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Abstract

As computing resources evolved and became more accessible over time, much of

scientific research shifted towards utilizing computational techniques. In

particular, biophysics is a field of science that has continually benefited from the

advancement of computers. In biophysics, numerical models of biological

phenomena generated from techniques traditionally used in mathematics and

physics are solved using computational methods. One of the oldest and most

popular of these computational methods is molecular dynamics (MD)

simulations. On the contrary, deep learning is a newly emerging family of

methods that have only recently found success in the biophysics community. In

this dissertation, I present several contributions to biophysics by employing both

MD simulations and a deep learning-based approach referred to as the neural

network method (NNM). Specifically, the collective motion of ensembles of

bacterial twitchers, the structure and dynamics of a phytoglycogen nanoparticle,

and nanoparticle mobility through the slit-well microfluidic device are studied

using MD. In each of these applications, varying modelling resolutions are chosen,

reflecting the trade-off between modelling accuracy and computational efficiency.
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In addition to utilizing MD, the NNM is applied in this dissertation to solve

partial differential equations modelling phenomena in the slit-well microfluidic

device. That is, both the driving electric field and the solution to a parameterized

equation modelling the mean first passage time of nanoparticles through the

device are generated using the NNM. In all applications of the NNM, the

accuracy and effectiveness of the technique are analyzed and benchmarked

against results obtained using MD simulations.

Keywords: molecular dynamics; deep learning; differential equations; numerical

methods; biophysics
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Chapter 1

Introduction

1.1 Developing Computers for Science

John von Neumann, one of the world’s foremost mathematicians, stated in 1946

that science is slowing due to the inability to solve complex problems [6]. To

overcome this, von Neumann proposed using large-scale computing and

advocated for replacing analytical methods with numerical methods. That is, von

Neumann suggested the need for a new scientific field which eventually became

known as computational science or scientific computing.

In the same year that von Neumann emphasized the future importance of

computational science, the United States Army’s Ballistic Research Laboratory

invented the Electronic Numerical Integrator and Computer (ENIAC) [7].

Designed initially to compute ballistics during the Second World War, ENIAC is

widely thought of as the first electronic digital computer. ENIAC brought two

enormous advantages over the electro-mechanical machines that it replaced: the

speed of electronics and its digital accuracy [8]. In addition, the general-purpose

programmability of ENIAC excited many scientists and engineers. As such,
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although ENIAC was built for military purposes, it was soon after applied to a

variety of scientific problems, including random number studies, wind-tunnel

design, and weather prediction [7]. However, ENIAC’s first 24-hour weather

forecast took about 24 hours to accomplish, highlighting the limitations of its

computing power at the time. Nonetheless, ENIAC immediately changed the face

of the computational world.

Soon after ENIAC’s inception, in 1954, John Backus and his team at IBM

began developing FORTRAN, considered the first widely used cross-platform

scientific programming language [9]. Programs written in FORTRAN ran

comparably as efficiently as those that had been strenuously hand-coded in

machine language. This feature was an essential milestone since inefficient

programs were a significant financial barrier due to the rarity and expense of

computers at the time. The creation of FORTRAN also marked a point at which

computer programming became more widely adopted and used by scientists and

engineers.

As computing resources continued to be built, computers were progressively

leveraged for scientific development. In 1959, John Kendrew of the University of

Cambridge, UK, used the EDSAC (Electronic Delay Storage Automatic

Calculator) to build an atomic model of myoglobin using crystallography data

[10]. Myoglobin, a protein that stores oxygen in muscles, was the first protein to

have its atomic structure identified. Thus, Kendrew’s work with EDSAC laid the

foundation for future biological understanding. However, although Kendrew

identified the structure of myoglobin, the next hurdle was correctly visualizing the

molecule. In an attempt to show off the newly identified structure of myoglobin,
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Kendrew built physical models out of black Plasticine and eventually had the

protein structure rendered by an artist [11]. Unsurprisingly, neither visualization

method was received well by the public, and the problem of adequately

visualizing molecular models remained. Nonetheless, in 1966, Cyrus Levinthal at

MIT designed the first program to represent and interpret protein structures [12].

This program provided a platform to observe the interactions between atoms and

manipulate these molecular structures online. The notion of visualizing and

studying three-dimensional structures would continue to grow from this point and

is now of central importance in many areas of science, including biophysics,

chemistry, biochemistry, molecular biology and pharmacology [13].

Over the next few decades, computers became faster, cheaper, and more

flexible. New operating systems, the programs that control many aspects of the

hardware and software in a computer system, were being designed. One such

system was Unix, developed in 1969 by Bell Laboratories and first released to the

public in 1974 [14]. Moreover, new computer programming languages were also

being developed. Around the same time as the development of Unix, the

programming language C was released [15]. Due to the control and efficiency of

C, it gained widespread acceptance among scientists and engineers.

The rise of the supercomputer also happened in the 1970s. In 1976, Seymour

Cray developed the CRAY-1, which could perform 60 million operations in a

second [16]. Thanks to Steve Wozniak and Steve Jobs’s release of the Apple-1,

this decade also saw the rise of personal computers. The advent of personal

computers highlights how accessible and affordable computers had become

compared to 10 years prior.
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In 1983, Danny Hillis developed the first supercomputer to feature parallel

processing, the Connection Machine. Parallel processing drastically reduces the

processing time of a computer by breaking tasks into several components, with a

distinct central processing unit (CPU) computing each piece. As Hillis was

interested in the nature of thought, he desired to construct a computer that could

potentially help understand human cognition [17]. The Connection Machine was

initially used for early artificial intelligence applications, but later versions found

more success in computational science, particularly for fluid-flow simulations [18].

Throughout the 1990s and early 2000s, parallel processing and parallel

computing continued to be developed. In particular, computational science

became even more accessible with the development of general-purpose computing

on graphics processing units (GPUs). Due to the parallel nature of GPUs

breaking complex problems into thousands of separate tasks and computing them

simultaneously, GPUs were typically tasked to handle computations associated

with computer graphics. However, general-purpose GPU computing can be

leveraged to parallel process scientific data as it would an image or graphic. Since

GPUs have many more cores than CPUs, it allows them to process far more

pieces of data per second. This pipeline has been found to fulfil the needs of

many computational science applications.

Today, much of science has shifted towards computational science, where

computers are utilized in computational laboratories. As recently as the last

decade, hundreds of computational science departments have been established

worldwide. Although scientists have used computers since they were first

invented, advancements in computational power have increasingly allowed for the
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simulation of highly complex systems and the continual expansion of scientific

theory. Many types of scientific territories that were previously beyond reach

using theoretical analysis and physical experimentation are currently being

tackled by computational methods, just as John von Neumann predicted in 1946.

1.2 Computational Science in Biophysics

Since their inception in the early to mid-1900s, computers have become a crucial

tool in numerous facets of science. Evaluating mathematical models, processing

data, collecting data, and even communicating information among collaborating

scientists are all tasks that are accomplished by computers. The rapidly growing

accessibility of computing technology has permitted outstanding advances in

many fields of science, including biophysics.

Biophysics is a relatively new branch of science that operates at the interface

of many scientific fields such as physics, mathematics, biology, chemistry, and

material science. In general, biophysics aims to study and explain biological

phenomena by applying techniques traditionally used in physics and mathematics

alongside experimental methods. Biophysics became a prominent field of science

in the early to mid-20th century, most notably when Watson and Crick [19]

ascertained the double helix structure of DNA and identified it as the blueprint

for life. From there, biophysics techniques have led to many more important

scientific advances, including when the Human Genome project determined the

DNA sequence of the entire human genome [20].

When studying biological phenomena, substantial insight into the function of

a biological molecule can be derived from its atomic-level structure. However,
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since the atoms in a molecule are constantly moving, these atoms’ dynamics

heavily influence molecular function and interactions. Thus, the atomic-level

structure only provides a static image of the molecule. It is therefore vital to

procure the ability to observe biological molecules in motion and obtain the

capacity to perturb specific atoms of the molecule to monitor its response.

Traditionally, scientists employ numerous experimental techniques to view

biological molecules in action, such as small-angle scattering [21], fluorescent

microscopy [22], electron microscopy [23], and atomic force microscopy [24].

Unfortunately, these tools provide restricted flexibility for manipulating and

perturbing molecules.

Fortunately, numerical models can be constructed from physical principles to

study the same biological phenomena in a more flexible framework. These models

are precisely the area of biophysics where computational methods are particularly

well-suited: rapidly solving biological models. Moreover, computer simulations

allow the ability to view or manipulate the structure of biological molecules and

observe their dynamics over time. These computational tools become extremely

important when utilized on phenomena too small to visualize accurately using

experimental methods. Implementing computational techniques in biophysics

provides a "computational microscope" where traditional experimental tools fail

to deliver high-resolution visualization and control of biological molecules.

An essential computational technique for simulating biological molecules is

using molecular dynamics (MD) simulations [25]. Biophysics also leverages

numerous other computational techniques; however, MD simulations will be a

significant focus in this dissertation (as further described in Chapter 1.2.1). In
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addition, partial differential equations (PDEs) are commonly used to construct

models of biological systems [26]. As these models can be high-dimensional

systems of PDEs, encompass numerous tunable parameters, or exhibit extremely

complex dynamics, their solutions must be numerically approximated using a

computer. One such technique for doing so is by leveraging deep learning (as

described in Chapter 1.2.2).

1.2.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are one of the principal tools in the

theoretical study of biological molecules’ structure, dynamics, and

thermodynamics. In MD, the motion of atoms is simulated using Newton’s second

law to observe a molecule’s structure and movement over time and obtain relevant

macroscopic quantities. MD simulations have been a critical computational tool

in biophysics research ever since biophysics emerged as a distinct field of science.

As early as 1957, MD was utilized to simulate a monoatomic gas using

two-dimensional hard disks [27]. Throughout the 1960s and 1970s, MD was

continually applied to simulate a variety of liquids, including water [28, 29] and

liquid argon [30]. Although these early research endeavours only focused on

simple systems, as computing resources developed, larger and more complex

molecules became accessible to simulate in full atomistic detail. Today,

fully-atomistic MD simulations are applied to countless biophysics applications

including measuring thermodynamic properties of gas, liquids, and solids [31–33];

dynamics and structure of complex macromolecules (i.e., proteins, lipids,
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carbohydrates, etc.) [34, 35]; bacterial membranes and motility [36, 37];

characterizing and designing microfluidic devices [38–40]; and many more.

Nonetheless, despite the continually growing access to high-powered

computing resources, fully-atomistic MD simulations generally contain an

enormous number of particles which may still be infeasible to simulate over long

time scales. In some cases, coarse-grained MD simulations can be applied, which

involve constructing models of molecular systems that are complicated enough to

capture the system dynamics but are simplified to remain computationally

affordable. In these models, molecules are not represented in full atomistic detail

but are constructed from pseudo-atoms that approximate a group of atoms. With

a trade-off of diminished molecular detail, the degrees of freedom in the

simulation decrease resulting in much longer simulation times. For example, each

monomer in a polymer (such as an amino acid containing ∼ 20 atoms in a DNA

molecule) can be approximated by a single particle, thus drastically reducing the

number of particles in the simulation. However, the approximations required to

build these coarse-grained models can lead to substantial modelling errors. Thus,

the task of coarse-graining necessitates a careful tuning of these approximations

(sometimes by using measurements obtained from a fully-atomistic model) in

order to receive a suitably accurate model. Coarse-grained MD simulations have

successfully been applied to many areas such as protein folding [41], simulation of

biomolecules (such as carbohydrates) and their applications [42], and rotating

bacterial flagellum [43].

In addition to the ability of coarse-graining molecules, MD provides a highly

flexible framework to build rules-based models into the simulations. Instead of
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directly modelling a physical process using a mathematical model, the process

can be indirectly specified using a set of rules. Generally, these rules are simple

models of complex physical processes but do not need to be exact or even

physically correct. Rules-based modelling has two advantages: directly replacing

complex phenomena that may be infeasible to simulate and simplifying the

phenomena to make the simulations more computationally affordable. For

example, biochemical models of living organisms are an area where this type of

modelling is effective, as groups of substances will have predictable and repeated

interaction patterns that can be modelled with simple rules [44]. StochSim [45] is

one of the earliest examples of incorporating rules-based modelling in simulations

of biochemical systems. Additionally, Bustos et al. [46] and Chylek et al. [47]

provide reviews on rules-based modelling for biological applications.

Whether one employs fully atomistic, coarse-grained, rules-based, or any

combination of the several modelling approaches, MD has the flexibility to

simulate systems with varying degrees of complexity. As such, MD is a valuable

tool for biophysics research since biological phenomena vastly range in shape,

size, and complexity, and their dynamics can occur over a range of time scales.

In this dissertation, MD simulations are utilized to study various biophysical

systems. Specifically, in Chapter 3, MD simulations are employed to study the

movement of twitching bacteria colonies. The rule-based and coarse-grained

simulation model utilizes only the most essential details of the twitcher-mode

motility to address whether this motility type alone is sufficient to promote

collective bacteria properties. Moreover, the simplified simulation framework is

computationally efficient, allowing for many simulations of high surface coverages
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of bacteria.

Additionally, in Chapter 4, a fully atomistic MD simulation is conducted to

characterize a phytoglycogen molecule. The high level of biological detail in this

simulation allows for the careful consideration of the molecular interactions that

occur inside the molecule, leading to insights regarding its structure and

dynamics. However, the high model complexity comes at a large computational

cost, allowing for only a single 400 ns trajectory of the molecule.

Finally, in Chapters 5-7, MD simulations are utilized to simulate particle

passage through the slit-well microfluidic device known for its sorting capabilities.

There, the slit-well device acts as a case study in which to investigate the

computational speed and accuracy of the MD simulations. In particular, the MD

results are used as a baseline to compare against results obtained using a new

deep learning technique (as described in Chapter 1.2.2).

1.2.2 Leveraging Deep Learning

Deep learning, a subset of machine learning, is a method that utilizes artificial

neural networks (ANNs), which are computing systems inspired initially by the

information processing and communication of neurons in biological brains.

Accordingly, in deep learning, ANNs are taught to complete specific tasks similar

to humans: learning by example. Deep learning is the key technological driver

behind driverless cars and the computational ear, mouth, and mind behind voice

control in consumer devices like cellphones and TVs. A vast amount of attention

has been placed on deep learning due to the technique’s success in achieving

results in many topic areas that were not possible to obtain previously.
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Whereas MD simulations have been employed ever since biophysics became a

distinct scientific field, deep learning techniques have only recently been leveraged

as a tool in biophysics or for scientific exploration in general. Although deep

learning was first postulated in the 1980s, its success was hindered by two

reasons: deep learning requires an enormous amount of labelled training data and

substantial computing resources, neither of which were readily available at the

time. Furthermore, traditionally the attention of deep learning has been drawn

away from scientific areas and focused on performing human-like tasks in topic

areas such as natural language processing [48] and image processing [49].

As the interest in deep learning grew, so did the availability of large data

sets and fast computing resources. Thus, because of an ANN’s ability to model

nonlinear processes, deep learning eventually became utilized in many scientific

applications, including climate science [50], nuclear physics [51], and ecology [52].

In addition, deep learning has recently been used for research and development in

biophysics. For instance, Tan et al. [53] demonstrated that deep learning could be

employed to extract fundamental biological principles from breast cancer gene

expression data. Deep learning techniques have also led to recent advances in

drug discovery applications, as reviewed by Baskin, Winkler, and Tetko [54].

Moreover, deep learning was employed to predict protein secondary structure [55].

Similar but on a much larger scale, in 2021, Google completed its AlphaFold

2, a program based on deep learning that predicts 3-dimensional protein folding

configurations given the amino acid sequence of the protein [56]. AlphaFold 2 was

trained on over 170,000 pairs of protein sequences and their structures to find a

solution to this half-century-old challenge in biology known as the "protein
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folding problem." As proteins are involved in almost every aspect of life, and their

shape is closely related to their function, understanding the form a protein will

fold into is essential to understanding how biological organisms work.

In general, deep learning is helping to develop biophysics research by

applying data-driven approaches to the massive amounts of biological data being

generated. Lee et al. [57] review how new insights are increasingly obtained by

applying deep learning to high-dimensional biological data. In addition to

data-driven approaches, there is a new data-free technique referred to as the

neural network method that is based on deep learning, has a growing interest in

the scientific community, and has promise for the field of biophysics.

Neural Network Method of Solving Differential Equations

Differential equations are mathematical models that can describe complex

phenomena in many scientific disciplines, including biophysics. As analytic

solutions can only be obtained for elementary differential equations, most

differential equation solutions must be approximated numerically using

computers. One such method for doing so is referred to as the neural network

method (NNM) and is based on deep learning techniques.

The NNM is a relatively new technique as it was first published in 1994 by

Dissanayake and Phan-Thien [58], who applied the method to solve partial

differential equations (PDEs). Around the same time, Meade Jr. and Fernandez

[59] employed the NNM to the solution of ordinary differential equations, and

Milligen, Tribaldos, and Jiménez [60] applied the method to solve a PDE

modelling plasmas confined in tokamaks. In 1998, Lagaris, Likas, and Fotiadis
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[61] also proposed the NNM, however, by utilizing a manually constructed

variation that exactly satisfies the problem’s boundary conditions. Early

implementations of the NNM used shallow neural networks containing one hidden

layer, but several studies have since identified the benefits of employing a deep

neural network architecture [62–74]. Development on the NNM has continued to

progress, and in 2015, Yadav, Yadav, and Kumar [75] published a book reviewing

previous work on the NNM.

Many PDEs that model phenomena in biophysics (and many other fields in

general) are high-dimensional, and a significant barrier to solving them is the

curse of dimensionality. In other words, as the dimensionality of the underlying

domain grows, the computational cost of most numerical methods for PDEs grows

exponentially. Thus, techniques like the finite element method (FEM) are highly

effective when solving relatively low-dimensional PDEs, but may fail to solve

high-dimensional many-body systems such as the motion of complex molecules.

The NNM, however, is a numerical method that promises to overcome the

curse of dimensionality. Many theoretical and empirical studies have been

conducted which suggest that the NNM can solve high-dimensional PDEs [62, 63,

65–67, 69–74, 76–79]. In fact, Wei, Jiang, and Chen [76] studied a

high-dimensional biophysics system using the NNM. Additionally, there are

various theorems indicating that as the dimension of a problem is increased, the

computational cost of the NNM grows at most polynomially [77–79].

Similarly, the NNM has been utilized to solve PDEs that are parameterized

over a continuous range of parameter values [65, 80]. When traditional numerical

methods attempt to solve a highly-parameterized PDE, they can again exhibit a
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curse of dimensionality. Nevertheless, since the neural network can reuse details

across parameter space, it can also conquer this curse of dimensionality [81–83].

In contrast, parameterized solutions cannot typically be acquired using MD

simulations. Thus solutions over a range of parameter values need to be obtained

by simply recomputing the simulation at each choice of the parameter value.

On top of its ability to solve high-dimensional or highly-parameterized

problems, the NNM has several additional characteristics that make it an

appealing numerical method for PDEs. Solutions obtained using the NNM are

not generated on a mesh, and this mesh-freedom generally results in uniformly

accurate solutions throughout the problem domain [75, 84]. In addition, various

modifications of the NNM can be made to ensure that its solutions satisfy

problem-specific metrics that are known ahead of time. Lagaris, Likas, and

Fotiadis [84], McFall and Mahan [85] and Berg and Nyström [64] modified the

NNM for exact boundary condition satisfaction, Al-Aradi et al. [86] enforced

non-negativity of solutions, Mattheakis et al. [87] enforced Hamiltonian

dynamics, and Hermann, Schätzle, and Noé [88] modified the NNM to satisfy

special invariants of the Schrödinger equation. However, an ongoing research area

is addressing whether solutions of the NNM satisfy these types of invariants

without the need to enforce them explicitly.

Since the NNM is a relatively new technique, its theoretical understanding is

less developed than traditional numerical techniques. In particular, there are no

promises regarding whether the NNM will ever find the proper PDE solution, how

fast it will do so, or how accurate it will be. Therefore, most confidence developed

in using this technique is directly due to empirical demonstrations. However, a
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majority of empirical demonstrations focused on well-behaved or simple toy

systems [63, 64, 66, 67, 69–74, 85], and there are hardly any applications of the

NNM to models defined on more elaborate geometries which arise in many

real-world applications. That is, the NNM has primarily been utilized for systems

defined on circular or rectangular domains [63, 66, 67, 69–71, 73, 74], with only a

few exceptions, such as a problem with a re-entrant needle-like boundary [62, 89].

Like deep learning in general, the NNM is a computational technique whose

potential continues to grow as a biophysics research tool. As such, in this

dissertation, the NNM is applied to solve models of various phenomena in the

slit-well microfluidic device, a geometry known for its molecular sorting

capabilities.

Specifically, in Chapter 6, the NNM is implemented to solve for the electric

potential and field in the slit-well microfluidic device. That is, the focus is placed

on the accuracy to which the NNM can obtain electric fields that are

subsequently utilized as the driving force in MD simulations.

Finally, in Chapter 7, the NNM-generated electric field is instead utilized as

the driving force field in a parameterized PDE system modelling particle passage

through the slit-well device. The goal of this study is to investigate the NNM’s

ability to obtain particle passage times and mobilities over parameter space,

providing an alternative method to employing MD simulations.
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Chapter 2

Computational Methods

This dissertation focuses on molecular dynamics (MD) simulations and deep

learning as computational tools leveraged for biophysics research. Accordingly,

this chapter will highlight the basic methodology behind both techniques. The

methodologies specific to each biophysics application explored in this dissertation

are self-contained in their respective chapter.

2.1 Molecular Dynamics

Since molecular systems can contain a vast number of particles that undergo

several complex interactions, analytically expressing the physical evolution of such

systems is often unfeasible. MD is a technique that is used to circumvent this

problem by numerically determining the trajectories of molecules. In particular,

MD simulations are performed by integrating Newton’s equation of motion

∑
F⃗i(t) = mia⃗i(t), (2.1)
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to find a particle’s velocity and position at some time t. Here,
∑

F⃗i(t) is the sum

of the forces acting on particle i at time t, mi is the particle’s mass, and a⃗i(t) is

its acceleration at time t. In MD, many forces can be considered in the equation

of motion (Eqn. 2.1), which provides a flexible framework for simulating and

studying biophysical systems that can contain a large number of disparate

interactions.

2.1.1 Langevin Dynamics

Most real-world molecular systems are unlikely to be found in a vacuum. Instead,

biological molecules generally interact with fluid molecules (i.e. water) that cause

friction and intermittent high-velocity collisions. Many fluid particles can be

integrated alongside the desired biological molecule when simulating these

systems with MD. However, integrating Newton’s equations for numerous fluid

particles is computationally expensive. Alternatively, Langevin Dynamics (LD) is

a way of replacing the interactions of explicit fluid molecules with implicit forces.

When a particle is in the presence of a fluid, smaller fluid particles collide

with it and drive its movement through the system. In addition, the particle will

also experience drag from the fluid. In LD, these two actions are described by

forces and directly incorporated into the equation of motion (Eqn. 2.1). That is,

the motion of a single particle is described by the second-order Langevin equation,

√
2kBTγR⃗i(t)− γv⃗i(t) = mia⃗i(t), (2.2)

where kB is Boltzmann’s constant, T is temperature, γ is the friction coefficient,
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R⃗i(t) is a random force term, and v⃗i(t) is the velocity of the particle. Similarly,

additional forces can be incorporated into Eqn. 2.2 to build molecules or simulate

other interactions that occur in biophysical systems (as described in

Chapter 2.1.2). First, however, the derivations of the thermal and drag forces of

Eqn. 2.2 are summarized below.

Drag in a Viscous Fluid

Drag is the force opposing the relative motion of a particle moving through a

fluid. Drag is complex as it can behave differently depending on the particle’s

size, geometry and velocity relative to the fluid. The Reynolds number

Re =
νLρ

µ
(2.3)

provides a relationship between a particle’s size and velocity in a fluid. Here, ν

and L are the particle’s characteristic velocity and length scale, and µ and ρ are

the dynamic viscosity and density of the fluid. Biophysical systems evolve on the

micro and nanoscopic scales, corresponding to a small Reynolds number. For

Re << 1, a spherical particle experiences a drag force that obeys Stokes’ law

F⃗i(t) = −6πµrv⃗i(t), (2.4)

where µ is again the dynamic velocity of the fluid, r is the radius of the spherical

particle, and v⃗ is the particle’s velocity. More commonly, the drag force is

expressed as

F⃗i(t) = −γv⃗i(t) (2.5)
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where γ = 6πµr is the friction coefficient. The drag force (Eqn. 2.5) is included in

the left-hand side of the Langevin equation (Eqn. 2.2).

Thermal Fluctuations

When a particle is in the presence of a fluid, fluid molecules in thermal motion

will randomly collide with the particle. The accumulation of a large number of

approximately independent random thermal collisions, by the central limit

theorem, will nearly follow a Gaussian distribution. Thus, the net effect of these

random collisions is implemented in the Langevin equation by a random force

term R⃗i(t) commonly modelled by a stationary Gaussian process with zero mean,

R⃗i(t) = [Rx
i (t), R

y
i (t), R

z
i (t)] . (2.6)

This process is not correlated to itself at any other point in time, i.e. ⟨R⃗i(t)⟩t = 0,

and the three components of R⃗i(t) are mutually independent.

Additionally, the magnitude of the random force term depends on the

properties of the fluid. In particular, the frequency of the collisions is controlled

by the temperature of the fluid T . As the temperature is increased, fluid particles

fluctuate more rapidly, and a particle experiences more collisions with the fluid.

The magnitude of the random force term also depends on the viscosity of the

fluid. That is, the fluctuation-dissipation relation,

D =
kBT

γ
, (2.7)

describes the relationship between the temperature and viscosity of the fluid.
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Here, kB is Boltzmann’s constant, T is temperature, γ is the friction coefficient

and D is the diffusion coefficient. Schlick [90] describes in depth how this

coupling of drag and thermal fluctuations is used to derive the random force term

F⃗i(t) =
√
2kBTγR⃗i(t), (2.8)

which is the second force included in the Langevin equation (Eqn. 2.2).

Brownian Dynamics

Brownian dynamics (BD) corresponds to a version of LD where no acceleration is

considered. Thus, BD is referred to as over-damped LD or LD without inertia.

BD is commonly used for systems where the long-time diffusive motion is more

interesting than the short-time ballistic motion induced by the particle’s

acceleration. In BD, the mia⃗i(t) term in Eqn. 2.2 is neglected leaving the

equation to be
√
2kBTγR⃗i(t)− γv⃗i(t) = 0. (2.9)

This equation is also referred to as the first-order Langevin equation.

2.1.2 Interactions

In MD, the trajectory of a particle is determined by considering the sum of the

forces acting on it (Chapter 2.1). When simulating a particle moving through a

fluid, forces from thermal fluctuations and drag are incorporated into the

equation of motion (Chapter 2.1.1). Likewise, additional forces can also be

incorporated to build more complex molecules with more complex interactions or
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even geometric constraints. This section highlights several common MD forces

that are used in this dissertation. Forces in physical systems are commonly

defined as the gradients of potential energies F⃗ = −∇⃗U . As such, the forces in

this section will be discussed regarding their corresponding potential energies.

Here, units of energy are expressed in an energy scale ϵ and distances are

expressed in units of particle diameter σ.

Lennard Jones and Weeks-Chandler-Anderson

In MD simulations, one may desire to limit particles from passing through one

another. This notion is referred to as excluded volume and can be understood by

visualizing two billiards’ balls bouncing off one another. In the case of billiards

balls, there is no force applied between the balls when they are not touching, and

a repulsive force acts upon contact. This force poses a challenge in MD

simulations as it is discontinuous and can create significant errors when

numerically integrated. Therefore, it is necessary to use a force that smoothly

transitions from zero to the desired repulsive force.

The Lennard Jones (LJ) potential (denoted by the blue curve in Fig. 2.1)

can be modified to achieve this desired behaviour. The LJ potential,

U (r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
, (2.10)

considers the interaction between particle i and its neighbour j that is some

separation distance r away. When the separation distance r is very large, the LJ

potential goes to zero. As the particles get closer to one another, the potential

first has an attractive well with a minimum of −ϵ at r = 2
1
6σ. Finally, the
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Figure 2.1: The Lennard-Jones potential (blue) is truncated at its
minimum r = 2

1
6σ (dotted vertical line) and shifted upward by ϵ to

obtain the Weeks-Chandler-Anderson potential (red).

potential rises to infinity as r goes to zero. In other words, the LJ potential

causes a zero force at a large separation, an attractive force at an intermediate

separation, and a repulsive force at a small separation. The LJ potential is

commonly used in atomistic MD to model van der Waals interactions between

atoms (i.e. forces between uncharged atoms that arise from fluctuations in the

atoms’ polarization).

The repulsive regime of the LJ potential is used to model the excluded

volume interaction, whereas the attractive regime models dipole-dipole forces.

However, the attractive regime is unnecessary when solely modelling an excluded

volume interaction. Thus, the LJ potential is commonly modified in two ways to

achieve the Weeks-Chandler-Anderson (WCA) potential (denoted by red in
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Fig. 2.1) that only models the repulsive interaction.

The LJ potential is first truncated, so it no longer has an attractive piece.

However, since the potential will be used in MD simulations, the force needs to

stay a continuous function of the separation distance r. Therefore, the LJ

potential is truncated at its minimum, r = 2
1
6σ, where the derivative smoothly

transitions to zero. Then, for r > 2
1
6σ, the potential is set to a constant value of

−ϵ such that the function is smooth and exhibits no force when r > 2
1
6σ. Finally,

the entire potential is shifted up by ϵ so that the potential is also zero for

r > 2
1
6σ. Generally, this shift does not matter as the force is only needed for the

MD simulations, but it ensures that any energy calculations remain correct.

Thus, the WCA potential which solely models excluded volume is defined as

U (r) =





4ϵ
[(

σ
r

)12 −
(
σ
r

)6]
+ ϵ, r < rc

0, r ≥ rc,

(2.11)

where rc = 2
1
6σ (denoted by the red curve in Fig. 2.1).

Electrostatic Interactions

Often, in MD simulations one may desire to simulate the interactions between

particles that carry an electric charge. To do so, Coulomb’s law is utilized to

describe the electrostatic potential,

U(r) = ke
qiqj
r

. (2.12)
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Here r is the separation distance between particle i and particle j, qi and qj are

the particles’ charges, and ke =
1

4πϵ0
is the Coulomb constant where ϵ0 is the

permittivity of free space. In atomistic MD, the charge of a particle qi is set to

the corresponding atom’s partial charge.

The electrostatic potential U(r) as a function of separation distance r is

plotted in Fig. 2.2 for particles with same sign charges (blue) and opposite sign

charges (red). As expected, U(r) is positive for particles with same-sign charges

(blue), corresponding to a repulsive force between the particles. Conversely, U(r)

is negative for particles with opposite-sign charges (red), corresponding to an

attractive force between the particles.

Figure 2.2: The electrostatic potential U(r) as a function of the
separation distance r between particles i and j, with scaling factor
α = ϵ. Blue line denotes particle pairs with same sign charge (qi = 1,
qj = 1) and red line denotes particle pairs with opposite sign charge

(qi = 1, qj = −1).
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Bonds

When building biomolecules in MD simulations, particles require a way to be

bonded to one another. The simplest method for doing so is by applying a

harmonic potential,

U(r) =
1

2
k(r − r0)

2, (2.13)

between the two particles (denoted by the blue line in Fig. 2.3). Here, k is the

spring constant reflecting the bond’s strength, r0 is the equilibrium bond length,

and r is the separation distance between the particles. The harmonic potential

(denoted by blue in Fig. 2.3), is commonly used to model two covalently bonded

atoms when using atomistic MD.

In Fig. 2.3, the harmonic potential U(r) increases as the separation distance

r increases, which causes an attractive force between the two particles. However,

U(r) provides no method for limiting the total separation distance between

particles. Therefore, it is always possible for a thermal fluctuation or some other

collision to stretch a bond to the point where another particle can cross it. This is

an obvious simulation error since, in reality, two covalent bonds will never cross

each other.

To prevent such bond crossing in coarse-grained MD, a finitely extensible

nonlinear elastic (FENE) potential,

U(r) = −1

2
kR2

0 ln

(
1−

[
r − r0
R0

]2)
, (2.14)

can be applied between the particles (denoted by the red line in Fig. 2.3). Here

R0 is the maximum extent of the bond and k is the spring constant. The
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Figure 2.3: FENE and harmonic potentials with k = 30ϵ/σ2, R0 =
1.5σ, and r0 = 0. Vertical dotted line at r = 1.5σ to denote the

maximum separation distance R0 of the FENE bond.

parameters are commonly chosen to be k = 30ϵ/σ2 and R0 = 1.5σ where σ is the

diameter of the particle and ϵ is the energy [91]. This choice of R0 allows the

available space between two bonded particles to have a maximum distance of

0.5σ, which will prevent a particle of diameter σ from crossing that bond.

Angle Bonds

When constructing a molecule out of a group of particles, applying WCA

(Chapter 2.1.2) and FENE potentials (Chapter 2.1.2) will prohibit particles from

crossing over bonds and one another. However, these potentials do not limit

particles from rotating around each other. A chain of particles bonded together in

this fashion is referred to as "freely jointed" since the chain is free to twist and
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Figure 2.4: A harmonic angle potential is applied between three
successive bonded particles i,j,k. The potential keeps the bond cen-

tered around the angle θ.

bend. To make a chain of particles rigid, a harmonic angle potential

U(θ) =
k

2
(θ − θ0)

2 (2.15)

is used to keep the angle θ between three sequential particles centered around θ0

(as illustrated in Fig. 2.4). Here, k is the spring constant that depicts the

strength of the potential. A harmonic angle potential is used in both atomistic

and coarse-grained MD, although other potentials can be used to model a similar

interaction.

Torsion Angle Bonds

An angle potential (Chapter 2.1.2) restricts the angle generated between two

bonds but has limited control over the rotation of bonds. However, additional

angle potentials can be utilized to further restrict the geometry of bonded

particles. These potentials are typically important for creating higher-order

structures in atomistic MD but can also be used for coarse-grained MD structures.

When four particles are consecutively bonded, particles (i, j, k) create one
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Figure 2.5: A dihedral angle potential is applied between four
successive bonded particles i, j, k, ). The potential restricts the angle
ϕ generated between the planes (i, j, k) (red) and (j, k, l) (blue).

plane and particles (j, k, l) create another (as illustrated in Fig. 2.5). These two

planes intersect each other at some angle ϕ. The dihedral potential restricts ϕ to

control the alignment of these two planes. That is,

U(θ) =
1

2
k(1 + cos(nϕ)), (2.16)

where n is a non-negative constant defining periodicity and k is the spring

constant. The angle ϕ can also be viewed as the angle of rotation about the bond

between particles j and k. Moreover, the choice of ϕ effectively controls the

flatness of a chain of bonded particles. Specifically, if the equilibrium angle of the

two planes is set to ϕ0 = 0, the dihedral angle potential forces the two planes to

be parallel, making the chain of particles flat.

In addition to the dihedral potential, an "improper" torsion potential can

also be utilized to restrict the topology of bonds. This potential is applied

between four bonded particles, where the central particle i is connected to three

peripheral particles j, k, l (as illustrated in Fig. 2.6). Similar to the dihedral
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Figure 2.6: An improper torsion potential is applied between four
bonded particles, where the central particle i is connected to the
three peripheral particles j, k, l. The potential restricts the angle ϕ

generated between the red plane (i, j, k) and blue plane (j, k, l).

potential, the improper torsion potential restricts the angle ϕ created between the

(i, j, k) plane and the (j, k, l) plane. The improper torsion potential is given by a

harmonic function,

U(ϕ) = k(ϕ− ϕ0)
2, (2.17)

where k is the spring constant and ϕ0 is the equilibrium angle. The choice of ϕ0 is

directly related to the distance of the central particle i from the base of the

pyramid created by particles j, k, l. Therefore, this potential is generally used to

keep molecular structures flat.
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2.1.3 Boundary Conditions

Chapter 2.1.2 highlighted several standard potentials incorporated into MD

simulations to construct polymers or more complex molecules. To complete any

MD model, however, the system domain or geometry that the desired molecule is

evolving inside still needs to be defined. As such, this subsection focuses on how

appropriate boundary conditions (BCs) can be utilized to achieve this notion.

Reflective/Repulsive

There are multiple methods for confining particles to a box or some other similar

geometry. The first method is by using simple reflective BCs. These BCs work by

tracking the position of a particle to check when it jumps across a defined

boundary and then manually reflecting the particle back inside the domain.

Figure 2.7: Confining a particle to a simulation box using reflective
boundary conditions. A particle located at position (x0, y0) with
velocity (vx, vy) jumps over a wall at x = L to its new position
(x1, y1) with new velocity (v′x, v

′
y) . The particle is manually reflected

back inside the box at position (2L−x1, y1) with its velocity modified
to (−v′x, v

′
y).
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As an example, consider a particle moving in a 2-dimensional box

(x, y) ∈ [0, L]× [0, L], according to Langevin dynamics (as illustrated in Fig. 2.7).

The particle starts at position (x0, y0) with velocity (vx, vy) and moves to its new

(x1, y1) with velocity (v′x, v
′
y). If the particle jumps over the wall located at x = L

(i.e. x1 > L), then it is manually reflected back inside the box to the position

(2L− x1, y1). Thus, this reflection models the effect of a particle bouncing off the

box’s wall. However, when a particle undergoes LD, it is not sufficient to modify

its position since the particle’s velocity and acceleration are also necessary

quantities to evolve. Specifically, if the particle bounces off a wall at x = L, then

the x component of its new velocity, v′x, needs to change direction to −v′x.

Alternatively, repulsive BCs can be used instead of simple reflective BCs to

confine particles in a geometry. These boundaries are accomplished by defining a

WCA potential (Chapter 2.1.2) between the wall and the particle. Here, the wall

is essentially treated as if it is another particle, and the WCA potential is

incorporated again into the equation of motion. In a simple domain, calculating

the distance between a particle and a wall is a trivial task. However, this

computation becomes much trickier when dealing with an irregular domain shape.

Periodic

When simulating particles in a box, there may be discrepancies between the

evolution of the particles in comparison to what the system would look like in

infinite free space. These boundary effects are referred to as finite-size effects.

This problem can be fixed by not confining the particles to a box and letting

them move around in free space. However, simulating an infinite system can be
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difficult, especially if a specific density of particles is required. Alternatively,

periodic BCs can be used to model an infinite system while still defining the

simulation in a finite box.

Figure 2.8: Schematic of using periodic boundary conditions to
model an infinite domain. When the true particle leaves the simu-
lation box (denoted in full colour) it enters back into the simulation

box (as denoted by the transparent images).

Periodic BCs can be viewed as the simulation box repeating itself an infinite

number of times (called images) in all directions (as illustrated in Fig. 2.8).

Commonly, the minimum-image convention is utilized which allows a particle to

interact only with the closest image of the rest of the particles in the simulation.

A negative aspect of these boundary conditions occurs when the simulation box is

chosen to be too small, such that its size is on the order of the molecule size.

Here, the molecule could interact with its mirror image through a boundary

causing finite-size effects.
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2.1.4 Velocity Verlet and Numerical Integration

In MD, the trajectory of a particle moving through a fluid can be determined by

solving the Langevin equation (Chapter 2.1.1). Specifically, the equation of

motion (Eqn. 2.2) can be used to solve for a particle’s acceleration, and the

acceleration can be integrated twice to receive a particle’s position. However, to

simulate N particles that interact in any way, a system of 3N coupled differential

equations is required. This system of equations quickly becomes too complicated

to be solved analytically and thus needs to be numerically integrated.

Several numerical integration algorithms are designed to estimate these

integrals over short time intervals ∆t. Euler’s method is one of the simplest

algorithms but fails to conserve energy [92]. This attribute can be an issue in MD

as the integrator may cause the system to boil or freeze as the energy in the

system slowly changes from its initial value. One numerical integrator that

conserves energy is the Velocity Verlet algorithm [93]. This integrator is used

throughout this dissertation, and the algorithm is described below. For each

monomer i at time t:

1. Use its current position x⃗i(t) and velocity v⃗i(t) to compute the net force
∑

F⃗i(t) acting on it (as governed by the potentials).

2. From the net force, compute the acceleration a⃗i(t) =
∑

F⃗i(t)/mi.

3. Using the acceleration, calculate the half-step velocity

v⃗i(t+
∆t
2
) = v⃗i(t) +

1
2
a⃗i(t)∆t.

4. Using the half-step velocity, calculate the new position

x⃗i(t+∆t) = x⃗i(t) + v⃗i(t+
∆t
2
)∆t.
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5. Using the updated position, calculate the new net force
∑

F⃗i(t+∆t) acting

on the monomer.

6. From the updated net force, calculate the new acceleration

a⃗i(t+∆t) =
∑

F⃗i(t+∆t)/mi

7. From the updated acceleration, calculate the new velocity

v⃗i(t+∆t) = v⃗i(t+
∆t
2
) + 1

2
a⃗i(t+∆t)∆t.

8. Return to step 1.

2.1.5 Simulation Software

Many simulation softwares are designed to compute the equation of motion of

MD particles efficiently. Some softwares are particularly suited for coarse-grained

MD, whereas others are optimized for atomistic MD (Chapter 1.2.1). Many

simulation packages speed up the computations by parallel computing on graphic

processing units (GPUs).

HooMD-Blue is an example of an MD simulation package that uses the

Velocity Verlet algorithm (Chapter 2.1.4) to numerically integrate the trajectories

of particles [94]. In addition, HooMD-Blue contains many potentials built into

the software package, including those highlighted in Chapter 2.1.2. Furthermore,

HooMD-Blue is GPU compatible to speed up the computational tasks. Due to

the flexibility and control of the HooMD-Blue simulation package, it is

particularly well suited for coarse-grained and rules-based simulations like

twitching bacteria that are conducted in Chapter 3.
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GROMACS (GROningen MAchine for CHemical Simulations) is an example

of an MD package designed to simulate proteins and lipids [95]. Like

HooMD-Blue, GROMACS has many built-in potentials for ease of use, and the

computation of simulation forces can be accelerated using GPUs. GROMACS is

designed to simulate Newtonian equations of motion for systems with hundreds to

millions of particles. As a result, GROMACS is particularly suited for simulating

atomistic structures that tend to contain a vast number of particles. The

atomistic simulations of phytoglycogen conducted in Chapter 4 were

accomplished using the GROMACS software package.

2.2 Deep Learning and Neural Networks

Chapter 1.2.2 discussed how neural networks have recently become a prominent

tool for biophysics research and scientific exploration in general. Specifically,

Chapter 1.2.2 introduced the notion of using deep learning to solve partial

differential equations (PDEs) in a technique referred to as the neural network

method (NNM). As deep learning with the NNM is used throughout this

dissertation, the basic methodology of neural networks is described in the

following subsections.

2.2.1 Supervised Learning

Suppose a data set forms a relationship between input features x and a target

output f(x). This scenario is shown in Fig. 2.9, where red markers denote the

data set. A parameterized function f̃(x; θ) could be used to model this
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relationship by tweaking the parameters θ until the best fit is found. In Fig. 2.9,

the blue dashed line denotes a quadratic fit,

f̃(x; θ) = θ1(θ2(x− θ3))
2 + θ4, (2.18)

that is used to model the input data by learning the parameters θ = [θ1, θ2, θ3, θ4].

This trained function can then be used to predict output values for new data

(represented by the green marker in Fig. 2.9) based on the relationship learned

between x and f(x). This concept of choosing a parameterized function, learning

its parameters to model some input data correctly, and using the function to

generalize to the output of new data, is known as supervised learning.

In the example provided in Fig. 2.9, the form of the parameterized function

f̃(x; θ) was already known to be quadratic. Thus, a simple training algorithm

such as linear regression could be used to find the parameters of f̃(x; θ) that

result in the best fit for the training data (x, f(x)). However, the form of the

function f̃(x; θ) is generally unspecified. Accordingly, a more sophisticated

parameterized function and corresponding training algorithm must be used. The

following subsections highlight exactly that: highly parameterized functions

called neural networks that are trained using gradient-based algorithms.

2.2.2 Forward Propagation

Neural networks are comprised of numerous basic processing units called neurons

or nodes that are organized into layers (as shown in Fig. 2.10). The input layer

simply contains the inputs to the network, which is the training data x. Then,
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Figure 2.9: An example of training data (denoted in red) being
fit by a parameterized quadratic function f̃(x; θ) (denoted in blue).
The parameters θ = [θ1, θ2, θ3, θ4] are learned during the training
process in order to best fit the training data. The trained function
is then used to generalize to the output of new data points (denoted

by the green marker).

the input is passed to the first hidden layer, where it is processed and passed

forward through the successive layers. Finally, the result is sent to the output

layer of the neural network. This process is referred to as forward propagation

since the data moves forward through the layers of the neural network.

In general, the number of hidden layers in a neural network is referred to as

the depth d, whereas the number of nodes in each hidden layer is referred to as

the width w. The number of nodes can be non-uniform across the hidden layers,

but for simplicity, the focus is placed on the case where it is constant. The

topology of the neural network refers to how the nodes are connected. For

example, in a feedforward architecture, there are no cycles or recurrences between
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Figure 2.10: Schematic of a fully-connected feedforward neural
network with 2 hidden layers each with 3 nodes. Training data is
fed to the input layer which is then passed through the hidden layers

and then to the output layer.

the nodes. Moreover, if a neural network is fully-connected, each node in one layer

has directed connections to all of the nodes in the subsequent layer. Fig. 2.10

contains a schematic of a fully-connected feedforward neural network with depth

d = 2 (two hidden layers) and width w = 3 (three nodes in each hidden layer).

Figure 2.11: Schematic of 3 inputs (x1, x2, x3) with corresponding
weights (w1, w2, w3) being passed to a single node. The output at
the node is y1 = σ(w1x1+w2x2+w3x3+b) where σ is the activation

function that introduces non-linearity and b is the bias.

At each node in a neural network, a weighted sum of the node’s inputs is
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computed. These weights are some of the parameters θ learned while training the

neural network. The other parameters learned during training are the biases b.

The bias is added after the weighted sum to translate the function, similarly to

the role of a constant in a linear function. If the network was only built of

weighted sums, its output could only be a linear function of its inputs. Thus, a

non-linearity needs to be introduced. Accordingly, the result at each node is

passed through a non-linear activation function, as discussed in Chapter 2.2.3.

Figure 2.12: A schematic of 3 inputs (x1, x2, x3) with corre-
sponding weights ((w11, w21), (w12, w22), (w13, w23)) being passed to
2 nodes. At each node the weighted sum of its inputs is performed,
then the corresponding bias (b1, b2) is added. The results are passed

through an activation function σ to receive the outputs (y1, y2).

Focusing first on a single neuron with 3 inputs as illustrated in Fig. 2.11, the

output is

y1 = σ(w1x1 + w2x2 + w3x3 + b1), (2.19)

where wi is the weight associated with the input xi, σ is an activation function,

and b1 is a bias. Applying the same logic to 2 neurons in the second layer as
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illustrated in Fig. 2.12, the output of the neurons are

y1 = σ(w11x1 + w12x2 + w13x3 + b1) (2.20)

and

y2 = σ(w21x1 + w22x2 + w23x3 + b2). (2.21)

However, Eqns. 2.20 and 2.21 can be expressed as a matrix equation



y1

y2


 = σ






w11 w12 w13

w21 w22 w23







x1

x2

x3



+



b1

b2







(2.22)

y = σ(Wx+B), (2.23)

where W is a weight matrix and B is a bias vector. Since Eqn. 2.23 was derived

for an arbitrary choice of two successive layers (from layer x = [x1, x2, x3] to

y = [y1, y2]), it can easily be generalized to the output of the ith layer of a neural

network.

First, let Fi(x) ∈ Rw be the vector of outputs at the ith layer of a

fully-connected feedforward neural network f̃(x) ∈ R, given the input x ∈ R. In

general, the output of layer i of a fully-connected neural network of width w and

depth d is

Fi(x) = σ(WiFi−1(x) +Bi), (2.24)
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where Wi ∈ Rw×w and Bi ∈ Rw for i = 2...d. The output of the first hidden layer

(i.e. i = 1) is given by

F1(x) = σ(W1x+B1), (2.25)

where W1 ∈ Rw and B1 ∈ Rw. Finally, it is common to only have a linear

activation function on the output of the neural network such that

f̃(x) = Fd+1 = Wd+1Fd +Bd+1, (2.26)

where Wd+1 ∈ Rw and Bd+1 ∈ R. In Eqns. 2.24, 2.25 and 2.26, Bn is the nth bias

vector, Wn denotes the nth weight matrix and WnFn−1(x) is matrix multiplication.

Notice that the neural network can be written as the composition of functions

f̃(x; θ) = Fd+1 ◦ Fd ◦ · · · ◦ F1(x), (2.27)

where d is the number of hidden layers. To visualize the equation for a neural

network, a schematic of a fully-connected feedforward neural network with 2

hidden layers each with 2 nodes is included in Fig. 2.13.

2.2.3 Activation Functions

At each neural network node, a weighted summation of the node’s inputs is

performed, a bias is added, and the result is passed through an activation

function (Chapter 2.2.1). The activation function has several roles in a neural

network. The first role is to decide whether a node should "fire". In other words,

the activation function determines whether the information the node receives is
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Figure 2.13: Schematic of a fully-connected feedforward neural
network. A weighted sum W1 of the training data x is computed, a
bias vector B1 is added and the result is passed through an activation
function σ to receive the first hidden layer’s output F1 = σ(W1x +
B1). The process is repeated for the second hidden layer’s output
F2 = σ(W2F1 + B2). Finally, the output of the neural network is

f̃ = W3F2 +B3.

relevant or should be ignored. This task is performed by mapping relevant

information to a large node output and extraneous information to a small output.

Since a neural network is the composition of functions at each layer

(Eqn. 2.27), a linear activation cannot be used in the hidden layers as the neural

network would only be a linear function. Thus, another role of the activation

function is to introduce non-linearity into the neural network. Accordingly,

non-linear functions such as a sigmoid, hyperbolic tangent function (Tanh), and

rectified linear units (ReLU) are used as activation functions in the hidden layers

(shown in Fig. 2.14).

Each activation function has distinct strengths and different areas where

they are frequently used. If certain training data features are known, one can

choose an activation function that may contribute to a quicker training time. For

instance, the sigmoid function is commonly used in neural networks trying to



Chapter 2. Computational Methods 43

predict a probability. Like probabilities, the sigmoid function exists only between

0 and 1. This concept also highlights another role of the activation function; to

map the output of a node into the desired range.

Figure 2.14: Four common activation functions σ acting on the
output of the ith node in the jth hidden layer of a neural network,

f
[j]
i .

2.2.4 Gradient Based Learning

Since neural networks are highly-parameterized functions, the perfect set of

weights and biases used for a neural network to approximate a function cannot be

directly calculated. Instead, the problem is recast as an optimization problem

where the space of possible parameters is explored to make a good approximation

of the desired function. Neural networks are usually trained by using iterative,

gradient-based optimizers that leverage a process called backpropagation. First, a

loss/cost function on the network’s output needs to be defined.

Typically with neural networks, the goal is to directly minimize the error

between its output f̃(x; θ) and the function f(x) it is trying to approximate. This
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is commonly done by minimizing the mean squared error,

L(θ) =
1

n

∑

x

||f(x)− f̃(x; θ)||2, (2.28)

between the networks output and the true function over the n data points. Once

L(θ) is used to calculate the error in the network’s output, information about the

error is then backpropagated through the network to update the weights and

biases.

The best neural network solution should minimize L(θ). Moreover, since

L(θ) depends on the weights and biases of the network, the aim is to find values

of the parameters θ that result in the global minimum of the error function L(θ).

In practice, neural networks are built from many layers, each with a large number

of neurons and finding the minimum of a high-dimensional function is difficult.

Nonetheless, gradient-based optimizers such as gradient descent are used to

incrementally update the weights and biases of a neural network by measuring

the partial derivatives of the total error with respect to each parameter, ∂L
∂θ

.

Essentially, the gradient descent algorithm is navigating down the error gradient

as illustrated in Fig. 2.15. After measuring the gradient information, the gradient

descent update for the ith parameter at iteration t is attained by

θit+1 = θit − α
∂L(θt)

∂θit
, (2.29)

where α is a multiplicative factor controlling the magnitude of the updates and

referred to as the learning rate.
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Figure 2.15: Schematic of training a neural network’s parameters.
Parameters are initialized and updated in training steps down the
direction of the loss function’s gradient (slope highlighted in red)

until reaching the global minimum.

Backpropagation

To update the weights and biases of a neural network using gradient descent, the

gradient of the loss function with respect to its parameters, ∂L
∂θ

, needs to be

computed. Note that since the loss function L(θ) in Eqn. 2.28 is a sum over

individual error terms corresponding to each training example in x, the derivative

can be calculated for each term individually and then summed after (i.e. the

derivative of a sum of functions is equal to the sum of the derivatives of each

function). The gradients for a single training example will be derived here, which

trivially extends to the computation with n training examples. For a single
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training example the loss function in Eqn. 2.28 becomes

L(θ) = (f − f̃(θ))2. (2.30)

Eqn. 2.30 will now be used to derive the gradients and parameter updates of

the fully-connected feedforward neural network illustrated in Fig. 2.13. Since x is

being held constant and the parameters θ vary, the neural network is treated only

as a function of its parameters. Therefore the equation for the neural network in

Fig. 2.13 is

f̃(θ) = F3(F2(F1(θ))) (2.31)

with

F3 = W3F2 +B3, F2 = σ(W2F1 +B2), and F1 = σ(W1x+B1). (2.32)

Next, Eqns. 2.31 and 2.32 can be used to derive the update for the weight w
[3]
1 in

Fig. 2.13, which is the first weight in the final weight matrix W3. The partial

derivative ∂L

∂w
[3]
1

needs to be computed first by using the chain rule on Eqn. 2.30,

∂L

∂w
[3]
1

=
∂L

∂f̃

∂f̃

∂w
[3]
1

. (2.33)

From Eqn. 2.31, the substitution f̃ = F3 can be made to receive

∂L

∂w
[3]
1

=
∂L

∂f̃

∂F3

∂w
[3]
1

. (2.34)
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Here, the chain rule does not need to be taken any further since F3 = W3F2 +B3

and w
[3]
1 is in W3. Next, Eqn. 2.34 can be simplified to

∂L

∂w
[3]
1

= −2(f − f̃)
∂W3

∂w
[3]
1

F2 (2.35)

= −2(f − f̃) · [1, 0] · F2 (2.36)

= −2(f − f̃)f
[2]
1 , (2.37)

where f
[2]
1 denotes the first element of the second hidden layer’s output vector F2.

Finally, Eqn. 2.37 can be substituted into Eqn. 2.29 in order to receive the weight

update

w
[3]
1 = w

[3]
1 + 2α(f − f̃)f

[2]
1 . (2.38)

Finding the derivative ∂L

∂w
[3]
1

was relatively easy since w
[3]
1 is in the weight

matrix of the final layer. However, the computation becomes more difficult for

the parameter w
[1]
1 . To compute this gradient, the chain rule on Eqn. 2.31 needs

to be taken all the way to F1, since F1 = σ(W1x+B1) and w
[1]
1 is in W1. First

applying the chain rule on Eqn. 2.30,

∂L

∂w
[1]
1

=
∂L

∂f̃

∂f̃

∂w
[1]
1

, (2.39)

then applying the chain rule on Eqn. 2.31,

∂L

∂w
[1]
1

=
∂L

∂f̃

∂F3

∂F2

∂F2

∂F1

∂F1

∂w
[1]
1

, (2.40)
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and finally using Eqn. 2.32 to substitute the partial derivatives, we receive

∂L

∂w
[1]
1

= −2(f − f̃) ·W3 · σ′(F1)W2 · σ′(W1x+B1) ·
∂W1

∂w
[1]
1

x (2.41)

= −2x(f − f̃)σ′(F1)σ
′(W1x+B1)W3W2 · [1, 0] (2.42)

= −2x(f − f̃)σ′(F1)σ
′(W1x+B1)(w

[3]
1 w

[2]
1 + w

[3]
2 w

[2]
2 ). (2.43)

Here, σ′(·) denotes the derivative of the activation function with respect to its

input. Again, the partial derivative in Eqn. 2.43 can be substituted into Eqn. 2.29

to receive the update for w
[1]
1 .

Similarly, the partial derivative of the loss function needs to be computed for

every weight and bias in the neural network. Furthermore, many updates on

every parameter need to be performed to iterate to the best choice of parameters.

However, most neural networks contain many parameters, so it is imperative to

perform the gradient calculations efficiently. Hence, the backpropagation

algorithm computes the gradient of the loss function via the chain rule, starting

with the last layer first to avoid redundant calculations of intermediate terms in

the chain rule.

Notice in the Fig. 2.13 example that many partial derivatives can be recycled

for use in other derivative computations. After first computing the gradient for

weight w
[3]
1 in Eqn. 2.37, the ∂L

∂f̃
term was subsequently used in computation of

the gradient for weight w
[1]
1 in Eqn. 2.43. In fact, the ∂L

∂f̃
term can be reused in

the computation of the gradient of every parameter in the neural network.

Likewise, the partial derivative ∂F3

∂F2
needs to be computed once for the gradient of

the first parameter in the second layer and can be reused in the computation of
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the gradient of all the parameters in the second and first layer. This process is

precisely how backpropagation efficiently recycles the partial derivatives when

performing parameter updates in a neural network.

Optimizers

Backpropagation refers only to the way that the gradients of the loss function are

efficiently computed. The role of the optimizer is to decide how to use the

gradient information to update the neural network’s parameters. In most modern

machine learning applications, the implementation of the optimizer is packaged

into a function call of deep learning software. There are numerous popular deep

learning softwares and packages such as Tensorflow [96], Pytorch [97], and Keras

[98]. Each of these packages conducts the backpropagation, computes the

gradients using automatic differentiation, and calls an optimizer to update the

weights based on the gradient information.

Gradient descent (GD) is one of the simplest optimizers, as briefly described

at the beginning of this section. To refresh, GD is performed by:

1. Computing what a small change in each weight would do to the loss

function, i.e., ∂L(θt)

∂θit
.

2. Adjusting each weight based on its gradient, i.e., θit+1 = θit − α∂L(θt)

∂θit
.

3. Repeating steps 1 and 2 until L is minimized as much as possible.

One challenge with GD and gradient-based learning is as the training inputs

increase, the computational cost of learning also increases. However, stochastic

gradient descent (SGD) can be implemented to speed up learning. SGD works by
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randomly picking a subset of the training inputs and using only them to

approximate the loss’s gradient. The computational load associated with learning

is thus reduced, achieving faster training iterations.

Another challenge during optimization is getting stuck in local minima (as

illustrated in Fig. 2.15). Since neural networks are highly parameterized

functions, it is common to find an area of the loss landscape that appears to be

the lowest possible value of the loss function but is actually a local minimum.

The proper learning rate α needs to be utilized to avoid getting stuck in a local

minimum. If α is too large, then the weight update is too large, which can result

in skipping over the optimal value for a given weight. If α is too small, then the

weight update is too small, which can result in never arriving at the optimum

weight value or getting stuck in a local minimum.

Figure 2.16: (a) Using gradient descent in training steps (black
arrows) to find the global minimum of a loss landscape. (b) Gra-
dient descent with momentum reduces oscillations and converges
more quickly to the global minimum. Updates are performed by
computing a weighted sum of the gradient update (blue arrow) and

momentum update (red arrow).

Despite choosing a suitable learning rate, neural networks can still get stuck

in local minima. To circumvent this problem, further modifications can be made
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to the GD algorithm. One such modification is by using momentum to accelerate

GD in the relevant direction. In other words, a fraction of the previous update

vector is added to the current update vector,

θit+1 = θit − vt (2.44)

vt = βvt−1 + (1− β)
∂L(θt)

∂θit
. (2.45)

Here, β is a constant that controls the fraction of the previous update vector vt−1

used in the current update vector vt. When using GD with momentum, if

consecutive gradients point in the same direction, momentum increases the

current update. Conversely, if the gradient keeps changing signs, the momentum

reduces the magnitude of the update. As a result, oscillations are reduced, and

faster convergence to the global minimum is obtained. A schematic comparing

GD with and without momentum is included in Fig. 2.16.

Many more modifications can be made to the GD optimizer to improve the

training and performance of a neural network. For instance, GD uses a single

learning rate α for all of the parameters in the neural network, and it generally

does not change during learning. However, the learning rate could also be

adaptive (changes over time) and non-uniform across parameters in the neural

network. This modification could allow the optimizer to dynamically include

information about the data used in previous iterations to execute more

informative gradient-based learning.

The adaptive gradient algorithm (Adagrad) maintains a dynamic learning

rate for each parameter in the network [99]. Adagrad works by lowering the
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learning rate of parameters with higher gradients, so they do not overshoot their

optimum value. Conversely, the learning rate is increased for parameters that

have small gradients so they get trained more quickly. Adagrad accomplishes this

by dividing the learning rate α by the sum of the squares of all previous gradients

of the given parameter,

θit+1 = θit −
α√

ϵ+Gi
t

∂L(θt)

∂θit
(2.46)

Gi
t =

t∑

j=0

[
∂L(θj)

∂θij

]2
, (2.47)

where ϵ is a very small number used to avoid dividing by zero.

The adaptive moment estimation optimizer (Adam) has become a

widespread optimizer due to its incorporation of both momentum and adaptive

scaling of the learning rate [100]. The name of the Adam optimizer is derived

from the fact that it uses estimations of the first and second moments of the

gradient to adapt the learning rate. When employing the Adam optimizer, the

exponentially weighted average of past gradients is first computed,

vt = β1vt−1 + (1− β1)
∂L(θt)

∂θit
, (2.48)

which is equivalent to GD with momentum in Eqn. 2.45. Additionally, the

exponentially weighted average of the squares of past gradients is computed,

st = β2st−1 + (1− β2)

[
∂L(θt)

∂θit

]2
. (2.49)

Here, β1, β2 ∈ [0, 1) are exponential decay rates. The averages in Eqn. 2.48 and
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2.49 have a bias toward zero, and thus the following corrections need to be

applied:

(vt)
′ =

vt
1− (β1)t

, (2.50)

(st)
′ =

st
1− (β2)t

. (2.51)

Finally the update equation for the Adam optimizer is

θit+1 = θit −
α√

(st)′ + ϵ
(vt)

′, (2.52)

which is similar to how Adagrad (Eqn. 2.47) scales the learning rate α by past

gradient information. The Adam optimizer contains the strengths of both GD

with momentum and Adagrad and builds upon them to give a more optimized

GD algorithm. In many cases, the Adam optimizer is the most efficient stochastic

optimizer and has minimal memory requirements due to only needing first-order

gradients.

2.2.5 Hyperparameters

When training a neural network, the weights and biases are the parameters that

are modified using gradient-based optimizers. However, numerous other

parameters must be chosen by the user to control the learning process. These

parameters are referred to as hyperparameters, and their values can affect the

speed and quality of the learning process.

Various training algorithms may consider different hyperparameters. As a



Chapter 2. Computational Methods 54

simple example, the learning rate α of the gradient descent optimizer needs to be

chosen such that a parameter’s update step is not too large or too small. When

using the Adam optimizer, α still needs to be chosen, but additional

hyperparameters β1 and β2 need to be tuned. In fact, the choice of optimizer

itself can be considered a hyperparameter.

Figure 2.17: Schematic of the connections between nodes of a
neural network. (a) Fully-connected feedforward network. (b) Re-
current neural network with recurrent connections denoted by red

arrows.

Another example of a hyperparameter is the topology and size of the neural

network, i.e., the number of nodes and the way they are connected. Throughout

Chapter 2.2, the equations for a fully-connected feedforward architecture

(illustrated in Fig. 2.17(a)) are derived, but many other neural network typologies

exist. For instance, recurrent neural networks (illustrated in Fig. 2.17(b)) contain

recurrent connections which take information from prior inputs to influence

current inputs and output. The "memory" created by the recurrent connections

makes these networks particularly suitable for tasks such as speech recognition

[101].

In addition to the topology, the number of nodes in the neural network is a
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crucial hyperparameter. This quantity is directly related to the number of

trainable weights and biases, commonly referred to as the network’s capacity.

The formula for the capacity of a fully-connected feedforward neural network of

width w, depth d, and with a single input x is

capacity = (1 + 1)w + (d− 1)(w + 1)w + (w + 1), (2.53)

since there are w weights and w biases in the first hidden layer, w2 weights and w

biases for each of the remaining hidden layers, and w weights and 1 bias on the

output layer. The capacity of a neural network is an essential hyperparameter as

it refers to the range/types of functions that the neural network can approximate.

A neural network with insufficient capacity may not be able to learn from the

training data. In contrast, a neural network with a large capacity has the freedom

to model more advanced types of functions. Nonetheless, a neural network with

too much capacity can be extremely slow to train and may memorize the training

data such that it cannot generalize to new data.

The most significant caveat of choosing hyperparameters is that the optimum

values of each hyperparameter cannot be known ahead of time. However, there

are many approaches to choosing adequate hyperparameters, such as copying

them from a similar model or searching the space of possible hyperparameters via

trial and error. The process of choosing the correct hyperparameters is known as

hyperparameter optimization, which is an ongoing field of study.
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2.2.6 Neural Network Method of Solving Differential

Equations

Chapter 1.2.2 emphasized the utility of the neural network method (NNM) for

solving partial differential equations (PDEs). This section describes the

implementation of the NNM used throughout Chapters 6-7, which is similar to

that of Dissanayake and Phan-Thien [58], Milligen, Tribaldos, and Jiménez [60],

Sirignano and Spiliopoulos [65] and Berg and Nyström [64].

Figure 2.18: Mapping spatial coordinates (x, y) to an output
ũ(x, y) using a fully-connected feedforward neural network of depth
d and width w. In the neural network method, the network parame-
ters are optimized to promote ũ(x, y) satisfying a partial differential

equation and corresponding boundary conditions.

In this method, the true solution u(x) to a given PDE

F (x, u,
∂u

∂x
, · · · ) = 0, (2.54)
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with corresponding boundary conditions (BCs)

B(x, u,
∂u

∂x
, · · · ) = 0, (2.55)

is approximated by a neural network ũ(x) where x ∈ Rn. This notion is achieved

by training the neural network to minimize the loss functional

L[ũ] =
∫

Ω

(F [ũ])2dA+

∫

∂Ω

(B[ũ])2ds, (2.56)

where F is the PDE operator such that F [u] = 0 on the domain Ω, and B is the

BC operator such that B[u] = 0 on the domain boundary ∂Ω. The two integrals

in Eqn. 2.56 quantify the extent to which the neural network ũ satisfies the PDE

(Eqn. 2.54) and corresponding BCs (Eqn. 2.55). In practice, these integrals can

be approximated via Monte Carlo sampling.

A schematic of a fully-connected feedforward neural network mapping spatial

coordinates (x, y) to an output ũ(x, y) is included in Fig. 2.18. Throughout this

dissertation, the NNM is implemented using a feedforward neural network

(Chapter 2.2.2) with hyperbolic tangent activation functions (Chapter 2.2.3),

where backpropagation and optimization is performed using Tensorflow [96]

employing the Adam optimizer (Chapter 2.2.4).

The NNM differs from traditional machine learning as it can be considered

"data free." That is, whereas traditional machine learning requires a large

database of pre-computed training data (i.e. images, datasets, etc.), the NNM

does not. The NNM simply trains on spatial coordinates (x, y) drawn from the

domain Ω of the PDE. Since there is effectively no limit on how many data points
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can be selected from Ω, the NNM does not suffer from a lack of input data as

traditional machine learning methods can.
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Chapter 3

Coarse-grained Simulations of

Twitching Bacteria

3.1 Overview

Since a substantial portion of biological phenomena is exceedingly small

(∼ nm− µm) and evolves over short time scales (∼ ps− µs), accurately observing

these systems can be difficult. Accordingly, molecular dynamics (MD) simulations

are a vital tool in biophysics as they provide a numerical method for directly

studying these types of phenomena (Chapter 1.2.1). For instance, the movement

of a bacteria colony is an example of a biophysical system that can be simulated

and studied effectively using MD simulations.

The use of MD simulations of self-propelled rods has repeatedly provided

important insights regarding bacteria collectivity [102–114]. However, the

movement of bacteria can be much more complex than just self-propelled rods

bumping into one another. For instance, twitching bacteria use hair-like pili to

move and redistribute themselves on surfaces prior to biofilm formation [115–118].
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Through a cycle of extension, anchoring and retraction, these pili are used like

grappling hooks to allow the bacteria to crawl over surfaces jerkily [119, 120]. To

complicate this phenomenon further, many bacteria that undergo the twitching

motility also employ other motility modes [116, 118, 121], reproduce [122], secrete

polymeric trails [123], and undergo various additional biological complications.

(a) (b)

Figure 3.1: (a) Model twitcher bodies are constructed from four
sphere that are bonded together using FENE potentials UFENE(r),
made rigid using angle potentials Uangle(θ), and integrated using
Langevin dynamics. A linear potential Ulin(r) is applied between
the head particle (white) and a non-integrated dummy pilus particle
(green) to model the twitching motility. The tail particle is denoted
in blue to accentuate the directionality of the twitcher body. Ex-
cluded volume between multiple twitchers is modelled by a WCA
potential UWCA(r). (b) Simulation photo of a high surface coverage

of twitchers.

Generally, it is common for seemingly small higher-order details in bacteria

models to alter the large-scale dynamics of bacteria collectivity. It is thus natural

to question whether collective properties of twitching bacteria arise due to the

twitching motility type or only occur due to the combination of other motility

types and biological mechanisms. Therefore, simulating twitching bacteria
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without incorporating every biologically-mediated complexity could provide a

greater understanding of how this motility type leads to collective behaviours or

whether it does at all. Moreover, suppose the twitching motility does happen to

be a significant factor in forming collective properties. In that case,

understanding the motility may lead to insights regarding the hindrance of

pre-biofilm formation. As biofilm is a complex community of bacteria that is

resilient to stress, resistant to antibiotics, and poses many health risks, biofilm

prevention is an important area of research and development [124, 125]. MD

simulations are an especially useful tool here as they can be leveraged to study

twitching bacteria while only considering the influence of a small subset of the

many biological mechanisms that twitching bacteria undergo.

In "Collective dynamics of model pili-based twitcher-mode bacilliforms,"

Nagel et al. [1] employ a model of twitcher-type bacteria using a coarse-grained

and rules-based MD simulation framework. The bacteria model, as illustrated in

Fig. 3.1(a), considers rod-like bacteria built from spheres bonded together with

FENE bonds (Chapter 2.1.2), and made rigid with angle potentials

(Chapter 2.1.2). Here, individual spheres undergo Langevin dynamics

(Chapter 2.1.1) with no thermal noise, which is integrated using the velocity

Verlet algorithm (Chapter 2.1.4) performed by the HooMD-Blue simulation

package (Chapter 2.1.5). Many bacteria are modeled simultaneously, explicitly

interacting only through excluded volume repulsion (Chapter 2.1.2) in a square

domain with periodic boundary conditions (Chapter 2.1.3), as illustrated in

Fig. 3.1(b).

To model the twitching motility, the rod-like bacteria undergo a rules-based
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stochastic motility cycle of rest, pilus extension and pilus retraction. In the

resting phase, a twitcher undergoes no self-induced movement and has a 90%

chance per time step of continuing to rest. Next, the extension phase consists of a

constant 10 time step rest period. At the end of this phase, a pilus particle

(Fig. 3.1) is stochastically fixed to the surface in front of the bacteria within a

cone of θ ∈ [−π/4, π/4] at an adhesion point that is a distance of L0 from the

head particle. Finally, in the retraction phase, the action of the pili is

implemented using a linear force between the head particle and the pilus particle.

The retraction phase concludes when either the head arrives at the adhesion

point, the pilus is snapped due to the head particle being pushed too far away

from the pilus particle, or the maximum adhesion time is surpassed.

First, in Nagel et al. [1] the properties of a solitary twitcher are explored to

analyze the consequences of the motility cycle. Specifically, the mean squared

displacement (MSD),

∆r2(t) ≡
〈
|x⃗γ(0)− x⃗γ(t)|2

〉
, (3.1)

is used to characterize the motion of a single twitcher at different lag times t. The

MSD of a solitary twitcher, denoted by a dashed black line in Fig. 3.2(a), scales

as ∆r2 ∼ tβ, with β varying at different lag times. Specifically, for short times

t ≲ 10, ∆r2(t) scales as β = 2, corresponding to the active self-propelled motion

of a single pili retraction phase dominating over the noise induced by the random

pilus extension angle. However, from t ≈ 10− 30, there is a shoulder in the MSD,

illustrating the pauses in self-propelled motion during the rest and extension

phases of the motility cycle. Finally, around t ≳ 103, the scaling transitions to

β ≈ 1, corresponding to diffusive dynamics over long lag times and indicating a
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random walk as expected from the random motion induced by the stochastic pilus

angle. In Nagel et al. [1], these dynamics are corroborated with the non-Gaussian

parameter and van Hove self-correlation functions.

Next, ensembles of twitchers are simulated, and the effect of surface coverage

ϕ is explored. Displacement statistics are utilized again to characterize the

twitcher dynamics; however, now as a function ϕ. Most notably, as ϕ increases,

the intermediate time shoulder of the MSD corresponding to the resting period of

the motility cycle disappears (shoulder in black dashed curve does not occur on

the green ϕ = 0.76 curve in Fig. 3.2(a)). This behaviour indicates that the flow of

active twitchers carries non-motile twitchers that are in their resting period. This

notion is corroborated in Nagel et al. [1] by separating the contributions of the

average velocities of twitchers in their active and resting cycles. At high ϕ, both

velocities are equivalent, indicating that not all cells are motile in the collective

clusters.

From the diffusive regime (t ≥ 104) of the MSDs in Fig. 3.2(a), the diffusion

coefficient D can be extracted by fitting ∆r2(t;ϕ) = 4Dt. However, Fig. 3.2(a)

shows that the short-time dynamics of bacteria are slowed with surface coverage;

twitchers essentially act as an increased viscosity to one another, causing the

MSD curves to decrease in magnitude as ϕ is increased. Thus, the short-time

mean squared velocity V 2(ϕ) = ∆r2(τ)/τ 2 is used as a normalizing factor to

obtain the dimensionless relative diffusivity D(ϕ) = D(ϕ)/(τV 2(ϕ)), which is

plotted in Fig. 3.2(b). Here, D(ϕ) decreases with ϕ until a critical coverage

fraction ϕ∗ ≈ 0.3, after which D(ϕ) increases with ϕ. This indicates the

emergence of collective motion at coverage fractions larger than ϕ∗. This critical
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(a) (b)

Figure 3.2: (a) Mean squared displacement ∆r2(t;ϕ) of twitchers
as a function of lag time t for varying surface coverage ϕ. Dotted
black line denotes the solitary twitcher case. (b) Long-time rela-
tive diffusion D(ϕ) = D(ϕ)/(τV 2(ϕ)), where D(ϕ) is the diffusion
coefficients as measured from the MSD when t > 104. (Inset) High
coverage regime with critical surface coverage ϕ∗ denoted by vertical

dotted line.

coverage fraction ϕ∗ corresponds to where the mean area per twitcher equals the

characteristic rotational area occupied by each bacilliform (denoted by a vertical

dashed line in the inset of Fig. 3.2(b)). In Nagel et al. [1] these conclusions are

verified with the non-Gaussian parameter, van Hove correlation functions,

individual auto-correlation functions and decorrelation lengths.

Finally, in Nagel et al. [1] the long-range correlated motion between

twitchers is quantified. In particular, pair correlation functions are utilized to

explore how twitchers form co-moving polar-aligned pairs in low coverage

situations that self-assemble into local-oriented domains at high coverage.

Furthermore, by exploring fluctuations in local coverage fractions, it is shown

that twitchers self-order into dense liquid-like regions with dilute gas-like regions
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in between, similar to biological bacterial rafts.

In summary, the bacteria model studied in Nagel et al. [1] is fundamentally

different from purely idealized toy models of self-propelled rods as it incorporates

a stochastic cycle of pilus extension, retraction and rest. The results demonstrate

that bacteria undergoing twitching motility and only interacting via excluded

volume exhibit physically-mediated collectivity without requiring long-range

complications such as photosensing, or other mechanisms of bacteria

coordination. By leveraging MD simulations, this study implies that twitching

motility may bestow an advantage on pre-biofilm communities by allowing

regions of high coverage to potentially seed the formation of biofilms while

continuously preserving a sub-population of disengaged individuals that are free

to explore the surface.

3.2 Manuscript

Author contributions: Michael Greenberg designed the preliminary molecular

dynamics simulation model that was refined, rewritten and implemented by me. I

conducted all of the statistical measurements and was primarily in charge of

writing the manuscript with assistance from Tyler N. Shendruk and Hendrick W.

de Haan.
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collective Dynamics of Model pili-
Based twitcher-Mode Bacilliforms
Andrew M. nagel1, Michael Greenberg1, tyler n. Shendruk2,3 ✉ & Hendrick W. de Haan1 ✉

Pseudomonas aeruginosa, like many bacilliforms, are not limited only to swimming motility but 
rather possess many motility strategies. in particular, twitching-mode motility employs hair-like pili 
to transverse moist surfaces with a jittery irregular crawl. twitching motility plays a critical role in 
redistributing cells on surfaces prior to and during colony formation. We combine molecular dynamics 
and rule-based simulations to study twitching-mode motility of model bacilliforms and show that there 
is a critical surface coverage fraction at which collective effects arise. Our simulations demonstrate 
dynamic clustering of twitcher-type bacteria with polydomains of local alignment that exhibit 
spontaneous correlated motions, similar to rafts in many bacterial communities.

Active matter possesses the potential to bridge between physics and biology. Like living systems, manufactured 
active systems maintain far-from-equilibrium states by autonomously drawing energy from the surroundings to 
fuel non-thermal processes. Furthermore, active systems exhibit many of the characteristic traits of biological 
materials, such as spontaneous motion, self-organization and complex spatio-temporal dynamics. Communities 
of model bacteria, such as Pseudomonas aeruginosa, are excellent biological examples of out-of-equilibrium sys-
tems. These relatively simple living systems serve as a biophysical study of active matter in which collectivity 
arising from bio-mechanical action can perform essential biological roles.

Theories and simulations have approached such bacterial systems by simplifying or omitting all but the most 
essential, lowest-order physical traits of these microbes, as well as biological complexities. From the very first 
considerations of active matter, self-propulsion and local alignment were identified as the fundamental com-
ponents necessary for collective dynamics to emerge from active particles1,2. Simulations of self-propelled 
rods and their continuum limit of active nematics have been particularly important to the field3–14, as recently 
reviewed in ref. 15. However, the universality of behaviors exhibited by active systems is still a matter of debate16,17 
and it cannot simply be taken for granted that the collective dynamics of Vicsek boids1, active Brownian par-
ticles18–20 or self-propelled rods are directly inherited by microbial motility strategies. Indeed it is known that 
what might appear to be higher-order details can qualitatively alter the large-scale dynamics. For example, while 
self-propelled rods and other active colloids commonly exhibit pronounced clustering21, which can be explained 
by motility-induced phase separation or other theoretical approaches22–24, swimming microbes can behave as 
homogeneous fluids on the scales of mesoscale active turbulence25, with simulations suggesting that the details of 
hydrodynamic interactions are essential for differentiating these large-scale swimmer properties20,26–28. Various 
modes of swimming motility, including but not limited to pushing, pulling, squirming and undulating, as well 
as their microscopic details, have been extensively considered29–31. However, swimming is only one of many 
motility mechanisms employed by P. aeruginosa and other motile microbes32. Other motility modes employed 
by P. aeruginosa alone include swarming33, hyperswarming34, sliding35, walking36, slingshot37, and twitching38, 
not to mention the migration modes of many eukaryotic cells39. While these motility strategies have received less 
attention than swimming modes, each has the potential to introduce seemingly microscopic details from which 
emerge distinctive collectivity.

Twitching motility plays a particularly critical role in redistributing cells on surfaces prior to colony and sub-
sequent biofilm formation38,40–42, as well as impacting final biofilm morphology43,44 and compositional struc-
ture45–47. Twitching motility is a flagella-independent form of translocation over moist surfaces, commonly 
studied using motility plate assays of 1% agar48. Twitching motility relies on type-IV pili49, which are filamentous 
appendages common to many gram-negative, and some gram-positive bacteria47,50. Through an active cycle of pili 
extension, anchoring and retraction51,52, P. aeruginosa and other bacilliforms can jerkily crawl over surfaces. This 
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twitching activity enables rapid dissemination and invasion, while it is simultaneously capable of bringing cells 
together into locally crowded configurations. As simulations of swimming-mode motility have demonstrated 
that the details of swimming produce essential consequences not seen in simple self-propelled rods53, so too it is 
constructive to simulate and quantify the collective dynamics of model twitcher-mode bacteria and to quantify 
any distinctions between dynamics in the low and high density regimes.

We present the results of a coarse-grained model that accounts for biologically relevant twitching motility of 
rod-like bacilliforms fixed to a planar surface. Motivated by twitcher-mode bacterial dynamics, this model goes 
beyond traditional self-propelled rods, which typically consist of a persistent force aligned along the body of each 
rod subject to continuous noise distributions15. As shown schematically in Fig. 1, the mechanics of twitching are 
modelled dissimilarly from traditional self-propelled rods. In this study, each bacilliform twitcher stochastically 
obeys a twitching cycle of rest, pili extension and active retraction. Thus, at any instant, our simulations contain 
a mixture of active and passive bacteria, which allows us to observe the effect of the passive bacteria on the emer-
gence of collective motion and also how passive substances can be swept along with active neighbors. Further 
differentiating our model from studies of traditional self-propelled rods, model twitchers employ a dummy 
pilus (Fig. 1a), which pulls the bacteria body towards a fixed adhesion point on the substrate. This dummy-pilus 
scheme means that the propulsive bearing, direction of motion and orientation can each be markedly different. 
Thus, to study the collective motion of twitching mode bacteria, we have developed a distinct model. Nonetheless, 
our model neglects further biological complications, such as multiple motility modes40,42,48, reproduction54, bio-
surfactants55, bacteria-secreted polymeric trails56 and nutrient competition. Incorporation of these effects is left 
to future work.

To the best of our knowledge, this report is the first numerical study of the collective effects that can arise 
from twitching mode motility and our simulations explicitly demonstrate that collective motion can arise from 
purely physical mechanisms. That is, with a sufficiently high coverage fraction, rod-like twitchers nematically 
align through excluded-volume interactions and form dynamic clusters that exhibit correlated motion. However, 
we also make clear that the emergent collectivity is not immediately apparent through a transition to flocking or 
swarming, nor through a qualitative change in the mean squared displacements. Rather, we quantify the dynam-
ics through changes to the non-Gaussian parameter, relative diffusivity and decorrelation lengths, which together 
constitute a suite of statistical tools readily available to experimentalists studying the collective dynamics of 
twitching bacteria, such as P. aeruginosa.

Results
Our coarse-grained simulations of bacilliform microbes treat each individual twitcher as a stiff chain of four 
spheres with dynamics obeying Langevin equations of motion57,58, with a non-integrated dummy particle repre-
senting the action of bacterial pili (Fig. 1a). Excluded-volume, finite-extension connectivity and rigidity are each 
accounted for via potentials as described in detail in the Methods Section. All quantities are expressed in terms of 
simulation units with length in terms of twitcher sphere size σ, mass in sphere mass m, energy in Lennard-Jones 
well-depth ε and unit time τ σ ε= m /2 . Twitching motility is modeled via the pilus particle, which actively pulls 
each individual twitcher forward (Fig. 1b) and obeys a stochastic rule-based cycle composed of three phases 
(Fig. 1c):

Figure 1. Schematics describing the twitcher model. (a) Single twitcher discretized into four Langevin 
spheres. A dummy pilus extends from the head particle and is affixed to the surface stochastically within a cone 

π π−[ /4, /4], while it applies a constant retraction force on the head. (b) The motion of a single twitcher 
described by its pilus force 

→
F , the center of mass displacement Δ

→
r , the direction of motion v̂, polar orientation 

p̂, and nematic alignment n̂. (c) The motility cycle of a single twitcher. The twitcher is non-motile in the rest (1) 
and extension phases (2) but pulls itself forward during the retraction phase (3). A resting twitcher has a 90% 
probability per time step τ to continue resting. The extension of the pilus to an adhesion point a distance L0 
from the head takes τ10 . The retraction phase continues until: (i) the head arrives at the adhesion point, (ii) the 
head is pushed too far from the dummy pilus point causing the pilus to snap, (iii) the adhesion is exhausted after 
a maximum adhesion time tM.
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 1 The first phase is the rest phase. Resting twitchers do not do not undergo self-induced movement, only 
passively respond to external forces and have a 10% chance per τ of stochastically transitioning to the next 
phase (Fig. 1c-1).

 2 The next phase is the extension phase, in which the dummy pilus extends over a set period of τ10  then 
adheres to the surface a distance L 2 40 = .  away from the head particle with a random angle between π− /4 
and π/4 (Fig. 1c-2).

 3 The retraction phase is the period in which the twitcher is actively motile (Fig. 1c-3). The twitcher’s head is 
pulled towards its fixed pilus adhesion point with a force 

→
F  of constant magnitude to model the average 

force exerted by multiple pili59. The retraction phase ends when one of three conditions are met:

 (i) The twitcher arrives at its pilus adhesion point, which is achieved if the distance between the head 
and the pili adhesion point γr  is less than the cutoff = .L 0 2R  (Fig. 1c-3.i).

 (ii) The pilus adhesion snaps because the head is pushed further from the adhesion point than the cutoff 

=L 3S  (Fig. 1c-3.ii).

 (iii) The adhesion is exhausted if the retraction phase persists for more than τ=t 70M  (Fig. 1c-3.iii).
Once any of these occur, the twitcher returns to the rest phase and the cycle repeats.
The instantaneous state of the γth twitcher is quantified by its center of mass position →γx t( ), velocity →γv t( ) and 

orientation. The velocity is defined as the displacement vector Δ→r  per time step (Fig. 1b), along with associated 
speed = →

γ γv t v( )  and direction of motion = →
γ γ γv̂ t v v( ) / . The direction of motion does not necessarily align with 

the retraction force 
→
F , nor the orientation (Fig. 1b). We consider both the polar orientation 

γ̂p t( ), the unit vector 
pointing from tail to head, and the rod-like nematic alignment, for which γn̂ t( ) and − γn̂ t( ) are equivalent. 
Twitchers interact with one another through excluded-volume repulsion and we define the coverage fraction to 
be the area of N  twitchers normalized by the 2D simulation box size. We simulate a wide variety of coverage frac-
tions, from a solitary twitcher ( =N 1 and φ = × −4 10 4) to =N 2000 (φ = .0 76). Supplemental Movies 1–6 
illustrate the simulation results for surface coverages φ = × . . . . .−{4 10 , 0 04, 0 19, 0 3, 0 38, 0 57}4  respectively, 
snapshots from which are shown in Fig. 2. Further details are available in the Methods Section.

Solitary twitcher
In the absence of interactions with other twitchers, the dynamics of a solitary twitcher are controlled entirely 
by the motility cycle (Section Motility Cycle). Example trajectories appear diffusive on long times (Fig. 3a; 
Supplemental Movie 1), though closer inspection of shorter periods demonstrates the rest/extension and active 
retraction phases, as well as correlated motion across multiple resting phases (Fig. 3a; inset). The consequences of 
these phases can be characterized by calculating the mean square displacement (MSD)

Δ ≡ → − →
γ γr t x x t( ) (0) ( )

(1)
2 2

as a function of lag time t from any initial time (Fig. 3b). MSD is a natural measurement for situations involving 
randomness, in which case the average of the displacement Δ ≡ → − →

γ γr t x x t( ) (0) ( )  is often zero. As a measure 
of the width of the distribution of step sizes for each lag time, MSD measures the extent of the random motion. 
The lag time is simply the time interval from the arbitrarily chosen starting point. The manner in which MSD 
increases as a function of lag time can help us to understand the nature of twitchers’ motion. At different lags, we 

Figure 2. Simulation snapshots. (a) Surface coverage φ = .0 19 (Supplemental Movie 3). (b) Near the critical 
surface coverage φ φ= . ≈ ⁎0 3  (Supplemental Movie 4). (c) High surface coverage φ = .0 57, exhibiting 
coexistence of a locally dilute phase and a dense phase with non-homogeneous polydomains of orientational 
ordering (Supplemental Movie 5).
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observe Δ ∼ βr t2 , where the scaling β≤ ≤t1 ( ) 2, with β = 1 indicating diffusive dynamics and β = 2 signaling 
propulsive motion. For short times t 10, Δr t( )2  scales as β = 2, corresponding to active self-propelled motion 
of a single retraction phase dominating over the noise induced by the random pilus extension angle. From 
t ≈ 10–30, there is a shoulder in the MSD where Δr t( )2  nearly saturates, illustrating the pauses in self-propelled 
motion during the rest and extension phases. In contrast to our model, isolated P. aeruginosa cells extend pili to 
variable lengths and retraction times are stochastic60, which would be expected to dampen the shoulder in our 
numerical model. After t 30, Δr t( )2  again scales as β ≈ 2, indicating correlated motion across multiple twitch-
ing jumps due to the model restricting pilus adhesion to a cone in front of the twitcher (see Fig. 1a). Around 
t 103, the scaling transitions to β ≈ 1, corresponding to diffusive dynamics over long lag times and indicating 

a random walk as expected from the random motion exhibited in Fig. 3a.
For such a rich motility cycle, the MSD does not exhibit compelling qualities, only hinting at the underlying 

dynamics as described above. While the MSD tells us the width of the distribution of step sizes for each lag time, 
it cannot tell us more. Indeed there has been a growing appreciation in the soft condensed matter community that 
the MSD can easily be over interpreted61–66 (as recently reviewed in ref. 67) and this issue requires even greater care 
in biologically complex systems, such as ensembles of twitching P. aeruginosa. To learn more, we need to consider 
more subtle aspects of the displacements and we turn to higher order moments of the the displacement distri-
bution. The extent to which the dynamics deviate from the Gaussian distribution, which would lead to diffusive 
motion, can be measured by a non-Gaussian parameter (NGP)68–70

α =
+

Δ

Δ
−t d

d
r

r
( )

2
1,

(2)
2

4

2 2

where the dimension =d 2 since the twitchers are confined to a plane and Δ = → − →
γ γr x x t(0) ( )4 4 . While the 

MSD gives the second order moment of the displacement distribution, NGP gives the fourth moment and so 
expresses information about the motion that is not generally encoded in the MSD (Δ ≠ Δr r4 2 2 in general). 
However, in the particular case of a Gaussian distribution all higher order even moments are functions of the 
MSD; particularly, the fourth moment of a normal distribution is Δ = + Δr d r d( 2) /4 2 2 , which would give 
α =t( ) 02 . Thus, NGP communicates the extent to which the displacement distribution differs from normal. 
When α <t( ) 02  the displacement distribution is said to be platykurtic, meaning there are fewer large step sizes 
than would be produced by a normal distribution with the same second moment. When α >t( ) 02  the distribu-
tion is leptokurtic, indicating that the tails of the distribution are longer than normal.

The NGP much more clearly indicates the three regions that could be discerned from the MSD (Fig. 3c). 
Moreover, it reveals the dynamics at each of these time scales to be leptokurtic, platykurtic and normal, respec-
tively. Additionally, to demonstrate these different regimes explicitly, the distribution of twitcher displacements 

ΔG x t( , ) is calculated and compared to Gaussian distributions with the same standard deviation. These distribu-
tions, which are sometimes referred to as van Hove self-correlation functions65, are shown in Fig. 4 for several 
times.

Firstly, α t( )2  in Fig. 3c approaches zero at long times, indicating Gaussian dynamics just as the MSD indicated 
diffusive behavior. This is verified in Fig. 4c where Δ =G x t( , 10 )5  closely matches the equivalent Gaussian curve. 
Next, at the shortest lag times in Fig. 3c, α t( )2  approaches a positive constant of ∼ .0 55 because the twitchers are 
likely to be found in the motile retraction phase with large propulsive displacements. This leptokurtic behaviour 
is shown explicitly in Fig. 3a where the tails of the Δ =G x t( , 5) distribution are much longer than those of the 
Gaussian. The sharp peak at zero displacement reflects the non-motile rest phases. Finally, between these limits, 

Figure 3. Solitary twitcher dynamics. (a) Example trajectory. (Inset) Short time showing resting/extension 
and retraction phases. (b) Mean squared displacement r t2∆ ∼ β, with propulsive behavior (β ≈ 2) at short/
intermediate times and diffusive behavior (β ≈ 1) at long times. (c) Non-Gaussian parameter α t( )2 , which is 
zero for Gaussian statistics, <0 when there are fewer large displacements than a normal distribution with the 
same second moment, and >0 when there are more.
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α t( )2  is platykurtic and approaches the lower bound of − +d2/( 2)71, which reflects the sequential resting phases 
that shorten the tails of the displacement distribution in comparison to a random walk. Figure 4b displays the 
distribution of step sizes at =t 103 and the platykurtic nature is evident from the sharply truncated tails of 

∆ =G x t( , 10 )3  compared to the Gaussian. This, coupled with the sharp shoulders, indicate the greater likelihood 
of traveling in a correlated manner but then abruptly pausing to rest with only a vanishingly small probability of 
traversing any further. Recall that β ≈ 2 for both the leptokurtic and platykurtic regimes in the MSD, and so the 
qualitative difference in dynamics could only be quantified by considering the NGP.

Figure 4d displays the step size distributions at 5 different times. The Δx values are scaled by −t 1/2 and the 
distributions are normalized by t1/2 such that curves corresponding to pure diffusion would collapse. This allows 
examination of the evolution of ΔG x t( , ) across disparate time scales. The decay of the sharp peak at Δ =x 0 at 
short times, the emergence of sharp shoulders and cut tails at intermediate times, and the convergence towards a 
universal curve indicating diffusion at long times are all evident.

collective twitcher Dynamics
individual dynamics of constituent twitchers. To assess pre-colony collective dynamics as a function 
of surface coverage, we simulate ensembles of twitchers. At low coverage (φ = .0 19 curve in Fig. 5a; Supplemental 
Movies 2–3), the mean squared displacement retains the qualities observed in the solitary twitcher case: the short-
time active self-propulsion with scaling β = 2; shoulder near t ≈ 10–30 due to the non-motile rest phases; corre-
lated motion across multiple twitching jumps (intermediate times) with β ≈ 2; and random-walk dynamics at 
long times with β = 1 (Fig. 5a). In fact, as the coverage fraction further increases (φ = . .0 57, 0 76 curves), the 
MSD curves remain qualitatively similar. The shoulder in φΔr t( ; )2  in the vicinity of t ≈ 10–30 becomes less pro-
nounced; however, the scaling β for short, intermediate and long times is essentially unaffected. However, increas-
ing φ does cause two limiting changes to the twitcher MSD:

 1. At short times, the MSD curves shift down as φ increases (Fig. 5a). In this short-time regime, 
φΔ ∼r t t( ; )2 2. Thus, we define an effective short-time mean squared velocity (MSV) by 

φ τ τ= ΔV r( ) ( )/2 2 2 (Fig. 5c). Starting from low coverage fractions, the MSV decreases relatively weakly 
with increasing φ because the twitchers are well separated and seldom collide. The MSV decreases because 
collisions become more likely, generally slowing active twitcher motility.

 2. At long times, the MSD curves are diffusive and the =d 2 dimensional diffusion coefficient can be 
extracted by fitting φΔ =→∞ Dr t d tlim ( ; ) 2t

2 . However, the reduction of the short-time φV ( )2  has already 
slowed the dynamics, effectively acting as an increased viscosity at long times causing the effective 
diffusion coefficient D to decrease with increasing φ. To normalize, we consider the dimensionless relative 
diffusivity φ φ τ φ= DD V( ) ( )/ ( )2  (Fig. 5d). The relative diffusivity is non-monotonic with its minimum 
corresponding to the same surface coverage as the inflection point in V2.

By considering the limiting character of the MSDs we are able to extract some subtle differences in the collec-
tive behavior that is not immediately apparent. However, while the MSD curves remain qualitatively similar at all 
surface coverages, the non-Gaussian parameters reveal a qualitatively distinct change to the collective dynamics 
(Fig. 5b). At low coverage, the NGP manifests the same three regimes as the solitary case (Fig. 3c) but comparing 
the φ = .0 19 (Supplemental Movie 3) and φ = .0 38 (Supplemental Movie 5) curves in Fig. 5b, the transition to 
α φ ≈t( ; ) 02  diffusion from the negative platykurtic plateau occurs at earlier times as φ increases, illustrating the 
loss of the distribution’s large displacement tails. This shift is due to collisions between twitchers randomizing the 
correlated motion between retraction phases earlier than in the solitary limit. As the surface coverage increases, 
α φt( ; )2  loses the negative plateau altogether, becoming leptokurtic at all but the longest lag times, i.e. revealing 
the distribution has longer tails than expected for a Gaussian despite the rest phase. This is accompanied by a 

Figure 4. Solitary twitcher step size distributions. (a–c) Distribution ΔG x t( , ) for various lag times t and step 
sizes Δx along either Cartesian axis. Grey curves denote reference Gaussian distributions with equivalent 
standard deviations to the respective step size distributions. (d) Step size distributions normalized to collapse 
diffusive curves.
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change in the short-time limit of α φt( ; )2 : sparse surface coverage (φ = .0 19 curve) exhibits a constant 
α φ ≈ .→ tlim ( ; ) 0 5t 0 2 ; however, it rises substantially. This implies that larger displacements than expected by a 

normal distribution become far more common at both short and intermediate time scales.
This is a strong indication of collective and coherent motion at intermediate time scales suggesting that even 

rest-phase twitchers are typically moving due to interactions with retraction-phase neighboring twitchers, with 
more frequent large step sizes than expected for diffusive motion. This indicates a qualitative change in twitcher 
behavior, which can be understood as the transition from distinct collision events at low coverage (φ φ< ⁎) to 
continuous interactions at high coverage (φ φ> ⁎). This roughly suggests

φ
π

= ≈ .⁎ A
L( /2)

0 3
(3)

twitch

body
2

to be the point at which the mean area per twitcher equals the characteristic rotational area occupied by each 
twitcher and above which α φ ≥t( ; ) 02  at all lag times. The importance of φ* on the dynamics is also discernible 
from the MSV (Fig. 5c) and relative diffusivity (Fig. 5d). While the decrease in MSV is monotonic, there is an 
inflection point at φ φ≈ ⁎. Similarly, systems with low coverage fractions have the largest φD( ), as twitchers sel-
dom obstruct each other’s diffusive motion, which remains the case until φ⁎ (Supplemental Movie 4), at which 
point the relative diffusivity φD( ) is a minimum (Fig. 5d). Beyond φ⁎ (Supplemental Movies 5–6), φD( ) increases, 
further demonstrating the collective motion that emerges at high coverage.

To further understand this collectivity, we consider the average speed φv ( )m  (Fig. 6; green dashed). We show 
the separated contributions due to twitchers in their actively self-motile retraction phase φv ( )a  (Fig. 6; purple) and 
their resting/extending non-motile phases φv ( )r  (Fig. 6; blue). The mean φv ( )m  is constant for low coverages and 
only decreases substantially once φ φ> ⁎. On the other hand, φv ( )a  decreases in both regimes. In the intermediate 
φ φ≈ ⁎ regime, we see that slight increases in φ result in large decreases in φv ( )a . At this coverage, neighboring 
twitchers are hindering each others’ motion but are not recompensing significant speed through collective effects, 
as will occur at higher coverages.

Figure 6 demonstrates that even twitchers in the resting phase of the motility cycle are collectively advected as 
φ approaches the critical coverage. In fact, φ* clearly marks the saturation of the increase in the speed of resting 
twitchers, a sharp decrease in the speed of active twitchers, and the beginning of the decrease in the mean speed. 
It is interesting to compare this to typical rod models where the rods experience steadfast self-propulsion and 

Figure 5. Collective dynamics of twitcher systems of different coverage fractions φ. (a) Mean squared 
displacement φΔr t( ; )2 . (b) Non-Gaussian parameter α φt( ; )2 . (c) Short-time mean squared velocity 

φ τ φ τ= ΔV r( ) ( ; )/2 2 2. The vertical dashed line marks the critical coverage φ⁎. (d) Long-time relative diffusion 
φ φ τ φ= DD V( ) ( )/ ( )2 , where φD( ) is the diffusion coefficients as measured from the MSD for >t 104. (Inset) 

High coverage regime.
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uniform orientational noise and thus are never inactive15. The critical coverage as calculated from Eq. 3 is a purely 
geometric argument; it does not consider what fraction of the matter covering the surface is active. This estimate 
of φ* works well for both continuous self-propelled rods and the mix of active/passive twitchers studied here thus 
indicating that the emergence of collective motion is primarily dictated by excluded volume effects rather than 
energetic considerations.

While φv ( )a  decreases, φv ( )r  rises with the frequency of collisions between twitchers. In fact, by the highest 
coverage fractions, there is sufficient collective motion for the rest/extension phase twitchers to be advected at the 
same average speed as the retracting twitchers (Fig. 6). These dynamics are explained by the step size distribution 

φΔG x t( , ; ) (Fig. 7). Focusing on the φ = .0 19 subplot (φ φ< ⁎), ∆ ϕG x t( , ; ) is similar to the solitary twitcher 
limit shown in Fig.  3d. However, as the coverage surpasses φ* in the remaining three subplots, the 
intermediate-time peaked shoulders become suppressed (Fig. 7b–d). This is because collisions make it both 
unlikely to remain in place during rests and unlikely to travel without obstruction for long periods. At intermedi-
ate φ, moderate lag times ( =t 103 in Fig. 7(b,c)) begin to collapse on to the long-time diffusive distributions, 
which itself narrows with increasing φ. At the highest φ (Fig. 7d), the intermediate lag time φΔG x t( , ; ) of =t 103 
again transitions — now behaving like the short-time distributions.

The notion that resting twitchers do not impede the emergence of collective motion and can actually exhibit 
speeds comparable to that of active twitchers at large φ is in agreement with previous studies. It has been shown 
experimentally that not all twitching cells must be motile in order to exhibit collective effects38 and that polysty-
rene microspheres can be moved across surfaces by colonies of twitching P. aeruginosa72. Further, physical studies 
of active granular matter have demonstrated that collectivity can arise in systems consisting of few active agents 
surrounded by many passive particles73. The results shown in Figs. 6 and 7 demonstrate that this is true not only 
for non-motile tracers, species, or mutants, but rather is continually occurring for resting cells.

Returning to the step-size distributions at large φ results depicted in Fig. 7, the short-time center peak and 
long tails indicate that the majority of individual twitchers are caged by their neighbors but are able to collectively 
advect and so move larger distances than expected if they were behaving diffusively. These caging effects are par-
ticularly evident in the correlated motion of individual twitchers within the ensemble. To explore how persistent 
the direction of motion of individual twitchers is, we consider the spatial individual auto-correlation (IAC) func-
tion of the direction of motion γ̂v  of the γth twitcher along its own trajectory. The IAC is given by

ρ φΔ = ⋅ Δγ γˆ ˆˆ r v v r( ; ) (0) ( ) , (4)v

where Δr is the distance travelled relative to an arbitrary starting point. When Δr is small, no twitcher will have 
moved far nor changed direction and γ̂v (0) and Δγ̂v r( ) will be very similar, such that ⋅ Δ ≈γ γˆ ˆv v r(0) ( ) 1. As each 
twitcher moves across the surface, Δr increases and the correspondence between the direction of motion at the 
starting point and at Δr is lost. In the limit of completely uncorrelated directions of motion, ⋅ Δγ γˆ ˆv v r(0) ( )  
approaches zero. The IAC defined in Eq. 4 thus decays from ≈1 to small values with increasing Δr thus indicating 
how the direction of motion is randomized with increasing displacement. Note that the IAC is averaged over both 
initial times and the ensemble of twitchers. Similar auto-correlation functions have previously proven useful in 
assessing collective motion of swimming Bacillus subtilis74–77.

The IAC curves calculated for different surface coverage values are shown in Fig. 8a. For the case of solitary 
twitchers corresponding to φ = .0 004, the principle contribution to ρ Δˆ r( )v  is exponential decay, with a small dip 
and peak at small distances representing the stochastic angle chosen in the extension phase and the directed 
active motion of the retraction phase. In the low coverage regime (φ = .0 19), as φ increases the IAC curve shifts 
downward and also the decay becomes steeper. The shift reflects the same collisional dynamics as the short-time 
MSV decrease of φV ( )2  (Fig. 5c), while the increased decay reiterates the long-time MSD of φD( ) (Fig. 5d). If the 

Figure 6. Average speed of twitchers. The total weighted average speed φv ( )m  is separated into the 
contributions from twitchers in their resting/extending state φv ( )r  and their active retraction state φv ( )a . Critical 
coverage φ* denoted with dotted vertical line.
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coverage fraction is greater than φ⁎ (φ = . .0 57, 0 76), the slopes start to flatten out and the IAC ρ φΔˆ r( ; )v  shifts up 
in magnitude, implying that high coverages cage twitchers’ direction of motion as they travel large distances.

If one focuses on a subset of chosen travel distances Δ =r {50, 10}, the importance of φ⁎ is highlighted 
(Fig. 8b). For Δ =r 50, ρ φΔˆ r( ; )v  is non-monotonic, decreasing rapidly with φ to a minimum at φ⁎. For this 
large-distance limit, we characterize ρ φΔˆ r( ; )v  by fitting exponential correlation lengths λ φρ ˆ( )

v
 (Fig. 8c) to the 

tails of the curves in Fig. 8a. At low coverage fractions, λ φρ ˆ( )
v

 is largest due to unobstructed twitcher motion. The 
correlation length drops to a shallow minimum at φ φ≈ ⁎ with only a minor increase for larger coverage. The 
short distance (Δ =r 10) correlation indicates more complicated dynamics (Fig. 8b). The correlation still drops 
to a local minimum at φ φ≈ ⁎ but now the minimum is nearly 4.5 times more correlated than for Δ =r 50. The 
rise in ρ φˆ(10; )v  above φ⁎ begins more suddenly and climbs to a local maximum around φ ≈ .0 57. At this local 
maximum, the IAC of a twitcher is nearly as large as for a solitary twitcher. At these coverages, twitchers form 
tightly packed clusters that promote alignment and cage the twitchers’ direction of motion, maintaining correla-
tion. Thus, individual auto-correlation calculations can reveal the persistence of motion of individual P. aerugi-
nosa or other motile microbes and by comparing the curves across φ values, the emergence of collective motion 
can be indirectly observed from increases in the IAC arising from interactions with neighboring twitchers.

Long-range correlated motion. In order to directly examine these correlations between twitchers, we 
consider another correlation function: the radial pair auto-correlation (PAC) function given by

Figure 7. Step size distributions. Van Hove functions φΔG x t( , ; ) with axes normalized to collapse diffusive 
dynamics. Panels a-d show step size distributions for various coverage fractions (φ = . . . .0 19, 0 38, 0 57, 0 76).

Figure 8. Individual auto-correlation (IAC) within an ensemble. (a) IAC function ρ φΔˆ r( ; )v  of the direction 
of motion of an individual twitcher. (b) ρ φΔˆ r( ; )v  for two values of distance traveled Δ =r t( ) {10, 50} as a 
function surface coverage φ. Markers denote Δ =r 10 (+) and Δr = 50 (◆) (c) Decorrelation length λ φρ ˆ( )

v
 from 

exponential fits to the large Δr decay of the IAC functions.
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φΔ = ⋅ .γ ηˆ ˆˆg r v t v t( ; ) ( ) ( ) (5)v

This measure compares the direction of motion of the γth twitcher relative to its ηth neighbor that is a distance 
Δr away at that instant. While the IAC given in Eq. 4 compares a twitcher to itself at different displacements and 
thus different times, the PAC given in Eq. 5 compares one twitcher to its neighbours at the same point in time. 
This is thus a direct measure of how the motion of a twitcher is correlated to that of its neighbours and allows us 
to explore the inference that tightly packed domains result in long-range correlated motion by caging twitchers 
and aligning their direction of motion. As for the IAC, values near +1 indicate high correlation while values near 
0 indicate insignificant correlation.

In dilute systems, the correlation of neighboring twitchers’ direction of motion drops quickly to zero (Fig. 9a) 
— only twitchers that are in direct contact (within Δ <r L /2body ) exhibit non-negligible correlations. However, 
there is a sudden jump in the long-range correlation as the coverage surpasses φ⁎. The principle contribution to 

φΔˆg r( ; )v  is exponential decay and by fitting exponential correlation lengths λ φˆ( )gv
 to the tail of the curves, we see 

the rapid rise and subsequent saturation of the correlation within the system. A closer examination reveals that 
there is a minor peak in φΔˆg r( ; )v  for all φ found at small separations.

In Fig. 9a, we considered the PAC for the instantaneous direction of motion γ̂v . This does not necessarily align 
with twitchers’ polar orientation 

γ̂p , which describes the direction from twitcher’s tail to its head, nor twitchers’ 
nematic alignment γn̂ , which disregards differences between parallel/anti-parallel orientation ( = −γ γˆ ˆn n ), as 
defined in the Methods Section. An anti-correlation for φ φ< ⁎ arises in the PAC function of polar orientation 

φΔ = ⋅γ η
ˆ ˆˆg r p t p t( ; ) ( ) ( )p

 (Fig. 9b). From φΔˆg r( ; )p , we see that the φ = .0 19 curve crosses zero at Δ = .r 2 8 
and has a negative minimum at Δ = .r 4 0. These features arise from pair collision events, which produce either:

 1 Alignment, in which case the nematic interactions and polar motion cause persistent co-movement. Even 
if future pili adhesion events pull the heads apart, nematic interactions keep the pair aligned (Fig. 9b; left 
inset).

 2 Anti-alignment, in which case the nematic interactions produce ephemeral anti-parallel configurations, 
since twitchers are free to move in uncorrelated directions once the twitchers pass one another (Fig. 9b; 
right inset).

The net result is that polar aligned twitchers have an effective short-range attraction and that twitchers in 
immediate contact tend to stay polar aligned. Since co-aligned twitchers effectively attract and anti-aligned do 
not, the range ∆ ≈ −r 3 15 exhibits an anti-correlation. This anti-correlated region has a minimum centered on 
the mean separation distance between twitchers (Δ = .r 4 0 for φ = .0 19 in Fig. 9b). At higher φ, this is no longer 
the case, since spontaneous symmetry breaking is expected of active systems above the critical “flocking” 
transition1,2.

However, while φΔˆg r( ; )v  increased for all φ (Fig. 9a), the φ = .0 76 curve for φΔˆg r( ; )p  actually crosses down 
below the φ = .0 38 and φ = .0 57 curves for local Δr (Fig. 9b). At these high coverages, the polar alignment 
mechanism described by Fig. 9b (inset) no longer holds since isolated pair collisions are rare. Anti-aligned pairs 
can no longer episodically pass one another because the majority of twitchers are surrounded on all sides by 
nearby neighbors (Fig. 2b). Thus, the coverage fraction in these dense regions nematically aligns the twitchers 
because of the bacilliform shape, overcoming collisional polar alignment.

Figure 9. Pair correlations between twitchers. Radial pair auto -correlation (PAC) functions demonstrating 
local ordering for the same coverage fractions as in Fig. 3 φ = . . . .( {0 19, 0 38, 0 57, 0 76}). (a) PAC function of the 
direction of motion φ∆ = ⋅γ ηˆ ˆˆg r v t v t( ; ) ( ) ( )v  for twitchers γ and η that are separated by rΔ  at time t. (Inset) 
Exponential decorrelation length λ φˆ( )gv

. (b) PAC function of polar orientation φΔ = ⋅γ η
ˆ ˆˆg r p t p t( ; ) ( ) ( )p

. 
(Inset) Schematic of steric alignment mechanisms for co-translating twitchers and passing twitchers. (c) PAC 
function of the director φΔ = ⋅γ ηˆ ˆˆg r n t n t( ; ) ( ) ( )n . (Inset) Exponential decorrelation length λ φˆ( )gn

.
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This is revealed in the 2D pair -correlation function of nematic orientation ˆ ˆˆ φ∆ = ⋅ −γ η( )g r n t n t( ; ) 3 ( ) ( ) 2/3n  
(Fig. 9c). Unlike φΔˆg r( ; )p , the magnitude of φΔˆg r( ; )n  increases monotonically with φ at all Δr. The nematic PAC is 
very high at contact (small Δr) for all coverages, falls rapidly, then possesses a well-defined peak at intermediate sepa-
rations Δ ≈ .r 4 0; consistent to all three subplots. This peak corresponds to the length of a twitcher indicating that 
twitchers are often observed in locally smectic-ordered layers, as can be seen in Fig. 2b, for example. The locally corre-
lated domains represent proto-rafts, regions of strong nematic ordering that are reminiscent of the “rafts” observed in 
dense communities P. aeruginosa78,79.

Fitting exponentials to the φΔˆg r( ; )n  tails after the nematic raft peaks, we extrapolate an effective raft size 
parameter λ φˆ( )gn

 (Fig. 7c; inset). These nematic proto-rafts have a size scale (Fig. 7c; inset) that is much smaller 
than the size of the dense regions, which can span the entire system at high φ (Fig. 2b). In this way, we see clearly 
the distinct transition from the dilute state with no clustering to a dense state with non-homogeneous poly-
domains of local nematic ordering that exhibit collective motion on scales comparable but larger than raft size. 
While local alignment on scales comparable to λ φˆ( )gn

 generate the collective motion of rafts, λ φ λ φ>ˆ ˆ( ) ( )g gv n
 

(Fig. 9; insets) since non-aligned neighbors can be entrained by the collective advection.

non-homogeneous ensemble structure. The nematic rafts represent ordered localities within larger 
dense regions. From Fig. 2b, it can be seen that at high total coverage fractions localized dense regions (liquid-like 
state with non-uniform polydomain nematic ordering) coexist with dilute regions (active gas-like state). To quan-
tify the coexistence, we consider the distributions of local coverage fractions φ′ by partitioning the system into 
100 square sub-domains to calculate the probability distribution φ φ′P( ; ) of observing a local φ′ given a certain 
global surface coverage φ.

Below φ⁎, the distribution exhibits a single peak centered around φ φ′ = , which is to say that the twitchers 
constitute a homogeneous gas-like active system (Figs. 10a and 2a). As the total coverage is raised, the primary 
peak shifts slightly to the right, as a secondary peak arises at a substantially larger coverage fraction (Fig. 10b). 
Above φ⁎, a dilute gas-like phase with coverage fraction φ′ = .0 2g  coexists with a liquid-like phase at φ′ = .0 85l . 
As the total φ is increased further, the fraction of twitchers that reside in the active-gas phase decreases, while the 
fraction in the active cluster increases (Figs. 10c and 2b). Eventually the active-gas phase all but disappears at the 
highest coverage fractions (Fig. 10d).

However, even at these high coverages the impact of interspersed zones depleted of twitchers can be observed. 
Within the sub-domains of the system, we measure the fluctuations of the number of twitchers. That is, we meas-
ure the standard deviation φ φ φ φ φΔ ′ = 〈 ′ → − 〉r t( ) [ ( , ; ) ]2 1/2 of the local coverage fraction for different subsec-
tion sizes (Fig. 11a). In the dilute limit, one expects φ φΔ ′ ∼ µ′  with µ = 1/2 in accordance with the central limit 
theorem (CLT). However, as intrinsically far-from-equilibrium systems there should be no general expectations 
that density fluctuations of motile microbes obey the CLT. Indeed, in dense active nematic systems, giant number 
fluctuations (GNF) with µ = 1 are predicted80 and anomalous density fluctuations have been observed in simu-
lations of self-propelled particles81,82 and experiments of driven granular matter13,83. Nevertheless, the scaling 
exponent µ may depend on microscopic details, such as shape and motility mode, or surface coverage, as we will 
now demonstrate. For φ φ< ⁎, the fluctuations are thermal-like with µ = 1/2, as expected from CLT for the 
gas-like phase (Fig. 11b). However, µ is much closer to unity than 1/2 in the large φ limit (Fig. 11b). The transition 
from the CTL to GNF occurs rapidly about φ⁎. The increased fluctuations can be interpreted as a result of twitch-
ers clustering together in dense actively flowing regions with polydomains of orientational ordering, while leaving 
depleted windows of low density between actively motile clusters. Together these combine to cause φ φ′ →r t( , ; ) to 
swing from large to small values. In the small-φ′/large-φ limit, the fluctuations are actually suppressed, rather than 

Figure 10. Coexistence. Probability distributions φ φ′P( ; ) of local coverage fractions φ′ for different global 
coverage φ. Vertical lines denote the coexistence densities in the active gas-like phase φ′ = .0 2g  (dashed line) 
and the liquid-like dense phase φ′ = .0 85l  (dotted line). (a) φ = .0 10. (b) φ = .0 38. (c) φ = .0 57. (d) φ= .0 76. 
Global φ is marked on each curve.
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enhanced, because whole rafts of twitchers are caged within the liquid phase regions (Fig. 11). Similar giant num-
ber fluctuations have been, for example, reported in dense ensembles of swimming B. subtilis74.

Discussion
Using coarse-grained and simplified simulations of bacilliforms with a stochastic motility cycle of rest, pilus 
extension and pilus retraction, we explored the collective behavior of twitchers as a function of surface covering. 
Although our study greatly simplifies twitcher-type bacteria by neglecting species-specific and biologically medi-
ated complexities, we find cooperative action arising from physical mechanisms across all scales. By analyzing 
the displacement statistics of individual model twitchers within the ensemble, we found that the intermediate 
time shoulder in the mean squared displacement corresponding to twitchers in their resting period disappears 
with high coverage fraction, demonstrating that non-motile twitchers in their resting period are carried by the 
flow of their active neighbors. The MSD also showed that the short-time dynamics are slowed with the effective 
mean squared velocity decreasing monotonically with coverage. However, the long-time dynamics, as measured 
by relative diffusivity, are non-monotonic exhibiting an increase after a critical coverage fraction. This coverage 
fraction corresponds to the mean area per twitcher equaling the characteristic rotational area occupied by each 
bacilliform.

These conclusions more readily found by employing the non-Gaussian parameter, which provides additional 
information on the dynamics of the twitchers. The non-Gaussian parameter loses its negative plateau with higher 
coverage, which provides evidence of non-motile resting twitchers being displaced by the flow of active twitchers. 
Additionally, by separating the contributions to the average velocity due to twitchers in the retraction and rest 
phases, we find motile and non-motile twitchers are indistinguishable at sufficiently high coverage with their 
speeds converging to the mean. We can definitively conclude that not all cells must be motile in the collective 
clusters38. Furthermore, the increase of the short-time NGP with coverage fraction implies larger displacements 
than expected by a normal distribution. This is validated using the step size displacement distributions (van Hove 
self-correlation functions) which exhibit longer tails than a normal distribution indicating collective motion for 
higher coverage. While this does not imply twitchers exhibit bacterial turbulence25,84,85, it does reveal the early 
stages of collectivity in pre-biofilm twitching communities.

From the correlation functions, we see the microscopic arrangement of twitchers to form co-moving 
polar-aligned pairs in low coverage situations. However, the twitchers self-assemble into oriented local domains at 
high coverage, which form heterogeneous ordered polydomains within larger liquid-like regions, similar to bacterial 
rafts observed in bacterial colonies78. Biologically observed rafts generally move radially outward from the colony 
along the local alignment of the cells, which are in tight contact. As in our model proto-rafts, direction can vary and 
individuals within a raft may instantaneously move against the local flow but are advected with the group. An impor-
tant distinction exists between the proto-rafts in our simulations and biological rafts in P. aeruginosa colonies—cells 
left behind biological rafts stretch and the continuity of the community breaks into small aggregates or even a net-
work79. On the other hand, proto-rafts are free to simply move away from a larger cluster into a depleted region, 
forming a separate cluster since our model bacilliforms only interact via steric, excluded volume and not by signaling 
or other biological mechanisms. The transition from a purely dilute state with no clustering to a dense state with 
collective motion and non-homogeneous polydomains of local nematic ordering exhibits coexistence between the 
dilute and dense states. Such coexistence of separated phases appears to be a hallmark of self-propelled particles in 
general, not limited to twitching bacilliforms nor self-propelled rods, which has been studied theoretically in terms 

Figure 11. Twitcher surface coverage fluctuations. (a) Fluctuations of the local coverage φΔ ′ as a function of 
the local instantaneous coverage φ′ for various global coverage fractions φ. Reference scalings φ φΔ ′ ∼ ′µ for 
µ = 1/2 and 1 (dashed lines) are expected in the thermal-like and active-nematic limits respectively. (b) Power 
law exponent µ describing the scaling of the fluctuations with local coverage, as measured in the large φ′ limit. 
Vertical dashed line denotes φ*.
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of motility-induced phase separation86,87, in simulations of active Brownian particles18,19,88, in self-propelled ballistic 
particles23, kinetic Monte Carlo89 and experimentally in systems of active spherical Janus colloids24. Similarly, our 
simulations quantify the giant number fluctuations and dynamic distributions of the coverage produced by twitch-
ing motility, which are likewise expected from active nematic systems83,90.

While our model is simplified compared to the biological complexity of P. aeruginosa and other bacteria that 
employ twitching as a motility strategy, microscopic details of swimming motility have previously been shown 
to result in qualitative changes to collective dynamics26,91–93 and swarming-mode motility of P. aeruginosa94. Our 
well defined microscopic model of the twitching mode motility cycle captures the essential microscopic details 
that differentiate biologically relevant twitching motility from a purely idealized toy model of self-propelled rods 
and demonstrates that twitching motility is sufficient to exhibit physically mediated collectivity, without requiring 
additional long-range complications, such as photosensing and quorum sensing95 or secretions56 or other forms 
of bacterial stigmergy96. Although lacking a clear signal in the first order statistics of mean squared displacement, 
the collectivity of twitchers above a critical coverage fraction can be directly quantified by higher order statistics, 
including the non-Gaussian parameter, decorrelation lengths and the scaling of the fluctuations with local coverage. 
Such physically mediated collective properties may bestow an advantage on pre-biofilm communities of twitchers by 
allowing regions of high coverage to potentially seed the formation of biofilms, while continuously preserving a sub-
population of disengaged individuals that are free to explore the surface with effectively isolated twitcher dynamics.

Methods
Simulation details. Our coarse-grained model of motile microbes treats individual twitchers as stiff rod-like 
bacilliforms discretized into four spheres, with a non-integrated dummy particle representing the action of bac-
terial pili (Fig. 1a). At all times t, each sphere i of mass m is located at a point →x t( )i  and subject to thermal noise 
ξ
→

t( )i , drag ζ− →
x t( )i , and conservative forces −∇

→ → →
≠( )V x x,i j i  with other spheres ≠j i. Simulations are conducted 

using Langevin Dynamics57,58, evolving according to

ζ ξ→ = − → − ∇
→

+
→

.̈m x x V (6)i i

Since bacteria are microscopic in scale and subject principally to biological sources of noise (see Section 
Motility Cycle), the temperature of the Gaussian noise is set to an arbitrarily low value of = × −T 2 10 7 with the 
friction coefficient ζ = 1. Simulations use an integration step of Δ = .t 0 01, such that 100 integration steps consti-
tute τ = 1 unit time step. Each simulation runs for 108 integration steps in a 2-dimensional simulation box of size 
100 with periodic boundaries.

individual twitchers. To account for the excluded volume of twitchers, a shifted truncated Lennard-Jones 
(Weeks-Chandler-Anderson) potential acts between all integrated particle pairs i j{ , }
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where = → − →r x xi jij  is the separation between two particles. The particle size σ = 1 sets the length scale and the 
energy ε = 1 sets the energy scale. All quantities are expressed in terms of σ, ε, and τ. The cutoff =r 2c

1/6 trun-
cates the long-range potential and ε shifts it.

Each twitcher body is composed of four spheres, bonded together by finitely extensible nonlinear elastic 
(FENE) potentials
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where = .R 1 50  is the maximum extent of the bond and =k 50F  is a spring constant. Harmonic bonds keep 
twitchers rigid with =k 33H  in the potential

θ θ θ= −( ) ( )V k /2, (9)ijk ijkHARM H 0
2

which keeps the angle θijk between three sequential particles tightly centered around θ π=0 . Each twitcher body 
has a size =L 4body .

Motility cycle. We model the process of twitching with a stochastic rule-based motility cycle and a single 
dummy pilus particle that actively pulls the twitcher forward. There are three phases in the model twitcher motil-
ity cycle (Fig. 1c):

 1. The first is a rest phase, in which each twitcher does not undergo self-induced movement (Fig. 1c-1). In 
this rest phase, the pilus is not adhered to the surface and the twitcher only passively responds to external 
forces. A twitcher in the rest phase has a 10% chance per τ of stochastically transitioning out of this phase.
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 2. The second period is defined as the pili extension phase, in which each twitcher hypothetically extends 
then adheres its dummy pilus to the surface (Fig. 1c-2). This extension phase occurs over a set period of 

τ10 . As in the rest phase, the twitcher does not undergo self-induced movement during the extension 
process. At the end of this phase, the dummy pilus is instantly fixed to a point a distance = .L 2 40  away 
from the head particle, with an angle relative to the body stochastically drawn from a uniform distribution 
on π π−[ /4, /4].

 3. The third phase is the retraction phase, in which the twitcher is actively motile (Fig. 1c-3). During this 
phase, the twitcher’s head is pulled towards its fixed pilus adhesion point. A linear potential

= − −γ γV r k r r( ) ( ) (10)PILI P 0

where = → − →
γ γ γr t x x( ) ,H ,P  is the distance between the head at →γx t( ),H  and the pili adhesion point →γx t( ),P  of the 

γth twitcher, is used to model the average force exerted by multiple pili59. The spring constant =k 1P  and = .r 0 20  
is the strength of the pilus force and the cut off distance respectfully.

The retraction phase ends when one of three conditions are met:

 i. The twitcher reaches its pilus adhesion point. This is achieved if < = .γr t L( ) 0 2R  (Fig. 1c-3.i).
 ii. The head of the twitcher is pushed too far from the adhesion point. This is said to occur if > =γr t L( ) 3S , 

causing the pilus adhesion to “snap” (Fig. 1c-3.ii).
 iii. The twitcher adhesion is exhausted. Since an unobstructed twitcher takes roughly τ10  to reach its pilus, 

τ=t 70M  is chosen as the maximum time a twitcher can try to reach its pilus adhesion point before the 
adhesion fails (Fig. 1c-3.iii).

Once any of these occur, the twitcher returns to the rest phase and the cycle repeats.

twitcher ensemble. Many twitchers are modeled simultaneously, explicitly interacting only through 
excluded-volume repulsion. We define the 2D surface coverage fraction

φ = = . × −A N A N/ 3 7854 10 (11)twitch box
4

where =A 100box
2 is the area of the box, = .A 3 7854twitch  is the area of one twitcher taken to be a rod of length 

4 with circular caps, and N  is the number of twitchers in the simulation. This does not include the pili, which have 
no excluded volume. Our simulations span from the solitary twitcher system with =N 1 (φ = × −4 10 4) to 

=N 2000 (φ = .0 76).
To analyze the individual and collective dynamics of the ensemble, we consider the state of each twitcher. The 

position →γx t( ) and average velocity →γv t( ) over 1 time unit τ of the γth twitcher are defined to be the center of mass 
values, → = ∑ →

γ γ∈x t x t( ) ( )i i  and → = ∑ →
γ γ∈

v t x t( ) ( )i i , with average speed = →
γ γv t v t( ) ( ) . In addition to the ensemble 

and time averaged speed ≡v vm  of all twitchers, we consider the separate contributions due to twitchers in their 
self-motile retraction phase ≡v va retr and their non-motile resting/extending phases ≡ +v vr rest ext. The instan-
taneous direction of motion = →

γ γ γv̂ t v t v t( ) ( )/ ( ) of each twitcher does not necessarily align with its polar head/tail 
orientation = → − → → − →

γ γ γ γ γˆ ( )p t x x x x( ) /,H ,T ,H ,T , where →γx ,T is the tail position (Fig. 1a). In addition to polar 
ordering, we will consider the nematic alignment of the twitchers denoted by ≡ −γ γˆ ˆn t n t( ) ( ), disregarding par-
allel/anti-parallel differences.
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Chapter 4

Atomistic Simulations of a

Phytoglycogen Nanoparticle

4.1 Overview

In Chapter 3, collective properties of twitching bacteria were explored by

employing a rules-based and coarse-grained molecular dynamics (MD) simulation.

Many biological details were omitted from the bacteria model to directly view the

influence of twitching motility on the formation of collective motion. There, the

coarse-grained model produced computationally affordable simulations and

allowed for a high surface coverage of bacteria. If the complexity in the model

was increased, however, the ability to simulate large ensembles or long time

trajectories may be hindered by the high computational cost of the simulations.

In many cases, fully-atomistic MD simulations containing a high biological

complexity are necessary to capture fundamental details of the phenomenon

being studied. In particular, these simulations are widely used to study the

detailed structure and dynamics of α-D-glucose-based polysaccharides such as
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amylose [126–135]. Fully-atomistic models are used here to characterize

macroscopic properties of the polysaccharides that depend on their atomic

interactions, such as assessing the impact of chemical modifications on helical

stability or quantifying internal water structures. These fully-atomistic models of

amylose are computationally affordable since only short amylose chains

(∼ 10− 200 glucose monomers) were considered.

For more complex polysaccharide structures such as phytoglycogen,

producing sufficient simulation trajectories is restricted by the extensive

computational costs of the fully-atomistic simulations. Specifically, since

phytoglycogen has an estimated molecular weight of 103 − 104 kDa [136–139], this

makes it comprised of roughly 5500− 55, 000 glucose monomers. When

simulating this molecule in fully-atomistic detail as it interacts with explicit water

molecules, the trajectories of several millions of interacting particles need to be

computed. On top of the high computational costs, creating the initial structure

of phytoglycogen for an MD simulation is also an obstacle. Overcoming these

barriers and producing MD simulations of phytoglycogen may provide valuable

insights regarding the current utilization of the polysaccharide in the food

industry [140], cosmetics [136], and drug delivery applications [141].

In "Characterizing a phytoglycogen nanoparticle using all-atom molecular

dynamics simulations," Khatami, Nagel, and de Haan [2] simulate a

fully-atomistic model of a phytoglycogen nanoparticle (PGN) in the presence of

explicit water molecules. The PGN is constructed from 1097 glucose monomers to

provide a nanoparticle that is more computationally feasible to simulate.

However, the PGN is still large enough to contain a sufficient number of repeated
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(a) (b)

Figure 4.1: Simulation photos of the phytoglycogen nanoparticle
at (a) t = 0 ns and (b) t = 400 ns.

glucose units so that the structure will resemble a dendritic nanoparticle,

producing insight into the structure and interactions of a full-sized PGN. The

initial structure of the PGN is built in several cycles, with each cycle containing a

growing phase followed by a relaxation phase. At a high level, the PGN structure

is built by:

1. Starting with three glucose chains.

2. Bonding five glucose monomers to the ends of any available free chains of

the PGN (the growing phase) and splitting the chains after ten glucose

monomers to form the dendritic structure.

3. Solvating the PGN in explicit water molecules and simulating for 2 ns (the

relaxation phase) using the GROMACS 2016.4 MD simulation package [95].

4. Repeating the growing and relaxation phases for 13 cycles until the PGN

contains roughly 1,100 glucose units, as shown in Fig. 4.1(a).
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After the growing process is concluded, then the PGN is simulated for 400 ns. Its

final structure is shown in Fig. 4.1(b).

In Khatami, Nagel, and de Haan [2], the radius of gyration Rg of the PGN is

computed as a function of the simulation time. Rg decreases over time,

demonstrating that the PGN is energetically equilibrating from its initial

outstretched configuration into a more stable compact structure (shown in Fig.

2(a) of Khatami, Nagel, and de Haan [2]). Most notably, Rg appears to saturate

when t > 200 ns, indicating that no major structural changes occur after this

point in time. Thus, the sufficiently stable structure of the PGN during the final

200 ns of the simulation is subsequently examined with various metrics.

The first metric to characterize the relaxed structure of the PGN is the

radial density ρ(r) computed as a function of the distance r from the geometrical

centre of the PGN. The density calculation is performed discretely over n radial

shells each located at

(n− 1) ·∆r ≤ r < n ·∆r, (4.1)

with width ∆r = 0.5 nm and volume

Vn =
4

3
π
[
(n ·∆r)3 − ((n− 1) ·∆r)3

]
. (4.2)

The radial density is given by

ρ(r) =

⟨∑
i

mi,n⟩t
Vn

, (4.3)

where mi,n is the mass of particle i that is located in the nth radial shell, and ⟨·⟩t
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denotes time averaging over t = 300− 400 ns. The radial density is plotted in

Fig. 4.2 for both the PGN and water molecules, with error bars indicating

standard deviation over time.

In Fig. 4.2, the radial density of the PGN (black curve) has a maximum from

0 nm < r < 3 nm, decreases steadily from 3 nm < r < 6 nm, and tapers off to

very low density when r > 6 nm. This behaviour in the radial density

demonstrates that the phytoglycogen molecule has a hard, dense core with a

sparse outer corona. The "hairy colloid" density model found here agrees with

the experimental model of phytoglycogen derived from the small-angle neutron

scattering results of Simmons et al. [139].
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Figure 4.2: Radial density ρ(r) of the phytoglycogen nanoparticle
and water molecules computed r nm from the geometrical center of
the nanoparticle. Time-averaging of the density is conducted over
the simulation’s last 100 ns, where error bars denote the standard

deviation. Blue dotted line denotes density of bulk water.

It is natural to question what precipitates the relaxation process of the PGN

from its nonphysical initialization into a "hairy colloid" structure. To answer this

question, next a particle contact analysis is conducted. A contact C is the

occurrence of two atoms within 0.3 nm of one another. The number of contacts at
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time t is computed and divided into three categories: contacts among the PGN

atoms Cp−p(t), contacts between the PGN and water molecules Cp−w(t), and

contacts among water molecules Cw−w(t). Moreover, based on the type of atoms

involved in a contact, the interaction is further distinguished into non-polar,

polar, and energetically unfavourable contacts. Finally, the normalized total

change in the number of contacts is computed,

∆Cp−p(t) =
1

Ngluc
[Cp−p(t)− Cp−p(0)] , (4.4)

∆Cp−w(t) =
1

Ngluc
[Cp−w(t)− Cp−w(0)] , (4.5)

∆Cw−w(t) =
1

Ngluc
[Cw−w(t)− Cw−w(0)] , (4.6)

where Ngluc = 1097 is the total number of glucose monomers in the PGN.

Plots of ∆Cp−p(t) and ∆Cw−w(t) (Figs. 4.3(a,c)) indicate that all contact

types within the PGN and all the contact types within the water molecules are

increasing from t = 0− 200 ns and saturate when t > 200 ns. Conversely, plots of

∆Cp−w(t) ((Fig. 4.3(b))) indicate that all contact types between the PGN and

water molecules are decreasing from t = 0− 200 ns and saturate when t > 200 ns.

Recall that the PGN relaxes from its initial outstretched state to the "hairy

colloid" density profile that persists when t > 200 ns (Fig. 4.2(a)), which

corresponds to a decreasing radius of gyration that eventually saturates when

t > 200 ns (shown in Fig. 2(a) of Khatami, Nagel, and de Haan [2]). The contacts

experienced in the PGN environment reflect this behaviour; as the PGN relaxes,

it interacts more with itself (∆Cp−p(t) increases) and interacts less with the

surrounding water environment (∆Cp−w(t) decreases). Thus the water molecules
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interact more with themselves (∆Cw−w(t) increases). To address what drives this

behaviour, we compute the change in the total contacts experienced by the PGN,

∆CP (t) = ∆Cp−p(t) + ∆Cp−w(t). (4.7)

Fig. 4.3(d) displays ∆CP (t), with each curve representing the three contact types

(non-polar, polar, unfavourable). A running average of ∆CP (t) was computed

over 10 ns windows to normalize out statistical fluctuations in the contact values.

Figure 4.3: Normalized change in the number of contacts (a)
among phytoglycogen atoms ∆Cp−p(t), (b) between phytoglycogen
atoms and water ∆Cp−w(t), and (c) among water atoms ∆Cw−w(t).
(d) Normalized change in the total contacts experience by phyto-
glycogen atoms ∆CP (t) = ∆Cp−p(t) + ∆Cp−w(t). Colour denotes

the contact type as listed in the legend.

First, focusing on the polar (blue curve) and energetically unfavourable (red

curve) contacts in Fig. 4.3(d), both of these contact types increased between



Chapter 4. Atomistic Simulations of a Phytoglycogen Nanoparticle 89

PGN atoms (∆Cp−p(t)), but decreased between PGN atoms and water

(∆Cp−w(t)). Since the total number of polar and unfavourable contacts

experienced by the PGN decreases in Fig. 4.3(d), the PGN is losing more of these

types of contacts with water than it is gaining with itself. However, notice that

the non-polar (black line) contact types are increasing in Fig. 4.3(d), indicating

that the PGN loses polar and unfavourable contacts between the water molecules

in favour of making non-polar contacts with itself. Therefore, non-polar

interactions play a dominant role in relaxing the PGN’s structure from its

outstretched initial state to the "hairy colloid" density profile. This is an

interesting result as glucose molecules tend to create polar contacts with water

molecules, causing them to dissolve. On the contrary, here the phytoglycogen

molecule is shown to do the opposite: lower the number of polar contacts with

water in favour of creating non-polar contacts with itself.

In addition, since the radial density plots in Fig. 4.2(a) indicate that there is

a considerable amount of water throughout the interior of the PGN, the work in

Khatami, Nagel, and de Haan [2] concludes with a careful analysis of the water

environment. Specifically, the size of water pockets throughout the structure is

measured, showing relatively large cavities in which molecules of interest could

find their way into the PGN. In addition, the hydration number of the PGN is

computed to be 22.54± 0.14 water molecules per glucose molecule, which is

comparable to experimental values found in literature [139, 142]. Finally, the

mean squared displacement of the water molecules in different radial shells of the

PGN shows that the PGN can trap water molecules in its innermost shells. This

water analysis provides evidence of the PGN’s appeal in drug delivery and
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additive cosmetic applications.

In summary, the results in Khatami, Nagel, and de Haan [2] provide valuable

insights into the properties of a phytoglycogen nanoparticle with direct

implications for drug delivery and additive cosmetic applications. In particular,

the PGN was found to have a "hairy-colloid" density profile which agrees with

experimental findings. The fully-atomistic MD model allowed for a careful

analysis of molecular interactions providing insights into the non-polar

interactions that drive the relaxation and final structure of the PGN. Moreover,

the use of explicit water molecules in the simulation provided an opportunity to

analyze the surrounding water’s structure and dynamics. The simulation model

employed in Khatami, Nagel, and de Haan [2] also sets the stage for future

large-scale atomistic simulations of full-sized phytoglycogen nanoparticles and

other complex carbohydrate particles in general.

4.2 Manuscript

Author contributions: The phytoglycogen model and molecular dynamics

simulations were conducted by Mohammad Hassan Khatami. Data analysis was

conducted collaboratively with Mohammad Hassan Khatami. In particular, I was

primarily in charge of structural analysis, molecular contact analysis, and water

pore size analysis. Mohammad Hassan Khatami was primarily in charge of the

hydration number and the mean square displacement of the water molecules.

Schematics were also completed collaboratively with Mohammad Hassan

Khatami. I was primarily in charge of writing the manuscript with assistance

from Mohammad Hassan Khatami and Hendrick W. de Haan.
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Phytoglycogen is a polysaccharide nanoparticle composed of α-D-glucose units, connected in a
dendritic fashion through 1→4 and 1→6 glycosidic bonds. Mainly derived from sweet corn, phy-
toglycogen is both biodegradable and biocompatible, which makes it an ideal candidate for vari-
ous applications such as drug delivery and cosmetics. In this work, a phytoglycogen nanoparticle
containing 1,097 glucose units is simulated in explicit water molecules using all-atom molecular dy-
namics. Here, structural features are analyzed on both the equilibrating and relaxed nanoparticle
and compared to experimental observations. In particular, the radial density is quantified, indi-
cating that phytoglycogen has a dense core and a sparse outer layer of free glucose chains. The
all-atom simulation also allows for careful consideration of the molecular interactions that govern
the nanoparticle’s structure. Moreover, interactions between the phytoglycogen nanoparticle and its
aqueous environment are explored by quantifying the dynamic and static properties of the explicit
water molecules.

I. INTRODUCTION

Phytoglycogen is a plant-based glycogen nanoparticle
produced by a variety of plants such as sorghum [1], rice
[2, 3], barley [4], and Arabidopsis [5]. However, the sweet
corn kernel is the most common source of phytoglyco-
gen [6–8]. Similar to glycogen, which is the primary en-
ergy source in animals, phytoglycogen is comprised of
simple sugar units (α-D-glucose) that are connected in
a highly-branched (i.e., dendritic) fashion. That is, its
structure consists of 8–12 glucose monomers joined lin-
early through 1→4 glycosidic bonds and branched into
segments through 1→6 glycosidic bonds [9–12]. Phyto-
glycogen is suspected to be a spherical nanoparticle with
its size ranging from 30–100 nm in diameter and molec-
ular weight in the range of 103–104 kDa, for different
plants [3, 7, 12–14]. In addition to being a biodegradable
and biocompatible nanoparticle used as an energy source,
phytoglycogen has applications in the food industry[15],
cosmetics [12], and also has been studied for drug deliv-
ery purposes [16].

The structure of phytoglycogen is generally described
by two main experimental models. In the first model,
it is speculated to have a dense outer shell and a low-
density inner core region. This model is corroborated by
the amyloglucosidase hydrolysis of phytoglycogen con-
ducted by Huang and Yao [17], which showed that the
density decreases towards the center of the nanoparti-
cle. Conversely, in the second model, phytoglycogen is
represented by a uniform sphere with free chains on its
surface. This model was initially derived based on the
small angle neutron scattering (SANS) results by Nickels
et al. [13], which described the phytoglycogen structure

∗ Hendrick.deHaan@uoit.ca

only as a uniform sphere. An improved model by Sim-
mons et al. [14] using the SANS results suggested that
phytoglycogen is not only a uniform sphere but has free
chains on its surface.

Experimental results have also shown that phytoglyco-
gen has a high water content in its structure, exhibiting
a water-to-carbohydrate mass ratio of 2.5 to 1 [13]. This
high water content is believed to be attributed to the
highly branched nature of phytoglycogen, which traps
water molecules inside its structure [13]. Moreover, the
hydration number of glucose monomers in phytoglycogen
is reported to be 20±2 water molecules per monomer,
which is consistent with the nanoparticle’s high water
content [14]. In addition, infrared spectroscopy (IR)
of water molecules in phytoglycogen shows that the
molecules are highly ordered and strongly bonded inside
the nanoparticle [12]. Quasi-elastic neutron scattering
(QENS) measurements have shown that water molecules
in phytoglycogen have slow dynamics [13]. The sub-
diffusive behavior of water molecules in phytoglycogen
may again be attributed to the highly-branched structure
of the nanoparticle, in addition to the strongly-bonded
nature of the water molecules [12].

In addition to experimental measurements, all-atom
molecular dynamics (MD) simulations are widely used
to study the detailed structure and dynamics of α-D-
glucose-based polysaccharides [18–27]. However, gener-
ally, these simulations contain only a small number of
glucose units (< 100) and mainly focus on the structure
of single chains. For more complex structures like phyto-
glycogen, the immense number of particles leads to exten-
sive computational costs, making it difficult to produce
long enough trajectories to fully explore these molecules.
Moreover, the process for producing the initial structure
of phytoglycogen for these simulations is unclear.

Nevertheless, large-scale molecules such as dendrimers
have been computationally and theoretically modelled
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[28–30]. Furthermore, Zhang et al. [31] utilized Monte-
Carlo simulations to model glycogen biosynthesis. There,
the molecular density was shown to reach a maximum
near the molecule’s centre, similar to the experimen-
tal density model of phytoglycogen derived by Simmons
et al. [14]. Despite these efforts, detailed simulations of
the structure and dynamics of large-scale phytoglycogen
nanoparticles are still required.

This work uses all-atom MD simulations to study a
phytoglycogen nanoparticle (PGN) containing 1,097 glu-
cose units in an explicit water environment. This phy-
toglycogen model is considered large enough to mimic
the properties of a full-sized PGN but is still computa-
tionally accessible such that a 400 ns trajectory can be
produced. The method used to grow the PGN is briefly
described in Sec. II and will be discussed in more de-
tail in a future publication. A powerful GPU cluster
is used to run the MD simulations (described in Sec. II)
through the Southern Ontario Smart Computing Innova-
tion Platform (SOSCIP) [32]. Analysis of the simulation
results are included in Sec. III which provide insight into
the properties of PGNs. That is, the internal carbohy-
drate structures are addressed (Secs. III A-B), molecular
interactions governing the general structure are explored
(Sec. III C), and the effect of phytoglycogen on its water
environment is studied (Sec. IIID).

II. METHODS

In order to construct the initial phytoglycogen
nanoparticle (PGN) structure used for the MD simu-
lation, a novel growth algorithm was developed. In
this approach, the PGN is dynamically constructed in
several cycles, containing a growing phase followed by
a relaxation phase (as illustrated in Fig. 1). Three
initially-extended α-D-glucose chains, each containing
five monomers, are used to form the seed structure of
the PGN (Cycle 0 in Fig. 1). After 13 cycles of growing
and relaxation, the size of the PGN exceeds 1,000 glu-
cose units (Cycle 13 in Fig. 1). The growing algorithm is
stopped at this point, and the final phytoglycogen struc-
ture containing 1,097 glucose monomers is used as the
initial condition for the 400 ns MD simulation.

In the growing phase of each cycle, first, the free ends
of the phytoglycogen chains are identified. Then, one
glucose unit is added to every free end if there is enough
space to add the monomer without overlapping other ex-
isting monomers. This process continues five consecutive
times, adding up to 5 glucose units to the free chain ends
in every cycle. If a chain reaches ten glucose units, it
branches off into two chains, creating the dendritic struc-
ture of the nanoparticle. The glucose monomers in the
linear segments are connected through 1→4 glycosidic
bonds, while the branching glucose units are connected
to the linear chains through 1→6 glycosidic bonds.

In the relaxation phase of each cycle, an MD simulation
is used with the GROMACS 2016.4 package [33], employ-
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FIG. 1. Schematic of the growing method used to construct
the phytoglycogen nanoparticle. An initial structure is cre-
ated in Cycle 0, relaxed, grown in Cycle 1, and repeated for 13
cycles. The glucose chains added in each growing phase and
the relaxed glucose chains are denoted in orange and blue,
respectively.

ing the CHARMM36 forcefield [34]. Before each relax-
ation simulation, the PGN is centered in a dodecahedron
box with periodic boundary conditions. The box size is
large enough to avoid interactions between the PGN and
its mirror image in the boundaries. Next, the system is
solvated in TIP3P water molecules, the optimized water
model for the CHARMM36 forcefield [34, 35]. After sol-
vating the system, energy minimization is conducted to
adjust the position of possibly misplaced particles in the
simulation box, such as overlapping atoms. Then, the
system is equilibrated under NVT conditions at 300 K
for 2 ns with the time step set to 1 fs. During this step,
the position of heavy atoms of the PGN is restrained
to prevent any structural changes before the relaxation
simulation.

For the relaxation simulations, the system is simulated
under NPT conditions at 300 K with the time step set
to 2 fs. The pressure is set to 1 atm, using Parrinello-
Rahman isotropic pressure coupling, with τp = 5 ps and
compressibility set to 4.5 × 10−5 bar−1. The simulations
are conducted for 50 ns, except in cycles 5 and 10, where
the simulation time is set to 100 ns to provide a more
equilibrated structure. In the last cycle, the PGN con-
tains 1,097 glucose units, the box size is set to 17 nm,
and the system contains 106,286 water molecules. The
relaxation simulation is conducted for 400 ns with an
output frequency of 100 ps. The simulation trajectory
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is analyzed in Sec. III, with VMD 1.9.3 [36] utilized to
visualize the PGN.

III. RESULTS

A. Structure During Relaxation

The glucose chains of the phytoglycogen nanoparticle
(PGN) regularly rearrange their configurations during
the 400 ns simulation (as seen in the simulation photos
in Figs. 2(b-d)). To quantify these structural dynamics,
the radius of gyration is computed,

R⃗g =

[
1

M

N∑

k=1

mk(r⃗k − ⟨ r⃗ ⟩)
]1/2

, (1)

where r⃗k and mk are the position and mass of particle k,
⟨ r⃗ ⟩ is the average position of the N particles, and M is
the total mass of the PGN. Fig. 2(a) displays the magni-

tude of the radius of gyration Rg = |R⃗g| as a function of
the simulation time t.

From t = 0 – 88 ns in Fig. 2(a), the Rg of the PGN
decreases at roughly a constant rate from 4.2 nm to
3.8 nm. The corresponding t = 0 ns simulation snap-
shot in Fig. 2(b) indicates that the initial structure of the
PGN has extended glucose chains on its surface due to
the growth model. However, the snapshot in Figure 2(c)
taken at t = 88 ns shows that these extended chains coil
and collapse on the surface of the PGN, causing the de-
crease in Rg over this time interval.

At t = 116 ns, the PGN in Fig. 2(d) exhibits two sets
of surface chains that extend out and explore different
configurations (denoted by the blue and the magenta ar-
rows). Consequently, this behavior causes an increase in
Rg to roughly 4.1 nm at t = 116 ns in Fig. 2(a). However,
from t = 116 – 200 ns in Fig. 2(a), Rg decreases sharply
to approximately 3.7 nm and remains almost constant for
the rest of the simulation. Again, this decrease is due to
the collapse of the PGN’s surface chains, denoted by the
blue and magenta arrows in Figs. 2(d-e). Since Rg indi-
cates that the PGN structure appears equilibrated after
t = 200 ns, the final 100 ns of the simulation is used to
study the PGN.

B. Radial Density

To further analyze the PGN structure, the time-
averaged radial density ρ(r) is computed as a func-
tion of the distance r from the geometrical center of
the PGN. Here, ρ(r) is discretely calculated on n ra-
dial shells of width ∆r = 0.5 nm and volume Vn =

4
3π
[
(n ·∆r)3 − ((n− 1) ·∆r)3

]
using the relation

ρ(r) =

〈∑
i

mi,n

〉

t

Vn
, (2)

where mi,n is the mass of particle i located in shell n,
and ⟨·⟩t denotes time averaging over t = 300 − 400 ns.
Figure 3(a) displays ρ(r) for both the PGN and the water
molecules, with error bars indicating standard deviation
over time. Note that the dotted horizontal line denotes
the density of TIP3P water molecules in bulk, computed
as 1.011±0.005 g/cm3 using a control simulation.

Based on the general behavior of ρ(r) in Fig. 3(a), the
simulation box is divided roughly into four different spa-
tial regions for analysis purposes. That is, the regions
0–2 nm, 2–4 nm, 4–6 nm, and 6–8 nm from the geomet-
rical center of the nanoparticle are emphasized (denoted
in Fig. 3(a) by the colours yellow, red, blue and purple,
respectively). In addition, cross sections of the PGN col-
ored according to the four different spatial regions are
provided in Fig. 3(b).

First, the 0–2 nm region has the highest PGN den-
sity in Fig. 3(a), indicating that the nanoparticle has a
dense core. In addition, although this region contains
the lowest water density in Fig. 3(a), it is still approx-
imately 40% of the bulk water density, implying that a
significant amount of water is still present. This result is
somewhat surprising as the innermost region of the PGN
denoted by yellow in Fig. 3(b) is entirely covered by the
outer PGN shells and is not directly exposed to the bulk
water.

Next, in the 2–4 nm region of Fig. 3(a), as r increases,
the PGN density decreases at a constant rate. Here, the
density of the PGN is still much higher than the two
outer regions as it is a continuous layer of carbohydrate
that wraps around the 0–2 nm shell (denoted by purple in
Fig. 3(b)). This region is also not entirely covered by the
carbohydrates from the 4–6 nm outer region (denoted by
cyan in Fig. 3(b)), resulting in regions that are directly
exposed to the bulk water. Accordingly, the water den-
sity in this region increases towards the outer shell of the
PGN in Fig. 3(a).

The 4–6 nm region denoted by cyan in (Fig. 3(b)), how-
ever, is a discontinuous layer of carbohydrate particles
that does not entirely surround the inner regions of the
PGN. Thus, the rest of this region is occupied with bulk
water. As a result, the carbohydrate density in this re-
gion is much lower, and the water density is much higher
than that of the inner two regions (Fig. 3(a)).

Finally, the 6–8 nm region denoted by blue in Fig. 3(b)
is only occupied by free chains of the PGN. Therefore,
the carbohydrate density is extremely low in Fig. 3(a).
Moreover, this region has the highest density of water
molecules compared to the other areas in the system,
reaching ρ ≈ 1.004 g/cm3. This value is in agreement
with the density of TIP3P water in bulk water (blue
dashed line in Fig. 3(a)).
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FIG. 2. (a) Radius of gyration Rg as a function of time t, with orange circles to emphasize important structural changes.
(b–g) Front and side views of the nanoparticle corresponding to time frames denoted by the orange circles.

In summary, the radial density in Fig. 3(a) suggests
that the PGN has a dense core with free chains on the
outer surface. This result is consistent with the experi-
mental findings of Simmons et al. [14]. In addition, the
PGN has a high water content even in the innermost
regions of its structure, which has also been shown ex-
perimentally [13, 14].

C. Molecular Contacts

This section conducts a contact analysis to address why
the outstretched surface chains of the PGN collapse and
form the density profile quantified in Sec. III B. Here,
a contact C is defined as the occurrence of two atoms
within 0.3 nm of each other. At each time step t, the
number of contacts is computed and divided into three
categories: contacts among the PGN atoms Cp−p(t),

contacts between the PGN atoms and water molecules
Cp−w(t), and contacts among water molecules Cw−w(t).

Based on the type of atoms involved in a contact, the
interaction is further divided into non-polar, polar, and
“unfavourable” contacts (as defined in Table I). Un-
favourable contacts refer to interactions between polar
and non-polar atoms or between polar atoms with sim-
ilar electronegativities, e.g., between two oxygen atoms.
Note that the intra-molecular contacts within individual
glucose monomers or individual water molecules are ig-
nored. Finally, the normalized change in the number of
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FIG. 3. (a) Time-averaged radial density ρ(r) of the PGN
and water molecules, computed from the geometrical centre of
the PGN for the last 100 ns of the simulation. Error bars de-
note the standard deviation and horizontal dotted line denotes
TIP3P bulk water density. (b) Side and front cross-sectional
views of the PGN at t=400 ns with black dot representing the
geometrical centre of the PGN.

contacts is computed,

∆Cp−p(t) =
1

Ngluc
[Cp−p(t)− Cp−p(0)] , (3)

∆Cp−w(t) =
1

Ngluc
[Cp−w(t)− Cp−w(0)] , (4)

∆Cw−w(t) =
1

Ngluc
[Cw−w(t)− Cw−w(0)] , (5)

where Ngluc = 1097 is the total number of glucose
monomers in the PGN. A running average is conducted
over a 10 ns window to remove noise induced by thermal
fluctuations.

Figure 4(a) shows ∆Cp−p(t) and indicates that the
number of non-polar, polar, and unfavourable contacts
among atoms in the PGN increases during the simu-
lation. This behavior is consistent with both Rg in
Fig. 2(a) and the general structure of the PGN in
Figs. 2(b-g). As the PGN equilibrates, its structure be-
comes more compact, resulting in an increased number
of contacts with itself. Note that for all contact types,
∆Cp−p(t) reaches a plateau when t > 200 ns, similar
to the behavior of Rg in Fig. 2(a). As with Rg, the

plateau in ∆Cp−p(t) indicates that no significant struc-
tural changes in the PGN occur after this time.

In contrast, ∆Cp−w(t) in Fig. 4(b) indicates that
the number of contacts between the PGN and water
molecules decreases during the simulation. This behavior
corroborates again with both the decrease in the size of
the PGN shown in Figs. 2(b-g) and quantified by Rg in
Fig. 4(a). As the structure of the PGN becomes increas-
ingly compact, there is a decrease in its overall surface
area and available space inside its structure. These struc-
tural changes reduce the number of possible contacts that
the water molecules can make with the PGN. As a direct
consequence, ∆Cw−w(t) in Fig. 4(c) indicates that both
polar and unfavourable contacts among water molecules
increases in proportion to the decrease in ∆Cp−w(t).

So far, it has been shown that all contact types are in-
creasing between atoms of the PGN (Fig. 4(a)), decreas-
ing between the PGN and water molecules (Fig. 4(b)),
and increasing between water molecules (Fig. 4(c)). In
each of these plots, unfavourable contacts change the
most drastically, appearing as if they are driving the re-
laxation of the PGN’s structure. However, it is instruc-
tive to analyze the total number of contacts experienced
by the PGN’s atoms, ∆CP = ∆Cp−p +∆Cp−w, which is
plotted in Fig. 4(d). Here, the total number of polar and
unfavourable interactions decreases, whereas non-polar
interactions increases. Therefore, the compaction of the
PGN and the expulsion of water molecules from inside
the PGN is mainly driven by the tendency for the PGN
to create non-polar interactions with itself.

Interaction type atom A atom B
Non-polar C C
Non-polar C HC

Non-polar HC HC

Polar O HO

TABLE I. Non-polar and polar interactions in the system
where C represents carbon atoms, HC represents hydrogen
atoms covalently bonded to carbon atoms, O represents oxy-
gen atoms and HO represents hydrogen atoms covalently
bonded to oxygens. All other contacts are considered un-
favourable.

D. Water Environment

The radial density of water computed in Sec. III B in-
dicated that the PGN’s structure contains a significant
amount of water even in its innermost core. Since the
PGN was simulated in the presence of explicit TIP3P wa-
ter molecules, the simulation allows for a more in-depth
analysis of this environment. Accordingly, this section
quantifies both the structure and dynamics of the water
surrounding the PGN.
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FIG. 4. Normalized change in the number of contacts (a)
among phytoglycogen atoms ∆Cp−p(t), (b) between phyto-
glycogen atoms and water ∆Cp−w(t), (c) among water atoms
∆Cw−w, and (d) total contacts experienced by phytoglyco-
gen atoms ∆Cp = ∆Cp−p +∆Cp−w.

1. Hydration Number

In this section, a similar method employed by Nickels
et al. [13] and Simmons et al. [14] is utilized to calculate
the hydration number of glucose monomers in the PGN.
The hydration number,

HN =
NW

NG
, (6)

provides an estimate of the water to glucose ratio where
NW and NG are the number of water and glucose
monomers, respectively. Figure 5 displays HN as a func-
tion of the cumulative radial distance r from the geomet-
rical center of the PGN.

When calculating the hydration number, the main con-
cern is first defining a “boundary” for the PGN, or equiv-
alently the choice of cumulative radial distance r. Sup-
pose the outer boundary is chosen only to contain the
first two inner regions of the PGN (r < 4 nm), where the
maximum density of glucose monomers occurs. In that
case, the hydration number is roughly HN = 6.5 as de-
noted by the magenta dashed line in Fig. 5. However, this
value is much lower than the most recent measurement of
HN = 20± 2 experimentally observed by Simmons et al.
[14] since this boundary choice neglects water molecules
that occupy the r > 4 nm region.

Conversely, if the outer boundary is chosen such that
it contains all of the phytoglycogen atoms (r < 8 nm),
the hydration number is roughly HN = 59.5 as denoted
by the green dotted line in Fig. 5. This value is much
higher than experimentally observed since the boundary
choice includes a considerable amount of bulk water in
the computation of HN . As illustrated by the radial den-
sity in Fig. 3(a), the r > 6 nm region only contains the
PGN’s surface chains in bulk water. Thus, if the bound-
ary is set such that it includes most of the phytoglycogen
atoms but ignores surface chains (r < 6 nm), the hydra-
tion number is HN = 22.54± 0.14 as denoted by the red
line in Fig. 5. This value is consistent with the previ-
ously obtained experimental values of HN = 22.5 ± 2.5
observed by Nickels et al. [13] and HN = 20±2 observed
by Simmons et al. [14].
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FIG. 5. Average hydration number HN as a function of the
cumulative radial distance r from the geometrical centre of
the phytoglycogen nanoparticle. Error bars denoting the stan-
dard deviation are included but are on the order of the size
of the data points.
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2. Cavity Size

Section III B explored the density of water as a function
of its distance from the geometrical center of the PGN,
Sec. III C quantified how the water interacts with the
PGN, and Sec. IIID 1 computed the hydration number
of glucose monomers in the PGN. Each of these metrics
provided evidence that the PGN contains a significant
quantity of internal water, corroborating with experimen-
tal findings [13, 14]. As the PGN is a potential candidate
for drug delivery and cosmetic applications, this section
explores a simple approach to quantify the size of the
PGN’s internal water cavities.

Throughout the PGN, water molecules form a tortuous
network, creating cavities that are elongated and irregu-
lar in shape. Nonetheless, the size of these internal water
structures can be quantified by approximating them with
spheres. To accomplish this, the distance r̃ to the near-
est PGN atom is computed for the oxygen atom of every
water molecule. Effectively, the position of this oxygen
atom denotes the center of a spherical cavity of radius
r̃ found in the PGN. Based on which of the four radial
shells the oxygen atom is found in, r̃ is partitioned into
four groups, respectively. Then, for each radial shell,
histograms of the distances are computed using the em-
pirical density distribution

fr̃(r̃i) =
P (r̃ ∈ [r̃i, r̃i + dr̃])

dr̃
=

ni

N · dr̃
. (7)

Here, P (r̃ ∈ [r̃i, r̃i + dr̃]) = ni/N is the empirical
probability that distance r̃ is in a certain interval i =
[r̃i, r̃i + dr̃], such that ni is the number of times that r̃
is found in i, dr̃ = 0.01 nm is the bin width, and N is
the total number of measurements. Figures 6(a-d) dis-
play fr̃(r̃i) for each of the four radial shells, plotted on a
logarithmic scale to emphasize relevant features.

First, in Figs. 6(a-d), all distributions share two clear
peaks around r̃i = 0.19 nm and r̃i = 0.28 nm denoted by
the blue and green arrows, respectively. The peak value
at r̃i = 0.19 nm occurs due to oxygen atoms of water
molecules interacting with hydrogen atoms belonging to
the PGN (as illustrated in Fig. 6(e)). Similarly, the peak
at r̃i = 0.28 nm corresponds to the distance between oxy-
gen atoms of water molecules interacting with the oxy-
gen atoms of the PGN (as illustrated in Fig. 6(f)). These
distances are consistent with the experimental distances
calculated for hydrogen bonds [37]. In addition, the peak
around r̃i = 0.56 nm in the three outermost shells (de-
noted by the orange arrow in Figs. 6(b-d)) corresponds
to the interaction distance of two consecutive hydrogen
bonds (as illustrated in Fig. 6(f)). The occurrence of
all three of these peaks implies the existence of water
molecule order throughout the PGN, agreeing with the
infrared spectroscopy (IR) results of Grossutti et al. [12]
that showed highly ordered and strongly bonded water
molecules in PGNs.

Focusing on the 0–2 nm shell in Fig. 6(a), fr̃(r̃i) is the

narrowest distribution with all of the distances within
0.6 nm and the majority within 0.4 nm. This implies that
the PGN’s internal cavities are only wide enough to fit a
few water molecules bonded directly to the PGN chains.
This is corroborated by the absence of the r̃i = 0.56 nm
peak implying that only one layer of water molecules di-
rectly interacts with the PGN in this shell. Although the
inner core of the PGN does contain a significant density
of water (Fig. 3(a)), the dense structure of the PGN does
not leave sufficient room to house large pockets of water.
For the 2–4 nm shell in Fig. 6(b), fr̃(r̃i) exhibits a

similar pattern to that of the 0–2 nm shell in Fig. 6(a).
That is, a majority of the distances are within 0.4 nm,
implying water molecules are interacting directly with
the PGN chains. Again, the high density of the PGN
in this shell hinders the water molecules from creating
significantly sized pockets. However, unlike the 0-2 nm
shell, noticeable distances as large as r̃ = 1.0 nm do occur
in this shell (Fig. 6(b)), indicating the existence of a few
moderately-sized water pockets.
In Fig. 6(c), fr̃(r̃i) appears to be the superposition

of two distributions . For r̃i < 1.0, fr̃(r̃i) is similar to
that of the inner shells (Figs. 6(a-b)), displaying peaks
at r̃i = [0.19 nm, 0.28 nm, 0.56 nm]. For r̃i > 1.0, fr̃(r̃i)
indicates the presence of bulk water molecules in this
shell. This behavior is exhibited more drastically by the
outermost shell in Fig. 6(d).

3. Dynamics

In this section, water molecule dynamics are analyzed
to understand the effect of the PGN on its aqueous envi-
ronment. The mean squared displacement (MSD) of wa-
ter is calculated for molecules inside each of the PGN’s
four radial shells. For every oxygen atom in a water
molecule, the MSD is computed using

⟨x2(t)⟩ = ⟨[xi(t)− xi(0)]
2⟩i, (8)

where xi(t) is the position of oxygen i at time t, and ⟨·⟩i
denotes averaging over the trajectories for each radial
shell. Note that the MSD is only computed while oxygen
i remains in a given radial shell. If the oxygen re-enters a
shell, it is treated as a new particle (i.e., xi(t) → xj(0)).
Figure 7(a) displays ⟨x2(t)⟩ for each of the four radial
shells.
Comparing across curves in Fig. 7(a), both the slope

and the magnitude of ⟨x2(t)⟩ increases as the radial po-
sition is increased. To quantify this behavior, a modified
version of the Stokes-Einstein equation [38–41] is used,

⟨x2(t)⟩ = 2dDtβ . (9)

Here, d = 3 is the dimension of the system, D is the
diffusion coefficient corresponding to the magnitude of
⟨x2(t)⟩, and β is the slope of ⟨x2(t)⟩ on a log-log scale.
For β = 1, the motion is diffusive and Eqn. 9 converts
to the standard Stokes-Einstein equation. For β < 1 and
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FIG. 6. (a–d) Empirical density distribution fr̃(r̃i) of the minimum distance r̃ between oxygen atoms in water to atoms on
the PGN. Each subplot corresponds to one of the four radial regions from the geometrical center of the PGN. (e-f) Schematic
of hydrogen bonds created between water and the PGN.

β > 1, the motion is sub-diffusive and super-diffusive,
respectively. To obtain β and D for each radial shell,
the linear portion of ⟨x2(t)⟩ in Fig. 7(a) (i.e. t < 50 ps)
is fit using linear regression. Note that for t > 50 ps,
the number of remaining water molecules in each shell
decreases dramatically, introducing a selection bias to the
MSD curve.

For the 0–2 nm shell in Fig. 7(a), the slope is obtained
as β = 0.78, indicating that the motion of water is sub-
diffusive in this region. This behavior is attributed to the
highly dense structure of the inner region of the PGN (as
shown in Fig. 3), trapping water molecules and hindering
their motion. For the 2–4 nm shell in Fig. 7(a), the slope
is β = 0.83, implying that the water is also sub-diffusive
in this region. However, due to the lower compactness of
the PGN in this shell (as shown in Fig. 3), the water’s
motion is closer to diffusion than water in the 0–2 nm re-
gion. The sub-diffusive motion exhibited by water inside
the PGN has been observed experimentally by Nickels
et al. [13].

In the 4–6 nm shell, water molecules are moving nearly
diffusively as β = 0.97 (Fig. 7(a)). The PGN has a lower
density in this shell and a significant amount of bulk wa-
ter (as shown in Fig. 3), which allows enough space for
most of the water molecules to move mainly unhindered.
Similarly, the free surface chains in the 6–8 nm shell al-
low the water to move diffusively, exhibiting a slope of
β = 1.00 in Fig. 7(a).

To compare the diffusion coefficients of each of the ra-
dial shells, Eqn. 9 can be re-written as

⟨x2⟩ = 2dDβ(t)t, (10)

where Dβ(t) = Dtβ−1 represents a time-dependent dif-
fusion coefficient. This modification considers that in
a sub-diffusive or a super-diffusive regime, D will have
different units than that of diffusive motion. Therefore,

using the time-dependent diffusion coefficient Dβ(t), a
more careful comparison of the diffusion coefficients can
be conducted. Dβ(t) is extracted from the MSD curves in
Fig. 7(a) and plotted in Fig. 7(b) for each of the four ra-
dial shells. The dashed magenta line in Fig. 7(b) denotes
the diffusion coefficient of TIP3P bulk water computed in
a control simulation to be Dβ = 5.8× 10−9 m2s−1. This
value agrees with results obtained previously by Mark
and Nilsson [42].
Comparing across curves in Fig. 7(b), Dβ(t) increases

with increasing radial shell for all t. Again, the denser
the PGN structure is, the more hindered the water’s mo-
tion is inside the PGN. Since the density of the PGN
increases toward its inner core (as shown in Fig. 3), wa-
ter diffuses the slowest in the innermost cores. Note that
Dβ(t) for the 6–8 nm shell is consistent with the value
obtained for TIP3P bulk water (denoted by the magenta
line), as this radial shell contains only the PGN’s surface
chains. Overall, these results indicate that in addition to
the PGN forming polar interactions with water (as ex-
plored in Sec. III C), the dense dendritic structure of the
PGN plays an essential role in trapping internal water
molecules.

IV. CONCLUSION

In this work, all-atom molecular dynamics was em-
ployed to simulate a phytoglycogen nanoparticle contain-
ing 1,097 glucose monomers in the presence of explicit
water molecules. The nanoparticle was dynamically con-
structed using a protocol that cycles between growing
and relaxing phases. The simulated nanoparticle pro-
vided insights into the dynamics and interactions in a
full-sized phytoglycogen molecule while still maintaining
computational affordability.
First, the radial density profile for the phytoglycogen
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FIG. 7. (a) Mean squared displacement ⟨x2(t)⟩ of water
molecules in each radial shell of the PGN. The dashed grey
lines denote tβ scaling. (b) Diffusion coefficient Dβ of water
extracted from the mean square displacement. The magenta
dashed line denotes Dβ of bulk water in a control simulation.

nanoparticle suggested a dense core with free chains on
the outer surface, similar to the structure proposed by
Simmons et al. [14]. This result challenges other models
in which phytoglycogen’s structure is believed to have a
low-density core, and a dense outer shell [17, 30]. Ad-
ditionally, a contact analysis was conducted to quan-
tify the number and type of interactions throughout
the system. Despite the amphipathic nature of glucose
molecules (i.e., having both hydrophobic and hydrophilic
particles), non-polar interactions in the phytoglycogen

play a dominant role in forming the nanoparticle’s struc-
ture. This notion is demonstrated by the decrease in
polar and energetically unfavourable contacts during the
relaxation process in favor of an increase in non-polar
contacts between the phytoglycogen chains. When in-
dividual glucose monomers are dissolved in water, the
solvent molecules separate them, preventing non-polar
interactions between the glucose units. However, since
the glucose monomers are connected in phytoglycogen
nanoparticles, they make non-polar interactions which
give rise to the compact interior structure of phytoglyco-
gen.

As the phytoglycogen nanoparticle was simulated in
explicit water molecules, this work carefully analyzed its
aqueous environment. That is, the hydration number of
glucose monomers was computed to be 22.54±0.14, which
is consistent with the values experimentally observed by
Nickels et al. [13] and Simmons et al. [14]. In addition,
the complex environment formed by interacting phyto-
glycogen chains was shown to promote the formation of
water cavities throughout the nanoparticle. Through an
approximate calculation of the size of these cavities, it
was shown that reasonably large pockets of water do oc-
cur throughout the phytoglycogen’s structure. The same
calculation provided evidence that the phytoglycogen’s
internal water is strongly bonded and highly ordered, cor-
roborating with experimental results [12].

Finally, it was demonstrated that the dense dendritic
structure of the phytoglycogen nanoparticle impedes the
diffusion of internal water molecules. This water trap-
ping mechanism, along with the high hydration number,
makes phytoglycogen a great candidate for cosmetic ap-
plications, as described by Grossutti et al. [12]. More-
over, this provides evidence that non-polar molecules
such as ligands and peptides could have strong interac-
tions with phytoglycogen nanoparticles through the com-
bination of non-polar contacts and physical trapping in-
side the phytoglycogen chains.
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Chapter 5

Particle Mobility Through the

Slit-well Microfluidic Device

Molecular dynamics (MD) simulations provide a valuable method for simulating

the dynamics of ensembles of biological agents (such as bacterial twitchers in

Chapter 3) and the complex structure of biomolecules (such as phytoglycogen in

Chapter 4). Another area of biophysics studied using MD simulations is the effect

of confinement on biomolecules. For instance, micro- and nanofluidic devices

(MNFDs) are extremely small tools that are used to detect and manipulate

biomolecules [143–147], and are commonly studied using MD simulations [148,

149]. MNFDs are an important biotechnology with applications in many fields

such as biological and medical sciences [150–153].

The slit-well microfluidic device, in particular, can be used to sort polymers

[154–157] or nanoparticles [148, 149] by size. The slit-well has a periodic

geometry that consists of wells separated by shallower regions called slits, and an

electric field is utilized to drive molecules through the device (Fig. 5.1). The

sorting mechanism of the slit-well device and other MNFDs depends non-linearly
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Figure 5.1: A 2-dimensional representation of the slit-well mi-
crofluidic device used to sort nanoparticles by size. (a) Small parti-
cles traverse the device more quickly on average when a weak driving
electric field is applied. (b) Large particles traverse the device more
quickly on average when a strong driving electric field is applied.

on the size and shape of the wells, slits and molecules, as well as the magnitude of

the applied electric field [147–149, 156–158]. Depending on the choice of these

parameters, the slit-well sorts molecular mixtures into increasing or decreasing

order of size (as illustrated in Fig. 5.1). MNFDs such as the slit-well exploit the

complexity of physical phenomena at the single-molecular scale, making them

challenging to design and optimize. Therefore, theoretical and computational

investigations are essential to developing MNFD technologies.

The transport of biomolecules through periodic MNFDs such as the slit-well

is typically characterized by the mobility. The most common definition of

mobility is

µdirect = lim
t→∞

⟨x(t)⟩/t
E∗ , (5.1)

where ⟨x(t)⟩ is the ensemble mean of the center-of-mass position of the
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Figure 5.2: Schematic of the models used to compute the mobility
of nanoparticles in the slit-well device. (a) In the direct mobility
formulation, particles are initialized in the slit (red line) and traverse
through many periods of the device. (b) In the indirect mobility
formulation, particles are initialized in the slit (red line) and are
absorbed after crossing one period of the device (blue line). In both
formulations, the arrow indicates the direction of the applied electric
field E in which particle diffusion can oppose, causing movement into

previous units of the device.

biomolecule at time t, and E∗ is a scalar that characterizes the magnitude of the

applied electric field. This metric, referred to as the direct mobility, is defined as

the mean velocity over long times normalized by the magnitude of the applied

field. With MD simulations, µdirect is computed when ⟨x(t)⟩ becomes large, i.e.,

once the particles have crossed many units of the periodic device (as illustrated in

Fig. 5.2(a)). Therefore, obtaining µdirect over long periodic MNFDs using MD

simulations can be a computationally demanding task. In some cases, however,

the entire periodic geometry does not need to be simulated to measure the

mobility of particles moving through the MNFD.

In "Parallel computing for mobilities in periodic geometries," Magill, Nagel,

and de Haan [3] focus on an analogous mobility metric referred to as the indirect

mobility,

µindirect =
L

E∗⟨τ⟩ . (5.2)

Here, L is the period of the MNFD, and ⟨τ⟩ is the mean first passage time across
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Figure 5.3: Schematic of a single unit of the slit-well device, illus-
trating the electric potential model solved using FEM to obtain the
driving electric field. The solution u satisfies the Laplace equation
in the yellow interior region. Uniform Dirichlet boundary conditions
are imposed on the red and blue segments to model an applied volt-
age, and homogeneous Neumann (insulating) boundary conditions

are applied on the grey boundaries.

one such period (as illustrated in Fig. 5.2(b)). One of the main motivations

behind studying µindirect is its potential computational efficiency in comparison to

obtaining µdirect.

The equivalence of the two mobility formulations in Eqns. 5.1 and 5.2 is

mathematically argued in Magill, Nagel, and de Haan [3]. The focus of this

chapter, however, is to summarize the empirical demonstrations from Magill,

Nagel, and de Haan [3] in which the two mobility definitions are compared when

applied to the slit-well MNFD. Since the slit-well is already a well-studied system

[148, 149, 154–157], the device provides a case study for which to benchmark the

performance of this new mobility metric. The reader is directed to the

manuscript included in App. A for additional details on this work.

Author contributions: I wrote and conducted the molecular dynamics

simulations, and the numerical analyses were completed equally between Martin

Magill and me. Martin Magill was in charge of the theoretical analyses and the

writing of the manuscript. I was primarily in charge of making schematics, as well
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as editing, reviewing and submitting the material for publication. All the

material summarized in this chapter was completed by me.

5.1 Brownian Dynamics Model

The model of nanoparticles traversing the slit-well MNFD used in Magill, Nagel,

and de Haan [3] is the same model analyzed by Cheng et al. [148]. The geometry

of the system is illustrated in Fig. 5.2 with simple reflective boundary conditions

(Sec. 2.1.3) applied on the domain walls (denoted by grey). Nanoparticles are

modelled as hard spheres with diameter a moving in two dimensions according to

Brownian dynamics (Sec. 2.1.1) with an applied electric force. The Brownian

equation is discretized using the Euler-Maruyama scheme [159] to be

x⃗i(tj+1) = x⃗i(tj)− µ0λ∇U(x⃗i(tj))δt+
√
2D∆tRi(tj), (5.3)

where x⃗i(tj) is the position of particle i at time tj and ∆t = 10−3 is the discrete

timestep. Here, the free-solution mobility is set to µ0 = 1 and the free solution

diffusion coefficients scale as D = 1/a in line with Stokes’ law. The applied

electric field E = −∇U is obtained utilizing the finite element method (FEM) to

solve Laplace’s equation,

∇2U = 0, (5.4)

with a unit voltage drop imposed across one period of the device and insulating

boundary conditions imposed on the device’s walls (illustrated in Fig. 5.3). The

scalar λ controls the magnitude of the applied electric field. For the mobility
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calculations, the characteristic field strength is defined as E∗ = λ/L, in light of

the same choice by Cheng et al. [148].

Since the direct mobility computation (Eqn. 5.1) is not sensitive to the

choice of initial particle distribution, a random uniform distribution in y is chosen

across the slit (i.e. the distribution is applied across the red line in Fig. 5.2(a)).

The simulations of N = 1000 particles are conducted until the average horizontal

position of the particles ⟨x⟩ passes 5000 units of the slit-well device. Then, ⟨x⟩

and the total time t are used in Eqn. 5.1 to compute the direct mobility µdirect.

The equivalence of the two mobility definitions in the proof included in

Magill, Nagel, and de Haan [3] (App. A) assumes that the indirect mobility

simulations are initialized according to a stationary distribution. Thus, before the

indirect mobility simulations are performed, the stationary distribution needs to

be obtained. The distribution is approximated by running N = 105 particles

through Nrelax = 10 units of the slit-well device and recording the final y position

distribution. The choice of Nrelax = 10 is sufficient since it was found (via

convergence tests not shown) that very few Nrelax units of the slit-well device are

actually required for particles to converge to the stationary distribution. This

approximate stationary distribution is utilized as the initial distribution to the

indirect mobility simulations (i.e. again, the distribution is applied across the red

line in Fig. 5.2(b)). Finally, N = 107 particles are simulated, where each particle

is stopped once it escapes a single unit of the device for the first time (i.e.

absorbed on the blue line in Fig. 5.2(b)). The time τ it takes each particle to pass

through the device for the first time is used to compute the mean first passage

time ⟨τ⟩, which is subsequently utilized in Eqn. 5.2 to compute the indirect
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mobility µindirect. Both the indirect and direct simulations are repeated for many

choices of the field strength parameter λ and particle size a.

5.2 Empirical Results

5.2.1 Equivalence of Indirect and Direct Mobility

Figure 5.4: Indirect mobility values obtained from (a) the slit-to-
slit model and (d) the well-to-well model, as a function of charac-
teristic field strength E∗ for various particle diameters a. Relative
error of µindirect compared to µdirect for the (b) slit-to-slit model
with Nrelax = 10 stationary distribution, (c) slit-to-slit with uni-
form distribution, (e) well-to-well with uniform distribution, and

(f) well-to-well with Nrelax = 1 stationary distribution.
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The indirect mobility values that are computed from the MFPT of particles

initialized from the stationary distribution posed in the left slit and absorbed in

the right slit of the slit-well MNFD (as illustrated in Fig. 5.2(b)) are plotted in

Fig. 5.4(a). Here, µindirect closely resembles the µdirect data computed by Cheng

et al. [148], and resolves the size separation properties of the slit-well MNFD.

That is, at low E∗, the mobility decreases with increasing particle size a, whereas

at high E∗, the mobility increases with a.

The direct mobility values for particles traversing the slit-well MNFD (as

illustrated in Fig. 5.2(a)) were also computed but are not plotted as they are

visually indistinguishable from µindirect. In order to quantify the exact agreement

between µindirect and µdirect on the slit-well problem, the relative error

µindirect − µdirect

µdirect
(5.5)

is calculated and plotted in Fig. 5.4(b). For all choices of E∗ and a, the relative

errors are below 0.3% implying excellent agreement between µindirect and µdirect.

Furthermore, all the points lie within two standard errors of 0, indicating no

statistical significance between the two mobility formulations.

In addition to the mathematical and empirical demonstrations of the

equivalence of µindirect and µdirect, Magill, Nagel, and de Haan [3] provides a

comparison of the computational costs of the two mobility formulations when

both calculations are parallelized on a graphics processing unit (GPU). Runtime

plots as a function of the mobility accuracy (shown in Fig. 8 of Magill, Nagel,

and de Haan [3] attached in App. A) indicate that µindirect is found to consistently

converge faster than the µdirect calculation. In particular, with modest GPU
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parallelization, µindirect converges roughly 2-6 times faster than µdirect when

obtaining mobility measurements to an error of approximately 0.5%.

Furthermore, with a significant degree of GPU parallelization, the advantage of

the indirect mobility formulation becomes even more drastic, with computations

running 10-20 times faster when computing mobilities with errors on the order of

0.1%. These results demonstrate that the use of the indirect mobility may indeed

be a significantly faster alternative to the direct mobility under practical

conditions, considering that target errors of 0.1-1% are typically appropriate for

computational studies of periodic MNFDs.

5.2.2 Effect of Stationary Distribution

In the mathematical proof presented in Magill, Nagel, and de Haan [3] (App. A),

the equivalence of the two mobility formulations is contingent on the use of a

proper stationary distribution to initialize particles in the µindirect computation.

Unfortunately, this distribution is generally not known ahead of time and needs

to be obtained or approximated before the µindirect simulations. In Chapter 5.2.1,

the stationary distributions were sufficiently approximated by relaxing particles

through several units of the slit-well MNFD and recording their final y positions

at the last slit. Because these simulations are essentially identical to the

simulations for measuring the indirect and direct mobility, the total

computational cost of obtaining µindirect is increased. Luckily, since only N = 105

particles (instead of the full N = 107) were necessary for this computation,

obtaining the stationary distributions contributed a nearly negligible fraction of

the total runtime of the indirect mobility simulations.
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This may not be the case for other MNFDs in general, however, since the

extent of the error induced by the acquisition of the approximate stationary

distribution will depend on the exact system being studied. For instance, if the

stationary distribution is more complex, or the MFPT through the MNFD

strongly depends on the initial distribution, additional particles and/or additional

relaxation time may be required to approximate the stationary distributions

sufficiently. Considering that one of the main motivations behind using the

indirect mobility formulation is its computational efficiency over the direct

mobility formulation, reliably obtaining the stationary distribution is an essential

caveat in using µindirect.

Nevertheless, for the slit-well MNFD currently being studied, the stationary

distributions are nearly uniform for almost all choices of the characteristic field

strength E∗ and particle size a (shown in Fig. 3 of Magill, Nagel, and de Haan [3]

attached in App. A). Therefore, to further relieve the potential computational

burden of obtaining the stationary distributions, the indirect mobility simulations

were repeated using a random uniform initialization to approximate the

stationary distribution crudely. Again, the relative errors of the µindirect values

with respect to the µdirect values are computed using Eqn. 5.5 and plotted in

Fig. 5.4(c). For all choices of the characteristic field strength E∗ and particle size

a in Fig. 5.4(c), the relative errors are again below 0.3% as previously seen in

Fig. 5.4(b). This behaviour indicates excellent agreement between the two

mobility formulations and that the µindirect computation on the slit-well MNFD

does not appear to be extremely sensitive to minor inconsistencies in the

stationary distribution.



Chapter 5. Particle Mobility Through the Slit-well Microfluidic Device 112

Figure 5.5: Schematic of the well-to-well slit-well model for indi-
rect mobility measurements. Particles are initialized on the red line
and the mean first passage time is computed to the blue line. The

arrow indicates the direction of the applied electric field E.

The fact that the stationary distributions of the slit-well MNFD are nearly

uniform can likely be attributed to the long and narrow slits of the device. It is

plausible that diffusion relaxes the y coordinates of the particles more quickly

than the particles’ transition in the x direction, resulting in a nearly uniform

distribution across the vertical extent of the slit. This behaviour could also occur

in other MNFDs that feature long channels acting as bottlenecks but would not

be a feature common to all MNFDs.

Even for the slit-well MNFD, if the particles were instead initialized in the

middle of the well and absorbed in the middle of the next unit’s well (as

illustrated in Fig. 5.5), this would provide an example of a system where a

uniform distribution would be completely different from the actual stationary

distribution. Thus, the indirect mobility simulations were repeated for the

previously described well-to-well slit-well model and the corresponding µindirect

values are plotted in Fig. 5.4(d). It is clear from Fig. 5.4(d) that µindirect

drastically differs from that of Fig. 5.4(a), particularly at large E∗ values. The

discrepancies in the indirect mobility are again quantified by computing the

relative error of µindirect with respect to the µdirect values using Eqn. 5.5. The

relative errors plotted in Fig. 5.4(e) indicate that as E∗ increases, the relative
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error increases to roughly 50%. Therefore, this well-to-well slit-well model

provides an example of an MNFD in which the mobility cannot be correctly

computed using the indirect mobility formulation initialized crudely with a

uniform distribution.

To further test the sensitivity of the indirect mobility on the well-to-well

system, the approximate stationary distributions were computed using N = 105

particles only run through Nrelax = 1 units of the device (as opposed to

Nrelax = 10 previously used for the slit-to-slit system). The µindirect simulations

were repeated with this approximate stationary distribution and their

corresponding relative errors with respect to µdirect are plotted in Fig. 5.4(f).

Here, the relative errors are again less than 0.3% as previously seen in

Figs. 5.4(b,c). This behaviour indicates that even when a uniform distribution

cannot be used to approximate the stationary distribution, a naive calculation of

the stationary distribution is sufficient to achieve accurate indirect mobility

values.

5.3 Additional Data - Truncated Backflow

In Chapter 5.2, empirical results from Magill, Nagel, and de Haan [3] (App. A) are

summarized, showing that particles do not need to be simulated through many

units of a periodic MNFD in order to obtain particle mobility measurements. In

fact, the MFPT through a single unit of a periodic MNFD can be computed

instead and subsequently used in the indirect mobility calculation. However, even

with the indirect mobility formulation the entire periodic domain essentially still

needs to be utilized as particles can flow backwards against the applied electric
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field into previous units of the device. Thus, intending to obtain approximate

mobility values of a full periodic MNFD by only using a finite domain, this

section explores the accuracy of the indirect mobility calculation if particle

backflow into previous units of the slit-well device is reduced or removed entirely.

 

 

 

...

 

 

Figure 5.6: Schematic of the slit-well model with truncated back-
flow for indirect mobility measurements. Particle backflow is re-
duced to n backflow units, with a reflective boundary applied in the
left slit of the final unit. Particles are initialized on the red line, and
the mean first passage time is computed to the blue line. The arrow

indicates the direction of the applied electric field E.

The indirect mobilities are computed using the same MD simulation protocol

conducted in Chapters 5.2.1 and 5.2.2, except with particle backflow truncated to

n number of backflow units as illustrated in Fig. 5.6. Again, the relative errors of

the µindirect values with respect to the true µdirect values are computed using

Eqn. 5.5 and plotted in Fig. 5.7. With zero backflow units (Fig. 5.7(a)), the

relative errors are on the order of 1% or below only for large characteristic field

strengths E∗. Even for larger and less diffusive particle sizes in Fig. 5.7(a), the

relative error is still below 1% error at modest E∗ values. For low field strengths,

however, µindirect is entirely inaccurate, reaching relative errors on the order of

100%.

As the number of backflow units increases in Fig. 5.7, the relative errors

generally decrease. Even for only a single backflow unit in Fig. 5.7(b), most of the
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Figure 5.7: Relative error of indirect mobility values compared to
direct mobility values as a function of characteristic field strength
E∗ for various particle diameters a. Periodic slit-well MNFD with
(a) 0 backflow (BF) units, (b) 1 BF unit, (c) 2 BF units, and (d)

3 BF units.

relative errors are on the order of 1% or below, with higher relative errors mainly

situated near quite low values of E∗ and small a. This trend continues to progress

as more backflow units are considered. For three backflow units in Fig. 5.7(d),

only the relative errors corresponding to the lowest choice of E∗ exceed 1%, with

a few exceptions for small particle sizes a at slightly higher values of E∗.

The relative errors can be displayed more effectively when plotted as a

function of the Péclet number Pe = E∗a (Fig. 5.8). It is clear from Fig. 5.8(b)

that even with only one backflow unit, the indirect mobilities are well below 1%

relative error and only exceed this at very small choices of the Péclet number (i.e.

Pe < 0.2). In general, most MNFDs are operated at modest to high field
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Figure 5.8: Relative error of indirect mobility values compared to
direct mobility values as a function of the Péclet number Pe = E∗a.
Periodic slit-well MNFD with (a) 0 backflow (BF) units, (b) 1 BF

unit, (c) 2 BF units, and (d) 3 BF units.

strengths and not operated in the diffusion-dominated regime where Pe << 1.

Therefore, Fig. 5.8 indicates that sufficient approximations of particle mobilities

in periodic MNFDs can be obtained by drastically reducing the amount of

particle backflow.

In summary, this chapter presents the indirect mobility formulation, which

provides an alternative method for obtaining particle mobilities in long periodic

MNFDs by only computing the mean first passage time through one unit of the

entire geometry. When initializing particles in the slit (bottleneck) of the slit-well

MNFD, the indirect mobility calculations appear insensitive to naive

approximations of the stationary distribution, such as a uniform distribution.

Conversely, when particles are initialized in the well of the slit-well MNFD, using
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a uniform distribution leads to drastically incorrect indirect mobility values.

Luckily, running a subset of particles through only 1 unit of the MNFD provides

a suitable method for obtaining an approximation to the stationary distribution

that does yield accurate indirect mobility measurements. In addition to the

equivalency of both mobilities, the indirect mobility is found to be more

computationally advantageous in certain scenarios, specifically when parallelizing

across a GPU. Finally, the indirect mobility can even be approximated by

truncating the particle backflow into only a finite number of previous units of the

MNFD. This is a valuable result in light of the ability to obtain mean first passage

times using a partial differential equation (PDE) system. Since the entire periodic

domain can be truncated to a finite number of units of the full periodic geometry,

indirect mobility values can easily be obtained from a simple PDE system defined

on a finite domain. This notion will be a topic of exploration in Chapter 7.
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Chapter 6

Neural Network Solutions of the

Electric Field in the Slit-well

6.1 Overview

In Chapter 5, molecular dynamics (MD) simulations are utilized to study

nanoparticle mobility in the slit-well microfluidic device (illustrated in Fig. 5.1).

The complicated sorting dynamics of micro- and nanofluidic devices (MNFDs)

generally depend on many factors, such as the applied electric field. The electric

field used to drive molecular motion in Chapter 5 was generated by numerically

solving Laplace’s equation in the slit-well domain using the finite element method

(FEM). Alternatively, the electric field could have been produced using a new

deep learning technique called the neural network method (NNM).

As highlighted in Chapter 1.2.2, the NNM provides potential benefits when

used to obtain solutions to partial differential equations (PDEs). For instance, a

continuously differentiable electric field generated by the NNM could be directly

imported into MD software, eliminating the need to discretize the field before its
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Figure 6.1: Schematic of a single subunit of the slit-well device
with rounded re-entrant corners, illustrating the electric potential
model solved using the NNM. The solution u satisfies the Laplace
equation in the yellow interior region. Uniform Dirichlet boundary
conditions are imposed on the red and blue segments to model an
applied voltage, and homogeneous Neumann (insulating) boundary

conditions are applied on the grey boundaries.

use. Since the NNM is an emerging tool with a lesser developed theoretical

grounding, confidence in the method still relies on empirical demonstrations.

Moreover, the NNM literature primarily focuses on rectangular or circular

domains [63, 66, 67, 69–71, 73, 74] and toy models [63, 64, 66, 67, 69–74, 85], and

has rarely been applied to complex geometries that commonly arise in biophysics.

In "Neural network solutions to differential equations in nonconvex domains:

Solving the electric field in the slit-well microfluidic device," Magill, Nagel, and

de Haan [4] leverage the NNM to numerically solve the electric potential and

electric field in the slit-well MNFD. Similar to Chapter 5, the two-dimensional

Laplace equation for the electric potential u is utilized as the electrostatic model

of the electric field E. The problem geometry is shown in Fig. 6.1 where the

domain is meant to represent a single periodic sub-unit of the slit-well device

(fully illustrated in Fig. 5.1). Uniform Dirichlet conditions (u = ±1) are imposed

on the slits of the device (coloured segments in Fig. 6.1) to model a voltage drop

across the slit-well domain. In addition, insulating conditions (n̂ · ∇u = 0) are
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imposed on the grey boundaries of the device, and Laplace’s equation (∇2u = 0)

is defined on the yellow interior of the slit-well (Fig. 6.1).

By applying the NNM methodology described in Chapter 2.2.6 to the PDE

model illustrated in Fig. 6.1, the electric potential u is approximated by a neural

network ũ and the electric field E is approximated using the relation Ẽ = −∇ũ.

Both ũ and Ẽ were obtained repeatedly for many combinations of neural network

width w and depth d, each for four random initializations. A representative NNM

solution is shown in Fig. 6.2(a) with ũ denoted by the coloured contours and Ẽ

denoted by the black lines.

(a) (c)(b)

Figure 6.2: (a) Example NNM solution using 3 hidden layers of
width 50. The coloured contours denote the electric potential ũ and
the black lines denote the electric field Ẽ. The relative error of (b)
the electric potential, δu[ũ], and (c) the electric field, δE[Ẽ], plotted
against testing loss. Marker color indicates depth of the network,

and marker area indicates its width.

To characterize the performance of the NNM on this problem, relative error

metrics are defined on both the approximate electric potential ũ and field Ẽ.

Specifically, the error in ũ is computed with

δu[ũ] =

√〈
(ũ− u)2

〉
Ω

⟨u2⟩Ω
, (6.1)
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where ⟨·⟩Ω denotes the mean over the domain Ω, and u is the ground-truth

electric potential obtained using a standard FEM implementation. Since the

electric potential u does not have a physically meaningful zero, an unambiguous

point-wise relative error cannot be defined for ũ. Instead, the error metric δu[ũ]

represents the magnitude of the error in ũ relative to the magnitude of the actual

solution u, when both are measured in the L2 norm for functions. Conversely, the

electric field E does have a meaningful point-wise relative error,

δE[Ẽ] =

〈
∥Ẽ− E∥2
∥E∥2

〉

Ω

, (6.2)

which is used to characterize the performance of the NNM’s electric field solution

Ẽ against the ground-truth FEM solution E. Figs. 6.2(b, c) show δu[ũ] and δE[Ẽ]

for all neural networks in the dataset, plotted against each network’s testing loss.

The first concept that Figs. 6.2(b, c) indicate is that low testing losses

strongly correlate with low values of both δu[ũ] and δE[Ẽ]. Although this seems

obvious, it empirically confirms the primary motivation underlying the NNM that

minimizing the loss functional will drive the neural network to approximate the

correct solution to a PDE. Moreover, the testing loss may provide a practical

proxy for estimating a solution’s accuracy.

The second concept that can be surmised from Figs. 6.2(b, c) is that the data

clearly partitions into two clusters. In the upper-right cluster, the neural networks

achieve relative errors larger than 1% in both δu[ũ] and δE[Ẽ]. This cluster

contains all of the shallow architectures (i.e. one hidden layer) and the narrowest

of the deep architectures suggesting that the neural network needs to consist of at

least two hidden layers with some minimum width to achieve good performance
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on this problem. Conversely, in the lower-left cluster of Figs. 6.2(b, c), the neural

networks achieve relative errors below 1% in both δu[ũ] and δE[Ẽ]. Since this

cluster contains the majority of the dataset and consists of various architecture

choices, this suggests that the NNM can consistently produce accurate solutions

to this problem without the need for careful architecture tuning.

Figure 6.3: (a) Mobility µ measurements made using 4 different
electric field solutions implemented in BD simulations. (b) Relative
error in the mobility computed against the mobility obtained using
the FEM generated electric field. Black line shows the relative errors

between two sets of FEM-based measurements.

Next, in Magill, Nagel, and de Haan [4], the neural networks are evaluated

on their ability to reproduce the physical characteristics of the actual solution. In
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particular, the NNM solutions are assessed on their capability to satisfy spatial

symmetries and conservation of electric flux. Regarding symmetry, the results in

Magill, Nagel, and de Haan [4] indicate that the NNM solutions deviate from the

symmetries of the actual solution by an amount comparable to their error values.

Regarding the conservation of flux, the results in Magill, Nagel, and de Haan [4]

indicate that the NNM can reliably produce solutions that conserve flux to an

acceptable level of accuracy. In particular, some of the NNM solutions roughly

conserve global flux as well as the reference FEM solution. Even relatively

mediocre NNM solutions computed using a shallow neural network conserve flux

better than the FEM solution over sufficiently small length scales. Therefore, the

NNM solutions appear to approximately satisfy physical invariants without the

need to enforce them during training explicitly.

Up to this point, the NNM has consistently produced reliable and accurate

solutions to the electric potential and field in the slit-well MNFD. However, an

acceptable error value is ambiguous as it depends on the intended application of

the NNM solution. Accordingly, Magill, Nagel, and de Haan [4] concludes by

assessing the performance of the NNM-generated electric fields when they are

used to drive nanoparticles in MD simulations of the slit-well.

The MD simulations that are used here are similar to those investigated by

Cheng et al. [148] and Wang, de Haan, and Slater [149] and are almost identical

to those conducted in Chapter 5. The positions of N = 100, 000 particles in the

slit-well domain are evolved according to Brownian dynamics (Chapter 2.1.1),

where the timestep was set to ∆t = 10−4, the diffusion coefficient to D = 1, the

friction coefficient to γ = 1, and the field strength V0 (denoted in Chapter 5 as λ)
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was varied from 1 to 10. Periodic boundary conditions (Chapter 2.1.3) are

applied across the left and right slits of the periodic slit-well sub-unit illustrated

in Fig. 6.1, and reflective boundaries (Chapter 2.1.3) are applied on the grey

boundaries of the device. The particle mobility is computed using the direct

relation studied in Chapter 5,

µ =
⟨vx⟩
V0

(6.3)

=
⟨x⟩/tmax

V0

, (6.4)

where ⟨vx⟩ is the average particle velocity computed by dividing the mean

horizontal displacement of the particles ⟨x⟩ by the number of timesteps

tmax = 106. Finally, the statistical error on the mobility measurement is estimated

as s = σvx/V0√
N

, where σvx is the standard deviation of the particle velocities.

The mobility measurements µ are plotted in Fig. 6.3(a) as a function of field

strength V0 for BD simulations conducted with three NNM electric fields of

varying capacity and with the reference FEM electric field. The two black lines in

Fig. 6.3(a) correspond to simulations using the FEM field that were conducted

twice with different random seeds to discern whether errors in the NNM

measurements are introduced by the electric field or simply from statistical

fluctuations. The µ measurements in Fig. 6.3(a) made using networks of

architectures (d, w) = (2, 25) and (4, 150) are visually similar to those made using

the FEM field. However, the measurements using the (1, 200) architecture are

easily distinguished from the FEM measurements.
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To quantify the accuracy of the mobility measurements made with the NNM,

a relative error is defined,

µ̃− µ

µ
, (6.5)

where µ̃ and µ are the mobility measurements made using the NNM and FEM

methodologies, respectively. These relative errors are plotted in Fig. 6.3(b) with

the black line corresponding to the relative error between the two sets of

FEM-based measurements. For all V0, the error of the (1, 200) network in

Fig. 6.3(b) is notably more prominent than that of the other two NNM

architectures. Despite the (1, 200) network underestimating the mobility

measurements, the solution still produces errors within 5% of the true mobility.

This behaviour suggests that moderate inaccuracies in the driving electric field do

not cause significant errors in the current particle simulations. In contrast to the

(1, 200) network, the relative errors of both the (2, 25) and (4, 150) architectures

are comparable to the relative error between the two sets of FEM-based

measurements. In particular, these relative errors are below 1% for all field

strength values V0. Therefore, it is clear that the best NNM solutions utilized in

the current work are sufficiently accurate for particle simulation applications.

The work in Magill, Nagel, and de Haan [4] shows that the NNM can

successfully solve a PDE posed on a non-trivial geometry. This result is

important as many systems in biophysics like nanochannels or microfluidic

devices are not posed on simple geometries. Moreover, as the NNM literature

primarily focuses on toy models applied to simple domains, this research serves as

a real-world system that is successfully solved using the NNM. Differential
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equations defined on complicated geometries arise throughout biophysics and

other fields more broadly. Thus the results in Magill, Nagel, and de Haan [4]

demonstrate the feasibility of using the NNM as a computational tool to

approach this class of problems.

6.2 Manuscript

Author contributions: Martin Magill was primarily in charge of the neural

network method code with me assisting. Martin Magill conducted the

ground-truth finite element solutions. Data analysis was completed

collaboratively between Martin Magill and me. I was in charge of writing and

conducting the molecular dynamics simulations. Martin Magill and I wrote the

manuscript with assistance from Hendrick W. de Haan.
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The neural network method of solving differential equations is used to approximate the electric potential and
corresponding electric field in the slit-well microfluidic device. The device’s geometry is nonconvex, making
this a challenging problem to solve using the neural network method. To validate the method, the neural network
solutions are compared to a reference solution obtained using the finite-element method. Additional metrics are
presented that measure how well the neural networks recover important physical invariants that are not explicitly
enforced during training: spatial symmetries and conservation of electric flux. Finally, as an application-specific
test of validity, neural network electric fields are incorporated into particle simulations. Conveniently, the same
loss functional used to train the neural networks also seems to provide a reliable estimator of the networks’ true
errors, as measured by any of the metrics considered here. In all metrics, deep neural networks significantly
outperform shallow neural networks, even when normalized by computational cost. Altogether, the results
suggest that the neural network method can reliably produce solutions of acceptable accuracy for use in
subsequent physical computations, such as particle simulations.
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I. INTRODUCTION

Many important phenomena can be modeled effectively
by partial differential equations (PDEs) with appropriate
boundary conditions (BCs). When PDE problems are posed
in domains with complicated geometries, they are often too
difficult to be solved analytically, and must instead be ap-
proximated numerically. The standard tools for numerically
solving PDE problems in complex geometries are mesh-based
approaches, such as the finite-element method (FEM) [1]. In
these methods, the problem domain is decomposed into a
mesh of smaller subdomains, and the solution is approximated
by a linear combination of simple, local functions.

In this work, we will explore a less common numerical
solution method for PDE problems, which we will refer to
as the neural network method (NNM) [2]. In the NNM, the
solution is directly approximated by a neural network (e.g.,
Fig. 1), rather than by a linear combination of local basis
functions. In a process called training, the network parameters
are varied until it approximately satisfies the PDE and BCs.

The purpose of this study is to investigate the effectiveness
of the NNM on a problem exhibiting a complicated geometry.
Specifically, the NNM is used to solve a model of the electric
field in the slit-well microfluidic device, which is an applica-
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tion of active research interest [3–6]. The problem domain is
nonconvex, and the electric field is discontinuous in the limit
of sharp corners. Despite the growing popularity of the NNM,
relatively few authors have validated it on problems with such
ill-behaved solutions. The rest of this Introduction provides
an overview of the NNM, including its previous use to study
systems similar to the slit-well, as well as a review of the
slit-well device itself.

A. Neural network method

The neural network method of solving differential equa-
tions was first published by Dissanayake and Phan-Thien [2],
and belongs to the broader family of techniques known as
methods of weighted residuals [2,7]. Around the same time,
Meade Jr. and Fernandez [8] separately demonstrated a variant
of the NNM that did not use iterative training, and instead
solved a system of linear equations for the network weights;
it was, however, designed for solving only ordinary differen-
tial equations. Later, van Milligen et al. [9] independently
proposed a method quite similar to the original approach
by Dissanayake and Phan-Thien [2], to solve second-order
elliptic PDEs describing plasmas in tokamaks. The NNM was
proposed independently again by Lagaris et al. [10]. Their
modified methodology embedded the neural network within
an ansatz that was manually constructed to exactly satisfy
the boundary conditions; however, this form is challenging to
construct when the boundary conditions or the domain geom-
etry are complicated. Many authors have since contributed to
the development of the NNM, and Yadav et al. [11] published
a book reviewing much of the early work on the NNM.

2643-1564/2020/2(3)/033110(14) 033110-1 Published by the American Physical Society
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FIG. 1. Schematic of a fully connected feed-forward neural net-
work of depth d and width w mapping coordinates (x, y) to an output
ũ(x, y). Each node computes a weighted sum of its incoming arrows,
and the result (plus a bias) is passed to an activation function. In the
NNM, the parameters are optimized to make ũ(x, y) approximately
satisfy a target PDE and its BCs.

The NNM has various potential appeals over more com-
mon methods like FEM. For instance, the NNM is mesh
free, and generally produces uniformly accurate solutions
throughout the PDE domain [11,12]. Whereas earlier imple-
mentations used shallow neural networks (i.e., those having
only one hidden layer), many authors have recently noted
the significant benefits of using deep architectures [13–26].
In particular, it appears that the NNM with deep neural net-
works performs remarkably well in high-dimensional prob-
lems [13–15,17–19,21–27]. Such high-dimensional PDEs are
typically intractable using FEM and most traditional meth-
ods. These suffer from the so-called curse of dimensionality,
in which computational cost grows exponentially with the
number of dimensions. In addition to the above empirical
demonstrations of the NNM, several theorems have been
published stating that the computational cost of the NNM
grows at most polynomially in the number of dimensions for
various classes of PDEs [28–30].

Nonetheless, the theoretical grounding of the NNM is less
thoroughly developed than those of other techniques. There
are as of yet few guarantees regarding, e.g., under what
conditions the NNM will converge to the true solution of
a given PDE, at what rate, and to what precision. As such,
confidence in the method still relies heavily on empirical
demonstrations. However, available empirical demonstrations
focus primarily on problems with relatively well-behaved
solutions [15,16,18,19,21–26,31]. Indeed, Michoski et al. [32]
noted this, and conducted an investigation of the NNM applied
to irregular problems exhibiting shocks. This work is analo-
gous in this regard, but focuses instead on the nonconvexity
of the slit-well domain as the source of irregularity.

B. Slit-well microfluidic device

Microfluidic and nanofluidic devices (MNFDs) are small,
synthetically fabricated systems with applications in molec-
ular detection and manipulation [5,6,33–35]. One important
use of MNFDs is to sort mixtures of molecules, including
free-draining molecules such as DNA that cannot normally be
separated electrophoretically in free solution [6]. For instance,

FIG. 2. A schematic of particles being electrically driven through
the slit-well device.

the slit-well device proposed by Han and Craighead [3] can
be used for sorting polymers (such as DNA [3,4,36,37]) or
nanoparticles [38,39]. The device’s periodic geometry, illus-
trated schematically in Fig. 2, consists of parallel channels
(called wells) separated by shallower regions (called slits). An
electric field is applied to drive molecules through the device.

MNFDs such as the slit-well exploit the complexity of
physical phenomena at the single-molecular scale (often be-
low the optical resolution limit) to produce useful and some-
times surprising behaviors. This, however, makes them chal-
lenging to design and optimize, and renders theoretical and
computational investigations important to the development of
MNFD technologies. For example, the sorting mechanism in
the slit-well device depends nonlinearly on the magnitude of
the applied electric field as well as the size and shape of the
wells, the slits, and the molecules themselves [6,36–40]. For
some choices of these parameters, the slit-well sorts molecular
mixtures into increasing order of size; for others, however,
it sorts them into decreasing order. A rich literature exists
exploring these processes, reviewed in part by Dorfman [6]
and Langecker et al. [40].

C. NNM with complicated geometries

There are relatively few demonstrations of the NNM on
problems with complicated domain geometries. Specifically,
the NNM has mostly been applied to problems posed in rect-
angular or circular domains [15,18,19,21–23,25,26]. Of note,
Wei et al. [27] used the NNM to solve PDEs in nanobiophysics
that also arise in MNFDs (i.e., Fokker-Planck for particles and
polymers). However, their work did not consider these prob-
lems in MNFD geometries. Even among the demonstrations
of the NNM in more complicated (e.g., nonconvex) domain
geometries, most problems feature boundary conditions that
produce relatively smooth, well-behaved solutions [16,24,31].
Sirignano and Spiliopoulos [17] solved a free-boundary prob-
lem based on a financial system, but it is not clear whether
that PDE exhibits the specific kinds of challenging features
considered in this work.

An exception to the above is given by E et al. [14], who
applied a variant of the NNM to a Poisson equation in a
square domain with a reentrant needlelike boundary. This
problem exhibits the same singular behavior as the slit-well
problem with sharp corners (see Sec. II A). Their Deep Ritz
training protocol was based on a variational formulation of
Poisson’s equation. However, variational formulations cannot
be obtained for all PDEs [41]. For this reason, we have
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opted to study the more general NNM algorithm originally
presented by Dissanayake and Phan-Thien [2].

When Anitescu et al. [42] revisited this needle problem
using the original method of Dissanayake and Phan-Thien [2],
they reported poorer convergence than obtained by E et al.
[14] with the Deep Ritz method. A similar observation was
made during this work: reentrant corners significantly impair
the convergence of the standard NNM (Sec. II A). In contrast
to this work, the error analyses reported by E et al. [14] and
Anitescu et al. [42] did not consider the physical realism of
the NNM solutions (Sec. I D) nor the accuracy of the NNM
solutions’ gradients. These characteristics of the NNM are
important for use in various applications, including studies of
MNFDs, and are investigated directly in this work.

D. Physical realism of NNM solutions

Various modifications of the NNM have been proposed
to ensure solutions exactly satisfy problem-specific invari-
ants that are known a priori, such as boundary conditions
[12,16,31], non-negativity [43], Hamiltonian dynamics [44],
or special invariants of the Schrödinger equation [45]. How-
ever, manually creating formulations of the NNM that explic-
itly satisfy specific invariants can be difficult. Furthermore,
this approach cannot account for invariants which may be
unknown ahead of time. It is natural to question how well the
NNM approximates invariant quantities when these are not
explicitly enforced.

In fact, although certain numerical methods can be devised
specifically to satisfy some conservation laws [e.g., finite
volume methods conserve flux [46], symplectic ordinary dif-
ferential equation (ODE) integrators conserve energy [47]),
most numerical methods (including standard FEM formula-
tions) do not satisfy physical invariants exactly. For instance,
Zhang et al. [48] discussed what modifications of the FEM
are necessary to render it flux conserving. As part of this
work, we will investigate how well the NNM satisfies physical
invariants of the slit-well problem in the absence of any
problem-specific customization.

II. METHODOLOGY

A. Problem statement

We use the simplest electrostatic model of the electric
field E in the slit-well, namely, the two-dimensional Laplace
equation for the electric potential u. Figure 3 illustrates the
geometry of our model over one periodic subunit of the
slit-well device. Uniform Dirichlet boundary conditions were
imposed on the colored segments (specifically, u = ±1 on the
right and left, respectively) to model an applied voltage across
the system. The gray boundaries correspond to homogeneous
Neumann (i.e., insulating) boundary conditions. Throughout
the interior of the domain (i.e., the yellow area in Fig. 3), the
potential was modeled by Laplace’s equation.

In contrast with other authors, we have rounded the reen-
trant corners at the interface of the slits and wells. It can
be shown that near sharp (i.e., nondifferentiable) reentrant
corners, solutions u to Laplace’s equation are not continuously
differentiable [49–51]. That is, sharp reentrant corners cause
singularities in the electric field E. Because the magnitude of

FIG. 3. A cross-sectional view of the slit-well device illustrating
our PDE model of the electric potential in one periodic subunit of
the device. The reentrant corners follow circular arcs, and the num-
bers indicate the lengths of each dotted line. The solution satisfies
Laplace’s equation in the yellow region, Dirichlet conditions on the
red and blue boundaries, and homogeneous Neumann conditions on
the gray boundaries.

E near the corners diverges as the curvature goes to zero, the
slit-well electric field is ill conditioned, in the sense that small
changes in the curvature of the corners produce large changes
in E.

Although such ill conditioning hinders the performance
of most numerical methods, including FEM [49–51], they
present a particular challenge for the NNM. The fully con-
nected feed-forward neural networks typically used for the
NNM are infinitely differentiable functions. However, the true
solution to the slit-well problem with sharp corners exhibits
a discontinuous electric field, so that significant errors seem
likely near the corners. Furthermore, because the neural net-
work is a global approximation method, local errors near the
corners can affect performance throughout the domain.

In practice, the training methodology we present here
(Sec. II B), when applied to the problem with sharp corners,
failed to converge to even a reasonable approximation of the
true solution. Even in preliminary tests with rounded corners,
the convergence rate of the NNM was observed to deteriorate
as the curvature of the corners was reduced. Therefore, for
this work, an intermediate curvature (Fig. 3) was selected to
produce a challenging but attainable benchmark for the NNM.

B. NNM implementation

In this section, we describe our implementation of the
NNM. It is similar to those of Dissanayake and Phan-Thien
[2], van Milligen et al. [9], Berg and Nyström [16], Sirignano
and Spiliopoulos [17], Magill et al. [20], and Wei et al.
[27], among others. The true solution u(x) to the PDE was
directly approximated by a neural network ũ(x). This was
accomplished by training the neural network to minimize the
loss functional

L[ũ] =
∫

�

(∇2ũ)2dA +
∫

∂�

(B[ũ])2ds. (1)

033110-3



MAGILL, NAGEL, AND DE HAAN PHYSICAL REVIEW RESEARCH 2, 033110 (2020)

Here, ∇2u = 0 is the PDE required to hold in the interior of
the domain � ⊂ R2, and B is a differential operator describing
the boundary conditions Bu = 0 on the boundary ∂� of the
domain (described in Sec. II A and illustrated in Fig. 3). Thus,
L[ũ] quantifies the extent to which the neural network fails to
satisfy the PDE and its boundary conditions.

The parameters of the network were updated iteratively
using the Adam optimizer, a modified gradient descent al-
gorithm [52]. The integrals in L[ũ] were approximated via
the Monte Carlo method, as described in more detail below.
The approximate electric field Ẽ and other required deriva-
tives were obtained exactly via automatic differentiation. The
weights of the network were initialized by the Glorot method
[53]. Computations were done using TENSORFLOW 1.13, and
all hyperparameters not discussed here were set to their de-
fault values [54].

The Monte Carlo samples xi ∈ � used to estimate the first
term of L[ũ] were selected from 100 000 points uniformly
distributed in the bounding rectangle [−Lx, Lx] × [−Ly, Ly],
by rejecting those lying outside the domain. Those used to
estimate the second term were generated by directly sampling
the boundary with a linear density of 40 points per unit
length. Altogether, this yielded an expected batch size of
roughly 62 000. To reduce the overhead of sampling training
points, batches were reused for 1000 parameter updates before
resampling.

The testing loss was computed on a set of points sam-
pled once at the beginning of training, generated using the
same procedure as the training points. The testing loss was
computed and recorded every 100 parameter updates. Early
stopping was used to terminate training when the testing
loss failed to improve after 100 consecutive tests. The final
network was taken from the epoch at which the testing loss
was smallest. This training procedure was conceived to ensure
that networks converged to very stable local minima, in order
to study the behavior of the NNM in the limit of long training
time.

The neural networks considered in this study were all
fully connected feed-forward networks with tanh activation
functions (Fig. 1), consisting of d hidden layers of equal
width w. Specifically, the networks mapped an input vector
x, corresponding to a point in the problem domain, to ũ given
by

ũ(x) = fd+1 ◦ fd ◦ · · · ◦ f1(x), (2)

where

f1(x) = tanh (W1x + b1), (3)

fi(x) = tanh
[
Wi fi−1(x) + bi

]
, i = 2 . . . d (4)

fd+1(x) = Wd+1 fd (x) + bd+1. (5)

Here, W1 ∈ Rw×2, Wi ∈ Rw×w for i = 2 . . . d , and Wd+1 ∈
R1×w are the network’s weight matrices, while bi ∈ Rw for
i = 1 . . . d , and bd+1 ∈ R are its biases.

C. FEM implementation

To provide a reliable ground truth against which to com-
pare the performance of the NNM, the target PDE was also

solved via the FEM using FENICS [55]. The domain and mesh
were constructed using the MSHR package. The resolution
parameter for generate_mesh was set to 200 and the cir-
cular reentrant corners were approximated linearly with 100
segments each.

In order to obtain an accurate approximation of the electric
field, and not just of the electric potential, the FEM was
applied to a standard dual-mixed formulation of Laplace’s
equation for the electric field and electric potential simulta-
neously [55]. In this approach, ũ and Ẽ are approximated
simultaneously using separate basis functions. Solving for ũ
alone and reconstructing Ẽ by differentiation was found to
yield poor results.

Convergence tests (not shown) confirmed that the FEM
solution converged in proportion to the square of the mesh
resolution. The tests suggest that the absolute error in the
FEM solution relative to the true solution is on the order of
machine precision (i.e., 10−16). Note that the FEM solution
was computed in double precision, whereas the NNM was
computed in single precision.

III. RESULTS

At its core, the NNM is motivated by the rationale that
training networks to minimize the loss functional [Eq. (1)]
will cause those networks to approximate the correct solution.
This section contains investigations into the following related
questions:

(1) If a network exhibits a small loss, how close is it to
the true solution? Specifically, is the loss functional a reliable
estimator of actual network performance?

(2) If a network is close to the true solution, how well does
it reproduce the physical characteristics of the true solution?
Specifically,

(a) to what extent does it exhibit the same spatial
symmetries as the true solution?

(b) to what extent does it conserve electric flux?
(3) If a network is close to the true solution, and the corre-

sponding electric field is used to conduct particle simulations,
how accurate are subsequent measurements made using those
particle simulations?

(4) How does architecture affect these conclusions?
All experiments were repeated across four random initial-

izations and multiple network architectures: specifically, all
combinations of depths d = 1, 2, 3, 4, 5, 6 and widths w =
10, 25, 50, 75, 100, 150, 200, 250 were examined, as well as
networks of depth 1 and widths 500 and 1000.

Figure 4(a) shows an example of an NNM solution ob-
tained using a network of depth 5 and width 75. The ap-
proximate electric field Ẽ is superimposed in black lines over
colored contours showing the approximate electric potential
ũ. It is visually indistinguishable from the reference FEM
solution (not shown). Figure 4(b) shows (ũ − u)2, the squared
error of the NNM potential compared to the FEM potential.
Figure 4(c) shows ‖Ẽ − E‖2/‖E‖2, the pointwise relative
error of the NNM electric field. Here, ‖ · ‖2 denotes the
Euclidean norm. Note that the error in the potential cannot
be normalized pointwise, as discussed in the next section.

Both of the error distributions in Fig. 4 are particularly pro-
nounced near the reentrant corners. The electric field intensity
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FIG. 4. Example NNM solution using 5 hidden layers of width 75. (a) Approximate electric potential (colored contours) and electric field
(solid black lines). (b) Squared error of the electric potential. (c) Pointwise relative error in the electric field (note the logarithmic color scale).
The errors in plots (b) and (c) are interpolated from values evaluated on the FEM mesh points.

is also very large in these regions (see Fig. 12). In the limit of
small curvature, in fact, it is at these corners that the electric
field develops singularities (see Sec. II A). In fact, the peaks
in error and electric field intensity both occur precisely where
the boundary transitions from flat to curved, i.e., where the
second derivative of the boundary curve is discontinuous.

Additionally, Fig. 4(c) shows pronounced relative error
in the electric field near the corners at the bottom of the
well. These peaks arise because the magnitude of the true
electric field approaches zero in those corners (see Fig. 12).
Since the denominator of ‖Ẽ − E‖2/‖E‖2 is very small, even
small errors in the electric field near those corners manifest
as large relative error. The maximum relative error in the
domain � consistently occurred in these bottom-most corners
for all NNM solutions in the data set. Nonetheless, for many
applications, errors of this kind are likely to be less important
than the errors occurring near the reentrant corners, as they
are much smaller in absolute magnitude.

A. Error relative to FEM

The purpose of this section is to investigate the errors of
the NNM solutions relative to the reference FEM solution,
and to what extent the loss functional correlates with these
errors. The error in an approximate electric potential ũ will be
characterized by

δu[ũ] =
√√√√〈

(ũ − u)2
〉
�〈

u2
〉
�

. (6)

Here, 〈·〉� denotes the mean over the domain �. Whereas
Fig. 4(b) shows the distribution of the squared error in ũ
throughout the domain, δu[ũ] corresponds to the root-mean-
squared error of ũ over �, normalized by the root-mean-
squared value of the true solution u. Note that one cannot
define an unambiguous pointwise relative error for ũ since the
electric potential does not have a physically meaningful zero.
The metric δu[ũ] represents the magnitude of the error in ũ
relative to the magnitude of the true solution u, when both of
these are measured in the L2 norm for functions.

For the electric field, conversely, a meaningful pointwise
relative error can be defined as ‖Ẽ − E‖2/‖E‖2, where both
the numerator and the denominator vary throughout the

domain. The average of this pointwise relative error is denoted

δE[Ẽ] =
〈

‖Ẽ − E‖2

‖E‖2

〉
�

, (7)

and acts as a global error metric for Ẽ. This is precisely the
mean of error distributions like the one shown in Fig. 4(c).

Figure 5 shows the global error metrics δu[ũ] and δE[Ẽ]
for all networks in the data set, plotted against each net-
work’s testing loss. The integrals required to compute the
error metrics were approximated via the Monte Carlo method,
by sampling the domain interior using the same procedure

FIG. 5. Global error metrics for the NNM solutions relative to the
reference FEM solution, shown against testing loss for a variety of
network architectures. (a) The relative error of the electric potentials
δu[ũ]. (b) The relative error of the electric fields δE[Ẽ]. Marker color
indicates the depth of the network, and marker area indicates its
width.
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described in Sec. II B. Marker color corresponds to network
depth, and marker size corresponds to network width.

It is clear in Fig. 5 that lower testing losses correlate
strongly with lower values of both δu[ũ] and δE[Ẽ]. This result
confirms the basic motivation underlying the NNM, namely,
that training neural networks to minimize the loss functional
will cause them to approximate the correct solution. It also
suggests that, in the absence of theoretical guarantees on the
convergence of the NNM, the testing loss may provide a
practical proxy for estimating a solution’s true accuracy.

The data in both Figs. 5(a) and 5(b) partition conveniently
into two clusters. The upper-right clusters consist of those
networks achieving relative errors worse than 1% in both δu[ũ]
and δE[Ẽ]. This population contains all of the shallow net-
work architectures, suggesting that at least two hidden layers
are required to achieve good performance on this problem.
Furthermore, as discussed in Sec. III D, shallow networks
always underperform relative to deep networks, even when
normalized by capacity. The narrowest of the deep network
architectures also attain relative errors worse than 1%. This
implies that even with two hidden layers, networks require
some minimum capacity (i.e., memory consumption) in order
to achieve good performance on this problem.

The lower-left clusters in Figs. 5(a) and 5(b) contain the
majority of the data set, and consist of those networks attain-
ing relative errors below 1% in both δu[ũ] and δE[Ẽ]. The best
networks achieved relative errors as low as δu[ũ] ≈ 0.01%
and δE[Ẽ] ≈ 0.1%. For reference, the example solution shown
in Fig. 4 corresponds to a testing loss of L[ũ] ≈ 9 × 10−6,
and error values of δu[ũ] ≈ 0.2% and δE[Ẽ] ≈ 0.08%. A
variety of architecture choices (i.e., depths and widths) pro-
duce comparably good performance, suggesting that the NNM
can produce accurate solutions without the need for careful
architecture tuning. This is explored further in Sec. III D.

B. Physically motivated error metrics

The results in the previous section suggest that the NNM
can reliably produce accurate solutions to the slit-well prob-
lem. Furthermore, networks with smaller loss values are closer
to the true solution, i.e., they have smaller error values. Fi-
nally, the NNM does not appear overly sensitive to the choice
of architecture, given at least two hidden layers and sufficient
network width.

The purpose of this section is to investigate whether net-
works with small loss and error values also approximately
reproduce physical characteristics of the true solution. Specifi-
cally, we investigate the NNM solutions’ satisfaction of spatial
symmetries and the conservation of electric flux.

1. Deviation from symmetry

The true solution of the target PDE satisfies three spatial
symmetries. First, the true electric potential u is antisymmetric
in the horizontal direction about the center of the well, i.e.,

u(x, y) = −u(−x, y), (8)

where (x, y) are the coordinates of a point about the center of
the well. As a result, the vertical component of the true electric

field E also exhibits this antisymmetry in x, i.e.,

Ey(x, y) = −Ey(−x, y). (9)

Finally, the horizontal component of the electric field is sym-
metric about the center of the domain, i.e.,

Ex(x, y) = Ex(−x, y). (10)

The extent to which a network deviates from these symme-
tries will be quantified using relative error metrics analogous
to those used in the previous section. Specifically, the devia-
tion of an approximate electric potential ũ from symmetry will
be quantified by

Ru[ũ] =
√√√√〈

(ũ − ũ′)2
〉
�〈

u2
〉
�

, (11)

where ũ′(x, y) = −ũ(−x, y). This is the root-mean-squared
difference between ũ and its negative reflection, normalized
by the root-mean-squared value of the true potential u. In
analogy with δu[ũ], the metric Ru[ũ] measures the magnitude
of the deviation of ũ from symmetry relative to the magnitude
of the true solution u (when both are measured in the L2

norm). The deviation of an approximate electric field Ẽ from
symmetry will be quantified by

RE[Ẽ] =
〈

‖Ẽ − Ẽ′‖2

‖E‖2

〉
�

, (12)

where Ẽ′ is the transformed electric field

Ẽ ′
x(x, y) = Ẽx(−x, y), (13)

Ẽ ′
y(x, y) = −Ẽy(−x, y). (14)

In analogy with δE[Ẽ], this is the mean pointwise relative
deviation from symmetry of the electric field.

These metrics of deviation from symmetry are closely con-
nected to the relative error metrics of Sec. III A. Specifically,
the triangle inequality implies that√〈

(ũ − ũ′)2
〉
�

�
√〈

(ũ − u)2
〉
�

+
√〈

(u − ũ′)2
〉
�
. (15)

By definition, the true solution u is invariant under the trans-
formation that maps ũ to ũ′. Specifically,

ũ(x, y) − u(x, y) = −ũ′(−x, y) − ( − u(−x, y)). (16)

By the symmetry of the domain, it follows that√〈
(ũ − u)2

〉
�

=
√〈

(u − ũ′)2
〉
�
. (17)

Combining these results and dividing by
√〈u2〉�, it follows

that

Ru[ũ] � 2δu[ũ], (18)

that is, the distance from an approximate potential ũ to its
reflection ũ′ is, at most, twice the distance from ũ to the
true solution u. Very similar reasoning can be applied to an
approximate electric field Ẽ to conclude that

RE[Ẽ] � 2δE[Ẽ]. (19)
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FIG. 6. Relative deviation of symmetry for the NNM solutions
normalized by relative error, shown against testing loss. (a) Deviation
of symmetry of the NNM electric potentials Ru[ũ], divided by the
relative error δu[ũ]. (b) Deviation of symmetry of the NNM electric
fields RE[Ẽ], divided by the relative error δE[Ẽ]. Marker color
indicates the depth of the network, and marker area indicates its
width. The dotted lines show the upper bounds given by Eqs. (18)
and (19).

Thus, solutions with small error values will inevitably be
nearly symmetric, simply by virtue of being nearly equal to a
symmetric function. Furthermore, since it was established in
Sec. III A that the loss functional provides a reliable estimator
of the error, it follows that the loss also provides a reliable
estimator of the deviation from symmetry. It remains to be
seen, however, whether or not inequalities (18) and (19)
are strict in practice. That is, do neural networks learn that
symmetry is a desirable feature, or are they only symmetric
insofar as they approximate the true solution?

Figure 6 shows Ru[ũ]/δu[ũ] and RE[Ẽ]/δE[Ẽ] for all net-
works in the data set, plotted against each network’s testing
loss. As in Fig. 5, the marker sizes correspond to network
widths, and the colors indicate network depth. The dotted
lines correspond to the maximum deviation from symmetry
permitted for a given error value, according to inequalities
(18) and (19).

Most of the data in Fig. 6(a) lie nearly on the dotted line:
roughly 90% lie above 1.5, and 75% lie above 1.9. This indi-
cates that most of the electric potentials approximated via the
NNM satisfy the target symmetries only to the smallest degree
required by virtue of their proximity to the true solution. The
data in Fig. 6(b), however, lie somewhat farther from the
dotted line. Quite a few of the most symmetric electric field
approximations have RE[Ẽ]/δE[Ẽ] ratios below 1, indicating

that they are more similar to their own reflections than they
are to the true solution. It is important to note, however,
that the electric field metrics of error and symmetry are nor-
malized pointwise by the electric field intensity, whereas the
electric potential metrics are not normalized pointwise. This
distinction may account for some of the apparent differences
between Figs. 6(a) and 6(b).

Altogether, the results in this section indicate that the NNM
solutions deviate from the symmetries of the true solution by
an amount comparable to their error values. Some networks
may produce electric field solutions that are more symmetric
than required given their error values alone, but most networks
only exhibit the minimal degree of symmetry required by the
triangle inequality. As discussed in the Introduction, directly
constraining the networks to satisfy the symmetries (e.g., by
modifying the network architectures, or by adding additional
terms to the loss functional) would almost certainly improve
the symmetry of the resulting approximations. However, im-
plementing such constraints can be expensive for more com-
plicated invariants, and some problems may exhibit invariants
that are unknown a priori. These results illustrate that the
NNM can still learn to satisfy invariants approximately, even
when they are not explicitly enforced. Furthermore, the loss
functional may provide a means of empirically estimating the
extent to which such invariants are satisfied in practice.

2. Conservation of flux

Another important physical property of the true solution to
the target PDE is the conservation of electric flux. In its strong
form, conservation states that the true electric field E must be
divergence free at all points in the domain. This is equivalent
to the condition that the true electric potential u must satisfy
Laplace’s equation ∇2u = 0 since it can be rewritten as

∇ · (∇u) = ∇ · E = 0. (20)

Thus, one could quantify the deviation from conservation of
flux of an approximate field Ẽ by computing some error norm
of ∇ · Ẽ. However, since all the derivatives taken in the NNM
are exact (obtained via automatic differentiation), ∇ · Ẽ is
exactly equal to ∇2ũ. As a result, the first term of the loss
functional [Eq. (1)] is precisely a measure of how well the
NNM satisfies the strong form of the conservation of flux.

Nonetheless, the strong form of conservation is insufficient
to fully describe the extent to which the electric field con-
serves flux over extended regions of space within the domain.
This is better described using the weak form, which states
that the surface integral of the flux into any closed subset of
the domain must be zero. Motivated by this, we define the
quantity

E (ũ; ε) = 1

|�ε |
∫

�ε

[
1

|Bε |
∫

∂B(x;ε)
Ẽn̂ds

]2

dA. (21)

Here, B(x; ε) is a ball of radius ε centered at a point x in
the domain, ∂B(x; ε) denotes its boundary, and Ẽn̂ denotes
the outward normal component of the electric field into its
surface. The outer integral is taken over �ε , by which we
denote the set of all points in the domain that are at least a
distance ε from the boundary. The factors |�ε | and |Bε | are the
areas of �ε and B(x; ε), respectively. In other words, E (ũ; ε) is
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FIG. 7. The flux error metric E (ũ; ε) plotted as a function of
the ball radius ε for three NNM solutions as well as the reference
FEM solution. The legend entries for the NNM solutions indicate the
architecture (d,w) for each case. The leftmost points show E (ũ; 0),
and the rightmost show E (ũ; ∂�). The dotted vertical line labeled
Lmesh indicates the mean length scale of the FEM mesh.

the mean-square norm of the flux into all balls of radius ε that
are entirely contained within �, divided by the area of those
balls. Because this definition of E (ũ; ε) is mesh agnostic, it
can also be computed directly for a FEM solution. Numerical
calculations of E (ũ; ε) and related metrics in this section are
somewhat technical, and details are relegated to Appendix B.

Figure 7 shows E (ũ; ε) computed for a sample of NNM
solutions (colored lines) as well as for the reference FEM
solution (black line). The architectures, losses, and relative
errors of the three networks shown in Fig. 7 are listed in
Table. I. The shape of E (ũ; ε) measured for the NNM so-
lutions in Fig. 7 is representative of what was measured on
several other NNM solutions (not included). In particular,
E (ũ; ε) was consistently observed to decrease monotonically
with increasing ε. In Fig. 7, the network with architecture
(d,w) = (2, 25) achieved relatively mediocre performance.
The (1,200) network performed fairly poorly overall, but was
still among the best performing shallow networks in the data
set. As expected, the best of the three networks according
to testing loss and the relative error metrics, (4,150), also
performed best in terms of conservation of flux. Similarly,
(2,25) outperformed (1,200). We emphasize that the (2,25)
network outperforms the (1,200) network in all metrics, de-
spite having slightly smaller capacity. This is reflective of the
disproportionately poor performance of shallow architectures
noted in Secs. III A and III D.

TABLE I. Summary of the NNM solutions selected for the con-
servation of flux and particle simulations tests. Columns shown the
depth, width, capacity, testing loss, and relative error of the electric
potential and electric field, for each network.

d w Capacity L[ũ] δu[ũ] δE[Ẽ]

1 200 801 3 × 10−3 16% 7.4%
2 25 751 2 × 10−4 1.7% 0.8%
4 150 68551 6 × 10−6 0.02% 0.08%

The behavior of E (ũ; ε) for the FEM solution differs from
that of the NNM solutions in some important ways. Whereas,
for all three NNM solutions, E (ũ; ε) is roughly constant
below ε ≈ 10−1, for the FEM solution E (ũ; ε) continues to
increase with decreasing ε until at least ε ≈ 10−4. As a result,
although the FEM solution achieves better E (ũ; ε) than all
NNM solutions at long length scales, the converse is true
at sufficiently small length scales. The best NNM solution
in Fig. 7, (4,150), exhibits comparable conservation of flux
to the FEM solution at length scales near the mean FEM
mesh size Lmesh = √|�|/N , where N is the number of mesh
elements. At length scales below Lmesh, the (4,150) network
conserves flux more accurately than the FEM solution. Even
the worst of the three NNM solutions shown in Fig. 7 performs
comparably to the FEM solution in conservation of flux at
length scales below ε ≈ 10−3. The relative stability of the
NNM at small length scales may be attributable to its mesh-
free nature, and is an appealing feature for subsequent use in
particle simulations. Finally, we recall (see Sec. II C) that the
FEM solution was computed in double precision, and suggest
that the single precision used for the NNM solutions may be a
limiting factor to their performance at large length scales.

For small choices of ε, E (ũ; ε) converges to a measure of
the strong form of conservation of flux. By the divergence
theorem, for a continuously differentiable field Ẽ, the flux
error metric E (ũ; ε) can be rewritten as

E (ũ; ε) = 1

|�ε |
∫

�ε

[
1

|Bε |
∫

B(x;ε)
∇ · Ẽ dA′

]2

dA (22)

= mean
�ε

[(
mean
B(x;ε)

(∇ · Ẽ)

)2
]
. (23)

In the remainder of this section, angle brackets 〈·〉S will be
used to denote means over any set S. From Eq. (22), it is easy
to deduce the limit of E (ũ; ε) as ε → 0, which will be denoted
E (ũ; 0). Since �ε → � and the mean over B(x; ε) approaches
the identity operator, it follows that

E (ũ; 0) = 〈(∇ · Ẽ)2〉� = 〈(∇2ũ)2〉�. (24)

The leftmost points in Fig. 7 illustrate E (ũ; 0) for each of
the solutions. For the NNM solutions, E (ũ; ε) converges to
E (ũ; 0) as ε → 0, as expected. This is not the case for the
FEM solution, for which E (ũ; ε) exceeds E (ũ; 0) for small ε.
However, this is not a contradiction, as Eq. (24) was derived
by assuming continuous differentiability.

Equation (24) is precisely the mean of the square de-
viation of ũ from the strong form of conservation of flux.
For NNM solutions, E (ũ; 0) is equal to the first term of the
loss functional [Eq. (1)] divided by |�|, and is therefore
bounded above by the loss. Given that E (ũ; ε) was observed
to decrease monotonically with ε, this suggests that, as for the
relative errors and symmetry errors, the loss provides a useful
estimator of the error in conservation of flux over any length
scale.

However, as ε increases, the metric E (ũ; ε) becomes in-
creasingly biased because the center of the balls B(x; ε)
cannot be placed within a distance ε of the boundaries of the
domain. At moderate values of ε, this means that errors in
flux conservation in the interior of the domain are weighted
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FIG. 8. Error in global flux conservation for all NNM solutions
as a function of each network’s testing loss. Marker color indicates
the depth of the network, and marker area indicates its width. The
dotted line indicates the corresponding error in the FEM solution.

more heavily than those near the boundaries of the domain.
Eventually, when ε > 0.6, the balls are too large to fit inside
the slits of the device, so that only errors inside the well
contribute to E (ũ; ε). For this reason, the data in Fig. 7 are
only computed for ε values sufficiently below 0.6 that this
bias is deemed acceptably small. This biased behavior of
E (ũ; ε) arises because the inner integral in Eq. (22) is based
on circle-shaped test sets. A more meaningful metric of flux
conservation over very long length scales can be obtained by
replacing B(x; ε) with ∂� in Eq. (22). This global flux error
will be denoted E (ũ; ∂�), and satisfies

E (ũ; ∂�) =
[ |∂�|

|�| 〈Ẽn̂〉∂�

]2

= [〈∇2ũ〉�]2. (25)

Thus, E (ũ; ∂�) is directly connected to 〈Ẽn̂〉∂�, the net flux
through ∂�, which is zero for the true solution. Note that
the second equality in Eq. (25) follows from the divergence
theorem, so it applies to the NNM solutions but not the FEM
solution. Together with the second equality of Eq. (24), this
means

E (ũ; 0) − E (ũ; ∂�) =
〈(∇2ũ

)2
〉
�

− [〈∇2ũ
〉
�

]2
, (26)

which is the variance of ∇2u over �. This is always non-
negative, so it follows that

E (ũ; 0) � E (ũ; ∂�), (27)

for any ũ satisfying the second inequalities in both Eqs. (24)
and (25).

The rightmost points in Fig. 7 illustrate E (ũ; ∂�) for each
of the four solutions. Figure 8 shows E (ũ; ∂�) for all NNM
solutions versus each network’s testing loss; the dotted line
indicates the value for the FEM solution. It is immediately
evident that E (ũ; ∂�) relates to testing loss in a similar way
as do the relative error metrics (Fig. 5). As was the case for
the other metrics, E (ũ; ∂�) decreases with decreasing testing
loss, suggesting that testing loss is a useful estimator of global
flux error. Indeed, this is inevitable in the limit of small loss
since E (ũ; ∂�) is bounded above by E (ũ; 0), which is in turn
bounded above by the loss. It also appears that the data in
Fig. 8 are divided into the same two clusters as the data in

Fig. 5, with the shallow architectures performing worse than
nearly all deep architectures.

Somewhat surprisingly, the best of the NNM solutions
appear to conserve flux globally to nearly the same degree
as the reference FEM solution, despite being computed in
single (rather than double) precision. Indeed, one network
with architecture (4,200) appears to slightly outperform the
FEM solution in this respect. However, it is important to note
that E (ũ; ε) for this (4,200) network (not shown) exhibits
essentially the same behavior as that of the (4,150) network
analyzed in Fig. 7. In other words, although that particular
network performs very well at global flux conservation, FEM
does a significantly better job at conserving flux over interme-
diate length scales. This suggests that, for the NNM solutions,
the error in conservation of flux is heterogeneously distributed
throughout the domain, which is consistent with the previous
observation that error in the NNM solutions is significantly
larger near the reentrant corners.

In summary, the metric E (ũ; ε) provides a mesh-agnostic
measure of how well an NNM solution conserves flux over a
length scale ε. As ε → 0, the limit satisfies Eq. (24), and is
bounded above by the loss. Empirically, E (ũ; ε) is observed
to decrease monotonically with ε, so that the loss provides
a useful estimator of the error in flux conservation over
intermediate length scales, too. Alas, when ε is large relative
to other length scales in the domain, E (ũ; ε) is a biased metric,
as it places less weight on flux lost near the boundaries of the
domain. However, a related measure of global conservation
of flux over the entire domain is given by Eq. (25), which is
not biased. This measure, too, is bounded above by the loss.
Altogether, the NNM seems capable of reliably producing
solutions that conserve flux to an acceptable level of accuracy
without the need to explicitly enforce this physical invariant
during training. In particular, some of the NNM solutions
conserve flux globally roughly as well as the FEM solution.
Furthermore, even relatively mediocre NNM solutions con-
serve flux better than the FEM solution over sufficiently small
length scales.

C. Application to particle simulations

Section III A looked directly at error between NNM and
FEM, and Sec. III B looked at error metrics motivated by
physical invariants. Both suggested that the testing loss pro-
vides a reliable estimator of the true performance of the
network solutions, and that (with appropriate network archi-
tectures) the NNM consistently finds solutions with seemingly
small error values. However, the question of what error values
are acceptable is subjective, and often depends on the intended
application of the numerical solutions. For this reason, this
section will consider the performance of the NNM solutions
when used as the driving force fields in particle simulations of
Brownian motion in the slit-well device (implemented in the
C programming language). The simulation scenario is quite
similar to those investigated by [38,39].

Simulations of N = 100 000 particles in the slit-well do-
main were initialized with all the particles located in the
middle of the same well. The particle positions xi evolved
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according to the discretized Brownian equation

�xi

�t
=

√
2D

�t
R(t ) + q

γ
Ẽ, (28)

where the time step was set to �t = 10−4, the diffusion
coefficient to D = 1, and the friction coefficient to γ = 1.
The particle charge q was varied from 1 to 10. The term
R(t ) is a random driving force, representing thermal motion
of an implicit solvent, and was sampled via the Box-Muller
transform from an independent standard Gaussian distribution
for each particle at each time step.

The driving electric field Ẽ was obtained from either the
reference FEM solution or from one of the NNM solutions.
The electric fields were discretized onto a uniform square
mesh overlain on [−Lx, Lx] × [−Ly, Ly], the smallest bound-
ing box containing � (see Sec. II B). The side lengths of the
mesh elements were set to 0.01. The field experienced by
a particle at a given position was approximated by nearest-
neighbor interpolation to the mesh. We leave more sophis-
ticated coupling between the particle simulations and the
electric fields to future work.

Particles experienced periodic boundary conditions across
the left and right sides of the periodic subunit illustrated
in Fig. 3, and the boundaries that were insulating in the
electric field problem were treated as reflective in the particle
simulations. The number of times each particle crossed the do-
main was tracked, so as to measure its absolute displacement
from the original position. After tmax = 106 time steps, the
mean horizontal displacement of the particles from the initial
position 〈x〉 was divided by tmax to obtain an estimate 〈vx〉 of
the average particle velocity. This average velocity was then
divided by particle charge to estimate the effective particle
mobility μ = 〈vx〉/q. The statistical error on this mobility
measurement was estimated as s = (σvx /q)/

√
N , where σvx is

the standard deviation of the particle velocities.
These mobility measurements are shown in Fig. 9(a) for

simulations conducted with the same four electric fields in-
vestigated in Sec. III B 2: that of the reference FEM solution,
and that of the three NNM solutions summarized in Table I.
The simulations using the FEM field were conducted twice
with different random seeds, shown as the two black lines
in Fig. 9(a). The difference between these two sets of mea-
surements provides a means of distinguishing the errors intro-
duced by the electric fields from simple statistical fluctuations
on the mobility measurements. In Fig. 9(a), the measurements
of μ made using the networks of architectures (2,25) and
(4,150) appear fairly similar to those made using the FEM
field. Conversely, the measurements using the (1,200) archi-
tecture are quite easily distinguished from the FEM data. All
simulations recovered effective mobilities that varied with
q, induced in the otherwise free-draining particles by their
interactions with the slit-well geometry.

The relative error between two mobility measurements μ1

and μ2 was quantified as

μ1 − μ2

μ2
. (29)

The colored lines in Fig. 9(b) show the relative errors of
the NNM-based mobility measurements in Fig. 9(a) versus

FIG. 9. (a) Lines show the mobility measurements μ made using
four different electric field solutions. The two black lines correspond
to separate simulations made using the same reference FEM field.
The error bars indicate the estimated statistical error of mobility s.
(b) The colored lines show the relative errors between the NNM-
based measurements and the first set of FEM-based results. The black
line shows the relative errors between the two sets of FEM-based
measurements. The error bars are obtained from the data in (a) via
standard rules for propagation of uncertainty.

the first set of FEM-based measurements. The black line
corresponds to the relative errors between the two sets of
FEM-based measurements. Error bars were estimated via
standard rules for propagation of error.

Unsurprisingly, the errors of the (1,200) architecture are
significantly larger than those of the other two architectures,
and show a clear bias toward underestimating the mobility.
Nonetheless, even this crude solution produces errors smaller
in magnitude than 5% of the actual mobility. This suggests
that the current particle simulations are relatively insensitive
to moderate inaccuracies in the driving electric field.

The relative errors of both the (2,25) and (4,150) archi-
tectures are comparable to the relative errors between the
two sets of FEM-based measurements, and lie below 1% for
all values of q. However, the relative errors for the (2,25)
architecture are negative for all q above 2, whereas the rel-
ative errors of the (4,150) architecture are roughly evenly
distributed about 0. This suggests that the (2,25) architecture
introduces a small but detectable systematic bias into the
mobility measurements. Conversely, the errors of the better
(4,150) architecture are comparable to statistical fluctuations,
despite the relatively large number of simulated particles,
N = 100 000. These results confirm that the best of the NNM
solutions presented in this work are sufficiently accurate for
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FIG. 10. Testing loss versus network capacity, colored by net-
work depths. The error bars show maxima and minima over four
random seeds, and the lines indicate mean performance. The dotted
lines at capacities of 5 × 103 and 5 × 104 roughly delineate the three
regimes discussed in the text.

use in particle simulation applications. Moreover, the relative
performance of the three architectures is consistent with their
values of L[ũ], δu[ũ], and δE[Ẽ] (Table I).

In Fig. 9, the network with architecture (2,25) significantly
outperforms that with architecture (1,200), despite having
slightly smaller capacity, reemphasizing the advantages of
deep architectures over shallow ones. Conversely, the much
larger (4,150) architecture only achieves moderate improve-
ments over the (2,25) architecture, reflecting the diminishing
returns associated with increasing network capacity. These
subtle impacts of architecture are investigated more closely
in Sec. III D.

D. Effect of network architecture

The previous sections have demonstrated that the testing
loss is a useful estimator of several independent error metrics.
Specifically, the loss functional appears to reliably estimate
the error relative to the reference FEM solution; the deviation
from symmetry; the deviation from conservation of flux; and
the error introduced into subsequent mobility measurements.
Thus, the loss is a useful single metric of performance via
which to compare different NNM architectures.

In Fig. 10, the testing loss is plotted against the total
network capacity. Here, network capacity is measured as the
total number of parameters in the network, given in terms of
the width w and depth d by

(2 + 1)w + (d − 1)(w + 1)w + (w + 1) (30)

since the networks have two inputs and one output. The col-
ored lines in Fig. 10 correspond to different network depths,
so that the various capacities within each line identify the net-
work widths. The error bars show maxima and minima over all
random seeds, whereas the lines indicate mean performance.

The data in Fig. 10 show that, for network capacities
below 5 × 103, increasing capacity improves testing loss for
any choice of depth. This suggests that, for those networks,
insufficient capacity is a primary bottleneck toward repre-
senting more accurate approximations of the true solution. In

particular, for the networks with two hidden layers, increasing
the capacity improves the loss by nearly two orders of mag-
nitude. Furthermore, in this low-capacity regime, increasing
depth improves performance for a given capacity. In other
words, when insufficient network capacity is the primary
barrier to improved performance, deeper networks make more
efficient use of that limited resource. Indeed, this is consistent
with the effects of architecture observed in Figs. 5, 7, 8,
and 9. Specifically, shallow networks perform particularly
poorly in all metrics throughout this work, even compared to
networks with comparable capacity and as few as two hidden
layers.

For deep networks with moderately large capacities (5 ×
103 to 5 × 104), testing loss is essentially independent of
network architecture (i.e., independent of both depth and
capacity/width). This suggests that insufficient network ca-
pacity is no longer a primary bottleneck to improving solution
accuracy. The investigation by [20] suggested that the internal
representations learned by networks in the NNM become
essentially independent of width above some critical size, so
it is not surprising that loss similarly becomes independent of
width. However, it is noteworthy that this limiting loss value
is also independent of network depth (among those with two
or more hidden layers).

For networks with capacities of 5 × 104 or above, testing
loss begins to increase with further increases in capacity.
Figure 5 illustrates that these same networks sometimes ex-
hibit relative errors nearly as high as some shallow networks,
despite having two orders of magnitude more capacity. Their
poor performance can be understood in terms of the difficul-
ties commonly encountered in training very deep, wide neural
networks. For instance, Berg and Nyström [16] noted similar
loss in performance when training networks with five or more
hidden layers, and attributed this to vanishing gradients. Re-
finements in the network architectures and training algorithms
can be expected to alleviate this phenomenon.

Note that the behavior of these networks with very large
capacities cannot be described in terms of overfitting, another
problem commonly encountered by networks with exces-
sively large capacities. Overfitting is typically defined as a
significant gap between the training and testing losses of
networks. In the NNM, however, the testing and training sets
are drawn from identical distributions. In the implementation
used here, in particular, the training set is redrawn regularly
throughout training, so that it is fundamentally impossible
for the network to be overfitting to a specific set of training
samples.

Finally, Fig. 11 shows the total training time of the NNM
solutions against testing loss. The same two populations
identified in Figs. 5 and 8 are evident again in Fig. 11. The
cluster on the right contains all the shallow networks as well
as the narrowest of the deep ones. The cluster on the left
consists of those networks that attained better than 1% error
relative to FEM (Fig. 5). Within each cluster, testing loss and
training time are loosely correlated. For all networks, training
time was on the order of hours. However, it is important to
note that the implementation in this work was not concerned
with optimizing the computational efficiency of the NNM, but
rather with ensuring that the training process was thoroughly
converged (Sec. II B).
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FIG. 11. Total training time and final testing loss of the NNM
solutions. Marker color indicates the depth of the network, and
marker area indicates its width.

Once again, the networks in the right cluster perform
disproportionately poorly, even though many of them have
capacities comparable to some of those in the left cluster
(Fig. 10). Thus, not only do the networks in the left cluster
achieve better accuracies (as measured by testing loss or
any of the various error metrics in this paper), but they also
finish training far more rapidly. Further, this conclusion is true
even between networks of equal capacity. These observations
demonstrate many benefits of using deeper architectures in the
NNM, and several disadvantages of using shallow architec-
tures.

IV. CONCLUSIONS

This work investigated the performance of the neural net-
work method (NNM) when used to solve the electric potential
and field in the slit-well device. This problem features a non-
convex geometry, which makes it particularly challenging to
solve with the NNM. Performance was quantified in multiple
metrics, and compared against a reference FEM solution.

The best network architectures studied here reliably
achieved relative errors below 0.1% in both the potential and
the field. NNM solutions also recovered spatial symmetries
of the true solution to roughly the same extent that they
approximated the true solution. Regarding conservation of
flux, the NNM solutions performed comparably to the ref-
erence FEM solution. Finally, particle simulations conducted
using the NNM electric fields yielded mobility measurements
consistent with those based on the FEM electric field. In
each of these metrics, the testing loss was found to provide
a useful estimator of the networks’ true performance. That
is, networks with smaller losses were found to be closer
to the true solution; to more closely approximate the target
symmetries; to conserve flux more accurately; and to produce
better particle simulations.

These empirical investigations uncovered several valuable
insights for practical use of the NNM. Accurate solutions to
physical problems can be obtained even without explicitly
enforcing known physical invariants of the true problem. The
importance of architecture was reemphasized: deep archi-
tectures consistently outperformed shallow ones, converging
to better solutions in less time and using fewer degrees of

FIG. 12. Electric field intensity of the FEM solution, shown on
(a) linear and (b) logarithmic color scales.

freedom. Finally, the testing loss may provide a practical
means of gauging a solution’s accuracy, even when the ground
truth is unknown and convergence is not theoretically guaran-
teed.

In summary, this work demonstrates that the NNM can
successfully solve a problem that is ill conditioned due to the
nonconvexity of its domain. The NNM solutions were found
to be particularly appropriate for use in subsequent particle
simulations. This suggests that it could be a useful tool for the
study of microfluidic and nanofluidic devices (MNFDs) and
other biophysical systems. Moreover, differential equations
in domains with complicated geometries arise throughout
physics and other fields. These results support the feasibility
of using the NNM to solve this fundamental and ubiquitous
class of problems.
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APPENDIX A: ADDITIONAL PLOTS OF THE
ELECTRIC FIELD SOLUTION

Figure 12 shows the FEM electric field intensity through-
out the domain, in both linear and logarithmic color scales.
In particular, Fig. 12 illustrates that the peak field intensity
occurs near the reentrant corners, with a magnitude of about
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0.36. In the bottom corners of the well, the field intensity is
over four orders of magnitude weaker. These features con-
tribute to the difficulty of applying the NNM to the slit-well
electric field problem since the standard loss functional used
during training places equal weight on all regions of � and
∂�. The regions of very intense electric field near the reentrant
corners, specifically, seem to be most difficult to resolve for
the NNM, as seen in the error maps shown in Fig. 4.

APPENDIX B: DETAILS OF FLUX LOSS CALCULATIONS

This Appendix contains descriptions of how the metrics
shown in Figs. 7 and 8 were computed. For Fig. 7, the integrals
in Eq. (21) were computed by sampling 10 000 uniformly
spaced points on ∂B(x; ε) for each choice of the center x.
Candidate samples for the centers were generated according

to the same procedure described in Sec. II B, but with 10 times
higher sample density, and all points within a distance ε of ∂�

were rejected.
The leftmost points in Fig. 7 correspond to Eq. (24). For

the NNM solutions, these were computed by Monte Carlo
integration over � using 10 times higher sampling density
than in Sec. II B. The rightmost points in Fig. 7 correspond
to Eq. (25). These were not computed using a Monte Carlo
integration approach. Because 〈Ẽn̂〉∂� is a small number com-
puted by summing many positive and negative terms, it is
vulnerable to catastrophic cancellation. For this reason, it was
computed using a uniform mesh of points along ∂�, sampled
with 100 times higher density than in Sec. II B. For the FEM
solution, the integrals required for Eqs. (24) and (25) were
both computed in FENICS using Gaussian quadrature via the
assemble command.
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Chapter 7

Neural Network Solutions of Particle

Mobility in the Slit-well

7.1 Overview

In Chapter 5, it was shown that particle mobilities which are commonly

computed over long periodic microfluidic devices (as illustrated in Fig. 5.2(a)) can

alternatively be determined by reformulating the system as a first passage time

problem through a single unit of the periodic geometry (as illustrated in

Fig. 5.2(b)). Since the entire periodic geometry no longer needs to be used in

molecular dynamics (MD) simulations to obtain the particle mobilities,

computing this indirect mobility formulation is more computationally

advantageous in certain scenarios. The indirect mobility formulation also provides

an opportunity to be computed using a partial differential equation (PDE) that

models the mean first passage time of nanoparticles over a single device unit.

Building on the topic of studying micro- and nanofluidic devices (MNFDs)

with computational methods, in Chapter 6 the neural network method (NNM)
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was applied to solve the Laplace equation modelling the electric potential and

electric field in the slit-well MNFD. There, the NNM was demonstrated to be a

feasible technique for solving PDEs in complex geometries, which is an important

asset for studying biophysics systems commonly posed on non-trivial domains

such as MNFDs. As discussed in Chapter 1.2.2, the NNM has also been

demonstrated to approximate the solution to PDEs that are highly parameterized

and high dimensional [62, 63, 65–67, 69–74, 76–80]. This feature is promising for

NNM when applied to biophysical systems that exhibit a high dimensionality

(such as the motion of polymers) or systems whose key output metrics often

depend on the interplay of many system parameters (such as the sorting

dynamics of the slit-well MNFD).

Combining the notion of accurately solving highly-parameterized PDEs with

the NNM and computing particle mobilities using a passage time formulation, in

"Studying first passage problems using neural networks: A case study in the

slit-well microfluidic device," Nagel, Magill, and de Haan [5] leverage the NNM to

solve a parameterized first passage time PDE modelling nanoparticles in the

slit-well device. Instead of using Brownian dynamics (as done in Chapters 5 and

6), here the motion of nanoparticles in the slit-well MNFD is described by the

Smoluchowski equation,

ρt = ∇ ·
(
D∇ρ− µE⃗ρ

)
, (7.1)

where ρ is the position distribution of the particles over space and time. In this

model, particles represent nanoparticles with diameters σ, and their free-solution

diffusion D is assumed to emerge from Stokes’ law and the fluctuation-dissipation
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Figure 7.1: Schematic of a single periodic subunit of the slit-well
device to illustrate the passage time model solved using the NNM.
The solution g0 satisfies the time-integrated Smoluchowski equation
in the yellow interior region. An absorbing boundary condition is
applied at the right slit wall (purple), and no flux conditions are
applied on grey boundaries, which move inward to the dotted line

to model particle size σ.

theorem such that D = σ−1. For simplicity, the free-solution mobility is

implemented as µ = 1 for the nanoparticles to be free-draining; µ is independent

of σ, so separation by size would not occur in a free solution. The nanoparticles

are driven by an electric field E⃗ = λE⃗0 produced by a voltage drop of 2λ across

the domain, obtained via the NNM as described in Chapter 6. Finally, Eqn. 7.1 is

integrated over time to obtain the time-integrated Smoluchowski equation [160],

−ρ0 = ∇ ·
(
1

σ
∇g0 − λE⃗0g0

)
, (7.2)
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where ρ0 is the initial condition for ρ. A new field g0 is defined as

g0(x, y) :=

∫ ∞

0

ρ(x, y, t) dt, (7.3)

and conveniently has the property that

∫

Ω

g0 dx = ⟨τ⟩, (7.4)

where Ω is the spatial domain and ⟨τ⟩ is the mean first passage time (MFPT) of

the particles to the absorbing boundary condition. Thus, once ⟨τ⟩ is computed

from g0 using Eqn. 7.4, the effective mobility µeff is obtained from ⟨τ⟩ using the

indirect mobility formulation derived in Eqn. 5.2 of Chapter. 5.

Fig. 7.1 provides a schematic of the PDE model defined on one unit of the

slit-well MNFD. Here, the time-integrated Smoluchowski equation is applied on

the yellow interior (Eqn. 7.2), with the source term ρ0 set to a Gaussian band in

the left slit, given by a uniform distribution in y and a Gaussian distribution in x.

The grey regions represent physical walls modelled as no-flux boundary conditions

(equation defined in the legend of Fig. 7.1). In particular, a no-flux boundary

condition is applied at the left slit wall, which disallows nanoparticle backflow into

the previous unit of the slit-well device. Chapter 5 showed that this simplification

produces an adequate approximation to the system, especially when the electric

field is sufficiently strong. In addition, when considering excluded volume

interactions, the particle centres cannot come closer than a distance of roughly

σ/2 from the repulsive boundaries. Accordingly, the no-flux boundary conditions

are applied at the boundary of the exclusion zone (depicted by the dashed black
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line in Fig. 7.1) instead of the nominal boundaries (along the grey walls). Finally,

an absorbing boundary condition is applied at the purple boundary of the domain

(equation defined in the legend of Fig. 7.1), representing the point at which the

first passage time of the particles is computed upon crossing.

In Nagel, Magill, and de Haan [5], the NNM methodology described in

Chapter 2.2.6 is applied to the PDE model illustrated in Fig. 7.1 in order to

obtain the MFPT of particles traversing the slit-well device. First, the g0

solutions are solved at fixed choices of field strength λ and particle size σ

(example solutions included in Fig. 7.2(a) and(b)). From g0, output metrics

MFPT ⟨τ⟩ and effective mobility µeff are computed (shown in Fig. 5 of Nagel,

Magill, and de Haan [5]) and the NNM consistently estimated these within 1%

error of the groundtruth values obtained via the finite element method (FEM). In

particular, the NNM values are at least as accurate as typical particle simulations

(conducted in Nagel, Magill, and de Haan [5]), which are the most common tool

for studying first passage problems in biophysics. However, the success of the

NNM on this 2-dimensional problem is not very surprising as the NNM has

already been applied to low-dimensional problems in the literature [63, 64, 66, 67,

69–74, 85] and the extremely similar electric potential problem studied in

Chapter 6.

Therefore, the real aim of this work is to solve the more ambitious

parameterized g0(x, y;λ, σ) problem. Before doing so, in Nagel, Magill, and de

Haan [5] the g0 solutions were examined qualitatively. That is, the solutions

revealed a wide variety of functional behaviours over parameter space,

particularly the four primary regimes underlying nanoparticle sorting in the
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(a) (b)

(c) (d)

Figure 7.2: (a) g0 solution computed with the NNM for small
particles (σ = 0.125) driven by a weak field (λ = 5.0). (b) g0
solution computed with the NNM for large particles (σ = 0.625)
driven by a strong field (λ = 50.0). (c) Effective mobility µeff as a
function of λ and σ computed from the parameterized NNM solution
g0(x, y;λ, σ). Relative error of the MFPT ⟨τ⟩ as a function of λ and
σ computed from the parameterized NNM solution g0(x, y;λ, σ).

slit-well (two of which are highlighted in Figs. 7.2(a,b)). Each of these regimes

corresponds to four significantly different g0 solution types with a unique

interplay of drift, diffusion and geometric effects. The qualitative information in

g0 highlights the challenging nature of solving this parameterized PDE.

Next in Nagel, Magill, and de Haan [5], λ and/or σ are used as additional

inputs into the NNM such that the solution to the time-integrated Smoluchowski

equation (Eqn. 7.2) is now a continuous function of its parameters. Again, the

mean first passage time ⟨τ⟩ and effective mobility µeff are studied as the primary
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output metrics of interest and compared to values obtained using FEM. The

NNM successfully computed the solution g0(x, y;λ) with relative errors of the

output metric ⟨τ⟩ on the order of 1% or below over the majority of the parameter

space (shown in Fig. 5 of Nagel, Magill, and de Haan [5]). Likewise, the NNM

successfully computed the solution g0(x, y;σ) to a similar accuracy as g0(x, y;λ)

indicating that the NNM can handle geometry-modifying parameters such as σ

(shown in Fig. 5 of Nagel, Magill, and de Haan [5]). Finally, the NNM was

parameterized by both λ and σ to obtain the solution g0(x, y;λ, σ) which

produced ⟨τ⟩ and µeff measurements as a continuous function of both parameters.

Fig. 7.2(c) displays µeff as a function of λ and σ, indicating the complexity of the

dynamics resolved with a single neural network. In addition, Fig. 7.2(d) displays

the relative error of ⟨τ⟩ obtained via the g0(x, y;λ, σ) solution. Here, the relative

error is below 1% over most of the domain and only goes above this threshold

close to the parameter space boundaries.

Although the parameterized g0 solutions have regions of relative error that

exceed 1%, in Nagel, Magill, and de Haan [5] the marginal loss L(g0|λ, σ) is shown

to correlate with these regions. Since the total loss L (Eqn. 2.56 in Chapter 2.2.6)

provides only a single characterization of the NNM’s performance over its entire

domain, for the parameterized problems, it is more beneficial to evaluate the

performance of the solutions at different points in the parameter space. Thus, the

marginal loss L(g0|λ, σ) is computed instead, which is the loss functional

evaluated as a function of λ and σ as opposed to averaging over these parameters.

In Nagel, Magill, and de Haan [5], a high marginal loss L(g0;λ, σ) generally

corresponds to areas of large relative error, indicating that L(g0;λ, σ) provides an
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a posterior estimate of the solution’s accuracy. In other words, L(g0;λ, σ) can be

utilized to provide confidence in NNM-generated solutions when the actual

solution is not known in advance. This notion corroborates with a similar result

obtained in Chapter 6 when the NNM was applied to Laplace’s equation.

In summary, the results in Nagel, Magill, and de Haan [5] show that a

considerable appeal of the NNM is the unique ease with which it can be applied

to solve parameterized PDEs. In particular, solutions to the parameterized

time-integrated Smoluchowski equation obtained via the NNM, yield direct

mappings from key problem inputs (field strength λ and particle size σ) to key

problem outputs (MFPT ⟨τ⟩ and effective mobility µeff). This functionality is

particularly appealing for MNFD research (and biophysics systems more broadly)

as phenomena often depend non-trivially on the coupling of many system

parameters. Although the parameterized solutions did have areas of parameter

space that exhibit more significant relative error, the marginal loss is shown to

provide an estimate of these errors, bolstering the robustness of the NNM.

Altogether, these results highlight the specific appeal of the NNM as a method

for studying parameterized first passage problems via the time-integrated

Smoluchowski model. Moreover, instead of obtaining mobility measurements

using BD simulations computed at discrete parameter choices, the NNM can be

leveraged to obtain mobilities as continuous functions of problem parameters

using a PDE model defined on a single unit of the full periodic MNFD.
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This study presents deep neural network solutions to a time-integrated Smoluchowski equation modeling the
mean first passage time of nanoparticles traversing the slit-well microfluidic device. This physical scenario is
representative of a broader class of parametrized first passage problems in which key output metrics are dictated
by a complicated interplay of problem parameters and system geometry. Specifically, whereas these types of
problems are commonly studied using particle simulations of stochastic differential equation models, here the
corresponding partial differential equation model is solved using a method based on deep neural networks.
The results illustrate that the neural network method is synergistic with the time-integrated Smoluchowski
model: together, these are used to construct continuous mappings from key physical inputs (applied voltage
and particle diameter) to key output metrics (mean first passage time and effective mobility). In particular, this
capability is a unique advantage of the time-integrated Smoluchowski model over the corresponding stochastic
differential equation models. Furthermore, the neural network method is demonstrated to easily and reliably
handle geometry-modifying parameters, which is generally difficult to accomplish using other methods.
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I. INTRODUCTION

Micro- and nanofluidic devices (MNFDs) are tools that can
be used to manipulate or detect molecules with high precision
[1–5]. For instance, the slit-well MNFD was proposed by
Han and Craighead [6] as a tool for sorting otherwise free-
draining polymers, such as DNA, according to chain length.
The same device has also been shown to induce separation
of free-draining nanoparticles by size [7,8]. The slit-well is
operated by electrophoretically forcing analytes across a pe-
riodic array of deeper regions (wells) and shallower regions
(slits) between two fixed planes (see Fig. 1). Its sorting effect
has been comprehensively studied through theoretical, numer-
ical, and experimental investigations, which have identified a
variety of distinct mechanisms that are relevant in different
operational regimes. At a high level, the sorting effect depends
nonlinearly on the size of the analytes and the magnitude of
the applied electric field, as well as the shape and size of the
device’s wells and slits [2,7–11]. In particular, depending on
the choice of these parameters, the mobility of analytes can be
made either increasing or decreasing with respect to molecule
size

The practical relevance of biotechnologies such as MNFDs
has been stressed in the last year; for instance, Berkenbrock
et al. [12] surveyed the potential of microfluidics as a means of
rapidly testing large numbers of people for COVID-19 infec-
tions. Shepherd et al. [13] studied a parallelized MNFD that
generated scalable lipid nanoparticle formulations needed for
applications in RNA therapeutics and vaccines. Nonetheless,
the design and optimization of MNFDs is often challenging

*Hendrick.deHaan@uoit.ca

because it entails simultaneously considering the influence
of many design parameters (e.g., operating voltage, solvent
composition, device geometry, etc.) on multiple nonlinearly
interdependent phenomena.

In many cases, important biological phenomena can fruit-
fully be modeled as first passage processes [14]. Moreover,
in the study of MNFDs, key transport phenomena are often
captured by only the first few moments of an appropriate first
passage time distribution. For example, the translocation of
a polymer through a nanopore is aptly described as a first
passage process, and the mean translocation time is a widely
studied metric [15–17]. Magill et al. [18] showed that, for
the special class of MNFDs with periodic geometries featur-
ing small bottlenecks, the long-term dynamics of molecules
driven through the system depend exclusively on the first
and second moments of their first passage times across one
subunit of the device. The ability to focus on a handful of first
passage time moments can greatly simplify the problem of
characterizing and designing MNFDs.

This emphasis on the first few moments of the first passage
time is of particular interest in light of a convenient mathemat-
ical property of the Smoluchowski equation1 that describes
the motion of analytes through MNFDs. For instance, the
dynamics of nanoparticles electrophoretically driven through
a MNFD can be modeled by the Smoluchowski equation as

ρt = ∇ · (D∇ρ − μ �Eρ), (1)

1Note that the Smoluchowski equation is also variously known as
the Kolmogorov forward equation, the Fokker-Planck equation, or
the convection-diffusion equation, with certain names more common
in certain areas of application.

2470-0045/2022/106(2)/025311(17) 025311-1 ©2022 American Physical Society
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FIG. 1. A schematic of electrophoretic sorting of particles by
size in the slit-well device. (a) A weak field causes small particles
(red) to traverse the device more quickly on average. (b) A strong
field causes large particles (blue) to traverse the device more quickly
on average.

where ρ is the position distribution of the particles over space
and time, D and μ are the diffusion and free-solution mobility
coefficients of the particles, and �E is the applied electric field.
In first-passage problems where the domain geometry and
applied fields are time-invariant, Eq. (1) can be integrated
over time to obtain the time-integrated Smoluchowski equa-
tion [19]

−ρ0 = ∇ · (D∇g0 − μ �Eg0), (2)

where ρ0 is the initial condition for ρ. The new field g0 is
defined as

g0(x, y) :=
∫ ∞

0
ρ(x, y, t ) dt . (3)

The integral of g0 in any region is the average residence time
of particles in that region between initialization and absorp-
tion. In particular, it therefore has the property that∫

�

g0 dx = 〈τ 〉, (4)

when � is the entire spatial domain, τ is the stochastic
first passage time of the particles to the absorbing boundary
conditions, and 〈τ 〉 is the mean first passage time (MFPT).
Moreover, this formulation can be extended recursively to
all higher-order moments as well. For instance, the field g1

satisfying

−g0 = ∇ · (D∇g1 − μ �Eg1) (5)

has the property that it integrates over the spatial domain to
yield the second moment of the first passage time. A more
comprehensive discussion of these moment equations can be
found in standard references such as Redner [19].

Since the first few moments of first passage time distri-
butions are so important to MNFD phenomena, it is natural
to wonder whether solving the moment equations directly
might be a useful line of investigation. In practice, however, it
appears that this is rarely done. Redner [19] shows the power

of the moment equations for theoretical analysis of first pas-
sage problems, especially in the purely diffusive regime where
direct analogies with electrostatics can be made. In the context
of MNFDs, Magill et al. [18] showed that measuring g0 ap-
proximately via particle simulations can aid in understanding
the effect of design parameters on system dynamics. Similarly,
Wang et al. [8] analyzed plots of the time-integrated particle
position densities in a periodic model of the slit-well device;
however, these maps were constructed in a manner subtly
different from g0 and in particular do not have the property
of integrating to the MFPT. The authors are unaware of other
studies in which the moment equations are solved numerically
towards the goal of understanding the effect of MNFD design
parameters on first passage time behavior. Moreover, even
though the Smoluchowski equation is also an important math-
ematical model to study first passage time problems outside
biophysics [20–23], we have found no examples in which the
g0 equation (nor any of the higher moment equations) were
studied numerically in applied contexts.

A major barrier to the goal of solving the moments equa-
tions numerically in biophysics is the so-called curse of
dimensionality. That is, for most common numerical methods
for partial differential equations (PDEs), the computational
cost grows exponentially in the dimensionality of the under-
lying domain. Thus, whereas highly effective techniques like
the finite element method (FEM) can be used to solve PDEs
in simple biophysical scenarios, like that of noninteracting
nanoparticles, they fail when applied to the high-dimensional
PDEs describing the dynamics of many-body systems such as
polymers. Indeed, particle-based simulation methods do not
exhibit the curse of dimensionality, and this can be seen as a
major reason for the dominance of particle simulations over
PDE-based calculations in biophysics.

In this work, we investigate a numerical method for PDEs
that does not suffer from the curse of dimensionality. The
technique, which we refer to as the neural network method
(NNM), is inspired by the success of deep learning at solv-
ing high-dimensional problems in machine learning, such as
image processing and natural language processing [24–26]. A
growing body of theoretical and numerical evidence suggests
that it can robustly solve high-dimensional PDEs [27–41]. In
particular, the NNM has already been used to study high-
dimensional problems in biophysics [38].

The NNM has also been shown to solve parametrized prob-
lems directly across a continuous range of parameter values
[28,42]. As the number of parameters increases, the problem
of solving a highly parametrized PDE can exhibit yet another
curse of dimensionality. Because the neural network method
shares information across parameter space, it is also able to
overcome this computational challenge [43–45].

Note that parametrized solutions to PDEs typically can-
not be obtained using the FEM, particle simulations, or
similar methods. Rather, this goal is usually accomplished
using reduced order modeling (ROM) techniques [46,47].
ROM methods typically interpolate between a relatively small
number of high-fidelity solutions computed at a handful of
reference points in parameter space in order to approximate
solutions at new points in parameter space. Whereas most
classical ROM methods interpolate to new parameter choices
via a linear combination of the reference solutions, the NNM
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FIG. 2. Schematic of a single periodic subunit of the slit-well device to illustrate passage time models used in this study. (a) Particles are
initialized in the left slit (blue particles), confined in the device via a WCA potential on gray walls, undergo Brownian dynamics in the yellow
interior (trajectories denoted by black lines) until escaping device at the purple boundary. Dotted line denotes the region of the interior that
cannot be occupied by the center of mass of particles. (b) A PDE model of the escape process where the solution ρ satisfies the Smoluchowski
equation in the yellow interior. The initial Gaussian band source is located in the left slit, an absorbing boundary in the right slit (purple), and
no flux conditions applied on gray walls that move inward to the dotted line to model particle size. (c) A PDE model of the escape process
where the solution g0 satisfies the g0 equation (first moment) in the yellow interior region. An absorbing boundary is applied at the right slit
wall (purple), and no flux conditions are applied on gray boundaries which move inward to the dotted line to model particle size..

is intrinsically nonlinear. Other nonlinear ROMs based on
deep neural networks have been proposed in the literature
[48–52]. However, these methods require that a database of
FEM or other classical solutions be computed prior to train-
ing, whereas the NNM simultaneously solves the target PDE
and acts as a ROM method over parameter space. In addition,
dealing with parameters that modify the domain geometry
using classical reduced-order methods can be challenging
because these are typically constructed using mesh-based
approaches. Although special ROMs can be developed for
geometric parameters in some cases [53–55], the mesh-free
nature of the NNM is intrinsically advantageous for this ap-
plication [42,56].

II. PROBLEM DESCRIPTION

The primary goal of this paper is to study the effectiveness
of the NNM as a tool for solving the g0 equation in MNFDs by
focusing on a sufficiently complicated representative device,
as shown in Fig. 2. The specific problem under consideration
is as follows: for an ensemble of noninteracting thermal par-
ticles initially located in the left slit of one periodic subunit
of the slit-well device, compute the MFPT of these particles
to the right slit. Here, the particles are driven by an electric
field �E = λ �E0 for a field strength constant λ and a baseline
electric field �E0. The baseline electric field is a solution to
Laplace’s equation for a voltage drop of 2 V across the do-
main. It was obtained using the NNM in the manner described
in Magill et al. [57], and plots of �E0 are included here in
Appendix B. The particles represent nanoparticles with diam-
eters σ , diffusion coefficients D, and free-solution mobilities
μ. The nanoparticles are assumed to be free-draining, with μ

independent of σ , so that separation by size would not occur in
free solution. Conversely, the diffusion coefficient is assumed
to emerge from Stokes’ law and the fluctuation-dissipation

theorem, so that D ∝ σ−1. For simplicity, these behaviors are
implemented as μ = 1 and D = σ−1. The g0 equation is thus
reduced to

F [g0] ≡ ∇ ·
(

1

σ
∇g0 − λ �E0g0

)
+ ρ0 = 0, (6)

where the particle size σ and field strength λ are the two free
parameters, and �E0 is the reference electric field.

The problem geometry is shown in Fig. 2 along with
depictions of the particle-based, Smoluchowski, and g0 rep-
resentations of the problem. The domain is meant to represent
a single periodic subunit of the slit-well device illustrated in
Fig. 1. In the particle-based model of the problem [Fig. 2(a)],
an ensemble of noninteracting nanoparticles are initially lo-
cated in the left slit, and then these particles proceed to move
under a combination of thermal diffusion and electrophoretic
drift until reaching the far right purple wall in the right slit.
In the Smoluchowski model [Fig. 2(b)], individual particles
are eschewed, and the time evolution of the entire distri-
bution of particle positions is modeled instead. Here, the
initial position of particles is modeled by the initial condition
ρ0(x; σ ), located in the left slit. Finally, in the g0 equa-
tion [Fig. 2(c)], the time-dependence of the Smoluchowski is
accounted for implicitly by integration over all time. Here, the
initial condition ρ0(x; σ ) now appears as a source term in the
(time-independent) PDE.

In each schematic of Fig. 2, the gray regions represent
physical walls. These were modeled as short-range repulsive
boundaries (in the particle model; see Appendix A) or no-flux
boundary conditions in the continuum models [equations de-
fined in the legends of Figs. 2(b) and 2(c)]. As a result
of excluded volume interactions, the particle centers cannot
come closer than a distance of roughly σ/2 from the repulsive
boundaries. This exclusion zone is depicted by the dashed
black line in Fig. 2. To model this in the continuum models,
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the no-flux boundary conditions are applied at the boundary
of the exclusion zone (i.e., along the dotted black lines in
Fig. 2), rather than at the nominal boundaries (i.e., along the
gray walls in Fig. 2).

The nominal dimensions of the domain �0 are the same as
those described in Magill et al. [57]. In particular, the topmost
and bottommost walls are a distance 2Ly = 6.25 apart, the
leftmost and rightmost boundaries are 2Lx = 10 apart, and
the curvature of the re-entrant corners is set to R = 1 (see
below). The total horizontal lengths of the slits and the well
were set equal, to Lx, and the slits were given a height of
hslit = Lx/4 = 1.25.

As discussed in Magill et al. [57], the standard formu-
lation of the NNM struggles to solve problems exhibiting
singularities. For this reason, the re-entrant corners of the
slit-well device geometry have been rounded (i.e., represented
by circular arcs of finite curvature). Similarly, the NNM was
found to perform poorly when the initial distribution of par-
ticles was too sharp. Instead, particles were initialized in a
Gaussian band in the left slit, given by uniform distribution in
y multiplied by a Gaussian distribution in x:

ρ0 = 1√
2πrshslit

exp

(−(x − xs)2

2r2
s

)
. (7)

Here rs = 0.25 is the width of the Gaussian band in the x
direction, hslit = Ly − yslit − σ is the height of the band in
the y direction, and xs = −Lx + 1 is the center of the band.
Technically, ρ0 requires a correction factor to be properly
normalized over this bounded domain, as the Gaussian dis-
tribution in x is normalized over the entire real line, but the
discrepancy is numerically insignificant.

The first passage time of the particles is computed when
their centers cross the rightmost boundary of the domain for
the first time (purple in Fig. 2). In the continuum models,
this is represented by an absorbing boundary condition (i.e.,
a homogeneous Dirichlet condition). Physically, this bound-
ary corresponds to the interface between consecutive periodic
subunits of the slit-well, and not to a physical wall. As such, in
contrast to the no-flux boundary condition on the gray walls,
the placement of the absorbing boundary does not depend
on σ .

As a simplifying assumption, particles were prevented
from moving through the leftmost boundary of the domain.
Mathematically, this was imposed by a no-flux boundary con-
dition. Physically, this corresponds to the synthetic condition
that particles cannot move against the direction of the imposed
electric field into the previous periodic subunit of the slit-well;
we will refer to this as the no-backflow condition. The location
of this no-backflow boundary condition was fixed indepen-
dently of σ .

Of course, in the actual slit-well device there is always a
nonzero probability of particle backflow. The simplification
was made here because it allows the g0 equation to be posed
in a much simpler domain (i.e., a single periodic subunit).
However, as a result of this modeling choice, there will be
discrepancies between the MFPT results reported in this paper
and the results of previous studies of the slit-well device (such
as Cheng et al. [7] and Wang et al. [8]), especially at low
electric field strengths. Nevertheless, as the results in Sec. IV

will indicate, the major features of the slit-well system are
preserved despite the no-backflow condition. Furthermore, the
simplified model still contains several mathematical features
that are expected to be common to many MNFDs and par-
ticularly difficult for the NNM to resolve: re-entrant corners,
a nonuniform electric field, and nontrivial dependence on
physical and geometric problem parameters. As stated above,
the purpose of this paper is to study the performance of the
NNM when solving a problem with the characteristic features
of a typical MNFD problem. Certain features, such as the
highly skewed geometry of the fully periodic slit-well and the
singularities associated with the fully sharp re-entrant corners,
are more technically challenging and relegated to future work.

III. METHODOLOGY

A. Neural network method

The NNM implementation used for this work was similar
to that previously described by Magill et al. [57]. In the fixed
parameter experiments (Sec. IV B 1), the true solution g0(x)
of the g0 equation [Eq. (6)] was approximated by a deep neural
network g̃0(x) trained to minimize a composite loss functional

L = LPDE + LBC + Lnorm. (8)

The first loss term consisted of

LPDE[g̃0] =
∫

�

(F [g̃0])2dA, (9)

where F is the operator in the g0 equation [Eq. (6)]. Thus,
LPDE[g̃0] quantifies the extent to which g̃0 satisfied the g0

equation [Eq. (6)] throughout the domain �. Note that, as
discussed in Sec. II, � depends on σ . The second loss term
was defined as

LBC[g̃0] =
∫

∂�

(B[g̃0])2ds, (10)

where B[g̃0] defines no-flux or absorbing boundary conditions
(BCs), as appropriate, on each part of the boundary of the
domain [see Fig. 2(c)]. Thus, LBC[g̃0] quantifies the extent to
which g̃0 satisfied the BCs over the domain boundary ∂�.

The final term was given by

Lnorm[g̃0] =
[∫

�

(F [g̃0])dA

]2

. (11)

Similarly to LPDE, the last loss term Lnorm quantifies the extent
to which the approximate solution satisfies the PDE inside the
domain �. However, whereas LPDE is a local measure of the
residual of Eq. (6), Lnorm is a global measure. Specifically,
LPDE is the mean of the squared residual, while LPDE is the
square of the mean residual. In theory, Lnorm is a redundant
loss term and simply setting LPDE to zero is sufficient to
ensure that g̃0 satisfies the g0 equation [Eq. (6)]. In practice,
however, training without Lnorm was found to produce approx-
imate solutions that captured the shape of the true solution
fairly accurately, but struggled to converge on the correct
magnitude (i.e., differed from the true solution by a small
multiplicative factor).

We note that our use of Lnorm is similar to the normal-
ization process used by Al-Aradi et al. [58] in solving the
time-dependent Smoluchowski equation. The use of Lnorm
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can also be contrasted with previous work by Avrutskiy [59].
There, Avrutskiy [59] showed benefits to adding redundant
loss terms that encourage the solution to satisfy the derivative
of the PDE operator F ′ = 0 over the spatial domain. Here,
the term Lnorm is a redundant loss term that encourages g̃0

to agree with the integral of the PDE operator F over the
spatial domain �. These additional loss terms can be thought
of as soft constraints on the training process, or equivalently
as regularization terms constructed out of prior knowledge of
the target problem.

In Secs. IV B 2–IV B 4, the neural network was par-
ametrized with respect to field strength λ, particle size σ , or
both. Thus, the loss terms were redefined as

LPDE[g̃0] =
〈∫

�σ

(Fλ,σ [g̃0])2dA

〉
λ,σ

, (12)

LBC[g̃0] =
〈∫

∂�σ

(Bλ,σ [g̃0])2ds

〉
λ,σ

, (13)

Lnorm[g̃0] =
〈[∫

�σ

(Fλ,σ [g̃0])dA

]2〉
λ,σ

. (14)

The notations �σ , Fλ,σ , and Bλ,σ indicate that the domain
changes with σ , and the PDE and BC operators change with
both λ and σ . The angled brackets indicate averages over
the parameter values. In other words, the loss used for the
parametrized neural networks is identical to that used for
the fixed parameter experiments, with the additional step of
averaging the loss over parameter space.

Note that the electric field �E was obtained by computing
the electric potential u using the NNM methodology of Magill
et al. [57]. Of course, this is not strictly necessary because u
could just as easily be approximated by some other method
(e.g., FEM). However, the intention was to illustrate the ease
with which previously computed NNM solutions can be fed
into the loss functional of new NNM solutions. A contour plot
illustrating both u and �E is included in Appendix B (Fig. 7).
Note that the electric potential is defined on the nominal
domain �0 corresponding to σ = 0, which differs from the
actual domain � on which g0 is defined.

All of the NNM experiments in this work were conducted
with fully connected feedforward neural networks of depth
d = 3 and width w = 50. The hyperbolic tangent was used
for activation functions in the hidden layers, while the out-
put layer was linear. To solve the nonparametrized problems
(Sec. IV B 1), the approximate solution g̃0 was constructed
as

g̃0(x) = fd+1 ◦ fd ◦ · · · ◦ f1(x), (15)

with

f1(x) = tanh (W1x + b1), (16)

fi(x) = tanh (Wi fi−1(x) + bi ), i = 2, . . . , d, (17)

fd+1(x) = Wd+1 fd (x) + bd+1, (18)

where W1 ∈ Rw×2, Wi ∈ Rw×w for i = 2, . . . , d , and Wd+1 ∈
R1×w are the network’s weight matrices, while bi ∈ Rw for
i = 1, . . . , d , and bd+1 ∈ R are its biases.

FIG. 3. Fully connected feedforward neural network of width
w and depth d mapping coordinates (x, y) and problem parameters
(λ, σ ) to an output g̃0(x, y; λ, σ ). At each node, a weighted sum of
the incoming arrows and a bias is computed and passed through an
activation function. The network’s parameters are optimized such
that g̃0(x, y; λ, σ ) approximately satisfies the target PDE and BCs.

The experiments in Secs. IV B 2–IV B 4 considered
parametrized neural networks, where one or both of the prob-
lem parameters λ and σ were included as additional inputs to
the network. In these cases, the networks were defined as

g̃0(x; m) = fd+1 ◦ fd ◦ · · · ◦ f1(x; m), (19)

with fi defined as before for i = 2, . . . , d + 1, but with f1

adjusted to

f1(x) = tanh
(
W (x)

1 x + W (m)
1 m + b1

)
, (20)

where W (x)
1 ∈ Rw×2 and W (m)

1 ∈ Rw×m, where m is the length
of the parameter vector m. In other words, the parameters
(λ or σ or both) were concatenated to the end of the input
vector of the network, and the weight matrices were adjusted
accordingly. This is illustrated schematically in Fig. 3. The
same approach was used by Sirignano and Spiliopoulos [28]
and Hennigh et al. [42] but can be contrasted with the recently
proposed DeepONet architecture of Lu et al. [60].

Training was conducted in TENSORFLOW [61] version 1.15
with all unspecified hyperparameters set to their default val-
ues. The weights were initialized using the Glorot method
[62], and biases were initialized to zero. Weights were iter-
atively updated using the Adam optimizer [63] to minimize L
with the learning rate set to 10−3 in Sec. IV B 1, and to 10−4 in
Secs. IV B 2–IV B 4. In each iteration, the integrals in L were
approximated by Monte Carlo sampling using the same pro-
cedure described in Magill et al. [57]. Specifically, rejection
sampling was applied to 10 000 nominal samples generated
in the bounding box [−5, 5] × [−3.125, 3.125], and each
smooth subunit of the boundary was randomly sampled with
a linear density of about 13 points per unit length. For the
parametrized network experiments (Secs. IV B 2–IV B 4),
the relevant problem parameters were also sampled randomly
in each training iteration. These samples were generated uni-
formly at random, with λ drawn from [5,50] and σ drawn
from [0.125,0.625]. In particular, it was necessary to sample
the parameter σ before sampling points in �, since the extent
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of � varies with σ . One random parameter vector was drawn
per training iteration.

The testing loss was evaluated every 1000 training itera-
tions, using ten times more samples than during a training
step. In the parametrized network experiments (Secs. IV B 2–
IV B 4), the testing loss was averaged across 100 random
parameter vectors. Training was continued for a fixed num-
ber of iterations (600 000 epochs for the fixed parameter
experiments, and 30 000 000 epochs for the parametrized
network experiments). The final network was taken as that
which achieved the lowest testing loss across all iterations.

B. Finite element method

The MFPT problem in the slit-well domain cannot be
solved exactly in closed form due to the complex nature of
the geometry. Instead, approximate ground truth solutions to
the problem were obtained using the finite element method
(FEM). Following Magill et al. [57], the problem for g0 was
solved using a mixed FEM formulation implemented in FEn-
iCS [64]. The electric field �E included in the PDE [Eq. (6)]
was obtained by also approximating the electric potential u by
a mixed FEM formulation. As stated above, u is defined on
the nominal domain �0, whereas g0 is defined on a smaller
domain depending on σ . Thus, for the FEM solutions it was
necessary to first solve u and �E on a discretization of �0,
project �E onto a discretization of the appropriate �, and then
define the variational problem for g0 on �.

The mesh decomposition of the domain was conducted
using the MSHR package in FENICS. The resolution parameter
was set to 200, and the re-entrant corners were approximated
linearly by 400 segments each. The same mesh parameters
were used for all values of σ , and for the nominal domain,
�0, on which u was solved.

IV. RESULTS

This section details results obtained using the NNM to
solve the g0 equation modeling the MFPT of nanoparticles
driven through the slit-well device (described in Sec. II). The
focus throughout is on the relationship between key problem
parameters and observables of physical interest, where g0 acts
as a proxy between the two. The first observable of interest
is, naturally, the mean first passage time 〈τ 〉. As described in
Eq. (4), 〈τ 〉 can be obtained by integrating g0 over the domain
�. Throughout this paper, the integration of g0 to estimate
〈τ 〉 is accomplished using the same Monte Carlo procedure
described for LPDE in Sec. III.

In practice, an observable of greater interest than the mean
first passage time itself is the net electrophoretic mobility
of the nanoparticles through the slit-well device over long
timescales [7,8]. In particular, the electrophoretic mobility is
typically defined as

μelectro := lim
t→∞

〈x〉t

Ect
, (21)

where 〈x〉t is the ensemble average of the x position at time
t , and Ec is a characteristic scale for the applied electric-field
strength. It is not clear whether μelectro can be inferred directly
from the g0 problem being solved here. Instead, the present

paper will investigate a similar observable of interest, which
will be called the effective mobility

μeff := L0/〈τ 〉
Ec

= 1

λ〈τ 〉 , (22)

where L0 is the mean horizontal distance from ρ0 to the
absorbing wall. The characteristic field strength is chosen of
the form Ec = Vc/Lc, where Vc is a characteristic voltage drop
and Lc is a characteristic length scale. Since the overall voltage
drop across the system is of order one and proportional to the
field strength λ, we choose Vc = λ. For numerical simplicity,
we also choose Lc = L0, thus obtaining the final equality in
Eq. (22). The effective mobility is expected to exhibit similar
features to the electrophoretic mobility because both consist
of characteristic particle velocities divided by characteristic
electric-field strengths. A comprehensive exploration of the
relationship between the two mobility definitions is left to
future work.

A. Characteristics of g0

Figure 4 shows contour plots of g0 solutions computed
using the NNM, with the corresponding estimates of 〈τ 〉 and
μeff shown in the legends. The four subplots correspond to
the four essential parameter regimes alluded to in Fig. 1. Note
that the magnitude of the color scale varies across the four
subplots.

First, consider the solution of g0 in Fig. 4(a) corresponding
to small particles (σ = 0.125) driven by a weak field (λ =
5.0). Here, g0 has a maximum in the left slit near the peak of
the initial particle distribution ρ0. Naturally, since the particle
positions are initialized according to ρ0, the average residence
time in that region is relatively high; this feature is common
to all four subplots in Fig. 4. Outside the left slit, g0 decreases
nearly monotonically from left to right, eventually reaching a
value of zero on the absorbing boundary. The shape of this
function is nearly visually indistinguishable from the solution
with σ = 0.125 and λ = 0 (not shown) and is characteristic
of predominantly diffusive dynamics in all regions of the
domain.

Figure 4(b) again shows g0 for small particles (σ = 0.125),
but now driven by a much stronger field (λ = 50.0). In con-
trast with the monotonically decreasing solution in Fig. 4(a),
in this scenario g0 is relatively constant throughout most of
the domain until a boundary layer near the absorber. In fact,
here g0 even exhibits some minor nonmonotonic features: a
shadow is evident in the bottom-left of the well, and a local
maximum is attained at the entrance to the right slit. Drift
and diffusion effects are relatively balanced in this case, with
the uniformity in x reflecting strongly driven motion in the
horizontal direction, and the uniformity in y reflecting rapid
diffusion in the vertical direction.

Figure 4(c) shows g0 for large particles (σ = 0.625) driven
by a weak field (λ = 5.0). Notice that the walls of the domain
are shifted inward by 0.5σ , reflecting the reduced area that
can be occupied by the center of mass of larger particles
(Sec. II). In this scenario, the smaller diffusion coefficient of
the larger particles balances the weaker field, resulting in a
solution that more closely resembles that in Fig. 4(b) than
that in Fig. 4(a). However, the solution in Fig. 4(c) is visibly
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(a) (b) (c) (d)

FIG. 4. NNM solutions to the g0 equation subject to (a) a small particle size and a weak electric field, (b) a small particle size and a strong
electric field, (c) a large particle size and a weak electric field, and (d) a large particle size and a strong electric field.

increasing from left to right across the well, in contrast with
both the solutions in Figs. 4(a) and 4(b). As was the case in
Fig. 4(b), drift and diffusion are of comparable importance;
the differences between the two solutions are primarily due to
the modifications to the domain geometry.

Finally, Fig. 4(d) shows g0 computed for large particles
(σ = 0.625) subject to a strong electric field (λ = 50.0). Here,
the shape of the solution differs significantly from those in
all of Figs. 4(a)–4(c). In Fig. 4(d), g0 takes on very small
values throughout the entire well, and decreases substantially
from the top of the well to its bottom. The combination of
the low diffusion coefficient and the very strong driving force
causes the large particles to remain primarily streamlined in
the upper region of the well as they move rapidly from ρ0 to
the absorber.

The MFPTs 〈τ 〉 and effective mobilities μeff in the four
scenarios of Fig. 4 are consistent with the expected sorting
mechanisms in each regime [7]. When the field is strong,
smaller particles have a larger 〈τ 〉 and lower μeff than larger
particles. The converse is true at weak fields.

Future work should explore the relationship of g0, 〈τ 〉, and
μeff with standard explanations for these phenomena, such as
the entrance effect [7,65]. The purpose of the discussion in
this section was to illustrate the variety of complicated be-
havior that arise in g0 solutions across the different physically
meaningful parameter regimes in the slit-well. In Sec. IV B,
parametrized NNM solutions will be trained to interpolate
nonlinearly between all four solutions in Fig. 4. Ultimately,
in Sec. IV B 4 this will yield continuously differentiable
mappings between both problem parameters λ and σ and both
key physical observables 〈τ 〉 and μeff , thereby capturing the
entirety of this rich sorting mechanism in a single numerical
solution.

B. Benchmarking the neural network method against the finite
element method

In this section, g0 will be leveraged as a proxy for the
calculation of the metrics 〈τ 〉 and μeff . In practice, it is
common in MNFD research and development (and scientific
research more broadly) to study how such key metrics change
in response to variations in the system parameters. The sim-
plest approach to characterizing this variation is to compute
or measure the metrics independently for a large number of
parameter choices. In Sec. IV B 1, the NNM is applied to

precisely this task of calculating 〈τ 〉 and μeff for many com-
binations of particle size σ and field strength λ.

The above approach, however, requires repeated calcu-
lation of the key metrics which can be expensive when
considering many independent parameters. As discussed in
Sec. I, the NNM can be leveraged to solve such parametrized
problems directly across continuous ranges of parameter val-
ues. The high-dimensional function g0(x, y; λ, σ ) implicitly
encodes 〈τ 〉 and μeff as continuously differentiable functions
of σ and λ. The NNM is used to approximate this function
directly in Secs. IV B 2–IV B 4, for g0 solutions parametrized
directly by λ, σ , or both simultaneously.

Throughout Sec. IV B, four quantities are used to charac-
terize the performance of the NNM across parameter space.
These quantities are all plotted in Fig. 5, with each column
corresponding to one of the four NNM formulations discussed
above. Naturally, both the MFPT 〈τ 〉 and the effective mobil-
ity μeff are included in the analysis. These are plotted in the
first two rows [Figs. 5(a)–5(d) and 5(e)–5(h)], respectively,
alongside the reference values computed using FEM. The
NNM results are indicated by lines, and the corresponding
FEM results are included as stars. Dotted lines in Figs. 5(a)
and 5(e) connect values that are only computed at discrete
parameter choices, whereas solid lines used everywhere else
indicate values that are computed over continuous parameter
ranges.

Next, in order to quantify the accuracy of the 〈τ 〉 values
obtained via the NNM, the relative error ε with respect to
the ground truth FEM solution is computed. Specifically, ε

is defined as the relative error of 〈τ 〉 with respect to 〈τ 〉FEM,
i.e.,

ε = |〈τ 〉 − 〈τ 〉FEM|
〈τ 〉FEM

, (23)

where 〈τ 〉 and 〈τ 〉FEM are the MFPTs computed by the NNM
and FEM, respectively. The relative errors ε are plotted in
Figs. 5(i)–5(l). Here, circular markers indicate the discrete
parameter choices at which ε was computed. Additionally,
the plots in Figs. 5(i)–5(l) contain a dotted black line at 10−2,
corresponding to a relative error of 1%. This is representative
of a relative error threshold that is typically attainable and
acceptable in MNFD research. Indeed, Appendix A describes
standard particle simulations that were used to approximate
〈τ 〉 with relative errors comparable to or below 1% for all
choices of parameters λ and σ .
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FIG. 5. Analysis of g0 solutions computed using the NNM. Mean first passage times 〈τ 〉 for the NNM (a) with fixed parameters, and
parametrized by (b) λ, (c) σ , and (d) both λ and σ . Star markers denote values obtained using the FEM, and insets display behavior at high
field strengths. Effective mobilities μeff for the NNM (e) with fixed parameters, and parametrized by (f) λ, (g) σ , and (h) both λ and σ . Star
markers denote values obtained using FEM, and insets zoom in on the minimum of the curves. Relative errors ε computed against the FEM
for the NNM (i) with fixed parameters, and parametrized by (j) λ, (k) σ , and (l) both λ and σ . Dotted black line denotes 1% error baseline
computed by particle simulations. (m) Testing loss of the NNM with fixed parameters, and marginal loss of the NNM parametrized by (n) λ,
(o) σ , and (p) both λ and σ .

The final quantity included in the analysis is similar to
the loss functional L used during the NNM training pro-
cess [Eq. (9)]. However, the total loss provides only a single
characterization of a network’s performance over its entire
domain. When the NNM was used to solve parametrized
g0 problems, it was valuable to evaluate the relative per-
formance of these solutions at different points in parameter
space. To this end, we defined the marginal loss L(g0|λ, σ ), a
parameter-dependent generalization of the total loss. As with
the true loss, L(g0|λ, σ ) is the sum of the L2 norms of the
PDE-, BC-, and norm-based residuals. However, whereas the
total loss averages these quantities over all choices of λ and/or
σ [Eqs. (12)–(14)], the corresponding terms in L(g0|λ, σ )
were instead treated as functions of λ and σ . In the case of
nonparametrized NNM solutions, the marginal loss definition
simply reduces to the original total loss.

The marginal losses are plotted in Figs. 5(m)–5(p). The
values in Fig. 5(m) correspond to NNM solutions trained at
fixed parameter choices and are thus indicated by discrete cir-
cular markers. Conversely, since L(g0|λ, σ ) can be evaluated
continuously for parametrized solutions, the corresponding

marginal loss values shown in Figs. 5(n)–5(p) are indi-
cated by solid lines sampled finely throughout the parameter
space.

1. Neural network method with fixed parameters

This section contains a discussion of the results in
Figs. 5(a), 5(e), 5(i), and 5(m). Here, the NNM was applied
repeatedly to solving the g0 equation for fixed choices of the
problem parameters: field strength λ and particle size σ . This
NNM formulation is the same as the one used in Sec. IV A but
is now applied to many more choices of the problem param-
eters. Specifically, the results are shown for ten choices of λ

uniformly spaced from 5 to 50 and five choices of σ uniformly
spaced from 0.125 to 0.625, with a distinct neural network
used to approximate g0 for each parameter combination.

For small values of λ in Fig. 5(a), 〈τ 〉 is monotonically
increasing with σ , and for large values of λ (see the inset) the
opposite is true. Moreover, the finer sampling of parameter
space resolves new features that were not clear from examin-
ing only the four samples in Sec. IV A. For instance, Fig. 5(a)
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shows that 〈τ 〉 decreases monotonically with λ for each choice
of σ . In addition, the dependence of 〈τ 〉 on σ is much stronger
at low field strengths.

The same sorting behavior can be viewed from a different
perspective via μeff in Fig. 5(e). In addition, the crossover in
sorting order around λ ≈ 25 is better resolved by μeff than
〈τ 〉. Indeed, in Fig. 5(e) it is clear that there is no single value
of λ for which 〈τ 〉 and μeff are entirely independent of σ . Of
course, the results discussed above for 〈τ 〉 and μeff are not
novel because they are consistent with published results on
the slit-well device (see, e.g., Cheng et al. [7]). Rather, the
purpose of this discussion is to illustrate two points: first, that
valuable information can be extracted by studying the varia-
tion of key output metrics (here, 〈τ 〉 and μeff) as functions of
the key input parameters (here, λ and σ ) and, second, that the
physical problem being studied in this paper (Sec. II) indeed
captures essentially the same physical mechanisms expected
for the actual slit-well system.

Before considering the benefits of the more ambitious
parametrized NNM formulations, it is important to assess how
accurately the NNM resolves 〈τ 〉 and μeff when applied to the
simpler task of solving g0 at a single point in parameter space.
The accuracy is quantified in Fig. 5(i), which shows ε, the
relative error in 〈τ 〉. In this plot, it appears that ε is roughly
independent of both σ and λ, suggesting that the current
implementation of the NNM is fairly robust throughout the
problem parameter space. This is corroborated by the testing
losses L(g0|λ, σ ) plotted in Fig. 5(m), which are also roughly
independent of the problem parameters. Most importantly,
for all choices of parameters λ and σ in Fig. 5(i), ε is well
below the 1% error threshold indicated by the black line. In
other words, the NNM is at least as effective at resolving
〈τ 〉 as the Brownian dynamics particle simulations included
in Appendix A.

2. Neural network method parameterized by field strength

Whereas in Sec. IV B 1, 50 networks where used to obtain
50 different g0 solutions, which were then integrated over their
respective domains to produce 50 different 〈τ 〉 measurements,
in this section only five networks are utilized to accomplish
the same goal. Each of these five networks solves g0(x, y; λ)
for λ ∈ [5, 50] at a fixed choice of σ . As in Sec. IV B 1, the
metrics 〈τ 〉, μeff , ε, and L(g0|λ, σ ) are computed from the
solutions; these are plotted in Figs. 5(b), 5(f), 5(j), and 5(n),
respectively. Comparing Figs. 5(b) with 5(a) and Fig. 5(f) with
5(e), it is clear that the NNM formulation parametrized by
λ recovers the same results previously obtained by solving
g0 independently for many different parameter choices in
Sec. IV B 1.

One advantage of the parametrized NNM formulation is
evident in the inset of Fig. 5(f). For each choice of σ , there
is a λ value for which μeff is minimal. When computing μeff

only at discrete choices of the parameters [as in Fig. 5(e)], the
exact location of these minima is not clear. Instead, the results
in Fig. 5(f) illustrate that the parametrized NNM formulation
naturally resolves the existence of local minima, since the
solution is trained continuously for all parameter values in
the training domain. The benefit of continuous mappings from
problem parameters to key output metrics becomes more valu-

able as dimensionality of parameter space is increased (e.g., as
explored in Sec. IV B 4).

The relative error ε and marginal loss L(g0|λ, σ ) in
Figs. 5(j) and 5(n) quantify the accuracy of the g0(x, y; λ)
solution. Here, both ε and L(g0|λ, σ ) are highest at the bound-
aries of the λ training range and fairly uniform throughout the
majority of the interior of the training range. In particular, both
are highest at the left boundary, λ = 5. This relationship be-
tween error and loss is similar to those studied in Magill et al.
[57] and provide further justification for using the (marginal)
loss as an a posteriori method for gauging the reliability of
NNM solutions.

The deterioration in performance seen in Figs. 5(j) and
5(n) at the boundaries of the λ training range can likely be
attributed to the uniform Monte Carlo sampling of λ during
training. The exact endpoints have very low probabilities of
being sampled directly; moreover, their neighborhoods are
only sampled on one side, whereas the neighborhoods of
points nearer to the middle of the λ training range are sampled
thoroughly on both sides. This could effectively lead to an
under-representation of the behavior near the endpoints in
the training loss. Characterizing this tentative mechanism is
beyond the scope of the present work.

Overall, only three of the 50 relative errors in Fig. 5(j)
slightly exceed the 1% error threshold. Thus, the implementa-
tion of the parametrized NNM studied in this section meets the
standard of accuracy typically attained by Brownian dynamics
(BD) simulations. In the regions of parameter space where
the relative error was not measured directly, the marginal
loss [Fig. 5(n)] provides an a posteriori estimate of the error,
suggesting that the NNM’s performance is excellent except
for λ values very close to the boundaries of the training range.
Altogether, these results demonstrate that the NNM is a fea-
sible technique for solving the g0 problem over a continuous
range of field strengths. Moreover, using g0 as a proxy for 〈τ 〉
and μeff enables the NNM to resolve the behavior of these key
output metrics continuously over the target parameter range.

3. Neural network method parameterized by particle size

To expand upon the unique strengths of the NNM, this
section will consider the problem of solving g0 as a function
of the particle size σ . Here, since the diffusion coefficient is
being modeled as D = σ−1, the terms of the g0 PDE depend
directly on the parameter σ , just as they depend directly on
λ. However, the location of the boundaries of the slit-well
domain also depend explicitly on the parameter σ (Sec. II).
Thus, whereas λ only modified the PDE terms, σ modifies
both the PDE terms and the domain geometry. As described
in Sec. I, it is challenging for classical reduced-order methods
to deal with parametrized domain geometries. However, this
section will demonstrate that the NNM can handle geometry-
modifying parameters (σ ) just as easily as parameters that do
not modify the domain geometry (λ).

Once again, the MFPT 〈τ 〉, effective mobility μeff , relative
error ε, and marginal loss L(g0|λ, σ ) are computed from the
NNM solutions and plotted in Figs. 5(c), 5(g), 5(k), and 5(o),
respectively. Whereas the results in Figs. 5(a), 5(e), 5(i), and
5(m) and Figs. 5(b), 5(f), 5(j), and 5(n) for Secs. IV B 1–
IV B 2 were solved and plotted as functions of λ, the results
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for this section are presented as functions of σ . Specifically,
each curve in Figs. 5(c), 5(g), 5(k), and 5(o) represents a single
neural network trained over the range σ ∈ [0.125, 0.625] at a
fixed choice of λ [indicated by the legend in Fig. 5(o)].

The 〈τ 〉 and μeff measurements in Figs. 5(c) and 5(g)
indicate that the NNM parametrized by σ recovers the same
physical properties observed for the NNM with fixed pa-
rameters (Sec. IV B 1) and the NNM parametrized by λ

(Sec. IV B 2). For the 〈τ 〉 measurements in Fig. 5(c), the λ =
5.0 curve is monotonically increasing whereas the λ = 50.0
curve (enhanced in the inset) is monotonically decreasing.
This implies that small particles have a lower MFPT at low
field strengths, and large particles have a lower MFPT at
high field strengths. Likewise, the λ = 5.0 curve for μeff in
Fig. 5(g) indicates that small particles are more mobile at low
field strengths, whereas the λ = 50.0 curve indicates that large
particles are more mobile at high field strengths.

Visual comparison of the NNM results (solid lines) to
the ground-truth FEM results (stars) in Figs. 5(c) and 5(g)
suggests good agreement between the two through most of
the parameter space. However, the effective mobilities com-
puted by the NNM in Fig. 5(g) deviate noticeably from the
FEM results at the left endpoint σ = 0.125. Accordingly, the
relative errors and marginal losses plotted in Figs. 5(k) and
5(o) are also highest at σ = 0.125. In fact, ε and L(g0|λ, σ )
of the NNM solutions parametrized by σ [Figs. 5(k) and 5(o)]
exhibit the same structure previously identified (Sec. IV B 2)
in ε and L(g0|λ, σ ) of the NNM solutions parametrized by
λ [Figs. 5(j) and 5(n)]. That is, ε and L(g0|λ, σ ) are roughly
uniform for intermediate values of σ but increase sharply near
the boundaries of the training domain. In particular, ε and
L(g0|λ, σ ) are consistently higher at the low-σ endpoint than
at the high-σ endpoint.

Overall, the relative error in Fig. 5(k) is well below the
1% error threshold for most of the training range. As was the
case in Sec. IV B 2, at the few points where relative error
exceeds 1%, it only does so by a small amount. The marginal
loss continues to behave as an a posteriori measure of solution
accuracy and suggests that the regions of high relative error
are once again concentrated near the endpoints of the training
range. Despite the fact that parameter σ directly changes the
domain geometry in addition to modifying the terms of the
PDE, the performance measured in this section is essentially
the same as that reported in Sec. IV B 2, where the NNM
was parametrized by the simpler parameter λ. Thus, it appears
that the NNM can handle geometry-modifying parameters just
as easily as parameters that do not modify domain geometry.
This is particularly interesting given the difficulty of treating
parametrized geometries with other reduced-order modeling
techniques.

4. Neural network method parameterized by field strength
and particle size

The results shown so far have established that the NNM
can robustly solve the g0 equation in the slit-well MNFD
(Sec. IV B 1), and that the method can easily be ex-
tended to produce solutions parametrized by field strength λ

(Sec. IV B 2) or particle size σ (Sec. IV B 3). Expanding upon
this capability, in this section the NNM is used to approximate

g0 as a function of both λ and σ simultaneously (Fig. 3).
Specifically, a single neural network is trained to approx-
imate the four-dimensional function g0(x, y; λ, σ ) over the
same parameter space previously spanned by five networks
in Secs. IV B 2 and IV B 3 or 50 networks in Sec. IV B 1.

The MFPT 〈τ 〉, effective mobility μeff , relative error ε,
and marginal loss L(g0|λ, σ ) are computed from the NNM
solution g0(x, y; λ, σ ) and plotted in Figs. 5(d), 5(h), 5(l), and
5(p). The lines are shown as functions of σ and evaluated
at the same choices of λ used in Sec. IV B 3 [indicated by
the legend in Fig. 5(o)]. The 〈τ 〉 and μeff values plotted in
Figs. 5(d) and 5(h) closely match those in Figs. 5(c) and 5(g),
demonstrating that the NNM parametrized by both λ and σ

can resolve all the same major physical phenomena previously
identified in Secs. IV B 2–IV B 3.

However, the accuracy of the solution g0(x, y; λ, σ ) is
slightly worse than that observed in the previous sec-
tions [Figs. 5(a)–5(c) and 5(e)–5(g)] as visible in 〈τ 〉 and μeff

[Figs. 5(d) and 5(h)] and quantitatively confirmed by ε and
L(g0|λ, σ ) [Figs. 5(l) and 5(p)] This is not entirely surpris-
ing, since the four-dimensional problem here is intrinsically
more difficult than the three-dimensional (Secs. IV B 2 and
IV B 3) and two-dimensional formulations (Sec. IV B 1) of the
problem. Moreover, the network depth and width were held
constant over all experiments, and the training time was held
constant for all the parametrized formulations (Sec. III A).
Regardless, although g0(x, y; λ, σ ) appears somewhat less ac-
curate than the solutions from previous sections, it generally
still meets the target 1% error threshold over most of its
parameter training range.

An exception to this statement is presented by the results at
λ = 5 [the brown lines in Figs. 5(d), 5(h), 5(l), and 5(p)], for
which the error of g0(x, y; λ, σ ) is greater than 1% over nearly
the entire σ training range. The marginal loss also reflects
this poor performance; for λ = 5, L(g0|λ, σ ) in Fig. 5(p)
is more than an order of magnitude larger than L(g0|λ, σ )
from all previous experiments [i.e., those in Figs. 5(m)–5(o)],
and several times larger than the other L(g0|λ, σ ) curves in
Fig. 5(p). Conspicuously, the L(g0|λ, σ ) curves in Fig. 5(p)
vary significantly with λ, whereas in Figs. 5(m)–5(o) very
little variation was observed between the different L(g0|λ, σ )
curves.

Of course, the results in Fig. 5(p) differ fundamen-
tally from those in Figs. 5(m)–5(o); whereas each curve in
Figs. 5(m)–5(o) corresponds to one or more independent net-
works, all the curves in Fig. 5(p) are generated by a single
network. In fact, the brown (λ = 5) and blue (λ = 50) curves,
which exhibit the highest marginal losses in Fig. 5(p), lie
directly on the boundary of the network’s (λ, σ ) training
domain. When analyzing the NNM parametrized by λ or σ

(Secs. IV B 2 and IV B 3), a substantial deterioration in
accuracy was found to be highly localized near the boundaries
of the parameter training range. If a similar boundary effect
exists here for the g0(x, y; λ, σ ) solution, then the results in
Figs. 5(d), 5(h), 5(l), and 5(p) are not representative of the
solution’s overall accuracy over the entire problem parameter
space, as essentially half of the data shown in those plots lie
on the boundary of the network’s parameter training space.

To investigate this possibility, the same metrics that are
shown as discrete lines in Figs. 5(d), 5(h), 5(l), and 5(p) are
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FIG. 6. Analysis of the g0(x, y; λ, σ ) solution obtained using the NNM parametrized by both field strength λ and particle size σ . (a), (e)
Mean first passage time 〈τ 〉 with white contours to show nonmonotonic sorting behavior. (b), (f) Effective mobility μeff with white contours
to show saddle point. (c), (g) Relative error ε of the MFPT with white contour to denote 1% error threshold. (d), (h) Marginal loss L(g0|λ, σ )
with white contour to denote testing loss L.

replotted in Fig. 6 as continuous functions of (λ, σ ). The
first row [Figs. 6(a)–6(d)] shows three-dimensional plots of
the metrics over parameter space, whereas the second row
shows two-dimensional contour maps [Figs. 6(e) and 6(f)]
and color maps [Figs. 6(g) and 6(h)] of the same metrics.
As anticipated, the relative error ε [Figs. 6(c) and 6(g)] and
marginal loss L(g0|λ, σ ) [Figs. 6(d) and 6(h)] are only large
near the boundaries of the parameter training space. Indeed, ε

in Fig. 6(g) is below the 1% threshold (indicated by the solid
white line) throughout the majority of the parameter space,
confirming the suspicion that the line plots in Fig. 5 provide a
biased view of the g0(x, y; λ, σ ) solution.

The boundary effect is particularly clear in L(g0|λ, σ ) in
Fig. 6(d), which features a prominent convex shape. Here,
L(g0|λ, σ ) is consistently higher along all the edges of the
training parameter space and decreases monotonically and
rapidly away from the boundary. In particular, L(g0|λ, σ ) is
exceptionally large at the corners of the training space.

Note that the decay of marginal loss away from the bound-
aries of the parameter space is actually substantially sharper
than it appears visually in Figs. 6(d) and 6(h). The color
scales for Figs. 6(d) and 6(h) are logarithmic and the color
map is not perceptually uniform: it exhibits far more variation
in color and contrast near the lower end of the scale. These
plotting choices make the subtle structure of the marginal loss
more apparent, but give it the biased appearance of a gradual
variation throughout the domain. In actuality, when plotted
with a linear color scale and a perceptually uniform color map,
the marginal loss appears essentially flat through most of the
domain.

As expected, the relative error ε [Figs. 6(c) and 6(g)]
is closely tied to the marginal loss L(g0|λ, σ ). Relative

error is uniformly low in the interior of the parameter space
(roughly (λ, σ ) ∈ [15, 45] × [0.2, 0.6]), corresponding to the
flat interior of L(g0|λ, σ ). Additionally, near the two cor-
ners at λ = 5 where L(g0|λ, σ ) is largest, ε also attains
its highest values, approaching 10%. There is also a small
peak in ε at the (λ, σ ) = (50, 0.125) corner, corresponding
to an equally small peak in L(g0|λ, σ ) at the same corner.
Surprisingly, although L(g0|λ, σ ) exhibits a clear peak at
the (λ, σ ) = (50, 0.625) corner, ε does not. Therefore, the
marginal loss L(g0|λ, σ ) once again appears to act as a
conservative a posteriori estimator of relative error ε: high
relative error occurs near regions of high marginal loss, al-
though high marginal loss does not always imply high relative
error.

As noted above, the performance of the g0(x, y; λ, σ ) so-
lution deteriorates even more significantly at the corners of
the parameter training space than on its edges. This is more
complicated than the boundary effect discussed for the solu-
tions parametrized by just λ or σ , and can be accounted for
by extending the postulated mechanism from Secs. IV B 2
and IV B 3. There, it was argued that the deterioration
in performance arises because the stochastic sampling used
during training under-represents boundary points: whereas
the neighborhoods of interior points are thoroughly sam-
pled on all sides, this is not true for boundary points.
In the two-dimensional parameter training space considered
here, the corners and the edges of the boundary are under-
represented to different extents by the stochastic sampling
process. Whereas parameter values on the edges of the domain
only have 50% as many neighboring points inside the training
space as interior points, parameter values on the corners have
only 25% as many. This tentatively explains why performance
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is so much worse at corners of the parameter training space
than it is on the edges.

If this mechanism extends to higher dimensional parameter
spaces, it may eventually prove to be a dominant source of
error: for instance, the corners of an n-dimensional hyper-
cube have only 1/2n as many neighbors inside the training
space as interior points, and the number of boundary segments
(corners, edges, faces, ...) grows rapidly with n. In fact, the
fraction of a parameter space lying within a given distance of
its boundary also increases with dimensionality. Altogether,
these observations suggest the need for further investigation
into this boundary effect, its possible connection to Monte
Carlo sampling of the loss during training, and methods (such
as low-discrepancy sampling methods [66,67]) for resolving
the problem.

In contrast to the line plots in Fig. 5, the plots in
Fig. 6 highlight the richness of information available through
the g0(x, y; λ, σ ) solution compared with the solutions
parametrized only by λ (Sec. IV B 2), σ (Sec. IV B 3), or nei-
ther (Sec. IV B 1). For instance, although the NNM solutions
parametrized by λ or σ (Secs. IV B 2 and IV B 3) suggested
a nonmonotonic dependence of 〈τ 〉 and μeff with respect to σ

for certain values of λ, they did not provide sufficient informa-
tion to estimate the exact range of λ over which this behavior
persists. Just as the NNM solutions parametrized by λ or σ

(Secs. IV B 2 and IV B 3) are more helpful than the fixed pa-
rameter solutions (Sec. IV B 1) in localizing one-dimensional
critical points, so is the NNM solution parametrized by both λ

and σ more useful for delineating the nonmonotonic regions
of parameter space.

The range of nonmonotonic behavior can be estimated
visually from μeff in Figs. 6(b) and 6(f). Using a vertical line
test, it is easy to see that nonmonotonic dependence of μeff on
σ is present at voltages as low as λ ≈ 10. In fact, μeff is doubly
nonmonotonic with respect to both λ and σ in the large-σ ,
low-λ range [black region in Figs. 6(b) and 6(f)]. Although
the same trends were suspected from the solutions discussed
in Secs. IV B 2 and IV B 3, g0(x, y; λ, σ ) resolves the features
more completely.

Despite the usefulness of g0(x, y; λ, σ ) for resolving crit-
ical points, the solution predicts a false saddle point in μeff

at (λ, σ ) ≈ (40, 0.2) [highlighted by the white solid line in
Fig. 6(f)]. Additional FEM results (not shown) confirm that
there is no saddle point anywhere in the parameter space
under consideration. This error can be attributed to the fact
that the true μeff changes extremely little in the high-λ, low-σ
region of the domain. For illustration, the two dotted white
lines in Fig. 6(f) indicate contours for μeff values 1% greater
and smaller, respectively, than the value of μeff on the solid
white line passing through the saddle point. Despite this range
corresponding to a very small fraction of the total variation of
μeff over the domain, the area between the dotted white lines
account for roughly 25% of the total parameter training space,
demonstrating that μeff is extremely flat throughout this entire
region.

Although the presence of a false saddle point is a noticeable
qualitative error, it corresponds to a very small quantitative
error in the key output metrics 〈τ 〉 and μeff . In fact, the visual
appearance of the saddle point in Fig. 6(f) is intentionally
accentuated by the choice of color map, as discussed for

the marginal loss above. It is quite feasible that an error of
such small magnitude could be resolved simply by increasing
network capacity and/or training time.

Still, the question arises of whether and how the NNM
can be used reliably in applications where these types of
incorrect or ill-conditioned features may occur. The marginal
loss L(g0|λ, σ ) provides one possible resolution to this
concern. The region of increased L(g0|λ, σ ) near (λ, σ ) =
(50, 0.125) in Fig. 6(h) coincides fairly closely with the right
half of the saddle point in Fig. 6(f). Thus, L(g0|λ, σ ) cor-
rectly reflects that the solution is less reliable in this region,
drawing into question the validity of the predicted saddle
point.

Future work should elaborate on what quantitative predic-
tions of solution quality can be based on the marginal loss,
along the lines of the investigations of Magill et al. [57]. In
the interim, we propose using the total loss [as indicated in
Fig. 6(h) by the solid white line] as an approximate threshold
between regions of relatively high and low expected accuracy.
In fact, the marginal loss L(g0|λ, σ ) as defined here is likely
a suboptimal tool for the detection of false critical points in
parameter space because it does not directly measure gradient
information with respect to (λ, σ ). Rather, it is only indirectly
sensitive to the error in the shape of 〈τ 〉 and μeff insofar as
it emerges from errors in the shape of g0(x, y; λ, σ ). For ap-
plications in which the localization of ill-conditioned critical
points is of interest, modified loss functions that incorporate
the derivatives of the target PDE with respect to λ and σ

(e.g., like those explored by Avrutskiy [59]) might be more
relevant error estimators. This notion illustrates the potential
benefits of customizing the NNM for specific PDEs and re-
search questions, just as flux- or energy-conserving numerical
methods are preferred for applications where those features
are particularly important.

In summary, the results in this section demonstrate that the
NNM can produce a robust approximation to the g0(x, y; λ, σ )
solution. Here, g0(x, y; λ, σ ) enables higher-dimensional vi-
sualization of 〈τ 〉 and μeff over λ and σ , resolving features
in parameter space more accurately and completely than
the solutions parametrized by only λ or σ . Furthermore,
g0(x, y; λ, σ ) accurately predicts the magnitude of 〈τ 〉 and μeff

to within the 1% error threshold simultaneously over the ma-
jority of the parameter training space. Although g0(x, y; λ, σ )
exhibits some regions of high relative error, L(g0|λ, σ ) once
again provides a robust a posteriori estimator of the solution’s
reliability throughout the parameter space.

V. CONCLUSIONS

This work investigated the use of the neural network
method to solve a parametrized time-integrated Smolu-
chowski equation describing nanoparticle passage through the
slit-well microfluidic device. The g0 solutions were solved for
a variety of fixed choices of field strength λ and particle size
σ using both the NNM and a standard FEM implementation.
Additionally, the NNM was used to solve the equation directly
as a function of λ and/or σ . Mean first passage time 〈τ 〉 and
effective mobility μeff were studied as the primary output
metrics of interest, with relative error ε and marginal loss
L(g0|λ, σ ) used to characterize solution performance.
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The qualitative examinations of g0 in Sec. IV A revealed a
wide variety of functional behavior over the region of (λ, σ )
parameter space studied here. The four primary regimes un-
derlying nanoparticle sorting in the slit-well (i.e., low and high
fields for small and large particles) correspond to four sig-
nificantly different g0 solution types, each reflecting different
interplays of drift, diffusion, and geometry. This highlights the
challenging nature of the parametrized PDE problem studied
in this work. Additionally, this analysis suggested that the
g0 solutions themselves may encode interesting and useful
qualitative information about biophysical processes. Future
work should examine how information encoded in g0 may
be complementary to qualitative information derived from
stochastic particle trajectories.

Of course, qualitative insights aside, the most salient fea-
ture of g0 is that it integrates to yield the mean first passage
time 〈τ 〉. As noted, although 〈τ 〉 is a quantity of widespread
interest in all first passage problems and is relevant to many
MNFD design problems, it appears that numerical solutions
of g0 have rarely been leveraged for such applications. The
results of this paper support that g0 may be an undervalued
tool in computational biophysics.

Although g0 can be computed using many methods, such
as FEM or particle simulations, this work focused on re-
solving g0 using the NNM. When applied to fixed choices
of problem parameters, the NNM consistently estimated 〈τ 〉
with errors below 1%. In particular, the NNM values were
at least as accurate as typical particle simulations, which are
the most common tool for studying first passage problems in
biophysics. However, a proper comparison of runtime was not
conducted in this work, and should be a major focus of future
investigations.

The main appeal of the NNM is the unique ease with
which it can be applied to parametrized g0 problems. Via
integration of g0, these solutions yield a direct mapping from
key problem inputs (e.g., λ, σ ) to key problem outputs (e.g.,
〈τ 〉, μeff ). This is particularly appealing for the application
of MNFD research, where essential phenomena often depend
nontrivially on the coupling of many system parameters. The
results in the current work demonstrate that the NNM can
learn accurate approximations of g0 parametrized by λ, σ ,
or both, all using a modest network size and even without
careful hyperparameter optimization. Whereas classical ROM
techniques typically require special considerations to handle
geometry-modifying parameters like σ , the NNM was found
to resolve g0(x, y; σ ) just as easily as g0(x, y; λ). As discussed,
parametrized solutions can be quite useful in characterizing
entire regions of parameter space.

Although the NNM is expected to perform well on highly
parametrized PDEs, the careful error analysis presented in the
current study revealed several points of caution for future ef-
forts in this direction. First, all parametrized solutions studied
here exhibited a deterioration in accuracy near the boundaries
of their parameter training space. Nonetheless, the predicted
values of 〈τ 〉 were still mostly within the 1% margin of error.
Moreover, the marginal loss functional L(g0|λ, σ ) proposed
here was found to act as a conservative a posteriori estimator
of the solution accuracy throughout parameter space.

The second point of caution that must be considered
when applying the NNM to parametrized PDEs concerns the

interpretation of key features, such as critical points, that are
identified using these solutions. For instance, in Sec. IV B 4,
the NNM solution exhibited an erroneous saddle point in a
flat region of μeff , which was an artifact that arose due to the
ill-conditioning of the gradients of μeff (λ, σ ). In fact, plots of
ε showed no indication of errors in this region, as the mistake
only manifested in the curvature of the mapping. However,
once again the marginal loss L(g0|λ, σ ) did indicate that the
NNM solution lost fidelity in this region of parameter.

In summary, the parametrized NNM solutions were gener-
ally accurate far from the training boundaries, and L(g0|λ, σ )
provided robust regions of confidence. Altogether, these re-
sults highlight the specific appeal of the NNM as a method
for studying parametrized first passage problems via the time-
integrated Smoluchowski model. We hope this work prompts
further investigation into the use of g0 with or without the
NNM, and into the relationship of 〈τ 〉 and μeff to more
standard MNFD metrics. Regarding the application of the
NNM to such problems, future work should address technical
challenges such as singularities posed by sharp corners, train-
ing difficulties for highly skewed geometries, and achieving
competitive runtime.
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APPENDIX A: COMPUTING MEAN FIRST PASSAGE
TIMES WITH PARTICLE SIMULATIONS

This section contains a description of standard Brown-
ian dynamics (BD) simulations used to measure the mean
first passage times of nanoparticles traversing the slit-well
microfluidic device (Sec. II). The BD simulations were ini-
tialized with N = 100 000 noninteracting particles placed
according to the distribution ρ0 [Eq. (7)]. The position of the
ith particle �xi was updated according to the discretized BD
equation


�xi


t
=

√
2D


t
�R(t ) + qλ

γ
�E0 + 1

γ
�FWCA. (A1)

In Eq. (A1), the particle properties are the diffusion coef-
ficient D, the friction coefficient γ , and the particle charge
q. As noted in Sec. II, both q and γ were set equal to the
particle diameter σ , to capture free-draining behavior. The
diffusion coefficient D was set to 1/σ and the time step was
set 
t = 10−5 The term �R(t ) in Eq. (A1) is a random driving
force representing the thermal motion of an implicit solvent
which was sampled from a uniform distribution of mean 0
and variance 1.

Rather than representing the interactions between particles
and walls as perfectly rigid, the walls were implemented using
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FIG. 7. Contour plots of the baseline electric potential u0 (black)
and field �E0 (red) computed by the NNM.

a short-range repulsive shifted WCA force

�FWCA = −∇UWCA, (A2)

with

UWCA(ri ) =
{

4ε
[(

σ0
ri

)12 − (
σ0
ri

)6] + ε, ri < rcut

0, ri � rcut.
(A3)

where ri is the minimum distance from particle i to the near-
est reflective wall minus a distance rshift = 0.5(σ − σ0). Here
rshift corresponds to the radius of the hard core of the particle,
whereas σ0 = 0.125 is the length over which the surface of
the particle is partially compressible. The potential is zero
beyond a cutoff distance rcut = 21/6σ0, so that if the center
of the particle is farther than a distance rshift + rcut from the
wall there is no interaction. The energy scale of the repulsive
interaction was set to ε = 0.125 = σ0.

Although this type of model is commonly used for particle-
wall interactions, due to its improved numerical stability
relative to perfectly rigid interactions, it introduces a small
difference between the underlying physics of the BD simu-
lations and the PDE models being solved in this work. For
this reason, the MFPTs determined using particle simulations
should not be expected to agree exactly with those obtained
using the NNM and FEM methods, even in the limit of
small 
t and large N . Nonetheless, as our results corrob-
orate, the effect of this difference between the models is
small.

The term �E0 in Eq. (A1) corresponds to the baseline electric
field in the slit-well domain (denoted by red in Fig. 7). This
was solved for a voltage drop of two units from the leftmost
to rightmost boundaries, as in Magill et al. [57]. The net
electric-field strength was set by the parameter λ. �E0 used
here was the same one described in Sec. III B. As shown in
Magill et al. [57], particle simulations conducted using an
electric field solved with the NNM are nearly statistically
indistinguishable from those conducted using a field solved
with the FEM, so long as the NNM electric field exhibits a
sufficiently small loss. The purpose of the present study is
not to replicate this result, but to explore the computational
advantages of the NNM over other techniques in parametrized
problems. Thus, the particle simulations are conducted using

FIG. 8. Passage time properties of particles escaping the slit-well
model computed using Brownian dynamics simulations. Star mark-
ers denote values obtained via FEM. (a) Mean first passage time 〈τ 〉.
(b) Effective mobility μeff . (c) Relative error of 〈τ 〉 computed against
the ground truth FEM solution.

the FEM electric field, which is taken as the reference ground
truth.

Parallel to the analysis conducted in Sec. IV B, the mean
first passage time 〈τ 〉 and effective mobility μeff are computed
using the BD simulations for various choices of field strength
λ and particle size σ . These values are plotted with dashed
lines in Fig. 8(a) and 8(b) with star markers to denote 〈τ 〉 and
μeff values obtained by FEM. Note that 〈τ 〉 and μeff are only
solved for the same discrete choices of λ and σ that are also
computed using FEM.

In addition, the relative error ε is computed using Eq. (23)
where 〈τ 〉 and 〈τ 〉FEM are the MFPTs computed by BD and
FEM, respectively. The values are plotted in Fig. 8(c) with
circular markers denoting the parameter choices where the
relative error was computed. All of the relative errors in
Fig. 8(c) fall below 2%, with majority of the values being
within 1% error. This establishes a 1% error baseline against
the ground truth MFPT values computed by FEM, for which
to benchmark the performance of the NNM.
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TABLE I. Comparison of computational time (in minutes) of the
NNM, BD, and FEM methods used to compute the MFPT at fixed
parameter values.

Runtime (minutes)

Parameters (λ, σ ) NNM BD FEM

(5.0, 0.125) 136.95 5.02 2.25
(50.0, 0.125) 138.37 1.03 2.15
(5.0, 0.625) 126.57 12.80 2.18
(50.0, 0.625) 133.63 1.12 2.13

APPENDIX B: CONTOUR PLOTS OF ELECTRIC
POTENTIAL AND FIELD

The baseline electric field �E0 used to drive particle mo-
tion in the slit-well device [Eq. (6)] was computed using the
NNM, as described in Magill et al. [57]. That is, the baseline
electric potential u0 was solved using Laplace’s equation over
a voltage drop of two units from the left slit wall to the
right slit wall. The electric field was then computed using the
relation �E0 = ∇u0. The red and black contour lines in Fig. 7
correspond to the electric field �E0 and electric potential u0,
respectively, inside the slit-well MNFD.

APPENDIX C: RUNTIME COMPARISON

The MFPT and effective mobility of nanoparticles travers-
ing the slit-well MNFD were obtained using BD simulations,
the FEM, and the NNM. Table I shows the runtime, in min-
utes, of each method used to solve the MFPT at fixed choices
parameter values. Four choices of the parameters are included,

TABLE II. Comparison of computational time (in days) of the
various methods used to compute the MFPT over ranges of parameter
space.

Method Mean Runtime (days)

NNM parameterized by λ 6.33
NNM parameterized by σ 7.79
NNM parameterized by (λ, σ ) 7.66
High-resolution FEM sampling 12.18

illustrating that runtimes were fairly independent of parame-
ters for NNM and FEM but depended strongly on parameters
for BD. Table II shows the runtime, in days, of each method
used to solve the MFPT over large regions of parameter space.
As implemented, the various parametrized NNM methods
all have runtimes comparable to one another. Moreover, the
total runtime of the high-resolution FEM sampling exceeds
the mean runtime for the parametrized NNM methods. How-
ever, this runtime obviously depends on the number of points
sampled. Here, 8099 parameter combinations were utilized in
order to produce high-resolution maps of error over parameter
space.

Optimizing runtime was not a goal of the current work.
The implementations of each of the algorithms studied here
(NNM, BD, FEM) can undoubtedly be improved upon to
substantially decrease the runtimes from those reported in
Tables I and II. Moreover, judicious use of parallelization
across GPUs and/or CPUs, as applicable, could provide fur-
ther improvements to each of the methods. Thus, the runtimes
included here are provided for reference only, and a more
careful comparison is left to future work.
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Chapter 8

Conclusion

With the increasing accessibility of large and powerful computers, computational

methods have continuously been utilized for development in many scientific fields.

In particular, molecular dynamics (MD) simulations and deep learning are two

examples of computational techniques that have led to success in the biophysics

research community. Whereas MD is a relatively old technique for simulating the

motion and interactions of biomolecules, deep learning is a newly emerging family

of methods currently being utilized for scientific development in various ways.

The neural network method (NNM) is one such deep learning avenue, wherein

artificial neural networks approximate solutions to partial differential equations

(PDEs) modelling physical processes such as molecular motion.

In this dissertation, several applications from the field of biophysics were

explored by employing MD simulations or by applying a combination of MD and

the NNM. The computational resolution chosen for each of these applications

spans various simulation levels, from simplified coarse-grained/rules-based

bacteria agents to a fully-atomistic MD simulation of a biomolecule, as well as

PDE-based modelling to describe the probability density of particle positions.
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Each of these modelling choices painted a distinct picture of its particular

application and was accompanied by a trade-off between physical detail and

computational efficiency. In the latter portion of the dissertation, a focus was

placed on comparing MD simulations and NNM-generated solutions to PDE

models as two different computational techniques for studying the same molecular

systems.

First, in Nagel et al. [1], simplified coarse-grained/rules-based simulations of

twitching bacteria were conducted to explore the emergence and transition to

twitching collectivity (Chapter 3). The model constructed in this work was vastly

simplified compared to the biological complexity of twitching bacteria. However,

the stochastic motility cycle of rest, pilus extension and pilus retraction captured

essential microscopic details that differentiate biological twitchers from toy

models of self-propelled rods. While the physics of idealized self-propelled rods

has been thoroughly studied, the biophysics community has so far

under-emphasized the influence of twitching-mode motility. As such, this study

provides a valuable contribution to biophysics, given that twitching bacteria are

crucial to the onset of bacteria colony formation. By analyzing the bacteria

simulations in Nagel et al. [1], a critical surface coverage for the emergence of

collective dynamics was identified. Moreover, this work demonstrated that

excluded volume effects alone are sufficient to give rise to physically mediated

collectivity without requiring additional biological interactions.

Since all but essential details of the motility type were excluded from the

bacteria model used in Nagel et al. [1], the simulations were computationally

efficient and allowed for the consideration of high surface coverages of bacteria.
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This is a common theme in coarse-grained modelling, where higher-order details

of biological phenomena are simplified or omitted in favour of obtaining long

simulation trajectories or large ensemble statistics. In many cases, however,

biological systems can also benefit from being modelled and simulated with a

high degree of physical detail at the expense of long computing times.

For instance, in Khatami, Nagel, and de Haan [2], a fully atomistic MD

simulation of a phytoglycogen nanoparticle was conducted to gain insights

regarding its use in biological applications (Chapter 4). To maintain

computational affordability while still providing valuable details into the

dynamics and interactions that occur in a full-sized phytoglycogen molecule, a

modestly sized phytoglycogen model had to be utilized. Once again, this choice

reflects the trade-off between physical realism and computational efficiency

frequently occurring when utilizing computational techniques. The high

molecular detail of the atomistic phytoglycogen simulation in Khatami, Nagel,

and de Haan [2] provided an opportunity to carefully quantify the molecule’s

density profile, internal water pockets, hydration number, and the chemical

contacts that drive the relaxation of its structure from the nonphysical

outstretched initialization. Even though glucose is soluble in water, the MD

simulation indicated that the phytoglycogen nanoparticle tends to create

non-polar interactions between the internal glucose monomers that make up its

structure. In addition, the high hydration number of glucose units in the

nanoparticle and its water-trapping mechanisms suggested that the nanoparticle

may be a great candidate for drug delivery and cosmetic additive applications.

Along with the ability to simulate large ensembles of biological agents using
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coarse-grained modelling, or the ability to analyze molecular details of

biomolecules using atomistic modelling, MD simulations can also be utilized to

investigate the effect of confinement on biomolecules. For instance, the slit-well

micro- and nanofluidic device (MNFD), a long periodic geometry used to sort

polymers and particles by size, was the particular system examined in Magill,

Nagel, and de Haan [3] using MD simulations (attached in App. A and

summarized in Chapter 5). There, the well-studied slit-well device acted as a case

study to derive an alternative particle mobility metric that can be obtained on a

truncated version of the entire periodic domain. The new mobility formulation

was mathematically proven and empirically shown on the slit-well system to be

more computationally advantageous in certain scenarios than the standard

method for computing particle mobilities through MNFDs. In addition, this work

indicated that at moderate to high Péclet numbers, particle backflow could

essentially be omitted from the model, and accurate mobility measurements can

still be acquired. Consequently, it was demonstrated that the long periodic

geometry of MNFDs can effectively be modelled using only a small finite number

of periodic units. This motivates using PDE modelling on a truncated version of

periodic MNFDs to obtain particle mobilities as an alternative method to

employing MD simulations.

Before exploring the previously suggested avenue, the NNM was investigated

as a novel technique for obtaining the solutions to PDE models describing

biophysical phenomena. In Magill, Nagel, and de Haan [4] the NNM was applied

to solve the Laplace equation modelling the electric potential and field in the

slit-well MNFD (Chapter 6). There, the NNM was demonstrated to be a feasible
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technique for solving PDEs in complex geometries. Because MNFDs and other

biophysics systems are commonly posed on non-trivial domains, this work

suggests that the NNM could be a valuable tool for studying these systems.

Moreover, the NNM-generated electric field was utilized as the driving force in

MD simulations that were shown to produce accurate measurements of particle

mobility through the slit-well MNFD. Thus, these results also support the

viability of using the NNM to obtain complex force fields for their subsequent use

in MD simulations.

Instead of incorporating the NNM-generated electric field into MD

simulations of an MNFD, the same electric field could be utilized in a PDE model

describing particle motion through the device. Moreover, as alluded to in Magill,

Nagel, and de Haan [3], mobility measurements computed using mean first

passage times can be extracted through this model without conducting any MD

simulations. This concept was precisely the topic of study in Nagel, Magill, and

de Haan [5], where the NNM was applied to solve a time-integrated Smoluchowski

equation modelling the mean first passage time of nanoparticles through the

slit-well MNFD (Chapter 7). The main appeal of the NNM on this problem was

its ability to solve the parameterized Smoluchowski equation. Via the integration

of the PDE’s solution, the NNM yielded a direct mapping from key problem

inputs (particle size and field strength) to key problem output (mean first passage

time). This capability of the NNM is particularly appealing for MNFD research,

where phenomena such as sorting dynamics often depend nonlinearly on the

interplay of many system parameters.

In theory, the NNM’s ability to solve highly parameterized PDEs could one
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day prove to be a more computationally efficient tool than utilizing MD

simulations at many discrete parameter choices. However, the work in Nagel,

Magill, and de Haan [5] only provided a proof of concept that the NNM could be

used with this goal in mind. Future work should focus on optimizing the NNM for

runtime in order for the technique to become a competitive tool for solving highly

parameterized problems in the field of biophysics. In its current formulation, the

NNM still provides a valuable method for quickly obtaining low-resolution

solutions over a vast parameter space, where an additional technique such as the

finite element method can subsequently be utilized to generate a high-resolution

solution to the particular area of interest that the NNM identified.

Computational techniques like those employed in this dissertation can

provide a "computational microscope" where existing experimental techniques

may struggle to resolve the intricacies of biophysical phenomena. Although,

within the field of computational science, numerous tools may provide uniquely

different snapshots of the system being studied. For example, the slit-well MNFD

explored in this dissertation was studied using MD simulations and PDE-based

modelling solved with the NNM; both approaches had advantages and

disadvantages. In general, MD simulations provide a way of looking directly at

the trajectories of particles but can provide noisy ensemble statistics if the

number of particles and time length are insufficiently chosen. Conversely,

PDE-based models such as the Smoluchowski equation can provide a probability

density-based viewpoint of the same particle system, which leads to precise

calculations of macroscopic quantities. However, the ability to derive individual

particle trajectories is lost in doing so. Even within MD simulations, different
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levels of modelling can be chosen to simplify phenomena for computational

efficiency or increase the model complexity at the expense of long computing

times to retain physical detail. To properly take advantage of the power and

potential for computational methods in scientific research, one must understand

how to apply and construct models that vary in complexity and computational

demand. As every physical system can be described and understood in many

ways, it is the job of the computational scientist to develop and employ various

tools to tell all sides of the story.
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We examine methods for calculating the effective mobilities of molecules driven through periodic geometries
in the context of particle-based simulation. The standard formulation of the mobility, based on the long-time
limit of the mean drift velocity, is compared to a formulation based on the mean first-passage time of molecules
crossing a single period of the system geometry. The equivalence of the two definitions is derived under
weaker assumptions than similar conclusions obtained previously, requiring only that the state of the system at
subsequent period crossings satisfy the Markov property. Approximate theoretical analyses of the computational
costs of estimating these two mobility formulations via particle simulations suggest that the definition based on
first-passage times may be substantially better suited to exploiting parallel computation hardware. This claim
is investigated numerically on an example system modeling the passage of nanoparticles through the slit-well
device. In this case, the traditional mobility formulation is found to perform best when the Péclet number is
small, whereas the mean first-passage time formulation is found to converge much more quickly when the
Péclet number is moderate or large. The results suggest that, given relatively modest access to modern GPU
hardware, this alternative mobility formulation may be an order of magnitude faster than the standard technique
for computing effective mobilities of biomolecules through periodic geometries.

DOI: 10.1103/PhysRevE.106.045304

I. INTRODUCTION

Microfluidic and nanofluidic devices (MNFDs) are an
emerging class of biotechnologies with various promising
applications in the biological and medical sciences [1–4].
Of these devices, an important subclass of periodic MNFDs
exploits the motion of molecules driven through a periodic
arrangement of geometric features (e.g., by an electric field)
to induce separation by size or other chemical properties.
For instance, some of the first MNFDs used for biomolecular
separation consisted of periodic arrays of micron-scale posts
[5], and work on this type of MNFDs remains an area of
active research and development [6–13]. Variants of the post-
array design with asymmetric obstacle shapes form the basis
of so-called Brownian ratchet devices [14–17]. The slit-well
motif is another important MNFD design, consisting of a
planar confinement with alternating deeper well regions and
shallower slit regions. First pioneered by Han and Craighead
[18] and elaborated upon in a series of subsequent studies
[19–21], the slit-well device has stimulated ongoing research
interest [22–30]. A related MNFD design, the capillary-well
motif, has been developed more recently [31,32]. The dynam-
ics of biomolecules have also been studied experimentally,
theoretically, and numerically in a variety of other periodic
geometries, such as one-, two-, or three-dimensional arrays
of spherical cavities [33–37], channels with periodic bands
of attractive and repulsive zones on their walls [38–41], a
network of interconnected channels named the railroad switch
motif [42], planar confinement with an array of nanopits [43],

*Hendrick.deHaan@uoit.ca

a series of nanopores connected by microchannels [44], and a
periodic sheet of graphene alternating with boron nitride [45].
In fact, even MNFDs whose geometries are uniform in the net
direction of motion, such as those used for microcapillary hy-
drodynamic chromatography [46–49], are (trivially) periodic
in this direction.

When periodic MNFDs are used to separate molecules
according to size or some other chemical property of inter-
est, this is accomplished by coupling that property to the
molecule’s net speed through the device. Specifically, the
transport rate of analytes is usually characterized by the effec-
tive mobility, which is the mean velocity on long timescales
normalized by the magnitude of the applied force-generating
field. In fact, many molecular mixtures of interest (e.g., DNA,
nanoparticles, etc.) exhibit little to no variation in mobility
when driven through free solution as the net force and net
friction scale in direct proportion to one another. To en-
able molecular separation, MNFDs break this symmetry by
exploiting the interplay of drift and diffusion in nontrivial
geometries.

In practice, the design of such devices can be challeng-
ing. One aims to control the coupling between mobility and
molecular characteristics by optimizing design parameters
(such as applied voltage or pressure, solvent composition, and
device geometry) to produce the desired profile of effective
mobilities. Simulations are often a valuable aid in elucidating
the influence of the many design parameters on molecular
transport properties such as mobility.

The most common definition of mobility is

μdirect = lim
t→∞

〈x(t )〉/t

�
, (1)
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where 〈x(t )〉 is the ensemble mean at time t of the center-
of-mass position in the net direction of motion. Here � is a
scalar characterizing the magnitude of the field that is gen-
erating the force driving molecular motion. The choice of �

is context-dependent: for electrically driven motion, � ∼ �V
must characterize the gradient of the applied electric potential
V (see, e.g., Cheng et al. [23]); for pressure-driven motion,
� ∼ �p should indicate the gradient of the applied pressure
p (see, e.g., Ollila et al. [27]); and so on. Equation (1) will
be referred to here as the direct mobility because it is defined
directly in terms of the physical observable it is used to study:
the long-term drift velocity of molecules through the system.

In contrast, the focus of this work is the quantity defined as

μindirect = L

�〈τ1〉 , (2)

where L is the period of the system geometry and 〈τ1〉 denotes
the ensemble mean of the first-passage time across one such
period. Equation (2) will be referred to as the indirect mobility
because it is formulated in terms of observables that can be
measured without directly examining the long-term motion
across many periods. This manuscript includes a careful com-
parison of the direct and indirect mobility formulations.

In fact, the two mobility definitions are equivalent under
certain circumstances. Indeed, several classical theoretical
frameworks imply that limt→∞〈x(t )〉/t = L/〈τ1〉. However,
as reviewed in Appendix A, these results are derived under
fairly strong assumptions. Fick-Jacobs theory (Appendix A 1)
assumes that motion can be reduced to an effective one-
dimensional system, and this approach is typically limited
to weakly driven motion and/or slowly varying geometries.
Kramers theory (Appendix A 2) and related reaction rate the-
ories assume that most degrees of freedom of the system
relax very quickly on the timescale over which the molecule
traverses the distance L along the device.

More generally, one can argue for the equivalence of
the two mobility definitions based on ergodicity. A single
molecule that has crossed a large number k of periods at time
t will have sampled the crossing time for a single period k
times. The long-time mean of this one particle’s k crossing
times will be, by ergodicity, equal to the ensemble mean of the
time to cross a single period, so that t ≈ k〈τ1〉. Conversely, its
position will be roughly x ≈ kL, since it has crossed k periods.
Thus, its mean velocity will be

x

t
≈ kL

k〈τ1〉 = L

〈τ1〉 , (3)

from which the equivalence of Eqs. (1) and (2) follow.
A more detailed derivation of this result is included in

Appendix B and demonstrated numerically on a test prob-
lem in Sec. III A. The equivalence of the two definitions is
proven under the simple hypothesis that the system satisfies
the Markov property on the timescale of crossing from one
period to the next. Specifically, the dynamics of the analyte
between the time it first enters the kth period and the time
it first enters period k + 1 are assumed to depend only on
the state of the analyte at the moment that it first entered
period k. Under this assumption, the limiting form for the
ensemble distribution of x positions can be deduced in closed
form. Correlations between the crossing times in consecutive

periods are appropriately taken into account, and these are
seen to directly affect the effective diffusion coefficient of the
analytes on long timescales.

The equivalence of direct and indirect mobility depends
on one crucial technical requirement: the mean first-passage
time 〈τ1〉 in Eq. (2) must be defined with respect to a par-
ticular stationary distribution. It is argued in Appendix B 2
that this distribution should exist and be unique under typical
conditions. Moreover, a simple Markov chain Monte Carlo
algorithm for estimating this distribution numerically is de-
scribed in Appendix C and tested in Sec. III B.

The limiting behavior of the transport dynamics deduced
in Appendix B enables an approximate convergence rate
analysis of the two mobility formulations included in Ap-
pendix C. It appears that the indirect mobility is better suited
for exploiting the massive parallelization afforded by modern
hardware. Given reasonable access to such hardware, the anal-
ysis suggests that standard computational studies of mobilities
through periodic geometries (such as those conducted in
Refs. [8,13,22,23,27,37,38,40,41,43,45,49]) may be made to
converge up to an order of magnitude more quickly with very
little modification to the underlying simulation algorithms.
The computational advantage of the indirect mobility in the
test case from Sec. II B is verified numerically in Sec. III B.

II. PROBLEM DEFINITION

A. The general case: Transport through a periodic geometry

The physical systems under consideration are those in
which a single molecule is driven through a periodic MNFD.
The molecular motion is stochastic, such that the physical
observables of interest are ensemble averages. Some external
force field (e.g., by an applied voltage) biases the stochastic
motion of the molecule. The mean direction of the molecule’s
center-of-mass motion over long timescales will be called
the x̂ direction. The geometry of the periodic MNFD and
the external force field are both taken to be periodic in the
direction of x̂, with a period of length L. Every interval of
length L in the x̂ direction will be called one period of the
device.

The molecule traveling through the system will be repre-
sented by a finite number of degrees of freedom Ndof , which
specify all information about the system’s state. These would
typically be the positions of all the atoms in the molecule.
In the event of a time-periodic force field, the phase of the
molecule with respect to the period of the force field should
also be considered an auxiliary coordinate. In particular, we
assume that the dynamics of these Ndof degrees of freedom
are well-approximated as Markovian, at least on the timescale
over which the molecule crosses a period of the device.
As reviewed, for instance, by Hänggi et al. [50], coarse-
grained representations can exhibit non-Markovian dynamics
(i.e. memory) even when the underlying system is actually
Markovian at the finest scale. Nonetheless, for the models
commonly used to study periodic MNFDs, this Markovian as-
sumption is either exactly true or a good approximation on the
timescales of interest [8,13,22,23,27,37,38,40,41,43,45,49].

Of the degrees of freedom, the position of the center of
mass in the x̂ direction at time t will be denoted by the random
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FIG. 1. Schematic illustrating the model of nanoparticles in the
slit-well device. (a) A probabilistic graphical model of the Markov
chain model from Appendix B. For the problem described in
Sec. II B, the only auxiliary coordinate is θi = yi, the y coordinate
of the nanoparticle at its first passage to each new period. The distri-
butions of yi+1 and ti,i+1 are each determined entirely by yi. (b) In the
direct mobility formulation, particles are initialized uniformly in the
y direction at the midpoint of a slit (red line) and evolve forward
in time until many periods have been crossed. (c) In the indirect
mobility formulation, particles are also initialized at the red line and
evolve forward in time until a single period has been crossed (blue
line). The shape of the baseline electric field E is denoted by the
black field lines. The field is periodic in the horizontal direction with
period L, such that the field shape is the same in every period of the
device. Diffusive motion against the direction of E is possible in both
mobility formulations.

variable x or x(t ) to make the time dependency explicit. The
remaining degrees of freedom will be called auxiliary coordi-
nates and denoted collectively by the random vector θ or θ (t ).
The original value of x will be fixed to some x0 = 0 at time
t = 0, and the thresholds between consecutive periods will be
located at xi = x0 + iL for each i. The time elapsed between
the molecule’s first arrival at xi and its subsequent first arrival
at xi+1 is denoted ti,i+1. The value of the auxiliary coordinates
at the moment of first contact with xi will be denoted θi.

The proof in Appendix B is based on a Markov chain model
of this general physical scenario. If the underlying molecular
dynamics are Markovian, then the system states at first contact
with each xi form a Markov chain. The Markov chain is
written in Eq. (B2) and illustrated in Fig. 1(a) as a probabilistic
graphical model (i.e., arrows show statistical dependencies).
In particular, the value of the auxiliary coordinates θi at first
contact with xi entirely determines the distributions of the
first-passage time ti,i+1 and of the auxiliary coordinates θi+1

at the first passage into the next period.
Based on an application of the Markov chain central limit

theorem to this Markov chain, the limiting form of the position
distribution ρ[x(t )] at long times t can be deduced. From
there, the equivalence of the the direct [Eq. (1)] and indirect

[Eq. (2)] mobility formulations follows readily. However, this
use of the Markov chain central limit requires that the initial
auxiliary coordinates θ0 be initialized according to a specific
initial distribution. In particular, the initial distribution of aux-
iliary coordinates ρ(θ0) must be chosen such that the auxiliary
coordinates θ1 measured at the first-passage threshold x1 are
distributed according to the same distribution: ρ(θ1) = ρ(θ0).
This choice corresponds to the stationary distribution of the
Markov chain in Eq. (B2); Appendix B 2 includes discussion
regarding its existence and uniqueness.

In principle, the choice of the initial position x0 in the
above description is arbitrary and should not impact the mo-
bility. In practice, however, shifting x0 can have subtle but
important consequences for the numerical determination of
the indirect mobility, as shown in Sec. III B. In particular, x0

affects the nature of the stationary distribution and thereby
controls the computational cost of sampling the initial values
of θ for the indirect mobility calculation.

B. Guiding example: Particles in the slit-well device

As a specific illustration of the general circumstance
described in Sec. II A, this section presents a model of free-
draining nanoparticles traversing the slit-well MNFD under
the influence of an applied electric force [18–30]. In particu-
lar, we will study the same model analyzed by Cheng et al.
[23]. Whereas the slit-well has primarily been studied in the
context of polymer analytes (especially DNA), we will focus
on the more straightforward case of nanoparticle mobilities
as it facilitates a more comprehensive numerical exploration.
The equivalence of the direct and indirect mobilities is demon-
strated numerically for this system in Sec. III A, the task
of sampling the correct stationary distribution is explored in
Sec. III B, and the computational advantages of the indirect
mobility are illustrated in Sec. III C.

The geometry of the system is illustrated in Figs. 1(b) and
1(c). The dimensions are indicated in Fig. 1(b); the period
length L = 8 and the aspect ratios of the slit and well regions
are set to match Cheng et al. [23]. The nanoparticles are mod-
eled as hard spherical particles of diameter a having only two
degrees of freedom: the x and y coordinates of their centers of
mass. The z coordinate of the center of mass is omitted under
the symmetry assumption in the z direction, and rotational
degrees of freedom are also assumed to be negligible. The
applied force field will be held constant in time, so the only
auxiliary coordinate, in this case, is θ = y.

Particle motion will be governed by Brownian dynamics,
i.e., the overdamped Langevin equation

d�x
dt

= −μ0λ∇U +
√

2DR(t ), (4)

where �x = (x, y), μ0 is the free-solution mobility of the
nanoparticles, D is the free-solution diffusion coefficient, R
is a stationary delta-correlated stochastic force with mean 0
and variance 1, λ is a scalar controlling the magnitude of
the applied force, and U is the baseline electrostatic potential
energy of the particle. The free-solution diffusion coefficients
will scale as D ∼ 1/a in line with Stokes’ law. Following
Cheng et al. [23], we will focus on the case of free-draining
particles: the effective electrostatic force experienced by the
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particles is taken to scale with a at the same rate as the friction
coefficient (γ = 1/D), such that the free-solution mobilities
remain fixed at μ0 = 1 for all values of a. The walls are
treated as purely reflective conditions applied when the center
of the nanoparticles is a distance a/2 from the nominal dimen-
sions listed in Fig. 1(b). Hydrodynamic effects are neglected,
and electrohydrodynamic phenomena (such as the particle’s
charge and ζ potential) are subsumed into μ0.

The baseline electrostatic potential in Eq. (4) is modeled
simply by Laplace’s equation,

∇2U = 0. (5)

The walls of the slit-well device are treated as perfectly in-
sulating boundary conditions. A unit voltage drop is imposed
across one device period measured from the middle of two
consecutive slots. By linearity, the field −λ∇U corresponds to
an applied voltage drop of λ per period. To match Cheng et al.
[23], we define the quantity E∗ = λ/L as the characteristic
field strength. This characteristic field strength E∗ is also the
correct choice of � for computing mobilities in this system
[i.e., in Eqs. (1) and (2)]. Finally, it will also be helpful to
discuss the system’s behavior in terms of the Péclet number
Pé = E∗a, which is proportional to the drift-diffusion ratio in
the system.

This model system’s direct and indirect mobilities were
computed using particle simulations under various conditions.
Equation (4) was discretized using the common Euler-
Maruyama scheme [51] to

�x(t j+1) = �x(t j ) − μ0λ∇U [�x(t j )]�t +
√

2D�tR j . (6)

Here �x(t j ) is the position of the particle at time t j , each Rj

is an independent standard normal random variable drawn
at each timestep, and �t is the discrete timestep. A value
of �t = 10−3 was used for all simulations. The baseline
electrostatic potential U and the corresponding baseline field
E = −∇U were approximated using a mixed finite element
method formulation according to the methodology described
in Nagel et al. [52].

Particle simulations were always initialized with constant x
positions but randomly distributed initial y values. The initial
x value was generally placed in the middle of a slit [Figs. 1(b)
and 1(c)]. The initial values of y were uniformly distributed
for the direct mobility calculations. For indirect mobility
calculations, the initial values of y were sampled from a
precomputed database of 105 samples obtained by Markov
chain Monte Carlo (MCMC). Specifically, these samples cor-
respond to the final y positions of trajectories initialized with
uniform y positions and simulated until a total of Nrelax =
10 periods were crossed; this ensemble of samples from the
stationary distribution was computed once for each choice
of E∗ and a and reused for all corresponding simulations. A
total of 107 trajectories were used for indirect mobility cal-
culations. Direct mobilities were computed by simulating 104

trajectories until the mean position in the x̂ direction exceeded
5000L, roughly the same methodology used by Cheng et al.
[23]. The above is the default simulation protocol throughout
this paper, but variations of some of these parameters are
investigated in Sec. III.

FIG. 2. (a) Measured indirect mobility values as a function of
field strength E∗ for various particle diameters a. (b), (c) Relative
error of simulated indirect mobility values compared to simulated
direct mobility values when indirect mobilities are calculated using
initial x values in the middle of a slit and (b) initial y values sampled
using MCMC with Nrelax = 10 or (c) initial y values distributed
uniformly. Error bars correspond to one standard error.

III. NUMERICAL DEMONSTRATIONS

A. Equivalence of direct and indirect mobilities

Figures 2(a) and 2(b) provides numerical verification that
the indirect and direct mobilities are equivalent for the model
of free-draining nanoparticles of diameter a through the slit-
well MNFD described in Sec. II B. Figure 2(a) shows the
indirect mobility as a function of the normalized field strength
E∗ for nanoparticles of various sizes a. This data can be
compared directly to Fig. 2 of Cheng et al. [23], where the
same measurements were computed using a direct mobility
formulation. The direct mobility measurements were also re-
produced for the present work, but they are not shown as

045304-4



PARALLEL COMPUTING FOR MOBILITIES IN PERIODIC … PHYSICAL REVIEW E 106, 045304 (2022)

they are visually indistinguishable from the indirect mobilities
in Fig. 2(a). Instead, Fig. 2(b) shows the relative error of
the indirect mobility values relative to the direct mobility
measurements. The indirect and direct mobilities were all
computed using the default simulation protocol described in
Sec. II B. As anticipated, the direct and indirect mobilities are
in excellent agreement for all cases in Figs. 2(a) and 2(b): the
relative errors are all of the order of 0.1% or better, and all
points lie within two standard errors of 0.

B. Sampling the stationary distribution

The results in Figs. 2(a) and 2(b) are based on indirect
mobilities calculated by sampling the stationary distribution
for y using the MCMC protocol described in Sec. II B. For
each choice of E∗ and a, particle trajectories are evolved until
they traverse Nrelax = 10 periods, and their final y values form
initial conditions for subsequent indirect mobility estimations.
That simulation protocol appears sufficient to recover the
approximate equivalence of the direct and indirect mobili-
ties. However, because the simulations used for the MCMC
algorithm are essentially identical to those used to measure
both the direct and indirect mobilities, the MCMC algorithm
nominally multiplies the computational cost of the indirect
mobility calculation by a factor of Nrelax. For excessively large
values of Nrelax, any computational advantage of the indirect
mobility will be lost.

Luckily, it appears to be possible to reduce this overhead
cost dramatically. For example, the protocol in Sec. II B re-
duces this cost by recycling 105 MCMC samples across the
107 trajectories used for the indirect mobility calculation. This
method reduced the MCMC algorithm’s runtime by roughly a
factor of 100, rendering it a negligible fraction of the total run-
time. The magnitude of the error imparted by this technique
will depend on the details of the studied system. Systems for
which the true stationary distribution is more intricate and/or
for which the first-passage time depends strongly on the initial
values of the auxiliary coordinates should incur more error
from recycling MCMC samples.

In the current system, however, the stationary distribution
for almost all of the physical parameter combinations was
found to be very nearly uniform. Figure 3(a) shows histograms
of the sampled stationary distributions for all values of E∗
and a. The lines are colored according to the drift and dif-
fusion times ratio described below. It is clear that most cases
are nearly uniform, and even the few that deviate noticeably
from uniform do not deviate very much in absolute terms.
Figure 3(b) shows the Kolmogorov-Smirnov test statistics of
these distributions with respect to the uniform distribution.
This metric is the maximum distance between the empirical
cumulative distribution of the MCMC samples of y against the
cumulative distribution of a uniform distribution; essentially,
a larger value indicates that the samples likely come from a
more nonuniform distribution. Here, it is clear that although
all of the most nonuniform distributions correspond to large
Péclet numbers, not all cases with large Péclet numbers ex-
hibit significantly nonuniform stationary distributions.

In fact, this behavior is not so surprising. The slits of the
slit-well device are fairly narrow and long. The local dynam-
ics within each slit likely satisfy the condition assumed in

FIG. 3. (a) Normalized histograms (with 20 bins) of the station-
ary distributions obtained with Nrelax = 10 for the standard protocol.
The normalized y position spans the available y coordinates in the
slit, which depends on a through the reflective boundary condi-
tions. (b) Kolmogorov-Smirnov test statistic between the sampled
distributions and the uniform distribution (higher value indicates less
uniform behavior), as a function of Péclet number. Colors in panels
(a) and (b) show log(τdrift,slit/τdiff,slit ) as described in the text.

Fick-Jacobs theory (Appendix A 1): diffusive relaxation of
y coordinates occurs much more quickly than translation in
the x direction. This behavior explains why not all cases with
large Péclet numbers in Fig. 3 exhibit significant Kolmogorov-
Smirnov test statistics relative to the uniform distribution:
the Péclet number Pé = E∗a is a global Péclet number and
does not account for the local drift-diffusion ratio within the
slit, which is more strongly affected by the excluded volume
effects due to the particle diameter a.

A local measure of the drift-diffusion balance can be ob-
tained by comparing the drift time along the slit in the x
direction,

τdrift,slit ∼ L/2

μ0E∗ , (7)

to the diffusion time across the slit in the y direction,

τdiff,slit ∼ (
slit − a)2

2D
∼ a(
slit − a)2

2
. (8)

Here L = 8 is the period length, 
slit = 1 is the nominal width
of the slit, a is the particle diameter, and D ∼ 1/a is the
particle diffusion coefficient (i.e., the numerical value of D
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in simulation was equal to 1/a). The plots in Figs. 3(a) and
3(b) are colored in proportion to the logarithm of the ratio of
these times, log(τdrift,slit/τdiff,slit ). A small ratio corresponds to
the Fick-Jacobs regime. Figures 3(a) and 3(b) clearly shows
that the most nonuniform stationary distributions are those for
which the global Péclet number is high and the drift-diffusion
time ratio in the slit is smallest.

In fact, it is even feasible in this case to forego the MCMC
sampling step altogether. Figure 2(c) shows relative errors
of mobility measurements made with Nrelax = 0, i.e., a uni-
form distribution of initial y values. The error relative to the
calculated direct mobilities is statistically indistinguishable at
all but the largest field strengths. More specifically, as pre-
dicted above, based on the ratio of drift to diffusion times
in the slit, only for substantial values of E∗ and moderate
values of a is the error from using a uniform initialization
statistically significant in Fig. 2(c). Even at these choices of
E∗ and a, the indirect mobility still only has errors on the
order of 0.02%; the true stationary distributions are still nearly
uniform [Fig. 3(a)]. Extending the above reasoning, nearly
uniform stationary distributions may be expected to arise in
other periodic MNFDs featuring geometric bottlenecks.

Nevertheless, it is important to note that the correct station-
ary distribution is an essential condition for the equivalence
of the direct and indirect mobilities (Appendix B). Figure 4
illustrates the consequences if this condition is neglected in-
appropriately. In this case, indirect mobilities were once again
measured using uniform initial conditions for y, but now with
the mean first-passage time computed from an initial x posi-
tion set in the middle of a well to the middle of the next well
(Fig. 5), rather than from the middle of a slit to the middle of
the next slit [Fig. 1(c)].

Figure 4(a) shows the indirect mobilities computed based
on the well-to-well mean first-passage process with uniform
initial conditions, and Figure 4(b) shows the corresponding
relative errors. At low field strengths, this algorithm still pro-
duces acceptably small relative errors. However, the indirect
mobilities are entirely incorrect at higher field strengths, both
quantitatively and qualitatively. This behavior is in stark con-
trast to the results of Fig. 2(c), which showed that uniform
initial conditions were an acceptable approximation for all
cases in the slit-to-slit configuration.

Indeed, the correct stationary distribution in the well-to-
well configuration is substantially nonuniform. Figure 6(a)
shows all the distributions for the well-to-well configuration
measured with Nrelax = 1, and Fig. 6(b) shows the correspond-
ing Kolmogorov-Smirnov test statistics relative to the uniform
distribution. As in Fig. 3, colors are based on the ratio of the
drift timescale to the diffusion timescale; in the well-to-well
configuration, these are

τdrift,well ∼ L/2

μ0E∗ , (9)

τdiff,well ∼∼ a(
well − a)2

2
. (10)

In particular, note that the nominal size of the well is 
well =
5, which is much larger than the nominal size of the slit,

slit = 1. Contrasting with the stationary distributions in the
slit-to-slit configuration (Fig. 3), the well-to-well distributions

FIG. 4. (a) Incorrect indirect mobility values measured using
the well-to-well configuration with uniform initial conditions for y
shown as a function of field strength E∗ for various particle diameters
a. (b), (c) Relative error of simulated indirect mobility values com-
pared to simulated direct mobility values when indirect mobilities are
calculated using initial x values in the middle of a well and (b) initial
y values are distributed uniformly or (c) initial y values are sampled
using MCMC with Nrelax = 1. Error bars correspond to one standard
error.

FIG. 5. Schematic of the well-to-well configuration for indirect
mobility measurements. Particles are initialized on the red line,
which is in the middle of a well. Mean first-passage times are com-
puted to the blue line.
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FIG. 6. (a) Normalized histograms (with 20 bins) of the sta-
tionary distributions obtained with Nrelax = 1 for the well-to-well
configuration. Normalized y position spans the available y coordi-
nates in the well, which depend on a via the reflective boundary
conditions. (b) Kolmogorov-Smirnov test statistic between the sam-
pled distributions and the uniform distribution (higher value indicates
less uniform behavior), as a function of Péclet number. Colors in
panels (a) and (b) show log(τdrift,well/τdiff,well ) as described in the text.

are clearly far less uniform. With increasing Péclet number,
the stationary distribution favours y positions near the top of
the well. This behavior is consistent with the known physics
of the system: when the applied field is strong, the larger
particles are less likely to diffuse into the bottom of the well
and have larger mobilities as a result [23].

As in the slit-to-slit configuration, nonuniformity is great-
est when the Péclet number is large, and the diffusion
timescale in y is large relative to the transit timescale in x.
However, whereas the geometric bottleneck in the slit limits
the importance of nonuniformity for large a, in the well-to-
well configuration, the accessible range in y is large even at the
most significant a values. This result highlights a subtle but
important aspect of utilizing the indirect mobility formulation
in practice: the behavior depends on the choice of location
for the period-to-period threshold. This choice affects the
complexity of the true stationary distribution and thus affects
the possibility of approximating it analytically (e.g., using a
uniform distribution) or the computational cost of sampling
it numerically. Moreover, the computational disadvantage of

a misaligned period boundary condition is expected to be
greatly amplified in systems with larger well-to-slit aspect
ratios.

Nonetheless, even the intentionally suboptimal choice of
this threshold in the well-to-well configuration can be handled
very efficiently in this case. The analysis in Appendix B
suggests that the MCMC algorithm should converge expo-
nentially with increasing Nrelax, suggesting that perhaps large
values are not necessary. Figure 4(c) shows the relative error
of the well-to-well indirect mobility calculation when the
initial conditions are sampled using the MCMC algorithm
with Nrelax = 1. The relative error has become essentially
negligible even with relaxation through only a single period.
Although errors are statistically discernible at high E∗, these
relative errors are on the order of 0.1% or less.

The extremely fast convergence of the MCMC sampling
protocol can again be attributed to the geometric bottleneck in
the slits. In the well-to-well configuration, the distribution of
y values after crossing one period is entirely specified by the
intermediate y values in the slit. Because of the bottleneck,
the system becomes thoroughly mixed at this location. It thus
appears inevitable that the MCMC algorithm will converge
very rapidly with Nrelax whenever such a bottleneck is present.

Future work might explore other options for sampling
from the stationary for indirect mobility calculations. Finite
samples from the MCMC algorithm presented above might
be smoothed by fitting to a histogram or using kernel den-
sity estimation, for instance. Alternative, generative modeling
techniques (e.g., generative adversarial networks) might be of
interest. Furthermore, the indirect mobility can also be ap-
plied to solutions of the time-integrated Smoluchowski PDE,
as explored in Nagel et al. [52] (see Appendix A 3). That
application requires estimating the stationary distribution’s
probability distribution function rather than only requiring
samples drawn from that distribution. In the context of the
algorithm of Nagel et al. [52], this could be accomplished, for
instance, by using an auxiliary neural network to represent the
stationary distribution and imposing a self-consistency condi-
tion on the distribution of y values at the absorbing boundary
condition.

C. Computational cost comparison

The demonstration in Sec. III A confirmed that the direct
and indirect mobilities are equivalent, as derived in Ap-
pendix B. Those simulations used an MCMC algorithm to
sample the stationary distribution required for the indirect
mobility calculations. As discussed, if every trajectory used
to calculate indirect mobility requires an independent MCMC
sample, and if the MCMC samples require a large value of
Nrelax, then the cost of the MCMC sampling protocol will
dominate the cost of the indirect mobility calculation. Luckily,
as explored in Sec. III B, it appears possible to reduce this
overhead cost significantly. At least for the model described
in Sec. II B, a small number of MCMC samples can be recy-
cled across many trajectories without introducing substantial
error. Convergence of the MCMC sampler is expected to be
exponential in Nrelax in general (Appendix B 2), but geometric
bottlenecks were argued in Sec. II B to produce particularly
fast convergence. Altogether, it appears that the cost of sam-
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pling the stationary distribution by MCMC can be made a
negligible fraction of the computational cost of the indirect
mobility calculation in many cases.

With this established, the current section compares the
computational costs of the direct and indirect mobility for-
mulations. It is based on the theoretical cost analysis in
Appendix C, which is briefly recounted below. The predicted
convergence rates of the two mobilities are tested against their
actual performance on the problem of nanoparticles in the
slit-well from Sec. II B. The analysis ignores the cost of the
MCMC sampling protocol, based on the arguments above that
this is likely a small addition to the overall cost of the indirect
mobility.

Appendix C contains an analysis of the approximate com-
putational cost of measuring the mobility to a target level of
relative error ε using either the direct or indirect mobility for-
mulations. The convergence rates are estimated by leveraging
the detailed prediction of the limiting x position distribution
obtained in Appendix B. Specifically, the limiting distribu-
tion is predicted to be a normal distribution with mean and
variance given by Eqs. (B15) and (B16), reproduced here for
convenience:

〈x(t )〉 = L
t

〈τ1〉 + L
1

2

σ 2

〈τ1〉2
− 〈δx〉, (11)

var(x(t )) = L2 σ 2

〈τ1〉2

t

〈τ1〉 + L2 5

4

σ 4

〈τ1〉4
+ var(δx ). (12)

Here L is the period length of the system, 〈τ1〉 is the mean first-
passage time across each period (assuming the stationarity
condition for auxiliary coordinates), and σ is a correlation-
adjusted standard deviation of the first-passage time across
each period [Eq. (B7)].

The quantity δx is an additional random variable introduced
in Appendix B 4 to account for the motion of analytes against
the net long-time direction of motion. In particular, 〈δx〉 is a
measure of the mean fluctuation of the analyte’s x position
between its first contact with period k and period k + 1. Be-
cause of the stationarity condition, the statistics of δx do not
depend on k, and thus δx plays no role in determining the
mobility. However, as discussed below, it does play a very
important role in the rate of convergence of the direct mobility
calculation.

A measurement of the direct mobility using particle sim-
ulations essentially amounts to generating a sample of x(t )
values to estimate 〈x(t )〉 in the direct mobility definition
[Eq. (1)]. Appendix C 1 uses the predicted mean and variance
of x(t ) to deduce the mean relative error [Eq. (C2)] and stan-
dard relative error [Eq. (C3)] of the direct mobility estimator
in terms of L, 〈τ1〉, σ , and 〈δx〉. These errors are expressed as
functions of the number of independent trajectories sampled
and the total runtime for which the trajectories are evolved.
The total relative error of the direct mobility estimator is
obtained by adding the mean and standard error in quadrature.

Equation (C2) states that the mean relative error of the
direct mobility estimator is proportional to

1

2

σ 2

〈τ1〉2
− 〈δx〉

L
(13)

divided by the total runtime of the simulated trajectories. This
prefactor can potentially become very small if its two terms
are comparable in magnitude. However, understanding the
behavior of δx was deemed beyond the scope of the analysis
in Appendix C. The direct and indirect mobility convergence
rates were compared with the approximation δx ≈ 0. This
choice is one of the significant limitations of that analysis,
and the numerical demonstrations below will investigate the
implications on convergence rates obtained in practice.

The error convergence of the indirect mobility estima-
tor was approximated by assuming that first-passage times
across any given period have exponentially decaying tails.
Specifically, the probability density function ρ(τ1) of the first-
passage time is assumed to be of the form [Eq. (C6)]

ρ(τ1) ≈ 1

τ ∗ exp
(
− τ1

τ ∗
)

(14)

at large τ1, where τ ∗ is some constant. This is generally
a fair assumption since the tails of the τ1 distribution are
generated by those stochastic trajectories that remain trapped
for extended periods (see the theoretical frameworks in Ap-
pendix A 2). However, it is not generally the case that τ ∗
is equal to the mean first-passage time 〈τ1〉. Nonetheless,
the simplifying assumption τ ∗ ≈ 〈τ1〉 was made in parts of
Appendix C, as a proper characterization of τ ∗ is difficult
in general. This is the second major limitation in the theo-
retical comparison between the direct and indirect mobility
convergence rates and will also be addressed in the numerical
demonstrations below.

The analysis in Appendix C culminates in predictions for
the total computation time necessary to achieve a relative error
of ε using either method when a total of Npara parallel threads
are available. Figure 7 summarizes the main results of the
analysis. Figure 7(a) shows the predicted ratio of the runtimes
for the direct and indirect mobility estimators. Results are
shown for Npara = 103, 104, 105 and with the assumption that
the coefficient of variation σ0/〈τ1〉 of the first-passage time
across a single period is 0.5, 1.0, or 3.0. Here, σ0 is the actual
standard deviation of the first-passage time, which is assumed
to be similar to the correlation-adjusted standard deviation σ ;
see Appendix C for details.

The general conclusion is that, given sufficient access to
parallel computing hardware, the indirect mobility appears to
be a more efficient choice. Figure 7(b) illustrates that for target
errors below ε ≈ 1/Npara, the two mobility formulations have
roughly the same runtime. Conversely, the maximum advan-
tage of using the indirect mobility occurs for target errors
close to σ0/〈τ1〉√

Npara
, as indicated in Fig. 7(c). As Npara increases,

the relative cost of the indirect mobility to the direct mobility
decreases at all values of ε, but the ε at which the ratio is
maximized shifts to lower values. In practice, ε values near
0.1–1% are commonly used in MNFD research, and the Npara

values listed in Fig. 7 are increasingly affordable thanks to
GPU acceleration. Thus, Fig. 7 shows that the theoretical
analysis of Appendix C predicts accelerations of an order
of magnitude or more by switching to the indirect mobility
formulation under practically relevant conditions.

However, as noted above, the analysis in Appendix C
and the results in Fig. 7 are based on two questionable
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FIG. 7. Ratio of the predicted runtimes for the direct and indirect mobility estimators, for various choices of Npara (indicated by line
color) and CV = σ0/〈τ1〉 (indicated by line style). The predicted runtime ratio is plotted against (a) the target relative error ε, (b) εNpara,
and (c) ε

√
Npara/(σ0/〈τ1〉). The black vertical line in panel (b) indicates the predicted transition of the direct mobility estimator from order

O(1/Tdirect ) to order O(1/
√

Tdirect ), while the black vertical line in (c) indicates the predicted transition of the indirect mobility estimator
from exponential convergence to order O(1/

√
Tindirect ). All plots neglect the cost of MCMC sampling and the effect of correlations between

first-passage times (i.e., assume ψ = σ/σ0 = 1; see Appendix C).

approximations. First, it neglects the effect of the quantity
〈δx〉 in Eq. (C1), which characterizes the motion of analytes
against the net force between the first passage to the kth period
and the first passage to period k + 1. Second, it assumes that
the first-passage times are exponentially distributed with a
time constant τ ∗ that is similar in magnitude to the mean
first-passage time 〈τ1〉. If 〈δx〉 is large or τ ∗ � 〈τ1〉, then the
predicted computational advantages of the indirect mobility
over the direct mobility may be smaller than expected.

Figure 8 presents numerical measurements of the runtimes
and estimated relative errors for the direct and indirect mo-
bility estimators, computed from simulations of nanoparticles
in the slit-well device (Sec. II B). In each subplot of Fig. 8,
four physical scenarios are considered: all combinations of

E∗ = 0.2, 20 and a = 0.1, 0.75. The simulation protocol is
the same one used in Sec. III A, with calculations paral-
lelized across Npara = 104 threads. The direct mobility curves
in Figs. 8(a) and 8(c) correspond to measurements taken
throughout a single long simulation trajectory. Each data point
for the indirect mobility estimators in Figs. 8(b) and 8(d) is
sampled independently using a varying number of trajectories
(although the same MCMC samples of the stationary distri-
butions are recycled for each physical scenario). Runtimes
are reported in simulation time units, and relative errors are
estimated against the final direct mobility values for each of
the four physical scenarios.

In Figs. 8(a) and 8(b), the colored dotted lines correspond
to the predicted runtime necessary to achieve a given relative

FIG. 8. (a), (b) Measured runtimes for (a) direct mobility estimators and (b) indirect mobility estimators shown as a function of estimated
relative error, for four physical scenarios indicated in the legend. Pe indicates the Péclet number Pé = E∗a and CV stands for the coefficients
of variation σ0/〈τ1〉. (c), (d) Deviation of the measured (c) direct mobility and (d) indirect mobility behavior from the predicted behavior. All
results for Npara = 104.
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error ε [Eqs. (C23) and (C30)]. The black dotted lines denote
T ∼ 1/ε and T ∼ 1/ε2 scaling, corresponding to the expected
limiting behavior of the direct mobility estimator. In Figs. 8(c)
and 8(d), the measured mobility results are divided by the
predicted behaviors; the solid black line indicates where the
simulation results and the theoretical predictions are in agree-
ment. The dotted black line indicates a scaling of 1/ε, as
discussed below.

In Fig. 8(a), the red and green lines match the theoretical
predictions quite well, but it is clear that the blue and orange
series are performing significantly better than expected from
the analysis. Specifically, Fig. 8(c) shows that for sufficiently
large values of ε, the orange line is about twice as fast as
expected, and the blue line is roughly two orders of magnitude
faster than expected. The deviation by this constant factor
persists until a certain level of relative error is achieved, below
which the ratio of measured to predicted runtimes decays to 1
at a rate of 1/ε [indicated by the dotted line in Fig. 8(c)]. These
transition points in Fig. 8(c) coincides with the similar transi-
tion points in Fig. 8(a) at which the corresponding runtimes
change from scaling as 1/ε to scaling as 1/ε2.

The disagreement between theory and reality for the con-
vergence of the direct mobility estimator is more prominent
for smaller Péclet numbers. This behavior can be tentatively
attributed to the omitted term 〈δx〉/L acting to reduce the
prefactor of the mean relative error by a constant amount.
As explained in Appendix C 1, the mean relative error of
the direct mobility estimator decays as ε ∼ 1/T with runtime
T , whereas its standard relative error decays as ε ∼ 1/

√
T .

At large ε, the total error of the direct mobility estimator is
dominated by the mean relative error. Since the mean relative
error prefactor is missing 〈δx〉/L, the measured runtime dis-
agrees with the prediction by a constant factor. Conversely,
at sufficiently small ε, the total error becomes dominated by
the standard relative error, which does not depend on 〈δx〉/L.
In the small ε regime, the disagreement with the theory de-
cays at the same rate as the mean relative error, i.e., 1/ε. At
large Péclet numbers, however, it appears that indeed 〈δx〉 ≈ 0
since the measured runtime versus error agrees well with the
prediction from Appendix C.

Whereas the direct mobility is performing much better than
predicted in some cases, Figs. 8(b) and 8(d) show that the
indirect mobility is performing somewhat less well than ex-
pected. The case with the lowest Péclet number (blue) exhibits
runtimes nearly an order of magnitude larger than expected
over much of the ε range. The other three cases (orange, green,
red) have runtimes that only exceed the predicted runtime by
a factor of 2–3 or less at all values of ε. These observations
can be attributed to the difference between τ ∗ and 〈τ1〉, which
were assumed to be equal in the theoretical predictions.

The difference between τ ∗ and 〈τ1〉 is better understood
by considering the coefficient of variation than the Péclet
alone. Indeed, the orange and green lines have very similar
coefficients of variation but very different Péclet numbers;
whereas only green agrees with theory in the direct mobility
case [Figs. 8(a) and 8(c)], both agree comparably well with
theory in the indirect mobility case [Figs. 8(b) and 8(d)].
The coefficient of variation is equal to 1 for an exponential
distribution, and the case of exponentially distributed first-
passage times corresponds to τ ∗ = 〈τ1〉. More generally, the

coefficient of variation of a distribution is a common metric
for the relative importance of the distribution’s tails. In any
case, the magnitude of the gap between theory and practice
for the indirect mobility appears less significant than that
observed for the direct mobility.

In summary, the theoretical convergence analysis con-
ducted in Appendix C and illustrated in Fig. 7 overpredicts
the advantage of the indirect mobility in two ways. When
the Péclet number is low, the direct mobility performs better
than expected, likely because of the action of δx to reduce the
mean relative error at large ε. When the coefficient of variation
is large, the indirect mobility performs worse than expected,
likely because τ ∗ is significantly larger than 〈τ1〉. Note that
in the case of nanoparticles traversing the slit-well device, the
Péclet number correlates very strongly with the coefficient of
variation in the diffusive regime [23]. Both of these effects
tend to diminish the computational advantage of the indirect
mobility over the direct mobility.

Regardless, the predicted computational advantage of the
indirect mobility is still discernible in this system. Figure 9(b)
is a plot of the ratio of the measured runtimes for the direct
and indirect mobility estimators shown in Figs. 8(a) and 8(b),
obtained by linearly interpolating the direct mobility curves
in Fig. 8(a). Also included (dotted lines) are the theoretical
predictions of the ratio based on Eqs. (C23) and (C30) (as
shown in Fig. 7).

As expected from the discussion of Fig. 8, the measured
runtime ratios match the theoretical prediction at high Péclet
numbers but significantly deviate at lower Péclet numbers.
Nonetheless, the indirect mobility estimator consistently con-
verges faster than the direct mobility estimator for the three
largest Péclet numbers for ε in the range of 0.1–1%. The
largest increase in speed is observed for the green line, which
converges roughly six times faster to an error of approxi-
mately 0.5%.

Figures 9(a) and 9(c) show how the measured runtime
ratios change when these experiments are repeated with
fewer parallel threads (Npara = 103) or more parallel threads
(Npara = 105), respectively. For Npara = 103, the difference
between the two estimators is difficult to resolve at any ε

value. As noted in Appendix C 3, the two algorithms are
expected to have roughly identical convergence rates for small
values of Npara. In practice, the direct mobility appears slightly
more efficient, especially given that this plot omits the cost of
sampling the stationary distribution for the indirect mobility
estimator.

Conversely, for Npara = 105, the advantage of the indirect
mobility is quite clear [Fig. 9(c)]. In this case, observations are
much better described by the theory from Appendix C. Even
for the blue line, where the low Péclet number and large coef-
ficient of variation were previously identified as substantially
favoring the direct mobility, the indirect mobility calculation
is several times faster at errors near 0.1%. The green and red
lines, corresponding to the larger Péclet numbers, are well-
described by the theory and are 10–20 times faster to compute
at errors near 0.1%.

These results demonstrate that using the indirect mobility
formulation may indeed be significantly faster under practical
conditions. As noted earlier, target errors of 0.1–1% are typ-
ically appropriate for simulation studies of periodic MNFDs.
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FIG. 9. Ratio of the measured runtimes for direct and indirect mobility estimators as a function of estimated relative error ε. Values for
the direct mobilities were interpolated/extrapolated linearly to the required values of ε. The colored dashed lines show the predicted ratio of
runtimes for each case based on Eqs. (C23) and (C30). The solid black line shows a ratio of 1, whereas the dashed black line shows a scaling
of 1/ε. Results shown for (a) Npara = 103, (b) Npara = 104, (c) Npara = 105.

The effective values of Npara in practice depend somewhat on
implementation details but can be estimated (at least for some
implementations on certain NVIDIA GPUs) as 16 times the
number of CUDA cores [53]. For our implementation, perfect
parallelization to the level of Npara ≈ 104 was easily achieved
on a GTX 1650, a very modest consumer-grade GPU with
896 CUDA cores. The case of Npara = 105 was meant to illus-
trate what could be achieved by parallelizing across roughly
ten such GPUs, a practice which is increasingly becoming
commonplace. Experiments on a GTX 1080 Ti suggested that
a single card of that variety could deliver Npara ≈ 5 × 104,
consistent with it having 3584 CUDA cores. Although its per-
formance was not tested with our implemented simulations,
the RTX 3090 is listed as having 10496 CUDA cores, which
may correspond to Npara ≈ 1.5 × 105 on a single card.

Depending on implementation details, simulations of M-
body molecules may effectively be limited to roughly M times
smaller values of Npara on the same hardware. This would be
the case, for instance, if roughly M threads were allocated to
accelerate each independent trajectory. This may or may not
be advantageous compared to running serial M-body simula-
tions on each of the Npara threads; such considerations likely
depend on the physics of the system being simulated and are
beyond the present scope. Regardless, the increasing afford-
ability of massively parallel computing resources will enable
larger Npara values for increasingly complex molecules. For
instance, a set of 10 RTX 3090 cards could enable Npara = 105

with M as large as 150, in which case the indirect mobility
formulation may feasibly be roughly five times faster than the
standard direct mobility formulation, especially for systems
with moderate-to-large Péclet numbers and/or geometric bot-
tlenecks.

IV. CONCLUSION

The theoretical and empirical results presented in this
work support the claim that the indirect mobility formulation
[Eq. (2)] may be a more efficient option for computing the
effective mobility of biomolecules driven through periodic
geometries than the traditional direct mobility formulation
[Eq. (1)]. The indirect mobility formulation leads to expo-
nentially faster convergence in the limit of unlimited parallel

computing capacity and arbitrarily small target errors. Given
the growing importance and availability of parallel computing
hardware for computational science, the relevance of this re-
sult is likely to increase in the future.

Even under realistic conditions of finite parallel comput-
ing capacity and target errors near or slightly below 1%,
the indirect mobility can still be a substantially more effi-
cient approach. In general, the relative performance of the
two approaches appears to depend on a few key physical
parameters of the system under study and especially on the
balance of drift to diffusion. In the example model of nanopar-
ticles traversing the slit-well device, the indirect mobility was
demonstrated to converge up to an order of magnitude faster
in some circumstances (specifically, when the Péclet number
is moderate or large), even using quite modest computing
hardware.

Future work is needed to assess the relative merit of
the indirect mobility formulation in simulations of other
biophysical systems. The theoretical discussions in the ap-
pendices apply to a fairly general model of the transport
of biomolecules through periodic geometries. However, the
theoretical analyses of computational cost in Appendix C
are limited by the approximations of nearly exponential
first-passage time distributions and nearly negligible analyte
motion against the direction of the applied force. The em-
pirical results reveal that, in some cases, the direct mobility
is actually a substantially more efficient estimator than the
indirect mobility. Nonetheless, this only appears to be a prac-
tical concern in very weakly driven systems. Highly driven
systems, where the indirect mobility is most useful, are likely
to be of more practical relevance to the design of MNFDs.
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APPENDIX A: REVIEW OF RELATED
THEORETICAL FRAMEWORKS

Below are included reviews of other theoretical frame-
works in which the direct and indirect mobilities have been
shown to be equivalent. These derivations are less general than
the derivation in Appendix B. The result of Appendix B is
more broadly applicable, as it does not make strong assump-
tions about the separation of timescales in the system, and
it holds for many-body molecules and for time-varying force
fields. Moreover, Appendix B yields specific equations for the
limiting x position distribution, enabling the convergence rate
analysis in Appendix C.

1. Quasi-1D systems: Fick-Jacobs theory

The Fick-Jacobs equation was first presented by Jacobs
[54] as an effective one-dimensional model for steady-state
diffusion in a confined system of varying cross-sections.
Essentially, the two- or three-dimensional Smoluchowski
equation is integrated across the cross-section of the system.
The volume available to particles in these transverse coor-
dinates is approximated in the Fick-Jacobs equation by an
additional free energy term. A more rigorous formulation was
put forth by Zwanzig [55], who greatly increased the appli-
cability of the equation by formulating a position-dependent
effective diffusion coefficient. Further extensions and correc-
tions were proposed in subsequent works [56,57].

The Fick-Jacobs equation and similar approaches have
been used successfully to explain diffusion in quasi-one-
dimensional systems with or without applied forces, including
cases with periodic geometries [58–64]. However, despite the
various refinements that have been proposed, it generally fails
to perform adequately within certain limits. Because the the-
ory assumes rapid relaxation in the transverse coordinates, it
tends to encounter problems in systems with strong applied
forces or sudden changes in cross-sectional area [65–72].
Moreover, the theory has a limited capacity to handle spatial
variations in the applied force field, especially in the direction
of the transverse coordinates (see however Pompa-García and
Dagdug [64] for an example where Fick-Jacobs was success-
fully extended in this manner). Most importantly, for studying
biomolecules in periodic MNFDs, the Fick-Jacobs equation is
restricted to the diffusion of single Brownian particles and
does not directly deal with the case of many-body molecules.

Since the Fick-Jacobs equation is effectively one-
dimensional, it benefits from many results applicable to the
one-dimensional Smoluchowski equation. While studying the
effective diffusion coefficient of one-dimensional Brownian
particles in tilted periodic potentials, Reimann et al. [73] and
Reimann et al. [74] proved that the indirect mobility [Eq. (2)]
is equal to the direct mobility [Eq. (1)]. Lindner et al. [75] con-
nected that work to a classical result due to Stratonovich [76].
These results have since been used to compute mobilities in
periodic quasi-one-dimensional systems [58,70,71]. However,
this proof of equivalence is naturally restricted to the scope of
applicability of Fick-Jacobs theory. Moreover, because it is
based on one-dimensional approximations of point-particles,
arguments like those in Reimann et al. [73] cannot account for
correlations between crossing times (cf. Appendix B 2).

2. Large barriers: Poisson point processes

The equivalence of the direct and indirect mobilities is also
known to hold in the case that a large free energy barrier
obstructs the transport of molecules across each period of the
system. In such a setting, there is a well-defined separation
of timescales between the period-to-period transport process
and all other processes occurring in the system. Reaction rate
theories, such as Kramers theory, can be brought to bear on the
problem (see Hänggi et al. [50] for a review of such theories).

Systems in this regime can be described as Poisson point
processes. The probability that a particle initially trapped in
a given period has not yet escaped to the next period decays
exponentially as a function of time:

P(not absorbed after time t ) ∼ exp(−λt ). (A1)

Moreover, transfers between distinct periods will certainly be
statistically independent events since, by assumption, these
events occur more slowly than all other relaxation timescales
in the system. For such exponentially distributed times, the
mean rate λ is related to the mean first-passage time τ by

λ = 1

〈τ 〉 . (A2)

In the context of mobility through periodic geometries, the
mean position on long timescales will thus be

〈x(t )〉 → Lλt = Lt

〈τ 〉 . (A3)

Dividing both sides by t yields the equivalence of Eqs. (1) and
(2).

These theories have been used to analyze particle transport
in titled periodic potentials [50]. However, Kramers theory
and related reaction rate perspectives are restricted in appli-
cability by their strong assumption of timescale separation.
Whereas Fick-Jacob methods assume rapid relaxation of po-
sition coordinates in the directions transverse to bulk motion,
reaction rate theories generally assume rapid relaxation of all
processes but the dominant transport process. This approxi-
mation again breaks down in situations with strong driving
forces and nonequilibrium effects.

Despite their limitations, these theories are still widely
used to describe motion in periodic MNFDs. In particular,
the assumption of exponentially distributed times is often used
to justify physical models based on mean first-passage times
(see, for instance, Han et al. [19], Cheng et al. [23], and
Wang et al. [41], for a few examples of such arguments).
The results presented in this work show that the connection
between transport rates and mean first-passage times can be
extended to more general physical circumstances, so long as
the stationary distribution upon which the mean first-passage
times are based is defined appropriately.

3. Other mean first-passage time methods

Besides the Fick-Jacobs and reaction rate theoretical
frameworks, there have also been a variety of other cases
in which mean first-passage times were used to understand
the mobilities of molecules traversing periodic geometries.
In particular, mean first-passage time perspectives have
been used successfully to study the driven diffusion of
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Brownian particles in geometries with abruptly changing
cross-sections, where the Fick-Jacobs perspective is not appli-
cable [66–69,72]. We will also mention in passing that these
studies have successfully used mean first-passage time frame-
works to understand effective diffusion, another important
concept in the research and development of periodic MNFDs.
The Lifson-Jackson method is one of the earliest methods
that studied effective diffusion from this perspective [69,77].
We will briefly comment on how our result connects to the
concept of effective diffusion in Appendix B 4, but leave more
careful considerations of this aspect for future work.

The Smoluchowski equation describing the evolution
of the position probability density function for Brownian
molecules is another important theoretical framework for
mean first-passage time analysis. An adjoint equation to the
Smoluchowski equation can be constructed whose solution at
any point in the domain equals the mean first-passage time
from that point to absorbing regions on the domain’s boundary
[78]. In fact, essentially, this method was used by Lifson and
Jackson [77] in their analysis.

Another very similar equation is the time-integrated
Smoluchowski equation, whose solution is commonly de-
noted g0 [79]. The source term in the time-integrated
Smoluchowski equation corresponds to a certain choice of
initial particle positions in the system, and the solution g0 has
the property that its integral over the domain equals the mean
first-passage time. A recursive hierarchy of equations can be
constructed to obtain the higher moments of the first-passage
time in the same manner.

The qualitative behavior of g0 solutions in a periodic
MNFD was studied by Magill et al. [44]. This analysis mo-
tivated a certain normalization of first-passage times, which
elucidated a universal scaling behavior across system geome-
tries. Moreover, Magill et al. [44] argued that the long-time of
molecules traversing that MNFD was entirely determined by
the first and second moments of the first-passage times across
each period, which would be completely captured by the g0

and g1 fields.
Elaborating on the g0 field as a proxy for connecting

MNFD geometries with effective mobilities, Nagel et al. [52]
used a method based on neural networks to solve g0 in a sys-
tem similar to that studied by Cheng et al. [23]. By computing
four-dimensional approximations of g0 as a function of both
domain coordinates and model parameters, Nagel et al. [52]
demonstrated the idea of using neural networks to construct
differentiable mappings from system design parameters to
physical observables of interest (in this case, effective mo-
bility). The use of g0 in this way is a particular motivation
for understanding the indirect mobility; the direct mobility
formulation cannot be expressed in such a straightforward
manner as the solution to a partial differential equation.

APPENDIX B: DERIVATION OF THE EQUIVALENCE
OF DIRECT AND INDIRECT MOBILITIES

This section presents a proof that the indirect mobility
[Eq. (2)] is equivalent to the more common direct mobility
[Eq. (1)], so long as the initial conditions used to compute the
indirect mobility are chosen correctly. The approach of the
proof is to derive the limiting form of the position distribution

ρ(x) at long times in terms of the mean first-passage time
across a single period 〈τ1〉. From this solution, it is possible
to equate the limiting drift velocity limt→∞〈x(t )〉/t to L/〈τ1〉.
It then follows readily that the two mobility definitions are
equivalent.

The general setup for the proof (Appendix B 1) is very
similar to the arguments presented previously by Reimann
et al. [73] and Magill et al. [44]. The final steps of the proof
(Appendices B 3 and B 4) are very similar to the steps taken
by Magill et al. [44]. The argument justifying x ≈ kL despite
analyte backflow (Appendix B 4) is essentially the same used
by Reimann et al. [73]. However, the first part of the derivation
(Appendix B 2) differs substantially from prior derivations to
account for correlations in the crossing times between peri-
odic subunits. Such correlations were absent in the system
studied by Magill et al. [44] because of geometric bottlenecks
between the periodic subunits and were irrelevant to the study
of Reimann et al. [73] which considered only Brownian point
particles in a one-dimensional system. They are handled here
via the judicious application of the Markov chain central limit
theorem to an appropriately constructed Markov chain model
of the transport process.

1. The time to first cross k subunits

Recall from Sec. II A that xi denotes the threshold into the
ith period, θi denotes the values of the auxiliary coordinates
measured at the first time for which x(t ) = xi, and ti,i+1 de-
notes the time between first contact with xi and first contact
with xi+1. Now let us denote by τk the total first-passage time
from the original analyte position at x = x0 to the threshold of
the kth periodic subunit at x = xk . By definition,

τk = t0,1 + t1,2 + t2,3 + · · · + tk−1,k, (B1)

where ti,i+1 is the time to reach xi+1 for the first time after hav-
ing reached xi for the first time. In the rest of this section, the
index k will be used to indicate the total number of channels
being crossed, whereas the index i with 0 � i � k − 1 will be
used to refer to the intermediate channels crossed along the
way to the kth channel.

Since τk is the sum of a series of random variables, it
is tempting to appeal to the central limit theorem to deduce
its limiting distribution. However, the application of the cen-
tral limit theorem would require that the random variables
{ti,i+1}k−1

i=0 be identically distributed and uncorrelated. As will
be shown in Appendix B 2, it is usually possible to initialize
the auxiliary coordinates θ0 such that the {ti,i+1}k−1

i=0 are indeed
identically distributed. However, it is not generally possible to
eliminate the correlations between the crossing times. Specif-
ically, the correlation of ti,i+1 with ti−1,i is mediated by the
auxiliary coordinates θi measured at first contact with xi.

Conveniently, the nature of these correlations is still very
tractable. The Markovian assumption made in Sec. II A
amounts to the statement that the sequence {θi}k−1

i=0 is a Markov
chain. Thus, the random process

(θ0, t0,1) → (θ1, t1,2) → · · · → (θk, tk,k+1) → · · · (B2)

is also a Markov chain. Incidentally, since θi alone completely
specifies the joint distribution of (θi+1, ti+1,i+2), Eq. (B2) is
a special type of Markov chain known as a hidden Markov
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model; however, this has no bearing on the current analysis.
What is important is that the ti,i+1 are fixed observables (i.e.,
real-valued functionals) of the state (θi, ti,i+1).

2. The stationary distribution

The distribution of τk can be deduced by applying the
Markov chain central limit theorem to the Markov chain given
by Eq. (B2). This theorem generalizes the central limit theo-
rem, which applies to a sum of independent and identically
distributed (i.i.d.) random variables to the cumulative sum
of real-valued functionals of a stationary Markov chain. In
particular, we will consider the functional g(θi, ti,i+1) = ti,i+1.
Note that many variations and extensions of the Markov chain
central limit theorem exist, but we only need to appeal to the
version of Doob [80].

To apply the theorem, it is necessary for the Markov chain
to be initialized in its stationary distribution π , which satisfies

π (θi+1, ti+1,i+2) = π (θi, ti,i+1). (B3)

In particular, because the marginal distributions of each ti,i+1

are completely determined by θi, this reduces to the require-
ment that

π (θi+1) = π (θi). (B4)

In general, the existence and uniqueness of a Markov
chain’s stationary distribution π depend on the details of its
transition operator. If the state space is finite, then it is suf-
ficient for the transition to be irreducible and aperiodic. This
is the case, for instance, when every state θi+1 has a nonzero
probability of occurring after any state θi. Physically, this type
of behavior is common: motion driven by Brownian noise, for
instance, usually behaves this way.

Unfortunately, ensuring the existence and uniqueness of
a stationary distribution π can be challenging in the case of
Markov chains with continuous state spaces—irreducibility
and aperiodicity of the transition operators are no longer suf-
ficient conditions. Alas, this is probably the more common
scenario in biophysics, for instance, where the auxiliary coor-
dinates θ are the atomic coordinates of a molecule and space
is modeled as continuous. Various conditions are known to
ensure existence and uniqueness of stationary distributions for
continuous state spaces; see for instance Doob [80] or Harris
[81]. In particular, if θi+1 is distributed according to a proba-
bility density function that is continuous in θi, irreducible, and
aperiodic, then Eq. (B2) satisfies the conditions of Example
2 on page 215 of Doob [80]. Under these conditions, the
stationary distribution exists and is unique, and the Markov
chain converges exponentially fast to this stationary distribu-
tion from any initial condition. The auxiliary coordinates θ

are likely to satisfy this condition (at least to a very good
approximation) in most relevant biophysical models.

The exponential convergence of Eq. (B2) to its stationary
distribution π suggests that Markov Chain Monte Carlo is a
practical method for sampling from π . That is, if Eq. (B2)
can be initialized in any convenient state θ0 and the evolution
of the system is simulated until its first passage through krelax

of periods through the device, then the final state θkrelax will
be approximately sampled from π . The number of relax-
ation periods krelax should not need to be very large if the

convergence of Eq. (B2) to π is indeed exponential for the
system under study. The computational cost of this sampling
method will be neglected from the cost analysis of computing
the indirect mobility in Appendix C. However, an empirical
examination of its performance in practice will be presented
in Sec. III B for the example of nanoparticles in the slit-well
system (Sec. II B).

Finally, assuming that the system is initialized according
to the stationary distribution, the Markov chain central limit
theorem can be applied to deduce the distribution of Eq. (B1).
In general, the Markov chain central limit theorem states that
in the limit of large k, for any real-valued function g of the
stationary Markov chain state (θi, ti,i+1),

ρ

[
k−1∑
i=0

g(θi, ti,i+1)

]
→ N [k〈g(θ0, t0,1)〉, kσ 2]. (B5)

This result closely resembles the classical central limit the-
orem. For instance, 〈g(θ0, t0,1)〉 is the ensemble average of
g(θ0, t0,1) taken with respect to the stationary distribution π .
However, the quantity σ in Eq. (B5) is not simply the variance
of g; see below.

For the choice g(θi, ti,i+1) = ti,i+1, and since τk =∑k−1
i=0 ti,i+1 and τ1 = t0,1, it follows that

ρ(τk ) → N (k〈τ1〉, kσ 2), (B6)

where 〈τ1〉 is the mean first-passage time across the first pe-
riodic subunit when the analytes are initialized according to
π (θ0). The parameter controlling the variance of τk is

σ 2 = varπ (t0,1) + 2
∞∑

i=1

covπ (t0,1, ti,i+1), (B7)

where varπ and covπ denote variances and covariances, re-
spectively, computed when the system is initialized according
to π (θ0). Since the ti,i+1 are all identically distributed, the
relationship can be rewritten in the form

σ 2 = varπ (t0,1)

[
1 + 2

∞∑
i=1

corrπ (t0,1, ti,i+1)

]
, (B8)

where corrπ (t0,1, ti,i+1) are the correlations between distinct
crossing times. The first term is the variance of the first-
passage time across any single periodic subunit. The terms
in the series capture the correlations in the passage times
ti,i+1 across distinct subunits i, which are mediated by the
correlations in the degrees of freedom θi. In the special case
where these correlations are all zero, we recover i.i.d. behavior
in the {ti,i+1}k−1

i=0 and the result reduces to the standard central
limit theorem.

3. The number of subunits k that have been crossed
at least once at the time t

Consider the (discrete) random variable k̃(t ), the number
of channels that the analyte has crossed at least once at time
t . The probability that k̃(t ), exceeds some threshold k is given
by

P(k̃(t ) � k) = P(τk � t ) =
∫ t

0
ρ(τk )dτk . (B9)
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Under the conditions leading to Eq. (B6), this integral can be
approximated for large k (or, equivalently, large t) as

P[k̃(t ) � k] ≈ 1

2

[
1 + erf

(
t − k〈τ1〉√

2kσ 2

)]
. (B10)

From Eq. (B10), the probability mass function of k at any
(large) time t can be obtained as

P[k̃(t ) = k] = P[k̃(t ) � k] − P[k̃(t ) � k + 1]. (B11)

However, a more useful form can be deduced by making a
discrete-to-continuous approximation, i.e., by pretending that
k is a continuous random variable. When k is large, which is
the limit of interest, this is an arbitrarily good approximation.
Given this, it is therefore sensible to say that the limiting
probability density function for k after a long time t is

ρt (k) ≈ −∂ρ[k̃(t ) � k]

∂k
= t + k〈τ1〉√

8πk3σ 2
exp

[
− (t − k〈τ1〉)2

2kσ 2

]
.

(B12)

Although ρt (k) is a probability density function, the corre-
sponding probability mass function is approximately

P
[
k̃(t ) = k

] ≈
∫ k+0.5

k−0.5
ρt (k)dk ≈ ρt (k). (B13)

At long times, ρt (k) changes very little from k − 0.5 to k +
0.5, and this approximation is again arbitrarily good. In other
words, ρt (k) can be interpreted fairly as the probability that,
at time t , the analyte has reached xk at least once but has not
yet reached xk+1.

4. The position distribution at long times

Equation (B12) does not directly describe the position of
the analyte at a time t . During the time interval after its first
passage to xk and before its first passage to xk+1, the analyte
can potentially move to any position with x < xk+1. However,
as argued below, the distinction between k(t ) and x(t )/L is
negligible at long times, so Eq. (B12) is in fact an acceptable
proxy for the position distribution. The discussion is in the
same spirit as that put forth in Reimann et al. [73].

Consider the analyte’s x position, x(t ), in the time interval
of duration tk,k+1 occurring between τk (when it first reaches
xk) and τk+1 (when it first reaches xk+1). Write x(t ) = xk+1 −
δx(t ), such that δx(t ) is the distance from the analyte’s current
position to xk . The motion of the analyte in the direction of
−x̂ carries an energetic cost, as it opposes the direction of the
applied force. This is in addition to any entropic cost incurred
for moving through the periodic MNFD. Thus, the probability
of observing the analyte at x = xk+1 − δx at any point during
this time interval will decrease rapidly when δx � L.

More importantly, by the system’s periodicity and the
Markov chain’s stationarity, it must be that the dynamics of
the random variable δx do not depend on k (although corre-
lations between consecutive period crossings are possible).
Thus, the typical size of δx at any time between τk and τk+1

is independent of k. For sufficiently large k, the typical dis-
tance that an analyte might move in the −x̂ direction after
reaching xk and before reaching xk+1 is therefore arbitrarily
small compared to the total distance it has traveled since
t = 0. Similarly, the duration tk,k+1 will be a small fraction

of the total time τk . Thus, although the analyte may briefly
move short distances away from xk before reaching xk+1, these
fluctuations do not affect the ensemble dynamics in the limit
of long time or, equivalently, large k.

Making the substitution x ≈ kL − δx in Eq. (B12) yields

ρt (x + δx ) ≈ Lt + (x + δx )〈τ1〉√
8π (x + δx )3(Lσ 2)

× exp

(
− (Lt − (x + δx )〈τ1〉)2

2(x + δx )(Lσ 2)

)
. (B14)

Equation (B14) gives a mean of

〈x(t )〉 = L
t

〈τ1〉 + L
1

2

σ 2

〈τ1〉2
− 〈δx〉 (B15)

and a variance of

var[x(t )] = L2 σ 2

〈τ1〉2

t

〈τ1〉 + L2 5

4

σ 4

〈τ1〉4
+ var(δx ). (B16)

As argued above, the statistics of δx are roughly independent
of time on the timescale of period-to-period transport. In par-
ticular, we must have that 〈δx/t〉 and var(δx/t ) converge to
zero for large t .

At long times, we also find that Eq. (B14) converges to a
normal distribution (Appendix B 4 a). In this limit, the con-
stant terms in Eqs. (B15) and (B16) are negligible, and

ρt (x) → N
(

L
t

〈τ1〉 , L2 σ 2

〈τ1〉2

t

〈τ1〉
)

. (B17)

In this form, it is clear that, on long timescales, distance is
naturally counted in units of L, and time in units of 〈τ1〉 (see
Lindner et al. [75] for related modeling).

Finally, it follows from Eqs. (B15) or (B17) that

lim
t→∞

〈x(t )〉
t

= L

〈τ1〉 . (B18)

Dividing both sides by �, we recover the desired result:
Eq. (1) for the direct mobility is equivalent to Eq. (2) for the
indirect mobility.

An additional result is that the quantity

Deff = 1

2

σ 2

〈τ1〉2

L2

〈τ1〉 (B19)

behaves as an effective diffusion coefficient for the analyte.
The ratio σ/〈τ1〉 is almost the coefficient of variation of τ1. It
differs because σ contains corrections due to the correlations
between consecutive crossing times [Eq. (B8)]. Thus, we see
that the model nicely reflects how correlations directly impact
the dispersion of analytes as they travel through the system.

a. The limiting position distribution at long times is Gaussian

This section contains the derivation that the probability
density function in Eq. (B12) converges to the probability
density function of a normal distribution. Consider the shifted
and scaled variable

q =
k − t

μ

σ
μ

√
t
μ

, (B20)
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which at large times will have a mean approaching zero and a
variance approaching one. This has probability density func-
tion

ρ(q; t ) =
1 + 1

2
σ√
μt q√

2π
(
1 + σ√

μt q
)3

exp

[
− q2

2
(
1 + σ√

μt q
)
]
. (B21)

When considering values of q that are small compared to
√

μt
σ

,
the distribution will be very close to its limiting form of

ρ(q; t ) → 1√
2π

exp

(
−q2

2

)
= N (0, 1). (B22)

At any fixed t , no matter how large, the distribution of q will
differ from this limiting form for sufficiently large q, i.e., in
the distant tails of the distribution. However, given that the
distribution is normalized, at very large t , the total probability
assigned to these distant tails will be vanishingly small. The
same derivation applies to the distribution in terms of x + δx,
rather than k [Eq. (B14)].

APPENDIX C: CONVERGENCE ANALYSIS

In this section, we will analyze and compare the numerical
properties of the direct and indirect mobility formulations.
Specifically, we will examine the computational cost of es-
timating each kind of mobility using molecular dynamics
simulations of the analyte moving through the periodic ge-
ometry. Certain simplifying assumptions will be needed to
advance the analysis. Most importantly, the analysis of the di-
rect mobility will neglect the dynamics of δx (Appendix B 4),
and the analysis of the indirect mobility will be based on
the assumption that first-passage times are exponentially dis-
tributed at long times. The predicted scaling behaviors will
be compared to numerical results on the example described in
Sec. II B.

The underlying simulation implementation is assumed to
be identical between the two cases, except for boundary and
termination conditions. In particular, we will not consider
the convergence of numerical error with respect to the dis-
cretization scheme. The error introduced by discretizing the
equations of motion depends on the discretization scheme.
Better schemes can be combined with either mobility for-
mulation, and this consideration is essentially orthogonal to
the comparison being made here. Of course, the discretization
error may propagate differently in the simulations that would
be used to calculate direct and indirect mobilities. Thus, in
practice, some residual numerical error will always exist be-
tween the two.

1. Convergence of direct mobility

The direct mobility is typically estimated as

μ̂direct = 1

�tdirect

[
1

Ndirect

Ndirect∑
j=1

x( j)

]
, (C1)

where Ndirect molecules are simulated (independently) for a
long period of time tdirect and the final states are used to
estimate the direct mobility. In practice, tdirect is commonly
chosen approximately as the time after which at least a certain

number of periods kdirect ≈ tdirect/〈τ1〉 will have been traversed
on average.

Equations (B15) and (B16) from Appendix B, allow us
to predict the limiting behavior of the relative error between
μ̂direct and the true direct mobility μdirect. For large tdirect, each
particle’s position is identically and independently normally
distributed with mean and variance given by Eqs. (B15) and
(B16). The relative error is thus also normally distributed, with

mean

(
μ̂direct − μdirect

μdirect

)
≈

(
1

2

σ 2

〈τ1〉2
− 〈δx〉

L

)
1

kdirect
, (C2)

stderr

(
μ̂direct − μdirect

μdirect

)
≈ σ

〈τ1〉
1√

Ndirectkdirect
, (C3)

where we have ignored terms of order O[1/(kdirect
√

Ndirect )]
in the standard error. The mean relative error depends on the
behavior of 〈δx〉, which is outside the scope of the present
study. In the following discussion, we will consider the simple
case of 〈δx〉 ≈ 0, which we expect to be reasonable for highly
driven systems. As we will see in the numerical demonstra-
tions (Sec. III C), 〈δx〉 plays an important role in weakly driven
systems.

The mean relative error [Eq. (C2)] indicates a bias due to
the finite simulation time with which the direct mobility is
being estimated. It cannot be reduced except by increasing
kdirect, and it decays at a rate of O(1/kdirect ). Conversely, the
standard relative error [Eq. (C3)] captures the intrinsic noise
in the mobility estimator. This decays as O(1/

√
kdirect ), which

is slower than the decay of the mean relative error. Thus, the
direct mobility estimator will be statistically indistinguishable
from an unbiased estimator for sufficiently long runtimes.

The limiting behavior of the direct mobility estimator is
jointly affected by kdirect and Ndirect. A reasonable choice (see,
e.g., Mark and Baram [82]) for a single scalar error is the
square root of the expected square of the relative error be-
tween μ̂direct and the true direct mobility μdirect:

ε2
direct := E

[(
μ̂direct − μdirect

μdirect

)2]
≈ bias2 + sdterr2, (C4)

where bias is the mean relative error given by Eq. (C2) and
stderr is the standard relative error given by Eq. (C3).

2. Convergence of indirect mobility

Estimating the indirect mobility is tantamount to estimat-
ing the mean first-passage time of particles crossing a single
period starting from the initial conditions x = x0 and θ0 ∼
π (θ ). We will assume that the stationary distribution π (θ0)
is known and/or can be sampled efficiently. A careful cost
analysis of this sampling process is relegated to future work.

First, let us consider estimating the indirect mobility using

μ̂indirect = L

�

(
1

Nindirect

Nindirect∑
j=1

τ
( j)
1

)−1

, (C5)

which is based on sampling Nindirect instances τ
( j)
1 of the

first-passage time. It may be difficult in general to ascertain
whether this is an unbiased estimator of the indirect mobility.
To make progress on this and other questions, we propose that
it is reasonable to assume that the first-passage time across

045304-16



PARALLEL COMPUTING FOR MOBILITIES IN PERIODIC … PHYSICAL REVIEW E 106, 045304 (2022)

one period is roughly exponentially distributed at long times.
Thus, throughout the rest of this discussion, we will assume

ρ(τ1) ≈ 1

τ ∗ exp
(
− τ1

τ ∗
)

(C6)

at large τ1, where τ ∗ is some constant. Heuristically, this will
be the case for systems in which the first-passage process
converges to a steady-state behavior after initial transient be-
havior decays. It is consistent with the spirit of Kramers theory
(Appendix A 2) since we are restricting our attention to the
residual first-passage process on long timescales (compared
to all other timescales of relaxation in the system). This can
be justified more rigorously for many typical systems by
considering the behavior of the eigenfunctions of the Smolu-
chowski equation in the presence of an absorber (e.g., as done
by Grigoriev et al. [83] when studying the narrow escape
problem); in this case, τ ∗ will be the first eigenvalue of the
PDE. In particular, although the equivalence of indirect and
direct mobilities was proven in Appendix B for any system,
including those where transient dynamics are nonnegligible,
our error analysis in this section will apply to convergence
rates within the limit of long times after transient phenomena
have abated.

In the case of an exponential distribution, it is known that
the simple estimate used in Eq. (C5) is indeed a maximum
likelihood estimator but is nonetheless biased. Specifically,
the limiting relative error in the mobility estimator for expo-
nentially distributed first-passage times is simply

mean

(
μ̂indirect − μindirect

μindirect

)
≈ 1

Nindirect
. (C7)

In any case, since the Nindirect samples of τ
( j)
1 are inde-

pendent, we can estimate the standard error of the indirect
mobility estimator in Eq. (C5). The error in the estimate of
〈τ1〉 will go as

stderr

(
〈τ1〉 − 1

Nindirect

Nindirect∑
j=1

τ
( j)
1

)
≈ σ0√

Nindirect
, (C8)

where we have introduced the notation σ0 := stddev(τ1) to
indicate the standard deviation of τ1. Propagating the uncer-
tainty therefore yields that

stderr

(
μ̂indirect − μindirect

μindirect

)
= σ0

〈τ1〉
1√

Nindirect
. (C9)

Note that, as expected, the standard error of the indirect mobil-
ity estimator scales as O(1/

√
Nindirect ). This bias is negligible

relative to the standard error for sufficiently large Nindirect. The
total error will therefore also converge as

εindirect ≈ σ0

〈τ1〉
1√

Nindirect
. (C10)

In our experience, the coefficient of variation is of order one,
and the bias is thus at most a 1% correction to Eq. (C10).

3. Comparing convergence: Entirely serial computation

First, let us analyze the runtimes of the direct and indirect
mobility estimators in the case where all computations are per-
formed in serial. Then the total runtime for the direct mobility

estimator will be proportional to

Tdirect = tdirectNdirect ≈ 〈τ1〉kdirectNdirect, (C11)

up to a constant factor based on the implementation of the
simulations (i.e., the real time elapsed per unit of simulation
time simulated). We will assume for the rest of this section that
this proportionality factor is some constant and omit it from
the discussion.

The error of the direct mobility estimator can be decreased
by increasing either kdirect or Ndirect. The runtime is linear in
each of these, and the standard relative error depends equally
on both quantities. However, the bias depends only on kdirect,
and so the best choice in this circumstance is to fix Ndirect = 1.
Thus, using Eqs. (C11) and (C4), the runtime necessary to
reach a small relative error ε scales as

Tdirect

〈τ1〉 ≈ 1

2

σ 2

〈τ1〉2

1

ε2
(1 +

√
1 + ε2) → σ 2

〈τ1〉2

1

ε2
. (C12)

The term 1 + √
1 + ε2 is very nearly equal to two for reason-

able values of ε (say, below 10%).
Similarly, the total runtime for the indirect mobility esti-

mator will be approximately proportional to

Tindirect ≈ 〈τ1〉Nindirect (C13)

for large Nindirect. Using Eqs. (C13) and (C10), we find that its
runtime will therefore grow as

Tindirect

〈τ1〉 ≈ σ 2
0

〈τ1〉2

1

ε2
. (C14)

Therefore, in the case of purely serial computing, the two
formulations are nearly identical. Both have runtimes of order
O(1/ε2). The convergence of the direct mobility estimator is
influenced by crossing time correlations (via σ ), whereas the
indirect mobility estimator is not. The direct mobility estima-
tor will exhibit more error in highly correlated systems than
the indirect mobility estimator. However, correctly sampling
the stationary distribution required for the indirect mobility
estimator may become more difficult in such systems. In any
case, neither algorithm is clearly advantageous when compu-
tations are done in serial.

4. Comparing convergence: Entirely parallel computation

Now, suppose instead that all sampling of trajectories will
be computed entirely in parallel. Although the total number
of floating-point operations will be the same as in the case of
serial computation, in the case of parallel computation, it is
often of more interest to consider the total elapsed time from
the start of the algorithm to the termination of the last parallel
thread of the computation.

For the direct mobility estimator, every parallel thread has
the same fixed runtime (up to fluctuations in the computing
speed). Thus, the total time elapsed will simply be propor-
tional to the duration of each trajectory:

Tdirect = tdirect ≈ 〈τ1〉kdirect. (C15)

The standard relative error will be vanishingly small, so the
error will be dominated by the bias. Thus, the runtime will
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now converge as

Tdirect

〈τ1〉 ≈ 1

2

σ 2

〈τ1〉2

1

ε
. (C16)

This is substantially better than in the case of purely serial
computation [Eq. (C12)] and is now of order O(1/ε).

Assessing the total time elapsed for the indirect mobility
estimator is more complicated. Because the indirect mobility
is independently sampling the first-passage time, each sam-
ple’s runtime is a stochastic quantity. In the case of serial
computation, the central limit theorem ensures that the esti-
mate in Eq. (C13) will be fairly accurate for large Nindirect.
However, if trajectories are computed entirely in parallel, then
the elapsed time from start to finish will be dictated by the
sample of the maximum first-passage time rather than the
mean first passage time:

Tindirect ≈ max
Nindirect

(
τ

( j)
1

)
. (C17)

Naturally, the sample maximum will depend on the simulated
ensemble size Nindirect.

The typical maximum first-passage time can be estimated
if we again suppose that, at long times, the first-passage time
is exponentially distributed. Setting the cumulative distribu-
tion of Eq. (C6) equal to 1 − (1/Nindirect ) yields the following
estimate for the time at which the last particle will escape:

1

Nindirect
≈ exp

(
−Tindirect

τ ∗
)

(C18)

⇒ Tindirect ≈ τ ∗ ln (Nindirect ). (C19)

A more rigorous justification for this runtime estimate can
be obtained by considering the distribution of the maximum
of an ensemble of i.i.d. exponentially distributed variables.
By appealing to Poisson processes and harmonic numbers,
one can recover the logarithmic scaling of Tindirect with
Nindirect again. Incidentally, when the coefficient of variation
of the first-passage time is greater than one, the argument to
the logarithm in Eq. (C19) should, in fact, be the fraction
of the population belonging to long tails of the distribution.
However, because the dependence is logarithmic, the effect of
this correction is small.

Note that this perspective implicitly assumes that all paral-
lel computation hardware remains reserved for the respective
calculations until all trajectories are completed. This is, in
fact, true for the direct mobility estimator since all parallel
computations will have the same runtime. Conversely, most
samples generated towards the indirect mobility estimator will
have runtimes much smaller than the maximum first-passage
time. Thus, Tindirect is undoubtedly an overestimate of the com-
putational cost in settings where parallel computing resources
can be repurposed dynamically as soon as these samples ter-
minate.

In any case, using Eq. (C19) for the runtime with Eq. (C10)
for the error, we see that the indirect mobility estimator con-
verges exponentially as

ε ≈ σ0

〈τ1〉 exp

(
−1

2

Tindirect

τ ∗

)
. (C20)

Equivalently,

Tindirect ≈ 2τ ∗ ln

(
σ0

〈τ1〉
1

ε

)
. (C21)

Thus, as ε becomes small and 1/ε becomes larger, the
required runtime grows only logarithmically. This will be ex-
ponentially faster than the convergence of the direct mobility
estimator for small ε.

The results of this analysis have some caveats. The pref-
actor in Eq. (C16) is likely overestimated in general, because
〈δx〉 has been ignored. Meanwhile, it is possible that τ ∗ �
〈τ1〉. These corrections will tend to improve the relative per-
formance of the direct mobility estimator against the indirect
mobility estimator, as is indeed observed in the numerical
demonstrations of Sec. III C. Regardless, because the indi-
rect mobility converges exponentially [Eq. (C20)], whereas
the direct mobility converges as Tdirect ∼ O(1/ε) [Eq. (C16)],
these corrections are only important in comparing behavior
at moderately large ε. When unlimited parallel computation
is available, the indirect mobility formulation will always be
much more efficient at sufficiently small ε.

5. Comparing convergence: Limited parallel computation

In practice, of course, unlimited parallelization is not feasi-
ble. Suppose that Npara samples can comfortably be simulated
in parallel. For ensemble sizes larger than this, calculations
must be broken into batches of Npara.

In this case, the direct mobility estimator’s runtime will
scale as

Tdirect ≈ 〈τ1〉kdirect

⌈
Ndirect

Npara

⌉
, (C22)

where �·� denotes the ceiling function. Because of the ceiling
function, the runtime does not increase with the number of
parallel trajectories until Ndirect reaches an integral multiple
of Npara. Thus, the best choice of Ndirect is certainly at least
Npara. However, going from Ndirect = Npara to Ndirect = 2Npara

increases the runtime by a factor of two while leaving the
bias [Eq. (C2)] unchanged. Increasing kdirect by a factor of two
would have the same impact on runtime and standard relative
error but would also decrease the bias. Mirroring the reasoning
from Appendix C 3, we thus find that the optimal choice is
precisely Ndirect = Npara.

Using Eq. (C4) with Ndirect = Npara and Eq. (C22) yields
the runtime necessary to attain a target accuracy ε:

Tdirect

〈τ1〉 = 1

2

σ 2

〈τ1〉2

1

ε2

1

Npara
[1 +

√
1 + (εNpara )2]. (C23)

This is similar to the result for serial computation [Eq. (C12)]
but differs in two places. First, the prefactor of 1/Npara corre-
sponds to the acceleration of convergence by a factor of Npara

in the small-ε limit. Here, the error is dominated by noise
[Eq. (C3)] and ε ∼ O(1/

√
Tdirect ). Increasing the number of

independent samples is essentially as beneficial as increasing
kdirect by the same amount.

However, the term (εNpara )2 inside the square root of
Eq. (C23) corresponds to an acceleration at larger values
of ε. Since the computational cost does not increase with
Nindirect until Ndirect = Npara, the convergence for Ndirect < Npara
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is essentially the same as in the case of unlimited parallel
computation. Specifically, when εNpara � 1

1 +
√

1 + (εNpara )2 ≈ εNpara, (C24)

which implies that

Tdirect

〈τ1〉 ≈ 1

2

σ 2

〈τ1〉2

1

ε
. (C25)

In other words, when Ndirect < Npara, the error is dominated
by bias [Eq. (C2)], and the convergence is of order ε ∼
O(1/Tdirect ).

Consider now the indirect mobility estimator. Its runtime
in the case of limited parallel computation depends on the
manner in which it is implemented. We will consider two ap-
proaches. To enable these more complicated analyses, we will
assume first-passage times are distributed exponentially as per
Eq. (C19) with τ ∗ ≈ 〈τ1〉. Accounting for deviations from a
single exponential distribution makes these algorithms more
challenging to analyze. Conservative approximations can be
obtained by increasing the runtime estimates by τ ∗/〈τ1〉.

First, consider an algorithm for computing the indirect
mobility estimator in which Nindirect trajectories are initiated
at once and evolved in time at the same rate. The first Npara

trajectories are incremented by one timestep, then the next
Npara are incremented once, and so on until all trajectories
have been incremented once. Early in the simulation, it will
take �Nindirect/Npara� passes to increment all trajectories by
one timestep. As the simulation advances and some events
terminate, fewer passes will be required to increment time.
In this case, the runtime will scale as

Tindirect

〈τ1〉 ≈ ln (Nlast ) (C26)

+
M−1∑
k=1

ln

[
Nindirect − (k − 1)Npara

Nindirect − kNpara

]
[M − (k − 1)]

(C27)

= (4M − 2) ln(M ) − ln(M!) + ln(Nlast ), (C28)

≈ (3M − 2) ln(M ) + M + 1

2
ln(2πM ) + ln(Nlast ),

(C29)

where M = �Nindirect/Npara� and Nlast = Nindirect − (M −
1)Npara. The factor of ln(Nlast ) accounts for the maximum
first-passage time in that final batch. The approximation in
Eq. (C29) is based on Stirling’s approximation, and reveals
that this runtime is O[M ln(M )].

Consider next an alternative implementation of the indirect
mobility estimator with limited parallel computation. In this
case, the simulation begins by initializing only Npara trajecto-
ries. A new trajectory is initiated on the same thread whenever
a trajectory terminates until a total of Nindirect has been
initiated. In this case, the runtime will scale as

Tindirect

〈τ1〉 ≈ Nindirect − Nmin

Npara
+ ln (Nmin), (C30)

where Nmin = min(Nindirect, Npara ). The first term estimates the
time until a total of Nindirect trajectories have been initiated,

and the second term estimates the time required for the sim-
ulations to terminate thereafter. This algorithm’s runtime is
O(Nindirect ).

Surprisingly, this second implementation is consistently
faster than the first one. There are two reasons for this. First,
it ensures that no parallel computing threads are idle until the
last batch of simulations when some idling is inevitable. More
important, however, is that the second algorithm allows for
a natural balancing of fast and slow events across different
threads. Threads on which events terminate quickly will more
quickly be reinitialized with new events. Conversely, in the
first algorithm, all events are simulated independently so that
the maximum first-passage time overall Nindirect events factors
into the overall runtime. Worse, the speed at which these long
trajectories are simulated is impaired by a factor of O(M ) for
most of the runtime. We will proceed with the analysis of the
second, faster algorithm, but we include the analysis of the
first version here as a warning to the reader.

Equation (C30) can be written more explicitly as

Tindirect

〈τ1〉 ≈
{

ln (Nindirect ), Nindirect � Npara,
Nindirect
Npara

+ ln (Npara ) − 1, Nindirect > Npara.

(C31)

Reversing Eq. (C10), we find that the number of samples nec-
essary for the indirect mobility estimator to achieve a target
relative error ε is

Nindirect = σ 2
0

〈τ1〉2

1

ε2
. (C32)

Substituting Eq. (C32) into Eq. (C31) yields the runtime re-
quired to achieve the target accuracy. When Nindirect � Npara,

Tindirect

〈τ1〉 ≈ 2 ln

(
σ0

〈τ1〉
1

ε

)
. (C33)

This is equivalent to Eq. (C20). In this regime, the error be-
haves as if there were unlimited parallelism and so decreases
exponentially with runtime.

Conversely, when Nindirect > Npara,

Tindirect

〈τ1〉 ≈ σ 2
0

〈τ1〉2

1

ε2

1

Npara
+ ln (Npara ) − 1. (C34)

This is very similar to the result for entirely serial computation
[Eq. (C14)], but accelerated by a factor of Npara. The ln(Npara )
term arises here because the large parallel batches are more
vulnerable to rare long-duration events. However, this term is
negligible in the limit of Nindirect � Npara and the error scales
as O(1/

√
Tindirect ), as expected. In fact, on the limit of small

target error and/or small Npara, the two mobility formulations
are once again essentially equivalent up to a factor of ψ =
σ/σ0.

Figure 7 in the main body of the paper summarizes the the-
oretically predicted ratio of runtimes for the direct and indirect
mobilities; ψ was factored out from the direct mobility run-
time. Figure 7(a) shows the predicted ratio as a function of
the final relative error ε. The colors blue, orange, green corre-
spond to Npara = 105, 104, 103, respectively. A typical modern
consumer-grade GPU can effectively deliver tens of thousands
of parallel threads, justifying Npara = 104 for single-body
molecule simulations. Parallelizing across ten such GPUs is
reasonably economical in many cases, motivating the case
Npara = 105. Conversely, many-body molecules will reduce
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the number of independent simulations that can be conducted
in parallel, which motivated the choice of Npara = 103. The
different line styles correspond to coefficients of variation
equal to 3 (solid), 1 (dashed), and 0.5 (dotted), which are
values encountered in the example system from Sec. II B [23].
The lines are truncated at the values of ε such that either
kdirect or Nindirect would be required to equal 10 or less; the
various modeling assumptions certainly do not apply in that
regime.

Altogether, the theoretical analysis predicts that the indi-
rect mobility estimator will converge up to 2–70 times faster
than the direct mobility estimator under these circumstances.
The ε of maximum relative advantage is in the range of 0.1–
1%. This is often a perfectly acceptable error threshold for
assisting with the research and design of periodic MNFDs,
as modeling errors are often larger than this. As noted, at
very small target relative errors, the estimators are essentially
equivalent (i.e., the ratio converges to 1).

Figures 7(b) and 7(c) highlight the expected transitions of
the direct and indirect mobility estimators, respectively, from
parallel-like scaling to serial-like scaling. For the direct mobil-
ity estimator, this occurs at ε ≈ 1/Npara, where for the indirect
mobility estimator it occurs near ε ≈ (σ0/〈τ1〉)/

√
Npara. The ε

value of maximum relative advantage for the indirect mobility
estimator is expected to occur somewhere between these two
points.

As noted at the end of Appendix C 3, the net effect of the
correlation factor ψ does not clearly favour either algorithm.
Although it directly amplifies the predicted runtime of the
direct mobility estimator, it likely also increases the cost of
sampling the stationary distribution. In any case, it does not
appear that large correlation functions are likely to occur in
most applications, so this effect is likely to be modest. If there
are applications of interest where ψ is found to be large, then
this aspect of the algorithm should be investigated in more
detail.
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