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Abstract

Tools used in nuclear power plant (NPP) inspection are required to be inspected before

and after use on a reactor to check their integrity. To address the long duration re-

quired for manual inspection, non-destructive testing (NDT) can be implemented. In

this thesis, a novel NDT framework is developed using key image processing functions

to localize and identify the missing and misplaced components of NPP inspection tools

using 3D CT data. Analyzing the limitations in image registration, a new algorithm is

proposed to improve existing image registration techniques to handle significant rota-

tional differences. Additionally, to address the annotated data-related issues in deep

learning-based approaches, a semi-automated technique for 3D CT data annotation is

introduced using the modified image registration process and Computer-aided design

(CAD) design files. The annotated data is then used to train a deep learning-based

semantic segmentation model to segment each component of the tool in the CT data.

Keywords: Computed Tomography, Defect Detection, Image Registration, Data

Annotation
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Chapter 1

Introduction

This chapter introduces the background and motivation of this research explaining

the importance and the problems related to tool inspection in nuclear power plants

(NPP). Furthermore, the research problem and objectives of the thesis are discussed.

Finally, a summary of the contribution of the thesis and the outline of the whole

thesis are included in this chapter.

1.1 Background

About 10% of the electricity that the world needs is provided by approximately 440

operable nuclear power reactors [4]. In addition, about 55 more reactors are in the
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construction phase. In order to minimize risks to workers, the public, and the en-

vironment, NPP undergoes regular inspection and maintenance activities [5]. These

inspection activities require several tools to be used in the reactor and a well-planned

maintenance activity includes the inspection of the tools used for maintenance as

well. There are many inspection tools which are used in reactors, they should be

inspected before and after being used in the reactor. Not only during inspection

operation but also tools are required to be inspected after purchase or fabrication

to check their integrity. The tools are inspected after purchase or fabrication, and

before entering the vaults to ensure their readiness to be used in the reactor, the use

of any damaged tool could lead to accidents and additional risks to the reactor. After

usage for reactor inspection, the tools are inspected again to check if there are any

missing or broken components of the tool left inside the reactor. Any foreign object,

such as broken components of the inspection tools left inside the reactor, could lead

to accidents. Hence, the inspection of tools in NPP is very crucial for operational

safety. An example of a tool used in NPP inspection along with the corresponding

CAD image is shown in Figure 1.1.

The existing inspection process for tools in nuclear power plants is mainly manual.

However, tools used in NPP consist of several smaller internal components, making

them difficult for visual inspection without disassembling. Hence, it requires both
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Figure 1.1: Example of an NPP inspection tool (left) and corresponding CAD image
of the tool showing internal components (right).

Figure 1.2: Current inspection workflow.
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time and labour. Depending on the complexity of the tool, the manual inspection

process lasts from several minutes to months. The current inspection workflow is

shown in Figure 1.2, which includes disassembling the tool, visual inspection, and

then reassembling the tool. Wait time before disassembling due to radiation from the

tools used adds further delay to the process. As any remaining objects inside reactor

vaults are dangerous, the reactor has to stay shut down until every object that has

entered the vault can be clearly identified outside of the vault. The reactor remaining

shut down means there is no production, the longer the outage time is the greater the

loss in production. Therefore NPP continuously strives to reduce the outage time due

to inspection and maintenance activities. Reduction of just 12 hours of downtime in

a reactor can generate a saving of around $450,000 [6]. Moreover, historically human

failures occurred in nuclear power plants [7]. The manual inspection process has a risk

of human-related errors. The human labour involved in the process additionally has

the risk of health issues due to radiation from the tools. For these reasons, manual

inspection of tools can lead to loss of time, production, money, health, and resources.

The losses occurring due to the manual inspection process can be addressed with

an automated and fast solution. An automated system shown in Figure 1.3 is pro-

posed to check the integrity of tools during the maintenance and inspection process,

which will reduce outage time and human labour involved. The proposed framework

4



Figure 1.3: Proposed inspection workflow.

will collect the computed tomography (CT) volume images of tools before entering

the vault and after leaving the vault to find out if there is any missing or broken

component in the tool, or if there is any defect in the tool.

1.2 Research Motivation

As discussed earlier, the manual inspection process is time-consuming for tools con-

sisting of different internal components. Therefore, the proposed research targets

detecting defects in industrial tools using a Non-destructive testing (NDT) technique

that can reduce the time required for internal components inspection. CT scans

provide an NDT approach to inspect the internal structure of the tool, without dis-
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mantling the tool. 3D CT is being used in various NDT-related applications including

quality control [8, 9], medical diagnosis [10, 11], and material analysis [12, 13]. How-

ever, using CT technology in the defect detection of nuclear reactor inspection tools

is not much investigated yet. A complete framework including the process of scan-

ning reactor tools, processing the scanned data, and generating inspection results is

required to be developed for NPP, which will reduce the time required for inspection

by several folds. Therefore, the framework will also reduce outage time, labour, and

human errors. This will eventually lead to more profit and increased safety in NPP.

However, this thesis demonstrates the techniques of processing scanned CT data and

analyzing them to detect defects. The CT scanning system to be combined with the

proposed defect detection framework is developed by other research collaborators.

1.3 Problem Definition

Different techniques of defect detection using CT images are developed using image

processing, conventional machine learning, and deep learning-based functions. The

image processing-based approaches are commonly based on comparing input CT vol-

ume with reference CT volume [14]. These techniques require the specimen to be

placed in the scanner using the same position and orientation and is to be compared

with the reference. However, the placement of objects in the scanner is done manually
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[15], making the precise placement of tools in the scanner very difficult. To handle this

issue image registration is used to align the CT data [14] when they are not scanned

in the exact alignment. However, in the case of significant orientational differences

(in the case study of the thesis, this refers to the rotational difference when placing

the tool into the scanner), registration algorithms struggle to align the CT volumes.

This rotational difference must be handled properly to get accurate inspection results.

Although suggestions for using robots for specimen placement were proposed [16, 17],

this also requires research to make the system less complex and affordable.

Deep learning-based approaches [18, 19] are proposed, however, lack of sufficient

training data is causing CT-based inspections to lag behind the success of deep learn-

ing in other fields, such as CT-based applications in medical field [20]. Manually

annotating 3D datasets is expensive and sometimes requires expert presence. Hence,

simulated data is used in model training, one such model is trained by Fuchs et al.

[20]. However, using a large amount of simulated data on models can lead to overfit-

ting when actual CT data is introduced. For these reasons, the process of automated

CT data annotation is required to be researched for more applications based on CT

data.

The defect detection function proposed by Szabo et al. [14] detects defects such

as microscopic cracks, porosity, and voids in the additive manufacturing industry.
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Other developed functions such as the one proposed by Ghorai et al. [21] look for

defects in flat surfaces, and the function proposed by Sarigul et al. [22] looks for knot,

decay, split, and bark in clear woods. Therefore, we see defect detection functions

are generally developed according to the type of defects and object being inspected.

In this research, the integrity of an NPP inspection tool will be inspected to check

if there are any missing or misplaced internal components. Along with detecting

defective areas in the NPP inspection tool, the defective components are identified

by names. This would be the first approach to identify the defective components by

name.

1.4 Research Objective

The main goal is to develop an integrated framework for defect detection using 3D CT

scans using novel algorithms. The developed framework will analyze 3D CT scan data

of nuclear reactor inspection tools and detect, characterize, and localize the defect of

the tool. The following are the objectives to be completed to achieve the main goal.

1. Develop an integrated framework for nuclear reactor tool inspection:

An integrated framework will be developed using image processing-based func-

tions that will be able to identify defects from 3D CT scans of the tools.
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2. Develop an intelligent algorithm for accurate registration with large

rotational angle difference between 3D volumes: Placement of all objects

in a CT scanner for scanning is challenging. Scans might have the objects

rotated in a different orientation in different scans. While existing algorithms

fail to register the volumes with a large rotational difference, an improvement

function to the existing algorithms will be developed.

3. Develop an integrated algorithm for semi-automated 3D data anno-

tation: Using the nuclear reactor inspection tool’s CAD design files and 3D

CT scans, a data annotation system will be developed to generate data to train

a semantic segmentation model. The trained model should be able to segment

different components of the tools.

1.5 Research Contributions

The main contributions of this research work can be summarized into the following

main points:

• An integrated image processing-based defect detection system for the integrity

check of a nuclear reactor inspection tool is developed. The system classifies

the volume data into defective and non-defective classes and localizes as well
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as visualizes the defect area. Additionally, the names of missing or defective

components are identified upon the availability of the tool’s CAD design files.

• An additional function for improving the existing registration algorithms is de-

veloped to be able to register volume data with large rotational differences. The

developed function determines the rotational difference between the reference

and the input volume. After determining the difference angle, the input volume

is rotated based on the angle before running registration functions.

• A data annotation framework that can annotate a large amount of CT volume

data for semantic segmentation model training is developed. The framework

generates the ground truth mask data using the CAD design file of the tool.

Then, the generated data are used to train a segmentation model to validate

the data annotation.

1.6 Thesis Outline

Chapter 1 introduces the background and motivation, problem definition, research

objectives, and contributions. Chapter 2 of the thesis discusses a few related works

on defect detection using CT data. It further discusses techniques used to over-

come challenges in defect detection using CT data. Chapter 3 explains the proposed

10



methodology in detail. The case study data and implementation of the proposed

methods are explained in chapter 4. Chapter 5 demonstrates the results from the

proposed approach and discussions on the achieved results. Finally, chapter 6 is the

conclusion chapter explaining the limitations, and future works related to the thesis.
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Chapter 2

Literature Review

The approach of using CT data for defect detection has been implemented in various

fields, including manufacturing, assembly, food, and medical diagnosis. These de-

fect detection techniques are developed using image processing, conventional machine

learning, and deep learning-based approaches. The thesis’s proposed methodology in-

cludes image processing and deep learning techniques. Hence, the literature review

includes research works from both approaches. 2D image or 3D volume registration is

integral to image processing-based defect detection. Furthermore, data annotation is

an essential part of deep learning-based techniques. Therefore, the literature review

includes discussions on works related to image registration and data annotation as

well.
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2.1 Defect Detection Using CT Data

Computed Tomography (CT) is one of the most used and trusted methods for non-

destructive testing (NDT). Image processing-based algorithms are based on tech-

niques such as image subtraction and region growing. In deep learning-based ap-

proaches, images are fed into models, and deep segmentation or classification algo-

rithms are applied.

A common approach in image processing-based algorithms is to use reference

defect-free images. In such cases, the input CT images are compared with the refer-

ence images to identify the defects. The steps in the proposed method [14] include

CT image enhancement, image registration, subtraction, segmentation (background

removal), morphological operations, and defect characterization. CT image enhance-

ment or restoration is mainly the task of de-noising and image contrast enhancement.

They used Wiener filter [23] to de-noise the images. Then, before subtracting the

input images from the reference image, they are registered using an intensity-based

registration technique [24]. The resulting image from subtraction is segmented using

the thresholding method. Morphological processing is applied [25] to remove the mi-

nor residual artifacts from the segmented image, then the clean image is analyzed for

defect characterization. The proposed method resulted in results in both 2D images

13



Figure 2.1: Few iterations of region growing from seed voxels [1].

and 3D reconstructed volumes. Although they seem to have produced good results,

this approach has some limitations. The objects to be inspected must be placed in

the same orientation and preferably in the same position and angle as the reference

object was placed. This is challenging to place objects in exact positions every time.

If they are not aligned properly, the results are inaccurate. Region growing segmen-

tation is used by Hadwiger et al. to detect defects in industrial CT volumes [1]. They

manually select the seed voxels, and the algorithms check all neighboring voxels for

similar or grayscale values within the range. The process is repeated several times

until the features merge as shown in Figure 2.1. In each iteration, new voxels are

identified by similar features and they may grow and merge with existing features.

Then the segmented regions are analyzed for size and density to classify them as

defects. Although they could produce results, the method required manual tasks like

14



seed selection and parameter selection. Another approach using segmentation, fea-

ture extractions, and classification was proposed for defect detection in aluminum CT

images [26]. Other image processing-based approaches include the use of the Kriging

model with statistical models to compute the shape deviation errors [27, 28].

Random forest (RF) is used to identify defects in aluminum casting as well [29].

RF classifies the discontinuities into defects based on intensity and shape. Although

the proposed method achieved a 94% detection rate in their dataset, there are some

limitations. The process is time-consuming, and they need to address how to handle

the defects with varying intensity and shapes. Support vector machines (SVM) is

used for defect detection on flat steel products by Ghorai et al. [21].

A deep learning-based segmentation technique was used in detecting defects from

cast aluminum parts [20]. A model was trained with a modified version of U-net [30]

model architecture to segment the defects from CT images. Due to a lack of available

CT data, they opted to use simulated data for model training. The model was then

tested with CT data and achieved an accuracy of 65%.

There are applications based on CT technology for defect detection in hardwood

logs [22]. They researched automatic detection and identification of defects in hard-

wood logs. They used CT images to identify internal defects. Previously, some

researchers used an Artificial neural network (ANN) approach to classify the defects
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from CT images [31]. In this paper [22], an ANN was designed to classify the log

image pixels into five different groups (“knot,” “decay,” “split,” “bark,” or “clear

wood”). Although this approach produced some excellent results, the variability of

the woods made it difficult to reach complete success. So the researchers developed

a post-processing module that uses domain knowledge to improve the classification

result. ANN only works pixel-by-pixel; they ignore the defect’s shape, size, or posi-

tion on the logs, which sometimes creates false results. The paper [22] mainly focuses

on the post-processing module, so they selected an ANN with relatively poor perfor-

mance for the classification. Their implementation of ANN has an accuracy of 85.1%.

After the ANN provides tentative labelling to the pixels, the post-processing starts.

The post-processing steps are mainly based on the tools of Mathematical Morphol-

ogy. Mathematical morphology is popularly used to modify image properties such as

shapes, reduce noise and detect features from images. Every region identified by the

ANN has individual post-processing methods. The post-processing module for bark

regions generates a filtered bark image, removing the regions that are not on the log’s

border. The post-processing module for the knot region removes the isolated knot

pixels to generate an output image. From the split images, the post-processing mod-

ule generates more apparent and more accurate split marks in the image. An image of

clear wood is generated with the openings filled using the identified clear wood pixels.
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After performing functions on all layers, the results are combined into a composite

result. When there are overlaps between the pixels, the precedence rules determine

which label to apply. Although the developed post-processing module improved the

defect labelling accuracy of ANN by 6%, there are more areas of improvement, such

as defining the overlapping labelling or even defining more defect types, etc.

Using an object detection algorithm based on RetinaNet with ResNet-101 and

novel data augmentation methods, Cheng et al. [32] proposed a defect detection

system. The algorithm was tested to detect internal defects in the wheel hub and

generated good results. A weakly-supervised Convolutional Neural Network (CNN)

model for classification was again proposed to detect defects in the casting industry

[19]. First, images were divided into defects and non-defect classes; then, the model

was trained to classify these images.

A summary of the methods discussed in this literature review is presented in Table

2.1. It shows the approach taken, the type of defects targeted, and some remarks

about the method.
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Table 2.1: Summary of existing defect detection meth-
ods.

Paper
Detection
approach

Type of de-
fects

Remarks

Szabo et
al. [14]

Image pro-
cessing

Defect detection
in additive man-
ufacturing of
near Net-Shape
parts.

They detected defects such as mi-
croscopic cracks, porosity, and
voids in additive manufacturing
of near Net-Shape parts. The ap-
proach was to compare the input
CT image with the reference im-
age to detect the defects. Al-
though it produced good results
with some data, it struggled when
the 3D scans had object place-
ment at a different orientation.

Hadwiger
et al. [1]

Image pro-
cessing

Defect detection
in cast metal
parts.

The region-growing segmentation
process is used to detect the de-
fects. The process requires man-
ual tuning of various parameters,
such as target ranges of den-
sity and size, alongside the selec-
tion of seed points for each vol-
ume, which increases the process-
ing time.

He et al.
[26]

Image pro-
cessing

Defect detection
in industrial
parts.

Defects are detected based on seg-
mentation and feature extraction.
However, further investigation is
required to be able to detect more
forms of defects.
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Table 2.1: Summary of existing defect detection methods
(continued).

Paper
Detection
approach

Type of de-
fects

Remarks

Zhao et al.
[29]

Machine
learning

Defect detection
in aluminum
casting.

Random forest (RF) was used
to classify the discontinuities into
defects based on intensity and
shape. The process is time-
consuming, and the intensity and
shapes are not always consistent
among defects, which were not
appropriately addressed.

Ghorai et
al. [21]

Machine
learning

Defect detection
on hot-rolled flat
steel products.

Surface-level defect detection
struggles with uneven illumina-
tion or vibrations while acquiring
the images. Furthermore, there is
a challenge in generating training
data.

Fuchs et al.
[20]

Deep
learning

Defect detection
in cast alu-
minum part.

A segmentation model was
trained to segment defects from
CT images. The model was
trained with simulated CT data.
When tested with real CT data,
an accuracy of 65% was achieved.

Sarigul et
al. [22]

Deep
learning
and image
processing

Defect detection
in hardwood
logs.

Artificial neural network (ANN)
was used to classify the image
pixels: “knot,” “decay,” “split,”
“bark,” or “clear wood.” The pix-
els were further processed to iden-
tify defects. Although this ap-
proach generated good results,
there are more areas of improve-
ment, such as defining the over-
lapping labelling or even defining
more defect types, etc.
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2.2 Image Registration

Image registration means aligning one image or volume according to a reference vol-

ume. Registration is required to analyze and compare images or 3D Volumes when

they are not aligned. Based on the transformation type, image registration can be of

several types: rigid, affine, and deformable. Rigid and affine transforms are used when

the object in the image should not be warped or deformed. Rigid transformation does

the work of translation and rotation of the input image. Affine transformation im-

proves rigid transformation by translating, scaling, rotating, and shearing the input

image. Deformable image registration is used in cases where the object’s structure

in the image can change dynamically, mainly in the case of medical images. In the

thesis, tools that have specific shapes are inspected, so rigid and affine transformation

techniques were explored for review.

Several registration methods have been presented with different criteria over the

years. The approaches change according to the data dimensionality (2D, 3D, 4D),

data source (MRI, CT, LIDAR), region of interest, and application. Registration

methodologies based on the voxel or pixel intensity are known as intensity-based

registration. Those based on geometric features, such as structures from images,

are called feature-based or geometrical-based. Figure 2.2 and 2.3 show the typical
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Figure 2.2: Conventional algorithm for intensity-based registration.

workflow of intensity-based and feature-based registration approaches [33].

Deep learning is used for image registration algorithms as well. The first deep

learning-based rigid registration approach was proposed by Miao et al. [34, 35].

They used CNN to predict the transformation matrix for registration. The model

was trained with data generated by transforming aligned volumes. Their experiment

showed improved registration; however, the dataset used had slight rotational differ-

ences (less than 30 degrees) [36]. Sun et al. [37] also used synthesized training data to

train a model for registration. The network was designed and trained to predict affine

transformation matrices for CT-Ultrasound images. Although the process worked for

synthesized data, it did not work fine for actual CT-Ultrasound images due to the

appearance difference between the simulated and real data [38].
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Figure 2.3: Conventional algorithm for feature-based registration.
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2.3 Data Annotation

A survey by M’akinen et al. [39] found that the top problems of using deep learning

in industrial applications are all related to datasets. The problems include lack of

data, quality of data, and accessibility of data. For supervised machine learning ap-

plications, labelling the data is primarily manual work. The images or volume data

for segmentation-related datasets are labelled using tools that require much manual

work. Generating a dataset consisting of large amounts of data with high quality

requires much time and is expensive. This factor is one of the main obstacles to

using deep learning in more and more applications [40]. The data annotation chal-

lenge exists in applications on agricultural use-cases, medical use-cases, rock fractures,

nanoparticles, etc [41].

The dataset for the segmentation task generally consists of input and correspond-

ing mask images. Each pixel of the mask image is annotated according to the object

they belong to. Generally using conventional labelling tools, human experts identify

the bounding pixels of each object and do the annotation. Manual labelling of image

data is more difficult as different images have different properties and pre-processing

requirements. When the data is 3D, the work complexity increases more. Even though

all these challenges are there, the use of deep learning is increasing day by day. So a
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significant amount of research and developments are being carried out to make data

labelling more automated and efficient. Due to the manual data annotations chal-

lenges discussed above, the use of deep learning-based solutions is still limited. Most

systems are developed with a single objective or for a specific domain; when the data

or item changes, the system does not work. An automated data annotation system

can be used to generate a large amount of data for different domains. The developed

DNN models can be implemented for different scenarios faster, as training data can

be annotated automatically. For example, if a segmentation model is developed for

one specific object, it can easily be implemented for different objects.

Many techniques are implemented and developed to handle data-related issues.

The most widely used technique to increase the size of a dataset is the use of data aug-

mentation [30]. Different transformations, such as rotation, color transformation, and

flipping, are applied to existing data to generate new data. However, this approach

cannot synthesize new properties to data. A more advanced approach to increasing

the data size is using Generative Adversarial Networks to produce synthetic data [42].

This approach can increase the complexity of data augmentation. Usage of transfer

learning and self-supervised learning techniques are similarly being explored to de-

crease the requirement of large datasets [43]. Even after all these, the importance

and requirement of data annotation are still there.
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Techniques are researched to automate and find more efficient processes of data

labelling. Extreme clicking [44] was proposed to decrease the time required for data

annotation. Instead of box dragging, this approach lets the user click the four most

extreme points of the object for annotation. Human-augmenting AI-based labelling

system [43] keeps a human in the loop for the process, but when the human labels

data, another active learning algorithm learns from human labelling and suggests the

following labels for human experts to approve. This overall decreases the workload

for data annotation. The use of mask-RCNN was proposed to be used for data

annotation for sand-like granular instance segmentation [40]. The proposed method

allows the production of a large dataset for granular object segmentation without

manual labelling.

2.4 Limitations Observed

Different approaches to defect detection using CT images come with different chal-

lenges due to data, defect variations, and data limitations. Image processing-based

approaches struggle when the images cannot be aligned accurately (registration al-

gorithms fail). This issue comes from the scanning stage of the object. For accurate

defect detection, the object’s placement in the scanner must be precise or close to how

the reference object was placed. The discussed defect detection system can localize
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the defect; however, in the case study of the thesis, the identification of the missing

or defective component by name is investigated. Although deep learning-based tech-

niques are being developed, the training and testing in most cases are being carried

out with few publicly available data or simulated data. Those do not guarantee good

performance when the algorithms are used with actual CT data.

Image registration can handle orientation differences such as rotation and tilt but

only in small ranges. Image registration algorithms struggle to register 3D volumes

when it has a large rotational difference (more details in chapter 3). Deep learning-

based image registration algorithms are also proposed; they are primarily trained with

simulated data, and their performance with actual CT data might not be satisfactory.
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Chapter 3

Research Methodology

Developing the defect detection system using 3D CT data is a step-by-step process.

The developed framework has four primary functions: CT data processing, image

processing-based defect detection, CT data annotation, and deep learning-based seg-

mentation model. First, the input CT data are processed and prepared for defect

inspection. Then the image processing-based defect detection function looks for de-

fects in the input data. If the CAD data of the tool being inspected is available,

the defect detection function can identify the defective components by name. More-

over, upon the availability of CAD files, the deep learning-based technique for defect

detection is explored. A CT data annotation function is developed to annotate 3D

CT data. This data is then used as input to train a deep learning-based semantic
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segmentation model in order to segment each component of the tool in the CT data.

A summarized workflow of the proposed method is shown in Figure 3.1.

Some terminologies that are used frequently are the following:

• Volume data: A 3D array that represents the scanned object data. It is

reconstructed based on 2D X-ray projections at different angles.

• 2D Slice: A CT volume can be deconstructed along a specific direction into a

stack of 2D images called slices.

• Voxel: A voxel in 3D volume corresponds to pixels in 2D images. 3D volumes

consist of these volumetric pixels called voxels.

The research is based on test data provided by the collaborators, New Vision

Systems Canada Inc. (NVS). Diondo, an experienced company designing different

CT systems, generated the CT data. A nuclear reactor inspection tool was scanned

using a CT scanner, and the scanned data was provided for use in this research. The

provided data are the 3D volumes after reconstructing the CT projection images.

Hence, there was no need for the proposed methodology to further explore 3D CT

reconstruction algorithms needed to generate 3D data from 2D projection images.

Although using 2D CT data is a faster and less resource-consuming option to work

with, this thesis explores the usage of 3D CT volume data. Working with 3D volumes
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Figure 3.1: Summarized workflow of the proposed method.
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would allow the system to display the defects clearly. Additionally, this thesis works

on identifying the defects by name and displaying the defect component in 3D so the

user can identify the defective component or area faster in the actual tool by looking

at the display. In addition, defect detection using 2D data is investigated by our

research colleagues and collaborators [45].

3D data can be represented in different formats. The most popular representation

formats are voxel grid and point cloud. The input format is selected based on the

developed system and the type of application. Point clouds are simply collections

of points in 3D space where each point is specified by a coordinate (x,y,z) location.

Voxels are like pixels in 3D. They are similar to point clouds except that they are

quantized, fixed-sized point clouds. Unlike point clouds, voxels have fixed sizes and

discrete coordinates. The thesis considers 3D volume data as voxels. Although voxels

require higher memory and computing power to work with than point clouds, voxels

are the closest representation of 3D data to images. Furthermore, the conversion of

CT data to the point cloud is a complex process including several functions [46][47].

Also, having a fixed size and structure allows traditional convolutional layers to be

used for feature learning in voxel data, whereas it is challenging to use traditional deep

learning methods for point clouds as they are translation, rotation, and permutation

invariant. Considering all these, voxels were selected as the 3D data representation
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format for the thesis.

The CAD files of the tool used to generate the CT data are also available, so CT

data annotation and deep learning-based techniques could be explored. A properly

trained deep learning-based defect detection will allow the system to inspect 3D CT

data faster as image processing-based 3D CT data processing and defect detection

takes more time. In cases where the CAD files are not available, for example, if the

designer company of the tool does not share their design files, then only the image

processing-based defect detection function will be executed.

3.1 3D CT Data Processing

3.1.1 Background Subtraction and Volume Registration

The process starts with either volume data or a series of 2D slices of CT volume. If

the input is a series of 2D slices, the module constructs the 3D volumes from 2D slices

by stacking them along the sliced axis. CT volume data comes with some background

noise data. Furthermore, the volumes are not always aligned; sometimes, they can

get tilted or rotated for a bit. Before applying any defect detection algorithms, the

data must be prepared by removing the background noise and aligning all the volumes

according to one reference volume so they can be compared. Figure 3.2 shows general
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Figure 3.2: CT data processing workflow.

workflow of CT data processing.

The case study CT data for the thesis was generated by collecting a large number

of 2D projection scans (813 projections) over 195 degrees of rotation. 2D projections

are then converted to 3D tomography (3D volume) using the FDK (Feldkamp, Davis,

and Kress) algorithm [48]. Figure 3.3 shows the CT machine and how the tool was

placed in the machine for scanning.

A high level of x-ray dose was used in each CT data generation. Hence, unlike

most CT volumes, the case study data has a lower chance of having artifacts to

denoise and does not require extensive image enhancement. Median filter [49] is used

for denoising the CT volume. The median filter can effectively remove tiny noises

(salt and pepper) while preserving the edges. The median filter considers each pixel

in the image in turn and looks at its nearby neighbors to decide whether or not it is

representative of its surroundings. If the value of the pixel is needed to be replaced,

32



Figure 3.3: CT scanning process of the tool.

it is replaced by the median value of the neighboring pixel values. The equation 3.1

defines the filter for 2D input, where R is the defined neighboring region.

I ′(u, v)← median{I(u+ i, v + j)|(i, j) ∈ R} (3.1)

Following the exact principle, the median filter function developed for 3D input

is used to denoise the input 3D CT volumes.

There are several thresholding algorithms where the threshold values are auto-

matically determined. The otsu thresholding is one of such algorithm. The algorithm

separates the volume voxels into two categories: foreground and background, then

33



Figure 3.4: Background subtraction example.

it returns the foreground voxels’ binary mask. The technique is to search for the

threshold that minimizes the intra-class variance, defined as a weighted sum of vari-

ances of the two classes. It divides all the pixels into two clusters. It minimizes the

intra-cluster variation by maximizing the inter-cluster variance. Finally, it returns a

single intensity value which is called a threshold value. The background noise of CT

data is removed using otsu thresholding, and the binary mask volume is generated.

By keeping the binary mask as the reference, the region consisting only of the tool

in the CT volume is cropped out as the clean volume data. Scikit-image [50], an

open-source image processing library, was used to implement the median filter and

otsu thresholding functions. Figure 3.4 shows an example where the background data

was removed from the CT volume.

Once the background noise from CT volumes is removed, the next step is volume

registration. The input volume is registered according to the reference volume (back-
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ground subtracted non-defect volume). Affine transformation for the volume regis-

tration is used. Affine transformation does translate, rotating, scaling, and shearing

of the input volume. As the tool being inspected is placed in the CT scanner by

hand, the placement of the tool for each scan is not the same. Based on the differ-

ence in how the tool is placed, several transformations are required for registration.

Several transformations can be combined into a 4 by 4 affine transformation matrix,

M . Where,

M =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1



A voxel (x, y, z) is tranformed by performing multiplication:

x′

y′

z′

1


= M



x

y

z

1



Translation of the input volume moves the voxels of the input volume along the

three axes. The matrix for a simple translation can be represented as T :
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T =



1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1



Rotation of the input volume rotates the input volume along one of the coordinate

axes. The rotation matrix Rx(θ) along x-axis can be represented as:

Rx(θ) =



1 0 0 0

0 cos(θ) sin(θ) 0

0 −sin(θ) cos(θ) 0

0 0 0 1



Scaling transform changes the size of the object by expanding or contracting. The

transformation matrix for scaling can be represented as:

S =



sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1



Shearing transformation handles the tilting of objects. A transformation matrix
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expressing shear along the x-axis can be represented as:

Sx(θ) =



1 cot(θ) 0 0

0 0 0 0

0 0 1 0

0 0 0 1



Figure 3.5 shows how objects can be placed in different positions and which volume

data transformation is required to register the input CT data. The gray colored box

represents the area where the scanner collects the radiograph images.

Several existing affine registration techniques and software were used on case study

data, but they failed to register the volume when there were significant rotational dif-

ferences between them. Figure 3.6 shows some outputs from different approaches

where input volume has an estimated rotational difference of around 40 degrees.

Researchers mostly do not share their codes publicly, therefore the registration algo-

rithms available publicly were used to register volumes. Pystackreg [51], a python

extension for automatic image alignment, was used. It works on the slice-by-slice reg-

istration technique. Open-source software for image processing, Slicer [52], was also

used to register the volumes. Finally, DIPY library [53] and SimpleITK [54] were

applied to the case study data. In almost all cases, the translation of the volume was
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Figure 3.5: Different possibilities of placement of an object in CT scanner and the
transformations required to register it according to the reference volume.
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Figure 3.6: Cross-sectional view of reference (green) and input (red) volume before
and after registration.

handled correctly. However, the rotation could not be handled for registration.

To register the volumes with existing volume registration algorithms, some initial

processing of the volume data is required. An algorithm is developed to estimate the

rotational difference between the input and reference volume.

For rotation angle estimation, five different slices of the volume from 5 different

segments are selected from both the reference volume and the input volume. The

slices from the input volume are rotated between -180 to 180 degrees and translated

over the slices from the reference volume. The Structural Similarity Index (SSIM)
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for each angle is calculated. SSIM is a method for calculating the similarity between

two images. SSIM is calculated using the equation 3.2, where µx, µx are the mean

intensities of the respective signals; σ is the respective standard deviation and C1, C2

constants.

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(3.2)

The angle that produces the highest SSIM value is recorded in a list for each slice. The

median angle from the list of angles is selected as the estimated angle of rotational

difference. The input volume is rotated according to the derived angle. The volume

is then resized to a smaller ratio (maximum 100 voxels in each dimension). The

registration algorithm is applied and displayed (overlapping reference and registered

volume) to the user for validation. If the user is satisfied with the registration, then the

registration of the full-scale volume begins. Otherwise, the angle estimation algorithm

runs again. This human verification step is important because, in some cases, angle

estimation might fail if a substantial defect causes an overall structural change in

the tool. In those cases, the tool is automatically understood to be defective, and

further operation is unnecessary. The initial registration is done to a small volume to

reduce the time required for registration. 3D volume registration is a computationally

complex process; the larger the volume size, the more time it takes. The time required

for angle estimation is also reduced by executing functions on smaller-sized volumes.
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The registration algorithm used in the thesis is developed using DIPY library

[53]. The library function does the affine translation operations to register 2D images

or 3D volumes. The library computes the affine transformation of two 3D volumes

by maximization of their mutual information as proposed by mattes et al. [2]. The

target of this [2] methodology is to find a set of parameters µ among µ that minimizes

an image discrepancy function S. µ is a set of transformation parameters to be

determined. µ can be defined using the equation 3.3 where fT (x) is the input image

over domain VT , fR(x) is the reference image over domain VR, and g(x|µ) is the

deformation from VT to VR. Values for the transformation parameters µ are chosen

iteratively to reduce the discrepancy between images.

µ = arg min S(fR, fT ◦ g(•|µ)) (3.3)

Figure 3.7 shows the flowchart of the algorithm used by the dipy library function

to generate the affine transformation parameters for the input image fR and reference

image fT . Once the transformation parameters are derived, they are applied to the

input image to register the image.

Including the developed function of the initial transformation of the volume, the

updated registration algorithm is named DIPY+. Algorithm 1 displays the updated
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Figure 3.7: The registration algorithm proposed by mattes et al. [2]. x is any
geometric location in the reference image. P , PT , PR, and ▽P are the joint, marginal
test, marginal reference, and derivative of the joint distribution, respectively. L-
BFGS-B is an optimization package that searches the parameter space of µ.
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volume registration algorithm, including the functions of rotational difference estima-

tion and user validation of volume registration. A few parameters must be set when

using the library function to register image or volume data.

• Reference data: The image or volume data, according to which the input

data will be registered.

• Input data: The image or volume to be registered.

• Nbins: A value indicating the number of bins to compute the intensity his-

togram. The default value of 32 is used in this case.

• sampling proportion: A value between 0 and 1, indicating the sampling ratio.

The ‘None’ value is used here to specify full sampling.

• level iters: A sequence of numbers indicating the number of iterations per reso-

lution. 3 resolution with [1000, 100, 100] iterations for 2D images and [10000, 1000, 100]

iterations for 3D volumes are specified in this case.

• Sigmas: A sequence of floats indicating the custom smoothing parameters.

The default value of [3, 1, 0] is used.

• Factors: A sequence of floats indicating the custom scale factors. The default

value of [4, 2, 1] is used.
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Figure 3.8: Examples of volume registration using our DIPY+ method.

An example of volume registration is shown in Figure 3.8, where the rotation angle

was estimated beforehand, and an initial transformation is applied. The registered

volumes overlapped perfectly, showing accurate registration.

3.1.2 CAD Volume File

Mechanical hardware tools can be designed on CAD software such as Solidworks,

Autodesk, etc. Each tool component is designed separately and then assembled to

form the complete tool CAD design. The designed tool can be exported as .STL files

where each component is an individual STL file.

STL files are first converted to voxel data, with each voxel of the same component

having the value of the corresponding class label. The size of the generated volume

is set to the same value as the size of the actual CT volumes. Additionally, the

module generates the information file that contains the class label and corresponding
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component names.

The case study tool that was scanned for CT data has CAD files generated with

Solidworks software. Figure 3.9 shows some examples of the components of the tool

in both STL format and real images.

Although the CAD files of the experiment tool are available, it might not be the

case always in reality. If the tool is designed by a company that does not want to

Algorithm 1: Rotation angle estimation and volume registration.

Input : P1: Reference volume path
P2: Input volume path

Output: Vref : Reference volume after background removal
Vinput

reg: Input volume data background removed and registered
according to reference volume

———————————————————————–
⋄ Loading 3D volumes from P1 and P2 as 3D array

V1, V2 = load 3D volume(P1, P2)

⋄ Background subtraction
Vref = subtract background(V1)
V c
2 = subtract background(V2)

⋄ Register input volume

• Rotation angle estimation
Vref

resized = resize into smaller dimension(Vref )
V2

resized = resize into smaller dimension(V c
2 )

Vref
slices, V2

slices = select 5 slices from random indices(Vref
resized, V2

resized)
angleslist = [ ] #list to store estimated angles for each slice
ssimval = 0 #temporary variable to store calculated SSIM value
anglef = 0 #temporary variable to store calculated angle value
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for each corresponding slices Vref
s, V2

s do
for angle between -180 to 180 do

V r
2 = rotate image(V2

s, angle)
V t
2 = translate to ref slice(Vref

s, V r
2 )

ssimnew=calculate ssim(Vref
s, V t

2 )
if ssimnew ≥ ssimval then

anglef = angle
ssimval = ssimnew

end
angleslist ← anglef
ssimval = 0

end
angleest = select optimum angle(angleslist)

• Register resized volume for user validation

V2
resized rot = rotate volume(V2

resized, angleest)
V2

resized reg = register volumes DIPY (Vref
resized, V2

resized rot)
display for user validation (V2

resized reg, Vref
resized)

• Register full-scale volumes

if user approves the registration of resized volume then
V2

rot = rotate volume(V2
c, angleest)

Vinput
reg = register volumes DIPY (Vref , V2

rot)
else

re-estimate the rotation angle and do registration
end
return Vref , Vinput

reg
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Figure 3.9: Examples of Individual components/parts of the tool.
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share the CAD files, in such case the CAD volume file will not be generated, and any

upcoming function depending on the CAD volume file will not be executed.

3.2 Image Processing-Based Defect Detection

Both image processing and deep learning-based defect detection system are proposed

to be used. Deep learning-based defect detection would require a large amount of

training data to train the model and then get prediction results. However initially, the

system might not have enough data to train a deep-learning model. Image processing-

based techniques do not require a large amount of initial CT data to start with.

The proposed defect detection method works on processed CT volumes using

the CT volume processing module. The proposed detection approach is a reference

image-based approach. Once a non-defect tool scan is saved to the system, the defect

inspection can be carried out. Furthermore, missing components’ names are esti-

mated by referencing the annotated CAD volume file. In case the CAD volume file

is not available, the proposed method would only be able to localize the defects and

determine if the tool is defective or not. Figure 3.10 shows the general workflow of

the algorithm.

The first step is the selection of the reference volume. The reference volume is

48



Figure 3.10: General workflow of the proposed defect detection approach.
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the CT scan of the non-defect tool. The reference volume is registered according to

the CAD volume file if annotated CAD volume data is available. Otherwise, only the

background is subtracted from the reference image.

The input volume is first registered according to the reference volume. Then

the input volume is subtracted from the reference volume. The characteristic of

CT volume is that the hollow space in the CT volume has lower voxels values than

the voxels that absorbed some X-ray due to the presence of obstruction between

the emitter and detector. In residual volume generated by subtraction, voxel values

higher than 0 mean that there was something present in the source volume whereas

missing in the input volume. Moreover, values lower than 0 mean some new items

were added to the input volume; this could be a misplacement of a component or a

broken component. They can be localized as defective areas though the name of the

broken or misplaced components can not be determined. The residual image is not a

very clean image that shows the defects; there are background noise and surface level

errors possibly generated due to cleaning and registration operation. Additionally, the

voxel intensities vary from scan to scan, which adds more noisy voxels to the residual

image. To remove these noisy data, thresholding was applied once again. Entropic

thresholding [55] was applied to remove the background noises. This thresholding

approach selects the thresholding value that creates maximum entropy.
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After the thresholding, the binary masks of both the missing component volume

and misplaced components volume are derived. Mask for the missing component is

multiplied with the CAD volume file to only get the voxels present in both the missing

components mask and the CAD volume file. Now, the annotated missing components

mask is generated. Classes in the missing component mask are listed along with the

corresponding pixel counts. Next, voxel counts for the same classes from annotated

CAD volume are collected. The voxel counts from both sources are compared to find

the percentage of voxel count in missing components mask. A threshold percentage

value is set; if the calculated percentage exceeds the threshold value, the component

corresponding to the class is identified as missing. If there are no missing components,

the tool is marked as defect-free. The threshold value needs to be adjusted if there

are new types of data or if the tool to be inspected is changed. This value is set

manually based on the tool being inspected. In this thesis, the threshold was set to

be 20% for experiments with actual CT data.

In the end, the estimated class (defect or defect-free), list of missing components,

and the overlapping (input volume, missing components, possible misplacement) vol-

umes are displayed.

Throughout the thesis, any 3D display operation is performed using napari [56].

Napari is a python-based multimodal interactive image viewer that can display 3D
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volumes in different colorspace, and additionally lets users interact with the 3D vol-

umes.

3.3 Semi-Automated CT Data Annotation

Although the proposed image processing-based defect detection technique would be

able to identify defects in CT scans, this process would require time to process the

input 3D CT data. However, if a trained deep-learning model is available for defect

detection, the prediction using the model would require much less time. As already

mentioned, initially there might not be enough data available for model training, so

each scan given as input to the system must be annotated and saved to train the

model. Until acceptable model performance is reached, the model should be trained

with more and more data.

Deep learning-based defect detection or missing component identification system

requires a segmentation model to be trained for defect detection or missing component

identification. As this is a supervised training approach, mask images of the input CT

volumes must be generated to train the model. There are a lot of different tools in an

industrial setup, and they all have different components. Therefore, once the proper

data are gathered, it will be helpful to have a semi-automated process of labelling the

52



Figure 3.11: Workflow of the CT data annotation process.

data and generating masks so that the model can be trained for any new tools. Also,

the tools contain many components; labelling them manually in CT volume would be

time-consuming and challenging.

This module’s inputs are the object’s CT volume data and its CAD design files.

The outputs include; processed CT data, corresponding annotated mask data, and

the information file containing the mask’s labelling information. Figure 3.11 shows

the general workflow of the system. The proposed toolbox is a combination of three

different modules. First, the reference labelled mask data from the CAD files are
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generated. Then the CT data are processed (noise removal), and the mask data and

CT data are aligned to get the labelled dataset. This is a 3-step process:

• Step 1: Generation of reference labelled mask data is the first step. The CAD

volume file generated from the tool design files (STL files) is considered as the

annotated mask data. Additionally, a file containing class information (text

file) is generated during the generation of the CAD volume file.

• Step 2: As mentioned earlier, CT data comes with background noise data

that is required to be removed before further operations. The background sub-

traction method explained previously is used to clean the input CT volume

data.

• Step 3: The clean CT data is aligned to the generated mask volume in step 1.

The function of aligning an image or volume according to a reference volume is

called image or volume registration. The registration method explained previ-

ously is used to align the CT volume data to the mask data to get the training

volume and mask data. The CT volume is registered according to the CAD

volume. Then the CAD volume becomes the labelled mask of the CT volume,

and they are saved as a pair of data for model training.

An example of generated mask data overlapping over an input CT volume is shown
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Figure 3.12: Examples of generated mask data overlapping over the input CT volume.

in Figure 3.12; the mask data has different voxel values for different components.

Hence, they are displayed in different colors.

3.4 Deep Learning-Based Segmentation Model

A semantic segmentation model is trained to evaluate the performance of the pro-

posed semi-automated data annotation. The importance of the deep learning-based

segmentation model is that if the model can segment the components of the tools, the

missing components can be found easily. A properly trained model would perform

faster defect detection than conventional image-based approaches. Some algorithms,

such as volume registration, are computationally expensive and time-consuming.

U-net [53] was proposed for medical image segmentation. It is a Fully Convo-
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Figure 3.13: The construction of the 3D U-Net model and its different components
[3].

lutional Network (FCN) based architecture. Since its publication, it has gained a

reputation for generating excellent results while being trained with fewer images.

Figure 3.13 shows the U-like structure of the U-net architecture; hence, the name

U-net is given.

The algorithm can take in raw images as input and generate the segmented masks.

The architecture consists of two parts; the first part is called the encoder. The encoder

is used to capture the features from inputs. A Series of convolutional and max-pooling

operations are carried out in the encoder part. The second part is called the decoder;

it has the same structure as the decoder but is in reverse order. The decoder generates
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the output image from the feature vectors derived in the encoder.

The training data was generated using the methodology explained in section 3.3.

In addition, Resnet34 [57] was used as the backbone of the model, and sigmoid was

used as the activation function.

After the model is trained, the input CT volumes are segmented using the model.

The model generates an output of mask volume with voxel values corresponding to the

component it belongs to. The segmented regions are further compared with annotated

CAD volume. The number of voxels for large segmented regions is compared with the

actual voxel count from CAD volumes to determine whether the segmented region is

correct or false. If any classes are found missing in the segmented output mask, the

tool can be declared defective due to missing components.
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Chapter 4

Experimental Evaluation

This chapter presents a case study to understand the methodology of the thesis. In

addition, the study will help to understand the dataset being experimented with and

how the developed functions (numbered 1-4 in Figure 3.1) are applied to the dataset.

The CT volume data of a tool used for nuclear power plant inspection are collected

for the experiments. Getting a large number of actual CT scan data scanning the

industrial tool is challenging as CT scanning machines are not always accessible and

it requires both expertise and time to operate a CT machine to scan an object to

generate 3D data. Therefore, additional simulated CT data mimicking the actual CT

data is generated. Simulated data and actual CT data were used for experiments and

methodology validation.
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Figure 4.1: Few components of the nuclear reactor tool that are assembled to con-
struct the NPP tool.

4.1 Description of the Case Study Dataset

4.1.1 Real CT Data

The test tool is constructed by assembling multiple various-sized components. And

then, the scan of the non-defect tool is taken. The non-defect tool is scanned multiple

times to increase the dataset’s size and to understand the background or artifacts that

could be generated during scanning. Then components of tools are removed randomly

and scanned again to generate the data of defective tools. Figure 4.1 shows some

components of the constructed nuclear reactor tool. The tool was scanned multiple
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Figure 4.2: 3D view and cross-sectional images from 3 different directions of a CT
scans.

times without any defects and with several missing parts. Figure 4.2 shows the 3D

view and cross-sectional images from 3 different direction of a CT scans data received

after reconstruction from 2D projections. The tool was scanned as segments, as the

real tool is too large to be scanned at once. Our experiments were conducted on one

segment of the tool. There is a total of 33 different scan data, of which 4 are scans

of defect-free tools, and the rest have nine different kinds of faults.

As mentioned above, several components were removed manually during scanning

to imitate the missing component scenario. Figure 4.3 shows how different defects

were produced in each scan. Among 33 different scans, 4 are defect-free scans and
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the other 29 scans have 9 different kinds of defects introduced to them. The in-

troduced defects had variations among themselves with varying numbers of missing

components, different-sized missing components, and the inclusion of new compo-

nents. This allowed the system to be tested for different scenarios of defects.

4.1.2 Annotated CAD Volume

To mimic the real CT data, the CAD design file of the tool is cropped out to select

the corresponding segment of the tool that is scanned while generating real CT data.

The cropped-out segment consists of 19 different components. When generating the

volume data from CAD data (STL files), 20 different classes (19 components and

background class) were labelled in the volume. The size or dimension of the volume

is set to be the same as the real CT data.

4.1.3 Simulated CT Data

Analytical RT Inspection Simulation Tool (aRTist) [58] is a software tool that can

mimic the CT scan environment and generate CT data from CAD volume data. The

aRTist software is used to generate a set of 3D volume CT data of an inspection tool

used in nuclear power plant. Figure 4.4 shows the interface of the aRTist software.

The simulated CT volume is replicated to mimic the real CT scenario, so the
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Figure 4.3: Defects introduced to different scans.
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Figure 4.4: aRTist software interface.

volumes have background noises. Once the background noise is cleaned, the volume

data is derived. The non-defect volume data is generated, and the missing components

scenario is recreated according to Figure 4.3 to generate the defect volume data. Some

different kinds of defects were also introduced to the simulated data. A total of 40

simulated CT volumes are generated, where 4 of them are non-defect, and the rest

have 12 different kinds of defects.
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Figure 4.5: Generated labelled CAD volume file.

4.2 CT Data Processing

If the CAD design files of the tool being inspected are available, the labelled CAD

volume file is generated using the CAD design files of the tool. In this case study,

the CAD files are available, so the labelled CAD volume file is generated at the

beginning. The process explained in section 3.1.2 is used to generate the labelled

CAD volume file. Figure 4.5 shows the generated CAD volume file for the case study,

each component is shown in different colors.
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Figure 4.6: Reference volume processing.

The scanned CT data in this case study comes with background noise data around

the whole tool image, as shown in Figure 4.2. First, the background noise is removed

from the CT volumes. If the CT volume is known as the non-defect volume, it is

considered the reference volume. As the annotated CAD volume data of the experi-

ment tool is present, the reference volume is registered according to the CAD volume

file. Figure 4.6 shows the reference image after background subtraction and volume

registration. All other CT volumes are registered according to the reference volume

data. A total of 33 real CT volumes data and 40 simulated CT volume data are

processed using the process discussed in section 3.1.1.

66



4.3 Image Processing-Based Defect Detection

The developed image processing-based defect detection function (described in section

3.2) is applied to the processed 3D CT data to localize and identify the defects. Both

sets of real and simulated processed CT data were used for the experiment.

Real CT data

One defect-free scan was selected as the reference volume. The background was

subtracted and then registered according to the CAD volume. The rest of the volumes

were considered experimental data. Then, one by one, each volume is inspected for

defects.

One of the outputs generated by the defect detection module is shown in Fig-

ure 4.7. The first image there shows the actual defect that was introduced before

scanning. One component was removed before scanning. The component was named

‘Support part (Spring stopper)’ during the tool’s design (in CAD design). The next

image shows the defect (missing component) detected by the algorithm and localized.

The input volume is green, and the missing component is red for easy visualization.

The next image shows some possible misplacement or scratch-type marks in blue.

Some marks around the screw are seen; this could be initialized from the assembly
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Figure 4.7: Example output from defect detection algorithm.

of the tool; the screw might be tightened differently or may be left a little tilted

during insertion. These types of marks are not displayed as defects and do not affect

the final inspection result. The final output text outputs the inspection result as

‘Defect’ or ‘Non-defect.’ The names of the missing components are listed with their

corresponding class labels from the CAD volume file.

Simulated CT data

Similarly, for simulated CT data, a defect detection algorithm was applied. As simu-

lation data are generated more controlled, the volume data have much less noise. So
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Figure 4.8: Example output from defect detection algorithm applied on simulated
CT data.

the images are sharper than the real CT data. Figure 4.8 shows one output of defect

detection using simulated CT volume. There were three missing components in this

scan, and the algorithm successfully identified all three missing components. Com-

ponents are displayed over the input volume (green), each showing different colours.

4.4 CT Volume Data Annotation

The segment of the tool that was selected for scanning consisted of 19 different com-

ponents. The design CAD files with 19 different STL files were first used to generate

the mask data. Then, the class label ‘0’ was given to the background pixels, and other

components were labelled as different numbers ranging from 1-19. The generated in-

formation file contains the class label and corresponding component names. However,

some components are identical, meaning components are used multiple times in tool
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Figure 4.9: Example of CT data (left) and annotated mask (right).

Figure 4.10: Example of generated class information file.
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construction. Segmenting them as different classes with a trained model would be a

problem of instance segmentation. The target here is to train a semantic segmentation

model to segment the components present in the input scan and identify the missing

scans. The tool scanned to generate the real CT data had some internal components

already deformed, so those components were excluded from inclusion in segmentation

classes. Finally, there were 7 different classes where some classes contained multiple

numbers of components.

Using 33 real CT data, a dataset was created where the ground truth masks were

generated using the process explained in section 3.3. The CT data were processed and

passed for registration according to the mask volume to get the segmentation data

pair. Figure 4.9 shows the registered CT data (input volume) and corresponding

mask volume. Figure 4.10 shows the information file containing the details of each

label.

Experiments were carried out using simulated CT data as the validation exper-

iment of the semi-automated labelling algorithm. During simulation, the object is

placed at different angles to mimic the real CT scenario where the objects are not

always in the same plane. Input CT volume and corresponding ground truth masks

for the 40 simulated data were also generated.

One more set of segmentation datasets was generated using simulated data, but

71



in this case, the simulated data were all generated without rotation. Placing them

perfectly aligned with the annotated CAD volume file. So the data did not require

any annotation processes. Some defective and defect-free scans were performed to

generate 23 simulated data, which all are aligned with CAD volume files. So, ground

truth masks for segmentation are generated by suppressing the missing components’

voxels from the CAD volume file.

4.5 Segmentation Model Training Using

Semi-Automated Annotated Datasets

As discussed in section 3.4, the U-net model architecture with ResNet34 backbone

is used to develop the model for semantic segmentation. The model uses the Adam

optimizer with a learning rate of 0.00001. As there is less data, the learning rate

is kept smaller to keep the model training for longer. The batch size was selected

as 2. The real CT scans were (256*96*256) voxels in dimension, and the simulated

data were (192*96*192) voxels. Though they seem smaller, in 3D computation, using

this dimension requires significant CPU and GPU memory. So the model had to be

trained with a small batch size.

Volumes in each dataset were divided into train, test, and validation set in the
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Figure 4.11: Example of segmentation prediction using trained model.

ratio of 80:10:10. During the training, both training and segmentation loss and IOU

values were monitored. The training was kept running for 800 epochs. Figure 4.11

shows one example of segmentation prediction in one of the test volumes of the real

CT dataset. Although a very small data size was used for training, the prediction

shows promise in the future.
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Chapter 5

Results and Analysis

The derived results are discussed in this chapter and compared with existing methods.

In chapter 2, it was discussed that image processing-based defect detection algorithms

struggle to handle volume registration when the volumes have large rotational or ori-

entation differences, leading to lower defect detection accuracy. Existing registration

algorithms generally struggles to handle large rotation difference in volume registra-

tion. It further discusses how difficulty in data annotation can limit the use of deep

learning-based approaches in more practical use. An update to the existing image or

volume registration algorithms was developed so that the case-study data could be

registered accurately. The developed image-processing-based defect detection algo-

rithm not only localizes but also identifies (by naming missing components) the defect
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areas. And then finally, a semi-automation method for CT volume data annotation

using CAD design files of the object is proposed.

5.1 Updates to Registration Algorithms:

Rotational Angle Estimation

Figure 3.6 shows how few existing and publicly available image registration techniques

failed to register the case study volume data according to the reference volume. The

developed pre-registration function estimates the rotational difference angle and then

rotates the volume data accordingly. The volumes are registered accurately using

this angle estimation function and the DIPY Library function together. However,

this update is not limited to DIPY; other algorithms that previously failed to register

out CT volumes were able to register the volumes after applying the pre-registration

function.

Figure 5.1 shows the improvements the developed rotation angle estimation func-

tion brought into existing registration algorithms. Visual observations already show

the alignment differences between reference and input volumes. Structural Similarity

Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) are calculated for compari-

son. Both are used to perform image similarity checks. SSIM is calculated using the

75



equation 3.2. PSNR can be calculated using the following equation:

PSNR = 10 log10
(2d − 1)2WH∑W

i=1

∑H
j=1(p[i, j]− p′[i, j])2

(5.1)

where d is the bit depth of pixel, W the image width, H the image height, and p[i, j],

p′[i, j] is the ith-row jth-column pixel in the original and registered image respectively.

Figure 5.1 clearly shows SSIM and PSNR values increase once the volumes are

registered after applying the angle estimation function. The improvements in the

registration can also be seen in the overlapping volume images in Figure 5.1 for regis-

tration methods. On the other hand, applying the pre-registration function increases

the time required for overall registration by almost 120 seconds. However, in defect

detection most accurate result is the priority, and poor registration can lead to faulty

results. Therefore, the increase in time required for volume registration due to the

additional function can be ignored. Nevertheless, efficient parallelization of the reg-

istration operation for large CT volumes can be implemented to decrease the time

required.
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Figure 5.1: Comparison between registration algorithms before and after applying
our pre-registration updates.
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5.2 Image Processing-Based Defect Detection

The developed defect detection algorithm was used to inspect the CT volumes. Al-

though the main target is to determine if the tool scanned is defective or not, the

system does both the localization of the defect and also identifies the missing com-

ponents. The accuracy of the system in classifying defect and defect-free tools is

calculated using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.2)

where True Positive (TP), True Negative (TN), False Positive (FP), and False Neg-

ative (FN) classifications are considered.

Among 33 real CT data, one defect-free scan was selected as the reference volume.

Other 32 volumes were inspected. Considering the defect class as the positive class

and the non-defect class as the negative class, there was only one false positive and

one false negative prediction. This makes the accuracy of the proposed system to be

93.75%. Tests with simulated data generated an accuracy of 91%. Accuracy with

simulated data is shown to be less than the real CT data. This is because in the

simulated dataset several additional kinds of defects were introduced, and there is

more variation in the data.
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In industries like nuclear power plants, any false inspection result could lead to

fatal accidents. Mainly when the tool is defective but identified as non-defect, false

negative is the main concern. This means the recall must be higher. The recall

value is calculated using the following formula which looks into the number of false

negatives:

Recall =
TP

TP + FN
(5.3)

The recall value for real CT data is 96.55% and with simulated data recall is 92.5%.

Defect detection results are summarized in Table 5.1.

Table 5.1: Summary result of the defective and non-
defective classification of input scan.

Data type Number of CT scans Accuracy Recall
Real CT data 33 93.75% 96.55%

Simulated CT data 40 91% 92.5%

The proposed method performs well in both simulated and actual CT data. Due

to time constraints and limitations in generating CT data, the system is tested with a

small amount of data. Once more CT data are acquired, the system would be tested

more thoroughly. Unfortunately, the proposed method could not be tested with other

datasets used by other researchers; also, due to the lack of publicly available codes
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proposed in other papers, those algorithms could not be tested with this case study

dataset. Some techniques [20] showed promising results with simulated data but they

struggled when tested with real CT data.

The proposed method not only detects defects but also names the missing compo-

nents using annotated CAD volume data which is a new approach to defect identifi-

cation. Defects in the dataset were produced by removing random components from

the tools before each scan. Identification of missing components by name makes this

proposed method different from other approaches. Moreover, the defects are viewed

in different colors for easier visual localization of the defect. Although the classi-

fication of defective or defect-free yields higher accuracy. Identification of missing

components by name requires more research as it struggles when the components are

misplaced or deviate from their original positions.

5.3 Semi-Automated CT Volume Annotation

The purpose of automating the annotation system is to annotate large datasets quickly

and easily. In addition, the segmentation model can also be trained to identify the

missing components in CT volumes. Two sets of semantic segmentation datasets were

developed using the annotation process described in chapter 3. In addition, another
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Figure 5.2: Training and validation loss and Training and validation IOU curve of
the trained model using real CT data.

set of annotated CT data was simulated, those data did not require any manual

annotation or annotation by the proposed method.

The annotated data were used to train a simple segmentation model developed

using U-net model architecture just to show how the annotated data can be used and

to validate if the annotation function could generate data that can be used for model

training. The real CT data set consisted of 33 volumes in total. The model was

trained for 800 epochs. Figure 5.2 shows the trained model achieved a final training

loss of approximately 0.02 and a final validation loss of around 0.1. The model also

had a final training IOU of around 0.90 and a validation IOU of more than 0.80.

The model was also tested using test data; test data were completely new data

for the model. The predictions resulted in an average IOU value of 0.70. This clearly
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Figure 5.3: Training and validation loss and Training and validation IOU curve of the
trained model using simulated data, annotated by the proposed annotation method.

indicates that the model is learning from the annotated data. Figure 4.11 shows one

example of the predicted output.

The other simulated CT datasets were also used for model training and showed

similar learning progress. Models trained with simulated CT data showed a similar

learning curve. The simulated dataset annotated using the proposed method shows a

validation loss of less than 0.2 and a validation IOU of almost 0.80. Also, the average

IOU with test data is 0.64. Figure 5.3 shows the training curves of the model trained.

The simulated dataset that did not require labelling displays a validation loss of

approximately 0.15 and a validation IOU of almost 0.80. Also, the average IOU with

test data is 0.64. Figure 5.4 shows the training curves of the model trained.
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Figure 5.4: Training and validation loss and Training and validation IOU curve of
the trained model using simulated data that did not require annotation.

The segmentation model trained with annotated data showed proof of learning

even with a small number of CT volume data. When comparing the results of the

different datasets (actual and simulated CT data), they all displayed similar learning

trends. Smaller components were challenging to segment using the trained model,

but this can be overcomed by using a model trained with a large dataset.

The above discussions show that the proposed methodology resulted in the exist-

ing registration algorithms generating more accurate registration results. The defect

detection system could identify defective and non-defective tools with high accuracy

and recall in both actual and simulated volumes. Although the system is tested with

a small number of data, it still shows promising results. Moreover, the proposed an-

notation system could generate data that can be used to train deep learning models.
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Chapter 6

Conclusion

Compared to conventional destructive testing, the use of CT technology offers more

reliable, quicker, and in some cases, more straightforward solutions. There are in-

creasing tendencies to apply CT technology in NDT. The thesis proposes a novel

NDT technique based on image-processing methods, a processing function for CT

data that includes background noise removal, and an improved registration function

that can register 3D volumes with a large rotational difference. The proposed defect

detection system identifies defective and non-defective CT volumes and can identify

the missing components by their names. Finally, a data annotation method is pro-

posed to annotate CT data for segmentation model training. The proposed data

annotation will encourage more proposals of deep learning-based techniques to be
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used with CT data. The proposed annotator can also participate in building useful

annotated data for further deep learning-based applications.

6.1 Limitations

Working with CT data is always challenging, and the challenge increases more with

3D CT data. 3D data operations are computationally very expensive, so a high-

performance machine is required to work with 3D CT data. As the case study tool

was a long tool, it had to be scanned segment by segment. Although the works of

the thesis were based on a specific segment, handling multiple segments of CT data

is still challenging.

In addition, though the modification to existing volume registration functions

could handle rotational differences while registering the input 3D data, it still can

not handle the difference when the input volume is rotated in a different plane or

placed in the scanner with a completely different orientation. In this case, the input

volume needs to be oriented manually so that the reference and input volume are

in the same orientation and the corresponding slices from each volume match with

each other. Although shearing transformation is applied to the input volume, this

transformation can handle very little tilting of the scanned volume.
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Image processing-based defect detection approaches struggle where there is per-

manent deformation in some objects. In addition, some hardware tools might have

mobile components that can be oriented differently or misplaced in different scans.

These factors were not addressed adequately in the proposed methodology. The

proposed methodology is heavily dependent on CAD design files, which means the

hardware must be assembled very carefully so that they do not differ from the CAD

design.

6.2 Future Work

The research will be extended in future to include analysis of more datasets or real

scans and case studies, which will provide more validation and tuning of the proposed

approach. The analysis of more datasets will be used to fine-tune the proposed

automated solution and framework for real industrial applications. The proposed

framework can also be updated to classify the defects into different kinds such as

missing, broken, misplaced, scratched, etc. Also, the defect detection algorithm needs

some parameters to be manually set for now; in the future, work can be done to make

the parameter selection process automatic.

Industries like NPP will not authorize the use of any software or hardware products
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without proper evaluation and licensing. Once every evaluation step is passed, new

products can be integrated into NPP. These evaluation criteria and licences required

will be investigated in future. After studying the conditions for acceptance, if any

modifications are required to the developed system, these modifications can be carried

out.

To handle large objects scanned in smaller segments, further research can be

expected to merge the segmented CT scans to generate the whole object’s 3D CT

volume. The challenging factor in this task is to identify the overlapping areas in

each segmented scan and merge them accordingly. Functions such as 3D volume reg-

istration in large 3D CT volumes is time consuming, so more research on parallelizing

the tasks and better utilization of GPU is required to ensure faster execution.

Finally, once enough CT data is acquired, deep learning-based defect detection

approaches can be investigated further. Trained deep learning models for defect

classification or component segmentation can be used for defect detection. Both

image processing-based and deep learning-based approaches can be used to develop

a hybrid system for more accurate defect detection and identification.

Once enough CT data is acquired, deep learning-based defect detection approaches

can be investigated further. Classification, segmentation, and clustering-based deep

learning and machine learning approaches can be investigated further for defect de-
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tection function development. Both image processing-based and deep learning-based

approaches can be used to develop a hybrid system for more accurate defect detection

and identification.
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