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Abstract

As deep learning emerged in the 2010s to become a groundbreaking technology

in machine vision and natural language processing, it also ushered in many new

algorithms for use in scienti�c research. Among these is the neural network

method, in which the solution to a di�erential equation is approximated by

varying the parameters of a deep neural network trial function. Although this

idea has been explored with shallow neural networks since the 1990s, it has

experienced a resurgence of interest in recent years now that it can be

implemented with deep neural networks. A series of empirical and theoretical

studies have acclaimed the deep variants of the neural network method for being

able to solve many classes of traditionally challenging partial di�erential

equations. These early works emphasized its potential to solve high-dimensional,

highly parameterized, and nonlinear equations in arbitrary geometries, all without

requiring the discretization of the geometry into a mesh. Problems exhibiting

these challenging features abound in computational biophysics, and this thesis

presents recent e�orts to adapt the neural network method for use in this �eld.

The investigations in this thesis center on models of biomolecular motion in
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periodic geometries. Such models arise, for example, in the study of micro�uidic

and nano�uidic devices used for the separation of free-draining molecules. These

problems exhibit many of the characteristics for which the neural network

method is appealing, and serve here as non-trivial test problems on which to

characterize its performance. Perspectives from biophysics, numerical analysis,

and deep learning are combined to elucidate the true potential of the neural

network method as a technique for studying such di�erential equations.

Altogether, these works have moved the neural network method closer to being

another reliable numerical method in the computational biophysicist's toolkit.

Keywords: Computational Science; Biophysics; Di�erential Equations; Neural

Networks; Deep Learning
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Each day,

Hike in unknown woods.

Each night,

A �reside chat,

Stars listening above.
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Chapter 1

Introduction

The document is a compendium of research articles exploring the use of the deep

neural networks to solve partial di�erential equations (PDEs) arising in

computational nanobiophysics. Speci�cally, this thesis is focused on models of

biomolecules con�ned in periodic geometries. Such problems are important to the

research and development of micro- and nano�uidic devices (MNFDs; Sec. 1.2),

and also arise in the study of natural biological systems.

This chapter will set out the high-level motivation for this line of research.

Section 1.1 contains an overview of the role of computational nanobiophysics in

understanding natural and synthetic biological systems at the molecular scale.

Section 1.2 features a brief review of MNFDs, and especially the important

subclass of MNFDs with periodic geometries. Lastly, Sec. 1.3 makes the case for

deep learning as a new tool in the computational nanobiophysics toolkit and

includes an introduction to the neural network method of solving di�erential

equations.

Chapter 2 provides an introduction to the speci�c mathematical models that

will be studied throughout the thesis. Appendix A contains a review of the
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numerical methods that are used throughout this thesis to solve these

mathematical models. The remaining chapters of this thesis present several

research articles related to the computational study of periodic MNFDs. In

addition to examining the use of deep learning for solving PDEs in computational

nanobiophysics, these works also contain some contributions relevant to

biophysics outside the context of deep learning (Chapters 3 and 6) and to deep

learning outside the context of biophysics (Chapter 5).

1.1 Computational biophysics

Biophysics is a broad �eld encompassing the study of physical concepts, such as

statistical mechanics and electrodynamics, in the setting of biological systems,

both natural and synthetic. This thesis will focus on biophysics at the molecular

scale and in the context of engineered devices, although many of the discussions

may be of interest more generally. In any case, all areas of biophysics have the

potential to contribute greatly to human understanding of natural biological

functions as well as to stimulate and guide research and development of

biotechnologies.

Biological phenomena are notoriously complicated. Natural biological systems

have evolved complex mechanisms built of interdependent components ranging in

size from the atomic scale to the macroscopic scale of normal human experience.

In particular, many of the remarkable biological features we can easily witness at

the scale of millimeters to meters actually emerge from structures that are too

small for humans to witness unassisted. For instance, biological cells are

fundamental components of all life, but remained undiscovered until the
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mid-nineteenth century. Cellular theory marked a pivotal revolution in biology,

and was enabled by the use of optical microscopes. Molecular biology marked an

equally fundamental development in biology, and this paradigm shift was enabled

in part by the use of technologies that can probe scales smaller than the optical

resolution limit of light1.

Today, technologies for sensing, analysing, and manipulating biological systems

at scales below the optical resolution limit continue to play a crucial role in

molecular biology. Super-resolution microscopy, atomic force microscopy, and

microscopy based on x-rays, electrons, or even neutrons all play vital roles in

making measurements of these systems. Micro�uidic and nano�uidic devices,

discussed below, o�er another avenue for studying small biological elements.

Nonetheless, many of these technologies generally remain relatively challenging

to build and operate. More importantly, even the best varieties and qualities of

equipment still face intrinsic limitations as to the information they can measure

in practice. Dynamics at very small length scales also tend to occur over very

brief time scales, making them challenging to measure in real time. At some

point, invasive measurements techniques will disrupt or destroy the systems under

study. For instance, cryogenic electron microscopy requires samples be frozen at

temperatures that are not hospitable to most forms of life. Conversely, biological

systems can themselves be dangerous, and potentially disrupt or destroy the

humans attempting to study them! Laboratory biosecurity incidents remain an

1The Abbe di�raction limit prevents classical optical instruments from resolving features that
are less than a few times smaller than the wavelength of the light being used by the device. For
visible light, the practical resolution limit is roughly 250 nanometers. For reference, cells are
typically at least a few micrometers in diameters, but viruses are usually about 100 nanometers
across. Proteins are about 10 nanometers large, and other important biomolecules are even
smaller.
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important hazard even in the modern world. Typically, as a result of these and

other factors, measured data is expensive, noisy, and limited to one or a few

modalities at once.

In light of this, theoretical and numerical techniques play a fundamental role in

advancing molecular biophysics. The use of mathematical modelling can greatly

extend the value of experimental data measurements. Abstractions of true

biological systems can be used to identify platonic ideals that underlie general

phenomena (e.g., Brownian motion) or to rapidly predict biophysical quantities

that are easier to calculate than to measure (e.g., alchemical techniques in drug

design). Indeed, computational biophysics is often described as a computational

microscope: another technique that the biophysicist can leverage to study

phenomena that are too small or rapid for humans to witness directly.

Just as the experimental biophysicist has access to a range of experimental

tools, some of which are more appropriate than others for certain applications, so

too does the computational biophysicist have recourse to a diverse toolkit of

models and methods with varying strengths and limitations. The relative merits

of mathematical models and numerical methods must generally be considered

simultaneously. A very high-�delity model is of little use if it cannot be solved or

analysed. Conversely, a more modest model coupled to a fast and �exible

numerical method may provide substantial practical insight in many applications.

Chapters 2 and App. A of this thesis are devoted to reviewing some common

biophysical models and methods, respectively. The main goal of this thesis is to

explore the neural network method (NNM; Secs. 1.3 and A.3) as a new tool for

this toolkit, and to establish how its advantages and disadvantages compare to
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and complement well-established techniques like particle simulations (Sec. A.1)

and the �nite element method (FEM; Sec. A.2).

1.2 Micro�uidic and nano�uidic devices

The investigations in this thesis are focused on models of micro- and nano�uidic

devices (MNFDs). These are engineered systems that can be used to detect,

analyse, and manipulate biomolecules with high precision. These devices are even

sometimes capable of interacting with individual molecules one at a time.

The capabilities of these systems are due in great part to their intricate

geometric structures at the micron and nanometer scale. They typically function

by forcing con�ned macromolecules to interact with obstacles of varying shape,

with motion commonly driven by �uid pressure gradients or electrostatic �elds.

The �uid �ows, electrostatic �elds, and di�usive trajectories of the con�ned

macromolecules interact to produce the mechanisms that make the MNFD useful.

MNFD research involves many of the challenges that are also encountered more

generally throughout computational biophysics. The phenomena of interest

emerge due to the nonlinear coupling of multiple underlying physical processes

(e.g., solvent �ows, electrostatics, and molecular motion). The many-body

dynamics of macromolecules, in particular, is very challenging to analyse. The

complexity of the problem is further increased by the intricacy of the con�ning

geometry. Ultimately, the goal of MNFD research is generally to understand how

all of these physical phenomena depend on the relevant MNFD design parameters,

such as device shape, solvent composition, applied voltage, and macromolecular



Chapter 1. Introduction 6

characteristics. Similar features are important throughout synthetic and natural

molecular biology, arising for instance in the crowded intracellular environment.

The studies in this thesis have focused primarily on a few representative

MNFDs. Nanopores, and the translocation of polymers through nanopores, is

discussed in Chapter 3 as part of a novel MNFD design. The slit-well MNFD is

featured heavily in Chapters 4 and 6, as well as Apps. C and D. The work in

Chapter 6, in particular, aims to connect the results of this thesis to all MNFDs

that have periodic geometric designs.

1.3 Numerical methods meet deep learning

As alluded to above, the mathematical models arising in biophysics tend to

exhibit several properties that make them particularly challenging to study

analytically or numerically:

• Intricate geometries,

• Many-body molecular dynamics,

• Nonlinear interactions, and

• Many interdependent physical parameters.

As discussed in Chapters 2 and App. A, these features have directly shaped

contemporary techniques in computational biophysics. Currently, the dominant

paradigm entails modelling molecular dynamics using stochastic di�erential

equations and varying levels of coarse-graining, then simulating the time

evolution of the system using molecular dynamics algorithms. Complicated



Chapter 1. Introduction 7

interactions are approximated as much as possible, or else calculated dynamically

throughout the particle simulations.

In particular, partial di�erential equation (PDE) models of molecular dynamics

are not presently very popular in computational biophysics. The PDE models

corresponding to many-body molecular motion are high-dimensional. Such PDEs

are traditionally considered intractable because classical numerical methods, such

as the �nite element method, su�er from the curse of dimensionality: their

computational cost grows exponentially with the dimensionality of the domain.

Indeed, particle-based simulation methods are used precisely in order to

circumvent the need to solve high-dimensional PDEs directly. PDE models of

molecular motion are thus mostly restricted to applications where simpli�cations

like the mean �eld approximation can be made.

PDE models can also be used to describe force �elds in biophysics, including

solvent �ow �elds and electrostatic �elds. These �elds are often coupled to the

motion of the molecule: as a molecule moves, it deforms the �uid �ows and

electrostatic �elds around it. As a result, the corresponding PDE models depend

on the many degrees of freedom specifying the molecular conformation, and are

once again high-dimensional. These PDE models can still sometimes be solved for

one molecular con�guration at a time during a molecular dynamics simulation.

However, this can substantially increase the computational cost of the

simulations, which can be large to begin with. Again, many simpli�cations are

often used in practice, and there even exist particle-based methods for

circumventing PDE models of force �elds (e.g., dissipative particle dynamics are

used to approximate solvent �ows).
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This thesis explores the possibility of directly solving these types of biophysical

PDEs by using deep neural networks. This is an example of an innovative

numerical method (i.e., the NNM) potentially unlocking the practical use of an

otherwise unfavoured class of mathematical models (i.e., PDEs). In contrast with

classical techniques like the �nite element method, the neural network method is

mesh-free. In particular, it does not appear to su�er from the curse of

dimensionality, and a growing number of theoretical and empirical studies have

demonstrated its ability to solve various high-dimensional PDEs. Furthermore, it

is reputed to be an e�ective tool for handling intricate geometries (as it is

mesh-free) and nonlinear problems (as it is intrinsically nonlinear). It can even

solve highly parameterized problems directly2 (see App. D). Ultimately, the hope

is that this methodology can leverage the strengths of PDE models in a context

that is usually only accessible to particle-based models.

The caveat to this vision is that the neural network method of solving

di�erential equations is a relatively new method that is not yet fully understood.

It lacks a thorough theoretical foundation comparable to those available for

well-established numerical methods, and it is unclear to what extent the empirical

demonstrations available in the literature are representative of its performance on

biophysical problems. This thesis aims to improve the understanding of when and

how the neural network method can be applied fruitfully in computational

biophysics. The results included here suggest that, although further development

work is necessary, it is indeed feasible that the neural network method can provide

2Model order reduction methods can provide similar functionality for classical PDE solution
methods such as the �nite element method, but these have limitations; see Sec. A.2.1.4. There is
no straightforward equivalent to this for particle-based simulations.
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useful capabilities that prior numerical methods cannot deliver. Several applied

and theoretical contributions are presented as steps towards realizing this goal.

1.3.1 Introduction to the neural network method

This section provides a brief introduction to the basic elements of the neural

network method (NNM) of solving di�erential equations. Additional details are

available in the manuscripts attached in Chapters 4 and 5 and in App. D.

Furthermore, App. A contains a more comprehensive review of the NNM along

with reviews of particle-based simulation methods and the �nite element method.

The basic idea of the NNM is to train a deep neural network to approximately

satisfy a target PDE. The hope is that if the neural network approximately

satis�es the PDE, then the neural network will approximately equal the solution.

That is, for a PDE of the form

Lu(x) = f(x), x ∈ Ω (1.1)

with boundary conditions

Bu(x) = g(x), x ∈ ∂Ω, (1.2)

we de�ne an approximate solution

ũ ≡ N(x; θ) (1.3)

where the trial function N(x; θ) is a deep neural network parameterized by θ.



Chapter 1. Introduction 10

Many varieties of deep neural networks exist (Sec. A.3), but essentially a deep

neural network is just any parameterized function that is the composition of

many simpler functions. The works in this thesis will focus on fully-connected

feedforward neural networks, which are of the form

f1 = σ1 (A1x+ b1) ,

f2 = σ2 (A2f1 + b2) ,

f3 = σ3 (A3f2 + b3) ,

· · ·

fL = σL (ALfL−1 + bL) ,

N(x; θ) = c · fL + d. (1.4)

Each fi is known as a hidden layer of the neural network; the number of hidden

layers L is called the depth of the network. In the special case of L = 1, the

network is called a shallow neural network; for L > 1, it is a deep neural network.

The Ai are called weight matrices and the bi are called bias vectors. The shapes

of Ai and bi are dictated by the desired sizes of the fi; these are often �xed to

some common value w, called the width of the network. The σi are known as

activation functions; these are scalar nonlinear functions that are applied

elementwise to their inputs. In this case, the network output N(x; θ) is a scalar

value of x obtained by projecting the last hidden layer fL onto the vector c and

adding the scalar bias d. Altogether, the parameters θ of this network are the Ai,

the bi, c, and d; all activation functions in this thesis are chosen as the hyperbolic

tangent function, tanh.
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The goal of the NNM is to �nd parameters θ such that the neural network is

approximately equal to the true solution of the PDE. Unfortunately, the true

solution is not known a priori. Hopefully, if we can �nd parameters such that

Lũ ≈ Lu = f, x ∈ Ω, (1.5)

and

Bũ ≈ Bu = g, x ∈ ∂Ω, (1.6)

then it will be the case that

ũ ≈ u, (1.7)

i.e., the deep neural network will be an approximate solution to the PDE. In

practice, this can be accomplished by optimizing the neural network parameters θ

to minimize a loss functional, such as

L[N(x; θ)] =

∫

Ω

(LN(x; θ)− f(x))2dx+ β

∫

∂Ω

(BN(x; θ)− g(x))2ds. (1.8)

The derivatives of N can be computed using automatic di�erentiation, and the

optimization of θ to minimize the loss functional is typically accomplished using

variants of gradient descent (Sec. A.3).

This optimization process is referred to as training the neural network.

Although training algorithms are usually fairly simple to describe, the actual

training process is generally quite challenging. The optimization is nonlinear and
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nonconvex, and many heuristics are leveraged to improve the speed and reliability

of convergence. Despite these tricks, very long training times can sometimes be

required to achieve good performance.

With a very simple modi�cation, the NNM can also directly solve

parameterized PDE problems, i.e. those that depend on some problem

parameters p. For instance, the NNM trial function can be adjusted to the form

ũ(x, p) ≡ N(x, p; θ), (1.9)

and the original loss functional can simply be averaged over all feasible values of

p. Besides this, most of the NNM algorithm is exactly the same as in the

unparameterized case. This approach is reviewed in Sec. A.3.2.5 and its

application to MNFD design is discussed in Chapter 6 and demonstrated in

App. D.
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Chapter 2

Mathematical models

2.1 Models of biological macromolecules

Macromolecules are, as the name suggests, conspicuously large molecules. Four

classes of macromolecules are ubiquitous in biological systems: nucleic acids

(including DNA, RNA, and their variants), proteins, carbohydrates, and lipids.

These large molecules are primarily organized as polymers: they are constructed

from a large number of simpler molecular units, called monomers. A single

macromolecule can contain thousands of atoms, with constituent monomers

composed from as little as one single atom (carbon being the base unit for lipid

tails) to dozens of atoms. Many of the phenomena of interest in molecular

biophysics involve the interactions of macromolecules with other macromolecules,

solvent environments, con�ning boundaries, and electric �elds.

At a very �ne level of physical realism, macromolecules are quantum

mechanical many-body systems described by some high-dimensional Schrödinger

equation based on some hideously complicated Hamiltonian. Such �ne-grained

models are tremendously expensive to solve directly by any computational means.
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Occasionally, enormous amounts of computing power are leveraged to simulate

systems near this level of detail explicitly, but even then such simulations are

inevitably restricted to evolutions over very short timescales.

Far more commonly, a variety of coarse-graining and multiscale modelling

methods are used to produce mathematical models of greatly reduced complexity

that nonetheless capture the essential qualitative (and sometimes quantitative)

properties of a given macromolecular system. In some cases mathematical tools

such as renormalization group theory can be applied to systematically construct

or justify multiscale or coarse-grained models1. Modern classical atomistic

molecular dynamics formulations treat the atoms of macromolecules as classical

particles whose motion is essentially governed by Newton's second law.

Problem-speci�c force �elds are developed and calibrated numerically to

approximate the true quantum mechanical interactions of these systems. Within

a certain range of applicability, these e�ective force �elds can produce fairly

realistic physical behaviours. These bottom-up approaches to coarse-graining

endeavour to systematically approximate physical interactions at small length

scales by simpler e�ective interactions acting over longer length scales.

In contrast to bottom-up methods, the work in this thesis will focus on

top-down modelling methods. In this approach, macromolecular systems are

simply represented by groups of featureless hard spherical particles (for an

example, see Fig. 1(a) in Sec. 3.3). Each of these particles may loosely be

understood to correspond to large groups of atoms in the original molecule being

modelled; otherwise, the model may simply be interpreted as a generic

1The work of Michael Levitt and Ariel Warshel in the 1970s culminated in a Nobel prize
towards the development of such techniques.
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abstraction of a certain class of molecules under investigation. Dynamics are

governed by variants of Newton's second law,

miai =
∑

j

Fij, (2.1)

where mi is some e�ective mass for particle i, ai is its acceleration, and the index

j iterates over all forces Fij that act on particle i. Complex polymer shapes can

be created by connecting particles into a given topological arrangement using

simple forces to model chemical bonds. Additional forces can be incorporated to

re�ect other important phenomena, such as solvent dynamics (Sec. 2.2) and

electric force �elds (Sec. 2.3). The manuscript in Sec. 3.3 features a typical

example of how such top-down models can be applied to the study of MNFDs.

Similar models were used successfully to study experimental systems in the works

by Briggs et al. [5] and Lam et al. [24], of which I am a co-author.

Top-down coarse-grained models typically omit many physical details occurring

in actual macromolecular systems, including chemical properties such as charge

groups. They are nonetheless appropriate for studying many real nanobiophysical

systems of interest. Indeed, in many cases the most important dynamics of

macromolecules are governed predominantly by their geometries, with chemical

details being of secondary importance. Conversely, important phenomena often

occur on relatively long time scales. Fine-grained models that incorporate more

chemical information are inevitably more computationally expensive to study

than the simpler generic polymer models. Often, the loss of information from

omitting chemical properties is more than o�set by the ability to investigate

dynamics spanning much longer timescales. That is, studying less realistic
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molecular models over more relevant time scales can be more useful than

studying more realistic molecular models over less relevant time scales. Another

advantage of generic polymer models is that they are more amenable to

theoretical analysis. Moreover, because they are generic, these models and their

associated theories can capture general polymeric behaviours that are exhibited,

at least approximately, by a great variety of macromolecules.

Of course, in some circumstances chemical properties and other �ne-grained

details cannot be neglected. Nanobiophysical models must typically be adapted

to the speci�c phenomena under consideration to achieve a balance of precision

and tractability. The work in this thesis focuses on the most tractable models

because it is aimed at developing a �rm understanding of the mathematical and

numerical properties of a novel computational tool: the neural network method of

solving di�erential equations. However, this technique can in principle be

extended to more sophisticated macromolecular models as well. We hope that the

insights gleaned here from the study of simpler models will be of value in those

contexts as well.

2.2 Implicit solvent models: Langevin dynamics

The liquid environments of biological systems play a fundamental role in

determining macromolecular dynamics. On the one hand, macromolecules are in

constant chaotic motion due to perpetual collisions with the thermal bath of

solvent molecules in which they are dissolved. On the other hand, the solvent also

acts to rapidly damp out inertial motion through frictional forces. The

combination of these e�ects produces the famous Brownian motion.
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Beyond this, solvents can also propagate more subtle hydrodynamic

interactions, wherein forces are transferred between nearby particles via

disturbances in the intervening solvent. Additionally, the liquids of biophysical

systems almost always contain substantial amounts of dissolved ions, and

biological macromolecules themselves are frequently charged. Thus,

electrohydrodynamic e�ects are also important to these systems.

As with molecular modelling, solvents can also be modelled at varying levels of

detail. The discussion from Sec. 2.1 concerning the hierarchy of models ranging

from quantum mechanical precision to heavily coarse-grained approximations

applies equally well to solvents. This thesis will again adopt a more minimalist,

top-down approach to solvent modelling. Speci�cally, the large number of

molecules constituting the solvent will be treated implicitly as a thermal bath of

generic, mutually independent particles.

In the implicit model used here, known as Langevin dynamics, the solvent

e�ectively exerts two forces on the particles in solution. The �rst force is a

frictional drag force,

Ff = −γv, (2.2)

where γ is a positive constant called the friction coe�cient and v is the particle

velocity. The force is linear in the particle velocity due to the laminar nature of

�uids at the length scales of interest. In this Stokesian �ow regime, the friction
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coe�cient for a spherical particle can be written as

γ = 6πηR, (2.3)

with η being the dynamic viscosity of the solvent and R being the radius of the

particle.

The second force exerted by the solvent on the particles is a stochastic forcing

term representing the net e�ect of the thermal motion of the solvent. It is

typically modelled as

Fr =
√

2γkBTR(t) (2.4)

where R is a delta-correlated Gaussian noise function, kB is the Boltzmann

constant, and T is the temperature of the solvent.

The magnitude of two solvent forces in Langevin dynamics are connected via

the Einstein �uctuation-dissipation relation. It can be shown that the mean

squared displacement of a particle subject only to these two forces will converge to

〈
(∆x)2

〉
→ 2dDt, (2.5)

where d is the dimension of the space in which the particle is moving and the

di�usion coe�cient D satis�es

D =
kBT

γ
. (2.6)
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Combining the two solvent forces with Newton's second law, we obtain the

free-solution Langevin equation for a particle,

ma = −γv +
√

2γkBTR(t). (2.7)

In biophysical systems, typically the dynamics are highly over-damped; that is,

the acceleration is nearly always negligibly small. In this limit, it is common to

approximate the acceleration as being zero to obtain the overdamped Langevin

equation:

v = −
√

2DR(t). (2.8)

The dynamics generated by the overdamped Langevin equation are sometimes

called Brownian dynamics, to distinguish them from the original Langevin

dynamics.

The standard Langevin dynamics models of molecular motion explored in this

thesis neglect hydrodynamic interactions. In this context, hydrodynamic

interactions can be understood to introduce correlations into the solvent forces

experienced by nearby particles. Various methods exist for incorporating

hydrodynamic interactions into coarse-grained simulations, including techniques

based on the Oseen tensor, dissipative particle dynamics, and lattice Boltzmann

methods (see, e.g., Winter and Geyer [41] for a discussion). Often, however, it is

acceptable to omit hydrodynamic e�ects when modelling macromolecules being

driven by electric �elds. Serendipitously, the induced �ow of ions through the

system tends to disrupt the hydrodynamic correlations between particles in such
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a way as to render the true dynamics of the system more akin to idealized

Langevin dynamics. Similarly, hydrodynamic e�ects can be suppressed for

molecules in con�ning geometries. Thus, since this thesis is particularly focused

on the electrically driven motion of macromolecules through con�ning geometries,

substantial progress can be made without considering these phenomena.

2.3 Electric �eld models: Laplace's equation

Forces encountered in biophysical systems are predominantly of electostatic

origin. At the small length scales relevant to nanobiophysics, electrostatic �elds

are actually quite complicated. Each atom in each solvent molecule or

macromolecule carries electric charges; some of these molecules are neutral, but

many are polarized or even carry net charges. Of particular importance are the

dissolved ions present in the solvent. These ions typically move much faster than

other electrical charges in the system. Acting as nearly free charges, they tend to

form boundary layers surrounding other charged objects. These boundary layers

have the e�ect of screening the eletric charges of macromolecules, reducing their

apparent charge.

Beyond this, electrohydrodynamic �ows also arise in systems when an external

electric �eld is applied. Ions tend to �ow in accordance with the direction of the

net electric �eld. However, this bulk �ow of ions leads to accumulation of net

charge near the charged boundaries of the system. At equilibrium, ions tend to

establish recirculant �ows along the edges of the system. Paradoxically, these ion

�ows can induce drag forces on macromolecules near boundaries acting in the

direction opposite to the overall electric �eld.
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Miraculously, many factors conspire such that the net e�ect of electrostatic

�elds in speci�c systems is often far less complicated than it appears in general.

The boundary layers surrounding macromolecules tend to equilibrate nearly

instantly on timescales of interest. Thus, macromolecules can often be modelled

as having �xed (screened) charge distributions. In higher �delity atomistic

simulations, this enables domain decomposition methods that only explicitly

calculate electrostatic interactions between nearby charged particles. In the lower

�delity coarse-grained models considered in this thesis, it is adequate to model

each generic particle in the system as carrying a single e�ective charge. The other

electrohydrodynamic boundary layers, such a recirculating ion �ows, tend to

decay on a length scale called the Debye length. This length scale is often very

small in experimental conditions relevant to periodic MNFDs, as very large ion

concentrations are commonly utilized. Thus, to a good �rst approximation, these

additional electrohydrodynamical e�ects can often be neglected.

In this thesis, electrostatic �elds are modelled by the simplest applicable PDE

model: Laplace's equation,

∇2u = 0, (2.9)

where u is the electrostatic potential such that E = −∇u is the electric �eld.

Once the electric �eld has been obtained, an electric force is added to the

Langevin equations in the form FE = qE, where q is some e�ective charge for

each particle. See Sec. 2.3.1, below, for a discussion of how the e�ective charge q

is modelled.

Despite its simplicity, Laplace's equation is fairly e�ective at capturing the
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most important feature of an electric �eld: its shape. For instance, the

non-uniform shape of the electric �eld plays an important role in the physics of

the nanopore-based MNFD studied in Chp. 3 and the slit-well MNFD studied in

Chps. 4 and 6. Laplace's equation is very commonly used to model the �elds in

such systems, and is a far more expressive model than assuming constant or

piecewise-constant electric force �elds.

Nonetheless, one of the opportunities for neural networks in the study of

MNFDs is the potential to enable the use of more advanced force �eld models

without incurring prohibitively large computational costs. Such models as the

Poisson-Boltzmann or Poisson�Nernst�Planck equations are nonlinear and can be

high-dimensional functions of all the particle positions in the system. The neural

network method is an appealing option for representing such force �elds

e�ciently. This opportunity is discussed further in App. C and Chp. 4.

2.3.1 Drift velocity, e�ective charge, and mobility

The overdamped Langevin equation in the presence of a constant and uniform

electric �eld is of the form

γv =
√

2γkBTR(t) + qE. (2.10)

The ensemble average of this equation is simply

γ〈v〉 = qE, (2.11)
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since the average of R is zero. Thus, a Brownian particle (i.e., a particle moving

according to Brownian dynamics) subject to a constant electric force will move,

on average, with some constant velocity proportional to the applied �eld2.

In this result, the mean velocity is referred to as the drift velocity vd. We can

write

vd ≡ 〈v〉 =
q

γ
E ≡ µE, (2.12)

where the constant of proportionality µ governing the drift velocity established by

a given electric force is known as the mobility. More precisely, the mobility

described here is the free-solution electrophoretic mobility. Similar mobilities can

be de�ned for other types of driving forces, such as pressure gradients.

Various theories exist for characterizing the electrophoretic mobility µ of

macromolecules and other colloids. The most popular theory is that of

Von Smoluchowski [40], which predicts that

µ =
εζ

η
, (2.13)

where ε is the electric permittivity of the solvent, η is the dynamic viscosity of the

solvent, and ζ is an important quantity known as the zeta potential. Various

corrections and extensions to Smoluchowski's theory exist, but the basic result is

su�cient for the systems of concern in this thesis.

The zeta potential ζ of a charged object is de�ned as the electrostatic potential

measured at a certain distance from its surface. Whereas ε and η are typically

2It can be shown that the mean velocity of a particle moving according to the full Langevin
equation will converge to the same behaviour after an initial transient behaviour.
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properties of the solvent alone, the zeta potential ζ can be a complex function of

the chemical interactions between the solvent and the surface of the charge object

in question. On the other hand, ζ is typically constant if these chemical factors

are held �xed, and is therefore independent of the shape of the object. As a

result, it is often stated that the Smoluchowski model predicts that the mobility

µ is independent of the size and shape of the charged object under consideration.

Mixtures of molecules with di�erent shapes and sizes but identical µ are called

free-draining mixtures. Important examples include: mixtures of nanoparticles

made of the same material but of varying sizes; and mixtures of DNA molecules

of varying length. A common and di�cult goal is to separate out the constituent

molecules of a free-draining mixture into subpopulations of similar shapes and/or

sizes. A broad variety of technologies exist for accomplishing this goal. In

particular, periodic MNFDs can be used for this purpose, and this application is

one of the main focuses in this thesis.

2.4 Modelling ensembles: The Smoluchowski

equation

Equation 2.10 and related Langevin equations are stochastic di�erential equations

(SDEs) describing the random trajectories of particle systems subject to a mix of

deterministic and random forces. A roughly equivalent description of these same

models can be obtained in terms of the the probability distributions generated

over the ensemble of all possible SDE trajectories. In particular, these

distributions are governed by deterministic partial di�erential equations (PDEs).
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The conversion of SDEs into PDEs is fraught with subtleties, not the least of

which being the nomenclature. For models concerned with the evolution of an

ensemble forward in time from some initial condition, the resulting PDE is called

the Kolmogorov forward equation of that SDE. Historically, the name of

Kolmogorov forward equation emerged in the mathematics community, and was

later identi�ed with what was already known as the Fokker-Planck equation in

the physics community. However, the modern preference is that the

Fokker-Planck equation should refer speci�cally to the Kolmogorov forward

equation of the velocity distribution of particles undergoing Langevin dynamics.

The PDE of interest in this thesis is actually the Kolmogorov forward equation

describing the position distribution of particles undergoing Langevin dynamics,

which is conventionally called the Smoluchowski equation. This equation, in turn,

is formally identical to the convection-di�usion equation, which describes the

dynamics of a dissolved substance inside a �owing solvent.

The simple Smoluchowski equation that describes the probability density

function of position for a particle moving randomly according to overdamped

Langevin dynamics (Eqn. 2.10) is given by

ρt(x, t) = ∇ · (D(x)∇ρ(x, t)− µ(x)E(x)ρ(x, t)) . (2.14)

Here D is the di�usion coe�cient, µ is the free-solution mobility, and E is the

external electric �eld. Typically this is augmented with boundary conditions and

an initial condition for the initial distribution ρ(x, 0).

A useful concept for understanding the Smoluchowski equation is the notion of

mean �ux of particle positions, also known as the probability �ux. For Eqn. 2.14,
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the probability �ux is

j = D∇ρ− µEρ. (2.15)

In general, the Smoluchowski equation can be rewritten as

ρt = ∇ · j (2.16)

for the appropriate choice of j. If an additional deterministic force �eld F is

added to the model, it will appear as an additional term in Eqn. 2.15 of the form

−F/γ (where γ is the friction coe�cient; Sec. 2.2).

For many-body systems containing n interacting particles, j will be a function

of all particles' positions, and inter-particle forces will be present in the

probability �ux. In a three-dimensional time-dependent system, j and ρ will

depend on 3n+ 1 variables. As noted before, high-dimensional PDEs are

traditionally very di�cult to solve directly. Much of the work in this thesis has

been aimed at the long-term goal of applying deep learning to solving the

many-body Smoluchowski equation directly. The studies in Chapters 4 and 6 and

Apps. B, C, and D have identi�ed and overcome barriers to this goal and will

hopefully act as a foundation for future work in this direction.
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2.5 Modelling �rst passage processes: The

time-integrated Smoluchowski equation

As the name suggests, a �rst passage process (FPP) is one that depends on the

�rst time at which a certain event occurs. In this thesis, we are focused

speci�cally on FPPs describing the �rst time at which a macromolecules makes

contact with a certain boundary of the space in which it is moving. Starting from

an SDE model, such as Langevin dynamics, the �rst passage time (FPT) can be

described by imposing an appropriate termination condition to the SDE. The

FPT distribution can then be sampled empirically using numerical simulations

(Sec. A.1), tabulating the times at which simulated trajectories encounter the

termination conditions for the �rst time.

Conversely, modelling the FPT starting from a PDE like the Smoluchowski

equation (Sec. 2.14) is very di�erent. In this case, the termination condition of

the SDE is replaced by an absorbing boundary condition for the PDE. That is,

the probability density function is required to go to zero at the same locations at

which the corresponding SDE model would meet its termination condition. In

such a model, the probability density function is interpreted as the distribution of

the positions of particles that have not yet touched the absorbing boundary at

least once.

In this PDE model of a FPP, the particle probability distribution ρ is not

properly normalized at t > 0�its integral over the problem domain is strictly less

than 1 after the initial time, and decreases monotonically with time. This
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motivates the de�nition of the survival probability,

S(t) =

∫

Ω

ρ(x)dx, (2.17)

which is the probability that the initial particle has not yet encountered the

absorbing boundary condition by time t. From this quantity it is possible to state

the FPT distribution:

τ ∼ −S ′(t). (2.18)

Essentially, −S ′(t) is the instantaneous rate of probability �ux (Eqn. 2.15) passing

into the absorbing boundary at the time t, which is equivalent to the probability

of the particle reaching the termination condition for the �rst time at that time t.

Both the PDE and SDE formulations of the FPT su�er from a common

practical limitation: they are de�ned over an in�nite time domain. In practice,

particle simulations of the SDE model will terminate when the �nite number of

simulated particles have all encountered the terminal condition. This can mean

that a very large number of particles must typically be simulated to resolve any

phenomena that only occur rarely; conversely, it means that the simulation time

is a stochastic quantity that is not known a priori, and that there is some

probability that some particle trajectories will require very long computation

times (this is discussed in more detail in Chapter 6). Conversely, to determine

FPT distributions using the PDE models, the time-dependent solution ρ(x, t)

would be computed until some �nite time horizon in order to approximate

Eqn. 2.18. Both approaches necessitate costly time-dependent numerical
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solutions.

Rather than attempting to deal with the challenges of solving these

time-dependent problems over long time horizons, a useful manipulation can be

applied to reformulate the problem into a hierarchy of time-independent

problems. Consider the Smoluchowski equation for a single particle, given by

Eqn. 2.14. Assuming a �xed initial condition and integrating both sides of the

equation over the entire time domain yields

∫

t

ρtdt = ∇ ·
(
D(x)∇

[∫

t

ρdt

]
− µ(x)E(x)

[∫

t

ρdt

])
. (2.19)

This form assumes the linearity of the various operators and, crucially, the

time-invariance of D,µ,E, of the PDE domain Ω, and of the PDE boundary

conditions. Next, assume that the problem is reasonably well-behaved such that

ρ→ 0 as t→∞. Integrating the LHS by parts then yields

−ρ0 = ∇ ·
(
D(x)∇

[∫

t

ρdt

]
− µ(x)E(x)

[∫

t

ρdt

])
, (2.20)

where ρ0 is the initial condition for ρ. This will be referred to as the

time-integrated Smoluchowski equation. The time integral of ρ is an important

quantity, and accordingly will be given a name:

g0 ≡
∫

t

ρdt. (2.21)
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Notice that the �eld g0(x) does not depend on time; it satis�es the

time-independent PDE

−ρ0 = ∇ · (D(x)∇g0 − µ(x)E(x)g0) . (2.22)

Assuming that the domain Ω and the boundary conditions for ρ are also

independent of time and linear in ρ, it follows that g0 satis�es essentially the

same boundary conditions as ρ.

The above provides a PDE formulation via which the �eld g0 can be solved

directly; but what is the value of this quantity? Consider the de�nition of the

FPT distribution in terms of ρ:

τ ∼ −S ′(t) = − d

dt

∫

Ω

ρ(x, t)dx =

∫

Ω

(−ρt(x, t))dx (2.23)

where the last equivalence follows as we have assumed that Ω is independent of

time. Then the �rst moment of the FPT, i.e., the mean �rst passage time

(MFPT), can be written as

〈τ〉 =

∫

T

τ (−S ′(t)) dτ =

∫

T

τ

∫

Ω

(−ρt(x, τ))dxdτ =

∫

Ω

[∫

T

(−τρt)dτ
]
dx. (2.24)

Applying integration by parts to the inner integral of the last expression yields

−
∫

T

τρtdτ = −(τρ)|τ=∞
τ=0 +

∫

T

ρdτ = g0. (2.25)
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Here, it is assumed that τρ→ 0 as τ →∞, which is generally true for

time-independent FPPs in biophysics. Thus, it follows that

〈τ〉 =

∫

Ω

g0dx. (2.26)

In other words, the �eld g0 has the property that its volume integral is equal to

the MFPT.

The above derivation can be extended to generate all of the higher moments of

the FPT distribution. Speci�cally, a hierarchy of PDEs de�nes the quantities

g0, g1, . . . such that the volume integral of gi yields the ith moment of the FPT

distribution and each gi for i > 0 satis�es

−gi−1 = ∇ · (D(x)∇gi − µ(x)E(x)gi) . (2.27)

This mathematical framework for the moments of the FPT distribution has

proven very useful. Redner [36] illustrates its utility for the theoretical analysis of

FPPs. This approach is especially fruitful in the case of uniform di�usion, where

E = 0 and D is constant. In that case, the equations for the gi reduce to the

well-studied Poisson equation, and analogies to electrostatics can be leveraged to

draw conclusions about MFPTs in di�usion.

One of the major arguments of this thesis is that g0, in particular, has practical

value for applied research and development of MNFDs. The work in Chapters 3

and 6 culminate in the conclusion that a key physical property of these devices

(the e�ective mobility) can be expressed exactly as a FPP. The study in App. D

illustrates that deep learning can be used to reliably and e�ciently solve the
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parameterized time-integrated Smoluchowski equation modelling that FPP. As

long as the PDE model for g0 is well-posed, the solution g0 will depend smoothly

on the parameters of the PDE model, such as D, µ, E, and even Ω. Thus, g0 acts

as a proxy for numerically approximating smooth end-to-end mappings from key

physical inputs variables to key physical observables. Deep learning plays a key

role in e�ciently solving and representing these highly parameterized mappings.

Although the demonstration in App. D is restricted to the study of single-body

molecules (i.e., nanoparticles), extensions of the method to many-body molecules

is potentially possible given deep learning's success at solving other

high-dimensional PDEs (Sec. A.3). Besides this application, Chapter 3 and

App. D suggest that the g0 �elds themselves may contain useful qualitative

information about molecular dynamics pertaining to the MFPT. To the best of

my knowledge, these e�orts are the �rst demonstrations that the g0 �eld is of

practical value in applied computational biophysics, rather than just being a

mathematical tool for analyses in theoretical biophysics.
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Chapter 3

A sequential nanopore-channel

device for polymer separation

A sequential nanopore-channel device for polymer separation is a purely

computational study in which Magill, Waller, and Haan [28] propose a

micro/nano�uidic device (MNFD) design for sorting free-draining polymer

mixtures by size, which is named the nanopore-channel device. This kind of

molecular sorting is a key technological capability in many biological sciences.

Whereas traditional separation methods like gel electrophoresis are still

widespread today, MNFD-based sorting technologies could enable the integration

of polymer separation pipelines into lab-on-a-chip devices. The device in Magill,

Waller, and Haan [28] is an attempt to induce size-dependent e�ective mobilities

by exploiting the size-dependent translocation time of polymers traversing

nanopores. In particular, the device geometry consists of a series of nanopores

connected by channels, through which polymers are forced via an electric �eld.

The published manuscript is included in Sec. 3.3.
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3.1 Motivation

The size-dependence of polymer translocation time has been the subject of

extensive study [34, 37]. Many works have considered the idea of estimating

polymer lengths by measuring the translocation time. However, the translocation

process typically features a large amount of intramolecular variability; that is, a

polymer of a given length can generate a very broad distribution of translocation

times. This makes it di�cult to accurately estimate a polymer's length based on

only a single measured translocation time. The more variable the mapping from

chain length to translocation time, the greater the number of measurements

necessary to make an accurate estimate.

The intramolecular variability of the translocation time τ can be quanti�ed

conveniently by the coe�cient of variation,

cv(τ) =
στ
〈τ〉 , (3.1)

where 〈τ〉 and στ are the mean and standard deviation of the translocation time,

respectively. When the coe�cient of variation is large, the signal-to-noise ratio on

measured translocation times is small, and length estimations will be unreliable.

Technologies like the �ltered nanopore of Briggs et al. [5] can substantially reduce

the coe�cient of variation of translocation time, thereby improving the

estimation of polymer lengths by translocation time.

The problem of highly variable translocation time can be particularly

problematic for certain exotic nanopore designs. For instance, the

cavity-nanopore proposed in Magill et al. [29] generates non-monotonic
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translocation times. It was proposed in that study that such a phenomenon could

be tuned to enable polymers of a speci�c target length to traverse the device

more quickly than both shorter and longer chains, with the separation of

polymers by size as a potential technological application. However, unpublished

follow-up work suggested that, for polymers such as double-stranded DNA, the

intramolecular variability of translocation through the cavity-nanopore was very

large. Moreover, variance-reduction techniques like the �ltered nanopore of Briggs

et al. [5] are not applicable to such devices; the noise is intrinsic, coming

primarily from the dynamics within the cavity of the device.

The original motivation for the nanopore-channel device being discussed in this

chapter was to exploit the central limit theorem to combat this problem. By

combining multiple noisy nanopores into a compound system, the idea was to

create an overall device that exhibited substantially less variability. For example,

consider a set of n identical nanopores, and suppose that a polymer will

translocate through all of them consecutively. Then if τi is the (stochastic)

translocation time of the polymer through the ith nanopore, then its overall time

spent translocating is

τtotal =
n∑

i=1

τi. (3.2)

Suppose further that the polymer is allowed to come to equilibrium between

translocation events, so that it is reasonable to treat each translocation time as a

statistically independent random variable. Then the central limit theorem states
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that, for large n,

τtotal ∼ N
(
n〈τ〉, nσ2

τ

)
, (3.3)

where τ is the translocation time through any of the individual nanopores

(assumed to be identical), and N (a, b) denotes the normal distribution with mean

a and variance b. The coe�cient of variation cv of the total translocation time is

cv (τtotal) =
1√
n

στ
〈τ〉 =

1√
n
cv(τ). (3.4)

In particular, this quantity approaches zero with increasing n. In other words,

even if the individual nanopores generate highly variable translocation dynamics

(i.e., cv(τ) is large), the overall variability of the system can be made arbitrarily

small by stacking a su�ciently large number of nanopores in series. In particular,

this approach to variance reduction works even for pores such as the

cavity-nanopore, where techniques such as the �ltered nanopore will not work.

The nanopore-channel device is a minimalist attempt at a tangible

implemention of this mathematical intuition. As described in Fig. 1 of Magill,

Waller, and Haan [28] (Sec. 3.3), the device geometry consists of a series of

standard nanopores connected by cylindrical channels. Polymers are forced

through one nanopore after another by an applied electric �eld. So long as the

channels are su�ciently large, the polymers will return to equilibrium between

translocation events.

This device should be capable of enhanced polymer chain length determination.

If a single polymer is introduced at one end of the device and driven through
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nanopore after nanopore by an electric �eld, the net ionic current through the

system will intermittently be interrupted as the polymer translocated through a

nanopore1. The duration of each translocation can be estimated by the duration

of the corresponding current perturbation, and after many translocations the

length of the chain will be accurately determined by the mean time per

translocation. In practice, the condition of there only being a single polymer in

the device at any moment in time is crucial, or signals would become entangled.

If polymers are introduced through the �rst pore in the nanopore-channel device

by drawing them electrophoretically from some bulk reservoir, then this condition

can be ensured by calibrating the device such that the rate at which polymers are

captured from bulk solution is lower than the rate at which polymer traverse the

entire nanopore-channel device.

Beyond this, the manuscript (Sec. 3.3) concerns itself with the extended goal of

physically separating polymers by length. Separating polymer mixtures is a more

broadly applicable goal than determining the lengths of each molecule. In the

context of this application, the mathematical intuition presented above overlooks

two crucial considerations. Once the intramolecular variability of the overall

translocation time in the system is made small, how will this be translated into

the distributions of polymer positions? Second, what will happen to polymers in

the interval of time between consecutive nanopore translocations? As discussed

below, these two questions are closely related.

1So long as the channels between the nanopores are large compared to the polymer, the
polymer should have no detectable e�ect on the current through the system when it is far from
the pores.
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3.2 Results

The mathematical analysis in the �rst part of the manuscript explains how the

total translocation time of a polymer traversing the nanopore-channel device can

be related to the evolution of polymer position over time. Essentially, the

distribution of the time required for the polymer to travel a certain distance can

be transformed into the distribution of the distance travelled at a certain moment

in time. Importantly, the time to travel a certain distance through the device is

the sum of the total translocation time plus the total channel-crossing time (i.e.,

time taken to cross the channels connecting the consecutive nanopores).

The channel-crossing time emerges from the analysis as a crucial quantity for

practical nanopore-channel designs. Paradoxically, the results of Magill, Waller,

and Haan [28] (Sec. 3.3) demonstrate that the long-time dynamics of polymers

through the nanopore-channel device are sometimes essentially independent of

the translocation time. This is the case when the channels are very large, so that

polymers spend only a small fraction of their overall transit time inside the

nanopores. The nanopores are nonetheless an essential component of the device,

because of the bottleneck e�ect they create at the end of each channel. Indeed, in

the absence of these bottlenecks, the polymer dynamics in the channels would be

free-draining, and separation would not occur.

Another surprising behaviour of the nanopore-channel device is that it can

readily produce separation of polymers into monotonically increasing,

monotonically decreasing, or non-monotonic ordering of chain length. This is

possible even though the device is constructed using only standard nanopores, for

which the translocation time increases monotonically with polymer chain length.
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The behaviour arises because the mean channel-crossing time generally decreases

monotonically with chain length. The di�erent sorting orders are produced by

varying the size and shape of the channels, which controls the relative importance

of the two trends.

3.3 Manuscript
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In this work, we investigated whether a series of nanopores connected by channels can be used to
separate polymer mixtures by molecular size. We conducted multiscale coarse-grained simulations of
semiflexible polymers driven through such a device. Polymers were modelled as chains of beads near
the nanopores and as single particles in the bulk of the channels. Since polymers rarely escape back into
the bulk of the channels after coming sufficiently close to the nanopores, the more computationally
expensive simulations near the pores were decoupled from those in the bulk. The distribution of
polymer positions after many translocations was deduced mathematically from simulations across a
single nanopore-channel pair, under the reasonable assumption of identical and independent dynamics
in each channel and each nanopore. Our results reveal rich polymer dynamics in the nanopore-channel
device and suggest that it can indeed produce polymer separation. As expected, the mean time to
translocate across a single nanopore increases with the chain length. Conversely, the mean time to
cross the channels from one nanopore to the next decreases with the chain length, as smaller chains
explore more of the channel volume between translocations. As such, the time between translocations
is a function of the length and width of the channels. Depending on the channel dimensions, polymers
are sorted by increasing length, decreasing length, or non-monotonically by length such that polymers
of an intermediate size emerge first. Published by AIP Publishing. https://doi.org/10.1063/1.5037449

I. INTRODUCTION

Nano- and microfluidic devices show great promise as
next-generation polymer separation technologies.1–3 Poten-
tial advantages over traditional separation techniques include
faster throughput, higher efficiency, miniaturization and
automation (as in lab-on-a-chip designs), and the ability to
deal with long polymer chains.

Nanopores, small holes in thin membranes whose diam-
eters and thicknesses are on the order of tens of nanome-
ters, are an important class of nanofluidic devices.2 They
occur pervasively in biological systems, usually formed by
membrane-bound proteins, but can also be fabricated synthet-
ically in, for instance, thin films. They have attracted much
attention recently for technological applications, especially
DNA sequencing.4 However, since the mean passage time of a
polymer forced to translocate through a nanopore is a function
of its length, nanopores could also be used for polymer separa-
tion. Unfortunately, polymer separation using nanopores has
proven challenging in practice, as the translocation process is
highly variable.5–7

In this work, we study a device consisting of a series
of nanopores connected by channels. Our hypothesis is that
repeated translocation through multiple nanopores in series
should exhibit decreased overall variability relative to translo-
cation through a single nanopore so that this nanopore-channel
device could be used for polymer separation. We explore

a)Electronic mail: Hendrick.deHaan@uoit.ca

channel dimensions from hundreds to thousands of nanome-
ters and restrict our attention to cases where polymers can fit
in the channels without conformational restrictions. Polymer
dynamics in such channels are essentially the same as those
in bulk solution.2,3 Since these channels have no polymer sep-
aration power on their own, we consider this device to be a
minimalist implementation of multiple nanopores connected
in series. Nonetheless, as we will show, the overall separation
power of the nanopore-channel device still depends greatly on
polymer dynamics in the channels.

In order to study the polymer separation power of these
devices, we present a multiscale model of non-interacting
semiflexible homopolymers driven by an applied electric
field through a series of nanopores connected by cylindri-
cal channels. We analyze simulations of polymers traversing
a single channel and a single nanopore to infer the aver-
age speed of polymers moving through the entire nanopore-
channel device. Our results indicate that polymers can be
sorted with good resolution using hundreds to thousands of
pores in series. Channel geometry plays a fundamental role
in determining the polymer dynamics. For instance, depend-
ing on the channel dimensions, the polymers can be sorted
into increasing, decreasing, or non-monotonic order by chain
length.

We begin by reviewing some of the relevant literature on
polymer separation with micro- and nanofluidic devices. Next,
we introduce the details of our multiscale model, which models
the system at three levels of detail. We then present our sim-
ulation results at each of these three scales. We show that the

0021-9606/2018/149(17)/174903/10/$30.00 149, 174903-1 Published by AIP Publishing.
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nanopore geometry used here is not especially optimized for
polymer separation. Such a geometry was chosen by design
to demonstrate that the nanopore-channel device provides
enhanced polymer separation even without carefully manu-
factured pores. We also discuss the rich polymer dynamics
revealed by simulations in the interior of the channels, far from
the pores. We derive a simple physical model that accounts for
much of the interplay between the polymers’ lengths and the
channels’ dimensions. We finish with the results demonstrat-
ing the separation of polymers by length as they move through
many consecutive nanopores.

A. Background and related work

At a high level, the goal of polymer separation can be
stated as follows: given a mixture of polymers, group poly-
mers according to some property into distinct spatial regions.8

For linear polymers, the goal is usually to separate them
according to the chain length. Unfortunately, some poly-
mers of interest (most notably DNA) are free-draining, which
means that chains of different lengths move with the same
drift velocity under an applied electric field in bulk solution.3

As a result, devices for DNA separation must introduce a
length-dependence on polymer motion.

Traditional approaches to polymer separation include
gel electrophoresis techniques (the physics of which was
reviewed, for instance, by Viovy9) and capillary electrophore-
sis methods (which were recently reviewed, for instance, by
Harstad et al.10). Many nano- and microfluidic devices have
been considered for next-generation polymer separation tech-
nologies. In a review of this topic, Levy and Craighead clas-
sified these sorting approaches into entropic sorting devices,
Brownian ratchets, structured media, and free solution sort-
ing devices.2 In a separate review, Dorfman et al. explored
two classes of sorting devices: post-arrays (which are a subset
of what Levy et al. called structured media devices) and slit-
well devices (which fall under what Levy et al. called entropic
sorting devices).3

In entropic sorting devices, length-dependent mobility is
created by a series of entropic traps. For instance, this has
been accomplished by Han and Craighead with the slit-well
motif, which consists of a series of small nanoslits connected
by larger slits, or wells.11,12 There is an entropic barrier for
polymers to enter the small nanoslits from the wells, and the
dynamics of this escape process depend on the chain length.
Specifically, as they can enter the smaller nanoslit by any
point along their length, longer chains make the transition
more quickly than smaller chains. This device is similar in
spirit to the nanopore-channel device considered here, with
the nanopores playing the role of the small nanoslits and the
channels playing the role of the wells. However, the devices
are fundamentally different because the slit-well device is
essentially two-dimensional, whereas nanopores are essen-
tially one-dimensional. For instance, in the nanopore-channel
device, chains of all length can only enter the nanopore at a
single position, so the primary dynamics of the slit-well motif
have no analogues. Another intrinsic difference between the
two devices is in the shape of the electric field. The electric
field in the well of the slit-well devices is reduced from that
in the slits by a linear ratio of their respective length scales

(by conservation of flux). In contrast, the electric field in the
channels of the nanopore-channel device is reduced from that
in the nanopores by the square of the ratios of the two length
scales. Thus the nanopore-channel device intrinsically sup-
ports much larger field gradients. Nonetheless, the systems do
share some similarities: as we will show, in both systems, poly-
mers can exhibit the unusual behaviour of increasing mobility
with increasing chain length.3

As mentioned earlier, in addition to their use for sequenc-
ing applications, nanopores have also been previously consid-
ered for polymer separation. Length-dependent motion arises
because longer polymers take longer, on average, to translocate
through a given nanopore. For instance, Carson et al. and Bell
et al. demonstrated experimentally that the length of a translo-
cating DNA chain can be identified by its translocation time.5,6

Unfortunately, the use of nanopores for polymer separation by
length is limited by the intrinsic variability of the transloca-
tion process. For instance, typical nanpores cannot identify
the length of double-stranded DNA (dsDNA) molecules with
better resolution than roughly 1000 bp.6 By carefully manu-
facturing nanopores with diameters very close to 3 nm, Carson
et al. achieved improved resolutions on the order of 100 bp.5

Briggs et al. also demonstrated resolution on the order of
100 bp in nanofiltered nanopore devices, where a nanoporous
membrane pre-confines DNA molecules before translocation.7

These innovations improve the sensitivity of the transloca-
tion time to the chain length by reducing the variability of the
translocation process, but this comes at the cost of additional
manufacturing requirements.

In principle, a simple way of improving the resolution of
any nanopore-based filters would be to use many of them in
series. Repeated independent applications of a stochastic filter
n times should theoretically reduce the net variability of the
process by a factor of 1/

√
n. One might therefore hope to sim-

ply study a single nanopore in isolation and then extrapolate
to determine the filtering potential of n nanopores in series.
However, as this work will demonstrate, the precise fashion
in which the nanopores are connected is fundamental to the
overall polymer dynamics and cannot be neglected.

To our knowledge, there have not been many previous
studies exploring the translocation of polymers through mul-
tiple nanopores in series. Langecker et al. conducted experi-
ments with dsDNA in a micron-scale cavity bounded by two
nanopores.13 They used 10 kbp dsDNA and conducted time-
of-flight measurements at a variety of voltages. In contrast to
the work presented here, those experiments varied voltage but
did not vary the chain length. Thus, those experiments cannot
be used directly to speculate about the separation power of
nanopores in series. Instead, they demonstrate that nanopores
in series can yield a more detailed analysis of molecular
properties than single nanopores.

II. MODEL AND METHODOLOGY

In this section, we will describe our multiscale model
of polymers in the nanopore-channel device as well as our
simulation methodology. The system was modelled at three
scales, which will be referred to as the microscopic, meso-
scopic, and macroscopic scales in order from the finest to
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coarsest level of detail. Figure 1 summarizes the models used
at each scale. At the largest scale [Fig. 1(c)], the system
geometry consists of nanopores connected in series by chan-
nels, with all pores and channels centered on a common axis.
Subsections II A–II C will describe the model at each scale in
turn, and additional details are available in the supplementary
material.

A. Microscopic model

The microscopic model [Fig. 1(a)] was used to cap-
ture the dynamics of the molecules near the nanopores. This
phase included capture from free solution into the pore and
translocation through the pore. This is the most detailed
scale in our model, as the polymer dynamics in this region
are both complicated and crucial to a proper understanding
of the device. The simulations utilized a standard coarse-
grained Langevin dynamics (CGLD) polymer consisting of
N beads.14 This level of detail has been used extensively to
study polymer translocation through nanopores.15–26 Simula-
tions were conducted using the ESPResSo software package
on the Shared Hierarchical Academic Research Computing
Network (SHARCNET).27

Polymers were constructed using N identical monomers
arranged linearly using finitely extensible nonlinear elas-
tic (FENE) forces to bond monomers and Weeks-Chandler-
Anderson (WCA) forces to model the excluded volume.14 The
semiflexibility of the chain was modelled using a harmonic

potential on the angle formed by any three consecutive
monomers along the chain backbone. A persistence length of
Lp = 10σ was imposed, where σ is the effective monomer
diameter dictated by the WCA interaction. Length scales
throughout the remainder of this paper will be expressed in
terms of this effective chain width σ. This choice was moti-
vated by double-stranded DNA molecules, which have an
effective width of a few nanometers (larger than the steric
width ≈2.5 nm) and a persistence length of roughly 30-50
nm.28–31 As discussed in the supplementary material, the
aspect ratio of the model polymer was somewhat smaller
than that of real DNA, which enabled longer polymers to be
simulated.

WCA forces were also used to apply purely repulsive
interactions between monomers and the nanopore walls. An
effective nanopore radius of 0.8 was used. This radius was
selected as it only enabled polymers to traverse the pore by an
end, i.e., polymers could not enter the pore in a folded config-
uration. This simplified the current analysis, but future work
will explore the impact of folding dynamics.

The thermal motion of the polymer was modelled via
Langevin dynamics. The thermostat used a thermal energy of
kT = 1 and a friction coefficient of γ = 1 for each monomer,
and the monomer mass was m = 1 as well. Translocation
was driven by an electric force field. The shape of the elec-
tric field in the microscopic region was approximated by the
analytic solution for the electric field of a nanopore in an

FIG. 1. Schematics illustrating the
three modelling scales used for this
system. (a) In the microscopic model,
WCA and FENE interactions were used
to construct a linear homopolymer of N
beads, and harmonic angular potentials
were used to implement semiflexibility.
(b) At the mesoscopic scale, the entire
polymer was represented by a single
Brownian particle. Simulations were
initialized with particles at the inlet pore
of a channel of radius Rch and length
Zch and terminated when particles
were absorbed near the outgoing pore.
(c) At the macroscopic scale, the
net motion of polymers through the
nanopore-channel device was inferred
by treating each of the consecutive
nanopore-channel pairs as identical and
independent subunits of the device.
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infinite unbounded domain.32 This is a good approximation
when the channel dimensions are much larger than the pore
radius, which is the case for all simulations in this paper.
The advantage of this approximation is that the results of the
microscopic simulations become independent of the channel
geometry, enormously improving the computational efficiency
of the model. The magnitude of the electric field was scaled to
match the Péclet number of the simulations to relevant exper-
imental conditions for dsDNA translocation, as discussed in
the supplementary material.33

At the start of the microscopic simulations, polymers were
initialized in an equilibrated conformation a distance rcap = N /4
from the nanopore. This distance was chosen to balance two
effects. We found that this rcap was far enough from the pore
that the electric field strength was not strong enough to signif-
icantly deform the polymer conformations from equilibrium
as they diffused around that distance. Conversely, this rcap was
also close enough to the pore that the electric field was strong
enough that polymers were unlikely to diffuse very far from
the pore before translocating. See the supplementary material
for more details.

The primary measurement in the microscopic model was
the microscopic time, defined as the time after the release of
a polymer (i.e., after equilibration) until all of its monomers
were located on the trans side of the nanopore. If polymers
ever moved far enough away from the pore that the closest
monomer to the pore was farther than the cut-off radius of N
from the pore, then the event was considered a failure. Failed
events were restarted so that the total number of successful
translocations measured at each chain length was 2000.

B. Mesoscopic model

The mesoscopic model [Fig. 1(b)] was used to study the
dynamics farther from the nanopores, in the bulk of the chan-
nels. In this region, the electric field gradient was small over
the length scale of the polymer so that it could not signif-
icantly deform the polymer conformations. In other words,
these dynamics were dominated by the translational motion
of the center of mass. As such, in the mesoscopic model,
each polymer was represented by a single effective particle
and was simulated using coarse-grained Brownian dynamics
(CGBD).14

The mesoscopic CGBD simulations were made compati-
ble with the microscopic CGLD simulation conditions. The
diffusion coefficients of the mesoscopic particles were set
to 1/N, corresponding to the center of mass diffusion coef-
ficients predicted by the Rouse model for polymers of length
N in the microscopic model. The CGBD thermostat and force
magnitudes were set as in the microscopic model, with each
polymer experiencing a net friction coefficient equal to N times
the monomer γ, in accordance with the Rouse model. Simi-
larly, each CGBD chain experienced a net force equal to N
times the force that a single monomer would feel. As a result,
large chains diffused more slowly than smaller chains, but all
chains exhibited identical free solution electrophoretic drift
velocities.

The electric field in the mesoscopic model was obtained
by solving Laplace’s equation in cylindrical coordinates using
the finite element method with the FEniCS software package.34

The channel was modelled as a cylinder of length Zch and
radius Rch [see Fig. 1(b)]. The mesoscopic simulations were
initialized with particles in the inlet nanopore of a channel
and proceeded until the particles contacted the hemisphere
of radius rcap = N /4 surrounding the outgoing nanopore. We
call the first passage time for particles to reach this absorbing
hemispherical boundary the mesoscopic time.

As stated above, the starting radius of the microscopic
model is included in the mesoscopic model as an absorbing
boundary. As argued in the supplementary material, this is
valid because it was possible to choose a set of capture radii
rcap = N /4 such that the failure rate was simultaneously small
for all chain lengths. However, the failure rate is counted by
the number of events that diffuse to a distance of 4rcap from
the pore. Within that distance, the microscopic model neglects
the channel walls, which is a limitation of the current model.
Nevertheless, the computational benefit of neglecting the chan-
nel walls in the microscopic model is enormous, as it enables
the same microscopic results to be used across many channel
geometries. To justify the use of this simplifying assumption,
the mesoscopic model was only studied for polymer chains
that satisfied the condition that

min(Rch, Zch) > rcap + RG, (1)

where RG is the radius of gyration and was approximated with
the wormlike chain model

RG ≈


LpN

3
− L2

p +
2L3

p

N

(
1 − Lp

N

(
1 − e

− N
Lp

))

1/2

, (2)

where N is the nominal contour length and Lp = 10 is the
persistence length.35 This restriction reduces the influence of
omitting the walls from the microscopic model, since it ensures
that the walls are far from the pore, where the electric field is
weak. Furthermore, it also ensures that the polymers have RG

much smaller than the dimensions of the channel, which is
another assumption of the model.

C. Macroscopic model

The transport of polymers across multiple channels was
captured in the macroscopic model. The behaviour of poly-
mers at this scale was solved analytically on the assumption
that their dynamics in distinct nanopores and channels were
independent and identical. When this is the case, the macro-
scopic dynamics are entirely determined by the micro- and
mesoscopic dynamics in any given channel.

Since the boundary between the microscopic and meso-
scopic domains was chosen such that the rate of transport from
the microscopic zone back into the mesoscopic region was neg-
ligible, the time to cross a given nanochannel, tmacro, can be
approximately modelled as

tmacro = tmicro + tmeso, (3)

where tmicro and tmeso, the times to cross the respective sub-
domains, are statistically independent. Thus the probability
density function of tmacro is the convolution of the other two
variables’, i.e.,

ρ(tmacro) = ρ(tmicro) ∗ ρ(tmeso). (4)
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Similarly, the probability density function of the time at which
the polymer will enter the kth channel for the first time, t(k),
is given by

ρ(t(k)) = ρ(tmacro) ∗ ρ(tmacro) ∗ . . . ∗ ρ(tmacro)︸                                         ︷︷                                         ︸
k times

. (5)

Equation (5) for the distribution of t(k) can be computed
directly from the distributions of tmicro and tmeso. However, by
the central limit theorem, ρ(t(k)) will converge in the limit of
large k to

ρ(t(k)) ≈ N(kµmacro, kσ2
macro), (6)

where µmacro and σ2
macro are the mean and variance, respec-

tively, of tmacro, and N(µ,σ2) denotes the normal distribu-
tion. This approach treats k as a continuous random variable
when it is in fact discrete; this is justified for large values
of k.

From this, we derive the distribution of polymer positions
as a function of channel number k. The probability of a polymer
being in channel k ′ ≥ k at time t is given by

p(k ′ ≥ k) = p(t(k0) ≤ t) =
∫ t

0
p(t(k) = t ′)dt ′ (7)

≈ 1
2

*..
,
1 + erf

*..
,

t − kµmacro√
2kσ2

macro

+//
-

+//
-
, (8)

when k is large enough to apply the central limit theorem to
ρ(t(k)). This is the cumulative distribution of polymer posi-
tions in the macroscopic system. To obtain the corresponding
probability density function, we take the derivative and observe
that the position distribution over k at time t is

ρ(k; t) ≈ −∂p(k ′ ≥ k)
∂k

(9)

=
t + kµmacro√
8πk3σ2

macro

exp

(
− (t − kµmacro)2

2kσ2
macro

)
. (10)

Finally, we can apply the central limit theorem again to find
that the position distribution when t is large is given by

lim
t→∞ ρ(k; t) = N

(
σ2 + 2µt

2µ2
,

5σ4

4µ4
+
σ2t

µ3

)
(11)

= N *
,

t
µ

+
1
2

(
σ

µ

)2

,

(
σ

µ

)2 t
µ

+
5
4

(
σ

µ

)4
+
-
, (12)

where µ and σ are the mean and variance of tmacro, but the
subscripts have been omitted for ease of reading. The mean
and variance of ρ(k; t) were calculated using Mathematica
11.1.36

Equation (12) can be used to compute the position dis-
tribution’s coefficient of variation CV, which is its standard
deviation divided by its mean. This describes the relative width
of the distribution. In the limit of large t, the coefficient of
variation will approach

lim
t→∞CV =

σ√
µ

1√
t
∝ 1√

t
. (13)

Thus, although the position distributions become arbitrarily
broad at large times, they become progressively narrower
relative to the mean displacement.

Furthermore, when t is large, the mean polymer posi-
tion given by Eq. (12) will be roughly t/µmacro, and so the
mean polymer speeds through the nanopore-channel device
will approach 1/µmacro. Since µmacro = µmicro + µmeso by lin-
earity, the mean position of polymers after many translocations
depends equally on the microscopic and mesoscopic dynam-
ics. The same conclusion applies to the variance of the position
distribution. In other words, one cannot consider the filtering
effect of a series of nanopores without also considering the
exact process by which polymers are fed from one nanopore
into the next. As will be shown below, in Sec. III B, the
mesoscopic dynamics are quite rich and can in fact be more
important than the microscopic dynamics.

III. SIMULATION RESULTS

In this section, we present the results of our simulations
at the microscopic, mesoscopic, and macroscopic scales as
follows:

A. Results at the microscopic scale

The microscopic simulations were conducted for chains
of length N = 10, 20, 50, 75, 100, 150, and 200. Figures 2(a)
and 2(b) show the mean and variance, respectively, of the
microscopic time. Recall that the microscopic time includes
both the translocation time, which is commonly studied, and
the capture time, which is the time for the polymer to enter the
nanopore after the start of simulations. The capture process has
often been neglected in the literature, although recent work has
shown that it can radically alter the subsequent translocation
process.26

Figures 2(a) and 2(b) demonstrate that the mean and vari-
ance of the microscopic time increase monotonically with the
chain length over the range studied here. Although our results
do not suggest that the mean and variance of microscopic time
are related to the chain length N by power laws, it is still
interesting to consider the approximate scaling of these quan-
tities with N. Linear regression between the logarithms of the
respective quantities yields

µmicro ≈ 0.98N2.09, (14)

σ2
micro ≈ 2.87N4.01. (15)

Simulation studies measuring the scaling of just the mean
translocation time with N under conditions similar to those
used here have generally reported exponents in the range of
1.2–1.6.16–26 Conversely, the mean microscopic time mea-
sured here scales with N to an exponent of roughly 2.09. The
fact that the microscopic time contains the capture time in
addition to the translocation time is likely a major factor in
this discrepancy. In fact, the capture radius rcap = N /4 was
increased in proportion to the chain length, further compli-
cating a direct comparison between the microscopic time and
translocation time. Actually, given these significant differences
between the two quantities, it is remarkable that their scaling
with N is as similar as it is.
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FIG. 2. Results of the microscopic simulations. (a) The mean of the micro-
scopic time, tmicro, as a function of chain length. Error bars of one standard
error are much smaller than the marker size. (b) The variance of tmicro as a
function of chain length. (c) Violin plots showing the distributions of tmicro as
a function of chain length. The markers indicate the mean of each distribution.

It is also interesting to consider the intrinsic polymer sep-
aration power of the nanopores studied here. Figure 2(c) con-
tains violin plots of the microscopic times, from which micro-
scopic time distributions can be compared directly between
different values of N. It is clear from Fig. 2(c) that the micro-
scopic time distributions are heavy-tailed at every chain length
and that there is a significant amount of overlap between distri-
butions for different chain lengths. Thus the current nanopore
setup does not appear to be optimized for separation applica-
tions. We chose such a nanopore because the goal of the present
work is to demonstrate that even nanopores that clearly could
not be used to separate polymers in a single pass can success-
fully separate polymers when connected in series. Of course,
nanopore-channel devices constructed using nanopores with
superior length resolution, such as those demonstrated by

Carson et al. or Briggs et al., would be expected to achieve
even better polymer separation.5,7

B. Results at the mesoscopic scale

Figure 3(a) shows the mean mesoscopic time for the same
range of chain lengths N as used in the microscopic model, as
well as for N = 300, all for various combinations of the channel
dimensions (Rch, Zch). Also shown is the mean microscopic
time, for comparison. Mesoscopic simulations were run for
every combination of both Rch and Zch in {30, 45, 60, 75,
90, 150, 300}; and for every combination of Zch in {500,

FIG. 3. In all three plots, the line color indicates the channel length Zch. Dif-
ferent lines of the same color correspond to different channel radii Rch such
that the mean of the mesoscopic time, tmeso, always increases monotonically
with Rch. (a) Mean tmeso for a range of chain lengths in channels of various
dimensions (Rch, Zch). The dashed line shows the microscopic time. (b) Mean
tmeso normalized by mesoscopic volume for a range of chain lengths in chan-
nels of various dimensions. (c) Mean tmeso normalized by mesoscopic volume
shown as a function of the normalized chain length N /N∗ (discussed in the
text) in channels of various dimensions.
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1000} and Rch in {50, 100, 500}. The channel lengths, Zch, are
shown by the line color; different lines of the same color corre-
spond to different channel radii, Rch, such that the mean tmeso

increases monotonically with Rch in all cases. Only choices
of (N, Rch, Zch) that satisfy the restriction of Eq. (1) were
studied.

Some dependence of the mean tmeso on the chain length
is apparent: in all cases, longer chains cross the mesoscopic
region somewhat faster than shorter chains. However, the
extent of this effect depends greatly on the channel dimen-
sions. In particular, mesoscopic time is only comparable to
microscopic time when the channel volume is small. In large
channels, the mesoscopic time is much larger than the micro-
scopic time; furthermore, it changes very little with the chain
length. This suggests that connecting nanopores in series with
large gaps of bulk solution between them will not lead to any
polymer separation because the thermal motion between sub-
sequent pores will overwhelm the length sensitivity introduced
by the pores.

Some of the mesoscopic dynamics can be understood
by considering particle trajectories. Figure 4 illustrates two
typical mesoscopic simulations. The heatmaps show numeri-
cal measurements of the time-integrated position probability
density throughout the channel (in cylindrical coordinates).
These distributions, which will be referred to as g0, show
the average residence time of polymers in each region of the
channel before absorption near the exit nanopore. The integral
of g0 over the channel volume equals the mean mesoscopic
time.37 Figure 4 highlights the most important influence of
chain length N on dynamics in the mesoscopic simulations.
The plot for N = 10 shows a g0 distribution that is nearly
uniform over the entire channel, illustrating that these short
chains typically diffuse throughout the entire channel before
being captured. Conversely, the longer chains with N = 50 typi-
cally drift axially into the capture radius without diffusing very
far in the radial direction. As a result, the average residence
time g0 decays rapidly towards zero away from the channel
axis.

Nearly uniform g0 distributions, like the one in Fig. 4(a),
are typical when the channel volume is large or the poly-
mer chain length is small. We will refer to such conditions
as the diffusive regime. Since tmeso is the volume integral of
g0, it follows that normalizing Fig. 3(a) by channel volume

might account for some of the dependence of tmeso on
channel geometry. Figure 3(b) shows this by plotting the
following ratio:

tmeso

Vmeso
=

tmeso

πR2
chZch − 1

2
4
3πr3

cap

. (16)

As expected, tmeso/Vmeso is nearly independent of N, Rch, and
Zch in the diffusive regime.

The remaining mesoscopic dynamics arise for chains that
are long enough to drift axially into the capture radius without
first diffusing throughout the channel volume [as in Fig. 4(b)].
We will call such conditions the driven regime. We can estimate
the chain length at which the dynamics transition between the
diffusive and driven regimes by comparing the characteristic
time scales of axial drift and radial diffusion.

The characteristic time scale on which particles drift
axially across the channel is

τdrift,z ∼
Zch − rcap

vdrift,z
, (17)

where vdrift,z, the characteristic axial drift velocity, is roughly

vdrift,z ∼ (NFc
z )(γ/N) = Fc

z γ, (18)

where Fc
z is the characteristic axial force in the bulk of the

channel. The characteristic force in the bulk of the channel
can be expressed as

Fc
z ≈ F∗p

(
rp

Rch

)2

, (19)

where F∗p ≈ 5.19 is the average axial force in the pore (after
tuning the Péclet number; see the supplementary material) and
rp is the radius of the pore. Altogether, then the characteristic
time scale for drifting across the channel is

τdrift,z ∼
Zch − N

4

γF∗p

(
Rch

rp

)2

, (20)

using rcap = N /4.
The characteristic time scale on which particles diffuse

radially is

τdiff,r ∼
R2

ch

D
=

R2
ch

kBT
γN

=
NγR2

ch

kBT
. (21)

Setting this equal to the characteristic drift time yields

FIG. 4. Heatmaps of g0 (see the text)
comparing two mesoscopic simulations
in the same nanochannel geometry of
(Rch, Zch) = (30, 30) (a) for N = 10 and
(b) for N = 50. Brightness indicates the
average residence time of polymers in
each region of the channel before reach-
ing the absorbing boundaries (shown in
white). Longer chains spend less time
far from the axis of the channel.
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N∗ = Zch

/
*
,

1
4

+
γ2F∗pr2

p

kBT
+
-
≈ Zch

3.57
. (22)

It is interesting to note that this estimate of N∗ does not
depend on Rch. This fortuitous result arises because the mag-
nitude of the axial electric field in the bulk of the channel
decreases with Rch with the same scaling as the radial diffusion
time.

In the same way that normalizing time by Vmeso accounted
for most of the mesoscopic dynamics in the diffusive regime,
the dynamics in the driven regime can be accounted for by
normalizing the chain lengths by N∗. As shown in Fig. 3(c),
plotting tmeso/Vmeso against N /N∗ produces nearly the same
curve for all channel geometries currently under consideration.
In other words, the mean mesoscopic time is, to a reason-
ably good approximation, a function of the channel volume
and N∗.

Overall, Fig. 3 clearly demonstrates that tmeso generally
decreases monotonically with N. This is in direct contrast to
tmicro, which increases monotonically with N. In Sec. III C,
we will show that the interplay between these trends can
be exploited to sort polymers into increasing, decreasing,
or non-monotonic functions of N, depending on the relative
magnitudes of tmicro and tmeso.

The standard deviation of the mesoscopic time, σmeso,
also plays an important role in ultimately understanding the
macroscopic dynamics of the device. Unfortunately, it was
not possible to find a simple characterization of σmeso compa-
rable to that obtained above for µmeso. To some extent, larger
channels produce larger standard deviations. The details are
more complicated than this and are shown in the supplemen-
tary material. Detailed characterization is left to future work,
as the purpose of the present work is primarily to show that
the nanopore-channel device can indeed sort polymers under
reasonable experimental conditions.

C. Results at the macroscopic scale

Finally, we will combine the results of Secs. III A
and III B to compute the dynamics of polymers at the macro-
scopic scale, after they have crossed many consecutive pores
in the nanopore-channel device. In particular, this section will
show the results with three choices of the channel dimen-
sions, which cause polymers to become sorted into increasing,
decreasing, and non-monotonic orders by length, respectively.
Furthermore, we will discuss some of the general qualitative
trends that are suggested by our analysis.

1. Sorting into monotonically increasing order
of length

Recall that the microscopic time always increases with
chain length N, whereas the mesoscopic time always decreases
with N. To produce sorting in an increasing order of length,
then, the geometry must be chosen so that tmicro � tmeso. As
summarized in Fig. 3, the mean tmeso can be made smaller at
all chain lengths by reducing the channel volume. Conversely,
decreasing the channel length Zch accentuates the decrease of
the mean tmeso with N, which is counterproductive in the pur-
suit of increasing sorting. Thus to produce increasing sorting,

one must choose a channel with a small volume but a large
Zch; therefore, Rch must be small.

Figures 5(a) and 5(d) show the results at the macroscopic
scale for a device with (Rch, Zch) = (30, 90). Figure 5(a) shows
the time evolution of the approximated means and standard
deviations of the polymer position distributions over the chan-
nel number k. Specifically, these are obtained by combining
the results of the microscopic and mesoscopic simulations at
each value of N with Eq. (12), which is valid for large k. The
inset of Fig. 5(a) shows 1/µmacro as a function of N, which we
previously argued is the average polymer speed in the long-
time limit. Conversely, Fig. 5(d) shows the detailed position
distributions for each chain length, computed using Eq. (10),
after 40 × 106 units of simulation time. These results demon-
strate increasing sorting by chain length N over this range of
chain lengths.

Figure 5(a) shows that a good separation only occurs after
a very large number of channels are traversed. In practice, it is
likely desirable from a manufacturing point of view to mini-
mize the number of requisite channels. For increasing sorting,
this can be accomplished by increasing the magnitude of tmicro.
Future work will explore options for accomplishing this, such
as by using a nanopore with an internal cavity. As shown in
previous work, when the cavity size is slightly smaller than RG,
it acts as an entropic trap, greatly increasing the translocation
time.38

2. Sorting into monotonically decreasing order
of length

Next, we will demonstrate decreasing sorting by length.
In this case, in contrast to Sec. III C 1, the geometry must be
chosen so that tmicro � tmeso. This is accomplished by mak-
ing the channel volume large. However, as Zch increases, the
dependence of tmeso on N becomes less pronounced, which
reduces the separation power of the device. Thus decreasing
sorting occurs when the volume is large and Zch is small, in
direct contrast to increasing sorting.

Figures 5(c) and 5(f) demonstrate decreasing sorting in
a channel with (Rch, Zch) = (90, 45). A good separation is
achieved with far fewer channels than for increasing sorting.
This can be understood as follows. Sorting into a decreasing
order of length relies on the dependence of tmeso on N. As
shown in Fig. 3(c), increasing Rch increases the mean meso-
scopic time without significantly changing the dependence of
tmeso on N. As a result, the difference in tmeso between short and
long chains can be made large by increasing Rch, increasing
the sorting power per channel.

On the other hand, increasing Rch too much compromises
the filtering effect, as it broadens the position distributions.
This broadening arises because in very wide, short channels,
most of the channel volume is far from the axis, where the
electric field is weak. Polymers that diffuse away from the
axis before crossing the length of the channel axially remain
trapped in the channel for a long time. Conversely, since the
channel is also short, polymers will occasionally drift axially
straight from pore to pore without first diffusing far from the
channel axis. As a result, the spread in mesoscopic times is
very large, which leads to a broadening of the macroscopic
position distributions.
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FIG. 5. Results of the simulations at the macroscopic scale. The lines are labeled and colored by chain length N. (a)–(c) show the means and standard deviations
of polymer positions over channel number k as a function of time, whereas (d)–(f) show the complete polymer position distributions over k at fixed moments in
time. The insets in (a)–(c) show the (rescaled) average polymer speeds at large time, 106/µmacro, against the chain length N. Note that µmacro denotes the mean
macroscopic time. (a) and (d) demonstrate sorting into an increasing order of chain length in a long and narrow geometry, with (Rch, Zch) = (30, 90); (b) and
(e) demonstrate sorting into a non-monotonic order of length in a long and wide geometry, with (Rch, Zch) = (90, 75); and (c) and (f) demonstrate sorting into a
decreasing order of chain length in a short and wide geometry, with (Rch, Zch) = (90, 45).

3. Sorting into non-monotonic order of length

The strictly increasing or decreasing sorting cases are
extreme presentations of the nanopore-channel device. In gen-
eral, the device will sort polymers into a non-monotonic order
by length because typically tmicro � tmeso for short chains,
whereas tmeso � tmicro for sufficiently long chains. Follow-
ing the reasoning of Secs. III C 1 and III C 2, then, short
chains will be sorted into a decreasing order of length, and
long chains will be sorted into an increasing order of length.
Specifically, chains of some intermediate length will traverse
the nanopore-channel device more quickly than both shorter
and longer chains.

Figures 5(b) and 5(e) demonstrate this non-monotonic
sorting in a channel with (Rch, Zch) = (90, 75). In this con-
figuration, the chains with N = 150 move faster than all the
other chain lengths. This type of behaviour is ideal for appli-
cations where a specific population of chains must be isolated
from both longer and shorter chains. Conversely, the popula-
tion of chains with N = 200 was not separated from the chains
with N ≈ 100. This is inevitable in a situation where speed
is a non-monotonic function of N. Nonetheless, this exam-
ple demonstrates that a good separation can still be achieved
among the chains that are smaller than the fastest chain length
(e.g., N = 50 from N = 75, in this case) and also among chains
that are longer than the fastest chain length (e.g., N = 150
from N = 200, in this case). In fact, among these two popu-
lations, a good separation is achieved in this example using
fewer channels than required in either of the previous two

examples. In this sense, the device producing non-monotonic
sorting demonstrated better separation power per nanopore
than those producing monotonic sorting.

IV. CONCLUSIONS

We have demonstrated that polymers can be sorted by
length using a series of nanopores connected by channels.
Good length separation was observed despite the relatively
poor length sensitivity of the specific nanopore geometry
studied here.

Our results clearly indicate that the polymer dynamics
in the channels cannot be neglected, even though the chan-
nels have no intrinsic separation power in the absence of
the nanopores. In fact, whereas ignoring the channels (for
instance, by assuming tmacro consists of only translocation
time) would lead one to expect sorting into increasing order of
chain length (since translocation time increases with the chain
length), the nanopore-channel device can produce increas-
ing, decreasing, or non-monotonic sorting orders, depend-
ing on the channel dimensions. Furthermore, we showed
that the separation power per nanopore can actually be
greater in devices that sort into non-monotonic and decreasing
orders.

Finally, it is interesting to contrast the dynamics of
the nanopore-channel devices studied here and the slit-well
devices studied extensively in the literature.3 As pointed out
above, the devices differ at a fundamental level because the
slit-well device has one completely unconfined dimension,
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whereas the nanopore-channel device has none. Nonetheless,
we recover the counterintuitive result that longer polymers
can traverse the nanopore-channel device more quickly than
smaller polymers.

SUPPLEMENTARY MATERIAL

See supplementary material for additional details con-
cerning the model and simulation implementations.
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I. MICROSCOPIC MODEL

This section describes the model used for the micro-
scopic simulations.

A. Microscopic Polymer Model

The polymer in the microscopic model was composed
of N identical spherical particles. The system was sub-
jected to a Langevin thermostat with thermal energy
kBT = 1 and a friction coefficient γ = 11. The parti-
cles were bonded together into a linear chain using the
finitely extensible nonlinear elastic (FENE) potential,

UFENE(r) = −1

2
kFENEr

2
max ln

(
1−

(
r

rmax

)2
)
, (1)

where r is the center-to-center distance between particles,
kFENE is the FENE spring constant, and rmax is the max-
imum extension of the FENE bonds1. Excluded volume
interactions were modelled between all pairs of particles
by the Weeks-Chandler-Anderson (WCA) potential,

UWCA(r) =





4ε
[(
σ
r

)12 −
(
σ
r

)6]
+ ε r ≤ 2

1
6σ

0 r > 2
1
6σ

, (2)

where r is again the center-to-center separation1. The ε
and σ parameters describe the energy and length scales,
respectively, of the excluded volume interactions.

For a polymer created with FENE and WCA poten-
tials in CGLD, Kremer and Grest demonstrated that the
choice of parameters

kFENE = 30
ε

σ2
, rmax = 1.5σ, (3)

was numerically stable and reliably eliminated bond
crossing in the polymer2. This work adopted these val-
ues. Additionally, the simulations used σ = 1, so that
all other simulation lengths were expressed in units of
σ. Finally, ε was set to kBT = 1, the thermal energy

a)Electronic mail: Hendrick.deHaan@uoit.ca

scale set in the Langevin thermostat. As a result, the
time-averaged bond length of the combined FENE and
WCA interaction was 〈r〉t ≈ 0.97σ ≈ σ, so that σ was
also representative of the effective monomer size.

To model semi-flexibility, an angular potential was im-
posed on the angle formed by every three consecutive
particles along the polymer backbone, given by

Uangular(θ) =
1

2
kangular (θ − π)

2
, (4)

where θ is the angle formed by the three consecutive par-
ticles and kangular is the stiffness of the potential1. Un-
der the simulation conditions used here, the polymer was
found to satisfy

LP ≈ kangular, (5)

where LP is the persistence length of the chain. Thus
kangular was set equal to the desired value of LP = 10σ
(see the main text).

B. Microscopic Nanopore Model

In each iteration of the simulations, the polymer was
initialized on the cis side of a nanopore. The nanopore
was constructed using the pore constraint object pro-
vided by the ESPResSo software package. The pore
constraint consists of a mathematical plane, of a nom-
inal thicknes tnom, through which a perpendicular hole
of nominal radius rnom is removed. The UWCA(r) poten-
tial that was used to model excluded volume interactions
between particles was also defined between particles and
the pore constraint plane. In this interaction, the dis-
tance r is measured from the center of the particle to the
nearest point on the plane. Given this excluded volume,
it is convenient to define the effective width teff = tnom+σ
and effective radius reff = rnom − σ

2 of the nanopore. In
the same sense that the particles behave approximately
as hard spheres of radius σ/2, the nanopore corresponds
to a hard wall of its effective dimensions.

For the present study, the nanopore was defined with
tnom = 10−3σ and rnom = 1.3σ, giving effective dimen-
sions of teff ≈ 1.0σ and reff = 0.8σ. The thickness was
chosen as such to model the thin-membrane limit. The
nanopore radius was selected to be small enough that
translocation through the nanopore could only occur in
unfolded configurations.
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C. Microscopic Electric Field Model

Polymer translocation was driven by an applied volt-
age drop across the system. The electric field was
based on the analytic form used by Farahpour et al.3.

This field, ~EObl(µ, ν, φ), is obtained as the gradient
of the electric potential that solves Laplace’s equa-
tion in oblate spheroid coordinates (µ, ν, φ) around a
hyperboloid-shaped nanopore, which is of the form

VObl(µ, ν, φ) =
µ̂V0

πa cosh(µ)
√

sinh2(µ) + sin2(ν)
. (6)

Here, V0 is the total voltage drop across the system, ap-
plied infinitely far away on either side of the membrane.
The parameter a corresponds to the radius of the pore,
which was set to a = reff .

The mapping from oblate spheroid to cartesian coor-
dinates depends on a parameter ν0, which is the hyper-
boloid surface of constant ν corresponding to the insu-
lating boundary condition of the membrane wall. The
ESPResSo pore constraints, however, have flat planar

walls. Similarly, the solution ~EObl(µ, ν, φ) cannot cap-
ture the shape of the field inside the pore of the pore
constraint.

For simplicity, the nanopore was approximated as a
cylinder of radius reff . As described by Farahpour et al.,
the electric field for cylindrical pores through a flat mem-

brane can be captured using ~EObl(µ, ν, φ) in the limit
ν0 → 0 outside of the pore, and combining this with

a uniform, purely axial field ~Epore = Eporeẑ inside the
pore3. Given a total voltage drop Vtotal across the sys-
tem, the voltage drop across the pore is Vpore = Eporeteff ,
and the remaining voltage drop is assigned to V0 for the
field outside the pore. The two voltages are obtained by

enforcing that ~Epore be equal to ~EObl at the center of the
pore.

In this approach, the nanopore is approximated as
a cylinder, which is a reasonable approximation to the
toroidal boundary of the ESPResSo pore constraint. It is
important to note that the intersection of a plane with a

cylinder forms a corner, which manifests in ~EObl(µ, ν, φ)
as an unusually strong electric field near that region.
Such strong fields could create numerical errors in sim-
ulation. However, the electric field was applied to the
center of each particle, and the center of the particles
never entered the anomalous region due to the excluded
volume behaviour.

D. Tuning to Experimental Conditions

Since the present study was motivated by the applica-
tion of sorting dsDNA molecules using nanopores and
channels, the simulation parameters were chosen in a
manner consistent with experimentally relevant condi-
tions. This was accomplished by matching the drift-
diffusion balance in simulation to those commonly found

in related experiments, as proposed by de Haan et al.4.
Specifically, the simulations were modelled after feasible
experimental conditions, utilizing a high concentration
of NaCl electrolyte and a voltage drop of 200 mV per
nanopore5. In this section, subscripts will be used to in-
dicate when each parameter is being expressed in simu-
lation or experimental units. These are also summarized
in Table I.

The steric width of dsDNA is roughly 2.4 nm, but
in electrolytic solution it behaves with an effective
width due to the cloud of counter-ions that moves with
it6–9. The effective width and persistence length depend
strongly on electrolytic conditions. For the present study,
the polymer width σsim = 1.0 in simulation was mod-
elled as corresponding to an effective width of σexp = 5
nm. This is close to, but somewhat larger than rele-
vant experimental values. However, larger values of σexp

enable larger dsDNA molecules to be simulated, as com-
putational demands grow rapidly with N , the number of
beads per polymer.

The choice of σexp = 5 nm fixes all other length scales
in the system. The pore dimensions of teff = 1.0σ and
reff = 0.8σ therefore corresponds to a membrane that
is 5 nm thick containing a pore with a radius of 4 nm.
Conversely, since the experimental persistence length of
dsDNA under relevant conditions is roughly (LP )exp =
50 nm6–9, the persistence length in simulation must be
set to (LP )sim = 10.0σ.

The voltage drop across the system was also tuned to
experiment. Nanopore translocation experiments com-
monly use driving voltages on the order of 200 mV5.
The corresponding simulation voltage is chosen so as to
reproduce the experimental drift-diffusion balance. This
balance is represented by a Péclet number, defined as

Pé =
v∗L∗

D∗ , (7)

where v∗ is a characteristic velocity, L∗ is a characteristic
length, and D∗ is a characteristic diffusion coefficient4.

The characteristic velocity was set to the characteristic
drift velocity due to the driving voltage,

v∗ = µ
Vtotal

L∗ , (8)

where µ is the polymer mobility, Vtotal is the voltage
drop across the system, and L∗ is the same character-
istic length as above. In simulations, µsim = 1/γ = 1.0.
In experiments, the mobility of dsDNA in free solution
in NaCl was taken as µexp = 3.14× 10−8 m2/V.s10.

The characteristic diffusion coefficient was taken to be
that of the polymer. In experiments, the diffusion coeffi-
cient of dsDNA in NaCl is described by

Dexp =
2.38× 10−12

(
LC

m × 106
)0.608

m2

V · s , (9)

where LC is the contour length of the chain in m, which
will be discussed below11. In CGLD simulations, the
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Experiment Simulation

σexp = 5 nm σsim = 1.0
(LP )exp = 50 nm (LP )sim = 10.0σ

Dexp = 2.38×10−12

(LC/µm)0.608
m2

V·s
11 Dsim = kBT

γN

Vexp = 200 mV Vsim =
µexp

µsim

Dsim
Dexp

Vexp

TABLE I. Physical quantities in simulation and experimental
models.

polymer will exhibit Rouse dynamics, so its diffusion co-
efficient will be

Dsim =
kBT

γN
, (10)

where N is the number of particles used to represent the
chain12. Since σ is approximately the effective diameter
of each particle, N ≈ LC/σ.

Finally, the characteristic length L∗ is chosen to be the
chain width, σ. Using these values, the experimental and
simulation Péclet numbers can be set equal and solved for
Vsim, as follows:

Péexp = Pésim, (11)

v∗expL
∗
exp

D∗
exp

=
v∗simL

∗
sim

D∗
sim

, (12)

µexp
Vexp

σexp

σexp

D∗
exp

= µsim
Vsim

σsim

σsim

D∗
sim

, (13)

Vsim = Vexp
µexp

µsim

D∗
sim

D∗
exp

. (14)

Equation 14 gives an equation for the choice of Vsim

that will match the drift-diffusion balance of a corre-
sponding experimental configuration. However, Equa-
tion 14 for Vsim depends on the chain length. We eval-
uated Vsim for a representative tuning chain length, and
the resulting voltage was used for all simulated chain
length. The tuning chain was chosen to correspond to
N0 = 100 beads, corresponding to a dsDNA fragment
with LC = 500 nm.

E. Microscopic Simulation Procedure

The approach of the polymer to the nanopore from free
solution, referred to as the capture process, was explicitly
simulated. This is in contrast with the standard translo-
cation simulation protocol, where the polymer is typically
initialized with one or more monomers already threaded
in the pore. Recent work has emphasized the importance
of properly simulating the capture process13. The proce-
dure used here closely follows that presented by Vollmer
et al.13. All particle evolution in the microscopic simula-
tions was conducted by ESPResSo using Velocity-Verlet
integration with ∆t = 0.01τ , where τ refers to the sim-
ulation time units. The side of the nanopore membrane

Transport

Equilibrate
Start

Retract

Translocation

FIG. 1. Illustration of the simulation procedure used for the
microscopic model.

on which the polymer was initialized will be referred to
as the cis region, and the other side as the trans region.

The simulation procedure used for the microscopic sim-
ulations is illustrated in Figure 1. Initially, the first parti-
cle in the polymer was randomly placed on a hemisphere
of radius reql = 3Nσ centered at the pore entrance,
i.e. the middle of the cis face of the nanopore in line
with the effective thickness of the membrane. The hemi-
sphere was sampled uniformly for this point, but points
located within σ/2 of the nanopore membrane were re-
jected, as the particle-wall interaction energy exceeded
kBT at that distance. The remainder of the polymer’s
N particles were then added parallel to the plane of the
nanopore membrane. With the middle monomer held
fixed and with γ reset temporarily to 0.1, the chain was
allowed to equilibrated for a time τeql = 200Nτ .

After equilibration, the polymer was translated closer
to the pore as follows. The particle closest to the entrance
of the nanopore was translated in a straight line towards
the pore entrance until it was a distance rcap = (N/4)σ
away. The rest of the polymer was translated by the
same vector. As before, if any monomers were within a
distance σ/2 of the nanopore membrane after this trans-
lation, the initialization was rejected and the process was
restarted.

From this configuration, with γ reset to 1.0 and all
particles freed to move, the primary simulation was con-
ducted. Polymer evolution continued until one of two
termination conditions were encountered. If the poly-
mer moved entirely to the trans region, then the event
was terminated and considered a successful translocation.
However, if the polymer ever moved far enough from the
pore that the minimum distance between the polymer
and the pore entrance was farther than a cut-off distance
rcut = Nσ, the event was terminated and recorded as a
retracted event.

After retractions, the polymer was re-initialized until a
successful translocation was obtained. For each success-
ful translocation, two parameters were recorded: τmicro,
the duration of the successful translocation, as well as the
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FIG. 2. The fail rates shown as a function of chain length.

number of retractions that occurred before the successful
translocation.

F. Microscopic Failure Rates

Figure 2 shows the probability of failure by retraction
as a function of N . The failure rate was quite small
for all chain lengths, but decreased exponentially with
chain length. This implies that scaling the starting ra-
dius linearly with N is not enough to render the capture
process independent of N . Of course, given the com-
plex dynamics involved in the capture process, this is not
surprising. Nonetheless, for the current parameters, the
failure rate is small for all chain lengths, so that the bias
introduced by treating the capture radius as a purely ab-
sorbing boundary in the mesoscopic model is acceptably
small.

II. MESOSCOPIC MODEL

This section describes the coarse-grained Brownian dy-
namics model used to study the mesoscopic simulations.
The physical parameters were chosen in consistency with
those used for the microscopic model, and thus matched
the same experimental conditions. The length and time
scales in the mesoscopic model were the same as in the
microscopic model, namely σ and τ , and the electric field
strength was set equal to that derived for the microscopic
model.

A. Mesoscopic Polymer Model

In the mesoscopic model, each polymer was rep-
resented by a single particle. The particle position

evolved according to Brownian dynamics with a time-
independent external force field,

~v(t) =
1

γ
~Fext(~x(t)) +

√
2D~R(t), 1 (15)

where ~x,~v are the position and velocity of the particle,
γ is its friction coefficient, D is its diffusion coefficient,
~Fext is the total external force applied to the polymer,

and ~R is a unit random process satisfying

〈Ri(t)〉 = 0 (16)

〈Ri(t1), Rj(t2)〉 = δijδ(t1 − t2). (17)

The second condition means that the random force acts
independently in all three spatial dimensions and acts
independently at each instant in time.

In the microscopic simulations, the friction coefficient
of each particle was γ = 1. Since the microscopic dy-
namics were governed by Langevin dynamics, the Rouse
model of polymer dynamics can be applied12. According
to this model, the net friction coefficient for the poly-
mer’s center of mass is Nγ. Thus D in the mesoscopic
simulations was set to kBT/Nγ, where kBT = 1 as per
the microscopic simulations, and N represents the chain’s
length. Note that, in the mesoscopic model, N is explic-
itly assigned to the polymer, as polymers are represented
by only a single particle regardless of their length.

The net force on the polymer ~Fext can be written as

~Fext = N ~F0, (18)

where ~F0 corresponds to the electric field experienced by
each of the polymer’s N particles. The final equation of
motion was thus

~v(t) = ~F0(~x(t)) +

√
2

N
~R(t). (19)

In practice, the BD equations were integrated numer-
ically using a simple first-order finite difference scheme:

∆~x(t) = ~F0(~x(t))∆t+

√
2

N
∆t ~R(t), (20)

where a factor of 1/
√

∆t arises from the discretization of
the stochastic term1. Again, ∆t = 0.01 was used. The
solution was implemented in Python using the Numba
module’s CUDA API14. At each timestep, each compo-

nent of ~R(t) was generated using

Ri(t0) =
√

12(U − 0.5), (21)

where U is a random variable uniformly distributed on
(0, 1). This U was sampled using the Numba/CUDA-
compatible xorshiftstar function provided by Siu Kwan
Lam on the NVIDIA Developer Blog15.
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B. Mesoscopic Channel Model

The channel geometry used for this study consisted
of a cylindrical channel of radius Rch and length Zch

with nanopores in the center of both circular faces. The
nanopore dimensions matched the effective dimensions
of the pore used in the microscopic simulations, namely
a radius of Rpore = 0.8σ and a membrane thickness of
Tpore = 1.0σ. Since this geometry is cylindrically sym-
metric, it is convenient to discuss the domain in cylindri-
cal coordinates (r, z), with z parallel to the axis of the
channel. The particle simulations, however, were con-
ducted in Cartesian coordinates.

The mesoscopic simulations were conducted on the do-
main r ∈ [0, Rch], z ∈ [−0.5(Zch + Tpore),+0.5(Zpore +
Tpore)]. Thus the origin of the mesoscopic coordinate
system was at the center of the channel. It is conve-
nient to define Zpore = 0.5Tpore as the half-width of the
membrane, Zeff = 0.5Zch as the half-length of the chan-
nel, and Zmax = Zch + Tpore as the total length of the
domain.

The walls of the channel were treated as reflect-
ing boundary conditions for the mesoscopic polymers.
Whenever a particle’s displacement ∆~x would have re-
sulted in it crossing a wall, its displacement was manu-
ally overridden as follows. For a particle that would have
crossed the walls at z = ±Zeff , the particle was moved
towards the interior of the domain in the z direction by
twice its distance to the wall. For a particle that would
have crossed the circular boundary at r = Reff , the parti-
cle’s displacement was rotated by π/2 in the appropriate
direction to keep it inside domain.

The nanopores were not explicitly included in the chan-
nel model for particle motion.

C. Mesoscopic Electric Field Model

The electric field used in the microscopic simulations
assumed no insulating boundaries other than the sur-
face of the membrane containing the nanopore, i.e. it
neglected the walls of the channel. This approximation
is appropriate near the nanopore, but cannot hold for
the mesoscopic model. As such, the electric field for the
mesoscopic simulations was solved numerically using the
FEniCS finite element solver16. The Python version of
FEniCS 2016.2 available through Conda was used.

The polymers were assumed to have a negligble im-
pact on the shape of the electric field. Since the channel
is cylindrically symmetric, the channel was solved as a
function of (r, z). The electrostatic potential u was as-
sumed to satisfy Laplace’s equation,

∇2u = 0. (22)

Finite element methods solve the variational formulation

of the PDE16. For a test function v,

v(∇2u) = 0, (23)∫

Ω

v(∇2u)dV = 0, (24)

∫

Ω

(∇v) · (∇u)dV −
∫

∂Ω

∂u

∂n
vdA = 0. (25)

Since the test function is defined to be 0 on the boundary
of the domain, the variational formulation of Laplace’s
equation for u amounts to

∫

Ω

(∇v) · (∇u)dV = 0. (26)

In cylindrical coordinates, the volume element is dV =
rdrdφdz. Integrating over φ and dividing by 2π produces

∫
(∇v) · (∇u)rdrdz = 0. (27)

Equation 27 was solved with FEniCS. The finite element
mesh was created with the mshr FEniCS extension16.
The mesh resolution in the mshr generate_mesh func-
tion was set to 200. Subsequently, the FEniCS refine
command was applied to all cells containing a vertex at
a position (r0, z0) satisfying r0 < 3Rpore and having z0

within a distance 3Zpore of either nanopore midline.
As in the microscopic field model, the nanopores were

approximated as cylindrical. Dirichlet boundary condi-
tions were used to impose u(r, 0) = 0 and u(r, Zmax) = 1
at the midlines of the entrance and exit nanopores. The
walls were modelled as perfect insulators. Thus these
boundaries were left unspecified, as this implies homoge-
neous Neumann boundary in finite element methods. A
typical electric potential solution is shown in Figure 3.

The finite element solution was conducted using P2
basis elements16. The error of the solution was eval-
uated first by computing its Laplacian. The error of
the solution was only significant near the corners of the
nanopores. This had minimal impact on the simulation
results, since particles never entered that region due to
the strong electric field pushing them away from it as
well as excluded volume interactions with the walls.

The conservation of electric flux in the solution u was
tested as a second means of evaluating its accuracy. Its
gradient was computed in FEniCS, and its z component
Ez was projected onto the same function space used to
solve u. The average of Ez for z < Zpore was used as a
measure of the average electric field in the pore Ep, which
should be approximately uniform and purely axial. By
the conservation of electric flux, the electric field in the
middle of the channel should approach a uniform and
axial field of magnitude

Ec ≈ Ep
(
Rpore

Rch

)2

. (28)

A plot of Ez(z) for all vertices in a typical mesh is shown
in Figure 4, along with a line showing the average field in



6

FIG. 3. Contour plot of an electric potential solution in (r, z)
coordinates. Contours are drawn at 20%, 40%, 45%, 47%,
49%, and 50% of the voltage drop from either pore.

the pore and the theoretical value of Ec. The numerical
solution shows excellent agreement with the conservation
of flux, providing additional validation of its accuracy.

The electric potential solution was projected onto a
rectangular mesh so that it could more easily be used in
the particle simulations. The rectangular mesh spanned
only the channel, omitting the nanopores, since the par-
ticle simulations only required this domain. This rectan-
gular mesh had a resolution of Nr = 200 and Nz = 400
in the FEniCS RectangleMesh command. The solution
u was projected onto this mesh using again P2 basis el-
ements. After this projection, the Laplacian and con-
servation of flux tests were applied again to ensure the
accuracy was not compromised.

From the electric potential on the rectangular mesh,
the electric field was computed using numpy’s gradient
function, which uses a second-order central difference
method for interior points and a first-order difference
method at boundary points. The electric field was
applied to the particle simulations using a nearest-

0 100 200 300 400 500 600
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FIG. 4. Axial component of a typical electric field solution
as a function of the axial coordinate z. The black horizontal
lines show the average field in the pore (upper line) and the
corresponding prediction for average field in the center of the
channel (lower line).

neighbours approach. At each timestep, the position
of each particle was rounded down to the nearest mesh
point. This nearest-neighbour interpolation method was
chosen because it was computationally efficient. The
lower resolution compared to a more advanced interpola-
tion method was deemed acceptable because the electric
field changes very slowly for most of the channel domain,
and because the system should not be very sensitive to
small perturbations in the electric field shape.

D. Mesoscopic Simulation Procedure

The mesoscopic simulations were initialized with 10240
non-interaction particles positioned at the incoming
nanopore of a channel (i.e. the point pore of higher po-
tential energy). Particle positions were evolved as de-
scribed in the previous sections. An absorbing boundary
condition was placed at a distance of rcap = (N/4)σ from
the outgoing nanopore. This distance corresponded to
the starting radius of the microscopic simulations. Simu-
lation proceeded until all particles crossed the absorbing
boundary. The total duration of each trajectory, tmeso

was recorded.
It is important to note that the methodology utilized

to couple the microscopic and mesoscopic simulations as-
sumes that polymers that cross the capture radius at rcap

never retract very far from the outgoing nanopore there-
after. Indeed, this is why the microscopic failure rate
was measured: the values of rcap was chosen by trial and
error to keep this value low and roughly independent of
N .

Furthermore, some inconsistency is possible in simula-
tions where the microscopic cut-off radius is comparable
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FIG. 5. Standard deviation of tmeso for a range of chain
lengths in a variety of channel geometries.

to the radius of the channel. The microscopic simulations
do not account for polymer interactions with the channel
walls, nor is the electric field solution likely to be accurate
in that region. Any error arising from this inconsistency
is restricted to the simulations of large polymers in small
channels. Even then, the discrepancy is expected to be
small, as under such circumstances polymers were gener-
ally observed to remain close to the nanopore. The cuts
described in the main text restrict the data analysis to
cases where this error is expected to be tolerable.

Finally, the angular position on the capture radius at
which particles were absorbed in the mesoscopic simula-
tions was not recorded. The polymers in the microscopic
simulations were initialized randomly at positions uni-
formly distributed on this hemisphere. Future work will
explore the effect of the angle of approach of the incom-
ing polymer on the translocation process. However, the
electric field near the pore is primarily radial, so any an-
gular dependence will arise mostly from interactions with
the walls, and these are of secondary important for most
angles of approach.

E. Standard Deviation of the Mesoscopic Time

As described in the main text, the standard devia-
tion of the mesoscopic time, σmeso, contributes directly
to the long-time macroscopic behaviour of the system.
Figure 5 shows the standard deviations measured in the
mesoscopic experiments. Figure 6 shows the same data
under the normalizations that accounted for much of the
variability in µmeso.

Unfortunately, it is clear that the behaviour of the
standard deviation of the mesoscopic time σmeso is more
complex than that of the mean mesoscopic time µmeso.
Whereas µmeso seems to be captured, to first order, by
just the two parameters Vmeso and N∗, Figure 6 clearly
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FIG. 6. Standard deviation of tmeso normalized by mesoscopic
volume shown as a function of chain length normalized by N∗,
the critical chain length described in the main text.

demonstrates that σmeso depends non-trivially on addi-
tional parameters. Nonetheless, Figure 6 does highlight
some interesting features. All geometries tend to agree
for very short chains and very long chains. Furthermore,
an important curve seems to divide the results. Larger
channels lead to normalized standard deviations below
this curve, whereas smaller channels lie above it. Over-
all, Figure 6 seems to illustrate that larger channels lead
to more uniform g0 and thus relatively smaller normal-
ized standard deviations. More detailed interpretations
are left to future work.
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Chapter 4

Neural network solutions to

di�erential equations in nonconvex

domains: Solving the electric �eld in

the slit-well micro�uidic device

In Neural network solutions to di�erential equations in nonconvex domains:

Solving the electric �eld in the slit-well micro�uidic device, Magill, Nagel, and

Haan [26] apply the neural network method (NNM) to solve a partial di�erential

equation (PDE) model of the electric �eld in the slit-well device. This work

builds upon an earlier e�ort to use the NNM to e�ciently solve, store, and

evaluate complicated electric force �elds for subsequent use in MD simulations

(App. C). Early NNM literature suggested that the NNM should be speci�cally

well-suited for handling the challenging features arising in this application. Very

few studies had actually investigated these claims directly, however, and Magill,

Qureshi, and Haan [27] (included as App. C) uncovered a signi�cant gap between
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these expectations and the reality of applying the NNM to even a relatively

simple biophysical electric �eld problem.

In response, Magill, Nagel, and Haan [26] present a systematic analysis of the

behaviour of the NNM in this context, identifying the irregularity of the PDE

solution as a major bottleneck to NNM performance. The irregularity arises as a

direct consequence of the non-convexity of the domain�a geometric feature that is

ubiquitous in biophysics (and many other �elds). Ultimately, the study

demonstrates that the NNM can indeed reliably solve such PDEs so long as it is

applied and interpreted appropriately. One of the most signi�cant results was the

insight that the loss functional used for training in the NNM can also be used as

a conservative a posteriori estimator of solution accuracy; this result is formalized

by the proof in App. B. The published manuscript of Magill, Nagel, and Haan

[26] is included in Sec. 4.3.

4.1 Motivation

Natural and synthetic biophysical systems commonly feature molecular transport

driven by external electric �elds. These electric �elds can be quite complicated as

a result of electrohydrodynamic e�ects, which induce nonlinear couplings between

the electric �eld, the motions of ions in the solvent, and the motion of the

molecules being driven by the �eld (see Sec. 2.3.1). Additionally, the electric

�elds are shaped by the boundaries of the domains across which they extend,

which often have intrincate geometries. One particularly important geometric

challenge arises in domains that are non-convex, i.e., where portions of the

domain boundary form re-entrant corners.
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These physical features of biophysical electric �elds correspond to challenging

mathematical characteristics of the corresponding PDE problems. Non-convex

domains often produce boundary layers and/or singularities in PDE solutions.

Sophisticated electric �eld models like the Poisson-Nernst-Planck and

Poisson-Boltzmann equations, which account for the coupling between molecular

con�gurations and the external electric �eld, are generally nonlinear, highly

parameterized, and high-dimensional. Although various methods exist for

approaching these kinds of problems, they remain di�cult and expensive to solve

e�ciently and reliably.

Moreover, in computational biophysics, solving these challenging PDE models

of the electric �eld is often only the �rst step towards understanding the actual

biophysical phenomena of interest. Afterwards, molecular dynamics simulations

must generally be conducted in which the electric �elds take the role of force

�elds driving molecular motion. The electric �eld solution must thus be evaluated

repeatedly throughout the simulation on molecular con�gurations that are not

known a priori. Traditionally, it is not feasible to precompute and tabulate �eld

solutions for all allowable particle con�gurations. Instead, the electric �eld must

be solved on-the-�y, i.e., repeatedly at every timestep of the molecular dynamics

simulation. This incurs a very large computational cost.

In particular, the computation of external electric �elds can interfere with the

acceleration of molecular dynamics simulations using GPU processors. If �eld

calculations are to be conducted on the GPU, this displaces the very limited GPU

memory and directly reduces the e�ective number of parallel threads available for

parallel computation of molecular trajectories. Conversely, sharing calculations
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between GPU and CPU incurs substantial data transfer costs. The states of the

�eld and/or molecules must be transfered to and from the CPU/GPU at every

timestep, and can easily become the limiting factor in the overall computational

e�ciency of the simulation.

The nominal strengths of the NNM appear to align very well with the speci�c

challenges posed by these biophysical electric �eld problems. As discussed in

Sec. A.3, contemporary studies of the NNM are most commonly motivated by its

performance on high-dimensional and highly parameterized problems, which

could potentially enable the precomputation of complex force �elds separately

from subsequent MD simulations. Additionally, because the standard NNM

formulation already uses a nonlinear trial function trained via nonlinear

optimization, it requires no particular modi�cations to handle nonlinear

equations. Finally, since the NNM is mesh-free and adaptive in nature, it has

been promoted as being advantageous for handling complicated geometries.

Speci�cally, other adaptive methods (such as the hp-FEM technique; see

Sec. A.2) are potentially extremely memory-e�cient.

These notions led to the conjecture that the NNM could automatically and

easily learn low-memory representations of the external electric �elds in MNFD

systems, which could then be leveraged for on-board GPU force �eld calculations

during subsequent molecular dynamics simulations. Despite the varied claims

that the NNM should excel at problems with these features, very few authors

have critically examined its performance on non-trivial problems exhibiting all of

these features at once. Speci�cally, most earlier demonstrations of the NNM

focused on linear PDEs, PDEs with analytic or otherwise well-behaved solutions,
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and/or problems posed in simple (convex) geometries.

Magill, Qureshi, and Haan [27] (App. C) presented a preliminary attempt at

capitalizing on the NNM to learn electric �elds for MD�the results were

disillusioning. In the presence of sharp re-entrant corners, the standard NNM

formulation failed to train entirely. Approximating the re-entrant corners by

circular arcs recovered a problem on which the NNM training could proceed.

Nonetheless, the NNM still substantially underperformed relative to a simple

FEM implementation. Control experiments in which neural networks were

trained directly on the ground truth electric �eld solutions approached the scaling

of the FEM solutions. This suggested two conclusions. First, the training

dynamics of the NNM were an important barrier to replicating the convergence of

standard non-adaptive FEM. Second, the NNM was very far from achieving the

highly memory-e�cient representations being pursued.

The substantial gap between expectations and reality uncovered by Magill,

Qureshi, and Haan [27] prompted the more systematic investigation presented in

Magill, Nagel, and Haan [26]. The study explores several basic questions about

the NNM, such as

• At what rate do NNM solutions converge to the true PDE answer as the

NNM loss decreases?

• At what rate does the NNM loss decrease with increases in training time,

network width, and network depth?

• How can the accuracy of a given NNM solution be veri�ed or guaranteed in

practice?
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• Do NNM solutions produce physically realistic solutions?

• Can NNM electric �elds fruitfully be used as driving force �elds in MD?

Prior to this work, such questions had rarely been carefully examined in the

NNM literature, and had not been examined at all in the context of problems

with irregular solutions like the one analysed by Magill, Nagel, and Haan [26].

4.2 Results

4.2.1 Irregularity is a bottleneck

The study focuses on solving the electric �eld in the slit-well MNFD, which is

illustrated schematically in Fig. 2 of the manuscript (Sec. 4.3). As discussed

above, Magill, Qureshi, and Haan [27] found that the standard NNM formulation

applied to the standard PDE model for this electric �eld failed entirely to

converge to a reasonable solution. Eventually, it was determined that the problem

was due to singular behaviour in the true solution of the PDE in the vicinity of

the re-entrant corners of the domain. At the interface of the deeper well regions

with the shallow slit regions, the domain geometry is non-convex. In particular,

the walls at this intersection of the wells and slits form a sharp 90-degree corner

pointing into the domain. It is well-known that solutions to Laplace's equation

exhibit singularities at such corners.

This type of singularity is known to cause substantial problems for many other

numerical methods as well, and various techniques have been developed to

manage them. Because the solution is not twice continuously di�erentiable over
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the domain, the strong form of Laplace's equation is no longer well-posed. Thus,

a weaker formulation of the problem may be expected to yield better numerical

performance. Indeed, as discussed in the manuscript, various methods exist for

addressing such singularities in the context of classical numerical methods.

Unfortunately, these methods are not appropriate for the goals of this thesis.

Such techniques would be di�cult or impossible to extend to the Smoluchowski

equation or to more sophisticated electric �eld models. Resorting to such tricks to

solve Laplace's equation would undermine the role of this study as a step towards

understanding those more challenging PDE models.

Instead, Magill, Nagel, and Haan [26] overcame the problem by rounding the

corners. This modi�cation increases the regularity of the true solution to the

PDE and is applicable to any PDE problem. With this relaxation in place,

Magill, Nagel, and Haan [26] found that the standard formulation of the NNM

performs reliably. However, as the radius of curvature of the circular arcs is made

smaller, the optimization of the NNM solutions becomes increasingly di�cult.

Moreover, for any given curvature, the error after training is still concentrated at

the interfaces of the circular arcs with the straight edges (Fig. 4(b) in the

manuscript). The boundary is only �nitely di�erentiable at these points, and thus

the higher derivatives of the PDE solution are eventually discontinuous at these

points. This result suggests a tendency for the NNM error to concentrate on

regions of irregularity, even when this irregularity is not su�cient to compromise

training entirely. As a result, far from being exceptionally e�ective at dealing

with PDEs in complex geometries as previously promoted, the NNM in fact

appears to struggle signi�cantly to solve such problems at all.
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4.2.2 Convergence of error with loss

After establishing that the NNM can indeed converge reliably on the PDE model

with smoothed re-entrant corners, Magill, Nagel, and Haan [26] proceed to

quantify the error of the NNM as a function of architectural hyperparameters. A

large ensemble of networks was trained: for each combination of six depths and

eight widths, four di�erent randomly initialized networks were trained until the

testing loss converged. For each trained network, a variety of error metrics were

computed, and the behaviour of these error metrics was compared against the

�nal testing loss of the networks.

The �rst two error metrics considered are the global relative L2 error of the

potential and the pointwise relative L2 error of the �eld (Fig. 5). For all but the

worst-performing networks, both relative error metrics are consistently at or

below 1%, with some errors signi�cantly smaller. This level of accuracy is

generally considered adequate for many computational biophysical purposes. The

intrinsic stochasticity of these systems, the modelling error incurred by common

models, and the experimental errors faced by biotechnologies tend to exceed this

threshold for most purposes.

However, it is noteworthy that the L2-based error metrics in Fig. 5 of the

manuscript never converge to much lower than 0.1%. In contrast, FEM and other

classical methods are often expected to converge to numerical precision. The

NNM solutions are constrained to single precision (due to the GPU hardware

utilized), but might still be expected to attain better accuracies than this.

Apart from a few very small networks, all the networks exhibiting worse than

1% error in Fig. 5 are shallow, i.e., having only one hidden layer. This rea�rms
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the deep learning community's general observation that, for non-obvious reasons,

there is some fundamental di�erence between shallow and deep nets, even when

the depth is only two, which translates into substantially better performance in

practice.

The other remarkable result in Fig. 5 of the manuscript is that both relative

errors appear to scale in direct proportion to the testing loss. More speci�cally,

the ensemble of relative errors appear to be bounded above by a function that is

proportional to the loss functional; the errors of individual networks �uctuate up

to an order of magnitude below this upper envelope. This suggests that the loss

functional can be used in practical application to de�ne an a posteriori upper

bound for L2 errors. In fact, this result (and a generalization to other Lp error

norms) is proven in App. B using the method of Green functions. Thus, quite

broadly, the loss functional is (up to a problem-dependent constant) a

conservative a posteriori upper bound of the solution error in Lp norms. This

should be a valuable property for empirically verifying the convergence rate of the

NNM when the true solution is not available.

4.2.3 No pathologically unphysical solutions

What can be said about error metrics other than those based on Lp norms? At

the time this work was being conducted, there were concerns being raised in the

computational physics community about the reliability of neural network

techniques for use in physics research. The speci�c concern was that, since neural

networks do not �know the physics� of a given problem, they might produce

pathologically unphysical solutions that violate important physical symmetries or
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invariances of the system under study. Worse, the concern was that neural

networks might be capable of such pathological behaviour even while appearing

to be accurate solutions. Essentially, this concern is that neural networks might

exhibit some kind of severe and subtle over�tting behaviour, in which those loss

functions used for training and validation would fail to detect serious errors.

In actuality, this concern applies to traditional numerical methods just as much

as it applies to the NNM. For instance, ODE integration methods applied to

Hamiltonian particle systems generally do not conserve energy; symplectic

integrators were developed speci�cally to ensure conservation of energy up to

numerical precision. Similarly, traditional PDE solution methods do not conserve

�ux in conservation law problems; the �nite volume method speci�cally ensures

this constraint is met. Another example is the case of Gibbs oscillation in the

approximation of discontinuous functions by Fourier series: all �nite truncations

of the series exhibit persistent and pathological behaviour.

Conversely, neither symplectic integrators nor the �nite volume method are

necessarily the best numerical methods in practice. All numerical methods work

with �nite capacity to approximate target functions; exact satisfaction of one

physical property generally comes at the expense of a loss of accuracy in some

other aspect of the problem. Nonetheless, the example of Gibbs oscillation is a

relevant illustration of how the NNM might fail problematically. Indeed, the

standard formulation of the NNM is similar to Fourier methods in that both use

analytic trial functions, and the irregularity of the slit-well electric �eld is

precisely the type of problem on which pathological behaviours might arise.

Magill, Nagel, and Haan [26] present three sets of experiments aimed at
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assuaging this concern about the NNM. First, it is shown that the NNM solutions

recover the left-right (anti)symmetries of the true solution. Second, it is

demonstrated that the NNM solutions satisfy conservation of electric �ux

approximately at all length scales; indeed, the NNM solutions outperform the

FEM solutions in this respect over small length scales. Finally, the NNM

solutions are used to guide particle simulations, and are found to perform

comparably well to FEM solutions for this application. In all three cases, the

performance of the NNM is consistently predicted by the loss functional.

Altogether, these results provide further evidence that the NNM can be indeed

trusted for use in computational physics.

4.2.4 Convergence of loss with capacity

Altogether, the results discussed above illustrate that the NNM loss functional is

a robust indicator of solution performance, regardless of how this performance is

measured. In particular, there is no indication that the NNM produces solutions

with any kind of pathological unphysical characteristics. To a great extent, it

appears the problem of understanding and improving NNM performance can

safely be reduced to studies of just the loss functional. Thus, Magill, Nagel, and

Haan [26] examine in Fig. 10 of the manuscript how the testing loss converges

with increases in the memory consumption of the NNM networks. This is the

direct counterpart of the scaling experiments conducted by Magill, Qureshi, and

Haan [27] and the convergence results typically discussed for numerical methods

like FEM. Magill, Nagel, and Haan [26] identify three regimes of convergence: one

in the low-capacity regime, a second for networks of moderate capacity, and a
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�nal regime for very high-capacity networks.

In the low-capacity regime, loss decreases fairly rapidly with increasing

capacity. Magill, Nagel, and Haan [26] interpret this in the natural way:

performance here is bottlenecked by limited memory capacity, so increasing

capacity directly enables better performance. It is also clear in Fig. 10 that, for a

�xed capacity, the loss decreases with depth. This again re�ects the mysterious

advantage of deep networks over shallow networks. However, the advantage

diminishes rapidly with increasing depth: networks with 3 or more layers have

essentially the same loss for a given capacity.

At moderate capacities, the equivalence of deep networks of di�erent depths is

even more pronounced. All the networks with 2 or more hidden layers achieve

essentially the same loss at the same capacity. Shallow networks are di�cult to

train at all in this regime, but do appear to perform roughly two orders of

magnitude worse than deep networks. In fact, loss appears to stop decreasing at

all with increasing capacity. Thus, in this regime, neither increasing the depth

nor the width of architectures improves loss below roughly 10−5. As noted above,

these losses corresponds to relative errors on the order of 0.01-0.1%.

Finally, increasing the capacity substantially more actually leads to

deteriorations in the performance of the NNM. In this high-capacity limit, loss is

still essentially independent of depth, but grows monotonically when capacity is

increased.

The plateau in loss (and therefore error) at large capacities is a limiting factor

to achieving lower error values with the NNM. There are many possible

explanations for this behaviour. As noted above, the NNM studied here was



Chapter 4. Neural network solutions to di�erential equations in nonconvex

domains: Solving the electric �eld in the slit-well micro�uidic device
71

implemented in single precision, whereas the FEM solutions were computed in

double precision. Besides this, modern theories of deep learning seem to suggest

that deep neural networks can become degenerate when they are too wide at a

�xed depth. Conversely, fully-connected networks using tanh activation functions

may be fundamentally di�cult to train beyond a depth of 5 or 6; this practical

limit on depth has been reported empirically by Berg and Nyström [4] as well.

Further investigations are needed to clarify the limiting factor, or factors,

preventing further convergence of the NNM loss at high capacities.

Regardless of this matter, certain conclusions can be drawn with respect to the

goal of using the NNM for electric �elds in MD. For this application, errors on

the order of 0.1-0.01% are likely more than su�cient. What is more problematic

is the slow convergence of the NNM with respect to increasing capacity. In

Fig. 10, the best scaling regime of loss with respect to capacity is only slightly

better than linear: loss (and therefore error) converges nearly in direct proportion

with capacity in the low-capacity regime for networks with two hidden layers.

This is a far cry from the exponential convergence expected for traditionally

adaptive methods, like hp-FEM. It is equally distant from the best achievable

expressivity expected from some deep learning theories (Sec. A.3). Indeed, this

same gap has now been reported by multiple authors, as has become known as

the theory-to-practice gap. Some insights into the mechanisms of this gap may be

gleaned from the discussion in Chapter 5. What is clear in any case is that a

fundamentally di�erent training paradigm1 is likely necessary to achieve very

1Neural architecture search methods bear some resemblance to adaptive FEM mesh re�nement
methods, and may be a promising starting point for such a research initiative. Pruning methods
and similar post-processing compression techniques also seem worth exploring.
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memory-e�cient representations of PDE solutions with the NNM.

4.3 Manuscript



PHYSICAL REVIEW RESEARCH 2, 033110 (2020)

Neural network solutions to differential equations in nonconvex domains:
Solving the electric field in the slit-well microfluidic device

Martin Magill ,1,2 Andrew M. Nagel,1 and Hendrick W. de Haan 1,*

1Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St N, Oshawa, Ontario, Canada L1H7K4
2Vector Institute, 661 University Ave Suite 710, Toronto, Ontario, Canada M5G1M1

(Received 29 April 2020; accepted 21 June 2020; published 21 July 2020)

The neural network method of solving differential equations is used to approximate the electric potential and
corresponding electric field in the slit-well microfluidic device. The device’s geometry is nonconvex, making
this a challenging problem to solve using the neural network method. To validate the method, the neural network
solutions are compared to a reference solution obtained using the finite-element method. Additional metrics are
presented that measure how well the neural networks recover important physical invariants that are not explicitly
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errors, as measured by any of the metrics considered here. In all metrics, deep neural networks significantly
outperform shallow neural networks, even when normalized by computational cost. Altogether, the results
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I. INTRODUCTION

Many important phenomena can be modeled effectively
by partial differential equations (PDEs) with appropriate
boundary conditions (BCs). When PDE problems are posed
in domains with complicated geometries, they are often too
difficult to be solved analytically, and must instead be ap-
proximated numerically. The standard tools for numerically
solving PDE problems in complex geometries are mesh-based
approaches, such as the finite-element method (FEM) [1]. In
these methods, the problem domain is decomposed into a
mesh of smaller subdomains, and the solution is approximated
by a linear combination of simple, local functions.

In this work, we will explore a less common numerical
solution method for PDE problems, which we will refer to
as the neural network method (NNM) [2]. In the NNM, the
solution is directly approximated by a neural network (e.g.,
Fig. 1), rather than by a linear combination of local basis
functions. In a process called training, the network parameters
are varied until it approximately satisfies the PDE and BCs.

The purpose of this study is to investigate the effectiveness
of the NNM on a problem exhibiting a complicated geometry.
Specifically, the NNM is used to solve a model of the electric
field in the slit-well microfluidic device, which is an applica-
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tion of active research interest [3–6]. The problem domain is
nonconvex, and the electric field is discontinuous in the limit
of sharp corners. Despite the growing popularity of the NNM,
relatively few authors have validated it on problems with such
ill-behaved solutions. The rest of this Introduction provides
an overview of the NNM, including its previous use to study
systems similar to the slit-well, as well as a review of the
slit-well device itself.

A. Neural network method

The neural network method of solving differential equa-
tions was first published by Dissanayake and Phan-Thien [2],
and belongs to the broader family of techniques known as
methods of weighted residuals [2,7]. Around the same time,
Meade Jr. and Fernandez [8] separately demonstrated a variant
of the NNM that did not use iterative training, and instead
solved a system of linear equations for the network weights;
it was, however, designed for solving only ordinary differen-
tial equations. Later, van Milligen et al. [9] independently
proposed a method quite similar to the original approach
by Dissanayake and Phan-Thien [2], to solve second-order
elliptic PDEs describing plasmas in tokamaks. The NNM was
proposed independently again by Lagaris et al. [10]. Their
modified methodology embedded the neural network within
an ansatz that was manually constructed to exactly satisfy
the boundary conditions; however, this form is challenging to
construct when the boundary conditions or the domain geom-
etry are complicated. Many authors have since contributed to
the development of the NNM, and Yadav et al. [11] published
a book reviewing much of the early work on the NNM.
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FIG. 1. Schematic of a fully connected feed-forward neural net-
work of depth d and width w mapping coordinates (x, y) to an output
ũ(x, y). Each node computes a weighted sum of its incoming arrows,
and the result (plus a bias) is passed to an activation function. In the
NNM, the parameters are optimized to make ũ(x, y) approximately
satisfy a target PDE and its BCs.

The NNM has various potential appeals over more com-
mon methods like FEM. For instance, the NNM is mesh
free, and generally produces uniformly accurate solutions
throughout the PDE domain [11,12]. Whereas earlier imple-
mentations used shallow neural networks (i.e., those having
only one hidden layer), many authors have recently noted
the significant benefits of using deep architectures [13–26].
In particular, it appears that the NNM with deep neural net-
works performs remarkably well in high-dimensional prob-
lems [13–15,17–19,21–27]. Such high-dimensional PDEs are
typically intractable using FEM and most traditional meth-
ods. These suffer from the so-called curse of dimensionality,
in which computational cost grows exponentially with the
number of dimensions. In addition to the above empirical
demonstrations of the NNM, several theorems have been
published stating that the computational cost of the NNM
grows at most polynomially in the number of dimensions for
various classes of PDEs [28–30].

Nonetheless, the theoretical grounding of the NNM is less
thoroughly developed than those of other techniques. There
are as of yet few guarantees regarding, e.g., under what
conditions the NNM will converge to the true solution of
a given PDE, at what rate, and to what precision. As such,
confidence in the method still relies heavily on empirical
demonstrations. However, available empirical demonstrations
focus primarily on problems with relatively well-behaved
solutions [15,16,18,19,21–26,31]. Indeed, Michoski et al. [32]
noted this, and conducted an investigation of the NNM applied
to irregular problems exhibiting shocks. This work is analo-
gous in this regard, but focuses instead on the nonconvexity
of the slit-well domain as the source of irregularity.

B. Slit-well microfluidic device

Microfluidic and nanofluidic devices (MNFDs) are small,
synthetically fabricated systems with applications in molec-
ular detection and manipulation [5,6,33–35]. One important
use of MNFDs is to sort mixtures of molecules, including
free-draining molecules such as DNA that cannot normally be
separated electrophoretically in free solution [6]. For instance,

FIG. 2. A schematic of particles being electrically driven through
the slit-well device.

the slit-well device proposed by Han and Craighead [3] can
be used for sorting polymers (such as DNA [3,4,36,37]) or
nanoparticles [38,39]. The device’s periodic geometry, illus-
trated schematically in Fig. 2, consists of parallel channels
(called wells) separated by shallower regions (called slits). An
electric field is applied to drive molecules through the device.

MNFDs such as the slit-well exploit the complexity of
physical phenomena at the single-molecular scale (often be-
low the optical resolution limit) to produce useful and some-
times surprising behaviors. This, however, makes them chal-
lenging to design and optimize, and renders theoretical and
computational investigations important to the development of
MNFD technologies. For example, the sorting mechanism in
the slit-well device depends nonlinearly on the magnitude of
the applied electric field as well as the size and shape of the
wells, the slits, and the molecules themselves [6,36–40]. For
some choices of these parameters, the slit-well sorts molecular
mixtures into increasing order of size; for others, however,
it sorts them into decreasing order. A rich literature exists
exploring these processes, reviewed in part by Dorfman [6]
and Langecker et al. [40].

C. NNM with complicated geometries

There are relatively few demonstrations of the NNM on
problems with complicated domain geometries. Specifically,
the NNM has mostly been applied to problems posed in rect-
angular or circular domains [15,18,19,21–23,25,26]. Of note,
Wei et al. [27] used the NNM to solve PDEs in nanobiophysics
that also arise in MNFDs (i.e., Fokker-Planck for particles and
polymers). However, their work did not consider these prob-
lems in MNFD geometries. Even among the demonstrations
of the NNM in more complicated (e.g., nonconvex) domain
geometries, most problems feature boundary conditions that
produce relatively smooth, well-behaved solutions [16,24,31].
Sirignano and Spiliopoulos [17] solved a free-boundary prob-
lem based on a financial system, but it is not clear whether
that PDE exhibits the specific kinds of challenging features
considered in this work.

An exception to the above is given by E et al. [14], who
applied a variant of the NNM to a Poisson equation in a
square domain with a reentrant needlelike boundary. This
problem exhibits the same singular behavior as the slit-well
problem with sharp corners (see Sec. II A). Their Deep Ritz
training protocol was based on a variational formulation of
Poisson’s equation. However, variational formulations cannot
be obtained for all PDEs [41]. For this reason, we have
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opted to study the more general NNM algorithm originally
presented by Dissanayake and Phan-Thien [2].

When Anitescu et al. [42] revisited this needle problem
using the original method of Dissanayake and Phan-Thien [2],
they reported poorer convergence than obtained by E et al.
[14] with the Deep Ritz method. A similar observation was
made during this work: reentrant corners significantly impair
the convergence of the standard NNM (Sec. II A). In contrast
to this work, the error analyses reported by E et al. [14] and
Anitescu et al. [42] did not consider the physical realism of
the NNM solutions (Sec. I D) nor the accuracy of the NNM
solutions’ gradients. These characteristics of the NNM are
important for use in various applications, including studies of
MNFDs, and are investigated directly in this work.

D. Physical realism of NNM solutions

Various modifications of the NNM have been proposed
to ensure solutions exactly satisfy problem-specific invari-
ants that are known a priori, such as boundary conditions
[12,16,31], non-negativity [43], Hamiltonian dynamics [44],
or special invariants of the Schrödinger equation [45]. How-
ever, manually creating formulations of the NNM that explic-
itly satisfy specific invariants can be difficult. Furthermore,
this approach cannot account for invariants which may be
unknown ahead of time. It is natural to question how well the
NNM approximates invariant quantities when these are not
explicitly enforced.

In fact, although certain numerical methods can be devised
specifically to satisfy some conservation laws [e.g., finite
volume methods conserve flux [46], symplectic ordinary dif-
ferential equation (ODE) integrators conserve energy [47]),
most numerical methods (including standard FEM formula-
tions) do not satisfy physical invariants exactly. For instance,
Zhang et al. [48] discussed what modifications of the FEM
are necessary to render it flux conserving. As part of this
work, we will investigate how well the NNM satisfies physical
invariants of the slit-well problem in the absence of any
problem-specific customization.

II. METHODOLOGY

A. Problem statement

We use the simplest electrostatic model of the electric
field E in the slit-well, namely, the two-dimensional Laplace
equation for the electric potential u. Figure 3 illustrates the
geometry of our model over one periodic subunit of the
slit-well device. Uniform Dirichlet boundary conditions were
imposed on the colored segments (specifically, u = ±1 on the
right and left, respectively) to model an applied voltage across
the system. The gray boundaries correspond to homogeneous
Neumann (i.e., insulating) boundary conditions. Throughout
the interior of the domain (i.e., the yellow area in Fig. 3), the
potential was modeled by Laplace’s equation.

In contrast with other authors, we have rounded the reen-
trant corners at the interface of the slits and wells. It can
be shown that near sharp (i.e., nondifferentiable) reentrant
corners, solutions u to Laplace’s equation are not continuously
differentiable [49–51]. That is, sharp reentrant corners cause
singularities in the electric field E. Because the magnitude of

FIG. 3. A cross-sectional view of the slit-well device illustrating
our PDE model of the electric potential in one periodic subunit of
the device. The reentrant corners follow circular arcs, and the num-
bers indicate the lengths of each dotted line. The solution satisfies
Laplace’s equation in the yellow region, Dirichlet conditions on the
red and blue boundaries, and homogeneous Neumann conditions on
the gray boundaries.

E near the corners diverges as the curvature goes to zero, the
slit-well electric field is ill conditioned, in the sense that small
changes in the curvature of the corners produce large changes
in E.

Although such ill conditioning hinders the performance
of most numerical methods, including FEM [49–51], they
present a particular challenge for the NNM. The fully con-
nected feed-forward neural networks typically used for the
NNM are infinitely differentiable functions. However, the true
solution to the slit-well problem with sharp corners exhibits
a discontinuous electric field, so that significant errors seem
likely near the corners. Furthermore, because the neural net-
work is a global approximation method, local errors near the
corners can affect performance throughout the domain.

In practice, the training methodology we present here
(Sec. II B), when applied to the problem with sharp corners,
failed to converge to even a reasonable approximation of the
true solution. Even in preliminary tests with rounded corners,
the convergence rate of the NNM was observed to deteriorate
as the curvature of the corners was reduced. Therefore, for
this work, an intermediate curvature (Fig. 3) was selected to
produce a challenging but attainable benchmark for the NNM.

B. NNM implementation

In this section, we describe our implementation of the
NNM. It is similar to those of Dissanayake and Phan-Thien
[2], van Milligen et al. [9], Berg and Nyström [16], Sirignano
and Spiliopoulos [17], Magill et al. [20], and Wei et al.
[27], among others. The true solution u(x) to the PDE was
directly approximated by a neural network ũ(x). This was
accomplished by training the neural network to minimize the
loss functional

L[ũ] =
∫

�

(∇2ũ)2dA +
∫

∂�

(B[ũ])2ds. (1)
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Here, ∇2u = 0 is the PDE required to hold in the interior of
the domain � ⊂ R2, and B is a differential operator describing
the boundary conditions Bu = 0 on the boundary ∂� of the
domain (described in Sec. II A and illustrated in Fig. 3). Thus,
L[ũ] quantifies the extent to which the neural network fails to
satisfy the PDE and its boundary conditions.

The parameters of the network were updated iteratively
using the Adam optimizer, a modified gradient descent al-
gorithm [52]. The integrals in L[ũ] were approximated via
the Monte Carlo method, as described in more detail below.
The approximate electric field Ẽ and other required deriva-
tives were obtained exactly via automatic differentiation. The
weights of the network were initialized by the Glorot method
[53]. Computations were done using TENSORFLOW 1.13, and
all hyperparameters not discussed here were set to their de-
fault values [54].

The Monte Carlo samples xi ∈ � used to estimate the first
term of L[ũ] were selected from 100 000 points uniformly
distributed in the bounding rectangle [−Lx, Lx] × [−Ly, Ly],
by rejecting those lying outside the domain. Those used to
estimate the second term were generated by directly sampling
the boundary with a linear density of 40 points per unit
length. Altogether, this yielded an expected batch size of
roughly 62 000. To reduce the overhead of sampling training
points, batches were reused for 1000 parameter updates before
resampling.

The testing loss was computed on a set of points sam-
pled once at the beginning of training, generated using the
same procedure as the training points. The testing loss was
computed and recorded every 100 parameter updates. Early
stopping was used to terminate training when the testing
loss failed to improve after 100 consecutive tests. The final
network was taken from the epoch at which the testing loss
was smallest. This training procedure was conceived to ensure
that networks converged to very stable local minima, in order
to study the behavior of the NNM in the limit of long training
time.

The neural networks considered in this study were all
fully connected feed-forward networks with tanh activation
functions (Fig. 1), consisting of d hidden layers of equal
width w. Specifically, the networks mapped an input vector
x, corresponding to a point in the problem domain, to ũ given
by

ũ(x) = fd+1 ◦ fd ◦ · · · ◦ f1(x), (2)

where

f1(x) = tanh (W1x + b1), (3)

fi(x) = tanh
[
Wi fi−1(x) + bi

]
, i = 2 . . . d (4)

fd+1(x) = Wd+1 fd (x) + bd+1. (5)

Here, W1 ∈ Rw×2, Wi ∈ Rw×w for i = 2 . . . d , and Wd+1 ∈
R1×w are the network’s weight matrices, while bi ∈ Rw for
i = 1 . . . d , and bd+1 ∈ R are its biases.

C. FEM implementation

To provide a reliable ground truth against which to com-
pare the performance of the NNM, the target PDE was also

solved via the FEM using FENICS [55]. The domain and mesh
were constructed using the MSHR package. The resolution
parameter for generate_mesh was set to 200 and the cir-
cular reentrant corners were approximated linearly with 100
segments each.

In order to obtain an accurate approximation of the electric
field, and not just of the electric potential, the FEM was
applied to a standard dual-mixed formulation of Laplace’s
equation for the electric field and electric potential simulta-
neously [55]. In this approach, ũ and Ẽ are approximated
simultaneously using separate basis functions. Solving for ũ
alone and reconstructing Ẽ by differentiation was found to
yield poor results.

Convergence tests (not shown) confirmed that the FEM
solution converged in proportion to the square of the mesh
resolution. The tests suggest that the absolute error in the
FEM solution relative to the true solution is on the order of
machine precision (i.e., 10−16). Note that the FEM solution
was computed in double precision, whereas the NNM was
computed in single precision.

III. RESULTS

At its core, the NNM is motivated by the rationale that
training networks to minimize the loss functional [Eq. (1)]
will cause those networks to approximate the correct solution.
This section contains investigations into the following related
questions:

(1) If a network exhibits a small loss, how close is it to
the true solution? Specifically, is the loss functional a reliable
estimator of actual network performance?

(2) If a network is close to the true solution, how well does
it reproduce the physical characteristics of the true solution?
Specifically,

(a) to what extent does it exhibit the same spatial
symmetries as the true solution?

(b) to what extent does it conserve electric flux?
(3) If a network is close to the true solution, and the corre-

sponding electric field is used to conduct particle simulations,
how accurate are subsequent measurements made using those
particle simulations?

(4) How does architecture affect these conclusions?
All experiments were repeated across four random initial-

izations and multiple network architectures: specifically, all
combinations of depths d = 1, 2, 3, 4, 5, 6 and widths w =
10, 25, 50, 75, 100, 150, 200, 250 were examined, as well as
networks of depth 1 and widths 500 and 1000.

Figure 4(a) shows an example of an NNM solution ob-
tained using a network of depth 5 and width 75. The ap-
proximate electric field Ẽ is superimposed in black lines over
colored contours showing the approximate electric potential
ũ. It is visually indistinguishable from the reference FEM
solution (not shown). Figure 4(b) shows (ũ − u)2, the squared
error of the NNM potential compared to the FEM potential.
Figure 4(c) shows ‖Ẽ − E‖2/‖E‖2, the pointwise relative
error of the NNM electric field. Here, ‖ · ‖2 denotes the
Euclidean norm. Note that the error in the potential cannot
be normalized pointwise, as discussed in the next section.

Both of the error distributions in Fig. 4 are particularly pro-
nounced near the reentrant corners. The electric field intensity
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FIG. 4. Example NNM solution using 5 hidden layers of width 75. (a) Approximate electric potential (colored contours) and electric field
(solid black lines). (b) Squared error of the electric potential. (c) Pointwise relative error in the electric field (note the logarithmic color scale).
The errors in plots (b) and (c) are interpolated from values evaluated on the FEM mesh points.

is also very large in these regions (see Fig. 12). In the limit of
small curvature, in fact, it is at these corners that the electric
field develops singularities (see Sec. II A). In fact, the peaks
in error and electric field intensity both occur precisely where
the boundary transitions from flat to curved, i.e., where the
second derivative of the boundary curve is discontinuous.

Additionally, Fig. 4(c) shows pronounced relative error
in the electric field near the corners at the bottom of the
well. These peaks arise because the magnitude of the true
electric field approaches zero in those corners (see Fig. 12).
Since the denominator of ‖Ẽ − E‖2/‖E‖2 is very small, even
small errors in the electric field near those corners manifest
as large relative error. The maximum relative error in the
domain � consistently occurred in these bottom-most corners
for all NNM solutions in the data set. Nonetheless, for many
applications, errors of this kind are likely to be less important
than the errors occurring near the reentrant corners, as they
are much smaller in absolute magnitude.

A. Error relative to FEM

The purpose of this section is to investigate the errors of
the NNM solutions relative to the reference FEM solution,
and to what extent the loss functional correlates with these
errors. The error in an approximate electric potential ũ will be
characterized by

δu[ũ] =
√√√√〈

(ũ − u)2
〉
�〈

u2
〉
�

. (6)

Here, 〈·〉� denotes the mean over the domain �. Whereas
Fig. 4(b) shows the distribution of the squared error in ũ
throughout the domain, δu[ũ] corresponds to the root-mean-
squared error of ũ over �, normalized by the root-mean-
squared value of the true solution u. Note that one cannot
define an unambiguous pointwise relative error for ũ since the
electric potential does not have a physically meaningful zero.
The metric δu[ũ] represents the magnitude of the error in ũ
relative to the magnitude of the true solution u, when both of
these are measured in the L2 norm for functions.

For the electric field, conversely, a meaningful pointwise
relative error can be defined as ‖Ẽ − E‖2/‖E‖2, where both
the numerator and the denominator vary throughout the

domain. The average of this pointwise relative error is denoted

δE[Ẽ] =
〈

‖Ẽ − E‖2

‖E‖2

〉
�

, (7)

and acts as a global error metric for Ẽ. This is precisely the
mean of error distributions like the one shown in Fig. 4(c).

Figure 5 shows the global error metrics δu[ũ] and δE[Ẽ]
for all networks in the data set, plotted against each net-
work’s testing loss. The integrals required to compute the
error metrics were approximated via the Monte Carlo method,
by sampling the domain interior using the same procedure

FIG. 5. Global error metrics for the NNM solutions relative to the
reference FEM solution, shown against testing loss for a variety of
network architectures. (a) The relative error of the electric potentials
δu[ũ]. (b) The relative error of the electric fields δE[Ẽ]. Marker color
indicates the depth of the network, and marker area indicates its
width.
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described in Sec. II B. Marker color corresponds to network
depth, and marker size corresponds to network width.

It is clear in Fig. 5 that lower testing losses correlate
strongly with lower values of both δu[ũ] and δE[Ẽ]. This result
confirms the basic motivation underlying the NNM, namely,
that training neural networks to minimize the loss functional
will cause them to approximate the correct solution. It also
suggests that, in the absence of theoretical guarantees on the
convergence of the NNM, the testing loss may provide a
practical proxy for estimating a solution’s true accuracy.

The data in both Figs. 5(a) and 5(b) partition conveniently
into two clusters. The upper-right clusters consist of those
networks achieving relative errors worse than 1% in both δu[ũ]
and δE[Ẽ]. This population contains all of the shallow net-
work architectures, suggesting that at least two hidden layers
are required to achieve good performance on this problem.
Furthermore, as discussed in Sec. III D, shallow networks
always underperform relative to deep networks, even when
normalized by capacity. The narrowest of the deep network
architectures also attain relative errors worse than 1%. This
implies that even with two hidden layers, networks require
some minimum capacity (i.e., memory consumption) in order
to achieve good performance on this problem.

The lower-left clusters in Figs. 5(a) and 5(b) contain the
majority of the data set, and consist of those networks attain-
ing relative errors below 1% in both δu[ũ] and δE[Ẽ]. The best
networks achieved relative errors as low as δu[ũ] ≈ 0.01%
and δE[Ẽ] ≈ 0.1%. For reference, the example solution shown
in Fig. 4 corresponds to a testing loss of L[ũ] ≈ 9 × 10−6,
and error values of δu[ũ] ≈ 0.2% and δE[Ẽ] ≈ 0.08%. A
variety of architecture choices (i.e., depths and widths) pro-
duce comparably good performance, suggesting that the NNM
can produce accurate solutions without the need for careful
architecture tuning. This is explored further in Sec. III D.

B. Physically motivated error metrics

The results in the previous section suggest that the NNM
can reliably produce accurate solutions to the slit-well prob-
lem. Furthermore, networks with smaller loss values are closer
to the true solution, i.e., they have smaller error values. Fi-
nally, the NNM does not appear overly sensitive to the choice
of architecture, given at least two hidden layers and sufficient
network width.

The purpose of this section is to investigate whether net-
works with small loss and error values also approximately
reproduce physical characteristics of the true solution. Specifi-
cally, we investigate the NNM solutions’ satisfaction of spatial
symmetries and the conservation of electric flux.

1. Deviation from symmetry

The true solution of the target PDE satisfies three spatial
symmetries. First, the true electric potential u is antisymmetric
in the horizontal direction about the center of the well, i.e.,

u(x, y) = −u(−x, y), (8)

where (x, y) are the coordinates of a point about the center of
the well. As a result, the vertical component of the true electric

field E also exhibits this antisymmetry in x, i.e.,

Ey(x, y) = −Ey(−x, y). (9)

Finally, the horizontal component of the electric field is sym-
metric about the center of the domain, i.e.,

Ex(x, y) = Ex(−x, y). (10)

The extent to which a network deviates from these symme-
tries will be quantified using relative error metrics analogous
to those used in the previous section. Specifically, the devia-
tion of an approximate electric potential ũ from symmetry will
be quantified by

Ru[ũ] =
√√√√〈

(ũ − ũ′)2
〉
�〈

u2
〉
�

, (11)

where ũ′(x, y) = −ũ(−x, y). This is the root-mean-squared
difference between ũ and its negative reflection, normalized
by the root-mean-squared value of the true potential u. In
analogy with δu[ũ], the metric Ru[ũ] measures the magnitude
of the deviation of ũ from symmetry relative to the magnitude
of the true solution u (when both are measured in the L2

norm). The deviation of an approximate electric field Ẽ from
symmetry will be quantified by

RE[Ẽ] =
〈

‖Ẽ − Ẽ′‖2

‖E‖2

〉
�

, (12)

where Ẽ′ is the transformed electric field

Ẽ ′
x(x, y) = Ẽx(−x, y), (13)

Ẽ ′
y(x, y) = −Ẽy(−x, y). (14)

In analogy with δE[Ẽ], this is the mean pointwise relative
deviation from symmetry of the electric field.

These metrics of deviation from symmetry are closely con-
nected to the relative error metrics of Sec. III A. Specifically,
the triangle inequality implies that√〈

(ũ − ũ′)2
〉
�

�
√〈

(ũ − u)2
〉
�

+
√〈

(u − ũ′)2
〉
�
. (15)

By definition, the true solution u is invariant under the trans-
formation that maps ũ to ũ′. Specifically,

ũ(x, y) − u(x, y) = −ũ′(−x, y) − ( − u(−x, y)). (16)

By the symmetry of the domain, it follows that√〈
(ũ − u)2

〉
�

=
√〈

(u − ũ′)2
〉
�
. (17)

Combining these results and dividing by
√〈u2〉�, it follows

that

Ru[ũ] � 2δu[ũ], (18)

that is, the distance from an approximate potential ũ to its
reflection ũ′ is, at most, twice the distance from ũ to the
true solution u. Very similar reasoning can be applied to an
approximate electric field Ẽ to conclude that

RE[Ẽ] � 2δE[Ẽ]. (19)
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FIG. 6. Relative deviation of symmetry for the NNM solutions
normalized by relative error, shown against testing loss. (a) Deviation
of symmetry of the NNM electric potentials Ru[ũ], divided by the
relative error δu[ũ]. (b) Deviation of symmetry of the NNM electric
fields RE[Ẽ], divided by the relative error δE[Ẽ]. Marker color
indicates the depth of the network, and marker area indicates its
width. The dotted lines show the upper bounds given by Eqs. (18)
and (19).

Thus, solutions with small error values will inevitably be
nearly symmetric, simply by virtue of being nearly equal to a
symmetric function. Furthermore, since it was established in
Sec. III A that the loss functional provides a reliable estimator
of the error, it follows that the loss also provides a reliable
estimator of the deviation from symmetry. It remains to be
seen, however, whether or not inequalities (18) and (19)
are strict in practice. That is, do neural networks learn that
symmetry is a desirable feature, or are they only symmetric
insofar as they approximate the true solution?

Figure 6 shows Ru[ũ]/δu[ũ] and RE[Ẽ]/δE[Ẽ] for all net-
works in the data set, plotted against each network’s testing
loss. As in Fig. 5, the marker sizes correspond to network
widths, and the colors indicate network depth. The dotted
lines correspond to the maximum deviation from symmetry
permitted for a given error value, according to inequalities
(18) and (19).

Most of the data in Fig. 6(a) lie nearly on the dotted line:
roughly 90% lie above 1.5, and 75% lie above 1.9. This indi-
cates that most of the electric potentials approximated via the
NNM satisfy the target symmetries only to the smallest degree
required by virtue of their proximity to the true solution. The
data in Fig. 6(b), however, lie somewhat farther from the
dotted line. Quite a few of the most symmetric electric field
approximations have RE[Ẽ]/δE[Ẽ] ratios below 1, indicating

that they are more similar to their own reflections than they
are to the true solution. It is important to note, however,
that the electric field metrics of error and symmetry are nor-
malized pointwise by the electric field intensity, whereas the
electric potential metrics are not normalized pointwise. This
distinction may account for some of the apparent differences
between Figs. 6(a) and 6(b).

Altogether, the results in this section indicate that the NNM
solutions deviate from the symmetries of the true solution by
an amount comparable to their error values. Some networks
may produce electric field solutions that are more symmetric
than required given their error values alone, but most networks
only exhibit the minimal degree of symmetry required by the
triangle inequality. As discussed in the Introduction, directly
constraining the networks to satisfy the symmetries (e.g., by
modifying the network architectures, or by adding additional
terms to the loss functional) would almost certainly improve
the symmetry of the resulting approximations. However, im-
plementing such constraints can be expensive for more com-
plicated invariants, and some problems may exhibit invariants
that are unknown a priori. These results illustrate that the
NNM can still learn to satisfy invariants approximately, even
when they are not explicitly enforced. Furthermore, the loss
functional may provide a means of empirically estimating the
extent to which such invariants are satisfied in practice.

2. Conservation of flux

Another important physical property of the true solution to
the target PDE is the conservation of electric flux. In its strong
form, conservation states that the true electric field E must be
divergence free at all points in the domain. This is equivalent
to the condition that the true electric potential u must satisfy
Laplace’s equation ∇2u = 0 since it can be rewritten as

∇ · (∇u) = ∇ · E = 0. (20)

Thus, one could quantify the deviation from conservation of
flux of an approximate field Ẽ by computing some error norm
of ∇ · Ẽ. However, since all the derivatives taken in the NNM
are exact (obtained via automatic differentiation), ∇ · Ẽ is
exactly equal to ∇2ũ. As a result, the first term of the loss
functional [Eq. (1)] is precisely a measure of how well the
NNM satisfies the strong form of the conservation of flux.

Nonetheless, the strong form of conservation is insufficient
to fully describe the extent to which the electric field con-
serves flux over extended regions of space within the domain.
This is better described using the weak form, which states
that the surface integral of the flux into any closed subset of
the domain must be zero. Motivated by this, we define the
quantity

E (ũ; ε) = 1

|�ε |
∫

�ε

[
1

|Bε |
∫

∂B(x;ε)
Ẽn̂ds

]2

dA. (21)

Here, B(x; ε) is a ball of radius ε centered at a point x in
the domain, ∂B(x; ε) denotes its boundary, and Ẽn̂ denotes
the outward normal component of the electric field into its
surface. The outer integral is taken over �ε , by which we
denote the set of all points in the domain that are at least a
distance ε from the boundary. The factors |�ε | and |Bε | are the
areas of �ε and B(x; ε), respectively. In other words, E (ũ; ε) is
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FIG. 7. The flux error metric E (ũ; ε) plotted as a function of
the ball radius ε for three NNM solutions as well as the reference
FEM solution. The legend entries for the NNM solutions indicate the
architecture (d,w) for each case. The leftmost points show E (ũ; 0),
and the rightmost show E (ũ; ∂�). The dotted vertical line labeled
Lmesh indicates the mean length scale of the FEM mesh.

the mean-square norm of the flux into all balls of radius ε that
are entirely contained within �, divided by the area of those
balls. Because this definition of E (ũ; ε) is mesh agnostic, it
can also be computed directly for a FEM solution. Numerical
calculations of E (ũ; ε) and related metrics in this section are
somewhat technical, and details are relegated to Appendix B.

Figure 7 shows E (ũ; ε) computed for a sample of NNM
solutions (colored lines) as well as for the reference FEM
solution (black line). The architectures, losses, and relative
errors of the three networks shown in Fig. 7 are listed in
Table. I. The shape of E (ũ; ε) measured for the NNM so-
lutions in Fig. 7 is representative of what was measured on
several other NNM solutions (not included). In particular,
E (ũ; ε) was consistently observed to decrease monotonically
with increasing ε. In Fig. 7, the network with architecture
(d,w) = (2, 25) achieved relatively mediocre performance.
The (1,200) network performed fairly poorly overall, but was
still among the best performing shallow networks in the data
set. As expected, the best of the three networks according
to testing loss and the relative error metrics, (4,150), also
performed best in terms of conservation of flux. Similarly,
(2,25) outperformed (1,200). We emphasize that the (2,25)
network outperforms the (1,200) network in all metrics, de-
spite having slightly smaller capacity. This is reflective of the
disproportionately poor performance of shallow architectures
noted in Secs. III A and III D.

TABLE I. Summary of the NNM solutions selected for the con-
servation of flux and particle simulations tests. Columns shown the
depth, width, capacity, testing loss, and relative error of the electric
potential and electric field, for each network.

d w Capacity L[ũ] δu[ũ] δE[Ẽ]

1 200 801 3 × 10−3 16% 7.4%
2 25 751 2 × 10−4 1.7% 0.8%
4 150 68551 6 × 10−6 0.02% 0.08%

The behavior of E (ũ; ε) for the FEM solution differs from
that of the NNM solutions in some important ways. Whereas,
for all three NNM solutions, E (ũ; ε) is roughly constant
below ε ≈ 10−1, for the FEM solution E (ũ; ε) continues to
increase with decreasing ε until at least ε ≈ 10−4. As a result,
although the FEM solution achieves better E (ũ; ε) than all
NNM solutions at long length scales, the converse is true
at sufficiently small length scales. The best NNM solution
in Fig. 7, (4,150), exhibits comparable conservation of flux
to the FEM solution at length scales near the mean FEM
mesh size Lmesh = √|�|/N , where N is the number of mesh
elements. At length scales below Lmesh, the (4,150) network
conserves flux more accurately than the FEM solution. Even
the worst of the three NNM solutions shown in Fig. 7 performs
comparably to the FEM solution in conservation of flux at
length scales below ε ≈ 10−3. The relative stability of the
NNM at small length scales may be attributable to its mesh-
free nature, and is an appealing feature for subsequent use in
particle simulations. Finally, we recall (see Sec. II C) that the
FEM solution was computed in double precision, and suggest
that the single precision used for the NNM solutions may be a
limiting factor to their performance at large length scales.

For small choices of ε, E (ũ; ε) converges to a measure of
the strong form of conservation of flux. By the divergence
theorem, for a continuously differentiable field Ẽ, the flux
error metric E (ũ; ε) can be rewritten as

E (ũ; ε) = 1

|�ε |
∫

�ε

[
1

|Bε |
∫

B(x;ε)
∇ · Ẽ dA′

]2

dA (22)

= mean
�ε

[(
mean
B(x;ε)

(∇ · Ẽ)

)2
]
. (23)

In the remainder of this section, angle brackets 〈·〉S will be
used to denote means over any set S. From Eq. (22), it is easy
to deduce the limit of E (ũ; ε) as ε → 0, which will be denoted
E (ũ; 0). Since �ε → � and the mean over B(x; ε) approaches
the identity operator, it follows that

E (ũ; 0) = 〈(∇ · Ẽ)2〉� = 〈(∇2ũ)2〉�. (24)

The leftmost points in Fig. 7 illustrate E (ũ; 0) for each of
the solutions. For the NNM solutions, E (ũ; ε) converges to
E (ũ; 0) as ε → 0, as expected. This is not the case for the
FEM solution, for which E (ũ; ε) exceeds E (ũ; 0) for small ε.
However, this is not a contradiction, as Eq. (24) was derived
by assuming continuous differentiability.

Equation (24) is precisely the mean of the square de-
viation of ũ from the strong form of conservation of flux.
For NNM solutions, E (ũ; 0) is equal to the first term of the
loss functional [Eq. (1)] divided by |�|, and is therefore
bounded above by the loss. Given that E (ũ; ε) was observed
to decrease monotonically with ε, this suggests that, as for the
relative errors and symmetry errors, the loss provides a useful
estimator of the error in conservation of flux over any length
scale.

However, as ε increases, the metric E (ũ; ε) becomes in-
creasingly biased because the center of the balls B(x; ε)
cannot be placed within a distance ε of the boundaries of the
domain. At moderate values of ε, this means that errors in
flux conservation in the interior of the domain are weighted
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FIG. 8. Error in global flux conservation for all NNM solutions
as a function of each network’s testing loss. Marker color indicates
the depth of the network, and marker area indicates its width. The
dotted line indicates the corresponding error in the FEM solution.

more heavily than those near the boundaries of the domain.
Eventually, when ε > 0.6, the balls are too large to fit inside
the slits of the device, so that only errors inside the well
contribute to E (ũ; ε). For this reason, the data in Fig. 7 are
only computed for ε values sufficiently below 0.6 that this
bias is deemed acceptably small. This biased behavior of
E (ũ; ε) arises because the inner integral in Eq. (22) is based
on circle-shaped test sets. A more meaningful metric of flux
conservation over very long length scales can be obtained by
replacing B(x; ε) with ∂� in Eq. (22). This global flux error
will be denoted E (ũ; ∂�), and satisfies

E (ũ; ∂�) =
[ |∂�|

|�| 〈Ẽn̂〉∂�

]2

= [〈∇2ũ〉�]2. (25)

Thus, E (ũ; ∂�) is directly connected to 〈Ẽn̂〉∂�, the net flux
through ∂�, which is zero for the true solution. Note that
the second equality in Eq. (25) follows from the divergence
theorem, so it applies to the NNM solutions but not the FEM
solution. Together with the second equality of Eq. (24), this
means

E (ũ; 0) − E (ũ; ∂�) =
〈(∇2ũ

)2
〉
�

− [〈∇2ũ
〉
�

]2
, (26)

which is the variance of ∇2u over �. This is always non-
negative, so it follows that

E (ũ; 0) � E (ũ; ∂�), (27)

for any ũ satisfying the second inequalities in both Eqs. (24)
and (25).

The rightmost points in Fig. 7 illustrate E (ũ; ∂�) for each
of the four solutions. Figure 8 shows E (ũ; ∂�) for all NNM
solutions versus each network’s testing loss; the dotted line
indicates the value for the FEM solution. It is immediately
evident that E (ũ; ∂�) relates to testing loss in a similar way
as do the relative error metrics (Fig. 5). As was the case for
the other metrics, E (ũ; ∂�) decreases with decreasing testing
loss, suggesting that testing loss is a useful estimator of global
flux error. Indeed, this is inevitable in the limit of small loss
since E (ũ; ∂�) is bounded above by E (ũ; 0), which is in turn
bounded above by the loss. It also appears that the data in
Fig. 8 are divided into the same two clusters as the data in

Fig. 5, with the shallow architectures performing worse than
nearly all deep architectures.

Somewhat surprisingly, the best of the NNM solutions
appear to conserve flux globally to nearly the same degree
as the reference FEM solution, despite being computed in
single (rather than double) precision. Indeed, one network
with architecture (4,200) appears to slightly outperform the
FEM solution in this respect. However, it is important to note
that E (ũ; ε) for this (4,200) network (not shown) exhibits
essentially the same behavior as that of the (4,150) network
analyzed in Fig. 7. In other words, although that particular
network performs very well at global flux conservation, FEM
does a significantly better job at conserving flux over interme-
diate length scales. This suggests that, for the NNM solutions,
the error in conservation of flux is heterogeneously distributed
throughout the domain, which is consistent with the previous
observation that error in the NNM solutions is significantly
larger near the reentrant corners.

In summary, the metric E (ũ; ε) provides a mesh-agnostic
measure of how well an NNM solution conserves flux over a
length scale ε. As ε → 0, the limit satisfies Eq. (24), and is
bounded above by the loss. Empirically, E (ũ; ε) is observed
to decrease monotonically with ε, so that the loss provides
a useful estimator of the error in flux conservation over
intermediate length scales, too. Alas, when ε is large relative
to other length scales in the domain, E (ũ; ε) is a biased metric,
as it places less weight on flux lost near the boundaries of the
domain. However, a related measure of global conservation
of flux over the entire domain is given by Eq. (25), which is
not biased. This measure, too, is bounded above by the loss.
Altogether, the NNM seems capable of reliably producing
solutions that conserve flux to an acceptable level of accuracy
without the need to explicitly enforce this physical invariant
during training. In particular, some of the NNM solutions
conserve flux globally roughly as well as the FEM solution.
Furthermore, even relatively mediocre NNM solutions con-
serve flux better than the FEM solution over sufficiently small
length scales.

C. Application to particle simulations

Section III A looked directly at error between NNM and
FEM, and Sec. III B looked at error metrics motivated by
physical invariants. Both suggested that the testing loss pro-
vides a reliable estimator of the true performance of the
network solutions, and that (with appropriate network archi-
tectures) the NNM consistently finds solutions with seemingly
small error values. However, the question of what error values
are acceptable is subjective, and often depends on the intended
application of the numerical solutions. For this reason, this
section will consider the performance of the NNM solutions
when used as the driving force fields in particle simulations of
Brownian motion in the slit-well device (implemented in the
C programming language). The simulation scenario is quite
similar to those investigated by [38,39].

Simulations of N = 100 000 particles in the slit-well do-
main were initialized with all the particles located in the
middle of the same well. The particle positions xi evolved
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according to the discretized Brownian equation

�xi

�t
=

√
2D

�t
R(t ) + q

γ
Ẽ, (28)

where the time step was set to �t = 10−4, the diffusion
coefficient to D = 1, and the friction coefficient to γ = 1.
The particle charge q was varied from 1 to 10. The term
R(t ) is a random driving force, representing thermal motion
of an implicit solvent, and was sampled via the Box-Muller
transform from an independent standard Gaussian distribution
for each particle at each time step.

The driving electric field Ẽ was obtained from either the
reference FEM solution or from one of the NNM solutions.
The electric fields were discretized onto a uniform square
mesh overlain on [−Lx, Lx] × [−Ly, Ly], the smallest bound-
ing box containing � (see Sec. II B). The side lengths of the
mesh elements were set to 0.01. The field experienced by
a particle at a given position was approximated by nearest-
neighbor interpolation to the mesh. We leave more sophis-
ticated coupling between the particle simulations and the
electric fields to future work.

Particles experienced periodic boundary conditions across
the left and right sides of the periodic subunit illustrated
in Fig. 3, and the boundaries that were insulating in the
electric field problem were treated as reflective in the particle
simulations. The number of times each particle crossed the do-
main was tracked, so as to measure its absolute displacement
from the original position. After tmax = 106 time steps, the
mean horizontal displacement of the particles from the initial
position 〈x〉 was divided by tmax to obtain an estimate 〈vx〉 of
the average particle velocity. This average velocity was then
divided by particle charge to estimate the effective particle
mobility μ = 〈vx〉/q. The statistical error on this mobility
measurement was estimated as s = (σvx /q)/

√
N , where σvx is

the standard deviation of the particle velocities.
These mobility measurements are shown in Fig. 9(a) for

simulations conducted with the same four electric fields in-
vestigated in Sec. III B 2: that of the reference FEM solution,
and that of the three NNM solutions summarized in Table I.
The simulations using the FEM field were conducted twice
with different random seeds, shown as the two black lines
in Fig. 9(a). The difference between these two sets of mea-
surements provides a means of distinguishing the errors intro-
duced by the electric fields from simple statistical fluctuations
on the mobility measurements. In Fig. 9(a), the measurements
of μ made using the networks of architectures (2,25) and
(4,150) appear fairly similar to those made using the FEM
field. Conversely, the measurements using the (1,200) archi-
tecture are quite easily distinguished from the FEM data. All
simulations recovered effective mobilities that varied with
q, induced in the otherwise free-draining particles by their
interactions with the slit-well geometry.

The relative error between two mobility measurements μ1

and μ2 was quantified as

μ1 − μ2

μ2
. (29)

The colored lines in Fig. 9(b) show the relative errors of
the NNM-based mobility measurements in Fig. 9(a) versus

FIG. 9. (a) Lines show the mobility measurements μ made using
four different electric field solutions. The two black lines correspond
to separate simulations made using the same reference FEM field.
The error bars indicate the estimated statistical error of mobility s.
(b) The colored lines show the relative errors between the NNM-
based measurements and the first set of FEM-based results. The black
line shows the relative errors between the two sets of FEM-based
measurements. The error bars are obtained from the data in (a) via
standard rules for propagation of uncertainty.

the first set of FEM-based measurements. The black line
corresponds to the relative errors between the two sets of
FEM-based measurements. Error bars were estimated via
standard rules for propagation of error.

Unsurprisingly, the errors of the (1,200) architecture are
significantly larger than those of the other two architectures,
and show a clear bias toward underestimating the mobility.
Nonetheless, even this crude solution produces errors smaller
in magnitude than 5% of the actual mobility. This suggests
that the current particle simulations are relatively insensitive
to moderate inaccuracies in the driving electric field.

The relative errors of both the (2,25) and (4,150) archi-
tectures are comparable to the relative errors between the
two sets of FEM-based measurements, and lie below 1% for
all values of q. However, the relative errors for the (2,25)
architecture are negative for all q above 2, whereas the rel-
ative errors of the (4,150) architecture are roughly evenly
distributed about 0. This suggests that the (2,25) architecture
introduces a small but detectable systematic bias into the
mobility measurements. Conversely, the errors of the better
(4,150) architecture are comparable to statistical fluctuations,
despite the relatively large number of simulated particles,
N = 100 000. These results confirm that the best of the NNM
solutions presented in this work are sufficiently accurate for
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FIG. 10. Testing loss versus network capacity, colored by net-
work depths. The error bars show maxima and minima over four
random seeds, and the lines indicate mean performance. The dotted
lines at capacities of 5 × 103 and 5 × 104 roughly delineate the three
regimes discussed in the text.

use in particle simulation applications. Moreover, the relative
performance of the three architectures is consistent with their
values of L[ũ], δu[ũ], and δE[Ẽ] (Table I).

In Fig. 9, the network with architecture (2,25) significantly
outperforms that with architecture (1,200), despite having
slightly smaller capacity, reemphasizing the advantages of
deep architectures over shallow ones. Conversely, the much
larger (4,150) architecture only achieves moderate improve-
ments over the (2,25) architecture, reflecting the diminishing
returns associated with increasing network capacity. These
subtle impacts of architecture are investigated more closely
in Sec. III D.

D. Effect of network architecture

The previous sections have demonstrated that the testing
loss is a useful estimator of several independent error metrics.
Specifically, the loss functional appears to reliably estimate
the error relative to the reference FEM solution; the deviation
from symmetry; the deviation from conservation of flux; and
the error introduced into subsequent mobility measurements.
Thus, the loss is a useful single metric of performance via
which to compare different NNM architectures.

In Fig. 10, the testing loss is plotted against the total
network capacity. Here, network capacity is measured as the
total number of parameters in the network, given in terms of
the width w and depth d by

(2 + 1)w + (d − 1)(w + 1)w + (w + 1) (30)

since the networks have two inputs and one output. The col-
ored lines in Fig. 10 correspond to different network depths,
so that the various capacities within each line identify the net-
work widths. The error bars show maxima and minima over all
random seeds, whereas the lines indicate mean performance.

The data in Fig. 10 show that, for network capacities
below 5 × 103, increasing capacity improves testing loss for
any choice of depth. This suggests that, for those networks,
insufficient capacity is a primary bottleneck toward repre-
senting more accurate approximations of the true solution. In

particular, for the networks with two hidden layers, increasing
the capacity improves the loss by nearly two orders of mag-
nitude. Furthermore, in this low-capacity regime, increasing
depth improves performance for a given capacity. In other
words, when insufficient network capacity is the primary
barrier to improved performance, deeper networks make more
efficient use of that limited resource. Indeed, this is consistent
with the effects of architecture observed in Figs. 5, 7, 8,
and 9. Specifically, shallow networks perform particularly
poorly in all metrics throughout this work, even compared to
networks with comparable capacity and as few as two hidden
layers.

For deep networks with moderately large capacities (5 ×
103 to 5 × 104), testing loss is essentially independent of
network architecture (i.e., independent of both depth and
capacity/width). This suggests that insufficient network ca-
pacity is no longer a primary bottleneck to improving solution
accuracy. The investigation by [20] suggested that the internal
representations learned by networks in the NNM become
essentially independent of width above some critical size, so
it is not surprising that loss similarly becomes independent of
width. However, it is noteworthy that this limiting loss value
is also independent of network depth (among those with two
or more hidden layers).

For networks with capacities of 5 × 104 or above, testing
loss begins to increase with further increases in capacity.
Figure 5 illustrates that these same networks sometimes ex-
hibit relative errors nearly as high as some shallow networks,
despite having two orders of magnitude more capacity. Their
poor performance can be understood in terms of the difficul-
ties commonly encountered in training very deep, wide neural
networks. For instance, Berg and Nyström [16] noted similar
loss in performance when training networks with five or more
hidden layers, and attributed this to vanishing gradients. Re-
finements in the network architectures and training algorithms
can be expected to alleviate this phenomenon.

Note that the behavior of these networks with very large
capacities cannot be described in terms of overfitting, another
problem commonly encountered by networks with exces-
sively large capacities. Overfitting is typically defined as a
significant gap between the training and testing losses of
networks. In the NNM, however, the testing and training sets
are drawn from identical distributions. In the implementation
used here, in particular, the training set is redrawn regularly
throughout training, so that it is fundamentally impossible
for the network to be overfitting to a specific set of training
samples.

Finally, Fig. 11 shows the total training time of the NNM
solutions against testing loss. The same two populations
identified in Figs. 5 and 8 are evident again in Fig. 11. The
cluster on the right contains all the shallow networks as well
as the narrowest of the deep ones. The cluster on the left
consists of those networks that attained better than 1% error
relative to FEM (Fig. 5). Within each cluster, testing loss and
training time are loosely correlated. For all networks, training
time was on the order of hours. However, it is important to
note that the implementation in this work was not concerned
with optimizing the computational efficiency of the NNM, but
rather with ensuring that the training process was thoroughly
converged (Sec. II B).
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FIG. 11. Total training time and final testing loss of the NNM
solutions. Marker color indicates the depth of the network, and
marker area indicates its width.

Once again, the networks in the right cluster perform
disproportionately poorly, even though many of them have
capacities comparable to some of those in the left cluster
(Fig. 10). Thus, not only do the networks in the left cluster
achieve better accuracies (as measured by testing loss or
any of the various error metrics in this paper), but they also
finish training far more rapidly. Further, this conclusion is true
even between networks of equal capacity. These observations
demonstrate many benefits of using deeper architectures in the
NNM, and several disadvantages of using shallow architec-
tures.

IV. CONCLUSIONS

This work investigated the performance of the neural net-
work method (NNM) when used to solve the electric potential
and field in the slit-well device. This problem features a non-
convex geometry, which makes it particularly challenging to
solve with the NNM. Performance was quantified in multiple
metrics, and compared against a reference FEM solution.

The best network architectures studied here reliably
achieved relative errors below 0.1% in both the potential and
the field. NNM solutions also recovered spatial symmetries
of the true solution to roughly the same extent that they
approximated the true solution. Regarding conservation of
flux, the NNM solutions performed comparably to the ref-
erence FEM solution. Finally, particle simulations conducted
using the NNM electric fields yielded mobility measurements
consistent with those based on the FEM electric field. In
each of these metrics, the testing loss was found to provide
a useful estimator of the networks’ true performance. That
is, networks with smaller losses were found to be closer
to the true solution; to more closely approximate the target
symmetries; to conserve flux more accurately; and to produce
better particle simulations.

These empirical investigations uncovered several valuable
insights for practical use of the NNM. Accurate solutions to
physical problems can be obtained even without explicitly
enforcing known physical invariants of the true problem. The
importance of architecture was reemphasized: deep archi-
tectures consistently outperformed shallow ones, converging
to better solutions in less time and using fewer degrees of

FIG. 12. Electric field intensity of the FEM solution, shown on
(a) linear and (b) logarithmic color scales.

freedom. Finally, the testing loss may provide a practical
means of gauging a solution’s accuracy, even when the ground
truth is unknown and convergence is not theoretically guaran-
teed.

In summary, this work demonstrates that the NNM can
successfully solve a problem that is ill conditioned due to the
nonconvexity of its domain. The NNM solutions were found
to be particularly appropriate for use in subsequent particle
simulations. This suggests that it could be a useful tool for the
study of microfluidic and nanofluidic devices (MNFDs) and
other biophysical systems. Moreover, differential equations
in domains with complicated geometries arise throughout
physics and other fields. These results support the feasibility
of using the NNM to solve this fundamental and ubiquitous
class of problems.
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APPENDIX A: ADDITIONAL PLOTS OF THE
ELECTRIC FIELD SOLUTION

Figure 12 shows the FEM electric field intensity through-
out the domain, in both linear and logarithmic color scales.
In particular, Fig. 12 illustrates that the peak field intensity
occurs near the reentrant corners, with a magnitude of about
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0.36. In the bottom corners of the well, the field intensity is
over four orders of magnitude weaker. These features con-
tribute to the difficulty of applying the NNM to the slit-well
electric field problem since the standard loss functional used
during training places equal weight on all regions of � and
∂�. The regions of very intense electric field near the reentrant
corners, specifically, seem to be most difficult to resolve for
the NNM, as seen in the error maps shown in Fig. 4.

APPENDIX B: DETAILS OF FLUX LOSS CALCULATIONS

This Appendix contains descriptions of how the metrics
shown in Figs. 7 and 8 were computed. For Fig. 7, the integrals
in Eq. (21) were computed by sampling 10 000 uniformly
spaced points on ∂B(x; ε) for each choice of the center x.
Candidate samples for the centers were generated according

to the same procedure described in Sec. II B, but with 10 times
higher sample density, and all points within a distance ε of ∂�

were rejected.
The leftmost points in Fig. 7 correspond to Eq. (24). For

the NNM solutions, these were computed by Monte Carlo
integration over � using 10 times higher sampling density
than in Sec. II B. The rightmost points in Fig. 7 correspond
to Eq. (25). These were not computed using a Monte Carlo
integration approach. Because 〈Ẽn̂〉∂� is a small number com-
puted by summing many positive and negative terms, it is
vulnerable to catastrophic cancellation. For this reason, it was
computed using a uniform mesh of points along ∂�, sampled
with 100 times higher density than in Sec. II B. For the FEM
solution, the integrals required for Eqs. (24) and (25) were
both computed in FENICS using Gaussian quadrature via the
assemble command.
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Chapter 5

Neural networks trained to solve

di�erential equations learn general

representations

Whereas the study in Chapter 4 studied the NNM from the perspective of

classical numerical method analysis, Neural networks trained to solve di�erential

equations learn general representations is an e�ort to understand the NNM using

analysis techniques developed by the deep learning research community. The

ability of deep learning to learn meaningful and useful representations via its

hidden layers is commonly theorized to be responsible for much of its prodigious

success. Despite this, this perspective is rarely incorporated into analyses of the

NNM using the tools of numerical analysis. Rather, those studies tend to use

elaborate constructions to demonstrate that deep learning can, in principle, be

used to emulate some well-studied approximation method (e.g., spline

interpolation). These neural networks are not re�ective of the neural networks

that emerge in practice during NNM training, which may explain the
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theory-to-practice gap between the astonishing theoretical results predicted for

the NNM and its comparatively modest performance in practice (Sec. A.3.3).

In particular, as seen in Chapter 4, the accuracy of the NNM does not appear

to converge at the expected rate with respect to the number of degrees of freedom

available in the trial function. The study in this chapter may provide some

resolution to this fact. Essentially, it appears that each hidden layer in the deep

neural network trial function converges to a �xed representation as width is

increased. Additional degrees of freedom in that layer have negligible impact on

the output of the neural network. The analysis additionally suggests that these

learned features may depend continuously on the target function being learned,

and even that they may have meaningful interpretations in terms of the geometry

of the problem domain. The manuscript is included in Sec. 5.3.

5.1 Motivation

Originally, this work was not meant as an investigation of the NNM at all.

Rather, the intention was to investigate the internal structure of deep neural

networks, with the goal of understanding why they are able to achieve such

impressive results on so many applications. The task of solving di�erential

equations was selected as a test problem on which to study the dynamics of deep

learning. In comparison to the fairly ill-de�ned tasks common in machine vision

and natural language processing, di�erential equations are extremely precise

mathematical problems. Nonetheless, partial di�erential equations are far from

trivial toy models, and the complexity of the functions they describe can easily be

increased. The conjecture was that analysing deep neural networks would be
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more fruitful in this setting, as extensive mathematical theory is available, but

that nonetheless at least some of the resulting perspectives would be helpful in

understanding deep learning in a broader context.

Speci�cally, the study aimed to reproduce the classical analysis developed by

Yosinski et al. [43] for quantifying the generality of neural network layers using

transfer learning experiments. Whereas that work was focused on the

representations learned by neural networks applied to a machine vision task, the

work here is concerned with the representations learned by neural networks

trained to solve PDEs. Essentially, a large ensemble of neural networks were

trained to solve a family of PDEs related by a problem parameter x′, and the

resulting internal representations were analysed as x′ was varied. The main result

is that, for a given choice of x′, the neural networks always learn essentially the

same representations as long as they have su�cient capacity. The analysis of these

�general� features provides additional insights into the behaviour of the NNM.

5.2 Results

5.2.1 Intrinsic dimensionality

The main results of the study are presented in Fig. 3 of the manuscript (Sec. 5.3).

Three metrics are reported: intrinsic dimensionality, reproducibility, and

speci�city. All metrics are shown with error bars that indicate maximum and

minimum values over all experiments. These errors bars are consistently very

small, demonstrating that the NNM is behaving very consistently across di�erent

random initializations and di�erent choices of the PDE parameter x′.
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Intrinsic dimensionality, as de�ned more precisely in the manuscript, is

approximately equal to the number of signi�cant principal components in the

hidden layers of various neural networks. The manuscript argues that this is

e�ectively a measure of how much information is being stored in the hidden

layers' representations. For every choice of x′, each hidden layer exhibits three

regimes with increasing network width. At small widths, intrinsic dimensionality

equals the width: the networks have insu�ciently many degrees of freedom, and

each new degree of freedom encodes important improvements to the solution.

However, at large widths, the intrinsic dimensionality appears to converge to a

constant value slightly smaller than its peak value. The most salient result is that

the intrisic dimensionality is far smaller than the total width: very wide neural

networks do not use all of their degrees of freedom. The deeper hidden layers

appear to utilize increasingly more of their degrees of freedom, with the limiting

intrinsic dimensionality growing linearly with depth.

This result provides an interesting perspective on the theory-to-practice gap

and the underwhelming convergence of the NNM with respect to its total number

of degrees of freedom. It appears that the e�ective number of degrees of freedom

in an NNM solution (i.e., its intrinsic dimensionality) is much smaller than its

actual number degrees of freedom (i.e., the total number of weights and biases).

Furthermore, it appears that the e�ective number of degrees of freedom converges

to some maximum at large widths. Increasing width beyond this point does not

change the function learned by the NNM. In fact, this interpretation is consistent

with the measurements of error versus capacity shown in Chapter 4.
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5.2.2 Reproducibility and speci�city

Reproducibility compares the hidden representations learned by a given neural

network architecture (i.e., of �xed width) applied to a given PDE (i.e., �xed x′)

when training is conducted from di�erent initial random guesses for the network's

weights and biases. A high reproducibility means that networks learn the same

representations when trained to solve the same problem, regardless of the random

state at initialization.

The results in Fig. 3(b) of the manuscript (Sec. 5.3) show that reproducibility

increases monotonically with increasing width. Whereas the intrinsic

dimensionality analysis indicated that su�ciently wide networks always learn the

same number of features, the convergence of reproducibility suggests that they

also learn the same speci�c set of features.

How does this unique reproducible set of features depend on the PDE

parameter x′? This is explored by the metric named speci�city (shown in

Fig. 3(c) of the manuscript) which is obtained by comparing the representations

learned by neural networks with the same architecture applied to di�erent PDE

problems (i.e., di�erent values of x′). As shown in Fig. 2, the similarity between

hidden layers decreases gradually with the di�erence in the x′ values for which

the two solutions were obtained. Speci�city summarizes the magnitude of this

di�erence, with a small speci�city indicating that the features do not change very

much with x′, and vice versa.

Fig. 3(c) reveals a seemingly low speci�city for most of the hidden layers

investigated. Speci�cally, the �rst two hidden layers appear to learn general

features (i.e., that change little with x′) in all cases. The third (i.e.,
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second-to-last) also learns general features, as long as the width of the network is

large enough. Conversely, the �nal layer learns very speci�c features in all cases.

The fact that many of these features are approximately independent of x′ has

implications for the use of the NNM on parametrized PDEs. In particular, this

suggests that transfer learning protocols may be practically useful if a PDE is to

be solved repeatedly for many values of its parameters one after the other. The

solution for one choice of the parameters may be a very good initial guess for the

solution for another choice of the parameters.

5.2.3 Interpreting the features

The results suggest that the NNM learns a small, reproducible, and general set of

features to represent the PDE solution. What information is encoded in these

features? Can they be analysed to provide insights into the struture of the PDE

solution, perhaps in a manner analogous to the qualitative interpretations

assigned to Fourier representations of PDE solutions?

The manuscript (Sec. 5.3) includes some preliminary work in this direction.

Visualized as two-dimensional functions of the PDE domain, the features in the

�rst hidden layer appear to coincide with the key geometric features of the

domain (corners and walls). Further investigation in this direction might provide

insights into how the NNM is able to handle complicated and/or

high-dimensional geometries more e�ciently than mesh-based methods.

5.3 Manuscript
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Abstract

We introduce a technique based on the singular vector canonical correlation anal-
ysis (SVCCA) for measuring the generality of neural network layers across a
continuously-parametrized set of tasks. We illustrate this method by studying gen-
erality in neural networks trained to solve parametrized boundary value problems
based on the Poisson partial differential equation. We find that the first hidden
layers are general, and that they learn generalized coordinates over the input do-
main. Deeper layers are successively more specific. Next, we validate our method
against an existing technique that measures layer generality using transfer learning
experiments. We find excellent agreement between the two methods, and note that
our method is much faster, particularly for continuously-parametrized problems.
Finally, we also apply our method to networks trained on MNIST, and show it is
consistent with, and complimentary to, another study of intrinsic dimensionality.

1 Introduction

Generality of a neural network layer indicates that it can be used successfully in neural networks
trained on a variety of tasks [19]. Previously, Yosinski et al. [19] developed a method for measuring
layer generality using transfer learning experiments, and used it to compare generality of layers
between two image classification tasks. In this work, we will study the generality of layers across a
continuously-parametrized set of tasks: a group of similar problems whose details are changed by
varying a real number. We found the transfer learning method for measuring generality prohibitively
expensive for this task. Instead, by relating generality to similarity, we develop a computationally
efficient measure of generality that uses the singular vector canonical correlation analysis (SVCCA).

We demonstrate this method by measuring layer generality in neural networks trained to solve
differential equations. We train fully-connected tanh neural networks (NNs) to solve Poisson’s
equation with a parametrized source term. The parameter of the source defines a family of related
boundary value problems (BVPs), and we measure the generality of layers in the trained NNs as the
parameter varies. We find the first layers to be general, and deeper layers to be progressively more
specific. Using the SVCCA, we are also able to visualize and interpret these general first layers.

We validate our approach by reproducing a subset of our results using the transfer learning experimen-
tal protocol of Yosinski et al. [19]. These very different methods produce consistent measurements of
generality. Further, our technique is several orders of magnitude faster to compute. Finally, we apply
our method to ReLU networks trained on the MNIST dataset [9], and compare to work by Li et al.
[11]. We discuss how the two analyses differ, but confirm that our results are consistent with theirs.

The main contributions of this work are:

1. We develop a method for efficiently computing layer generality over a continuously-
parametrized family of tasks using the SVCCA.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



2. Using this method, we demonstrate generality in the first layers of NNs trained to solve
problems from a parametrized family of BVPs. We find that deeper layers become succes-
sively more specific to the problem parameter, and that network width can play an important
role in determining layer generality.

3. We visualize the principal components of the first layers that were found to be general. We
interpret them as generalized coordinates that reflect important subregions of the unit square.

4. We validate our method for measuring layer generality using the transfer learning experi-
mental protocol developed by Yosinski et al. [19]. We find that both approaches identify
the same trends in layer generality as network width is varied, but that our approach is
significantly more computationally efficient, especially for continuously parametrized tasks.

5. We define a measure of the intrinsic dimensionality of a layer, and contrast it with that of Li
et al. [11]. We show the two are consistent for networks trained on the MNIST dataset.

1.1 Neural networks for differential equations

The idea to solve differential equations using neural networks was first proposed by Dissanayake and
Phan-Thien [3]. They trained neural networks to minimize the loss function

L =

∫

Ω

‖G[u](x)‖2dV +

∫

∂Ω

‖B[u](x)‖2dS, (1)

whereG andB are differential operators on the domain Ω and its boundary ∂Ω respectively,G[u] = 0
is the differential equation, and B[u] = 0 describes boundary conditions. Training data consisted
of coordinates x ∈ Ω sampled from a mesh, used to numerically approximate the integrals in L at
each epoch. Similar methods were proposed by van Milligen et al. [17] and Lagaris et al. [7]. Many
innovations have been made since, most of which were reviewed by Schmidhuber [15] and in a book
by Yadav et al. [18]. Sirignano and Spiliopoulos [16] as well as Berg and Nyström [2] illustrated
that the training points can be obtained by randomly sampling the domain rather than using a mesh,
which significantly enhances performance in higher-dimensional problems. In fact, Sirignano and
Spiliopoulos [16] and Han et al. [5] have demonstrated that neural networks can be used to solve
partial differential equations in hundreds of dimensions, which is a revolutionary result. Traditionally,
such problems have often been considered infeasible, since traditional mesh-based solvers suffer
from an exponential growth in computational complexity with increasing problem dimensionality.

There are at least two good reasons for studying neural networks that solve differential equations
(referred to hereafter as DENNs). The first is their unique advantages over traditional methods for
solving differential equations [2–5, 7, 16, 17]. The second is that they offer an opportunity to study
the behaviour of neural networks in a well-understood context [2]. Most applications of neural
networks, such as machine vision and natural language processing, involve solving problems that are
ill-defined or have no known solutions. Conversely, there exists an enormous body of literature on
differential equation problems, detailing when solutions exist, when they are unique, and how they
will behave. Indeed, in some cases the exact solutions to the problem can be obtained analytically.

1.2 Studying the generality of features with transfer learning

Transfer learning is a major topic in machine learning, reviewed for instance by Pan and Yang [13].
Generally, transfer learning in neural networks entails initializing a recipient neural network using
some of the weights from a donor neural network that was previously trained on a related task.

Yosinski et al. [19] developed an experimental protocol for quantifying the generality of neural
network layers using transfer learning experiments. They defined generality as the extent to which a
layer from a network trained on some task A can be used for another task B. For instance, the first
layers of CNNs trained on image data are known to be general: they always converge to the same
features, namely Gabor filters (which detect edges) and color blobs (which detect colors) [6, 8, 10].

In the protocol developed by Yosinski et al. [19], the first n layers from a donor network trained on
task A are used to initialize the first n layers of a recipient network. The remaining layers of the
recipient are randomly initialized, and it is trained on task B. However, the transferred layers are
frozen: they are not updated during training on task B. The recipient is expected to perform as well
on task B as did the donor on task A if and only if the transferred layers are general.
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In practice, however, various other factors can impact the performance of the recipient on task B,
so Yosinski et al. [19] also included three control tests. The first control is identical to the actual
test, except that the recipient is trained on the original task A; this control identifies any fragile
co-adaptation between consecutive layers [19]. The other two controls entail repeating the actual test
and the first control, but allowing the transferred layers to be retrained. When the recipient is trained
on task A with retraining, performance should return to that of the donor network. When it is trained
on task B with retraining, Yosinski et al. [19] found the recipient actually outperformed the donor.

Yosinski et al. [19] successfully used their method to confirm the generality of the first layers of
image-based CNNs. Further, they also discovered a previously unknown generality in their second
layers. This methodology, however, was constructed for the binary comparison of two tasks A and B.
In the present work, we are interested in studying layer generality across a continuously parametrized
set of tasks (given by a family of BVPs), and the transfer learning methodology is prohibitively
computationally expensive. Instead, we will use a different approach, based on the SVCCA, which
we will then validate against the method of Yosinski et al. [19] on a set of test cases.

1.3 SVCCA: Singular Vector Canonical Correlation Analysis

Yosinski et al. [19] defined generality of a layer to mean that it can be used successfully in networks
performing a variety of tasks. This definition was motivated, however, by observing that the first
layers of image-based CNNs converged upon similar features across many network architectures and
applications. We argue that these two concepts are related: if a certain representation leads to good
performance across a variety of tasks, then well-trained networks learning any of those tasks will
discover similar representations. In this spirit, we define a layer to be general across some group of
tasks if similar layers are consistently learned by networks trained on any of those tasks. To use this
definition to measure generality, then, we require a quantitative measure of layer similarity.

Recently, the SVCCA was demonstrated by Raghu et al. [14] to be a powerful method for measuring
the similarity of neural network layers [14]. The SVCCA considers the activation functions of a
layer’s neurons evaluated at points sampled throughout the network’s input domain. In this way
it incorporates problem-specific information, and as a result it outperforms older metrics of layer
similarity that only consider the weights and biases of a layer. For instance, Li et al. [12] proposed
measuring layer similarity by finding neuron permutations that maximized correlation between
networks. As a linear algebraic algorithm, however, the SVCCA is more computationally efficient
than permutation-based methods. Similarly, Berg and Nyström [2] have concurrently attempted to
study the structure of DENNs by analyzing weights and biases directly, but found the results to be
too sensitive to the local minima into which their networks converged.

Following Raghu et al. [14], we will use the SVCCA to define a scalar measure of the similarity of
two layers. The SVCCA returns canonical directions in which two layers are maximally correlated.
They defined the SVCCA similarity ρ of two layers as the average of these optimal correlation values.
However, this quantity depends explicitly on the layers’ widths, independently of the functions the
layers represent. Here, instead of the mean, we will define ρ as the sum of these correlations. Since
we typically found that the majority of the correlations were nearly 1.0 or nearly 0.0, this SVCCA
similarity roughly measures the number of significant dimensions shared by two layers. In particular,
since the SVCCA between a layer and itself is equivalent to a principal component analysis, we will
use the SVCCA self-similarity as an approximate measure of a layer’s intrinsic dimensionality.

This concept of intrinsic dimensionality differs from that recently proposed by Li et al. [11]. They
constrained network weights during training to a random d-dimensional subspace for various values
of d, and defined the intrinsic dimensionality of a given network on a given task as the smallest d
for which good performance is achieved. This metric differs from ours in two important ways. First,
their algorithm finds the smallest representation required to solve a problem, whereas our definition
directly analyses the actual representations learned in practice. Specifically, they consider a strongly
regularized auxilliary problem, whereas we examine given solutions directly. Second, their measure
is based on the performance of representations, whereas ours measures structure. Indeed, since
Raghu et al. [14] were able to compress models with little loss of performance by keeping only the
first few important SVCCA directions, the remaining important SVCCA directions must describe
structures present in layers’ representations that do not directly influence network performance. Our
method is complimentary to that of Li et al. [11]: theirs finds compact solutions that perform well,
which is of practical value, but ours can examine any given network without altering its properties.
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2 Methodology

2.1 Problem definition

Following concurrent work by Berg and Nyström [2], we will study the structure of DENNs on
a parametrized family of PDEs. Berg and Nyström [2] used a family of Poisson equations on a
deformable domain. They attempted to characterize the properties of the DENN solutions by studying
the variances of their weights and biases. However, they reported that their metrics of study were too
sensitive to the local minima into which their solutions converged for them to draw conclusions [2].

In this work, we have repeated this experiment, but using the SVCCA as a more robust tool for
studying the structure of the solutions. The family of PDEs considered here was

∇2u(x, y) = s(x, y) for (x, y) ∈ Ω, (2)
u(x, y) = 0, for (x, y) ∈ ∂Ω, (3)

where Ω = [−1, 1]× [−1, 1] is the domain and −s(x, y) is a nascent delta function given by

s(x, y) = −δr(x, y;x′, y′) = −
exp

(
− (x−x′)2+(y−y′)2

2r2

)

2πr2
, (4)

which satisfies limr→0 δr(x, y;x′, y′) = δ(x− x′)δ(y− y′), where δ is the Dirac delta function. For
the present work, we will fix y′ = 0 and r = 0.1, and vary only x′. Thus, the BVPs describe the
electric potential produced by a localized charge distribution on a square domain with grounded
edges. The problems are parametrized by x′. We relegate deformable domains to future work.

2.2 Implementation details

The networks used in this work were all fully-connected with 4 hidden layers of equal width,
implemented in TensorFlow [1]. Activation functions were tanh, except in Section 3.4, where ReLU
was used. Given inputs x and y, the network was trained to directly approximate u(x, y), the solution
to a BVP from the family of BVPs described above. Training followed the DGM methodology of
Sirignano and Spiliopoulos [16]. More implementation details are discussed in the supplemental
material. Since this work was not focused on optimization of performance, we used relatively generic
hyperparameters whenever possible to ensure that our results are reasonably general.

3 Results

3.1 Quantifying layer generality in DENNs using SVCCA

In this section, we use the SVCCA to study the generality of layers in DENNs trained to solve our
family of BVPs. We train DENNs to solve the BVPs for a range of x′ values, each from four different
random initializations per x′ value. We will refer to the different random initializations as the first
through fourth random seeds for each x′ value (see the supplemental material for details about the
random seed construction). First, we present results for networks of width 20. We condense our
analysis into three metrics, and then study how those metrics vary with network width.

Figure 1 shows the SVCCA similarities computed between the first, third, and fourth hidden layers of
networks of width 20. The matrix for the second hidden layer is omitted, but closely resembles that
for the first hidden layer. The (i, j)th element of the matrices show the SVCCA similarity computed
between the given layers of the ith and jth networks in our dataset. Since the SVCCA similarity does
not depend on the order in which the layers are compared, the matrices are symmetric. The black
grid lines of the matrices separate layers by the x′ values on which they were trained, and the four
seeds for each x′ are grouped between the black grid lines.

The matrices evidently exhibit a lot of symmetry, and can be decomposed into subregions. The first is
the diagonal of the matrices, which contains the self-similarities of the layers, denoted ρlself in the
lth layer. The second region contains the matrix elements that lie inside the block diagonal formed
by the black grid lines, but that are off the main diagonal. These indicate the similarities between
layers trained on the same x′ values, but from different random seeds, and will be denoted ρl∆x′=0.
The remaining matrix elements were found to be equivalent along the block-off-diagonals. These
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Figure 1: Matrices of layer-wise SVCCA similarities between the first, third, and fourth hidden layers
of networks of width 20 trained at various x′ values, with four random seeds per position. The black
lines group layers on each axis by the x′ values at which they were trained. For each x′ value, the four
entries correspond to four distinct random seeds. Thus the matrix diagonals contain self-similarities,
the block diagonals formed by black lines contain similarities across random seeds at a fixed x′, and
the remaining entries correspond to comparisons between distinct x′ values.
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Figure 2: For each layer, crosses show mean similarities between distinct layers as a function of the
difference in the x′ values at which they were trained. Diamonds show mean self-similarities. For
both, error bars indicate maximum and minimum values. The gray lines show the null hypothesis
described in the text, namely that the representations are independent of x′.

correspond to all similarities computed between lth layers from networks trained on x′ values that
differ by ∆x′, which we will denote ρl∆x′ .

With this decomposition in mind, the matrices can be represented more succinctly as the plots shown
in Figure 2. The diamonds and their error bars show the mean, minima, and maxima of ρlself in
each layer l. The crosses and their error bars show the means, minima, and maxima of ρl∆x′ for
varying source-to-source distances ∆x′. As described above, the statistics of ρl∆x′=0 were computed
excluding the self-similarities ρlself . The dashed gray lines show 〈ρl∆x′=0〉 for each layer, and are used
below to quantify specificity. We show the minima and maxima of the data in order to emphasize that
our decomposition of the matrices in Figure 1 accurately reflects the structure of the data.

In the plots of Figure 2, the gap between ρlself and ρl∆x′=0 indicates the extent to which different
random initializations trained on the same value of x′ converge to the same representations. For
this reason, we define the ratio 〈ρl∆x′=0〉/〈ρlself〉 as the reproducibility. It measures what fraction
of a layer’s intrinsic dimensionality is consistently reproduced across different random seeds. We
see that, for networks of width 20, the first layer is highly reproducible, and the second is mostly
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Figure 3: The intrinsic dimensionality, reproducibility, and specificity of the four layers at varying
width. The lines indicate mean values. The error bars on intrinsic dimensionality indicate maxima
and minima, whereas the error bars on reproducibility and specificity indicate estimated uncertainty
on the means (discussed in the supplemental material). Numbers indicate layer numbers. The inset in
(a) shows the limiting dimensionalities of the four layers at width 192.

reproducible. Conversely, the third and fourth layers in Figure 2 have a gap of roughly 3 out of
20 between 〈ρl∆x′=0〉 and 〈ρlself〉: networks from different random seeds at the same x′ value are
consistently dissimilar in about 15% of their canonical components.

We can use the plots of Figure 2 to quantify the generality of the layers. When a layer is general
across x′, the similarity between layers should not depend on the x′ values at which they were trained.
Thus the ρl∆x′ values should be distributed no differently than ρl∆x′=0. Visually, when a layer is
general, the crosses in Figure 2 should be within error of the dashed grey lines. Similarly, the distance
between the crosses and the dashed line is proportional to the specificity of a layer. Thus we can see
in Figure 2 that, for networks of width 20, the first and second layers appear to be general, whereas
the third and fourth are progressively more specific.

To quantify this, we will define a layer’s specificity as the average over ∆x′ of∣∣〈ρl∆x′=0〉 − 〈ρl∆x′〉
∣∣ /〈ρl∆x′=0〉. In Figure 2, this is equivalent to the mean distance from the crosses

to the dashed grey line, normalized by the height of the dashed grey line. Equivalently, it is the ratio
of the area delimited by the crosses and the dashed line to the area under the dashed line. It can
also be interpreted as a numerical estimation of the normalized L1 norm of the difference between
the measured 〈ρl∆x′=X〉 and the null hypothesis of a perfectly general layer. By this definition, a
layer will have a specificity of 0 if and only if it has similar representations across all values of ∆x′.
Furthermore, the specificity is proportional to how much 〈ρl∆x′〉 varies with ∆x′. Thus the specificity
metric we defined here is indeed consistent with the accepted definitions of generality and specificity.

The same experiments described above for networks of width 20 were repeated for widths of 8, 12,
16, 24, 48, 96, and 192. Figure 3 shows the measured intrinsic dimensionalities, reproducibilities,
and specificities of the four layers. The error bars on the intrinsic dimensionalities show minima
and maxima, emphasizing that these measurements were consistent across different values of x′ and
different random seeds. The error bars on the reproducibility and specificity show the estimated
uncertainty on the means, as discussed in the supplemental material.

In narrow networks, the layers’ intrinsic dimensionalities (Fig. 3(a)) equal the network width. As
the network width increases, these dimensionalities drop below the width, and appear to converge
to finite values. We suggest that, for a fixed x′ value, there are finite-dimensional representations
to which the layers will consistently converge, so long as the networks are wide enough to support
those representations. If the networks are too narrow, they converge to some smaller-dimensional
projections of those representations. The reproducibility plots (Fig. 3(b)) support this interpretation,
as the reproducibilities grow with network width. Furthermore, they are smaller for deeper layers,
except in very wide networks where the fourth layer becomes more reproducible than the second and
third. This could be related to convergence issues in very wide networks, as discussed below.
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Figure 4: Plots of the first nine principal components of the first layer of a network trained on x′ = 0.6
(obtained by self-SVCCA). The numbers show the SVCCA correlations of each component.

The limiting dimensionalities increase nearly linearly with layer depth, as shown in the inset of
Figure 3(a). This has implications for sparsification of DENNs, as Raghu et al. [14] showed suc-
cessful sparsification by eliminating low-correlation components of the SVCCA. Similarly, DENN
architectures that widen with depth may be more optimal than fixed-width architectures.

The specificity (Fig. 3(c)) varies more richly with network width. Overall, the first layer is most
general, and successive layers are progressively more specific. Over small to medium widths, the
second layer is nearly as general as the first layer; the third layer transitions from highly specific to
quite general; and the fourth layer remains consistently specific. In very wide networks, however, the
second and third layers appear to become more specific, whereas the fourth layer becomes somewhat
more general. Future work should explore the behaviour at large widths, but we speculate that it may
be related to changes in training dynamics at large widths. As discussed in the supplemental material,
very wide networks seemed to experience very broad minima in the loss landscape, so our training
protocol may have terminated before the layers converged to optimal and general representations.

The overall trends in specificity discussed above are interrupted near widths of 16, 20, and 24. All
four layers appear somewhat more general than expected at width 16, and then more specific than
expected at width 20. By width 24 and above they resume a more gradual variation with width. This
is a surprising result that future work should explore more carefully. It occurs as the network width
exceeds the limiting dimensionality of the second layer, which may play a role in this phenomenon.

3.2 Visualizing and interpreting the canonical directions

We have shown that the first layers of the DENNs studied here converge to general 9-dimensional
representations independent of the parameter x′. Figure 4 shows a visualization of the first 9 principal
components (obtained by self-SVCCA) of the first layer of a network of width 192 trained at x′ = 0.6,
shown as contour maps. We interpret these as generalized coordinates. The contours are densest where
the corresponding coordinates are most sensitive. It is clear that the first 2 of these 9 components
capture precisely the same information as x and y, but rotated. The remaining components act
together to identify 9 regions of interest in the domain: the 4 corners, the 4 walls, and the center. For
instance, component (e) describes the distance from the top and bottom walls; component (i) does the
same for the left and right walls; and component (d) describes distance to the upper-left corner. We
found the first layers could be interpreted this way at any x′ and whether we found components by
self-SVCCA or cross-SVCCA, and have included examples of this in the supplemental material. The
components are always some linear combination of x, y, and the 9 regions described above.

Surprisingly, we found that the SVCCA was numerically unstable. Repeated analyses of the same
networks produced slightly different components, although the correlation vectors were very stable.
We see two factors contributing to this problem. Firstly, the first 7 or 8 correlation values of the
first layer are all extremely close to 1 and, therefore, to one another. Thus the task of sorting the
corresponding components is inevitably ill-conditioned. Second, the components appear to be paired
into subspaces, such as the first two in Figure 4. Thus the task of splitting these subspaces into
one-dimensional components is also ill-conditioned. We propose that future work should explore
component analyses that search for closely-coupled components. This could resolve the numerical
stability while also extracting even more structure about the layer representations.

3.3 Confirming generality by transfer learning experiments

In this section, we validate the method used to measure generality in Section 3.1 by repeating a subset
of our measurements using the transfer learning technique established by Yosinski et al. [19]. We
restricted our validation to a subset of cases because the transfer learning technique is significantly
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more computationally expensive. To this end, we only trained donor networks at x′A = 0 and
measured generality towards x′B = 0.6. Following Yosinski et al. [19], we will call the control cases
with x′B = 0 the selffer cases, and the experimental cases with x′B = 0.6 the transfer cases. We show
the results for widths of 8, 16, 20, and 24 in Figure 5(a-d). Throughout this section, we will refer to
the measure of layer specificity we defined in Section 3.1 as the SVCCA specificity, to distinguish it
from the measure of layer specificity obtained from the transfer learning experiments, which we call
the transfer specificity. In Figure 5(a-d), the transfer specificity is given by the difference between the
losses of the frozen transfer group (solid, dark red points) and those of the frozen selffer group (solid,
dark blue points). It is immediately clear that the third and fourth layers are much more specific than
the first and second at all widths. The specificities of the first, second, and fourth layers do not change
very much with width, whereas the third layer appears to become more general with increasing width.
These results are in agreement with those found with the SVCCA specificity.

To quantify these differences, we define a transfer specificity metric given by the ratio of the losses
between the two frozen groups. This is shown in Figure 5(e), and it can be compared to the SVCCA
specificities for the same widths, which lie in the leftmost third of Figure 3(c). The dashed line in
Figure 5(e) shows a transfer specificity of 1, corresponding to a perfectly general layer. The first
and second layers have transfer specificities of roughly 5, and are general (within error) at all widths.
The fourth layer, on the other hand, has a transfer specificity of roughly 105, and is highly specific at
all widths. Whereas those layers’ transfer specificities do not change significantly with width, the
third layer becomes increasingly general as the width increases. Its transfer specificity decreases by
roughly a factor of 4 from roughly 64 at width 8 to 18 at width 16. In Figure 3(c), by comparison, its
SVCCA specificity drops from roughly 5% at width 8 to 2% at width 16. Thus the transfer specificity
metric agrees with the main results of the SVCCA specificity: at all four widths, the first two layers
are general, and the fourth is very specific; the third layer is specific, albeit much less so than the
fourth, and becomes more general as the width increases.

Returning to Figure 5(a-d), recall that the remaining control groups also contain information about
network structure. Any difference between the two selffer groups (the two blue series) indicates fragile
co-adaptation. We note possible fragile co-adaptation at a width of 8, especially at n = 3. Future
work should try measuring co-adaptation using the SVCCA, perhaps by measuring the similarities
of different layers within the same network, as done by Raghu et al. [14]. Finally, any significant
difference between the two retrained groups (the two dashed series) was meant to check if retraining
transferred layers boosted recipient performance; however, this was not seen in any of our cases.
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Figure 6: Test accuracies, intrinsic dimensionalities and reproducibilities of networks trained on the
MNIST dataset for various L2 regularization weights λ and network widths. The error bars in (a) and
(b) show maxima and minima; those in (c) show the estimated standard error.

Overall, the transfer specificity used by Yosinski et al. [19] shows good agreement with the SVCCA
specificity we defined. We note however that the SVCCA specificity is much faster to compute.
Both methods require the training of the original set of networks without transfer learning, which
took about 2 hours per network using our methodology and hardware. We could then compute all
the SVCCA specificities for this work in roughly 15 minutes. On the other hand, Figure 5 required
hundreds of extra hours to compute, and only considers four widths and two x′ values. That method
would be prohibitively expensive for measuring generality in any continuously-parametrized problem.

3.4 Intrinsic dimensionality and reproducibility on MNIST

We also applied our metrics to the same networks trained instead on the MNIST dataset [9], and with
ReLU activation functions rather than tanh. The networks were trained to minimize the classification
cross entropy plus an L2 regularization term with weight λ. We used widths of 50, 100, 200, and 400;
λ values of 0, 0.01, and 0.05; and four random seeds per combination. Li et al. [11] measured the
intrinsic dimensionalities of such networks, and found them to be vastly overparametrized.

Figure 6(a) shows, for each λ, the range of test accuracies over all widths after training on 2000
batches of 100 images. Figures 6(b) and 6(c) show the intrinsic dimensionalities and reproducibilities,
respectively, by width, layer number, and λ. Without regularization (i.e. with λ = 0), the intrinsic
dimensionalities of all four layers are nearly equal to their widths. This apparent contradiction to Li
et al. [11] arises because their method is itself strongly regularizing. As we increase λ, the intrinsic
dimensionalities decrease more rapidly than performance, which is consistent with the results of Li
et al. [11]. We find low reproducibility in all experiments, even though the accuracies and intrinsic
dimensionalities are quite consistent across seeds. This suggests that, at fixed width and regularization
strength, although the networks consistently converge to representations of the same dimension, and
although they exhibit comparable accuracy, the details of the learned representations vary significantly
across seeds. In other words, the optimal representations in this experiment are non-unique. Since our
metrics can be computed efficiently, future work should explore how this conclusion evolves during
training. This experiment illustrates how our first two metrics, developed for DENNs, can also be
applied more broadly. Our metric of specificity is based on a continuously-changing task; extending
this to MNIST could be done, for instance, by varying the relative sampling of the target classes.

4 Conclusion

In this paper, we presented a method for measuring layer generality over a continuously-parametrized
set of problems using the SVCCA. Using this method, we studied the generality of layers in DENNs
over a parametrized family of BVPs. We found that the first layer is general; the second is somewhat
less so; the third is general in wide networks but specific in narrow ones; and the fourth is specific for
widths up to 192. We visualized the general components identified in the first layers and interpreted
them as generalized coordinates capturing features of interest in the input domain. We validated
our method against the transfer learning protocol of Yosinski et al. [19]. The methods show good
agreement, but our method is much faster, especially on continuously-parametrized problems. Finally,
we contrasted our intrinsic dimensionality with that used by Li et al. [11]. The two are distinct but
complimentary, and produce consistent results for networks trained on the MNIST dataset [9].
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A Additional implementation details

We used the tanh activation function for the DENNs in our work, and chose Ω = [−1, 1]× [−1, 1] so
that the input neurons had the same range as the hidden neurons. We used the tanh activation function
as it outperformed the sigmoid, which was used in many previous works on DENNs (e.g. [2, 5, 6]).
This is consistent with the general guidelines on efficient backpropagation offered by LeCun et al.
[7]. LeCun et al. [7] also propose a rescaling of the tanh activation function that might improve
performance when used with correspondingly rescaled inputs. Implementing this function using the
python interface of TensorFlow [1] did not improve performance significantly, although a lower-level
implementation might do better. Since this work was not performance-oriented, this is relegated to
future work.

Piecewise-linear activations functions like ReLU were found to be incompatible with DENNs; the
PDEs are defined in terms of the network’s derivatives with respect to its inputs, and piecewise-linear
activations functions produce solutions that are locally flat. Although such activation functions could
still be used approximate the solution functions in theory (since Sonoda and Murata [10] showed
that they still lead to universal approximation theorems), any function represented by them has no
higher derivatives at any point in the domain, and so cannot learn by backpropagation from the loss
functions used with DENNs.

Following Sirignano and Spiliopoulos [9], the loss function defined as

L(x, y) =
(
∇2u− s

)2
(1− IδΩ) + ηu2IδΩ (1)

where

IδΩ(x, y) =

{
1, (x, y) ∈ ∂Ω
0, (x, y) /∈ ∂Ω

(2)

is the indicator function for the boundary of the domain. We chose η = 1, assigning equal weight
to the PDE and loss terms. Since only one term is non-zero for any given point (x, y), the relative
importance of the PDE and BC are therefore controlled directly by the relative sampling of the interior
and boundary of the domain.

In defining the loss function, theL2 norm was consistently found to lead to better training performance
than the L1 norm. This was not clear a priori, as the problem studied here is essentially one of
approximating a specific function, rather than learning from a statistical process. In this case, then,
one might expect the L1 norm to converge to sharper minima in the loss landscape, in much the same
way that L1 regularization encourages sparsification more readily than L2 regularization. Future
work should explore why training seemed to be less efficient with this loss norm.

During training, batches of training points were randomly sampled from the domain. Specifically, 104

points were randomly drawn in the interior of Ω, and then 104 more points were drawn on each of
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Figure 1: Final testing losses after training of all the networks used in the SVCCA-based generality
measurements. Error bars show maxima and minima.

the four edges of the domain. Thus, although the loss function assigned equal weight on the PDE and
BC terms, the data sampling favoured the boundaries significantly. The size of the training set was
selected to optimally utilize the available GPU resources (NVIDIA GTX 1080). Since resampling the
data set was computationally expensive, it was only changed every 100 training epochs.

The loss function was evaluated over a testing set of points, which was randomly generated in the
same manner as the training set, but with ten times more points from each region of the domain (for a
total of 5×105 points). This size was deemed to be more than large enough to fully resolve all features
of the problem. As such, the testing set was only generated once for each experiment. The loss was
computed over the testing set every 1000 epochs. Training proceeded until the testing loss failed to
improve after five consecutive evaluations. This was found to reliably produce thoroughly-converged
solutions in early tests, although the number of epochs before convergence varied significantly across
different random initializations for the same experiments. As discussed below, this training protocol
may have encountered issues for very wide networks.

Weights were randomly initialized according to the Tensorflow implementation of the Glorot uniform
initializer [1, 3]. Optimization was conducted using the default TensorFlow implementation of the
Adam optimizer [1, 4].

Because networks were fast to train (taking at most a few hours to converge), many instances of
training (starting from different random seeds) were conducted for each experiment. In order to
reduce the chance of artifacts arising from random seed correlations, the seeds were set according to
the formula

seed = int(str(nxp+1) +
"%02d"%(seed_core) +
str(np.abs(nr)+1) +
str(n_layers) +
"%03d"%(neurons_per_layer))

where nxp indicates the number of increments of 0.1 by which the source has been translated in x′,
nr indicates number of times the effective width of the source was increased by a factor of 2 from
r = 0.1, n_layers is the number of hidden layers in the network and neurons_per_layer is the
number of neurons in each hidden layer. Finally, seed_core is a number use to distinguish between
different repetitions of the same experiment. Note that several of these parameters were not varied in
the current work, but this convention was selected for compatibility with future work.

Figure 1 shows the final testing losses achieved by all the networks trained for the SVCCA-based
generality measurements. In other words, these are the losses for all networks trained for this work,
except those trained using transfer learning. Performance improved with width until a width of 24.
Wider networks achieved somewhat worse performance. We observed very wide networks during

2
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Figure 2: Training statistics for all the networks used in the SVCCA-based generality measurements.
Error bars show standard deviations.

training and noticed that they made incremental (in the third decimal place) improvements in testing
loss for many testing periods before converging. We believe this to be due to very broad, flat regions
near the minima of the loss landscapes of these networks. As discussed in the text, our training
protocol may have terminated for these networks before they attained the minima of these plateaus.
As a result, this may have interfered with the networks discovering general representations in the
second and third layers. Similarly, if this coincided with co-adapation among the second, third, and
fourth layers, then some of the generality observed in the second and third layers at moderate widths
may have been shared with the fourth layer in the under-converged very wide networks. In other
words, the increase in the SVCCA specificities of the second and third layers at very large widths
could be related to the slight decrease in the SVCCA specificity of the fourth layer in the same
networks. Certainly, future work should explore this issue more carefully. At a practical level, a
different training protocol than that used here might be beneficial for training very wide DENNs in
performance-oriented settings.

Figure 2 sumarizes the runtime performance of all the networks except those trained with transfer
learning. Despite converging in fewer epochs, very wide networks were slowest to train, as they took
the longest to train per epoch. Very small networks took longer to train because they took many more
epochs to converge. Again, these behaviours might be of interest to future performance-oriented
work.

B Additional analysis details

We used the SVCCA code provided by Raghu et al. [8] on the Google github repository. Their
implementation included various threshold values used to remove small values from the data, as these
are expected to correspond to noise. Because of the nature of DENNs, training is conducted with an
unlimited amount of training data and without any noise in the data. As such, we did not use these
thresholding operations.

The error bars of reproducibility and specificity in Figures 3 and 6 of the main text were obtained by
treating the distributions of each of ρlself , ρ

l
∆x′=0, and ρl∆x′=X as uncorrelated samples and applying

standard rules for the propagation of uncertainty. In reality, these values are in fact somewhat
correlated, so the error bars should be taken only as approximate uncertainties. However, since the
reproducibility varies quite smoothly with network width and the specificity agrees quite well with
the validation tests, we deem the metrics to be sufficiently well-resolved for the current work, and
properly accounting for error correlations is relegated to future work.

C Additional visualizations of first layers

Figure 3 shows the first 9 components obtained by SVCCA with five different pairs of networks’ first
layers. All these networks had widths of 192. The numbers on the left indicate which networks were
compared: x′1 and x′2 are the respective x′ values on which they were trained, and s1 and s2 are their

3



0 0
1 3

0 .6
1 3

.6 .6
1 3

.6 .6
1 1

0 0
1 1

Figure 3: Each row shows plots of the first nine canonical components found by applying the SVCCA
between the first layer of a network trained on x′ = x′1 and the first layer of a network trained on a
different random seed at x′ = x′2, as indexed to the left of the plots. The number above each plot
shows the correlation between the layers in the direction corresponding to that component.

respective random seeds. Thus the first and last rows show self-SVCCAs, which are equivalent to
singular value decompositions. The numbers above each component show the canonical correlation
computed by the SVCCA for that component. The last row of Figure 3 contains the same components
shown in Figure 5 of the main text.

In all five cases, the leading 9 components have the same general structure. All rows contain a pair of
components that capture the same information as the original inputs x and y:

1. In row 1, components 1 and 4, although component 4 is slightly distored by mixing with
another component.

2. In row 2, components 1 and 2.
3. In row 3, components 1 and 2.
4. In row 4, components 1 and 4, although component 4 is slightly distorted by mixing with

another component.
5. In row 5, components 1 and 2.

The remaining components highlight the 9 regions of interest in the domain, as discussed in the main
text. For instance, the top-left corner is present in the following components:

1. In row 1, components 3 and 8.
2. In row 2, component 4.
3. In row 3, component 4.
4. In row 4, components 2 and 3.
5. In row 5, components 3 and 4.

Figure 4 shows the first 27 components and their correlations for the layer shown in the first row of
Figure 3. We note two things here. First, as mentioned in the first text, the correlation values drop

4



Figure 4: Plots of the first 27 components of the first layer shown in the first row of Figure 3.

drastically after the ninth component. This was the basis for our use of the self-SVCCA as a measure
of intrinsic dimensionality. Second, we note that the 11 components following the first 9 still seem to
capture coherent features over the input domain. Indeed, they appear analogous to higher-frequency
Fourier modes found in spectral analysis. In contrast, components 21 and higher of the remaining
192 components are quite incoherent.
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Chapter 6

On parallel computing for mobilities

in periodic geometries

On Parallel Computing for Mobilities in Periodic Geometries examines a

formulation of e�ective mobility (Sec. 2.3.1) in terms of a �rst passage problem.

It extends the analysis from Chapter 3 to a much more general context, proving

that the e�ective mobility of a biomolecule travelling through a periodic geometry

can be expressed in terms of its �rst passage time through a single period of the

geometry. The equivalence holds only for a speci�c choice of the initial conditions

of the �rst passage problem.

This work was originally motivated by the results of Studying First Passage

Problems using Neural Networks: A Case Study in the Slit-Well Micro�uidic

Device, attached in App. D and discussed below. Nagel, Andrew M. and Magill,

Martin and de Haan, Hendrick W. [32] demonstrated an approach to studying

periodic MNFDs using the neural network method to solve the parameterized

time-integrated Smoluchowski equation. Their approach hinged on the

assumption that the e�ective mobility of biomolecules through periodic
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geometries could be expressed in terms of the �rst passage across a single period.

The results On Parallel Computing for Mobilities in Periodic Geometries con�rm

that this is true and explain the technical requirements for correctly relating the

method of Nagel, Andrew M. and Magill, Martin and de Haan, Hendrick W. [32]

to real MNFDs.

Surprisingly, the �rst passage time formulation of the mobility was also found

to have great promise for use with traditional particle simulations. On Parallel

Computing for Mobilities in Periodic Geometries illustrates that, when ample

parallel computing hardware is available, particle-based calculations of e�ective

mobilities can be conducted far more e�ciently using the �rst passage

formulation. Given the rapid growth of parallel computing resources, this result

may be of interest in its own right.

6.1 Motivation

As discussed in Sec. A.3, one of the great appeals of the neural network method

(NNM) of solving partial di�erential equations (PDEs) is that it can readily be

extended to solving parameterized PDEs. That is, whereas traditional numerical

methods for PDEs typically produce solutions for one choice of model parameters

at a time, the NNM can solve parameterized PDEs directly to obtain

parameterized solutions. By comparison, using the �nite element method (FEM),

parameterized solutions to parameterized PDEs can be obtained using model

order reduction (MOR) techniques (Sec. A.2.1.4). This is typically a two-stage

process: �rst, a database of FEM solutions are produced at some reference

choices of the parameter values; and second, the MOR techniques are trained on
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this database to interpolate to new parameter values. The NNM approach

essentially combines these two steps into one.

In Studying First Passage Problems using Neural Networks: A Case Study in

the Slit-Well Micro�uidic Device (App. D), Nagel, Andrew M. and Magill,

Martin and de Haan, Hendrick W. [32] apply this method to a parameterized

time-integrated Smoluchowski equation. The equation in question is a simpli�ed

model of the �rst passage of nanoparticles across a single period of the slit-well

MNFD. For each choice of system parameters, the PDE describes a function

g0(x, y), which is the time-integrated probability density function of nanoparticle

center-of-mass position inside the slit-well device. The model was constructed in

terms of two problem parameters: the applied �eld strength λ and the

nanoparticle radius σ. The nanoparticles were modelled as hard spheres

experiencing repulsive interactions with the walls of the slit-well device. As such,

the parameter σ varied the volume accessible to the center-of-mass nanoparticle

positions, and the domain geometry varied in shape and size as a function of σ.

Thus, the overall parameterized PDE described the function g0(x, y;λ, σ). As

explained in Sec. 2.5, the solution g0 to the time-integrated Smoluchowski

equation has the property that the volume integral of g0 over the PDE domain Ω

is the mean �rst passage time τ from the initial position distribution (encoded in

the source term of PDE) to the absorbing boundary condition of the model. For

the speci�c model explored by Nagel, Andrew M. and Magill, Martin and de

Haan, Hendrick W. [32], this was approximately the mean time taken by

nanoparticles to cross a single period of the slit-well geometry.

Nagel, Andrew M. and Magill, Martin and de Haan, Hendrick W. [32]



Chapter 6. On parallel computing for mobilities in periodic geometries 113

demonstrated that the NNM could accurately approximate the four-dimensional

function g0(x, y;λ, σ) over a physically relevant range of parameter choices.

Implicitly, this function also encodes the dependence of τ on λ and σ, which can

be computed by integration:

τ(λ, σ) =

∫

Ω

g0(x, y;λ, σ)dxdy. (6.1)

As demonstrated in their manuscript, this parameterized approximation to τ is

valuable as a tool for visualizing and analysing the physical behaviour of the

nanoparticles in the slit-well system. Moreover, because the standard NNM

formulation produces continuously di�erentiable approximations to g0, the

derivatives of τ with respect to λ and σ can be computed by integrating the

appropriate derivatives of g0.

In contrast, traditional PDE solvers like FEM produce only point estimates of

τ at �xed choices of λ and σ. Traditional MOR methods can also be used to learn

τ(λ, σ), but these methods su�er from their own technical challenges. Most of

these methods amount to approximating g0(x, y;λ, σ) by some linear function of

the reference FEM solutions at �xed λ and σ. In the current problem, a major

challenge to such an approach is presented by the parameter σ. Because changing

σ modi�es the domain of the PDE, it is not clear how to linearly combine FEM

solutions obtained at di�erent σ values in a meaningful way. In particular, it is

not clear that it is possible to linearly combine them in such a way as to satisfy

the boundary conditions for all intermediary values of σ.

Nagel, Andrew M. and Magill, Martin and de Haan, Hendrick W. [32] show

that the basic NNM implementation is capable of handling the
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geometry-modifying parameter σ without any need for algorithmic re�nements.

Moreover, by comparing the performance of the NNM when trained with �xed

values of σ to its performance when trained with �xed values of λ, Nagel, Andrew

M. and Magill, Martin and de Haan, Hendrick W. [32] conclude that the

geometry-modifying parameter σ does not appear to present noticeably greater

computational complexity than the parameter λ, which does not modify

geometry. These results demonstrates that the NNM may be an appealing

method for computational studies of �rst passage problems in domains with

complicated geometries. More broadly, the implications are potentially relevant

to any model where physical observables of interest can be expressed as

functionals of the solutions to some parameterized PDEs.

In the speci�c context of researching and developing periodic MNFDs, however,

the mean crossing time τ is typically not the physical observable of primary

interest. More commonly, the e�ective mobility (Sec. 2.3.1), normally de�ned as

µdirect = lim
t→∞

〈x/t〉t
λ

, (6.2)

is of greater interest. Nagel, Andrew M. and Magill, Martin and de Haan,

Hendrick W. [32] analyse instead the quantity

µindirect ≡
L/τ

λ
(6.3)

as a reasonable proxy for the e�ective mobility. Here L is the distance in x

between the mean initial position of the nanoparticles and the absorbing

boundary to which the mean �rst passage time τ is measured. The intuition
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behind this de�nition is that L/τ is at least qualitatively similar to limt→∞〈x/t〉t,

as both describe some typical rate at which nanoparticles travel through the

system. The names direct and indirect mobility are used in this chapter to

distinguish between the two quantities. Nagel, Andrew M. and Magill, Martin

and de Haan, Hendrick W. [32] found that the behaviour of µindirect was in general

agreement with the known behaviour of e�ective mobility for nanoparticles in the

slit-well (as studied by Cheng et al. [6]), and it provided a more interesting

observable than τ for their analysis of the NNM's performance. The assumption

was that, at worst, this quantity µindirect might serve as an acceptable alternative

to µdirect in periodic MNFD research.

The main motivation for the work in this chapter was, simply, to clarify the

relationship between this quantity µindirect studied by Nagel, Andrew M. and

Magill, Martin and de Haan, Hendrick W. [32] and the commonly accepted

de�nition of the e�ective mobility µdirect. As discussed in the next section, the

analysis in the manuscript (Sec. 6.3) extends the derivations used in Chapter 3 to

show that, in fact, the two equations can be made to match exactly. The subtle

technical requirement is that the mean �rst passage time τ must be de�ned in the

appropriate domain and with a speci�c initial condition. Similar results were

available in a few related branches of the biophysical literature, but seemed to fall

short of the generality and precision required to utilize this connection in the way

proposed by Nagel, Andrew M. and Magill, Martin and de Haan, Hendrick W.

[32]. On Parallel Computing for Mobilities in Periodic Geometries provides a

�rm foundation for extending the proof-of-concept technique of Nagel, Andrew

M. and Magill, Martin and de Haan, Hendrick W. [32] to any molecules driven by
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any �elds through any geometry, with the only constraint being that the system

must be Markovian on the timescale of transport across periods.

6.2 Results

6.2.1 Direct and indirect mobilities are equivalent

The main result of On Parallel Computing for Mobilities in Periodic Geometries

is that the direct and indirect mobilities (Eqns 6.2 and 6.3) are, in fact,

describing the same physical observable. This equivalence is, however,

conditional. The indirect mobility must be computed using a particular choice of

initial conditions. The details are explained in the manuscript; essentially, the

initial distribution of molecular degrees of freedom must be chosen such that the

resulting �nal distribution (at �rst contact with the next period) is itself equal to

the initial distribution.

This self-consistency condition corresponds to the stationary distribution, π(φ),

of an appropriately de�ned Markov chain model, ρ(φi)→ ρ(φi+1). It is argued in

the manuscript that this stationary distribution should almost certainly exist for

most realistic biophysical systems. Moreover, it should also be unique, and

repeated calculations of the mapping ρ(φi)→ ρ(φi+1) should converge

exponentially fast to π(φ) for any initial choice of ρ(φ0). Numerical analyses are

provided to illustrate that this convergence is indeed extremely rapid, at least in

the case of nanoparticles traversing the slit-well MNFD. This enables e�cient

sampling of the stationary distribution using a Markov chain Monte Carlo

method.
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6.2.2 Indirect mobility better exploits parallel computing

After proving the equivalence of the indirect and direct mobilities, On Parallel

Computing for Mobilities in Periodic Geometries had essentially accomplished its

initial purpose of clarifying the modelling requirements for connecting the

NNM-based methodology of Nagel, Andrew M. and Magill, Martin and de Haan,

Hendrick W. [32] to the study of arbitrary periodic MNFD systems. However, a

second interesting result emerged as a by-product of that derivation. The analysis

that underpins the proof of equivalence allows one to compare the computational

cost of estimating the direct and indirect mobilities using particle simulations.

Although a couple of simplifying approximations are made in the theoretical

comparison of the two mobilities, the analysis uncovers one unambiguous

conclusion: Given access to a su�cient amount of parallel computing hardware,

simulation-based estimates of the indirect mobility converge exponentially faster

than estimates of the direct mobility based on the same particle simulations.

When access to parallel hardware is restricted, the advantage of the indirect

mobility formulation is most pronounced at moderate levels of target accuracy.

When very high levels of accuracy are required, the analysis suggests the two

algorithms are roughly equivalent.

In practice, moderate levels of accuracy are often all that is required in

computational nanobiophysics. The complexity of biophysical systems means that

most mathematical models studied numerically correspond to modelling errors

greater than 1%, so numerical solutions of comparable accuracy are su�cient to

guide research and development e�orts. Furthermore, the availability of parallel

computing hardware is rapidly increasing. A single consumer-grade GPU can



Chapter 6. On parallel computing for mobilities in periodic geometries 118

readily provide tens of thousands of parallel threads for molecular dynamics

simulations, and accessing multiple GPUs for scienti�c computing is increasingly

feasible. The simpli�ed theoretical analysis in the manuscript suggests that,

under such conditions, the indirect mobility can be substantially more e�cient

than the direct mobility.

Ultimately, a complete prediction of the two algorithms' computational

performance essentially requires knowledge of the entire time-dependent transport

of molecules through the MNFD system in question. Thus, we turn once more to

the example of nanoparticles in the slit-well device to provide numerical

measurements of their behaviour. As con�rmed in the manuscript, the theoretical

analyses of error versus runtime for both algorithms match reality quite well in

scenarios with large Péclet numbers (i.e., where the electric �eld is strong relative

to the di�usive motion of the particles). In this case, as predicted, the indirect

mobility estimates can converge to relative errors below 1% up to 5-6 times faster

when a single GPU is utilized; with 10 GPUs, the indirect mobility converges

10-20 times faster down to accuracies on the order of 0.1%.

However, the numerical analyses of the algorithms were found to break down in

the regime of low Péclet number. Here, di�usive e�ects were found to greatly

accelerate the convergence of the direct mobility, likely because the system

converges more rapidly to its steady-state behaviour. Conversely, the runtime of

the indirect mobility becomes dominated by the very large �rst passage times of

particles that di�use backwards through several periods before absorption. As a

result, the indirect mobility in fact converges much more slowly than the direct

mobility for low Péclet numbers and access to only a single GPU. This holds until



Chapter 6. On parallel computing for mobilities in periodic geometries 119

fairly low errors (e.g., on the order of 0.1% in one example of nanoparticles in the

slit-well), below which the two algorithms are essentially equivalent again. On the

other hand, given access to su�cient parallelism the indirect mobility recovers the

advantage. In the slit-well example, the indirect mobility is roughly an order of

magnitude more e�cient than the direct mobility for target errors below roughly

0.5% even for very small Péclet numbers (see Fig. 9 in the manuscript and the

corresponding text). This acceleration corresponds to relatively modest hardware;

current top-of-the-line consumer-grade GPUs should favour the indirect mobility

even more signi�cantly, as discussed in the manuscript.

The above discussion neglects a crucial component of the computational cost of

the indirect mobility: the calculation of the stationary distribution. Luckily, it

appears that this cost may be quite minimal for many periodic MNFDs of

interest. In the slit-well example, the stationary distribution was found to be

essentially uniform when the delineation between periods of the device was placed

in the middle of the slits. This was conjectured to occur because of the geometric

bottleneck in the system near these points. To investigate this, the system was

shifted by half a period, so that the threshold between periods was located in the

middle of the wells. Indeed, the stationary distribution became unambiguously

non-uniform. Even still, relaxing the distribution by computing trajectories

through a few periods of the device was found to converge to the stationary

distribution very rapidly. In fact, even relaxation through a single period

appeared to eliminate virtually all error in the mobility due to the the initial

conditions.

In practice, many periodic MNFDs do exhibit geometric bottlenecks; in this
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case, the stationary distribution may turn out to be approximately equal to a very

simple distribution, trajectory-based sampling may be found to converge very

quickly, and/or the error in mobility measurements due to imperfect sampling of

the stationary distribution may turn out to be small. These conclusions are

certainly system dependent, and this will hopefully be considered by future work.

In any case, for the example of nanoparticles traversing the slit-well, properly

sampling the stationary distribution increases the total computational cost of the

indirect mobility by at most a factor of 2 or 3. As discussed in the manuscript,

this cost can be reduced even further by recycling samples (i.e., generating only

100,000 samples of the stationary distribution and re-sampling these to initialize

10,000,000 simulated trajectories); this greatly reduces the relative cost of

sampling, and does not appear to dominate the error at the 0.1-1% range.

6.3 Manuscript
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We examine methods for calculating the effective mobilities of molecules driven through periodic geometries
in the context of particle-based simulation. The standard formulation of the mobility, based on the long-
time limit of the mean drift velocity, is compared to a formulation based on the mean first passage time of
molecules crossing a single period of the system geometry. The equivalence of the two definitions is derived
under weaker assumptions than similar conclusions obtained previously, requiring only that the state of the
system at subsequent period crossings satisfy the Markov property. Approximate theoretical analyses of the
computational costs of estimating each of these two mobility formulations via particle simulations suggest
that the definition based on first passage times may be substantially better suited to exploiting parallel
computation hardware. This claim is investigated numerically on an example system modelling the passage
of nanoparticles through the slit-well device. In this case, the traditional mobility formulation is found to
perform best when the Péclet number is small, whereas the mean first passage time formulation is found
to converge much more quickly when the Péclet number is moderate or large. The results suggest that,
given fairly modest access to modern GPU hardware, this alternative mobility formulation may be an order
of magnitude faster than the standard technique for computing effective mobilities of biomolecules through
periodic geometries.

I. INTRODUCTION

Microfluidic and nanofluidic devices (MNFDs) are an
emerging class of biotechnologies with various promising
applications in the biological and medical sciences1–4. Of
these devices, an important subclass of periodic MNFDs
exploits the motion of molecules driven through a peri-
odic arrangement of geometric features (e.g., by an elec-
tric field) to induce separation by size or other chemical
properties. For instance, some of the first MNFDs used
for biomolecular separation consisted of periodic arrays
of micron-scale posts5, and work on this type of MNFDs
remains an area of active research and development6–13.
Variants of the post-array design with asymmetric obsta-
cle shapes form the basis of so-called Brownian ratchet
devices14–17. The slit-well motif is another important
MNFD design, consisting of a planar confinement with
alternating deeper well regions and shallower slit regions.
First pioneered by Han and Craighead 18 and elaborated
upon in a series of subsequent studies19–21, the slit-
well device has stimulated ongoing research interest22–30.
A related MNFD design, the capillary-well motif, has
been developed more recently31,32. The dynamics of
biomolecules have also been studied experimentally, theo-
retically, and numerically in a variety of other periodic ge-
ometries, such as: one-, two-, or three-dimensional arrays
of spherical cavities33–37, channels with periodic bands
of attractive and repulsive zones on their walls38–41,
a network of interconnected channels named the rail-
road switch motif42, planar confinement with an ar-
ray of nanopits43, a series of nanopores connected by
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microchannels44, and a periodic sheet of graphene al-
ternating with boron nitride45. In fact, even MNFDs
whose geometries are uniform in the net direction of mo-
tion, such as those used for microcapillary hydrodynamic
chromatography46–49, are (trivially) periodic in this di-
rection.

When periodic MNFDs are used to separate molecules
according to size or some other chemical property of in-
terest, this is accomplished by coupling that property to
the molecule’s net speed through the device. Specifically,
the transport rate of analytes is usually characterized by
the effective mobility, which is the mean velocity on long
timescales normalized by the magnitude of the applied
force-generating field. In fact, many molecular mixtures
of interest (e.g., DNA, nanoparticles, etc.) exhibit lit-
tle to no variation in mobility when driven through free
solution as the net force and net friction scale in direct
proportion to one another. To enable molecular sepa-
ration, MNFDs break this symmetry by exploiting the
interplay of drift and diffusion in non-trivial geometries.

In practice, the design of such devices can be chal-
lenging. One aims to control the coupling between mo-
bility and molecular characteristics by optimizing design
parameters (such as applied voltage or pressure, solvent
composition, and device geometry) in order to produce
the desired profile of effective mobilities. Simulations are
often a valuable aid in elucidating the influence of the
many design parameters on molecular transport proper-
ties such as mobility.

The most common definition of mobility is

µdirect = lim
t→∞

〈x(t)〉/t
Φ

, (1)

where 〈x(t)〉 is the ensemble mean at time t of the center-
of-mass position in the net direction of motion. Here Φ
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FIG. 1. Schematic illustrating the model of nanoparticles in
the slit-well device. (a) A probabilistic graphical model of the
Markov chain model from App. B. For the problem described
in Sec. II B, the only auxilliary coordinate is θi = yi, the y
coordinate of the nanoparticle at its first passage to each new
period. The distributions of yi+1 and ti,i+1 are each deter-
mined entirely by yi. (b) In the direct mobility formulation,
particles are initialized at the midpoint of a slit (red line) and
evolve forward in time until many periods have been crossed.
(c) In the indirect mobility formulation, particles are initial-
ized at the midpoint of a slit (red line) and evolve forward in
time until a single period has been crossed (blue line). The
arrow indicates the direction of the applied electric field. Dif-
fusive motion against the direction of E is possible in both
mobility formulations.

is a scalar characterising the magnitude of the field that
is generating the force driving molecular motion. The
choice of Φ is context-dependent: for electrically driven
motion, Φ ∼ ∆V must characterize the gradient of the
applied electric potential V (see, e.g., Cheng et al. 23); for
pressure-driven motion, Φ ∼ ∆p should indicate the gra-
dient of the applied pressure p (see, e.g., Ollila et al. 27);
and so on. Equation 1 will be referred to here as the
direct mobility, because it is defined directly in terms of
the physical observable it is used to study: the long-term
drift velocity of molecules through the system.

In contrast, the focus of this work is the quantity de-
fined as

µindirect =
L

Φ〈τ1〉
, (2)

where L is the period of the system geometry and 〈τ1〉 de-
notes the ensemble mean of the first passage time across
one such period. Equation 2 will be referred to here as
the indirect mobility, because it is formulated in terms
of observables that can be measured without directly ex-
amining the long-term motion across many periods. This

manuscript includes a careful comparison of the direct
and indirect mobility formulations.

In fact, the two mobility definitions are equivalent un-
der certain circumstances. Indeed, several classical theo-
retical frameworks imply that limt→∞〈x(t)〉/t = L/〈τ1〉.
However, as reviewed in App. A, these results are de-
rived under fairly strong assumptions. Fick-Jacobs the-
ory (App. A 1) assumes that motion can be reduced to
an effective one-dimensional system, and this approach is
typically limited to weakly driven motion and/or slowly
varying geometries. Kramers theory (App. A 2) and re-
lated reaction rate theories assume that most degrees of
freedom of the system relax very quickly on the timescale
over which the molecule traverses the distance L along
the device.

More generally, one can argue for the equivalence of
the two mobility definitions on the basis of ergodicity.
A single molecule that has crossed a large number k of
periods at time t will have sampled the crossing time for
a single period k times. The long-time mean of this one
particle’s k crossing times will be, by ergodicity, equal to
the ensemble mean of the time to cross a single period,
so that t ≈ k〈τ1〉. Conversely, its position will be roughly
x ≈ kL, since it has crossed k periods. Thus, its mean
velocity will be

x

t
≈ kL

k〈τ1〉
=

L

〈τ1〉
, (3)

from which the equivalence of Eqns. 1 and 2 follow.
A more detailed derivation of this result is included in

App. B and demonstrated numerically on a test problem
in Sec. III A. The equivalence of the two definitions is
proven under the simple hypothesis that the system sat-
isfies the Markov property on the timescale of crossing
from one period to the next. Specifically, the dynamics
of the analyte between the time it first enters the kth pe-
riod and the time it first enters period k+ 1 are assumed
to depend only on the state of the analyte at the moment
that it first entered period k. Under this assumption, the
limiting form for the ensemble distribution of x positions
can be deduced in closed form. Correlations between the
crossing times in consecutive periods are properly taken
into account, and these are seen to have a direct effect on
the effective diffusion coefficient of the analytes on long
timescales.

The equivalence of direct and indirect mobility de-
pends on one important technical requirement, which is
that the mean first passage time 〈τ1〉 in Eqn. 2 must be
defined with respect to a certain stationary distribution.
It is argued in App. B 2 that under typical conditions this
distribution should exist and be unique. Moreover, a sim-
ple Markov chain Monte Carlo algorithm for estimating
this distribution numerically is described in App. C and
tested in Sec. III B.

The limiting behaviour of the transport dynamics de-
duced in App. B enables an approximate convergence
rate analysis of the two mobility formulations, included
in App. C. It appears that the indirect mobility is better
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suited for exploiting the massive parallelization afforded
by modern hardware. Given reasonable access to such
hardware, the analysis suggests that standard computa-
tional studies of mobilities through periodic geometries
(such as those conducted in Refs. 8,13,22,23,27,37,38,40,
41,43,45,49) may be made to converge up to an order
of magnitude more quickly with very little modification
to the underlying simulation algorithms. The computa-
tional advantage of the indirect mobility in the test case
from Sec. II B is verified numerically in Sec. III B.

II. PROBLEM DEFINITION

A. The general case: Transport through a periodic
geometry

The physical systems under consideration are those
in which a single molecule is driven through a periodic
MNFD. The molecular motion is stochastic, such that the
physical observables of interest are ensemble averages.
Some external force field (generated, e.g., by an applied
voltage) biases the stochastic motion of the molecule.
The mean direction of the molecule’s center-of-mass mo-
tion over long timescales will be called the x̂ direction.
The geometry of the periodic MNFD and the external
force field are both taken to be periodic in the direction
of x̂, with a period of length L. Every interval of length L
in the x̂ direction will be called one period of the device.

The molecule travelling through the system will be rep-
resented by a finite number of degrees of freedom N ,
which together specify all information about the state of
the system. These would typically be the positions of
all the atoms in the molecule. In the event of a time-
periodic force field, the phase of the molecule with re-
spect to the period of the force field should also be con-
sidered an auxilliary coordinate. In particular, we make
the assumption that the dynamics of these N degrees
of freedom are well-approximated as Markovian, at least
on the timescale over which the molecule crosses a pe-
riod of the device. As reviewed, for instance, by Hänggi
et al. 50 , coarse-grained representations can exhibit non-
Markovian dynamics (i.e. memory) even when the un-
derlying system is actually Markovian at the finest scale.
Nonetheless, for the models commonly used to study pe-
riodic MNFDs, this Markovian assumption is either ex-
actly true or a good approximation on the timescales of
interest8,13,22,23,27,37,38,40,41,43,45,49.

Of the degrees of freedom, the position of the center of
mass in the x̂ direction at time t will be denoted by the
random variable x or x(t) to make the time dependency
explicit. The remaining degrees of freedom will be called
auxilliary coordinates, and denoted collectively by the
random vector θ or θ(t). The original value of x will be
fixed to some x0 = 0 at time t = 0, and the thresholds
between consecutive periods will be located at xi = x0 +
iL for each i. The time elapsed between the molecule’s
first arrival at xi and its subsequent first arrival at xi+1

FIG. 2. (a) Measured indirect mobility values as a function
of field strength E∗ for various particle diameters a. (b,c)
Relative error of simulated indirect mobility values compared
to simulated direct mobility values when indirect mobilities
are calculated using initial x values in the middle of a slit
and (b) initial y values sampled using MCMC with Nrelax =
10 or (c) initial y values distributed uniformly. Error bars
correspond to one standard error.

is denoted ti,i+1. The value of the auxilliary coordinates
at the moment of first contact with xi will be denoted θi.

The proof in App. B is based on a Markov chain model
of this general physical scenario. If the underlying molec-
ular dynamics are Markovian, then the states of the sys-
tem at first contact with each xi form a Markov chain.
The Markov chain is written in Eqn. B2 and illustrated
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in Fig 1(a) as a probabilistic graphical model (i.e., arrows
show statistical dependencies). In particular, the value
of the auxilliary coordinates θi at first contact with xi
entirely determines the distributions of the first passage
time ti,i+1 and of the auxilliary coordinates θi+1 at first
passage into the next period.

Based on an application of the Markov chain central
limit theorem to this Markov chain, the limiting form of
the position distribution ρ(x(t)) at long times t can be
deduced. From there, the equivalence of the the direct
(Eqn. 1) and indirect (Eqn. 2) mobility formulations fol-
lows readily. This use of the Markov chain central limit,
however, requires that the initial auxilliary coordinates
θ0 be initialized according to a specific initial distribu-
tion. In particular, the initial distribution of auxilliary
coordinates ρ(θ0) must be chosen such that the auxil-
liary coordinates θ1 measured at the first passage thresh-
old x1 are distributed according to the same distribution:
ρ(θ1) = ρ(θ0). This choice corresponds to the stationary
distribution of the Markov chain in Eqn. B2; Sec. B 2 in-
cludes discussion regarding its existence and uniqueness.

In principle, the choice of the initial position x0 in
the above description is arbitrary and should have no
impact on the mobility. In practice, however, shifting
x0 can have subtle but important consequences for the
numerical determination of the indirect mobility, as will
be shown in Sec. III B. In particular, x0 affects the nature
of the stationary distribution, and thereby controls the
computational cost of sampling the initial values of θ for
the indirect mobility calculation.

B. Guiding example: Particles in the slit-well device

As a specific illustration of the general circumstance
described in Sec. II A, this section presents a model of
free-draining nanoparticles traversing the slit-well MNFD
under the influence of an applied electric force18–30. In
particular, we will study the same model analysed by
Cheng et al. 23 . Whereas the slit-well has primarily been
studied in the context of polymer analytes (and especially
DNA), we will focus on the simpler case of nanoparti-
cle mobilities as it facilitates a more comprehensive nu-
merical exploration. The equivalence of the direct and
indirect mobilities is demonstrated numerically for this
system in Sec. III A, the task of sampling the correct
stationary distribution is explored in Sec. III B, and the
computational advantages of the indirect mobility are il-
lustrated in Sec. III C.

The geometry of the system is illustrated in Fig. 1(b,c).
The dimensions are indicated in Fig. 1(b); the period
length L = 8 and the aspect ratios of the slit and well
regions are set to match Cheng et al. 23 . The nanoparti-
cles are modelled as hard spherical particles of diameter
a having only two degrees of freedom: the x and y co-
ordinates of their centers of mass. The z coordinate of
the center of mass is omitted under the assumption of
symmetry in the z direction, and rotational degrees of

freedom are also assumed to be negligible. The applied
force field will be held constant in time, so that the only
auxilliary coordinate in this case is θ = y.

Particle motion will be governed by Brownian dynam-
ics, i.e., the overdamped Langevin equation

d~x

dt
= −µ0λ∇U +

√
2DR(t), (4)

where ~x = (x, y), µ0 is the free-solution mobility of the
nanoparticles, D is the free-solution diffusion coefficient,
R is a stationary delta-correlated stochastic force with
mean 0 and variance 1, λ is a scalar controlling the mag-
nitude of the applied force, and U is the baseline electro-
static potential energy of the particle. The free-solution
mobilities will be fixed at µ0 = 1, while the free-solution
diffusion coefficients will scale as D = 1/a in line with
Stokes’ law. The walls are treated as purely reflective
conditions applied when the center of the nanoparticles
is a distance a/2 from the nominal dimensions listed
in Fig. 1(b). Hydrodynamic effects are neglected, and
electrohydrodynamic phenomena (such as the particle’s
charge and ζ potential) are subsumed into µ0.

The baseline electrostatic potential in Eqn. 4 is mod-
elled simply by Laplace’s equation,

∇2U = 0. (5)

The walls of the slit-well device are treated as perfectly
insulating boundary conditions. A unit voltage drop is
imposed across one period of the device measured from
the middle of two consecutive slits. By linearity, the field
−λ∇U corresponds to an applied voltage drop of λ per
period. To match Cheng et al. 23 , we define the quantity
E∗ = λ/L as the characteristic field strength. This char-
acteristic field strength E∗ is also the correct choice of Φ
for computing mobilities in this system (i.e., in Eqns. 1,
2). Finally, it will also be useful to discuss the behaviour
of the system in terms of the Péclet number Pé = E∗a,
which is proportional to the drift-diffusion ratio in the
system.

The direct and indirect mobilities for this model sys-
tem were computed using particle simulations under a
variety of conditions. Equation 4 was discretized using
the common Euler-Maruyama scheme51 to

~x(tj+1) = ~x(tj)− µ0λ∇U(~x(tj))∆t+
√

2D∆tRj . (6)

Here ~x(tj) is the position of the particle at time tj , each
Rj is an independent standard normal random variable
drawn at each timestep, and ∆t is the discrete timestep.
A value of ∆t = 10−3 was used for all simulations.
The baseline electrostatic potential U and the corre-
sponding baseline field −∇U were approximated using
a mixed finite element method formulation according to
the methodology described in Nagel et al. 52 .

Particle simulations were always initialized with con-
stant x positions but random distributed initial y values.
The initial x value was generally placed in the middle of
a slit (Fig. 1(b,c)). For direct mobility calculations, the
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initial values of y were uniformly distributed. For indirect
mobility calculations, the initial values of y were sampled
from a precomputed database of 105 samples obtained by
Markov chain Monte Carlo (MCMC). Specifically, these
samples correspond to the final y positions of trajectories
initialized with uniform y positions and simulated until a
total of Nrelax = 10 periods were crossed; this ensemble of
samples from the stationary distribution was computed
once for each choice of E∗ and a and reused for all cor-
responding simulations. A total of 107 trajectories were
used for indirect mobility calculations. Direct mobilities
were computed by simulating 104 trajectories until the
mean position in the x̂ direction exceeded 5000L, which
is roughly the same methodology used by Cheng et al. 23 .
The above is the default simulation protocol throughout
this paper, but variations of some of these parameters
are investigated in Sec. III.

III. NUMERICAL DEMONSTRATIONS

A. Equivalence of direct and indirect mobilities

Figure 2(a,b) provides numerical verification that the
indirect and direct mobilities are equivalent for the model
of free-draining nanoparticles of diameter a through the
slit-well MNFD described in Sec. II B. Figure 2(a) shows
the indirect mobility as a function of the normalized field
strength E∗ for nanoparticles of various sizes a. This can
be compared directly to Fig. 2 of Cheng et al. 23 , where
the same measurements were computed using a direct
mobility formulation. The direct mobility measurements
were reproduced for the present work as well, but they are
not shown as they are visually indistinguishable from the
indirect mobilities in Fig. 2(a). Rather, Fig. 2(b) shows
the relative error of the indirect mobility values relative
to the direct mobility measurements. The indirect and
direct mobilities were all computed using the default sim-
ulation protocol described in Sec. II B. As anticipated,
the direct and indirect mobilities are in excellent agree-
ment for all cases in Fig. 2(a,b): the relative errors are
all of the order of 0.1% or better, and all points lie within
two standard errors of 0.

B. Sampling the stationary distribution

The results in Fig. 2(a,b) are based on indirect mobili-
ties calculated by sampling the stationary distribution for
y using the MCMC protocol described in Sec. II B. For
each choice of E∗ and a, particle trajectories are evolved
until they traverse Nrelax = 10 periods, and their final
y values form initial conditions for subsequent indirect
mobility estimations. That simulation protocol appears
to be sufficient to recover approximate equivalence of the
direct and indirect mobilities. However, because the sim-
ulations used for the MCMC algorithm are essentially

FIG. 3. (a) Normalized histograms (with 20 bins) of the sta-
tionary distributions obtained with Nrelax = 10 for the stan-
dard protocol. The normalized y position spans the available
y coordinates in the slit, which depends on a through the re-
flective boundary conditions. (b) Kolmogorov-Smirnov test
statistic between the sampled distributions and the uniform
distribution (higher value indicates less uniform behaviour),
as a function of Péclet number. Colours in (a) and (b) show
log(τdrift,slit/τdiff,slit) as described in the text.

identical to the simulations used to measure both the di-
rect and indirect mobilities, the MCMC algorithm nom-
inally multiplies the computational cost of the indirect
mobility calculation by a factor of Nrelax. For excessively
large values of Nrelax, any computational advantage of
the indirect mobility will be lost.

Luckily, it appears to be possible to dramatically re-
duce this overhead cost. For example, the protocol in
Sec. II B reduces this cost by recycling 105 MCMC sam-
ples across the 107 trajectories used for the indirect
mobility calculation. This reduced the runtime of the
MCMC algorithm by roughly a factor of 100, rendering
it a negligible fraction of the total runtime. The magni-
tude of the error imparted by this technique will depend
on the details of the system being studied. Systems for
which the true stationary distribution is more intricate
and/or for which the first passage time depends strongly
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on the initial values of the auxilliary coordinates should
incur more error from recycling MCMC samples.

In the current system, however, the stationary distri-
bution for almost all of the physical parameter combina-
tions was found to be very nearly uniform. Figure 3(a)
shows histograms of the sampled stationary distributions
for all values of E∗ and a. The lines are coloured accord-
ing to a ratio of drift and diffusion times described below.
It is clear that most cases are nearly uniform, and even
the few that deviate noticeably from uniform do not de-
viate very much in absolute terms. Figure 3(b) shows
the Kolmogorov-Smirnov test statistics of these distri-
butions with respect to the uniform distribution. This is
the maximum distance between the empirical cumulative
distribution of the MCMC samples of y against the cumu-
lative distribution of a uniform distribution; essentially,
a larger value indicates that the samples likely come from
a more non-uniform distribution. Here, it is clear that
although all of the most non-uniform distributions cor-
respond to large Péclet numbers, not all cases with large
Péclet numbers exhibit significantly non-uniform station-
ary distributions.

In fact, this behaviour is not so surprising. The slits
of the slit-well device are fairly narrow and long. The
local dynamics within each slit likely satisfy the condi-
tion assumed in Fick-Jacobs theory (App. A 1): diffusive
relaxation of y coordinates occurs much more quickly
than translation in the x direction. This explains why
not all cases with large Péclet numbers in Fig. 3 exhibit
large Kolmogorov-Smirnov test statistics relative to the
uniform distribution: the Péclet number Pé = E∗a is
a global Péclet number, and does not account for the
local drift-diffusion ratio within the slit, which is more
strongly affected by the excluded volume effects due to
the particle diameter a.

A local measure of the drift-diffusion balance can be
obtained by comparing the drift time along the slit in the
x direction,

τdrift,slit ∼
L/2

µ0E∗
, (7)

to the diffusion time across the slit in the y direction,

τdiff,slit ∼
(`slit − a)2

2D
∼ a(`slit − a)2

2
. (8)

Here L = 8 is the period length, `slit = 1 is the nom-
inal width of the slit, a is the particle diameter, and
D = 1/a is the particle diffusion coefficient. The plots in
Fig. 3(a,b) are coloured in proportion to the logarithm of
the ratio of these times, log(τdrift,slit/τdiff,slit). A large ra-
tio corresponds to the Fick-Jacobs regime. Figure 3(a,b)
clearly shows that the most non-uniform stationary dis-
tributions are those for which the global Péclet number
is high and the drift-diffusion time ratio in the slit is
smallest.

In fact, it is even feasible in this case to forego the
MCMC sampling step altogether. Figure 2(c) shows rela-
tive errors of mobility measurements made with Nrelax =

FIG. 4. Schematic of the well-to-well configuration for indi-
rect mobility measurements. Particles are initialized on the
red line, which is in the middle of a well. Mean first passages
times are computed to the blue line.

0, i.e., a uniform distribution of initial y values. The error
relative to the calculated direct mobilities is statistically
indistinguishable at all but the largest field strengths.
More specifically, as predicted above based on the ra-
tio of drift to diffusion times in the slit, only for very
large values of E∗ and moderate values of a is the er-
ror from using a uniform initialization statistically sig-
nificant in Fig. 2(c). Even at these choices of E∗ and
a, the indirect mobility still only has errors on the or-
der of 0.02%; the true stationary distributions are still
nearly uniform (Fig. 3(a)). Extending the above rea-
soning, nearly-uniform stationary distributions may be
expected to arise in other periodic MNFDs featuring ge-
ometric bottlenecks.

It is nevertheless important to note that the use of the
correct stationary distribution is indeed an essential con-
dition for the equivalence of the direct and indirect mo-
bilities (App. B). Figure 5 illustrates the consequences
that can arise if this condition is neglected inappropri-
ately. In this case, indirect mobilities were once again
measured using uniform initial conditions for y, but now
with the mean first passage time computed from an ini-
tial x position set in the middle of a well to the middle
of the next well (Fig. 4), rather than from the middle of
a slit to the middle of the next slit (Fig. 1(c)).

Figure 5(a) shows the indirect mobilities computed
based on the well-to-well mean first passage process with
uniform initial conditions, and Figure 5(b) shows the cor-
responding relative errors. At low field strengths, this
algorithm still produces acceptably small relative errors.
However, at higher field strengths the indirect mobilities
are entirely incorrect, both quantitatively and qualita-
tively. This is in stark contrast to the results of Fig. 2(c),
which showed that uniform initial conditions were an ac-
ceptable approximation for all cases in the slit-to-slit con-
figuration.

Indeed, the correct stationary distribution in the
well-to-well configuration is substantially non-uniform.
Figure 6(a) shows all the distributions for the well-
to-well configuration measured with Nrelax = 1, and
Fig. 6(b) shows the corresponding Kolmogorov-Smirnov
test statistics relative to the uniform distribution. As in
Fig. 3, colours are based on the ratio of the drift timescale
to the diffusion timescale; in the well-to-well configura-
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FIG. 5. (a) Incorrect indirect mobility values measured using
the well-to-well configuration with uniform initial conditions
for y shown as a function of field strength E∗ for various
particle diameters a. (b,c) Relative error of simulated indirect
mobility values compared to simulated direct mobility values
when indirect mobilities are calculated using initial x values
in the middle of a well and (b) initial y values are distributed
uniformly or (c) initial y values are sampled using MCMC
with Nrelax = 1. Error bars correspond to one standard error.

tion, these are

τdrift,well ∼
L/2

µ0E∗
, (9)

τdiff,well ∼∼
a(`well − a)2

2
. (10)

In particular, note that the nominal size of the well is
`well = 5, which is much larger than the nominal size of
the slit, `slit = 1. Contrasting with the stationary distri-
butions in the slit-to-slit configuration (Fig. 3), the well-
to-well distributions are clearly far less uniform. With
increasing Péclet number, the stationary distribution ap-
pears to favour y positions near the top of the well. This
is consistent with the known physics of the system: when
the applied field is strong, the larger particles are less
likely to diffuse into the bottom of the well, and have
larger mobilities as a result23.

As was the case in the slit-to-slit configuration, non-
uniformity is greatest when the Péclet number is large
and the diffusion timescale in y is large relative to the
transit timescale in x. However, whereas the geomet-
ric bottleneck in the slit limits the importance of non-
uniformity for large a, in the well-to-well configuration
the accessible range in y is large even at the largest a val-
ues. This result highlights a subtle but important aspect
of utilizing the indirect mobility formulation in practice:
the behaviour depends on the choice of location for the
period-to-period threshold. This choice affects the com-
plexity of the true stationary distribution, and thus af-
fects the possibility of approximating it analytically (e.g.,
using a uniform distribution) or the computational cost
of sampling it numerically.

Nonetheless, even the intentionally sub-optimal choice
of this threshold in the well-to-well configuration can
be handled very efficiently in this case. The analysis
in App. B suggests that the MCMC algorithm should
converge exponentially with increasing Nrelax, suggesting
that perhaps large values are not necessary. Figure 5(c)
shows the relative error of the well-to-well indirect mo-
bility calculation when the initial conditions are sampled
using the MCMC algorithm with Nrelax = 1. Even with
relaxation through only a single period, the relative er-
ror has become essentially negligible–although errors are
statistically discernible at high E∗, these relative errors
are on the order of 0.1% or less.

The extremely fast convergence of the MCMC sam-
pling protocol can once again be attributed to the ge-
ometric bottleneck in the slits. In the well-to-well con-
figuration, the distribution of y values after crossing one
period are entirely specified by the intermediate y val-
ues in the slit. Because of the bottleneck, the system
becomes thoroughly mixed at this location. It thus ap-
pears inevitable that the MCMC algorithm will converge
very rapidly with Nrelax whenever such a bottleneck is
present.

Future work might explore other options for sampling
from the stationary for indirect mobility calculations. Fi-
nite samples from the MCMC algorithm presented above
might be smoothed by fitting to a histogram or using
kernel density estimation, for instance. Alternative, gen-
erative modelling techniques (e.g., generative adversar-
ial networks) might be of interest. Furthermore, the in-
direct mobility can also be applied to solutions of the
time-integrated Smoluchowski PDE, as explored in Nagel
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FIG. 6. (a) Normalized histograms (with 20 bins) of the sta-
tionary distributions obtained with Nrelax = 1 for the well-
to-well configuration. Normalized y position spans the avail-
able y coordinates in the well, which depend on a via the
reflective boundary conditions. (b) Kolmogorov-Smirnov test
statistic between the sampled distributions and the uniform
distribution (higher value indicates less uniform behaviour),
as a function of Péclet number. Colours in (a) and (b) show
log(τdrift,well/τdiff,well) as described in the text.

et al. 52 (see Sec. A 3). That application actually requires
the estimation of the stationary distribution’s probability
distribution function, rather than only requiring samples
drawn from that distribution. In the context of the al-
gorithm of Nagel et al. 52 , this could be accomplished for
instance by using an auxilliary neural network to rep-
resent the stationary distribution and imposing a self-
consistency condition on the distribution of y values at
the absorbing boundary condition.

C. Computational cost comparison

The demonstration in Sec. III A confirmed that the di-
rect and indirect mobilities are equivalent, as derived in
App. B. Those simulations used an MCMC algorithm to
sample the stationary distribution required for the indi-

rect mobility calculations. As discussed, if every trajec-
tory used to calculate indirect mobility requires an inde-
pendent MCMC sample, and if the MCMC samples re-
quire a large value of Nrelax, then the cost of the MCMC
sampling protocol will dominate the cost of the indirect
mobility calculation. Luckily, as explored in Sec. III B, it
appears possible to greatly reduce this overhead cost. At
least for the model described in Sec. II B, a small number
of MCMC samples can be recycled across many trajecto-
ries without introducing substantial error. Convergence
of the MCMC sampler is expected to be exponential in
Nrelax in general (App. B 2), but geometric bottlenecks
were argued in Sec. II B to produce particularly fast con-
vergence. Altogether, it appears that the cost of sampling
the stationary distribution by MCMC can be made a neg-
ligible fraction of the computational cost of the indirect
mobility calculation in many cases.

With this established, the current section provides a
direct comparison of the computational costs of the di-
rect and indirect mobility formulations. It is based on
the theoretical cost analysis included in App. C, which
is briefly recounted below. The predicted convergence
rates of the two mobilities are tested against their ac-
tual performance on the problem of nanoparticles in the
slit-well from Sec. II B. The analysis ignores the cost of
the MCMC sampling protocol, based on the arguments
above that this is likely a small addition to the overall
cost of the indirect mobility.

Appendix C contains an analysis of the approximate
computational cost of measuring the mobility to a target
level of relative error ε using either the direct or indirect
mobility formulations. The convergence rates are esti-
mated by leveraging the detailed prediction of the limit-
ing x position distribution obtained in App. B. Specifi-
cally, the limiting distribution is predicted to be a normal
distribution with mean and variance given by Eqns. B15
and B16, reproduced here for convenience:

〈x(t)〉 = L
t

〈τ1〉
+ L

1

2

σ2

〈τ1〉2
− 〈δx〉, (11)

var(x(t)) = L2 σ2

〈τ1〉2
t

〈τ1〉
+ L2 5

4

σ4

〈τ1〉4
+ var(δx). (12)

Here L is the period length of the system, 〈τ1〉 is the
mean first passage time across each period (assuming the
stationarity condition for auxilliary coordinates), and σ
is a correlation-adjusted standard deviation of the first
passage time across each period (Eqn. B7).

The quantity δx is an additional random variable intro-
duced in Sec. B 4 to account for the motion of analytes
against the net long-time direction of motion. In par-
ticular, 〈δx〉 is a measure of the mean fluctuation of the
analyte’s x position between its first contact with period
k and period k + 1. Because of the stationarity condi-
tion, the statistics of δx do not depend on k, and thus δx
plays no role in determining the mobility. However, as
discussed below, it does play a very important role in the
rate of convergence of the direct mobility calculation.
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FIG. 7. Ratio of the predicted runtimes for the direct and indirect mobility estimators, for various choices of Npara (indicated
by line color) and CV = σ0/〈τ1〉 (indicated by line style). The predicted runtime ratio is plotted against (a) the target relative
error ε, (b) εNpara, and (c) ε

√
Npara/(σ0/〈τ1〉). The black vertical line in (b) indicates the predicted transition of the direct

mobility estimator from order O(1/Tdirect) to order O(1/
√
Tdirect), while the black vertical line in (c) indicates the predicted

transition of the indirect mobility estimator from exponential convergence to order O(1/
√
Tindirect). All plots neglect the cost

of MCMC sampling and the effect of correlations between first passage times (i.e., assume ψ = σ/σ0 = 1; see App. C).

A measurement of the direct mobility using particle
simulations essentially amounts to generating a sample of
x(t) values in order to estimate 〈x(t)〉 in the direct mobil-
ity definition (Eqn. 1). Appendix C 1 uses the predicted
mean and variance of x(t) to deduce the mean relative
error (Eqn. C2) and standard relative error (Eqn. C3)
of the direct mobility estimator in terms of L, 〈τ1〉, σ,
and 〈δx〉. These errors are expressed as functions of the
number of independent trajectories sampled and the total
runtime for which the trajectories are evolved. The total
relative error of the direct mobility estimator is obtained
by adding the mean and standard error in quadrature.

Equation C2 states that the mean relative error of the
direct mobility estimator is proportional to

1

2

σ2

〈τ1〉2
− 〈δx〉

L
(13)

divided by the total runtime of the simulated trajecto-
ries. This prefactor can potentially become very small
if its two terms are comparable in magnitude. However,
understanding the behaviour of δx was deemed beyond
the scope of the analysis in App. C. The comparison of
direct and indirect mobility convergence rates was con-
ducted with the approximation δx ≈ 0. This is one of
the major limitations of that analysis, and the numerical
demonstrations below will investigate the implications on
convergence rates obtained in practice.

The error convergence of the indirect mobility esti-
mator was approximated by assuming that first passage
times across any given period have exponentially decay-
ing tails. Specifically, the probability density function
ρ(τ1) of the first passage time is assumed to be of the
form (Eqn. C6)

ρ(τ1) ≈ 1

τ∗
exp

(
− τ1
τ∗

)
(14)

at large τ1, where τ∗ is some constant. This is generally a
fair assumption, since the tails of the τ1 distribution are

generated by those stochastic trajectories that happen to
remain trapped for long periods of time (see the theoreti-
cal frameworks in App. A 2). However, it is not generally
the case that τ∗ is equal to the mean first passage time
〈τ1〉. Nonetheless, the simplifying assumption τ∗ ≈ 〈τ1〉
was made in parts of App. C, as a proper characterization
of τ∗ is difficult in general. This is the second major lim-
itation in the theoretical comparison between the direct
and indirect mobility convergence rates, and will also be
addressed in the numerical demonstrations below.

The analysis in App. C culminates in predictions for
the total computation time necessary to achieve a relative
error of ε using either method when a total of Npara par-
allel threads are available. Figure 7 summarizes the main
results of the analysis. Figure 7(a) shows the predicted
ratio of the runtimes for the direct and indirect mobility
estimators. Results are shown for Npara = 103, 104, 105

and with the assumption that the coefficient of variation
σ0/〈τ1〉 of the first passage time across a single period is
0.5, 1.0, or 3.0. Note that here σ0 is the actual standard
deviation of the first passage time, which is assumed to
be similar to the correlation-adjusted standard deviation
σ; see App. C for details.

The general conclusion is that, given sufficient access
to parallel computing hardware, the indirect mobility ap-
pears to be a more efficient choice. Figure 7(b) illustrates
that for target errors below ε ≈ 1/Npara, the two mobil-
ity formulations have roughly the same runtime. Con-
versely, the maximum advantage of using the indirect

mobility occurs for target errors close to σ0/〈τ1〉√
Npara

, as indi-

cated in Fig. 7(c). As Npara increases, the relative cost
of the indirect mobility to the direct mobility decreases
at all values of ε, but the ε at which the ratio is max-
imized shifts to lower values. In practice, ε values near
0.1-1% are commonly used in MNFD research, and the
Npara values listed in Fig. 7 are increasingly affordable
thanks to GPU acceleration. Thus, Fig. 7 shows that
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FIG. 8. (a,b): Measured runtimes for (a) direct mobility estimators and (b) indirect mobility estimators shown as a function of
estimated relative error, for four physical scenarios indicated in the legend. Pe indicates the Péclet number Pé = E∗a and CV
stands for the coefficients of variation σ0/〈τ1〉. (c,d) Deviation of the measured (c) direct mobility and (d) indirect mobility
behaviour from the predicted behaviour. All results for Npara = 104.

the theoretical analysis of App. C predicts accelerations
of an order of magnitude or more by switching to the
indirect mobility formulation under practically relevant
conditions.

However, as noted above, the analysis in App. C and
the results in Fig. 7 are based on two questionable ap-
proximations. First, it neglects the effect of the quantity
〈δx〉 in Eqn C1, which characterizes the motion of ana-
lytes against the net force between the first passage to the
kth period and the first passage to period k+ 1. Second,
it assumes that the first passage times are exponentially
distributed with a time constant τ∗ that is similar in
magnitude to the mean first passage time 〈τ1〉. If 〈δx〉
is large or τ∗ � 〈τ1〉, the predicted computational ad-
vantages of the indirect mobility over the direct mobility
may be smaller than expected.

Figure 8 presents numerical measurements of the run-
times and estimated relative errors for the direct and
indirect mobility estimators, computed from simulations
of nanoparticles in the slit-well device (Sec. II B). In each
subplot of Fig. 8, four physical scenarios are considered:
all combinations of E∗ = 0.2, 20 and a = 0.1, 0.75. The
simulation protocol is the same one that was used in
Sec. III A, with calculations parallelized across Npara =
104 threads. The direct mobility curves in Figs. 8(a,c)
each correspond to measurements taken throughout a

single long simulation trajectory. Each data point for
the indirect mobility estimators in Figs 8(b,d) is sam-
pled independently using varying number of trajectories
(although the same MCMC samples of the stationary dis-
tributions are recycled for each physical scenario). Run-
times are reported in units of simulation time, and rela-
tive errors are estimated against the final direct mobility
values for each of the four physical scenarios.

In Figs. 8(a,b), the coloured dotted lines correspond to
the predicted runtime necessary to achieve a given rela-
tive error ε (Eqns. C23 and C30). The black dotted lines
denote T ∼ 1/ε and T ∼ 1/ε2 scaling, corresponding
to the expected limiting behaviour of the direct mobility
estimator. In Figs. 8(c,d), the measured mobility results
are divided by the predicted behaviours; the solid black
line indicates where the simulation results and the the-
oretical predictions are in agreement. The dotted black
line indicates a scaling of 1/ε, as discussed below.

In Fig. 8(a), the red and green lines match the the-
oretical predictions quite well, but it is clear that the
blue and orange series are performing significantly better
than expected from the analysis. Specifically, Fig. 8(c)
shows that for sufficiently large values of ε the orange
line is about twice as fast as expected and the blue line
is roughly two orders of magnitude faster than expected.
The deviation by this constant factor persists until a cer-
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tain level of relative error is achieved, below which the
ratio of measured to predicted runtimes decays to 1 at
a rate of 1/ε (indicated by the dotted line in Fig. 8(c)).
These transition points in Fig. 8(c) coincides with the
similar transition points in Fig. 8(a) at which the corre-
sponding runtimes change from scaling as 1/ε to scaling
as 1/ε2.

It appears that the disagreement between theory and
reality for the convergence of the direct mobility estima-
tor is larger for smaller Péclet numbers. This behaviour
can be tentatively attributed to the omitted term 〈δx〉/L
acting to reduce the prefactor of the mean relative error
by a constant amount. As explained in App. C 1, the
mean relative error of the direct mobility estimator de-
cays as ε ∼ 1/T with runtime T , whereas its standard

relative error decays as ε ∼ 1/
√
T . At large ε, the to-

tal error of the direct mobility estimator is dominated
by the mean relative error. Since the prefactor of the
mean relative error is missing 〈δx〉/L, the measured run-
time disagrees with the prediction by a constant factor.
Conversely, at sufficiently small ε the total error becomes
dominated by the standard relative error, which does not
depend on 〈δx〉/L . In the small ε regime, the disagree-
ment with the theory decays at the same rate as the mean
relative error, i.e. 1/ε. At large Péclet numbers, however,
it appears that indeed 〈δx〉 ≈ 0, since the measured run-
time versus error agrees well with the prediction from
App. C.

Whereas the direct mobility is performing much better
than predicted in some cases, Figs. 8(b,d) show that the
indirect mobility is performing somewhat less well than
expected. The case with the lowest Péclet number (blue)
exhibits runtimes nearly an order of magnitude larger
than expected over much of the ε range. The other three
cases (orange, green, red) have runtimes that only exceed
the predicted runtime by a factor of 2-3 or less at all
values of ε. These observations can be attributed to the
difference between τ∗ and 〈τ1〉, which were assumed to
be equal in the theoretical predictions.

The difference between τ∗ and 〈τ1〉 is better under-
stood by considering the coefficient of variation than the
Péclet alone. Indeed, the orange and green lines have
very similar coefficients of variation but very different
Péclet numbers; whereas only green agrees with theory
in the direct mobility case (Fig. 8(a,c)), both agree com-
parably well with theory in the indirect mobility case
(Fig. 8(b,d)). The coefficient of variation is equal to 1 for
an exponential distribution, and the case of exponentially
distributed first passage times corresponds to τ∗ = 〈τ1〉.
More generally, the coefficient of variation of a distribu-
tion is a common metric for the relative importance of
the tails of the distribution. In any case, the magnitude
of the gap between theory and practice for the indirect
mobility appears less significant than that observed for
the direct mobility.

In summary, the theoretical convergence analysis con-
ducted in App. C and illustrated in Fig. 7 overpredicts
the advantage of the indirect mobility in two ways. When

the Péclet number is low, the direct mobility performs
better than expected, likely because of the action of δx to
reduce the mean relative error at large ε. When the coeffi-
cient of variation is large, the indirect mobility performs
worse than expected, likely because τ∗ is significantly
larger than 〈τ1〉. Note that in the case of nanoparticles
traversing the slit-well device, the Péclet number corre-
lates very strongly with the coefficient of variation in the
diffusive regime23. Both of these effects tend to dimin-
ish the computational advantage of the indirect mobility
over the direct mobility.

Regardless, the predicted computational advantage of
the indirect mobility is still discernible in this system.
Figure 9(b) is a plot of the ratio of the measured runtimes
for the direct and indirect mobility estimators shown in
Fig. 8(a,b), obtained by linearly interpolating the di-
rect mobility curves in Fig. 8(a). Also included (dotted
lines) are the theoretical predictions of the ratio based
on Eqns. C23 and C30 (as shown in Fig. 7).

As expected from the discussion of Fig. 8, the measured
runtime ratios match the theoretical prediction at high
Péclet numbers, but significantly deviate at lower Péclet
numbers. Nonetheless, the indirect mobility estimator
is found to consistently converge faster than the direct
mobility estimator for the three largest Péclet numbers
for ε in the range of 0.1-1%. The largest increase in speed
is observed for the green line, which converges roughly 6
times faster to an error of approximately 0.5%.

Figures 9(a,c) show how the measured runtime ratios
change when these experiments are repeated with fewer
parallel threads (Npara = 103) or more parallel threads
(Npara = 105), respectively. For Npara = 103, the differ-
ence between the two estimators is difficult to resolve at
any ε value. As noted in App. C 3, the two algorithms
are expected to have roughly identical convergence rates
for small values of Npara. In practice, the direct mobility
appears slightly more efficient, especially given that this
plot omits the cost of sampling the stationary distribu-
tion for the indirect mobility estimator.

Conversely, for Npara = 105, the advantage of the in-
direct mobility is quite clear (Fig. 9(c)). In this case, ob-
servations are much better described by the theory from
App. C. Even for the blue line, where the low Péclet
number and large coefficient of variation were previously
identified as substantially favouring the direct mobility,
the indirect mobility calculation is several times faster at
errors near 0.1%. The green and red lines, correspond-
ing to the larger Péclet numbers, are very well-described
by the theory, and are 10-20 times faster to compute at
errors near 0.1%.

These results demonstrate that the use of the indirect
mobility formulation may indeed be significantly faster
under practical conditions. As noted earlier, target er-
rors of 0.1-1% are typically appropriate for simulation
studies of periodic MNFDs. The effective values of Npara

in practice depend somewhat on implementation details,
but can be estimated (at least for some implementations
on certain NVIDIA GPUs) as 16 times the number of
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FIG. 9. Ratio of the measured runtimes for direct and indirect mobility estimators as a function of estimated relative error ε.
Values for the direct mobilities were interpolated/extrapolated linearly to the required values of ε. The coloured dashed lines
show the predicted ratio of runtimes for each case based on Eqns. C23 and C30. The solid black line shows a ratio of 1, whereas
the dashed black line shows a scaling of 1/ε. Results shown for (a) Npara = 103, (b) Npara = 104, (c) Npara = 105.

CUDA cores53. For our implementation, perfect paral-
lelization to the level of Npara ≈ 104 was easily achieved
on a GTX 1650, a very modest consumer-grade GPU
with 896 CUDA cores. The case of Npara = 105 was
meant to illustrate what could be achieved by paralleliz-
ing across roughly ten such GPUs, a practice which is
increasingly becoming commonplace. Experiments on a
GTX 1080 Ti suggested that a single card of that va-
riety could deliver Npara ≈ 5 × 104, consistent with it
having 3584 CUDA cores. Although its performance was
not tested with our implemented simulations, the RTX
3090 is listed as having 10496 CUDA cores, which may
correspond to Npara ≈ 1.5× 105 on a single card.

Depending on implementation details, simulations of
M -body molecules may effectively be limited to roughly
M times smaller values of Npara on the same hard-
ware. This would be the case, for instance, if roughly
M threads were allocated to accelerate each independent
trajectory. This may or may not be advantageous com-
pared to running serial M -body simulations on each of
the Npara threads; such considerations likely depend on
the physics of the system being simulated and are beyond
the present scope. Regardless, the increasing affordabil-
ity of massively parallel computing resources will enable
larger Npara values for increasingly complex molecules.
For instance, a set of 10 RTX 3090 cards could enable
Npara = 105 with M as large as 150, in which case the
indirect mobility formulation may feasibly be roughly five
times faster than the standard direct mobility formula-
tion, especially for systems with moderate-to-large Péclet
numbers and/or geometric bottlenecks.

IV. CONCLUSION

The theoretical and empirical results presented in this
work support the claim that the indirect mobility formu-
lation (Eqn. 2) may be a more efficient option for comput-

ing the effective mobility of biomolecules driven through
periodic geometries than the traditional direct mobility
formulation (Eqn. 1). In the limit of unlimited parallel
computing capacity and arbitrarily small target errors,
the indirect mobility formulation leads to exponentially
faster convergence. Given the growing importance and
availability of parallel computing hardware for compu-
tational science, the relevance of this result is likely to
increase in the future.

Even under realistic conditions of finite parallel com-
puting capacity and target errors near or slightly below
1%, the indirect mobility can still be a substantially more
efficient approach. In general, the relative performance
of the two approaches appears to depend on a few key
physical parameters of the system under study, and espe-
cially on the balance of drift to diffusion. In the example
model of nanoparticles traversing the slit-well device, the
indirect mobility was demonstrated to converge up to an
order of magnitude faster in some circumstances (specifi-
cally, when the Péclet number is moderate or large), even
using quite modest computing hardware.

Future work is needed to assess the relative merit of
the indirect mobility formulation in simulations of other
biophysical systems. The theoretical discussions in the
appendices are applicable to a fairly general model of the
transport of biomolecules through periodic geometries.
However, the theoretical analyses of computational cost
in App. C are limited by the approximations of nearly-
exponential first passage time distributions and of nearly-
negligible analyte motion against the direction of the ap-
plied force. The empirical results reveal that, in some
cases, the direct mobility is actually a susbtantially more
efficient estimator than the indirect mobility. Nonethe-
less, this only appears to be a practical concern in very
weakly driven systems. Highly driven systems, where the
indirect mobility is most useful, are likely to be of more
practical relevance to the design of MNFDs.
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Appendix A: Review of related theoretical frameworks

Below are included reviews of other theoretical frame-
works in which the direct and indirect mobilities have
been shown to be equivalent. All of these derivations are
less general than the derivation included in App. B. The
result of App. B is more broadly applicable, as it does not
make strong assumptions about separation of timescales
in the system, and it holds for many-body molecules and
for time-varying force fields. Moreover, App. B yields
specific equations for the limiting x position distribution,
enabling the convergence rate analysis in App. C.

1. Quasi-1D systems: Fick-Jacobs theory

The Fick-Jacobs equation was first presented by Ja-
cobs 54 as an effective one-dimensional model for steady-
state diffusion in a confined system of varying cross-
section. Essentially, the two- or three-dimensional
Smoluchowski equation is integrated across the cross-
section of the system. The volume available to particles
in these transverse coordinates is approximated in the
Fick-Jacobs equation by an extra free energy term. A
more rigorous formulation was put forth by Zwanzig 55 ,
who greatly increased the applicability of the equation by
formulating a position-dependent effective diffusion coef-
ficient. Further extensions and corrections were proposed
in subsequent works56,57.

The Fick-Jacobs equation and similar approaches have
been used successfully to explain diffusion in quasi-one-
dimensional systems with or without applied forces, in-
cluding cases with periodic geometries58–64. However,
despite the various refinements that have been proposed,
it generally fails to perform adequately in certain lim-
its. Because the theory assumes rapid relaxation in the
transverse coordinates, it tends to encounter problems
in systems with strong applied forces or sudden changes
in cross-sectional area65–72. Moreover, the theory has a
limited capacity to handle spatial variations in the ap-
plied force field, especially in the direction of the trans-
verse coordinates (see however Pompa-Garćıa and Dag-
dug 64 for an example where Fick-Jacobs was success-
fully extended in this manner). Most importantly for
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the study of biomolecules in periodic MNFDs, the Fick-
Jacobs equation is restricted to the diffusion of single
Brownian particles, and does not directly deal with the
case of many-body molecules.

Since the Fick-Jacobs equation is effectively a one-
dimensional equation, it benefits from many results ap-
plicable to the one-dimensional Smoluchowski equation.
While studying the effective diffusion coefficient of one-
dimensional Brownian particles in tilted periodic poten-
tials, Reimann et al. 73 and Reimann et al. 74 proved that
the indirect mobility (Eqn. 2) is equal to the direct mo-
bility (Eqn. 1). Lindner et al. 75 connected that work
to a classical result due to Stratonovich76. These re-
sults have since been used to compute mobilities in pe-
riodic quasi-one-dimensional systems58,70,71. However,
this proof of equivalence is naturally restricted to the
scope of applicability of Fick-Jacobs theory. Moreover,
because it is based on one-dimensional approximations of
point-particles, arguments like those in Reimann et al. 73

cannot account for correlations between crossing times
(cf. App. B 2).

2. Large barriers: Poisson point processes

The equivalence of the direct and indirect mobilities
is also known to hold in the case that the transport of
molecules across each period of the system is obstructed
by a large free energy barrier. In such a setting, there is a
well-defined separation of timescales between the period-
to-period transport process and all other processes oc-
curring in the system. Reaction rate theories, such as
Kramers theory, can be brought to bear on the problem
(see Hänggi et al. 50 for a review of such theories).

Systems in this regime can be described as Poisson
point processes. The probability that a particle initially
trapped in a given period has not yet escaped to the next
period decays exponentially as a function of time:

P (not absorbed after time t) ∼ exp(−λt). (A1)

Moreover, transfers between distinct periods will cer-
tainly be statistically independent events, since by as-
sumption these events occur more slowly than all other
relaxation timescales in the system. For such exponen-
tially distributed times, the mean rate λ is related to the
mean first passage time τ by

λ =
1

〈τ〉 . (A2)

In the context of mobility through periodic geometries,
the mean position on long timescales will thus be

〈x(t)〉 → Lλt =
Lt

〈τ〉 . (A3)

Dividing both sides by t yields the equivalence of Eqns. 1
and 2.

These theories have been used to analyse particle
transport in titled periodic potentials50. However,
Kramers theory and related reaction rate perspectives
are restricted in applicability by their strong assumption
of timescale separation. Whereas Fick-Jacob methods
assume rapid relaxation of position coordinates in the
directions transverse to bulk motion, reaction rate the-
ories generally assume rapid relaxation of all processes
but the dominant transport process. This approxima-
tion once again breaks down in situations with strong
driving forces and non-equilibrium effects.

Despite their limitations, these theories are still widely
used in practice for describing motion in periodic
MNFDs. In particular, the assumption of exponentially
distributed times is often used to justify physical models
based on mean first passage times (see, for instance, Han
et al. 19 , Cheng et al. 23 , and Wang et al. 41 , for a few ex-
amples of such arguments). The results presented in this
work show that the connection between transport rates
and mean first passage times can be extended to more
general physical circumstances, so long as the stationary
distribution upon which the mean first passage times are
based is defined appropriately.

3. Other mean first passage time methods

Besides the Fick-Jacobs and reaction rate theoretical
frameworks, there have also been a variety of other cases
in which mean first passage times were used to under-
stand the mobilities of molecules traversing periodic ge-
ometries. In particular, mean first passage time perspec-
tives have been used successfully to study the driven dif-
fusion of Brownian particles in geometries with abruptly
changing cross-sections, where the Fick-Jacobs perspec-
tive is not applicable66–69,72. We will also mention in
passing that these studies have also successfully used
mean first passage time frameworks to understand ef-
fective diffusion, another important concept in the re-
search and development of periodic MNFDs. The Lifson-
Jackson method is one of the earliest methods that stud-
ied effective diffusion from this perspective69,77. We will
briefly comment on how our own result connects to the
concept of effective diffusion in App. B 4, but leave more
careful considerations of this aspect for future work.

The Smoluchowski equation describing the evolution
of the position probability density function for Brownian
molecules is another important theoretical framework for
mean first passage time analysis. An adjoint equation
to the Smoluchowski equation can be constructed whose
solution at any point in the domain equals the mean first
passage time from that point to absorbing regions on the
domain’s boundary78. In fact, essentially this method
was used by Lifson and Jackson 77 in their analysis.

Another very similar equation is the time-integrated
Smoluchowski equation, whose solution is commonly de-
noted g0

79. The source term in the time-integrated
Smoluchowski equation corresponds to a certain choice
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of initial particle positions in the system, and the solu-
tion g0 has the property that its integral over the domain
equals the mean first passage time. A recursive hierar-
chy of equations can be constructed to obtain the higher
moments of the first passage time in the same manner.

The qualitative behaviour of g0 solutions in a periodic
MNFD was studied by Magill et al. 44 . This analysis
motivated a certain normalization of first passage times
which elucidated a universal scaling behaviour across sys-
tem geometries. Moreover, Magill et al. 44 argued that
the long-time of molecules traversing that MNFD was
entirely determined by the first and second moments of
the first passage times across each period, which would
be completely captured by the g0 and g1 fields.

Elaborating on the g0 field as a proxy for connect-
ing MNFD geometries with effective mobilities, Nagel
et al. 52 used a method based on neural networks to solve
g0 in a system similar to that studied by Cheng et al. 23 .
By computing four-dimensional approximations of g0 as a
function of both domain coordinates and model parame-
ters, Nagel et al. 52 demonstrated the idea of using neural
networks to construct differentiable mappings from sys-
tem design parameters to physical observables of interest
(in this case, effective mobility). The use of g0 in this way
is a particular motivation for understanding the indirect
mobility; the direct mobility formulation cannot be ex-
pressed in such a straightforward manner as the solution
to a partial differential equation.

Appendix B: Derivation of the equivalence of direct and
indirect mobilities

This section presents a proof that the indirect mobility
(Eqn. 2) is equivalent to the more common direct mobil-
ity (Eqn. 1), so long as the initial conditions used to
compute the indirect mobility are chosen correctly. The
approach of the proof is to derive the limiting form of
the position distribution ρ(x) at long times in terms of
the mean first passage time across a single period 〈τ1〉.
From this solution, it is possible to equate the limiting
drift velocity limt→∞〈x(t)〉/t to L/〈τ1〉. It then follows
readily that the two mobility definitions are equivalent.

The general setup for the proof (App. B 1) is very sim-
ilar to the arguments presented previously by Reimann
et al. 73 and Magill et al. 44 . The final steps of the proof
(Apps. B 3 and B 4) are very similar to the steps taken
by Magill et al. 44 . The argument justifying x ≈ kL de-
spite analyte backflow (App. B 4) is essentially the same
used by Reimann et al. 73 . The first part of the deriva-
tion (App. B 2), however, differs substantially from those
prior derivations in order to account for correlations in
the crossing times between periodic subunits. Such cor-
relations were absent in the system studied by Magill
et al. 44 because of geometric bottlenecks between the
periodic subunits, and were irrelevant to the study of
Reimann et al. 73 which considered only Brownian point
particles in a one-dimensional system. They are handled

here via the judicious application of the Markov chain
central limit theorem to an appropriately constructed
Markov chain model of the transport process.

1. The time to first cross k subunits

Recall from Sec. II A that xi denotes the threshold into
the ith period, θi denotes the values of the auxilliary
coordinates measured at the first time for which x(t) =
xi, and ti,i+1 denotes the time between first contact with
xi and first contact with xi+1. Now let us denote by
τk the total first passage time from the original analyte
position at x = x0 to the threshold of the kth periodic
subunit at x = xk. By definition,

τk = t0,1 + t1,2 + t2,3 + · · ·+ tk−1,k, (B1)

where ti,i+1 is the time to reach xi+1 for the first time
after having reached xi for the first time. In the rest of
this section, the index k will be used to indicate the total
number of channels being crossed, whereas the index i
with 0 ≤ i ≤ k−1 will be used to refer to the intermediate
channels crossed along the way to the kth channel.

Since τk is the sum of a series of random variables, it
is tempting to appeal to the central limit theorem to de-
duce its limiting distribution. However, the application
of the central limit theorem would require that the ran-
dom variables {ti,i+1}k−1

i=0 be identically distributed and
uncorrelated. As will be shown in App. B 2, it is usually
possible to initialize the auxilliary coordinates θ0 such
that the {ti,i+1}k−1

i=0 are indeed identically distributed.
However, in general it is not possible to eliminate the
correlations between the crossing times. Specifically, the
correlation of ti,i+1 with ti−1,i is mediated by the auxil-
liary coordinates θi measured at first contact with xi.

Conveniently, the nature of these correlations is still
very tractable. The Markovian assumption made in
Sec. II A amounts to the statement that the sequence
{θi}k−1

i=0 is a Markov chain. Thus, the random process

(θ0, t0,1)→ (θ1, t1,2)→ · · · → (θk, tk,k+1)→ · · · (B2)

is also a Markov chain. Incidentally, since θi alone com-
pletely specifies the joint distribution of (θi+1, ti+1,i+2),
Eqn. B2 is a special type of Markov chain known as a
hidden Markov model; however, this has no bearing on
the current analysis. What is important is that the ti,i+1

are fixed observables (i.e., real-valued functionals) of the
state (θi, ti,i+1).

2. The stationary distribution

The distribution of τk can be deduced by applying the
Markov chain central limit theorem to the Markov chain
given by Eqn. B2. This theorem generalizes the central
limit theorem, which applies to a sum of independent
and identically distributed (i.i.d.) random variables, to
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the cumulative sum of real-valued functionals of a sta-
tionary Markov chain. In particular, we will consider the
functional g(θi, ti,i+1) = ti,i+1. Note that many varia-
tions and extensions of the Markov chain central limit
theorem exist, but we only need to appeal to the version
of Doob 80 .

In order to apply the theorem, it is necessary for the
Markov chain to be initialized in its stationary distribu-
tion π, which satisfies

π(θi+1, ti+1,i+2) = π(θi, ti,i+1). (B3)

In particular, because the marginal distributions of each
ti,i+1 are completely determined by θi, this reduces to
the requirement that

π(θi+1) = π(θi). (B4)

In general, the existence and uniqueness of a Markov
chain’s stationary distribution π depends on the details
of its transition operator. If the state space is finite,
then it is sufficient for the transition to be irreducible and
aperiodic. This is the case, for instance, when every state
θi+1 has a non-zero probability of occurring after any
state θi. Physically, this type of behaviour is common:
motion driven by Brownian noise, for instance, usually
behaves this way.

Unfortunately, ensuring the existence and uniqueness
of a stationary distribution π can be challenging in the
case of Markov chains with continuous state spaces–
irreducibility and aperiodicity of the transition operators
are no longer sufficient conditions. Alas, this is probably
the more common scenario in biophysics, arising for in-
stance in the case where the auxilliary coordinates θ are
the atomic coordinates of a molecule and space is mod-
elled as continuous. Various conditions are known to en-
sure existence and uniqueness of stationary distributions
for continuous state spaces; see for instance Doob 80 or
Harris 81 . In particular, if θi+1 is distributed according
to a probability density function that is continuous in
θi, irreducible, and aperiodic, then Eqn. B2 satisfies the
conditions of Example 2 on page 215 of Doob 80 . Under
these conditions, the stationary distribution exists and
is unique, and moreover the Markov chain converges ex-
ponentially fast to this stationary distribution from any
initial condition. The auxilliary coordinates θ are likely
to satisfy this condition (at least to a very good approx-
imation) in most relevant biophysical models.

The exponential convergence of Eqn B2 to its station-
ary distribution π suggests that Markov Chain Monte
Carlo is a practical method for sampling from π. That
is, if Eqn. B2 can be initialized in any convenient state
θ0 and the evolution of the system is simulated until its
first passage through krelax of periods through the device,
the final state θkrelax will be approximately sampled from
π. The number of relaxation periods krelax should not
need to be very large if the convergence of Eqn. B2 to
π is indeed exponential for the system under study. The
computational cost of this sampling method will be ne-
glected from the cost analysis of computing the indirect

mobility in App. C. However, an empirical examination of
its performance in practice will be presented in Sec. III B
for the example of nanoparticles in the slit-well system
(Sec. II B).

Finally, assuming that the system is initialized accord-
ing to the stationary distribution, the Markov chain cen-
tral limit theorem can be applied to deduce the distribu-
tion of Eqn B1. In general, the Markov chain central limit
theorem states that in the limit of large k, for any real-
valued function g of the stationary Markov chain state
(θi, ti,i+1),

ρ

(
k−1∑

i=0

g(θi, ti,i+1)

)
→ N (k〈g(θ0, t0,1)〉, kσ2). (B5)

This result closely resembles the classical central limit
theorem. For instance, 〈g(θ0, t0,1)〉 is the ensemble av-
erage of g(θ0, t0,1) taken with respect to the stationary
distribution π. However, the quantity σ in Eqn. B5 is
not simply the variance of g; see below.

For the choice g(θi, ti,i+1) = ti,i+1, and since τk =∑k−1
i=0 ti,i+1 and τ1 = t0,1, it follows that

ρ(τk)→ N (k〈τ1〉, kσ2). (B6)

where 〈τ1〉 is the mean first passage time across the first
periodic subunit when the analytes are initialized accord-
ing to π(θ0). The parameter controlling the variance of
τk is

σ2 = varπ(t0,1) + 2
∞∑

i=1

covπ(t0,1, ti,i+1), (B7)

where varπ and covπ denote variances and covariances,
respectively, computed when the system is initialized ac-
cording to π(θ0). Since the ti,i+1 are all identically dis-
tributed, the relationship can be rewritten in the form

σ2 = varπ(t0,1)

[
1 + 2

∞∑

i=1

corrπ(t0,1, ti,i+1)

]
, (B8)

where corrπ(t0,1, ti,i+1) are the correlations between dis-
tinct crossing times. The first term is the variance of
the first passage time across any single periodic subunit.
The terms in the series capture the correlations in the
passage times ti,i+1 across distinct subunits i, which are
mediated by the correlations in the degrees of freedom
θi. In the special case where these correlations are all
zero, we recover i.i.d. behaviour in the {ti,i+1}k−1

i=0 and
the result reduces to the standard central limit theorem.

3. The number of subunits k that have been crossed at
least once at the time t

Consider the (discrete) random variable k̃(t), the num-
ber of channels that the analyte has crossed at least once
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at time t. The probability that k̃(t), exceeds some thresh-
old k is given by

P
(
k̃(t) ≥ k

)
= P (τk ≤ t) =

∫ t

0

ρ(τk)dτk. (B9)

Under the conditions leading to Eqn. B6, this integral
can be approximated for large k (or, equivalently, large
t) as

P
(
k̃(t) ≥ k

)
≈ 1

2

(
1 + erf

[
t− k〈τ1〉√

2kσ2

])
. (B10)

From Eqn. B10, the probability mass function of k at
any (large) time t can be obtained as

P
(
k̃(t) = k

)
= P

(
k̃(t) ≥ k

)
− P

(
k̃(t) ≥ k + 1

)
.

(B11)

However, a more useful form can be deduced by making a
discrete-to-continuous approximation, i.e., by pretending
that k is a continuous random variable. When k is large,
which is the limit of interest, this is an arbitrarily good
approximation. Given this, it is therefore sensible to say
that the limiting probability density function for k after
a long time t is

ρt(k) ≈ −
∂ρ
(
k̃(t) ≥ k

)

∂k

=
t+ k〈τ1〉√

8πk3σ2
exp

(
− (t− k〈τ1〉)2

2kσ2

)
. (B12)

Although ρt(k) is a probability density function, the cor-
responding probability mass function is approximately

P
(
k̃(t) = k

)
≈
∫ k+0.5

k−0.5

ρt(k)dk ≈ ρt(k) (B13)

At long times, ρt(k) changes very little from k − 0.5 to
k+0.5, and this approximation is again arbitrarily good.
In other words, ρt(k) can be interpreted fairly as the
probability that, at time t, the analyte has reached xk at
least once, but has not yet reached xk+1.

4. The position distribution at long times

Eqn. B12 does not directly describe the position of the
analyte at a time t. During the time interval after its
first passage to xk and before its first passage to xk+1,
the analyte can potentially move to any position with
x < xk+1. However, as argued below, the distinction
between k(t) and x(t)/L is negligible at long times, so
Eqn. B12 is in fact an acceptable proxy for the position
distribution. The discussion is in the same spirit as that
put forth in Reimann et al. 73 .

Consider the analyte’s x-position, x(t), in the time in-
terval of duration tk,k+1 occurring between τk (when it

first reaches xk) and τk+1 (when it first reaches xk+1).
Write x(t) = xk+1− δx(t), such that δx(t) is the distance
from the analyte’s current position to xk. Motion of the
analyte in the direction of −x̂ carries an energetic cost,
as it opposes the direction of the applied force. This is in
addition to any entropic cost incurred for moving through
the periodic MNFD. Thus, the probability of observing
the analyte at x = xk+1 − δx at any point during this
time interval will decrease rapidly when δx � L.

More importantly, by the periodicity of the system and
the stationarity of the Markov chain, it must be that the
dynamics of the random variable δx do not depend on k
(although correlations between consecutive period cross-
ings are possible). Thus, the typical size of δx at any time
between τk and τk+1 is independent of k. For sufficiently
large k, the typical distance that an analyte might move
in the −x̂ direction after reaching xk and before reach-
ing xk+1 is therefore arbitrarily small compared to the
total distance it has traveled since t = 0. Similarly, the
duration tk,k+1 will be a small fraction of the total time
τk. Thus, although the analyte may briefly move short
distances away from xk before reaching xk+1, these fluc-
tuations do not affect the ensemble dynamics in the limit
of long time or, equivalently, large k.

Making the substitution x ≈ kL−δx in Eqn. B12 yields

ρt(x+ δx) ≈
Lt+ (x+ δx)〈τ1〉√
8π(x+ δx)3(Lσ2)

exp

(
− (Lt− (x+ δx)〈τ1〉)2

2(x+ δx)(Lσ2)

)

(B14)

Eqn. B14 gives a mean of

〈x(t)〉 = L
t

〈τ1〉
+ L

1

2

σ2

〈τ1〉2
− 〈δx〉 (B15)

and a variance of

var(x(t)) = L2 σ2

〈τ1〉2
t

〈τ1〉
+ L2 5

4

σ4

〈τ1〉4
+ var(δx). (B16)

As argued above, the statistics of δx are roughly in-
dependent of time on the timescale of period-to-period
transport. In particular, we must have that 〈δx/t〉 and
var(δx/t) converge to zero for large t.

At long times, we also find that Eqn. B14 converges
to a normal distribution (App. B 4 a). In this limit, the
constant terms in Eqns. B15 and B16 are negligible, and

ρt(x)→ N
(
L

t

〈τ1〉
, L2 σ2

〈τ1〉2
t

〈τ1〉

)
. (B17)

In this form, it is clear that, on long time scales, distance
is naturally counted in units of L, and time in units of
〈τ1〉 (see Lindner et al. 75 for related modelling).

Finally, it follows from Eqns. B15 or B17 that

lim
t→∞

〈x(t)〉
t

=
L

〈τ1〉
. (B18)



20

Dividing both sides by Φ, we recover the desired result:
Eqn. 1 for the direct mobility is equivalent to Eqn. 2 for
the indirect mobility.

An additional result is that the quantity

Deff =
1

2

σ2

〈τ1〉2
L2

〈τ1〉
(B19)

behaves as an effective diffusion coefficient for the ana-
lyte. The ratio σ/〈τ1〉 is almost the coefficient of varia-
tion of τ1. It differs in the fact that σ contains correc-
tions due to the correlations between consecutive crossing
times (Eqn. B8). Thus, we see that the model nicely re-
flects how correlations directly impact the dispersion of
analyte as they travel through the system.

a. The limiting position distribution at long times is
Gaussian

This section contains the derivation that the probabil-
ity density function in Eqn. B12 converges to the proba-
bility density function of a normal distribution. Consider
the shifted and scaled variable

q =
k − t

µ

σ
µ

√
t
µ

, (B20)

which at large times will have a mean approaching zero
and a variance approaching one. This has probability
density function

ρ(q; t) =
1 + 1

2
σ√
µt
q

√
2π(1 + σ√

µt
q)3

exp

(
− q2

2(1 + σ√
µt
q)

)
.

(B21)

When considering values of q that are small compared

to
√
µt
σ , the distribution will be very close to its limiting

form of

ρ(q; t)→ 1√
2π

exp

(
−q

2

2

)
= N (0, 1). (B22)

At any fixed t, no matter how large, the distribution of
q will differ from this limiting form for sufficiently large
q, i.e., in the distant tails of the distribution. However,
given that the distribution is normalized, at very large t
the total probability assigned to these distant tails will
be vanishingly small. The same derivation applies to the
distribution in terms of x+δx, rather than k (Eqn. B14).

Appendix C: Convergence analysis

In this section, we will analyse and compare the numer-
ical properties of the direct and indirect mobility formu-
lations. Specifically, we will examine the computational
cost of estimating each kind of mobility using molecular

dynamics simulations of the analyte moving through the
periodic geometry. Certain simplifying assumptions will
be needed in order to advance the analysis. Most im-
portantly, the analysis of the direct mobility will neglect
the dynamics of δx (App. B 4), and the analysis of the
indirect mobility will be based on the assumption that
first passage times are exponentially distributed at long
times. The predicted scaling behaviours will be com-
pared to numerical results on the example described in
Sec. II B.

The underlying simulation implementation is assumed
to be identical between the two cases, except for bound-
ary conditions and termination conditions. In particu-
lar, we won’t consider the convergence of numerical er-
ror with respect to the discretization scheme. The error
introduced by discretizing the equations of motion de-
pend on the discretization scheme. Better schemes can
be combined with either mobility formulation, and this
consideration is essentially orthogonal to the comparison
being made here. Of course, it is possible that the dis-
cretization error propagates differently in the simulations
that would be used to calculate direct and indirect mo-
bilities. Thus, in practice, some residual numerical error
will always exist between the two.

1. Convergence of direct mobility

The direct mobility is typically estimated as

µ̂direct =
1

Φtdirect


 1

Ndirect

Ndirect∑

j=1

x(j)


 , (C1)

where, Ndirect molecules are simulated (independently)
for a long period of time tdirect and the final states are
used to estimate the direct mobility. In practice, tdirect is
commonly chosen approximately as the time after which
at least a certain number of periods kdirect ≈ tdirect/〈τ1〉
will have been traversed on average.

Eqns. B15 and B16 from App. B, allow us to predict
the limiting behaviour of the relative error between µ̂direct

and the true direct mobility µdirect. For large tdirect,
each particle’s position is identically and independently
normally distributed with mean and variance given by
Eqns. B15 and B16. The relative error is thus also nor-
mally distributed, with

mean

(
µ̂direct − µdirect

µdirect

)
≈
(

1

2

σ2

〈τ1〉2
− 〈δx〉

L

)
1

kdirect
,

(C2)

stderr

(
µ̂direct − µdirect

µdirect

)
≈ σ

〈τ1〉
1√

Ndirectkdirect

, (C3)

where we have ignored terms of order
O(1/(kdirect

√
Ndirect)) in the standard error. The

mean relative error depends on the behaviour of 〈δx〉,
which is outside the scope of the present study. In



21

the following discussion, we will consider the simple
case of 〈δx〉 ≈ 0, which we expect to be reasonable for
highly driven systems. As we will see in the numerical
demonstrations (Sec. III C), 〈δx〉 plays an important role
in weakly driven systems.

The mean relative error (Eqn. C2) indicates a bias due
to the finite simulation time with which the direct mo-
bility is being estimated. It cannot be reduced except by
increasing kdirect, and decays at a rate of O(1/kdirect).
Conversely, the standard relative error (Eqn. C3) cap-
tures the intrinsic noise in the mobility estimator. This
decays as O(1/

√
kdirect), which is slower than the decay

of the mean relative error. Thus, for sufficiently long run-
times, the direct mobility estimator will be statistically
indistinguishable from an unbiased estimator.

The limiting behaviour of the direct mobility estimator
is jointly affected by kdirect and Ndirect. A reasonable
choice (see, e.g., Mark and Baram 82) for a single scalar
error is the square root of the expected square of the
relative error between µ̂direct and the true direct mobility
µdirect:

ε2direct := E

[(
µ̂direct − µdirect

µdirect

)2
]
≈ bias2 + sdterr2,

(C4)

where bias is the mean relative error given by Eqn. C2
and stderr is the standard relative error given by Eqn. C3.

2. Convergence of indirect mobility

Estimating the indirect mobility is tantamount to esti-
mating the mean first passage time of particles crossing a
single period starting from the initial conditions x = x0

and θ0 ∼ π(θ). We will assume that the stationary distri-
bution π(θ0) is known and/or can be sampled efficiently.
A careful cost analysis of this sampling process is rele-
gated to future work.

First, let us consider estimating the indirect mobility
using

µ̂indirect =
L

Φ


 1

Nindirect

Nindirect∑

j=1

τ
(j)
1



−1

, (C5)

which is based on sampling Nindirect instances τ
(j)
1 of the

first passage time. It may be difficult in general to ascer-
tain whether this is an unbiased estimator of the indirect
mobility. To make progress on this and other questions,
we propose that it is reasonable to assume that the first
passage time across one period is roughly exponentially
distributed at long times. Thus, throughout the rest of
this discussion, we will assume

ρ(τ1) ≈ 1

τ∗
exp

(
− τ1
τ∗

)
(C6)

at large τ1, where τ∗ is some constant. Heuristically, this
will be the case for systems in which the first passage
process converges to a steady-state behaviour after ini-
tial transient behaviour decays. It is consistent with the
spirit of Kramers theory (App. A 2), since we are restrict-
ing our attention to the residual first passage process on
long timescales (compared to all other timescales of re-
laxation in the system). This can be justified more rig-
orously for many typical systems by considering the be-
haviour of the eigenfunctions of the Smoluchowski equa-
tion in the presence of an absorber (e.g., as done by Grig-
oriev et al. 83 when studying the narrow escape problem);
in this case, τ∗ will be the first eigenvalue of the PDE. In
particular, although the equivalence of indirect and direct
mobilities was proven in App. B for any system, including
those where transient dynamics are non-negligible, our
error analysis in this section will apply to convergence
rates in the limit of long times, after transient phenom-
ena have abated.

In the case of an exponential distribution, it is known
that the simple estimate used in Eqn. C5 is indeed a
maximum likelihood estimator, but is nonetheless biased.
Specifically, the limiting relative error in the mobility es-
timator for exponentially distributed first passage times
is simply

mean

(
µ̂indirect − µindirect

µindirect

)
≈ 1

Nindirect
. (C7)

In any case, since the Nindirect samples of τ
(j)
1 are in-

dependent, we can estimate the standard error of the
indirect mobility estimator in Eqn. C5. The error in the
estimate of 〈τ1〉 will go as

stderr


〈τ1〉 −

1

Nindirect

Nindirect∑

j=1

τ
(j)
1


 ≈ σ0√

Nindirect

,

(C8)

where we have introduced the notation σ0 := stddev(τ1)
to indicate the standard deviation of τ1. Propagating the
uncertainty therefore yields that

stderr

(
µ̂indirect − µindirect

µindirect

)
=

σ0

〈τ1〉
1√

Nindirect

. (C9)

Note that, as expected, the standard error of the indi-
rect mobility estimator scales as O(1/

√
Nindirect). This

bias is negligible relative to the standard error for suffi-
ciently large Nindirect. The total error will therefore also
converge as

εindirect ≈
σ0

〈τ1〉
1√

Nindirect

. (C10)

In our experience, the coefficient of variation is of order
one, and the bias is thus at most a 1% correction to
Eqn. C10.
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3. Comparing convergence: Entirely serial computation

First, let us analyse the runtimes of the direct and
indirect mobility estimators in the case where all compu-
tations are performed in serial. Then the total runtime
for the direct mobility estimator will be proportional to

Tdirect = tdirectNdirect ≈ 〈τ1〉kdirectNdirect, (C11)

up to a constant factor based on the implementation of
the simulations (i.e., the real time elapsed per unit of
simulation time simulated). We will assume for the rest
of this section that this proportionality factor is some
constant, and omit it from the discussion.

The error of the direct mobility estimator can be de-
creased by increasing either of kdirect or Ndirect. The run-
time is linear in each of these, and the standard relative
error depends equally on both quantities. However, the
bias depends only on kdirect, and so the best choice in this
circumstance is to fix Ndirect = 1. Thus, using Eqns. C11
and C4, the runtime necessary to reach a small relative
error ε scales as

Tdirect

〈τ1〉
≈ 1

2

σ2

〈τ1〉2
1

ε2

(
1 +

√
1 + ε2

)
→ σ2

〈τ1〉2
1

ε2
. (C12)

The term 1 +
√

1 + ε2 is very nearly equal to two for
reasonable values of ε (say, below 10%).

Similarly, the total runtime for the indirect mobility
estimator will be approximately proportional to

Tindirect ≈ 〈τ1〉Nindirect (C13)

for large Nindirect. Using Eqns. C13 and C10, we find
that its runtime will therefore grow as

Tindirect

〈τ1〉
≈ σ2

0

〈τ1〉2
1

ε2
. (C14)

Therefore, in the case of purely serial computing, the
two formulations are nearly identical. Both have run-
times of order O(1/ε2). The convergence of the direct
mobility estimator is influenced by crossing time corre-
lations (via σ), where the indirect mobility estimator’s
is not. In highly correlated systems, the direct mobility
estimator will exhibit more error than the indirect mobil-
ity estimator. However, correctly sampling the stationary
distribution required for the indirect mobility estimator
may become more difficult in such systems. In any case,
it appears that neither algorithm is clearly advantageous
when computations are done in serial.

4. Comparing convergence: Entirely parallel computation

Now, suppose instead that all sampling of trajectories
will be computed entirely in parallel. Although the total
number of floating point operations will be the same as
in the case of serial computation, in the case of parallel

computation it is often of more interest to consider the
total elapsed time from the start of the algorithm to the
termination of the last parallel thread of the computa-
tion.

For the direct mobility estimator, every parallel thread
has the same fixed runtime (up to fluctuations in the com-
puting speed). Thus, the total time elapsed will simply
be proportional to the duration of each trajectory:

Tdirect = tdirect ≈ 〈τ1〉kdirect. (C15)

The standard relative error will be vanishingly small, so
the error will be dominated by the bias. Thus, the run-
time will now converge as

Tdirect

〈τ1〉
≈ 1

2

σ2

〈τ1〉2
1

ε
. (C16)

This is substantially better than in the case of purely se-
rial computation (Eqn. C12), and is now of order O(1/ε).

Assessing the total time elapsed for the indirect mo-
bility estimator is more complicated. Because the indi-
rect mobility is independently sampling the first passage
time, the runtime of each sample is itself a stochastic
quantity. In the case of serial computation, the central
limit theorem ensures that the estimate in Eqn. C13 will
be fairly accurate for large Nindirect. However, if trajec-
tories are computed entirely in parallel, then the elapsed
time from start to finish will be dictated by the sample
of the maximum first passage time, rather than the mean
first passage time:

Tindirect ≈ max
Nindirect

(τ
(j)
1 ). (C17)

Naturally, the sample maximum will depend on the sim-
ulated ensemble size Nindirect.

The typical maximum first passage time can be esti-
mated if we again suppose that, at long times, the first
passage time is exponentially distributed. Setting the cu-
mulative distribution of Eqn. C6 equal to 1−(1/Nindirect)
yields the following estimate for the time at which the last
particle will escape:

1

Nindirect
≈ exp

(
−Tindirect

τ∗

)
(C18)

=⇒ Tindirect ≈ τ∗ ln (Nindirect) . (C19)

A more rigorous justification for this estimate of the run-
time can be obtained by considering the distribution of
the maximum of an ensemble of i.i.d. exponentially dis-
tributed variables. By making appeal to Poisson pro-
cesses and harmonic numbers, one can recover again the
logarithmic scaling of Tindirect with Nindirect. Inciden-
tally, when the coefficient of variation of the first passage
time is greater than one, the argument to the logarithm
in Eqn. C19 should in fact be the fraction of the popula-
tion belonging to long tails of the distribution. However,
because the dependence is logarithmic, the effect of this
correction is small.
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Note that this perspective implicitly assumes that all
of the parallel computation hardware remains reserved
for the respective calculations until all trajectories are
completed. This is in fact true for the direct mobility
estimator, since all parallel computations will have the
same runtime. Conversely, most of the samples gener-
ated towards the indirect mobility estimator will have
runtimes much smaller than the maximum first passage
time. Thus, Tindirect is certainly an overestimate of the
computational cost in settings where parallel computing
resources can be repurposed dynamically as soon as these
samples terminate.

In any case, using Eqn. C19 for the runtime with
Eqn. C10 for the error, we see that the indirect mobility
estimator converges exponentially as

ε ≈ σ0

〈τ1〉
exp

(
−1

2

Tindirect

τ∗

)
. (C20)

Equivalently,

Tindirect ≈ 2τ∗ ln

(
σ0

〈τ1〉
1

ε

)
. (C21)

Thus, as ε becomes small and so 1/ε becomes larger, the
required runtime grows only logarithmically. This will be
exponentially faster than the convergence of the direct
mobility estimator for small ε.

The results of this analysis have some caveats. The
prefactor in Eqn. C16 is likely overestimated in general,
because 〈δx〉 has been ignored. Meanwhile, it is possible
that τ∗ � 〈τ1〉. These corrections will tend to improve
the relative performance of the direct mobility estima-
tor against the indirect mobility estimator, as is indeed
observed in the numerical demonstrations of Sec. III C.
Regardless, because the indirect mobility converges ex-
ponentially (Eqn. C20) whereas the direct mobility con-
verges as Tdirect ∼ O(1/ε) (Eqn. C16), these corrections
are only important in comparing behaviour at moder-
ately large ε. When unlimited parallel computation is
available, the indirect mobility formulation will always
be much more efficient at sufficiently small ε.

5. Comparing convergence: Limited parallel computation

In practice, of course, unlimited paralellization is not
feasible. Suppose that Npara samples can comfortably be
simulated in parallel. For ensemble sizes larger than this,
calculations must be broken into batches of Npara.

In this case, the direct mobility estimator’s runtime
will scale as

Tdirect ≈ 〈τ1〉kdirect

⌈
Ndirect

Npara

⌉
, (C22)

where d·e denotes the ceiling function. Because of the
ceiling function, the runtime does not increase at all with
the number of parallel trajectories until Ndirect reaches

an integral multiple of Npara. Thus, the best choice of
Ndirect is certainly at least Npara. However, going from
Ndirect = Npara to Ndirect = 2Npara increases the run-
time by a factor of two while leaving the bias (Eqn. C2)
unchanged. Increasing kdirect by a factor of two would
have the same impact on runtime and standard relative
error, but would also decrease the bias. Mirroring the
reasoning from App. C 3, we thus find that the optimal
choice is precisely Ndirect = Npara.

Using Eqn. C4 with Ndirect = Npara and Eqn. C22
yields the runtime necessary to attain a target accuracy
ε:

Tdirect

〈τ1〉
=

1

2

σ2

〈τ1〉2
1

ε2
1

Npara

(
1 +

√
1 + (εNpara)2

)
.

(C23)

This is similar to the result for serial computation
(Eqn. C12), but differs in two places. First, the prefactor
of 1/Npara corresponds to the acceleration of convergence
by a factor of Npara in the small-ε limit. Here, the error is
dominated by noise (Eqn. C3) and ε ∼ O(1/

√
Tdirect). In-

creasing the number of independent samples is essentially
as beneficial as increasing kdirect by the same amount.

On the other hand, the term (εNpara)2 inside the
square root of Eqn. C23 corresponds to an acceleration
at larger values of ε. Since the computational cost does
not increase with Nindirect until Ndirect = Npara, the con-
vergence for Ndirect < Npara is essentially the same as in
the case of unlimited parallel computation. Specifically,
when εNpara � 1

1 +
√

1 + (εNpara)2 ≈ εNpara, (C24)

which implies that

Tdirect

〈τ1〉
≈ 1

2

σ2

〈τ1〉2
1

ε
. (C25)

In other words, when Ndirect < Npara, the error is domi-
nated by bias (Eqn. C2), and the convergence is of order
ε ∼ O(1/Tdirect).

Consider now the indirect mobility estimator. Its run-
time in the case of limited parallel computation depends
on the manner in which it is implemented. We will
consider two approaches. To enable these more compli-
cated analyses, we will assume first passage times are dis-
tributed exponentially as per Eqn. C19 with τ∗ ≈ 〈τ1〉.
Accounting for deviations from a single exponential dis-
tribution makes these algorithms more difficult to anal-
yse. Conservative approximations can be obtained by
increasing the runtime estimates by τ∗/〈τ1〉.

First, consider an algorithm for computing the indirect
mobility estimator in which Nindirect trajectories are ini-
tiated at once and evolved in time at the same rate. The
first Npara trajectories are incremented by one timestep,
then the next Npara are incremented once, and so on until
all trajectories have been incremented once. Early in the
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simulation, it will take dNindirect/Nparae passes to incre-
ment all trajectories by one timestep. As the simulation
advances and some events terminate, fewer passes will be
required to increment time. In this case, the runtime will
scale as

Tindirect

〈τ1〉
≈ ln (Nlast) + (C26)

M−1∑

k=1

ln

(
Nindirect − (k − 1)Npara

Nindirect − kNpara

)
(M − (k − 1))

(C27)

=(4M − 2) ln(M)− ln(M !) + ln(Nlast), (C28)

≈(3M − 2) ln(M) +M +
1

2
ln(2πM) + ln(Nlast),

(C29)

where M = dNindirect/Nparae and Nlast = Nindirect−(M−
1)Npara. The factor of ln(Nlast) accounts for the maxi-
mum first passage time in that final batch. The approxi-
mation in Eqn. C29 is based on Stirling’s approximation,
and reveals that this runtime is O(M ln(M)).

Consider next an alternative implementation of the in-
direct mobility estimator with limited parallel computa-
tion. In this case, the simulation begins by initializing
only Npara trajectories. Whenever a trajectory termi-
nates, a new trajectory is initiated on the same thread,
until a total of Nindirect have been initiated. In this case,
the runtime will scale as

Tindirect

〈τ1〉
≈ Nindirect −Nmin

Npara
+ ln (Nmin) , (C30)

where Nmin = min (Nindirect, Npara). The first term esti-
mates the time until a total of Nindirect trajectories have
been initiated, and the second term estimates the time
required for the simulations to terminate thereafter. This
algorithm’s runtime is O(Nindirect).

Surprisingly, this second implementation is consis-
tently faster than the first one. There are two reasons
for this. Firstly, it ensures that no parallel computing
threads are idle until the very last batch of simulations,
where some idling is inevitable. More important, how-
ever, is that the second algorithm allows for a natural
balancing of fast and slow events across different threads.
Threads on which events terminate quickly will more
quickly be re-initialized with new events. Conversely,
in the first algorithm all events are simulated indepen-
dently, so that the maximum first passage time over all
Nindirect events factors into the overall runtime. Worse,
the speed at which these long trajectories are simulated
is impaired by a factor of O(M) for most of the runtime.
We will proceed with the analysis of the second, faster
algorithm, but we include the analysis of the first version
here as a warning to the reader.

Equation C30 can be written more explicitly as

Tindirect

〈τ1〉
≈





ln (Nindirect) Nindirect ≤ Npara

Nindirect

Npara
+ ln (Npara)− 1, Nindirect > Npara

.

(C31)

Reversing Eqn. C10, we find that the number of samples
necessary for the indirect mobility estimator to achieve a
target relative error ε is

Nindirect =
σ2

0

〈τ1〉2
1

ε2
. (C32)

Substituting Eqn. C32 into Eqn. C31 yields the runtime
required to achieve the target accuracy. When Nindirect ≤
Npara,

Tindirect

〈τ1〉
≈ 2 ln

(
σ0

〈τ1〉
1

ε

)
. (C33)

This is equivalent to Eqn. C20. In this regime, the error
behaves as if there were unlimited parallelism, and so
decreases exponentially with runtime.

Conversely, when Nindirect > Npara,

Tindirect

〈τ1〉
≈ σ2

0

〈τ1〉2
1

ε2
1

Npara
+ ln (Npara)− 1. (C34)

This is very similar to the result for entirely serial compu-
tation (Eqn. C14), but accelerated by a factor of Npara.
The ln (Npara) term arises here because the large par-
allel batches are more vulnerable to rare long-duration
events. However, this term is negligible in the limit of
Nindirect � Npara and the error scales as O(1/

√
Tindirect),

as expected. In fact, on the limit of small target er-
ror and/or small Npara, the two mobility formulations
are once again essentially equivalent up to a factor of
ψ = σ/σ0.

Figure 7 in the main body of the paper summarizes
the theoretically predicted ratio of runtimes for the di-
rect and indirect mobilities; ψ was factored out from the
direct mobility runtime. Figure 7(a) shows the predicted
ratio as a function of the final relative error ε. The colours
blue, orange, green correspond to Npara = 105, 104, 103,
respectively. A typical modern consumer-grade GPU can
effectively deliver tens of thousands of parallel threads,
justifying Npara = 104 for single-body molecule sim-
ulations. Parallelizing across ten such GPUs is rea-
sonably economical in many cases, motivating the case
Npara = 105. Conversely, many-body molecules will
reduce the number of independent simulation that can
be conducted in parallel, which motivated the choice of
Npara = 103. The different line styles correspond to co-
efficients of variation equal to 3 (solid), 1 (dashed), and
0.5 (dotted), which are values encountered in the exam-
ple system from Sec. II B23. The lines are truncated at
the values of ε such that either kdirect or Nindirect would
be required to equal 10 or less; the various modelling
assumptions certainly do not apply in that regime.
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Altogether, the theoretical analysis predicts that the
indirect mobility estimator will converge up 2-70 times
faster than the direct mobility estimator under these cir-
cumstances. The ε of maximum relative advantage is in
the range of 0.1-1%. This is often a perfectly acceptable
error threshold for assisting with the research and design
of periodic MNFDs, as modelling errors are often larger
than this. As noted, at very small target relative errors
the estimators are essentially equivalent (i.e., the ratio
converges to 1).

Figures 7(b,c) highlight the expected transitions of
the direct and indirect mobiliy estimators, respectively,
from parallel-like scaling to serial-like scaling. For the
direct mobility estimator, this occurs at ε ≈ 1/Npara,

where for the indirect mobility estimator it occurs near
ε ≈ (σ0/〈τ1〉)/

√
Npara. The ε value of maximum relative

advantage for the indirect mobility estimator is expected
to occur somewhere between these two points.

As noted at the end of App. C 3, the net effect of the
correlation factor ψ does not clearly favour either algo-
rithm. Although it directly amplifies the predicted run-
time of the direct mobility estimator, it likely also in-
creases the cost of sampling the stationary distribution.
In any case, it does not appear that large correlation
functions are likely to occur in most applications, so this
effect is likely to be modest. If there are applications of
interest where ψ is found to be large, this aspect of the
algorithm should be investigated in more detail.
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Chapter 7

Conclusions

The work outlined in this thesis has explored the opportunity to use the neural

network method (NNM) to facilitate the use of complicated partial di�erential

equation (PDE) models in computational biophysics. These PDEs are often

high-dimensional, and traditionally such models are prohibitively expensive to

solve numerically. As such, models based on stochastic di�erential equations

(SDEs) are dominant in contemporary computational biophysics. However, PDEs

have some appealing advantages over SDEs, most notably the possibility of using

model order reduction techniques to study parameterized models more e�ciently.

The NNM appears to be remarkably well-suited for solving high-dimensional

PDEs, and moreover can readily perform nonlinear model order reduction. It is

thus very tempting to imagine the NNM as a powerful new tool in the

computational biophysicist's toolkit.

These expectations must be tempered by the limitations of our current

understanding of the NNM. It is unclear why or how it is so e�ective at solving

high-dimensional or highly parameterized PDEs. Moreover, there are no

theoretical guarantees available today ensuring that it will perform reliably on a
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given PDE problem. In practice, the studies in Chapter 4 and Apps. C and D

encountered signi�cant challenges when attempting to apply the NNM naively to

PDE models of typical biophysical systems. These challenges were eventually

understood to arise from the irregularities created by the non-convex domain

geometry. This directly contradicts the prior wisdom that the NNM is

particularly e�ective at handling complex geometries due to its mesh-free

character. It also serves as an important warning for future research into using

the NNM in biophysics, where such geometries are common.

These technical challenges were overcome and reliable performance of the NNM

was recovered. Moreover, the derivation in App. B was produced to show that the

NNM loss functional acts as an a posteriori error estimator to bolster practical

con�dence in the method. Despite this, the convergence rate of the NNM remains

a confusing matter. NNM approximation error decreases rather slowly with

increases in the number of degrees of freedom and also with increases in the

training time. Moreover, the error appears to be limited to some �nite minimum

that is much larger than machine precision.

The discussion in Chapter 5 suggests a possible resolution to this paradox. It

appears that the representations learned by each hidden layer of the NNM trial

function converge very consistently to some �xed set of features that is

independent of width (for widths above some threshold). Thus, the e�ective

number of degrees of freedom of the NNM is much lower than the actual number

of degrees of freedom required to specify all the weights and biases of the

architecture. Moreover, this e�ective capacity converges to a �nite value at large

widths. This is consistent with observations in Chapter 4 and Apps. C and D.
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These results may imply that the standard NNM formulation is limited to

approximations that are only moderately accurate but, nonetheless, that it can

reliably attain this moderate level of accuracy.

Chapter 4 and App. C explored the idea of using the NNM to solve for external

electric �elds that act as force �elds in subsequent molecular dynamics

simulations. The main motivation put forth was to use the NNM approximations

as low-memory, GPU-compatible representations of high-dimensional functions

capturing nonlinear force �elds that depend dynamically on the molecular

conformation. Once training issues arising from the irregular solution were

accounted for, the NNM was shown to be able to reliably produce force �elds of

acceptable accuracy for this application. Unfortunately, the slow convergence of

the NNM with respect to the actual number of degrees of freedom (and therefore

actual memory consumption) undermines the intended use for this application.

However, the discussion in Chapter 5 suggests that this memory utilization could

potentially be dramatically improved by reducing the width of hidden layers to

the size that actually contributes to solution accuracy.

Motivated by the studies of the time-integrated Smoluchowski in Chapter 3,

the work in App. D identi�ed another promising application of the NNM in

computational biophysics. Rather than using the NNM to approximate the force

�elds used in molecular dynamics simulations, the NNM can be used to solve the

corresponding time-integrated Smoluchowski equation directly. Moreover, the

nonlinear model order reduction capabilities of the NNM are used to solve this

problem directly as a function of problem parameters. The NNM is shown to

reliably approximate the resulting four-dimensional function with relative ease. In
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particular, the appropriate integral of this solution provides a smooth

approximation of the end-to-end mapping from problem input parameters

directly to a key observable for periodic MNFD design: the mean �rst passage

time and an associated mobility-like quantity.

Finally, Chapter 6 extends the analysis of Chapter 3 to demonstrate that the

electrical mobility can in fact be expressed exactly in terms of the reciprocal of an

appropriately computed mean �rst passage time. This provides a �rm theoretical

foundation for applying the technique in App. D to study electrical mobilities in

any MNFD that operates by driving molecules through a periodic geometry. As

an added bonus, the derivations in that analysis reveal that computing the

electrical mobility via the mean �rst passage time can actually be substantially

more computationally e�cient even for measurements based on molecular

dynamics simulations, under certain reasonably common conditions.

In summary, this thesis has presented works that investigate exciting

opportunities for exploiting the NNM to solve traditionally intractable PDE

models in biophysics. Two applications were identi�ed in which such a capability

could be particularly bene�cial. The �rst opportunity is to produce

memory-e�cient representations of nonlinear force �elds coupled to molecular

conformations for subsequent use in molecular dynamics simulations. The

theory-to-practice gap of the NNM leads to unexpectedly large memory

consumption, underming this application; however, the discussion in Chapter 5

suggests possible ways of overcoming this. The second opportunity is the direct

solution of parameterized many-body time-integrated Smoluchowski equations for

studies of e�ective electrical mobility through periodic MNFDs. App. D
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demonstrates a successful proof-of-concept of this approach, and the work in

Chapter 6 clari�es how to pose the physical models correctly to match traditional

electrical mobility de�nitions. The results in this thesis suggest that there is

ample opportunity for future development, both theoretical and applied, towards

capitalizing on the unique potential of the NNM as a tool in computational

biophysics.
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Appendix A

Numerical methods

A.1 Particle simulations

A.1.1 Basic algorithms

Langevin equations of motion (e.g., Eqn. 2.10) are stochastic di�erential

equations (SDEs): the derivatives of position with respect to time are described

in terms of a random function R(t). This has implications for the manner in

which the equations can be solved numerically.

The simplest numerical discretization for SDEs is known as the

Euler-Maruyama method [22]. It is a straightforward generalization of the simple

Euler method for discretizing ordinary di�erential equations (ODEs). With this

method, the discretized version of the overdamped Langevin equation (Eqn. 2.10)

is

γ
xi+1 − xi

∆t
= qE(xi) +

√
2γkBT

∆t
Ri, (A.1)

where ∆t is the discrete timestep, xi is the position after i timesteps, and Ri is a
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random variable drawn from a standard normal distribution independently at

every timestep i.

Solving for xi+1, we get

xi+1 = xi + qE(xi)∆t+
√

2D∆tRi. (A.2)

The �rst two terms on the RHS resemble the standard Euler discretization of a

deterministic equation of overdamped motion under the in�uence of the force qE.

In particular, the term qE(xi)∆t is linear in ∆t, which is equivalent to assuming

a constant velocity of qE(xi) during each timestep. In contrast, the random term
√

2D∆tRi only grows in proportion to the square root of ∆t. This is essentially a

manifestation of the central limit theorem: the total random position update
√

2D∆tRi is e�ectively the summation of many independent identically

distributed random position updates occurring throughout the timestep ∆t.

This discussion of the Euler-Maruyama method is su�cient to illustrate the

qualitative di�erences that arise when numerically treating SDEs versus ODEs.

In practice, the Euler-Maruyama method is su�cient for many simple biophysical

systems, and is used in parts of Chapters 3, 4, and 6, as well as App. D.

When solving more challenging biophysical SDE models, the Euler-Maruyama

discretization of the overdamped Langevin equation is not always adequate.

Unfortunately, extending ODE solvers to corresponding SDE solvers is

increasingly di�cult for higher-order solvers. When simulating the dynamics of

generic polymer models, motion occurs over a wide range of timescales, and

approximating the dynamics e�ectively with the Euler-Maruyama of the

overdamped model requires excessively small choices of ∆t. A common approach
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is to discretize the full (i.e., not overdamped) Langevin equation with a stochastic

variant of the velocity Verlet method [41]. This approach tends to exhibit better

numerical stability and accuracy without substantially increasing the numerical

cost. This methodology is applied in my works on polymer translocation through

nanopores, including the microscopic model in Chapter 3 and the related works in

Briggs et al. [5] and Lam et al. [24] of which I am a co-author.

A.1.2 Rates of convergence

A.1.2.1 Timestep

Typically, the approximate solutions produed by a numerical SDE solver are

expected to converge to the true solution of the SDE as the size of the discrete

timestep goes to zero. The convergence of numerical SDE solvers is a more subtle

concept than the convergence of comparable ODE solvers. Two main versions of

convergence are commonly discussed: strong convergence and weak convergence.

Strong convergence quanti�es the rate at which each trajectory of a numerical

SDE solver converges to the correct trajectory. Weak convergence essentially

quanti�es the rate at which the statistical properties of the ensemble of

trajectories converge to the true statistics of the SDE solution. In biophysics,

physical observables of interest are almost exclusively ensemble statistics, and so

weak convergence rates are of primary interest.

The Euler-Maruyama method has a weak convergence rate of 1 [22]. For

instance, the error in the ensemble mean of position after some given time T

decreases as ∆t to the power of 1. This is comparable to the deterministic Euler

method for ODEs, which also has an error convergence rate of 1. However, it is
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worth noting that the strong convergence rate of the Euler-Maruyama method is

only 0.5: the error in any given trajectory generated by the solver only decays in

proportion to the square root of ∆t.

A.1.2.2 Geometry

An additional subtlety arises when discretizing SDE models for biophysical

systems in con�nement: the implementation of boundary conditions. Naively,

purely re�ective boundary conditions can be implemented by explicitly

repositioning particle trajectories that exit the domain at re�ective boundaries.

Purely absorbing boundary conditions can be implemented by considering

absorption to have occurred for trajectories that would exit across such a

boundary. Implementing these conditions is more complicated in domains with

intrincate geometries. Moreover, as discussed by Peters and Barenbrug [35], SDE

trajectories near walls may in actuality interact with boundary conditions even

when discretized trajectories begin and end within the domain. Neglecting such

phenomena can reduce the weak convergence rate of the Euler-Maruyama method

for the overdamped Langevin equation to 0.5 near perfectly re�ecting or

absorbing boundary conditions. The improved integration schemes proposed in

that work are not utilized in this thesis, so it should be assumed that most of the

simulations herein have limiting convergence rates proportional to
√

∆t.

The implementation of boundary conditions is the primary pathway via which

the complexity of the problem geometry a�ects the computational cost of particle

simulations. Domain decomposition methods are commonly used, so that

boundary interactions are only evaluated for particles that are reasonably near
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the edge of the domain. Thanks to such methodologies, particle simulations can

very e�ciently handle very complicated geometries. Indeed, the ease with which

particle simulations can be implemented in domains with complicated geometries

is historically one of the major motivations for using SDE models over PDE

models.

A.1.2.3 Ensemble size

As noted above, biophysical research is primarily concerned with statistical

properties of the SDE models. Thus, it is also important to consider the rate at

which estimates of these statistics converge with respect to the ensemble size N .

Ultimately, this convergence is governed by statistical analysis of the observable

being studied; see Chapter 6 for examples of such an analysis. In the simplest

case of measuring the mean of some stochastic quantity, the error convergence

will tend to be dictated by the central limit theorem. That is, the standard error

of the estimator will generally decay in proportion to
√
N . Each of the N

trajectories in the ensemble is entirely independent; this makes the calculation of

these statistical estimators embarassingly parallel, which is another enormous

advantage of particle simulations.

A.1.2.4 Many-body systems

Finally, it is important to contemplate the performance of particle systems in

many-body systems as a function of the number of interacting particles n.

Essentially, the computational cost to estimate an ensemble statistic to a given

level of accuracy always scales in proportion to
√
N , where N is the number of



Appendix A. Numerical methods 162

trajectories in the statistical ensemble. The prefactor for this relationship

depends primarily on the computational cost of advancing the SDE solver by one

timestep. This growth of this cost with n is typically dominated by the

evaluation of the inter-particle interactions.

If long-ranged two-body interactions occur between all particles in the system,

then the cost of evaluating these forces grows as n2. Examples of such force �elds

include certain models for hydrodynamic interactions as well as unscreened

Coulomb interactions. In practice, n2 scaling is considered very expensive; luckily,

biophysical models can typically be massively simpli�ed to essentially eliminate

the need to compute long-ranged interactions between all particles. For instance,

Coulomb interactions are typically screened by the action of intervening free

charges (i.e., dissolved ions in the solvent); accurate �eld models can be

implemented by explicitly considering only the long-ranged interactions between

particles within some small cut-o� radius, and approximate interactions farther

than this. Similarly, neighbour list algorithms are used to accelerate the

computation of short-ranged interactions by anticipating which pairs have

essentially no probability of interacting in a given timestep. In many cases, the

growth of computational costs can be limited to the order of n log(n).

In any case, it is generally the case that the computational cost of particle

simulations grows at most polynomically with n. This is in stark contrast to the

cost of traditional solvers to PDE models, for which the computational cost grows

exponentially with n (Sec. A.2). As a result, the numerical solvability of PDE

models is typically restricted to n ≈ 1, whereas particle simulations can be

extended (with some e�ort) to systems in which n is in the millions. For instance,



Appendix A. Numerical methods 163

the many-body model studied in Chapter 3 ranges up to n ≈ 100 and uses a very

simple molecular model, and yet would already be virtually impossible to solve

using methods like FEM. This can be seen as a fundamental reason for the

current widespread success of particle simulations and SDE models in biophysics.

It is also one of the main reasons that the NNM, which may have the ability to

solve PDE models for large n (Sec. A.3), is such an exciting technique.



Appendix A. Numerical methods 164

A.2 The �nite element method

A.2.1 Basic algorithms

The �nite element method (FEM) is one of the most common numerical methods

for solving partial di�erential equations in domains with complex geometries,

such as those arising in MNFDs. In this approach, the shape of the domain is

decomposed into a mesh of simple geometric primitives (such as triangles or

tetrahedra). On each of these mesh elements is de�ned a simple, usually

piecewise polynomial function. Together, these simple functions form a basis (in

the sense of a vector space) spanning the space of all trial functions that can be

used to approximate the true solution. That is, the unknown solution u of the

PDE problem is approximated by trial functions of the form

ũ =
∑

i

ciφi, (A.3)

where each φi is a simple piecewise polynomial function over one of the mesh

elements, and ci are the coordinates of ũ in the basis formed by the φi.

The basic tasks of FEM are to construct a good mesh over the domain, de�ne a

good basis of trial functions using this mesh, and �nd coordinates in that basis

that give a good approximation to the (unknown) true solution to the PDE. The

meaning of �good� for each of these choices often depends on the PDE to be

solved and the resources available. However, some basic perspectives are common

to the majority of FEM implementations.
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A.2.1.1 Mesh generation

The quality of a mesh can be gauged in many ways depending on the desired

application. For instance, it is often desirable for FEM meshes to be constructed

out of simple geometric primitives with roughly isotropic shapes, as elements that

are very elongated in one direction tend to produce ill-conditioned algorithms.

An even more important measure of quality in an FEM mesh is that all

important geometric features of the PDE solution be adequately resolved. Of

course, this is challenging to ensure since the true solution is unknown a priori.

Approximate solutions can provide some guess as to the structure of the true

solution, but these approximate solutions can only be obtained by �rst

constructing meshes of unknown quality. In any case, the computational cost of

FEM grows with the quantity and complexity of the geometric primitives in the

mesh, so it is often desired to keep these at a minimum.

Automatically constructing a good mesh for a complicated geometry is

generally considered a di�cult task. There exist robust algorithms for

automatically generating triangular or tetrahedral meshes with some quality

guarantees in arbitrary two- and three-dimensional geometries. However, these

meshes may be sub-optimal; in many cases, human mesh designers can produce

higher-quality and lower-cost meshes more e�ciently than automated geometry

meshers.

In industrial practice today, it is often the case that mesh development is an

expensive task that requires substantial human labour. Anecdotally, the cost of

the human time spent manually perfecting geometric meshes is frequently far

more signi�cant than the computational cost of the subsequent FEM calculation.
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Such a claim is di�cult to verify in a precise way, and doing so is certainly

outside the scope of this thesis. However, it is a fundamentally important

consideration when comparing FEM to deep learning techniques like the neural

network method (NNM) of solving PDEs (Sec. A.3). As identi�ed in Chapter 4

and App. D, the NNM struggles to converge to better accuracies than 0.1% or so,

and tends to bear a higher computational cost than FEM at the same level of

precision. However, the NNM is totally mesh-free: it can handle arbitrary

geometries with minimal human oversight. Moreover, the modelling errors in

most applications substantially exceed 0.1% in the �rst place. Now, the

performance of the NNM is expected to continue improving with algorithmic

re�nements and advances in hardware, and it is possible that the NNM will

become competitive with FEM as a result of such progress. However, a more

fundamental question may be: if errors on the order of 0.1% are acceptable in

practice, are the savings in human labour on mesh generation a�orded by the

NNM more bene�cial than modest increases in computational cost relative to

FEM? Such a question cannot be assessed by numerical analysis and

computational experiments alone, and require us to maintain a more holistic view

of these algorithms as tools to accomplish speci�c goals.

A.2.1.2 The method of weighted residuals

Let us now assume that the domain of the PDE problem has been decomposed

into a good mesh and that a basis for the trial functions has been de�ned on that

mesh. The next goal is to identify coe�cients ci in Eqn. A.3 that make ũ a good

approximation to the true solution u. This is more challenging than simple



Appendix A. Numerical methods 167

interpolation because the true solution u is not known a priori. The coe�cients

must be selected using only the implicit description of u that is a�orded by the

data of the PDE problem (i.e., the PDE and its boundary conditions).

The method of weighted residuals is a very general framework for approaching

such problems. Consider a PDE of the form

Lu(x) = f(x), (A.4)

where L is a linear di�erential operator and f(x) is a source term over the

domain Ω. De�ne

R[ũ](x) ≡ Lũ(x)− f(x) (A.5)

which will be called the residual of the PDE; this is a measure of the amount by

which ũ fails to satisfy the PDE at the point x. By de�nition, the true solution

has a residual of zero everywhere in the domain Ω. Conversely, if the PDE is

well-posed, there is only one function that satis�es the boundary conditions and

that also has a residual of zero everywhere in the domain.

To simplify the following discussion, we will assume that the trial functions are

selected so as to exactly satisfy the boundary conditions. This can often be

accomplished exactly or to a very good approximation for practical FEM

algorithms, as explained brie�y later in this section. In a more general setting, we

may wish to de�ne residuals for the boundary conditions as well as the PDE

itself. In fact, this is done in the standard formulation of the NNM (Sec. A.3).

Generally, the solution to a non-trivial PDE problem cannot be expressed
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exactly in a given FEM trial function basis. In other words, there is no set of

coordinates ci for which R[ũ](x) = 0 at all x ∈ Ω. Instead, the method of

weighted residuals sets a more tractable criterion: for some suitable set of

weighting functions wj(x), �nd the coordinates ci such that

〈R[ũ], wj〉 ≡
∫

Ω

R[ũ](x)wj(x)dx = 0 (A.6)

for all wj. Equation A.6 is the weighted integral of the residual R over the

problem domain, and it is from this that the method of weighted residuals derives

its name.

Equivalently, Eqn. A.6 is the inner product (in L2) of R with the weighting

functions wj. For this reason, the weighting functions wj are also called test

functions. For each j, Eqn. A.6 tests the residual R in a certain dimension of

function space, and we will select ci so as to pass all these tests. If Eqn. A.6 is

satis�ed for all j, then the residual of the trial function ũ is orthogonal to the

space spanned by the test functions.

Because we are concerned with ũ of the form in Eqn. A.3, the residual can be

expressed in the same basis as ũ. The RHS of Eqn. A.6 can be reduced as

〈R[ũ], wj〉 = 〈Lũ− f, wj〉 (A.7)

=

〈
L

(∑

i

ciφi

)
− f, wj

〉
(A.8)

=

(∑

i

ci 〈Lφi, wj〉
)
− 〈f, wj〉 . (A.9)
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The condition from Eqn. A.6 that this be equal to zero becomes

∑

i

ci 〈Lφi, wj〉 = 〈f, wj〉 . (A.10)

In practice, the LHS of this equation is usually simpli�ed further using

integration by parts to reduce the order of the highest derivatives by one.

Equation A.10 is in fact a discretization of the weak formulation of the PDE,

which describes the solution u as the function that satis�es

〈Lu,w〉 = 〈f, w〉 (A.11)

for all possible test functions w in the appropriate Sobolev space. In particular,

the weak formulation of a PDE is usually posed in terms of an

in�nite-dimensional space of test functions w. Thus, we see that the method of

weighted residuals is equivalent to discretizing the weak formulation of the PDE

in two ways: the space of trial function is approximated using the basis of φi, and

the space of test functions is approximated by the basis wj.

For a given choice of φi and wj, Eqn. A.10 is a linear system of equations of the

form

Ac = b, (A.12)

whose solution c gives the coordinates of the trial function ũ that has no weighted

residuals for this choice of test functions. The entries of A and b are obtained by

evaluating the corresponding integrals in Eqn. A.10; in practice these integrals
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are obtained using numerical quadrature methods. Di�erent trial and test

functions are appropriate for di�erent applications, but generally these are chosen

so that the system in Eqn. A.10 can be solved e�ciently and accurately.

One of the classical choices is called the Galerkin method, in which the sets of

test functions and trial functions are chosen to be the same: {φi}i = {wj}j.

Moreover, the FEM typically chooses as trial functions piecewise polynomial

functions with compact support (i.e., that are only non-zero over one or a few

geometric primitives of the domain mesh). As such, most of the inner products in

the LHS of Eqn. A.10 are zero. The resulting system of equations is sparse, and

such systems can be solved far more e�ciently than general dense systems of

equations.

The above discussion has mostly overlooked the consideration of boundary

conditions. Typically, FEM literature distinguishes between essential boundary

conditions and natural boundary conditions. Natural boundary conditions emerge

naturally from the system of equations in Eqn. A.10; they usually correspond to

some neutral behaviour of the solution derivatives at the boundaries. Essential

boundary conditions are not implied by Eqn. A.10, and must be implemented

manually. These can be introduced into the linear system by replacing the

appropriate rows of Eqn. A.10 with the equation of the boundary condition

instead of the equation based on setting the weighted PDE residual to zero. In

this way, it is typically straightforward to guarantee that FEM solutions of linear

PDEs will satisfy all boundary conditions to a very high level of precision.

The above is an overview of FEM in its simplest incarnation; many more

sophisticated variants exist. For time-dependent problems, FEM is typically
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applied to solve the spatial problem once per timestep; discretization of time is

handled separately using ODE techniques. Some PDE problems do not respond

well to the standard Galerkin method (i.e., choosing {φi}i = {wj}j) and require

more careful selection of the test functions. Nonlinear PDEs often produce

nonlinear systems of equations, which must be solved via techniques like

Newton's method. Some PDEs can be formulated in variational forms based on

minimizing an energy functional; these are often solved with FEM methods that

minimize that energy functional rather than weighted residuals. These many

variants are beyond the present scope.

A.2.1.3 Mixed formulation

In this thesis, the FEM is frequently used to solve for the electric �elds in

MNFDs. Speci�cally, with the electrostatic potential modelled by Laplace's

equation ∇2u = 0, the goal is to numerically approximate the electric �eld

E = −∇u. The basic FEM formulation described in Sec. A.2.1.2 is known to be

vulnerable to pathological behaviour for such an application. Essentially, the

methodology of Sec. A.2.1.2 is capable of producing approximate solution ũ such

that

ũ ≈ u (A.13)

but

∇ũ 6≈ ∇u. (A.14)
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Note that here ∇ũ =
∑

i ci∇φi(x) is the exact gradient of the trial function ũ. In

practice, using the simple FEM formulation of Sec. A.2.1.2 on the electric �eld

models in Chapters 3 and 4 and Apps. C and D was found to yield electric �eld

approximations with extremely large electric �eld values near the re-entrant

boundaries of the domain.

A very successful remedy to this problem is to reformulate the equations in a

so-called mixed form [44]. We will illustrate this here in the special case of

Laplace's equation. Rather than applying the FEM directly to approximating the

electrostatic potential u, the mixed formulation proposes to numerically

approximate both u and E separately. Let us approximate u by the (scalar) trial

function ũ as before, but now also de�ne a new (vector) trial function Ẽ with

which to approximate E directly. Laplace's equation can be written in term of E

as

∇ · E = 0 (A.15)

throughout the interior of the problem domain. Neumann boundary conditions

can be written in terms of E · n̂ on the corresponding boundaries. Dirichlet

boundary conditions, however, cannot be written conveniently in terms of E

alone, and must be written in terms of u. Thus, we see that it is not possible to

solve for E only, and rather we must solve for u simultaneously. The two �elds

are connected by the condition

−∇u = E (A.16)
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throughout the domain.

In essence, we can now apply a method of weighted residuals in which Ẽ

minimizes the weighted residual of Eqn. A.15 and Ẽ and ũ simultaneously

minimize the weighted residual of Eqn. A.16. Neumann conditions are enforced

on Ẽ and Dirichlet conditions on ũ. Each of the trial functions Ẽ and ũ is

expressed in a separate basis of piecewise polynomial functions with compact

support. As with the basic formulation of Sec. A.2.1.2, projecting the equations

onto test functions yields a sparse system of linear equations that can be solved

for coordinates describing Ẽ and ũ.

A.2.1.4 Model order reduction

Often, practical PDE models are expressed in terms of some problem parameters

p. That is, the PDE is of the form

L(p)u(x; p) = f(x; p), x ∈ Ω(p), (A.17)

indicating that the di�erential operator L, the source term f , and even the

domain Ω may all depend on the problem parameters p. The boundary

conditions may similarly be functions of p. As a result, the solution u naturally

also depends on p.

Often, it is of great practical interest to understand how the solutions to these

parameterized PDE models depend on p. Perhaps some natural phenomenon only

occurs for certain values of p. Maybe the performance of some engineered system

is optimal for some choice of p. Sometimes a certain value of p corresponds to an

equilibrium state of the system, and we want to know how the system responds to
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perturbations in p. Similarly, we may wish to understand how errors or statistical

uncertainties in p propagate into errors or uncertainties in the PDE solution.

In many cases, it is very expensive to solve the parameterized PDE model

repeatedly at all values of p required. Recall that each solution of the PDE may

require the generation of a mesh, the selection of appropriate trial and test bases,

the evaluation of inner products determining the system of equations for the

FEM model, and �nally the solution of the resulting linear or nonlinear system of

equations. Depending on the details of the model, some of these steps may only

need to be completed once. For instance, if the geometry is independent of p then

a single properly constructed mesh may be su�cient for many choices of p.

Nonetheless, the cost is often still quite high.

The cost of repeatedly solving parameterized PDE models is especially

prohibitive in applications where a large number of p values must be considered

in a limited amount of time. For instance, in the setting of real-time simulations,

parameterized PDE models must be solved quickly enough to respond to

changing data measurements from a real physical system. In computational

biophysics, an important example is that of sophisticated force �eld models in

molecular dynamics simulations. These force �elds can depend on the state of the

entire MD system at every moment in time, and the time spent computing the

forces easily becomes the bottleneck to the overall computational cost of the

simulation. Precomputing the PDE solutions across a large number of values of p

ahead of time is not a trivial matter either. Naively generating candidate values

of p by combining many values of each parameter of p leads to a combinatorially

large number of cases as the number of parameters in p increases.
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Essentially, model order reduction techniques attempt to facilitate the solution

of parameterized PDE models by interpolating between a small number of

high-resolution solutions precomputed over reference values of p [3]. That is, the

solution at some new value of p would be approximated by a trial function of the

form

ũ(x; p) =
∑

k

dkũ(x; pk). (A.18)

Here, each ũ(x; pk) is an FEM approximation to the PDE problem with problem

parameters set to pk, and the dk are coe�cients for linearly interpolating to new p

values. There are many techniques for choosing the dk, or even the reference

values of pk, which together de�ne di�erent approaches to model order reduction.

However, most classical model order reduction techniques essentially amount to

some form of linear interpolation as described here.

The ability to perform model order reduction is nominally a substantial

advantage of PDE-based modelling over SDE-based modelling. There is no

straightforward analog for interpolating between ensemble a SDE trajectories

precomputed at a handful of p values in order to e�ciently compute the solutions

at a new value of p. Speci�cally, parameterized molecular dynamics models must

be simulated entirely independently at every relevant choice of p.

In theory, linear model order reduction can sometimes be quite e�ective. The

e�ectiveness of these methods is often discussed in terms of the Kolmogorov

width, which captures the worst-case error that can be achieved using the best

possible basis of a given size n. Mirhoseini and Zahr [31] includes a survey of

various articles discussing the convergence of Kolmogorov width with n. This
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error can decay exponentially for elliptic and parabolic equations, and thus model

order reduction can be e�ective for such problems. Conversely, it can converge as

slowly as n−1/2 for convection-dominated problems, and model order reduction

with a linear basis is intrinsically ine�ective for such systems.

Moreover, the Kolmogorov width describes the best achievable error. It does

not account for the di�culty in actually determining a near-optimal linear

approximation. In practice, a very large number of solutions may be required to

make model order reduction work well even if the Kolmogorov width decays

rapidly in theory.

A more fundamental barrier to the use of linear model order reduction

techniques based on FEM is that it cannot easily handle parameterized

geometries. If the domain geometry Ω = Ω(p) varies with the problem

parameters, then a new FEM mesh must be computed at every value of p.

Moreover, it is unclear how to unambiguously interpolate between reference

solutions ũ(x; pk) when these functions are not de�ned on the same domains for

x. Some model order reduction techniques have been proposed for handling

parameterized geometries (see discussion in App. D), but these formulations are

typically highly problem-speci�c. In contrast, the study in App. D shows that the

NNM (which is both mesh-free and nonlinear) can readily handle parameterized

PDE models in which p a�ects the domain geometry.

A.2.2 Rates of convergence

Quantifying the convergence of FEM approximations can be complicated. The

sources of error typically include:
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• The approximation of the geometry by a �nite mesh;

• The approximation of the solution by a piecewise polynomial function;

• The approximation of the integrals in Eqn. A.10 using numerical

quadrature;

• The numerical method used to solve the system of equations (linear or

nonlinear) de�ning the coordinates of the trial function.

All of these errors must be considered in the context of computations made using

�nite precision. The magnitudes of these errors are particularly a�ected by:

• The dimensionality of the domain;

• The complexity of the shape of the domain;

• The speci�c functional forms chosen for the trial and test function bases;

• The regularity of the true solution to the PDE.

Conversely, we might be interested to know the rate at which these errors

decrease with respect to:

• The quantity, shapes, or sizes of geometric primitives in the mesh;

• The polynomial degrees in the trial or test function bases;

• The total number of degrees of freedom in the trial function ũ;

• The total computation time required to obtain the FEM solution.
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Additionally, decreasing the error can also incur costs in terms of human factors,

for example due to increased di�culty of implementation or additional human

labour required for mesh generation.

The rate at which some of these errors decrease with respect to these variables

can only be deduced for certain problems and in certain limits. In practice, error

convergence is often assessed empirically by trial and error. Nonetheless, it is very

helpful to understand the available theoretical results on convergence. The

discussion in this section is meant as a simple review of the convergence results

that are most relevant to the work in this thesis. In particular, the presentation

below is applicable to time-independent linear coercive elliptic PDEs, which

include all the Laplace, Poisson, and Smoluchowski equations arising in this

thesis.

First, consider the case of a standard (not mixed) FEM approximation to a

scalar PDE problem. Let us de�ne the error function

e ≡ u− ũ, (A.19)

where u is the (scalar) true solution and ũ is an FEM approximation of the form

in Eqn. A.3 obtained by the method of weighted residuals. Recall that ũ is not

necessarily the best approximation of u in the span of the trial function basis.

However, a famous result called Céa's lemma reveals that

‖e‖ ≤ C1 inf
w
‖u− w‖, (A.20)

where the in�mum is taken over all w that can be represented in the trial
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function basis used to obtain ũ. In other words, infw ‖u− w‖ is the best error

that could possibly be achieved using the chosen basis. The coe�cient C1

depends on the details of the PDE problem, but not on the choice of mesh or

FEM basis. Thus, although ũ may not be the best representation of u in the

chosen basis, its error is no worse than the best possible error multiplied by a

problem-dependent factor C1. Céa's lemma has certain technical requirements1,

but these can be omitted from the discussion here for simplicity.

Directly analysing the best achievable error infw ‖u− w‖ is di�cult in general.

However, there is a special value of w for which powerful convergence results are

available. Speci�cally, de�ne w∗ as the projection of the true solution u into the

space spanned by the trial function basis φi, given by

w∗(x) =
∑

i

c∗iφi(x), (A.21)

c∗i =
〈u, φi〉
‖φi‖

. (A.22)

The function w∗ is also called the interpolation of u in this FEM basis. It is

certainly true that

inf
w
‖u− w‖ ≤ ‖u− w∗‖ (A.23)

1Speci�cally, the result requires that the bilinear form arising in the weak formulation of
the PDE be continuous and coercive in the same norm arising in Eqn. A.20. In that case, the
coe�cient C1 can be expressed as the ratio of its constants of continuity of coercivity. The PDEs
solved in this thesis satisfy these conditions in the H0 = L2 and H1 norms (at least), which is
su�cient for our current purposes.
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and thus that

‖e‖ ≤ C1‖u− w∗‖. (A.24)

We can now appeal to results on the rate of convergence of the interpolation of

a function onto an FEM basis. This relationship depend on the regularity r of the

function being interpolated. Classically, the regularity of a function (also called

its smoothness) is measured by the number of times it is continuously

di�erentiable; the space Ck denotes functions that are k times di�erentiable.

More appropriate de�nitions of regularity for the solutions of PDEs are de�ned in

terms of the number of times a function is weakly di�erentiable (see Sobolev

spaces). In fact, it is even possible to de�ne non-integer notions of regularity. For

present purposes, however, the reader unfamiliar with fractional regularity can

simply understand that r is a number that indicates how many times a function

is (weakly) di�erentiable.

It can be shown that the interpolation error of a function u with regularity r

being interpolated onto an FEM basis of piecewise polynomials of degree p on a

mesh whose cells have maximum diameter2 h will scale as

‖u− w∗‖ ≤ C2h
min(r,p+1). (A.25)

Here the norm ‖ · ‖ is the standard L2 norm; similar results apply for Sobolev

norms of varying order. The constant C2 depends on the PDE domain, the

speci�cs of the mesh, the order of the polynomial interpolants, and the regularity

2The diameter of a cell is the maximum distance between any two points in the cell.
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of the true solution u. However, C2 does not depend directly on h, and the

exponent of h is typically considered the rate of convergence of the interpolation.

Combining Eqn. A.25 with Eqn. A.24 yields �nally that

‖e‖ ≤ Chmin(r,p+1), (A.26)

where C = C1C2. Although this results applies only for a speci�c FEM variant,

the convergence of FEM error is typically a power law of roughly this form. See

Ern and Guermond [12] for analogous results for mixed FEM formulations3.

Equation A.26 suggests two ways to improve the accuracy of the FEM solution.

The �rst option is to decrease h by using a higher-resolution mesh, which is

known as h-re�nement. The second option is to increase p by using a trial

function basis of larger polynomial order. Babuska and Szabo [1] carefully

compares the convergence of the these two methods of re�nement. In practice,

practitioners of FEM typically combine the two types of re�nement as

appropriate for the problem at hand.

It is also helpful to express the convergence rate in terms of the total number of

degrees of freedom in the FEM approximation, N . Typically,

h ∼ N
1
d (A.27)

3Essentially, the errors on both sides Eqn. A.24 are replaced with the sum of the errors for
the scalar and vector components of the approximation, and then interpolation errors are used
as upper bounds for each of their best approximation errors.
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where d is the dimensionality of the PDE domain. Thus, if we use su�ciently

high-order trial functions such that p > r, we see that

‖e‖ ∼ O
(
N−

r
d

)
(A.28)

for small ‖e‖. From this, we can see that smoother functions (with larger r) can

be more e�ciently approximated by FEM.

Conversely, the cost of attaining a given error grows rapidly with the problem

dimensionality d. In fact, for large d

N ∼ O
(
‖e‖− d

r

)
. (A.29)

Thus, for functions of a �xed regularity r, the number of degrees of freedom

required to approximate a target function to a given accuracy ‖e‖ grows

exponentially with the problem dimensionality d. This is the curse of

dimensionality for FEM, and essentially precludes the use of FEM approximation

for high-dimensional PDEs.

In fact, Eqn. A.28 is a speci�c instance of a far more general result from

approximation theory. DeVore, Howard, and Micchelli [8] proved that any

approximation scheme seeking to approximate functions of regularity r in a

domain of dimensionality d using N degrees of freedom will exhibit errors ε that

are at least as large as

ε ∼ O
(
N−

r
d

)
. (A.30)
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This result only requires that the approximation scheme depend continuously on

the approximated function; that is, if the target function is perturbed slightly, the

values assigned by the approximation scheme to the degrees of freedom only

change slightly. In particular, the method of DeVore, Howard, and Micchelli [8]

even applies to nonlinear approximation scheme (including deep learning methods

like the NNM).

The DeVore convergence rate essentially re�ects the intrinsic complexity of the

class of functions of regularity r. If the approximated functions can exhibit wild

�uctuations in their derivatives at any points in the problem domain, then it is

very hard to anticipate their behaviour based on partial information. Conversely,

highly regular functions are easily predicted based on small amounts of

information4. The problem of representing irregular functions is exacerbated in

higher dimensions; intuitively, this is because the function has more volume in

which to behave unpredictably.

Actually, despite the far-reaching applicability of DeVore's result, it is possible

to achieve (much) better error convergence even using the humble FEM approach

outlined above. As discussed by Babuska and Szabo [1], the error of FEM can

actually converge exponentially faster with the number of degrees of freedom.

The key is to combine h-re�nements of the mesh with p re�nements of the trial

function basis in an adaptive manner tailored to the irregularities of the function

being approximated. Essentially, a small number of high-p elements should be

used in regions of the domain where the target function is well-behaved. In

4The reader may �nd it helpful to think of the identity theorem for analytic functions in
complex analysis, noting that analytic functions are even more regular than in�nitely di�erentiable
functions.
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regions where the function is irregular, the mesh should be thoroughly re�ned

and a large number of piecewise linear elements should be used. This type of

approximation scheme is referred to as hp-FEM.

The exponential convergence of hp-FEM paradoxically overcomes the general

limits placed by DeVore. How is this possible? The key to this result is that the

hp-FEM approximation is adaptive. DeVore's result applies to approximation

schemes that are to be applied to the entire set of functions of regularity r. An

adaptive hp-FEM solution tailored to one speci�c function of regularity r would

surely achieve terrible approximation rates for most other functions of regularity

r. By incorporating prior knowledge of the function's irregularity, or by deducing

this knowledge iteratively through repeated FEM approximations, hp-FEM is

able to allocate its degrees of freedom far more e�ciently.

This result sets a very important precedent for the NNM, introduced in the

next section, and for deep learning methods in general. Deep learning methods

are frequently referred to as being intrinsically adaptive. In a sense, this is true:

deep neural networks are very �exible approximation functions that are applied

very generically across applications involving images, natural language, PDEs,

and many other types of data. The algorithms seem to perform well across all

these settings�they appear to adapt to the task at hand. Given this adaptive

nature, one might hope that the NNM would be capable of attaining the same

exponential convergence rates as adaptive FEM techniques like hp-FEM. Indeed,

a variety of theoretical results have been produced demonstrating that deep

neural networks can, in theory, approximate a dizzying array of important

function classes all with exponential convergence rates. Unfortunately, the studies
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in Chapter 4 and App. C demonstrate that the NNM is far from attaining these

theoretical bounds in practice.
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A.3 The neural network method

A.3.1 Background

The neural network method (NNM) of solving di�erential equations was explored

as early as the 1990s. Dissanayake and Phan-Thien [9] presented possibly the �rst

demonstration of this technique for engineering applications. This was followed

by a seemingly independent rediscovery of very similar algorithms by Milligen,

Tribaldos, and Jiménez [30], and again by Lagaris, Likas, and Fotiadis [23]. In the

following years, a series of re�nements and applications for the NNM were

produced; much of this work was covered in a textbook by Yadav, Yadav, and

Kumar [42].

These early NNM research e�orts were mostly limited to the use of shallow

neural network architectures (see Sec. 1.3). In the early 2010s, the so-called deep

learning revolution began to unfold: GPU-accelerated deep neural network

algorithms became widely successful, breaking performance records on tasks in

machine vision, natural language processing, and biochemistry. Free deep learning

software frameworks like PyTorch and TensorFlow became readily accessible.

Around 2017, the success of deep learning began to stimulate renewed interest

in the NNM. Inspired by the success of deep learning at overcoming the curse of

dimensionality in machine learning applications, several studies demonstrated

that deep variants of the NNM could directly solve high-dimensional PDEs [10,

11, 38, 16, 2]. Similarly, Sirignano and Spiliopoulos [38] demonstrated that the

NNM could easily be extended to directly solve parameterized PDEs, e�ectively

providing the functionality of FEM and model order reduction in a single



Appendix A. Numerical methods 187

algorithm.

In the years since this rekindling of NNM research, a great diversity of methods

have been developed and applied broadly to problems across many disciplines.

Unfortunately, there is as of yet still no mature theoretical understanding of the

NNM. In particular, it is not clear exactly why deep neural networks perform so

much better than shallow neural networks, nor is it known when and how deep

variants of the NNM are truly useful in practice. Much of the interest in the

NNM is based on impressive empirical demonstrations like those listed above.

However, the NNM research community lacks careful benchmarks, and as a result

it is di�cult to systematically compare the performance of the many variations of

the NNM. Work is ongoing to improve on both of these fronts. This section will

provide the reader with an overview of the NNM topics relevant to this thesis,

including the basic NNM formulation, some relevant directions of innovation, and

some of the major theoretical results available today.

A.3.2 Basic algorithms

At its core, the NNM is simply the idea of using a neural network as the trial

function to solve a PDE. That is, the true solution u(x) of the PDE will be

approximated by a trial function

ũ(x) = N(x; θ). (A.31)

This can be contrasted directly with the form of the trial function used for FEM

outlined in Eqn. A.3. Here N is any neural network function that takes x as an
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input and outputs a value ũ(x) that is of the same type (e.g., vector, scalar, etc.)

as the true solution u. The parameter θ denotes the learnable parameters of N ;

these are the counterparts to the coe�cients ci in the FEM trial function

(Eqn. A.3). However, whereas the FEM trial function depends linearly on the

parameters ci, the neural network trial function N will typically depend

nonlinearly on most of its parameters θ. The many variations of the NNM

basically correspond to di�erent choices of the trial function N in Eqn. A.31 and

di�erent algorithms for generating θ values corresponding to a given target

function u.

This nonlinearity is ultimately the source of most of the advantages and

disadvantages of the NNM relative to classical numerical techniques like FEM.

On the one hand, it means that neural networks can potentially be much more

expressive trial functions than linear combinations of simple basis functions.

Indeed, the ansatz of depth, which necessarily implies nonlinearity, appears to be

an essential requirement for the manner in which the NNM overcomes the curse

of dimensionality. On the other hand, �nding neural network parameters θ that

correspond to a good approximation of a target function u is far more di�cult

than, e.g., �nding good coordinates ci to approximate u with a basis of compactly

supported piecewise polynomial functions, as done in FEM. Not only is it more

di�cult to �nd such θ values in practice, but the common algorithms used to this

end are far more di�cult to analyse theoretically.
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A.3.2.1 Neural network architectures

Equation A.31 speci�es that the trial function N should be a neural network, but

what does this mean? Many di�erent classes of parameterized functions have

been called neural networks: fully-connected neural networks, convolutional

neural networks, recurrent neural networks, transformers networks, etc. These

classes seem to vary greatly in their mathematical and computational properties,

and are only loosely connected by themes such as depth and occasionally some

heuristic motivations from neuroscience. A given family of neural network

functions is typically referred to as a type of neural network architecture. In this

section, we will review the basics of neural network architecture.

The earliest versions of the NNM used neural networks of the form

Nshallow(x; θ) = c · σ(Ax+ b) + d. (A.32)

If x ∈ Rn, then A is a matrix in Rm×n for some choice of m, and b is a vector in

Rm. The function σ is some choice of nonlinear function called the activation

function. It is usually a scalar function that is applied elementwise to the vector

Ax+ b, so that σ(Ax+ b) is another vector in Rm. Finally, c is another vector in

Rm and d is a scalar, so that Nshallow(x; θ) is a scalar function of x. This form of

trial function is only appropriate for approximating scalar functions, but could

easily be modi�ed to approximate a vector function5. The elements used in

multiplications (here A and c) are generally called weights, whereas those used in

addition (here b and d) are called biases.

5To approximate a vector function of x, one could for instance replace c with a matrix of the
appropriate shape and d with a corresponding vector.
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Neural network architectures of the form in Eqn. A.32 will be referred to in this

thesis as shallow fully-connected neural networks6. What is most salient about

this function class is that they are shallow: only one nonlinear operation is

present between input and output. Speci�cally, we will say that this architecture

has one hidden layer of width m. The vector Ax+ b is the preactivation vector of

the hidden layer, and the vector σ(Ax+ b) is the activation vector of the hidden

layer. The output Nshallow(x; θ) is sometimes called the output layer, but this

name is more natural when Nshallow(x; θ) is not a scalar. Similarly, the input x is

sometimes called the input layer. In summary, the input layer is mapped linearly

to the hidden layer; an elementwise nonlinearity is applied; and �nally the hidden

layer is mapped linearly to the output layer.

What are the learnable parameters θ of Nshallow in Eqn. A.32? The answer to

this question depends on the algorithm used to �t Nshallow to target functions. In

practice, it is most common for practitioners to �x m and σ a priori. These are

called hyperparameters of the architecture7. All the remaining degrees of freedom

are learnable parameters: that is, θ includes the weights (elements of A and c)

and the biases (b and d).

The NNM implementations in this thesis use trial functions from the more

general function class of deep fully-connected neural networks. These can be

6They may be referred to elsewhere as arti�cial neural networks, multilayer perceptrons, or
by other names.

7Algorithms do exist for learning hyperparameters. These are variously referred to as auto-
matic machine learning, neural architecture search, adaptive activation functions.
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de�ned recursively as:

f1 = σ1 (A1x+ b1) ,

f2 = σ2 (A2f1 + b2) ,

f3 = σ3 (A3f2 + b3) ,

· · ·

fL = σL (ALfL−1 + bL) ,

Ndeep(x; θ) = c · fL + d. (A.33)

This form is precisely the composition of L shallow neural networks. The input x

is linearly transformed to the �rst hidden layer's preactivation vector A1x+ b1,

which is in Rm1 for some width m1. The �rst activation function is applied

elementwise to produce the �rst postactivation vector. The ith hidden layer is

obtained from the (i− 1)th layer in a similar fashion, with each hidden layer

having its own width mi, weights Ai, biases bi, and activation function σi. The

deep network in Eqn. A.33 has a total of L hidden layers. Finally, the output

layer maps the activation vector of the last hidden layer fL to the output layer

Ndeep(x; θ) via a linear transformation.

The deep fully-connected neural network is one of the simplest classes of deep

neural networks. In practice, it is most common to further simplify the

architecture by assuming that all hidden layers are of equal width8 (i.e., mi = m

for all i) and use the same activation function (i.e., σi = σ for all i). As in the

shallow case, m and σ are usually considered hyperparameters, so that the

8The results in Chapter 5, however, suggest that this may not always be the optimal choice.
Rather, that analysis suggests that increasing the mi with i may be advantageous.
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learnable parameters θ are the elements of all the Ai and bi as well as c and d.

The choice of activation function σ has important implications for the

performance of neural network architectures. One of the most popular choices is

the recti�ed linear unit (ReLU) function, σ(y) = max(0, y). Unfortunately, ReLU

is not compatible with many NNM training algorithms9. As such, smooth

activation functions are more common. The hyperbolic tangent function

σ(y) = tanh(y) is very common, and will be used for all the NNM

implementations in this thesis.

Modern deep neural networks are usually far more sophisticated than the

humble fully-connected architectures. For instance, residual networks add identity

mappings to the hidden layers, so that they are of the form

fj = fj−1 + σ (Ajfj−1 + bj) . (A.34)

The identity term can dramatically improve the performance of the networks in

practice, at least in part because they work synergistically with gradient-based

optimization techniques for �nding θ [17]. Residual networks are very similar to

highway networks, which have layers of the form

Tj = g (Ejfj−1 + hj) , (A.35)

fj = (1− Tj)fj−1 + Tjσ (Ajfj−1 + bj) . (A.36)

9Speci�cally, the output of a ReLU-based networks is a piecewise linear function of its input.
Loss functionals that are based on the second- or higher-order derivatives of the output with
respect to the input will not function properly. In particular, di�erential operators of order two
or higher will be zero almost everywhere for such networks, so loss functionals based on the strong
form of the PDE for second- or higher-order PDEs will not be properly de�ned for such networks.
Loss functionals based on weaker formulations of the PDE may still work.



Appendix A. Numerical methods 193

Here Ej is a matrix and hj is a vector (both of the appropriate sizes) and g is

another activation function. The g function must have an output range in [0, 1],

so that Tj acts as a gating mechanism between the two terms in the layer. Setting

Tj = 0.5 recovers an architecture similar to residual networks. Residual networks

and related architectures are extremely popular architectures in deep learning

today; furthermore, both residual networks and highway networks have inspired

successful NNM algorithms (e.g., Refs. [11, 38]).

A.3.2.2 Training neural networks

Having selected the neural network architure in the trial function N (Eqn. A.31),

the next step in the NNM is to determine parameters θ for which N(x; θ) is a

good approximation to the solution u of the PDE being solved. Recall that, when

solving linear PDEs via FEM, determining coe�cients ci that provide a good

approximation of u is as simple as inverting a system of linear equations. Alas,

because the NNM trial function generally depends nonlinearly on θ, no such

simple algorithm exists. Instead, the selection of θ is accomplished using

techniques from the broader deep learning community.

This process is typically called training the neural network, a name re�ecting

the origins of these techniques in arti�cial intelligence research. The standard

recipe for neural network training is conducted in two phases. First, an initial

guess for θ is generated, usually by randomly drawing from some simple

distribution. Second, an iterative gradient-based optimization scheme is used to

update the current guess of θ by minimizing some functional, called the loss.

The most common initialization distributions for θ are Gaussian
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distributions10. This introduces additional hyperparameters, namely the choice of

the mean and variance for the Gaussian distribution from which each parameter

is drawn. All NNM implementations in this thesis use the simple initialization of

Glorot and Bengio [13].

The optimization of θ from its initial value is typically conducted using

algorithms based on gradient descent. In basic gradient descent, θ is updated

iteratively according to

θi = θi−1 − η∇θL[N(x; θi−1)]. (A.37)

Here, L[N(x; θ)] is a functional that maps N to a scalar value called the loss. The

gradients ∇θ with respect to θ can be computed e�ciently on GPU hardware

using the backpropagation algorithm [25]. The constant η here is called the

learning rate; this is yet another hyperparameter. For su�ciently small values of

η, gradient descent tends to produce an updated value θi that produces a smaller

loss value than did θi−1.

In practice, the pure gradient descent algorithm is rarely used. The loss

functional typically cannot be computed exactly as most loss functionals involve

complicated integrals over the domain of x. These integrals can be estimated by

Monte Carlo integration, leading to what is known as stochastic gradient descent.

The number of samples used for these Monte Carlo integration estimators is

called the batch size of the algorithm. Besides this, various heuristic

10Note that initializing all weights and biases to identical values leads to pathological training.
Standard gradient-based optimization schemes are unable to distinguish between the e�ects of
di�erent parameters in a given layer, so that the parameters are updated identically in every
iteration and remain equal in value forever.
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modi�cations of gradient descent are commonly used to improve its convergence

properties. Another important class of optimizers sometimes used with the NNM

are quasi-Newton methods, such as the BFGS method; these are beyond the

scope of the current thesis. The NNM implementations in this thesis are all based

on the Adam optimizer, which is a variant of stochastic gradient descent that

incorporates adaptive heuristics to dynamically adjust the e�ective learning rate

during training [21].

A.3.2.3 Loss functionals

The loss functional for the NNM must be constructed such that small values of

the loss functional correspond to θ values for which N is a good approximation of

the unknown solution u of the PDE. The most common choice of NNM loss

functional is of the form

L[N(x; θ)] =

∫

Ω

(LN(x; θ)− f(x))2dx+ β

∫

∂Ω

(BN(x; θ)− g(x))2ds. (A.38)

Here L is the di�erential operator with source f for a target PDE of the form

Lu = f on a domain Ω, and B is an operator with source g describing the

boundary conditions Bu = g on the boundary ∂Ω. The �rst loss term quanti�es

how badly the trial function fails to satisfy the PDE, and the second loss term

quanti�es how badly the trial function fails to satisfy the boundary conditions.

The hyperparameter β sets the relative importance of satisfying the PDE versus

the boundary conditions. In this thesis, β is simply �xed to a constant value near

1 that was determined by trial and error to produce good results.
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When optimizing θ using stochastic gradient descent and similar methods, each

term in Eqn. A.38 can be approximated by a separate Monte Carlo

approximation over its respective domain. In this way, the NNM is mesh-free: all

that it requires is samples drawn uniformly from the domain and its boundary,

and generating such samples does not require a mesh. Indeed, it is thanks to this

mesh-freedom that the NNM can operate e�ectively in high-dimensional domains.

A.3.2.4 Regarding generalization

For most applications of deep learning, the concept of generalization is of

fundamental importance to the training process. In standard deep learning

applications, the deep neural network is trained to �t partial measurements from

some target function. The measurements are typically noisy, and the data

available for training may not be a perfect representation of the data that will be

encountered when the model is deployed for its intended application. Thus,

various methods exist for gauging how well the network will perform on

previously unseen data. In particular, standard training algorithms run the risk

of over�tting to the training data, producing neural networks that have

essentially memorized meaningless patterns.

In the case of the NNM, generalization and over�tting are usually not

important concerns. Usually, the NNM is applied to PDE models in which the

problem data is assumed to be known exactly. The training data corresponds

simply to samples of x taken from the problem domain, which can be generated

at essentially no cost. Moreover, PDE problems do not usually involve testing the

approximated solution on points outside the domain on which the problem was
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originally posed. Although there are applications of the NNM in which these

statements are false and for which generalization is an important consideration,

this is not the case for the work in this thesis.

A.3.2.5 Model order reduction with the NNM

One of the most exciting features of the NNM is the ease with which it can be

extended to act as a model order reduction technique. As in Sec. A.2.1.4,

consider a parameterized PDE of the form

L(p)u(x; p) = f(x; p), x ∈ Ω(p). (A.39)

As �rst popularized by Sirignano and Spiliopoulos [38], the NNM can be

implemented directly with a trial function of the form

ũ(x, p) = N(x, p; θ) (A.40)

to produce an approximation that is a function of both the PDE domain

coordinates x and the problem parameters p. Training can be conducted

essentially as usual, for instance by generalizing the loss functional in Eqn. A.38 to

L[N(x, p; θ)] =

∫

P

[∫

Ω

(LN(x; θ)− f(x))2dx+ β

∫

∂Ω

(BN(x; θ)− g(x))2ds

]
dp,

(A.41)

where p ∈ P de�nes some set of problem parameters for which the parameterized

PDE is to be solved. This capability is of great interest for applications in
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computational biophysics in general and the design of periodic MNFDs in

particular; App. D contains a study exploring this very use case, and is discussed

in Chapter 6.

A.3.3 Rates of convergence

The questions and concerns regarding error for the NNM are essentially the same

listed for FEM at the beginning of Sec. A.2.2. However, the trial function in the

NNM is a nonlinear function of its parameter θ, and the training of a deep neural

network is a nonlinear nonconvex optimization problem. Each of these points

makes the NNM quite challenging to analyse theoretically.

Because of these challenges, the NNM still lacks a comprehensive theoretical

foundation comparable to that available for FEM and other well-established

numerical methods. The practical development of NNM algorithms is still highly

dependent on empirical demonstrations. However, often proof-of-concept

demonstrations are conducted on toy models that are not representative of the

challenging features arising in real PDE applications. Further, few studies

carefully and systematically analyse the relationship between NNM error,

runtime, and hyperparameter selection.

Despite the di�culty in theoretical analysing the NNM, there are some

important theoretical results available today, and the theoretical NNM literature

has been growing steadily in recent years. Relevant literature can be broadly

categorized into two main topics: expressivity and trainability. Expressivity

results attempt to understand how well deep neural networks can approximate

di�erent functions under ideal conditions. This is analogous to the concepts of
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best achievable error and interpolation error discussed for FEM in Sec. A.2.2. As

reviewed below, several studies have suggested that deep neural networks have

much better expressivity than FEM approximations, at least in theory.

On the other hand, trainability results assess whether practical NNM

algorithms actually achieve approximation performance comparable to the best

rates predicted by expressivity analyses. Recall that powerful results like Céa's

lemma ensure that the performance of practical FEM implementations is fairly

close to the best possible FEM performance achievable in theory. In contrast,

empirical studies have consistently identi�ed that the convergence of the NNM in

practice is far worse than expressivity results predict in theory. This paradox has

come to be known as the theory-to-practice gap.

It is important to recall that, although the theory-to-practice gap draws into

question the practical relevance of many available expressivity results, empirical

studies have successfully demonstrated the use of the NNM to solve some

challenging problems. In particular, empirical demonstrations of the NNM

solving high-dimensional PDEs and parameterized PDEs were made without any

particular theoretical motivation. Thus, the theory-to-practice gap is a

shortcoming of current NNM theory, not of the NNM itself.

Ultimately, what remains unclear is under precisely what circumstances the

NNM is able to produce approximations of acceptable accuracy in a manner that

is faster, easier, or otherwise more useful than the best available alternatives.

This thesis includes studies intended to help clarify the answer to this question.

The behaviour of NNM errors is investigated from various directions in Chapter 4

and Apps. C, B, and D. Moreover, Chapter 5 presents a study of the internal
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representations learned in the hidden layers of deep neural networks trained via

the NNM,.

A.3.3.1 Expressivity

The discussion of deep neural network expressivity begins most naturally with

the so-called universal approximation theorems. The �rst of these was proven in

Cybenko [7], followed shortly thereafter by a more general version in Hornik [18].

These proofs demonstrated that shallow neural networks could uniformly

approximate any continuous function on a compact domain, given su�cient

capacity. Many extensions of these theories have been published over the years,

extending the results to di�erent activation functions and architectures.

There are some major problems with these theories. They provide no

indication as to how one should obtain the weights that are implied to exist.

They do not clearly demonstrate that the neural networks are in any way better

than alternative classes of universal approximants, such as polynomials or

piecewise polynomials. They do not indicate how big the neural networks should

be to achieve a given level of accuracy. Moreover, they do not imply any need or

advantage to deep neural networks; in fact, rather than explaining the modern

success of deep learning, the universal approximation theorems historically

discouraged research in this direction for many years. Nonetheless, this class of

results is still used today to justify and motivate much work with neural

networks, when the implications of these theorems are far less relevant than they

may �rst appear.

Results from the �eld of approximation theory overcome some of the
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limitations of universal approximation theorems. As discussed in Sec. A.2.2, a

very powerful theoretical result in this area is due to DeVore, Howard, and

Micchelli [8], called the method of continuous nonlinear widths. The theorem

applies very broadly to any approximation system in which the coe�cients of the

approximation depend continuously on the function being approximated. For

such methods, DeVore concluded very broadly that

ε ∼ O(N
r
d ), (A.42)

where ε is the worst-case approximation error, N is the number of degrees of

freedom, r is the regularity of the target function, and d is the dimensionality of

the problem domain.

It is not clear that the approximation of a function by deep neural networks

depends continuously on the target function. In fact, the standard training

protocol (Sec. A.3.2.2) involves the use of a random initial guess for the degrees of

freedom followed by a stochastic optimization algorithm. Indeed, the rate set by

Eqn. A.42 su�ers from the curse of dimensionality unless r →∞. This would

contradict the successful demonstrations of the NNM on high-dimensional PDEs.

Conversely, the empirical results in Chapter 5 actually suggest that,

asymptotically, the NNM may generate hidden layer representations that appear

to depend continuously on the target function. Future work should attempt to

clarify whether deep learning does produce functions that depend continuously

(in some sense) on the target function, and whether this has implications related

to the theoretical rate in Eqn. A.42.

Various authors have proposed proofs that claim to directly con�rm that deep
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neural networks can represent high-dimensional functions without an exponential

growth in computational cost [15, 20, 19]. Many of these proofs proceed by

manually constructing deep neural networks that e�ciently approximate some

well-understood function class for which exponentially good approximation

theorems are already known. This does not re�ect the reality of how deep neural

networks are trained in practice. As such, the predicted convergence rates are not

observed empirically, as discussed below.

A.3.3.2 Trainability

Unfortunately, the exponentially fast convergence rates predicted by theoretical

analyses of deep neural network expressivity have not been observed empirically

in real NNM algorithms. As mentioned earlier in this section, this is known as the

theory-to-practice gap. Recent work by Grohs and Voigtlaender [14] has actually

provided some robust theoretical proof that this gap must exist, at least in a

certain setting. A proper discussion of that work is too technical for the current

context, but some tangible intuition towards the inevitability of this gap can be

obtained by reviewing the convergence of gradient-based optimization schemes.

As reviewed in Sec. A.3.2.2, deep learning training is generally conducted using

some variant of gradient descent. Theoretical results for the convergence of

gradient descent are di�cult to obtain for general non-convex and nonlinear

optimization problems like deep neural network training. However, very clear

results are available in the case of convex optimization [39].
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Speci�cally, in the convex case, the error ε of gradient descent is known to

converge as

ε ∼ O
(

1

k

)
, (A.43)

where k is the number of iterations. In fact, it is known that the best possible

rate that can be achieved by any �rst-order gradient based optimization scheme

is, in the convex scenario,

ε ∼ O
(

1

k2

)
. (A.44)

Nesterov [33] proposed an accelerated gradient descent technique that achieves

this rate.

Gradient descent and related methods can converge faster than these

worst-case rates suggest for particularly well-conditioned optimization objectives

(e.g., strongly convex functions). On the other hand, convergence can potentially

become much worse when stochastic variants of gradient descent are utilized. The

basic stochastic gradient descent is expected to converge as

ε ∼ O
(

1

k1/2

)
, (A.45)

under typical conditions [39].

Of course, these results all apply for convex optimization, and deep neural

network training is not a convex optimization problem. In fact, it is known

empirically to be a di�cult optimization problem. Thus, it seems reasonable to
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expect, heuristically, that convergence in deep learning is unlikely to be faster

than the rates listed above. This is, in practice, a problematic bottleneck to

achieving very low levels of error with the NNM. Only modest levels of error may

be attained in a reasonable amount of time.

It is worth noting that the slow convergence and/or moderate levels of

achievable error of the NNM do not necessarily compromise its utility in many

cases.

• For molecular dynamics described by high-dimensional Smoluchowski

PDEs, there are few alternative solution methods. Particle simulations, the

most common approach to study these systems, are also slow and limited to

modest levels of accuracy in practice.

• For high-dimensional PDE models of force �elds, it may be su�cient to

precompute the �elds once before using the �elds repeatedly in subsequent

molecular dynamics simulations. The up-front cost of precomputing a large

NNM solution may be competitive with the overall computational cost of

computing the forces repeatedly during simulations.

• For PDEs in complicated geometries, the mesh-free nature of the NNM

enables it to operate without any human supervision. Conversely, the

real-world cost of FEM is often bottlenecked by the human labour required

to properly mesh the domain. So long as the NNM can be trusted to

reliably converge eventually, it may be cost-e�ective in some cases to

replace large amounts of human labour with very large amounts of

computing time. What is more, the computational cost of FEM and other
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mesh-based methods grows rapidly with the intrincacy of the problem

geometry. For this application, the greatest barrier to the use of the NNM

is a lack of guarantees that it will converge reliably to even a modest level

of accuracy. See Chapter 4 and Apps. B and D for related discussions.

• For highly parameterized problems, existing model order reduction methods

have various limitations that have hindered their widespread use. In

particular, handling parameterized geometries with such methods is

di�cult. App. D directly illustrates the potential advantage of using the

NNM to study such systems. Again, modest levels of error are often

acceptable for such applications. Conversely, the computational cost is not

necessarily prohibitive since the NNM is providing a novel functionality

that cannot be reproduced with existing tools.

• For nonlinear PDEs, even the FEM requires the solution of a nonlinear

system of equations. Nonlinear FEM is also di�cult and potentially

computationally expensive. The relative disadvantage of the NNM may

diminish for hard nonlinear problems.
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Error bounds using Green functions
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This brief technical note contains a proof that the error
of an NNM solution to a certain class of PDEs is bounded
above by the same loss functional used during training,
up to a problem-dependent constant factor. The idea of
the proof is to express the true and approximate solutions
in terms of a common Green function, and then select the
Green function in a way that allows the loss functional to
emerge as an upper bound. The method appears to be di-
rectly extensible to a broader class of second-order linear
PDEs by using the integral form of Lagrange’s identity
in place of Green’s third identity, including at least some
time-integrated Smoluchowski equations.

In this discussion, we use x and x′ to denote points in
the PDE domain Ω; we use 〈a, b〉Ω to denote the integral
of the product ab over Ω; and we use 〈a, b〉∂Ω to denote
the integral of ab over ∂Ω. Suppose the PDE being solved
is of the form

∇2
xu(x) = f(x) x ∈ Ω, (1)

u(x) = g(x) x ∈ ∂ΩD, (2)

un̂(x) = h(x) x ∈ ∂ΩN , (3)

Here ∇2
x is the Laplacian operator acting over x, f is

a source term, g specifices Dirichlet boundary conditions
on the subset of the boundary ∂ΩD, and h specifices Neu-
mann boundary conditions on the subset of the boundary
∂ΩN .

If G(x,x′) is any Green function satisfying
∇2

xG(x,x′) = δ(x − x′), then, using Green’s third
identity, any arbitrary trial function ũ(x) can be written
as

ũ(x′) = 〈G(x,x′),∇2ũ(x)〉Ω
+ 〈ũ(x), Gn̂(x,x′)〉∂Ω (4)

− 〈G(x,x′), ũn̂(x)〉∂Ω

The above is true for any Green function. Now choose
specifically the Green function that satisfies:

∇2
xG(x,x′) = δ(x− x′) x ∈ Ω, (5)

G(x,x′) = 0 x ∈ ∂ΩD, (6)

Gn̂(x,x′) = 0 x ∈ ∂ΩN . (7)

With this choice, our representation of ũ reduces to

ũ(x′) = 〈G(x,x′),∇2ũ(x)〉Ω
+ 〈ũ(x), Gn̂(x,x′)〉∂ΩD

(8)

− 〈G(x,x′), ũn̂(x)〉∂ΩN

∗ Hendrick.deHaan@uoit.ca

The same decomposition can be written for the true
solution, u(x). Since the integration operations are lin-
ear, this yields the following expression for the difference
between the true and approximate solutions at any point
x′:

u(x′)− ũ(x′) = 〈G(x,x′),∇2u(x)−∇2ũ(x)〉Ω
+ 〈u(x)− ũ(x), Gn̂(x,x′)〉∂ΩD

(9)

− 〈G(x,x′), un̂(x)− ũn̂(x)〉∂ΩN

or, applying the boundary conditions of the PDE,

u(x′)− ũ(x′) = 〈G(x,x′), f(x)−∇2ũ(x)〉Ω
+ 〈g(x)− ũ(x), Gn̂(x,x′)〉∂ΩD

(10)

− 〈G(x,x′), h(x)− ũn̂(x)〉∂ΩN

Thus, the squared error in the approximate solution at
point x′ is given by

|u(x′)− ũ(x′)|2 = |〈G(x,x′), f(x)−∇2ũ(x)〉Ω
+ 〈g(x)− ũ(x), Gn̂(x,x′)〉∂ΩD

(11)

− 〈G(x,x′), g(x)− ũn̂(x)〉∂ΩN
|2

By the triangle inequality, this can be reduced to

|u(x′)− ũ(x′)|2 ≤ |〈G(x,x′), f(x)−∇2ũ(x)〉Ω|2

+ |〈g(x)− ũ(x), Gn̂(x,x′)〉∂ΩD
|2 (12)

+ |〈G(x,x′), h(x)− ũn̂(x)〉∂ΩN
|2

Next, via the Cauchy-Schwarz inequality, this implies
that

|u(x′)− ũ(x′)|2 ≤‖G(x,x′)‖2Ω‖f(x)−∇2ũ(x)‖2Ω
+‖Gn̂(x,x′)‖2∂ΩD

‖g(x)− ũ(x)‖2∂ΩD

+‖G(x,x′)‖2∂ΩN
‖h(x)− ũn̂(x)‖2∂ΩN

,

(13)

where ‖ · ‖ denotes the L2 norm over the respective do-
mains. Define the problem-specific constants

A(x′) = ‖G(x,x′)‖2Ω, (14)

B(x′) = ‖Gn̂(x,x′)‖2∂ΩD
, (15)

C(x′) = ‖G(x,x′)‖2∂ΩN
, (16)

K(x′) = max(A(x′), B(x′), C(x′)). (17)

Thus, the absolute error at x′ can be bounded above as
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follows:

|u(x′)− ũ(x′)|2 ≤A(x′)‖f(x)−∇2ũ(x)‖2Ω
+B(x′)‖g(x)− ũ(x)‖2∂ΩD

(18)

+C(x′)‖h(x)− ũn̂(x)‖2∂ΩN

≤K(x′)
(
‖f(x)−∇2ũ(x)‖2Ω

+‖g(x)− ũ(x)‖2∂ΩD
(19)

+‖h(x)− ũn̂(x)‖2∂ΩN

)

Recall that the loss functional used for training of the
NNM on this PDE would be

L[ũ] =

∫

Ω

(
∇2ũ(x)− f(x)

)2
dx

+

∫

∂ΩD

(ũ(x)− g(x))
2
ds (20)

+

∫

∂ΩN

(ũn̂(x)− h(x))
2
ds.

However, this is precisely equal to

L[ũ] = ‖f(x)−∇2ũ(x)‖2Ω
+ ‖g(x)− ũ(x)‖2∂ΩD

(21)

+ ‖h(x)− ũn̂(x)‖2∂ΩN
,

which means that, at each point x′, the squared error is
bounded above according to

|u(x′)− ũ(x′)|2 ≤ K(x′)L[ũ]. (22)

Furthermore, this implies that the MSE is bounded above
as

mean
x′

(
|u(x′)− ũ(x′)|2

)
≤ K̄L[ũ], (23)

where

K̄ = mean
x′

(K(x′)) (24)

is a problem-specific constant (i.e., it does not depend on
ũ).

The derivation above can be extended to provide
bounds for the mean and max absolute errors of the po-
tential, as well. Taking the square root of both sides of
Eqn. 22 yields

|u(x′)− ũ(x′)| ≤
√
K(x′)

√
L[ũ], (25)

from which is it clear that

mean
x′

(|u(x′)− ũ(x′)|) ≤ mean
x′

(
√
K(x′)

√
L[ũ], (26)

and

max
x′

(|u(x′)− ũ(x′)|) ≤ max
x′

(
√
K(x′)

√
L[ũ]. (27)

Thus, the mean and max absolute errors of the potential
scale in proportion to the square root of the loss func-
tional.

Similarly, in addition to the above errors in the poten-
tial, the derivation can be extended to apply to the errors
in the electric field. Taking the gradient of Eqn. 10 with
respect to x′ yields

∇x′u(x′)−∇x′ ũ(x′) = 〈∇x′G(x,x′), f(x)−∇2ũ(x)〉Ω
+ 〈g(x)− ũ(x),∇x′Gn̂(x,x′)〉∂ΩD

− 〈∇x′G(x,x′), h(x)− ũn̂(x)〉∂ΩN
.

(28)

This is a vector equation: the left and right hand sides de-
scribe vector fields. However, the procedure used above
to derive Eqn. 22 from Eqn. 10 can be applied identi-
cally to each component of Eqn. 28. Thus, it follows
that the MSE, MAE, and max AE of each component
of the electric field are bounded by the loss functional in
the same fashion as the corresponding electric potential
errors. These component-wise bounds can then be com-
bined into bounds for the Euclidean errors on the electric
field.



209

Appendix C

Compact neural network solutions

to Laplace's equation in a

nano�uidic device



Compact Neural Network Solutions to Laplace’s
Equation in a Nanofluidic Device

Martin Magill
U. of Ontario Inst. of Tech.

martin.magill1@uoit.net

Faisal Z. Qureshi
U. of Ontario Inst. of Tech.
faisal.qureshi@uoit.ca

Hendrick W. de Haan
U. of Ontario Inst. of Tech.

hendrick.dehaan@uoit.ca

Abstract

We explore the use of neural networks to solve the Laplace equation in a two-
dimensional geometry. Specifically, we study a PDE problem that models the
electric potential inside the slit-well nanofluidic device. Such devices are typically
used to separate polymer mixtures by molecular size. Processes like these are
commonly studied using GPU-accelerated coarse-grained particle simulations, for
which GPU memory is a bottleneck. We compare the memory required to represent
the field using neural networks to that needed to store solutions obtained using the
finite element method. We find that even simple fully-connected neural networks
can achieve accuracy to memory consumption ratios comparable to the good finite
element solutions. These preliminary results demonstrate an industrial application
that would benefit greatly from compact neural network representation techniques.

1 Introduction

Micro- and nanofluidic devices (MNFDs) consist of small geometries filled with electrolytic solution,
such as water with dissolved NaCl [1–3]. One major application of these devices is the separation of
polymer mixtures by size; specifically, the process of sorting DNA molecules by size is of widespread
importance. MNFDs are being investigated as next-generation separation technologies for advantages
such as miniaturization, automation, as well as improved speed and efficiency. Separation in MNFDs
is often accomplished by introducing the polymers into the confined solution, then applying an
electric field to drive them through the geometry. Over time, as a result, polymers become spatially
segregated by size.

As the dynamics of polymers driven through confinement can be quite rich, MNFD design is research-
intensive. Experimental investigations can be expensive, and have some intrinsic limitations (such as
the optical resolution limit of light). Molecular dynamics (MD) simulations are often used in tandem
with experiments, as they are cheaper and provide information that is inaccessible in experiment [4].
These simulations must balance physical realism against computational cost. Efficiency is particularly
important because, as polymer dynamics in MNFDs are stochastic, simulations must be repeated
many times to accurately measure statistical information. Simulations of MD in complete atomistic
detail are quite computationally expensive. Coarse-grained (CG) models can be simulated far more
efficiently, but must preserve sufficient detail to capture the essential phenomenology of the system
under consideration. In coarse-grained Langevin dynamics (CGLD) models, a polymer is modelled
as a chain of beads connected by springs, whereas in coarse-grained Brownian dynamics (CGBD)
models an entire polymer is represented by a single effective particle. CGLD is often appropriate for
nanofluidic devices, and CGBD for microfluidic devices.

These CG models can be simulated very efficiently, especially because they can readily exploit GPU
acceleration. HOOMD-blue, a free open-source particle general purpose particle simulation toolkit,
can accelerate simulations by over an order of magnitude using a single GPU, and achieves strong
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scaling across up to thousands of GPUs [5, 6]. Furthermore, whereas published benchmarks of
HOOMD-blue are conducted on simulations of millions of interacting particles, CG simulations
for MNFDs often contain a few hundred particles or less. Since each simulation consumes so little
memory, many independent instances can be simulated in parallel on the same GPU. This means
nearly-perfect scaling is attainable in theory, limited only by available GPU memory.

One of the challenges of using GPUs to accelerate particle simulations of polymers driven through
MNFDs is incorporating accurate electric field solutions. The standard methods for solving electric
fields in complicated geometries (e.g. finite volume or finite element methods) are mesh-based. Users
must decompose the problem domain into a mesh, which is often a time-consuming (and, therefore,
expensive) process. The resulting field solution is represented in memory as a table containing several
numbers per mesh point. Because field must be evaluated repeatedly during simulations, and since
GPU-to-CPU communication is slow, it usually necessary for the field to be stored and evaluated in
the GPU memory during simulations. Alas, the memory consumed by the mesh-based field solution
directly reduces the CG simulation efficiency by displacing potential threads. Since mesh-based
solution accuracy is proportional to mesh resolution, this memory cost cannot easily be reduced.

In this work, we use fully-connected tanh neural networks (NNs) to solve the electric potential in a
MNFD geometry. We argue that NN solutions are particularly well-suited for GPU-accelerated CG
particle simulations. First, they remove the need for custom mesh design. Second, as we showed
in Magill et al. [7], NN representations of PDE solutions are overparametrized, suggesting the
compact representation techniques could be used to significantly reduce their memory consumption.
We solve the electric potential in the so-called slit-well device (Fig 1(a)) [3, 8–10]. We obtain a
reference solution to the potential using the finite element method (FEM) with a high-resolution
mesh. We compare the relative accuracy of NN solutions to FEM solutions as a function of memory
consumption. The best NNs perform on par with the best FEM solutions, even without compact
representation techniques.

2 Methodology

Dissanayake and Phan-Thien [11] showed that neural networks (NNs) can learn to approximate
solutions to partial differential equation (PDE) problems using only the information available in
the problem statements themselves. Many authors have since explored variations on this method
(see [12–17] and others). Berg and Nyström [15] demonstrated that deeper NNs achieved better
accuracy for a given memory cost. Sirignano and Spiliopoulos [16] and Han et al. [17] demonstrated
that deep NNs could actually solve PDEs in hundreds of dimensions, which is a revolutionary feat.
Whereas the computational cost (in memory and time) of mesh-based solvers grows exponentially
in the dimensionality of the PDE, Grohs et al. [18] recently released a proof that the cost of solving
Black-Scholes PDEs with deep NNs only grows at most polynomially in the dimensionality.

The electric potential in the slit-well device, u, can be modelled by the following PDE problem:
∇2u(x, y) = 0, (x, y) ∈ Ω, (1)
u(x, y) = 1, (x, y) ∈ (∂Ω)1 , (2)
u(x, y) = −1, (x, y) ∈ (∂Ω)2 , (3)
un̂(x, y) = 0, (x, y) ∈ (∂Ω)i , i ∈ {3, 4, . . ., 10}, (4)

where Ω is the problem domain, whose boundaries (∂Ω)i, i ∈ {1, 2, . . ., 10} are illustrated in Fig 1(a).
Fully-connected tanh NNs ũ(x, y; ~p) were trained to minimize the loss function

L[u] =

∫

Ω

‖∇2u‖2dA+ λ

∫

∂Ω

‖B[u]‖2dS, (5)

where B[u] encodes the boundary conditions (BCs) given by Eqns 2-4. As n minimizes L[n], it
also approximates u. Training is accomplished by batch stochastic gradient descent. The training
data are coordinates ~xi randomly drawn from Ω; this is equivalent to numerically approximating
L[ũ] by the Monte Carlo method. Because the boundaries have measure zero in Ω, we treat any
training points within a small distance s from the boundaries as being on the nearest boundary. Given
this approximation, our loss function effectively has a weighting factor of λ = 10. To differentiate
training difficulties from representational limitations, we also trained NNs by supervised learning to
mimic the reference FEM solution. We will refer to training on Eqns 1-4 as the indirect method, and
training against the reference solution as the supervised method.
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3 Results

Figure 1: (a) Illustration of the PDE domain. The black boundaries are perfect insulators, modelled by
homogeneous Neumann conditions. The two remaining boundaries carry uniform non-homogeneous
Dirichlet conditions representing applied voltages. (b) The mean squared error of various numer-
ical solutions relative to the high-resolution reference FEM solution, against the memory cost in
increments of 32 bits. NNs trained using Eqns 1-4 are shown as circles, and NNs trained to mimic
the reference solution are shown as crosses. Marker color indicates the depth of the networks. The
black diamonds show FEM solutions. The dotted reference line scales as the −4th power of memory
consumption. Panels (c) and (d) show a solution learned by an NN directly from Eqns 1-4.

Fig 1(b) compares the accuracy and memory costs (calculated as per App. A) of various NN and FEM
solutions. As expected, the FEM solution converge to the reference FEM solution with increasing
mesh density. Although the NN solutions exhibited worse accuracy, the best NN accuracies are still
acceptable for most CG simulations. Fig 1(c) and (d) illustrate the NN solution corresponding to the
bottom-left-most green circle marker in Fig 1(b), which is a good approximation to the true solution.

The dotted line in Fig 1(b) indicates the rough scaling of memory and accuracy observed amidst the
best FEM solutions. Although the NNs trained from Eqns 1-4 do not attain this level of performance,
some of the NNs trained in a supervised fashion do.

These results demonstrate the feasibility of using NNs to represent solutions to PDE problems for use
in GPU-accelerated particle simulations. At the very least, the NN method has the appeal of removing
the need for expensive mesh design. Future work will explore higher-dimensional problems, where
the relative compactness of NN solutions over mesh-based solutions is expected to become far more
pronounced. Indeed, whereas the memory cost of FEM solutions grows exponentially with increasing
dimension, Grohs et al. [18] showed it grows polynomially for NNs. Three-dimensional MNFDs
are common; time-varying fields in such devices produce four-dimensional fields. Furthermore, in
many MNFDs, distortions of the electric field by molecular motion are important. Accounting for
this coupling increases the dimensionality of the problem linearly in the number of moving particles.
In the higher-dimensional models, the use of compact representation techniques will be crucial if the
NN solutions are to be incorporated into GPU-accelerated simulations. In App. B, we have included
estimates of the memory costs of FEM solutions for increasing problem dimension.
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Figure 2: Estimated memory cost of FEM solutions with increasing problem dimensionality assuming
constant mesh density. The horizontal black line indicates 10GB, which is the order of magnitude of
memory available on most modern GPUs. The three coloured lines consume 4kB, 40kB, and 400kB
of memory, respectively, when the dimensionality is 2.

A Calculating memory costs

The numer of parameters required to store a fully-connected NN is

3w + w(w + 1)(d− 1) + (w + 1), (6)

where w is the network’s width and d is its depth. Each parameter was stored as single precision floating point
numbers, so Eqn. 6 is the memory cost of an NN solution in increments of 32 bits.

The FEM solutions were stored in memory with 3 integers and 3 double precision floating point numbers at
every mesh point. Allocating 16 bits per integer and 64 bits per double, the memory cost of a FEM solution in
increments of 32 bits is thus

2(3N) + 0.5(3N) = 7.5N, (7)

where N is the number of mesh points.

The values of w or N for the points in Fig. 1 are implied by Eqn. 6 and 7. The NNs had widths from 8 to 40, and
the FEM meshes had roughly 50 to 40,000 mesh points.

B Estimating FEM memory costs in higher dimensions

For every increment that the problem dimensionality is increased, the FEM solution representations will require
one extra integer and one extra double at every mesh point. In general, the memory cost of a FEM solution in
increments of 32 bits is thus

2.5(D + 1)N, (8)

where N is the number of mesh points and D is the dimensionality of the problem.

Figure 2 estimates how the memory cost of FEM solutions would scale with problem dimensionality according
to Eqn. 8 if the average mesh density is kept constant. The green line corresponds roughly to the densest FEM
solutions in Fig. 1; this density would saturate a standard GPU’s memory in a four-dimensional domain. The
blue line corresponds roughly to the sparsest FEM solutions in Fig. 1; even this density saturates a standard
GPU’s memory in only eight dimensions.

For reference, modelling the particle-field coupling for a rather small polymer consisting of only 10 monomers
in the two-dimensional slit-well device would produce a 22-dimensional PDE. Sirignano and Spiliopoulos [16]
demonstrated that NNs could solve such problems with relative ease. Nonetheless, compact representation
techniques will almost certainly be necessary to ensure that the NN solutions can be incorporated efficiently into
GPU-accelerated simulations. Specifically, the results of Magill et al. [7] suggest that the NN solutions to PDEs
are likely to be vastly overparametrized (as is generally the case in other NN applications as well).
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This study presents deep neural network solutions to a time-integrated Smoluchowski equation modeling the
mean first passage time of nanoparticles traversing the slit-well microfluidic device. This physical scenario is
representative of a broader class of parametrized first passage problems in which key output metrics are dictated
by a complicated interplay of problem parameters and system geometry. Specifically, whereas these types of
problems are commonly studied using particle simulations of stochastic differential equation models, here the
corresponding partial differential equation model is solved using a method based on deep neural networks.
The results illustrate that the neural network method is synergistic with the time-integrated Smoluchowski
model: together, these are used to construct continuous mappings from key physical inputs (applied voltage
and particle diameter) to key output metrics (mean first passage time and effective mobility). In particular, this
capability is a unique advantage of the time-integrated Smoluchowski model over the corresponding stochastic
differential equation models. Furthermore, the neural network method is demonstrated to easily and reliably
handle geometry-modifying parameters, which is generally difficult to accomplish using other methods.

DOI: 10.1103/PhysRevE.106.025311

I. INTRODUCTION

Micro- and nanofluidic devices (MNFDs) are tools that can
be used to manipulate or detect molecules with high precision
[1–5]. For instance, the slit-well MNFD was proposed by
Han and Craighead [6] as a tool for sorting otherwise free-
draining polymers, such as DNA, according to chain length.
The same device has also been shown to induce separation
of free-draining nanoparticles by size [7,8]. The slit-well is
operated by electrophoretically forcing analytes across a pe-
riodic array of deeper regions (wells) and shallower regions
(slits) between two fixed planes (see Fig. 1). Its sorting effect
has been comprehensively studied through theoretical, numer-
ical, and experimental investigations, which have identified a
variety of distinct mechanisms that are relevant in different
operational regimes. At a high level, the sorting effect depends
nonlinearly on the size of the analytes and the magnitude of
the applied electric field, as well as the shape and size of the
device’s wells and slits [2,7–11]. In particular, depending on
the choice of these parameters, the mobility of analytes can be
made either increasing or decreasing with respect to molecule
size

The practical relevance of biotechnologies such as MNFDs
has been stressed in the last year; for instance, Berkenbrock
et al. [12] surveyed the potential of microfluidics as a means of
rapidly testing large numbers of people for COVID-19 infec-
tions. Shepherd et al. [13] studied a parallelized MNFD that
generated scalable lipid nanoparticle formulations needed for
applications in RNA therapeutics and vaccines. Nonetheless,
the design and optimization of MNFDs is often challenging

*Hendrick.deHaan@uoit.ca

because it entails simultaneously considering the influence
of many design parameters (e.g., operating voltage, solvent
composition, device geometry, etc.) on multiple nonlinearly
interdependent phenomena.

In many cases, important biological phenomena can fruit-
fully be modeled as first passage processes [14]. Moreover,
in the study of MNFDs, key transport phenomena are often
captured by only the first few moments of an appropriate first
passage time distribution. For example, the translocation of
a polymer through a nanopore is aptly described as a first
passage process, and the mean translocation time is a widely
studied metric [15–17]. Magill et al. [18] showed that, for
the special class of MNFDs with periodic geometries featur-
ing small bottlenecks, the long-term dynamics of molecules
driven through the system depend exclusively on the first
and second moments of their first passage times across one
subunit of the device. The ability to focus on a handful of first
passage time moments can greatly simplify the problem of
characterizing and designing MNFDs.

This emphasis on the first few moments of the first passage
time is of particular interest in light of a convenient mathemat-
ical property of the Smoluchowski equation1 that describes
the motion of analytes through MNFDs. For instance, the
dynamics of nanoparticles electrophoretically driven through
a MNFD can be modeled by the Smoluchowski equation as

ρt = ∇ · (D∇ρ − μ �Eρ), (1)

1Note that the Smoluchowski equation is also variously known as
the Kolmogorov forward equation, the Fokker-Planck equation, or
the convection-diffusion equation, with certain names more common
in certain areas of application.
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FIG. 1. A schematic of electrophoretic sorting of particles by
size in the slit-well device. (a) A weak field causes small particles
(red) to traverse the device more quickly on average. (b) A strong
field causes large particles (blue) to traverse the device more quickly
on average.

where ρ is the position distribution of the particles over space
and time, D and μ are the diffusion and free-solution mobility
coefficients of the particles, and �E is the applied electric field.
In first-passage problems where the domain geometry and
applied fields are time-invariant, Eq. (1) can be integrated
over time to obtain the time-integrated Smoluchowski equa-
tion [19]

−ρ0 = ∇ · (D∇g0 − μ �Eg0), (2)

where ρ0 is the initial condition for ρ. The new field g0 is
defined as

g0(x, y) :=
∫ ∞

0
ρ(x, y, t ) dt . (3)

The integral of g0 in any region is the average residence time
of particles in that region between initialization and absorp-
tion. In particular, it therefore has the property that∫

�

g0 dx = 〈τ 〉, (4)

when � is the entire spatial domain, τ is the stochastic
first passage time of the particles to the absorbing boundary
conditions, and 〈τ 〉 is the mean first passage time (MFPT).
Moreover, this formulation can be extended recursively to
all higher-order moments as well. For instance, the field g1

satisfying

−g0 = ∇ · (D∇g1 − μ �Eg1) (5)

has the property that it integrates over the spatial domain to
yield the second moment of the first passage time. A more
comprehensive discussion of these moment equations can be
found in standard references such as Redner [19].

Since the first few moments of first passage time distri-
butions are so important to MNFD phenomena, it is natural
to wonder whether solving the moment equations directly
might be a useful line of investigation. In practice, however, it
appears that this is rarely done. Redner [19] shows the power

of the moment equations for theoretical analysis of first pas-
sage problems, especially in the purely diffusive regime where
direct analogies with electrostatics can be made. In the context
of MNFDs, Magill et al. [18] showed that measuring g0 ap-
proximately via particle simulations can aid in understanding
the effect of design parameters on system dynamics. Similarly,
Wang et al. [8] analyzed plots of the time-integrated particle
position densities in a periodic model of the slit-well device;
however, these maps were constructed in a manner subtly
different from g0 and in particular do not have the property
of integrating to the MFPT. The authors are unaware of other
studies in which the moment equations are solved numerically
towards the goal of understanding the effect of MNFD design
parameters on first passage time behavior. Moreover, even
though the Smoluchowski equation is also an important math-
ematical model to study first passage time problems outside
biophysics [20–23], we have found no examples in which the
g0 equation (nor any of the higher moment equations) were
studied numerically in applied contexts.

A major barrier to the goal of solving the moments equa-
tions numerically in biophysics is the so-called curse of
dimensionality. That is, for most common numerical methods
for partial differential equations (PDEs), the computational
cost grows exponentially in the dimensionality of the under-
lying domain. Thus, whereas highly effective techniques like
the finite element method (FEM) can be used to solve PDEs
in simple biophysical scenarios, like that of noninteracting
nanoparticles, they fail when applied to the high-dimensional
PDEs describing the dynamics of many-body systems such as
polymers. Indeed, particle-based simulation methods do not
exhibit the curse of dimensionality, and this can be seen as a
major reason for the dominance of particle simulations over
PDE-based calculations in biophysics.

In this work, we investigate a numerical method for PDEs
that does not suffer from the curse of dimensionality. The
technique, which we refer to as the neural network method
(NNM), is inspired by the success of deep learning at solv-
ing high-dimensional problems in machine learning, such as
image processing and natural language processing [24–26]. A
growing body of theoretical and numerical evidence suggests
that it can robustly solve high-dimensional PDEs [27–41]. In
particular, the NNM has already been used to study high-
dimensional problems in biophysics [38].

The NNM has also been shown to solve parametrized prob-
lems directly across a continuous range of parameter values
[28,42]. As the number of parameters increases, the problem
of solving a highly parametrized PDE can exhibit yet another
curse of dimensionality. Because the neural network method
shares information across parameter space, it is also able to
overcome this computational challenge [43–45].

Note that parametrized solutions to PDEs typically can-
not be obtained using the FEM, particle simulations, or
similar methods. Rather, this goal is usually accomplished
using reduced order modeling (ROM) techniques [46,47].
ROM methods typically interpolate between a relatively small
number of high-fidelity solutions computed at a handful of
reference points in parameter space in order to approximate
solutions at new points in parameter space. Whereas most
classical ROM methods interpolate to new parameter choices
via a linear combination of the reference solutions, the NNM
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FIG. 2. Schematic of a single periodic subunit of the slit-well device to illustrate passage time models used in this study. (a) Particles are
initialized in the left slit (blue particles), confined in the device via a WCA potential on gray walls, undergo Brownian dynamics in the yellow
interior (trajectories denoted by black lines) until escaping device at the purple boundary. Dotted line denotes the region of the interior that
cannot be occupied by the center of mass of particles. (b) A PDE model of the escape process where the solution ρ satisfies the Smoluchowski
equation in the yellow interior. The initial Gaussian band source is located in the left slit, an absorbing boundary in the right slit (purple), and
no flux conditions applied on gray walls that move inward to the dotted line to model particle size. (c) A PDE model of the escape process
where the solution g0 satisfies the g0 equation (first moment) in the yellow interior region. An absorbing boundary is applied at the right slit
wall (purple), and no flux conditions are applied on gray boundaries which move inward to the dotted line to model particle size..

is intrinsically nonlinear. Other nonlinear ROMs based on
deep neural networks have been proposed in the literature
[48–52]. However, these methods require that a database of
FEM or other classical solutions be computed prior to train-
ing, whereas the NNM simultaneously solves the target PDE
and acts as a ROM method over parameter space. In addition,
dealing with parameters that modify the domain geometry
using classical reduced-order methods can be challenging
because these are typically constructed using mesh-based
approaches. Although special ROMs can be developed for
geometric parameters in some cases [53–55], the mesh-free
nature of the NNM is intrinsically advantageous for this ap-
plication [42,56].

II. PROBLEM DESCRIPTION

The primary goal of this paper is to study the effectiveness
of the NNM as a tool for solving the g0 equation in MNFDs by
focusing on a sufficiently complicated representative device,
as shown in Fig. 2. The specific problem under consideration
is as follows: for an ensemble of noninteracting thermal par-
ticles initially located in the left slit of one periodic subunit
of the slit-well device, compute the MFPT of these particles
to the right slit. Here, the particles are driven by an electric
field �E = λ �E0 for a field strength constant λ and a baseline
electric field �E0. The baseline electric field is a solution to
Laplace’s equation for a voltage drop of 2 V across the do-
main. It was obtained using the NNM in the manner described
in Magill et al. [57], and plots of �E0 are included here in
Appendix B. The particles represent nanoparticles with diam-
eters σ , diffusion coefficients D, and free-solution mobilities
μ. The nanoparticles are assumed to be free-draining, with μ

independent of σ , so that separation by size would not occur in
free solution. Conversely, the diffusion coefficient is assumed
to emerge from Stokes’ law and the fluctuation-dissipation

theorem, so that D ∝ σ−1. For simplicity, these behaviors are
implemented as μ = 1 and D = σ−1. The g0 equation is thus
reduced to

F [g0] ≡ ∇ ·
(

1

σ
∇g0 − λ �E0g0

)
+ ρ0 = 0, (6)

where the particle size σ and field strength λ are the two free
parameters, and �E0 is the reference electric field.

The problem geometry is shown in Fig. 2 along with
depictions of the particle-based, Smoluchowski, and g0 rep-
resentations of the problem. The domain is meant to represent
a single periodic subunit of the slit-well device illustrated in
Fig. 1. In the particle-based model of the problem [Fig. 2(a)],
an ensemble of noninteracting nanoparticles are initially lo-
cated in the left slit, and then these particles proceed to move
under a combination of thermal diffusion and electrophoretic
drift until reaching the far right purple wall in the right slit.
In the Smoluchowski model [Fig. 2(b)], individual particles
are eschewed, and the time evolution of the entire distri-
bution of particle positions is modeled instead. Here, the
initial position of particles is modeled by the initial condition
ρ0(x; σ ), located in the left slit. Finally, in the g0 equa-
tion [Fig. 2(c)], the time-dependence of the Smoluchowski is
accounted for implicitly by integration over all time. Here, the
initial condition ρ0(x; σ ) now appears as a source term in the
(time-independent) PDE.

In each schematic of Fig. 2, the gray regions represent
physical walls. These were modeled as short-range repulsive
boundaries (in the particle model; see Appendix A) or no-flux
boundary conditions in the continuum models [equations de-
fined in the legends of Figs. 2(b) and 2(c)]. As a result
of excluded volume interactions, the particle centers cannot
come closer than a distance of roughly σ/2 from the repulsive
boundaries. This exclusion zone is depicted by the dashed
black line in Fig. 2. To model this in the continuum models,
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the no-flux boundary conditions are applied at the boundary
of the exclusion zone (i.e., along the dotted black lines in
Fig. 2), rather than at the nominal boundaries (i.e., along the
gray walls in Fig. 2).

The nominal dimensions of the domain �0 are the same as
those described in Magill et al. [57]. In particular, the topmost
and bottommost walls are a distance 2Ly = 6.25 apart, the
leftmost and rightmost boundaries are 2Lx = 10 apart, and
the curvature of the re-entrant corners is set to R = 1 (see
below). The total horizontal lengths of the slits and the well
were set equal, to Lx, and the slits were given a height of
hslit = Lx/4 = 1.25.

As discussed in Magill et al. [57], the standard formu-
lation of the NNM struggles to solve problems exhibiting
singularities. For this reason, the re-entrant corners of the
slit-well device geometry have been rounded (i.e., represented
by circular arcs of finite curvature). Similarly, the NNM was
found to perform poorly when the initial distribution of par-
ticles was too sharp. Instead, particles were initialized in a
Gaussian band in the left slit, given by uniform distribution in
y multiplied by a Gaussian distribution in x:

ρ0 = 1√
2πrshslit

exp

(−(x − xs)2

2r2
s

)
. (7)

Here rs = 0.25 is the width of the Gaussian band in the x
direction, hslit = Ly − yslit − σ is the height of the band in
the y direction, and xs = −Lx + 1 is the center of the band.
Technically, ρ0 requires a correction factor to be properly
normalized over this bounded domain, as the Gaussian dis-
tribution in x is normalized over the entire real line, but the
discrepancy is numerically insignificant.

The first passage time of the particles is computed when
their centers cross the rightmost boundary of the domain for
the first time (purple in Fig. 2). In the continuum models,
this is represented by an absorbing boundary condition (i.e.,
a homogeneous Dirichlet condition). Physically, this bound-
ary corresponds to the interface between consecutive periodic
subunits of the slit-well, and not to a physical wall. As such, in
contrast to the no-flux boundary condition on the gray walls,
the placement of the absorbing boundary does not depend
on σ .

As a simplifying assumption, particles were prevented
from moving through the leftmost boundary of the domain.
Mathematically, this was imposed by a no-flux boundary con-
dition. Physically, this corresponds to the synthetic condition
that particles cannot move against the direction of the imposed
electric field into the previous periodic subunit of the slit-well;
we will refer to this as the no-backflow condition. The location
of this no-backflow boundary condition was fixed indepen-
dently of σ .

Of course, in the actual slit-well device there is always a
nonzero probability of particle backflow. The simplification
was made here because it allows the g0 equation to be posed
in a much simpler domain (i.e., a single periodic subunit).
However, as a result of this modeling choice, there will be
discrepancies between the MFPT results reported in this paper
and the results of previous studies of the slit-well device (such
as Cheng et al. [7] and Wang et al. [8]), especially at low
electric field strengths. Nevertheless, as the results in Sec. IV

will indicate, the major features of the slit-well system are
preserved despite the no-backflow condition. Furthermore, the
simplified model still contains several mathematical features
that are expected to be common to many MNFDs and par-
ticularly difficult for the NNM to resolve: re-entrant corners,
a nonuniform electric field, and nontrivial dependence on
physical and geometric problem parameters. As stated above,
the purpose of this paper is to study the performance of the
NNM when solving a problem with the characteristic features
of a typical MNFD problem. Certain features, such as the
highly skewed geometry of the fully periodic slit-well and the
singularities associated with the fully sharp re-entrant corners,
are more technically challenging and relegated to future work.

III. METHODOLOGY

A. Neural network method

The NNM implementation used for this work was similar
to that previously described by Magill et al. [57]. In the fixed
parameter experiments (Sec. IV B 1), the true solution g0(x)
of the g0 equation [Eq. (6)] was approximated by a deep neural
network g̃0(x) trained to minimize a composite loss functional

L = LPDE + LBC + Lnorm. (8)

The first loss term consisted of

LPDE[g̃0] =
∫

�

(F [g̃0])2dA, (9)

where F is the operator in the g0 equation [Eq. (6)]. Thus,
LPDE[g̃0] quantifies the extent to which g̃0 satisfied the g0

equation [Eq. (6)] throughout the domain �. Note that, as
discussed in Sec. II, � depends on σ . The second loss term
was defined as

LBC[g̃0] =
∫

∂�

(B[g̃0])2ds, (10)

where B[g̃0] defines no-flux or absorbing boundary conditions
(BCs), as appropriate, on each part of the boundary of the
domain [see Fig. 2(c)]. Thus, LBC[g̃0] quantifies the extent to
which g̃0 satisfied the BCs over the domain boundary ∂�.

The final term was given by

Lnorm[g̃0] =
[∫

�

(F [g̃0])dA

]2

. (11)

Similarly to LPDE, the last loss term Lnorm quantifies the extent
to which the approximate solution satisfies the PDE inside the
domain �. However, whereas LPDE is a local measure of the
residual of Eq. (6), Lnorm is a global measure. Specifically,
LPDE is the mean of the squared residual, while LPDE is the
square of the mean residual. In theory, Lnorm is a redundant
loss term and simply setting LPDE to zero is sufficient to
ensure that g̃0 satisfies the g0 equation [Eq. (6)]. In practice,
however, training without Lnorm was found to produce approx-
imate solutions that captured the shape of the true solution
fairly accurately, but struggled to converge on the correct
magnitude (i.e., differed from the true solution by a small
multiplicative factor).

We note that our use of Lnorm is similar to the normal-
ization process used by Al-Aradi et al. [58] in solving the
time-dependent Smoluchowski equation. The use of Lnorm
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can also be contrasted with previous work by Avrutskiy [59].
There, Avrutskiy [59] showed benefits to adding redundant
loss terms that encourage the solution to satisfy the derivative
of the PDE operator F ′ = 0 over the spatial domain. Here,
the term Lnorm is a redundant loss term that encourages g̃0

to agree with the integral of the PDE operator F over the
spatial domain �. These additional loss terms can be thought
of as soft constraints on the training process, or equivalently
as regularization terms constructed out of prior knowledge of
the target problem.

In Secs. IV B 2–IV B 4, the neural network was par-
ametrized with respect to field strength λ, particle size σ , or
both. Thus, the loss terms were redefined as

LPDE[g̃0] =
〈∫

�σ

(Fλ,σ [g̃0])2dA

〉
λ,σ

, (12)

LBC[g̃0] =
〈∫

∂�σ

(Bλ,σ [g̃0])2ds

〉
λ,σ

, (13)

Lnorm[g̃0] =
〈[∫

�σ

(Fλ,σ [g̃0])dA

]2〉
λ,σ

. (14)

The notations �σ , Fλ,σ , and Bλ,σ indicate that the domain
changes with σ , and the PDE and BC operators change with
both λ and σ . The angled brackets indicate averages over
the parameter values. In other words, the loss used for the
parametrized neural networks is identical to that used for
the fixed parameter experiments, with the additional step of
averaging the loss over parameter space.

Note that the electric field �E was obtained by computing
the electric potential u using the NNM methodology of Magill
et al. [57]. Of course, this is not strictly necessary because u
could just as easily be approximated by some other method
(e.g., FEM). However, the intention was to illustrate the ease
with which previously computed NNM solutions can be fed
into the loss functional of new NNM solutions. A contour plot
illustrating both u and �E is included in Appendix B (Fig. 7).
Note that the electric potential is defined on the nominal
domain �0 corresponding to σ = 0, which differs from the
actual domain � on which g0 is defined.

All of the NNM experiments in this work were conducted
with fully connected feedforward neural networks of depth
d = 3 and width w = 50. The hyperbolic tangent was used
for activation functions in the hidden layers, while the out-
put layer was linear. To solve the nonparametrized problems
(Sec. IV B 1), the approximate solution g̃0 was constructed
as

g̃0(x) = fd+1 ◦ fd ◦ · · · ◦ f1(x), (15)

with

f1(x) = tanh (W1x + b1), (16)

fi(x) = tanh (Wi fi−1(x) + bi ), i = 2, . . . , d, (17)

fd+1(x) = Wd+1 fd (x) + bd+1, (18)

where W1 ∈ Rw×2, Wi ∈ Rw×w for i = 2, . . . , d , and Wd+1 ∈
R1×w are the network’s weight matrices, while bi ∈ Rw for
i = 1, . . . , d , and bd+1 ∈ R are its biases.

FIG. 3. Fully connected feedforward neural network of width
w and depth d mapping coordinates (x, y) and problem parameters
(λ, σ ) to an output g̃0(x, y; λ, σ ). At each node, a weighted sum of
the incoming arrows and a bias is computed and passed through an
activation function. The network’s parameters are optimized such
that g̃0(x, y; λ, σ ) approximately satisfies the target PDE and BCs.

The experiments in Secs. IV B 2–IV B 4 considered
parametrized neural networks, where one or both of the prob-
lem parameters λ and σ were included as additional inputs to
the network. In these cases, the networks were defined as

g̃0(x; m) = fd+1 ◦ fd ◦ · · · ◦ f1(x; m), (19)

with fi defined as before for i = 2, . . . , d + 1, but with f1

adjusted to

f1(x) = tanh
(
W (x)

1 x + W (m)
1 m + b1

)
, (20)

where W (x)
1 ∈ Rw×2 and W (m)

1 ∈ Rw×m, where m is the length
of the parameter vector m. In other words, the parameters
(λ or σ or both) were concatenated to the end of the input
vector of the network, and the weight matrices were adjusted
accordingly. This is illustrated schematically in Fig. 3. The
same approach was used by Sirignano and Spiliopoulos [28]
and Hennigh et al. [42] but can be contrasted with the recently
proposed DeepONet architecture of Lu et al. [60].

Training was conducted in TENSORFLOW [61] version 1.15
with all unspecified hyperparameters set to their default val-
ues. The weights were initialized using the Glorot method
[62], and biases were initialized to zero. Weights were iter-
atively updated using the Adam optimizer [63] to minimize L
with the learning rate set to 10−3 in Sec. IV B 1, and to 10−4 in
Secs. IV B 2–IV B 4. In each iteration, the integrals in L were
approximated by Monte Carlo sampling using the same pro-
cedure described in Magill et al. [57]. Specifically, rejection
sampling was applied to 10 000 nominal samples generated
in the bounding box [−5, 5] × [−3.125, 3.125], and each
smooth subunit of the boundary was randomly sampled with
a linear density of about 13 points per unit length. For the
parametrized network experiments (Secs. IV B 2–IV B 4),
the relevant problem parameters were also sampled randomly
in each training iteration. These samples were generated uni-
formly at random, with λ drawn from [5,50] and σ drawn
from [0.125,0.625]. In particular, it was necessary to sample
the parameter σ before sampling points in �, since the extent
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of � varies with σ . One random parameter vector was drawn
per training iteration.

The testing loss was evaluated every 1000 training itera-
tions, using ten times more samples than during a training
step. In the parametrized network experiments (Secs. IV B 2–
IV B 4), the testing loss was averaged across 100 random
parameter vectors. Training was continued for a fixed num-
ber of iterations (600 000 epochs for the fixed parameter
experiments, and 30 000 000 epochs for the parametrized
network experiments). The final network was taken as that
which achieved the lowest testing loss across all iterations.

B. Finite element method

The MFPT problem in the slit-well domain cannot be
solved exactly in closed form due to the complex nature of
the geometry. Instead, approximate ground truth solutions to
the problem were obtained using the finite element method
(FEM). Following Magill et al. [57], the problem for g0 was
solved using a mixed FEM formulation implemented in FEn-
iCS [64]. The electric field �E included in the PDE [Eq. (6)]
was obtained by also approximating the electric potential u by
a mixed FEM formulation. As stated above, u is defined on
the nominal domain �0, whereas g0 is defined on a smaller
domain depending on σ . Thus, for the FEM solutions it was
necessary to first solve u and �E on a discretization of �0,
project �E onto a discretization of the appropriate �, and then
define the variational problem for g0 on �.

The mesh decomposition of the domain was conducted
using the MSHR package in FENICS. The resolution parameter
was set to 200, and the re-entrant corners were approximated
linearly by 400 segments each. The same mesh parameters
were used for all values of σ , and for the nominal domain,
�0, on which u was solved.

IV. RESULTS

This section details results obtained using the NNM to
solve the g0 equation modeling the MFPT of nanoparticles
driven through the slit-well device (described in Sec. II). The
focus throughout is on the relationship between key problem
parameters and observables of physical interest, where g0 acts
as a proxy between the two. The first observable of interest
is, naturally, the mean first passage time 〈τ 〉. As described in
Eq. (4), 〈τ 〉 can be obtained by integrating g0 over the domain
�. Throughout this paper, the integration of g0 to estimate
〈τ 〉 is accomplished using the same Monte Carlo procedure
described for LPDE in Sec. III.

In practice, an observable of greater interest than the mean
first passage time itself is the net electrophoretic mobility
of the nanoparticles through the slit-well device over long
timescales [7,8]. In particular, the electrophoretic mobility is
typically defined as

μelectro := lim
t→∞

〈x〉t

Ect
, (21)

where 〈x〉t is the ensemble average of the x position at time
t , and Ec is a characteristic scale for the applied electric-field
strength. It is not clear whether μelectro can be inferred directly
from the g0 problem being solved here. Instead, the present

paper will investigate a similar observable of interest, which
will be called the effective mobility

μeff := L0/〈τ 〉
Ec

= 1

λ〈τ 〉 , (22)

where L0 is the mean horizontal distance from ρ0 to the
absorbing wall. The characteristic field strength is chosen of
the form Ec = Vc/Lc, where Vc is a characteristic voltage drop
and Lc is a characteristic length scale. Since the overall voltage
drop across the system is of order one and proportional to the
field strength λ, we choose Vc = λ. For numerical simplicity,
we also choose Lc = L0, thus obtaining the final equality in
Eq. (22). The effective mobility is expected to exhibit similar
features to the electrophoretic mobility because both consist
of characteristic particle velocities divided by characteristic
electric-field strengths. A comprehensive exploration of the
relationship between the two mobility definitions is left to
future work.

A. Characteristics of g0

Figure 4 shows contour plots of g0 solutions computed
using the NNM, with the corresponding estimates of 〈τ 〉 and
μeff shown in the legends. The four subplots correspond to
the four essential parameter regimes alluded to in Fig. 1. Note
that the magnitude of the color scale varies across the four
subplots.

First, consider the solution of g0 in Fig. 4(a) corresponding
to small particles (σ = 0.125) driven by a weak field (λ =
5.0). Here, g0 has a maximum in the left slit near the peak of
the initial particle distribution ρ0. Naturally, since the particle
positions are initialized according to ρ0, the average residence
time in that region is relatively high; this feature is common
to all four subplots in Fig. 4. Outside the left slit, g0 decreases
nearly monotonically from left to right, eventually reaching a
value of zero on the absorbing boundary. The shape of this
function is nearly visually indistinguishable from the solution
with σ = 0.125 and λ = 0 (not shown) and is characteristic
of predominantly diffusive dynamics in all regions of the
domain.

Figure 4(b) again shows g0 for small particles (σ = 0.125),
but now driven by a much stronger field (λ = 50.0). In con-
trast with the monotonically decreasing solution in Fig. 4(a),
in this scenario g0 is relatively constant throughout most of
the domain until a boundary layer near the absorber. In fact,
here g0 even exhibits some minor nonmonotonic features: a
shadow is evident in the bottom-left of the well, and a local
maximum is attained at the entrance to the right slit. Drift
and diffusion effects are relatively balanced in this case, with
the uniformity in x reflecting strongly driven motion in the
horizontal direction, and the uniformity in y reflecting rapid
diffusion in the vertical direction.

Figure 4(c) shows g0 for large particles (σ = 0.625) driven
by a weak field (λ = 5.0). Notice that the walls of the domain
are shifted inward by 0.5σ , reflecting the reduced area that
can be occupied by the center of mass of larger particles
(Sec. II). In this scenario, the smaller diffusion coefficient of
the larger particles balances the weaker field, resulting in a
solution that more closely resembles that in Fig. 4(b) than
that in Fig. 4(a). However, the solution in Fig. 4(c) is visibly
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(a) (b) (c) (d)

FIG. 4. NNM solutions to the g0 equation subject to (a) a small particle size and a weak electric field, (b) a small particle size and a strong
electric field, (c) a large particle size and a weak electric field, and (d) a large particle size and a strong electric field.

increasing from left to right across the well, in contrast with
both the solutions in Figs. 4(a) and 4(b). As was the case in
Fig. 4(b), drift and diffusion are of comparable importance;
the differences between the two solutions are primarily due to
the modifications to the domain geometry.

Finally, Fig. 4(d) shows g0 computed for large particles
(σ = 0.625) subject to a strong electric field (λ = 50.0). Here,
the shape of the solution differs significantly from those in
all of Figs. 4(a)–4(c). In Fig. 4(d), g0 takes on very small
values throughout the entire well, and decreases substantially
from the top of the well to its bottom. The combination of
the low diffusion coefficient and the very strong driving force
causes the large particles to remain primarily streamlined in
the upper region of the well as they move rapidly from ρ0 to
the absorber.

The MFPTs 〈τ 〉 and effective mobilities μeff in the four
scenarios of Fig. 4 are consistent with the expected sorting
mechanisms in each regime [7]. When the field is strong,
smaller particles have a larger 〈τ 〉 and lower μeff than larger
particles. The converse is true at weak fields.

Future work should explore the relationship of g0, 〈τ 〉, and
μeff with standard explanations for these phenomena, such as
the entrance effect [7,65]. The purpose of the discussion in
this section was to illustrate the variety of complicated be-
havior that arise in g0 solutions across the different physically
meaningful parameter regimes in the slit-well. In Sec. IV B,
parametrized NNM solutions will be trained to interpolate
nonlinearly between all four solutions in Fig. 4. Ultimately,
in Sec. IV B 4 this will yield continuously differentiable
mappings between both problem parameters λ and σ and both
key physical observables 〈τ 〉 and μeff , thereby capturing the
entirety of this rich sorting mechanism in a single numerical
solution.

B. Benchmarking the neural network method against the finite
element method

In this section, g0 will be leveraged as a proxy for the
calculation of the metrics 〈τ 〉 and μeff . In practice, it is
common in MNFD research and development (and scientific
research more broadly) to study how such key metrics change
in response to variations in the system parameters. The sim-
plest approach to characterizing this variation is to compute
or measure the metrics independently for a large number of
parameter choices. In Sec. IV B 1, the NNM is applied to

precisely this task of calculating 〈τ 〉 and μeff for many com-
binations of particle size σ and field strength λ.

The above approach, however, requires repeated calcu-
lation of the key metrics which can be expensive when
considering many independent parameters. As discussed in
Sec. I, the NNM can be leveraged to solve such parametrized
problems directly across continuous ranges of parameter val-
ues. The high-dimensional function g0(x, y; λ, σ ) implicitly
encodes 〈τ 〉 and μeff as continuously differentiable functions
of σ and λ. The NNM is used to approximate this function
directly in Secs. IV B 2–IV B 4, for g0 solutions parametrized
directly by λ, σ , or both simultaneously.

Throughout Sec. IV B, four quantities are used to charac-
terize the performance of the NNM across parameter space.
These quantities are all plotted in Fig. 5, with each column
corresponding to one of the four NNM formulations discussed
above. Naturally, both the MFPT 〈τ 〉 and the effective mobil-
ity μeff are included in the analysis. These are plotted in the
first two rows [Figs. 5(a)–5(d) and 5(e)–5(h)], respectively,
alongside the reference values computed using FEM. The
NNM results are indicated by lines, and the corresponding
FEM results are included as stars. Dotted lines in Figs. 5(a)
and 5(e) connect values that are only computed at discrete
parameter choices, whereas solid lines used everywhere else
indicate values that are computed over continuous parameter
ranges.

Next, in order to quantify the accuracy of the 〈τ 〉 values
obtained via the NNM, the relative error ε with respect to
the ground truth FEM solution is computed. Specifically, ε

is defined as the relative error of 〈τ 〉 with respect to 〈τ 〉FEM,
i.e.,

ε = |〈τ 〉 − 〈τ 〉FEM|
〈τ 〉FEM

, (23)

where 〈τ 〉 and 〈τ 〉FEM are the MFPTs computed by the NNM
and FEM, respectively. The relative errors ε are plotted in
Figs. 5(i)–5(l). Here, circular markers indicate the discrete
parameter choices at which ε was computed. Additionally,
the plots in Figs. 5(i)–5(l) contain a dotted black line at 10−2,
corresponding to a relative error of 1%. This is representative
of a relative error threshold that is typically attainable and
acceptable in MNFD research. Indeed, Appendix A describes
standard particle simulations that were used to approximate
〈τ 〉 with relative errors comparable to or below 1% for all
choices of parameters λ and σ .
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FIG. 5. Analysis of g0 solutions computed using the NNM. Mean first passage times 〈τ 〉 for the NNM (a) with fixed parameters, and
parametrized by (b) λ, (c) σ , and (d) both λ and σ . Star markers denote values obtained using the FEM, and insets display behavior at high
field strengths. Effective mobilities μeff for the NNM (e) with fixed parameters, and parametrized by (f) λ, (g) σ , and (h) both λ and σ . Star
markers denote values obtained using FEM, and insets zoom in on the minimum of the curves. Relative errors ε computed against the FEM
for the NNM (i) with fixed parameters, and parametrized by (j) λ, (k) σ , and (l) both λ and σ . Dotted black line denotes 1% error baseline
computed by particle simulations. (m) Testing loss of the NNM with fixed parameters, and marginal loss of the NNM parametrized by (n) λ,
(o) σ , and (p) both λ and σ .

The final quantity included in the analysis is similar to
the loss functional L used during the NNM training pro-
cess [Eq. (9)]. However, the total loss provides only a single
characterization of a network’s performance over its entire
domain. When the NNM was used to solve parametrized
g0 problems, it was valuable to evaluate the relative per-
formance of these solutions at different points in parameter
space. To this end, we defined the marginal loss L(g0|λ, σ ), a
parameter-dependent generalization of the total loss. As with
the true loss, L(g0|λ, σ ) is the sum of the L2 norms of the
PDE-, BC-, and norm-based residuals. However, whereas the
total loss averages these quantities over all choices of λ and/or
σ [Eqs. (12)–(14)], the corresponding terms in L(g0|λ, σ )
were instead treated as functions of λ and σ . In the case of
nonparametrized NNM solutions, the marginal loss definition
simply reduces to the original total loss.

The marginal losses are plotted in Figs. 5(m)–5(p). The
values in Fig. 5(m) correspond to NNM solutions trained at
fixed parameter choices and are thus indicated by discrete cir-
cular markers. Conversely, since L(g0|λ, σ ) can be evaluated
continuously for parametrized solutions, the corresponding

marginal loss values shown in Figs. 5(n)–5(p) are indi-
cated by solid lines sampled finely throughout the parameter
space.

1. Neural network method with fixed parameters

This section contains a discussion of the results in
Figs. 5(a), 5(e), 5(i), and 5(m). Here, the NNM was applied
repeatedly to solving the g0 equation for fixed choices of the
problem parameters: field strength λ and particle size σ . This
NNM formulation is the same as the one used in Sec. IV A but
is now applied to many more choices of the problem param-
eters. Specifically, the results are shown for ten choices of λ

uniformly spaced from 5 to 50 and five choices of σ uniformly
spaced from 0.125 to 0.625, with a distinct neural network
used to approximate g0 for each parameter combination.

For small values of λ in Fig. 5(a), 〈τ 〉 is monotonically
increasing with σ , and for large values of λ (see the inset) the
opposite is true. Moreover, the finer sampling of parameter
space resolves new features that were not clear from examin-
ing only the four samples in Sec. IV A. For instance, Fig. 5(a)
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shows that 〈τ 〉 decreases monotonically with λ for each choice
of σ . In addition, the dependence of 〈τ 〉 on σ is much stronger
at low field strengths.

The same sorting behavior can be viewed from a different
perspective via μeff in Fig. 5(e). In addition, the crossover in
sorting order around λ ≈ 25 is better resolved by μeff than
〈τ 〉. Indeed, in Fig. 5(e) it is clear that there is no single value
of λ for which 〈τ 〉 and μeff are entirely independent of σ . Of
course, the results discussed above for 〈τ 〉 and μeff are not
novel because they are consistent with published results on
the slit-well device (see, e.g., Cheng et al. [7]). Rather, the
purpose of this discussion is to illustrate two points: first, that
valuable information can be extracted by studying the varia-
tion of key output metrics (here, 〈τ 〉 and μeff) as functions of
the key input parameters (here, λ and σ ) and, second, that the
physical problem being studied in this paper (Sec. II) indeed
captures essentially the same physical mechanisms expected
for the actual slit-well system.

Before considering the benefits of the more ambitious
parametrized NNM formulations, it is important to assess how
accurately the NNM resolves 〈τ 〉 and μeff when applied to the
simpler task of solving g0 at a single point in parameter space.
The accuracy is quantified in Fig. 5(i), which shows ε, the
relative error in 〈τ 〉. In this plot, it appears that ε is roughly
independent of both σ and λ, suggesting that the current
implementation of the NNM is fairly robust throughout the
problem parameter space. This is corroborated by the testing
losses L(g0|λ, σ ) plotted in Fig. 5(m), which are also roughly
independent of the problem parameters. Most importantly,
for all choices of parameters λ and σ in Fig. 5(i), ε is well
below the 1% error threshold indicated by the black line. In
other words, the NNM is at least as effective at resolving
〈τ 〉 as the Brownian dynamics particle simulations included
in Appendix A.

2. Neural network method parameterized by field strength

Whereas in Sec. IV B 1, 50 networks where used to obtain
50 different g0 solutions, which were then integrated over their
respective domains to produce 50 different 〈τ 〉 measurements,
in this section only five networks are utilized to accomplish
the same goal. Each of these five networks solves g0(x, y; λ)
for λ ∈ [5, 50] at a fixed choice of σ . As in Sec. IV B 1, the
metrics 〈τ 〉, μeff , ε, and L(g0|λ, σ ) are computed from the
solutions; these are plotted in Figs. 5(b), 5(f), 5(j), and 5(n),
respectively. Comparing Figs. 5(b) with 5(a) and Fig. 5(f) with
5(e), it is clear that the NNM formulation parametrized by
λ recovers the same results previously obtained by solving
g0 independently for many different parameter choices in
Sec. IV B 1.

One advantage of the parametrized NNM formulation is
evident in the inset of Fig. 5(f). For each choice of σ , there
is a λ value for which μeff is minimal. When computing μeff

only at discrete choices of the parameters [as in Fig. 5(e)], the
exact location of these minima is not clear. Instead, the results
in Fig. 5(f) illustrate that the parametrized NNM formulation
naturally resolves the existence of local minima, since the
solution is trained continuously for all parameter values in
the training domain. The benefit of continuous mappings from
problem parameters to key output metrics becomes more valu-

able as dimensionality of parameter space is increased (e.g., as
explored in Sec. IV B 4).

The relative error ε and marginal loss L(g0|λ, σ ) in
Figs. 5(j) and 5(n) quantify the accuracy of the g0(x, y; λ)
solution. Here, both ε and L(g0|λ, σ ) are highest at the bound-
aries of the λ training range and fairly uniform throughout the
majority of the interior of the training range. In particular, both
are highest at the left boundary, λ = 5. This relationship be-
tween error and loss is similar to those studied in Magill et al.
[57] and provide further justification for using the (marginal)
loss as an a posteriori method for gauging the reliability of
NNM solutions.

The deterioration in performance seen in Figs. 5(j) and
5(n) at the boundaries of the λ training range can likely be
attributed to the uniform Monte Carlo sampling of λ during
training. The exact endpoints have very low probabilities of
being sampled directly; moreover, their neighborhoods are
only sampled on one side, whereas the neighborhoods of
points nearer to the middle of the λ training range are sampled
thoroughly on both sides. This could effectively lead to an
under-representation of the behavior near the endpoints in
the training loss. Characterizing this tentative mechanism is
beyond the scope of the present work.

Overall, only three of the 50 relative errors in Fig. 5(j)
slightly exceed the 1% error threshold. Thus, the implementa-
tion of the parametrized NNM studied in this section meets the
standard of accuracy typically attained by Brownian dynamics
(BD) simulations. In the regions of parameter space where
the relative error was not measured directly, the marginal
loss [Fig. 5(n)] provides an a posteriori estimate of the error,
suggesting that the NNM’s performance is excellent except
for λ values very close to the boundaries of the training range.
Altogether, these results demonstrate that the NNM is a fea-
sible technique for solving the g0 problem over a continuous
range of field strengths. Moreover, using g0 as a proxy for 〈τ 〉
and μeff enables the NNM to resolve the behavior of these key
output metrics continuously over the target parameter range.

3. Neural network method parameterized by particle size

To expand upon the unique strengths of the NNM, this
section will consider the problem of solving g0 as a function
of the particle size σ . Here, since the diffusion coefficient is
being modeled as D = σ−1, the terms of the g0 PDE depend
directly on the parameter σ , just as they depend directly on
λ. However, the location of the boundaries of the slit-well
domain also depend explicitly on the parameter σ (Sec. II).
Thus, whereas λ only modified the PDE terms, σ modifies
both the PDE terms and the domain geometry. As described
in Sec. I, it is challenging for classical reduced-order methods
to deal with parametrized domain geometries. However, this
section will demonstrate that the NNM can handle geometry-
modifying parameters (σ ) just as easily as parameters that do
not modify the domain geometry (λ).

Once again, the MFPT 〈τ 〉, effective mobility μeff , relative
error ε, and marginal loss L(g0|λ, σ ) are computed from the
NNM solutions and plotted in Figs. 5(c), 5(g), 5(k), and 5(o),
respectively. Whereas the results in Figs. 5(a), 5(e), 5(i), and
5(m) and Figs. 5(b), 5(f), 5(j), and 5(n) for Secs. IV B 1–
IV B 2 were solved and plotted as functions of λ, the results
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for this section are presented as functions of σ . Specifically,
each curve in Figs. 5(c), 5(g), 5(k), and 5(o) represents a single
neural network trained over the range σ ∈ [0.125, 0.625] at a
fixed choice of λ [indicated by the legend in Fig. 5(o)].

The 〈τ 〉 and μeff measurements in Figs. 5(c) and 5(g)
indicate that the NNM parametrized by σ recovers the same
physical properties observed for the NNM with fixed pa-
rameters (Sec. IV B 1) and the NNM parametrized by λ

(Sec. IV B 2). For the 〈τ 〉 measurements in Fig. 5(c), the λ =
5.0 curve is monotonically increasing whereas the λ = 50.0
curve (enhanced in the inset) is monotonically decreasing.
This implies that small particles have a lower MFPT at low
field strengths, and large particles have a lower MFPT at
high field strengths. Likewise, the λ = 5.0 curve for μeff in
Fig. 5(g) indicates that small particles are more mobile at low
field strengths, whereas the λ = 50.0 curve indicates that large
particles are more mobile at high field strengths.

Visual comparison of the NNM results (solid lines) to
the ground-truth FEM results (stars) in Figs. 5(c) and 5(g)
suggests good agreement between the two through most of
the parameter space. However, the effective mobilities com-
puted by the NNM in Fig. 5(g) deviate noticeably from the
FEM results at the left endpoint σ = 0.125. Accordingly, the
relative errors and marginal losses plotted in Figs. 5(k) and
5(o) are also highest at σ = 0.125. In fact, ε and L(g0|λ, σ )
of the NNM solutions parametrized by σ [Figs. 5(k) and 5(o)]
exhibit the same structure previously identified (Sec. IV B 2)
in ε and L(g0|λ, σ ) of the NNM solutions parametrized by
λ [Figs. 5(j) and 5(n)]. That is, ε and L(g0|λ, σ ) are roughly
uniform for intermediate values of σ but increase sharply near
the boundaries of the training domain. In particular, ε and
L(g0|λ, σ ) are consistently higher at the low-σ endpoint than
at the high-σ endpoint.

Overall, the relative error in Fig. 5(k) is well below the
1% error threshold for most of the training range. As was the
case in Sec. IV B 2, at the few points where relative error
exceeds 1%, it only does so by a small amount. The marginal
loss continues to behave as an a posteriori measure of solution
accuracy and suggests that the regions of high relative error
are once again concentrated near the endpoints of the training
range. Despite the fact that parameter σ directly changes the
domain geometry in addition to modifying the terms of the
PDE, the performance measured in this section is essentially
the same as that reported in Sec. IV B 2, where the NNM
was parametrized by the simpler parameter λ. Thus, it appears
that the NNM can handle geometry-modifying parameters just
as easily as parameters that do not modify domain geometry.
This is particularly interesting given the difficulty of treating
parametrized geometries with other reduced-order modeling
techniques.

4. Neural network method parameterized by field strength
and particle size

The results shown so far have established that the NNM
can robustly solve the g0 equation in the slit-well MNFD
(Sec. IV B 1), and that the method can easily be ex-
tended to produce solutions parametrized by field strength λ

(Sec. IV B 2) or particle size σ (Sec. IV B 3). Expanding upon
this capability, in this section the NNM is used to approximate

g0 as a function of both λ and σ simultaneously (Fig. 3).
Specifically, a single neural network is trained to approx-
imate the four-dimensional function g0(x, y; λ, σ ) over the
same parameter space previously spanned by five networks
in Secs. IV B 2 and IV B 3 or 50 networks in Sec. IV B 1.

The MFPT 〈τ 〉, effective mobility μeff , relative error ε,
and marginal loss L(g0|λ, σ ) are computed from the NNM
solution g0(x, y; λ, σ ) and plotted in Figs. 5(d), 5(h), 5(l), and
5(p). The lines are shown as functions of σ and evaluated
at the same choices of λ used in Sec. IV B 3 [indicated by
the legend in Fig. 5(o)]. The 〈τ 〉 and μeff values plotted in
Figs. 5(d) and 5(h) closely match those in Figs. 5(c) and 5(g),
demonstrating that the NNM parametrized by both λ and σ

can resolve all the same major physical phenomena previously
identified in Secs. IV B 2–IV B 3.

However, the accuracy of the solution g0(x, y; λ, σ ) is
slightly worse than that observed in the previous sec-
tions [Figs. 5(a)–5(c) and 5(e)–5(g)] as visible in 〈τ 〉 and μeff

[Figs. 5(d) and 5(h)] and quantitatively confirmed by ε and
L(g0|λ, σ ) [Figs. 5(l) and 5(p)] This is not entirely surpris-
ing, since the four-dimensional problem here is intrinsically
more difficult than the three-dimensional (Secs. IV B 2 and
IV B 3) and two-dimensional formulations (Sec. IV B 1) of the
problem. Moreover, the network depth and width were held
constant over all experiments, and the training time was held
constant for all the parametrized formulations (Sec. III A).
Regardless, although g0(x, y; λ, σ ) appears somewhat less ac-
curate than the solutions from previous sections, it generally
still meets the target 1% error threshold over most of its
parameter training range.

An exception to this statement is presented by the results at
λ = 5 [the brown lines in Figs. 5(d), 5(h), 5(l), and 5(p)], for
which the error of g0(x, y; λ, σ ) is greater than 1% over nearly
the entire σ training range. The marginal loss also reflects
this poor performance; for λ = 5, L(g0|λ, σ ) in Fig. 5(p)
is more than an order of magnitude larger than L(g0|λ, σ )
from all previous experiments [i.e., those in Figs. 5(m)–5(o)],
and several times larger than the other L(g0|λ, σ ) curves in
Fig. 5(p). Conspicuously, the L(g0|λ, σ ) curves in Fig. 5(p)
vary significantly with λ, whereas in Figs. 5(m)–5(o) very
little variation was observed between the different L(g0|λ, σ )
curves.

Of course, the results in Fig. 5(p) differ fundamen-
tally from those in Figs. 5(m)–5(o); whereas each curve in
Figs. 5(m)–5(o) corresponds to one or more independent net-
works, all the curves in Fig. 5(p) are generated by a single
network. In fact, the brown (λ = 5) and blue (λ = 50) curves,
which exhibit the highest marginal losses in Fig. 5(p), lie
directly on the boundary of the network’s (λ, σ ) training
domain. When analyzing the NNM parametrized by λ or σ

(Secs. IV B 2 and IV B 3), a substantial deterioration in
accuracy was found to be highly localized near the boundaries
of the parameter training range. If a similar boundary effect
exists here for the g0(x, y; λ, σ ) solution, then the results in
Figs. 5(d), 5(h), 5(l), and 5(p) are not representative of the
solution’s overall accuracy over the entire problem parameter
space, as essentially half of the data shown in those plots lie
on the boundary of the network’s parameter training space.

To investigate this possibility, the same metrics that are
shown as discrete lines in Figs. 5(d), 5(h), 5(l), and 5(p) are
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FIG. 6. Analysis of the g0(x, y; λ, σ ) solution obtained using the NNM parametrized by both field strength λ and particle size σ . (a), (e)
Mean first passage time 〈τ 〉 with white contours to show nonmonotonic sorting behavior. (b), (f) Effective mobility μeff with white contours
to show saddle point. (c), (g) Relative error ε of the MFPT with white contour to denote 1% error threshold. (d), (h) Marginal loss L(g0|λ, σ )
with white contour to denote testing loss L.

replotted in Fig. 6 as continuous functions of (λ, σ ). The
first row [Figs. 6(a)–6(d)] shows three-dimensional plots of
the metrics over parameter space, whereas the second row
shows two-dimensional contour maps [Figs. 6(e) and 6(f)]
and color maps [Figs. 6(g) and 6(h)] of the same metrics.
As anticipated, the relative error ε [Figs. 6(c) and 6(g)] and
marginal loss L(g0|λ, σ ) [Figs. 6(d) and 6(h)] are only large
near the boundaries of the parameter training space. Indeed, ε

in Fig. 6(g) is below the 1% threshold (indicated by the solid
white line) throughout the majority of the parameter space,
confirming the suspicion that the line plots in Fig. 5 provide a
biased view of the g0(x, y; λ, σ ) solution.

The boundary effect is particularly clear in L(g0|λ, σ ) in
Fig. 6(d), which features a prominent convex shape. Here,
L(g0|λ, σ ) is consistently higher along all the edges of the
training parameter space and decreases monotonically and
rapidly away from the boundary. In particular, L(g0|λ, σ ) is
exceptionally large at the corners of the training space.

Note that the decay of marginal loss away from the bound-
aries of the parameter space is actually substantially sharper
than it appears visually in Figs. 6(d) and 6(h). The color
scales for Figs. 6(d) and 6(h) are logarithmic and the color
map is not perceptually uniform: it exhibits far more variation
in color and contrast near the lower end of the scale. These
plotting choices make the subtle structure of the marginal loss
more apparent, but give it the biased appearance of a gradual
variation throughout the domain. In actuality, when plotted
with a linear color scale and a perceptually uniform color map,
the marginal loss appears essentially flat through most of the
domain.

As expected, the relative error ε [Figs. 6(c) and 6(g)]
is closely tied to the marginal loss L(g0|λ, σ ). Relative

error is uniformly low in the interior of the parameter space
(roughly (λ, σ ) ∈ [15, 45] × [0.2, 0.6]), corresponding to the
flat interior of L(g0|λ, σ ). Additionally, near the two cor-
ners at λ = 5 where L(g0|λ, σ ) is largest, ε also attains
its highest values, approaching 10%. There is also a small
peak in ε at the (λ, σ ) = (50, 0.125) corner, corresponding
to an equally small peak in L(g0|λ, σ ) at the same corner.
Surprisingly, although L(g0|λ, σ ) exhibits a clear peak at
the (λ, σ ) = (50, 0.625) corner, ε does not. Therefore, the
marginal loss L(g0|λ, σ ) once again appears to act as a
conservative a posteriori estimator of relative error ε: high
relative error occurs near regions of high marginal loss, al-
though high marginal loss does not always imply high relative
error.

As noted above, the performance of the g0(x, y; λ, σ ) so-
lution deteriorates even more significantly at the corners of
the parameter training space than on its edges. This is more
complicated than the boundary effect discussed for the solu-
tions parametrized by just λ or σ , and can be accounted for
by extending the postulated mechanism from Secs. IV B 2
and IV B 3. There, it was argued that the deterioration
in performance arises because the stochastic sampling used
during training under-represents boundary points: whereas
the neighborhoods of interior points are thoroughly sam-
pled on all sides, this is not true for boundary points.
In the two-dimensional parameter training space considered
here, the corners and the edges of the boundary are under-
represented to different extents by the stochastic sampling
process. Whereas parameter values on the edges of the domain
only have 50% as many neighboring points inside the training
space as interior points, parameter values on the corners have
only 25% as many. This tentatively explains why performance
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is so much worse at corners of the parameter training space
than it is on the edges.

If this mechanism extends to higher dimensional parameter
spaces, it may eventually prove to be a dominant source of
error: for instance, the corners of an n-dimensional hyper-
cube have only 1/2n as many neighbors inside the training
space as interior points, and the number of boundary segments
(corners, edges, faces, ...) grows rapidly with n. In fact, the
fraction of a parameter space lying within a given distance of
its boundary also increases with dimensionality. Altogether,
these observations suggest the need for further investigation
into this boundary effect, its possible connection to Monte
Carlo sampling of the loss during training, and methods (such
as low-discrepancy sampling methods [66,67]) for resolving
the problem.

In contrast to the line plots in Fig. 5, the plots in
Fig. 6 highlight the richness of information available through
the g0(x, y; λ, σ ) solution compared with the solutions
parametrized only by λ (Sec. IV B 2), σ (Sec. IV B 3), or nei-
ther (Sec. IV B 1). For instance, although the NNM solutions
parametrized by λ or σ (Secs. IV B 2 and IV B 3) suggested
a nonmonotonic dependence of 〈τ 〉 and μeff with respect to σ

for certain values of λ, they did not provide sufficient informa-
tion to estimate the exact range of λ over which this behavior
persists. Just as the NNM solutions parametrized by λ or σ

(Secs. IV B 2 and IV B 3) are more helpful than the fixed pa-
rameter solutions (Sec. IV B 1) in localizing one-dimensional
critical points, so is the NNM solution parametrized by both λ

and σ more useful for delineating the nonmonotonic regions
of parameter space.

The range of nonmonotonic behavior can be estimated
visually from μeff in Figs. 6(b) and 6(f). Using a vertical line
test, it is easy to see that nonmonotonic dependence of μeff on
σ is present at voltages as low as λ ≈ 10. In fact, μeff is doubly
nonmonotonic with respect to both λ and σ in the large-σ ,
low-λ range [black region in Figs. 6(b) and 6(f)]. Although
the same trends were suspected from the solutions discussed
in Secs. IV B 2 and IV B 3, g0(x, y; λ, σ ) resolves the features
more completely.

Despite the usefulness of g0(x, y; λ, σ ) for resolving crit-
ical points, the solution predicts a false saddle point in μeff

at (λ, σ ) ≈ (40, 0.2) [highlighted by the white solid line in
Fig. 6(f)]. Additional FEM results (not shown) confirm that
there is no saddle point anywhere in the parameter space
under consideration. This error can be attributed to the fact
that the true μeff changes extremely little in the high-λ, low-σ
region of the domain. For illustration, the two dotted white
lines in Fig. 6(f) indicate contours for μeff values 1% greater
and smaller, respectively, than the value of μeff on the solid
white line passing through the saddle point. Despite this range
corresponding to a very small fraction of the total variation of
μeff over the domain, the area between the dotted white lines
account for roughly 25% of the total parameter training space,
demonstrating that μeff is extremely flat throughout this entire
region.

Although the presence of a false saddle point is a noticeable
qualitative error, it corresponds to a very small quantitative
error in the key output metrics 〈τ 〉 and μeff . In fact, the visual
appearance of the saddle point in Fig. 6(f) is intentionally
accentuated by the choice of color map, as discussed for

the marginal loss above. It is quite feasible that an error of
such small magnitude could be resolved simply by increasing
network capacity and/or training time.

Still, the question arises of whether and how the NNM
can be used reliably in applications where these types of
incorrect or ill-conditioned features may occur. The marginal
loss L(g0|λ, σ ) provides one possible resolution to this
concern. The region of increased L(g0|λ, σ ) near (λ, σ ) =
(50, 0.125) in Fig. 6(h) coincides fairly closely with the right
half of the saddle point in Fig. 6(f). Thus, L(g0|λ, σ ) cor-
rectly reflects that the solution is less reliable in this region,
drawing into question the validity of the predicted saddle
point.

Future work should elaborate on what quantitative predic-
tions of solution quality can be based on the marginal loss,
along the lines of the investigations of Magill et al. [57]. In
the interim, we propose using the total loss [as indicated in
Fig. 6(h) by the solid white line] as an approximate threshold
between regions of relatively high and low expected accuracy.
In fact, the marginal loss L(g0|λ, σ ) as defined here is likely
a suboptimal tool for the detection of false critical points in
parameter space because it does not directly measure gradient
information with respect to (λ, σ ). Rather, it is only indirectly
sensitive to the error in the shape of 〈τ 〉 and μeff insofar as
it emerges from errors in the shape of g0(x, y; λ, σ ). For ap-
plications in which the localization of ill-conditioned critical
points is of interest, modified loss functions that incorporate
the derivatives of the target PDE with respect to λ and σ

(e.g., like those explored by Avrutskiy [59]) might be more
relevant error estimators. This notion illustrates the potential
benefits of customizing the NNM for specific PDEs and re-
search questions, just as flux- or energy-conserving numerical
methods are preferred for applications where those features
are particularly important.

In summary, the results in this section demonstrate that the
NNM can produce a robust approximation to the g0(x, y; λ, σ )
solution. Here, g0(x, y; λ, σ ) enables higher-dimensional vi-
sualization of 〈τ 〉 and μeff over λ and σ , resolving features
in parameter space more accurately and completely than
the solutions parametrized by only λ or σ . Furthermore,
g0(x, y; λ, σ ) accurately predicts the magnitude of 〈τ 〉 and μeff

to within the 1% error threshold simultaneously over the ma-
jority of the parameter training space. Although g0(x, y; λ, σ )
exhibits some regions of high relative error, L(g0|λ, σ ) once
again provides a robust a posteriori estimator of the solution’s
reliability throughout the parameter space.

V. CONCLUSIONS

This work investigated the use of the neural network
method to solve a parametrized time-integrated Smolu-
chowski equation describing nanoparticle passage through the
slit-well microfluidic device. The g0 solutions were solved for
a variety of fixed choices of field strength λ and particle size
σ using both the NNM and a standard FEM implementation.
Additionally, the NNM was used to solve the equation directly
as a function of λ and/or σ . Mean first passage time 〈τ 〉 and
effective mobility μeff were studied as the primary output
metrics of interest, with relative error ε and marginal loss
L(g0|λ, σ ) used to characterize solution performance.
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The qualitative examinations of g0 in Sec. IV A revealed a
wide variety of functional behavior over the region of (λ, σ )
parameter space studied here. The four primary regimes un-
derlying nanoparticle sorting in the slit-well (i.e., low and high
fields for small and large particles) correspond to four sig-
nificantly different g0 solution types, each reflecting different
interplays of drift, diffusion, and geometry. This highlights the
challenging nature of the parametrized PDE problem studied
in this work. Additionally, this analysis suggested that the
g0 solutions themselves may encode interesting and useful
qualitative information about biophysical processes. Future
work should examine how information encoded in g0 may
be complementary to qualitative information derived from
stochastic particle trajectories.

Of course, qualitative insights aside, the most salient fea-
ture of g0 is that it integrates to yield the mean first passage
time 〈τ 〉. As noted, although 〈τ 〉 is a quantity of widespread
interest in all first passage problems and is relevant to many
MNFD design problems, it appears that numerical solutions
of g0 have rarely been leveraged for such applications. The
results of this paper support that g0 may be an undervalued
tool in computational biophysics.

Although g0 can be computed using many methods, such
as FEM or particle simulations, this work focused on re-
solving g0 using the NNM. When applied to fixed choices
of problem parameters, the NNM consistently estimated 〈τ 〉
with errors below 1%. In particular, the NNM values were
at least as accurate as typical particle simulations, which are
the most common tool for studying first passage problems in
biophysics. However, a proper comparison of runtime was not
conducted in this work, and should be a major focus of future
investigations.

The main appeal of the NNM is the unique ease with
which it can be applied to parametrized g0 problems. Via
integration of g0, these solutions yield a direct mapping from
key problem inputs (e.g., λ, σ ) to key problem outputs (e.g.,
〈τ 〉, μeff ). This is particularly appealing for the application
of MNFD research, where essential phenomena often depend
nontrivially on the coupling of many system parameters. The
results in the current work demonstrate that the NNM can
learn accurate approximations of g0 parametrized by λ, σ ,
or both, all using a modest network size and even without
careful hyperparameter optimization. Whereas classical ROM
techniques typically require special considerations to handle
geometry-modifying parameters like σ , the NNM was found
to resolve g0(x, y; σ ) just as easily as g0(x, y; λ). As discussed,
parametrized solutions can be quite useful in characterizing
entire regions of parameter space.

Although the NNM is expected to perform well on highly
parametrized PDEs, the careful error analysis presented in the
current study revealed several points of caution for future ef-
forts in this direction. First, all parametrized solutions studied
here exhibited a deterioration in accuracy near the boundaries
of their parameter training space. Nonetheless, the predicted
values of 〈τ 〉 were still mostly within the 1% margin of error.
Moreover, the marginal loss functional L(g0|λ, σ ) proposed
here was found to act as a conservative a posteriori estimator
of the solution accuracy throughout parameter space.

The second point of caution that must be considered
when applying the NNM to parametrized PDEs concerns the

interpretation of key features, such as critical points, that are
identified using these solutions. For instance, in Sec. IV B 4,
the NNM solution exhibited an erroneous saddle point in a
flat region of μeff , which was an artifact that arose due to the
ill-conditioning of the gradients of μeff (λ, σ ). In fact, plots of
ε showed no indication of errors in this region, as the mistake
only manifested in the curvature of the mapping. However,
once again the marginal loss L(g0|λ, σ ) did indicate that the
NNM solution lost fidelity in this region of parameter.

In summary, the parametrized NNM solutions were gener-
ally accurate far from the training boundaries, and L(g0|λ, σ )
provided robust regions of confidence. Altogether, these re-
sults highlight the specific appeal of the NNM as a method
for studying parametrized first passage problems via the time-
integrated Smoluchowski model. We hope this work prompts
further investigation into the use of g0 with or without the
NNM, and into the relationship of 〈τ 〉 and μeff to more
standard MNFD metrics. Regarding the application of the
NNM to such problems, future work should address technical
challenges such as singularities posed by sharp corners, train-
ing difficulties for highly skewed geometries, and achieving
competitive runtime.
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APPENDIX A: COMPUTING MEAN FIRST PASSAGE
TIMES WITH PARTICLE SIMULATIONS

This section contains a description of standard Brown-
ian dynamics (BD) simulations used to measure the mean
first passage times of nanoparticles traversing the slit-well
microfluidic device (Sec. II). The BD simulations were ini-
tialized with N = 100 000 noninteracting particles placed
according to the distribution ρ0 [Eq. (7)]. The position of the
ith particle �xi was updated according to the discretized BD
equation


�xi


t
=

√
2D


t
�R(t ) + qλ

γ
�E0 + 1

γ
�FWCA. (A1)

In Eq. (A1), the particle properties are the diffusion coef-
ficient D, the friction coefficient γ , and the particle charge
q. As noted in Sec. II, both q and γ were set equal to the
particle diameter σ , to capture free-draining behavior. The
diffusion coefficient D was set to 1/σ and the time step was
set 
t = 10−5 The term �R(t ) in Eq. (A1) is a random driving
force representing the thermal motion of an implicit solvent
which was sampled from a uniform distribution of mean 0
and variance 1.

Rather than representing the interactions between particles
and walls as perfectly rigid, the walls were implemented using
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FIG. 7. Contour plots of the baseline electric potential u0 (black)
and field �E0 (red) computed by the NNM.

a short-range repulsive shifted WCA force

�FWCA = −∇UWCA, (A2)

with

UWCA(ri ) =
{

4ε
[(

σ0
ri

)12 − (
σ0
ri

)6] + ε, ri < rcut

0, ri � rcut.
(A3)

where ri is the minimum distance from particle i to the near-
est reflective wall minus a distance rshift = 0.5(σ − σ0). Here
rshift corresponds to the radius of the hard core of the particle,
whereas σ0 = 0.125 is the length over which the surface of
the particle is partially compressible. The potential is zero
beyond a cutoff distance rcut = 21/6σ0, so that if the center
of the particle is farther than a distance rshift + rcut from the
wall there is no interaction. The energy scale of the repulsive
interaction was set to ε = 0.125 = σ0.

Although this type of model is commonly used for particle-
wall interactions, due to its improved numerical stability
relative to perfectly rigid interactions, it introduces a small
difference between the underlying physics of the BD simu-
lations and the PDE models being solved in this work. For
this reason, the MFPTs determined using particle simulations
should not be expected to agree exactly with those obtained
using the NNM and FEM methods, even in the limit of
small 
t and large N . Nonetheless, as our results corrob-
orate, the effect of this difference between the models is
small.

The term �E0 in Eq. (A1) corresponds to the baseline electric
field in the slit-well domain (denoted by red in Fig. 7). This
was solved for a voltage drop of two units from the leftmost
to rightmost boundaries, as in Magill et al. [57]. The net
electric-field strength was set by the parameter λ. �E0 used
here was the same one described in Sec. III B. As shown in
Magill et al. [57], particle simulations conducted using an
electric field solved with the NNM are nearly statistically
indistinguishable from those conducted using a field solved
with the FEM, so long as the NNM electric field exhibits a
sufficiently small loss. The purpose of the present study is
not to replicate this result, but to explore the computational
advantages of the NNM over other techniques in parametrized
problems. Thus, the particle simulations are conducted using

FIG. 8. Passage time properties of particles escaping the slit-well
model computed using Brownian dynamics simulations. Star mark-
ers denote values obtained via FEM. (a) Mean first passage time 〈τ 〉.
(b) Effective mobility μeff . (c) Relative error of 〈τ 〉 computed against
the ground truth FEM solution.

the FEM electric field, which is taken as the reference ground
truth.

Parallel to the analysis conducted in Sec. IV B, the mean
first passage time 〈τ 〉 and effective mobility μeff are computed
using the BD simulations for various choices of field strength
λ and particle size σ . These values are plotted with dashed
lines in Fig. 8(a) and 8(b) with star markers to denote 〈τ 〉 and
μeff values obtained by FEM. Note that 〈τ 〉 and μeff are only
solved for the same discrete choices of λ and σ that are also
computed using FEM.

In addition, the relative error ε is computed using Eq. (23)
where 〈τ 〉 and 〈τ 〉FEM are the MFPTs computed by BD and
FEM, respectively. The values are plotted in Fig. 8(c) with
circular markers denoting the parameter choices where the
relative error was computed. All of the relative errors in
Fig. 8(c) fall below 2%, with majority of the values being
within 1% error. This establishes a 1% error baseline against
the ground truth MFPT values computed by FEM, for which
to benchmark the performance of the NNM.
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TABLE I. Comparison of computational time (in minutes) of the
NNM, BD, and FEM methods used to compute the MFPT at fixed
parameter values.

Runtime (minutes)

Parameters (λ, σ ) NNM BD FEM

(5.0, 0.125) 136.95 5.02 2.25
(50.0, 0.125) 138.37 1.03 2.15
(5.0, 0.625) 126.57 12.80 2.18
(50.0, 0.625) 133.63 1.12 2.13

APPENDIX B: CONTOUR PLOTS OF ELECTRIC
POTENTIAL AND FIELD

The baseline electric field �E0 used to drive particle mo-
tion in the slit-well device [Eq. (6)] was computed using the
NNM, as described in Magill et al. [57]. That is, the baseline
electric potential u0 was solved using Laplace’s equation over
a voltage drop of two units from the left slit wall to the
right slit wall. The electric field was then computed using the
relation �E0 = ∇u0. The red and black contour lines in Fig. 7
correspond to the electric field �E0 and electric potential u0,
respectively, inside the slit-well MNFD.

APPENDIX C: RUNTIME COMPARISON

The MFPT and effective mobility of nanoparticles travers-
ing the slit-well MNFD were obtained using BD simulations,
the FEM, and the NNM. Table I shows the runtime, in min-
utes, of each method used to solve the MFPT at fixed choices
parameter values. Four choices of the parameters are included,

TABLE II. Comparison of computational time (in days) of the
various methods used to compute the MFPT over ranges of parameter
space.

Method Mean Runtime (days)

NNM parameterized by λ 6.33
NNM parameterized by σ 7.79
NNM parameterized by (λ, σ ) 7.66
High-resolution FEM sampling 12.18

illustrating that runtimes were fairly independent of parame-
ters for NNM and FEM but depended strongly on parameters
for BD. Table II shows the runtime, in days, of each method
used to solve the MFPT over large regions of parameter space.
As implemented, the various parametrized NNM methods
all have runtimes comparable to one another. Moreover, the
total runtime of the high-resolution FEM sampling exceeds
the mean runtime for the parametrized NNM methods. How-
ever, this runtime obviously depends on the number of points
sampled. Here, 8099 parameter combinations were utilized in
order to produce high-resolution maps of error over parameter
space.

Optimizing runtime was not a goal of the current work.
The implementations of each of the algorithms studied here
(NNM, BD, FEM) can undoubtedly be improved upon to
substantially decrease the runtimes from those reported in
Tables I and II. Moreover, judicious use of parallelization
across GPUs and/or CPUs, as applicable, could provide fur-
ther improvements to each of the methods. Thus, the runtimes
included here are provided for reference only, and a more
careful comparison is left to future work.
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