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ABSTRACT: 

Road traffic has become prominent in everyday living, impacting or disrupting services 

to people and daily routines. With the rise in automobile manufacturing and the frequency of 

vehicle crashes, human catastrophes, like fatalities, accidents, impairments, and destruction of 

property, are surging yearly. Vehicle collision detection has recently gained prominence in 

decreasing manually operated and autonomous vehicle fatalities. The concept of independent 

and self-driving cars relies on accurate object recognition, including pedestrians, vehicles, 

buildings, and other moving objects. Various object-detecting approaches have been proposed 

to help autonomous vehicles (AVs) achieve consistent, safe driving. Object prediction and 

detection have noticed numerous algorithmic changes that have improved speed and accuracy. 

In this study, I used a traffic dataset produced by a CARLA simulator to anticipate collisions 

using the Yolov7 model. I generated the dataset from a CARLA simulation bench in video 

sequences, manually annotated the frames, and used the deep learning algorithm Yolov7 to 

train them. The model predicts the collision a few seconds before it occurs in real-time. I 

implemented this framework to increase the safety of driving in self-driving vehicles. 
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Chapter 1. Introduction 

1.1 Description and Scope 

 

It is stated that autonomous vehicles (AV) will offer comfortable, affordable, and secure 

journeys. Without question, self-driving cars will have a significant impact on how we travel. 

The secure and safe functioning of the AV is one crucial issue that prevents it from being used 

on the road. Annually, there are more occurrences of death and disability due to daily traffic 

accidents. Recent data on semi-autonomous driving [1] obtained by the National Highway 

Traffic Safety Administration recorded 392 crashes in 10 months, and approximately 70 

percent of the crashes were caused by self-driving vehicles. The WHO estimates that 1.35 

million mortality cases, or 2.2 percent of all fatalities, occur worldwide. Excessive speed, 

negligent driving, driver exhaustion, wandering animals on the roadways, and inadequate 

infrastructure are the primary causes of traffic accidents. Most deaths and disabilities in these 

accidents result from emergency medical assistance's slow reaction. The period immediately 

after a traumatic injury is known as the "golden hour," during which time the likelihood of 

preserving a person's life increases, on average, by one-third. 

As a result, considerable resources have been devoted recently to ensuring an effective and 

rapid rescue team. One of the critical issues for intelligent transportation systems is effectively 

detecting traffic incidents, particularly regarding vehicle collisions. Vision is a cost-effective 

method for autonomous traffic collision detection since it can supply a wealth of traffic 

information. It is still a difficult task. However, recent studies reveal that loss of visibility, 

particularly near junctions, is one of the causes of the highest number of accidents on the road. 

Driving faults are the primary cause of traffic accidents. It can be easier to spot and avoid 

collisions if one knows how different types of roads affect a driver's behavior and other factors 

like weather and road damage.  
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The ability of autonomous cars (AVs) to improve mobility and security in commuting has 

received considerable interest recently. Testing and evaluating an AV's vehicle intelligence is 

a crucial step in creating and implementing self-driving cars since it shows if an AV can 

function safely and effectively without human assistance. 

1.2 Problem Statement 

Future transportation will be drastically altered by autonomous vehicles. Self-driving 

cars still need to go through many tests and analyses before they can reliably and safely 

navigate the roads. In addition to dealing with erratic conduct from other drivers on the road, 

they also must deal with unanticipated incidents that happen suddenly and shifting weather 

patterns. It would be impossible to test every possible situation on our roadways. For 

autonomous vehicles to establish their dependability in real-world scenarios, they would need 

to travel countless miles and exist on the roads for centuries. As a result, simulation software 

for driverless cars has emerged as a crucial resource. All potential circumstances—thousands 

of them—can be evaluated and realistically replicated in a virtualized environment. 

A vast array of various simulation techniques is necessary to mimic the intricate world of 

autonomous cars. The essential word here is co-simulation. It is vital to test data to study the 

collisions on different roads. This calls for collecting data or testing the algorithms against the 

traffic in real-time. Unfortunately, there are downsides to it. 

1. There is a limited real-time traffic dataset to test 

2. The tests are difficult to perform and expensive  [2] 

3. It is unsafe and unethical to perform a particular scenario in real-time to study the collision. 

The ideal alternative would be to use a simulator for collisions. 
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1.3 Contributions 

 The report introduces the simulation bench from which the dataset was collected and 

its importance. 

 The report evaluates the YOLOv7 algorithm on the dataset to predict and detect 

collisions. 

 

1.4 Organization 

 

The report is organized as follows. Chapter 2 discusses the background and related 

work on co-simulation and object identification algorithms to improve traffic safety. Chapter 

3 describes the proposed system and the methodology involved in developing it in three stages: 

Collecting the data from a simulator, annotating, and pre-processing the data, and training a 

machine learning algorithm on the dataset. Chapter 4 discusses the system specification and 

implementation process followed by the model predictions. Finally in Chapter 5, I conclude 

the proposed work and mention the possible future developments.  
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Chapter 2. Background  

2.1 Co-Simulation:  

 

In co-simulation, the subsystems that make up a coupled problem are modeled and simulated 

in a distributed way. As a result, modeling is carried out at the subsystem level without 

consideration of the interrelated issue. Additionally, the subsystems are run as black boxes 

during the connected simulation. The subsystems will communicate with one another 

throughout the simulation. Co-simulation can be considered the combined simulation of 

existing well-established tools and semantics when used with the appropriate solvers. 

Co-simulation demonstrates its value in validating multi-domain and cyber-physical systems 

by providing a versatile approach that enables simultaneous evaluation of many domains with 

various time steps. The work necessary to create a complete system simulator can be broken 

down into smaller, distinct tasks when we can break aspects of a system into individual 

components that are then loosely coupled. Additionally, once the system has been broken 

down into parts, each is solved independently and shares its solutions with the others at 

designated communication points. Additionally, it enables the distribution of the calculations 

for improved efficiency.  

The many elements linked to one another can also be made up entirely of binary codes, 

allowing for collaboration throughout the industry and even between rival companies without 

disclosing open-source applications that might potentially reveal trade secrets. 

CARLA simulator: CARLA is an accessible simulator for driverless cars. This was created 

from the start to serve as a dynamic, modular Interface for solving numerous tasks related to 

the driverless car issue. One of CARLA's main goals is to serve as a tool that anybody may 

use and alter to help democratize automated driving innovation and research. The simulation 

model must be able to satisfy the demands of various use cases that are observed in regular 
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driving. The OpenDRIVE standard is used to specify streets and urban settings in CARLA, 

created using Unreal Engine to perform experiments. 

2.2 Object Recognition:  

The task of object identification and prediction in computer vision involves finding 

occurrences of particular kinds of visual things, including people, creatures, vehicles, and 

houses, in images like still pictures or video sequences. Object identification aims to develop 

analytical techniques that provide the crucial data that machine learning applications require. 

One of the fundamental challenges in image processing tasks is identifying objects. It is the 

starting point for many following image processing issues, such as segmentation tasks and 

motion detection. A few examples of applications for specialized image recognition are human 

recognition, individuals count, facial identification, textual data recognition, pose 

identification, or license plate identification. 

A deep learning method called YOLO is a real-time object recognition algorithm with several 

uses in image processing. This method employs only one bounding box to pinpoint elements 

like object categories, centroid, and dimensions. It outperformed Fast R-CNN, RetinaNet, and 

Single-Shot MultiBox Detector in terms of prediction accuracy, quickness, and object 

recognition in a single session to gain a competitive advantage over its competitors. Since its 

launch in 2016, the YOLO models have continued to grow. 

On top of YOLO, the YOLOv2 [3] architecture added various features like Batch 

Normalization, higher image quality, and anchor boxes. 

YOLOv3 [4] built on past versions to boost performance on smaller entities by adding an object 

class value to bounding box forecasting, increasing connections to the backbone network 

layers, and making predictions at three different granularity levels. 

YOLOv4 [5] included new features such as enhanced grouping of the elements, a "bag of 

freebies" containing modifications, instant activation, and other improvements. 
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The YOLOv5 [6], [7] algorithms reduce the experimental costs due to how quickly the 

algorithm trains while building the model. YOLOv5 could infer single photos, groups of 

frames, video streams, or webcam connections.  

With the hardware in mind, YOLOv6 [8] redesigns the YOLO backbone and neck to create the 

EfficientRep Backbone and Rep-PAN Neck. The features are separated from the final head by 

added layers in YOLOv6, which proved that performance is improved. The YOLOv6 GitHub 

implements some improvements to the training pipeline and architectural modifications. These 

improvements include training without the anchors, assigning labels dynamically, and SIoU 

box regression loss.  

Yolo works on the following methods.  

1) Residual blocks: At this stage, the model separates the incoming image into equal-sized 

grids, each in charge of identifying an object or a portion of an object inside the grid. 

2) Bounding box regression: Each cell contains a bounding box with properties such as weight, 

height, class, and center that highlight the objects inside. YOLO predicts these using bounding 

box regression, representing the probability of an object occurring within the bounding box. 

3) Intersection over union (IoU): Overlapping bounding boxes are called IoU. Each grid cell is 

accountable for the anticipated detections and their confidence score. Dividing the overlapped 

area by the union area determines the IoU. If the anticipated and actual bounding boxes are 

identical, the IoU equals 1. Here, getting rid of bounding boxes that deviate too much from the 

actual box is simpler.After partitioning the image into grid cells, each cell anticipates bounding 

boxes for each object with specific likelihood scores and class probabilities. For tasks with 

multiple labels, the predictions are made simultaneously by the Yolo algorithm. For the final 

detection to result in distinctive bounding boxes containing objects, the IoU ensures that the 

predictions align with reality. 
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2.3 Related Work 

Several approaches were proposed that includes various deep learning algorithms to 

predict accidents on road [9], [10], [11], [12].  Some of them are listed below: 

2.3.1 Detecting video objects with deep learning algorithms 

Feng Yang et al [13]  used the Yolov7 model for object detection and then integrated it 

with the Deepsort algorithm for object tracking. Using the identical parameters for both of 

them, they used the YOLOv7-Deepsort algorithm to MOT16 datasets [14] and compared it to 

the YOLOv5-Deepsort algorithm. They employed the object detection models YOLOv7, 

YOLOv5s, YOLOv5m, and YOLOv5l. The YOLOv7 achieved higher accuracy and precision 

of 40.82 and 82.01 compared to the other models.  

This leads them to conclude that the yolov7-deep sort algorithm has a higher tracking accuracy. 

2.3.2 Method for improving detection of pedestrians 

Devarsh Patel et al. [15] suggested identifying humans from visual images captured in 

poor lighting conditions with a reasonable level of accuracy utilizing object classification 

algorithms pix2pixGAN and YOLOv7 on thermal pictures produced through picture 

transformation. The authors converted the visible photos into thermal images using the pyramid 

pix2pixGAN algorithm and employed YOLOv7 for effective object detection. They reasoned 

that object detection on translated infrared images would enhance pedestrian detection tasks 

without needing specialized, expensive infrared imaging equipment. The performance of object 

recognition that used this learning algorithm was then evaluated and compared with pre-trained 

models simply on images captured. They discovered that, even in incredibly low conditions, 

their method outperformed visible picture models.  

2.3.3 AI methods to recognize collisions 

A system for vehicle collision detection [16] was suggested by S.V. Gautham and D. 

Hemavathi utilizing a deep learning algorithm YOLO, where the authors examined live-fed 
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video streams from the Surveillance cameras. This approach identifies the accident from the 

input and sends an alert to the appropriate emergency agencies in the area. They used the neural 

network output to identify vehicular traffic collisions by collecting keyframes and developing 

their custom variables. To ensure their technique is appropriate for the current accident 

situations, they created this framework while considering a few extreme variables and factors, 

such as bright sunlight, poor vision in the dark, weather conditions, and shadow. This method 

for detecting traffic accidents concerning vehicle movements considers several variables and 

characteristics. 

2.3.4 Method to build and notify a real-time collision and road barriers 

Research by Chaeyoung Lee et al. led to the development of a deep learning-based 

model [17] that can identify unusual driving behavior and a service that can help avoid 

collisions with other vehicles and heavy traffic. After classifying different car crash kinds using 

FFmpeg for model production, the authors extracted accident images from traffic accident 

video data. The neural network-based technique YOLO is used to assess just head-on crash 

situations. They created this application so that when the automobile accident detection model 

finds anomalies on the road, it sends a warning notification and images of the accidents or 

obstructions to the user, as shown the Figure 2 a, Figure 2 b, Figure 2 c, Figure 2 d, and Figure 

2 e. They combined their car accident detection model with the road obstacle recognition 

model. The presented service was validated using simulated trials on Surveillance cameras in 

various cities. They aimed to enhance the autonomous car sector and improve safety on the 

road by providing solutions. 
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Figure 2 a. The two images above show the detection of an accident in (a) and the detection of an obstacle on 

road in (b) in the northern side of a city [17]. 

 

Figure 2 b. The two images above show the accident of a car in (a) and an obstacle on road in (b)in the southern 

part of the city [17] 

 

Figure 2 c The two images above show the CCTV notification window in the northern end in (a) and the CCTV 

notification window in the southern end in (b) [17] 
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Figure 2 d The four images (a), (b), (c), (d) above show the maps of different routes and the notification 

received by users in the area the accident happened [17]. 

 

 

Figure 2 e The above figure shows the accident detected in different roads from the CCTV [17] 
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Chapter 3. Methodology 

3.1 Proposed System 

 

Traffic accidents rose significantly in the past 10 years due to several factors such as bad roads, 

and careless driving. Several steps are taken to mitigate the issue but it’s still not helping. The 

invention of autonomous vehicles brought in hassle-free and ease of driving. However, there 

are some safety issues concerning the self-driving vehicles that’s stopping them in the market. 

Hence, we wanted to create a method where we can study the different types of collisions and 

further reduce it. We did this using a CARLA simulator bench. We first generated the dataset 

from the simulator and used a deep learning model to predict collisions. A flowchart 

representing the overall methodology is shown in Figure 3 a 

 

3.2 Dataset Generation from the Simulator Bench: 

 

3.2.1 Simulator Bench – CARLA:  

 

The simulator I used in this report is a CARLA simulator Bench. In simple terms, the simulation 

bench is a device created to bridge a gap in the autonomous vehicle by offering an extremely 

stable and streamlined infrastructure to support the creation of autonomous driving systems for 

vehicles that use widely supported and available open-source software. The system offers a 

wide range of sensor suites with configurable specifications, including LIDAR, depth sensors, 

RGB cameras, and many others. By enabling users to co-simulate a digital twin of a real-world 

car, the system allows for quick, reproducible, accurate, and practically infinite testing and 

simulation of many of the components of a self-driving system. Due to the lack of restrictions 

from real-world conditions, users can acquire practical simulation and testing data. 
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Additionally, the simulation bench offers a hardware-in-the-loop configuration that enables 

hardware and software components to be evaluated simultaneously in a simulation platform. 

This allows system users to achieve supervised testing and verification before being deployed  

 

Figure 3 a. The figure shows the overall methodology process 
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for real-world testing. It enables them to attach different hardware peripherals to the bench and 

carry out simulation tasks in a closed environment. The bench connects to CARLA Simulator 

using actual automotive hardware. It creates a real-time driving environment and incorporates 

controls to test various driverless car modules. It also strives to raise software quality to give 

customers more realistic and contemporary features (such as Lane Assisting). The most 

important feature of the simulation bench is its data-capturing and logging capabilities. The 

capacity to gather and examine the information obtained from simulation and testing activities 

yields beneficial information that determines which parts of an autonomous vehicle system 

need adjustments or development. 

Users have an accessible platform where they can conduct in-depth testing and obtain analytics 

on the software and hardware components of their self-driving system due to the controlled 

testing environment within the simulation bench. Additionally, compared to testing individual 

units in reality, the simulation-based technique enables users to undertake thorough testing in 

a shorter time frame. Furthermore, the simulation-based approach would let users run some test 

scenarios that might only sometimes be feasible in real time because of limitations imposed by 

the real world. With the need for more available traffic data in the market, this simulator is 

greatly helpful in generating massive datasets of all possible conditions for further analyses. 

Due to the data logging pipeline inside the simulation bench, users can undertake extensive 

simulation and testing that was previously impossible. Additionally, the bench's usage and HIL 

design would open considerably greater potential for automated driving research and 

development. 

3.3 Applying Machine Learning Model:  

 

This section discusses applying a regression-based deep neural network for predicting 

collision. We first discuss the dataset and the preprocessing steps, and further apply a machine-

learning model to it.  
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3.3.1 Data Preparation: 

 

In this report, we used the CARLA simulator to run numerous simulations, and after 

screen recording the results, we generated the data in an mp4 video file. These video clips show 

several accident scenarios on the road involving various kinds of automobiles, such as cars, 

trucks, and motorcycles. We made sure to capture the collisions as realistic as possible for 

further analysis. 

3.3.2 Data Pre-processing: 

 

The obtained data was pre-processed so the Yolo algorithm could train on it. For 

annotating the videos, we utilized two tools: CVAT and Roboflow. CVAT is a computer vision 

annotation tool that is used for annotations. The videos' bounding box annotations were all 

manually created. We first carefully drew bounding boxes on the vehicles, the collision, and 

the object or vehicle it collides with, on every frame after uploading each video to CVAT. I 

further labeled them as "vehicle," "accident," "object," and "pedestrian." Figure 3 b shows the 

overview of the user interface of CVAT. Every frame of the video sequence can be altered and 

processed using CVAT. Apart from this, CVAT also allows us to adjust the frame rate. For the 

project, we chose the frame rate to be 40 frames per second. The right side of the interface 

shows the different labels used in the annotation process. We labeled the videos in such a way 

that the models learn and give accurate predictions on collision. We annotated Each video 

sequence a few seconds before the collision happened as shown in Figure 3 c, during the time 

of the occurrence of the collision as shown in Figure 3 d, and a few frames after the collision, 

as shown in Figure 3 e. The image's blue, green, and red bounding boxes represent vehicle, 

object, and accident labels, respectively. 
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Figure 3 b. The figure shows the graphical user interface of CVAT tool 

 

 

Figure 3 c. The figure shows the bounding box annotations for the frames before the accident 
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Figure 3 d. The figure shows the bounding box annotations during the occurrence of the collision 

 

 

Figure 3 e. The figure shows the bounding box annotation a few seconds after the collision 
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3.4 Data Modelling: Yolov7  

The most recent piece in the YOLO series is YOLOv7 [18]. Based on earlier research, 

this network significantly increases detection accuracy and speed. The primary considerations 

in constructing an efficient architecture are the model’s size, quantity, and computing density. 

The VovNet model takes a step further and examines how the input/output channel ratio, the 

architectural branching number, and each component's operation affects the system's 

performance. 

3.4.1 E-ELAN: Extended Efficient Layer Aggregation Network 

The next significant advancement in architecture search is ELAN, and YOLO v7 

extends this to E-ELAN. The ELAN article concluded that a deeper network could effectively 

learn and converge by controlling the shortest and longest gradient path. Large-scale ELAN 

has attained stability regardless of how many processing units are stacked or how long the 

gradient approach is. This stable state might be lost if infinitely more computing blocks are 

piled, and the rate of parameter consumption will drop. E-ELAN employs the techniques of 

expand, shuffle, and merge cardinality to constantly improve the training efficiency of the 

model while keeping the initial gradient approach. E-ELAN only changes the computing 

block's architecture without changing the architecture of the transition layer. This technique 

makes use of group convolution to expand the range and cardinality of computing units. All 

the computing modules at a computing level share the same grouping variable and channel 

multipliers. 

Following the predetermined group parameter g, the feature map produced by each 

computing block is subsequently divided into g groups and concatenated. Currently, the 

channel count in every set of extracted features will be the same as in the conventional design. 

By including g groups of feature maps, merge cardinality is carried out. 
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Along with upholding the original ELAN design architecture, E-ELAN can direct other 

collections of computational blocks to pick up more varied functionalities. Figure 3 f shows 

the architecture of E-Elan. 

 

Figure 3 f. The figure shows the extended efficient layer aggregation network architecture of YOLOv7 as stated 

in [17] 

3.4.2 Model scaling for concatenation-based models: 

Model scaling is mostly employed to change particular model attributes and create new 

designs at different scales to account for different observations. The model scales between 

width, depth, and resolution in EfficeintNet, a well-known Google architectural design. Later, 

however, researchers attempted to determine the impact of group and vanilla convolution on 

the number of parameters and computation when executing scale. 

The approach taken by EfficientNet is not appropriate for concatenation-based design because, 

while trying to scale up or down based on depth, the in-degree of a translation layer comes 

right after a concatenation-based computing block would change. For example, scaling-up 

depth will result in a shift in the proportion of a transition layer's input channel to the output 

channel, which could reduce the model's hardware consumption. The suggested method should 

also figure out how the output channel of a computational block will vary when its depth factor 



19 

 

is adjusted. Figure 3 g displays the result after applying width factor scaling to the transition 

layers with the same amount of change. The optimal structure and the model's original 

attributes can both be preserved by the Yolov7 compound scaling method. 

 

Figure 3 g. The above figure shows model scaling of concatenation-based models present in YOLOv7 as stated 

in [17] 

3.4.3 Trainable bag of freebies: 

Researchers from YOLOv7 investigated how different networks should be connected 

with re-parameterized convolution employing gradient flow transmission paths. Figure 3 h 

below shows the placement of the convolution blocks. Four of the eight combinations work 

well.  

 

Figure 3 h. The figure shows the re-parameterized model present in YOLOv7 as stated in [17] 
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3.4.3 Fine for lead loss and coarse for auxiliary: 

Deep supervision is a method that is frequently applied when deep networks are being 

trained. Its main idea is to increase the number of auxiliary heads in the network's intermediate 

layers while using assistant loss as a reference for shallow network weighting. Deep 

supervision can considerably enhance the model's performance on many tasks, even for designs 

like ResNet and DenseNet, which often converge well. The object detector architecture is 

depicted below in Figure 3 i in both its "without" and "with" deep supervision states. In the 

YOLOv7 architecture, contributing to training is the responsibility of the auxiliary head, while 

the primary head oversees producing the outcome.  

YOLOv7 utilizes the lead head forecast as a guide to producing coarse-to-fine structured labels 

employed for the lead head and auxiliary head training processes., using lead head prediction 

as guidance. The accompanying Figure 3 i displays the two suggested deep supervision label 

assignment mechanisms. 

 

 

Figure 3 i. The figure shows Coarse for auxiliary and fine for lead head label assigner present in YOLOv7 as 

stated in [17] 
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Lead head guided label assigned: By enabling the shallower auxiliary head to directly examine 

the main head's data, the lead head will be more likely to focus on obtaining the remaining data 

that is not acquired.  

Coarse-to-fine lead head guided label assigned: The optimizable upper bound of the fine label 

is constantly more significant than the coarse label in this approach, which also enables the 

dynamic adjustment of the relative relevance of fine and coarse labels during the learning 

process. 
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Chapter 4. Implementation and Results: 

4.1 Experimental Setup:  

The report used two computers for designing the model. The first is Linux OS with GPU 

NVIDIA Corporation TU116 [GeForce GTX 1660 Ti], used to generate the data, and the 

second is a Windows OS with GPU NVIDIA GeForce GTX 1050, used to train the model. The 

model trains on video frames of the simulated data consisting of vehicle collisions. 

I then labeled the dataset by building bounding boxes for each frame in every video sequence. 

This process is called annotation, done using a tool called CVAT. In every video, a bounding 

box is drawn around the vehicle and the object it collides with. A few seconds before the 

collision, I drew a bounding box around the car and the object involved in the crash, which is 

the accident bounding box. All the videos were labeled and annotated carefully. 

The report used two computers for designing the model. The first is Linux OS with GPU 

NVIDIA Corporation TU116 [GeForce GTX 1660 Ti], used to generate the data, and the 

second is a Windows OS with GPU NVIDIA GeForce GTX 1050, used to train the model. The 

model trains on video frames of the simulated data consisting. After labeling the dataset, I 

passed it to the Roboflow tool to generate the yolov7 PyTorch format, which can be given as 

input to yolov7. The report used 70 percent as training data, 10 percent as validated data, and 

20 percent as test data. I then trained the yolov7 model on the dataset for 100 epochs and tested 

it on the test data. The model took approximately 14 hours to prepare and could predict the 

collision a few frames before the crash took place. The Figure 4 a shows the prediction of the 

bounding box of collision before the occurrence of the crash at 40 seconds in the video output. 

The blue frame represents the collision, white frame represents the vehicle and the green frame 

the object vehicle collides into. The Figure 4 b shows the collision that occurred at 43 

seconds in the video file. The algorithm predicted the collision 3 seconds before the 
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occurrence of the collision. These 3 seconds might be crucial in alerting the user to stop the 

vehicle or can be used to develop a safety stop after detecting a collision. 

 

Figure 4 a. The figure shows the bounding box prediction of collision before the occurrence of actual collision  

 

 

Figure 4 b. The figure shows the bounding box while the collision actually takes place 
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This data collected can be used to help improve how the autonomous driving agent corrects 

such errors and may help uncover various other anomalies that may be present in the driving 

algorithms. 

The hyperparameters used in this report are from the original YOLOv7 framework [18]. 

4.2 Results:  

The model can identify vehicles and objects and predict the collision before it takes place. 

I used the evaluation metrics Precision, Recall, and Mean Average Precision to train the model. 

Error! Reference source not found. shows the model's results. 

 Precision: The proportion of accurately identified accurate samples to all positively 

classified samples is known as precision. Precision makes it possible to see how 

dependable the machine learning model categorizes the sample data as positive. Figure 

4 c shows the precision curve with respect to confidence. The graph shows the precision 

of all the four classes with varied confidence values.  

  

Figure 4 c. The figure depicts the Precision curve of all the classes with respect to the confidence score. 

Overall, all the classes except for pedestrian class have a precision of over 0.9 as the confidence score 

rises. 
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 Recall: The True Positive to All Positive Samples ratio determines recall. Recall 

evaluates how well a model can identify certain image cases. Error! Reference source n

ot found. shows the recall to confidence, and Figure 4 f and the precision-recall curve of 

all the classes. 

 

Figure 4 d. The figure shows the recall curve with respect to the confidence score of all the classes. 

 

Figure 4 e The figure shows the precision-recall graph of all the classes 
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Figure 4 f The figure shows the precision-recall graph of all the classes 

 Assessing the identified box to the actual bounding box at an IoU limit of 0.5 yields a 

value for the mAP@0.5. If there is more than a 0.5 crossover between the anticipated 

box and the actual bounding box, the data is classified as true positive; otherwise, it is 

classified as false positive. The better the score, the more accurate the model's 

detections are.  

 "mAP@0.5:0.95" denotes the mean average precision above a range of IoU limits, from 

0.5 to 0.95, at 0.05-point intervals. 

Evaluation Metric Score 

mAP@0.5 0.80 

mAP@0.5:0.95 0.71 

Precision  0.815 

Recall 0.885 

 

Table 1.  The table presents the results of the evaluation metrics of the model 
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 Confusion Matrix: A confusion matrix consists of 4 sections, namely True Positive, 

False Positive, True Negative, and False Negative. Figure 4f shows the confusion 

matrix of the model used.  

 

                        Figure 4 g. The figure shows the confusion matrix of all the classes 

 For the 'accident' class, the true positive is 0.99. This value determines the score of the 

model, where the actual class is 'accident,' and the model predicted 'accident' too.  

 The false positive for the 'accident' class is 0.22. This value determines the model's 

score that predicted a few classes as 'accident' but is not of the 'accident' class. This 

means that the model falsely predicted the 'accident' class. 

 The False negative for the 'accident' class is 0.01. This value determines the model's 

score that predicted the class as negative (i.e., other class) but is an 'accident' class.  

The same concepts apply to the rest of the classes. 
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 F1 Score: The harmonic mean of Precision and Recall is the F1 score. Figure 4g shows 

F1 curve of all the classes. It considers harmonic mean as its value hugely reduces as 

precision and recall reduce.  

 

 

Figure 4 h: F1 curve of all the classes 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

Detecting a collision is critical to saving the lives of human beings. In this report, I proposed 

a collision prediction model by training the YOLOv7 algorithm on a custom dataset. The 

dataset is from video sequences generated by running simulations on a CARLA vehicle 

simulator. This simulator was further developed by the members of the Real-Time Embedded 

lab at Ontario Tech University by connecting real-world autonomous vehicle parts such as 

the speedometer and pedals for accelerating and applying break. The generated data were 

analyzed and pre-processed by carefully annotating each class on every frame and labeling it. 

It was then extracted in Yolo format and passed to the model. The model could successfully 

predict the collision on test data a few seconds before the crash occurred. The proposed 

approach could be beneficial in testing autonomous vehicles to avoid accidents and save the 

life of human beings and other creatures. 

5.2 Future work 

This report could only produce limited data due to time constraints. In the future, one could 

expand the dataset by generating more data from the simulator. In that case, there would be an 

enormous amount of data to analyze the collisions and the behavior of self-driving vehicles. 

Any specific type of collision could be given more priority, such as pedestrian and two-wheeler 

crashes, as they would be most affected by any collision. After pre-processing the data, a deep 

learning model can be trained on the dataset and evaluated using various metrics.  

We can test many more variations in the behavior of the autopilot mode of the autonomous car 

of the simulator by driving the vehicle with different scenarios. The anomalies that arise after 

testing the car in other conditions can be further analyzed and solved by altering the 

application's code.  
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