, the believe vector in (3.7) also

becomes a random vector, denoted by bt, which is given by

bt ! g(ot−1 , at−1,bt−1). (3.8)

Correspondingly, the j-th entry of bt is defined as bj,t ! Pr(st = sj|Ht−1), where

Ht−1 is the collection of all observations and actions as random vectors until time
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t − 1 and is defined as Ht−1 ! {ot−1, at−1, Ht−2}. Note that Ht−1 in (3.6) is a

realization of Ht−1 after observing ot−1.

3.2 Policy and Objective Function

Policy Π = {π0(·), π1(·), · · · } is a sequence of decision rules πt(·), which at time t,

maps the belief vector bt to the action at, that is at = πt(bt). The policy is stationary

if it consists of a single decision rule used for all time slots. In an infinite horizon

POMDP problem, the optimal policy is stationary [55], i.e., Π = {π(·), π(·), · · · }.
With the initial belief vector b0, the objective function denoted as Jπ(b0) for an

infinite horizon POMDP frame work is defined as

Jπ(b0) = E{st}

{ ∞∑

t=0

R(st, at)
∣
∣
∣b0

}

= E{st}

{ ∞∑

t=0

R(st, π(bt))
∣
∣
∣b0

}

, (3.9)

where E{st}{·} is the expectation taken with respect to the joint probability distri-

bution of {st}+∞
t=0 , given the initial distribution b0. Note that as at = π(bt), the

objective function Jπ(b0) is parameterized by the stationary policy π(·), and hence,

we use subscript π to signify Jπ(b0). It is worth mentioning that the random vec-

tors bt, and at = π(bt) are functions of random observation vectors {ot′}t−1
t′=0 and the

initial belief vector b0. Given the POMDP model and the dynamic of the POMDP

problem, the main goal is to find the optimal policy as

π∗ = arg max
π

Jπ(b0), for any b0. (3.10)

Since at is a function of bt, which is in turn a function of ot−1, there is a one-to-one

correspondence between Ht and {ot′}t
t′=0. Hence, we can write

Jπ(b0) = E{st}

{ +∞∑

t=0

R(st, at)
∣
∣
∣b0

}

=
+∞∑

t=0

Est

{

R(st, at)
∣
∣
∣b0

}
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=
+∞∑

t=0

EHt−1

{

Est|Ht−1
{R(st, at)|Ht−1}

∣
∣
∣b0

}

=
+∞∑

t=0

EHt−1

{ |S|
∑

j=1

R(sj, at)Pr(st = sj|Ht−1)
∣
∣
∣b0

}

=
+∞∑

t=0

EHt−1

{ |S|
∑

j=1

R(sj, at)bj,t

∣
∣
∣b0

}

= E{Ht}

{ +∞∑

t=0

rT (at)bt

∣
∣
∣b0

}

, (3.11)

where {Ht} is the entire history and r(a) = [R(s1, a) R(s2, a) · · · R(sQM , a)]T is

the reward vector of all channel states under action a.

3.3 Optimal Policy via Dynamic Programming

Since a POMDP is a continuous belief state MDP, we can straightforwardly write

the dynamic programming equation [55] for the infinite horizon continuous-state

MDP with dynamics in (3.7) and the objective function in (3.11). The optimal

policy π∗(·) for the infinite horizon MDP can be obtained by the K-horizon dynamic

programming recursion when K → ∞. To present this algorithm, we define the value

function V (b) as V (b) ! maxa∈A rT (a)b +
∑

o∈O V (g(o, a,b))g(o, a,b). Then, the

following theorem presents Bellman’s equations that must be satisfied by the optimal

policy.

Theorem 1. (Bellman’s equation for an infinite horizon POMDP [55]): Consider

an infinite horizon POMDP with the belief state b ∈ B. The optimal policy π∗(·)
satisfies Bellman’s dynamic programming equation as it follows:

Q(b, a) ! rT (a)b +
∑

o∈O

V (g(o, a,b))g(o, a,b)

π∗(b) = arg max
a∈A

Q(b, a),

V (b) = max
a∈A

Q(b, a), Jπ∗(b0) = V (b0).

(3.12)

The proof of Theorem 1 is provided in [55]. The value iteration algorithm ex-

plained in the next subsection provides the solution to Bellman’s equation (3.12)
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by generating a sequence of functions that converges over B to a unique solution

regardless of the initial belief.

3.3.1 Value Iteration Algorithm

The value iteration algorithm yields the solution to the Bellman equation regardless

of initialization. Let n denote the iteration number and n = 1, 2, . . . ,K. The value

iteration is a successive approximation algorithm to compute value function V (b) of

the Bellman’s equation [55]. Presented in Algorithm 1, the value iteration yields the

optimal policy π∗(b) and optimal expected reward V (b) of the POMDP problem

by performing an exhaustive search over all possible actions.

Algorithm 1 The forward value iteration

1: Set n = 0 and initialize V0(b) = 0.
2: Set n = n + 1 and compute Vn(b) and π∗

n(b) as

Qn(b, a) = r(a)Tb +
∑

o∈O

Vn−1(g(o, a,b))g(o, a,b) (3.13)

Vn(b) = max
a∈A

Qn(b, a)

π∗
n(b) = arg max

a∈A
Qn(b, a)

3: Stop if n = K , otherwise go to Step 2.

Finally, the policy π∗
K(·) is used at each time slot t for antenna selection decision

in the a real time controller. Since the policy is stationary, only the policy π∗
K(·) for

very large K needs to be stored for real-time implementations. Several tools exist

to solve POMDPs [56, 57]; however, high complexity (SPACE hard) of the optimal

solution algorithm restricts its use only to problems with a small number of states.
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Chapter 4

POMDP-based Antenna Selection
Algorithm in Point-to-Point
System

4.1 System Model

We consider a point-to-point downlink transmission link in a massive MIMO system

where a BS, equipped with M antennas and N transmit RF chains, transmits data

to a single-antenna user. It is assumed that M ≫ 1 and N < M . The system

is slotted and each time slot indexed by t, for t = 0, 1, . . .. We assume that the

channel between the BS and the user is time-varying and changes over time slots.

Since the number of the transmit RF chains is limited, at each time slot, the BS

needs to select N out of M antennas for transmission. We assume that the massive

MIMO system operates in the TDD mode, and therefore, the CSI acquisition for

downlink transmission is performed using the uplink channel measurements. With

the selected N RF chains, only the CSI of the corresponding N selected antennas at

the current time slot can be measured. We aim to maximize the expected long-term

transmission rate by selecting N antennas in each time slot. We assume the channel

vector evolves over time as a finite-state Markov process. Since we can only observe

N out of M channel coefficients at each time slot, we use a POMDP framework to

design our antenna selection policy.
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4.2 POMDP Formulation

In this section, we formulate our antenna selection problem using the POMDP

framework. To do so, we first define the POMDP components of our dynamic

antenna selection problem.

POMDP Components: As we represent a POMDP framework by the tuple

(S,A,T, R(s, a),O,O(o, a),b), in Chapter. 3, we elaborate on these components in

our antenna selection problem.

State space

The state space, denoted by S, is the set of a finite number of states labeled as

sj, each of which takes one of the possible channel vectors denoted by h̃j, where1

sj = h̃j ! [h̃1j h̃2j · · · h̃Mj]
T , is one of the possible M × 1 complex vectors

of the channel coefficients between the M available antennas at the BS and the

user’s antenna. We assume that each channel coefficient takes one of the Q possible

values, i.e., h̃ij ∈ {α1, α2, · · · , αQ}, where αi ∈ C, for i = 1, 2, . . . Q. The state

space has QM states and is given by S ! {h̃1, h̃2, . . . , h̃QM}. The channel state ht

at time t takes one of the QM elements in S. To ease the notation, we use ht and st

interchangeably to indicate the channel state. As will be explained later and shown

in Fig. 4.1, the state is assumed to evolve at the beginning of each time slot.

Action space

The action in our system model is the decision of selecting N out of M antennas.

Hence, there are L =
(

M

N

)
possible actions and the action space is given by A !

{ã1, ã2, · · · , ãL}, where ãl ! [al1 al2 · · · alM ]T , alj ∈ {0, 1}, with
∑M

j=1 alj =

N . The antenna selection decision, denoted by at, is made at the beginning of time

slot t.

1Throughout this chapter, to ease the notation, we use sj and h̃j interchangeably.
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Transition probability

As we described in section. 3.1, the transition probability matrix here is a QM ×
QM matrix, and we can write Tij = Pr(st = sj|st−1 = si), for i = 1, . . . , QM , j =

1, . . . , QM . It is herein assumed that the transition probability matrix T is known2.

Observation space

In our system model, the observation vector at time t, denoted as ot is the M × 1

vector, where M − N elements of it are equal to zero, and the other N elements

of it are the channel coefficients of the selected antennas at the BS and the user’s

antenna that is measured via uplink training. The observation space is given as

O ! {o1,o2, . . . , oL′} (4.1)

where L′ = QN ×
(

M

M−N

)
, and oj is one of the L′ possible values of the M × 1

channel observations. At time t, given the antenna selection vector at, we can write

ot ! diag(at)st. (4.2)

The observation vector ot is available at the end of time slot t, as shown in Fig. 4.1.

Observation probability

As the description is provided in section. 3.1, here the conditional observation prob-

ability matrix O(o, a) is a QM × QM diagonal matrix and is defined as O(o, a) =

diag
(

Pr
{

ot = o|st = si, at = a
}QM

i=1

)

.

Reward

The BS uses transmit beamforming3 for downlink data transmission. We use the

achieved data rate by the antenna selection at = a at state st = s as the immediate

2We use an offline method to obtain the transition probabilities for slow fading channel models,
when the channels are quantized into two states, in the Section on Simulation and Performance
Analysis.

3Based on our defined MISO system model, where the receiver is a single-antenna user, we are
using the maximum ratio transmission (MRT) downlink beamforming. Note that for the single
user scenario, MRT is the optimal downlink beamformer [58].
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reward R(s, a) in time slot t. Since the system operates in TDD and the channel

state is assumed unchanged in a time slot and the uplink and downlink channels

are identical. Thus, the immediate reward for this MISO link is given by R(s, a) =

log2

(

1 + P‖diag(a)s‖2

σ2

)

= log2

(

1 + P‖o‖2

σ2

)

, where P is the transmit power at the BS

power and σ2 is the noise power.

Belief vector

The belief explanation is provided in section. 3.1. The belief vector at time t is

defined as bt ! [b1,t b2,t · · · b|S|,t]
T , where bj,t is

bj,t = Pr{st = sj|Ht−1}, (4.3)

where Ht−1 represents the action and observation history until time, where

Ht−1 ! {ot−1, at−1,Ht−2}. (4.4)

The dynamic of a real-time POMDP controller is explained in the sequel. In

this procedure, πt(·) is the decision policy at time t that maps the belief vector

bt to action at, that is at = πt(bt). Given channel state st, the BS uses all the

information available until time t − 1 to obtain (update) the belief vector bt, and

then, makes the antenna selection decision; the resulting transmission accrues as

an instantaneous reward R(st, at). Fig. 4.1 shows the time-line of the POMDP

model in our dynamic antenna selection problem. We assume that the state st is

updated at the beginning of each time slot t (i.e., when the downlink transmission is

performed) and remains unchanged during the uplink transmission. The system is

initialized with the belief vector b0. Based on that initial belief, the initial antenna

selection a0 is made. Downlink transmission is then performed. At the end of

the uplink transmission, we receive the observation o0 = diag(a0)s0, which is the

N × 1 vector of channel state information corresponding to those selected antennas.

The reward is given by R(s0, a0). The belief vector b1 is updated as in (3.8). The

process described above repeats for the next time slot. Given the observation ot−1,
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Figure 4.1: An illustration of the antenna selection problem using the POMDP
model.

our goal is to design the antenna selection policy such that the expected long-term

reward E
{

∑+∞
t=0 R(st, at)

}

, is maximized. Here, the mathematical expectation E{·}
is taken with respect to random channel states {st}+∞

t=0 . Note that at depends on

{st′}t−1
t′=0, and hence is random.

4.2.1 Policy and Objective Function

According to Section. 3.2, here the policy is stationary such that at time t, the policy

π maps the belief vector bt to the action at, that is at = π(bt). With the initial

belief vector b0, the objective function denoted as Jπ(b0) for an infinite horizon

POMDP frame work is defined as

Jπ(b0) = E{st}

{ ∞∑

t=0

R(st, at)
∣
∣
∣b0

}

= E{st}

{ ∞∑

t=0

R(st, π(bt))
∣
∣
∣b0

}

, (4.5)

where E{st}{·} is the expectation taken with respect to the joint probability distri-

bution of {st}+∞
t=0 , given the initial distribution b0. and the main goal is to find the

optimal policy as

π∗ = arg max
π

Jπ(b0), for any b0. (4.6)

According to (3.11), we can write

Jπ(b0) = E{Ht}

{ +∞∑

t=0

rT (at)bt

∣
∣
∣b0

}

, (4.7)

where {Ht} is the entire history and r(a) = [R(s1, a) R(s2, a) · · · R(sQM , a)]T is

the reward vector of all channel states under action a.
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4.2.2 Optimal Policy via Dynamic Programming

As we explained in Section. 3.3, since a POMDP is a continuous belief state MDP, we

can straightforwardly write the dynamic programming equation [55] for the infinite

horizon continuous-state MDP . Thus, we can use Bellman’s equation to obtain the

optimal policy π∗(·). To do so, based on our system model, Qn(b, a) in (3.13) can

be rewritten as

Qn(b, a) =

QM

∑

j=1

log2(1 +
P‖diag(a)h̃j‖2

σ2
)bj +

∑

o∈O

Vn−1(g(o, a,b))g(o,A,b). (4.8)

Given (4.8), we can run the value iteration algorithm presented in Algorithm. 1.

So far, we formulated the antenna selection problem as a POMDP problem

which can be solved via dynamic programming. Several tools exist for solving

POMDPs [56, 57]; however, high complexity (SPACE hard) of the optimal solution

algorithm restricts its use only to problems with a small number of states. Since

the state dimension in our model is QM , the optimal solution becomes computa-

tionally intractable to obtain as the number of antennas M increases. For massive

MIMO systems, we seek a low-complexity suboptimal solution for the selection de-

cision. Myopic policy, a greedy solution which maximizes the expected immediate

reward4 ), is a suboptimal solution that is often used to tackle POMDP problems.

In the next section, we rigorously prove that under certain conditions, myopic policy

provides the optimal solution to our POMDP-based antenna selection problem.

4.3 Two-State Channels: The Optimality of My-

opic Policy

In this section, we consider Q = 2, i.e., each channel coefficient hi,t (i.e., the i-th

element in ht) has two possible values denoted as α and β, where |α| > |β|. That

4Note that rT (at)bt = rT (at)bt is the expected immediate reward function at time t, given
Ht−1 = Ht−1.
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Figure 4.2: A two-state Markov chain model of the channel between each BS antenna
and the user device’s antenna.

is, we can write5

h̃ij ∈ {α, β}, for j = 1, 2, . . . 2M and i = 1, 2, . . . ,M. (4.9)

Each channel hi,t is modeled as a Gilbert-Elliott channel which evolves as a two-state

Markov chain with bad (0) and good (1) states over time slots, as shown in Fig. 4.2.

The transition probability matrix P for for each hi,t is given by

P =

[
p00 p01

p10 p11

]

(4.10)

where pij is the probability of channel changing from state i to state j, where

i, j ∈ {0, 1}. Here, p01 is the probability of each channel coefficient changing from

the bad channel state to the good channel state and p10 is the probability of each

channel coefficient changing from good to bad. Also, p00 = 1− p01 and p11 = 1− p10

is the probability of each channel coefficient, remaining in the bad channel state and

good channel state in the next time slot, respectively. We assume that the channel

state is positively correlated, i.e, p11 > p01.

For j = 1, 2, . . . 2M and i = 1, 2, . . . ,M , let us define

cij =

{

1 if h̃ij = α

0 if h̃ij = β
. (4.11)

Without loss of generality, we redefine state space as C = {cj}2M

j=1, where cj !

[c1j c2j · · · cMj]
T is the j-th member of C. Consequently, for st, we establish an

5We will soon see that only the amplitudes of α and β are involved in the decision making and
the reward and their phases do not have any bearing on the proposed scheme.
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equivalent state at time t denoted by ct ! [c1,t c2,t · · · cM,t]
T ∈ C, where ci,t is

the random variable state of the channel between the the i-th BS antenna and the

user device antenna. Note that the state st of the channel vector can be uniquely

determined from ct and vice versa.

The two-state channel model for each hi,t allows us to simplify the belief formu-

lation, as explained in the sequel. First, we define the conditional probability of

the channel between the i-th BS antenna and the user at time slot t being in the

good state, given the history of all past actions and observations up to time slot

t − 1 as ωi,t ! Pr(ci,t = 1|Ht−1), for i = 1, 2, . . . ,M . We also define an equivalent

belief vector at time t as ωt ! [ω1,t ω2,t . . . ωM,t]
T . Given the antenna selection

vector at and the current channel state ct, the i-th entry of the belief vector ωt+1 is

updated as

ωi,t+1 =







p11 if ai,t = 1, ci,t = 1;

p01 if ai,t = 1, ci,t = 0;

ωi,tp11 + (1 − ωi,t)p01 if ai,t = 0.

, for i = 1, · · · ,M.

(4.12)

We can express the j-th entry of the belief vector at time t as

bj,t = Pr(st = sj|Ht−1) = Pr(ct = cj|Ht−1). (4.13)

Since the channels across different antennas are assumed to be statistically indepen-

dent, we can write

Pr(ct = cj|Ht−1) !
M∏

i=1

Pr(ci,t = cij|Ht−1) =
M∏

i=1

f̂(ωi,t, cij), (4.14)

where we define f̂(ω, c) = ωc(1−ω)1−c, and we use the fact that Pr(ci,t = 1|Ht−1) =

ωi,t and Pr(ci,t = 0|Ht−1) = 1 − ωi,t. Based on (4.13) and (4.14), the expected

immediate reward function at time t, i.e., rT (at)bt, can be written as

R̄(at, ωt) ! rT (at)bt =

|S|
∑

j=1

R(sj, at)bj,t
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=

|C|
∑

j=1

R(sj, at)Pr(ct = cj|Ht−1)

=

|C|
∑

j=1

log2

(

1 +
P‖oj,t‖2

σ2

) M∏

i=1

f̂(ωi,t, cij), (4.15)

where oj,t is the observation vector at time t, if st = sj and can be written, using

(4.2), as

oj,t = diag(at)sj. (4.16)

Here, each entry of oj,t belongs to the set {α, β}. Note that, if k entries of oj,t are

equal to α and the remaining N − k of non-zero entries of oj,t are equal to β, then

the corresponding data data rate, denoted as Rk, is equal to

Rk = log2(1 +
P (k|α|2 + (N − k)|β|2)

σ2
). (4.17)

Given action at, the state space C can be partitioned as

C =
N⋃

k=0

Ck(at), (4.18)

where Ck(at) = {c = [c1 c2 · · · cM ]T ∈ C
∣
∣ ‖diag(at)c‖2 = k}. Using (4.18), we

can rewrite (4.15) as

R̄(at, ωt) =
N∑

k=0

∑

c∈Ck(at)

Rk

M∏

i=1

f̂(ωi,t, ci)

=
N∑

k=0

Rk

∑

c∈Ck(at)

M∏

i=1

f̂(ωi,t, ci)

=
N∑

k=0

Rk

∑

c∈Ck(at)

∏

i∈I(at)

f̂(ωi,t, ci)
∏

i∈I(at)⊥

f̂(ωi,t, ci), (4.19)

where I(at) is the index set of the selected antennas while I⊥(at) is the complement

set of I(at) and contains the indices of the remaining unselected antennas. Note

that, |I(at)| = N and |I⊥(at)| = M − N . Any c ∈ Ck(at) can be split into two

sub-vectors c′ = [ci]i∈I(at) and c′′ = [ci]i∈I⊥(at), where the entries of c′′ can be either
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0 or 1, that is c′′ ∈ {0, 1}M−N , while c′ ∈ C ′

k ! {c′ : 1T
Nc′ = k}. Therefore, (4.19)

can be rewritten as

R̄(at, ωt) =
N∑

k=0

Rk

∑

c′∈C
′

k

∑

c′′∈{0,1}M−N

∏

i∈I(at)

f̂(ωi,t, c
′
i)

∏

i∈I⊥(at)

f̂(ωi,t, c
′′
i )

=
N∑

k=0

Rk




∑

c′∈C
′

k

∏

i∈I(at)

f̂(ωi,t, c
′
i)








∑

c′′∈{0,1}M−N

∏

i∈I⊥(at)

f̂(ωi,t, c
′′
i )





︸ ︷︷ ︸
=1

=
N∑

k=0

Rk

∑

c′∈C
′

k

∏

i∈I(at)

f̂(ωi,t, c
′
i), (4.20)

where the expression above the bracket is equal to 1 because it is the sum of the

probabilities of all possible values of c′′ may take. It can be seen from (4.20) that

R̄(at, ωt) depends only on [ωi,t]i∈I(at). Let us define

f(x) !
N∑

k=0

Rk

∑

1T
N

c′=k

N∏

i=1

f̂(xi, c
′
i). (4.21)

Then for x = [ωi,t]i∈I(at), we can write (4.20) as f([ωi,t]i∈I(at)) ! R̄(at, ωt). We

now rigorously prove that for positively correlated two-state channels, the myopic

policy, which maximizes the expected immediate reward (i.e., expected immediate

achievable rate) is optimal for the antenna selection problem (4.6), meaning that

this policy maximizes the expected long-term reward. To this end, we need to first

prove that for positively correlated states i.e., when p01 < p11, f(x) in (4.21) is

regular, as required by the following theorem [41].

Theorem 2. (Optimality of myopic policy [41]): When p01 < p11, if f(x) is regular,

then the myopic policy maximizes the long-term expected reward.

The definition of a regular function is given as follows.

Definition 1. For x = [x1 x2 · · · xN ]T , function f(x) is called regular with respect

to x, if it satisfies the following three conditions:
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C1: f(x) is symmetric, i.e., if, for any j, l, f(x) satisfies

f([x1 · · · xj · · · xl · · · xN ]T ) = f([x1 · · · xl · · · xj · · · xN ]T ). (4.22)

C2: f(x) is decomposable, i.e., if, for j = 1, ..., N , f(x) satisfies

f([x1 · · · xj · · · xN ]T ) = xjf([x1 · · · 1 · · · xN ]T ) + (1 − xj)f([x1 · · · 0 · · · xN ]T ).
(4.23)

C3: f(x) is monotonically increasing in each entry of x, i.e., if, for any j, xj > x′
j,

f(x) satisfies

f([x1 · · · xj · · · xM ]T ) > f([x1 · · · x′
j · · · xM ]T ). (4.24)

We now prove that f(x) in (4.21) is regular.

Lemma 1. The function f(x) in (4.21) is a regular function.

Proof. We proof f(x) satisfies C1, C2, and C3 in Definition 1. To prove that f(x)

satisfies C1, we can write

f([x1 · · · xj · · · xl · · · xN ]T ) − f([x1 · · · xl · · · xj · · · xN ]T )

=
N∑

k=0

Rk

∑

1T
N

c′=k

f̂(xj, c
′
j)f̂(xl, c

′
l)

N∏

i=1
i(=j,l

f̂(xi, c
′
i)−

N∑

k=0

Rk

∑

1T
N

c′=k

f̂(xl, c
′
j)f̂(xj, c

′
l)

N∏

i=1
i(=j,l

f̂(xi, c
′
i) =

N∑

k=0

Rk

∑

1T
N

c′=k

( N∏

i=1
i(=j,l

f̂(xi, c
′
i)
)(

f̂(xj, c
′
j)f̂(xl, c

′
l) − f̂(xl, c

′
j)f̂(xj, c

′
l)
)

︸ ︷︷ ︸

!l(c′)

, (4.25)
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where

l(c′) =







(
xjxl − xlxj

)
N∏

i=1
i(=j,l

f̂(xi, c
′
i) = 0, if c′j = 1, c′l = 1,

(
xj(1 − xl) − xl(1 − xj)

)

︸ ︷︷ ︸
xj−xl

N∏

i=1
i(=j,l

f̂(xi, c
′
i), if c′j = 1, c′l = 0,

(
(1 − xj)(1 − xl) − (1 − xl)(1 − xj)

)
N∏

i=1
i(=j,l

f̂(xi, c
′
i) = 0, if c′j = 0, c′l = 0,

(
(1 − xj)xl − (1 − xl)xj

)

︸ ︷︷ ︸
xl−xj

N∏

i=1
i(=j,l

f̂(xi, c
′
i), if c′j = 0, c′l = 1.

(4.26)

Using the fact that if 1T
N [c′1 · · · c′l · · · c′j · · · c′N ]T = k, then we can write

1T
N [c′1 · · · c′j · · · c′l · · · c′N ]T = k in the second and forth cases in (4.26), we can

write
∑

1T
N

c′=k

l(c′) = 0. Thus, (4.25) is equal to zero, and thus, f(x) is a symmetric

function.

To show that f(x) is decomposable as in C2, we rewrite (4.21) as

f(x) =
N∑

k=0

∑

1T
N

c′=k

R‖c′‖1

( N∏

i=1
i(=j

f̂(xi, c
′
i)

︸ ︷︷ ︸

!Q(x−j ,c′
−j)

)

f̂(xj, c
′
j), (4.27)

where c′−j is the same as c′ with the j-th entry, c′j, removed and x−j is similarly

defined. Also, since ‖c′‖1 = 1T
Nc′ = k, then R‖c′‖1

is equivalent to Rk in (4.20). We

can further rewrite (4.27) as

f(x) =
N−1∑

k=0

∑

1T
Nc′=k

c′j=0

R‖c′‖1
Q(x−j, c

′
−j)(1 − xj) +

N∑

k=1

∑

1T
Nc′=k

c′j=1

R‖c′‖1
Q(x−j, c

′
−j)xj. (4.28)

Since ‖c′‖1 = ‖c′−j‖1 + c′j, we can rewrite (4.28) as

f(x) =
N−1∑

k=0

∑

1T
Nc′=k

c′j=0

R‖c′
−j‖1

Q(x−j, c
′
−j)(1 − xj) +

N−1∑

k=0

∑

1T
Nc′=k+1

c′j=1

R1+‖c′
−j‖1

Q(x−j, c
′
−j)xj
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=
N−1∑

k=0

( ∑

1T
N−1

c′
−j=k

R1+‖c′
−j‖1

Q(x−j, c
′
−j) −

∑

1T
N−1

c′
−j=k

R‖c′
−j‖1

Q(x−j, c
′
−j)

)

xj

+
N−1∑

k=0

∑

1T
N−1

c′
−j=k

R‖c′
−j‖1

Q(x−j, c
′
−j)

=
N−1∑

k=0

( ∑

1T
N−1

c′
−j=k

Q(x−j, c
′
−j)(R1+‖c′

−j‖1
− R‖c′

−j‖1
)
)

xj+

N−1∑

k=0

∑

1T
N−1

c′
−j=k

R‖c′
−j‖1

Q(x−j, c
′
−j) = ηj xj + θj, (4.29)

where ηj !
N−1∑

k=0

∑

1T
N

c′
−j=k

Q(x−j, c
′
−j)(R1+‖c′

−j‖1
− R‖c′

−j‖1
) and also we write θj !

N−1∑

k=0

∑

1T
Nc′

−j=k

R‖c′
−j‖1

Q(x−j, c
′
−j). Note that ηj > 0 as R1+‖c′

−j‖1
> R‖c′

−j‖1
holds true.

We can now write

f(x) = xj(ηj + θj) + (1 − xj)θj

= xjf([x1 · · · xj−1 1 · · · xN ]T ) + (1 − xj)f([x1 · · · xj−1 0 · · · xN).
(4.30)

Hence, f(x) is a decomposable function according to C2. We now show that f(x)

is monotone as in C3. To show (4.24), based on (4.29), we can write

f(x) − f(x′) = ηj(xj − x′
j) > 0 (4.31)

where we use the fact that ηj > 0 as, by (4.17), R1+‖c′
−j‖1

> R‖c′
−j‖1

holds true.

Thus, f(x) is monotone and the proof is complete. Based on the above discussions,

f(x) satisfies C1, C2, and C3 in Definition 1 and thus is a regular function. #

Based on Lemma 1 and Theorem 2, we can now show easily that the myopic

policy, which is equivalent to selecting those N antennas that have the highest

probability of being in good state, is optimal.

Theorem 3. Assume the two-state positively correlated channel model considered in

(4.9). For the antenna selection problem in (4.6) to choose N out of M antennas, for
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any N < M , the myopic policy is optimal. Specifically, the myopic policy amounts

to selecting those N antennas which correspond to the N largest entries in the belief

vector bt at current time slot t.

Proof. Lemma 1 holds for any N < M . Thus, by Theorem 2, it is straightforward to

conclude that, for any N < M , the myopic policy is optimal. To see that the myopic

policy corresponding to the N largest entries of bt, we rely on C3: According to

this condition, given x−j, function f(x) is monotonically increasing in xj. Hence,

it immediately follows from (4.20) that selecting the N largest elements in x (i.e.

the N largest ωi,t’s) maximizes the expected immediate reward f(x). The proof is

complete. #

Note that intuitively, the myopic policy is to select those N antennas that have

the highest probabilities (based on the current knowledge) of being in a good state

in the next time slot. It is worth mentioning that the authors of [30, 37–39] prove

the optimality of myopic policy for the case when only one (N = 1) resource is to

be selected out of the total available resources. Here, we proved that the myopic

policy is optimal for our antenna selection problem for any 1 ≤ N < M . Also

our results differs from [40], which focuses on the channel selection in multi-channel

opportunistic spectrum access for N > 1. The difference lies in the fact that [40]

assumes one unit of reward for selecting a good-state channel regardless of the

quality of the selected channel. In our approach, however, by using the data rate

at each time slot, we take into account that reward depends on the quality of the

selected channels. For this very same reason, the proof of [40] is not applicable to

our problem. And this is exactly where the novelty of our result resides (see [31,59]).

We also point out that, besides its optimality, a significant advantage of the

myopic policy is that it incurs minimum computational complexity to determine

the selected antennas, as compared to the optimal policy for the general POMDP,

where the latter is PSPACE-complete in general [60]. This allows us to apply the
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myopic policy to the multi-antenna selection problems in massive MIMO systems.

Although the optimality of the myopic policy in Theorem 3 is herein proved

only for the two-state channel model (which is rarely the case for the actual fading

channels), this policy can be used as a low-complexity method for the antenna

selection problem for practical implementation in massive MIMO system. In the

next section, we develop an algorithm using the myopic policy for antenna selection

over the Rayleigh fading channels for perfect CSI (PCSI) and imperfect (ICSI)

scenarios.

4.4 Myopic Policy-based Antenna Selection for

Fading Channel

We consider the Gauss-Markov model for channel evolution over time slots. This

model is widely adopted to represent the dynamics of the Rayleigh fading channels

[32, 33]. The first-order Gauss-Markov channel model is given by

hi,t ! ξhi,t−1 +
√

1 − ξ2zi,t, i = 1, ..., M. (4.32)

where hi,t ∼ CN (0, σ2
h) is the channel between the i-th BS antenna and the user

at time slot t, with σ2
h being the channel variance, the process {zi,t} is the i.i.d.

innovation sequence with zi,t ∼ CN (0, σ2
h), which is independent of the channel hi,t,

for i = 1, ..., M , and, ξ ∈ [0, 1] is the fading correlation coefficient. The value of ξ

depends on the maximum Doppler frequency [61], with ξ = 1 representing a static

channel and ξ = 0 indicating the channel being i.i.d over t.

For the purpose of antenna selection, we quantize the channel coefficients into

two values of α and β, assuming a two-state Markov channel model and then apply

the optimal myopic policy for antenna selection decision. That is, the quantized

channel coefficient h
′
i,t is given by

h
′
i,t =

{

α, if |hi,t| $ v,

β, if |hi,t| < v .
(4.33)
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where v is the quantization threshold for the channel amplitude, and |α| > |β|
must hold. The value of v determines the transition probabilities for the quan-

tized two-state channels, and will dictate the resulting data rate under the myopic

policy for antenna selection. Note that the optimal value of v, which maximizes

the time-averaged expected data rate, depends on the value of the channel corre-

lation coefficient ξ. Such dependency, however, can not be expressed in a closed

form [62, 63]. For any given value ξ, we have to resort to numerical simulations

in order to obtain the optimal value of v. Given the so-obtained value of v, the

transition probabilities p11 and p01 can be obtained empirically.

Based on the quantized channel coefficient described above, we select the best

set of N antennas for data transmission at each time slot t, by applying the my-

opic policy summarized as Algorithm 2. Specifically, at each time slot t, based on

selection decision at, the BS obtains vector ot, i.e., the channel coefficients of the N

selected antennas at the end of the time slot. Quantization is then performed for

each entry of ot according to (4.33). Using the quantized channels, those entries of

ct which correspond to the selected antennas are obtained. Next, the belief vector

ωi,t+1’s are updated using (4.12) . At the beginning of time slot t + 1, the antenna

selection is made by setting we set ai,t+1 = 1 (i.e., the i-th antenna is selected), if

ωi,t+1 is among the N largest entries of ωt+1, otherwise ai,t+1 = 0. The antennas

selected by at+1 is then used for transmission for time slot t + 1.
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Algorithm 2 The myopic policy based antenna selection for point-to-point systems

Inputs: Set the threshold value v based on ξ and σ2
h .

At each time slot t:
Input: ot

1: Quantize the elements of ot into α and β using (4.33) and update the elements
of ct which correspond to the currently selected antennas based on (4.11).

2: Update ωt+1 using (4.12).
3: For i = 1, 2, · · · ,M , choose the i-th entry of at+1 as

ai,t+1 =

{

1, if ωi,t+1 among the largest N entries of ωt+1,

0, otherwise.
(4.34)

Output: at+1

Remark 1: It is worth noting that there are different strategies to schedule users

in MIMO systems [46]. Allocating one user per time-slot is one of the common

user scheduling schemes [64–66]. There are extensive existing studies where the

authors proposed various designs based on one user per time-slot scheduling scheme

in MIMO systems [67,68]. Moreover, the scheme we are considering can be used in

point-to-point MIMO systems, where the receiver can have one or more antennas.

We would like to emphasize that the main contribution of this study is to pro-

pose a simple yet optimal POMDP antenna selection algorithm that can be easily

implemented for large-scale antenna arrays with any given number of antennas and

available RF chains. It is worth mentioning that, unlike the studies in [30,40], where

the authors use a simple reward model where one unit of reward is accrued when

data is received, in our proposed method, the reward function is the actual rate

achieved by MISO beamforming. To the best of our knowledge, under such a realis-

tic and complex reward function, this is the first study that proves the optimality of

myopic policy for any given number of antennas and available RF chains. Extending

this study to a multi-user scenario involves additional technical difficulties. For a

multi-user scheme, the main goal is to find the best N out of M antennas to serve K

users such that the expected long term data rate is maximized. In this scenario, a
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selection policy, which accounts for the channel quality of all users, is needed. Such

a policy may not be as simple as the myopic policy because the expected immediate

reward function is not a regular function anymore. Finding a proper framework to

formulate a POMDP-based antenna selection policy for multi-user cases is a chal-

lenging task and needs a full investigation. We consider addressing this challenge in

our next step in this line of work that is presented in Chapter. 5.

Remark 2: As indicated in the inputs of Algorithm 2, the optimal threshold

value depends on the channel correlation over time ξ and variance σ2
h. Note that the

relationship between the optimal threshold value v and σh is linear. The reason is

that if for given M , N , ξ, and hi,t ∼ CN (0, σ2
h), the optimal threshold value is v, for

the same values of M , N , and ξ but for h
′′

i,t ∼ CN (0, σ
′′

h

2
), we can scale h

′′

i,t by σh

σ′′
h

,

and thus, assume the channel is σh

σ′′
h

h
′′

i,t ∼ CN (0, σ2
h). Such a scaling allows us to use

the same value of v as the optimal threshold value for σh

σ′′
h

h
′′

i,t. In other words, the

optimal threshold value for h
′′

i,t ∼ CN (0, σ
′′

h

2
) is

σ′′
h

σh
v, meaning that the threshold v

can be scaled accordingly based on σh of the channel of interest.

Remark 3: The computational complexity of the value iteration algorithm is

O(|S|2×|A|) per iteration [69]. In our problem, |S| = 2M and |A| =
(

M

N

)
. The com-

putational complexity of our proposed myopic antenna selection algorithm resides

in updating the elements of the belief vector with the computational complexity

O(M − N) (see (4.12)) Sorting the M × 1 belief vector with computational com-

plexity O(M log N) [70]. Thus, the total computational complexity of the myopic

policy is only O(M log N), which is significantly less than that of the value iteration

algorithm.

Remark 4: In reality, single-antenna users is a common assumption [67, 68,

71]. However, for scenarios with multi-antenna users, we can use singular value

decomposition (SVD) to turn the channel into multiple parallel MISO channels for

eigen-beamforming, as typically considered in MIMO systems.. Consider a point-to-

point scenario between nodes A and B, where node A uses all of its antennas while
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node B performs antenna selection. In this case, node A can precode its transmitted

data using the conjugate of the left principal singular vector of the channel matrix

from node A to node B and receive its data by using left principal singular vector

as a receive-beamformer, thereby turning the MIMO channel into a MISO channel.

Thus our proposed antenna selection algorithm can be applied to a massive antenna

array base station which transmits data to a multi-antenna user.

4.5 Simulation and Performance Analysis

This section demonstrates the performance of our proposed solutions for the antenna

selection problem. For all the simulation runs, we set the transmitter’s SNR as

P
σ2 = 5 dB. We study the performance of the optimal POMDP solution for the

antenna selection problem in terms of the time-average rate R̄t, defined as R̄t !

1
t

∑t

τ=0 R(sτ , aτ ). which is averaged over 100 Monte Carlo runs to obtain its average

value.

4.5.1 Two-State Channel Model

POMDP Policy

In this subsection, using the two-state channel model as an example, we verify the

optimality of the myopic policy, as stated in Theorem 1. In particular, we show

the convergence behavior of Algorithm 1 for different numbers of antennas M and

different numbers of RF chains N . Throughout our simulations, we assume that

the channel coefficients are i.i.d., and each evolves according to a two-state Markov

chain, i.e., Q = 2 with {α1, α2} = {
√

0.1,
√

10} and the transition probabilities p01 =

0.2 and p11 = 0.8. Since channel coefficients are independent, T can be obtained

from the transition probability of the each channel coefficient state. Here, we use

the existing POMDP solver software [56] to find the optimal policy of Algorithm

1. In our first series of experiments, we aim to analyze the effect of M and N on

the performance of Algorithm 1 for the antenna selection problem, and compare its
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Figure 4.3: For Q = 2, p01 = 0.2, and p11 = 0.8 (a) time-average rate R̄3000 versus
P/σ2 (b) time-averaged rate R̄t of 10 Monte Carlo simulation runs for P/σ2 = 5 dB
.

performance with that of the myopic policy.

Fig. 4.3a shows the average of R̄3000 versus P/σ2 under both Algorithm 1 and

the myopic policy. The results verify that the myopic solution is optimal for the

POMDP based antenna selection problem. Fig. 4.3b shows the time trajectory of

R̄t for Algorithm 1, versus time slot t, for different pairs of N and M and for 10

simulation runs. As it can be seen from this figure, the POMDP based technique

converges in about 1000 time slots.

4.5.2 Gauss-Markov Channel Model

In this subsection, considering the Rayleigh fading Gauss-Markov channel model in

(4.39) with σ2
h = 1, we apply Algorithm 2 for the antenna selection problem in a

massive MIMO system for both perfect CSI and imperfect CSI. Unlike the previous

example, the quantized channels are used solely for antenna selection purpose, and

the average data rate R̄t is calculated based on the actual fading channel coefficients.

This performance depends on the transition probabilities which in turn depend on

the quantization threshold v. The optimal value of v depends on M , N , and ξ.

Unfortunately, the relationship between optimal v and different values of M , N ,
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Figure 4.4: Average R̄3000 versus v for P/σ2 = 5 dB (a) Gauss-Markov channel with
ξ = 0.999 (b) Gauss-Markov channel with ξ = 0.99.

and ξ does not appear to be amenable to a closed-from expression. As such, we

resort to numerical simulations to find the optimal values of v for two different

scenarios. In the first scenario, considering M = 200 and for different values of

N = [10 : 20 : 200], we plot the averaged R̄3000 versus different values of threshold v.

The result is shown in Figs. 4.4a and 4.4b for Gauss-Markov channel with ξ = 0.999

and ξ = 0.99, respectively. These figures show that the optimal value of threshold

v depends on both M and N . Fig. 4.5 shows the optimal values of v obtained

empirically based on Figs. 4.4a and 4.4b for M = 200 and N = [10 : 20 : 200]

for different values of ξ. We observe that the summery of the first scenario results

with one extra plot of Gauss-Markov channel with ξ = 0.97. In this figure, we plot

the optimal value of v for M = 200 versus number N of the selected antennas to

show that for given M , the optimal value of v is insensitive to the channel variation

parameter ξ, specially for N > 70. When M and N values are close to each other,

e.g., M = 200 and N = 170, the optimal threshold value is relatively small (v = 0.4).

This is due to the fact that when the values of M and N are close, the number of

choices for antenna selection is rather limited. Hence, we should be less selective in

labeling channels as good by choosing a small v. As N becomes small, the number
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Figure 4.5: Optimal threshold value, v
versus N for M = 200 and P/σ2 = 5 dB.
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Figure 4.6: Optimal threshold value
v, versus M for P/σ2 = 5 dB.

of possible antenna selections increases, allowing us to set a higher threshold on v

to be more opportunistic in selecting good channels,

Fig. 4.6 shows the corresponding optimal threshold values of v, obtained from

Figs.4.7a and 4.7b, versus M . Indeed, fixing N = 50 and for different values of M =

[100 : 20 : 400], in Figs. 4.7a and 4.7b, we plot R̄3000, averaged over 100 Monte Carlo

simulation runs, versus different values of threshold v, for Gauss-Markov channel

models with ξ = 0.999 and ξ = 0.99, respectively. Fig. 4.6 also shows that for fixed

N , when M is increased, the optimal threshold v is increased, meaning that we

need to be more selective in labeling channels as good, as more choices for antenna

selection become available, and vice versa.

In the remainder of our numerical results, for each simulation run, we use the

corresponding optimal v for quantization in Algorithm 2. Next, we compare the

performance of Algorithm 2 based on the myopic policy, with two other schemes:

1) A random antenna selection policy, and 2) a selection policy (referred to as the

full perfect CSI based policy) that uses full perfect CSI of M channels to select N

antennas with the N highest channel amplitudes. Considering a BS with M = 200

available antennas, in Fig. 4.8a (4.8b), we plot average of R̄3000 versus N (M) for

fixed M (N) and for different scenarios of channel variations tabulated in Table 4.1.
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Figure 4.7: Average R̄3000 versus v for P/σ2 = 5 dB (a) Gauss-Markov channel with
ξ = 0.999 (b) Gauss-Markov channel with ξ = 0.99.

Table 4.1: Values of ξ for different scenarios.

Scenario V W Tc ξ

WLAN 802.11 operating at 2.4 GHz,
pedestrian user

3.6 km/h 15 kHz ∽ 0.3 s 0.999

LTE network operating at 2.6 GHz,
car driving in residential area

27 km/h 15 kHz ∽ 15.3 ms 0.99

LTE network operating at 2.6 GHz,
car driving in residential area

36 km/h 15 kHz ∽ 11.5 ms 0.986

LTE network operating at 2.6 GHz,
high speed car driving in highway

140 km/h 15 kHz ∽ 2.2 ms 0.95

LTE network operating at 2.6 GHz,
high speed train

290 km/h 15 kHz ∽ 1.4 ms 0.9
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In this table, the relationship between ξ, coherence time Tc, and bandwidth, denoted

as W , is given by ξTcW = φ, where φ is the de-correlation level and is set to 0.1, which

is typically determined based on measurements [61]. Table 4.1 shows the values of

ξ under different scenarios in a wide range of mobile speed consideration, from

pedestrian, vehicle, to high-speed train. For example, the first scenario corresponds

to a pedestrian user with velocity V = 1 m/s (3.6 km/h). As can be seen in Figs. 4.8a

and 4.8b, the performance gap between the myopic policy and the full CSI based

policy is at most 1.3 (bcu). In other scenarios, such as when V = 27 km/h and

N = 50, this gap is about 0.35 (bcu) and is at most 0.55 (bcu) for M = 200 and

V = 27 km/h. As can be seen from Fig. 4.8a, for fixed M , as N increases, the number

of choices for the set of selected antennas decreases. As a result, the gap between

the full perfect CSI based policy and the other policies decreases. Furthermore,

when the channel variation over time is slow, the performance between Algorithm

2 and the full perfect CSI based scheme is very small (less than 0.2 (bcu)). When

the channel variation increases, this performance gap increases only slightly to a

maximum of 0.55 (bcu) for a low-speed vehicle. For the high speed vehicle and train

scenarios, this gap performance increases to maximum 1.3 (bcu). Fig. 4.8b shows

average of R̄3000 versus M , for N = 50 and different scenarios of channel correlation

from Table 4.1. This figure also confirms that there is a very small performance

gap between the Algorithm 2 and the full perfect CSI based policy. An intuitive

explanation behind this small performance gap between these two policies is that in

the myopic policy, we use the two-level quantization only for the purpose of antenna

selection, while we employ the non-quantized channel to obtain the MISO data rate.

This means that for the purpose of antenna selection (which is a binary choice), one

only needs coarse knowledge about the channel amplitudes.

To analyze the sensitivity of our proposed myopic policy antenna selection algo-

rithm to uncertainty in our knowledge of the transition probabilities, we consider an

estimation error, denoted as ǫ, in the p11 and p01 and instead of (4.12), we update
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Figure 4.8: Average R̄3000 a) versus N , for M = 200, P/σ2 = 5 dB, b) versus M ,
for N = 50, P/σ2 = 5 dB.

the i-th entry of belief vector as

ωi,t+1 =







p11 + ǫ, if ai,t = 1, ci,t = 1;

p01 + ǫ, if ai,t = 1, ci,t = 0;

ωi,t(p11 + ǫ) + (1 − ωi,t)(p01 + ǫ), if ai,t = 0.

(4.35)

Assuming M = 200, we show R̄3000 versus ǫ in Figs. 4.9a and 4.9b for N = 10 and

N = 90, respectively. In these figures, we consider full CSI scheme, our proposed

myopic policy algorithm for ξ = 0.999, 0.99, 0.986, and the random selection method.

As can be seen from these figures, for larger values of N , the myopic policy is less

sensitive to the value of ǫ. As ǫ is increased beyond a threshold (whose value increases

with N), the performance of the myopic policy starts to decrease drastically and

approaches to that of the random selection method for large values of ǫ.

4.5.3 Imperfect Receiver CSI

We now evaluate the performance of the proposed Algorithm 2, under imperfect CSI

available at the receiver side. We define h̆i,t ∼ CN (0, ǫh) as the i-th antenna channel

estimation error with variance ǫh. The estimated channel of the i-th antenna and

the corresponding true channel have the following relationship:

hi,t = ĥi,t + h̆i,t, i = 1, 2, · · · ,M. (4.36)
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Figure 4.9: Average R̄3000 a) versus ǫ, for M = 200, N = 10, P/σ2 = 5 dB, b) versus
ǫ, for M = 200, N = 90, P/σ2 = 5 dB.

where ĥi,t and h̆i,t are statistically independent. To apply Algorithm 2, we need to

replace ci,t in (4.12), with its estimate, if the i-the antenna is selected, as

ĉi,t =

{

1 if |ĥi,t| $ v .

0 if |ĥi,t| < v .
, i = 1, 2, · · · ,M. (4.37)

where ĥi,t is the observed channel coefficient between the i-the antenna and the user.

Based on (4.37), we update the entries of ωt+1 according to (4.12), and Algorithm

2 follows. Due to the imperfect CSI, the reward function is given by

R̂(ĥt,ht, at) ! log2

(

1 +
P | ĥ

H

t diag(at)ht |
σ2

)

, (4.38)

where ĥt = [ĥ1,t ĥ2,t · · · ĥM,t]
T is the estimated CSI vector. In Fig. 4.10, assuming

N = 50, M = 200, and for ξ = 0.999 and 0.99, we plot the performance of the

following four policies: 1) the full perfect CSI based policy, 2) the full imperfect CSI

based policy, which used the full but imperfect CSI, 3) Algorithm. 2, and 4) the

random selection policy.

In Algorithm. 2, we choose v = 1.1, for ξ = 0.999; and v = 1 when ξ = 0.99.

These values of v are optimal for the corresponding scenarios. Note that for the

full perfect CSI based policy, we have ǫh = 0. As expected, we see that increasing

ǫh decreases the rate for our algorithm due to the loss of accuracy of the CSI. The
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Figure 4.10: Average R̄3000 for imperfect CSI versus channel estimation error ǫh, for
M = 200 and N = 50.

performance under the random selection policy is not affected by ǫh as the selection

does not depend on the CSI. As can be seen from this figure, for ǫh = 0.3, Algorithm

2 still performs better than the random selection policy by about 1 bit/channel use,

while falls short off of the full perfect CSI based policy by only 0.3−0.4 bit/channel

use.

4.5.4 Multi-User Scenario

In this subsection, we extend our proposed myopic policy-based antenna selection

algorithm to a multi-user scenario and evaluate its performance in this case. To do

so, we assume that the BS is equipped with M antennas and N RF chains and serves

K users (K < N) simultaneously. Here, we assume that the channels between the

BS and the users have a direct line-of-sight (LoS) path and follow the Rician fading

model. We assume that the LoS components of all K users consists of the common

component but differ from each other by a random phase-only component. Such

assumptions amount to clustering together those users that are spread in a small

geographical area. Indeed, the goal of any clustering technique would be to serve

the users that have similar channels. To define the LoS components, we assume a

uniform linear antenna array at the BS with inter-element spacing of λ
2
, where λ is
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the carrier wavelength. We denote ĥk = [ĥk,1 ĥk,2 . . . ĥk,M ]T as the LoS portion

of the channel vector of the k-th user, where ĥk,i is the LoS component of the i-th

antenna and the k-th user, for i = 1, 2, . . . ,M and k = 1, 2, . . . ,K. Given the array

geometry, we can write ĥk,i = exp(−j(2πdk

λ
− (i − 1)πφ − ψk,i)), where dk is the

distance between the k-th user and the BS; φ = cos θ, where θ is the angle of the

incidence of the common component of the LoS signal with onto the first antenna

of the BS; and ψk,i is a random phase uniformly distributed in the interval [−ϕ, ϕ],

where we choose ϕ as 0.5 or 1 degrees. The non-LoS (NLoS) component of the

channel of the i-th user over all antenna is modelled as h̄i,t ∼ CN (0K×1,Σh), where

Σh = E{h̄i,th̄
H

i,t} = diag([σ2
h,k]

K
k=1), and σ2

h,k is the variance of the NLoS component

of channel between the k-th user and the i-th antenna. We model the time variations

of hi,t using first-order Gauss-Markov channel model as

h̄i,t ! diag(ξ)h̄i,t−1 + diag(ξ′)zi,t, i = 1, . . . ,M . (4.39)

Here, zi,t ∼ CN (0K×1,Σh) is independent of the channel vector h̄i,t, for i = 1, ..., M

and we define ξ ! [ξ1 ξ2 · · · ξk], where ξk ∈ [0, 1] is the fading corre-

lation coefficient corresponding to the k-th user. Furthermore, we define ξ′ as

ξ′ = [
√

1 − ξ2
1

√

1 − ξ2
2 · · ·

√

1 − ξ2
K ]. The Rician fading channel vector of

the i-th antenna at time slot t, denoted as hi,t, is given as hi,t = ĥi1K×1 + h̄i,t,for

i = 1, 2, · · · ,M , where 1K×1 is a K × 1 vector of all one entries. At time slot t,

given action at, we define the input of Algorithm 2, i.e., the observation vector ot

as ot = diag(at)[
1T hi,t

K
]Mi=1. That is, the i-th entry of ot is the average of channel

measurements between the i-th antenna and all K users. We adopt use zero-forcing

beamforming to cancel the inter-user interference, and thus, the time-averaged sum-

rate can be written as

R̂t =
1

t

t∑

τ=0

log2 det
(
I +

P

σ2‖HH
s,τ (Hs,τ HH

s,τ )
−1‖2

F

I
)
. (4.40)

where we define Hs,t = [hi,t]i∈I(at) with hi,t being a realization hi,t.
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Figure 4.11: Time averaged sum-rate for M = 200, N = [10 : 30 : 50], P
σ2 = 15 dB,

for a) K = 2, and b) K = 4.

To evaluate the performance of our proposed algorithm for multi-user scenario,

we assume M = 200, N = [10 : 30 : 50], P
σ2 = 15 dB, θ = 30 degrees, a carrier

frequency of 3 GHz (λ = 0.1 m), and σ2
h,k = 0.1 and ξk = 0.999 for k = 1, 2, · · · ,K.

The distance dk is drawn from a uniform distribution with a mean of 2 km and a

spread of 0.5 km. In Figs. 5.6a and 5.6b, we show the time-averaged sum-rate versus

the number N of RF chains for K = 2 and K = 4, respectively. As can be seen from

these figures, in this multi-user scenario, the performance of our proposed algorithms

can be very close to the full CSI based policy, when the LoS components are relatively

close to each other. As the difference between the LoS components of different user

channels is increased, the performance gap between the proposed policy and the

full CSI increase. As these two figures show, this performance gap grows as the

number of users increases. Nevertheless, the proposed algorithm performs better

than the random selection policy. As this numerical example shows, although not

designed for multi-user scenarios, the myopic policy can offer good performance

for such scenarios. The extension of this method for multi-user scenarios needs

further investigation, and this is exactly what we consider in the next chapter of

this dissertation.
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Chapter 5

POMDP-based Antenna Selection
Algorithm in Multi-User MIMO
Systems

5.1 System Model

We consider a massive MU-MIMO communication system, where a multi-antenna

base station (BS), equipped with M antennas and N RF chains (M ≫ N), aims

to communicate with K single-antenna users (see Fig. 5.1). We assume that the

number of users is less than the number of the available RF chains (K< N). The

system is time-slotted and each time slot consists of two phases, namely uplink and

downlink. We assume that each channel between the BS and each user evolves over

time slots according to a Markov process. As the number of the available RF chains

is smaller than the number of BS antennas, only N out of the M antennas can

contribute to the data reception/transmission in each time slot. Upon acquiring the

channels in the uplink training phase, we select the best N antennas in each time

slot with the aim to maximize the expected long-term sum-rate. Note that as we

can only observe N out of M available channels during each time slot, the channel

state information (CSI) at each time slot is only partially observable. Since each

channel evolves according to a Markov process and is only partially observable, a

POMDP framework appears to be an appropriate approach to obtain the optimal
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antenna selection policy to maximize the expected long-term sum-rate.
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Figure 5.1: Illustration of a Massive MU-MIMO system, where the BS is equipped
with M antennas and N RF chains, and communicates with K single-antenna users.

5.2 Problem Formulation

To describe the system model, we denote the random channel matrix between the

M antennas and the K users at time t as Ht ! [h1,t h2,t · · · hM,t], where

hi,t ∈ CK×1 is the random vector of the channel coefficients between all users and

the i-th antenna at time t. At the beginning of time t, a subset of N columns of Ht

is selected for transmission during time slot t. Let Hs,t ∈ CK×N represent a matrix

constructed from such columns of Ht. If Hs is a realization of Hs,t, we can write

vector y ∈ CK×1 of the signals received at all K users as

y = HsWx + n, (5.1)

where x ∈ CK×1 is the transmitted signal vector, n ∈ CK×1 is the noise vector with

the noise variance of each element being σ2, and W ∈ CN×K is the precoding (beam-

forming) matrix. We use zero-forcing beamforming (ZFBF) technique to eliminate
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the interference among the users. Thus, we can write W as

W = HH
s (Hs HH

s )−1

√

P

‖HH
s (Hs HH

s )−1‖2
F

, (5.2)

where P is the total transmit power and ‖ · ‖F is the Frobenius norm. Based on

the singular value decomposition (SVD) of the channel matrix, we can then write

‖HH
s (Hs HH

s )−1‖2
F = Tr((Hs HH

s )−1) =
K∑

k=1

1

λ2
sk

, (5.3)

where λsk is the k-th singular value of Hs. Using (5.3), we can write the sum-rate

of the system as

R̆(Hs) = log2

(

det
(
I +

1

σ2
HsWWHHH

s

) )

= log2

(

det
(
I +

P

σ2‖HH
s (Hs HH

s )−1‖2
F

I
) )

= K log2

(

1 +
P

σ2
∑K

k=1
1

λ2
sk

)

.

(5.4)

To improve the tractability of the antenna selection problem, we consider an upper

bound of sum-rate expression. Considering the following property

(

1

K

K∑

k=1

1

λ2
sk

)−1

&
1

K

(
K∑

k=1

λ2
sk

)

, (5.5)

we have

K log2

(

1 +
P

σ2
∑K

k=1
1

λ2
sk

)

& K log2

(

1 +
P (

∑K

k=1 λ2
sk)

σ2K2

)

= K log2

(

1 +
PTr(HH

s Hs)

σ2K2

)

.

(5.6)

where we used the fact that
∑K

k=1 λ2
sk = Tr(HH

s Hs). Based on (5.6), we perform an-

tenna selection using the sum-rate upper bound, for any selected channel realization

Hs, defined as

Ru(Hs) = K log2

(

1 +
PTr(HH

s Hs)

σ2K2

)

. (5.7)
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Note that we can write

Ru(Hs,t) = K log2

(

1 +
P

σ2K2

∑

i∈I

‖hi,t‖2
)

. (5.8)

where I is the set of the indices of the selected antennas, that is Hs,t =
[

hi,t

]

i∈I
.

Specifically, we aim to design an antenna selection policy to maximize the expected

long-term sum-rate upper bound, given by

E{Hs,t}

{ ∞∑

t=0

Ru(Hs,t)
}

, (5.9)

where the expectation is taken with respect to random selected channel matrices

{Hs,t}∞t=0. In the next section, using the long-term sum-rate upper bound in (5.9) as

the reward function, we formulate the antenna selection problem using a POMDP

framework.

5.3 POMDP Formulation

In this section, we formulate our antenna selection problem for a massive MU-MIMO

system by the presented tuples of a POMDP framework in Section. 3.1, as follows:

State space

In our antenna selection problem, at time t, the M × 1 state vector st is defined as

st = [‖h1,t‖2 ‖h2,t‖2 . . . ‖hM,t‖2]T . (5.10)

That is, the ith entry of the state vector at time t is the square of the norm of the

vector of the channel coefficients between the users and the i-th antenna. We model

the time-varying state vector as a discrete Markov process. Each element of st is

assumed to take one of Q possible levels of {αq}Q
q=1, that is ,‖hi,t‖2 ∈ {α1, ..., αQ}.

As such, st belongs to a state space, denoted as S, which is the finite set of all QM

possible values of st. For j = 1, 2, . . . , |S|, the j-th member of S is labeled as sj.
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Action space

An action in our system model is selecting N out of M antennas. Hence, L !
(

M

N

)

possible actions can be chosen. We define the action space as

A ! {ã1, ã2, · · · , ãL} (5.11)

where, for l = 1, ..., L, ãl is a M × 1 vector whose N out of M elements are equal to

one and remaining elements are zero, that is

ãl ! [a1l a2l · · · aMl]
T , ajl ∈ {0, 1},

M∑

j=1

ajl = N. (5.12)

At time t, our action at is to choose one of the M ×1 selection vectors
{

ãl

}L

l=1
from

the action space.

Transition probabilities

The transition probability matrix definition is provided in Section. 3.1. Here, we

assume that the transition probability matrix T is known.

Observation space

In our system model, the j-th element of the observation space, denoted as oj, can

take one of the possible M ×1 observation vectors, which have N non-zero elements

corresponding to the observed channel gain of the N selected antennas and the

remaining M − N elements are zero. That is, we define the observation space as

O ! {o1,o2, · · · ,oL′}, (5.13)

where L′ =
(

M

M−N

)
QN . With given action at, the random observation vector at time

t, denoted as ot ∈ O, is based on the current state as

ot ! diag(at)st. (5.14)
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Observation probabilities

The conditional observation probability matrix, denoted by O(o, a), is a QM ×QM

diagonal matrix and the definition is provided in Section. 3.1.

Reward

At time t, when action at is taken at state st, reward R(st, at) is accrued. The

immediate reward function R(st, at) is defined as the sum-rate upper-bound given

in (5.8), that is

R(st, at) ! Ru(Hs,t) = K log2

(

1 +
P

σ2K2

∑

i∈I

‖hi,t‖2
)

= K log2

(

1 +
P

σ2K2
1Tot

)

(5.15)

where in the third equality, we use the fact that
∑

i∈I ‖hi,t‖2 = 1Tot.

Belief vector

At time t, the belief vector is defined as bt ! [b1,t b2,t ... b|S|,t]
T , where bj,t is

the probability of the state at time t, st being equal to sj ∈ S, given all the action

and observation history until time t− 1. If we use Ht−1 to represent the action and

observation history until time t − 1, i.e.,

Ht−1 ! {ot−1, at−1,Ht−2}, (5.16)

then we can write

bj,t ! Pr{st = sj|Ht−1}. (5.17)

belief vector at time t depends on the observation ot−1 ∈ O, which is a random

vector. Hence, the random belief vector bt can be defined as

bt ! g(ot−1 , at−1,bt−1). (5.18)

The j-th entry of bt is defined as

bj,t ! Pr(st = sj|Ht−1), (5.19)
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Figure 5.2: Illustration of the antenna selection problem as a POMDP process.

where the random history set Ht−1 is defined as

Ht−1 ! {ot−1, at−1, Ht−2}. (5.20)

Note that Ht−1 in (5.16) is a realization of Ht−1 after observing ot−1 (see Section. 3.1

for more explanations about belief vector).

The dynamic of a real-time POMDP controller proceeds as shown in Fig. 5.2.

Each time slot includes one downlink and one uplink transmission. We assume that

channel evolves at the beginning of each time slot and remains unchanged during

the entire time slot. At the beginning of the downlink transmission, the BS chooses

an action vector which selects N out of M antennas to transmit data. Then via

uplink training process, at the end of each time slot, the BS observes the channel

coefficients between the N selected antennas and all K available users. At the

next time slot t, given that the state at time t is st, the BS uses all the historical

information available until the end of time slot t− 1, which includes bt−1, and at−1,

obtained at the beginning of time slot t − 1, and ot−1, obtained at the end of time

slot t−1, to obtain (update) the belief vector bt, and then chooses the action vector

at at time t. Note that at depends on {sτ}t−1
τ=0, and hence, is random. Our aim is

to design a decision policy for actions {at}+∞
t=0 such that the expected cumulative

reward, E
{

∑+∞
t=0 R(st, at)

}

is maximized. Here, the expectation E{·} is taken w.r.t.

random states {st}+∞
t=0 .
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5.3.1 Objective Function

Policy 1 at time t, maps the belief vector bt to the action at, that is at = π(bt). For

the initial belief vector b0, the objective function denoted as Jπ(b0) for an infinite

horizon POMDP framework is defined as

Jπ(b0) = E{st}

{ ∞∑

t=0

R(st, at)
∣
∣
∣b0

}

= E{st}

{ ∞∑

t=0

R(st, π(bt))
∣
∣
∣b0

}

(5.21)

where st ∈ S, at = π(bt) ∈ A, and E{st}{·} is the expectation w.r.t. random states

{st}+∞
t=0 , given the initial belief b0. Given the defined POMDP model, the main goal

is to find the optimal policy as

π∗ = arg max
π

Jπ(b0), for any b0. (5.22)

As the random action vector at is a function of bt, which in turn is a function of

ot−1, there is a one-to-one correspondence between Ht and {ot′}t
t′=0. Hence, as we

explained in Section. 3.3, we can write

Jπ(b0) = E{Ht}

{ +∞∑

t=0

rT (at)bt

∣
∣
∣b0

}

(5.23)

where {Ht} is the whole history, and r(a) ! [R(s1, a) R(s2, a) · · · R(sQM , a)]T is

the reward vector for action a. Note that, given Ht−1 = Ht−1, we note that rT (at)bt

as the expected immediate reward function.

Since a POMDP is a continuous belief state MDP (see [55]), we can straightfor-

wardly write down the Bellman equation for the infinite-horizon continuous-state

MDP with the dynamics of the belief update in (5.18) and the objective function

in (5.23) to find the optimal policy. We can use the value iteration algorithm to

find the optimal solution. However, the computational complexity of the value iter-

ation algorithm is O(|S|2 × |A|) per iteration [69]. In our problem, |S| = QM and

|A| =
(

M

N

)
. Thus, the computational complexity of the value iteration algorithm

1Here, the policy is a stationary policy (see Section. 3.3).
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grows exponentially with increasing the number of antennas. Thus, the value it-

eration algorithm is computationally intractable for the antenna selection problem

in massive MIMO systems. In order to tackle the aforementioned issue, affordable

suboptimal solutions, such as myopic policy, are more desirable. In the next sec-

tion, for the case of two-state channels, we consider the myopic policy to solve our

POMDP-based antenna selection problem and prove that this policy is optimal in

this special case, for our problem in (5.22).

5.4 Two-State Channels: The Optimality of My-

opic Policy

In this section, we assume that each element of st takes one of Q = 2 possible levels

of good and bad, denoted as α and β, respectively, where α > β, that is

‖hi,t‖2 ∈ {α, β}, for i = 1, . . . ,M . (5.24)

Here, ‖hi,t‖2 = α (β) means the state of the i-th antenna is good (bad). Also,

we assume that the antennas channel gain evolves according to the same two-state

Markov chain at each time slot, as shown in Fig. 4.2. We use p01 (p10) to denote

the probability of changing the state from bad (good) state to good (bad) state.

Also, p00 = 1− p01 and p11 = 1− p10 are the probabilities of ‖hi,t‖2 remaining in the

bad and good states in the next time slot, respectively. Here we consider positively

correlated model, i.e., p11 ≥ p01, meaning that the probability of ‖hi,t‖2 remaining

in good state is higher than the probability of changing the state from bad to good

state.

Considering that sij is the i-th element of the j-th possible state vector, for

i = 1, . . . ,M and j = 1, . . . , |S|, we can define the indicator function I[sij=α] as

I[sij=α] =

{

1 if sij = α

0 if sij = β
, (5.25)
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to simplify the presentation of the state space. Without loss of generality, we redefine

the state space as C = {cj}2M

j=1, where cj ! [c1j c2j · · · cMj ]
T is the j-th member

of C, and cij is given by

cij = I[sij=α]. (5.26)

We also redefine the random vector state at time t as ct ∈ C, as we can write

ct ! [c1,t c2,t · · · cM,t]
T ∈ C, where ci,t is the random variable state of the i-th

antenna. Note that the state st of the channel gain vector can be determined from

ct. That is for any sj ∈ S, there is a unique cj ∈ C and vice versa. The two-state

per antenna model allows us to simplify the belief formulation [72], as explained in

the sequel. First, for i = 1, 2, . . . ,M , we define ωi,t ! Pr(ci,t = 1|Ht−1), which is the

conditional probability of ‖hi,t‖2 being in good state given the history of all past

actions and observations up to time slot t− 1 . We also redefine the belief vector at

time t as ωt ! [ω1,t ω2,t . . . ωM,t]
T . At time slot t, based on the antenna selection

vector at, we can update the i-th element of vector ωt+1 as

ωi,t+1 =







p11 if ai,t = 1, ci,t = 1;

p01 if ai,t = 1, ci,t = 0;

ωi,tp11 + (1 − ωi,t)p01 if ai,t = 0.

, for i = 1, · · · ,M.

(5.27)

We can reexpress the j-th entry of the belief vector bt as

bj,t = Pr(st = sj|Ht−1) = Pr(ct = cj|Ht−1). (5.28)

Assuming that the channel gains across different antennas are statistically indepen-

dent, we can write

Pr(ct = cj|Ht−1) !
M∏

i=1

Pr(ci,t = cij|Ht−1) =
M∏

i=1

f̂(ωi,t, cij), (5.29)

where we define f̂(ω, c) = ωc(1−ω)1−c, and use the fact that Pr(ci,t = 1|Ht−1) = ωi,t

and Pr(ci,t = 0|Ht−1) = 1−ωi,t. Based on (5.28) and (5.29), the expected immediate
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reward function at time t, can be written as

R̄(at, ωt) ! rT (at)bt =

|S|
∑

j=1

R(sj, at)bj,t =

|C|
∑

j=1

R(sj, at)Pr(ct = cj|Ht−1)

=

|C|
∑

j=1

K log2

(

1 +
P

σ2K2
1Toj,t

)

︸ ︷︷ ︸

!RZ

M∏

i=1

f̂(ωi,t, cij), (5.30)

where oj,t is the observation vector at time t if st = sj and can be written, using

(5.14), as

oj,t = diag(at)sj. (5.31)

Here, each entry of oj,t belongs to the set {α, β}. Note that, if Z entries of oj,t are

equal to α and the remaining N −Z entries2 of oj,t are equal to β, then term defined

in (5.30) as RZ is equal to

RZ = K log2

(

Z(1 +
Pα

σ2K2
) + (N − Z)(1 +

Pβ

σ2K2
)
)

. (5.32)

With RZ given above, we can follow the steps presented in our earlier work in

Section. 4.3 for the single-user scenario to simplify (5.30) [31]. For the sake of

completeness, we provide the steps of this simplification in the sequel. Given action

at, the state space C can be partitioned as

C =
N⋃

Z=0

CZ(at), (5.33)

where CZ(at) = {c = [c1 c2 · · · cM ]T ∈ C
∣
∣ ‖diag(at)c‖2 = Z}. We now use (5.33)

to rewrite (5.30) as

R̄(at, ωt) =
N∑

Z=0

∑

c∈CZ(at)

RZ

M∏

i=1

f̂(ωi,t, ci)

=
N∑

Z=0

RZ

∑

c∈CZ(at)

M∏

i=1

f̂(ωi,t, ci)

2Non-zero elements
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=
N∑

Z=0

RZ

∑

c∈CZ(at)

∏

i∈I(at)

f̂(ωi,t, ci)
∏

i∈I(at)⊥

f̂(ωi,t, ci), (5.34)

where I(at) is set of the indices of the selected antennas, while I⊥(at) is the set of the

indices of the unselected antennas. As I⊥(at) and I⊥(at) are complement to each

other, we can write |I(at)| = N and |I⊥(at)| = M − N . Note that c ∈ CZ(at) can

be split into two sub-vectors c′ = [ci]i∈I(at) and c′′ = [ci]i∈I⊥(at), where the entries

of c′′ can be either 0 or 1, that is c′′ ∈ {0, 1}M−N , while c′ ∈ C ′

Z ! {c′ : 1T
Nc′ = Z}.

Therefore, we can rewrite (5.34) as

R̄(at, ωt) =
N∑

Z=0

RZ

∑

c′∈C
′

Z

∑

c′′∈{0,1}M−N

∏

i∈I(at)

f̂(ωi,t, c
′
i)

∏

i∈I⊥(at)

f̂(ωi,t, c
′′
i )

=
N∑

Z=0

RZ




∑

c′∈C
′

Z

∏

i∈I(at)

f̂(ωi,t, c
′
i)








∑

c′′∈{0,1}M−N

∏

i∈I⊥(at)

f̂(ωi,t, c
′′
i )





︸ ︷︷ ︸
=1

=
N∑

Z=0

RZ

∑

c′∈C
′

Z

∏

i∈I(at)

f̂(ωi,t, c
′
i), (5.35)

where the summation above the bracket is the sum of the probabilities of all possible

values c′′ may take and thus is equal to 1. In Section. 4.3, we rigorously prove

that under the condition of the positively correlated two-state models, the myopic

policy, which maximizes the expected immediate reward in (5.35), is optimal for the

antenna selection problem in (5.22). The following theorem can then be used to

further simplify the myopic policy.

Theorem 4. For the antenna selection problem defined in (5.22), under the con-

dition of positively correlated two-state channel model, at time t, the myopic policy

is optimal and amounts to selecting those N out of M antennas, with the largest

probability of their channel gains being in good state. In other words, the indices of

the N largest entries of ωt are the indices of the antennas which have to be selected.
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Proof. In Section. 4.3, in lemma 1, we show that the function f(x) is monotonically

increasing in xj. Meaning that we can maximize the expected immediate reward

f(x) in (5.35) with selecting the N largest entries in x. Thus, it is straightforward

to conclude that, for any N < M , the myopic policy is selecting N antennas with

higher probabilities of being in good state (i.e., selecting N antennas corresponding

to the highest ωi’s value). The proof is now complete. #

The myopic policy for two-state channel model in Theorem 4 can be applied

to the realistic fading channel models as a low-complexity method for the antenna

selection problem in massive MIMO systems.. In the next section, we propose to use

the myopic policy for the antenna selection problem over Rayleigh fading channels.

Given the optimality of the myopic policy for the two-state channel model, we take

advantage of this myopic policy by quantizing the channel gain of each antenna into

two levels only for the purpose of the antenna selection.

5.5 Gauss-Markov Model for Rayleigh Fading Chan-

nels

Let us denote the diagonal channel covariance matrix as

Σh = E{hi,th
H
i,t} = diag([σ2

h,k]
K
k=1),

where σ2
h,k is the large-scale variation of channel between the k-th user and the i-th

antenna. We assume that the channel vector hi,t ∼ CN (0K×1,Σh) evolves according

to the first-order Gauss-Markov channel model given by

hi,t ! diag(ξ)hi,t−1 + diag(ξ′)zi,t, i = 1, ..., M . (5.36)

In the above model, the i.i.d. innovation sequence zi,t ∼ CN (0K×1,Σh) is inde-

pendent of the channel vector hi,t, for i = 1, ..., M . Also, the fading correlation

vector is defined ξ = [ξ1 ξ2 · · · ξk]
T , where ξk ∈ [0, 1] is the fading cor-

relation coefficient corresponding to the k-th user. Furthermore, we define ξ′ as
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ξ′ = [
√

1 − ξ2
1

√

1 − ξ2
2 · · ·

√

1 − ξ2
K ]T . Note that the value of ξk depends on the

maximum Doppler frequency of the k-th user [61], where ξk = 1 for a static channel

model, and ξk = 0 for a channel evolves independently over time t.

For the Gauss-Markov channel model in (5.36), it is shown in [36] that ‖hi,t‖2

asymptotically forms as a Markov process as K becomes large. Thus, we consider

that ‖hi,t‖2 evolves based on a Markov process. To benefit from the optimality of

myopic policy for two-state channel model, we propose to quantize ‖hi,t‖2 into two

values of α and β only at the antenna selection stage, such that

si,t =

{

α, if ‖hi,t‖2 $ v,

β, if ‖hi,t‖2 < v ,
(5.37)

where v is the quantization threshold, and α > β must hold. Then, we apply the

myopic policy presented in Theorem 4 to the quantized two-state channel model

in the selection stage according to Algorithm 3. At time slot t, based on action

at, N antennas are selected for transmitting data with the users. At the end of

uplink transmission, the channel coefficients corresponding to the links between the

selected antennas and all K users, ot are obtained using (5.14). Quantization is then

performed on each element of ot to obtain those entries of ct that correspond to the

selected antennas at time t. Next, the elements of the belief vector, i.e., ωi,t+1’s are

updated using (5.27). At the beginning of time slot t + 1, the antenna selection

vector is updated as ai,t+1 = 1 (i.e., the i-th antenna is selected), if ωi,t+1 is among

the N largest entries of ωt+1, or ai,t+1 = 0 otherwise. The antennas selected by the

action vector at+1 are used for data transmission with the users at time slot t + 1.

The computational complexity of our proposed myopic antenna selection algo-

rithm is given as follows. Computing the elements of ot as in (5.38) has a com-

putational complexity O(NK ). Updating the elements of the belief vector has a

computational complexity O(M − N) (see (4.12)), and then finding the N largest

elements of the M×1 belief vector has a computational complexity O(M log N) [70].

Since we assume that the BS is equipped with a large number of antennas (i.e., M
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is large), the total computational complexity of the myopic policy-based antenna

selection algorithm is O(M log N), which is significantly lower than the computa-

tional complexity of the value iteration algorithm with the computational complexity

O(|S|2 × |A|) per iteration [69] (in our problem, |S| = 2M and |A| =
(

M

N

)
).

Algorithm 3 The myopic-policy-based antenna selection for multi-user systems

Initialization: Given the channel correlation factor ξ and large-scale channel vari-
ations of all users {σ2

h,k}K
k=1. set the threshold value v.

At each time slot t:
Input: [hi,t]i∈I(at).

1: Obtain the elements of the observation vector ot = [oi,t]
M
i=1 where

oi,t =

{

‖hi,t‖2, if i ∈ I(at),

0, otherwise.
(5.38)

2: Quantize the elements of ot into α and β using (5.37) and update the entries of
ct which correspond to the selected antennas at time t based on (5.25).

3: Update the belief vector ωt+1 using (5.27).
4: For i = 1, 2, · · · ,M , choose the i-th entry of at+1 as

ai,t+1 =

{

1, if ωi,t+1 among the first N highest entries of ωt+1,

0, otherwise.
(5.39)

Output: at+1

In our proposed antenna selection method in Algorithm 3, we assume that the

optimal threshold value v is known for given channel correlation vector ξ and large-

scale channel variations of all users {σ2
h,k}K

k=1. Given the value of v, the transition

probabilities p11 and p01 can be obtained empirically. Note that, the optimal thresh-

old value v can not be expressed in a closed form [62,63]. We will show the effect of

the optimal threshold value on the performance in our numerical examples. In the

next section, we propose an efficient offline method to obtain a lookup table for the

optimal value of the threshold v for given M , N , and K and for any value of the

channel correlation vector ξ and {σ2
h,k}K

k=1.
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5.6 Optimal Threshold Value for Channel Quan-

tization

According to Algorithm 3, in the selection stage, ‖hi,t‖2 is quantized into two levels in

order to update the entries of ct. Thus, the performance of the myopic-policy-based

antenna selection algorithm depends on the threshold value v used for quantization.

In this section we aim to find the optimal threshold value, denoted as v∗, which

results in the best performance of our proposed myopic policy algorithm. Note that

v∗ is different for different values of M , N , K and the large-scale channel variations

of all users {σ2
h,k}K

k=1. To find v∗ for any given M , N , K (where M ≫ N > K), and

the given large-scale channel variations of all users {σ2
h,k}K

k=1, we use the MU-MIMO

sum-rate in (5.4) to define the time-averaged sum-rate, denoted as R̂t, as

R̂t =
1

t

t∑

τ=0

log2

(

det
(
I +

P

σ2‖HH
s,τ (Hs,τ HH

s,τ )
−1‖2

F

I
) )

. (5.40)

We use a search algorithm to find the optimal threshold value v∗ as

v∗ = arg max
0<v≤L

R̂T . (5.41)

where L is the upper limit of the threshold value and its value is chosen based on

the statistics of channel coefficients. More specifically, adopting 3-σ rule, we choose

L = µ′+3σ′
h, where µ′ and σ′

h are the mean and the standard deviation of ‖hi,t‖2. As

the k-th element of hi,t is a zero-mean Gaussian random variable with variance σ2
h,k,

the channel gain ‖hi,t‖2 is the sum of gamma random variables with the same shape

parameter 0.5 but different the rate parameters {σ2
h,k}K

k=1. Using the derivation

of mean and variance of the sum of non-identical gamma variables in [73], we can

approximate µ′ and σ′
h
2 as

µ′ ≈ 1

2

K∑

k=1

σ2
h,k, σ′

h

2 ≈ 1

2

K∑

k=1

σ4
h,k. (5.42)

To avoid the exhaustive search to find v∗ in (5.41), we propose a heuristic iterative

search method for finding the optimal threshold value as in Algorithm 4. Based on
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Algorithm 4 Optimal threshold value

Initialization: Given Σh and K, obtain the value of µ′ and σ′
h using (5.42), and

L = µ′+3σ′
h, and choose v

(1)
C = L

2
, v

(1)
R = v

(1)
C + L

2
, and v

(1)
L = v

(1)
C − L

2
. Set T = 1000,

stopping threshold ε, and i = 1.
Input: M , N and K

1: while L
2i+1 > ε do

2: Calculate the value of R̂T for v
(i)
C , v

(i)
R , and v

(i)
L and find the point which

results in the largest value for R̂T . This point is introduced as v
(i+1)
C .

3: Obtain v
(i+1)
L = v

(i+1)
C − L

2i+1 , and v
(i)
R = v

(i)
C + L

2i+1 .
4: i ← i + 1.
5: end while

Output: v∗ = v
(i+1)
C

our proposed search algorithm, at each iteration, three different points are selected

as the possible threshold values, namely left-side point, center point, and right-side

point, which are denoted as vL, vC, and vR, respectively. Here, we use i to denote the

iteration index. In the first iteration (i = 1), we choose v
(1)
C = L

2
, v

(1)
R = v

(1)
C + L

2
, and

v
(1)
L = v

(1)
C − L

2
. We then calculate the value of R̂T for v

(i)
C , v

(i)
R , and v

(i)
L and find the

point which results in the largest value for R̂T . This point is denoted as v
(i+1)
C , and

the following update is performed: v
(i+1)
L = v

(i+1)
C − L

2i+1 , and v
(i+1)
R = v

(i+1)
C + L

2i+1 .

We iterate this procedure until L
2i+1 is sufficiently small. Then, we choose v∗ = v

(i+1)
C .

In the next section, we provide the simulation result to evaluate the performance

of our proposed myopic-policy-based antenna selection algorithm given that the

optimal threshold value is used for the channel gain quantization in the selection

stage.

5.7 Simulation Result

In this section, first we validate the optimality of myopic policy for positively cor-

related two-state channel model, and then study the performance of our proposed

Algorithm 3, on the actual Rayleigh fading channel.
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5.7.1 Two-State Channel Model

In this subsection, considering the two-state model in (5.24), we aim to verify the

optimality of the myopic policy solution in Theorem 1. In this example, we assume

K = 2, {α, β} = {4 ×
√

0.1, 4 ×
√

10}, p01 = 0.2 and p11 = 0.8. Here, we use the

existing POMDP solver software in [56] use the value iteration method to compute

the optimal policy. In our experiment, we aim to show the optimality of the myopic

policy when the sum-rate upper-bound in (5.7) is defined as the reward function.

We define the time-averaged R̃t, of the sum-rate upper-bound as

R̃t =
1

t

t∑

τ=0

R(sτ , aτ ). (5.43)

Fig. 5.3 shows R̃1000, in bits per channel use (bcu), versus P
σ2 , produced by both the

myopic-policy-based and the value-iteration-based algorithms, for different values of

M and N . Note that our POMDP-based antenna selection technique converges in

about 1000 time slots, we plot R̃1000, and the results are averaged over 100 Monte

Carlo runs (for same users setup). As it can be seen from Fig. 5.3, for same values

of M , N ,K, and p

σ2 , the time averaged sun-rate upper-bound values are same for

both myopic-policy-based method and value iteration based solution. The results

validate the optimality of the myopic policy for the antenna selection problem.
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Figure 5.3: The time-averaged sum-rate upper-bound versus P
σ2 , for the two-state

channel model.

5.7.2 Gauss-Markov Channel Model

In this subsection, considering the Gauss-Markov channel model in (5.36), we apply

our proposed myopic policy (Algorithm 3) to the antenna selection problem in a

massive MU-MIMO system. We need to quantize the channel gain ‖hi,t‖2 of the i-

th antenna at time t, based on (5.37), and then use the myopic policy for the antenna

selection problem. Note that this two-state quantization is performed only in the

selection stage to find the best set of antennas. We use the non-quantized channel

coefficients corresponding to the selected antennas for ZF beamforming. Here, we

use the time-averaged achieved sum-rate R̂t in (5.40) to evaluate the performance of

Algorithm 3. Since the quantization in (5.37) depends on threshold v, the transition

probabilities depend on v. As the transition probabilities have a direct impact on

the performance of Algorithm 3, we aim to find the optimal threshold value v∗ that

results in the best performance. Again, all results are the averaged over 100 Monte

Carlo runs.

78



Optimal threshold value

In the first part of our simulations, we show the impact of the threshold value v

on the performance of our proposed myopic-policy-based antenna selection method,

i.e., Algorithm 2. Furthermore, we show that the optimal threshold value v∗ depends

on M , N , K, and {σ2
h,k}K

k=1. Then, we validate the performance of Algorithm 4 for

finding the optimal threshold value v∗, by comparing it with that by a numerical

search. We first consider five different scenarios with different user channel large-

scale variations and fading correlation coefficients. Here, for large-scale variation of

a channel, we use the path loss model σ2
hk = ̺d−3

k , where dk is the distance between

the k-th user and the BS, the path loss exponent is 3, and the path loss constant

̺ is chosen such that at the cell boundary (i.e., for dk = 500m), σ2
hk/σ

2 = −5

dB. Furthermore, to obtain the fading correlation coefficient ξk of the k-th user, we

use the Jakes’ model [74], that is, for a WLAN 802.11 system operating at carrier

frequency fc = 2.4 GHz, ξk can be obtained as ξk = J0(2π
Vkfc

CfW
), where J0(·) is the

Bessel function (order zero), Vk is the k-th user’s speed, C = 3×109 m/s is the speed

of light, and the bandwidth frequency fW = 2.5 KHz. For example, for a user with

speed Vk = 3.6 km/h (i.e., pedestrian speed), Vk = 36 km/h (moderate vehicular

speed), and Vk = 140 km/h (high vehicular speed) are ξk = 0.999 ξk = 0.986, and

ξk = 0.95, respectively. We consider the following five scenarios:

• Scenario i, low-speed and low-SNR users:

Four users with ξ = [0.997 0.998 0.996 0.999]T , that are located in varies

distances from the BS, where the users’ SNR, {Pσ2
hk/σ

2}4
k=1 uniformly dis-

tributed in the interval of [0, 0.5] dB.

• Scenario ii, low-speed and high-SNR users:

Four users, with ξ = [0.997 0.998 0.996 0.999]T , that are located in varies

distances from the BS, where the users’ SNR, {Pσ2
hk/σ

2}4
k=1 uniformly dis-

tributed in the interval of [9.5, 10] dB.
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• Scenario iii, high-speed and low-SNR users:

Four users, with ξ = [0.92 0.9 0.91 0.92]T , that are located in varies distances

from the BS, where the users’ SNR, {Pσ2
hk/σ

2}4
k=1 uniformly distributed in the

interval of [0, 0.5] dB.

• Scenario iv, high-speed and high-SNR users:

Four users, with ξ = [0.92 0.9 0.91 0.92]T , that are located in varies distances

from the BS, where the users’ SNR, {Pσ2
hk/σ

2}4
k=1 uniformly distributed in the

interval of [9.5, 10] dB.

• Scenario v, random speed and random SNR users:

Four users with ξ = [0.999 0.96 0.97 0.98]T , that are located in varies

distances from the BS, where the users’ SNR, {Pσ2
hk/σ

2}4
k=1 uniformly dis-

tributed in the interval of [0, 10] dB.

Assuming K = 4, M = 100, and N = [10 : 20 : 100], we plot averaged sum-rate

R̂1000 for a range of threshold v. The results are shown in Figs 5.4a-5.4e for Scenarios

i-v, respectively. These figures show that there is an optimal v∗, for these tested

scenarios. As can be seen from these figures, for given M and K, the impact of

the optimal threshold value on the performance of the myopic-policy-based antenna

selection algorithm is more noticeable for small values of N . This is due to the fact

that with decreasing the value of N , the choices of selecting N antennas among M

available antennas increases, and thus, the performance is more sensitive to labeling

channel gains as good state.

Note that in these figures, the accuracy of the exhaustive search approach is

limited up to 0.1. It is worth it to mention that in our proposed Algorithm 4, with

any changes in σ2
h,k, we can scale the optimal threshold value to obtain the updated

one. To elaborate more on this property, we provide the following illustration.

Considering normalized channel vectors (σ2
h,k = 1 , for k = 1, 2, . . . ,K), in Fig.

5.5, we plot the obtained optimal threshold value from Algorithm 4 versus N , for
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Figure 5.4: Average R̂1000 versus v for P/σ2 = 5 dB, K = 4, and M = 100 (a)
Scenario i, (b) Scenario ii, (c) Scenario iii, (d) Scenario iv, and (e) Scenario v.
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Figure 5.5: Optimal threshold value versus N for Scenarios i-v, for K = 4, M = 100,
and normalized channel vector.

K = 4, M = 100, and ξ vectors in Scenarios i-v. As can be seen from Fig. 5.5,

for given N , the optimal threshold values v∗ for respective Scenarios i-v are close.

This feature allows us to obtain a threshold value for normalized channel vectors,

and then scale it to obtain the optimal threshold value corresponding to {σ2
h,k}K

k=1

in each aforemention Scenarios i-v, for the same values of M , N , and K. More

specifically, for normalized channel vectors, we first obtain the mean µ′ and the

standard derivation σ′
h of ‖hi,t‖2 as K

2
and

√
K
2
, respectively, from (5.42), and then,

use these parameters in Algorithm 4 to obtain the optimal threshold value v∗. Then,

for {σ2
h,k}K

k=1 in each Scenarios i-v, we scale v∗ to obtain the optimal threshold

value as (σ′′
h

(v∗−K
2

)√
K
2

+ µ′′), where µ′′ and σ′′
h are the approximations of the mean and

the standard derivation of the channel vectors with Σh = diag([σ2
h,k]

K
k=1) which are

obtained from (5.42). So, by obtaining µ′′ and σ′′
h corresponding to each aforemention

Scenarios i-v, we can scale the results shown in Fig.5.5 to find the optimal threshold

value for each Scenarios i-v. In Table 5.1, for Scenarios i-v, we tabulate the result

of obtained optimal threshold value from both exhaustive search and Algorithm 4.
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Table 5.1: Values of v∗ for different scenarios

N v∗, exhaustive search v∗, Algorithm 4

Scenario i

10 0.3 0.335
30 0.2 0.246
50 0.2 0.201
70 0.2 0.156
90 0.1 0.089

Scenario ii

10 2.7 2.649
30 2 2.025
50 1.6 1.558
70 1.2 1.246
90 0.8 0.779

Scenario iii

10 0.3 0.263
30 0.2 0.239
50 0.2 0.191
70 0.2 0.167
90 0.1 0.119

Scenario iv

10 2.1 2.124
30 1.9 1.947
50 1.6 1.598
70 1.3 1.239
90 0.9 0.885

Scenario v

10 1.1 1.180
30 0.8 0.853
50 0.7 0.711
70 0.5 0.426
90 0.3 0.284

Performance evaluation of Algorithm 3

In this subsection, using the obtained optimal threshold value v∗, we compare the

performance of Algorithm 3 with two other schemes: 1) a random antenna selection

policy, and 2) a full CSI-based policy, which relies on full CSI of the M antennas

to select N antennas with the N highest channel gain. Note that full CSI policy

provides an upper bound for the achieved sum-rate. For K = 4, and M = 100,

Figs. 5.6a-5.6e show the average values of R̂1000 versus different values of RF chains

N = [10 : 20 : 100], for Scenarios i-v, respectively. Figs. 5.6a, and 5.6b show that

the performance of Algorithm 3 is within 0.3 bcu from the full CSI based policy.
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As can be seen from Figs 5.6c and 5.6d, the performance gap between the myopic

policy selection and the full CSI based policy increases. This is expected due to

the fact that for high-speed users, p01 is significantly higher than that probability

for low-speed users. According to (5.27), a higher value of p01 lowers the chance of

those unselected antennas in a specific time slot, to be selected in the subsequent

time slots, as compared with those selected antennas that are in bad state. As such,

the algorithm will have less possibility to explore among unselected antennas for the

next time slot. However, such exploration (among antennas) possibility increases as

N increases, thereby closing the performance gap between the myopic policy and

the full CSI based policy. Finally Fig.5.6e shows that in the more realistic Scenario

v, where a mixed of low- and high-speed users are to be served, the performance of

the myopic policy is very close to that if the full CSI based policy.
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Figure 5.6: Time averaged sum-rate R̂1000 vs N for K = 4,and M = 100 (a) Scenario
i, (b) Scenario ii, (c) Scenario iii, (d) Scenario iv, and (e) Scenario v.

85



The impact of increasing the number of users on the performance of
Algorithm. 3

To study the impact of increasing number of users on the performance of Algorithm

3, we consider four different scenarios, where in each scenario, all users have the

same speed but are located at random distances from the BS. The details of these

scenarios are as follows:

• Scenario vi: Low-speed users, with ξk = 0.999 for k = 1, 2, . . . ,K, are located

in varies distances from the BS, where the users’ SNR, {Pσ2
hk/σ

2}4
k=1 uniformly

distributed in the interval of [0, 0.5] dB.

• Scenario vii: Low-speed users, with ξk = 0.999 for k = 1, 2, . . . ,K, are located

in varies distances from the BS, where the users’ SNR ,{Pσ2
hk/σ

2}4
k=1 uniformly

distributed in the interval of [9.5, 10] dB.

• Scenario viii: High-speed users, with ξk = 0.9 for k = 1, 2, . . . ,K, are located

in varies distances from the BS, where the users’ SNR ,{Pσ2
hk/σ

2}4
k=1 uniformly

distributed in the interval of [0, 0.5] dB.

• Scenario ix: High-speed users, with ξk = 0.9 for k = 1, 2, . . . ,K, are located

in varies distances from the BS, where users’ SNR, {Pσ2
hk/σ

2}4
k=1 uniformly

distributed in the interval of [9.5, 10] dB.

Considering M = 100 and N = 30, we first obtain optimal threshold value v∗

for different numbers of single-antenna users K = [2 : 2 : 16]. We then use the

optimal threshold value v∗ for each value of K to plot R̂1000 versus K in Figs. 5.7a-

5.7d for Scenarios vi-ix, respectively. As can be seen from Figs. 5.7a and 5.7b,

the performance gap between the myopic policy and the full CSI policy based is

relatively small (less than 0.2 bcu use) for low-speed users. This performance gap

increases for high-speed users to about less than 0.9 bcu and 1 bcu in Figs. 5.7c

and 5.7d, respectively. As can be seen from Fig. 5.7, the gap between the myopic
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Figure 5.7: R̂1000 vs K for N = 30, and M = 100 (a) Scenario vi, (b) Scenario vii,
(c) Scenario viii, and (d) Scenario ix.

policy and full CSI/Random selection policy approximately remains unchanged with

adding extra users.

Interestingly, it shows from Fig. 5.7 that for given M and N , there is an optimal

number of users that leads to maximum sum-rate performance. Serving fewer or

more users than this optimal number of users leads to performance loss. If the

number of users that are to be served is larger than this optimal number of users, user

clustering in addition to antenna selection is required. Note that, user scheduling

has direct impact on antenna selection techniques and vice versa. Indeed, devising

joint antenna selection and user scheduling method is the next step in this line of
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research that will be presented in the next chapter of this dissertation.

88



Chapter 6

POMDP-based Joint Antenna
Selection and User Scheduling
Algorithm

6.1 System Model

We study a multi-user massive MIMO system where a multi-antenna base station

(BS), equipped with M antennas and N RF chains (M ≫ N), communicates with

U single-antenna users in a cell. Here, we assume that the number of available users

is larger than the number of RF chains (U > N). The system operates in time

division duplexing (TDD) mode, and hence, the channel state information (CSI)

can be acquired during uplink transmission. Here, we resort to zero forcing (ZF)

beamforming to eliminate inter-user interference. To fully cancel out the inter-user

interference, at each time slot, the number of scheduled users should be smaller

than or equal to the number of active antennas which is the same as the number

of available RF chains. Here, to guarantee a fair user scheduling, we assume all

users are served in a frame that contains λ time slots. We use ℓ and t to denote

the frame index and time slot index within a frame, respectively. The structure of

communication frames is shown in Fig.6.1. As can be seen from this figure, each

frame ℓ, contains λ time slots. At each time slot t, for t = 1, 2, . . . , λ, the BS selects

a subset of antennas to serve the users scheduled at that time slot by performing
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Figure 6.1: An Illustration of a time frame structure

downlink and uplink transmission. Note that we assume channels remain unchanged

during the entire frame. Here, a proper user scheduling technique is required to

guarantee that all users are served in a time frame, while the number of scheduled

users per time slot is larger than one and smaller than or equal to the number of

RF chains. More specifically, considering that each frame contains λ time slots,

at the beginning of each frame, the BS schedules each one of the available users

in a time slot to be served. Let us define Kt,l as the set of user indices scheduled

at the t-th time slot in the ℓ-th frame, for t = 1, 2, . . . , λ and ℓ = 1, 2, . . .. Note

that, the number of users scheduled in each time slot should be greater than one

and smaller than the number of RF chains, that is, 1 ≤ |Kt,l| ≤ N must hold, for

t = 1, 2, . . . , λ and ℓ = 1, 2, . . .. Also, at each time slot, only N out of M antennas

are selected to participate in data transmission. Here, we consider slow enough

fading channels and assume that the channels evolve as a Markov process at the end

of each frame. Consequently, as at each time slot, only N antennas are selected to

serve a subset of scheduled users, only the CSI between the N selected antennas and

the users scheduled in that time slot can be obtained (i.e., partial CSI is available).

Our main goal here is to maximize the expected long-term sum-rate over the entire

frame by scheduling the best subset of users and finding the best N antennas to

participate in data transmission at each time slot. Considering that only partial
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CSI is available and the channels’ dynamic proceeds as a Markov process, we use

POMDP framework to formulate out joint antenna selection and user scheduling

(JASUS) problem.

6.2 Problem Formulation

To formulate the system model, we denote the random time-varying channel matrix

between M antennas and U users in frame ℓ as Hℓ ! [h1,ℓ h2,ℓ · · · hM,ℓ], where

hi,ℓ = [hui,ℓ]
U
u=1 is the U × 1 random between the i-th antenna and all U users at

the ℓ-th frame, where hui,ℓ is the channel coefficient between the u-th user and the

i-th antenna, for i = 1, 2, . . . ,M and u = 1, 2, . . . , U . Note that we assume channels

evolve at the beginning of each frame and remain unchanged during the entire frame.

As defined earlier, Kt,ℓ is a random set containing the indices of the users scheduled

at the t-th time slot of the ℓ-th frame. We use Ĥt,ℓ ∈ C|Kt,ℓ|×N to denote the channel

matrix between the N selected antennas and |Kt,ℓ| scheduled users at the t-th time

slot of the ℓ-th frame. Note that Ĥt,ℓ is a |Kt,ℓ| × N sub-matrix of Hℓ. If Ĥ and K
are any realizations of Ĥt,ℓ and Kt,ℓ, respectively, we can write the vector y ∈ C|K|×1

of the corresponding signals received at the users in set K as

y = ĤWx + n, (6.1)

where x ∈ C|K|×1 and n ∈ C|K|×1 are the transmitted signal vector and the noise

vector, respectively, and W is the N × |K| pre-coding (ZF beamforming) matrix.

We can obtain W as

W = ĤH(Ĥ ĤH)−1

√

P

‖ĤH(Ĥ ĤH)−1‖2
F

, (6.2)

where P is the total power and ‖ · ‖F stands for the Frobenius norm. We can write

‖ĤH(Ĥ ĤH)−1‖2
F = Tr((Ĥ ĤH)−1) =

|K|
∑

k=1

1

λ2
k

, (6.3)
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where λk is the k-th singular value of Ĥ. We use (6.3) to write sum-rate in the t-th

time slot as

R(Ĥ) = log2

(

det
(
I +

P

σ2‖ĤH(Ĥ ĤH)−1‖2
F

I
) )

= |K| log2

(

1 +
P

σ2
∑|Kt|

k=1
1
λ2

k

)

,

(6.4)

where P is the transmit power at BS and σ2 is the noise variance. To design a

tractable solution for the joint antenna selection and user scheduling problem, we

use an upper bound for the sum-rate in (5.4) in our POMDP formulation. To this

end, considering the fact that
(

1
|K|

∑|Kt|
k=1

1
λ2

k

)−1

& 1
|K|

(
∑|K|

k=1 λ2
k

)

= 1
|K|

Tr(ĤHĤ)

holds true, we introduce the t-th time slot sum-rate upper-bound R̂u(Ĥ), for any

given channel realization Ĥ, as

R̂u(Ĥ) = |K| log2

(

1 +
P (Tr(ĤHĤ))

σ2|K|2
)

. (6.5)

Let us define the random selected antennas set at the t-th time slot in the ℓ-th

frame as I t,ℓ and use (6.5) to write the random sum-rate upper-bound of the t-th

time slot of the ℓ-th frame as

R̂u(Ĥt,ℓ) = |Kt,ℓ| log2

(

1 +
P

σ2|Kt,ℓ|2
∑

i∈It,ℓ

∑

u∈Kt,ℓ

|hui,ℓ|2
)

. (6.6)

Furthermore, we define Ĥℓ = {Ĥt,ℓ}λ
t=1 and write the random upper-bound sum-rate

over the entire frame as

Ru(Ĥℓ) =
1

λ

λ∑

t=1

|Kt,ℓ| log2

(

1 +
P

σ2|Kt,ℓ|2
∑

i∈It,ℓ

∑

u∈Kt,ℓ

|hui,ℓ|2
)

. (6.7)

Here, we aim to design an optimal joint antenna selection and user scheduling policy

to maximize the expected long-term sum-rate upper-bound over frame, given by

E{Ĥℓ}

{ ∞∑

ℓ=0

Ru(Ĥℓ)
}

. (6.8)

In the next section, we formulate the joint antenna selection and user scheduling

problem using a POMDP framework with the aim to maximize the expected long-

term sum-rate upper-bound, defined in (6.8).
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6.3 POMDP Formulation

In this section, we first define the POMDP components, and then, formulate the

JASUS problem using a POMDP framework. A POMDP formulation is represented

by the following components:

(S,A,T,R(S,A),O, PO(O,A),b) (6.9)

where the state space denoted as S is the set of all possible states; the action

space denoted as A is the set of all possible actions; T is a |S| × |S| matrix of state

transition probabilities; R(S,A) is the reward at state S when action A ∈ A is taken;

the observation state denoted as O is a set of all possible observations; PO(O,A)

is a diagonal matrix whose diagonal elements are the probabilities of observing O

at different states, when action A is taken; and b is the belief vector of probability

distribution over all possible states in S.

Given the above definitions, we now formulate the JASUS problem as a POMDP

problem.

State space

The state space S is the set of finite number of states labeled as Sj. The j-th point of

the state space, Sj, takes one of the possible antennas channel coefficients matrices,

such that

Sj = H̃j ! [h̃1,j h̃2,j · · · h̃M,j ], (6.10)

where h̃i,j = [h̃ui,j ]
U
u=1, for i = 1, 2, . . . ,M , and h̃ui,j is the j-th possible value that

square absolute value of the channel between i-th antenna and u-th user can take.

Indeed, we assume that each h̃ui,j is quantized to Q levels, i.e., h̃ui,j ∈ {α1, ..., αQ},
where αq is the q-th quantization level. As a result, we can write the state space as

S ! {S1,S2, . . . ,SQUM}. (6.11)
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The random time-varying state of the system at the ℓ-th frame. denoted as Sℓ =

[|hui,ℓ|2]i=1,2,...,M
u=1,2,...,U

, can take one of the QUM elements in S.

Action space

The action space A is defined as the set of all possible actions. For the JASUS

problem, action consists of scheduling users and selecting antennas at each time slot.

For ease of notation, let us break down the action of our joint antenna selection and

user scheduling problem to two sperate actions: the antenna selection action and

user scheduling action.

We denote Ã as the set that contains all possible antenna selection action. The

antenna selection action amounts to selecting N out of M antennas for each time

slot t in a frame, for t = 1, 2, . . . , λ. Thus, the number of possible actions for antenna

selection is |Ã| =
(

M

N

)λ
. We represent the j-th possible antenna selection action as

an M × λ matrix denoted as Ãj = [ã1,j ã2,j . . . ãλ,j ], where

ãt,j = [ã1t,j ã2t,j . . . ãM,tj ]
T , ãit,j ∈ {0, 1}, for t = 1, 2, . . . , λ. (6.12)

Here, for t = 1, 2, . . . , λ and i = 1, 2, . . . ,M ; ãit,j = 1 means that the i-th antenna

at the t-th time slot is selected to participate in data exchange, otherwise ãit,j = 0.

Note that only N elements of ãtj are equal to one and the remaining elements are

zero. The random antenna selection action matrix at the ℓ-th frame denoted as

A′
ℓ = [a′

t,ℓ]
λ
t=1 (where a′

t,ℓ is the random antenna selection vector at time slot t in the

ℓ-th frame) can take one of the possible action matrices in Ã.

We now define the user scheduling action, which is assigning each user to one

of the λ time slots at the beginning of each frame. To do so, we denote the n-th

possible U × 1 user scheduling vector as ân = [â1,n â2,n . . . âU,n]T , where âu,n being

equal to t ∈ {1, 2, . . . , λ} means that the u-th user is scheduled in the t-th time

slot in a frame. Note that at each time slot, at least one user and at most N users

can be scheduled. Based on these limitations, the action space for all possible user
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scheduling vectors can be written as

Ā = {ân | 1 ≤
U∑

u=1

I(âu,n = t) ≤ N, for t = 1, 2, . . . , λ} (6.13)

where I(âu,n = t) is an indicator function defined as

I(âu,n = t) =

{

1, if âu,n = t

0, otherwise.
(6.14)

Note that, the user scheduling vector ân is equivalent to a U × λ matrix denoted as

Ān = [ā1,n ā2,n . . . āλ,n], where

ātn = [ā1t,n ā2t,n . . . āUt,n]T , āut,n ∈ {0, 1}, for t = 1, 2, . . . , λ. (6.15)

Here, āut,n = 1, if the u-th user is scheduled at the t-th time slot, for t = 1, 2, . . . , λ,

and u = 1, 2, . . . , U . The random user scheduling action at the ℓ-th frame denoted

as A′′
ℓ = [a′′

t,ℓ]
λ
t=1 (where a′′

t,ℓ is the random user scheduling action vector at time slot

t in the ℓ-th frame), takes one of the possible action vector Ān, for n = 1, 2, . . . , |Ā|.
Here, we denote the z-th possible JASUS action as A′

z, where A
′

z =

[
Ãj

Ān

]

, for

j = 1, 2, . . . , |Ã| and n = 1, 2, . . . , |Ā|. Thus, the total number of possible JASUS

actions is Z =
(

M

N

)λ × |Ā| and we can write our action space as

A ! {A′
1,A

′
2, . . . ,A

′
Z}. (6.16)

We denote Aℓ ∈ A as the JASUS action matrix taking at the ℓ-th frame and Aℓ ∈ A
as the random JASUS action matrix at the ℓ-th frame, for ℓ = 1, 2, . . .∞.

Transition probability

The transition probability matrix, denoted by T, is a QUM × QUM matrix whose

(i, j)-th element, denoted as Tij , is the probability of the state at frame ℓ being

equal to Sj, given that the state at frame ℓ − 1 is Si. Note that in our problem,

the selected action does not impact the channel variations, and thus, the transition
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probability matrix is independent of the taken action. The (i, j)-th element of the

transition probability matrix Tij can be written as

Tij = Pr(Sℓ = Sj|Sℓ−1 = Si). (6.17)

Here, we assume that the transition probability matrix T is known.

Observation space

The observation space denoted by O is the set of all possible observation matrices.

We denote the q-th possible observation matrix as Oq, where

Oq =
λ∑

t=1

diag(āt,n) Sj diag(ãt,p), (6.18)

for j = 1, 2, . . . , |S|, p = 1, 2, . . . , |Ã|, and n = 1, 2, . . . , |Ā|. Let us denote Ōt,ℓ, as

the random observation matrix at time slot t in the ℓ-th frame such that

Ōt,ℓ = [ōuit.ℓ]i=1,2,...,M
u=1,2,...,U

(6.19)

where ōuit.ℓ can take one of the possible quantized channel coefficient level, αq for

q = 1, 2, . . . , Q, if the i-th antenna is selected to serve the u-th user at time slot t in

the ℓ-th frame; otherwise, the value of ouit,ℓ = 0, for t = 1, 2, . . . , λ, i = 1, 2, . . .M ,

and u = 1, 2, . . . U . We can obtain Ōt,ℓ as

Ōt,ℓ = diag(a′′
t,ℓ) Sℓ diag(a′

t,ℓ), (6.20)

where a′
t,ℓ is the first M rows of the t-th column of Aℓ, while a′′

t,ℓ is the last U rows

of the t-th column of Aℓ. Thus, the random observation matrix of the entire ℓ-th

frame denoted as Oℓ, can be obtained as

Oℓ =
λ∑

t=1

Ōt,ℓ, (6.21)

where Oℓ ∈ O.
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Observation probability

We denote the conditional observation probability matrix as PO(O,A), that is a

|S| × |S| diagonal matrix. We define PO(O,A) as

PO(O,A) = diag
(

Pr

{

Oℓ = O|Sℓ = Sj,Aℓ = A
}QUM

j=1

)

, (6.22)

whose the j-th diagonal element is the probability of observing O ∈ O at frame ℓ,

when action A ∈ A is taken and the state at the ℓ-th frame is Sj.

Reward

The function R(S,A) represents the immediate reward function for taking action

Aℓ = A at state Sℓ = S. Note that here, we assume that the state remains unchanged

during the entire frame. We use the defined total sum-rate upper-bound in (6.7) to

define the reward function for taking action Aℓ = A at state Sℓ = S as

R(S,A) !
1

λ

λ∑

t=1

|K(a′′
t )| log2

(

1 +
P (Tr(ŌH

t Ōt)

σ2|K(a′′
t )|2

)

, (6.23)

where a′
t is the first M rows of the t-th column of A, while a′′

t is the last U rows

of the t-th column of A, and K(a′′
t ) is the set of the indices of the users scheduled

at the t-th time slot. Also, for given action a′′
t, Ōt = diag(a′′

t ) S diag(a′
t). We can

rewrite (6.23) as

R(S,A) =
1

λ

λ∑

t=1

|K(a′′
t )| log2

(

1 +
P

σ2|K(a′′
t )|2

∑

i∈I(ãt)

∑

u∈K(āt)

|hui|2
)

, (6.24)

where hui is the channel coefficient between the i-th antenna and u-th user. Here,

|K(a′′
t )| = ‖a′′

t‖1, is the ℓ-1 norm of vector āt that shows the total number of

scheduled users at time slot t. Also, I(a′
t) is the set of the indices of all selected

antennas at the t-th time slot, when action a′
t is taken.

Belief vector

At the ℓ-th frame, the belief vector is defined as bℓ ! [b1,ℓ b2,ℓ . . . bQUM ,ℓ]
T , where

bj,ℓ is the probability of the state at frame ℓ being equal to Sj ∈ S, given all the
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previous actions and obtained observations until frame ℓ − 1. Let us use Hℓ−1 to

denote the action and observation history until frame ℓ − 1, which can be written

as

Hℓ−1 ! {Oℓ−1,Aℓ−1,Hℓ−2}, (6.25)

then we can write the j-th element of the belief vector as

bj,ℓ = Pr{Sℓ = Sj|Hℓ−1}. (6.26)

We also define the belief space as B !
{

b ∈ R|S| : 1Tb = 1,b " 0
}

. Note that bℓ is

a sufficient statistic for Hℓ−1 [55], and as we showed in [31], we can obtain bℓ from

bℓ−1 as

bℓ = g(Oℓ−1,Aℓ−1,bℓ−1), (6.27)

where

g(O,A,b) !
PO(O,A)Tb

g(O,A,b)
, (6.28)

g(O,A,b) = 1T PO(O,A)Tb, (6.29)

for O ∈ O and A ∈ A. For a given action matrix and belief vector at frame ℓ − 1,

the belief vector at frame ℓ depends on the frame observation matrix O ∈ O which

is a random matrix, and thus, the believe vector in (6.27) also becomes a random

vector. We denote the random belief vector as bℓ which can be written as

bℓ ! g(Oℓ−1 ,Aℓ−1,bℓ−1). (6.30)

Also, we use Hℓ−1 to represent the collection of all past observations and actions as

random vectors until frame ℓ − 1 which is given by

Hℓ−1 ! {Oℓ−1,Aℓ−1, Hℓ−2}. (6.31)

Note that, the observation history Hℓ−1 defined in (6.25) is a realization of Hℓ−1

after observing Oℓ−1 ∈ O.
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frame ℓ − 1 frame ℓ

t = 1t = 1 t = 2t = 2 t = λt = λ

Ō1,ℓ−1̄O2,ℓ−1 Ōλ,ℓ−1 Ō1,ℓ Ō2,ℓ Ōλ,ℓ

∑

Oℓ−1

∑

Oℓ

Aℓ−1 Aℓ
Aℓ+1

bℓ−1 bℓ
bℓ+1

Downlink Uplink

......

... ...... ...

Figure 6.2: Illustration of the JASUS problem as a POMDP process.

Given the above defined POMDP-based JASUS problem, we describe the dy-

namic of a real-time POMDP controller in the sequel. We assume that each frame

includes λ time slots and each time slot includes one downlink and uplink transmis-

sion. We assume that channels evolve at the beginning of each frame and remain

unchanged during the entire frame. Note that here the system mode is TDD, and

thus, at each time slot, the channel coefficients between the selected antennas and

scheduled users can be obtained at the end of the uplink transmission. At the begin-

ning of each frame, the BS chooses the JASUS action matrix, meaning that the BS

schedules all available U users in λ time slots and determines the selected N out of

M antennas to serve scheduled users for each time slot in that frame. According to

our defined user scheduling restrictions, at least one user and a maximum of N users

can be scheduled in each time slot in a frame. In addition to that, for designing a fair

scheduling method, we guarantee that all U available users receive data only once

in a frame, meaning that each user will be scheduled in one time slot in a frame. At

frame ℓ − 1, at time slot t, the observation matrix Ōt,ℓ−1 can be obtained from the
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uplink transmission for t = 1, 2, . . . , λ. At the end of the frame ℓ − 1, Oℓ−1 can be

obtained by using (6.21). Given that action Aℓ−1 was taken, the BS uses obtained

Oℓ−1 and all the available history information until frame ℓ−1 (which is represented

in bℓ−1) to obtain (update) the belief vector bℓ, and then, chooses an action matrix

at frame ℓ. The main goal here is to take optimal actions {Aℓ}+∞
ℓ=0 such that the

expected cumulative reward E
{

∑+∞
ℓ=0 R(Sℓ,Aℓ)

}

, is maximized. Here, E{·} is the

expectation taken with respect to random states {Sℓ}+∞
ℓ=0 .

6.3.1 Objective Function

At each frame ℓ, given the updated belief vector bℓ, the BS selects an action that

is Aℓ = πℓ(bℓ), where πℓ(·) is used to denote policy for frame ℓ = 1, 2, . . . ,∞.

Note that since our problem is an infinite horizon POMDP problem, our policy is

stationary meaning that a single decision-making rule π(·), can be used for all time

frames [55].

Considering above definition of policy, we denote the objective function as Jπ(b0),

where b0 is the initial belief vector, and we define Jπ(b0) as

Jπ(b0) = E{Sℓ}

{ ∞∑

ℓ=0

R(Sℓ,Aℓ)
∣
∣
∣b0

}

= E{Sℓ}

{ ∞∑

ℓ=0

R(Sℓ, π(bℓ))
∣
∣
∣b0

}

, (6.32)

where Sℓ ∈ S, Aℓ = π(bℓ) ∈ A and E{Sℓ}{·} is the expectation which is taken with

respect to the states probability distribution {Sℓ}+∞
ℓ=0 , given initial belief vector b0,

for ℓ = 0, 1, 2, . . . ,∞. Note that, the notation Jπ(b0) presents the objective function

under policy π(·). The main goal here is to find the optimal policy such that

π∗ = arg max
π

Jπ(b0), for any b0. (6.33)

Considering the fact that random action matrix Aℓ is a function of the belief vector

bℓ, and bℓ is a function of Oℓ−1, as shown in [31](see Section. 3.3), we can rewrite

Jπ(b0) as

Jπ(b0)=
+∞∑

ℓ=0

EHℓ−1

{ |S|
∑

j=1

R(Sj,Aℓ)bj,ℓ

∣
∣
∣b0

}

= E{Hℓ}

{ +∞∑

ℓ=0

rT (Aℓ)bℓ

∣
∣
∣b0

}

, (6.34)
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where {Hℓ−1} is the whole history until frame ℓ − 1, and the vector

r(A) ! [R(S1,A) R(S2,A) · · · R(SQUM ,A)]T is the corresponding reward vector

for taking action A. Considering Hℓ−1 as a realization of Hℓ−1, we define the

function rT (Aℓ)bℓ as the expected immediate reward function at the ℓ-th frame.

Considering the fact that a POMDP problem is a continuous belief state MDP

(see [55]), we can use the value iteration algorithm to find the optimal policy. How-

ever, the high computational complexity of the large-scale JASUS problem, prohibits

us to use such an algorithm. Indeed, the computational complexity of the value

iteration algorithm is O(|S|2 × |A|) per iteration [69], which is computationally in-

tractable for large state space and action space. Thus, a suboptimal policy which

is computationally affordable, is more attractive for the massive JASUS problem.

In the next section, we propose to use myopic policy due to its low computational

complexity and show that under certain conditions, the myopic policy provides the

optimal solution for our defined POMDP-based JASUS problem.

6.4 Myopic Policy for Two-state Channel

In this section, we consider that the elements of states are quantized to two levels

(i.e., Q = 2) denoted as α and β to present good and bad state, respectively.

Assuming α > β, we write

h̃ui,j ∈ {α, β},

for j = 1, 2, . . . , 2UM ,i = 1, 2, . . . , M, and for u = 1, 2, . . . , U. (6.35)

Here, we assume that the channel state is modeled as a two-state Markov chain

with bad (0) and good (1) states over frames, as shown in Fig. 4.2, where pij is the

probability of state transition from i to j, for i, j ∈ {0, 1}. The two-state Markov

chain model is called positively correlated, if p11 > p01, meaning that h̃ui,j with

higher probability remains in good state compared to changing from bad state to

good state.
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Considering a two-level quantization for h̃ui,j , we redefine the state space as

C = {Cj}2UM

j=1 , where the j-th element of the state space Cj is a U × M matrix,

such that Cj = [c1,j c2,j . . . cM,j ], where ci,j = [c1i,j c2i,j . . . cUi,j ]
T , for

i = 1, 2, . . . ,M . Thus, for j = 1, 2, . . . 2UM , i = 1, 2, . . . ,M, and u = 1, 2, . . . , U ,

we can obtain cui,j as

cui,j =

{

1 if h̃ui,j = α

0 if h̃ui,j = β
. (6.36)

Furthermore, here we denote cui,l as the random channel state of the link between

the i-th BS antenna and the u-th user in the ℓ-th frame. Using the redefined state

space, we can simplify the belief update formulation. To do so, first we define the

conditional probability of |hui,ℓ|2 (the square absolute value of the channel between

the i-th BS antenna and the u-th user at frame ℓ) being in the good state, given

the history up to frame ℓ − 1 as ωui,ℓ ! Pr(cui,ℓ = 1|Hℓ−1), for i = 1, 2, . . . ,M , and

u = 1, 2, . . . , U . Thus, at the ℓ-th frame, the belief matrix can be defined as

Ωℓ = [ωui,ℓ]i=1,2,...,M
u=1,2,...,U

.

More specifically, since channels are independent, and as for each Sℓ there is a

corresponding Cℓ, at the ℓ-th frame, the j-th element of the belief vector can be

obtained as

bj,ℓ = Pr(Cℓ = Cj|Hℓ−1) !
U∏

u=1

M∏

i=1

Pr(cui,ℓ = cui,j|Hℓ−1)

=
U∏

u=1

M∏

i=1

ω
cui,j

ui,ℓ (1 − ωui,ℓ)
1−cui,j . (6.37)

Thus, to update the belief vector, we can update the probability of channel being

in good state, ωui,ℓ. According to our proposed user scheduling restrictions, all

users will be scheduled in only one time slot in a frame. Therefore, at each time

slot t, only the CSI of the scheduled users and the selected antennas at that time
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slot can be observed. At frame ℓ, for given action Aℓ, the antenna selection vector

a′
t,ℓ = [a′

it,ℓ]
M
i=1 is the first M rows of the t-th column of Aℓ, while the user scheduling

vector a′′
t,ℓ = [a′′

ut,ℓ]
U
i=1 is the last U rows of the t-th column of Aℓ, for t = 1, 2, . . . , λ.

At time slot t, in the ℓ-th frame, the i-th antenna and u-th user are selected to

participate in data transmission, if a′
it,ℓ = 1, and a′′

ut,ℓ = 1, respectively; otherwise

a′
it,ℓ = 0, and a′′

ut,ℓ = 0, for i = 1, 2, . . . ,M , and u = 1, 2, . . . , U . ?

Based on our action matrix Aℓ and observed CSI corresponding to that action,

for the next time frame ℓ + 1, we can update the probability of being in good state,

ωui,ℓ+1 according to Algorithm 5. At each frame ℓ, and at each time slot t, observe

|hui,ℓ|2, if the i-th antenna is selected (i.e., if a′
it,ℓ = 1, for i = 1, 2, . . . ,M) and u-th

user is scheduled to be served (i.e., if a′′
ut,ℓ = 1, for u = 1, 2, . . . , U) at that time

slot. If the observed state is good (i.e., cui,ℓ = 1), update as ωui,ℓ+1 = p11, and if

the observed state is bad (i.e., cui,ℓ = 0), update as ωui,ℓ+1 = p01. The probability

of being in good state of the remaining channel links (non-observed channel links)

can be updated as ωui,ℓ+1 = ωui,ℓp11 + (1 − ωui,ℓ)p01.

Algorithm 5 Updating the probability of being in a good state

1: for t = 1 : λ do
2: for u = 1 : U do
3: for i = 1 : M do

ωui,ℓ+1 =







p11 if a′
it,ℓ = 1, a′′

ut,ℓ = 1, and cui,ℓ = 1;

p01 if a′
it,ℓ = 1, a′′

ut,ℓ = 1, and cui,ℓ = 0;

ωui,ℓp11 + (1 − ωui,ℓ)p01 Otherwise

(6.38)

4: end for
5: end for
6: end for

We now use the redefined state space and belief vector to rewrite the expected

immediate reward function. To do so, considering that Pr(cui,ℓ = 1|Hℓ−1) = ωui,ℓ

and Pr(cui,ℓ = 0|Hℓ−1) = 1 − ωui,ℓ. we define f̂(ω, c) = ωc(1 − ω)1−c, and rewrite
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(6.37) as

bj,ℓ =
U∏

u=1

M∏

i=1

f̂(ωui,ℓ, cui,j). (6.39)

Thus, using (6.39), we can obtain the elements of the belief vector bℓ based on the

values of Ωℓ = [ωui,ℓ]i=1,2,...,M
u=1,2,...,U

, and for given action Aℓ at frame ℓ, we can rewrite

the expected immediate reward function rT (Aℓ)bℓ as

R̄(Aℓ,Ωℓ) ! rT (Aℓ)bℓ =

|S|
∑

j=1

R(Sj,Aℓ)bj,t =

|C|
∑

j=1

R(Sj,Aℓ)Pr(Cℓ = Cj|Hℓ−1)

=

|C|
∑

j=1

1

λ

λ∑

t=1

|K(a′′
t,ℓ)| log2

(

1 +
P

σ2|K(a′′
t,ℓ)|2

∑

i∈I(a′

t,ℓ
)

∑

u∈K(a′′

t,ℓ
)

h̃ui,j

) U∏

u=1

M∏

i=1

f̂(ωui,ℓ, cui,j).

(6.40)

where a′
t,ℓ is the first M rows of the t-th column of Aℓ, while a′′

t,ℓ is the last U

rows of the t-th column of Aℓ. Also, note that here h̃ui,j ∈ {α, β}. Let us define

Kt,ℓ ! |K(a′′
t,ℓ)| as the total number of users scheduled at the t-th time slot in the

ℓ-th frame. For the j-th possible state matrix, and for given Kt,ℓ, at time slot t

in the ℓ-th frame, only (N × Kt,ℓ) elements of the state matrix corresponding to

the N selected antennas and Kt,ℓ scheduled users, can be observed. Considering

h̃ui,j ∈ {α, β}, at the t-th time slot of the ℓ-th frame, we denote Z ′
jt,ℓ as the total

number of elements in the set {h̃ui,j , i ∈ I(a′
t,ℓ), u ∈ K(a′′

t,ℓ)} that are equal to α, for

j = 1, 2, . . . , |C|. Thus, the remaining (NKt,ℓ) − Z ′
jt,ℓ elements of this set are equal

to β. We can then write

|K(a′′
t,ℓ)| log2

(

1 +
P

σ2|K(a′′
t,ℓ)|2

∑

i∈I(a′

t,ℓ
)

∑

u∈K(a′′

t,ℓ
)

h̃ui,j

)

=

Kt,ℓ log2

(

Z ′
jt,ℓ(1 +

Pα

σ2K2
t,ℓ

) + ((NKt,ℓ) − Z ′
jt,ℓ)(1 +

Pβ

σ2K2
t,ℓ

)
)

︸ ︷︷ ︸

!RZ′

jt,ℓ

. (6.41)

Note that for given antenna selection vector a′
t,ℓ, and user scheduling vector a′′

t,ℓ,

at time slot t in the ℓ-th frame, for any possible state matrix in the state space
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that have same value of Z ′
jt,ℓ, their obtained RZ′

jt,ℓ
values are equal. Thus, for given

antenna selection vector a′
t,ℓ, and user scheduling vector a′′

t,ℓ, we can partition the

state space C as

C =

NKt,ℓ⋃

z=0

Cz(a
′′
t,ℓ, a

′
t,ℓ), (6.42)

where Cz(a
′′
t,ℓ, a

′
t,ℓ) = {C = [c1 c2 · · · cM ] ∈ C | ‖diag(a′′

t,ℓ) C diag(a′
t,ℓ)‖2 = z}.

We now use (6.42) to rewrite (6.40) as

R̄(Aℓ,Ωℓ) =
1

λ

λ∑

t=1

NKt,ℓ∑

z=0

∑

C∈Cz(a′′

t,ℓ
,a′

t,ℓ
)

Rz

U∏

u=1

M∏

i=1

f̂(ωui,ℓ, cui)

=
1

λ

λ∑

t=1

NKt,ℓ∑

z=0

Rz

∑

C∈Cz(a′′

t,ℓ
,a′

t,ℓ
)

U∏

u=1

M∏

i=1

f̂(ωui,ℓ, cui)

=
1

λ

λ∑

t=1

NKt,ℓ∑

z=0

Rz

∑

C∈Cz(a′′

t,ℓ
,a′

t,ℓ
)

∏

u∈K(a′′

t,ℓ
)

∏

i∈I(a′

t,ℓ
)

f̂(ωui,ℓ, cui)
∏

u∈K⊥(a′′

t,ℓ
)

∏

i∈I⊥(a′

t,ℓ
)

f̂(ωui,ℓ, cui),

(6.43)

where, Rz can be obtained from (6.41). Also, I⊥(a′
t,ℓ) and K⊥(a′′

t,ℓ) are the set

of the indices of the non-selected antennas and non-scheduled users at time slot t

in the ℓ-th frame. Since I⊥(a′
t,ℓ) is the complement set of I(a′

t,ℓ), we can write

|I(a′
t,ℓ)| = N and |I⊥(a′

t,ℓ)| = M − N . Also, for the same reason we can write

|K(a′′
t,ℓ)| = Kt,ℓ and |K⊥(a′′

t,ℓ)| = U − Kt,ℓ. Here, we can split C ∈ Cz(a
′′
t,ℓ, a

′
t,ℓ) into

two sub-matrixes C′ = [c′ui]i=1,2,...,M
u=1,2,...,U

and C′′ = [c′′ui]i=1,2,...,M
u=1,2,...,U

, such that

c′ui =

{

cui if i ∈ I(a′
t,ℓ) & u ∈ K(a′′

t,ℓ)

0 Otherwise
, and

c′′ui =

{

cui if i ∈ I⊥(a′
t,ℓ) & u ∈ K⊥(a′′

t,ℓ)

0 Otherwise
(6.44)

Note that the entries of C′′ can be either 0 or 1, while C′ ∈ C ′

z(a
′′
t,ℓ, a

′
t,ℓ) ! {C′ :

‖C′‖2 = z}. Therefore, we can rewrite (6.43) as

R̄(Aℓ,Ωℓ) =
1

λ

λ∑

t=1

NKt,ℓ∑

z=0

Rz×
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∑

C′∈C′

z(a′′

t,ℓ
,a′

t,ℓ
)

∑

C′′

∏

u∈K(a′′

t,ℓ
)

∏

i∈I(a′

t,ℓ
)

f̂(ωui,ℓ, c
′
ui)

∏

u∈K⊥(a′′

t,ℓ
)

∏

i∈I⊥(a′

t,ℓ
)

f̂(ωui,ℓ, c
′′
ui),

=
1

λ

λ∑

t=1

NKt,ℓ∑

z=0

Rz






∑

C′∈C
′

z(a′′

t,ℓ
,a′

t,ℓ
)

∏

u∈K(a′′

t,ℓ
)

∏

i∈I(a′

t,ℓ
)

f̂(ωui,ℓ, c
′
ui)









∑

C′′

∏

u∈K⊥(a′′

t,ℓ
)

∏

i∈I⊥(a′

t,ℓ
)

f̂(ωui,ℓ, c
′′
ui)





︸ ︷︷ ︸
=1

=
1

λ

λ∑

t=1

NKt,ℓ∑

z=0

Rz

∑

C′∈C′

z(a′′

t,ℓ
,a′

t,ℓ
)

∏

u∈K(a′′

t,ℓ
)

∏

i∈I(a′

t,ℓ
)

f̂(ωui,ℓ, c
′
ui), (6.45)

where the second parentheses is the summation of the probabilities of all possible

values that the elements of C′′ may take and thus it is equal to 1.

Let us denote R̃(a′′
t,ℓ, a

′
t,ℓ,Ωℓ) as the obtained expected immediate reward func-

tion at the t-th time slot in the ℓ-th frame, when taking actions a′
t,ℓ and a′′

t,ℓ. Con-

sidering that channels remain unchanged during the entire frame, we can write

R̃(a′′
t,ℓ, a

′
t,ℓ,Ωℓ) =

NKt,ℓ∑

z=0

Rz

∑

C′∈C′

z(a′′

t,ℓ
,a′

t,ℓ
)

∏

u∈K(a′′

t,ℓ
)

∏

i∈I(a′

t,ℓ
)

f̂(ωui,ℓ, c
′
ui). (6.46)

Note that

R̄(Aℓ,Ωℓ) =
1

λ

λ∑

t=1

R̃(a′′
t,ℓ, a

′
t,ℓ,Ωℓ) (6.47)

As we showed in (6.45), at time slot t, the expected immediate reward function

depends only on ({ωui,ℓ}, i ∈ I(a′
t,ℓ), u ∈ K(a′′

t,ℓ)). We define

f(x) !

NKt,ℓ∑

z=0

Rz

∑

‖C′‖2=z

N∏

i=1

Kt,ℓ∏

u=1

f̂(xui, c
′
ui). (6.48)

Then, for given vector x = vec({ωui,ℓ}, i ∈ I(a′
t,ℓ), u ∈ K(a′′

t,ℓ)), where vec({·})
generates a vector with entries of the given set elements, we can write (6.46) as

f(vec({ωui,ℓ}, i ∈ I(a′
t,ℓ), u ∈ K(a′′

t,ℓ))) = R̃(a′′
t,ℓ, a

′
t,ℓ,Ωℓ). Here, we aim to show that

f(x) in (6.48) is a regular function with respect to x = vec({ωui,ℓ}, i ∈ I(a′
t,ℓ), u ∈

K(a′′
t,ℓ)). We define a regular function in the below definition.
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Definition 2. f(x) is a regular function with respect to x = [x1 x2 · · · xKN ]T , if

f(x) satisfies structural properties C1, C2, and C3 which are described in Defini-

tion 1 in Section. 4.3.

According to the regular function definition, the function f(x) is regular if its

symmetric, decomposable and monotone. The authors in [41] showed that, f or

positively correlated two-state model, if the expected immediate reward function is a

regular function, myopic policy is the optimal solution for the POMDP-based prob-

lem. More specifically, a policy which maximizes the expected immediate reward

function, results in maximizing the expected long-term reward function as well.

Lemma 2. Function f(x) in (6.48) is regular.

Proof. We show that C1, C2, and C3 described in Definition. 1 hold true for f(x) in

(6.48). To do so, we first start to prove that f(x) is symmetric and satisfies C1, and

for any j, l if f([x1 · · · xj · · · xl · · · xKN ]T ) − f([x1 · · · xl · · · xj · · · xKN ]T ) = 0,

f(x) is symmetric. Thus, we write

f([x11 · · · xpj · · · xql · · · xKN ]T ) − f([x11 · · · xql · · · xpj · · · xKN ]T )

=

NKt,ℓ∑

z=0

RZt,ℓ

∑

‖C′‖2=z

f̂(xpj , c
′
pj)f̂(xql, c

′
ql)

N∏

i=1
i(=j,l

Kt∏

u=1
u (=q,p

f̂(xui, c
′
ui)−

NKt,ℓ∑

z=0

Rz

∑

‖C′‖2=z

f̂(xql, c
′
pj)f̂(xpj, c

′
ql)

N∏

i=1
i(=j,l

Kt,ℓ∏

u=1
u (=p,q

f̂(xui, c
′
ui)

=

NKt,ℓ∑

z=0

Rz

∑

‖C′‖2=z

( N∏

i=1
i(=j,l

Kt,ℓ∏

u=1
u (=p,q

f̂(xui, c
′
ui)

)(
f̂(xpj , c

′
pj)f̂(xql, c

′
ql) − f̂(xql, c

′
pj)f̂(xpj , c

′
ql)

)

︸ ︷︷ ︸

!l(C′)

,

(6.49)

where

l(C′) = (6.50)
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





(
xpjxql − xqlxpj

)
N∏

i=1
i(=j,l

Kt,ℓ∏

u=1
u (=p,q

f̂(xui, c
′
ui) = 0, if c′pj = 1, c′ql = 1,

(
xpj(1 − xql) − xql(1 − xpj)

)

︸ ︷︷ ︸
xpj−xql

N∏

i=1
i(=j,l

Kt,ℓ∏

u=1
u (=p,q

f̂(xui, c
′
ui), if c′pj = 1, c′ql = 0,

(
(1 − xpj)(1 − xql) − (1 − xql)(1 − xpj)

)
N∏

i=1
i(=j,l

Kt,ℓ∏

u=1
u (=p,q

f̂(xui, c
′
ui) = 0, if c′pj = 0, c′ql = 0,

(
(1 − xpj)xql − (1 − xql)xpj

)

︸ ︷︷ ︸
xql−xpj

N∏

i=1
i(=j,l

Kt,ℓ∏

u=1
u (=p,q

f̂(xui, c
′
ui), if c′pj = 0, c′ql = 1.

(6.51)

Using the fact that we define Zt,ℓ as the number of channels to be in good state,

we can write if 1T [c′11 · · · c′ql · · · c′pj · · · c′KN ]T = z, then we can say that

1T [c′11 · · · c′pj · · · c′ql · · · c′KN ]T = z. Meaning that
∑

‖C′‖2=z

l(C′) = 0. Thus, (6.49)

is equal to zero, and f(x) is a symmetric function. We now show that C2 property

holds true for f(x), and thus, f(x) is decomposable. To do so, we rewrite (6.48) as

f(x) =

NKt,ℓ∑

z=0

Rz

∑

‖C′‖2=z

R‖C′‖2

( N∏

i=1
i(=j

Kt,ℓ∏

u=1
u (=p

f̂(xui, c
′
ui)

︸ ︷︷ ︸

!Q(x−pj ,C′

−pj)

)

f̂(xpj, c
′
pj), (6.52)

where C′
−pj is the same matrix as C′ where the element c′pj, is removed. Also, with

similar definition, x−pj is the same vector x where the element xpj is removed. Note

that R‖C′‖2 is equivalent to Rz. We can rewrite (6.52) as

f(x) =

NKt,ℓ−1
∑

z=0

∑

‖C′‖2=z

c′pj=0

R‖C′‖2Q(x−pj,C
′
−pj)(1 − xpj)+

NKt,ℓ∑

z=1

∑

‖C′‖2=z

c′pj=1

R‖C′‖2Q(x−pj,C
′
−pj)xpj. (6.53)
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Since ‖C′‖2 = ‖C′
−pj‖2 + c′pj, we can now rewrite (6.53) as

f(x) =

NKt,ℓ−1
∑

z=0

∑

‖C′‖2=z

c′pj=0

R‖C′

−pj‖1
Q(x−pj,C

′
−pj)(1 − xpj)+

NKt,ℓ−1
∑

z=0

∑

‖C′‖2=z+1
c′pj=1

R1+‖C′

−pj‖
2Q(x−pj ,C

′
−pj)xpj.

=

NKt,ℓ−1
∑

z=0

( ∑

‖C′

−pj‖
2=z

R1+‖C′

−pj‖
2Q(x−pj,C

′
−pj) −

∑

‖C′

−pj‖
2=z

R‖C′

−pj‖
2Q(x−pj,C

′
−pj)

)

xpj

+

NKt,ℓ−1
∑

z=0

∑

‖C′

−pj‖
2=z

R‖C′

−pj‖
2Q(x−pj,C

′
−pj) =

NKt,ℓ−1
∑

z=0

( ∑

‖C′

−pj‖
2=z

Q(x−pj,C
′
−pj)(R1+‖C′

−pj‖1
− R‖C′

−pj‖1
)
)

xpj+

NKt,ℓ−1
∑

Zt,ℓ=0

∑

‖C′

−pj‖
2=z

R‖C′

−pj‖
2Q(x−pj,C

′
−pj) = ηpj xpj + θpj, (6.54)

where ηpj !

NKt,ℓ−1
∑

z=0

( ∑

‖C′

−pj‖
2=z

Q(x−pj,C
′
−pj)(R1+‖C′

−pj‖
2 − R‖C′

−pj‖
2)

)

and

θpj !

NKt,ℓ−1
∑

z=0

∑

‖C′

−pj‖
2=z

R‖C′

−pj‖
2Q(x−pj,C

′
−pj) holds true. Thus, we can write

f(x) = xpj(ηpj + θpj) + (1 − xpj)θpj

= xpjf([x11 · · · xpj−1 1 · · · xNK ]T )+

(1 − xju′)f([x11 · · · xpj−1 0 · · · xNK ]T ). (6.55)

Thus, according to (6.55) and C2, f(x) is a decomposable function. Using the

decomposable property of the f(x), we show that f(x) is a monotone function as it

holds true for C3. To do so, using (6.54), we can write

f(x) − f(x′) = ηpj(xpj − x′
pj) (6.56)
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Note that since R1+‖C′

−pj‖
2 > R‖C′

−pj‖
2 , it is true that in (6.54), ηpj > 0. Therefore,

for xpj > x′
pj, we can write

f(x) − f(x′) = ηpj(xpj − x′
pj) > 0 (6.57)

Thus, f(x) is monotone and the proof is complete. Based on the above discussions,

f(x) holds true for all the three properties, C1, C2, and C3 in Definition. 1, and

thus f(x) is a regular function. #

We proved that for given Kt,ℓ = |K(a′′
t,ℓ)| , the function R̃(a′′

t,ℓ, a
′
t,ℓ,Ωℓ) in (6.46)

which is the t-th time slot expected immediate reward function, is a regular function.

However, to show that myopic policy is optimal, we need to prove that the entire

frame expected immediate reward function defined in (6.47) is a regular function.

Lemma 3. The expected immediate reward function in (6.47) is regular.

Proof. For given number of users scheduled at each time slot t, (i.e., |K(a′′
t,ℓ)| = Kt,ℓ,

for t = 1, 2, . . . , λ), we showed that R̃(a′′
t,ℓ, a

′
t,ℓ,Ωℓ) is a regular function with respect

to vec({ωui,ℓ}, i ∈ I(a′
t,ℓ), u ∈ K(a′′

t,ℓ)). More specifically, at each time slot t, the

expected immediate reward function only depends on the probability of being in

good state of the channel links between the selected antennas and the users scheduled

at that time slot (i.e., {ωui,ℓ}, i ∈ I(a′
t,ℓ), u ∈ K(a′′

t,ℓ)). Thus, for given number

of users at each time slot, according to (6.47), maximizing individual time slots’

expected immediate reward function, is equivalent to maximizing the entire frame

expected immediate reward function. Proof is complete. #

We use the following theorem to further simplify the myopic policy for our JASUS

problem.

Theorem 5. For given number of scheduled users at each time slot t (i.e., Kt,ℓ),

under the assumption of positively correlated two-state channel model, the myopic

policy is optimal and amounts to select NKt,ℓ channels with highest probability of
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being in good state (i.e., {ωui,ℓ}, i ∈ I(a′
t,ℓ), u ∈ K(a′′

t,ℓ)). More specifically, the

indices of N antennas and the indices of Kt,ℓ users that have largest entries of Ωℓ,

are the indices of selected antennas and users scheduled at time slot t, in the ℓ-th

frame.

Proof. In Lemma 2, we showed that the t-th time slot expected immediate reward

function R̃(a′′
t,ℓ, a

′
t,ℓ,Ωℓ), is a monotone function with respect to vec({ωui,ℓ}, i ∈

I(a′
t,ℓ), u ∈ K(a′′

t,ℓ)). Meaning that R̃(a′′
t,ℓ, a

′
t,ℓ,Ωℓ) is monotonically increasing with

({ωui,ℓ}, i ∈ I(a′
t,ℓ), u ∈ K(a′′

t,ℓ)). Thus, we can maximize R̃(a′′
t,ℓ, a

′
t,ℓ,Ωℓ) with

selecting NKt,ℓ channels with highest probability of being in good state (i.e., highest

({ωui,ℓ}, i ∈ I(a′
t,ℓ), u ∈ K(a′′

t,ℓ)) values). #

For given Kt,ℓ, we denote the optimal set of N antenna indices that are selected

at time slot t of frame l as I∗
t,ℓ, and represent the optimal set of Kt,ℓ user indices that

are scheduled at time slot t of frame l as K∗
t,ℓ, for t = 1, 2, . . . , λ and ℓ = 1, 2, . . . ,∞.

Noting that |K∗
t,ℓ| = Kt,ℓ and I∗

t,ℓ = N hold true, we can then write, for any i′ /∈ I∗
t,ℓ

or u′ /∈ K∗
t,ℓ,

ωu′i′,ℓ ≤ minimum{ωui,ℓ, i ∈ I∗
t,ℓ, u ∈ K∗

t,ℓ} (6.58)

holds true, for t = 1, 2, . . . , λ and ℓ = 1, 2, . . . ,∞.

So far, we have shown that for given number of users (i.e., Kt,ℓ) at each time

slot t in a frame, for positively correlated two-state channel model, myopic policy

is the optimal solution, meaning that it maximizes the expected long-term reward

function. However, finding the optimal number of users scheduled at each time slot t

amounts to solving another optimization problem, as explain in the sequel. Here, we

denote a λ× 1 vector that contains the number of users scheduled at each time slot

in the ℓ-th frame as kℓ = [K1,ℓ K2,ℓ · · · Kλ,ℓ]
T , whose t-th element is equal to the

total number of users scheduled at time slot t in the ℓ-th frame, for t = 1, 2, . . . , λ

and ℓ = 1, 2, . . . ,∞. Note that at the beginning of each frame, the BS schedules all

available U users to λ time slots such that the number of users per time slot should
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be more than one and less than the number of RF chains. Let us denote U as the

set of all possible kℓ vectors, when U users are available to be scheduled in λ time

slots in a frame. We can write

U =
{
k = [k1 k2 · · · kλ]

T
∣
∣ 1Tk = U , while 1 ≤ kt ≤ N , for t = 1, 2, . . . , λ

}
.

(6.59)

Here, we denote k∗
ℓ as the optimal vector that contains the optimal number of users

scheduled at time slot t in the ℓ-th frame. Note that for any possible kℓ ∈ U , at

each time slot t, based on Kt,ℓ, we can obtain I∗
t,ℓ, and K∗

t,ℓ according to (6.58) to

find the corresponding action vectors a′
t,ℓ = [a′

it,ℓ]
M
i=1 and a′′

t,ℓ = [a′′
ut,ℓ]

U
u=1, such that

for t = 1, 2, . . . , λ,

a′
it,ℓ =

{

1 if i ∈ I∗
t,ℓ

0 if i /∈ I∗
t,ℓ

, (6.60)

a′′
ut,ℓ =

{

1 if u ∈ K∗
t,ℓ

0 if u /∈ K∗
t,ℓ

. (6.61)

where a′
it,ℓ is the i-th element of a′

t,ℓ and a′′
ut,ℓ is the u-th element of a′′

t,ℓ. Note that

a′
it,ℓ = 1, means that i-th antenna is selected to serve the users scheduled at time

slot t, and a′′
ut,ℓ = 1, means that u-th user is scheduled at the t-th time slot in

the ℓ-th frame to be served. Otherwise, a′
it,ℓ = 0, and a′′

ut,ℓ = 0. For give vector

kℓ = [K1,ℓ K2,ℓ · · · Kλ,ℓ]
T ∈ U , the corresponding action matrix Aℓ =

[
A′

ℓ

A′′
ℓ

]

,

with A′
ℓ = [a′

t,ℓ]
λ
t=1 and A′′

ℓ = [a′′
t,ℓ]

λ
t=1 can be determined from (6.58), (6.60), and

(6.61). Then the optimal vector k∗
ℓ can be obtained as

k∗
ℓ = arg max

∀kℓ∈U

(

R̄(Aℓ,Ωℓ)
)

, (6.62)

where for obtained Aℓ, we can obtain the expected immediate reward function

R̄(Aℓ,Ωℓ) form (6.47).

To summarize, we proved in this section that for given optimal k∗
ℓ , and for

positively correlated two-state channel model, myopic policy provides the optimal
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solution to our JASUS problem. In the next section, motivated by the optimality

of the myopic policy, we aim to design a JASUS algorithm that can be applied to

Rayleigh fading channels.

6.5 Gauss-Markov Model for Rayleigh Fading Chan-

nels

Here, we aim to devise a myopic policy-based algorithm for our JASUS problem that

can be implemented for Rayleigh fading channels. To do so, we assume that channels

evolve according to the first-order Gauss-Markov channel model. We use Σh =

E{hi,th
H
i,t} = diag([σ2

h,u]
U
u=1) to denote the diagonal channel covariance matrix, where

σ2
h,u large-scale variation of channel between the u-th user and the i-th antenna. We

then write the channel vector hi,t ∼ CN (0U×1,Σh) as

hi,t ! diag(ξ)hi,t−1 + diag(ξ′)zi,t, i = 1, ..., M . (6.63)

where zi,t ∼ CN (0U×1,Σh) is the i.i.d. innovation sequence which is independent of

the channel vector hi,t, for i = 1, 2, . . . ,M , ξ = [ξ1 ξ2 · · · ξU ]T is the fading corre-

lation vector, with ξu ∈ [0, 1] being the fading correlation coefficient corresponding

to the u-th user, and ξ′ = [
√

1 − ξ2
1

√

1 − ξ2
2 · · ·

√

1 − ξ2
U ]T . Note that we can

obtain the value of ξu according to the maximum Doppler frequency [61].

We aim to quantize the square absolute value of channel coefficients (i.e., |hui,ℓ|2, for i =

1, 2, . . . ,M, and u = 1, 2, . . . , U) to two levels, good (1) and bad (0), only in the se-

lection stage, to benefit from the optimality of myopic policy for positively correlated

two-state channel model, such that

cui,ℓ =

{

1, if |hui,ℓ|2 $ v,

0, if |hui,ℓ|2 < v ,
(6.64)

where v is the quantization threshold value. Using (6.64) to obtain a two-state

channel model, we propose Algorithm. 6, thereby applying the myopic policy for

our JASUS problem. According to our proposed myopic policy algorithm, based on
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action Aℓ−1, at the end of frame ℓ−1, the observation matrix of the entire frame Oℓ−1

can be obtained. Note that Oℓ−1 =
∑λ

t=1 Ōt,ℓ−1, where the t-th time slot observation

matrix Ōt,ℓ−1 can be obtained at the end of the uplink transmission of that time slot.

At the beginning of the ℓ-th frame, given Oℓ−1, we propose to use (6.64) to quantize

non-zero elements of matrix Oℓ−1 (i.e., the observed channel links between selected

antennas and users scheduled at each time slot t = 1, 2, . . . , λ ). We then update

the elements of the belief matrix Ωℓ of the next frame using Algorithm 5. Next for

any possible kℓ ∈ U , based on Kt,ℓ (i.e., the t-th element of kℓ), we can obtain I∗
t,ℓ,

and K∗
t,ℓ according to (6.58), to find the corresponding action vectors, a′

t,ℓ and a′′
t,ℓ

based on (6.60) and (6.61), respectively, for t = 1, 2, . . . , λ. Thus, for any possible

kℓ ∈ U , there is a corresponding action matrix Aℓ obtained from (6.58), (6.60), and

(6.61). We use Υℓ(·) to denote a function that maps kℓ to its corresponding action

matrix Aℓ at the ℓ-th frame, such that Aℓ = Υℓ(kℓ). We then use (6.62) to find k∗
ℓ ,

and select its corresponding action matrix Aℓ = Υℓ(k
∗
ℓ), as the ℓ-th frame JASUS

action matrix.

The computational complexity of our proposed myopic-based JASUS algorithm

resides in updating the elements of the belief matrix with the computational com-

plexity O(UM −UN) (see Algorithm.5), and then, in finding the optimal number of

users scheduled at each time slot and its corresponding set of selected antenna indices

and scheduled users indices with computational complexity O(UMλ log UN) [70].

Since in our defined system model we assume that the BS is equipped with massive

number of antennas (M is a large number), the computational complexity of the my-

opic policy-based JASUS algorithm is O(UMλ log UN), which is significantly lower

than the computational complexity of the value iteration algorithm of O(|S|2×|A|)
per iteration [69].
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Algorithm 6 The myopic policy based antenna selection

Initialization: Obtain U from (6.59). Given the channel correlation factor vector
ξ and Σh, set the threshold value v.
At each frame ℓ:
Input: Oℓ−1.

1: Quantize the non-zero elements of Oℓ−1 according to (6.64).
2: Update the elements of Ωℓ using Algorithm.5.
3: for any possible kℓ ∈ U do
4: for t = 1 : λ do
5: Obtain I∗

t,ℓ,K∗
t,ℓ, according to Kt,ℓ, using (6.58).

6: Obtain the elements of a′
t,ℓ and a′′

t,ℓ from (6.60) and (6.61), respectively.
7: end for

8: Obtain the corresponding action matrix Aℓ =

[
A′

ℓ

A′′
ℓ

]

.

9: Save kℓ and its corresponding obtained Aℓ in a mapping table, Aℓ = Υℓ(kℓ).
10: end for
11: Obtain k∗

ℓ from (6.62).

Output: Aℓ = Υℓ(k
∗
ℓ).
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6.6 Simulation Results

In this section, considering that channels evolve according to a first-order Gauss

Markov model presented in Section 6.5, we aim to evaluate the performance of our

proposed myopic policy-based JASUS presented as Algorithm 6, for a multi-user

massive MIMO system. We evaluate the performance of our proposed algorithm by

using the non-quantized channel coefficients to obtain time-average sum-rate up to

time frame ℓ, denoted as R̂ℓ, given by

R̂ℓ =
1

ℓλ

ℓ∑

τ=0

t=λ∑

t=1

log2

(

det
(
I +

P

σ2‖ĤH
t,τ (Ĥt,τ ĤH

t,τ )
−1‖2

F

I
) )

. (6.65)

where Ĥt,ℓ is the channel matrix between the N selected antennas and Kt,ℓ users

scheduled at time slot t in the ℓ-th frame. Here, we compare our results with two

other polices namely, a random selection policy and a full CSI-based policy. In

the random selection policy, we randomly schedule each of the U available users in

time slot t, for t = 1, 2, . . . , λ, and select N antennas randomly to transmit data at

each time slot t in a frame. In the full CSI-based policy, considering that at each

frame ℓ, full CSI is available, an exhaustive search is carried out to find the best

subset of users to schedule in time slot t, for t = 1, 2, . . . , λ, and the best subset of

antennas for data transmission. Note that the presented results are the mean of R̂ℓ

over 100 Monte Carlo runs. Furthermore, for finding the optimal threshold value

(denoted as v∗) for channel quantization in Algorithm 6, we use a low-complexity

search algorithm, proposed in Section. 5.6.

6.6.1 Evaluating the Performance of Algorithm 6:

In the first part of our simulations, to evaluate the performance Algorithm 6, we

define five scenarios, where in each one of them, the available users have different

speeds (i.e., different values of ξu and are located at different distances from the

BS (i.e., different values of σ2
h,u). More specifically, we use Jakes’ model presented
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in [74] to obtain the fading correlation coefficient of the u-th user according to its

speed, for u = 1, 2, . . . , U , as we explain in the sequel. Considering a WLAN 802.11

system which is operating at the carrier frequency fc = 2.4 GHz, according to the

Jakes’ model, we can obtain ξu = J0(2π
Vufc

CfW
), where Vu is the speed of the u-th

user, C = 3 × 109 m/s is speed of wave propagation, and fW = 2.5 KHz is the

communication bandwidth. For example, for a pedestrian user (i.e., Vu = 3.6 km/h

), a user with typical driving speed in residential areas (i.e., Vu = 36 km/h), and a

high speed user, such as user in a car driving on a highway (i.e., Vk = 140 km/h),

the obtained fading correlation coefficient are ξu = 0.999 ξu = 0.986, and ξu = 0.95,

respectively. Furthermore, denoting the u-th user distance from the BS as du, we use

the simple path loss model σ2
h,u = ̺d−3

u to define the SNR range for each user, where

the path loss constant ̺ is chosen such that for the u-th user at the cell boundary

(i.e., for du = 500m), the value of
Pσ2

h,u

σ2 is 0 dB. Given the above explanations we

now define five scenarios as listed below.

• Scenario i, low-speed and low-SNR users: This scenario involves 12 users,

each of which has a fading correlation coefficient uniformly distributed in the

interval [0.996, 0.999] Also, the users are located at random distances from the

BS such that {Pσ2
h,u

σ2 }12
u=1 are in the range of [0, 0.5] dB.

• Scenario ii, low-speed and high-SNR users: This scenario involves 12 users,

each of which has a fading correlation coefficient uniformly distributed in the

interval [0.996, 0.999]. Also, the users are located at random distances from

the BS such that {Pσ2
h,u

σ2 }12
u=1 are in the range of [9.5, 10] dB.

• Scenario iii, high-speed and low-SNR users: This scenario involves 12 users,

each of which has a fading correlation coefficient uniformly distributed in the

interval [0.95, 0.96]. Also, the users are located at random distances from the

BS such that {Pσ2
h,u

σ2 }12
u=1 are in the range of [0, 0.5] dB.

• Scenario iv, high-speed and high-SNR users: This scenario involves 12 users,

117



each of which has a fading correlation coefficient uniformly distributed in the

interval [0.95, 0.96]. Also, the users are located at random distances from the

BS such that {Pσ2
h,u

σ2 }12
u=1 are in the range of [9.5, 10] dB.

• Scenario v, random speed and random SNR users: This scenario involves 12

users, each of which has a fading correlation coefficient uniformly distributed

in the interval [0.95, 0.999]. Also, the users are located at random distances

from the BS such that {Pσ2
h,u

σ2 }12
u=1 are in the range of [0, 10] dB.

Considering λ = 2 time slots per super-fame, and assuming that the BS is equipped

with M = 126 antennas to serve U = 12 single-antenna users, in Figs. 6.3, we plot

R̂1000 versus different number of RF chains N = [7, 8, 9, 10], for aforementioned

Scenarios i, ii, iii, iv, and v. We plot Figs. 6.3a, 6.3b, and 6.3c, to show R̂1000 versus

different N for low-SNR range (Scenarios i, and iii), high-SNR range (Scenarios ii,

and iv) and random SNR range (Scenario v), respectively. As can be seen from

Figs. 6.3a, and 6.3b, for low-speed users, the performance gap between the full CSI-

based policy and the myopic policy for N = 7 are less than 0.5 and 2 bit per channel

use (bcu), respectively. However, for the high-speed users, the performance gap is

larger. For example, for N = 7, Figs. 6.3a, and 6.3b show that the performance

of our proposed Algorithm 6 is about 0.8 (bcu) and 2.5 (bcu) lower that that of

the full CSI-based policy, respectively. Since with increasing the speed of users,

the value of p01 increases (and hence the probability of switching channel state

increases), increasing this performance gap for high speed users is expected. More

specifically, higher value of p01 results in less possibility for searching among channel

links between unselected antennas and non-scheduled users for the subsequent time

frames (see Algorithm 5). This in turns results in lower performance compared to

scenarios with low-speed users. Finally in Fig. 6.3c, we show the performance of the

more realistic Scenario v, which involves users with different speed ranges that be

located at any distance from the BS in a cell. As can be seen from this figure, the
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performance gap between the myopic policy-based selection and random selection

policy is about 1.3 (bcu) for N = 7, and 1.4 (bcu) for N = 10.
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Figure 6.3: Time averaged sum-rate R̂1000 vs N for U = 12, M = 128, and N = [7 :
1 : 10] (a) Scenarios i, and iii (b) Scenarios ii, and iv, and (c) Scenario v.

6.6.2 The Impact of Increasing the Number of Users on

the Performance of Algorithm 6:

We now aim to analyze the performance of our proposed Algorithm 6 for fixed values

of M and N , but for different number of available users U . To do so, below we define

four different scenarios:

• Scenario vi: This scenario involves U low-speed users (pedestrians users with

Vk = 3.6 km/h ) with the fading correlation coefficient ξu = 0.999, for u =
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1, 2, . . . , U . Also, the users are located at random distances from the BS such

that {Pσ2
h,u

σ2 }U
u=1 are in the range of [0, 0.5] dB.

• Scenario vii: This scenario involves U low-speed users (pedestrians with Vk =

3.6 km/h) with the fading correlation coefficient ξu = 0.999, for u = 1, 2, . . . , U .

Also, the users are located at random distances from the BS such that {Pσ2
h,u

σ2 }U
u=1

are in the range of [9.5, 10] dB.

• Scenario viii: This scenario involves U high-speed users (users in a car driving

on a highway with Vk = 140 km/h) with the fading correlation coefficient

ξu = 0.95, for u = 1, 2, . . . , U . Also, the users are located at random distances

from the BS such that {Pσ2
h,u

σ2 }U
u=1 are in the range of [0, 0.5] dB.

• Scenario ix: This scenario involves U high-speed users (users in cars driving

on a highway with Vk = 140 km/h), with the fading correlation coefficient

ξu = 0.95 for u = 1, 2, . . . , U . Also, the users are located at random distances

from the BS such that {Pσ2
h,u

σ2 }U
u=1 are in the range of [9.5, 10] dB.

Here, assuming that the BS is equipped with M = 128 antennas and N = 10 RF

chains, and that each frame consists of two time slots (λ = 2), we plot the average

of R̂1000 over 100 Monte Carlo runs, versus different number of users U in Fig. 6.4.

Fig. 6.4a presents the results of Scenarios vi, viii, and Fig 6.4b presents the results

of Scenarios vii, and ix. As can be seen from these figures, and as we expect (see

Section. 6.6.1), the performance gap between the myopic policy algorithm and the

full CSI based policy is lower for low-speed users compared to that high-speed users

in the same SNR range. For instance, in Fig 6.4a, for U = 10, this performance

gap is less than 0.6 (bcu), and 1 (bcu), for low-speed users and high-speed users,

respectively. One can also see in Figs 6.4a and 6.4b that with increasing number

of users, the gap between the full CSI based policy and and the random selection

increases significantly. However, with increasing the number of users, in these figure,

the performance gap between the myopic policy algorithm and the full CSI policy
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approximately remains unchanged in Fig 6.4a, and only slightly increases in Fig

6.4b. For instance, in Fig 6.4b, for U = 2, the gap between the full CSI based policy

and random selection is 2.5 (bcu) and for U = 10, this gap increases to 6 (bcu). In

contrast, in Fig 6.4b, for U = 2, the performance gap between the full CSI policy

and the myopic policy is 1 (bcu) and 1.7 (bcu) for low-speed and high-speed users,

respectively, and for U = 10, this gap increases to about 1.6 (bcu) and 3 (bcu),

respectively.
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Figure 6.4: Time averaged sum-rate R̂1000 vs U for M = 128, N = 10 and U = [2 :
2 : 10] (a) Scenarios vi, and viii, and (b) Scenarios vii, ix.

6.6.3 The Importance of User Scheduling

In this section, we aim to analyze the results of user scheduling performance in our

JASUS problem. To do so, considering a BS equipped with M = 100 antennas

and N = 30 RF chains, we plot the average of R̂1000 over 100 Monte Carlo runs for

different number of users in Figs. 6.5a and 6.5b for Scenarios vi and viii, respectively,

for two different cases: 1) each time frame only contains one time slot, i.e., λ = 1

(meaning that the BS serves all the users in one time slot), and 2) each time frame

contains two time slots, i.e., λ = 2. The main goal of this comparison is to show

the benefit of user scheduling when large number of users are available. As can be
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seen from Fig. 6.5, for λ = 1, with increasing the number of users, after U = 6,

the sum-rate drops significantly. However, for λ = 2, after U = 6, the sum-rate

increases with increasing the number of users. Thus, from Fig. 6.5, it appears that

for different numbers of users, there is an optimal number of time slots per frame.

Designing a time frame with optimal number of time slots is not in the scope of this

dissertation, but can be considered as an extension of this line of work.
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Figure 6.5: Time averaged sum-rate R̂1000 vs U for N = 30, M = 100, and for
different values of U(a) Scenario vi, and (b) Scenario viii.
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Chapter 7

Conclusion and Future Work

In this chapter, we first provide the conclusion section, and then we outline the

possible future work.

7.1 Conclusion

In Chapter 4 of this dissertation, we formulated the antenna selection problem at the

BS, equipped with M antennas and N RF chains (M ≫ N), for downlink transmis-

sions using a POMDP framework. In a TDD system, we assumed the channel state

evolves according to a finite-state Markov process and remains unchanged during

each time slot, which consists of the uplink and downlink transmission (i.e., chan-

nel reciprocity holds). Given the partial CSI, to maximize the expected long-term

downlink data rate, the value iteration algorithm can be used to extract the opti-

mal policy. However, this algorithm has high computational complexity, and thus a

simple myopic policy could offer an attractive alternative solution. We prove that,

for a positively correlated two-state channel model, the myopic policy is optimal

for selecting any N out of M antennas. Based on this result, for general fading

channels, we proposed the channels be quantized into two levels and apply the my-

opic policy for antenna selection. Although in the antenna selection problem, only

partial quantized CSI is available, our simulation results show that the performance

of our proposed algorithm is within 0.5 (bcu) from the full CSI based policy (the
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upper bound data rate) for antenna selection.

In Chapter 5, we utilized a POMDP framework to formulate the antenna selec-

tion problem for a BS equipped with a massive number of antennas and a limited

number of RF chains in a massive MU-MIMO system. Using ZF beamforming, we

defined the sum-rate upper bound as the reward function and prove that for i.i.d

positively correlated two-state channel model, the expected long-term reward func-

tion is a regular function. Thus, myopic policy provides the optimal solution to our

antenna selection problem. Furthermore, we proposed a low-complexity antenna

selection algorithm which can be implemented to Rayleigh fading channel model.

According to our proposed algorithm, given an optimal threshold value, to benefit

from the optimality of myopic policy for two-state channel model, we quantized

the channels’ gain into two levels only in the selection stage. To obtain the opti-

mal threshold value for channel gain quantization, we proposed an efficient offline

algorithm, which results in high achievable performance in our simulation results.

Considering users with random speeds and SNR ranges, our results show that the

proposed myopic policy algorithm is within 0.3 (bcu) from the full CSI policy which

is the upper-bound in our simulation results.

In Chapter 6, we used a POMDP framework to formulate the joint antenna

selection an user scheduling (JASUS) problem for a large-scale antenna BS with

M antennas and N RF chains (M ≫ N), that transmits data to U single-antenna

users in a cellular system. Here, we assumed that the number of users is larger than

the number of RF chains (U > N), and we used zero-forcing (ZF) beamforming to

eliminate inter-user interference. Thus, to fully cancel out the inter-user interference,

the number of served users is limited as the number of RF chains at each time slot.

To grantee that all users receive data, we assumed that users are served in a frame

that contains of a finite number of time slots. At the beginning of each frame, the BS

schedules users to different time slots in a frame and then selects a subset of antennas

to serve the scheduled users at each time slot by performing downlink and uplink
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transmission. Note that the number of scheduled users is smaller than or equal to

the number of RF chains. Here, we assumed that channels evolve according to a

same Markov chain at the beginning of each frame and remain unchanged during

the entire frame. We showed that for a positively correlated two-state channel

model, the myopic policy provides the optimal solution to our JASUS problem.

We then proposed a low-complexity JASUS algorithm that can be implemented to

Rayleigh fading channels. Considering time-varying Rayleigh fading channels, our

designed low-complexity JASUS algorithm can make a real-time decisions based on

only available partial CSI.

7.2 Possible Future Work

This research can be extended in several directions as explained below.

• Switching Cost in designing the Antenna Selection Algorithm

In this dissertaion, for designing the antenna selection algorithm, we assumed

that the constraint is selecting N out of M antennas at each time slot. In

the problem formulation, we can consider the cost of switching RF chains

in the massive MIMO systems as another constraint when designing an an-

tenna selection algorithm. More specifically, one can formulate the antenna

selection problem for massive MU-MIMO systems as a POMDP framework

with considering the switching cost as a constraint in the defined optimization

problem.

• Antenna Selection/JASUS in Multi-user Massive MIMO Systems

When System Operates in FDD Mode

The analytical results in this dissertation are derived under the assumption

that the perfect CSI is available. Assuming that the system operates in TDD

mode, we can acquire CSI via traditional training procedures at the end of

uplink transmission (using this assumption is a common practice). However,
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as future work, one can investigate the effect of the channel estimation error on

the performance of our proposed POMDP-based algorithms for both antenna

selection and JASUS. Note that, the same problem exists in FDD mode. As

in FDD mode, different frequency bands are used for the downlink and up-

link transmission, channel estimation is required (to obtain the partial CSI

corresponding to the previously selected antennas’ channel coefficient), before

applying our proposed POMDP-based resource allocation algorithms.

• Finding the Optimal Number of Time-slots per Frame in JASUS

In Chapter 6, we assumed that the number of time-slots in a frame is given. As

can be seen in Fig. 6.5, finding the optimal number of time-slots per frame can

improve the performance of our proposed JASUS algorithm. More specifically,

as can be concluded from Fig. 6.5 (for the given scenario), when there are

less than six number of users, one time-slot per frame results in higher time-

averaged rate compared to two time-slots per frame. However, when there are

more than six users, two time-slots per frame provides higher time-averaged

rate compared to one time-slot per frame. Therefore, obtaining the optimal

number of time-slots per frame for different scenarios can be an interesting

problem for a future work.

• Antenna Selection and JASUS in Cellular Systems

Considering a cellular system where at each cell there is a BS with its corre-

sponding unique frequency band, the BS can use our proposed antenna selec-

tion and JASUS algorithm to provide a high quality of service for the available

users. However, due to the limited amount of spectrum, for large areas (es-

pecially when cells are small), reusing the same frequency in adjacent cells

could be a desired feature. Thus, a proper POMDP formulation is required

to formulate the antennas selection/JASUS in cellular systems. In this case,

due to the interference, the myopic policy may not provide the optimal solu-
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tion. Therefore, another extension of this dissertation can be looking for other

suboptimal POMDP solutions that provide an efficient and low-complexity

antenna selection/JASUS algorithm for cellular systems.
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Appendix A

Proof of Equation (3.7)

We are interested to present the sufficient statistic of the belief vector proof pro-

vided by [75] and demonstrate the updating belief vector formula. Therefore, by

substitution (3.6) into (3.5), we can write

bj,t = Pr{st = sj|at−1 = at−1, ot = ot,Ht−1}

=
Pr{st = sj, ot = ot|at−1 = at−1,Ht−1}

Pr{ot = ot|at−1 = at−1,Ht−1}
=

∑

i

Pr{st−1 = si|at−1 = at−1,Ht−1}Pr{st = sj|st−1 = si, at−1 = at−1,Ht−1}×

Pr{ot = ot|st = sj, st−1 = si, at−1 = at−1,Ht−1}
/

Pr{ot = ot|at−1 = at−1,Ht−1}
(A.1)

where, the first probability in the numerator is independent of at−1, and thus we

can write Pr{st−1 = si|at−1 = at−1,Ht−1} = bi,t−1. The second term in numerator is

state transition probability, which is independent of action, and thus we can write

Pr{st = sj|st−1 = si, at−1 = at−1,Ht−1} = Pr(st = sj|st−1 = si); and the third term

in numerator is the observation probability at time slot t, which only depends on

the t-th time slot state and the previous action at−1. Note that the denominator in

the equation is summed over all j. Hence, we can write

bj,t =

∑

i bi,t−1Pr(st = sj|st−1 = si)Pr(ot = ot|st = sj, at−1 = at−1)
∑

i,j bi,t−1Pr(st = sj|st−1 = si)Pr(ot = ot|st = sj, at−1 = at−1)
. (A.2)
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Therefore, the updating belief vector can be written as bt = O(ot,at−1)Tbt−1

1T O(ot,at−1)Tbt−1
. The

proof is complete.
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