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Abstract 

With the rapid development and popularity of information technology, criminals 

and mischievous computer users are given avenues to commit crimes and 

malicious activities. One of the commonly used tactics, called steganography, is 

to hide information under a cover media so that except participants, no one else 

knows the existence of such information. Many techniques have been proposed 

for hiding data in images, videos and audios, but there is not much research 

devoted to data hiding in the popular MS Office documents which have recently 

adopted Office Open XML (OOXML) format. 

 

In this research, we first focus on identifying several data hiding techniques for 

OOXML documents. Then, we design and develop a fast detection algorithm 

based on the unique internal structure of OOXML documents, which contains 

multiple XML files, by using multi-XML query technique. Experimental results 

show the proposed detection algorithm outperforms the traditional one in terms of 

detection speed and completeness, where performance is the key to success of 

detecting hidden data in OOXML documents due to the fact that millions of 

documents are generated and transferred over the internet every day. 
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Chapter 1 

Introduction 

The advent of information technology has brought us with more convenience and 

comfort. Millions of files and documents are transferred daily over the Internet. For 

example, we can easily pay bills, transfer money, and view paystubs and cheques all 

online. However, criminals and mischievous computer users are also given new avenues 

to commit crimes and malicious activities. One of the commonly used tactics is to hide 

information under a cover media, such as image, so that except participants, no one 

knows the existence of such information, also known as steganography. For example, a 

child pornography image can be hidden inside another image file or audio file or any 

other file format, which could look perfectly legitimate. Therefore, it is crucial to uncover 

these activities. 

Steganography (pronounced STEHG-uh-NAH-gruhf-ee, from Greeksteganos, or 

"covered," and graphie, or "writing") is the hiding of a secret message within an ordinary 

message and only the sender and receiver know of its existence and method of access 

[1]. New digital steganographic techniques in which messages are hidden into text, image 

and video files raise new challenges and require detection of steganographically encoded 

packages, is called steganalysis [2].  

Steganography also known as steg or stego, poses a major challenge to law enforcement 

officers. One of the most common illicit uses is for the possession and storage of child 

pornography images. However steganography can also be used to commit fraud, terrorist 

activities and other illegal acts [3]. Often these hidden files are also encrypted, adding 
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another layer of security to impede investigators [4]. Currently there are more than 300 

publicly available steganography encoding programs employing many different 

encryption algorithms which result in precluding any universal test for steganography [5]. 

Steganography made news headlines when the US Department of Justice charged 11 

individuals in two separate criminal complaints with conspiring to act as unlawful agents 

of the Russian Federation within the United States. The defendants allegedly used 

steganography to embed messages in more than 100 image files posted on public 

websites [6].  

Cryptography is another technique of secret writing and allows anyone to see the 

message, but nobody else can read it. This is because its letters have been rearranged, or 

replaced by different letters by using some scheme only known by the sender and 

receiver. Cryptography is being outlawed by many countries including US, European and 

Asian countries in important areas such as banks and financial institutions (notably 

brokers, credit card companies and securities firms) [7]. As a result, it is easy to attract 

the attention of law enforcement when any other encrypted network traffic or documents 

are seen online due to the fact that encrypted data looks like random data and can be 

easily distinguished [8]. Then, law enforcement can decrypt suspicious messages, 

especially because of the rapidly increasing computing power, such as quantum 

computing [9]. In this scenario, steganographic techniques become more attractive for 

mischievous users to transmit their messages and turn into serious problem for us, and 

needs to fight against. 

Steganography has attracted a lot of attention in the recent years, and most steganography 

work has been performed on images, video clips, text, music and sound. Until recently, 
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the switch from proprietary formats to XML format by applications vendors, such as 

Microsoft, Sun Microsystems and other developers for document files raised new 

concerns [10]. For example, a newly developed file format introduced by Microsoft 

named Office Open XML (OOXML) is a zipped, XML based file format for representing 

spreadsheets, charts, presentations and word processing documents [11]. It has been 

adopted in Microsoft Office 2007/2010. While it offers greater benefits over its 

predecessor, the proprietary binary file formats seen in previous versions of Microsoft 

Office, its unique internal file structure also opens the door to many new steganographic 

methods for data hiding in Microsoft Office documents based on OOXML. Furthermore, 

due to the popularity of Microsoft Office documents such as word or excel files, they 

have become a strong preference for mischievous users to use them as cover data for 

hiding information due to the fact that these document files could be easily ignored [12]. 

There is currently no available tools for law enforcement officers to find hidden 

information using various steganographic techniques, especially on these newly emerging 

cover media formats like OOXML. Active research is being carried out to further 

improve their adequacy. The work to standardize OpenXML has been carried out by 

Ecma International via its Technical Committee 45 (TC45), which includes 

representatives from Apple, Barclays Capital, BP, The British Library, Essilor, Intel, 

Microsoft, NextPage, Novell, Statoil, Toshiba, and the United States Library of Congress 

[13]. 

1.1 Research Motivation 

With the growth of Internet based technologies the XML is playing a vital role in data 

sharing, especially in the financial sector. Applications which use XML allow greater 
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flexibility in terms of data integration and cross platform applications. XML is also 

adapted and used by the software vendors and there are a number of XML based 

applications available on the market [10]. Now XML is also being used for document 

representation. For example, MS Office 2007 and Office Open from Sun Microsystems 

are few applications using XML file format known as OOXML and Open Document 

Format (ODF) respectively. 

In 2006, Microsoft brings in OOXML file format for its MS Office 2007 product. It 

brought a lot of advantages including compression of document, thus leading to less disk 

space utilization [13, 14]. Also, Microsoft Office documents becomes defacto standard 

such as word or excel files, and can be used on a wide range of hardware that runs 

Microsoft Office products including PC’s, mobile phones and PDAs. However that in 

turn provided many new ways to hide data in OOXML documents. The widespread of 

these documents and the likely chance to get unnoticed turn to be a good choice for 

mischievous users to use them as carrier files.  

Vendors are now also becoming aware of these limitations in their applications and 

propose features for its removal, such as provided by MS Office 2007 and known as 

Document Inspection. This feature inspects MS Office 2007 documents and allows 

removal of personal information and hidden data present in the document. Also, a 

warning message may pop up when a modified OOXML document doesn’t satisfy the 

OOXML structural requirements because of the hidden content. This makes data hiding 

more difficult and challenging, and recently, a lot of attentions have been paid to new 

steganographic methods of hiding data within OOXML documents [10, 16]. These could 

be used by some mischievous user to transmit information masked inside a document in 
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plain view for malicious purposes such as coordinating terrorist attacks or distributing 

inappropriate materials, and it becomes critical for law enforcement officers to monitor 

and detect hidden data in these documents in case that may be used by some terrorists for 

communication over the web. 

It is worth mentioning that around 7.5 million users downloaded beta version of MS 

Office 2010 whereas 40 million users generate documents using MS Office various 

versions with estimates exceeding 40 billion documents and billions more being created 

each year [13, 17]. This is a very challenging task to find hidden data in thousands of 

documents and the performance becomes key for hidden data detection algorithm to 

catering real time needs. Furthermore, unlike conventional steganography, which highly 

depends on cover media with limited applicable data hiding schemes, steganography in 

OOXML document allowing combination of data hiding techniques makes detection 

process more difficult and advance. There is a high demand for a fast and effective 

detection algorithm for hidden data in OOXML documents usually found in large 

numbers. 

Data Hiding and detection in OOXML documents is under-researched, especially 

considering how popular they are. In this thesis, we will investigate data hiding 

techniques for OOXML documents. We also study the fast and efficient detection 

algorithm to cater real time needs for such large extent of files. 

1.2 Research Objectives and Contributions 

The objective of this research is to identify steganographic techniques for MS Office 

2007 document which conforms to OOXML file format and as well as to design and 



6 

 

develop a fast and efficient algorithm to detect hidden data using presented techniques. 

Since these identified techniques are distinct from previous format that is binary format 

and new format is complex and pose many challenges. Newly introduced built in 

intelligent features for removing suspicious data in turn leads to application robustness 

and challenges data hiding attacks.  

The contribution of this thesis can be classified into two parts. First, we identify several 

successful data hiding techniques for OOXML files. These techniques are categorized into 

different ways: data hiding using OOXML relationship structure, data hiding using XML 

format feature, data hiding using XML format feature and OOXML relationship structure, 

data hiding using OOXML file embedded resource architecture and data hiding using 

OOXML flexibility of swapping parts. 

Second as per observation of data hiding techniques, we realize that the detection of 

hidden data requires scanning of multiple XML files as OOXML file comprises of 

multiple XML files zipped together. The conventional technique is to read these files one 

by one and thus inefficient in terms of time as thousands of documents transferred daily 

over the Internet. In order to overcome this issue, we designed a fast and efficient multi- 

XML files querying algorithm for OOXML documents by using a multi-XML query 

technique. The designed algorithm is enhanced and further customized for OOXML files 

structure. Our developed detection algorithm is using XQuery code and can be embedded 

with any steganalysis and detection tools available online. The XQuery provides efficient 

XML querying capabilities known so far.  

Finally, our developed detection XQuery code is open for code reuse and permits multiple 

interfaces which can be applied by other researchers. 
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1.3 Outline of the Thesis 

The organization of the remainder of the thesis is organized as follows. Chapter 2 deals 

with literature review of other researcher works in this area and best known so far. Chapter 

3 gives an overview of OOXML file format related in terms with steganography plus also 

discuss approaches employed for data concealment in OOXML files with its experiment 

logic. Chapter 4 introduces a brief explanation of detection algorithm as well as 

hypothetical rules. These rules are subsequently justified with the experiments and 

findings depicted and also a comparison of developed tool technique with available 

conventional detection technique is presented. The performance analysis graph shows the 

time efficiency of proposed detection technique over conventional technique. Finally 

Chapter 5 gives a conclusion and proposes some future research directions. 
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Chapter 2 

Literature Review 

This chapter is devoted to illustrating how outside research in the field of digital 

steganography has affected this research. 

 

2.1 History of Steganography 

Throughout history steganography has been used to secretly communicate 

information between people. Some examples of use of steganography in past 

times are [18]: 

1. In Ancient Greece they used to select messengers and shave their head, they 

would then write a message on their head. Once the message had been written 

the hair was allowed to grow back. After the hair grew back the messenger 

was sent to deliver the message, the recipient would shave off the messengers 

hair to see the secret message. 

2. Another method used in Greece was where someone would peel wax off a 

tablet that was covered in wax, write a message underneath the wax then re-

apply the wax. The recipient of the message would simply remove the wax 

from the tablet to view the message. 

3. During World War II invisible ink was used to write information on pieces of 

paper so that the paper appeared to the average person as just being blank 

pieces of paper. Liquids such as urine, milk, vinegar and fruit juices were 

used, because when each one of these substances is heated they darken and 

become visible to the human eye. 
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4. In more recent history, several staganographic methods were used during 

World War II. Nazis developed microdots microfilm chips are the size of 

periods on a standard typewriter. These dots contain pages of information, 

drawing etc [3]. The Nazis also employed invisible ink and null ciphers. One 

of the most noted null cipher messages sent by a Nazi spy follows: 

 

“Apparently neutral’s protest is thoroughly discounted and ignored. Isman 

hard hit. Blockade issue affects pretext for embargo on by-products, 

ejecting suets and vegetable oils. 

 

Using the second letter from each word, the following message appears: 

“Pershing sails from NY June I” 

 

5. Finally during the Vietnam era, there were instances where captured members 

of the U.S. Armed Forces would use various hand gestures during photo ops, 

often only to have these gestures airbrushed out by the media. Other 

techniques employed were using the eyelids to blink word in Morse code 

(such as torture). 

The code was based on a five by five matrix with each letter being assigned a 

tap sequence based on this matrix. Spaces (pauses) between characters were 

twice as long as the spaces in that letters code [3]. 
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 1 2 3 4 5 

1 A  .  . B  .  .. C,K  .  …. D  .  …. E  .  ….. 

2 F  ..  . G  ..  .. H  ..  … I  ..  …. J  ..  …. 

3 L  …  . M  …  .. N  …  … O  …  …. P  …  ….. 

4 Q  …   . R  ….  .. S  ….  … T  ….  …. U  ….  ….. 

5 V  …..  . W  …..  .. X  …..  … Y  …..  …. Z  …..  ….. 

 

Fig. 2.1 : 5x5 tap code used by Armed Forces in Vietnam 

 

2.2 Present Steganography 

With the boost in computer power, the internet and with the development of digital signal 

processing (DSP), steganography has gone digital which adds terms like “mp3”, “jpeg”, 

“mpeg”, and “document” files into our everyday vocabulary. Commonly these are the 

number of digital technologies that the community is concerned with, namely text files, 

still images, audio or video and documents.  

Today, steganography is researched both for legal and illegal reasons. Steganography 

would provide an ultimate guarantee of authentication that no other security tool may 

ensure. For example a digital watermark controls copyright of material transmits over the 

web such as images, music, movies and TV broadcasting. Such multimedia content is 

compressed first to save transmission time without affecting the quality of the content. 

These lossy compression techniques lend themselves perfectly for hiding data in such 

files. Another important use of steganography is to embed data about medical images, so 

that there are no problems with matching patients’ records and images. It is believed that 
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cyber crime also benefits from this digital revolution. Hence an immediate concern was 

shown on the possible use of steganography by criminals.  

It is beyond the scope of this thesis to go into details of steganographic methods, suffice 

it to say that there are two primary groups, multimedia steganography and document 

steganography. In multimedia contents, most of the work has been performed on images 

to embed data and mostly available tools support an image steganography by altering or 

replacing the Least Significant Bit (LSB). These tools take an advantage of compression 

types such as lossy and lossless to embed data inside an image.  A well known JPEG 

format uses lossy compression technique, whereas lossless compression technique used 

by GIF and BMP formats [18]. These compression techniques are explained in detail in 

data hiding section of this thesis. 

Another group is the use of steganography in documents works simply by adding white 

space and tabs to the ends of the lines of a document. This type of steganography is 

extremely effective, because the use of white space and tabs is not visible to the human 

eye at all, at least in most text/document editors. White space and tabs occur naturally in 

documents, so there isn’t really any possible way using this method of steganography 

would cause someone to be suspicious. Almost all computer users write and exchange 

documents written with application using proprietary document formats such as MS 

Office and gains lot of attention in the past in terms of steganography. The earlier 

versions of MS Office documents were having compound document file format and 

provided limited ways of data hiding. The data hiding can be done in binary format or 

using white spaces, tabs, line or word shifting and semantic methods [3]. The average 

size of trash space available in a compound document format is 6.53% of its size and can 



12 

 

be used for steganography [19]. Similar data hiding techniques also applies on XML files 

for text steganography. From the perspective of suspects, good data hiding techniques 

should meet the goals of security and capacity [19]. Unfortunately, these works are 

limited in the same way and information hiding using these techniques is limited. 

Recently, Microsoft introduced XML file format known as OOXML for its MS Office 

2007 documents. This format contains several XML files and other binary files which are 

zipped together to form an OOXML document. The flexibility of OOXML document can 

be used for steganographic purposes and MS Office 2007 has a built in feature to hide 

text in the document. MS Office 2007 also gives feature “Document Inspection” to 

remove hidden information from the documents generated by the application and by the 

user. To the best of our knowledge, few authors have provided a formal framework for 

steganography in OOXML documents and proved its possibility. This proves that a very 

little work is being done with this new format, i.e. OOXML format.  

In [15], the authors conceal data in OOXML document using unknown parts and 

unknown relationships. They also develop detection algorithm to detect existence of 

hidden data using identified technique. The detail explanation of their work is highlighted 

in data hiding section of this thesis. We believed that there are more ways to hide data in 

OOXML documents and presented few more data hiding techniques identified by us. In 

order to meet the goals of security and capacity, we can say that our identified data hiding 

techniques allow numerous options and looks genuine. 

Based on the fact that large number of documents is generated every day, we strongly 

believed that the key factor for detection algorithm is performance time. The 

conventional detection algorithm fails to cater real time need as thousands of documents 
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transferred daily over the net and thus requires a fast and efficient detection algorithm. 

This motivates us to design and develop a fast and efficient detection algorithm to detect 

hidden data in OOXML documents in much less time to cater real time need. We 

compared their given detection algorithm with our detection approach and presented the 

comparison in terms of performance in detection of hidden data section of this thesis. 

In [10], the authors discussed steganographic techniques for OOXML documents using 

encryption and comments feature of zip and XML files. Their work involves creation of 

encrypted documents containing simple texts and images. This encrypted OOXML 

document is stored as OLE compound file. They use popular 7-Zip utility software to 

read these files and the cryptanalysis reveals that OOXML document uses RSA and AES 

algorithms with a 128-bit key for encryption. They also presented technique of adding 

comments directly into zip archive using comment feature of zip file format and adding 

XML comments to the XML file. In both cases these comments are ignored by MS 

Office 2007 application and these comments are discarded when document is written 

back out. They further investigated that by using base64 encoding method they 

successfully embeds file as a comment in one of the XML files of OOXML document 

and MS Office 2007 ignores it silently. Their developed tool is called docx-steg.py can 

hides any file using this data hiding scheme. The data hiding scheme is given in data 

hiding section of this thesis. 

Their research work also focused on insights of XML based documents regarding their 

forensic implications. This gives further research directions such as these formats allows 

interpreting an information from XML tag’s to identify unauthorized tampering and 
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support scrutiny in court which enable law enforcement officers to use as digital evidence 

against suspects. 

We have chosen this research because it gives a chance to study several various aspects 

of steganography in OOXML documents which highlights deeper format restrictions for 

embedding hidden data and shows techniques which makes detection difficult, and also 

to identify and develop a fast and effective detection algorithm for OOXML documents 

to cater real time need. 
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Chapter 3 

Data Hiding Techniques in OOXML Documents 

3.1 Introduction 

A great deal of research has been accomplished in the area of hiding data in text, image, 

or audio files, but not so much on hiding data inside file structure of Office 2007 

documents, which adopts OOXML file format. 

As an open standard for data integration and interoperability, OOXML brings a lot of 

advantages. However, the open structure of OOXML, which is organized in a zip archive 

or package, also faces various security threats. One of the most serious security threats is 

hidden data issue, where information is concealed within an OOXML file. 

Data hiding in Office Open XML presents a variety of challenges that arise due to the 

importance of conformance of the relationships within the package. In order for an 

OOXML Word document to be properly displayed in an OOXML file editor, for 

example, Microsoft Office Word, the relationships among the various files in the package 

have been satisfied. For example the image is stored as a separate file in a package and 

only its metadata information containing “Id” is stored in the main document file. When 

the main document is opened, its corresponding “Id” has been searched in its relationship 

file which contains the type and target (location) of the image. Then, the document editor 

fetches the image by using the relationship information and places it in the main 

document, making this whole process transparent from the user. Furthermore an OOXML 

file editor, for example MS Office 2007, has a document inspector feature. It not only 

removes some hidden data or private or personal information (often known as metadata) 
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from OOXML files, but also gives a warning if certain relationship of the files is broken. 

From the perspective of suspects, good data hiding techniques should meet the goals of 

security and capacity, in particularly unsuspicious for the existence of secret data hidden 

inside a cover media [19]. Obviously, successful information concealment in an OOXML 

document or MS Office 2007 document must satisfy the following conditions:  

 The hidden data must not satisfy all the relationships in the package. Otherwise, this 

hidden information might be immediately visible when the document is open in an 

OOXML editor. 

 The hidden data must be specifically inserted to avoid detection by document 

inspectors. Otherwise, a warning might be displayed when the document is open in an 

OOXML editor. 

 Hidden data would not be overwritten or the possibility of data being overwritten is 

low and the technique can store reasonable amount of hidden data. 

Despite these challenges the potential OOXML structure provides for new ways of data 

hiding exploitation techniques in MS Office 2007. An overview of OOXML format 

related in terms of steganography is presented here for better understanding.  

3.2 OOXML File Format and MS Office 2007 

Microsoft introduced XML into Office 2007 with full fidelity known as Office Open 

XML (OOXML) file format. OOXML document structure is also based on Open 

Packaging Conventions (OPC). The OOXML format enables that generated document 

will be fully compatible with other cross platform business applications. Several 

countries including US and few European countries have formally announced either 
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adoption, or the evaluation of adoption of OOXML. It means that OOXML standard is 

permitted to be used where national regulations do not allow proprietary formats.  

OOXML file format consists of a compressed ZIP file, called package. ZIP was chosen as 

the package format for the Office XML formats because it is a well understood industry 

standard. All of the contents within the document are hold by a package. In addition to 

Office markup, the package can also include embedded files such as images, videos, or 

other documents. The ZIP compression decreases the size of the document up to 75% and 

is more robust to error handling [19], which allows in turn an ease of managing and 

repairing of individual segmented files within a package. For example, you can open MS 

Word 2007 document that uses OOXML format, and locates the XML part that 

represents the body of the Word document. By altering this part using any technology 

capable of editing XML and returning the XML part to the container package, creates an 

updated Office document. This new file format is classified into three main parts. 

3.2.1 Container – Package 

OOXML documents are stored in OPC package form, which is a ZIP file, containing 

XML and other data parts [11, 14]. The relationships specification between the parts is 

also stored inside the container. Relationship information is used by an application to 

locate individual parts within a package. The package can have different internal 

directory structure and names depending on the type of the document as shown in 

Fig.3.1.  
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Fig. 3.1: Internal directory structure of an OOXML document, shows 

               package, parts and relationships files a package may contain. 

 

A basic package contains an XML file called [Content_Types].xml at the root, along with 

three directories: “_rels”, “docProps” and document type specific directory. For example, 

in MS Word 2007 document the “word” directory has been created and contains the 

“document.xml” file which is the starting path of the document. These folders have all 

the files located in the package and zipped together to form a single instance of the 

document. Every part in a package has a unique URI (Uniform Resource Identifier) part 

name along with specified content type. A part’s content type explicitly defines the type 

of data stored and reduces ambiguity and duplication issues inherent with file extensions. 

Package can also include relationships that define association between the package, parts 

and external resources. 
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3.2.2 Package Parts 

Parts inside a package are of any type including text, image etc [11, 14]. The extension 

“.rels” is reserved for storing relationship information of package parts and stored in 

“/rels” subfolders. Three names are reserved by package for organizing its files i.e. 

“_rels” subfolder carrying relationship information with “.rels” file extension and file 

name “[Content_Type].xml”. Fig. 3.2 shows the logical organization of package parts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2: A logical structured organization of package parts of an OOXML document. The 

“common package parts” exists in all OOXML document, whereas “specific format parts” 

depends on type of application used. 
 

Where, “[Content_Types].xml” file provides MIME (Multipurpose Internet Mail 

Extensions) type information for parts used in the OOXML document. It also defines 

mapping based on the file extensions, along with overrides for specific parts other than 

default file extensions. This enable an application and third party tools to determine the 
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contents of any part to process accurately; “docProps/app.xml” file contains application 

centric properties such as application type “Microsoft Office Word” etc; 

“docProps/core.xml” file contains OOXML document core properties such as machine 

name, creation and modification dates etc; whereas “word/document.xml” is the main 

part of any word document. 

3.2.3 Relationships 

Relationship items classify that how the document parts are placed together to form a 

document as shown in Fig. 3.3. This is achieved by verifying connection between source 

part and target part. Two types of relationships are permitted in OOXML documents, 

internal and external [11, 14]. All relationships, including the relations associated with 

the root package, are represented as XML files. These XML files contain relationships 

information and are stored inside a package, for example, default location for 

relationships is “/_rels/.rels”. Relationships are composed of four elements: an identifier 

(Id), an optional source (package or part), relationship type (URI style expression) and a 

target (URI to another part). Two types of relationship files usually exist in a package. 

These are: 

 /_rels/.rels: Root level “_rels” folder contains relationship file which carries 

information of parts for the package. For example “_rels/.rels” file defines the 

starting part of the document i.e. “word/document.xml”.  

 [partname].rels: Each part may have its own relationships. The part specific 

relationship can be looked in “word/_rels” subfolder, a sibling of the file with 

original file name appended to it with “.rels” extension. For example 

“word/_rels/document.xml.rels”. Figure 3.3, Showing how package parts are tied 
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with each other using relationship information associated with each part. Highlighted 

nodes link associated XML files of a package to represent document. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3: Logical representation of OOXML document relationships. 
 

A typical package relationships file “.rels” contains XML code and for simplicity we only 

present XML code for “document.xml” part as follows: 

 

 

 

 

  

In above code, “Relationship Id” attribute value “rId1” is default for main document part 

which is the starting part of a document. Once the document is being launched the 

 

       <Relationships 

xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> 

     <Relationship Id="rId1" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/of

ficeDocument" Target="word/document.xml" />  

 </Relationships> 
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OOXML editor looks for an OOXML parser to be used depending on document type. In 

this case the type specifies that MS Word ML is being used for MS Word document. 

Another attribute “Target” specifies path or location of beginning part i.e. document.xml.  

3.3 Data Hiding in OOXML - MS Word 2007 documents 

Next, we will briefly introduce several successful data hiding techniques for OOXML 

files. These techniques can be classified into different categories including data hiding 

using OOXML relationship structure, data hiding using XML format features, data hiding 

using XML format features and OOXML relationship structure, data hiding using 

OOXML flexibility for embedded resource architecture and data hiding using OOXML 

flexibility of swapping parts. We use MS Word 2007 document, as an example, to 

illustrate our concepts, but the methodology can be easily extended to any documents in 

MS Office 2007 or OOXML file format. 

3.3.1 Data Hiding using OOXML Relationship Structure 

As mentioned earlier the MS Office 2007 document is comprises of several xml and other 

files. These files are known as parts and compressed together using ZIP format. These 

parts are also organized using the relationship information found in relationship files 

inside an OOXML document. To satisfy relationships within a document, all parts have 

to be a target of valid relationship entry. Parts which are not the target of a valid 

relationship entry, we considered that part as an unknown part [15]. These parts are not to 

be ignored when reading the document by MS Office 2007 application and raised an error 

that the document is corrupt as shown in Fig. 3.4. MS Office 2007 also facilitate user by 
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giving an option to recover the document and removes the unknown parts as seen in Fig. 

3.5.  

 

 

 

 

 

 

 

 

Fig. 3.4: MS Office 2007 raised an error stated that problems with the contents 

 

 

 

 

 

 

 

 

Fig. 3.5: MS Office 2007 gives an option to recover the document by removing unknown parts 

 

 



24 

 

In similar way the relationship entry which is not defined in ECMA-376 standard is also 

considered as unknown relationships. These relationship entries are accepted in OOXML 

document and raise no errors. Document containing unknown relationship information 

are opened normally and the relationship entry is also being found inside a relationship 

file. This is also remains present if user saves a document with new name.  

Next we provide specific example of data hiding by using information of relationship 

structure of OOXML document. The OOXML document works as a carrier for the 

hidden data. In this case MS Word 2007 document is used in this data hiding process. 

 The first step of data hiding initiates with unzipping the OOXML document using 

any zip utility software. This shows that OOXML document contains several 

XML files and other objects. 

 In Second step, insert files wish to hide in the unzipped OOXML document 

archive. These files can be added to any folder or sub folder of the document.  

 Third, we need to define types of added files into OOXML documents content 

type’s file. There is no need to define file types multiple times if it’s already exist 

in the content type file. 

 The fourth step is defining relationships entry for inserted files into package 

relationship file i.e. “_rels/.rels” The attributes of relationship entry is “Id”, 

“Type” and “Target”. The relationship attribute “Id” must be unique as it connects 

the document and the target files, whereas “Type” attribute is some character 

which is not defined in OOXML standard such as “a”, “b” etc. The “Target” 

attribute contains the complete path or location from the document’s root folder 

for the inserted files. 
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 Finally, all the files are zipped together with an extension of “.zip” which later is 

renamed to “.docx”. 

For example, we created a document containing some text and image and saved it as 

“Uparts&Rels”. Next by using WinZip utility we unzipped this document and inserted 

“sysinternals.zip”, “mask.jpeg” and “BYE.mp3” as our hidden files in the root folder of 

the document i.e. “Uparts&Rels”. After inserting these files we updated the 

“[Content_Types].xml” file for inserting files types. The content type file can be found 

inside root folder named “[Content_Types].xml”. Before opening a document, the 

OOXML parser validates that the files present in the package are defined in [Content_ 

Types].xml file. The code for defining hidden file types into “[Content_Type].xml” file is 

highlighted with existing code as follows: 

 

 

 

 

 

 

 

Fig. 3.6 – Modified [Content_Types].xml File 

At last the package level relationship file “_rels/.rels” is used for creating relationships of 

hidden files within a package. The relationship entry attributes such as Id, Type, and 

 <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>  

 <Types 

xmlns="http://schemas.openxmlformats.org/package/2006/content-

types"> 
   <Override PartName="/word/footnotes.xml" ContentType="……." />  
 

   <Default Extension="jpeg" ContentType="image/jpeg" />  

   <Default Extension="rels" ContentType="application/vnd.openxmlformats-

package.relationships+xml" />  
    

     <Default Extension="xml" ContentType="application/xml" />  
   <Default Extension="zip" ContentType="application/zip" />  

   <Default Extension="mp3" ContentType="application/mp3" />  
    

     <Default Extension="jpg" ContentType="application/jpg" />  
 

   <Override PartName="/word/document.xml" ContentType="……." />  
………….. 

  </Types> 



26 

 

Target are defined in relationship file. Entry showing parts including unknown parts are 

as follows: 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7 – Modified relationship file (.rels) 

As seen above, the relationship Id of “BYE.mp3” is “rd102” and Type is 

http://schemas.openxmlformats.org/officeDocument/2006/Relationships/c. Note as 

mentioned above when setting a type we use values that does not exist in the OOXML 

specifications such as “a, b, c, etc”.  After these modifications the OOXML document is 

opened normally without a warning. Also if user amends the document and updates it, the 

hidden data remains in the document. The MS Office application considers unknown 

parts and unknown relationships as valid parts and relationships of a package.  

  <?xml version="1.0" encoding="UTF-8" standalone="yes" ?>  

      <Relationships 

xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> 

    <Relationship Id="rId3" Type="…" Target="docProps/app.xml" />  

    <Relationship Id="rId2" Type="…" Target="docProps/core.xml" />  

    <Relationship Id="rId1" Type="…" Target="word/document.xml" />  

 

    <Relationship Id="rId100" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/Relationships/a

" Target="word/media/sysinternals.zip" />  

    <Relationship Id="rId101" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/Relationships/b

" Target="mask.jpg" />  

    <Relationship Id="rId102" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/Relationships/c" 

Target="word/BYE.mp3" />  

 

  </Relationships> 
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As explained earlier that hidden data must not satisfy all the relationships in the package, 

otherwise it is visible in document. Also if only an inserted file type is defined in Content 

Type file and its relationship is not created in relationship file, the document opens 

normally. Office application does not give any warning and inserted file still exists inside 

the package. In this case if user updates or makes some changes in the word document, 

then inserted file is being eliminated by the application. So for keeping the existence of 

inserted file, its relationship needs to be created in relationship file. 

This data hiding method is the natural result of an explicit relationship in OOXML. The 

key point of this hiding process is to assign a fresh Id to new target which results that the 

target being overlooked by the MS Office application. The new Id is not referenced in the 

relationship part and the main source part is not aware of the new content and the hidden 

data is not shown on screen and neither can be eliminated by MS Office application 

because these hidden data have an Id and satisfies relationship structure of OOXML 

document. At this point, if relationships between main MS Office document file and 

hidden data are defined, the hidden data becomes more difficult to discover. 

This data concealment approach also sidesteps the document inspection feature “Inspect 

document” available in MS Office 2007 applications. 

3.3.2 Data Hiding using XML Format Feature 

XML comment feature is used to leave a note or to temporarily edit out a portion of XML 

code. Although XML is supposed to be self-describing data, you may still come across 

some instances where an XML comment might be necessary. XML comments follow the 

exact same syntax as HTML comments. XML features are fully supported by OOXML 
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documents as contain several XML files. The text in OOXML documents are organized 

into XML sections and are repetitive. OOXML documents do not generate any comments 

in XML files of a document whereas XML comments feature can easily be used for data 

hiding purpose by some mischievous user.  

It is highlighted that data can be hidden inside an OOXML document using comments 

feature. This involves technique of adding comments directly to zip archive using 

comment feature of zip file format and adding XML comments to the XML file [10]. In 

both cases, these comments are ignored by MS Office 2007 application and these 

comments are discarded when document is written back out.  

Further investigation proves that base64 encoding method allows successful embedding 

of file as a comment in one of the XML files of OOXML document and MS Office 2007 

ignores it silently and document opens normally. Base64 provided a very simple yet 

effective way of taking information with a wide range of characters (ASCII has 127 

possible characters) and converting this into a method that can be stored with a smaller 

range of characters (base64 output uses 64 characters, as the name implies). 

This technique hides a file by taking advantage of XML format feature such as 

comments. Anything in comments is effectively invisible to the XML parser but for use 

of successful data hiding in OOXML documents, first the data is encoded to base64 

format. This data concealment process requires following steps. 

 First, an OOXML document is being unzipped using WinZip utility. 

 Second, the data or file to be hidden is encoded to base64 format. 
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 Third, the data or file is added in any of the XML file present inside an OOXML 

document. 

 Finally, all the files are zipped together with an extension of “.zip” which later is 

renamed to “.docx”. 

For Example, we created one document contains some text and an image. Then unzip it 

using any zip utility and a secret message is added using comments feature in one of the 

XML file. The secret message is as follows: 

<!-- This is a secret message--> 

 

The secret message is encoded using base64 encoding scheme and the above message 

after encoding is as follows: 

PCEtLSBUaGlzIGlzIGEgc2VjcmV0IG1lc3NhZ2UtLT4= 

After the base64 encoding, we add this data to any of the XML file.  According to XML 

standard the comments cannot appear at the very top of your document in XML, only the 

XML declaration can come first such as: 

<?xml version="1.0"?> 

Document inspection feature of MS Office 2007 allow removing of comments from the 

document. Whereas, by using this approach the document inspection feature fails to 

identify and remove comments embedded using base64 encoding scheme. This technique 

also enables to hid some file in an OOXML document using base64 encoding scheme. 

The quality of this data hiding technique is relatively low as XML files carries base64 

encoded data and could be easily notice by others if unzips the document. 
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3.3.3 Data Hiding using XML Format Feature and OOXML 

Relationship Structure 

Ignorable attribute is also an important feature of MS Office 2007 applications [14]. For 

any associated XML element, compatibility rules are very important. Compatibility rules 

are associated with an element by means of compatibility rule attributes. These controls 

how MS Office 2007 parser shall react to elements or attributes from unknown 

namespaces. The principal compatibility rule attribute is the Ignorable attribute. By 

default MS Office 2007 treat the presence of any unknown element or attribute as an 

error condition [10, 14]. However, unknown elements or attributes identified in an 

Ignorable attribute shall be ignored without error. 

The ignorable attribute specifies which XML namespace prefixes encountered in a 

markup file may be ignored by an OOXML processor. Elements or attributes, where the 

prefix portion of the element name are identified as “ve:Ignorable”, will not raise an 

error when processed by an OOXML processor. The “ve” XML namespace is the 

recommended prefix convention to use when mapping the XAML (Extensible 

Application Markup Language) compatibility_namespace 

“http://schemas.openxmlformats.org/markup-compatibility/2006”. The “ve:Ignorable” 

attribute supports markup compatibility both for custom namespace mapping and for 

XML versioning. 

ECMA-376 specification describes the Ignorable attribute: “A whitespace-delimited list 

of namespace prefixes identifying a set of namespaces whose elements and attributes 

should be silently ignored by markup consumers that do not understand the namespace of 

the element or attribute in question”. 

http://schemas.openxmlformats.org/markup-compatibility/2006
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This data concealment technique supports any kind of data such as image, audio or video 

file to be hidden by taking advantage of XML format feature and OOXML relationship 

structure.  This technique coerces XAML parser to treat that element and attributes as it 

does not exist and shall not generate an error. By default, ignore element is entirely 

ignored including its attributes and contents. This data concealment process requires 

following steps. 

 First, an OOXML document is being unzipped using WinZip utility. 

 Second, add an image which needs to be hidden using this technique in sub folder 

named “word/media”. This sub folder usually contains all images used inside a 

document. 

 Third, for the hidden image to be looking legitimate, we created metadata for 

hidden image inside main document file “document.xml”.  

 Fourth, use Ignorable attribute to define this in declaration section of main 

document file i.e. “document.xml” and place this tag before and after of created 

metadata for hiding image. 

 Fifth, the part relationship file “document.xml.rels” is amended with creating 

relationship attributes such as “Id”, Type” and “Target”. The “Id” must be unique 

and other attributes “Type” and “Target” contains information of image type and 

location. 

 Finally, all the files are zipped together with an extension of “.zip” which later is 

renamed to “.docx”. 
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For example, we created and saved a document containing image and some text data 

named as “Ignore.docx”. After unzipping this document we add image which needs to be 

hidden inside a document under “word/media” subfolder as shown in Fig. 3.8.  

 

 

 

 

 

 

 

 

 

Fig. 3.8 – Added Image shown with other files in OOXML document 

 

After inserting an image in “word/media” subfolder, the main document file is 

updated with the metadata code for an inserted image. For simplicity we copy the 

metadata code of first image inserted using MS Office application and paste as a 

separate block for hidden image in “document.xml” file. Next to hide this image, the 

Ignorable attribute is defined inside a main document declaration section as shown in 

Fig. 3.9. The code highlighted in red is used to define ignorable namespace which 

markup consumer does not understand. After defining the ignorable attribute 

namespace, the ignorable tag is placed before and after the metadata of second image 

need to be hides. The hidden image is “Garden.jpeg” and its metadata tags in 

document.xml file shown in Fig. 3.12.  
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Fig. 3.9 – Beginning section of main document file “document.xml” 

 

 

 

 

Fig. 3.9 – Beginning section of main document file “document.xml” 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 – End section of main document file “document.xml” 

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>  

<w:document xmlns:ve="http://schemas.openxmlformats.org/markup-compatibility/2006" 

xmlns:o="urn:schemas-microsoft-com:office:office" 

xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships" 

xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" 

xmlns:v="urn:schemas-microsoft-com:vml" 

xmlns:wp="http://schemas.openxmlformats.org/drawingml/2006/wordprocessingDrawing" 

xmlns:w10="urn:schemas-microsoft-com:office:word" 

xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main" 

xmlns:wne="http://schemas.microsoft.com/office/word/2006/wordml" 

xmlns:p1="http://schemas.openxmlformats.org/MyExtension/p1" ve:Ignorable="p1" >  

<w:sectPr w:rsidR="00401AD8" w:rsidRPr="0091776E" w:rsidSect="00DC51FF">  

<w:pgSz w:w="12240" w:h="15840" />  

<w:pgMar w:top="1440" w:right="1440" w:bottom="1440" w:left="1440" w:header="720" 

w:footer="720" w:gutter="0" />  

<w:cols w:space="720" />  

<w:docGrid w:linePitch="360" />  

</w:sectPr>  

</w:body>  

</w:document> 
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Fig. 3.11 – Metadata of first image, inserted using MS Word 2007 

<w:body>  

<w:p w:rsidR="00DC51FF" w:rsidRDefault="00401AD8">  

<w:r>  

<w:t>Hello</w:t>  

</w:r>  

</w:p>  

<w:p w:rsidR="0091776E" w:rsidRDefault="00401AD8">  

<w:r>  

<w:drawing>  

<wp:inline distT="0" distB="0" distL="0" distR="0">  

<wp:extent cx="5943600" cy="4457700" />  

<wp:effectExtent l="19050" t="0" r="0" b="0" />  

<wp:docPr id="1" name="Picture 0" descr="Dock.jpg" />  

<wp:cNvGraphicFramePr>  

<a:graphicFrameLocks 

xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main" 

noChangeAspect="1" />  

</wp:cNvGraphicFramePr>  

<a:graphic 

xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main">  

<a:graphicData 

uri="http://schemas.openxmlformats.org/drawingml/2006/picture">  

<pic:pic 

xmlns:pic="http://schemas.openxmlformats.org/drawingml/2006/picture">  

<pic:nvPicPr>  

<pic:cNvPr id="0" name="Dock.jpg" />  

<pic:cNvPicPr /> 

</pic:nvPicPr> 

<pic:blipFill> 

<a:blip r:embed="rId4" cstate="print" /> 

<a:stretch> 

<a:fillRect /> 

</a:stretch> 

</pic:blipFill> 

<pic:spPr> 

<a:xfrm> 

<a:off x="0" y="0" /> 

<a:ext cx="5943600" cy="4457700" /> 

</a:xfrm> 

<a:prstGeom prst="rect"> 

<a:avLst /> 

</a:prstGeom> 

</pic:spPr> 

</pic:pic> 

</a:graphicData> 

</a:graphic> 

</wp:inline> 

</w:drawing> 

</w:r> 
</w:p> 
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Fig. 3.12 – Sample metadata of hidden image 

<p1:IgnoreMe>  

<w:p w:rsidR="00401AD8" w:rsidRPr="0091776E" 

w:rsidRDefault="0091776E" w:rsidP="0091776E">  

<w:pPr>  

<w:tabs>  

<w:tab w:val="left" w:pos="1155" />  

</w:tabs>  

</w:pPr>  

<w:r>  

<w:lastRenderedPageBreak />  

<w:drawing>  

<wp:inline distT="0" distB="0" distL="0" distR="0">  

<wp:extent cx="5943600" cy="4457700" />  

<wp:effectExtent l="19050" t="0" r="0" b="0" />  

<wp:docPr id="2" name="Picture 1" descr="Garden.jpg" />  

<wp:cNvGraphicFramePr>  

<a:graphicFrameLocks 

xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main" 

noChangeAspect="1" />  

</wp:cNvGraphicFramePr>  

<a:graphic 

xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main">  

<a:graphicData 

uri="http://schemas.openxmlformats.org/drawingml/2006/picture">  

<pic:pic 

xmlns:pic="http://schemas.openxmlformats.org/drawingml/2006/picture">  

<pic:nvPicPr>  

<pic:cNvPr id="0" name="Garden.jpg" />  

<pic:cNvPicPr />  

</pic:nvPicPr>  

<pic:blipFill>  

<a:blip r:embed="rId5" cstate="print" />  

<a:stretch>  

<a:fillRect />  

</a:stretch>  

</pic:blipFill>  

<pic:spPr>  

<a:xfrm>  

<a:off x="0" y="0" />  

<a:ext cx="5943600" cy="4457700" />  

</a:xfrm>  

<a:prstGeom prst="rect">  

<a:avLst />  

</a:prstGeom>  

</pic:spPr>  

</pic:pic>  

</a:graphicData>  

</a:graphic>  

</wp:inline>  

</w:drawing>  

</w:r>  

</w:p>  

</p1:IgnoreMe>  
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Finally, the part relationship file “document.xml.rels” is updated with a valid relationship 

entry of an inserted image along with its type and target information. In this case the 

highlighted relationship entry having Id “rId5” is added in relationship file with type 

“http://schemas.openxmlformats.org/officeDocument/2006/relationships/image” and 

target "media/image2.jpeg" values. The highlighted code for this entry is shown below:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 – Relationship file showing entry for hidden image 

At this point the image is successfully hidden using Ignorable attribute. To keep this 

hidden image intact with the document its relationship must be created. Only using XML 

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>  

- <Relationships 

xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> 

  <Relationship Id="rId3" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/web

Settings" Target="webSettings.xml" />  

  <Relationship Id="rId7" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/the

me" Target="theme/theme1.xml" />  

  <Relationship Id="rId2" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/setti

ngs" Target="settings.xml" />  

  <Relationship Id="rId1" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/styl

es" Target="styles.xml" />  

  <Relationship Id="rId6" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/font

Table" Target="fontTable.xml" />  

  <Relationship Id="rId5" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/ima

ge" Target="media/image2.jpeg" />  

  <Relationship Id="rId4" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/ima

ge" Target="media/image1.jpeg" />  

  </Relationships> 

file:///D:/My%20Documents/DataSet/Ignore_New/word/_rels/document.xml.rels
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feature such as ignorable attribute does not guarantee of keeping hidden image with the 

document and requires both the techniques for data hiding. The content type file is not 

required to amend with image type if same type of image is inserted. If inserted image 

type is different than first image, the content type file also needs to be updated with 

hidden image type. The sample code for updating content type is as follows: The 

[Content_Types].xml file is located at root level in the package. 

 

                                                                                                

 

 

Data hides using this technique is really hard to trace as it conform all the association to 

the main document file. The relationship entry is also exist in relationship file, and with 

the insertion of metadata code of hidden image in “document.xml” file do not raise any 

doubt of illegitimate data hidden inside an OOXML document. 

 

3.3.4 Data Hiding Using OOXML Flexibility For Embedded Resource 

Architecture 

The Custom XML feature is one of the most powerful features of OOXML documents 

for business scenario and document centric solutions [14]. It supports integration of 

documents with business process and data to get true interoperability of documents. This 

is a really powerful concept and entails to store custom xml file in the package, binding 

content controls to elements using implicit relationship, and control the display of this 

data used in the document as custom XML part. This allows you to embed business 

semantics in such a way that it is discoverable, and implementers not interested in using 

that feature can skip over it easily, without needing to know what application stored it 

<Default Extension="jpeg"ContentType="image/jpeg" /> 

 

Needs to be 

updated 
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there. You can even easily extract your data using one simple generic XSLT (Extensible 

Stylesheet Language Transformations). 

A package is permitted to contain multiple custom XML data storage parts. The ability to 

put custom XML file in the package means that; now have a place to store any data 

solution required and travels with the document. This standard curtails to have implicit or 

explicit relationship with other parts in the package. The Custom XML feature is fully 

implemented for MS Word 2007. MS Excel and MS Powerpoint 2007 do not handle 

custom XML the same way. The further announcements from Microsoft for translators 

from binary to OOXML format might be another good advantage. 

The ability to embed and interweave business data into transportable and humanly 

readable documents is extremely useful.  Take for instance the efforts to standardize the 

embedding of patient medical data into PDF documents, (aka PDF/H). Records For 

Living has been able to take advantage of Open XML's capabilities with regards to its 

support of custom schemas to integrate two industry standards: Ecma's Open XML and 

the ASTM's Continuity of Care Record (CCR).  The combination is powerful: patients 

can use personal health record (PHR) software to exchange live reports with their doctors 

in a way that is both human and machine readable [20]. 

This feature also empowers data concealment using OOXML flexibility for embedded 

resources inside MS Office 2007 document. The Custom XML data is also been 

generated by OOXML document in some cases. The object embedding feature of 

OOXML document requires generation of Custom XML data for handling information of 

that object. This is also being in the case if integrating OOXML document data with real 

world data. First we take a brief overview of CustomXML data generated by an OOXML 
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document application and then present our data hiding method using CustomXML data 

scheme. The default layout of the unzip OOXML document contains Custom XML data 

is as follows. 

 

 

 

 

 

 

 

 

Fig. 3.14 – Document Structure with Custom XML data and its part relationship code 

 

By default an OOXML document creates customXML folder at root to store custom 

XML data files. This folder contains two XML files, “item1.xml” and “itemProps1.xml”. 

The part relationship file of customXML data is being generated at “customXml” folder 

under “customXml/_rels” subfolder as “item1.xml.rels”, and contains relationship entry 

for “itemProps1.xml” file. Relationship entry for the custom XML files is shown as Fig. 

3.14 and the part relationship file of main document “document.xml.rels” is also updated 

with an entry of second custom XML file i.e. “item1.xml” with Id “rId1” as shown in Fig. 

3.15. 

 

  <?xml version="1.0" encoding="UTF-8" 

standalone="yes" ?>  
 

-    <Relationships 

xmlns="http://schemas.openxmlformats.org/

package/2006/relationships"> 
 

    <Relationship Id="rId1" 

Type="http://schemas.openxmlformats.org/o

fficeDocument/2006/relationships/customX

mlProps" Target="itemProps1.xml" />  
 

  </Relationships> 

customXml part relationship file 

file:///D:/My%20Documents/customXml/customXml/_rels/item1.xml.rels
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Fig. 3.15. Part relationship file code “document.xml.rels” 

Next the steps of data hiding using CustomXml feature is as follows: 

 First, create and save an OOXML document named “CustomXML.docx” contains 

text and image. 

 Second, creates a folder at root named “customXml” and insert some text file 

need to hides in OOXML document. The text file is in XML format to looks 

legitimate CustomXML data. 

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>  
 

<Relationships 
xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> 

 

 <Relationship Id="rId8" 
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/theme" Target="theme/theme1.xml" />  

 <Relationship Id="rId3" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/settings" Target="settings.xml" />  

 <Relationship Id="rId7" 
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship

s/fontTable" Target="fontTable.xml" />  

 <Relationship Id="rId2" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship

s/styles" Target="styles.xml" />  

 <Relationship Id="rId1" 
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/customXml" Target="../customXml/item1.xml" />  

 

 <Relationship Id="rId6" 
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/endnotes" Target="endnotes.xml" />  

 

 <Relationship Id="rId5" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship

s/footnotes" Target="footnotes.xml" />  
 

 <Relationship Id="rId4" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationship
s/webSettings" Target="webSettings.xml" />  

 
</Relationships> 
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 Third, creates a subfolder named “customXml/_rels” and also creates one 

relationship file for hidden text file. 

 Finally, all the files are zipped together with an extension of “.zip” and later 

rename it to “.docx”. 

For example, we use this technique to hide some text data inside MS Office document. 

We created “customXml” folder at root of the package and insert one text file named 

“hiddendata.xml”. The code of sample “hiddendata.xml” file is as follows: 

 

 

 

 

 

 

 

 

Fig. 3.17 – Sample code of “hiddendata.xml” file 

Next we satisfy its relationship constraint by creating its relationship file inside a 

“customXml/ _rels” subfolder and named this “hiddendata.xml.rels” shown as Fig. 3.18. 

We observe that if we do not skip its entry in part relationship file of main document, the 

Inspect Document feature can easily identify the custom XML data and allows user to 

discard the custom XML data.  

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?> 

<w:document 

xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships/cus

tomXml" 

xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"> 

<w:body> 

<w:p w:rsidR="00DC51FF" w:rsidRDefault="00C2303E"> 

<w:r> 

<w:t>Hidden Secret Message!!!!!</w:t>  

</w:r> 

</w:p> 

</w:body> 

</w:document> 
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Fig. 3.18 – Sample code of customXml part relationship file 

This technique allows insertion of any text file in xml format contains hidden data and 

with its internal sub-relationship. This also looks legitimate as carries Custom XML data 

in real business environment. The key point to identify whether this is hidden data or not 

is to see, that whether CustomXml type entry is present in part relationship file of main 

document.  The hidden data under customXml folder is not linked with the main 

document file “document.xml”. 

The MS Office document gives feature that allows you to remove custom XML data 

associated with the document. This feature is named as Inspect document which removes 

custom XML data, hidden data and other personal information form MS Office 

document. The snapshot of this feature is as follows: 

The inspect document feature functionality is to search customXml type in part 

relationship file of main document (“document.xml.rels”). Once found, it deleted the 

associated data using target information and also discard customXml folder with its 

contents. 

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?> 

<Relationships 

xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> 

 <Relationship Id="rId100" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/custom

XmlData" Target="/customXML/test.xml" />  

 </Relationships> 
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Fig. 3.19 – Inspect document feature of MS Office 2007 

The document inspection feature of MS Office 2007 is unable to detect custom XML data 

in this scenario as it sidesteps the document inspection feature of MS Office 2007 

application. 

3.3.5 Data Hiding Using OOXML Flexibility of Swapping Parts 

Images are the most popular cover objects used for steganography. In the domain of 

digital images many different image file formats exist, most of them for specific 

applications. The MS Office 2007 uses “png”, “jpeg”, “gif” and “emf” formats for storing 

images inside a document [13]. 

An image is a collection of numbers that constitute different light intensities in different 

areas of the image. This numeric representation forms a grid and the individual points are 
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referred to as pixels. Most images on the Internet consists of a rectangular map of the 

image’s pixels (represented as bits) where each pixel is located with its color. These 

pixels are displayed horizontally row by row. Digital color images are typically stored in 

24-bit files and use the RGB color model, also known as true color. All color variations 

for the pixels of a 24-bit image are derived from three primary colors: red, green and 

blue, and each primary color is represented by 8 bits. Thus in one given pixel, there can 

be 256 different quantities of red, green and blue, adding up to more than 16-million 

combinations, resulting in more than 16-million colors [21]. 

When working with larger images of greater bit depth, the images tend to become too 

large to transmit over a standard Internet connection. In order to display an image in a 

reasonable amount of time, techniques must be incorporated to reduce the image’s file 

size. These techniques make use of mathematical formulas to analyze and condense 

image data, resulting in smaller file sizes. This process is called compression [22].  

In images there are two types of compression: lossy and lossless. Both methods save 

storage space, but the implemented procedures are different. Lossy compression creates 

smaller files by discarding excess image data from the original image. It removes details 

that are too small for the human eye to differentiate, resulting in close approximations of 

the original image, although not an exact duplicate. An example of an image format that 

uses this compression technique is JPEG (Joint Photographic Experts Group). Lossless 

compression, on the other hand, never removes any information from the original image, 

but instead represents data in mathematical formulas. The original image’s integrity is 

maintained and the decompressed image output is bit-by-bit identical to the original 
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image input. The most popular image formats that use lossless compression is GIF 

(Graphical Interchange Format) and 8-bit BMP (a Microsoft Windows bitmap file). 

The compression technique used by MS Office 2007 for image compression requires an 

image is first 2D transformed and converted into emu (English Measurement Unit) rather 

than device pixels for implementation as recommended [11, 14].  

The flexibility of data hiding using OOXML architecture of swapping parts allows 

swapping of images between two OOXML documents. This data hiding scheme supports 

two data hiding scenarios as follows. 

Scenario 1 

 First, the OOMXL document is unzipped using WinZip utility.  

 Second, swap an image with the original image found in “word/media” subfolder. 

Also ensure that the swapped image follows the same name of an original image. 

The inserted image is being transformed according to OOXML image 

transformation standard before swapping. 

 Third, the content type file is needed to be updated if swapped image is of another 

format.  

 Finally, all the files are zipped together with an extension of “.zip” and later 

rename it to “.docx”. 

Scenario 2 

 First, the OOMXL document is unzipped using WinZip utility.  

 Second, an original image found inside “word/media” subfolder used to embed 

files using any image stego software.  
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 Finally, all the files are zipped together with an extension of “.zip” and later 

rename it to “.docx”. 

For example, the swapped image has to be transformed or compressed first before 

swapping otherwise OOXML document raise an error. The best way is to add desired 

image into MS Office 2007 document and save the document. This way an image is 

automatically transformed by the application. Later unzip this document and swap image 

with another image present in different document as shown in Fig. 3.20.  

 

 

 

 

 

 

Fig. 3.20 – Swapping of image between 2 OOXML documents 

This facilitates mischievous user to swap images of two documents, and by using any 

available image steganography tool can embeds files into an existing image. The replaced 

image should be of same type of swapped image otherwise the content type is updated 

with newly inserted image type. The OOXML document flexibility for embedding 

resources proves that mischievous user can easily embeds data inside an image present in 

the document.  
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The image steganography tools used least significant bit (LSB) approach for bitmap 

format, palette based approach for gif format and Discrete Cosine Transform (DCT) or 

Discrete Fourier Transform (DFT) for JPEG format images. Swapping of images cannot 

be detected by using any feature of MS Office 2007 application and hence seems that 

manual scrutiny of the images are required to ensure that it does not carries any hidden 

data. 

This technique also supports steganography and MS Office 2007 is unable to detect the 

changes made into an image file and OOXML document opens normally. 

  



48 

 

Chapter 4 

Hidden Data Detection in OOXML Documents 

4.1  Introduction 

As XML becomes the standard format for data exchange between inter-enterprise 

applications on the internet and enables the transmission of highly structured data using 

standard HTTP protocol instead of proprietary solutions, which sometimes do not allow 

for compatibility [23, 24]. The variety of data types is very large and also the need of bi-

directional data exchange can largely benefit from the advantages offered by this new 

technology. That’s changing as Microsoft, Sun Microsystems, and other developers 

migrate to new XML-based formats for document files [10]. 

XML is a <tag> based language incorporating a number of features directed to the 

hierarchical classification of the data. It is extensible, since the user can define its own 

labels, and it is object-oriented, when most current systems are procedural-oriented. 

Moreover, it allows the inclusion of metadata, i.e., the description of the structure and 

format of the data goes along with the data itself, and it includes mechanisms for 

validating the structure of the data records This achieves all what the industry data format 

standards aimed for, whilst providing wide compatibility and allowing the use of the 

information outside the proprietary database environment. 

To facilitate data exchange, industry groups define document type definition (DTDs) that 

specify the format of the XML data to be exchanged between their applications [25]. As 

seen in the previous sections, the MS Office document comprises of several XML files 

and parts. These files are carrying collective information to intact parts used inside a 
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main document. The relationship files contain the information of organization of a 

package which is actually an OOXML document. The main package level relationship 

file contains information for OOXML editor defining which application is being used to 

process the document, like MS Word 2007 in our case, whereas the part relationship 

information file contains information of associated parts and layout of a document. 

Therefore, the identification of hidden parts inside a package requires querying the 

contents of multiple xml files. Basically the query identifies concealed data in multiple 

XML files which are actually not generated by MS Office application.  

Also discussed earlier the significance of the fulfilling relationship standard within the 

package is essential. A complete content to be correctly presented in an OOXML file 

editor, the relationships between the various parts in the package needs to be satisfied. 

For example, an image is saved as a separate part in the package and only its relationship 

Id and metadata information is stored in the main document. When the main document is 

launched, the parts associated with the main document and their corresponding 

relationship Id’s have been searched in the parts relationship file, which contains the 

information such as type and target (location) of the parts. The OOXML parser brings the 

part (image) by using the relationship information and placed it in the main document and 

makes this whole process transparent from the user.  

Fig. 4.1 shows the package layout of the MS Office document and Fig. 4.2 shows the 

logical order that how associated parts are referenced using relationship information with 

the main document.  
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Fig. 4.1 – Package layout of MS Word 2007 document.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.2 – Preview of associated parts using relationship information with main document file.  

4.2  Document Inspection – detection feature of MS Office 2007 

Several types of hidden data and personal information can be saved in an MS Office 2007 

document [26, 27]. This information might not be immediately visible when viewing the 

document in MS Office 2007 application, but it might be possible for other people to 

view or retrieve the information. Hidden information can include the data that MS Office 
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2007 application adds to a file. This enables you to collaborate on writing and editing a 

document with other people. It can also include information that you deliberately 

designate as hidden. Office documents can contain the following types of hidden data and 

personal information such as: 

 Comments, revision marks from tracked changes, versions, and ink notations 

 Document properties and personal information 

 Headers, footers, and watermarks 

 Hidden text 

 Hidden rows, columns, and worksheets 

 Invisible content 

 Off-slide content 

 Presentation notes 

 Document server properties 

 Custom XML data 

The Document Inspector includes several different inspectors specific to individual 

Office programs. Each of these specific programs is to find and remove hidden data and 

personal information from the documents. The main function of detection algorithm is to 

find possible carrier files. Ideally, it would also provide some clues as to the 

steganography algorithm used to hide information in the suspect files. This enables an 

analyst to attempt recovery of the hidden information.  

The document inspector cannot detect data, hides by using techniques listed in the data 

hiding section of this thesis. Therefore there is no way to detect data concealment as 

presented here except by using the given detection algorithm. We can take a brief 

overview of the query over multiple XML files using conventional approach and compare 

with our approach. Then we evaluate both approaches with dataset created with all listed 
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data hiding techniques and compare its efficiency in terms of performance. The detection 

techniques with logic are explained in detail in next sections.  

4.3  Detection Logic of Hidden Data 

The detection logic of hidden data is entirely dependent on the data hiding techniques and 

involves investigation of multiple XML files of OOXML document. The detection logic 

for each data hiding technique is different and needs to be explained first. We present our 

algorithm for hidden data detection and compare results with conventional algorithm and 

conclude the best approach. The basis of query to reveal concealed data from the 

document is also defined first for better understanding of the detection process. 

Detail overview of each detection query is explained in detection of hidden data section.  

The query involves first reading document’s relationship files and by using this 

information, it detects hidden data hides by the techniques listed. This proves that 

relationship information plays a vital role and becomes key information in detection 

process. As mentioned earlier there are two types of relationship files, package level and 

part level. Package level relationship file contains information such as “application used”, 

“machine information” and “starting point of the package” for the processing editor. 

Whereas the part level relationship file contains information of associated parts with main 

document along with their location. 

Furthermore, a document is combination of main document file, relationship files and 

their associated parts. Fig. 4.3 shows the main document file metadata code which 

includes associated parts and Fig. 4.4 shows part relationship file including entry of 

associated parts. The OOXML parser placed associated parts in the main document file 
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using relationship information and launched combined output of a document for user 

using these files as shown in Fig. 4.5.  

 

 

 

 

 

 

 

 

 

Fig. 4.3 – XML preview of Main document file                       Fig. 4.4 – XML preview of Part-  

(document.xml)               Relationship file (document.xml.rels)       
 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 4.5 – MS Word 2007 document output by merging main document file with associated parts. 

The inserted image is an image part of word document shown with text above. 

<w:document> 
  <w:body> 
    <w:p w:rsidR="00DC51FF" w:rsidRDefault="00401AD8"> 
       <w:r> 
          <w:t>Hello</w:t>  
       </w:r> 
    </w:p> 
    <w:p w:rsidR="0091776E" w:rsidRDefault="00401AD8"> 
       <w:r> 
          <w:drawing> 
 <wp:docPr id="1" name="Picture 0" descr="Dock.jpg" /> 
     <pic:nvPicPr> 
           <pic:cNvPr id="0" name="Dock.jpg" />  

     </pic:nvPicPr> 
                <pic:blipFill> 
    <a:blip r:embed="rId4" cstate="print" />  

  </pic:blipFill> 
 </wp:inline> 
           </w:drawing> 
        </w:r> 
     </w:p> 
   </w:body> 
</w:document> 

<Relationships  
xmlns="http://schemas.openxmlformats.org/pa
ckage/2006/relationships"> 
 
   <Relationship Id="rId1"         

Type="http://schemas.openxmlformats.org/offic
eDocument/2006/relationships/styles"  
        Target="styles.xml"/> 

 
  <Relationship Id="rId2"         

Type="http://schemas.openxmlformats.org/offic
eDocument/2006/relationships/settings"  
        Target="settings.xml"/> 

 
   <Relationship Id="rId3"         

Type="http://schemas.openxmlformats.org/offic
eDocument/2006/relationships/webSettings"  
        Target="webSettings.xml"/> 

 
   <Relationship Id="rId4"         

Type="http://schemas.openxmlformats.org/offic
eDocument/2006/relationships/image"  
        Target="media/image1.jpeg"/> 
</Relationships> 
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4.3.1 Detecting Hidden Data using OOXML Relationship Structure 

This technique requires detection logic to ensure that all package parts and relationships 

are verifiable against the OOXML standard. This also confirms that all parts must 

associate with their relevant counter parts or the main document file. Using this 

approach, the unverifiable and irrelevant parts are being separated by our algorithm and 

highlighted as hidden data for further investigation. 

We start our analysis with MS Word document and extract it for further analysis. Next, 

the extracted files are analyzed by detection algorithm and perform first check for 

unknown parts and unknown relationships. This requires detection query to scan both 

the relationship files, package level “.rels” and part level “document.xml.rels” and 

identifies relationship type which is not defined in the ECMA-376 standard. This 

undefined relationship “Type” is being separated along with its attributes such as “Id” 

and “Target”. The “Target” attribute identify the unknown part and its location as shown 

in Fig.4.6.  

 

 

 

 

 

 

Fig. 4.6 – Unknown Relationship & Unknown Part 

<Relationship Id="rId100"  

Type="http://schemas.openxmlformats.org/officeDocument/2006/
Relationships/a"  

Target="mask.jpeg" /> 

Unknown 

Relationship 

Type 

Unknown 

Part 
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By performing this check the query detect hidden parts, hides using unknown parts and 

unknown relationship technique. The detection logic of unknown parts and unknown 

relationships is explicitly shown as Fig. 4.7. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7 – Detection Logic for Unknown Parts & 

                Unknown Relationships Technique 

 

4.3.2 Detecting Hidden Data using XML Format Feature & OOXML 

Relationship Structure 
 

This logic discovers the data hidden by using ignorable attribute. In the previous section 

we hid an image inside MS Office document using this technique. In order to detect the 

hidden image, the query first scans main document file “document.xml” for ignorable 

attribute and if found, separates all the metadata code inside ignorable attribute tag. We 

observed that in main document file “document.xml” contains “r:embed” attribute which 

carries same value of part relationship file “document.xml.rels” attribute “Id”. Next in 

this metadata code, the query looks for “r:embed” attribute value and matches it with 

part relationship file “Id” attribute value.  The matched relationship “Id” attribute 

“Target” contains name and location of hidden image using ignorable attribute. Also 
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explained earlier, the OOXML parser ignores processing of metadata tags within 

ignorable attribute. This is worth mentioning that hidden image inside the document 

seems to be normal as its corresponding metadata is also being present in main 

document file along with its relationship information in part relationship file.  

This technique considered hard to detect because it satisfies all the relationship 

requirements and unlikely to arouse anyone attention. The algorithm classifies ignorable 

attribute and its metadata tags shown as Fig. 4.8. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 – Detection Logic for Ignorable Attribute Technique 

4.3.3 Detecting Hidden Data Using OOXML Flexibility For Embedded   

Resource Architecture 
 

To detect data hidden by using customXML data technique we begins with performing 

check to validate all the files defined in .rels files in MS Office 2007 application. The 

package relationship file “.rels” and part relationship file “document.xml.rels” are used 

to validate and ensures that all the parts present inside the package are associated with 

main document file. The unassociated parts with main document are considered as 
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hidden data and are being detected by performing this check. The query double checks 

the parts to see if its relationship with the main document is exists and custom XML data 

generated by the word document is not being detected as hidden data. Detection logic of 

this technique is openly shown as Fig. 4.9. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 – Detection Logic for CustomXml Technique 

4.3.4 Detecting Hidden Data Using OOXML File Architecture 

Flexibility of Swapping Parts 
 

Fourth identified technique is using images of an OOXML document and proves 

unfeasible to detect using only time stamp information. Incase document is unzipped and 

the image file is being replaced by the mischievous user, the time stamp information is 

being lost and new time stamp is owed by the document when zipped again. For further 

analysis when document is unzips again the time stamp information of all the files are 

set to be current system date and time. Another file “/docprops/core.xml” presents inside 

a package contains machine name and time information but this information is also 
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insufficient to guess whether the changes has been made in the image file. This 

information is only limited to tracking of the documents as mentioned earlier.  

Based on this analysis the only way to ensure that image does not contains hidden data, 

currently available image stegonagraphic tools can be used for steganalysis. Detection 

Logic of this technique is merely shown as Fig. 4.10. 

 

 

 

 

 

 

 

 

Figure 4.10 – Detection Logic for Image Steganography Technique 

In next sub-section we will introduce our proposed hidden data detection algorithm. We 

discuss its efficient implementation and customization for MS Office 2007 documents. 

We choose XQuery to implement our proposed algorithm logic as it provides efficient 

implementation for XML based files. We compare result of approaches, a conventional 

detection algorithm and the proposed Office Open Multi-XML Query Algorithm 

(OOMXQA). After the discussion we present the results of our implemented algorithm 

with empirical evidence analysis which accurately predicts the performance measured 

and concludes with a future enhancement of our algorithm. Symbol Definitions used for 

the algorithm is given in Appendix A for the rest of the section. 

Steganalysis

Get Parts

Embedded or 

Hidden Data
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4.4 OOMXQA 

The execution of XML queries over multiple XML files is implemented inefficiently by 

query over one by one and this problem puzzled us for ages. We adopted a Multi-XML 

querying algorithm named SMXQA (Semantic Based Multi-XML Query Algorithm) to 

solve the problem efficiently. The adopted SMXQA is generic in nature [28]. The basic 

idea is surprisingly simple, but incredibly powerful. We designed and customised this 

algorithm for OOXML document and named as Office Open Multi-XML Query 

Algorithm (OOMXQA). A basic OOXML document or MS Office 2007 document 

without an image contains at least 12 XML files. Fig. 4.11 & Fig. 4.12 show the files of 

OOXML document.  

 

 

 

 

 

 

 

 

 
 

  Fig. 4.11 – Office 2007 document – A document  

  is referred as a package by Microsoft and objects  

  insidea package are referred as parts. A package is  

  a zip archive which comprises of multiple XML  

  files and objects such as image or any other type format.   

     
                              Fig. 4.12 – MS Office document with   

                              main folders and files along with the data 
 

For integrity we only discussed the files used to reveal hidden data inside a MS Office 

2007 document shown as Fig. 4.13 & Fig. 4.14. In this scenario only 3 out of 12 files 
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from MS Office 2007 document are being used by our algorithm. These files contain the 

relationship files which include the package “_rels/.rels” and part level 

“word/_rels/document.xml.rels” relationship files and the main document file 

“document.xml”.  

  

 

 

 

 

 

 

 

 

 

 

  Fig. 4.13 – Package level (/_rels/.rels) and  

  part level (/word/_rels/document.xml.rels) 

  relationship files are listed with their elements  

  and attributes. 

                                                                                     Fig 4.14 – Main document xml file snapshot 
 

 
4.4.1 OOMXQA Algorithm 

1: Create Document Type Definition (DTD) for both relationship files and main       

    document file of MS Office 2007 document. 

2: Identify Functional Dependency (FD) set over the DTD elements of main   

    document file and both relationship files. 

3: Create DTD for Global Materialized View (GMV) by specifying permissible  

    relationship type entry from OOXML standard. 

4: Create Global Materialized View (GMV) among these files by using the FD  
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              set. 

5: Run OOMXQA on GMV to identify conceal data in MS Office 2007  

    document. 

 

4.4.2 OOMXQA Steps for OOXML Document Format 

Step 1 

The initiation of our algorithm begins with scanning of relationship files and main  

document file of MS Office 2007 document. 

Step 2 

Define DTD for relationship files and main document file which identifies the 

document structure with a list of legal elements and attributes for these files as 

seen in Fig. 4.15 & Fig. 4.16.  For simplicity, we consider DTD as schema 

definition language because of its simpler design over the XML schema (XSD) 

[25]. 

Step 3 

Based on the elements and attributes list the XML Functional Dependencies sets 

are identified over these DTD’s [29, 30, 31].  

We observe that both the relationship files are same in structure and hence their 

DTD elements and attributes are exactly the same, shown as Fig. 4.13. The 

functional dependency set for package and part relationship files are: 

FD1: package relationships (Id  Type, Target) 

FD2: part relationships (Id  Type, Target) 

As mentioned above, Fig. 4.13 shows package level and part relationship files structure. 

These files have “Relationship” element and “Id”, “Type” and “Target” as its attributes. 
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We call /Relationship the scope, Relationship/Id the determinant, and Relationship/Type 

& Target the dependent. We check the satisfaction, relationship by relationship (the 

scope). 

  

 

 

Fig. 4.15 – DTD’s  of relationships files (.rels/document.xml.rels) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.16 – DTD’s  of main document.xml file 

 

<!ELEMENT Relationships ( 

Relationship+ ) > 

<!ELEMENT Relationship EMPTY > 

<!ATTLIST Relationship Id 

NMTOKEN #REQUIRED > 

<!ATTLIST Relationship Type 

CDATA #REQUIRED > 

<!ATTLIST Relationship Target 

CDATA #REQUIRED > 

 

<!ELEMENT a:avLst EMPTY > 

 <!ELEMENT a:blip EMPTY > 

 <!ATTLIST a:blip cstate NMTOKEN #REQUIRED > 

 <!ATTLIST a:blip r:embed NMTOKEN #REQUIRED > 

 <!ELEMENT a:ext EMPTY >  

<!ATTLIST a:ext cx NMTOKEN #REQUIRED >  

<!ATTLIST a:ext cy NMTOKEN #REQUIRED >  

<!ELEMENT a:fillRect EMPTY >  

<!ELEMENT a:graphic ( a:graphicData ) >  

<!ELEMENT a:graphicData ( pic:pic ) >  

<!ATTLIST a:graphicData uri CDATA #REQUIRED >  

<!ELEMENT a:graphicFrameLocks EMPTY > 

<!ATTLIST a:graphicFrameLocks noChangeAspect NMTOKEN 

#REQUIRED >  

<!ELEMENT a:off EMPTY >  

<!ATTLIST a:off x NMTOKEN #REQUIRED >  

<!ATTLIST a:off y NMTOKEN #REQUIRED >  

<!ELEMENT a:prstGeom ( a:avLst ) > 

 <!ATTLIST a:prstGeom prst NMTOKEN #REQUIRED > 

 <!ELEMENT a:stretch ( a:fillRect ) > 

 <!ELEMENT a:xfrm ( a:off, a:ext ) > 

<!ELEMENT pic:blipFill ( a:blip, a:stretch ) > 

<!ELEMENT pic:cNvPicPr EMPTY > 

<!ELEMENT pic:cNvPr EMPTY >  

<!ATTLIST pic:cNvPr id NMTOKEN #REQUIRED > 

<!ATTLIST pic:cNvPr name CDATA #REQUIRED > 

<!ELEMENT pic:nvPicPr ( pic:cNvPr, pic:cNvPicPr ) >  

<!ELEMENT pic:pic ( pic:nvPicPr, pic:blipFill, pic:spPr ) >  

<!ELEMENT pic:spPr ( a:xfrm, a:prstGeom ) >  

<!ELEMENT w:body ( w:p+, w:sectPr ) > 

<!ELEMENT w:cols EMPTY > 

<!ATTLIST w:cols w:space NMTOKEN #REQUIRED >  

<!ELEMENT w:docGrid EMPTY >  

<!ATTLIST w:docGrid w:linePitch NMTOKEN #REQUIRED > 

 <!ELEMENT w:document ( w:body ) >  

<!ELEMENT w:drawing ( wp:inline ) >  

<!ELEMENT w:lang EMPTY >  

<!ATTLIST w:lang w:eastAsia NMTOKEN #REQUIRED >  

<!ELEMENT w:noProof EMPTY > 

 <!ELEMENT w:p ( w:r ) > 

  

 

<!ATTLIST w:p w:rsidR NMTOKEN #REQUIRED > 

 <!ATTLIST w:p w:rsidRDefault NMTOKEN #REQUIRED >  

<!ELEMENT w:pgMar EMPTY >  

<!ATTLIST w:pgMar w:bottom NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:footer NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:gutter NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:header NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:left NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:right NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:top NMTOKEN #REQUIRED >  

<!ELEMENT w:pgSz EMPTY >  

<!ATTLIST w:pgSz w:h NMTOKEN #REQUIRED >  

<!ATTLIST w:pgSz w:w NMTOKEN #REQUIRED >  

<!ELEMENT w:r ( w:t, w:rPr?, w:drawing? ) >  

<!ELEMENT w:rPr ( w:noProof, w:lang ) >  

<!ELEMENT w:sectPr ( w:pgSz, w:pgMar, w:cols, w:docGrid ) >  

<!ATTLIST w:sectPr w:rsidR NMTOKEN #REQUIRED >  

<!ATTLIST w:sectPr w:rsidSect NMTOKEN #REQUIRED > 

<!ELEMENT w:t ( #PCDATA ) >  

<!ELEMENT wp:cNvGraphicFramePr ( a:graphicFrameLocks ) >  

<!ELEMENT wp:docPr EMPTY > 

 <!ATTLIST wp:docPr descr CDATA #REQUIRED >  

<!ATTLIST wp:docPr id NMTOKEN #REQUIRED >  

<!ATTLIST wp:docPr name CDATA #REQUIRED >  

<!ELEMENT wp:effectExtent EMPTY >  

<!ATTLIST wp:effectExtent b NMTOKEN #REQUIRED >  

<!ATTLIST wp:effectExtent l NMTOKEN #REQUIRED >  

<!ATTLIST wp:effectExtent r NMTOKEN #REQUIRED >  

<!ATTLIST wp:effectExtent t NMTOKEN #REQUIRED >  

<!ELEMENT wp:extent EMPTY >  

<!ATTLIST wp:extent cx NMTOKEN #REQUIRED > 

<!ATTLIST wp:extent cy NMTOKEN #REQUIRED >  

<!ELEMENT wp:inline ( wp:extent, wp:effectExtent, wp:docPr, 

wp:cNvGraphicFramePr, a:graphic ) >  

<!ATTLIST wp:inline distB NMTOKEN #REQUIRED >  

<!ATTLIST wp:inline distL NMTOKEN #REQUIRED > 

 <!ATTLIST wp:inline distR NMTOKEN #REQUIRED >  

<!ATTLIST wp:inline distT NMTOKEN #REQUIRED > 
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In relationship there are several pairs of (Id, Type, Target) values. We note that 

we do not consider values (rId4, http://......././image, image1.jpeg) and (rId5, 

http://......././image, image2.jpeg) as a pair, as the two “Id” values in the pair are 

different. In the same way we also do not consider relationship attributes “Id”, 

“Type” and “Target” pairs from different locations as they are from two locations 

or files. To keep this relationship entry unique in Global Materialized View 

(GMV) as relationship Id values are repetitive among relationship files, we add 

“rels ” and “dxrels” tags to classify package level and part level relationship files 

using relationship file names so associating this tag with “Id” attribute the same 

“Id” values can be distinguished in a GMV. 

Like tabular approach, data inside the MS Office document files are stored in 

different XML sections. The parts are also stored separately inside a document 

and the relationship files used to carry information of main document parts. For 

main document file two types of functional dependency sets are needs to be 

defined: 

                     FD3:  (w:rsidR+w:rsidRDefault+r:embed  w:p ) for a document which   

                        contains an image. 

           FD4: (w:rsidR+w:rsidRDefault+w:t  w:p) for a document with only text. 

There is no homologous semantic that exists among functional dependency sets of 

main document DTD elements and relationship DTD elements. We observed that 

an element which carries identical value is “Id” attribute of part-relationship file 

and “r:embed” attribute of main document file for an image part. In another case 

where image part does not exist, no identical value is being noted among these 

files.  

http://......./image
http://......./image
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This indicates that in each w:p, triplet (w:rsidR,w:rsidRDefault,r:embed) pair wise 

determines w:p. The main node is “w:document” and has “w:body” as the child 

node. This child node further contains pairs of w:p nodes which organizes the 

main document in sections. According to the specification, the “rsidR” values of 

w:p nodes should be unique within a document: instances with the same value 

within a single document indicate that modifications occurred during the same 

editing session [10]. We notice that these values are same for pairs of “w:p” 

elements.  

As mentioned earlier the FD attribute set identifies “w:p” element or a section of 

the main document file. The only linked attribute exists if a document contains a 

legitimate image that is “r:embed” and its value can be used to link main 

document with its relationship file. To identify hidden data of a document we 

need to scan this file completely with identical values from relationship files. If a 

document wouldn’t contain any legitimate image(s) then “rsidR” values can be 

repetitive and hard to identify “w:p” element.  

In FD1, the (Id) exclusively determines its type and target. In FD3 or FD4, 

(w:rsidR + w:rsidRDefault + r:embed / w:t) determines its “w:p” and associated 

attributes. From the DTDs information we created the GMV of these multiple xml 

files inside a document. The DTD of GMV is shown below as Fig. 4.17. 

 

Step 4 

We define DTD for Global Materialized View (GMV) over MS Office 2007 

document relationship and main document files by specifying permissible 

relationship types information 
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Fig. 4.18. GMV’s-DTD 

in Tree form 

 

 

 

 

 

 

Fig. 4.17. GMV’s- DTD for an OOXML document with elements and attributes 

We use Global Materialized View DTD’s information to create GMV among files 

of Office 2007 document and validate their relationship types with Microsoft 

permissive relationship types as shown in GMV–DTD. The undefined 

relationship types which are not listed in OOXML standard are separated along 

with their target parts considered as unknown relationships and unknown parts. 

The rest of the hidden data using other data concealment approaches are also 

revealed using relationship information with main document file of MS Office 

2007 document.  

Step 5 

Finally, a Global Materialized View (GMV) is being created using FD’s 

information among relationship and main document files. 

<?xml version="1.0" encoding="UTF-8" ?> 

<!-- <!DOCTYPE JointDTD -->  

<!ELEMENT JointDTD 

(Relationships|Relationship|Default|Override|Document|DocEmbed|Dx)*> 

<!ELEMENT Relationships ( Relationship+ ) >  

<!ATTLIST Relationships xmlns:Relationships CDATA #FIXED 

"http://schemas.openxmlformats.org/package/2006/relationships">  

<!ELEMENT Relationship (#PCDATA)> 

<!ATTLIST Relationship Id CDATA #REQUIRED> 

<!ATTLIST Relationship Type (extended-properties|core-

properties|officeDocument|signature|origin|customXml|customXmlProps| 

thumbnail| aFChunk|comments|settings|endnotes|fontTable|footer|footnotes| 

glossaryDocument|header|numbering|styles|webSettings|attachedTemplate 

|frame|subDocument|mailMergeSource|mailMergeHeaderSource|transform|custom

XmlData|image|theme|font|hyperlink|vmlDrawing|printerSettings|custom-

properties) #REQUIRED>  

<!ATTLIST Relationship Target CDATA #REQUIRED> 

<!ATTLIST Relationship FileType CDATA #REQUIRED> 

<!ELEMENT Default (#PCDATA)> 

<!ATTLIST Default Extension CDATA #REQUIRED> 

<!ATTLIST Default ContentType CDATA #REQUIRED> 

<!ELEMENT Override (#PCDATA)> 

<!ATTLIST Override PartName CDATA #REQUIRED> 

<!-- ATTLIST Override ContentType CDATA #REQUIRED --> 

<!ELEMENT Document (DocEmbed)> 

<!ATTLIST Document xmlns:Dx CDATA #FIXED 

"http://schemas.openxmlformats.org/officeDocument/2006/relationships" 

<!ELEMENT DocEmbed (p+, sectPr)>  

 

JOINTDTD 

Relationship 

Document 
Id Typ

e 

Target 

DocEmbed 
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This information needs to detect hidden data and to create view among document 

and relationship files. As to make it simple for algorithm, the metadata of main 

document file is entirely merged with relationship files to create a Global 

Materialized View attached as Appendix C. 

The code for both the algorithm logics to detect hidden data is being presented 

next. The conventional detection algorithm reads document files one by one. The 

second approach works more efficiently with a GMV and can read multiple files 

as one. 

The designed query runs on XML files which are typically twig or small tree patterns. 

We use DTD information of XML files to tailored nodes and produce Minimum 

Connecting Trees (MCTs) for the query. This reduces decomposition-matching-merging 

process and enables query to fit targeted documents and is more efficient than 

conventional methods in query processing [32, 33, 34]. The XQuery code for OOMXQA 

technique is attached as Appendix D whereas, a conventional algorithm technique which 

read files one by one is attached as Appendix E. Moreover, code for creating GMV is 

also attached as Appendix F. We apply the proposed algorithm on created MS Word 2007 

document dataset contains hidden data of all the data hiding techniques presented in data 

hiding section of this thesis. 

The OOMXQA can be easily extended to other document formats such as Open 

Document Format (ODF) by customizing it according to relationship structure 

information of ODF standard. Report showing OOMXQA result which contains hidden 

data found inside MS Word 2007 document dataset is explained and presented below for 

better understanding. 
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Fig. 4.19 – XQuery Result – Hidden files inside MS Word 2007 document dataset 
 

In above results, the relationship Id’s “rId100” and “rId300” contains relationship types 

ends with “/a” and “/ignore” are unknown relationship types and the parts associated 

using target attribute are unknown parts. The “mask.jpeg” and “image3.jpeg” are hidden 

parts identified inside MS Word 2007 document dataset using unknown relationship type 

information. Another relationship Id “rId8” image part “ignore.jpeg” is concealed using 

ignorable attribute technique in the main document file. The hidden image is searched 

under main document metadata including ignorable metadata created for this image 

which seems to be a valid image for a document. The relationship Id “rId200” is the last 

hidden file in this MS Word 2007 document dataset, whereas its associated target file 

“test.xml” is hides using CustomXML technique. This CustomXML file is not associated 

with main document file whereas looks legitimate as created by MS Office 2007 

document. 

 

4.5 Performance Evaluation 

We performed the experiment on a dataset created with all presented data hiding 

techniques in this thesis. For both approaches, we executed queries for ten times as a 

<Pkg-Relationships 

xmlns="http://schemas.openxmlformats.org/package/2006/relationships"  

Id="rId100" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/Relationships/a" 

Target="mask.jpeg"> 

<SubPkg-Relationship Id="rId8" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/image

" Target="media/ignore.jpeg"/> 

< SubPkg -Relationship Id="rId300" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/ignor

e" Target="media/image3.jpeg"/> 

<SubPkg -Relationship Id="rId200" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/custo

mXmlData" Target="/customXML/test.xml"/> 

</Pkg-Relationships>  
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standard practice and their average result time has been presented. The comparison 

summary of both the approaches for hidden data detection functionality against each 

technique and the average elapsed time of the queries are as follows.  

Data Hiding Technique 

Conventional 

Algorithm [15] 

Proposed 

Algorithm 

Unknown Parts & Unknown Relationships YES YES 

Ignorable Attribute NO YES 

Custom XML Data NO YES 

Image Steganography NO NO 

 

 

 

Fig. 4.20 – OOMXQA Performance Evaluation with Conventional Algorithm 
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In summary, the above figure clearly shows that the approach of OOMXQA is 87% less 

time taken than the conventional one, which is one by one XML file querying approach. 

This is also very robust in terms of workloads because of the created GMV. This caters 

real time needs as thousands of MS Office documents transferred daily over the Internet. 

Therefore, our algorithm achieves the expectant effect. 

4.5.1 DataSets 

We create five OOXML documents with hidden data, four of them with each data hiding 

technique and one with all data hiding techniques listed in this thesis. We compare both 

detection approaches with a document contains hidden data using all the data hiding 

techniques. This OOXML document is of 6.6MB in size and contains 12 XML and 4 

image files in which 3 images and 1 XML files are hides inside a document. The 

conventional algorithm reads XML files one by one and takes an average of 4100ms to 

detect hidden data whereas proposed Office Open MultiXML Querying Algorithm 

(OOMXQA) only takes 520ms including query time for creating GMV. This proved that 

our approach is nearly 87% faster than the conventional approach as shown in Fig. 4.19. 

The machine used for performance test has 4GB of Ram and Intel Core 2 Duo P8400 

series processor using Windows Vista. The time results for queries are performed using 

stylus studio 2010. The dataset is freely available by emailing authors. 

4.6 Conclusion 

We implemented proposed OOMXQA using XQuery language because Office 2007 

documents follows OOXML standard. The designed XQuery runs on a created GMV and 
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reveal hidden data from the MS Office 2007 document. The GMV elements and 

attributes information is also presented as Fig’s. 4.17 and 4.18.                                                               

We used only XQuery native code so the code and logic can be easily implemented using 

any programming language or platform and open for further enhancement to other 

document formats plus for researchers in this area. This is a first step towards 

development of a single tool for law enforcement officers and facilitates forensic 

analysis. This also caters real world needs as thousands of office documents are 

transferred daily over the internet among different organizations and users. 

The Office 2007 application is considered to be the most widely used application.  As 

mentioned earlier, the proposed Office Open Multi-XML Querying algorithm requires 

only three files information of each MS Office 2007 document to detect all the hidden 

files inside a document using all data hiding techniques listed in this thesis. This is highly 

optimized and efficient detection algorithm and the result proves that its time efficiency 

is more than 87% superior than conventional single file to file reading algorithm. In order 

to validate the experiment results, we provide XQuery code for both the detection 

algorithm logics to detect hidden data with all listed techniques. The conventional 

detection algorithm reads document files one by one. The second approach works more 

efficiently with a GMV of multiple XML files and can be read as one. The comparison 

chart is also included in terms of time efficiency performance analysis in Fig. 4.19. 
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Chapter 5 

Conclusions & Future Work 

5.1 Conclusions 

Steganography is a fascinating and effective method of hiding data that has been used 

throughout history. There are methods that can be employed to uncover such devious 

tactics, but the first step is an awareness that such methods do exist. There are many good 

reasons to use steganography in OOXML documents, regardless of the fact that the 

technology is easy to use and difficult to detect. 

Microsoft Office suite is the most widely used for creating documents and proved to be 

the most at risk and so they would serve as a great target for this work. Recently 

Microsoft announced OOXML format for its MS Office 2007 suite. This thesis proposes 

the possibility of hiding data in OOXML documents by using the techniques listed in data 

hiding section, and one can see that there exists a large selection of approaches of hiding 

data with different strong and weak points respectively.  

For steganalysis, the use of forensic tools is very important in the digital investigation 

process. This requires a tool which must adapt technology of cover media being used for 

hiding data. For example, if a suspect hides something in the OOXML document, an 

investigator should have the appropriate tools embedding OOXML file format 

relationships technology to detect hidden data. 

In general, analysis of hidden data in OOXML document is divided into two phases. The 

first phase is to identify whether there is hidden data by searching for anomaly. For 

example, the analysis of hidden data in OOXML document zip archive, it is unlikely that 
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MS Office 2007 document inspector to detect. This is suspicious and requires further 

analysis. The second phase is to recover the hidden data files. Since hidden data is 

usually stored inside OOXML document – zip archive, with other parts or metadata, it is 

hard to recover them. Recovery is particularly challenging if suspects data satisfies the 

relationships order of an OOXML document. 

There is no specific forensic analysis tool that checks for hidden data in OOXML 

documents except tool based on given OOMXQA detection algorithm. While the analysis 

techniques discussed in this thesis are able to detect and recover the hidden data, it is time 

consuming without automated tools. 

The data hiding techniques that have been discussed in this thesis are just a fraction of 

possible ways to hide data. There are always new techniques to hide data and the art of 

data hiding highly depends on suspect’s creativity. One of the difficulties of analyzing 

OOXML document format is that it is flexible and can thus support many options. As a 

result, there are many possible ways to hide data. In addition, without published 

specifications, it is hard to guess which value combinations are valid and which are 

unknown. 

It is certain that the use of steganography will continue to increase and thus will be a 

growing hurdle for law enforcement and counterterrorism activities. Ignoring the 

significance of steganography because of the lack of statistics is "security through denial" 

and is not a good strategy.  Thus for an agent to decide on which steganographic 

algorithm to use, he would have to decide on the type of application he want to use the 

algorithm for and willing to compromise on some features to ensure the security of 

others. 
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5.2 Summary 

This thesis has investigated a novel approach to document steganography which provided 

enhancements to the current available steganographic techniques. The focus is on the 

shift from proprietary formats to XML based formats which has been adopted by MS 

Office 2007 known as OOXML for document representation. Earlier versions of MS 

Office documents used binary formats which is a compound document format. 

A comprehensive review of steganographic work in document steganography especially 

for OOXML documents was discussed and classified into five main categories. These 

includes data hiding using OOXML relationship structure, data hiding using XML format 

features, data hiding using XML format features and OOXML Relationship Structure, 

data hiding using OOXML flexibility for embedded resource architecture and data hiding 

using OOXML flexibility of swapping parts.  

It was observed that the current steganalysis algorithm rely heavily on the conventional 

searching techniques, whereas OOXML document comprises of several XML files and 

binary objects. The performance of conventional detection algorithm is relatively low as 

it reads these files one by one and fails to identify hidden data for all the techniques listed 

in this thesis. The proposed OOMXQA detection algorithm reads these files as one by 

creating global materialized view based on functional dependency sets identified and 

proves that it is 87% faster than conventional algorithm and also works for all the 

techniques listed. The results were promising and outperformed relevant methods. This 

caters real time needs as thousands of documents are transferred daily over the net. 

The OOMXQA algorithm is design and developed using XQuery code and enables to use 

with steganalysis tools used in the industry or by other researchers. This is also a first 
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step towards development of a single tool for law enforcement officers and further 

facilitation of forensic analysis. 

5.3 Future Research 

The ease of manipulation and transmission, communication means are shifting from 

paper documents to e-documents globally. Millions of documents are transferred globally 

over the net and until now, there is no system yet which can monitor the manipulation of 

documents and detect steganography in documents. Based on the work done in this 

thesis, the following recommendations are made for further work in this area: 

 The flexibility of OOXML document structure can motivate further possible 

techniques of data hiding in OOXML documents. 

 Analyzing OOXML document metadata, which could be useful for querying 

purposes such as: unique reference, date and time stamp, owner and machine 

name etc. This information facilitated unauthorized tampering performed by 

mischievous user without leaving any perceptible traces can stand up in a court as 

reliable evidence [10]. 

 Applying the identified data hiding techniques to similar word processing 

applications using XML format such as ODF documents and observe their 

behavior and propose modified set of rules based on their relationship structure to 

be used for data hiding and detection process. 

 The detection algorithm can be further enhances by adding the functionality of 

cryptanalysis with possible encoding/encryption methods supported by OOXML 

documents. Moreover, adding together of parallel searching feature for multiple 
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documents such as batch processing caters real world needs and permits 

steganalysis for hundreds of documents in no time. 

 To develop a single document steganalysis framework for forensic analysis by 

law enforcement officers. 
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Appendix A – Functional Dependency in XML Documents 
 

DTD & XML Document Tree: 
 

 

DTD D = (Ec, Es, A, M, N, r), where 

 Ec is the finite set of complex elements 

 Es is the finite set of simple elements 

 A is the finite set of attribute names 

 M is the map from Ec to element type:            is a regular expression 

                                      

 Where   denotes null string,                                     denote union, 

connection and Kleene closure; 

 N denotes the map from Ec to the attribute set, for      , any M(e) not   or 

N(e) not   

 r      is another different element name,        , r is the only flag in    

which is not in the alphabet of M(e). 

 

        XML Tree T = (V, M, ele, att, num, str, root), where 

 V is the node set of XML tree 

 M is the map from V to          , it can get the node type in V, if M(v) 

   , then a node v   V is called a complex element node else then it is called 

a simple element node. If M (v)     , then it is called attribute node. 

 ele and att are the functions defined on the set of complex elements: for every 

    , if M(v)     then ele(v) denotes a list of element nodes and att(v) 

denotes a set of different attribute names 

 num denotes the function of node number from every attribute or element  

 str denotes the function of string value from every attribute or element, if 

M(v)    , str(v) is null, and if M(v)       A, str(v) is the document 

contained root denotes the only root node. 

 Path Language: 

 

Path Expression on DTD D = (Ec, Es, A, M, N, r),  

a simple path is defined as l1/ l2/... ln, where li   Ec (i=1, ..., n-1) and ln      Es  

   is called as a sequence of path. l1     M(r), li   M(li-1 ) for i [2, n-1] and ln    M(ln-

1 )    N(li-1 ). 

Whereas a complex path is in the form of l1/ l2/... ln, where li      {//}  (i=1, ..., 

n-1) and ln      Es    . Symbol “//” represent the Kleene closure of the 

wildcard and can match any label l. 
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 XML Functional Dependency: 

 

XFD Constraint language on DTD D, functional dependency for XML (XFD) is φ 

over D has the form P: Q: X1, ..., Xn -> Y1, ..., Ym where 

 P   paths (D) is downward context path starting from the root, which 

identifies the scope of φ over D. If P ≠ r and P ≠ (where means empty path), 

then φ is called a local XFD, which means that the scope of φ is the sub-tree 

rooted at P and last (P)   El. Otherwise φ is called a global XFD, which means 

the scope of φ is the whole D or at the root and simplified as Q: X1, ... , Xn -> 

Y1, ..., Ym. 

 Q is called downward target path, where Q   paths(D) and P ϲ Q. 

 X1, ... , Xn is the left path of φ (Left Hand Side, LHS) and Y1, ... , Ym is the 

right path of (Right Hand Side, RHS), which is a non-empty subsets of paths 

(D) rooted at [[Q]]. 
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Appendix B – Document Type Definition (DTD) 

 
DTD of .rels & document.xml.rels 

 
<!ELEMENT Relationship EMPTY >  

<!ATTLIST Relationship Id NMTOKEN #REQUIRED >  

<!ATTLIST Relationship Target CDATA #REQUIRED >  

<!ATTLIST Relationship Type CDATA #REQUIRED >  

 

<!ELEMENT Relationships ( Relationship+ ) > 

 

NOTE: Both relationship files are same in structure hence their DTD elements and 

attributes are same. We listed DTD of package level relationship file as sub-package level 

relationship file also be the same. 

 

DTD of document.xml 

 
<!ELEMENT a:avLst EMPTY > 

 

 <!ELEMENT a:blip EMPTY > 

 <!ATTLIST a:blip cstate NMTOKEN #REQUIRED > 

 <!ATTLIST a:blip r:embed NMTOKEN #REQUIRED > 

 

 

 <!ELEMENT a:ext EMPTY >  

<!ATTLIST a:ext cx NMTOKEN #REQUIRED >  

<!ATTLIST a:ext cy NMTOKEN #REQUIRED >  

 

<!ELEMENT a:fillRect EMPTY >  

 

<!ELEMENT a:graphic ( a:graphicData ) >  

 

<!ELEMENT a:graphicData ( pic:pic ) >  

<!ATTLIST a:graphicData uri CDATA #REQUIRED >  

 

<!ELEMENT a:graphicFrameLocks EMPTY > 

<!ATTLIST a:graphicFrameLocks noChangeAspect NMTOKEN #REQUIRED >  

 

<!ELEMENT a:off EMPTY >  

<!ATTLIST a:off x NMTOKEN #REQUIRED >  

<!ATTLIST a:off y NMTOKEN #REQUIRED >  

 

<!ELEMENT a:prstGeom ( a:avLst ) > 

 <!ATTLIST a:prstGeom prst NMTOKEN #REQUIRED > 
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 <!ELEMENT a:stretch ( a:fillRect ) > 

 

 <!ELEMENT a:xfrm ( a:off, a:ext ) > 

<!ELEMENT pic:blipFill ( a:blip, a:stretch ) > 

 

<!ELEMENT pic:cNvPicPr EMPTY > 

 

<!ELEMENT pic:cNvPr EMPTY >  

<!ATTLIST pic:cNvPr id NMTOKEN #REQUIRED > 

<!ATTLIST pic:cNvPr name CDATA #REQUIRED > 

 

<!ELEMENT pic:nvPicPr ( pic:cNvPr, pic:cNvPicPr ) >  

 

<!ELEMENT pic:pic ( pic:nvPicPr, pic:blipFill, pic:spPr ) >  

 

<!ELEMENT pic:spPr ( a:xfrm, a:prstGeom ) >  

 

<!ELEMENT w:body ( w:p+, w:sectPr ) > 

 

<!ELEMENT w:cols EMPTY > 

<!ATTLIST w:cols w:space NMTOKEN #REQUIRED >  

 

<!ELEMENT w:docGrid EMPTY >  

<!ATTLIST w:docGrid w:linePitch NMTOKEN #REQUIRED > 

 

 <!ELEMENT w:document ( w:body ) >  

 

<!ELEMENT w:drawing ( wp:inline ) >  

 

<!ELEMENT w:lang EMPTY >  

<!ATTLIST w:lang w:eastAsia NMTOKEN #REQUIRED >  

 

<!ELEMENT w:noProof EMPTY > 

 

 <!ELEMENT w:p ( w:r ) > 

 <!ATTLIST w:p w:rsidR NMTOKEN #REQUIRED > 

 <!ATTLIST w:p w:rsidRDefault NMTOKEN #REQUIRED >  

<!ELEMENT w:pgMar EMPTY >  

<!ATTLIST w:pgMar w:bottom NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:footer NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:gutter NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:header NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:left NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:right NMTOKEN #REQUIRED >  

<!ATTLIST w:pgMar w:top NMTOKEN #REQUIRED >  
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<!ELEMENT w:pgSz EMPTY >  

<!ATTLIST w:pgSz w:h NMTOKEN #REQUIRED >  

<!ATTLIST w:pgSz w:w NMTOKEN #REQUIRED >  

<!ELEMENT w:r ( w:t, w:rPr?, w:drawing? ) >  

 

<!ELEMENT w:rPr ( w:noProof, w:lang ) >  

 

<!ELEMENT w:sectPr ( w:pgSz, w:pgMar, w:cols, w:docGrid ) >  

<!ATTLIST w:sectPr w:rsidR NMTOKEN #REQUIRED >  

<!ATTLIST w:sectPr w:rsidSect NMTOKEN #REQUIRED > 

<!ELEMENT w:t ( #PCDATA ) >  

 

<!ELEMENT wp:cNvGraphicFramePr ( a:graphicFrameLocks ) >  

 

<!ELEMENT wp:docPr EMPTY > 

 <!ATTLIST wp:docPr descr CDATA #REQUIRED >  

<!ATTLIST wp:docPr id NMTOKEN #REQUIRED >  

<!ATTLIST wp:docPr name CDATA #REQUIRED >  

 

<!ELEMENT wp:effectExtent EMPTY >  

<!ATTLIST wp:effectExtent b NMTOKEN #REQUIRED >  

<!ATTLIST wp:effectExtent l NMTOKEN #REQUIRED >  

<!ATTLIST wp:effectExtent r NMTOKEN #REQUIRED >  

<!ATTLIST wp:effectExtent t NMTOKEN #REQUIRED >  

 

<!ELEMENT wp:extent EMPTY >  

<!ATTLIST wp:extent cx NMTOKEN #REQUIRED > 

<!ATTLIST wp:extent cy NMTOKEN #REQUIRED >  

 

<!ELEMENT wp:inline ( wp:extent, wp:effectExtent, wp:docPr, 

wp:cNvGraphicFramePr, a:graphic ) >  

<!ATTLIST wp:inline distB NMTOKEN #REQUIRED >  

<!ATTLIST wp:inline distL NMTOKEN #REQUIRED > 

 <!ATTLIST wp:inline distR NMTOKEN #REQUIRED >  

<!ATTLIST wp:inline distT NMTOKEN #REQUIRED >  
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Appendix C – Global Materialized View (GMV) 
 

 

 

<?xml version="1.0" ?>  
<GlobalView xmlns="http://schemas.openxmlformats.org/package/2006/relationships"> 
 
<rels> 
  <Relationship Id="rId3" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/ex
tended-properties" Target="docProps/app.xml" />  

 

  <Relationship Id="rId2" 

Type="http://schemas.openxmlformats.org/package/2006/relationships/metadata
/core-properties" Target="docProps/core.xml" />  

 

  <Relationship Id="rId1" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/off
iceDocument" Target="word/document.xml" />  

 

  <Relationship Id="rId100" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/Relationships/a" 
Target="mask.jpeg" />  

</rels> 
  
<dxrels> 
  <Relationship Id="rId3" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/we
bSettings" Target="webSettings.xml" />  

 

  <Relationship Id="rId7" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/th
eme" Target="theme/theme1.xml" />  

 

  <Relationship Id="rId2" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/set
tings" Target="settings.xml" />  

 

  <Relationship Id="rId1" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/sty
les" Target="styles.xml" />  

 

  <Relationship Id="rId6" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/fo
ntTable" Target="fontTable.xml" />  

 

  <Relationship Id="rId5" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/im

age" Target="media/image2.jpeg" />  
 

  <Relationship Id="rId4" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/im
age" Target="media/image1.jpeg" />  

 

  <Relationship Id="rId8" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/im
age" Target="media/raffay.jpeg" />  
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  <Relationship Id="rId300" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/raf
fay" Target="media/image3.jpeg" />  

  <Relationship Id="200" 

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/cu
stomXmlData" Target="/customXML/test.xml" />  

</dxrels> 

 
<docxml> 
 

<w:body xmlns:a="http://schemas.openxmlformats.org/MyExtension/p1" 
xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" 
xmlns:o="urn:schemas-microsoft-com:office:office" 
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships" 

xmlns:v="urn:schemas-microsoft-com:vml" 
xmlns:ve="http://schemas.openxmlformats.org/markup-compatibility/2006" 

xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main" 
xmlns:w10="urn:schemas-microsoft-com:office:word" 
xmlns:wne="http://schemas.microsoft.com/office/word/2006/wordml" 
xmlns:wp="http://schemas.openxmlformats.org/drawingml/2006/wordprocessingD

rawing"> 
- <w:p w:rsidR="00DC51FF" w:rsidRDefault="00401AD8"> 

- <w:r> 

  <w:t>Hello</w:t>  

  </w:r> 

  </w:p> 

- <w:p w:rsidR="0091776E" w:rsidRDefault="00401AD8"> 

- <w:r> 

- <w:rPr> 

  <w:noProof />  

  </w:rPr> 

- <w:drawing> 

- <wp:inline distT="0" distB="0" distL="0" distR="0"> 

  <wp:extent cx="5943600" cy="4457700" />  

  <wp:effectExtent l="19050" t="0" r="0" b="0" />  

  <wp:docPr id="1" name="Picture 0" descr="Dock.jpg" />  

- <wp:cNvGraphicFramePr> 

  <a:graphicFrameLocks 

xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main" 

noChangeAspect="1" />  
  </wp:cNvGraphicFramePr> 

- <a:graphic xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main"> 

- <a:graphicData uri="http://schemas.openxmlformats.org/drawingml/2006/picture"> 

- <pic:pic xmlns:pic="http://schemas.openxmlformats.org/drawingml/2006/picture"> 

- <pic:nvPicPr> 

  <pic:cNvPr id="0" name="Dock.jpg" />  

  <pic:cNvPicPr />  

  </pic:nvPicPr> 

- <pic:blipFill> 

  <a:blip r:embed="rId4" cstate="print" />  

- <a:stretch> 

  <a:fillRect />  

  </a:stretch> 

  </pic:blipFill> 

- <pic:spPr> 

- <a:xfrm> 
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  <a:off x="0" y="0" />  

  <a:ext cx="5943600" cy="4457700" />  

  </a:xfrm> 

- <a:prstGeom prst="rect"> 

  <a:avLst />  

  </a:prstGeom> 

  </pic:spPr> 

  </pic:pic> 

  </a:graphicData> 

  </a:graphic> 

  </wp:inline> 

  </w:drawing> 

  </w:r> 

  </w:p> 

- <w:p w:rsidR="00401AD8" w:rsidRPr="0091776E" w:rsidRDefault="0091776E" 

w:rsidP="0091776E"> 
- <w:pPr> 

- <w:tabs> 

  <w:tab w:val="left" w:pos="1155" />  

  </w:tabs> 

  </w:pPr> 

- <w:r> 

- <w:rPr> 

  <w:noProof />  

  </w:rPr> 

  <w:lastRenderedPageBreak />  

- <w:drawing> 

- <wp:inline distT="0" distB="0" distL="0" distR="0"> 

  <wp:extent cx="5943600" cy="4457700" />  

  <wp:effectExtent l="19050" t="0" r="0" b="0" />  

  <wp:docPr id="2" name="Picture 1" descr="Garden.jpg" />  

- <wp:cNvGraphicFramePr> 

  <a:graphicFrameLocks 

xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main" 
noChangeAspect="1" />  

  </wp:cNvGraphicFramePr> 

- <a:graphic xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main"> 

- <a:graphicData uri="http://schemas.openxmlformats.org/drawingml/2006/picture"> 

- <pic:pic xmlns:pic="http://schemas.openxmlformats.org/drawingml/2006/picture"> 

- <pic:nvPicPr> 

  <pic:cNvPr id="0" name="Garden.jpg" />  

  <pic:cNvPicPr />  

  </pic:nvPicPr> 

- <pic:blipFill> 

  <a:blip r:embed="rId5" cstate="print" />  

- <a:stretch> 

  <a:fillRect />  

  </a:stretch> 

  </pic:blipFill> 

- <pic:spPr> 

- <a:xfrm> 

  <a:off x="0" y="0" />  

  <a:ext cx="5943600" cy="4457700" />  

  </a:xfrm> 

- <a:prstGeom prst="rect"> 
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  <a:avLst />  

  </a:prstGeom> 

  </pic:spPr> 

  </pic:pic> 

  </a:graphicData> 

  </a:graphic> 

  </wp:inline> 

  </w:drawing> 

  </w:r> 

  </w:p> 

- <w:sectPr w:rsidR="00401AD8" w:rsidRPr="0091776E" w:rsidSect="00DC51FF"> 

  <w:pgSz w:w="12240" w:h="15840" />  

  <w:pgMar w:top="1440" w:right="1440" w:bottom="1440" w:left="1440" w:header="720" 

w:footer="720" w:gutter="0" />  
  <w:cols w:space="720" />  

  <w:docGrid w:linePitch="360" />  

  </w:sectPr> 

- <a:IgnoreMe> 

- <w:p w:rsidR="00401AD8" w:rsidRPr="0091776E" w:rsidRDefault="0091776E" 

w:rsidP="0091776E"> 
- <w:pPr> 

- <w:tabs> 

  <w:tab w:val="left" w:pos="1155" />  

  </w:tabs> 

  </w:pPr> 

- <w:r> 

- <w:rPr> 

  <w:noProof />  

  </w:rPr> 

  <w:lastRenderedPageBreak />  

- <w:drawing> 

- <wp:inline distT="0" distB="0" distL="0" distR="0"> 

  <wp:extent cx="5943600" cy="4457700" />  

  <wp:effectExtent l="19050" t="0" r="0" b="0" />  

  <wp:docPr id="2" name="Picture 1" descr="Garden.jpg" />  

- <wp:cNvGraphicFramePr> 

  <a:graphicFrameLocks 

xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main" 
noChangeAspect="1" />  

  </wp:cNvGraphicFramePr> 

- <a:graphic xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main"> 

- <a:graphicData uri="http://schemas.openxmlformats.org/drawingml/2006/picture"> 

- <pic:pic xmlns:pic="http://schemas.openxmlformats.org/drawingml/2006/picture"> 

- <pic:nvPicPr> 

  <pic:cNvPr id="0" name="Raffay.jpeg" />  

  <pic:cNvPicPr />  

  </pic:nvPicPr> 

- <pic:blipFill> 

  <a:blip r:embed="rId8" cstate="print" />  

- <a:stretch> 

  <a:fillRect />  

  </a:stretch> 

  </pic:blipFill> 

- <pic:spPr> 

- <a:xfrm> 
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  <a:off x="0" y="0" />  

  <a:ext cx="5943600" cy="4457700" />  

  </a:xfrm> 

- <a:prstGeom prst="rect"> 

  <a:avLst />  

  </a:prstGeom> 

  </pic:spPr> 

  </pic:pic> 

  </a:graphicData> 

  </a:graphic> 

  </wp:inline> 

  </w:drawing> 

  </w:r> 

  </w:p> 

  </a:IgnoreMe> 

  </w:body> 

</docxml> 
</GlobalView> 

  

file:///C:/Users/100392502/Desktop/Feb25/RnDxr.xml
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Appendix D –Xquery Code of OOMXQA Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

xquery version "1.0"; 

declare default element namespace 

"http://schemas.openxmlformats.org/package/2006/relationships"; 

declare namespace ve="http://schemas.openxmlformats.org/markup-compatibility/2006"; 

declare namespace o="urn:schemas-microsoft-com:office:office"; 

declare namespace 

r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"; 

declare namespace m="http://schemas.openxmlformats.org/officeDocument/2006/math"; 

declare namespace v="urn:schemas-microsoft-com:vml"; 

declare namespace 

wp="http://schemas.openxmlformats.org/drawingml/2006/wordprocessingDrawing"; 

declare namespace w10="urn:schemas-microsoft-com:office:word"; 

declare namespace w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"; 

declare namespace wne="http://schemas.microsoft.com/office/word/2006/wordml"; 

declare namespace a="http://schemas.openxmlformats.org/MyExtension/p1"; 

 

for $rels in doc("c:/Users/Raffay/Desktop/RnDxr.xml") //GlobalView/rels/Relationship 

where not(ends-with($rels/@Type, "extended-properties") or ends-with($rels/@Type, "core-

properties") or ends-with($rels/@Type, "officeDocument") ) 

return <Pkg-Relationships> {$rels/@Id} {$rels/@Type} {$rels/@Target}  

{for $dx in doc("c:/Users/Raffay/Desktop/RnDxr.xml") //GlobalView/docxml/w:body 

for $drels in doc("c:/Users/Raffay/Desktop/RnDxr.xml") //GlobalView/dxrels//Relationship 

where  

(ends-with($drels/@Type, "customXmlData") and matches($dx//body, string($drels/@Id) )) 

or  

not(ends-with($drels/@Type, "signature") or ends-with($drels/@Type, "origin") or ends-

with($drels/@Type, "customXml") or ends-with($drels/@Type, "customXmlProps") or ends-

with($drels/@Type, "thumbnail") or ends-with($drels/@Type, "aFChunk") or ends-

with($drels/@Type, "comments") or ends-with($drels/@Type, "settings") or ends-

with($drels/@Type, "endnotes") or ends-with($drels/@Type, "fontTable") or ends-

with($drels/@Type, "footer") or ends-with($drels/@Type, "footnotes") or ends-

with($drels/@Type, "glossaryDocument") or ends-with($drels/@Type, "header") or ends-

with($drels/@Type, "numbering") or ends-with($drels/@Type, "styles") or ends-

with($drels/@Type, "webSettings") or ends-with($drels/@Type, "attachedTemplate") or ends-

with($drels/@Type, "frame") or ends-with($drels/@Type, "subDocument") or ends-

with($drels/@Type, "mailMergeSource") or ends-with($drels/@Type, 

"mailMergeHeaderSource") or ends-with($drels/@Type, "transform") or ends-

with($drels/@Type, "image") or ends-with($drels/@Type, "theme") or ends-

with($drels/@Type, "font") or ends-with($drels/@Type, "hyperlink") or ends-

with($drels/@Type, "vmlDrawing") or ends-with($drels/@Type, "printerSettings") or ends-

with($drels/@Type, "custom-properties")) or ($dx//a:IgnoreMe//@r:embed=$drels/@Id) 

return <Doc-Relationship> {$drels/@Id} {$drels/@Type} {$drels/@Target} </Doc-

Relationship>} 

</Pkg-Relationships> 
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Appendix E – XQuery Code of Conventional Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_______________________________________________________________________ 

NOTE: For Altova XML Spy 2010 to read from the zip archive, given code has to be 

amended as follows: doc("C:/All_Tech.zip|zip/_rels/.rels") 

xquery version "1.0"; 

declare default element namespace "http://schemas.openxmlformats.org/package/2006/relationships"; 

declare namespace ve="http://schemas.openxmlformats.org/markup-compatibility/2006"; 

declare namespace o="urn:schemas-microsoft-com:office:office"; 

declare namespace r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"; 

declare namespace m="http://schemas.openxmlformats.org/officeDocument/2006/math"; 

declare namespace v="urn:schemas-microsoft-com:vml"; 

declare namespace 

wp="http://schemas.openxmlformats.org/drawingml/2006/wordprocessingDrawing"; 

declare namespace w10="urn:schemas-microsoft-com:office:word"; 

declare namespace w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"; 

declare namespace wne="http://schemas.microsoft.com/office/word/2006/wordml"; 

declare namespace a="http://schemas.openxmlformats.org/MyExtension/p1"; 

 

for $rels in doc('jar:file:///C:/Users/Raffay/Desktop/All_Tech.zip!/_rels/.rels') 

//Relationships/Relationship 

where not(ends-with($rels/@Type, "extended-properties") or ends-with($rels/@Type, "core-

properties") or ends-with($rels/@Type, "officeDocument") ) 

return <Pkg-Relationships> {$rels/@Id} {$rels/@Type} {$rels/@Target}  

{for $dx in doc('jar:file:///C:/Users/Raffay/Desktop/All_Tech.zip!/word/document.xml') 

//w:document/w:body 

for $drels in doc('jar:file:///c:/Users/Raffay/Desktop/All_Tech.zip!/word/_rels/document.xml.rels') 

//Relationships/Relationship 

where  

(ends-with($drels/@Type, "customXmlData") and matches($dx//body, string($drels/@Id) )) or  

not(ends-with($drels/@Type, "signature") or ends-with($drels/@Type, "origin") or ends-

with($drels/@Type, "customXml") or ends-with($drels/@Type, "customXmlProps") or ends-

with($drels/@Type, "thumbnail") or ends-with($drels/@Type, "aFChunk") or ends-

with($drels/@Type, "comments") or ends-with($drels/@Type, "settings") or ends-with($drels/@Type, 

"endnotes") or ends-with($drels/@Type, "fontTable") or ends-with($drels/@Type, "footer") or ends-

with($drels/@Type, "footnotes") or ends-with($drels/@Type, "glossaryDocument") or ends-

with($drels/@Type, "header") or ends-with($drels/@Type, "numbering") or ends-with($drels/@Type, 

"styles") or ends-with($drels/@Type, "webSettings") or ends-with($drels/@Type, "attachedTemplate") 

or ends-with($drels/@Type, "frame") or ends-with($drels/@Type, "subDocument") or ends-

with($drels/@Type, "mailMergeSource") or ends-with($drels/@Type, "mailMergeHeaderSource") or 

ends-with($drels/@Type, "transform") or ends-with($drels/@Type, "image") or ends-

with($drels/@Type, "theme") or ends-with($drels/@Type, "font") or ends-with($drels/@Type, 

"hyperlink") or ends-with($drels/@Type, "vmlDrawing") or ends-with($drels/@Type, 

"printerSettings") or ends-with($drels/@Type, "custom-properties")) or 

($dx//a:IgnoreMe//@r:embed=$drels/@Id) 

return <SubPkg-Relationship> {$drels/@Id} {$drels/@Type} {$drels/@Target} </SubPkg-

Relationship>} 

</Pkg-Relationships> 
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Appendix F – XQuery code for creating GMV 

 

 

 

 

 

 

 

 

 

 

 

 

 

xquery version "1.0"; 

declare default element namespace 

"http://schemas.openxmlformats.org/package/2006/relationships"; 

declare namespace ve="http://schemas.openxmlformats.org/markup-compatibility/2006"; 

declare namespace o="urn:schemas-microsoft-com:office:office"; 

declare namespace 

r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"; 

declare namespace m="http://schemas.openxmlformats.org/officeDocument/2006/math"; 

declare namespace v="urn:schemas-microsoft-com:vml"; 

declare namespace 

wp="http://schemas.openxmlformats.org/drawingml/2006/wordprocessingDrawing"; 

declare namespace w10="urn:schemas-microsoft-com:office:word"; 

declare namespace w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"; 

declare namespace wne="http://schemas.microsoft.com/office/word/2006/wordml"; 

declare namespace a="http://schemas.openxmlformats.org/MyExtension/p1"; 

let $rels := doc('jar:file:///C:/Users/Raffay/Desktop/All_Tech.zip!/_rels/.rels') 

//Relationships/Relationship 

return <GlobalView><rels> {$rels}</rels> 

{let $rels1 := 

doc('jar:file:///C:/Users/Raffay/Desktop/All_Tech.zip!/word/_rels/document.xml.rels') 

//Relationships/Relationship 

return <dxrels>{$rels1}</dxrels>} 

{let $doc := doc('jar:file:///C:/Users/Raffay/Desktop/All_Tech.zip!/word/document.xml') 

//w:document/w:body 

return <docxml>{$doc} 

</docxml>} 

</GlobalView> 


