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ABSTRACT 

This work presents XBeats: A machine learning-based framework for real-

time electrocardiogram monitoring and analysis that uses edge computing and 

data analytics for early anomaly detection. The framework encompasses a data 

acquisition ECG patch with 12 leads to collect heart signals, perform on-chip 

processing, and transmit the data to healthcare providers in real-time for further 

analysis. The ECG patch provides a dynamically configurable selection of the 

active ECG leads for transmission to the backend monitoring system. The 

selection ranges from a single ECG lead to a complete 12-lead ECG testing 

configuration. XBeats implements a lightweight binary classifier for early anomaly 

detection to reduce the time to action should abnormal heart conditions occur. This 

initial detection phase is performed on an edge node and alerts can be configured 

to notify designated healthcare providers. Further deep analysis can be performed 

on the full-fidelity 12-lead data sent to the backend. A fully functional prototype of 

the XBeats is implemented to demonstrate the feasibility and usability of the 

proposed system. XBeats can achieve up to 95.30% detection accuracy for 

abnormal conditions while maintaining a high data acquisition rate of up to 480 

samples per second. Besides a systematic energy consumption profiling criteria is 

provided for evaluating participating hardware components in the XBeats ECG 

patch. We isolate each hardware component to find power-intensive processes, 

discover energy consumption patterns, and measure voltage, current, power, and 

energy consumption for a given period. The proposed optimization techniques 
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demonstrate significant improvements to the hardware components. The results 

show that optimizing the data acquisition process saves 8.2% compared to the 

original power consumption and 1.62% in data transmission over BLE, thus 

extending the lifetime of the device. Lastly, we optimize the data logging operation 

to save 54% of data initially written to an external drive. Moreover, the analytical 

results of the energy consumption profile show that the ECG patch provides up to 

37 hours of continuous 12-lead ECG acquisition. 

 

Keywords: remote patient monitoring; electrocardiogram; telemedicine; 

cardiovascular diseases; real-time streaming  
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 Introduction 

 Heart Diseases and Statistics 

According to the Centers for Diseases Control and Prevention [1], in the 

United States, 20.1 million adults were diagnosed with cardiovascular diseases 

(CVDs) in 2020. The World Health Organization (WHO) in 2019 identified CVDs 

as the number one cause of death [2]. Over 17.9 million people died globally from 

CVDs in 2019, representing 32% of all global deaths. In 2020, nearly 697,000 

people died because of heart disease, which made it one of the leading causes of 

death in the U.S that year [1]. Similarly, according to the public health agency of 

Canada [3], about 2.4 million Canadian adults aged 20 and over are diagnosed 

with heart disease. CVDs are identified as a group of irregular heart rhythms called 

arrhythmia. Arrhythmia includes coronary heart disease, cerebrovascular disease, 

rheumatic heart disease, and other conditions.  

People with previous CVDs or generally irregular heart rhythms visit hospitals 

to monitor their heart conditions. However, in low or middle-income countries, 

where three-quarters of CVD deaths occur, hospitals struggle to provide long-term 

heart monitoring [2]. Therefore, it is essential to monitor heart activity regularly to 

prevent CVDs and minimize complications like premature death. Most importantly, 

during challenging times like the period of the COVID-19 pandemic, hospitals aim 
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to reduce the number of in-person visits to reduce possible infections and strive to 

find alternatives to serve patients in dire need remotely. Therefore, there is an 

urgent need for remote ECG monitoring for long-term cardiac diagnoses. As a 

result of these demands, a shift in the healthcare landscape is taking place where 

everyone is moving toward preventive care in an age where nearly everyone is 

digitally connected [4], [5]. Therefore, the healthcare industry is seeing a lot of 

connected health devices and remote patient monitoring technologies that enable 

physicians to monitor patients without having to come into contact with them. 

Furthermore, a recent study [6] emphasizes the positive impacts of continuous 

remote monitoring in helping people manage chronic conditions. 

 Heart Monitoring and Electrocardiogram  

Electrocardiogram (ECG) is the oldest and most used test by cardiologists for 

understanding heartbeat "rhythms" [7]. The heart assembles an electrical activity 

for every beat captured in an ECG test. Cardiologists build their diagnoses on heart 

conditions by analyzing the activity of the heart that is rendered into a waveform 

format. Diagnosing heart disease is commonly a manual process. ECG refers to a 

12-lead ECG test (or EKG) and is defined as a non-invasive diagnostic test that 

evaluates the electrical pulses of the heart to assess possible heart conditions [7]. 

In order to carry out an ECG test, ten cables are attached to a patient's body to 

obtain 12 electrical views of the heart. The electrical pulses of the heart are 

received via flat metal electrodes placed on the patient's body to detect electrical 
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charges generated by the heart as it beats. Then, signals are relayed via wires to 

a device that encodes the received analog signals and displays the signals on a 

monitor [8]. The term electrode is used to express the ten cables, and the term 

lead represents the 12 electrical views of the heart. Each ECG lead shows the 

heart from a specific angle, where the combination of the 12 views constitutes the 

standard 12-lead ECG test. The standard ECG 12-leads are obtained from four 

electrodes attached to the patient’s limbs (i.e., right and left arm, right and left leg). 

At the same time, the rest are obtained from six electrodes attached to the patient’s 

chest ), labelled from V1 to V6.  The exact orientation of each lead can be found 

in [7]. Furthermore, each lead of an ECG test constitutes a standard pattern 

comprising three wave components named P, QRS and T or the PQRST feature 

points [9]. 

Holter monitor is a widely known device used by practicing specialists in 

hospitals and cardiology clinics. Those devices use wired electrodes to connect 

directly to monitors for rendering the received signals. Usually, Holter monitors and 

similar devices come with diagnostic tools to analyze heartbeats in real-time. 

Notably, similar devices provide similar functionality to Holter monitors, also called 

event monitors [10]. Event monitors are portable devices someone can carry 

around day and night until symptoms occur. The main difference is that Holter 

monitors record ECG signals regardless of the heart conditions during the 

recording period. In contrast, event monitors are designed to be automatically 

activated when symptoms are experienced and then record current heartbeats. 
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Alternatively, the patient can manually activate them if an abnormal heart rhythm 

is felt. 

The process of identifying the heart's diagnosis is known to be a manual 

process carried out by cardiologists [7]. Furthermore, heart conditions could be 

misdiagnosed (or an anomaly entirely missed) due to intermittent heart irregularity 

(aka. arrhythmia) [8]. Accordingly, recent event monitors can now be configured to 

be worn continuously, and others are applied to the skin and activated 

automatically when symptoms are experienced [10]. Event monitors overcome the 

Holter monitor shortcomings as they can provide heart monitoring for extended 

periods that can last for weeks. However, event monitors are not designed to 

trigger an emergency response for life-threatening arrhythmia due to a processing 

lag of several minutes or lack of connectivity. Given the abovementioned 

requirements, patients are advised to stay in bed and be hospitalized for the test 

period. However, the recent COVID-19 pandemic tested existing healthcare 

infrastructures, revealing numerous operating challenges, including a limited 

number of beds, intensive care units and device management. Consequently, 

remote patient monitoring (RPM) should be embedded within hospitals and 

healthcare providers as a primary service instead of considering RPM as a 

secondary service with independent management systems,  
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 ECG Remote Patient Monitoring 

The provision of RPM has become intrinsic in changing traditional healthcare 

services and abilities to monitor and manage patients remotely [11]. Patients with 

chronic diseases (i.e., cardiovascular (CVDs), diabetes and cancer) require 

ongoing medical attention and limited activities in everyday routines. Chronic 

diseases last for long periods that can be in years. RPM gives healthcare providers 

access to their patients without requiring their patients to visit hospitals to perform 

ECG testing. Standard ECG testing can be performed remotely with the help of a 

reliable ECG acquisition device and an RPM framework [12]. There are multiple 

configurations of ECG tests using Holter monitors, like the number of leads or data 

acquisition period. The selection between the common two to three leads or the 

standard 12 leads is left to the cardiologist’s discretion or as the patient’s heart 

condition develops [8]. The 2- to 3-lead Holter monitors are used for detecting heart 

rate and its rhythm. 

Conversely, a standard 12-lead ECG would be needed to screen patients for 

possible cardiac ischemia and help healthcare providers quickly identify patients 

who have ST-elevation myocardial infarction (i.e., heart attack) and perform the 

appropriate medical intervention in time [13]. A standard 12-lead ECG requires a 

Holter monitor that can be installed at hospitals or carried by patients. Usually, 

Holter monitors installed at hospitals come with diagnostic tools to analyze 

heartbeats in real-time, in contrast to the devices carried by patients, which only 
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provide offline ECG data logging. Moreover, previous ECG charts are not available 

for comparison with ECG current signals to observe any potential correlation 

between previous ECG charts and current ECG charts. Furthermore, heart 

conditions could be misdiagnosed (or an anomaly entirely missed) due to 

intermittent heart irregularity (aka arrhythmia) [13]. 

Practically, long-term ECG monitoring and measurement devices are 

intended to be standalone, lightweight, wearable, flexible, and facilitate seamless 

integration with the electrodes attached directly to the chest. However, many of the 

recent wearable and lightweight ECG measurement devices developed for 

continuous measurement of the ECG signals lacks in providing one or many of the 

features mentioned above. Consequently, in response to the rapid digital 

revolution and the COVID-19 pandemic, the healthcare landscape has rapidly 

shifted from physical to virtual care and telemedicine. The provision of remote 

patient monitoring has changed the traditional healthcare abilities to monitor and 

manage patients [14]. Despite the significant research efforts brought by MedTech 

companies and the research community, continuous remote ECG monitoring still 

lacks comprehensiveness and completeness compared to the services offered in 

hospitals and clinics [14], [15]. 

 Thesis Objectives and Contributions 

This thesis proposes a new framework to provide unbounded continuous 

remote ECG monitoring using a lightweight 12-lead ECG smart patch that 
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integrates intelligent signal analysis and offers two heartbeat classification phases. 

The framework encompasses two major components:  

(1) The hardware component is responsible for the data acquisition 

represented in the proposed smart patch (i.e., XBeats) for ECG monitoring; 

The smart patch supports backward compatibility with various 

combinations of ECG leads, not just the standard 12-lead ECG testing. This 

feature enables healthcare providers to customize the number of enabled 

ECG leads during the ECG test according to the developing health 

conditions of their patients. Furthermore, the hardware enables wireless 

connectivity using low-power communication modules to facilitate 

seamless, remote, long-term cardiac monitoring and diagnoses. Similarly, 

the hardware maintains a continuous live log of ECG signals collected by 

the hardware on local storage, serving as a backup in events when wireless 

connectivity to the internet gateway is interrupted. 

(2) The software component is responsible for the data streaming and 

analytics implemented at the backend. The backend gathers all the data 

acquired by the ECG smart patch, stores it in a high-performance 

database, and trains machine learning algorithms to perform real-time data 

diagnosis and predictions. Data streaming from the patch is carried out by 

Apache Kafka [16], a high-performance open-source real-time streaming 

engine. Kafka supports unbounded data streams with a latency of less than 

ten milliseconds and allows the integration of distributed computing 
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frameworks to carry out advanced classification models. The integration of 

the latest IoT communication protocols (e.g., Bluetooth Low Energy (BLE) 

and MQTT (Message Queueing Telemetry Transport)) enables the 

connection between participating components in the framework. 

Furthermore, the proposed framework includes a modular frontend user 

interface for displaying the real-time ECG stream, preliminary diagnosis, 

records access and management, and robust notification service that 

interfaces with smart home devices. 

1.4.1 Thesis Contributions 

(1) Improve remote real-time ECG monitoring for long-term cardiac diagnoses 

by developing a lightweight and wearable ECG device (i.e., XBeats) to not 

interrupt the everyday lifestyle of the patient. At the same time, we are 

supporting standard 12-lead ECG recording using low-power hardware 

components for data acquisition, transmission, and logging. 

(2) Optimize data transfer between the smart patch and the backend system 

based on developing conditions while utilizing BLE communication 

protocols in receiving data and controlling the device. Healthcare providers 

may configure the system using three modes of operations: a) continuous 

mode, where ECG signals are lively streamed regardless of heart 

conditions; b) triggered mode, where the patch only sends a beaconing 

alive signal during normal conditions and only sends ECG signals when a 
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possible abnormality is detected, it also supports varying fidelity 

transmission operation, where low fidelity ECG signals (i.e., a few leads at 

a low sampling rate) are sent on normal conditions and high fidelity ECG 

signals (i.e., all 12-leads at high sampling rate) are sent when abnormal 

arrhythmia is detected; c) disconnected mode when the patch is 

completely disconnected from all bonded Bluetooth devices or wireless 

gateways, it applies the same logic as in the triggered mode, but additional 

local logging to a flash storage function is enabled to keep records of the 

entire disconnectivity period until a bonded Bluetooth device becomes in 

range.  

(3) Develop an RPM framework enabling real-time streaming and analysis of 

ECG data through a backend architecture that precisely process ECG 

signals received from the ECG patch and predicts a broad spectrum of 

possible developing conditions. The backend utilizes scalable, fault-

tolerant, and secure streaming engines to accommodate the high volume 

of streamed ECG and vital information. The framework uses advanced 

Machine Learning (ML) algorithms and Convolutional Neural Networks 

(CNN) to perform deep analytics and build a correlation between real-time 

and historical data for better analysis and predictions. 

(4) Build a power consumption benchmark for continuous real-time 12-lead 

ECG acquisition devices with BLE connectivity, which includes 

investigating the power consumption profile of the proposed ECG patch. 
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The investigation involves three main components in the ECG patch 

hardware design: the analog to digital data converter, the communication 

module represented in the main controller and the local SD storage. 

(5) Optimize the power consumption profile of the ECG patch concerning each 

component under investigation. Besides, evaluate the impact of the applied 

optimization techniques regarding the resultant power consumption profile 

and operation lifetime of the device.  

 Thesis Outline 

The thesis is organized into six chapters as follows: 

1. Chapter 1 introduces the topic and outlines the main objectives of this 

research and the thesis organization. 

2. Chapter 2 reviews related work in the RPM domain for remote ECG testing 

and real-time analytics. It categorizes the literature into two main categories 

according to works introduced in the research community and the industry 

(i.e., commercialized solutions). Likewise, each category is divided into 

subcategories accordioning to the number of ECG leads (i.e., single ECG 

lead, two or more ECG leads and standard 12-lead ECG).  

3. Chapter 3 presents XBeats, a patent-pending lightweight 12-lead ECG 

smart patch for long-term cardiac diagnoses. The chapter is divided into two 

main sections. The first section gives details about the XBeats ECG patch 

hardware components and prototyping. The second section builds on the 
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XBeats proposed hardware design and explores ways for energy 

consumption reduction, prolonging the expected battery operation time. 

4. Chapter 4 presents the proposed XBeats RPM framework architecture and 

design to operate the XBeats ECG patch. It demonstrates a comprehensive 

end-to-end solution for real-time ECG monitoring and analytics. 

5. Chapter 5 provides the implementation and prototyping details for the 

proposed hardware for the ECG patch and the real-time RPM framework 

setup.  

6. Chapter 6 discusses the performance evaluation and experimental results 

on each component utilized in the proposed end-to-end real-time standard 

12-lead ECG data monitoring and analytics framework. 

7. Chapter 7 provides concluding remarks and future directions. 
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 Background and Related Work 

In efforts to provide an in-depth review of the literature for this thesis, the 

literature review is organized to evaluate the works proposed in achieving remote 

ECG testing using wearable devices. Then we evaluate the works concerning ECG 

data acquisition devices concerning the number of provided ECG leads, utilized 

communication technologies, modes of operation, and hardware components. The 

ECG acquisition devices presented in the literature share standard hardware 

components and designs which can be categorized by the number of ECG leads 

used. Consequently, we provide a detailed overview evaluating the works 

introduced in the industry from a commercial perspective in providing remote ECG 

monitoring services and diagnoses. Furthermore, we review research works 

proposed concerning remote patient monitoring systems and underlying 

architectures. The review highlights the gaps, disconnectivity and overlapping 

components presented in the presented works in enabling remote ECG data 

streaming and analytics. Furthermore, it outlines the shortcomings that face those 

solutions if they were to operate in the future of e-health and preventive care in the 

healthcare industry. Lastly, section 2.4 provides a summary of the chapter. 
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 Introduction 

Due to the intensive amount of daily health-related data, there is a dire need 

for efficient data analysis techniques to process data in real-time and empower the 

predictive capability of healthcare applications. Furthermore, the prevalence of 

chronic illnesses is increasing globally. Currently, wearable sensors and 

communication protocol developments contribute in ways that will soon transform 

remote healthcare monitoring services. The first of these improvements is remote 

patient monitoring (RPM). RPM systems collect vital signs from patients by non-

invasive procedures and their real-time transmission to healthcare providers. The 

information collected by RPM devices may assist clinicians in making the best 

choice possible at the appropriate moment. Therefore, many efforts have been 

conducted to advance remote ECG monitoring systems to match or exceed the 

performance of the ECG testing administered at hospitals and healthcare facilities 

[17]. 

This chapter intends to identify research gaps in defining the lifecycle required 

to perform a standard ECG monitoring system and highlight existing solutions 

introduced in the literature. Then we illustrate in detail the critical design 

advantages and shortcomings of the discussed ECG solutions and efforts 

regarding the primary functions of standard remote ECG testing for patients with 

chronic heart diseases. The growing interest in the research community 

concerning remote health and patient monitoring has resulted in a multitude of 
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proposed systems, many of which focus on ECG monitoring. Therefore, the 

literature review presented in this chapter shows the prevalence of real-time ECG 

monitoring and diagnosis. While real-time ECG monitoring and diagnosis is 

receiving significant attention from numerous affiliations, the topic has been 

introduced as separate pieces and components of a complete and comprehensive 

remote ECG testing framework. Therefore, remote ECG monitoring has been the 

focus of the research community for many years and is divided into three branches: 

(1) hardware development for remote and wearable ECG acquisition devices; (2) 

leveraging the advancements in arithmetic intelligence and machine learning 

algorithms in performing automated diagnoses and predictions concerning heart 

condition of patients; and (3) software development and integrations in providing 

an enabling infrastructure for unbounded streams of ECG data and real-time event 

processing and analytics on the received data. 

 Remote ECG Monitoring Devices 

The delivery of RPM services requires a reliable data acquisition service to 

con-verge vital medical charts and information directly from the patient. Data 

acquisition services require the presence of wearable wireless sensors (i.e., Apple 

Watch, QardioCore, Kardia). However, wearable wireless medical devices entail a 

strict set of requirements to be considered for medical applications and critical 

patient conditions. This set of requirements is translated to a group of high-level 

hardware components that include but are not limited to high-resolution data 
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acquisition modules or sensors. It also includes reliable communication modules 

(e.g., Bluetooth Low Energy (BLE), Zigbee) and low-power processing units and 

storage units (e.g., SD Cards, Flash Storage) [10, 11]. Due to some medical 

conditions (i.e., ECG test), it acquires vital signals or information without 

interruptions during data acquisition [12, 13]. Moreover, RPM systems enable 

medical acquisition devices (i.e., Electrocardiogram (ECG) and heart monitoring) 

to transmit vital information continuously to the healthcare provider. 

2.2.1 Single Lead ECG 

Single Lead ECG devices are very common today. A single ECG lead covers 

limited heart regions, making it suitable for heart activity monitoring. One-lead ECG 

can help improve arrhythmia diagnosis but discriminating P-waves may be 

challenging and insufficient for correct diagnosis of sinus rhythm [18]. Accordingly, 

these devices are generally used to record long recordings for up to 14 days or a 

recording of merely a few seconds (e.g., Apple Watch Series 7). The authors in 

[19] fused the machinal pattern of the heart using seismocardiography (SCG) 

signal with ECG data. The fusion method is based on the Naïve Bayes probabilistic 

model to extract the PQRST annotations from the raw ECG signal. Then, they 

calculate the duration between different subsets of the PQRST data vector, which 

can indicate the presence of abnormalities in the ECG signals. The ECG 

processing is performed on a host desktop, transmitting the data through a 

synchronous data logger. This process is decoupled from the data acquisition 
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process as it runs using a data logger, which is not designed for real-time 

operations.  

Several research works have proposed transmitting ECG signals in real-time 

to a backend server for processing. The authors in [20] proposed integrating 

wireless communications (e.g., BLE and WIFI) for transmitting the acquired data. 

The actual design and hardware prototype did not include wireless communication 

modules. Therefore, the device is connected to high-performance data acquisition 

hardware. Then, the data are transferred to the host computer for storage, 

processing, analysis, and visualization. Klum et al. [21] present a fusion algorithm 

between multiple sensors, including a single-lead ECG sensor to measure lead I 

or II and a stethoscope to obtain an acoustic insight of the heartbeats. Similarly, 

[22] introduced a remote single-lead ECG powered by a coin battery. ECG signals 

are transferred to a mobile device in real-time and then to a backend system for 

further analysis. Although the device logs offline ECG data, it does not analyze the 

collected data for abnormal heart conditions to notify the patients or the healthcare 

provider to take necessary actions. 

A different line of research develops porotypes that use fog computing to 

enable remote ECG monitoring. The authors in [23] introduced a single lead ECG 

monitoring system to provide a telemedical solution for rural areas with the help of 

fog computing. The system utilizes the ESP-32 module as the main microcontroller 

(MCU) for processing the collected ECG data, then sends the collected data in 

one-minute intervals, not on a real-time basis. This limitation is due to the 
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bandwidth restriction of the LoRa communication link (i.e., 0.3–50 Kb/s). Moreover, 

the authors did not consider discontinuity scenarios where no wireless connectivity 

is in range since the device does not offer offline data logging. Accordingly, this 

solution is not optimized for long-term ECG monitoring. Similarly, Ahsanuzzaman 

et al. [24] developed a single-lead ECG acquisition hardware using Arduino Uno 

for acquiring ECG signals and sending them to a Raspberry PI (RPI) for further 

analysis and classification. However, the system has an overhead in the design 

since the Analog to Digital Converter (ADC) is interfaced with an Arduino Uno via 

Serial Peripheral Interface (SPI). The Arduino Uno device is connected serially to 

the RPI for signal analysis. This design overlap could have been avoided by 

directly connecting the ADC module to the RPI. Moreover, the RPI has an 

embedded BLE module that can communicate with a mobile phone instead of 

using the extra HC-05 Bluetooth hardware. 

The integration of the four modes of operations: (1) serial cable transmission, 

(2) offline data logging to a local flash drive, (3) transmission to a mobile phone via 

Bluetooth, and (4) transmission to a desktop via Bluetooth provides better 

integration and operability. The authors in [25] proposed a single-lead ECG signal 

acquisition prototype using one of the four given modes of operation. Using the 

first two operation modes, the system can detect the QRS feature points from a 

complete cardiac cycle. However, this function is only available through the first 

operation mode. Besides, the device does not provide an automated handover 
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between operation modes. For example, when a discontinuity event occurs, the 

device does not switch to the offline operation mode. 

Furthermore, the authors in [26] presented a single lead ECG with multiple 

wireless protocols for data transmission and communication. The solution 

presented by the authors in [26] provided a vertical IoT system for remote ECG 

monitoring, but the system lacks multiple functionalities essential in the remote 

ECG testing eco-system. The ECG device works only on demand when connected 

to a gateway device with internet connectivity, which violates the founding 

definition of remote ECG monitoring. Moreover, the device does not provide means 

of storage on the ECG device to maintain a continuous log of ECG data in case of 

intermittent disconnectivity with the gateway device. On the other hand, the 

proposed IoT solution in [26] lacks core components in enabling continuous ECG 

data streaming since the system utilizes legacy client-server architectures. Most 

importantly, the authors [26] claim that the ECG device operates using ZigBee, 

Bluetooth, or WiFi wireless technologies; however, the underlying protocols used 

to transmit data are not discussed. Similarly, the authors in [27] presented a single 

lead ECG device for remote monitoring using dry Fabric electrodes, which provides 

additional flexibility to patients who wear the device for long-term monitoring. 

However, the device operates as a passive ECG signal collection device with no 

active components for signal detection or analysis.  



37 
 

2.2.2 Two ECG Leads or More 

Multiple Leads ECG provides a better view of the heart condition for long-

term cardiac diagnoses. Further, additional ECG leads are required to diagnose 

sinus rhythm or arrhythmias. In [28], the authors developed a 3-lead ECG wearable 

device that transfers the acquired ECG data to a mobile device through BLE 

communications, then relays the data to a backend system through mobile 

connectivity. Their hardware is based on the RPI development board as the main 

MCU, and a breakout Printed Circuit Board (PCB) was designed with an analog 

frontend for acquiring the ECG signals. The system featured a backend component 

to store collected ECG data. Despite the RPI’s compact size, multiple 

communication protocols, and computation capabilities, it is not optimized for 

wearable technologies since it is not designed for low-power computing. Yuan et 

al. [29] developed a 3-lead ECG acquisition device to acquire ECG signals during 

pregnancy. The signals are transmitted to an Android application using BLE. Then, 

the application performs real-time filtering to remove baseline drift and high-

frequency interference. The sample entropy algorithm is then used for fetal ECG 

extraction performed offline. To that extent, Wang et al. [30] designed an intelligent 

vest using non-adhesive electrodes to collect 3-lead ECG signals transmitting data 

to a mobile device to display the received signals. The system acts as a Holter 

monitor, where no data analytics or classification is done on the collected ECG 

data. This component is needed in critical heart conditions. 
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Physicians recommend increasing the number of active ECG leads helps 

understand heart conditions. To that extent, Abtahi et al. [31] developed a 5-lead 

ECG acquisition hardware using the ADAS1000 chip as an Analog Frontend (AFE) 

on a custom-designed PCB interfaced to an RPI module using the serial SPI. The 

system featured a backend component to store the collected ECG data. However, 

the hardware is not optimized for wearable technologies since the RPI is not 

designed for low-power computing. Moreover, the device does not offer offline 

ECG data recording in disconnected scenarios when Bluetooth connectivity is 

unavailable. Lastly, the authors [32] introduced an early detection module to notify 

patients about abnormal heart conditions. However, the module relies on getting 

the classification results (e.g., Mild and Severe over a certain period) using a script 

running on a host desktop. 

2.2.3 Standard 12-Lead ECG 

Standard 12-Lead ECG provides a complete and comprehensive analysis of 

the heart and enables a better thorough diagnosis that cannot be obtained 

otherwise. The authors in [33] presented a 12-lead module to capture ECG vital 

signals and transmit them to a backend server for analysis via a mobile phone 

connected to the ECG device through Bluetooth. However, the Bluetooth link used 

the classical Bluetooth protocols to communicate with a mobile device. It did not 

optimize the BLE protocol stack for sending the data, which increases the packet 

size and overhead of the transferred data rather than using BLE standard services 
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and characteristics. Besides, the device depends on the results coming from the 

backend regarding the heart condition of the patient because it only works if the 

device is connected to a mobile phone with internet connectivity. Moreover, the 

Bluetooth module is not optimized for low power consumption, reducing the 

device’s operation time and compromising the patient experience. Accordingly, 

their system mainly focuses on the data acquisition part of the ECG test. In 

contrast, the authors in [34] use a similar monitoring architecture but add active 

electrodes attached to the patient’s body without adhesive materials. However, the 

device only supports offline ECG monitoring. The data is stored on a flash drive 

and then transferred to a PC for further processing and analysis of the collected 

ECG data. 

While in [35], the authors developed a prototype for EEG/ECG data 

acquisition, the hardware utilizes the TI ADS1298/9 Analog Frontend chip for 

digitizing analog EEG/ECG signals. The authors incorporated multiple 

components to make it suitable for remote EEG/ECG monitoring like Bluetooth, 

WIFI, and local storage (i.e., SD) modules. However, the platform for operating 

these modules to perform ECG/EEG monitoring is not mentioned. Besides, the 

authors were interested in validating the integrability and operability of the 

hardware modules in terms of the available bandwidth between the different 

components to perform a successful EEG/ECG test. Lastly, the authors in [15], 

[17] conclude that these systems still lack completeness and comprehensiveness 

with the massive diversity of work proposed in ECG monitoring systems. Despite 
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the significant overlapping in the literature about the number of recorded ECG 

leads, accuracy, usability, and mobility, these systems cannot provide real-time 

data streaming and heart condition diagnosis. 

2.2.4 Commercial ECG Devices 

ECG devices must be approved by respective health authorities in countries 

to be used on patients or spread commercially. Many devices are currently 

available in the market that perform remote ECG monitoring. However, most of 

them have not been approved for medical use by respective authorities in targeted 

countries, like the Medical Device Bureau in Canada or the Food and Drug 

Administration (FDA) in America. AliveCor is one of the commercial devices that 

the FDA has cleared as a clinical-grade consumer product. The device offers real-

time diagnoses of heart conditions. It only detects recurrent atrial fibrillation and 

provides real-time readings for a short time. Also, patients have to stand still and 

limit their movement during the data acquisition period. The SEEQTM sensor by 

Medtronic Inc. [36], the ZIOXT Patch by iRhythm Technologies Inc. [37], and the 

wearable biosensor by Philips [38] all share the same features of continuous ECG 

data collection from 7 up to 14 days of recorded data. However, the collected data 

is only for one ECG lead that can detect limited heart diseases. Additionally, the 

SEEQTM and the ZIOXT are “single-use” devices.  

While Savvy ECG [39] addresses the shortcomings of the previously 

mentioned devices like reusability (rechargeable battery) and real-time streaming 
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to a mobile device, the solution does not offer diagnostic information about the 

heart conditions of the patient. Moreover, the device cannot determine various 

heart diseases since it only supports single-lead ECG acquisition. To that extent, 

a similar device was recently proposed for continuous monitoring called ECG247 

[40] with a single ECG lead. However, the device addresses the limitation of Savvy 

ECG [39] and introduces a post-processing arrhythmia analyzer to detect 

abnormalities in heart activity. 

Similarly, BioTelemetry [41] introduced the MCOT wireless ECG that provides 

two channels of ECG data acquisition with up to 30 days of data storage. The 

device allows for wireless data transmission on demand. Besides, the device 

cannot be used multiple times. Once the battery is exhausted, it cannot be used 

again. Moreover, the battery life lasts one year, and once the expiration date has 

expired, the device is no longer usable and needs to be replaced with a new 

device. 

In comparison, a recent device introduced by QTMedical [42] incorporated 

the full scale of a standard 12-lead ECG testing as a wearable RPM device. 

However, the device does not provide continuous real-time ECG monitoring. It only 

collects ECG data when a patient activates the recording from a mobile device 

using a customized mobile application. Even with the manual activation, the ECG 

data collection period is limited to ten seconds, and then the patient must activate 

the data collection again whenever required. On the other hand, [43] delivers 

continuous wireless ECG monitoring. However, the device captures only one 
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single ECG channel. Moreover, the device is not designed for long-term cardiac 

diagnoses since the device’s working time lasts for up to a day, then the device 

would need to be recharged.  

 ECG Remote Patient Monitoring and Diagnoses Platforms 

Remote health monitoring and related technologies are being standardized 

and integrated into the healthcare domain from only being used in wellness and 

lifestyle activities. ECG is one of the major health applications widely investigated 

by the research community and invested by the industry. RPM and real-time data 

analytics have significantly contributed to enhancing ECG monitoring and enabling 

healthcare providers to gain 24/7 access to their patients remotely, especially for 

patients with coronary ECG diseases. Therefore, the definition of remote patient 

monitoring spans more than just providing data collection and visualization 

infrastructures. It necessitates data streaming processing, analytics and 

notification systems. Accordingly, these systems combined provide a 

comprehensive ECG PRM for real-time data collection and diagnosis. However, 

the significant expansion in ECG remote monitoring systems has created 

overlapping and disconnected pieces in the provided solutions. Besides, many of 

the proposed systems fail to consider interoperability and integration with existing 

and state-of-the-art technologies and frameworks. Therefore, it is becoming more 

challenging for researchers to compare or utilize available methods for practical 

applications.  
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2.3.1 Real-time Streaming and Event Processing 

Due to the massive amount of health-related data produced daily, there is an 

urgent need for reliable real-time data streaming and processing engines to 

empower remote patient monitoring in healthcare applications. The authors in [44] 

introduced a general platform to ingest real-time data using Kafka from different 

sources. The platform extracts useful information about patients using Artificial 

Intelligent (AI) to predict chronic diseases. However, this work only introduces a 

theoretical design of the system without empirical results. Sandha et al. [45] use 

Apache Kafka and Apache Spark to build a system that helps measure stress and 

predict heart attack risks. Their system uses a dataset from Physionet that contains 

ECG and blood pressure signals and a simple Naive Bayes algorithm to predict 

the heart failure risk. However, according to the paper, the practical evaluation of 

the use cases was out of their study scope. Pomprapa et al. [46] discuss a 

methodology to detect obstructive sleep apnea, a severe sleep disorder, from 

multiple sensors. They build a multi-sensor prototype that collects data, passes it 

to a hybrid deep learning model, and processes it in real-time using Kafka. Even 

though the study shows promising results, most of the data has been collected 

from simulated scenarios built by the authors. Moreover, the system is built to 

accommodate that specific case with no discussions on scalability or 

interoperability with various components in RPM like a notification system in case 

of abnormal activities.  
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Healthcare and medical applications ideally share a real-time data processing 

layer that enables the system to classify signals, recognize diseases, organize 

them into records on the cloud or on-premises, and notify healthcare providers 

during emergencies. Furthermore, the platforms differ in the feedback they receive 

from patients and health care providers and how they communicate. Also, the 

technical challenges in these platforms cannot be overlooked from the amount of 

data, privacy, and ability to store data while offline. The authors in [47] used fog-

based computing to reduce latency, make decisions quickly, improve energy 

consumption, and reduce network congestion during computation and analytics. 

However, the platform did not provide an outline for data processing and analytics, 

which constitute essential components in healthcare applications. On the other 

hand, cloud computing constitutes an ideal choice for data processing, as it 

provides processing capabilities higher than the edge or fog nodes. These 

requirements match the demands of healthcare applications for real-time data 

processing and analytics. The authors in [48] present a portable real-time ECG 

device using Raspberry pi to receive the ECG signal. They created a Wi-Fi access 

point between Raspberry Pi and a heart rate sensor to collect ECG data and 

transmit it to a mobile application. Then the mobile application uploads the 

collected ECG data to the cloud to perform deep learning using neural networks. 

The system proposed in [48] comes with certain limitations in the deep learning 

approach due to limitations inherited from the used dataset for training the deep 
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neural network. Besides, the system uses non-standard methods for converting 

and transmitting the ECG signals to the cloud. 

Meanwhile, Alfian et al. [49] propose monitoring patients with diabetes using 

a web-based application that utilizes the Kafka streaming engine. The authors 

implemented two classification algorithms: one is based on MLP to classify 

diabetes patients and an LSTM network to predict blood glucose levels. However, 

the reported accuracy of the MLP algorithm is 77.083%, which is less significant 

to be used in monitoring critical health conditions. Moreover, the data acquisition 

(e.g., sampling rate) and prepossessing methods were not discussed. The system 

also lacks proper notification channels like sending SMS, dispatching an 

ambulance, or contacting the healthcare provider in case of abnormal data 

detection. Lastly, a recent review [14] compares more than 280 references for 

related work in the healthcare monitoring domain, showing that given the amount 

of work presented in the ECG monitoring systems, these systems are like vertical 

silos of various IoT applications. These systems lack interoperability on a 

horizontal scale to cover the developing needs of the healthcare domain [50]. 

To that extent, the authors in [51] proposed a horizontally scalable system to 

cover the previously mentioned shortcomings in the literature. The system is based 

on the Industrial Internet Reference Architecture (IIRA) three-tier model [52]. The 

first tier represents the edge tier representing sensor nodes for data collection, and 

the second tier is the platform tire, which represents the service an IoT platform 

provides, like data transformation and basic data analysis. The third tier is the 
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enterprise tier serving as a user interface for data visualization and displaying 

medical charts. The system shows advanced levels of interoperability, leveraging 

the services of the ThingsBoard IoT platform [53]. It is worth noting that the system 

in [51] utilizes Apache Spark for big data analysis but missed to explain how to 

scale Apache Spark to accommodate various data analytics functions and 

algorithms. Therefore, the system in [51] lacks an essential component needed by 

the healthcare providers for a comprehensive RPM system with a real-time data 

analytics and predictions. 

2.3.2 ECG Heart Condition Diagnoses and Analytics Benchmark 

The diagnosis and classification of heart diseases are common areas that 

researchers seek to improve their efficiency. Deep learning classifications 

constitute significant importance in diagnosing vital heart conditions, therefore 

contributing to saving patient lives. To that extent, the authors in [54], [55] 

performed a set of experiments utilizing the PTB-XL [56] dataset. The experiments 

were carried out in a three-level hierarchical structure following the dataset 

presentation. The first layer included two classes: normal and abnormal heart 

conditions, where all heart diseases in the dataset are aggregated into the 

abnormal class. The second level included five classes (Normal ECG, Conduction 

Disturbance (CD), Myocardial Infarction (MI), Hypertrophy (HYP) and ST/T change 

(STTC)). Each class is composed of multiple subclasses of heart diseases (i.e., 

arrhythmias), which are: (CD has 8 arrhythmias, MI has 4 arrhythmias, HYP has 5 
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arrhythmias, and STTC has 5 arrhythmias). Therefore, the overall classes 

available for classification are 23 classes.  

Consequently, in [55], the authors used the PTB-XL dataset and extracted 

the R-peak and the QRST component of the ECG signals for the classification 

process. They compared the Few-Shot Learning neural network and the SoftMax-

based network in classifying ECG signals into normal and abnormal classes. The 

Few-Shot Learning neural network achieved better detection accuracy of 93.2%. 

Similarly, the authors applied the same classification techniques to classify five 

and 20 classes of ECG arrhythmias. The detection accuracy was 80.2% in the 

case of five classes and 24.9% in the case of 20 classes. However, the SoftMax 

neural network performed better than the Few-Shot Learning neural network when 

five or 20 classes of ECG arrhythmias were included. They said the reason for the 

decrease in accuracy is due to the large number the categories and imbalanced 

data distribution in the data sets (e.g., data with a label "normal" represents about 

one-third of the data while some diseases have few samples in the dataset) to train 

the models used to perform the classification. The same experiments were applied 

in [54], utilizing the same dataset but using a different classification technique, the 

FSL neural network. The results of the detection accuracy were 90.8% for the two-

class classification (i.e., normal and abnormal heart conditions),  79.1% when 

classifying between the five superclasses and 70.1% for 20 classes of arrhythmias. 

On the other hand, the authors in  [57] established a benchmark and a 

comparison of different 12-lead ECG signal classification algorithms. They 
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categorized heart diseases into nine categories and compared seven classification 

algorithms (i.e., inception1d, xresnet1d101, resnet1d_wang, fcn_wang, stm_bidir, 

LSTM, and Wavelet+NN). They achieved a maximum accuracy of 92.5% in 

classifying heart diseases into one of the defined categories using the inception1d 

algorithm. The algorithm dealt with the ECG signals in their original format (i.e., 

one-dimensional array of ECG data measured in millivolts), which constructs the 

waveform of an ECG signal. While in [58], the authors transformed ECG raw data 

from its original format into 2D images to identify heart diseases. This step imitates 

the process used by cardiologists in interpreting and diagnosing ECG tests. 

Therefore, the authors compared the 2D image representation of ECG signals for 

classification to one-dimensional ECG signals representation. The MIT-BIH 

dataset was used to compare, where five arrhythmias were only included in the 

classification in both cases. The 2D image representation of ECG signals 

architecture improved the detection accuracy of the classification process. The 

one-dimensional approach achieved 94.5% detection accuracy, while the 2D 

images approach achieved higher accuracy of 98%. Moreover, the classification 

methods only considered a single ECG lead instead of a standard 12-lead ECG 

which reduces the capability of detecting a broader range of heart diseases (e.g., 

arrhythmias). 

Accordingly, existing solutions are designed to fit a limited number of heart 

diseases without a balanced dataset with an equal number of samples in each 

disease. ECG classifications have evaluated ECG data using Lead II signals only 



49 
 

as an input to the classification functions. As a result, these functions are 

insufficient to classify a wide range of heart diseases. Likewise, some heart 

diseases (e.g., Anterior and Posterior heart diseases [59]) cannot be identified 

using Lead II only, which justifies decisions taken by cardiologists in some cases 

asking patients to perform standard 12-lead tests to diagnose the patient’s heart 

conditions fully. ECG signals classification would benefit by including more ECG 

leads as input to the classification functions. Therefore, more heart diseases can 

be found from a single test depending on the number of ECG leads; thus, the 

confidence in classification results increases. 

 Summary 

Several solutions exist proposed by the research community or the healthcare 

industry, changing the status quo of traditional ECG Holter monitoring systems and 

offering portable and wearable ECG monitoring. Patients can use these solutions 

anywhere, not just in hospitals or healthcare facilities. The literature review 

presented in this chapter concludes that with the massive diversity of ECG 

monitoring platforms, these platforms still lack comprehensiveness and essential 

features for effective remote ECG testing. Moreover, the overlapping is significant 

between existing solutions in the literature concerning the number of recorded ECG 

leads, accuracy, usability, and mobility. Furthermore, the healthcare industry is 

witnessing an explosion of companies proposing solutions, creating a fragmented 

landscape within the e-health architectures. As a result, this fragmentation is one 
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of the significant obstacles hindering the widespread integration of health systems. 

To that extent, the literature is divided into three major topics concerning remote 

ECG monitoring: wearable e-health devices development, automated diagnosis on 

collected e-health data using AI and ML techniques and real-time streaming 

coupled with event processing engines. Many of the proposed systems lack the 

ability to provide real-time data streaming and heart condition diagnosis. None of 

them also offer an informative correlation between current ECG data being 

collected and previously collected ECG data and/or clinical charts.  

We conclude that pieces of a complete comprehensive ECG testing exist or 

have been proposed in the literature. Inspired by such findings, in the following 

chapters, a device for ECG data collection and monitoring named XBeats is 

presented, which utilizes a suitable combination of solutions and methodologies for 

effectively enabling remote ECG monitoring. Then a design of a comprehensive 

RPM framework is presented to complete the ECG monitoring lifecycle and provide 

an end-to-end real-time and remote ECG data monitoring and analytics framework 

for healthcare providers.  
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 XBeats ECG Patch Hardware Design 

This chapter introduces XBeats, a patent-pending wearable device for remote 

ECG data collection and monitoring. The XBeats ECG patch addresses the 

limitations observed in the literature review and provides a standard 12-lead ECG 

device that is fully autonomous. The device utilizes BLE communication 

technologies for connectivity and data transmission, making the device fully 

connected through paired internet-enabled gateways. Moreover, XBeats features 

various operation modes to cover possible scenarios and give healthcare providers 

complete control over the ECG data acquisition process. The ECG data acquisition 

process on XBeats features a fully configurable ECG leads selection starting from 

a single lead to a standard 12-lead ECG test. Furthermore, the XBeats hardware 

ships with an embedded storage module that ensures uninterrupted ECG data 

logging and serves as a backup to the wireless data transmission operations. 

Therefore, healthcare providers are guaranteed to maintain full access to the ECG 

recordings of their patients at any given time.  

 Introduction 

The provision of remote patient monitoring is imperative in changing 

traditional healthcare services and abilities to monitor and manage patients 

remotely [11]. Patients with chronic diseases, especially cardiovascular (CVD 
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require ongoing medical attention, which limits their activities and everyday 

routines. Chronic diseases last for long periods that can be in years [7]. The XBeats 

design leverages the means of edge computing in performing a machine learning 

classification technique on the collected ECG data in real-time. The classification 

technique serves as a binary classifier categorizing ECG signals into two classes: 

regular and irregular ECG signals. The firmware on the XBeats ECG patch uses 

the classification results from the edge device and updates the currently active 

mode of operation on the patch. This way, XBeats offers autonomously 

configurable modes of operation. For example, in the case of an irregular ECG 

signal classification result, the ECG patch dynamically changes the operation 

mode to the continuous modes of operation for a standard 12-lead acquisition.  

Accordingly, we propose a comprehensive remote patient monitoring 

framework for ECG testing, as shown in Figure 3.1. The objective of the framework 

is to perform ECG testing and monitoring remotely without hindering the daily 

activities of the patients using an easy-to-use wearable ECG patch. The design of 

XBeats addresses the limitations of existing solutions by providing a BLE-

connected, real-time, and comprehensive ECG monitoring system. The 

architecture comprises a wearable and unobtrusive real-time ECG device which 

can be configured with three operation modes: (a) continuous mode, (b) triggered 

mode, and (c) offline mode. 

Furthermore, guarantee unbounded real-time connectivity to the healthcare 

provider for monitoring the heart conditions and vitals of the patient while 
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maintaining prompt responses should irregular heart conditions develop. The 

framework comprises two stages: the first stage constitutes the hardware 

components responsible for the ECG data collection and delivery to the backend 

system of the RPM framework. The second stage constitutes the software and 

system design of an RPM framework to provide the intended services of providing 

continuous real-time ECG monitoring and analytics. 

 

Figure 3.1. High-level architecture of the XBeats ECG RPM framework. 

 XBeats Hardware Components 

The XBeats hardware represents the data acquisition device (i.e., ECG 

patch) for acquiring ECG signals. XBeats constitutes a wearable, unobtrusive and 

connected real-time ECG device. Besides, the main focus of the hardware design 

is to deliver the intended functionalities of a standard 12-lead ECG acquisition 
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process. It considers the mechanics of wearable devices (e.g., the fitting of the 

ECG leads on various body masses) as topics of its own. The device comes with 

configurable modes of operation that are adjusted upon directions from the 

healthcare provider or developing heart conditions. The delivery of RPM services 

requires a reliable device to converge vital medical charts and information directly 

from the patient. Data acquisition services require the presence of wearable 

wireless sensors (i.e., Apple Watch). However, wearable wireless medical devices 

entail a strict set of requirements to be considered for medical applications and 

critical patient conditions. This set of requirements is translated to a group of high-

level hardware components that includes:  

1. High-resolution data acquisition modules or sensors to guarantee reliable 

and representative medical data collection [60]–[62]. 

2. Reliable communication modules (e.g., BLE, Zigbee) for data transmission 

between the ECG patch and the receiving device (e.g., smartphone) [60]–

[62]. 

3. Low-power processing units  

4. High-speed and low latency storage units (e.g., SD Cards, Flash Storage) 

[60]–[62].  

Due to the nature of  ECG testing, it acquires vital signals or information 

without interruptions during the acquisition period [63], [64]. Lastly, RPM devices 

enable the acquisition of medical and vital data for ECG and heart monitoring while 

transmitting data continuously to the healthcare provider. 



55 
 

The design of the XBeats implements a modular architecture focusing on the 

specifications and functionalities of the hardware components needed for the 

operation of the device. Therefore, the proposed architecture is not limited to a 

specific hardware component or vendor, where the proposed hardware 

components can replace other components with similar capabilities. Accordingly, 

the hardware components will be discussed based on functionality with candidate 

components for prototyping to show the feasibility of the proposed architecture. 

The main building blocks of the XBeats ECG patch architecture are shown in 

Figure 3.2, with the following functionalities: 

1. Collect the standard 12-lead ECG test data in real-time using a lightweight 

and unobtrusive body sensor not to interrupt the patient's everyday 

lifestyle. 

2. Provide flexible modes of operation to accommodate various heart 

conditions and enable healthcare providers to control the ECG patch 

remotely. 

3. Transmit ECG data to internet-enabled gateways (e.g., mobile devices) 

using low-energy communication protocols and standards. 

4. Log collected ECG data using timestamps on local storage attached to the 

ECG patch serving as a backup service routine. 
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Figure 3.2. High-level design of the XBeats ECG patch hardware components. 

3.2.1 ECG Data Acquisition 

The data acquisition component is the first step of the data pipeline in XBeats 

and is designed to match the operation modes of a typical ECG test performed in 

hospitals [7], [8], [13]. Accordingly, the data collection pipeline in XBeats starts with 

the data acquisition phase. Data is captured from the patient's chest using special 

electronic pads (electrodes). A full ECG test necessitates ten electrodes to be 

attached to the patient's chest. The ten electrodes obtain 12 views of the heart, 

referred to as the 12-lead ECG test. ECG signal data are received as a sequence 

of analog voltage data. The received signals are usually accompanied by noise 

and distortions due to motion artifacts and lead misplacement. Therefore, we 

process the ECG signals in three sequential steps to complete the data filtering 

process. The first step uses a bandpass filter to filter unwanted frequencies [65]; 

this removes powerline noise, muscle noise, and electrode contact noise while 

acquiring real-time ECG signals. The second step starts by buffering the ECG 
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signals based on the minimum and maximum heart rates recorded between 30 

and 240 beats per minute (bpm) [65].  

 
Figure 3.3. Single heartbeat signal with PQRST feature points. 

A sliding window of two-second intervals is used to capture at least one 

complete heartbeat signal. At 30 bpm, one complete cardiac cycle is guaranteed 

to be captured in a two-second interval and four complete cardiac cycles at a heart 

rate of 240 bpm. The third step identifies ECG signal features; there are two 

features: intra-beat and inter-beat features. The intra-beat features resemble 

prominent points in each cardiac cycle; these points are P, Q, R, S, and T, as 

illustrated in Figure 3.3. Accordingly, identifying the PQRST feature points in one 

signal implies the occurrence of a complete cardiac cycle. The PQRST feature 

points of each cardiac cycle are selected based on the values from Table 3.1. On 
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the other hand, inter-beat features are derived from intra-beat features such as 

RR-interval, which is the interval between two consecutive R peaks. 

Table 3-1. Standard ECG PQRST features points intervals for normal heart 
conditions. 

Normal Heat Rate 60 - 100 bpm 

PR interval 0.12 - 0.20 s 

QRS interval ≤ 0.12 s 

QT interval < half RR interval (males < 0.40 s; females < 0.44 s) 

P wave amplitude (in lead II) ≤ 3 mV (mm) 

P wave terminal negative 
deflection (in lead V1) ≤ 1 mV (mm) 

Q wave < 0.04 s (1 mm) and < 1/3 of R wave amplitude in the 
same lead 

To that extent, the data acquisition module in Figure 3.4 is set to acquire the 

following leads purely in the analog format: two of the limb leads and the six chest 

leads (i.e., Leads I, II, V1, V2, V3, V4, V5 and V6). Besides, in a typical 

implementation of the 12-lead ECG, the augmented leads (i.e., aVR, aVL, and 

aVF) and Lead III are computed digitally [66]. The data acquisition module converts 

analog ECG signals (i.e., voltage) to a digitized format. However, the received 

signals are usually accompanied by noise and distortions due to motion artifacts 

and lead misplacement. 
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Figure 3.4. XBeats hardware development kits. 

XBeats features three modes of operation to provide an ultimate user 

experience and high operability under various operation scenarios. Accordingly, 

the data acquisition process is governed by the proposed three modes of 

operations explicitly developed for the XBeats ECG patch. Moreover, the backend 

of the XBeats RPM framework is designed to support these modes of operation. 

The introduced modes of operations are as follows: 

1. The continuous mode provides an unbounded real-time, high-resolution 

data stream of the 12-lead ECG data transmitted directly to the backend of 

the RPM system. Physicians sometimes require this mode of operation if 

abnormal heart conditions are detected or the patient's medical condition 
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requires 24/7 monitoring. However, this mode has a significant power 

consumption profile that affects the battery lifetime of the device due to the 

continuous transmission of the collected 12-lead ECG raw data from the 

analog-to-digital module wirelessly to the backend system via a 

communication gateway. 

2. The offline mode records the 12-lead ECG data on an attached multimedia 

storage unit when no paired BLE device is nearby to connect to the ECG 

patch. This mode is enabled for the entire data acquisition period until a 

paired BLE device connects to the patch and synchronizes the data transfer 

to the backend system. 

3. The triggered mode is optimized for power saving. The device sends keep-

alive signals in normal heart conditions and only transmits ECG signals 

when a potential heart abnormality is detected. XBeats chooses from three 

data acquisition settings where the number of leads is configurable. The 

default setting for this operation mode is three ECG leads (e.g., Lead I, II 

and V1), which can be changed dynamically in real-time. The patient and 

health care provider can reconfigure the number of enabled ECG leads 

through a paired BLE-enabled device or the backend system. Accordingly, 

the backend system is designed to support these modes of operation. 
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Figure 3.5. Data Acquisition flowchart of the XBeats modes of operation. 
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Figure 3.5 shows the data acquisition flow diagram integrated into the 

firmware of the proposed ECG patch. The device runs the default operation mode 

until a new instruction is received from a connected paired BLE device. Once the 

connection is established, the instructions are received through the connected BLE 

device. Then, XBeats starts a service routine that listens for new instructions to 

update the current operation mode. The service routine expects one of three 

instructions to be received at a time. One of the expected instructions is to activate 

the continuous mode to perform a 12-lead ECG test. This instruction comes 

directly from the user through the mobile application or as instructed by the 

healthcare provider through the backend system. The second instruction involves 

handling the results of the classification module. The classification module 

analyzes the ECG data continuously on an edge device upon receiving it from the 

ECG patch. The classification results are transmitted to the mobile application, and 

then the mobile application sends instructions to the ECG patch with the 

classification results. The ECG patch will continue in the triggered operation mode 

with three leads (i.e., Leads I, II and aVF) when the heart activity is normal. On the 

other hand, in case of abnormal heart conditions, the classification module will 

return the number of leads to be activated and start the triggered mode. 

3.2.2 ECG Data Transmission Using BLE Technologies 

Data transmission constitutes the second step of the data pipeline in the 

XBeats ECG patch while continuously exchanging data with the backend. 
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Furthermore, patients and their healthcare providers can display related vital 

information about the heart from the recorded ECG signals. The ECG patch can 

also connect to smart home devices to establish a direct communication channel 

with the backend notification modules when necessary to send alerts to physicians 

or healthcare providers if abnormal heart conditions are detected. The system can 

be configured to call the emergency in extreme cases when the patient is at 

imminent risk. 

The data transmission hardware features a multi-standard wireless 

microcontroller (MCU) with a radio frequency (RF) core that fully supports BLE 

version 5.2. The MCU enables seamless data transmission in real-time to the 

backend system. The. BLE version 5.2 upgrades the data transfer rate two times 

the rate of the previous Bluetooth version 4.2, from 1-Mbps to 2-Mbps. Moreover, 

the BLE version 5.2 protocol stack can be integrated into the Realtime Operating 

System (RTOS) [67] as an additional software layer. Accordingly, in RTOS, all 

BLE-related functions run in a separate task. The communication between BLE-

based sensors and smart devices is defined using Generic Access Profile (GAP) 

and Generic Attribute (GATT) protocols [68]. 

GATT defines how two BLE devices exchange data, while GAP constitutes a 

standard way for BLE devices to communicate with the outside world. A complete 

GATT transaction constitutes three high-level objects Profiles, Services and 

Characteristics. For instance, the Heart Rate Profile (HRP) is used in devices 

measuring heart rate [69]. The HRP profile has two mandatory services: (1) heart 



64 
 

rate and (2) device information services. Supplementary services can also be 

added, for instance, Battery Service (BAS), to indicate the battery's current level. 

Accordingly, BLE provides a versatile set of full-stack solutions to meet the needs 

for low-power wireless connectivity. However, a Profile [68] has to be defined to 

exchange data between BLE-enabled peripherals. According to Bluetooth SIG 

[70], a profile with its related services can be selected from the Bluetooth SIG's 

predefined profiles and services if they match the application's specifications or 

develop custom services to match the application's specifications [71]. There is no 

standard BLE profile to deliver the standard 12-lead ECG services [70]. Therefore, 

we create a customized BLE profile to enable our proposed to provide the 

designed services in our framework (i.e., operation modes and ECG data 

streaming).  

To that extent, the proposed ECG BLE "Profile" describes the number of 

GATT "Services" and GATT "Characteristics" that should be used to achieve the 

addressed functionalities of the proposed ECG patch. The smallest addressable 

unit of data used by the ECG BLE profile is called an "Attribute". Thus, a set of 

defined "Attributes" constitutes a BLE "Characteristic". One "Characteristic" 

consists of an at least value attribute and a declaration attribute which describes 

whether the value attribute can be read or written. Consequently, a collection of 

"Characteristics" constitutes a BLE service, while one or more services define a 

BLE "Profile" [71]. The BLE profile describes how services deliver the application's 
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intended functionalities. Therefore, we design the communication and data 

transmission protocols XBeats ECG services using BLE standards and APIs. 
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Figure 3.6. The Proposed BLE Profile for XBeats communications and data 
transmission protocols. 

As shown in Figure 3.6, the designed "ECG Profile" has three services that 

correspond to operation modes defined on the ECG patch and the edge 

classification service. The first service in the ECG profile is the triggered mode 
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containing three characteristics. The first characteristic holds information about the 

active number of leads. In contrast, the second Characteristic is a flag that refers 

to the status of real-time streaming, whether it is currently enabled or disabled. The 

second "Service" is for the continuous operation mode where ECG leads are fixed 

to a 12 leads configuration, and the stream flag characteristic is enabled by default. 

Lastly, we implement the "ECG Classification" service for our novel adaptive 

modes of operation. The "ECG Classification" service contains two characteristics. 

The first characteristic holds the current heart condition results from the 

classification implemented on the edge device. The other "Characteristic" carries 

the recommended ECG leads to be activated based on the results from the 

classification function on the edge device. 

3.2.3 ECG Data Logging Operations 

Data logging and local storage are essential components in a critical safety 

system where backtracking is vital for life-saving decisions. The proposed system 

integrates a high-performance and reliable Multimedia Card (MMC) for continuous 

data logging. The data logging process is encapsulated in an independent task 

running simultaneously with the data acquisition task. A data retention service 

routine is also integrated within the system for extended periods, as cardiologists 

recommend. Consequently, the device monitors all incoming ECG signals for 

critical heart condition detection. After this grace period, newly received data is not 

recorded until previously saved data is downloaded. This is another system design 
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decision with an alternative option that could be overwriting older data with recent 

ECG signals. Cardiologists recommend our design choice [72]. 

3.2.4 ECG Edge Data Classification 

XBeats integrates a binary classifier implemented on the edge to perform 

preliminary analysis on the collected raw ECG signal for anomaly detection. The 

classifier can be either integrated into a mobile application or an edge device with 

enough resources. Moreover, the objective of the edge classification module is to 

optimize data transmission to the backend system compared to the continuous 

mode of operation. The objective of the classification protocol is to classify 

incoming ECG signals in real-time into two classes: "normal" and "abnormal". The 

classification module operates as a binary classifier, performing preliminary 

analysis on the collected raw ECG signal to determine whether it is normal or 

abnormal. The correlation between two consecutive PQRST vectors facilitates 

interpreting the patient's heart condition and discovering abnormalities if they exist. 

Therefore, when an irregular heartbeat is detected, the ECG patch shall notify the 

patient or the healthcare provider through the nearest paired mobile device or 

internet-connected gateway. 

However, data preprocessing is applied to the collected ECG data before we 

apply the classification task. The preprocessing phase extracts the PQRST 

features from the ECG waveform using the Pan Tompkins algorithm [73]. The 

PQRST feature points constitute one single heartbeat. The correlation between 
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two consecutive PQRST vectors facilitates interpreting the patient’s heart condition 

and discovering abnormalities if they exist. The preprocessing step includes 

detecting multiple R points (R-R interval), which helps measure the heart rate. 

Also, the PR interval, QRS duration, or QT interval contributes to revealing 

significant heart condition information. 

Accordingly, data cleaning and preprocessing are applied to the collected 

ECG data before the classification task. The preprocessing phase extracts the 

PQRST features from the ECG waveform. The PQRST feature points constitute 

one single heartbeat. The correlation between two consecutive PQRST vectors 

facilitates interpreting the patient's heart condition and discovering abnormalities if 

they exist. The preprocessing step includes detecting multiple R points (R-R 

interval), which helps measure the heart rate. Also, the PR interval, QRS duration, 

or QT interval contributes to revealing significant heart condition information. That, 

in return, adds more confidence to the binary classification detection task. The 

binary classification module (e.g., integrated into the mobile application) classifies 

the signals into just two categories; normal, which includes one type of signal, and 

abnormal, which represents all other types of signals.  

The binary classification of ECG signals utilizes the online PTB-XL arrhythmia 

database [56] to train the model on larger populations. The implemented model 

uses lead II and resamples the ECG data to 300 Hz to match the minimum 

sampling rate of the signals extracted from our ECG patch. The binary classifier 

classifies the signals into just two categories; normal, which includes one type of 
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heartbeats, and abnormal, which represents all other types of irregular heartbeats. 

Model training and verification are performed according to the proposed approach 

in [74], using 44 records for training and 22 for testing. The preprocessing phase 

includes an algorithm to extract 85 features from the ECG waveforms mentioned 

in [74]. Accordingly, we propose a feature selection technique called mutual 

information (MI) ranking criterion to select the ten most informative features to 

obtain high accuracy. This approach suits our system needs due to the power and 

time limitation in our system with high accuracy. Moreover, we only need to extract 

meaningful information about the heart condition, which adds more confidence to 

the binary classification task. The extracted information is translated into ten 

features: a collection of R–R-intervals, HBF (Hermite basis functions), and time-

domain morphology features explained in [74]. We test several algorithms that 

yield better results, including Random Forest, Support Vector Machine (SVM), 

Decision Tree, k-nearest neighbours (Knn), Logistics Regression, and Extra Trees. 

 XBeats Power Consumption Analysis 

The power consumption analysis of the XBeats ECG patch follows systematic 

power consumption profiling steps on the hardware components to study potential 

optimizations and extend the lifetime of the battery on the device. Each hardware 

component is analyzed individually to isolate the controlling parameters and 

provide a deep insight into the power consumption behaviour. The hardware 

components under investigation are the ECG analog to digital front end (AFE) 
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sensor, the wireless communication module, the sensor controller, the MCU, and 

the local storage unit. The power investigation of the ECG patch spans the 

hardware components mentioned earlier, from which a suitable optimization 

approach is selected. The optimization approaches work in tandem with the 

firmware operating the ECG patch to provide the highest efficiency possible 

regarding power consumption while maintaining the expected operational 

functionalities of the device. The power consumption profiling order follows the 

direction of the data acquisition pipeline on XBeats, as illustrated in the following 

points: 

1. The first step evaluates the power consumption profile of the data 

acquisition process performed by the analog to digital converter 

implemented on the ECG patch.  

2. The second step evaluates the data transmission process on XBeats using 

BLE communication links. This process implicitly evaluates the overall 

performance of the main microcontroller since the communication core 

enabling BLE is an integrated component shipped inside the MCU. 

3. The third step investigates various techniques to optimize the read/write 

operations performed on the local storage module. 

The firmware on XBeats constitutes a significant role in optimizing the power 

consumption behaviour on the device. To that extent, the investigation process 

includes steps to optimize the operation of hardware components controlled by the 

firmware on XBeats. The power consumption profile of each component is 
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investigated individually to isolate all related parameters concerning the power 

consumption. 

3.3.1 XBeats Power Analysis for Data Acquisition  

Two hardware components are utilized on XBeats to acquire ECG signals. 

The first component is the ADS1298 chip [75], a low-power AFE used for medical 

applications, ECG precisely. The second component is the sensor controller, which 

forwards the digitized ECG signals by the ADS1298 chip to the MCU. The 

ADS1298 chip comes with eight ADC channels responsible for collecting the 

analog ECG voltages from the patient body. 

The following parameters contribute to measuring the power consumption on 

the ADS1298 and the sensor controller at a base voltage 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 = 3𝑉𝑉 operational 

voltage: 

1. The power consumed per each active channel 𝑃𝑃𝑐𝑐ℎ Where each channel 

consumes 818 uW.  

2. The ECG patch uses the internal clock of the ADS1298 chip; therefore, the 

usage of  the internal oscillator power 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 adds approximately 120 uW. 

3. The power dissipation Pdiswhen the device is operating in the high-resolution 

mode at 500 samples per second (SPS) has a maximum power of 9.5 mW. 

4. Power consumption of the Right Leg Driver and the Wilson Terminal, 

respectively named 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑃𝑃𝑊𝑊𝑊𝑊𝑇𝑇. 
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5. Power consumption of the sensor controller in the active mode 𝑃𝑃𝑆𝑆𝑆𝑆 | 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

equals 90.3 uW at 2 MHz clock frequency. 

The overall power consumption by the ADS1298 chip is calculated using the 

following equation: 

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑛𝑛𝑐𝑐ℎ  × 𝑃𝑃𝑐𝑐ℎ +  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊 , where nch is the number of active 

channels ∈ [0: 8] 

The firmware of XBeats implements three modes of operation, as explained 

in Section 3.2.1. The three modes of operation are: continuous, triggered and 

disconnected modes. The continuous mode assumes unbounded 12-lead ECG 

data collection during the period when the operation mode is enabled. Therefore, 

the total power consumption is calculated by substituting the  𝑛𝑛𝑐𝑐ℎ by eight 

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. = (8 × 𝑃𝑃𝑐𝑐ℎ) + 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊 

And the total power consumed over time 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.  × 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

While in the triggered mode, the enabled channels nch | Trigg. ∈ {1, 3} 

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. = ( 𝑛𝑛𝑐𝑐ℎ | 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.  × 𝑃𝑃𝑐𝑐ℎ) +  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊 

And the total power consumed over time TTrigg. 
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𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.  × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. 

In the case of disconnected mode, the device maintains the same operation 

mode (i.e., number of active channels) just before a disconnectivity occurs. 

Therefore, the total power consumed by the ADS1298 chip and the sensor 

controller during the data acquisition processes is calculated using the following 

equations: 

𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 | 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. + 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 | 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. + 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 | 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. + (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑃𝑃𝑆𝑆𝑆𝑆 | 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) 

The objective of the power consumption profiling of the ADS is to minimize 

the time 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. in which the device operates in the continuous mode. Therefore, we 

override the original firmware operational flowchart to limit the continuous mode 

data acquisition to ten-second intervals and then revert to the triggered mode with 

three enabled channels. 
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Figure 3.7. The modified data acquisition flowchart of the XBeats modes of 
operation. 
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Accordingly, reducing the operation time of some modes of operation (i.e., 

the continuous mode) contributes to reducing the current consumption. To that 

extent, Figure 3.7 shows the modified data acquisition and modes of operations 

on the ECG patch with a new subroutine that automatically switches to the 

triggered mode each time the continuous mode is activated after ten seconds. 

3.3.2 XBeats Power Analysis for Data Transmission over BLE 

The power consumption profile of BLE data transmission varies depending on 

the available uplink/downlink throughputs (i.e., 1Mbps and 2Mbps) and payloads 

(i.e., 27 bytes and 251 bytes). Besides, connection events, connection intervals, 

slave latency and the supervision time-out of a BLE session are the main controlling 

parameters which dictate the power consumption profile of the BLE communication 

module. A connection event is when a peripheral and central device sends and 

receives data from one another on a specific channel at a particular time. The 

connection event takes place periodically every time interval. The time interval is 

measured in units of 1.25 ms. The minimum time interval in a standard BLE 

connection is six units (7.5 ms) and a maximum of 3200 units (4 seconds). The 

power consumption is inversely proportional to the connection interval in a BLE 

connection. If the connection interval is reduced, the connected BLE devices 

attempt to exchange connection events data more frequently; thus, additional 

current is consumed during the process. However, increasing the connection 



76 
 

interval period reduces the connection throughput and the time for sending data in 

either direction increases. 

Furthermore, the slave latency parameter allows the peripheral device to skip 

several consecutive connection events. The connection event skipping gives the 

slave device a chance to stay idle or sleep for a time equal to the number of skipped 

connection events (i.e., slave latency) multiplied by the default connection interval 

period. The slave latency values range from 0 (i.e., slave latency is disabled) to 

499. However, the slave latency parameter shall not exceed the following: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 / 2  

The Supervision Time-Out is calculated in units of 10 ms. The minimum 

supervision time-out is 100 ms (10 units), and the maximum value equals 32.0 

seconds (3200 units). In the scenario where the slave latency is enabled, the 

connection interval period becomes a factor of the effective connection interval, 

which is calculated using the following equation: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)  ∗  (1 +  [𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆]) 

Moreover, the time the BLE device spends communicating with the connected 

device is called the airtime 𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴 . Therefore, the power consumed by the 

communication module PBLE is calculated using the following equation: 

𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴  ×  𝐼𝐼𝑇𝑇𝑇𝑇 ×  𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 
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3.3.3 XBeats Data Logging & Storage Optimizations 

Data logging is an essential component of the ECG patch serving as a 

requirement for critical safety systems and life-saving conditions. Therefore, the 

ECG patch integrates a high-performance and reliable Multimedia Card (MMC). 

The objective is to optimize the number of times the data logging process on the 

ECG patch invokes the write operation on the MMC. The writing operation has two 

controlling parameters: the written data type (e.g., styled string, hexadecimal, or 

raw binary data) and the sector size on the MMC (data is written in multiples of the 

sector size). 

 XBeats RPM Framework 

Remote health monitoring and related technologies are being standardized 

and integrated into the healthcare domain, changing the status quo from only being 

used in wellness and lifestyle activities. ECG testing is one of the major health 

applications widely investigated by the research community and invested by the 

industry. RPM and real-time data analytics have significantly contributed to 

enhancing ECG monitoring and enabling healthcare providers to gain 24/7 access 

to their patients remotely, especially for patients with coronary diseases. This 

section presents a comprehensive RPM framework for real-time telehealth 

operations with scalable data monitoring, real-time analytics and decision making, 

fine-grained data access and robust notification mechanisms in emergencies and 

critical health conditions. We focus on the overall framework architecture, 
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integration of enabling technologies on the system level and deployment options. 

While we provide a use case application for patients with chronic heart conditions 

as they require continuous ECG monitoring in real-time. We are releasing the 

framework as open-source software to the active research community. 

3.4.1 The Promise of Remote Patient Monitoring 

In the last decade, RPM in the healthcare sector has witnessed an increasing 

number of enabling technologies due to the proliferation of the Internet of Things 

services and standard [60], [76]. Moreover, the advancements in electronics to the 

finest granularity enabled the development and manufacturing of a diversified 

range of wearable medical devices serving the RPM ecosystem [77]. In contrast, 

the establishment and availability of high-speed internet and communication 

protocols worldwide facilitated the rapid spread and acquisition of RPM services in 

the healthcare sector. Similarly, the emergence of artificial intelligence (AI) and 

machine learning (ML) extend the collection of raw data from heterogeneous 

sources and provide quality insights and diagnostic information related to the 

collected data [60], [78]. Data classifications and predictions enabled by AI and ML 

contribute to saving patients with critical health conditions by continuously 

analyzing their vitals and providing physicians with insights [12]. 

Most importantly, real-time data analytics contributes to automating 

emergency responses (i.e., call 911 or dispatch an ambulance) in critical 

conditions (i.e., heart attack). Lastly, data virtualization comes into place, 
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representing a gateway to the users (i.e., healthcare providers or patients), giving 

them valuable insights over the patient health conditions and control (e.g., 

adjusting the operation mode of the intended acquisition device or tuning ML 

parameters) [79]. To that extent, a typical RPM implementation constitutes various 

services like online resources, tracking, communication, automated analysis, 

diagnoses, and notification systems. Figure 3.8 shows the core elements of the 

XBeats RPM framework divided into four layers data acquisition, streaming, 

analytics and visualization. 
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• Mobile Devices
• Legacy Devices and 

Sensors
• Connectivity    (BLE, 
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• Prediction
• Classification

Data Visualization

• Realtime Dashboard
• Mobile Application
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Email, Push, etc.)

 

Figure 3.8. XBeats RPM framework life cycle. 

3.4.2 Data Acquisition as Enabling Technologies in RPM Systems 

RPM and wearable medical devices entail a strict set of requirements to be 

considered for medical applications and critical patient conditions. ECG data 

acquisition devices enable the delivery of RPM services by providing reliable data 

acquisition services to converge vital medical charts and information directly from 

the patient. Wearable ECG devices run on batteries, and due to the nature of an 

ECG test, an ECG device continuously acquires ECG signals without interruptions 
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during the acquisition period [10], [63], [64]. Contrary to other wearable RPM 

devices, the data collection occurs intermittently over long periods. In the past few 

years, there has been an expansion in the introduced wearable ECG and heart 

rate monitoring devices that serve various purposes. However, there are still gaps 

in the devices that support and provide a standard 12-lead ECG testing remotely. 

Therefore, this work introduces the XBeats ECG patch in Chapter 3 to address the 

limitations and overlapping components introduced in the literature and the 

healthcare industry. XBeats ECG patch provides standard 12-lead remote ECG 

monitoring for long-term heart monitoring using wearable and low-power 

technologies. 

3.4.3 Leveraging Data Streaming and Event Processing in RPM Systems 

Data streaming and event processing are the enabling technologies for RPM 

systems (i.e., on-demand e-health services) due to their efficiency and reliability in 

ingesting unbounded streams of data (e.g., ambulatory and intensive care units). 

The streaming engine transforms medical data collected in the data acquisition 

stage using standard IoT communication protocols (i.e., Message Queuing 

Telemetry Transport [80] (MQTT)) for data collection, which is suitable to serve 

and accommodate the needs of the healthcare systems. Streaming engines 

enable many-to-many communication channels between the data acquisition 

services and services provided by the backend of an RPM system (i.e., data 

analytics and storage). The many-to-many communication architecture makes the 
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data available to the backend services in real-time, regardless of the number of 

the enabled services [81]. A typical scenario is when a standard ECG test is 

performed remotely, where an ECG patch is attached to the patient's body, 

transmitting the collected ECG data to the streaming engine in real-time using the 

appropriate communication protocol (i.e., MQTT). This scenario can be extended 

to a larger global scale where more than one patient utilizes remote ECG testing 

services. 

On the other hand, once the data is transmitted to the streaming engine, the 

streaming engine makes the data available to the intended ECG services at the 

backend component of the RPM system. The services include heart rate 

calculation, ECG signal features extraction, ECG signals classification and 

visualization services. The services above would run independently in isolated 

environments by ingesting the data streamed to the dedicated streaming channels 

for ECG data. The separation between services using the many-to-many 

architecture implies micro-services architecture design [82]. Contrary to the client-

server architectures [82], [83], where many-to-one communications are used, 

many devices or sensors (i.e., clients) transmit data to the service provider (i.e., 

server). Moreover, client-server architectures are centralized; for example, the 

whole network will be disrupted if the main server fails. Therefore, client-server 

architectures lack robustness in regard to failure optimizations. Accordingly, 

modern service providers utilize object-oriented architectures and micro-services 

[84] due to increased maintainability, scalability, and fault tolerance techniques. 
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3.4.4 Real-time Data Analytics in RPM Systems 

The data acquisition and streaming layers are considered passive data 

collection layers due to the absence of intelligence or decision-making. In contrast, 

the data analytics layer permits healthcare providers to focus on diagnosing, 

educating, and treating patients, theoretically improving the productivity and 

efficiency of the care provided. The data analytics layer in an RPM encompasses 

the life cycle of machine learning or deep learning processes starting from training, 

modelling, classification and prediction. A use case of the data analytics stage is 

performing analytics on ECG data to diagnose heart conditions from various 

candidate heart diseases detected during the classification process. Due to parallel 

classifications, the analytics stage can report more than one disease from a single 

input ECG signal. The capabilities of the streaming engine enable the introduced 

concept of parallel classifications by providing unbounded streaming channels to 

the installed classification functions. The installed classification functions are 

design decisions as they are trained and modelled based on the available data. 

This feature defines a new benchmark, in contrast to ECG analytics in the existing 

benchmarks [49, 60, 61], where only a single class of heart diseases is detected 

during the classification process. 

Furthermore, the new feature can provide informative reports (e.g., ECG 

reports) with multiple candidate diseases (e.g., heart diseases) that facilitate the 

decision-making process by physicians. For example, two or more heart diseases 

detected from the same ECG test add more confidence to the diagnostic results of 
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the heart condition of the patient. Moreover, the design decision can also include 

deploying multiple classifications and prediction models depending on availability. 

3.4.5 Data Visualization and Notifications in RPM Systems 

Data visualization and notifications simplify the sophistication of the previous 

layers of an RPM system. The virtualization layer includes various technologies for 

displaying medical information collected and processed in previous stages to the 

end-user. The healthcare provider gets full access to medical charts and vital 

information relevant to the patients in real-time through a user-friendly interface 

which can be a web interface through the Internet or mobile devices. A practical 

use case would be the applications of remote ECG monitoring, where a patient 

who wears an ECG patch can collect ECG signals in real-time using the XBeats 

ECG patch. Then, the visualization layer in an RPM system displays the ECG 

signals in real-time using dedicated graphical user interfaces (GUI). This also 

entitles healthcare providers and doctors to visualize the patient's current health 

conditions in real-time and retrieve historical data when needed. 

On the other hand, the RPM framework provides application programming 

interfaces (APIs) for smartphones to display ECG signals and vital information 

about the patient. Then utilize notification features embedded in smart home 

devices to issue alerts to the patient when abnormal health conditions are detected 

(e.g., heart attacks). Similarly, the visualization layer allows broadcast notifications 
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through paired smart home devices in case of emergencies and quickly 

dispatching emergency responses. 

 XBeats RPM Framework and Software Specifications 

This section explains the design specifications of the XBeats RPM framework 

for unbounded ECG data acquisition, streaming and real-time analytics. The 

software specifications of a typical RPM framework constitute five layers, as 

explained in Section 3.4.1. The five layers are applied to the XBeats RPM 

framework, as shown in Figure 3.9 and discussed in the following sections.  

The data acquisition layer complements the operation of the XBeats ECG 

patch as it provides unbounded data streaming channels to all connected XBeats 

devices. Then, the streaming engine ingests the incoming ECG data from all 

connected devices in real-time. Similarly, the streaming engine creates outbound 

communication channels for the data analytics, storage and visualization layers in 

the framework. The data streaming engine receives the incoming ECG data and 

performs deep analytics using machine learning techniques while building 

correlations with previous health charts concerning each patient. To that extent, 

the data storage layer logs the ECG collected ECG signals in raw format for further 

diagnoses by healthcare providers when needed. In addition, the storage layer 

saves all related patient vital and health information (i.e., analytics results, previous 

health conditions and diagnoses). Lastly, the visualization layer is a crucial 

component in the proposed framework as it acts as the first line of interaction with 
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the framework. Healthcare providers and physicians utilize the visualization layer 

to display ECG signals in real-time, analytics results, heart conditions and relevant 

health information. Similarly, patients and healthcare providers receive 

notifications when irregular heart activities are detected. Accordingly, each 

component is explained in detail in the following subsections. 
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Figure 3.9. A high-level architecture design of the XBeats RPM framework. 

3.5.1 XBeats Real-time Data Streaming 

The XBeats RPM framework design enables real-time data streaming and 

decision-making for healthcare providers. The framework incorporates the latest 

data streaming and pipelining technologies while utilizing reliable and lightweight 

protocols for communication between all functional components. The backend 

system utilizes a scalable, fault-tolerant, and fast streaming engine to 

accommodate the high volume of streamed ECG data and vital information. The 
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backend system gathers all the data acquired by the ECG patch, stores it in a high-

performance database, and trains machine learning algorithms to perform real-

time data diagnosis and predictions. The connection between the XBeats ECG 

patch and the backend system in the RPM framework is enabled through the 

integration of the latest Internet of Things (IoT) communication protocols (i.e., BLE 

and MQTT [80]). Data streaming from the ECG patch is carried out by Apache 

Kafka [16], a high-performance open-source real-time streaming engine. Kafka 

supports unbounded data streams with a latency (i.e., less than 10 milliseconds) 

and allows the integration of event processing frameworks like KsqlDB [85] to carry 

out advanced classification processes. Moreover, the proposed framework 

includes a modular frontend user interface for displaying the real-time ECG stream, 

preliminary diagnosis, records access and management, and robust notification 

service that interfaces with smart home devices. 

3.5.2 XBeats Real-time Data Analytics 

The real-time ECG data analytics layer is an integrated part of the XBeats 

RPM framework. It applies event processing techniques to the received ECG data 

and provides accurate diagnoses of the current heart conditions. While the 

streaming engine processes the ECG data, the data analytics component 

investigates each ECG lead individually (up to 12 leads) to increase confidence in 

the classification results. The framework builds a confidence level in the 

classification process by leveraging the capabilities of the ECG patch in collecting 
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ECG data using multiple ECG leads up to the standard 12-lead configurations. The 

confidence levels constitute the fusion of diagnostic results from multiple 

classification algorithms applied to the same data while trying various 

combinations of ECG leads. Then the results are sent to the healthcare providers 

as a report for each patient. Therefore, the data analytics component can classify 

multiple heart diseases if existent from the same ECG test, which imitates the ECG 

diagnosis process performed by cardiologists.  

The XBeats framework comprises eight integrated system-level components, 

including the XBeats ECG patch, message queueing systems, real-time streaming 

engine, event processing engine, data storage, IoT platform, data analytics, and 

notification systems shown in Figure 3.9. The following section explains the 

integration process of the components while highlighting the objective of each 

component in delivering a comprehensive RPM framework for ECG data 

monitoring and analytics. 

 System Integration Steps of the XBeats RPM Framework 

The first step involves developing a custom embedded BLE library on the 

ECG patch to utilize the BLE communication module on the ECG patch. The BLE 

library provides access to the real-time digitized ECG data acquired by the XBeats 

ECG patch to the nearest paired mobile device [86]. The library controls the 

operation modes (i.e., continuous, triggered, and offline) enabled on XBeats, which 

involves the number of enabled ECG leads activated during the acquisition period. 
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Moreover, the library sets a feedback communication between the activated 

operation mode and the results of the analytics modules. The analytics results 

include the classification of the current ECG signals (e.g., regular or irregular 

heartbeats) accompanied by the number of ECG leads to be activated in the case 

of the triggered mode of operation. Besides providing an interface to control the 

modes of operation on the ECG patch, the library utilizes BLE GATT services with 

two characteristics: the configuration characteristics (i.e., operation modes 

controller, number of activated leads) and the data stream characteristic. The data 

stream characteristic is used to transmit the collected ECG data during the data 

acquisition process on the ECG patch to the nearest paired mobile device. 

The second step includes a custom mobile application implemented using 

the Android operating system that works as an internet gateway for the ECG patch 

and a user interface for the end-user to display vital information and ECG signals. 

The ECG waveforms (i.e., signals) are displayed in real-time on the mobile 

application as received from the ECG patch. Consequently, once the mobile 

application receives and verifies the data, it publishes the data directly to the 

backend of the RPM framework in real-time. The mobile application comprises 

three main screens (i.e., activities). The first activity handles connectivity and 

pairing to the nearest ECG patch for first-time connections. Then the second 

activity comes in place, enabling the user to select the intended mode of operation 

(i.e., continuous, triggered, and offline) and the number of activated ECG leads. 

The third activity displays the ECG signals in real-time along with the results of the 
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performed analytics of the ECG data by the data analytics step of the RPM 

framework. Similarly, the mobile application process notification received from the 

backend concerning the current heart conditions of the patient and provides a 

gateway to broadcast notifications using smart home devices. On the other hand, 

a background service starts independent of the selected activity; this service 

connects (i.e., subscribes) to an MQTT topic available through the RPM 

framework. The MQTT topic is where the analytics results and notifications 

generated by the backend system are forwarded to the intended (i.e., subscribed) 

end-user. 

The third step requires the presence of an MQTT message broker (e.g., 

HiveMQ [87]) for handling communication the gateway for the ECG patch (i.e., 

mobile device or smart home device) and backend system reliably and securely 

using an IoT standard protocol (i.e., MQTT). The MQTT protocol provides bi-

directional communications between the mobile device and the backend system 

using the publish/subscribe architecture. The publish/subscribe architecture uses 

the term "Topic" in defining data pipelines for exchanging messages between the 

backend system and mobile devices. As mentioned earlier, the mobile application 

developed for the ECG patch uses the subscribe services provided by the MQTT 

server to receive messages and notifications from the RPM framework. While the 

MQTT server provides communication channels (i.e., MQTT topics) for publishing 

mainly ECG signals and related patient information. 
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The fourth step builds an API bridge between core framework features, 

connecting three layers in the XBeats RPM framework: the data between the 

acquisition, the streaming, and the visualization layers. The framework utilizes the 

ThingsBoard [53] platform in enabling the integration between the messaging 

broker (i.e., MQTT server) in the acquisition layer and the streaming engine layer 

(e.g., Apache Kafka). The choice of ThingsBoard is a design decision selection 

that can be replaced with another platform that provides the same functionalities. 

The MQTT API bridge allows users to connect to external MQTT brokers, 

subscribe to data streams from the external brokers and convert any payload from 

the connected ECG patch to ThingsBoard message format. This feature utilizes 

connections to external MQTT brokers or connectivity providers with an MQTT-

based back-end, making the RPM framework independent of specific providers. 

Moreover, the MQTT API bridge enables connectivity to more than one broker or 

provider, giving the RPM framework the edge to expand horizontally. Similarly, the 

API allows the integration of external Kafka brokers for data streaming services 

and connectivity to the ECG data pipeline in the framework. Moreover, 

ThingsBoard provides a highly customizable rule engine that enables the proposed 

RPM framework to process complex events. The rule engine has various filters 

applied to inbound/outbound messages or events between the backend system 

and connected devices. The proposed RPM framework leverages the rule engine 

to filter messages between participating entities (i.e., ECG patch, mobile 

applications, and the backend system). Moreover, we use ThingsBoard to send 
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notifications (e.g., push notifications, emails, messages) using various cloud 

service providers (e.g., AWS, GCP). 

The fifth step utilizes the services of streaming engines (e.g., Kafka 

Confluent [88]), where medical data is processed and sent to the data analytics 

layer. The streaming engine uses microservices concepts as it allows the data 

analytics layer in the proposed framework to deploy and update new models 

independently without rebuilding the entire framework. The framework utilizes the 

microservices architecture instead of the traditional 3-tire application architecture 

referring to the client-server architecture [83]. The three-tier structure includes a 

user interface for visualization, business logic and data access control. However, 

this structure is outdated since it was initially intended for application development 

before the era of cloud and public computing. Therefore, it is challenging to use 

the three-tier architecture, as each component becomes large and complex to 

manage over time.  

In contrast, the microservices architecture designs complex applications as a 

collection of services that are fully decoupled from the application. This collection 

of services and applications can be implemented in different programming 

languages and frameworks. Moreover, they communicate using different protocols 

where each microservice is only responsible for a specific purpose or task. This 

way, microservices abstract away implementation details and only expose the 

application through application programming interfaces APIs. Accordingly, the 

framework utilizes Apache Kafka for implementing the streaming engine. Kafka 
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provides data pipelines for streaming and event processing and allows the 

integration of distributed processing frameworks like the ksqlDB [85]. The Kafka 

ecosystem services are delivered through five core APIs [16], as shown in Figure 

3.10: Producer, Consumer, Streams, Connect, and Admin. These APIs assume 

microservices architecture, providing three main functionalities: publish/subscribe 

operations, process streams in real-time, and store received records using fault-

tolerant and scalable methodologies. Moreover, Kafka uses the term "Topic" to 

define streaming channels between all participating entities. 
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Figure 3.10. Kafka APIs Integration. 
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The Kafka APIs deliver three main functionalities, publish and manage 

subscriptions to streaming engines, process streams in real-time, and store 

received records using fault-tolerant and scalable methodologies. The Producer 

API allows publishing data streams to the Kafka engine to the designated topics. 

Similarly, patients using the XBeats ECG patch and healthcare providers utilize 

the Produce API to publish medical information and historical results as much as 

needed. The Consumer API allows consuming messages from the designated 

Kafka topics to end-users by integrating different telemetry and communication 

protocols (e.g., MQTT, CoAP). The Streams API gives access to the streaming 

processor in Kafka, consuming ECG data streams and producing an output stream 

of the processed data to one or more output topics. Effectively the Streams API 

transforms the input streams into output streams essentially for data analytics 

engines like Keras and TensorFlow libraries to apply deep learning algorithms. The 

Connect API provides an agile interface that continually pulls data directly from a 

data source into Kafka or pushes from Kafka into a sink system or an application. 

Moreover, the Kafka engine integrates the ksqlDB [85] to build a robust streaming 

engine for Apache Kafka, which leverages the power of stream processing using 

just a few SQL statements and familiarity with building traditional applications on 

a relational database. The Admin API simplifies monitoring all parts contributing to 

building Kafka's ecosystem as it allows managing and inspecting topics, brokers, 

and other Kafka objects. 
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The sixth step implements the Streams API of the Kafka system into the 

proposed framework, giving access to a streaming processor that consumes 

inbound streams. Then effectively transforms the streams into useful data used by 

the advanced Machine Learning (ML) algorithms and Convolutional Neural 

Networks (CNN) applied in the sixth component. The selected streaming processor 

in the proposed framework is ksqlDB. ksqlDB processes the data and sends it to 

the backend analytics component using RESTful APIs. Therefore, the framework 

integrates the features of Kafka and ksqlDB to apply advanced ML algorithms and 

CNN techniques. Then performs deep learning and analytics on the body sensor 

data collected by the ECG patch and draws correlations between real-time data 

and previous charts to predict some events. In contrast, the streaming engine 

processes ECG data, and the data analytics component investigates each ECG 

lead individually (up to 12 leads) to increase confidence in the classification results. 

We build the confidence level in the classification process by leveraging the 

capabilities of XBeats. The confidence levels constitute the fusion of diagnostic 

results from each ECG lead individually sent to the healthcare providers in unified 

reports for each patient. Therefore, the data analytics component can classify 

multiple heart diseases if existent from the same ECG test, which imitates the ECG 

diagnosis process performed by cardiologists. 

The seventh step implements the Connect API of the Kafka system into the 

proposed framework to build persistent connections with database management 

systems like  MongoDB. It provides a data pipeline that works as a sink offloading 
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data from Kafka topics to the database. Therefore, the Connect API, in this case, 

is used to establish a connection with a database server instance (e.g., MongoDB) 

for data exchange. Then, the raw data collected by the ECG patch received by the 

streaming channels (i.e., Kafka Topics) on Kafka is transferred to the connected 

database instance. Consequently, this feature enables the framework to retrieve 

previous data charts of the user either to display the data on a dashboard or to be 

used by the healthcare provider for further analysis. 

The eighth step designs and implements the user-interface and user-

experience stages, where the user or the healthcare provider interacts with the 

framework. A dashboard allows the healthcare provider to access all information 

related to the patients assigned to them and navigate through their records. 

Moreover, it notifies the healthcare provider if an abnormal activity by the patient 

has been detected. Abnormal health activities information comes directly from the 

analytics done on the collected ECG data by the data analytics and prediction 

layers. On the other hand, healthcare providers receive notifications regarding their 

patients' vital information and heart conditions—another real-time dashboard for 

patients to access their information. To that extent, notifications come into place 

as the framework utilizes cloud notification services using an email service 

provider, push notifications over MQTT using publish/subscribe to notification 

channels, and connectivity to smart home devices. Smart home devices provide a 

new edge in providing notification and alerting patients as these devices can 

broadcast alerts when a patient is enduring abnormal heart conditions. Moreover, 
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a smart home device can start a conversation using AI with the patient and through 

customized dialogues. The dialogues would contain questions asking patient-

specific questions that confirm certain conditions discovered by the data analytics 

layer at the backend layer of the framework. The framework automatically 

dispatches emergency responses if the real-time data analytics layer detects 

abnormal activities. 

 Summary 

This chapter proposes XBeats, an ECG patch for real-time and remote 

monitoring. The XBeats framework utilizes a suitable combination of solutions and 

methodologies for effectively performing a standard 12-lead remote ECG testing 

reproducing the same operations performed at hospitals and healthcare providers. 

While outlining the XBeats hardware components, we emphasize how they can 

help with providing remote reliable ECG testing at various levels, including high-

resolution data acquisition and reliable communication protocols. Through the use 

of BLE version 5.2, the XBeats ECG patch can stream ECG signals seamlessly to 

a nearby paired smartphone or smart home device. A custom BLE Profile is 

developed, named ECG BLE Profile; the custom BLE Profile encapsulates the 

functionalities embedded on the ECG patch in the form of services the user can 

subscribe to using their mobile device. Then we present the design and system 

integrations to build the XBeats RPM framework for remote patient monitoring and 

real-time data analytics. Accordingly, we discuss the specifications for a 



97 
 

comprehensive RPM framework along with the design goals. Besides, we 

emphasize the objectives of our proposed framework and the flexibility of our 

design as our architecture is not restricted or dependent on any service provider 

where all components can be replaced with other components that provide similar 

functionalities. 
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 XBeats Hardware Prototype and 
Supporting RPM Framework Implementations 

This chapter describes the software and hardware components used in 

building the XBeats ECG patch hardware prototype and the RPM framework to 

provide comprehensive real-time ECG data collection and analytics. The 

implementation steps are presented in the logical flow of operations and processes 

required to perform a standard 12-lead ECG test remotely using the proposed 

RPM framework. Therefore, the high-level order of operations of the proposed 

framework starts with the hardware prototype represented in the XBeats ECG 

patch. Then, the next level includes the operations at the backbone of the 

framework, where the core operations of real-time data streaming and analytics 

take place, as presented in Chapter 3. To that extent, the selection of software 

tools utilized in implementing the proposed framework are considered design 

decisions that can be replaced with other software or tools that provide the same 

functionalities. 

 XBeats Hardware Prototype 

The printed circuit board (PCB) prototype of the XBeats ECG patch in Figure 

4.1 constitutes four major components: A microcontroller with a wireless core for 

BLE communications, an analog frontend interface (AFE) for acquiring analog 
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ECG signals using a high-performance analog to digital converter and a micro-SD 

card module for data logging. 

 

Figure 4.1. XBeats PCB Hardware Prototype. 

4.1.1 XBeats Data Acquisition and Logging Implementation 

The prototype of XBeats is powered by the SimpleLink 32-bit Arm MCU 

(CC2652R), which runs as the central processor. The CC2652R chip can handle 

real-time operations needed for critical safety systems. The MCU features an ultra-

low power sensor controller powered by an Arm Cortex-M0 processor that offloads 

simple tasks like sensor readings of the main MCU. These features make the 
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selected MCU well-suited for high data acquisition applications. Moreover, the 

ECG patch utilizes a specialized medical AFE to take electrical signals from the 

heart and digitize them. The ADS1298 chip is integrated into the patch to digitize 

the acquired ECG signals. It comes with a 24-bit status word that reflects the status 

of the electrodes (i.e., probably attached, whether connected or not). Moreover, it 

offers two sampling modes: high-resolution and low-power modes. 

XBeats utilizes the proprietary Texas Instruments Real-Time Operating 

System (TI-RTOS) [67] to run the intended functionalities. TI-RTOS provides tools 

for managing and scheduling tasks using application layer functions. The TI-RTOS 

and ultra-low-power MCU combination supports longer battery life and makes 

applications more adaptable for real-time monitoring systems and wearable 

devices. The firmware on XBeats encapsulates the operations conducted by the 

MCU into tasks using the scheduling APIs of the onboard RTOS. Data acquisition, 

logging, and transmission are each encapsulated in separate tasks. Each task is 

ranked based on a pre-configured priority. The data acquisition task is set to 

receive the highest priority in the firmware operating on the hardware. While the 

data logging task has the second-highest priority after the data acquisition task, 

then the data transmission task. 

The data acquisition task on XBeats runs at a sampling rate ranging between 

250 to 500 SPS. In the case of the 250 SPS, the acquisition task captures one 

sample every four milliseconds (250 samples/1000 ms = 4 ms). The data 

acquisition task itself requires 1ms to capture each sample. Therefore, the 



101 
 

remaining time available for other tasks (e.g., compression, logging, and 

transmission) to operate after each sample acquisition equals 3 ms (4 ms - 1ms). 

This period is down to 1 ms at 500 SPS. However, in the proposed ECG patch, 

samples are processed in batches every second, in which the logging and 

transmission tasks are executed. Accordingly, a total of 750 ms are available for 

these two tasks when the sampling rate is 250. 

In comparison, at the 500 rates, a total of 500 ms is available for running 

these tasks. This setup is a stringent time constraint in our system, and the data 

logging and transmission tasks will have to be completed during this time interval. 

Otherwise, it will be interrupted by the data acquisition task since it has the highest 

priority according to the intended setup to ensure data consistency and integrity. 

Then the classification service comes in handy as it enables the ECG to 

dynamically configure the number of active ECG leads in the acquisition service. 

4.1.2 Data Transmission Implementation on XBeats 

Data transmission represents the main bottleneck in XBeats operations, 

found in the communication link using BLE as a transmission protocol. The ECG 

patch uses the low power mode of the BLE stack instead of the classical BLE 

mode. Therefore, implementing the required functionalities from XBeats 

constitutes developing a custom BLE profile to maximize data exchange and 

handling between the ECG patch and BLE-enabled smart devices. To that extent, 

the custom BLE profile; developed for the ECG patch; describes the number of 
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GATT services, and GATT characteristics should be used to achieve intended 

functionalities.  

The smallest addressable unit of data used by the ECG BLE profile is called 

an Attribute. Each Attribute has a 16-bit handle used when accessed via the 

Attribute protocol [71]. The Attribute "Type" field is identified using Universally 

Unique Identifiers (UUID), and it determines the kind of data present in the value 

of the attribute (e.g., Profile UUID, Service UUID, Characteristic UUID). Besides, 

the Attribute "Value" field carries data up to 512 bytes which are interpreted 

differently depending on the UUID type defined by the Bluetooth SIG or by the 

peripheral designers for custom applications [70]. Accordingly, a set of defined 

Attributes constitutes a BLE Characteristic. One Characteristic consists of at least 

value and declaration attribute. In contrast, the declaration attribute always comes 

before the value attribute, as shown in Table 4.1. It describes whether the value 

attribute can be read or written and contains the UUID of the Characteristic and 

the handle of the Characteristic Value attribute. 

Table 4-1. A BLE "Attribute" Data Type Definition. 

Handle Type (UUID) Value (Data) 
 

16 bits 16 or 128 bits 1 to 512 bytes 

Example Definition 

30 0x2800 F0:FF ECG BLE Profile Declaration 

33* 0x2803 02:22:00:AA:CC Characteristic Declaration 
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34 0xCCAA ECG BLE Service Characteristic Value 

Table 4-2. An Example of a BLE "Characteristic" Declaration. 

Bytes Definition Value Meaning 

0 Char Value Permissions 02 Permit Read on Characteristic 
Value 

1-2 Char Value's ATT handle 22:00 0x0022 = 33 

3-n Characteristic UUID AA:CC 0xCCAA 

The value of the Characteristic Declaration attribute with handle 33 is 

interpreted in Table 4.2. Noting that the value of the attribute value "ECG BLE 

Service" with handle 34 is up to the system how the value is interpreted because it 

is not defined by the Bluetooth SIG [70]. Consequently, a collection of 

Characteristics constitutes a BLE service, while one or more services define a BLE 

Profile. The BLE profile describes how services can deliver the intended 

functionalities of the application.  

Table 4.3 shows the attributes table of one of the ECG services available on 

XBeats; this service constitutes the continuous operation mode with 12-lead 

enabled. Services are shown in black; characteristics are bold, and characteristic 

values and descriptors are shown in grey. The other two services: "triggered mode 

service" and "ECG classification service" are designed similarly to the attributes in 

Table 4.3. Consequently, the combination of the three services allows XBeats to 

deliver a dynamic way of configuring the settings of the device in real-time as heart 
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conditions develop. We leverage the new features introduced in BLE version 5.2 

over earlier versions of BLE (e.g., BLE version 4.1). The first feature is the 

improved transmission rate (i.e., LE 2M PHY), allowing BLE-enabled devices to 

transfer data at a symbol rate of 2Mbps. This means we can transmit each bit in 

half the time compared to earlier BLE PHY, allowing a symbol rate of 1Mbps. 

Moreover, the Data Length Extensions (DLE) [91] enable the packet to carry 

a significantly larger payload (Up to 251 bytes vs. 27 when disabled), as introduced 

in BLE version 4.2. The integration of DLE has increased the size of data sent in 

a single packet and reduced the number of the mandatory Interframe Space (IFS) 

delays (i.e., 150μs) between each packet sent. Accordingly, the ECG patch can 

transmit more data in significantly less time. 

Table 4-3. The Proposed BLE Profile for XBeats: 12 Leads ECG service 

Attributes. 

Handle Type Type 
Hex / Text Value 

(default) 
GATT Server 
Permissions 

Notes 

0x10 0x2800 
GATT_PRIMARY_SE

RVICE_UUID 

0xBA55 

(ECG_SERV_UUID

) 

GATT_PERMIT_

READ 

Start of ECG 

Profile Service 

0x11 0x2803 
ECG_PROFILE_CHA

RACTER1_UUID 

12 00 (handle: 
0x0012) GATT_PERMIT_

READ 
Characteristic 
1 declaration AD 2B (UUID: 

0x2BAD) 

0x12 0x2BAD 
FULL_ECG_12LEAD_

UUID 
00::00 (224 bytes) 

GATT_PERMIT_R

EAD | 
ECG data value 
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GATT_PERMIT_N

OTIFY 

0x13 0x2902 
GATT_CLIENT_CHAR

_CFG_UUID 
00:00 (2 bytes) 

GATT_PERMIT_R

EAD | 

GATT_PERMIT_

WRITE 

BLE 

characteristic 

notifications 

enable/disable 

0x14 0x2901 
GATT_CHAR_USER_

DESC_UUID 

"ECG Data Stream" 

(15 bytes) 

GATT_PERMIT_

READ 

Characteristic 1 

user description 

0x15 0x2803 
ECG_PROFILE_CHA

RACTER2_UUID 

16 00 (handle: 
0x0016) GATT_PERMIT_

READ 
Characteristic 
2 declaration AD 3B (UUID: 

0x3BAD) 

0x16 0x3BAD ECG_NUM_CHANS 0x08 (1 byte) 
GATT_PERMIT_

READ 

Number of ECG 

Channels 

0x17 0x2901 
GATT_CHAR_USER_

DESC_UUID 

"Number of ECG 

Channels" (22 

bytes) 

GATT_PERMIT_

READ 

Characteristic 2 

user description 

0x18 0x2803 
ECG_PROFILE_CHA

RACTER3_UUID 

19 00 (handle: 
0x0019) GATT_PERMIT_

READ 
Characteristic 
3 declaration CD 2B (UUID: 

0x2BCD) 

0x19 0x2BCD 
ECG_STREAM_FLAG

_COMMAND 
0x00 (1 byte) 

GATT_PERMIT_R

EAD | 

GATT_PERMIT_

WRITE 

"01:00" to 

enable / "00:00" 

to disable 

0x1A 0x2901 
GATT_CHAR_USER_

DESC_UUID 

"Stream Flag 

Status" (18 bytes) 

GATT_PERMIT_

READ 

Characteristic 3 

user description 



106 
 

 XBeats RPM Prototype Implementation 

This section lays out the tools and software used in building the proposed 

RPM framework, as shown in Figure 4.2. The core of the proposed framework 

leverages the Confluent platform [88], which complements Kafka with additional 

features and integration tools using the concept of microservices. The Confluent 

Platform is used as an assimilation layer working with all data stream pipelines. 

The framework design focuses on the functionalities and services provided to the 

end user. Therefore, we present the tools and software used to implement the 

proposed framework; however, the selected tools and software are not limited to 

specific software as they can be replaced by other software with similar 

functionalities. 

4.2.1 XBeats RPM Framework Infrastructure 

Two types of implementations are used to deploy the functional components 

of the framework, which are container-based and native-based installations. A 

container-based installation is a trending approach in software development and 

operations (i.e., DevOps). Docker represents one of the famous container 

providers with open-source distributions. Moreover, native-installation methods 

are utilized to install other software components. Our implementation of the RPM 

framework provides a use-case application for real-time ECG heart monitoring and 

analytics. The deployment of the RPM framework takes place on a managed virtual 

machine (VM). The VM comes with an Ubuntu Server (Version 22.04 LTS) as the 
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operating system, where the VM comes with 64 gigabytes (GB) of RAM, 32 virtual 

cores and 160 GB of storage. While we install the Docker engine and Docker 

compose library to run multi-container Docker applications. The streaming engine 

utilizes the Confluent Kafka platform, and the event streaming engine provided by 

ksqlDB are configured and deployed using Docker compose commands. While the 

message queuing broker for MQTT (i.e., HiveMQ) is installed using the native 

library for Unix-based systems. HiveMQ [87] is a java-based open-source MQTT 

broker providing a reliable messaging platform and implements all MQTT protocol 

standard features. 

 

Figure 4.2. A high-level implementation of the XBeats RPM framework. 

Similarly, we install ThingsBoard [53] using the on-premises installation 

distribution for Ubuntu 20.04 LTS. Accordingly, three different types of databases 

are installed. Two databases explicitly serve ThingsBoard using a hybrid approach, 
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PostgreSQL database to store all entities' information (e.g., users, devices, assets 

and dashboards). On the other hand, the Cassandra database is used to save 

time-series data. Cassandra database provides a NoSQL database management 

system designed to handle large amounts of real-time data across distributed 

servers. Therefore, this setup avoids single-point failures at different framework 

levels, where all services use distributed architectures with clusters of at least two 

brokers for each service. 

 Data Flow and Configurations for XBeats RPM Framework 

We give an example of how a healthcare provider can use the XBeats RPM 

framework to perform remote ECG monitoring for patients with chronic heart 

diseases. ECG testing collects data at significantly high acquisition rates (e.g., 500 

samples per second). The ECG test requires reliable unbounded streaming 

services to handle large streams of incoming data in real-time. To this extent, we 

explain the data pipeline and workflow as shown in Figure 4.3 for an ECG test 

using the XBeats RPM framework. Each step in the data pipeline is labelled 1, 2a, 

3a, and 3b. The initial stage starts by collecting ECG signals using the XBeats 

ECG patch. Once the ECG patch is switched on, the device connects to the 

nearest paired mobile device and sends the collected information as a data stream 

using BLE. Then, the smartphone runs our custom-designed mobile application to 

process the ongoing ECG data streams from the ECG patch and forwards them to 

the backend while using the MQTT protocol provided by the message queueing 
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server. If the device is connecting to the backend for the first time, we enable 

automated device provisioning with the help of the MQTT topic filter feature. The 

topics are designed using the wildcard feature in MQTT, allowing the mobile 

application to subscribe to multiple topics simultaneously. Therefore, this feature 

enables the framework to register a new device if the topic the mobile device tries 

to subscribe to is not already registered. 
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Figure 4.3. Data Pipeline and Workflow of the XBeats RPM Framework. 
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The following represents the topic definition used by our mobile application to 

register and subscribe to the ECG services provided by the XBeats RPM 

framework: 

Topic: health/mqtt-integration/sensors/ecg/+(device_id)/data 

To that extent, the mobile application (step-2a) publishes the collected sensor 

data in patches every 10 seconds to the backend system through an MQTT 

connection established with the MQTT broker. We use the following data structure 

in each patch of data published by the mobile application: 

{{"device_{id}": "SN-002", "data": %s}} 

The ThingsBoard MQTT Integration acts as an MQTT client. It subscribes to 

topics and converts the data into telemetry and attribute updates. The MQTT 

broker transfers the data from each topic to the middleware layer represented in 

the ThingsBoard platform. We process the ECG data received on ThingsBoard 

(step-2b) via the MQTT integration tool by defining filters on the topics using the 

device ID. Consequently, we publish (step-2c) the filtered MQTT data to the Kafka 

streaming engine, where we perform data analytics operations on the ECG data. 

Consequently, event and stream processing techniques are applied to create 

dedicated streams for data analytics. The implementation utilizes the Kafka 

Streams API to establish a connection to the ksqlDB server; ideally, this step is 

considered the entry point to ingest (step-3) the collected data for the classification 

and analytics components of the proposed framework. Accordingly, we use our 

custom user-defined functions (UDF) to make automated callings to the ECG data 
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analytics API. Python Flask is used to implement a web API to standardize the 

usage of the data analytics functions. The analytics functions utilize machine 

learning (ML) and deep learning algorithms. Likewise, the web API enables the 

framework to seamlessly add new analytics functions without disturbing the 

operation lifecycle of the framework. The current web API implementation 

integrates two functions. The first function integrates a binary classification ML 

function to classify ECG data into normal or abnormal signals. The second function 

detects the PQRST feature points from each ECG signal and calculates the heart 

rate. Then, the ksqlDB CLI is used to create (step-4a) a persistent query that 

generates a new Kafka topic aggregating the received ECG data every 60 

seconds, as illustrated in Figure 4.4. 

1    CREATE STREAM ECG_RAW_DATA_AGGREGATED WITH  
2       (KAFKA_TOPIC = 'ECG_RAW_DATA_AGGREGATED',  
3        PARTITIONS = 1, REPLICAS = 1)  
4    AS SELECT 
5        ECG_RAW_DATA_STREAM.DEVICE_ID, 
6    COLLECT_LIST (ECG_RAW_DATA_STREAM.DATA) KSQL_COL_0 
7        FROM ECG_RAW_DATA_STREAM 
8    WINDOW TUMBLING (SIZE 60 SECONDS)  
9    GROUP BY  
10       ECG_RAW_DATA_STREAM.DEVICE_ID 
11   HAVING (COUNT (ECG_RAW_DATA_STREAM.DATA) = 5) 
12   EMIT CHANGES; 

Figure 4.4. ksqlDB Query for Creating a New Data Streaming Topic with Data 
Aggregation every 60 Seconds. 
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The query automatically generates a new stream with the topic name 

”ECG_RAW_DATA_AGGREGATED” that aggregates the received ECG data to one 

data entry every 60 seconds. 

1    CREATE STREAM ECG_CLASSIFICATION WITH  
2        (KAFKA_TOPIC = 'ECG_CLASSIFICATION',  
3        PARTITIONS=1, REPLICAS = 1)  
4    AS SELECT  
5        ECG_RAW_DATA_AGGREGATED.DEVICENAME, 
6        BINARY_CLASSIFY_ECG_LEADS 
7          (ECG_RAW_DATA_AGGREGATED.DEVICENAME,  
8          ECG_RAW_DATA_AGGREGATED.DATA)->UDF_MESSAGE_ECG,  
9        ECG_RAW_DATA_AGGREGATED.TS 
10   FROM ECG_RAW_DATA_AGGREGATED 
11   EMIT CHANGES; 

Figure 4.5. ksqlDB Query for Creating a New Data Streaming Topic Calling the 
ML UDF on the Aggregated ECG Data Stream. 

Furthermore, the query in Figure 4.5 creates another data streaming topic 

ready for data analytics which executes the ”BINARY_CLASSIFY_ECG_LEADS” 

UDF. Then, the UDF function waits (step-4c) for the analytics results from the web 

API and then forwards (step-4d and -5) the results to a new Kafka topic. The topic 

carries the analytics results in a data tuple that references the original data used 

to perform the analytics. Moreover, we use the Kafka Connect API to establish a 

link with the MongoDB server and save (step-6a and -6b) the ECG data and the 

analytics results once a new data entry is added to the queue of any Kafka topic. 

Simultaneously, we use the Kafka integration tool in Things-Board to consume the 

(step-7) analytics results. 
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Figure 4.6. XBeats RPM Framework ThingsBoard Rule-chain Implementation.  

Consequently, a custom rule engine using ThingsBoard APIs is implemented, 

as shown in Figure 4.6, to prepare the telemetry ECG data and analytics results 

and route them to the intended destinations. Moreover, the rule-engine script 

checks (step-8a) the received analytics results for anomalies; if an anomaly is 

detected, a notification is published (step-8b) to the healthcare provider through 

push notifications to the developed mobile application. Likewise, notifications are 

sent like emails, text messages, push notifications, and emergency calls (step-9a) 
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to the healthcare provider in similar scenarios. Lastly, the healthcare provider gets 

access to a web-based dashboard that displays all vital information in real-time for 

all the patients who belong to the same healthcare provider. The healthcare 

provider can filter the data by the device ID or display ECG charts for specific 

periods. 

 Summary 

This chapter discusses the directions and steps for the XBeats hardware 

prototype and implementation of the underlying RPM framework supporting the 

operations of the XBeats ECG patch. The initial prototype of the XBeats ECG patch 

is provided, where we explain the reasons for selecting the presented hardware 

components. Then emphasize the technical specifications required to guarantee 

the intended functionalities for performing a standard 12-lead ECG testing. 

Furthermore, we highlight the design of the proposed BLE Profile, enabling the full 

potential of the ECG patch for a seamless wireless data exchange.  

In the quest to design a horizontally scalable RPM framework, we provide 

detailed instructions on the environment and tools needed to set up the framework. 

The instructions include a use-case scenario installing and integrating various 

framework components using containerized and native deployments techniques. 

Moreover, we present the required settings to utilize data streaming services for 

event processing and preparing the data for real-time analytics. The provided 

queries work in tandem with the custom UDFs proposed to utilize the web-based 
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data analytics APIs, emphasizing the ability to scale vertically concerning the 

enabled analytics functions. 
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 Experimental Evaluation and Results 

This chapter illustrates the performance evaluation steps used to evaluate the 

proposed XBeats ECG patch in providing continuous 12-lead ECG monitoring. 

Section 6.1 highlights the objectives of the conducted experiments in evaluating 

each component of XBeats while performing the intended remote ECG testing 

functionalities. The remainder of this chapter is organized as follows: Section 5.2 

briefly explains the data sets used in evaluating the XBeats ECG patch. The first 

data set is created by collecting data from the TechPatient CARDIO V4 heart 

simulator, while the other data set is the PTB-XL, the most extensive 12-lead ECG 

data set. Section 5.3 evaluates the data acquisition functionality on the XBeats 

ECG patch. The evaluation includes setting a benchmark for each data collection 

concerning the sampling rate and ECG signal quality, followed by evaluating the 

actual sampling rates offered by XBeats under various modes of operation using 

BLE for data transmission. Furthermore, we discuss the proposed binary 

classification module implemented on an edge node and evaluate the classification 

accuracy in detecting irregular heartbeats. Section 5.4 focuses on the power 

consumption analysis of XBeats and provides power optimization methods to save 

the battery lifetime of the ECG patch. Finally, the chapter is summarized in Section 

5.5. 
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 Experiments Objectives 

The evaluation techniques and testing scenarios are presented to verify and 

validate functional components in the proposed ECG framework. These include 

measurements of the operation modes, useful sampling rates, and energy 

consumption analysis concerning the hardware constraints. The hardware 

constraints in each of the following experiments are mainly related to the data 

acquisition time constraints, the quality and correctness of the acquired ECG 

signals, the accuracy of the classification algorithm and the overall battery lifetime. 

The experiments are organized in the same order the proposed framework is 

presented in terms of the functional components. Therefore, the first experiment 

evaluates the ECG data acquisition under different operation modes while running 

the data logging subroutine, followed by data transmission using BLE. The second 

evaluates the ECG data classification module. Then, we analytically calculate the 

energy consumption of the ECG patch over time. The experimental setup consists 

of the following steps: 

1. Collect ECG data in real-time using the prototype hardware of the ECG 

patch. The experiment includes acquiring ECG data at different modes of 

operation: standard 12-Lead ECG data under the "continuous" mode of 

operation; One and three ECG leads under the triggered mode of operation; 

standard 12-Lead ECG data under the offline mode of operation.  
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2. Evaluate the effective ECG data sampling rate compared to the theoretical 

data acquisition values provided by the analog to digital converter. The 

evaluation is performed on each of the operation modes above.  

3. Evaluate the proposed ECG classification service implemented on an edge 

node. The evaluation steps include comparing the accuracy and processing 

time of six different techniques, which is concluded by the selected 

classification techniques for our edge classification service.  

4. Calculate the power consumption footprint and the energy-saving of 

applying the triggered operation mode while activating the edge 

classification service. 

 Data Sources Description 

The TechPatient CARDIO V4 heart simulator generates standard 12-lead 

ECG data, where the ECG is connected via 12-lead ECG cables. Then the ECG 

patch collects ECG data to build an ECG dataset that is used in later stages for 

testing. Also, it removes the need for connecting the prototyped hardware to actual 

patients in this early research stage. The simulator can generate real-time ECG 

waveforms for different cardiac conditions and support two modes of operation: 

ECG mode and Rhythmic mode. The ECG mode provides realistic 12-lead ECG 

waveforms. The rhythmic mode simulates 45 predefined arrhythmias or heart 

diseases, such as ventricular tachycardia and ventricular fibrillation. The device 

can be configured in the ECG mode in 1 beat per minute (BPM) increments from 
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20 to 240 BPM and 2 BPM increments from 240 to 300 BPM. Therefore, we 

created two datasets using the ECG Simulator: normal and abnormal ECG signals 

to test the ECG patch. 

On the other hand, a larger dataset (i.e., PTB-XL [56]) is used for training and 

validating the developed classification algorithms and the dataset created from the 

TechPatient CARDIO V4 heart simulator [92] using the ECG patch. The purpose 

of using the PTB-XL is to extend the developed classification model to cover a 

broader range of heart diseases and provide better accuracy. The PTB-XL dataset 

[56] provides a freely accessible ECG dataset of unprecedented size hosted by 

PhysioNet. The dataset comprises 21837 clinical 12-lead ECG records measured 

simultaneously, representing the conventional 12-lead ECG records. The length of 

each record is 10 seconds. The tests were performed on 18885 subjects (52 % 

were male, and 48 % were female). The digitized signals are available at two 

sampling frequencies, 500 and 100 samples per second. Each record in the 

dataset has an attached header file describing each subject's demographic 

information, health conditions, doctor's comments, age, gender, diagnoses, 

number of records, number of samples, and the sampling rate. The records are 

categorized into five superclasses (NORM: normal ECG, CD: conduction 

disturbance, MI: myocardial infarction, HYP: hypertrophy, and STTC: ST/T 

changes) from which a 24-subclasses are derived, forming a multitude of diverse 

ECG data as a resource for ECG analysis algorithms. Accordingly, we aggregate 

all the abnormal signals (24 different abnormal heartbeat classes) into one 
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category to make up a binary data set for normal and abnormal conditions. The 

size of the PTB-XL dataset makes it a valuable asset in machine learning and deep 

learning applications. 

 XBeats ECG Data Acquisition Evaluation 

A sequence of experiments is performed to validate the resultant sampling 

rate and the correctness of the digitized ECG data. Consequently, the TechPatient 

CARDIO V4 heart simulator is connected to the ADS1298 evaluation hardware. 

The purpose of this step is to create a benchmark for the ECG patch when 

evaluating the ECG patch while acquiring ECG data in real-time. Furthermore, 

these experiments are implemented using the TechPatient CARDIO V4 simulator 

to simulate the heart's electrical activity, as, during the time this research was 

conducted, we did not have the required licenses to perform clinical trials on 

patients or FDA approvals. 

5.3.1 ECG Data Collection Benchmark 

We use the ADS1298 ECG frontend evaluation software built on top of 

LabVIEW libraries. The initial setup includes generating square signals using a 

square generator. Following that step, we start to capture the signals using the 

evaluation software using the ADS1298 development kit. Then use the ECG patch 

to collect the same signals and compare them to the benchmark signals collected 

by the evaluation software. In the second step, we use the evaluation software to 
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collect ECG data through the ADS1298 development kit simulated directly from 

the TechPatient CARDIO V4 heart simulator. Then we compare the collected ECG 

data by the evaluation software to the ECG data collected by the proposed ECG 

patch. The signals displayed in Figure 5.1 and Figure 5.2 represent a full set of 12-

lead for a standard ECG test, where Figure 5.1 shows the ECG limb leads, and 

Figure 5.2 shows the ECG chest leads. The data retrieval process was 

accomplished by selecting from two methods: Read Data Continuous (RDATAC) 

and Read Data (RDATA). The RDATAC method sets the device to continuously 

read data without sending any subsequent commands or further configuration. 

In contrast, the RDATA reads data output from the output register once 

triggered by the data-ready flag. After a successful data cycle, 216 bits of data are 

available to read from the output register. The 216 bits (27 bytes) are formatted as 

follows: 24 status bits + 24 bits of data per channel x 8 channels = 216 bits. The 

low-power mode starts at 250 SPS, generating 6750 bytes every second, while the 

high-resolution mode starts at 500 SPS, generating 13.5 Kbytes every second. 

Table 5.1 shows the size of the ECG data acquired and saved on the internal 

storage attached to the ECG patch. The digitized ECG signals are derived using 

the formulas illustrated in Table 5.2. 
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Figure 5.1. A sample of the collected ECG data using the ADS1298 TI evaluation 
software using a maximum sampling rate of 500 samples/sec for four seconds: 
Limb leads corresponding to the first group of leads (i.e., I, II, III, aVR, aVL, 
aVF). 
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Figure 5.2. A sample of the collected ECG data using the ADS1298 TI evaluation 
software using a maximum sampling rate of 500 samples/sec for four seconds: 
Chest leads corresponding to the second group of leads (i.e., V1, V2, V3, V4, 
V5, V6).  

Table 5-1. Collected ECG Data Size over Different Periods. 

Sampling Rate Time 
Interval 250 SPS (Low-Power) 500 SPS (High - Resolution) 

1 Second 6.75 Kilobyte (KB) 13.5 KB 

1 Minute 405 KB 810 KB 

1 Hour 24.3 Megabytes (MB) 48.6 MB 

24 Hours 583.2 MB 1.1664 Gigabyte (GB) 

 

Table 5-2. ECG 12-Lead Derivations. 

Analog 
Input Derived Lead Polarity Digitally Generated Leads 

Channel 1 V6 = V6 - WCT Unipolar Lead III = Lead II – Lead I 

Channel 2 Lead I = LA(1) – RA(2) Bipolar aVF = (Lead II + Lead III) / 2 

Channel 3 Lead II = LL(3) – RA Bipolar -aVR = (Lead I + Lead II) / 2 

Channel 4 V2 = V2 – WCT (*) Unipolar aVL = (Lead I – Lead III) / 2 

Channel 5 V3 = V3 – WCT (*) Unipolar 

(*) WCT = (LA + RA + LL) / 3 
(1) Left Arm Electrode 
(2) Right Arm Electrode 
(3) Left Leg Electrode 
* Wilson Center Terminal 

Channel 6 V4 = V4 – WCT (*) Unipolar 

Channel 7 V5 = V5 – WCT (*) Unipolar 

Channel 8 V1 = V1 – WCT (*) Unipolar 

* Wilson Center Terminal 
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5.3.2 XBeats Data Acquisition Hardware Prototype Evaluation 

Following the benchmark setup, we evaluate the XBeats hardware prototype 

by applying the same configurations used in the benchmark experiment. The 

ADS1298 chip on the XBeats hardware prototype applies the RDATAC methods 

to collect ECG data continuously at a default sampling rate of 500 SPS. This setup 

is fixed during the whole experiment. We ran the experiment five times under 

different operation modes, as shown in Table 5.3. The evaluation criterion is based 

on the resultant data rate of the XBeats hardware prototype, which varies 

according to the selected operation mode. The first operation mode evaluated is 

the "offline mode", in this operation mode, the wireless communication module 

(i.e., BLE) is switched off completely. The ECG patch is programmed to enable the 

12-lead ECG acquisition in the "offline mode" or the "disconnected mode". We 

allow this feature to guarantee that the ECG patch does not miss any vital 

information about the heart conditions during disconnectivity. The resultant ECG 

data acquisition rate in the "offline mode" is 480 SPS. In contrast, the" 

Disconnected mode" provided a resulting sampling rate of 370 SPS. The 

observations from this experiment noted that the communication module on the 

ECG patch enters the advertising mode [93]. A BLE device uses advertisements 

to broadcast packets to BLE-enabled devices around it. Then the receiving devices 

can act on this information or connect to receive more information. When the BLE 

module on the ECG patch is in advertising mode, advertising packets are sent 

periodically on each advertising channel to update the presence of the ECG patch 
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to the surrounding devices until it matches with a paired BLE device and 

establishes a new connection. This operation adds an overhead to the data 

acquisition task and, thus, the reduced sampling rate. 

5.3.3 XBeats Data Transmission over BLE Evaluation 

The second patch of tests includes the operation modes that rely on the BLE 

wireless connectivity to transfer the acquired ECG data to the paired BLE-enabled 

mobile device. This experiment requires a BLE-enabled mobile device to run our 

customized mobile application. We use the Google Pixel 3 smartphone to install 

our ECG patch mobile application. The smartphone supports the latest BLE 

version 5.2 allowing our application to utilize the Data Length Extensions, and the 

LE 2M PHY features provided by BLE version 5.2. Our mobile application 

automatically sets the physical layer to the 2 MB/s physical configurations and 

updates the maximum payload to 251 bytes. The payload of one successful BLE 

packet at the "continuous mode" contains seven samples, where each sample 

carries values from the digitized channels. We encapsulate the 24 bits received for 

each channel into an unsigned integer object. The total payload size inside on BLE 

packet applies the following formula:  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

Consequently, we evaluate the "continuous mode" on the ECG patch 

prototype and display the streamed ECG in real-time, as shown in Figures 5.3a 

and 5.3b. The displayed ECG leads are computed similarly using the lead 
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derivation in Table 5.2. The useful acquisition rate at the "continuous mode" is 343 

SPS. Likewise, we apply the same setup on the "triggered mode" with one and 

three lead configurations. The observed useful data acquisition rate at both 

operation mode configurations was the same (i.e., 441 SPS). 

Table 5-3. The useful sampling rate of the ECG patch over various operation 
modes. 

Operation 
Mode 

Number of 
Channels 

Number of 
ECG Leads 

Samples / 
BLE Packet 

Payload / 
BLE Packet 

Acquisition 
Rate 

Offline 8 12 N/A N/A 480 SPS 

Disconnect
ed Mode 8 12 N/A N/A 370 SPS 

Continuous 
Mode 8 12 7 

8 (CH) * 4 
(Bytes) * 7 

(Samples) = 
224 Bytes 

343 SPS 

Triggered 
Mode -1 1 1 (i.e., Lead 

II) 56 1 * 4 * 56 = 
224 Bytes 441 SPS 

Triggered 
Mode -2 2 

3 (i.e., 
Leads I, II, 

aVF) 
28 3 * 4 * 28 = 

224 Bytes 441 SPS 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 5.3 A Sample of the streamed ECG data over BLE in real-time using the 
ECG patch: (a) Chest leads; (b) Limb Leads; (c) Chest leads with noise and 
outliers; (d) One ECG lead with outliers. 
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We noticed some noise and outliers in the ECG singles acquired by our ECG 

patch prototype, as shown in Figures 5.3c and 5.3d, while operating in the 

"continuous mode" and "triggered mode". We found that the primary source of 

noise and outliers results from sudden movements and motion artifacts on the 

wires connecting the electrodes to the ECG patch prototype. 

5.3.4 XBeats Edge Signal Detection and Classification 

The signal detection and classification represent one of the novel integrations 

of this work as it enables the dynamic configurations of operation modes in real-

time. Moreover, it provides an additional safeguard to the ECG monitoring 

framework as we bring the classification closer to the patient. This feature is 

considered the first step of a two-phase ECG data classification of the ECG 

monitoring framework. The binary classification module provides a faster response 

by classifying the ECG data to normal heartbeat or irregular heartbeats. The 

second phase is performed at the backend level, where we perform deep analytics 

and build a correlation between real-time and historical data for better analysis and 

predictions. To that extent, we use the real-time ECG dataset acquired from the 

simulator using the proposed ECG patch to evaluate the performance of our 

classification algorithm. In contrast, we use the PTB-XL datasets for training the 

proposed classification module. To select the best classifier for our application, we 

compare six different algorithms, namely, random forest (RF), support vector 

machine (SVM), K-nearest neighbours (KNN), Decision tree (DT), logistic 
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regression (LR), and Extra Trees Classifier, which is the ensemble learning 

method of the decision trees method as recommended by [39]. 

Table 5-4. The top five informative features used to classify the ECG signals. 

Rank Feature Definition 

1 𝑅𝑅𝑅𝑅0/𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 The current R-R interval divided by the average of the last 
32 beats 

2 𝑅𝑅𝑅𝑅+1/𝑅𝑅𝑅𝑅0 The next R-R interval divided by the current R-R interval 

3 𝑅𝑅𝑅𝑅−1/𝑅𝑅𝑅𝑅0 
The previous R-R interval divided by the current R-R 

interval 

4 𝑅𝑅𝑅𝑅+1/𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 The next R-R interval divided by the average of the last 32 
beats 

5 ℎ𝑏𝑏𝑏𝑏3 
The coefficients of fitting Hermite basis functions with 

polynomials degree = 3 

Table 5-5. The six classification techniques accuracy and processing time. 

 RF SVM KNN LR DT Extra 
Trees 

Accuracy 95.20% 94.19% 94.05% 93.60% 91.56% 95.30% 

Processing 
Time 44.54 s 89.13 s 1.84 s 0.857 s 3.98 s 5.78 s 

 

We evaluate the proposed system by calculating the performance metrics of 

the classification model, such as accuracy, precision, recall, and F1-score, as 

presented in Table 5-6. A True Positive (TP) and a True Negative (TN) refer to the 

numbers of correctly classified ECG signals for the normal and abnormal 
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categories, respectively. In comparison, a False Negative (FN) and a False 

Negative (FP) refer to the numbers of misclassified signals for normal and 

abnormal conditions, respectively. Furthermore, we compare the detection 

response time for machine learning and deep learning algorithms on the selected 

datasets to evaluate the processing time of these algorithms. 

Table 5-6. Performance metrics for the proposed classification models. 

Performance Metric Formula 

Accuracy (TP + TN) / (TP + TN + FP + FN) 

Precision TP / (TP + FP) 

Recall TP / (TP + FN) 

F1-score 
2 × (Precision × Recall)/( Precision + 

Recall) 

 

Table 5-7. Performance report obtained from the six classification techniques 
for normal and abnormal ECG signals. 

  RF SVM KNN LR DT 
Extra 
Trees 

N 

Precision 96.11% 95.26% 96.64% 94.73% 95.75% 96.17% 

Recall 98.27% 98.38% 96.68% 98.27% 94.73% 98.63% 

Fl-score 97.19% 96.79% 96.66% 96.47% 95.23% 97.38% 
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ABN 

Precision 83.33% 82.06% 72.98% 79.87% 60.61% 85.96% 

Recall 70.31% 60.30% 72.73% 55.60% 65.85% 68.13% 

Fl-score 76.27% 69.51% 72.86% 65.56% 63.12% 77.03% 

The objective of our model is to achieve the best accuracy with the minimum 

processing time to fit the limitations of our hardware system. We calculate the F1-

score (F1), Precision, Recall, overall accuracy, and the processing time to fit the 

trained model of each classification technique. The training set performance is 

calculated using a K-fold cross-validation splitting strategy with ten folds. The 

results are collected using only five features from the top ten to minimize our 

processing time, as shown in Table 5-4. We used Python and Scikit-learn for 

implementation. Table 5-5 compares the six algorithms from the accuracy and time 

perspectives. We observe that the Extra Trees Classifier achieves the best 

combination of accuracy and time with the highest accuracy of 95.3% and only 

5.78 seconds to classify the ECG signal. Logistic regression performs the best 

processing time with 0.857 seconds but with an accuracy of 93.6%, which is 

considered the lowest accuracy out of all classifiers. Worth noting that the 

processing time in Table 5-5 represents the overall processing time of the 

corresponding algorithm over the selected dataset. The following experiment 

evaluates the actual time when implementing the best algorithm in real-time on an 
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edge device. Table 5-7 shows the performance details obtained from the test 

dataset for the normal signals (N) and abnormal signals (ABN). We observe that 

almost all the best values result from the Extra Trees classifier, which concludes 

that it is the best model to adopt in our system. Furthermore, we investigate the 

accuracy of the Extra Trees classifier with the number of features, as shown in 

Figure 5.4a It can be observed that the highest performance is accomplished with 

only five features (accuracy = 95.30%), and after that, the accuracy decreases with 

the growth of the number of features.  

 

 

(a) (b) 
Figure 5.4. (a) Accuracy of extra trees classifiers with a varying number of the 
top ten mutual information ranked features; (b) SMS message by Twilio sent to 
the healthcare provider to alert of any abnormal heartbeats. 

As an edge device, we deploy the classification module on a Raspberry Pi 

3B+ board. MQTT is the underlying communication protocol between our mobile 

application and the edge device. The mobile application is designed to publish the 

ECG data in patches every second. This system design decision can be changed 

to alternative options with 5- or 10-second intervals. Therefore, the integration of 

the MQTT protocol provided a pipeline for our mobile application to publish the 
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ECG signals collected by the ECG patch in 0.12 seconds. The edge device 

continuously receives ECG data until an abnormal heartbeat is detected; the 

system simultaneously sends the signal to different services to alert caregivers 

and/or healthcare providers. Figure 5.4b shows a screenshot of an SMS message 

sent to alert the healthcare provider of irregular heartbeats as part of the 

notification service provided by the proposed framework. The average processing 

time for ECG signal detection is 0.29 seconds. If an abnormal heart condition is 

detected, a message is sent out immediately to caregivers in a range of 0.57 to 

0.77 seconds, which is quick enough for healthcare providers to take necessary 

actions. Moreover, the XBeats framework presents the classification results as 

recommendations to the healthcare provider and doesn’t take decisions. 

5.3.5 XBeats RPM Framework Evaluation 

The XBeats RPM framework can scale horizontally, allowing it to adapt to 

growing data volumes and changing environments. The initial setup includes two 

Confluent Kafka clusters with 100 MB/s Ingress/Egress data pipelines. Two 

connectors are configured, MongoDBSink to handle the connection to MongoDB 

Atlas cloud solution [89] and MQTTSourceConnector to facilitate the connection to 

HiveMQ MQTT broker. On top of that, a TensorFlow Python library is used to load 

existing analytics models and apply the loaded analytics functions on all received 

ECG data for deep analytics and update detection models in real-time. According 

to the latest benchmark performed in [90], the following upper limits were set per 
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CKU (Confluent Unit for Apache Kafka): The maximum number of simultaneously 

connected clients equals 1000 and 3000 maximum number of partitions per topic. 

Noting that, increasing the allocated CKUs will linearly increase the upper limits. 

The system achieved 16 milliseconds average latency at the Producer: 25 MB/sec 

and a maximum latency of 1851 milliseconds for one cluster. While extending the 

test to multiple clusters, the system achieved the maximum 2-CKU at bandwidth: 

100 MB/s for producers and 300 MB/s for consumers bandwidth, more information 

about the test setup is presented in [90]. 

 XBeats Power Consumption Evaluation 

This section applies the optimization techniques introduced in Section 3.3 to 

each component individually. The main goal of carried-out experiments is to find 

the optimum values for the controlling parameters of each component (i.e., data 

acquisition, transmission, and storage modules). The experiments are carried out 

using DMM6500 6.5  Digit multimeter to measure current consumption. The 

multimeter is configured to collect 200K samples per second with a continuous 

buffer saving the data directly to external storage. We used the current digitization 

function on the DMM6500 that automatically calibrates the current range and 

adjusts the amplitude resolution. We also use MATLAB for processing and 

displaying the collected data by the multimeter. 

On the other hand, we use the Energy Trace tool integrated into the Code 

Composer Studio IDE to measure the current consumption by the microcontroller 
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while debugging different stages of the operating system using the Runtime Object 

View tool. Consequently, we divide the experiments into three phases. The first 

phase evaluates the optimization parameters on the ADS1298 data acquisition 

module. The second phase considers the CC1552 microcontroller responsible for 

the data transmission and processing on the XBeats ECG patch. The third phase 

evaluates the applied optimization techniques for data logging and writing on the 

SD card. 

5.4.1 Data Acquisition Evaluation 

This experiment aims to study the effective current consumption of the 

ADS1298 chip. We evaluate the module responsible for the data acquisition 

process in the XBeats patch regarding the number of enabled channels during the 

acquisition period. Then, we make a decision regarding the activation period of 

each operation mode with respect to the modified data acquisition procedure 

proposed in Figure 3.7. Observing the time of each operation mode when enabled 

is crucial in optimizing the power consumption on the ECG patch. Accordingly, 

reducing the operation time of some modes of operation (i.e., the continuous mode) 

contributes to reducing the current consumption, as proposed in Section 3.2.1. To 

that extent, Figure 3.7 shows the modified data acquisition and modes of operations 

on the ECG patch with a new subroutine that automatically switches to the triggered 

mode each time the continuous mode is activated after ten seconds. The expected 

current consumption is shown in Figure 5.5 at a sampling rate of 250 SPS. The 
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current consumption follows a periodic pattern with respect to the configured 

sampling rate. If the device is configured at a sampling rate of 500 SPS, then the 

periodic events witnessed in Figure 5.5 shall take place every 2 ms instead of 4 ms 

in the case of 250 SPS. 

 

Figure 5.5. The Base current consumption profile of the ADS1298 in low power 
mode at a sampling rate of 250 SPS. 

The current consumption is expected to be high if the device operates using 

the continuous operation mode. Contrary to the case when the device operates 

under the triggered mode, two channels are activated while the rest are disabled. 

The goal of the proposed optimization technique is to minimize the time the device 

spends profile since the device consumes operating under a high-power 

consumption profile (i.e., the continuous operation mode). Then the device reverts 

to the low power consumption profile afterwards (e.g., from continuous to triggered 
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mode). Table 5-8 shows the underlying experiments developed for evaluating the 

operation and current consumption of the data acquisition module. The default 

setting for the sampling rate in the three experiments is 250 samples per second. 

The first two experiments represent the Triggered mode of operation on the ECG 

patch with one and three enabled channels. While the third experiment includes 

activating all available channels (i.e., eight channels) on the ADS1298 chip. 

The results in Figure 5.5 show a recognizable drop in the current consumption 

versus the number of enabled channels during data acquisition. The third 

experiment shows the highest current consumption with an additional 2.72 mA 

compared to the second experiment when two channels are activated. Similarly, a 

3.74 mA difference is observed when only one channel is activated. We observed 

that the longer the device operates in the continuous operation mode, the operation 

time (i.e., battery life) of the device decreases. Therefore, the device can 

significantly reduce the current consumption and extend the battery lifetime by 

applying the modified version of operations modes. 

Table 5-8. The Data acquisition experiments versus the number of enabled 
channels and the consumed current. 

Trial 
Number of 
Enabled 

Channels 

Average 
Current (mA) 

Maximum 
Current (mA) 

Minimum 
Current (mA) 

#1 1 23.82  24.92 21.98 

#2 3 24.84 25.47 22.66 

#3 8 27.56 28.17 25.36 
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Figure 5.6.  The current consumption profile of the ADS1298 chip with 8, 2 and 1 enabled channels, respectively.
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Table 5-9 shows the impact of applying the modified operation modes on the 

power consumption profile on the ECG patch. The ECG patch saves approximately 

408 mW (i.e., 8.2% prior to optimizing the operation modes) every 60 seconds when 

applying the proposed optimization technique during the data acquisition process. 

Table 5-9. Power consumption optimization scenarios on the ADS1298 chip. 

Scenario # 1 – The Continuous mode of operation applied for 60 seconds 

Time Average Current Power Supply Total Energy 

60 Seconds 27.56 mA 3 V 4960.8 mW 

Scenario # 2 – The Continuous mode of operation applied for 10 seconds and the 
Triggered mode with two channels for 50 seconds 

Time Average Current Power Supply Energy 

10 27.56 mA 3 V 826.8 mJ 

50 24.84 mA 3 V 3.726 J 

Total Energy 826.8 + 3726 = 4552.8 mJ 

5.4.2 Data Transmission Evaluation 

We evaluate the data processing and transmission module on the ECG patch 

powered by the SimpleLink microcontroller CC1352. The experiments involve 

tuning the parameters governing a standard BLE communication. Prior to these 

experiments, we analyze the time between two connection events which is known 

as a connection interval, as explained in Section 3.3.2. Figure 5.7 shows the 
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periodic connection events of a standard BLE connection between the XBeats 

ECG patch and a mobile device. The default maximum connection interval 

between two consecutive connection events is 45 ms. 

 

Figure 5.7. The base current consumption of the ECG patch for a BLE 
connection before exchanging data. 

 Figure 5.8 shows the current consumption of the ECG patch during data 

acquisition and transmission over BLE to a mobile device. The connection interval 

observed in Figure 5.8 has decreased compared to the connection interval 

observed in Figure 5.7. When the slave latency is enabled, the connection interval 

period becomes a factor in the effective connection interval, as explained in 

Section 3.3.2. Therefore, the slave latency parameter minimizes the number of 

connection events in a BLE connection. Therefore, the aim is to find the optimum 

connection interval to reduce power consumption while maintaining sufficient 
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throughput during the connection period to maximize data transfer between the 

intended devices. The current 𝐈𝐈𝐓𝐓𝐓𝐓  consumed by the BLE communication core 

module on the ECG patch equals 7.3 mA while communicating (e.g., exchanging 

data) with a corresponding mobile device. 

 

Figure 5.8 The Base current consumption of the ECG patch for a BLE 
connection during data exchange. 

Table 5-10 lists the experiments designed for the data transmission 

optimization regarding the connection interval, the slave latency and the effective 

connection interval. The slave latency is set to zero in the four experiments to 

reduce the complexity of the evaluation. Moreover, the slave latency is mainly used 

in applications where the connectivity with the central devices is flexible, skipping 

many connection events. Contrary to the ECG patch, which is considered a time-
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stringent application, the acquired ECG data must be delivered in time. Moreover, 

the slave latency would incur a delay in transmitting the collected ECG data to the 

mobile device. This may lead to disrupting the order of the received ECG signals. 

Accordingly, the effective connection interval, in this case, is always equal to the 

defined maximum connection interval. 

Table 5-10. Parameter configurations for the BLE optimization Experiments 
with Zero Slave Latency = 0. 

Experiment 
Minimum 

Connection 
Interval 

Maximum 
Connection 

Interval 

Effective 
Connection 

Interval 

#1 500 ms 1000 ms 1000 ms 

#2 250 ms 500 ms 500 ms 

#3 125 ms 250 ms 250 ms 

#4 100 ms 150 ms 150 ms 

#5 50 ms 75 ms 75 ms 
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(a) 

 

 
(b) 

Figure 5.9. Experiment #1: Data transmission using BLE with a Maximum 
Connection Interval of 1000 ms. 
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(a) 

 

 
(b) 

Figure 5.10. Experiment #2: Data transmission using BLE with a Maximum 
Connection Interval of 500 ms. 
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(a) 

 

 
(b) 

Figure 5.11. Experiment #3: Data transmission using BLE with a Maximum 
Connection Interval of 250 ms. 
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(a) 

 

 
(b) 

Figure 5.12. Experiment #4: Data transmission using BLE with a Maximum 
Connection Interval of 150 ms. 
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(a) 

 

(b) 
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(c) 

Figure 5.13. Experiment #5: Data transmission using BLE with a Maximum 
Connection Interval of 75 ms. 

In the previous graphs, the value of the Least Significant Bit (LSB) is used to 

determine the voltage value of the acquired ECG signals. One LSB represents the 

voltage weight of one code (i.e., one digitized sample (24 bits) acquired by the 

ADS1298 chip). Accordingly, the full-scale range (FSR) of the ADC divided by the 

total number of codes yields the LSB size. 

𝐿𝐿𝐿𝐿𝐿𝐿 =  
𝐹𝐹𝐹𝐹𝐹𝐹

(2𝑛𝑛 −  1) , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (24 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

In the ADS1298, the differential input voltage to each ADC can range from 

−𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅 𝑡𝑡𝑡𝑡 +𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅Therefore, the full-scale range = 2 𝑋𝑋 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅. 

𝐿𝐿𝐿𝐿𝐿𝐿 = 2 𝑋𝑋 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅/ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 / 224 − 1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∈ [1, 2, 3, 5, 6, 8, 12] 
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Table 5-11. Experiment results of the data transmission over BLE on the ECG 
patch. 

Experiment  
(10 seconds) 

Maximum 
Current 

Average 
Current Energy Sampling 

Rate 

#1 ~ 47 mA 36.63 mA 1209.152 mJ 35 SPS 

#2 ~ 47 mA 36.98 mA 1220.926 mJ 70 SPS 

#3 ~ 48 mA 36.97 mA 1220.252 mJ 147 SPS 

#4 ~ 49 mA 37.15 mA 1225.9 mJ 238 SPS 

#5 ~ 49 mA 38.14 mA 1227.71 mJ 383 SPS 

The experiment results shown in Table 5-11 are evaluated with respect to the 

effective sampling rate of the ECG data by the ECG patch. The first three 

experiments showed a decrease in the current consumption. However, the 

sampling rate decreased significantly, negatively impacting the ECG monitoring 

process [94]. Moreover, the components (i.e., PQRST [7]) of the ECG signals were 

not detected in the first three experiments, as shown in Figures 9b, 10b and 11b. 

The PQRST components of an ECG signal are essential in diagnosing the signals 

and heart attack detection [7]. On the other hand, the last two experiments showed 

better performance and higher sampling rates for the ECG signals. Conclusively, 

the experiments showed significant changes in the effective sampling rates. 

However, the power consumption had a mostly negligible impact on the operation 



152 
 

lifetime of the ECG patch. Therefore, stretching the connection interval of a BLE 

connection did not help with the total energy consumption as it did not lead to less 

current consumption. However, the sampling rate is hindered due to the connection 

interval stretching. 

5.4.3 Data Logging & Storage Evaluation 

The writing operation on an MMC is considered the most energy-expensive 

operation. The MMC is a strictly 3V device, and the current consumption can reach 

up to 100mA or more, necessitating an efficient 3V power supply for the card. The 

optimization in this phase involves the functions used to write data on the MMC. 

We use the  Generic FAT Filesystem Module [95] as an API providing various 

filesystem functions to interact with the MMC on the ECG patch. The candidate 

function (i.e., f_printf()) is evaluated to find the optimum operation performance. The 

original implementation of the XBeats firmware used the f_printf() function to data 

to the MMC as floating-point decimals. The floating-point decimal takes from 1 to 

31 characters for each floating-point number (e.g., each data point in an ECG signal 

is measured in millivolts). The accuracy of the ADS1298 is 24-bit. Therefore, a 

single ECG data point value would be similar to “0.001152849”. If we write the 

number using the floating-point decimal representation would take 11 characters 

which is equal to 11 bytes. Accordingly, the total bytes needed for one ECG sample 

(e.g., eight channels are activated) equals 11 bytes × 8 channels = 88 bytes, and 

22 Kbytes at 250 SPS.  
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Alternatively, if we use the unsigned hexadecimal, which only takes 1 to 8 

characters to write a respective ECG data point on the MMC. A single ECG data 

point is presented in the following format “0070DF“ (i.e., six characters in total). 

Then, the total bytes needed to write one ECG sample equals 6 bytes × 8 channels 

= 48 bytes, and 12 Kbytes at 250 SPS. Therefore, the transformation to the 

unsigned hexadecimal saves 45% of the data written to the MMC. 

5.4.4 XBeats Battery Energy Consumption and Operation Period 

We use the Energy Trace tool to determine the analytical energy consumption 

of the XBeats ECG patch over time. The Energy trace tool is used in the free-run 

mode, where the sampling frequency is approximately 4.2 kHz. The energy 

consumption evaluation tests performed on the ECG prototype assumed the 

device to be in the “continuous” operation mode. The continuous mode uses the 

standard 12-lead ECG data collection and transmits the collected signals over BLE 

in real-time to a smartphone. This means the MCU is always in active mode, and 

no power-saving protocols are applied other than the default settings on the MCU. 

Consequently, the analytical results show that the ECG patch can deliver a 

continuous real-time 12-lead ECG for approximately 37 hours using a 

rechargeable lithium-ion battery with a capacity of 2000 mAh; details are shown in 

Table 5-12. 
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Table 5-12. Analytical power consumption of the ECG patch hardware 

prototype. 

Power Consumption Results Value 

Mean, Min, and Max 
157.73 mW, 91.69 mW, and 364.133 

mW 

Average Voltage 3.3 V 

Battery Capacity 2000 mAh 

Total Operation time 1 Day, 13 h approximately 

 Discussions 

We start by creating a benchmark for ECG data collection to evaluate the 

ECG data acquisition performed by the XBeats ECG patch concerning the 

correctness and quality of the acquired signals. Then, the three operation modes 

are evaluated regarding the useful acquisition rate. XBeats can perform standard 

12-lead ECG testing while continuously streaming the collected signals over BLE 

at a rate of SPS. Furthermore, the device supports a maximum sampling rate of 

480 SPS while operating under the offline mode when the communication module 

is turned off. Interestingly, when the communication module is turned on, but no 

connectivity is established, the sampling rate decreases to 370 SPS. The 

experiment showed a drop in the sampling since BLE enters the advertisement 

mode looking for potential connections when no device is connected to the ECG 

patch. 
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Moreover, we evaluate the proposed ECG signal classification based on six 

machine learning classifiers, and the Extra Trees achieves the maximum accuracy 

of 95.30%. This accuracy is accepted as an initial classification phase to support 

just-in-time patient/healthcare providers notifications while logging ECG data. This 

phase only classifies heart conditions into normal and abnormal classes for faster 

actions and low power consumption. 

On the other hand, we study the power consumption behaviour of the XBeats 

ECG patch and apply the proposed optimization techniques to each component in 

the system. The applied optimization techniques are first applied to the data 

acquisition process and improve the related power consumption profile. The 

improvement included using a modified version of the firmware on the device, 

allowing the device to dynamically switch from the high consumption profile to the 

low power consumption profile. This operation yielded 8.2% in saved energy. 

Furthermore, we studied the power consumption profile of the BLE communication 

module. The results of the communication module had minor impacts on the power 

consumption profile, as it witnessed about a 1.6% reduction in the initially 

consumed power. The stretching of the connection interval led to a significant 

decrease in the sampling rate contrary to marginal optimization in the consumed 

energy that is almost negligible (i.e., 2 mJ in a 10-second interval). Lastly, we 

studied the patterns of ECG data collected and written on the external storage 

attached to the ECG patch. We optimized 54% of the data by writing the data using 

its hexadecimal representation instead of using a floating-point decimal format. 
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The proposed optimization methods assisted in analyzing and optimizing the 

power consumption in the XBeats ECG patch and extending the battery lifetime. 

 Summary 

This chapter provides a systematic performance evaluation of the XBeats 

ECG patch. A benchmark for a standard 12-lead ECG data monitoring and 

acquisition is provided. The modes of operation implemented on the XBeats ECG 

patch are evaluated with respect to the expected sampling rates and power 

consumption. The experiments showed that the device could support a maximum 

sampling rate of 480 SPS while operating under the offline mode when the 

communication module is turned off and 370 SPS when the communication 

module is turned on. Then we evaluated the proposed ECG signal classification 

based on six machine learning classifiers, and the Extra Trees achieved a 

maximum accuracy of 95.30%. A systematic power consumption evaluation is 

provided to optimize the power consumption profile of the XBeats ECG patch 

concerning various scenarios and modes of operation. Since XBeats is a wearable 

device operated by a battery, power consumption profiling and optimization are 

essential to utilize the device and provide maximum operation time.   
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 Conclusions and Future Directions 

Although the ECG test is a 100-year-old technology, it remains scientifically 

challenging and attractive to research to unleash the full potential of information 

technology and IoT in this domain. We demonstrate the need for a compact 

wearable ECG monitoring system from the literature. We introduce XBeats, a novel 

ECG patch for continuous real-time monitoring. The XBeats ECG patch supports 

dynamic modes of operations that are actively configured when the heart 

conditions of the patient change. The device carries out all primary operations: 

data acquisition, logging, and transmission at an acquisition rate of up to 480 

samples per second with significantly low latency. The proposed framework 

integrates fog computing data analytics to perform binary ECG signal 

classification. The classification algorithm achieved a maximum detection 

accuracy of 95.30% based on the Extra Trees machine learning classifier. This 

accuracy is accepted in our proposed framework as an initial phase of classification 

to support in-time notifications to the patient/healthcare providers. 

 Conclusions 

The XBeats RPM framework for real-time ECG monitoring and diagnosis 

demonstrates exemplary performance and can send immediate messages when 

irregular heartbeats are detected to patients or healthcare providers. It can also 
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support long-term medical diagnosis for ECG signals in real-time. The results 

achieved in the prototype development allow us to conclude that high-quality real-

time remote 12-lead ECG monitoring is achievable through our robust framework 

design and selected hardware components. 

In Chapter 2, a detailed investigation is provided concerning efforts toward 

providing standard 12-lead ECG testing remotely while outlining characteristics, 

features, and requirements for having continuous remote ECG testing in real-time. 

We also categorized the presented solution in the literature according to the 

number of ECG leads offered by the acquisition devices. Besides, a dedicated 

section is added to review the existing commercial ECG monitoring devices while 

presenting the advantages and shortcomings of the provided solutions. We 

remarked that although many discussed solutions provide enough functionalities 

for ECG testing, they are accompanied by inherited system gaps that prevent a 

comprehensive framework for remote 12-lead ECG monitoring and diagnoses. Not 

to mention that a significant number of the presented literature focus on a limited 

number of ECG leads, up to a maximum of 5 leads compared to a standard 12-

lead ECG. 

In Chapter 3, the design and implementation of XBeats, a flexible 12-

lead/Holter real-time ECG prototype. The design of the ECG patch utilizes BLE 

standardization in the ECG patch by creating custom profiles and services. 

Consequently, the services provided by XBeats are enabled through the 

integration of the XBeats custom ECG Profile for BLE. Furthermore, the ECG BLE 
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profile gives the patient and the healthcare provider complete control over the 

XBeats ECG patch remotely, as they can control the modes of operation and the 

number of selected ECG leads. To that extent, XBeats incorporates three modes 

of operation to accommodate various use cases and health conditions, which 

allows healthcare providers to configure the device concerning their patients’ heart 

conditions. Moreover, the MCU on the ECG patch utilizes the sensor controller 

addon to run the ECG data acquisition and logging tasks simultaneously besides 

the data transmission task. Accordingly, it allowed the MCU to carry out all primary 

operations: data acquisition, logging, and transmission at an acquisition rate of up 

to 480 samples per second with significantly low latency. 

Furthermore, we present an AI-powered system for ECG signal classification 

based on machine learning and real-time streaming. We implemented several 

machine learning algorithms to classify and detect anomalous heart conditions, 

including Logistic Regression, Random Forest, Support Vector Machine, K-

Nearest Neighbors, and Extra Tree. Our findings suggest that Extra Trees 

outperforms other techniques with acceptable real-time performance. We trained 

the Extra Trees on a publicly available dataset to classify the signal into normal 

and abnormal categories. Consequently, we introduce systematic energy 

consumption profiling criteria for evaluating participating components in an RPM 

device. Each hardware component is isolated and evaluated individually to find 

power-intensive processes in the XBeats system, discover energy consumption 

patterns, and measure voltage, current, power, and energy consumption for a 
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given period. The acquisition module power consumption is analyzed by studying 

the controlling parameters like the sampling frequency, the number of ECG leads 

and the operation period. Likewise, the power consumption behaviour of the 

communication module is analyzed to find the optimum configuration settings for 

the XBeats ECG patch to reduce power consumption and maintain the integrity of 

the collected ECG signals during data transmission. 

Driven by the demand and importance of an efficient remote cardiovascular 

monitor for virtual care, Chapter 3 presents a framework that enables remote ECG 

testing and provides ubiquitous data access to patients and their healthcare 

providers. The framework utilizes XBeats, a patent-pending 12-lead data 

acquisition ECG patch for long-term cardiac monitoring and diagnoses. The 

XBeats framework provides a comprehensive RPM system for real-time ECG 

monitoring and data analytics. The framework gives an edge to healthcare 

providers to continuously monitor their patients remotely without requiring patients 

to visit hospitals or healthcare facilities. Moreover, through the event processing 

and data analytics technologies integrated into the framework, healthcare 

providers get prompt notifications in the event of irregular or abnormal heart 

conditions. Furthermore, the framework can dispatch an ambulance or a 911 if the 

system detects severe heart conditions like a heart attack. Accordingly, the XBeats 

ECG patch and the proposed RPM framework provide an end-to-end solution for 

long-term remote cardiac monitoring. 
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To reproduce the proposed XBeats framework, we present an 

implementation of the framework in Chapter 3. The framework is deployed as a 

use case application for remote ECG testing and diagnoses. At the same time, the 

framework integrates the latest technologies in distributed systems, containerized 

deployment, communication protocols, data streaming platforms, data access and 

storage. We use microservices and web services APIs to continuously integrate 

new features and services without disturbing the standard services of the 

framework. The standard services defined in the framework are data collection, 

streaming, stream processing, storage, reporting and visualization. Moreover, we 

use the MQTT protocol and REST web services to exchange data between 

participating parties and establish communication pipelines. Besides, the 

framework establishes direct communication with doctors or the healthcare 

provider through notifications when a patient is undergoing an abnormal medical 

condition so proper actions and emergency procedures can be activated to ensure 

the patient's well-being. 

We list the objectives and benefits of integrating RPM systems into the 

existing healthcare infrastructure and how it facilitates healthcare providers to 

accommodate the needs of their patients in real-time. The new e-health and 

telemedicine era emphasizes the importance of RPM when hospitals strive to 

provide patients with essential medical needs. The key objective of this chapter is 

the design of a comprehensive framework for RPM, focusing on the system 

integration of the enabling technologies and software. The distributed nature of the 
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design architecture of the framework facilitates horizontal scalability to 

accommodate the increasing growth of connected RPM devices and services. 

In Chapter 5, we evaluate the proposed ECG signal classification based on 

the Extra Trees machine learning classifier, which achieved a maximum accuracy 

of 95.30%. This accuracy is accepted in the XBeats RPM framework as an initial 

classification phase to support just-in-time notifications to the patient/healthcare 

providers while logging ECG data. This phase only classifies heart conditions into 

normal and abnormal classes for faster actions and low power consumption. 

However, due to time and memory constraints on the MCU, the classification 

technique significantly disrupted the primary operations on the ECG patch. 

Therefore, we deployed the proposed classification component on an edge device 

using Raspberry bi 3 B+. The average processing time for ECG signal detection is 

0.29 seconds. If an abnormal heart condition is detected, a message is sent out 

immediately to caregivers in a range of 0.57 to 0.77 seconds, which is quick 

enough for healthcare providers to take necessary actions. 

The results show that optimizing the data acquisition process saves 8.2% 

compared to the original power consumption and 1.62% in data transmission over 

BLE, thus extending the device's lifetime. Also, we optimize the data logging 

operation to save 54% of data initially written to an external drive. Lastly, the 

analytical energy results yield up to 37 hours of continuous 12-lead ECG streaming 

using a 2000 mAh rechargeable lithium‑ion battery. The results achieved in the 

prototype development allow us to conclude that high-quality real-time remote 12-
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lead ECG monitoring is achievable through our robust framework design and 

selected hardware components. At the same time, there remain a few open issues 

due to the significance of remote ECG in saving patients with chronic heart 

diseases. Some of those issues can be extremely challenging to address, such as 

privacy and security, due to performing almost all operations remotely. Other 

issues, such as handling design diversity concerning the modularity of the XBeats 

ECG patch, in accommodating the needs of the patients as they wear the device 

daily.  Another issue concerns the battery lifetime and providing reliable remote 

ECG testing for extended periods. 

 Possible Future Directions 

This thesis introduces the XBeats ECG patch architecture and designs by 

presenting a working hardware prototype for successful remote ECG testing and 

diagnoses. Although, the XBeats ECG patch hardware prototype is still in the early 

stages of research. The experiments showed promising results concerning the 

power consumption of XBeats using li-ion batteries which constitutes potential 

challenges in charging the replacing the batteries. Therefore, as a future direction, 

we are looking into various sets of batteries like coin or Lithium polymer batteries. 

Similarly, investigate the ability to integrate a hot-swap feature while changing the 

batteries, so the primary operations running on the ECG patch are not interrupted. 

On the other hand, privacy and security are significant roadblocks to 

successful integrations of the XBeats RPM framework since the current design 
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considered privacy and security topics of their own. Privacy is a serious topic, 

especially in the healthcare domain; therefore, we consider enforcing necessary 

privacy policies to match existing standards and requirements by healthcare 

providers and involved authorities. The current design of the XBeats framework 

utilizes security and privacy-ready components to facilitate future research and 

developments in handling privacy concerns and better securing the framework. 

Finally, we plan to extend the proposed framework to incorporate a broader 

range of ECG data analytics and deep learning tools at the backend for various 

abnormal heart conditions to support better diagnoses. Moreover, we consider 

modifying the classification technique to work with aggregated ECG data in real-

time as they arrive with predefined windows for the aggregation process. This way, 

the framework shall avoid false positives regarding the patient’s heart conditions 

when classifying the heartbeats individually.   
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