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Abstract 

The adoption of the Internet of Things (IoT) continues to increase significantly, 

introducing unique challenges and threats to cybersecurity. In parallel, adaptive and 

autonomous cyber defence has become an emerging research topic leveraging 

Artificial Intelligence for cybersecurity solutions that can learn to recognize, 

mitigate, and respond to cyber attacks, and evolve over time as the threat surface 

continues to increase in complexity. This paradigm presents an environment 

strongly conducive to agent-based systems, which offer a model for autonomous, 

cooperative, goal-oriented behaviours which can be applied to perform adaptive 

cyber defence activities. This thesis aims to bridge the gap between theoretical 

multi-agent systems research and cybersecurity domain knowledge by presenting a 

novel applied framework for adaptive cyber defence that can address a wide range 

of challenges and provide a foundation for significant future research in systems 

modeling for cybersecurity. Belief-Desire-Intention (BDI) agent architecture is 

extended within this work through a novel application of knowledge graphs to 

provide a scalable data model for agents to understand their environment, infer the 

context of threats, create goals associated with security requirements, and select 

plans based on possible actions and expected results. The framework has been 

implemented to demonstrate the feasibility of the architecture and evaluate the 

design properties through applied security use cases. While the experimental results 

have demonstrated the value of the framework applied to IoT systems, the concept 

can be easily expanded to other domains. This thesis provides the foundation to 

inspire further research works in this area for continued development, application, 

and optimization to support the advancement of the industry and bring autonomous, 

adaptive cyber defence to realization. 

Keywords: Multi-Agent Systems (MAS); Security; Belief-Desire-Intention (BDI); 

Internet of Things (IoT); Adaptive Cyber Defence; Knowledge Graphs 
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1 Introduction  

1.1  Motivation  

Connected devices across the Internet of Things (IoT) are becoming more 

prominent and pervasive within enterprises, industries, consumers, and hybrid 

environments with varying device capabilities. Particularly within the consumer 

market, smart home devices introduce a unique environment with sensitive personal 

data, automation and availability requirements, limited expertise of users, and 

unique security threats. 

Securing IoT devices is becoming progressively more complex due to the 

expanding attack surface, the volume of data, and environmental complexity. 

Automation, Artificial Intelligence (AI) and machine learning are becoming 

increasingly adopted in cybersecurity, where increased data sharing, indexing and 

organization of knowledge and cybersecurity frameworks can be leveraged. 

Adaptive cyber defence is an emerging research topic bridging the AI and 

cybersecurity domains to create semi-autonomous cyber defences that can learn to 

recognize and respond to cyber attacks, discover and mitigate weaknesses while 

evolving over time in response to changes in attacker behaviour, system health and 

readiness, and natural shifts in user behaviour [1]. Some limitations of current 

works include standalone solutions that do not provide interoperability or are too 

theoretical or abstract. There is a strong need for a practical framework for the 

implementation of these capabilities, not only for security but also for regular IoT 

services [2] [3].  

While it has been an evolving subject of research for several decades, agent-based 

computing is now an emerging research topic within the IoT domain with many 

applications including cybersecurity. A systems approach can consider the 

cybersecurity domain from the perspective of an organic system, where intelligent 

agents that can perform self-healing capabilities in response to evolving threats. 

Many existing multi-agent approaches have been highly theoretical or maintained 
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limited practical application, but show potential to achieve the necessary 

capabilities for securing IoT devices if provided a solution to bridge the gap 

between these research fields [2]. 

This thesis creates a modular applied framework to leverage data models, domain 

knowledge, and multi-agent architecture to perform adaptive cyber defence 

capabilities through contextual policy generation and enforcement. The Belief-

Desire-Intention (BDI) model is extended for behavioural modeling of agents to 

perform practical reasoning and deliberation of actions in pursuit of goals. 

By addressing gaps in theoretical and applied research, this framework provides a 

foundation for applications in further works for simulations for adversarial learning, 

optimization, scalability for new services, attack path modeling, risk analysis, 

predictions, probabilistic reasoning, utility engineering and experiments, and 

behavioural analysis, and can be used for testing and practical applications for 

advancing cybersecurity controls. 

1.2  Research Contributions 

This work aims to bridge the gap between theoretical multi-agent systems research 

and cybersecurity domain knowledge to provide a novel applied framework for 

adaptive cyber defence that can address a wide range of challenges and provide a 

foundation for significant future research in systems modeling for cybersecurity.  

Cybersecurity can be modelled as a defence control problem, where autonomous 

defence capabilities can be integrated into adaptive intelligent software agents. 

Processes are modelled as multi-agent plans and tasks, where agents work together 

to achieve common goals to defend the network. We define a multi-agent adaptive 

cyber defence model within IoT smart home environments, using the BDI agents 

to perform autonomous and adaptive goal-based reasoning for defence actions 

enabled by cybersecurity domain knowledge graphs. 

The key contributions of this thesis are as follows:  
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• Development of a multi-agent architecture for adaptive cyber defence with an 

individual agent reasoning model as well as control and coordination hierarchy. 

• A novel extension of the BDI model enabled by knowledge graphs for cyber 

modeling based on industry knowledge bases which can be leveraged for 

policy-based, adaptive agent reasoning. 

 

The presented framework has been implemented to demonstrate the feasibility of 

the architecture and evaluate the design properties through applied security use 

cases. While the experimental results have demonstrated the framework applied to 

IoT systems, the concept can be easily expanded to other domains. This thesis 

provides the foundation to inspire future research works on agent-based solutions 

for continued development, application, and optimization to support the 

advancement of the industry and bring autonomous, adaptive cyber defence to 

realization. 

 

1.3  Thesis Outline 

The remainder of this thesis is organized as follows. Chapter 2 provides context 

into the background and review of existing literature on IoT and smart home 

technologies and associated security requirements, along with a background on 

agent-based modeling and multi-agent systems. Chapter 3 presents the multi-agent 

architecture for adaptive cyber defence with a detailed review of each component 

and design. Chapter 4 presents the data model and knowledge graphs in detail as a 

foundation for the following Chapter 5, which illustrates an implementation of the 

model to simulate agent control and coordination, as well as individual agent 

examples for specific security use cases. Next, Chapter 6 provides the experimental 

results and an evaluation of the design properties. Finally, Chapter 7 concludes the 

thesis and identifies future works.  
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2 Background and Literature Review 

This chapter provides a review of relevant background information and existing 

research on IoT and smart home security, agent-based modeling, and multi-agent 

systems. The contributions of this thesis have been inspired by a wide range of 

research domains and topics, with a considerable review of literature across 

adjacent fields. While our contribution sits on an intersection of a variety of topics 

of considerable depth, we have positioned the contribution of our work as a unifying 

framework to enable the convergence of topics. This chapter will provide the 

essential background knowledge required as a prerequisite for understanding and 

appreciating the model described in the following chapters. 

We will begin with a brief overview of the key themes of IoT, Smart Homes, 

Security, Adaptive Cyber Defense, and Agent-Based Modeling. While several of 

these topics have limited relationships in the existing literature, much of our review 

will highlight key works from the primary field or relate to a subset of the topics. 

We will also highlight any related works bridging two or more topics.  

The literature review within this chapter has been performed to analyze relevant 

studies and background information with the below research questions: 

• What are the characteristics and security concerns of IoT and smart homes? 

• What security solutions have been proposed for smart home/IoT?  

• What solutions have been proposed for multi-agent systems, BDI, reasoning, 

planning, etc.? 

• How have agent-based approaches been applied to IoT and security domains? 

• What are the challenges and gaps? 
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2.1  IoT and Smart Home Security 

2.1.1 Overview of IoT and Smart Home 

The explosion of the Internet of Things (IoT) in recent years has made a prominent 

impact on almost all areas of modern life [4], introducing a network of physical 

devices endowed with embedded sensors and networking capabilities to enable a 

vast array of pervasive services. IoT is “a global infrastructure for the information 

society, enabling advanced services by interconnecting physical and virtual things 

based on existing and evolving interoperable information and communication 

technologies” [5]. The development of IoT and smart home solutions are driven by 

advances in mobile devices, embedded and ubiquitous communication, cloud 

computing, and data analytics to enable data collection, sharing and analysis in 

heterogeneous pervasive networks [6]. IoT is one of the fastest growing sectors in 

the technology industry, as an enabler of the intersection of numerous technology 

fields to bridge opportunities into services tightly coupled with the physical world. 

While insights and predictions vary across industry reports, significant investments 

and expansion are expected to continue over the next decade. A recent report from 

IoT Analytics has identified that the market for IoT is expected to grow to 14.4 

billion active connections by the end of 2022 and to increase to 27 billion by 2025 

[7]. The International Data Corporation forecasted an even more significant 

increase of 55.7 billion connected IoT devices by 2025 [8]. IoT technologies are 

becoming widely adopted across many industries and applications, including 

supply chain, lifestyle, retail, industrial control systems, environment, emergency 

services, agriculture, transportation, energy, healthcare, smart cities, and buildings 

[4]. Recent trends have shown the adoption of IoT devices as a response to the 

COVID-19 pandemic has introduced new opportunities for IoT in the healthcare 

and home consumer industries, while there has also been an emergence of Smart 

City initiatives driving the market growth, such as in the Kingdom of Saudi Arabia 

(KSA) and the United Arab Emirates (UAE) [9].  

Smart Home technologies are some of the most widely used and deployed 

applications for consumer IoT solutions [10], which provide digital services within 
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and outside the home through a range of networked devices. Smart homes introduce 

an environment where IoT exists in the context of everyday objects in homes, such 

as fridges, furnaces, televisions and lighting, and allow for greater automation and 

comfort of daily activities. Users can control devices such as lighting, air 

conditioning, sound systems and security systems through remote interfaces such 

as smartphones or virtual assistants. There may be automation, personalized, and 

contextual services based on preferences or previously observed behaviour, such as 

dimming the lights and turning on the television when a user sits on the couch at 6 

PM. A notification may be sent to the user if a plant needs watering, or a device 

may automatically water the plant. An alert can be sent to a healthcare provider if 

an individual is displaying abnormal behaviour symptomatic of a health issue. The 

possibilities are endless while the overall goals of smart home technologies include 

increased comfort, reduced costs of energy and resource consumption, and creating 

new opportunities for services within the home [10]. 

Smart Home Architecture 

While much of the literature envisions an eventual direction for fully autonomous, 

interconnected and pervasive smart home services, this vision has not yet been 

prominently adopted across the industry. Hammi et al. define contemporary smart 

home deployments from an industry standpoint as a network of predominantly 

independent devices focused on specific tasks triggered by a schedule or controlled 

through a user interface [11]. In this model, many deployments make use of a 

centralized control platform such as an Intelligent Virtual Assistant (IVA) in the 

form of a smart speaker or smartphone application to integrate and control multiple 

smart devices across the home. Such solutions include capabilities for voice 

commands and programming frameworks for third-party developers to build 

applications to interact with the devices [12]. Popular solutions include Amazon 

Alexa [13], Google Home [14], and Apple Homekit [15], which are compatible 

with a wide range of consumer IoT devices on the market. These solutions allow 

for ease of use, centralized control of multiple devices, and opportunities for 

enhanced services for users. 
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As smart home and IoT environments are comprised of multiple interacting services 

and components, many layered architectures have been proposed across the 

literature with varying granularity and objectives. The three-layer architecture [16] 

(perception, network, application) is defined below, which is sufficient to provide 

an appreciation for the overall components of a general IoT deployment for the 

purpose of this work:  

• Perception Layer: This layer resides on the physical devices to provide 

sensory and actuation capabilities to gather information and/or perform physical 

actions within the environment. This has also been referred to as the Edge layer 

in some models. 

• Network Layer: This layer enables the transmission and processing of data 

between devices across the network, including over the internet. Cloud backend 

services have been consolidated into this layer. Common communication 

protocols at this layer include IEEE 802.x, Near-Field Communication (NFC), 

Zigbee, and Bluetooth [17]. 

• Application Layer: This layer provides applications and services to users and 

devices based on the application type. The application layer can operate as 

middleware and commonly interacts through an Application Programming 

Interface (API) such as REpresentational State Transfer (REST) and Hypertext 

Transfer Protocol (HTTP). 

Key Characteristics and Challenges 

IoT and smart home technologies maintain a set of unique characteristics and 

challenges that differ from traditional Information Technology (IT) systems, 

motivating appropriate design considerations along with their development, as 

shown in [4].  

Key characteristics of IoT technologies include interconnectivity, heterogeneity, 

pervasiveness, dynamic environment, and scale [4]. Inherently, a smart home 

ecosystem can consist of many interconnected heterogeneous devices across 

different hardware, platforms, and protocols that communicate with each other over 

a network. The sensor and networking capabilities allow the systems to collect and 
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exchange substantial amounts of data on users and the environment. With this data, 

inferences can be made about user interactions to provide personalized context-

aware services and integrate with other technologies, such as smart phones and 

smart watches, to improve the user experience further. In addition, smart home 

technologies often make use of cloud services, where the mass amounts of data 

collected are processed and stored in the cloud. This creates new opportunities for 

providing valuable services to users but also requires capabilities for secure and 

effective management of personal data.  

Key challenges for the implementation of IoT and smart home services include 

resource limitations, interoperability, reliability, data volume and sensitivity [4], 

[18], [19] due to resource constraints on devices, sensitivity and volume of data 

collected, and requirements for connectivity. Resource constrained devices must 

consider lightweight applications due to potential power, storage, bandwidth, and 

memory limitations. Availability and ease of use are additional key considerations 

in smart home deployments, aligned with the primary objective of providing 

convenient services to users. Solutions should be straightforward to users and 

provide real-time services as needed [10], [20]. 

The characteristics of IoT technologies affect cybersecurity and privacy risks in 

unique ways that differ from traditional IT devices as defined by the National 

Institute of Standards and Technology (NIST) [19] below: 

1. Many IoT devices interact with the physical world in ways conventional IT 

devices usually do not. 

2. Unlike conventional IT devices, many IoT devices cannot be accessed, 

managed, or monitored. 

3. The availability, efficiency, and effectiveness of cybersecurity and privacy 

capabilities are often different for IoT devices than conventional IT devices. 

With these characteristics in mind, the following sections elaborate on the 

cybersecurity challenges, requirements, and proposed solutions in the literature.  
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2.1.2 Security Requirements and Guidelines 

Industry Standards and Regulation 

Along with the vast opportunities introduced by IoT, there are increasing concerns 

across the industry, governments and consumers regarding the privacy and security 

of these technologies. Limitations associated with the security, integrity, and 

privacy of connected devices have been identified as an inhibitor to growth and 

adoption [9]. From an IoT solution provider's perspective, security is often 

deprioritized due to complexity, time-to-market pressure, or lack of knowledge 

[21]. A well-defined framework and standard for an end-to-end IoT application are 

unavailable due to the diversity of protocols, technologies, and devices involved. 

The industry has been challenged to balance the trade-offs between cost-

effectiveness, security, reliability, privacy, and other factors [10].  

However, the escalating risk of IoT threats has caught the attention of governments 

and regulators internationally, with several notable developments in recent years. 

In September 2015, the Federal Bureau of Investigation (FBI) issued its first public 

service announcement stating that “the Internet of Things poses opportunities for 

cyber crime” in the United States [22], indicating that insufficient security 

capabilities and complications with patching devices open opportunities for 

attackers to exploit IoT device weaknesses. Following the Mirai botnet attacks in 

October 2016, concerns about cyber threats to IoT gained increasing attention, 

when the US Department of Homeland Security in collaboration with NIST 

released a report on Strategic Principles for Securing the Internet of Things [23]  

which further identified the need to prioritize the security of IoT devices. Another 

public service announcement by the FBI in 2018 brought attention to cases where 

“Cyber Actors Use IoT Devices as Proxies for Anonymity and Pursuit of Malicious 

Cyber Activities” [24]. Most notably, in 2021, the United States issued an executive 

order on “Improving the Nation’s Cybersecurity,” which, among other items, 

directed NIST to initiate a pilot program for cybersecurity product labeling to 

educate the public on the security capabilities and requirements for IoT devices 

[25].  
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This directive to NIST followed a series of existing works by the organization on 

the evolution of cybersecurity requirement definitions. In 2019, NIST published 

NISTIR 8228 Considerations for Managing Internet of Things Cybersecurity 

Privacy Risks” [19], which provides a reference for organizations to better 

understand and manage cybersecurity and privacy risks associated with IoT 

devices. Three high-level risk mitigation goals have been defined as protecting 

device security, data security, and individuals’ privacy. For each of these goals, a 

set of risk mitigation areas have been proposed in Table 2.1 below. Following this, 

NISTIR 8259A [26] issued a set of IoT security core baseline capabilities in 2020 

which were strongly aligned with the identified risk mitigation goals. The work has 

continued in response to the executive order, and NIST published a recommended 

criteria for cybersecurity labeling for consumer IoT Products [19] in February 2022, 

reflecting the capabilities defined in NISTIR 8259A. Our proposed model 

references these capabilities and will be further expanded in Chapter 4.  

Table 2.1 NIST 8228 IoT Cybersecurity Risk Mitigation Areas [19] 

Risk Mitigation Goal Risk Mitigation Areas 

Goal 1: Protect Device 

Security 
• Asset Management 

• Vulnerability Management 

• Access Management 

• Device Security Incident Detection 

Goal 2: Protect Data 

Security 
• Data Protection 

• Data Security Incident Detection 

Goal 3: Protect Individuals’ 

Privacy 
• Information Flow Management 

• Personal Identifiable Information (PII) 

Processing Permissions Management 

• Informed Decision Making 

• Disassociated Data Management 

• Privacy Breach Detection 

 

Outside of these initiatives, other notable organizations are contributing to the 

enablement of security within IoT devices. For example, the IoT Security 

Foundation [27] is a non-profit organization established to promote security efforts 

for IoT by providing a mechanism for sharing knowledge, best practices and advice. 

The IoT Security Foundation’s guide entitled “Establishing Principles for Internet 
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of Things Security” outlines several security best practices, including designing 

with security in mind from the beginning, offering appropriate protection for all 

potential attack surfaces (i.e., device, network, server, cloud, etc.), managing 

encryption keys securely, verifying the integrity of software, using a hardware-

rooted trust chain, applying authentication and integrity protection to data, 

identifying and revoking compromised or malfunctioning devices, isolating data 

where applicable, and ensuring device metadata is trusted and verifiable. 

Security Requirements 

Balancing the need for security and privacy with the characteristics and challenges 

of the unique architecture of a smart home proves to be a challenging task. 

Nevertheless, there have been several common security requirements defined in the 

literature, primarily aligned to the Confidentiality Integrity and Availability (CIA) 

or Authentication Authorization and Accounting (AAA) models common to 

traditional security paradigms [21], [28], [29]. The key security requirements of 

smart home applications include confidentiality, integrity, availability, privacy, and 

authentication.  

While smart home devices can collect large volumes of personal data, preserving 

the confidentiality and privacy of this data is critical. Additionally, authentication 

mechanisms to restrict access to unauthorized users are also required to protect the 

data and access to devices within the home. Smart home systems themselves are 

also dependent on the integrity of data received from sensors to provide appropriate 

services. The requirement for availability and convenience to users is of the utmost 

importance in the smart home, as countering this with stifling security controls 

would defeat the purpose. For these reasons, a lightweight solution is required for 

maintaining the security of masses of data collected from lightweight endpoints 

while embracing the functionality goals of the smart home by appearing seamless 

to the user. Although the goal of the smart home is automation and convenience, 

the management of device security must be also straightforward for users. 

Smart home technologies include sensors, monitors, interfaces, appliances, and 

devices networked together to enable automation as well as localized and remote 
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control of the domestic environment. The volumes of sensor data across a variety 

of sources, in combination with usage patterns and other inferred information, are 

growing significantly and introduce new assets that need to be protected. As more 

data can be collected from the smart home environment, the home is able to provide 

more customized services. Sensor data can be collected from a variety of inputs 

such as a microphone, camera, accelerometer, and thermometer. Data available to 

smart home systems can be of volunteered, observed, or inferred types. Volunteered 

data is explicitly provided through the user in terms of profile preferences. 

Observed data is collected through sensors such as microphones or usage data. 

Finally, inferred data refers to information that has been correlated between 

volunteered and observed data, such as what time a user is likely to return home 

based on previous usage patterns. Users may be unaware of observed or inferred 

data that is collected and stored by the system, and this information can become 

very personal, such as behaviour and life patterns.  

Due to the personal value of the data collected and retained by smart home systems, 

such data can be a target for attackers for a variety of reasons. As sensors are 

integrated into “things'' within the household, collected data can frequently be 

equated to physical observations, which can be further correlated with information 

collected from other sensors and sources. As IoT and smart homes are typically 

connected, other devices on the network, including smartphones and wearable 

devices, can interact with each other and share data. This makes it possible for 

further correlation across devices and for the data to be shared externally. 

Information collected can become increasingly intimate, such as health 

information, and can be correlated with data collected from other devices for further 

context extraction. Therefore, the privacy of all individuals within the home is at 

risk, including children who may be the primary users of some IoT technologies in 

the home, such as smart toys and social robots.  

The physical nature of smart homes also introduces physical safety risks [30] since 

compromised home automation systems might be in control of devices such as door 

locks, health systems or furnaces. Smart home IoT devices may also be movable or 



 

13 

 

located in sensitive locations, which further raises the severity of security concerns 

beyond the traditional digital model. Furthermore, the technology limitations 

implicit in the nature of IoT devices in smart homes introduce new vulnerabilities 

and attack vectors for potential intrusion into the home network. Although the 

compromise of a smart light bulb may not pose immediate risk aside from turning 

it on or off, if access to the light bulb allows an attacker to connect and gain control 

of other devices on the internal network (i.e., lateral movement and escalation of 

privileges), there are far greater risks. 

2.1.3 Common Vulnerabilities and Attacks 

Common Vulnerabilities 

The technology in IoT and smart homes introduce new challenges to security, 

differing from traditional computing architectures. These challenges include low 

processing power and storage available to IoT endpoints leading to a lack of 

adequate endpoint security and encryption. Further, software loaded on devices is 

often outdated. Palo Alto’s Unit 42 reported that the general security posture of IoT 

devices is declining, leaving organizations vulnerable to new IoT-targeted malware 

as well as older attack techniques [31]. The report further indicated that 98% of all 

IoT traffic is unencrypted, and 57% of IoT devices are vulnerable to medium or 

high-severity attacks, making them a convenient target for attackers. Low patching 

rates encourage opportunities for the exploitation of long-known vulnerabilities, 

while many attacks also focus on attacks on default passwords or legacy protocols. 

One study found that software components of home routers were often four to five 

years older than the device [32]. Patching or software upgrades are often not 

possible or are rarely applied, while many IoT devices do not have mechanisms for 

automated updates. The data is often most vulnerable at the sensor/collector level 

and when it is in transit at the edge of the network to the cloud. For this reason, 

endpoints need to be hardened as much as possible, and network communications 

should be made secure. Internet-facing devices with insufficient authentication, 

default passwords or other vulnerabilities such as cross-site scripting or code 

injection create further opportunities for unauthorized external access [33]. 
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Smart homes in particular consist of an array of appliances that can be static or 

mobile, each with different security concerns while the large volume of devices 

creates an increased threat vector. Static devices are often large and are not intended 

to move around, such as a smart fridge or furnace. Many home appliances 

exceedingly long lifespans, such as refrigerators and televisions, which are likely 

to go without firmware updates, exposing them to threats associated with unpatched 

vulnerabilities. Some devices are more dynamic and likely to be moved around, 

either independently or with a user, possibly in and out of the home network. 

Mobile phones, wearable devices, and smart phones fall into this category. These 

types of devices are exposed to external threats outside of the home and may 

connect to unsecured external networks and expose the devices to external threats. 

While these devices take the form of traditional home items and appliances, users 

tend to have higher levels of trust and are perhaps unaware of the capabilities of 

these devices if they are abused through security breaches [34]. The complex 

network of devices from multiple vendors and standards presents further difficulty 

in achieving a unified approach for security across all devices in the smart home. 

With the rise in the number of connected devices which may be available in a smart 

home soon rivaling the number of devices in a mid-sized company, users are faced 

with the complexity of managing all of these devices without the assistance of 

sophisticated enterprise security tools or staff to monitor or respond to attacks. Each 

additional device introduces a new potential threat vector into the home network, 

which is only as secure as its weakest link.  

Often the product development and support structure between third-party 

manufacturers and suppliers are not conducive to a healthy security posture. With 

a large number of heterogeneous devices and layers involved in providing end-to-

end IoT services, there is usually no one entity responsible for security. 

Manufacturers may not integrate security into the software development lifecycle, 

focusing only on functionality. The limited processing and memory resources on 

the devices also inhibit security solutions from being run on the devices. Third-

party manufacturers often do not monitor for vulnerabilities in their old systems or 

provide updates or support for old models, focusing mainly on the development of 
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future models. Finally, another line of defence is the capabilities of the users 

themselves to implement security controls and configurations within their own 

networks. For a common user with limited technical knowledge, this is often 

overwhelming or not considered.  

Across the different layers of an IoT and smart home architecture, different 

vulnerabilities can exist. Several notable contributions have been to the literature, 

including surveying existing works and mapping security and privacy issues to 

layered architectures. Deep et al. comprehensively study security and privacy issues 

across the 4-layered (perception, network, middleware, application) IoT 

architectures [28]. Another survey by [10] identified threats across the 5-layered 

architecture. HaddadPajouh et al. [17] on the 3-layered architecture. Verma et al. 

present a survey of Denial-of-Service (DoS) and Distributed Denial-of-Service 

(DDoS) attacks on IoT devices [29].  

A final contribution of note is the Open Web Application Security Project 

(OWASP) IoT Top 10 [33], which is a commonly referenced listing of the top 

vulnerabilities found within IoT devices, described in Table 2.2 below. This listing 

shows the most predominant vulnerabilities within IoT devices, which also apply 

to smart homes and are commonly exploited by malicious actors. 

Table 2.2 OWASP IoT Top 10 Vulnerabilities [33] 

Vulnerability Description 

1. Weak, Guessable, or 

Hardcoded Passwords 

Use of easily brute forced, publicly available, or 

unchangeable credentials, including backdoors or client 

software that grants unauthorized access to deployed 

systems. 

2. Insecure Network 

Services 

Unneeded or insecure network services running on 

the device itself, especially those exposed to the 

internet, that compromise the confidentiality, 

integrity/authenticity, or availability of information 

or allow unauthorized remote control. 

3. Insecure Ecosystem 

Interfaces 

Insecure web, backend Application Programming 

Interfaces (API), and cloud or mobile interfaces in 

the ecosystem outside the device allow a 

compromise of the device or its related components. 

Common issues include a lack of 
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authentication/authorization, lacking or weak 

encryption, and a lack of input and output filtering. 

4. Lack of Secure 

Update Mechanism 

Lack of ability to securely update the device. This 

includes a lack of firmware validation on a device, a 

lack of secure delivery (un-encrypted in transit), a 

lack of anti-rollback mechanisms, and a lack of 

notifications of security changes due to updates. 

5. Use of Insecure or 

Outdated 

Components 

Use of deprecated or insecure software 

components/libraries that could allow the device to 

be compromised. This includes insecure 

customization of operating system platforms and the 

use of third-party software or hardware components 

from a compromised supply chain. 

6. Insufficient Privacy 

Protection 

Users’ personal information is stored on the device 

or in the ecosystem that is used insecurely, 

improperly, or without permission. 

7. Insecure Data 

Transfer and Storage 

Lack of encryption or access control of sensitive 

data anywhere within the ecosystem, including at 

rest, in transit, or during processing. 

8. Lack of Device 

Management 

Lack of security support on devices deployed in 

production, including asset management, update 

management, secure decommissioning, systems 

monitoring, and response capabilities. 

9. Insecure Default 

Settings 

Devices or systems shipped with insecure default 

settings or lack the ability to make the system more 

secure by restricting operators from modifying 

configurations. 

10. Lack of Physical 

Hardening 

Lack of physical hardening measures, allowing 

potential attackers to gain sensitive information that 

can help in a future remote attack or take local 

control of the device. 

 

Attacks on IoT and Smart Home Devices 

Common attacker motivations for targeting smart home devices can vary from 

targeted attacks on homeowner's physical safety, privacy, or disruption to 

opportunity-based attacks assimilating vulnerable devices into a botnet aimed 

toward another target. Threats to users’ physical safety can be enabled by 

vulnerable devices, while home burglaries have increased after the deployment of 

home automation systems which have been used to determine the behavior and 

presence of residents [10]. Financial loss, physical damage, or service disruption 

can be incurred by remotely targeted appliances such as smart washing machines, 
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faucets, or thermostats, and potentially at communities on a larger scale to target 

the power grid [11]. Further, while IoT devices can be the weakest link in a network, 

seemingly innocuous devices such as smart light bulbs or door locks can be 

exploited as an entry point into a user’s network to obtain more lucrative objectives 

[10].  

Current trends indicate a rise in security issues related to IoT over the past few 

years, with industry predictions showing a continuous upward trend. Mandiant 

predicts continued growth of the IoT device attack surface in 2022 and beyond, 

with the potential for serious impact as defenders struggle to keep up with no 

coordinated security initiative for IoT devices [35]. Publicized attacks and 

vulnerabilities illustrate the troubling state of security threats to consumer IoT 

devices over the past few years. Countless examples exist including hacked smart 

fridges exposing gmail credentials [36], vulnerabilities allowing unauthorized 

access to baby monitors [37] and smart locks [38] [39], and smart kettles leaking 

WiFi passwords [40]. 

The most impactful attacks on IoT devices in recent years have been related to the 

Mirai botnet and its variants. First active in 2016, the Mirai botnet exploited the 

widespread use of default credentials across millions of internet-facing IoT devices. 

The exploited devices were weaponized to perform large-scale DDoS attacks 

directed at high profile targets. An attack on the major Domain Name System 

(DNS) provider, Dyn, in October 2016 resulted in extreme service disruption to the 

majority of the U.S. east coast for several hours, with a downward impact on 

numerous major services such as Twitter, Netflix, and Reddit [41]. Although the 

end target of these DDoS attacks is not IoT devices, IoT devices such as Digital 

Video Recorders (DVRs), webcams, and other appliances are effectively being used 

as a tool for mass impact on greater targets. IoT botnets are one of the biggest threats 

to internet stability, and risk is expanding as more devices are created. These 

implications could be devastating as targets could shift to hospitals or critical 

systems. With the success of Mirai in achieving attacker objectives, similar variants 

of this malware have continued to evolve over subsequent years, moving from 
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exploiting credentials to additional vulnerabilities. In 2022, Mirai variants such as 

beast mode and BotenaGo continue to target millions of routers and IoT devices 

with various exploits [42], [43].  

Based on a survey by Hammi et al. [11], a summary of the major types of attacks 

on smart home devices is shown below in Table 2.3 according to the layer that is 

targeted, while some attacks can occur on multiple layers: 

Table 2.3 Attacks to Smart Home Devices [11] 

Layer Attack 

Device • Physical node compromise 

Network • Scanning attack 

• Message forging or substitution attack 

• Message replay attack 

• Sybil attack 

• Spoofing attack 

• Eavesdropping 

Application • Default/hardcoded passwords 

• Malware/botnet 

• Compromised or over-privileged applications 

Multiple Layers • Denial of Service (DoS) 

• Adversarial machine learning 

 

2.1.4 Security Solutions 

Along with the prominent threats to IoT devices, contributions to the literature on 

IoT security solutions have been abundant. This section provides an overview of 

key themes and notable directions in this area. 

To address common concerns with the lack of standardization across IoT 

architectures, the authors of [21] propose that security patterns could help address 

security concerns by providing reference architectures. However, current 

architectures focus on general system issues or specific domains and do not address 

specific technical concerns, and the majority of the works surveyed focus on a 

specific capability. Key themes of IoT security solution literature fall into the 
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categories of intrusion detection systems, confidentiality, authentication or 

authorization systems, and DDoS protection solutions. Further, many works 

focused on emerging technologies such as blockchain, Artificial Intelligence (AI), 

Machine Learning (ML), and edge/fog/cloud solutions.  

Intrusion detection systems, particularly at the network level, have been a 

prominent area of focus in the literature to relieve end devices of resource 

constraining tasks. Much of the literature makes use of AI or ML solutions for 

statistical analysis or anomaly detection to detect threats within network traffic [11]. 

GHOST [44] is a notable initiative funded by the European Union Horizon 2020 

Research and Innovation Programme, which aims to increase the level and 

effectiveness of automation of existing cybersecurity services and enhance the self-

defence of home IoT environments. The solution focuses on usable and transparent 

security, and presents a vendor agnostic reference architecture that is embedded in 

a smart home network gateway. Advanced packet flow analysis with self-learning 

capabilities is used to generate user and device profiles for automated real-time risk 

assessment, while users are provided with visualization of data analytics to 

understand their system's security status as well as mitigation guidelines. This 

solution as well as others are focused heavily on centralized models, however, they 

maintain limited view or interaction with devices directly 

Confidentiality/authentication/authorization systems must consider key 

challenges to IoT devices, including bandwidth and low power consumption, 

complexity, sensing, and the requirement for lightweight solutions, as indicated by 

Deep et al. [28]. The authors elaborate that there is no common mechanism to apply 

security to resource-constrained devices, and lightweight solutions are a future 

research direction for services such as key management, authentication, 

authorization, and access control. Hardware-based lightweight cryptographic 

solutions have also been recommended as a solution for the security of data at rest 

within devices [20].  

DDoS solutions for prevention, detection, response and mitigation techniques, 

including filtering, honeypots, signature and anomaly-based detection, and others, 
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are presented in [29]. The authors also identify open research problems for IoT 

DDoS protection, including functionality, deployment location, cost of the solution, 

scalability, specificity, accuracy rate, and false positives/negatives.  

Emerging trends in the areas of fog and edge computing, AI and ML, and 

blockchain technologies have been identified across several works as showing 

promising solutions both integrated and independently [20]. However, there are still 

several open challenges and security issues with these technologies as a continued 

area of research [10]. 

• Fog and Edge computing have been identified in much of the literature as an 

enabler for processing large volumes of data securely and efficiently not only 

for regular IoT services but also for security services [28]. 

• Artificial Intelligence and Machine Learning techniques introduce 

opportunities for the detection of malicious or anomalous behaviour across 

large datasets. Many solutions have been proposed at the network or cloud level, 

but some more lightweight solutions can also be applied within edge devices to 

detect threats at run-time [28]. 

• Blockchain technologies have also been an emerging area for security solutions 

to IoT based on their decentralized architecture, the ability for pseudonymity, 

and the security and integrity of transactions [28]. 

Automation and Integration: With the increasing complexity of the expanding 

attack surface, trends in enterprise security solutions have been moving towards 

automation and integration of layered defences to reduce manual workload, 

detection and response times for protection against security threats. Extended 

Detection and Response (XDR) is a SaaS-based security threat detection and 

incident response solution that integrates, correlates, and contextualizes data and 

alerts from multiple sources [45]. This combines telemetry from other security tools 

such as endpoint detection and network analysis for more accurate detections and 

simplified visibility and response. XDR can integrate Security Orchestration, 

Automation and Response (SOAR) capabilities, which have also been increasingly 

adopted independently of XDR. Researchers at Johns Hopkins University, in 
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collaboration with the US Department of Homeland Security (DHS) and the 

National Security Agency (NSA), have developed a framework and strategy for 

Integrated Adaptive Cyber Defence (IACD) [46]. The IACD provides guidelines, 

playbooks and workflows for SOAR implementation in combination with 

automated threat intelligence information sharing communities to improve 

response time and maintain adaptive defences in response to evolving threats. 

While these solutions are designed for enterprise environments, the benefits of 

automation and integrated security capabilities can be considered for a consumer 

environment where maintaining secure systems with low user interaction is a strong 

requirement.  

As we conclude our coverage of the background defining the characteristics of IoT 

and smart home technologies, along with the security considerations and current 

solutions in the literature, the following section will introduce the concepts of multi-

agent systems as a foundation of our proposed solution. In addition, it will also 

build on the case for the unification of these concepts into an adaptive cyber defence 

system for smart home devices. 

2.2  Multi-Agent Systems 

Agent-based systems have been a topic of extensive research for several decades. 

While the focus in this area of research seems to have slowed down, challenges 

with the practical application of a traditionally academic field, as well as limited 

tools and knowledge, have limited the barrier to agent applications [47]. However, 

the field is once again gaining increased interest with the expansion of IoT 

technologies presenting characteristics that are aligned with agent systems [3]. 

There have been some notable contributions in recent years to agent research in the 

fields of IoT, security, and in some cases, an intersection of these topics.  

This section will provide a background on the preliminaries of agent-based 

modelling and multi-agent systems and present a review of the relevant literature 

in applications to the IoT and cybersecurity domains. 
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2.2.1 Agent-Based Modeling & Reasoning 

Agent-based modeling (ABM) is a method of modeling systems composed of 

autonomous decision-making entities, known as agents, interacting with each other 

and their environment [48]. Agents execute actions based on a set of rules and often 

operate within an environment with other agents, known as Multi-Agent Systems 

(MAS), as shown in Figure 2.1. ABM has been used to simulate complex 

decentralized systems of autonomous agents to predict global system outcomes 

based on local interactions. In the biological world, this can be observed within the 

flocking behaviour of birds, movements of schools of fish, or waves in water. These 

concepts have also been applied to social network modeling, economic modeling, 

and market analysis, while more recently has been extended to the areas of IoT and 

AI. 

An agent-based model consists of three basic elements: agents, relationships, and 

the environment [49], as defined below. The rules for how agents make individual 

decisions and interact with each other are formally defined in the model. 

• Agent: An agent is an autonomous entity that makes decisions and actions 

based on a set of rules based on independent goals and perceptions.  

• Environment: The physical or logical environment is shared by all agents in a 

system and contains artifacts that can be perceived and impacted by the actions 

of the agents. 

• Relationships: The rules through which agents interact with each other, work 

together, or resolve conflicts. 
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Figure 2.1 Simple Multi-Agent System 

Intelligent agents also exhibit additional properties of reactivity, proactiveness, and 

social ability. A reactive agent is able to sense its environment and perform an 

action in response. Proactive agents display goal-oriented behaviour and will 

actively perform actions to reach a pre-defined goal. The social ability of agents 

allows them to interact with other agents to achieve their goals through cooperation 

or negotiation. For example, Macal and North [49] identify the following properties 

exhibited by intelligent agents: 

• Autonomy: Discrete entity with attributes, behaviors and decision-making 

capability, and Independent and self-directing functionality.  

• Decision-making ability: Rules to define agent behavior and decision-making. 

• Sociality: The agent’s ability to interact with other agents in the system through 

interaction protocols for mechanisms such as collision avoidance, agent 

recognition, communication and information exchange. 

• Conditionality: A state consisting of a set or subset of the agent’s attributes or 

behaviors. 

Agents may also exhibit the following additional properties: 

• Goal-Oriented: Possessing explicit goals to drive behaviour. 

• Adaptability: Ability to learn and adapt behaviors based on past experiences. 

The practical reasoning and decision-making ability of an agent is central to the 

operation of the system. Our research makes use of the BDI model for this purpose. 



 

24 

 

Further, there are various architectures that agents can follow for control models 

and shared resources, particularly in the case of collaborating agents, which will be 

described in the following section. 

Belief-Desire-Intention (BDI) 

The BDI model, originally developed by Bratman [50], is used for behavioural 

modeling of agents to perform practical reasoning and the process of deciding what 

actions to perform to reach a goal. In this architecture, agents receive sensory input 

through perceptions that influence their beliefs and implement their intended 

behaviours (intentions) to achieve desired states based on these beliefs, as 

illustrated in Figure 2.2. The components and functions of BDI can be modeled as 

per below [51]: 

• Percept Pn = {p0, p1, …, pn} represents a set of perceptions p taken as input by 

agents. 

• Beliefs Bn = {b0, b1, …, bn} represents a set of the information b maintained by 

the agent on its internal state and the environment states, updated according to 

each perception p. 

• Desires Dn = {d0, d1, …, dn} represents a set of the agent’s goals to be 

achieved d, including properties and costs associated with each goal. 

• Intentions In = {i0, i1, …, in} represents an action plan providing a set of states 

i the agent intends to bring about. The set of intentions must be consistent and 

not contain any conflicts. 

• Belief Revision Function BRF(pn,Bn) → Bm takes a perceptual input pn and the 

agent’s current belief set Bn, and determines a new set of beliefs Bm. Belief 

revision can include the following [52]: 

o Expansion: a new sentence bn+1 is added to the belief set B. 

o Revision: a new sentence bn+1 that is inconsistent with a belief set B is 

added, but to maintain consistency with the resulting belief set, some 

old sentences are deleted. 

o Contraction: some sentence b is retracted from belief set B without 

adding any new artifacts. 
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• Option Generation Function OPG(Bn,In) → Dn determines the possible 

alternatives (desires) available to an agent-based on its current beliefs and 

intentions. 

• Filter Function FIL(Bn,Dn,In) → In determines a consistent set of intentions 

based on the agent’s current beliefs, desires and intentions. 

• Action Selection Function ACT(Bn,In,) → {a0, a1,…,an} implements means-

ends reasoning to map the current set of beliefs B and intentions to a sequence 

of actions a. 

 

 

Figure 2.2 BDI Components [53] 

The high-level process of the BDI model is described below in Figure 2.3. It is 

important to note that the BDI model does not account for dynamic plan generation 

and instead depends on a predefined plan database. While this approach is 

commonly static and has limitations to scalability and adaptation to evolving 

collections of knowledge, we expand on this approach by introducing a novel 

integration with knowledge graphs in Chapter 4. 

B := B0; 

I := I0; 

while true do 

 get next percept p; 

 B := BRF(B,p); 

 D := OPG(B,I); 

 I := FIL(B,D,I); 

 N := PLN(B,I); 

 execute( ) 

end while 

 

Figure 2.3 BDI High-Level Process Description [51] 
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Related Works 

There have been many research works in extending the original concept of BDI, 

particularly to adapt to the concept of dynamic environments. While the limitations 

of BDI do not allow for dynamic goal deliberation, Pokahr et al. [54] present an 

enhanced BDI architecture for allowing goal deliberation at any point in time. 

Males and Ribaric [55] model an extended BDI agent with autonomous entities. 

Peng et al. [56] extend the BDI model with norms, policies and contracts. Shaw and 

van der Poel [57] propose genetic algorithms as a mechanism for re-planning in 

BDI agents. Lastly, Buford et al. [58] extend BDI for situation management, 

following the steps of event correlation, situation recognition, plan deliberation, 

plan instantiation and intention execution.  

In environments where uncertain or incomplete sensor information is collected, it 

can be difficult for BDI agents to make appropriate plans. For example, Calderwood 

et al. [59] present a framework using Dempster-Shafer theory for a contextual 

merging of data for better informed plan selection in Supervisory Control and Data 

Acquisition (SCADA) systems. In terms of recent applications, BDI has been used 

for multi-agent modeling of fire detection in coal mines using wireless sensor 

networks [60] and pervasive surveillance sensor management architecture [61]. 

Melgoza-Gutierrez et al. [62] propose a collaborative learning protocol to share 

decision trees over vertically partitioned data. In a comparison of results with a 

centralized approach based on Weka, there was not a significant difference in 

accuracy, although the centralized approach showed faster time due to the reasoning 

cycle of each agent.  

For agent-based development, the Java Agent Development Framework (JADE) 

has been highlighted as a Java-based platform often used in conjunction with the 

BDI model (BDI4Jade). Jason is an agent-oriented java-based programming 

language based on AgentSpeak, which is an agent-oriented programming language 

for based on logic programming and the BDI architecture for autonomous agents. 

These frameworks and languages have been researched in development of our 
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implementation, however a custom solution has been developed for the purpose of 

this work to better fit our use case and extended capabilities.  

2.2.2 Multi-Agent Collaboration 

Multi-Agent Collaboration (MAC) involves the collaboration between multiple 

agents through predefined protocols to achieve a common goal. Multi-Agent 

collaboration goes beyond the concept of agents with independent goals, 

introducing shared goals across the system. In this model, the distributed nature 

allows for resiliency if an agent is lost or compromised. Traditional service-oriented 

architecture does not follow this concept. With a large number of agents all 

attempting to access the same central resource, this introduces a bottleneck and 

single point of failure. This collaboration occurs as a system initiative where agents 

operate in the background to achieve goals, ultimately decided by the user (user 

initiative) through an interface (i.e., the user is able to configure their security 

preferences). In addition to BDI, which is relative to an individual agent, a 

collaboration between agents also requires the establishment of joint intentions, 

shared plans, and planned team activity. Three theories of multi-agent collaboration 

as defined by Wilsker [63]: 

• Joint Intentions: commitment to act in a certain mental state. When an agent 

adopts a notion not shared by the rest of the team, the agent must communicate 

the belief to the rest of the team.  

• Shared Plans: shared responsibility towards other team members and 

performing individual actions for the achievement of goals and explicit 

communications requirements. 

• Planned team activity: forming teams of agents to coordinate actions and 

tasks. 

Organizational Structure 

The organizational structure of a multi-agent collaborative system could hold the 

following: 
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• Shared or partially shared perception/resources: the perception of one agent 

is shared or partially shared with the other agents for a shared knowledge base. 

• Distributed and shared tasks and results: complex tasks are broken into 

smaller parts and coordinated amongst agents. For example, cooperative 

distributed problem-solving can share resources amongst agents to complete a 

task quicker or more efficiently. 

• Synthesizing agents: when a requirement is an input to a task environment, an 

agent can be automatically generated that will succeed in the environment.  

• Handling inconsistency: the system must be prepared to deal with inconsistent 

beliefs or goals of agents and have a method for conflict resolution. 

From the perspective of security, agents can have different responsibilities for 

security tasks in the smart home environment, breaking up large tasks such as 

scanning into smaller coordinated tasks amongst agents. 

Collaboration Mechanisms 

Regarding multi-agent collaboration, [63] studies multi-agent collaboration 

theories, including joint intentions, shared plans and planned team activity. Stergiu 

et al. [64] propose an XML policy-based framework for managing and modeling 

social interaction among agents. The framework includes roles, relationships, 

conversation patterns, and cooperation patterns for agent collaboration and is 

compatible with BOID (beliefs, obligations, intentions, and desires – an extension 

to BDI). The framework is implemented using JADE and can be used for peer-to-

peer agent communication or agent-management services. 

Further, multi-agent systems introduce a problem of decision classification. Xiao et 

al. [65] explore an effective solution to the multi-agent decision classification 

problem with a learning processing using Support Vector Machines (SVMs). Uhm 

et al. [66] propose a multi-agent system architecture for providing context-aware 

services in a smart home. This architecture uses an ontology-based context model 

and rule-based reasoning engine to identify the context of an environment and 

resolve conflicts between entities to provide context-specific services. The 

performance evaluations found that the ontology-based model offered better query 
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response time than the ontology and rule-based combined to provide faster and 

more convenient services within the home. MAC architectures have been applied 

to smart grids and home energy systems by Kang et al. [67].  

2.2.3 Applications in IoT 

The common characteristics of complex, dynamic autonomous systems between 

IoT and agents have inspired a recent interest in the convergence of technologies in 

recent years. Agent-based computing (ABC) has been acknowledged as a 

comprehensive, effective enabler for cooperating, decentralized, dynamic, and open 

IoT systems [3], and further supports the vision that “research in the IoT is expected 

to shift from intelligent objects to objects with a real social consciousness” [68]. 

Sevaglio et al. present a comprehensive survey of state-of-the-art research in agent-

based IoT, which indicates a strong conceptual alignment between IoT 

development requirements and (multi-)agent systems benefits, which has been 

exploited to drive and speed up the development of IoT systems. In particular, the 

survey identifies ABC as a promising paradigm for modeling, programming, and 

simulations of IoT environments [3] as further described below: 

• IoT Modeling: the agent model naturally embeds IoT autonomic, proactiveness 

and situatedness, among other features which can be explicitly described 

through agent-related concepts. 

• IoT Programming: agent-oriented programming approaches support uniform 

interfaces for heterogeneous resources and protocols, providing technical and 

syntactical interoperability of devices, as well as semantic operability by means 

of shared ontology and knowledge representation. 

• IoT Simulation: agent-based simulation can enable verification and validation 

of individual and system-level emergent behaviours, protocols and performance 

of complex deployments of IoT ecosystems. These simulations can be further 

enhanced to integrate evolutionary game theory concepts to analyze cooperative 

patterns, dynamic processes, and macro emerging actions in the IoT scenario. 

A notable approach to agent-based solutions within IoT integrates the use of 

microservices. Kravari et al. [68] introduce further commonalities of characteristics 
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between IoT, multi-agent systems, and microservice architecture due to their 

distributed, autonomous, collaborative and goal-oriented nature. The authors apply 

this approach through a novel reputation-oriented trust model to support the 

challenge of intelligence and trustworthiness of IoT, using reputation estimation 

based on social principles, microservices combined with learning and adoption 

properties, and a distributed locating mechanism based on social graphs and peer-

to-peer networks. Further, Rafalimanana et al. [69] adopt a collaborative agent-

based approach to create a link between artificial intelligence and services 

choreography in IoT. The authors pair BDI-agents with Representational State 

Transfer (REST) service technologies to exploit the agent capabilities as a service. 

Agent-based approaches have also been applied to smart home environments, as 

illustrated by [70], where “In the home environment, computer software that plays 

the role of an intelligent agent perceives the state of the physical environment and 

residents using sensors, reasons about this state using AI techniques, and then takes 

actions to achieve specific goals”. There are several approaches to designing IoT 

architecture in a smart home environment, as defined by Roman et al. [71]:  

• Centralized: A centralized architecture connects the service to the user 

directly.  

• Collaborative: The IoT architecture consists of intelligent entities that 

exchange data.  

• Connected Intranets: segregated intranets connect to a central entity, with the 

possibility of also connecting to each other depending on the configuration. 

• Distributed: All entities can retrieve, process, combine and provide 

information or services to other entities. 

Hilal et al. [61] propose an agent-based sensor management architecture for 

pervasive surveillance to support the coordination of sensor nodes and maintain 

situational awareness of the environment. The approach combines the advantages 

of holonic, federated, and market-based coordination architectures and models each 

node as an intelligent sensor using BDI. The architecture aims to address the design 

goals for scalability, flexibility, structured control, localized operation, and 
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distributed autonomy within the system. It demonstrates higher effectiveness when 

compared with a centralized approach. 

Holonic architectures have been a notable approach to the organization and 

collaboration of distributed multi-agent systems to achieve shared objectives. Ye et 

al. [72] provide a model for multi-agent holonic architecture for wireless sensor 

networks, including communication models, control and decision-making 

capabilities, and self-organization. Further, Pazzi et al. [73] adopt a holonic-model 

for cyber-physical systems, which provides modularity and hierarchy to control 

physical nodes while addressing the complexity of decomposing feedback loops, 

maintaining distributed invariants, and maintaining ongoing interactions with 

controlled entities. 

2.2.4 Applications in Security and Adaptive Defence 

A notable survey connecting the concepts of cybersecurity, intelligent agents, and 

IoT is provided by Coulter et al. [2], who identify that “the structure of an IoT 

environment sees communication and cooperation across many different system 

levels, while the evolution of computing structures requires adaptive and self-

adaptive technologies to maintain affordable security.” The authors illustrate the 

motivation for addressing the outdated integration of these domains for autonomous 

defence and discuss applications within the intrusion detection domain. A 

distributed agent model enables higher level reasoning through the network, where 

defence transcends independent layers and is achieved as a collective effort through 

knowledge-sharing and coordination. Further, the authors suggest that reflex and 

state agents can better utilize the benefits of machine learning through a more 

individualized approach to rule construction and state training. While goal, utility, 

and learning agents can benefit from natural, nature-inspired approaches.  

Recent efforts of the North Atlantic Treaty Organization (NATO) to develop an 

Autonomous Cyber-Defence Agent (AICA) reference architecture [74] have been 

the most significant development in the literature toward an autonomous agent 

system for cyber defence. Although it has been developed independently of our 

work, we have found that it is very much aligned with our vision at a conceptual 
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level. While not specific to IoT or BDI agents, the focus of NATO’s work is to 

enable future defence actions on largely autonomous military assets where human 

intervention may not be possible. The authors present a concept of intelligent, 

autonomous, mobile agents specialized in active cyber defence with capabilities to 

monitor networks, detect malicious cyber activities, and destroy or degrade 

adversary malware. The architecture provides capabilities for autonomous planning 

and execution of multi-step activities, adversarial reasoning in response to 

intelligent, adaptive malware, and the ability to remain undetected through 

deception and camouflage capabilities. At this stage, the architecture has been 

provided only at a very high level with limited detail. A multi-phased roadmap for 

continued development over the next 9 years as further development in specific 

approaches for knowledge-based planning of actions, learning and negotiation, and 

multi-agent collaboration is planned for the future.  

Adaptive and autonomous cyber defence is an emerging research topic bridging 

between AI and cybersecurity domains to create semi-autonomous cyber defences 

that can learn to recognize and respond to cyber attacks, discover and mitigate 

weaknesses in cooperation with other cyber operation systems and human experts 

[1]. Adaptive defence systems are able to evolve over time in response to changes 

in attacker behaviour, system health and readiness, and natural shifts in user 

behaviour over time [1]. Current works in this area include machine learning agent-

based solutions for autonomous deception systems [75], attack simulation [76], 

penetration testing [77], and malware detection [78]. While the existing works 

demonstrate promising directions in applications of agent-based approaches to 

cybersecurity, they have been mainly focused on specific security capabilities 

rather than approaching the problem from a holistic point of view.   

2.3  Chapter Summary 

There are many layers of opportunity for security issues for IoT devices in smart 

homes. While the attack surface continues to increase as IoT devices become more 

prominent, security threats continue to increase in severity and frequency. While 

many have argued that manufacturers should provide security in the development 
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of devices, this is not the current reality. Legislation and regulations attempt to 

improve security posture. However, enforcement of these policies across such a 

wide target is an extreme task. Although recent advancements are making some 

improvements, the complexity of this issue spanning across multiple domains does 

not have an indication of a near solution. While there have been many prominent 

contributions in the literature, the majority of the proposed solutions for smart home 

and IoT security are focused on a single purpose approach (DDoS, encryption, 

access control, intrusion detection) and do not consider the end-to-end security 

services for the IoT environment at a holistic level. Further, there is limited attention 

to embracing IoT technologies distributed, heterogeneous and data-centric 

architecture toward intelligent autonomous security services.  

Agent-based modeling and multi-agent systems approaches are promising research 

areas for IoT and smart home systems with their ability to operate within complex, 

dynamic autonomous environments. With the unique architecture and increased 

need for autonomous reasoning, coordination, sharing, and analysis of data, a multi-

agent architecture can be applied to achieve cybersecurity defence goals. While 

each of the domains of IoT, MAS, and security have rich collections of literature 

independently, the intersection of these topics provides an underexplored 

opportunity for enabling autonomous cyber defence within IoT environments.  

Security for IoT requires an adaptive approach, where agent-based systems offer a 

flexible design for autonomous actions and goal-oriented decisioning. While agent-

based solutions have previously been applied to the cybersecurity domain, there 

have been limited applications with barriers of adoption to the industry. The 

remaining chapters of this thesis will proceed to address these gaps with a proposed 

architecture for agent-based adaptive cyber defence to enable a modular and 

accessible framework towards a wide range of cyber defence capabilities. Domain 

knowledge graphs are leveraged to extend the traditional BDI model through a 

novel approach to support context-based modeling and agent reasoning of the 

cybersecurity domain, enabled by domain knowledge and frameworks available to 

the industry.  
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3 Multi-Agent System Architecture 

This chapter presents our proposed multi-agent system architecture, which 

integrates autonomous defence capabilities into adaptive intelligent software agents 

situated to respond to the evolving cybersecurity threat landscape. Processes are 

modelled as multi-agent plans and tasks, where agents work together through a 

control and coordination hierarchy to achieve common goals to defend the network 

according to security requirements. Agents use the Belief-Desire-Intention (BDI) 

model to perform multi-agent goal-based deliberative reasoning for defence actions 

which are informed by domain knowledge graphs further described in Chapter 4. 

3.1  System Architecture and Design 

3.1.1 System Architecture Overview 

The Multi-Agent System (MAS) architecture is composed of 3 main components: 

Security Services, Coordination, and Mission Deployment into the Internet of 

Things (IoT) environment. The high-level system architecture is shown in Figure 

3.1 below, illustrating how the core model interacts with the IoT environment. 

Within each of these layers, agents perform operations, communicate with each 

other, and make use of the available resources throughout the system. 

The Security Services layer is where high-level security decisions are made by 

control agents, making use of system observations, security requirements, and 

domain knowledge graphs to generate defence policies to be actioned by agents 

throughout the network. The results of these policies are utilized by the 

Coordination Layer, where coordination agents take the defence policy as input, 

identify security goals to be achieved and map them to actions with corresponding 

utility for prioritization. These goals and actions are planned and prioritized through 

workflow planning and coordination of available resources to generate subsequent 

missions, which are monitored by mission control. 
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Each mission consists of an action set, goal(s), prospective utility, and a set of 

agents with predefined beliefs, desires, intentions, and roles. Agents deployed 

through missions interact with each other in an agent collaboration environment as 

well as directly in the IoT environment to perform actions to achieve their mission 

objectives. An agent can interact with different components within the IoT 

environment, including devices, applications, and cloud services, either through 

API or directly hosted within the resource. We will continue to describe each of 

these components in detail in the remainder of this section. 

 

Figure 3.1 High-Level System Architecture 

Security Services & Control 

Control agents maintain an overall system view, leveraging the system monitor and 

defence policy engine to provide updated requirements to the coordination agents. 

Defence Policy Engine 

The Defence Policy Engine takes security requirements as input from industry 

standards, vendor policies, and user preferences in a common format. These 

requirements are combined with observations from the system monitor and 
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ontological domain knowledge to generate context-aware policies with respect to 

availability, coverage, and exposures. Together these form the defence policy used 

by the MAS control agent(s) to generate security goals and corresponding plans. If 

any changes are made to the requirements, the defence policy will be updated as 

necessary. The policy engine is described in detail in Section 3.2.3.  

System Monitor & Environment Graph 

System observations are shared resources used by the agents to make informed 

decisions on courses of action based on the system security state. These 

observations are maintained within the system monitor and are separated into four 

categories: operational availability, coverage, exposures, and attacks. These are 

used as parameters in system state calculations and the utility function for 

generating defence policy rules, missions, and their respective payoff. The 

exposures and attack monitors maintain an inventory of known vulnerabilities and 

exposures, suspicious activity, and active attacks observed on the network. These 

indicate negative system security states that must be remediated through 

appropriate security coverage. The coverage monitor maintains visibility of 

countermeasures in place, including access control rules, security controls, active 

missions, etc. Within coverage, situational awareness is also tracked to ensure the 

system monitor has appropriate visibility into the network. Lastly, operational 

availability is also monitored to ensure that IoT services are operational and 

experiencing minimal impact due to security controls or attacks. The security 

parameters within the system monitor and applications for system utility are 

described in detail in Section 3.2.3. 

Environment data, including known assets, device capabilities, and associated 

attributes, are tracked within an environment graph for ongoing situational 

awareness of the network. The environment graph can be overlayed with the 

domain knowledge graph for informed decisions and policies. The environment and 

domain knowledge graphs will be elaborated on in more detail in the following 

chapter.  
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Domain Knowledge Graph 

To understand security threats and corresponding defence actions, security domain 

knowledge and intelligence is used in a structured framework for relating entities 

and mapping relevant threat libraries. The domain knowledge ontology is described 

in detail in the following chapter on knowledge graphs.  

Coordination 

Workflow Planning 

The workflow planner maps items from the defence policy to options for action 

selection and corresponding utility. Once these are defined, these options are 

prioritized and defined into missions. 

Resource Manager 

The resource manager works with the workflow planner and mission control to 

identify required resources for a mission, maintains an active inventory of available 

resources, and supports the organization model templates for agents to be assigned 

to missions. This includes role descriptions, action sets, as well as initial beliefs, 

desires, and intentions.  

Mission Deployment 

Mission Control 

The mission controller is created for a specific mission to oversee the deployment 

and monitoring of the mission to its success. The mission controller is responsible 

for ongoing communication and re-evaluation of mission requirements if necessary. 

Once a mission is completed, the mission controller provides an evaluation of the 

success of the mission and reports back with the results and utility. 

Agent Collaboration Environment 

When missions are created and agents are deployed, an agent collaboration 

environment is established where agents can interact and collaborate with each 

other to achieve their goals. This is also the interface where agents are deployed to 

each layer of the IoT environment, as well as a proxy to shared agents’ resources.  
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IoT Environment 

Agents can interact with the IoT environment through API connection or deployed 

and directly hosted on the device, application, or cloud resource. From this layer, 

agents can perform a variety of actions by interacting with the IoT environment for 

activities such as data gathering, remediation activities, or control actions. The three 

components of the IoT environment are described below:  

Device 

The IoT devices exist in the device layer, comprised of the embedded device, 

sensors, radio communications, software, and firmware. Our model interacts at the 

firmware level through an open firmware architecture for the agent microservices 

to execute. Devices can also include edge devices such as IoT hubs or controllers 

and the network gateway. The IoT hub devices act as a bridge and controller for 

IoT devices across the network. While most IoT devices have limited processing 

and storage capability, the hub provides additional capabilities for coordinating 

these services. The network gateway can provide basic security functionality 

through firewall and intrusion detection capabilities. We provide an interface for 

agent interaction with the devices as this layer.  

Application 

The application layer provides mobile or Web application services to IoT devices. 

User-facing applications also provide capabilities for personalized configurations 

and settings. We introduce an Application Programming Interface (API) at this 

layer for agent interaction.  

Cloud 

The cloud layer is where many resources and processing capabilities can exist for 

vendor provided services. This also provides an opportunity for accessing services 

and analytics. Device or service vendors must also provide internal testing and 

support for security concerns through our model. Our model can also access these 

capabilities through an API at this layer.  
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3.1.2 Agent Hierarchy 

A hierarchical agent structure is used for organization-level insights and emergent 

behavior in agents across the network to achieve holistic security goals. In this 

section, we continue to expand on our model for the generation of agents to perform 

the actions selected by the controller. Section 3.3.2 describes the behaviors of the 

MAS controller (Level 0) as a strategic defensive BDI agent which generates 

defence policies (intentions) based on beliefs and desires for an ideal security state. 

As shown in Figure 3.2, this results in a hierarchical BDI agent structure where the 

coordinator generates a high-level intention which is the template for the creation 

of sub-agents (Level 1+) with corresponding desires. 

 

Figure 3.2 BDI Hierarchy 

Coordination mechanisms allow coordination between the controllers and 

coordinators to allocate resources according to the requirements. Taking as input 

the profile of the defenders 𝜃, attack types a, and resources available k, a 

coordination mechanism function  : (𝜃, k, a) → (x, t) is generated, which outputs 

a strategy x for the target t.  
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3.1.3 High-Level Algorithm and Data Structures 

While all decisions and sensory aspects of the system are performed by Belief-

Desire-Intention (BDI) agents of different functions, Figure 3.3 below shows how 

initial security requirements are inherited as desires by downstream agents with the 

ability to perform required actions accordingly, where the security requirements are 

first received by the controller to create the defence policy according to the 

knowledge of the environment from the system monitor. The defence policy 

translates into agent desires, in which the coordinator performs mission generation 

through planned workflows and resource management. Missions are created to 

assign associated desires and functions to capable agents deployed within the 

environment to achieve the overall desires. Each of these functions will be defined 

in further detail in the following sections. 

 

Figure 3.3 Multi-Agent BDI Inheritance of Policy Desires 

Modeling the environment in a way that can be understood and reasoned by the 

agents is critical to situational awareness and understanding of environment states 

for the agents to act upon. As the system leverages environmental contextual data, 
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in combination with domain knowledge through industry frameworks, we have 

provided a data structure diagram below in Figure 3.4 to show the relations between 

different data elements. This data model will be utilized and further expanded in 

the following sections and chapters.  

 

Figure 3.4 Data Structure Diagram 
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3.2  System Control and Policy Generation 

In a common format, security requirements can be defined by industry standards, 

vendor policies, and user preferences. These requirements are combined with 

observations from the system monitor and domain knowledge graph to generate 

context-aware policies with respect to availability, coverage, and exposures. 

Together these form the defence policy used by the MAS control agent(s) to 

generate security goals and corresponding plans. If any changes are made to the 

requirements, the defence policy will be updated as necessary.  

Our knowledge graphs provide a data model for security requirements to be 

interpreted by a policy engine according to the context of the environment and 

inferences to cybersecurity domain knowledge. The policy engine generates the 

policies by validating the security requirements provided as input. Through the 

hierarchical agent model, multiple layers of policy types can be maintained. The 

first is the device level policy, which applies to each individual device within the 

network. The second is the domain-level policy, which may apply to grouping 

devices in different domains. These can include domains of similar devices, 

individual network segments, roles, or groups of agents participating in a particular 

mission. The third is the system level policy, which inherits and synthesizes the 

requirements of each individual device into the context of the entire system. These 

policies are used by the controller in the prioritization and design of agent plans and 

missions. The policy engine performs top-down and bottom-up validation to 

achieve compatibility of policies and negotiate any conflicts. Conflicts will indicate 

contradictory policies or policies which are unachievable within the current 

configuration. If a conflict is identified, the user will be notified.  

Once the policies are created, they are used to define the goals of the system that 

the agents work towards achieving. Policies drive the decision-making of the 

system as enforced through utility, while requirements are mapped to the categories 

of security state parameters defined in the following section and can include an 

agent reward or penalty value for compliance or non-compliance, respectively, to 

influence prioritization and strategy selection. Violations of policies will result in a 
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penalty as well as an appropriate response which may involve user notification or 

intervention steps.  

This section defines the functions of the defence policy engine and how policies are 

generated to address security requirements based on the domain knowledge graph 

and situational awareness through the system monitor.  

3.2.1 Security Requirements  

Baseline Requirements 

While our overall architecture can be agnostic to a specific set of requirements, we 

have selected to reference National Institute of Standards and Technology (NIST) 

recommendations as a baseline for demonstration. NIST IR 8228 defines a set of 

IoT Risk Mitigation Goals which we have leveraged as a baseline for initial security 

requirements. These include Protect Device Security, Protect Data Security, and 

Protect Individuals’ privacy. As the focus of this research is on the security domain, 

the risk mitigation areas for Goal 3: Protect Individuals’ Privacy are currently out 

of scope; however, the model can be extended for privacy applications as a potential 

future work. A Presidential Executive Order on Improving the Nation’s 

Cybersecurity (14028) [25] published in May 2021 directed NIST to develop two 

labeling programs on cybersecurity capabilities of IoT consumer devices and 

software development practices. While these labeling baselines align with the NIST 

Interagency/Internal Report (NISTIR) 8228 risk mitigation goals, this enables an 

opportunity to validate security requirements against labeled devices within the 

network.  

We have built on NISTIR 8228 and NIST 8259A [19] [26] to develop a high-level 

baseline set of security requirements for a smart home IoT network, as defined in 

Appendix A. The requirements for asset management, device configuration, data 

protection, access management, vulnerability detection, incident detection, and 

availability are mapped to a set of corresponding Device Capabilities (DC) defined 

by NIST 8259A. Through the device, the label can be determined if each device 

can achieve the defined security requirement. Further, each requirement also maps 
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to a corresponding set of security properties (confidentiality, integrity, availability, 

authenticity, and non-repudiation). 

Device-Specific Requirements 

While the above can be used as generic requirements, further granular requirements 

can be developed specifically for the unique security needs of certain devices 

according to the prioritization of certain properties of labels or individual user 

configurations. For example, when considering a smart lock's unique needs for 

availability and integrity, these corresponding requirements can be given higher 

priority. Priority-based thresholds can be configured according to user preference 

and environment-specific needs. Thresholds according to an individual device, type 

of device, area of a network, or other groupings can be recommended or configured 

by users. For this initial demonstration, we have added security property 

prioritization to the device profiles to provide customization according to the type 

of device. 

Requirements Definition 

The security requirements will be defined in a common format to allow for 

processing into the defence policy. Table 3.1 below shows the elements of the 

baseline security requirement definition format. This concept will be expanded 

upon in Chapter 4 on BDI and knowledge graphs.  

Table 3.1 Baseline Security Requirements Definition Format 

Field Data 

ID int 

Name string 

Requirement string 

Priority [1-5] 

Associated platforms Global |Group | Device Profile | Device 

Desired state (“Subject”, “State”) 

Associated Security 

Properties 

Confidentiality | Integrity | Availability | Non-

Repudiation | Authenticity | All 

Associated Device 

Capabilities 

DC […] 
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The security requirements can be in any common format, such as JavaScript Object 

Notation (JSON) or eXtensible Markup Language (XML). JSON was selected for 

demonstrative purposes of this work. For illustration, Figure 3.5 below provides an 

example of the Vulnerability Management requirement, which is applied globally 

to all devices on the network. The requirement includes the associated device 

capabilities which can achieve it, as well as the desired state of “Device Version is 

Up to Date,” which will define the target state for the agents’ inherited desires. 

{ 

"ID": 004, 

"Name": "Vulnerability Management", 

"Requirement": "Identify and eliminate known 

vulnerabilities" 

"Priority": 1, 

"Associated Platforms": "Global", 

"Desired State": "Device Version = Up to Date", 

"Associated Security Properties": "All", 

"Associated Device Capabilities": ["DC5.1", "DC5.2", 

"DC5.3"] 

} 
Figure 3.5 Security Requirement Example - Vulnerability Management 

3.2.2 System Monitor 

The system monitor maintains situational awareness of the network and is used by 

the controller and coordinator agents as a reference for policy updates and 

prioritization to achieve optimal coverage of the security requirements while 

maintaining an ongoing view of the overall system's health. The system monitor 

consists of four components: Operational Monitoring, Coverage, Exposures, and 

Attacks.  

The system monitor components are updated through agent messages and queries 

within the environment graph and enriched by the domain knowledge graph. While 

each of the four components maintains an ongoing view into different elements of 

the health and security state of the network, the data can be leveraged in a granular 

view to inform contextual decisions regarding individual devices, as well as a high-

level summarized view for tracking overall system state. This section defines each 
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System Monitor component that will be leveraged by the multi-agent system in the 

following sections. 

Operational Monitoring 

The operational monitor is used to track services' availability and devices' overall 

security state. The asset model referenced by the operational monitor is an 

inventory of assets registered to the network, as well as any that are not registered 

but have been detected through other agents. The asset model exists within the 

environment graph and will be further described in Section 4.2   

The operational monitor maintains entries for each device with the below fields: 

• Asset ID: An asset model is maintained separately by the agents and used as 

input into the operational monitor. 

• Security State: the security state of the device is updated according to the 

associated device's coverage, exposures, and attacks. Security states, as defined 

below, include initialization, disabled/failed, normal, vulnerable/suspicious, 

and exploited. 

• Availability: tracks the operational status of a device for availability, if it has 

been unreachable or disabled   

The system can be categorized into the following security states, as shown in Figure 

3.6. This can be assigned to each device, network segment, or entire system state. 

The state of the system will reflect the risk level and type of missions in place. 

 

Figure 3.6 System Security States 
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(0) The initialization state has limited knowledge of the true security state of the 

system. It will be the most active in terms of processing in order to achieve 

coverage, initial configurations, patching, and coordinating missions. When a 

new device is added to the network, it will also join in an initialization state.  

(1) Once initialization is complete and any security requirements have been 

satisfied, the system will move to a normal state. In this state, monitoring and 

situational awareness missions will be in place to gather baseline information 

as well as monitor for suspicious behavior or new devices. If free processing 

cycles are available, this can also be used to fortify controls and projective 

scenario strategy calculations.  

(2) The system will move to this state if a vulnerability or suspicious event is 

detected. Missions will be established to patch, project attack paths, 

countermeasures, and advance monitoring of high-risk devices.  

(3) In the event of an attack being detected within the system, it will transition to 

the exploited state. In this state, remediation missions will be in place to contain 

the attack and enforce relevant countermeasures. Forensic data may also be 

collected, and the user will be notified.  

(4) A device may also be in a disabled state, where it is offline or unreachable. 

Coverage 

The Coverage Monitor tracks security controls in place in relation to security 

requirements and compensating controls for exposures/attacks. This is leveraged by 

the controller to track overall coverage to inform the policy prioritization. The 

below fields are tracked by the coverage monitor:  

• Security Requirement / Exposure ID: a mapping to the security requirement 

or exposure that the coverage is designed to address. 

• Associated Mission(s): a list of missions in place.  

• Level of Coverage: an indicator of the level of coverage for.  

• Associated Assets: the assets protected by the control. 

• Defence Technique Implemented: mapping to defence technique or 

mitigation  
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• Status: current status of the coverage (active, planned, disabled). 

While some devices may be required to comply with a certain security requirement 

without having corresponding device capabilities to achieve it, compensating 

controls will need to be put in place. Once the controller has situational awareness 

of the limitations and capabilities of the network, appropriate missions can be 

deployed to provide coverage, as further described in Section 3.3.1. 

Exposures 

The exposure monitor tracks known vulnerabilities and configuration risks within 

the network, as well as an understanding of the risk associated with the exposure. 

The domain knowledge ontology is used for enriching exposure data based on 

Common Vulnerability Scoring System (CVSS) [79], which will be further 

expanded in the following chapter. While exposures are known vulnerabilities that 

have not been exploited, if an attack is detected targeted in the exposure, it would 

be listed in the attack monitor. Each exposure should be prioritized by the controller 

for coverage according to the level of risk. The exposures monitor contains the 

following fields: 

• Type: the type of exposure as Common Vulnerabilities and Exposures (CVE) 

[80] or configuration risk 

• CVE ID: the CVE associated with the exposure. 

• Risk Score: as listed in CVE. 

• Impact: the impact of the exposure as listed in CVE (confidentiality, integrity, 

or availability). 

• Exploitability: as listed in CVE (privileges required, attack vector, user 

interaction, scope). 

• Associated Assets: the assets affected by the exposure. 

• Status: tracking of the status to indicate whether the exposure is active or 

remediated. 
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Alerts 

The alerts monitor tracks alert indicating suspicious or malicious behavior on the 

network to be investigated and/or remediated. Alerts are created within the 

monitoring controls and analytics and are further described in Section 4.2.2. The 

alerts monitor contains the following fields: 

• Alert ID: unique ID for the alert. 

• Impacted asset(s): the assets affected by the alert. 

• Risk level: level of risk determined by the domain knowledge graph.  

• Related attack technique(s): the MITRE ATT&CK [81] data associated with 

the alert.  

• Data source: the data source telemetry that the alert originated from. 

• Applicable platforms: the type of platform associated with the alert. 

• Data model references: object, actions, and fields associated with the CAR 

data model. 

3.2.3 Policy Engine 

Once the requirements have been defined, a Defence Policy is generated and 

prioritized by the control agent based on the security requirements and knowledge 

of the system security state. This policy provides the high-level security objectives 

to be performed and passed down to the coordination layer in the form of agent 

desires. 

Utility Function 

The utility functions are used to guide agent actions by providing rewards and 

penalties as feedback for reinforced emergent behavior towards the desired system 

state. In this case, the system utility is used to build an effective strategy profile for 

the particular environment at a given time step. Utility functions require feedback 

in order to reinforce the behavior of the agents. This feedback can be collected 

either from environment artifacts or as a response from another agent. The 

requirements of an effective utility function are described below: 
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• Consistent: Utility function must be consistent across similar agent types to 

ensure unified behavior sets. 

• Attributable: Feedback must provide timely and clear attribution for a 

particular action to reinforce the intended behavior. 

• Goal-Oriented: The function must accurately reflect the goals of the system 

and be evaluated to ensure it will not cause unanticipated agent behaviors that 

contradict the ultimate security goals in order to receive rewards.  

• Contextually Scalable: Changes in system states must be taken into 

consideration. Learned behaviors in a normal state will likely not follow the 

required risk levels while operating within a system in a vulnerable or exploited 

state.  

We define a system security state utility function in Equation ( 1), which maintains 

the overall security posture of the smart home and provides incentive/feedback for 

mission selection in accordance with the system security goals. This function is 

maintained at the controller level with visibility into the environment. The utility is 

calculated as a high-level function of the security policies’ adherence within the 

security parameters described below, taking into consideration the operational 

availability (OPS) and coverage (COV), with respect to the level of exposures 

(EXP) and attack detections (ATK).  

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = ∑[𝑂𝑃𝑆𝑝 + 𝐶𝑂𝑉𝑝]

𝑝∈𝑃

− ∑[𝐸𝑋𝑃𝑝 +  𝐴𝑇𝐾𝑝] 

𝑝∈𝑃

  
( 1 ) 

 

The utility consists of the parameters defined by the System Monitor, which are 

quantified and mapped to the predefined security requirements to issue individual 

penalty and reward values for violation or compliance, respectively. These are 

maintained in the “system monitor” of the logical architecture. The values of the 

security parameters provide context to translate observations into the security state 

of the system and each device within it. While the defender aims to maintain a 

“normal” security state, the parameters also provide additional granularity and 

quantifiable feedback to determine the utility of defence actions. 
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Policy Generation 

Our model adopts a control-theoretic approach for the defender to maintain a secure 

state of the system. The controller is a strategic rational BDI agent acting as the 

“defender,” which aims to maintain the system's preferred security state while 

considering the observations, defence capabilities, and associated utility. In this 

model, we represent a control problem with one strategic rational agent as the 

defender, while adversarial actions are considered non-strategic events (nature). 

The following section describes the foundations of this model, with the relations 

further illustrated in Figure 3.7. 

The system state st  S is used to quantify the security state of the system at time 

t, where the set of system states S = {s0, s1, …, sn} is defined as per Section 3.2.2. 

A state transition is represented as st → st+1, which evolves as a function of 

defender actions and environment events ft: S  A  E → S. Given an action-event 

pair of event et  ℰ and defender actions at  A, the state is updated to St+1 = ft(st, 

at, et). For this thesis, state transitions are defined as Non-deterministic Finite 

Automaton (NFA). The limitation of this initial design is that all successor states 

are considered equally possible as opposed to probabilistic reasoning. This can be 

enhanced through future improvements to increase the probability of interrelated 

states based on observations. 

The set of events is defined as ℰ = {e1, e2, …., en}, where an Event et  ℰ is an 

observable event from the environment (nature) and is generated from a possible 

set of events given the system state ℰ(st) ⊆ ℰ. While defenders maintain an 

incomplete view of system states as all events are not able to be observed, defender 

observations ot  O are defined where observation ot = O(st, et) is generated as a 

function of the true underlying system state and the event. Agents are aware of their 

state at all times and can maintain a history of observations based on their actions 

and observed state as ht = (a0, o1, …, at-1, ot)  (A  O)t. The history can then be 

compressed into belief state Bt for making optimal decisions based on historical 

observations. A new observation will result in belief update bt(st) = p(st|bt-1, Ot), 
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which is the probability of the system state being st given the previous belief and 

new observations. 

In alignment with the system security goals, the defender maintains a set of desires 

DE  S for the aspired secure system state, which influences their decisions. 

Defence action at  A = A1  A2  …  An at time t represents the actions that a 

defender can perform to inhibit an adversary's actions. Each action space Ai consists 

of a finite set of possible defence actions Ai = {ai,1, ai,2, …, ai,n}, where each action 

affects the state si of element i. Each defence action at has an associated utility c(st, 

at) = ∑ [𝑂𝑃𝑆𝑖 +  𝐶𝑂𝑉𝑖] 𝑖∈𝑁  − ∑ [𝐸𝑋𝑃𝑖 +  𝐴𝑇𝐾𝑖] 𝑖∈𝑁 , which the defender is provided 

through a feedback observation. The utility is represented as a function of the value 

of the security parameters defined in Section 3.2.2.  

Defence policy d = (d0, d1, …, dT-1) contains the action(s) the defenders will take 

to change system states to the objective system state (desires), where dt is the 

function from given belief state Bt to a distribution over defence actions dt: S 

→(A). The optimal defence policy d* = (d*
0, d*

1, …, d*
T-1) can be generated 

according to the defender’s risk tolerance, for example, using ‘minmax’ criterion to 

minimize the worst-case cost. Optimizations through approximation, sequential 

decomposition and dynamic programming have been applied in the literature. 

 

Figure 3.7 Relational System Model 
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In this scenario, the defender is the controller of a larger system of agents and 

security resources that can be utilized. While definitions in this section are 

sufficient for the base model, we will expand on the defence policy and actions in 

further detail below. 

Policy Definition Format 

The policy engine maintains a translation of security requirements into agent 

desires, which are then inherited by the coordination agents for further action. A 

defence policy entry contains the following fields: 

Table 3.2 Policy Definition Format 

Field Data 

ID int 
Name string 

Defence Technique string 

Priority [1-5] 

Associated 

artifacts/assets/platforms 

Global |Group | Device Profile | Device 

Associated Requirement string 

 

Similar to the security requirements definitions, policies are also maintained in a 

common format such as JSON. Once a policy is created, new agent “desires” will 

be created, and the controller agent will send a message to the coordinator(s) to 

inform them of the policy change for further action. 

 

3.3  Agent Modeling for Cyber Defence 

This section expands further on the concept of agent modeling in relation to cyber 

defence techniques, where a hierarchy of agents is deployed across the network to 

coordinate actions to perform the security goals defined by the policies. While this 

section describes the agent structure at a high level, the following chapter will go 

into further detail on agent behavioural modeling and reasoning through BDI 

knowledge graphs. 
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3.3.1 Mission Generation 

A mission is a coordinated action set defined in accordance with the security 

strategy and requirements. Missions are generated and prioritized at the coordinator 

level, where they can be negotiated with other coordinators that may exist within 

the system. Each mission has prospective payoff values for increasing/decreasing 

each utility parameter, mapped to a particular reference ID, which is used to 

determine the prioritization of plans, and validated on completion. After completing 

each mission, the controller will be notified, receive the payoff, and cascade it down 

to the agents involved in the mission.  

Once a mission has been selected, the coordinator will deploy agents assigned to 

specific roles to perform the mission tasks. Missions are composed of one or more 

action sets assigned to one or more agents. These missions can be categorized into 

Specifically defined (e.g., patch device x), Open ended (e.g., scan network to collect 

baseline data), Cooperative shared (e.g., agent x and y will work together to scan), 

Cooperative distinct (e.g., analysis agent will continuously send relevant data to 

response agent), or Hybrid.  

3.3.2 Multi-Agent System Preliminary Definitions 

Moving on to the detailed components of the multi-agent system model, we proceed 

to define the below: 

• Multiagent System = {A, E, O}: is the system comprising all Agents, 

Environment states, and Organization relationships. 

• Agents = {ag0, ag1, …, agN}: is a set of n agents in the system. An agent is 

defined as an autonomous entity that makes decisions and actions based on rules 

based on independent goals and perceptions. 

• Environment = {e0, e1, …, eN}:  is a set of n environment states. The physical 

or logical environment is shared by all agents in a system and contains artifacts 

that can be perceived and impacted by agent actions. 
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• Organization = {o0, o2, …, oN}: The rules through which agents interact with 

each other, work together, or resolve conflicts. Organization o = {R, G, N, SP} 

comprises roles r, groups g, norms n, and social plans sp. 

 

Figure 3.8 Multi-Agent System Components 

Roles 

Agent roles are defined for the consistent inheritance of objectives and capabilities. 

Roles commit an agent to specific obligations and may include associated 

permissions or prohibitions. Roles define the responsibilities of the agents assigned 

to the role. We define two categories of roles, which can be extended depending on 

requirements. These roles provide a core model for security capabilities within an 

environment and are scalable to various use cases.  

Control-Based Entities 

The second type of role is for the control of the MAS. These entities perform tasks 

to maintain the health of the system and to ensure effective decision-making. Some 

example control-based entities are listed below: 

• Controller: performs high-level rationalization on the security state of the 

system and manages security policies (as described in Section 3.2 ). 
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• Coordinator: receives a goal from the controller and gathers necessary 

resources to create missions and deploy agents. 

• Mission control: oversees missions involving multiple agents with a common 

goal. 

Security-Based Entities 

We define the below agent roles within the system to function with different 

capabilities to perform distinct security functions. These roles have been developed 

to enable the range of capabilities defined by the NIST Cyber Security Framework 

(identity, protect, detect, respond, recover), as will be further described below. The 

following parent roles provide archetypal functions, which can further be broken 

down into sub-roles for more specific functions. 

• Sensor: sensors to collect data across the network, i.e., monitoring, scanning, 

and sharing. 

• Analyzer: process data for uses such as anomaly detection, risk assessment, 

reputation services, and policy generation; Input processed data to detect attacks 

and malicious activity. 

• Investigator: request gathering of additional data and perform further analysis 

on the reported attack. Determine if an activity is malicious; Escalate to a 

responder. 

• Responder: perform responsive action in response to malicious activity or 

trigger, i.e., policy enforcement, patching, access control, network isolation, 

traffic filtering/limiting, firewall rules, and configuration update. 

An example role description of a Sensor agent is shown below, where the objective 

of the agent to scan environment env is fulfilled through sub-objectives utilizing its 

capabilities such as scan element e, and update environment graph db. 

Table 3.3 Sensor Agent Role Description 

Id  Sensor 

Objectives Environment_scanned(env) 

Sub-Objectives Scan(e), update(db), … 

Capabilities Scan(), query(), report() 
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3.3.3 Communication and Policy Enforcement 

While agents can interact with all layers of the IoT network, all communications 

are established through a secure agent channel providing an additional layer of 

security assurance. As shown in Figure 3.9, all interactions are facilitated through 

an agent interface, which validates and performs actions on behalf of the requestor. 

Through this architecture, an agent can be deployed to be hosted on any IoT device, 

act as a Policy Enforcement Point (PEP), and perform sensory and response actions 

through the Application Programming Interface (API). This architecture allows for 

high levels of insight into network and device events to support security monitoring 

and analytics, as well as an additional layer of control for the enforcement of access 

control policies. With further validation, this channel can also prevent attacks such 

as agent spoofing and replay attacks. Requests from a device are facilitated by 

agents according to trust and risk levels calculated by the security parameters and 

utility function at the Policy Decision Point (PDP) at the controller resources. For 

example, if a device has certain attributes, such as active vulnerabilities, only 

limited access is provided to it, and other devices are accessing it. This allows for 

the containment of potential exploits until a patch is issued while allowing basic 

availability requirements as per user needs.  

In addition to the requests and response messages proxied through an agent, devices 

maintain access control policies to allow access to resources according to the role 

of the agent. This ensures that the least privilege is assigned according to the 

required permissions of the agent accessing the resources. For example, agents 

assigned to security and administrator level roles will have certain permissions 

granted, while operational activities will maintain a lower level of permissions to 

achieve their requirements.  
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Figure 3.9 Communication and Policy Enforcement 

3.4  Chapter Summary 

Agent-based technologies provide autonomous, adaptive, cooperative goal-

oriented behaviours which can be leveraged to address the unique cybersecurity 

challenges of an IoT environment. The multi-agent architecture presented in this 

chapter provides an extendible framework for enabling the coordination of agents 

deployed across an IoT environment to achieve security goals. The hierarchical 

structure allows for shared objectives aligned to security requirements, which can 

be coordinated across the multi-agent system based on environment states, resource 

capabilities and ongoing requirements where autonomous and coordinated actions 

are informed by partial and full views of the environment at different layers.  

While the architecture shows the overall system capabilities and design, there is a 

requirement for a strong data model to inform agent reasoning and deliberation 

based on an understanding of the environment and inferences within the 

cybersecurity domain context. The following chapter will introduce knowledge 

graphs as a solution for modeling the system environment along with cybersecurity 

domain knowledge and BDI agent reasoning, which will be implemented by each 

agent within our architecture for contextual and goal-based decisioning.   
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4 Knowledge Graphs for BDI Agent 

Reasoning 

The system architecture and services described in the previous chapter require a 

comprehensive solution to model and analyze the large volume of environmental 

data telemetry as well as the agent rationalization and rules with context to 

cybersecurity domain knowledge. In this chapter, we introduce knowledge graphs 

as a solution for the below functions: 

• To model the various entities and states within the environment. 

• To inform decisions with cybersecurity domain knowledge. 

• To model BDI agent behaviours and inference rules for rationalization. 

Graphs are used to model and analyze data interconnected through complex 

relationships. A graph contains a set of entities as nodes and the relationships that 

connect them, as illustrated through a simple example in Figure 4.1 below. 

Compared to a traditional relational database model, graph databases provide the 

benefits of increased performance with larger datasets, as well as increased 

flexibility to add new components to an evolving data model according to ongoing 

requirements without the confines of a restrictive schema [82]. With this highly 

flexible and high-level structure, graphs can be used to model all kinds of systems 

and have countless use cases across many industries and applications. 

 

Figure 4.1 Basic graph with a relationship between two nodes 

Graphs can be further extended to more descriptive models, such as the commonly 

used property graph model, which allows nodes and relationships to contain key-
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value pairs as properties. As described by Barrasa et al. [83], a property graph 

model consists of the following characteristics: 

1. Nodes representing entities in the domain: 

• Nodes can contain zero or more properties, which are key-value pairs 

representing entity data. 

• Nodes can have zero or more labels, which declare the node’s purpose in 

the graph. 

2. Relationships representing how entities interrelate: 

• Relationships have a type. 

• Relationships have a direction, going from one node to another. 

• Relationships can contain zero or more properties, which are key-value 

pairs representing some characteristic of the link. 

• Relationships never dangle – there is always a start and end node. 

With a basis on the property graph model, knowledge graphs can provide further 

emphasis on contextual understanding. Knowledge graphs provide a contextualized 

understanding of data, where interlinked sets of properties describe real-world 

entities, events, or things and their interrelations in a human and machine-readable 

format [83]. The modeling rules of a knowledge graph are defined using an 

organizing principle, or semantics, which provide a layer of organizing metadata 

to connect context for reasoning and knowledge discovery.  

4.1  Graph Architecture and Model 

The flexibility and rich ability to model complex entity relationships motivate the 

adoption of a graph-based solution for the modeling of cybersecurity domain 

knowledge and agent behaviours in relation to the environment. Our model 

integrates knowledge graphs to model the data and inform system workflows as a 

foundation for multi-agent system intelligence. Our graph architecture integrates 

three separate layers for context into the network environment, cybersecurity 

domain knowledge and BDI agent knowledge, as shown in Figure 4.2 below: 
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• The Environment layer is used to model the devices and entities within the 

network to provide ongoing context and state awareness. 

• The Cybersecurity Domain Knowledge layer integrates industry frameworks 

into a common model for identifying vulnerabilities and exposures, inferring 

security risks, attack detections and analysis, and informing applicable defence 

techniques based on policies and environmental awareness. 

• The BDI Agent layer is used to model agent planning, actions and workflows 

based on knowledge of device capabilities, security requirements and context 

from the other two layers.  

 

Figure 4.2 High-level Graph Layer Interactions 

Each of these layers is highly related to inform agent decisions based on knowledge 

of the environment states and capabilities and cybersecurity domain knowledge to 

support courses of action based on risk profiles of the known environment and 

security requirements. Figure 4.3 below shows an overall view of the relationships 

between each graph component of the environment, agent, and domain knowledge, 

which will be further described in detail in the remaining sections of this chapter. 
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Figure 4.3 Knowledge Graph Meta Model 
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4.2  Environment Graph 

Maintaining ongoing knowledge of the environment is a critical function for 

rational agents to interact and receive timely feedback on their environment states. 

In the field of cybersecurity, the same holds true for defenders to understand the 

environment they aim to secure. Knowledge of assets, behaviours, capabilities, and 

network topologies allows the defender to know where security vulnerabilities may 

exist, what controls are or are not deployed, and knowledge of security threats and 

possible attack paths. 

The environment graph is the basis of the agents’ situational awareness and is 

further augmented by domain knowledge enrichment data to infer the security 

implications. Using a graph model, key components of the environment can be 

defined, categorized, labelled, and related using a data model that allows for 

interconnectivity with domain knowledge graphs and agent planning.  

The environment graph has been designed with the following key requirements and 

integrations in mind: 

1. Model the environment for agents to interpret devices, attributes, states, 

capabilities, and possible actions; 

2. Attributes to be mapped to security domain knowledge for understanding 

vulnerabilities, risk analysis, and relation to security requirements and 

policies; and 

3. Flexible reference data profiles and maintenance. 

Figure 4.4 illustrates a detailed illustration of the nodes and relationships within the 

environment graph, which we have divided into two major categories: device 

profiles and instances and events and analytics. This section will detail the 

environment graph layer, our design approach, and usage. The node labels within 

the environment graph are further described in this section. 
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Figure 4.4 Environment Graph Layer 

4.2.1 Device Profiles and Instances 

The first major category of nodes within the environment graph is to model device 

profiles and instances. In support of the first and third requirements listed above, 

we implement the concept of “Device Profiles” to introduce a scalable and 

repeatable design for instances of devices to inherit the applicable properties and 

relationships of their parent Device Profile. This is ideal for consistency in asset 

management, classification, and modeling capabilities for possible agent actions 

and expected effects. 

Table 4.1 Device Profile Node Descriptions 

Node Label Properties Relationships 

Device Profile Name 

Version 

ProductName 

Platform 

DeviceState 

DeviceCapability 

Device 

Device Name 

Internet Protocol (IP) 

Address 

DeviceProfile 

Event 

Sensor 

Agent 
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Media Access Control 

(MAC) Address 

Ports 

Configs 

Access Control 

Current States 

Security Policy 

Device Capability Name 

Description 

DeviceProfile 

Action 

Action Function DeviceCapability 

Event 
 

The common attributes related to device profiles, such as product name and 

platform, have been adopted for integration with MITRE framework fields to be 

described further in Section 4.4 . 

The Device Capabilities in our model are based on NISTIR 8259A Internet of 

Things (IoT) Product Cybersecurity Capabilities [26] which defines a set of device 

capabilities that directly correlate to the NISTIR 8228   Security Requirements [19] 

as described in Chapter 3. Using the IoT security product labeling standard 

proposed in this document, all compliant IoT devices would be accompanied by a 

product label in this format which can be imported into our graph when a device is 

registered to the network.  

Device capabilities are associated with corresponding actions which can be 

performed by agents. Action sets have been developed as abstract functions which 

can be called by agents through Application Programming Interface (API) requests 

to devices to perform actions related to the device's capabilities. While the focus of 

this work at this time is on the overall framework and agent reasoning, a simulated 

environment with simple function calls has been sufficient for initial demonstration. 

It will be further detailed in the following chapter.  

4.2.2 Events and Analytics 

The second category of nodes within the environment graph pertains to the ability 

to model system events, or messages, in a consistent way that can be interpreted by 

agents. While this provides a model for agents to communicate and understand their 
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environment, the data model also integrates with the domain knowledge ontology 

to be used for security monitoring and analytics. The below table provides an 

overview of the node relationships and definitions: 

Table 4.2 Events and Analytics Node Descriptions 

Node Label Properties Relationships 

Event ID 

Data 

Action 

Artifact 

Device 

Artifact Object 

Action 

Field 

Event 

DeviceState 

Platform 

Analytic 

Analytic Name Artifact 

Sensor 

ATT&CK Technique 

Sensor Type Analytic 

Device 
 

Message formats are defined for events as a result of device activities or agent 

actions. Agents receive messages as percepts in this format and can interpret them 

using the agent graph. Events are an instance of an artifact, which models the event 

data in a way that can be easily parsed and analyzed by analytics. Our data model 

for artifacts and analytics has been heavily influenced by the MITRE Cyber 

Analytics Repository (CAR) data model [84]. In this model, artifacts are modeled 

as a tuple of (object, action, field) which details the properties and state changes for 

an event.  

The events and analytics components are illustrated in greater detail in Figure 4.5 

below. 
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Figure 4.5 Events and Analytics Detail 

Although CAR provides a great data model for event modeling and analytics, the 

dataset is limited in terms of integration with other frameworks for further 

enrichment. We found that the model could be mapped more directly to existing 

fields in MITRE ATT&CK for direct correlation to attack techniques which would 

provide greater contextual enrichment through our domain knowledge graph. Based 

on this finding, we leveraged the below MITRE ATT&CK fields to the same effect 

and imported this data set into our graph: 

• “Data source” field in place of “object.” 

• “Relationship” in place of “actions.” 

• “Source element” and “target element” as appropriate in place of “fields.” 

Below are some examples from our filtered dataset: 
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Table 4.3 Object-Action-Field Mapping for Analytics 

Object (data_source) Actions (relationship) Fields  

(Src/Target Elements) 

command executed User 

Process 

Command 

drive created Process 

Drive accessed 

modified 

driver loaded Process 

Host 

Driver 
retrieved information 

about 

file accessed User 

Process 

File 

Filestream 

requested access to 

created 

retrieved information 

about 

modified 

deleted 

 

4.3  BDI Agent Knowledge Graph 

The reasoning capabilities of the BDI agents within the system are driven through 

the BDI agent knowledge graph. This knowledge graph contains all relevant data 

to support agents’ rationalization and decisive actions while supported by additional 

context within the environment and domain knowledge graphs. The objectives of 

the BDI agent knowledge graph are as follows: 

• Interpret environment perceptions into agent beliefs. 

• Model desires based on security policies and requirements. 

• Capabilities to interact with the environment through available actions. 

• Create a plan based on beliefs and desires. 

 

Figure 4.6 below shows the nodes and relationships within the BDI agent graph to 

be described in further detail within this section. 
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Figure 4.6 BDI Agent Graph 

4.3.1 Node and Relationship Definitions 

The BDI model within the agent graph is consistent with the BDI definitions as 

described in earlier chapters. In relation to the rest of the graph, the design is not 

able to enable the agents to interact with their environment through percepts 

(events) and actions based on the device capabilities defined in the environment 

graph. An agent deployed to a particular device with the appropriate role and 

permissions will be able to perform the available actions on that device. 

The foundation of agent reasoning and intelligence is also within the graph to 

support rational decisions and planning based on contextual awareness and security 

goals. Desires generated from the security requirements and policies are placed on 

the graph and related to a belief state. Modeling available actions based on device 

capabilities and belief states allows an agent to query the graph for a plan of action 

to achieve a path to a target desired state.  
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Table 4.4 BDI Graph Node Descriptions 

Node Label Properties Relationships 

Percept value Belief 

Belief value Percept 

AgentAction 

Desire value State/Belief 

Plan 

AgentAction value DeviceCapability 

Belief 

 

4.3.2 Cypher Queries for Agent Functions 

BDI agents can leverage the graph to support their belief revision, plan selection, 

and action selection functions, as further described in this section, using Neo4j 

cypher queries.  

Belief Revision 

Belief revision is triggered by an agent receiving a new percept. The agent graph 

supports the agent’s belief revision function by providing relationships between 

types of percepts and the beliefs to be inferred. The below cypher query is used to 

return the beliefs obtained in response to an observed percept: 

MATCH (:Percept {Value: "$percept"}) -[:CreatesBelief]-> (beliefs) 

RETURN beliefs 

Plan Selection 

When a new desire is obtained, such as through a new security policy or mission, 

the agent must retrieve an appropriate plan from the graph to pursue the desired 

state. Below is the process of plan selection along with the applicable cypher query, 

which will return a plan in the form of belief-action pairs: 

1. Find a state/belief that is the objective of the active desire 

2. Find a actions that the target state is "achieved by" (i.e., download update, 

install update) 

3. Find b beliefs that precede these as "next action" (i.e., update available, update 

downloaded) 

4. Build belief/action pairs based on b and a 
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MATCH (:Desire {value: "$desire"}) -[:OBJECTIVE]-> (targetbelief)  

MATCH (targetbelief) -[:ACHIEVEDBY]-> (selectedActions)  

MATCH (preBeliefs) -[:NEXTACTION]-> (selectedActions)  

RETURN targetbelief, selectedActions, preBeliefs 

Action Selection 

Based on a plan to achieve a particular desired state, an agent must select an 

appropriate next action. The below query is used to return the next action based on 

the agent’s current beliefs: 

MATCH (:Desire {value:"$desire"}) -[:OBJECTIVE]-> (targetbelief)   

MATCH (targetbelief) -[:ACHIEVEDBY]-> (selectedAction)  

MATCH (preBeliefs:Belief{value:"$belief"})-[:NEXTACTION]-> 

(selectedAction)  

RETURN selectedAction 

 

4.4  Cybersecurity Domain Knowledge Ontology 

While the other sections of this chapter have covered the environment and BDI 

agent models, another key element of the system is the cybersecurity domain 

knowledge ontology, which is required to support the contextual understanding of 

situational awareness as well as direct agent reasoning toward effective security 

decisions. In addition, interpreting the security implications of observed events and 

selecting appropriate plans to achieve specific goals requires a structured 

framework for relating entities and mapping relevant threat libraries.  

Fortunately, there has been much attention over the past few years in the 

cybersecurity industry to develop and maintain many frameworks and knowledge 

bases to provide classifications, relationships, and descriptions of key information 

such as vulnerabilities, weaknesses, attack techniques, threat intelligence, defensive 

controls, and more. Many of these frameworks are leveraged prominently across 

the industry as a reference for understanding and prioritizing security controls and 
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responses and provide a solid foundation of reference data for the purposes of this 

work.  

However, some current limitations with this reference data must be augmented to 

support our purposes. While these frameworks are prominent and well utilized 

within the industry, the approach is often standalone and without interoperability 

between frameworks for different stages. While there have notably been some 

recent works to combine a knowledge base of frameworks, there currently does not 

exist a full solution to the end-to-end entirety that our system requires. A notable 

work is the OdTM Base Threat Model Ontology framework [85] which provides a 

base threat model ontology using Web Ontology Language (OWL). The ontology 

framework can be used to build mappings of domain relevant threats and 

countermeasures. Based on our observations, it appears that it is likely that 

relationships between frameworks will soon be bridged, as there currently already 

exist many similar fields across these frameworks that can be easily related. With 

the emerging prevalence of automation and machine learning in the security 

industry, a common and relatable data model for leveraging reference data would 

provide a strong foundational contribution. However, since no current solution yet 

publicly exists according to our knowledge, we have proceeded to design our own 

model to relate the available knowledge bases, according to our requirements.  

4.4.1 Reference Knowledge Bases 

The cybersecurity domain knowledge ontology has been generated based on several 

industry frameworks shown below, which can be used for mapping relationships 

between elements of the environment from vulnerability data into 

recommendations for mitigations and controls.  

Table 4.5 Reference Knowledge Bases 

Reference 

Framework/Database 

Description 

Common Vulnerability 

Enumeration (CVE) [80] 

Identifies, defines and catalog publicly disclosed 

cybersecurity vulnerabilities. The Common 

Vulnerability Scoring System (CVSS) [79] is 
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also used for scoring and characteristics of 

vulnerabilities 

Common Weakness 

Enumeration (CWE) [86]  

A community-developed list and software and 

hardware weakness types in a common language 

as a baseline for weakness identification, 

mitigation and prevention efforts. 

Common Attack Pattern 

Enumeration and 

Classification (CAPEC) 

[87] 

Provides a dictionary of known attack patterns 

employed by adversaries to exploit known 

weaknesses in cyber-enabled capabilities.  

ATT&CK [81] A knowledge base of adversary tactics and 

techniques based on real-world observations 

D3FEND [88] A knowledge graph of cybersecurity 

countermeasures 

Cyber Analytics Repository 

(CAR) [84]  

A knowledge base of analytics based on the 

MITRE ATT&CK adversary model. The CAR 

analytics have not been used directly in our 

graph, however the data model has been used as 

a reference as a framework for modeling 

analytics based on data relationships. 
 

We then proceed to map these to associated attack patterns from the MITRE library, 

which provides a catalog of common attack patterns, attributes, prerequisites, and 

mitigations. This data is then used to build a domain-specific ontology for IoT 

devices to be used by the agent plan library at an abstract level. While outside of 

the implementation scope for this paper, this can be further expanded to more 

detailed technical-level capabilities as future work. 

4.4.2 Node and Relationship Definitions 

The meta-graph shown in Figure 4.7 below illustrates the node and relationships 

within the cybersecurity domain knowledge graph pulled from the knowledge bases 

described in the previous section. Each of these knowledge bases provide a data 

model that can be easily related to each other and has been further related within 

our graph to provide end to end relationships between security weaknesses to 

mitigation techniques along with their associated properties for risk analysis and 

prioritization. The node labels, properties, and associated relationships are listed in 

Table 4.6 below.  
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Figure 4.7 Cybersecurity Domain Knowledge Graph 

Table 4.6 Cybersecurity Domain Knowledge Graph Node Definitions 

Node Label Properties Relationships 

Technique id 

name 

description 

Permission 

Platform 

AttackPattern 

DataComponent 

KillChainPhase 

Mitigation 

Technique 

Platform name Technique 

Mitigation id 

name 

description 

Technique 

AttackPattern id 

name 

description 

likelihood 

severity 

Technique 

Weakness 

Consequence 

Weakness id 

name 

description 

likelihood 

AttackPattern 

Consequence - Scope 

Impact 

Scope name Consequence 

Impact name Consequence 
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4.4.3 Cypher Queries  

An important function of the domain knowledge graph is to enrich agents’ 

understanding of the security implications of their environment, including assessing 

the security implications and level of risk related to known or suspected 

vulnerabilities and weaknesses. This is the first step towards establishing an 

appropriate mitigation plan aligned with the priorities identified within the policy. 

This section provides an overview of the types of queries that can be used to gather 

information in support of agent situational awareness and defence control planning. 

Summary of Impact and Scope of a Known CWE 

The below query shows an example Cypher query which returns the associated 

impact and scope for a particular CWE-521: “Weak Password Requirements” on a 

Linux system: 

MATCH (t:Technique)-[:TARGETS_PLATFORM]-> (p:Platform { name: 

"Linux"}) 

MATCH (w:Weakness {id:"CWE-521"}) <- [:EXPLOITS_WEAKNESS] - 

(atp:AttackPattern)<-[:MATCHES_PATTERN]-(t)-[:MITIGATED_BY]-> 

(m:Mitigation) 

MATCH (atp) - [:HAS_CONSEQUENCE] -> (c:Consequence) - 

[:AFFECTS_SCOPE] ->(scope:Scope) 

MATCH (c)-[:HAS_IMPACT]->(impact:Impact) 

RETURN w.id AS CWE_ID, collect(distinct impact.name) AS Impact,  

collect(distinct scope.name) AS Scope 

 

The results of the query are shown below, where a summary of the impact and scope 

of the CWE are listed. This provides useful information to be stored within the 

Security Monitor exploits to be used for prioritizing remediation of CWEs based 

on the priorities of the security policy.  
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Enriched Data for Attack Patterns Associated with a Known CWE 

Further, there may be multiple attack patterns associated with a CWE, raising the 

requirement for a more granular view of the different types of CAPEC attack 

patterns and their associated consequences. In addition to this, an understanding of 

the likelihood and severity of a potential attack pattern will be useful for prioritizing 

specific remediation plans. The below query is used to retrieve this data from the 

graph: 

MATCH (t:Technique)-[:TARGETS_PLATFORM]-> (p:Platform 

{name:"Linux"}) 

MATCH (w:Weakness {id:"CWE-521"}) <- [:EXPLOITS_WEAKNESS] - 

(atp:AttackPattern) <- [:MATCHES_PATTERN]- (t) -[:MITIGATED_BY] -> 

(m:Mitigation) 

MATCH (atp) - [:HAS_CONSEQUENCE] -> (c:Consequence) - 

[:AFFECTS_SCOPE] ->(scope:Scope) 

MATCH (c)-[:HAS_IMPACT]->(impact:Impact) 

RETURN atp.name AS AttackPattern, atp.likelihood AS Likelihood, at

p.severity AS Severity, collect(distinct impact.name) AS Impact, 

collect(distinct scope.name) AS Scope 

 

 

Mitigation Techniques and Prioritization 

While the results of the previous query can support the prioritization of selecting 

mitigations mapped to attack patterns, it is also important to consider that there are 

mitigation techniques that can protect against multiple types of attacks. The 

following query can be used to retrieve the list of related mitigations for the CWE 

with the associated attack techniques, severity, and likelihood.  
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MATCH (t:Technique)-[TARGETS_PLATFORM]-> (p:Platform {name: 

"Linux"}) 

MATCH (w:Weakness {id:"CWE-521"}) <- [EXPLOITS_WEAKNESS] - 

(atp:AttackPattern)  <- [MATCHES_PATTERN]- (t) - [MITIGATED_BY] -

> (m:Mitigation) 

RETURN m.name AS Mitigation, collect(t.name) AS Techniques_Mitigat

ed, collect(atp.severity) AS severity, collect(atp.likelihood) AS 

likelihood 

 

Based on the below results, multi-factor authentication and password policies 

would protect against the largest number of techniques related to CWE-521: 

 

Mitigations are related to Device Capabilities (DCs) described in the previous 

sections. The prioritization and selection process take all of the above criteria into 

consideration as well as the available DCs that the agents can leverage to select the 

most effective available mitigation. If no mitigations are possible, the system 

monitor will still maintain a view of the possible risks and can provide notifications 

to the users.  
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4.5  Chapter Summary 

While recent years have observed increasing attention towards data modeling and 

intelligence sharing within the cybersecurity industry, this data provides a 

foundation of knowledge that can be applied for structured agent reasoning. 

Existing BDI research and applications have utilized ontologies in other forms, 

however to our knowledge there has been no previous work integrating BDI agents 

with knowledge graphs. The flexibility and ability to model complex relationships 

motivate the adoption of our presented graph-based solution for modeling 

cybersecurity domain knowledge and agent behaviours in relation to the 

environment as a foundation for multi-agent intelligence.  

This chapter introduced our model and examples for the environment graph, 

cybersecurity domain knowledge graph, and BDI agent knowledge graphs to 

inform agent behaviours and inference rules for rationalization. With the 

foundations defined, the following chapter will proceed to discuss our 

implementation which brings the knowledge graph model together with the multi-

agent system architecture described in Chapter 3. 
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5 Implementation 

This chapter presents an implementation of our multi-agent system architecture for 

adaptive cyber defence in a smart home network. Our implementation architecture 

consists of three components: coloured petri nets, knowledge graph database, and 

the simulation engine. We will proceed to describe the implementation for the 

control and coordination functions and associated policy generation, followed by 

two agent use cases for vulnerability management and access management. The 

implementation described in this chapter will provide a foundation for the 

experimental evaluation and results discussed in Chapter 6. 

5.1  Model Smart Home Scenario  

The implementation simulates a fictional smart home environment, as shown in 

Figure 5.1 as an illustrative example of a realistic use case. The scenario illustrates 

a single-bedroom apartment that contains a variety of IoT devices for physical 

security, lighting, temperature control, entertainment, personal devices, and 

network devices. In addition, the home contains a single user with moderate 

adoption of consumer IoT devices for the primary purposes of home automation 

and comfort.  

5.1.1 Devices and Network 

The model smart home environment contains the following devices shown in Table 

5.1 below, which have been added to the Neo4j [89] environment graph and basic 

functions created within the simulation engine. We have also generated a set of 

device capabilities for each device according to the National Institute of Standards 

and Technology (NIST) device capabilities[19]. Some devices have been 

configured with limited capabilities to show how the system would respond to 

constrained resources.  
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Figure 5.1 Model Smart Home Environment 

Table 5.1 Smart Home Device Listing 

Type ProductName 

Physical Security Security System 

Smart Lock 

Lighting Light Hub 

Light1 

Light2 

Light3 

Light4 

Temperature 

Control 

Thermostat 

Temp Sensor 1 

Temp Sensor 2 

Audio/Video Smart TV 

Smart Speaker 

Personal Devices Laptop 

Smart Phone 

Network & 

Control 

Router 

IoT Hub 
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5.1.2 Security Requirements 

The security requirements that need to be addressed through our model have been 

defined using the NIST framework discussed in Chapter 3. Each requirement maps 

to a corresponding agent Desire within the knowledge graph: 

• Asset Management 

• Device Configuration 

• Data Protection 

• Access Management 

• Vulnerability Management 

• Incident Detection 

• Availability 

5.2  Implementation Architecture 

The architecture for our implementation is shown in Figure 5.2 below, with the 

following three major components to be described in further detail throughout the 

rest of this section:  

• Coloured Petri Nets (CPN): the message exchanges between agents and 

devices are simulated within CPN. CPN Tools [90] is used to visualize and 

facilitate the network environment and agent BDI through each time step of the 

simulation.  

• Simulation Engine: a set of scripts developed in Go [91] to simulate basic 

device and agent instances and the interface between CPN Tools and Neo4j. 

The device and agent instances are called from CPN tools to execute appropriate 

actions when they receive messages. 

• Neo4j Graph Database [89]: contains the knowledge graphs for agent 

reasoning, including the domain knowledge ontology, BDI knowledge graph, 

and knowledge graph. A dashboard has also been created for the visualization 

of system states and summarized data within the graph. 
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Figure 5.2 Implementation Architecture 

This architecture enables a demonstration of each major component of our model, 

from the controller, coordinator and missions, and device agents acting in different 

use cases.  

5.2.1 Coloured Petri Nets 

Colored Petri Nets (CPN) are a graphical oriented language for the design, 

specification, simulation and verification of systems [92]. CPN can be used for 

modeling and simulating behaviours of systems where concurrency and 

communication are key characteristics, such as business processes and workflows, 

manufacturing systems, and agent systems [93]. For example, Petri Nets have been 

used to implement BDI agents by Jimenez-Ochoa et al. [94] to model Interpreted 

Petri Nets (IPN) to represent agent beliefs and beliefs revision transitions for 

flexible manufacturing systems.   

Our simulation makes use of CPN Tools [90], a tool for editing, simulating and 

analyzing our model through colored Petri Nets. A CPN model represents states of 

the system (places), and events that can change states (transitions). Through this 

model, it is possible to walk through and execute simulated systems to better 

understand system behaviour and design. CPN ML is based on Standard ML, a 

functional programming language that provides the definition of data types.  
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We simulate our environment and agent instances in CPN Tools to visualize the 

states and transitions as messages are sent through the network. While early 

versions of our model were designed using CPN Tools for validation of basic agent 

BDI reasoning and communication, our implementation has now expanded to 

leverage our external integrations with Neo4j and Simulation engine as the basis 

for larger scale intelligence and knowledge reasoning. 

We have modeled the environment and BDI agent nets, as shown in Figure 5.3 and 

Figure 5.4 respectively. The environment net provides a model for simulating the 

environment, including device instances, messages, and network communications 

while the agent net models the rationality of the BDI agents that interact with it. We 

proceed to describe each component in more detail within the rest of this section. 

 

Figure 5.3 Environment CPN 
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Message Format 

Within the simulation, we define a common message format for simple simulated 

network communications within the system. A colorset of “MSG” has been defined 

consisting of the following fields: msg = { src=””, dst=””, kind=””, data=[] }.  

• src: the source of the message. 

• dst: the destination of the message. 

• kind: identifies the type of message to handle data fields. 

• data: a string list is consisting of the actual data of the message within the 

appropriate fields. 

The below “kinds” of messages described in Table 5.2 have been defined to pass 

messages across the network as well as for internal messages between the agent and 

host device.  

Table 5.2 Message "Kind" Definitions 

Kind Data Format Usage 

notify [("value","UpdateNotification"), 

("ver", "$ver")] 

For update 

notifications 

request Same as action 

  

Request msg to 

another device 

response [("Function name", "id"),("status", 

"Success/Failed"),(result/error))] 

Response msg to 

another device 

action (Function name, ID),(Function 

parameters) 

[("update", "id"), ("ver", "$ver")] 

  

Agent action on host 

device 

actionResponse [("Function name", "id"),("status", 

"Success/Failed"),(result/error))] 

Host device 

response to action 

successful/failed 

 

While the actions and functions are not performed within CPN tools directly, the 

simulation engine parses the message format to perform the appropriate functions 

and update states accordingly.  
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Network Simulation and Round Management 

The design of our system models concurrent behaviours through discrete time 

events in a “turn-based” model, where each time interval runs through a queue of 

concurrent events in a “round.” Rather than hard-coding each device and agent into 

the net, the environment and agent nets have been reduced to a simple shell to 

represent the basic structure of any device or agent receiving, processing, and acting 

on an event. The device and agent transitions load the state and attributes of the 

appropriate device and agent when their turn begins. This allows for the scalability 

of testing scenarios as the device and agent instances also sit outside of CPN tools 

in the simulation engine.  

A major component for managing the message flows and timing of the simulation 

is the “Round Management and Network” transition. This is a transition to simulate 

the routing of network communications to the appropriate devices while enforcing 

the coordination of event processing for each round. When a device or agent sends 

a response message, it will append to the “Round Results Queue,” which will collect 

all messages from the round. All actions during a round will leverage the same state 

space for the round time step, which will be released after the completion of the 

round. If any conflicts occur during a round, a random number will determine which 

event happened “first” and send a failure response to the unsuccessful requestor to 

be evaluated in the following round. Based on our simulations, there has been a 

negligible operational impact with this design. However, it would need to be 

revisited in the future.  

Another key capability within this transition is to act as an interface to inject events 

for simulation as well as respond to Internet requests through simulated functions 

within the simulation engine. For example, events such as update notifications or 

malicious activity can be triggered here for simulation activity.  

Device Artifact 

The device artifact is a transition that takes a message as input and processes it as 

the recipient device. When a message is received, the below action calls the 
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recvMessage() function, which outputs the message to the simulation engine to 

interpret as the appropriate device. 

input (msg); 

output (msg2); 

action 

let 

    val newmsg = recvMessage(msg) 

in newmsg 

end 

 

The output message for this transition can be directed either to an agent percept or 

the round results queue for processing in the next round.  

 

Agent BDI  

The Agent BDI net is a useful tool to model and visualize the BDI reasoning for an 

agent. Following the BDI architecture described in previous chapters, the net shown 

in the figure below demonstrates the agent’s BDI capabilities in action with 

percepts, beliefs, desires, intentions, and actions represented as places that contain 

tokens for relevant data at any given time. The belief revision function and reasoner 

are represented as transitions that implement the functions through interfacing with 

the BDI knowledge graph in Neo4j.  

Similar to the device artifact described above, the agent net is a general model that 

initiates the BDI of the appropriate agent that is acting at any given time. When a 

message is sent to an agent, the related agent attributes are loaded into the 

corresponding beliefs, desires, and intentions placed in the net.  

input (dst); 

output(b,d,p); 

action 

let 

  val b = loadB(dst); 

  val d = loadD(dst); 

  val p = loadP(dst); 

in b,d,p 

end 

 

A percept is received in the form of a message and input into the belief revision 

transition, which performs the function below to update the new beliefs: 
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input (msg); 

output (b3); 

action 

let 

    val newb =recvMessage(msg) 

in #data newb 

end 

 

Next, the reasoner transition inputs the new belief, desires, and intentions (plans) 

to generate a resulting plan and action, as shown in the function below: 

input (b,d); 

output (msg); 

action 

let 

  val plan = selectPlan(d) 

  val action = selectAction(b) 

in action 

end 

 

While the CPN walks through all of the logical steps of the environment and agent 

algorithm and visualizes the data at each step within the corresponding place and 

transition, the actual intelligence and processing take place outside of the net 

through the functions called to the simulation engine integration to execute the 

corresponding functions and execute cypher queries to the Neo4j graphs 

accordingly. The simulation engine and Neo4j components will be discussed 

further in the following sections. 

 

 

Figure 5.4 Agent CPN 
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5.2.2 Simulation Engine 

The simulation engine was developed for the purposes of simulating the device and 

agent instances for demonstrating our model. While the network environment and 

round management are orchestrated within CPN Tools, this component hosts the 

actual instances of the devices loaded into CPN tools as needed. The simulation 

engine has been developed in Go and performs a set of functions shown in Figure 

5.5. The engine sends and receives messages to the appropriate device and agent as 

the simulation is executed and executes its functions supported by Neo4j graph 

integration.  

 

Figure 5.5 Simulation Functions 

The simulation engine consists of the below services: 

Integration Connectors 

The simulation engine integrates CPN tools and Neo4j using the respective 

connectors to send and receive messages between the platforms. 

Device Simulation 

This acts in place of a real device for the purposes of our simulation. The device 

simulation contains the functions to receive and process messages to perform basic 

actions within the action sets defined in the graph. 
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Agent Simulation 

An instance of each agent is created to maintain an ongoing memory and reasoning 

of the agent’s beliefs, desires, and intentions throughout the simulation. The agent 

instance is called by CPN tools as described in the previous section, which is called 

through the transition for belief revision and reasoning. The agent has the ability to 

query the BDI Knowledge Graph in Neo4j for belief inferences and applicable 

plans. 

The basic functions within the simulated device and agent instances are sufficient 

to model a responsive demonstration for the defined actions within our initial action 

set for the simulation. While this is sufficient to demonstrate the overall architecture 

implementation of the system, future work would be to integrate with actual devices 

which can host the agents and execute actions directly. This would require another 

level of integration beyond the scope of this work.  

5.2.3 Neo4j Graph Database 

As described in the previous chapter, we make use of Neo4j graph databases for 

domain knowledge, agent BDI, and environment graphs. Neo4j [89] is a widely 

used graph data platform that has widespread applications across industries and 

uses cases such as fraud detection, financial services, life science, data science and 

knowledge graphs. Neo4j uses Cypher query language, a declarative graph-

optimized language for expressive and efficient queries for nodes and relationships 

in property graphs. For our implementation, we have populated the agent BDI, 

environment, and domain knowledge graphs within Neo4j to be leveraged for agent 

reasoning. 

Figure 5.6 below shows the merged agent BDI and environment graphs visualized 

in Neo4j Bloom. As shown in the node label index on the right side of the Figure, 

agent desires have been created, corresponding to security requirements in the 

defence policy. Our knowledge graphs have been created to represent BDI 

relationships for each of the security requirements and corresponding device 

capabilities related to each device as applicable within the environment graph. 
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Agents can leverage the graph for belief revision and planning to select appropriate 

actions based on their beliefs and desires. 

 

Figure 5.6 Environment and BDI Graph in Neo4j 

 

5.3  Implementation of Control and Coordination 

The first component is the control and coordination functions, which maintain a 

high-level view of the network and security states to direct the overall goals for the 

rest of the multi-agent system. As discussed in Chapter 3 and further visualized in 

Figure 5.7 below, the controller begins by taking the security requirements and 

creating a defence policy to be passed on to the coordinator. Next, the coordinator 

manages the resources and workflow planning to coordinate and deploy missions 

for the device agents to act on the environment. 
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Figure 5.7 Model Components 

5.3.1 Defence Policy Generation 

As described in Section 5.1.2, we have defined a set of security requirements based 

on NIST 8259A to be enforced by the system. Based on the security requirements, 

a defence policy is created by the controller according to the knowledge of the 

environment, which defines the high-level agent's desires for the system.  

The elements of the defence policy are input into the knowledge graph, where the 

goal of each policy is identified as an agent “desire” associated with the desired 

system state. Each desire is related to each device or group of devices to which the 

policy is to be applied. 

5.3.2 Coordination 

After the defence policy is defined and passed on to the coordinator, it must take 

the appropriate actions to ensure the policy is enforced. The agent profile and BDI 

graph for the coordination agent are shown below, where the agent has an action 

set of CoordinatePolicy() and DeployMission(). The coordination agent maintains 

an ongoing desire to “CoordinatePolicy,” where the objective desired state of each 

policy is “up to date.”  
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Role: “coordinator” 

ActionSet: CoordinatePolicy(), DeployMission() 

Beliefs: “” 

Desires: “CoordinatePolicy” 

Intentions: “” 

 

As shown in Figure 5.8 below, when a new policy is received without any 

associated coverage, it is in a state of “new.” Therefore, the coordination agent 

proceeds to perform actions in pursuit of the desired state of “covered” for each 

policy by coordinating and deploying the required missions according to the 

resources available.  

 

Figure 5.8 Coordinator BDI Graph 
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5.4  Implementation of Agent Use Cases 

This section demonstrates the implementation of two use cases to demonstrate how 

an agent can deliberate upon different security-focused desires and enforce policies 

embedded into the BDI knowledge graphs. The first use case demonstrates 

vulnerability management and patching capabilities, and the second demonstrates 

access management capabilities.  

5.4.1 Use Case 1: Vulnerability Management and Patching 

This section demonstrates how a device agent acts within the device to maintain the 

most up-to-date version of the software. While patch management is a significant 

concern for the security posture of a home or enterprise network, this example may 

appear simplistic. However, we have presented it here to demonstrate the basic 

functions of an agent and how it would receive percepts from the environment, 

rationalize using the BDI model, and perform actions in pursuit of a goal. The 

foundation shown through this example can be expanded to more complex 

capabilities. 

Agent Profile and Reasoning 

The profile of a basic patching agent's initial BDI is shown below, where the agent 

has a set of actions available on the host device to installUpdate() and 

DownloadUpdate(). The agent does not have any initial beliefs or intentions until it 

receives an initial percept, and it has inherited a desire to “update” based on the 

defence policy. 

Role: “deviceAgent” 

ActionSet: InstallUpdate(), DownloadUpdate() 

Beliefs: “” 

Desires: “Update” 

Intentions: “” 

 

The agent leverages the below subset of the BDI graph for belief revision and 

planning related to the “Update” desire defined in the policy and mission. For 

example, the graph in Figure 5.9 shows the relationships between percepts and 
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beliefs, a series of actions based on the possible belief set, available actions based 

on device capabilities, and expected state outcomes of performing the actions.  

 

Figure 5.9 Agent BDI Graph for "Update" Desire 

Detailed Simulation Walkthrough 

Figure 5.10 shows the message format and flow of the scenario, where the agent 

receives a notification that there is a new software version available. This triggers 

a series of actions by the agent to pursue its desired state of “up-to-date” software. 

The agent leverages the plan obtained through the BDI knowledge graph to select 

an appropriate action based on each percept and updated belief of the state of the 

environment. Each step will be described further with screenshots as we walk 

through the implementation in the remainder of this section.  
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Figure 5.10 Patching Agent Sequence Diagram 

First, a notification is sent to the agent on the device, which is passed to the agent 

and received as a percept as follows. (a) The agent receives a percept in the form of 

an update notification message which (b) triggers the belief revision transition to 

update the agent’s belief that the device version is out-of-date, and an updated 

version is available. The cypher query request and response for the belief revision 

are shown below: 

Query: 

MATCH (:Percept { Value: "UpdateNotification"} ) -

[:CREATESBELIEF]-> ( beliefs ) RETURN beliefs 

 

Response: 

╒══════════════════════════════════════════╕ 

│"beliefs"                                 │ 

╞══════════════════════════════════════════╡ 

│{"Value":"OutOfDate"}                     │ 

├──────────────────────────────────────────┤ 

│{"Ver":"string","Value":"UpdateAvailable"}│ 

└──────────────────────────────────────────┘ 
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Figure 5.11 (a) update notification received as percept   

 

Figure 5.12 (b) new belief revision 
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Next, the reasoner transition is triggered with the input of the new belief and current 

desire and references to the plans (intentions) stored in the agent’s memory. Finally, 

an action is selected using a cypher query based on the plan and current belief, as 

shown below: 

Plan: 

╒════════════════════╤══════════════════════╤══════════════════════╕ 

│"targetbelief"      │"selectedActions"     │"preBeliefs"          │ 

╞════════════════════╪══════════════════════╪══════════════════════╡ 

│{"Value":"UpToDate"}│{"Ver":"string","Value│{"Ver":"string","Value│ 

│                    │":"InstallUpdate"}    │":"UpdateDownloaded"} │ 

├────────────────────┼──────────────────────┼──────────────────────┤ 

│{"Value":"UpToDate"}│{"Ver":"string","Value│{"Ver":"string","Value│ 

│                    │":"DownloadUpdate"}   │":"UpdateAvailable"}  │ 

└────────────────────┴──────────────────────┴──────────────────────┘ 

 

Cypher Query for Action Selection: 

MATCH (:Desire { Value: "Update"} ) -[:OBJECTIVE]-

> ( targetbelief )  

MATCH ( targetbelief ) -[:ACHIEVEDBY]-> (selectedAction)  

MATCH ( preBeliefs:Belief { Value: "UpdateAvailable"} ) -

[:NEXTACTION]-> (selectedAction)  

RETURN selectedAction 

 

Response: 

╒═════════════════════════════════════════╕ 

│"selectedAction"                         │ 

╞═════════════════════════════════════════╡ 

│{"Ver":"string","Value":"DownloadUpdate"}│ 

└─────────────────────────────────────────┘ 

 

Through the belief-action pairs retrieved through the query, (c) the agent is able to 

select an action of “DownloadUpdate(2.1)” which is (d) performed through a 

request to the host device. Once the next round begins, the agent’s request is sent 

to the host device, which then proceeds to (e) download the update from the 

internet. Once downloaded, the device (f) sends a successful action response to the 

agent to inform that the download has been completed.  
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Figure 5.13 (c) action is selected and performed by the agent       

 

Figure 5.14 (d) request is sent to the environment round results queue 
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Figure 5.15 (e) device downloads the update 

 

Figure 5.16 (f) action response is sent to the agent 
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The agent receives the response as a new percept and performs its next belief 

revision accordingly. With the new (g) belief that the update has been downloaded, 

(h) the agent responds with a subsequent action to install the update, sent again as 

a request to the host device. Once receiving the request, the host device proceeds to 

install the update and (i) sends a successful response to the agent. (j) The agent’s 

belief is now updated to reflect that the most current version is installed.  

 

    

          Figure 5.17 (g) belief revision for downloaded update  
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Figure 5.18 (h) the action selected to install an update 

 

Figure 5.19 (i) action response to the agent that update is installed 
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Figure 5.20 (j) belief revision that software is up to date 

Finally, the new belief and active desire are input into the reasoner transition and 

(k) confirms that its desired state has now been achieved. With no further actions 

required in pursuit of this desire, the agent can send an update back to the 

coordinator to update the status of the mission. This data will be tracked within the 

system monitor for awareness of the security state of the device. 
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Figure 5.21 (k) "Update" desire has been achieved 

As the agent is aware that it has now achieved its current goal and no other actions 

are required at this time, if a new percept is received to indicate that a new update 

is available, the process will begin again to continue to maintain the most recent 

version available. While this demonstration may appear simplistic, it provides a 

simple example demonstrating the deliberation of just one of many possible agent 

desires. An agent can maintain multiple desires simultaneously and prioritize the 

appropriate actions according to its ongoing belief set. 

5.4.2 Use Case 2: Access Management 

The following use case to be demonstrated is an access control scenario. Access 

management is one of the core foundations of information security to restrict access 

to systems and data based on authentication and authorization procedures. 

Furthermore, with agents deployed throughout the network with access to 

contextual environment data, access control capabilities provide many 

opportunities for the enforcement of policies within the multi-agent system. 
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Access management is central to many functions within security, and our BDI 

graph contains many relationships to access-related capabilities. It is possible to 

code access management policies further into the agent BDI graph by creating 

additional relationships as a prerequisite to other agent actions. This illustrates the 

effectiveness of the graph database as a platform for modeling complex 

relationships between actions. Depending on the device capabilities available on 

each device, agents can perform queries to traverse the graph to find the optimal 

plan of action based on available resources and security requirements for a 

particular environment. The graph is also modular to allow additional functions to 

be added based on evolving capabilities. Figure 5.22 shows the basic BDI graph for 

access management functions used within our implementation. The access 

management subset of the graph is related to other functions, such as input 

validation.  

 

Figure 5.22 Access Management BDI Graph 

Access Management can be performed by a device agent as defined below. 

Role: “deviceAgent” 
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ActionSet: AccessControl(), Authenticate(), 

AllowRequest(), BlockRequest() 

Beliefs: “” 

Desires: “AccessManagement” 

Intentions: “” 

 

While IoT devices may have different capabilities available for access control, an 

agent can leverage the knowledge graph to determine the best course of action based 

on the available resources, shared knowledge, and collaboration with other agents 

or compensating controls. As each agent hosted on a device will evaluate all 

requests to and from the device, the agent can act as a Policy Enforcement Point 

(PEP) to enforce policy decisions. Policy decisions are made at the Policy Decision 

Point (PDP), which can be defined by the controller or coordinated through a 

mission in response to an incident or compensating control. Alternatively, the PDP 

can be expanded through additional security services, which could be added in 

future works.  

In this scenario, we will demonstrate how an agent can enforce access control 

policies based on the available device capabilities. We will show two examples of 

successful and unsuccessful access requests. 

Successful Login Request 

This scenario will show a simple example of a successful access request to illustrate 

the basic access control capabilities where DeviceA sends a login request to 

DeviceB. As shown in Figure 5.23, DeviceA sends a login request to DeviceB, 

which processes the request and passes it to the agent hosted on the device. The 

agent proceeds with its BDI reasoning first to authenticate the request, perform 

access control, and finally provide an access control decision to successfully allow 

the request. 
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Figure 5.23 Agent Processing Login Request 

Denied Command Execution Request 

In this scenario, a potentially compromised DeviceA has made a suspicious 

command execution request to DeviceB on the network. As illustrated in Figure 

5.24, DeviceA has obtained a legitimate token according to the previous scenario 

and has successfully authenticated to DeviceB. However, the device is now 

attempting to send a command to download a malicious file and is subsequently 

denied permission to execute the request as per the access control policy. The agent 

subsequently responds with a deny message back to the host device, which proceeds 

to deny the requested action. 

 

Figure 5.24 Denied Command Execution Request 

While we are showing this as a standalone scenario, access control policies can be 

adapted in response to situational awareness of security states within the network 

and can be used as a response to a detected threat. 
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5.5  Chapter Summary 

The results of our implementation described in this chapter demonstrate our model's 

feasibility for intelligent agent defence capabilities leveraging BDI agents and 

knowledge graphs. Using our knowledge graphs to model the relationships across 

environment artifacts and their properties and linking to security domain knowledge 

provides a rich contextual dataset that can be leveraged by BDI agents to maintain 

a strong level of situational awareness about the environment state and perform 

intelligent actions and reasoning for autonomous cyber defence capabilities. 

The hierarchical agent model has been designed to limit unnecessary 

communications between agents while allowing autonomous agent behavior with 

distributed control and knowledge. Leveraging reusable agent templates and control 

hierarchies, we can limit unnecessary agent calls to the neo4j graph by retaining 

appropriate plans within agent memory after they are deployed. Through this 

design, the control and coordination agents will perform most of the Neo4j requests 

to the environment and BDI graphs. In contrast, the majority of the decisions and 

queries would take place during the initialization of the system when the defence 

policy is being created and missions are coordinated. 

Through the demonstration of the current implementation in this chapter, we have 

shown a smart home environment with 16 devices and 8 security requirements to 

be enforced by the multi-agent system. While the simulation environment contains 

synthetic devices and data, our implementation can provide initial results to infer 

how the model would scale to perform in a real-world scenario. 

While Chapters 6 and 7 will provide a more in-depth evaluation of our model and 

implementation in line with the potential implications and future works, we will 

summarize some initial limitations and assumptions with the implementation 

described in this chapter. Our implementation proves the initial design and 

feasibility of the architecture, and future work would be to implement with real data 

and devices to evaluate and expand the model for real-life scenarios and events. 

Due to the simulated environment, device functions have been simplified and 
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limited to basic capabilities for demonstration. Hard coded functions and actions 

have been modeled, which would be more complex in a real-life environment.  

Another significant assumption was that device profiles are available for all devices 

according to the NIST labeling framework, which has been heavily referenced as a 

foundation of the BDI graphs. While the labeling system is not yet prominent in the 

industry as a standard, our model demonstrates a useful use case for leveraging this 

framework for automation. While this limitation had been strongly considered 

before making the design choice, several workarounds for a real-world 

implementation have been considered and will be discussed further in the following 

chapter, along with other considerations for the potential of the model.  
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6 Evaluation and Results 

To evaluate the implemented design, this chapter provides an experimental 

evaluation to demonstrate operational and defence capability performance of the 

implemented system. We then proceed to evaluate the design against the IoT design 

challenges and security requirements identified earlier in this work. Lastly, 

additional considerations are discussed in support of implementation 

recommendations for future works. 

6.1  Experiment Design 

A set of experiments have been conducted to evaluate the performance of the 

proposed architecture in response to an active botnet attack under different 

environment scenarios with varying device capabilities. Different environment 

states can exist depending on which capabilities are enabled on the devices and 

different actions are available to the agents. We proceed to analyze the results to 

evaluate the operational performance and defence capability performance across 

each scenario: 

• Operational Performance – Results evaluating the average response time and 

memory utilization for the BDI agents. 

• Defence Capability Performance – Results evaluating the performance of 

classification of attacks (True Positive Rate, True Negative Rate, False Positive 

Rate, False Negative Rate, Error Rate, Recall, Precision, F1-Score). 

 

The botnet attack follows a four-stage process targeting the network gateway, as 

illustrated in Figure 6.1. The attacker first attempts initial access using default 

credentials on a public-facing port. Upon successful login, a command is sent to 

download and execute the malicious payload on the target device. Once executed, 

the device runs a service to listen for commands from the command and control 

server. Once a command is received, the device resources are used to execute the 

botnet commands sending malicious traffic to another external target.  



 

110 

 

 

Figure 6.1 Botnet Attack Stages 

Our experiment runs through 256 scenarios implementing different combinations 

of device capabilities enabled within the environment. Based on the device 

capabilities that are utilized within the above attack scenario from an exploitation 

or protection perspective, we have chosen a set of relevant capabilities for our 

experiment, as described in Table 6.1.  

Table 6.1 Capability Descriptions 

Type Description Capabilities 

Base 

Capabilities 

Base access 

control-related 

capabilities  

DC4.1 ability to disable interfaces 

DC4.2 ability to restrict access to interfaces 

DC4.4 ability to authenticate 

Secure 

Configurati

on 

Proactive 

controls  

DC4.5 secure auth (no default passwords) 

DC2.3 secure default settings 

Enhanced 

Agent 

Capabilities 

Active agent 

capabilities to 

respond to 

vulnerabilities 

and threats 

AC1 Update Port Settings - review open 

ports and disable unnecessary ones 

AC2 Endpoint Controls - block weird access 

and execution 

AC3 Network Controls - block weird traffic 

  

To demonstrate the impact of different device capabilities, the following four sets 

of scenarios were evaluated, each with different combinations of device capabilities 

enabled within the environment, as shown in Table 6.2. Set A includes 

combinations of only base device capabilities for access management. Set B 

simulates an environment with additional proactive controls for secure default 

settings, including open ports and secure authentication practices such as changing 

default passwords. Next, Set C introduces three other capabilities for enhanced 
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agent actions for detection and response, which can make use of the previous 

capabilities. Finally, Set D iterates through the entire set of remaining 

combinations. The total number of scenarios run in our experiment is 256, for each 

combination of the 8 capabilities relevant to this attack scenario (28).  

Table 6.2 Overview of Experiment Scenarios 

Set # of 

Scenarios 

Base DCs 

[4.1, 4.2, 4.4] 

Configuration 

DCs 

[4.5, 2.3] 

Enhanced ACs 

[AC1, AC2, 

AC3] 

Set A 8 X   

Set B 24 X X  

Set C 56 X  X 

Set D 168 X X X 

TOTAL 256    

 

The simulation environment has been executed on two devices: a Linux virtual 

machine hosting the Neo4j graph database, and a Windows laptop running the CPN 

Tools application and simulation engine. The technical specifications of the 

simulation environment are shown below: 

Table 6.3 Specifications of Devices Used in Simulation Experiment 

Device OS Processor RAM Application Info 

Neo4j 

Server – 

Virtual 

Machine 

Burmilla 

4.14.248  

AMD Ryzen 9 

3900X, 4267 

Mhz, 12-Core ( 

1 allocated) 

4GB Neo4j Enterprise 4.4.4 

• Database size: 1.02 

MiB 

• Nodes: 190 

• Properties: 125 

• Relationships: 175 

Laptop Windows 

10.0.19044 

AMD Ryzen 9 

5900HS Radeon 

Graphics, 3301 

Mhz, 8 Cores, 16 

logical 

processors 

16GB CPN Tools 4.0.1 

 

 

  



 

112 

 

6.2  Operational Performance Evaluation 

This section evaluates the operational performance of our simulation based on 

memory utilization and the average response time of agents. The following results 

have been generated from 179 measured agent queries that had been executed for 

access control and authentication capabilities within the simulations of the botnet 

scenario described in the previous section.  

6.2.1 Average Response Time  

As agent behaviors are directed through the BDI knowledge graph, Neo4j cypher 

queries are performed to retrieve the appropriate rational inferences and 

corresponding actions. We evaluate the performance of the average query time for 

agent plan selection, belief revision, and action selection, shown in Table 6.4 and 

illustrated in  Figure 6.2 and Figure 6.3 below, from a sample of request types. 

Table 6.4 Response Time Thresholds (ms) 

Request Type Avg Min Max Count 

Plan Selection 2.8 0.96 5.67 37 

Belief Revision 1.7 0.7 4.33 71 

Action Selection 1.2 0.84 3 71 

 

 

Figure 6.2 Average Time Per Query (ms) 
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Figure 6.3 Query Time Per Request Type (ms) 

While plan selection has the highest average query time of 2.8 ms, our 

implementation has been designed to optimize the performance by limiting the 

number of plan selection queries to the agent initialization stage. With this design, 

plan selection will only need to be performed when the agent is initialized or if there 

are any updates to the capabilities or desires. The graph for the plan is stored within 

the agent’s memory going forward, so subsequent decisions will only need to be 

performed through local queries for belief revision or action selection within this 

graph.  

Agent actions leverage the device resources and are executed through messages. 

Due to this, the agent response time is very lightweight at 0.25ms to receive and 

send messages from the host device. After the command is sent to the device to 

execute, the operational performance of the implementation of specific actions is 

highly variable, depending on the implementation of external functions and device 

resources. However, this is out of the scope of the direct agent response time 

measurement.  

The Average Response Time (ART) in Equation ( 2) [95] evaluates the performance 

of a BDI agent’s average response time from when an event occurs to when the 

agent’s response is completed. The below formula is used to calculate the ART, 
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where S1 is the average detection time for the agent’s beliefs are revised based on 

a received percept, S2 is the average deliberation time where an intention is created 

for a selected action, and S3 is the average time needed to execute the action. WT1, 

WT2, and WT3 represent the average waiting times for the detection, deliberation, 

and intention queues, respectively.  

𝐴𝑅𝑇 =  𝑊𝑇﷩1﷩ +  𝑆﷩1﷩ +  𝑊𝑇﷩2﷩ +  𝑆﷩2﷩ +

  𝑊𝑇﷩3﷩ +  𝑆﷩3﷩ 

( 2 ) 

As described above, the values of S1, and S2 have been measured at 1.7ms and 

1.2ms, respectively. S3 and WT1 are each 0.25ms based on the average time to 

receive an event message and execute an action. While the current implementation 

manages the event queue sequentially through CPN tools, the waiting times W2 and 

W3 are 0ms as the agent does not currently receive enough messages to accumulate 

into a queue.  

We have calculated the agent ART in our simulation as 3.9ms, as shown in Table 

6.5 below. 

Table 6.5 Average Response Time for Agents (ms) 

S1 S2 S3 WT1 WT2 WT3 ART 

1.7 1.2 0.25 0.25 0 0 3.9ms 

 

6.2.2 Memory Utilization 

Measurements of memory size for agents have been captured through our 

experiments to show the impact of agent resources on an IoT device. The agent 

design has been optimized to reduce plan selection time and network overhead by 

storing the agent plans in memory after initialization. The average size of an agent 

independent of its plans is 158 bytes. Memory requirements increase based on the 

number of plans, as shown in Figure 6.4, where the average plan size is 153 bytes. 

An agent with all plans currently in the 190-node database reaches a maximum 

memory size of 1.21KB. While an agent will likely only have 0-2 plans active at a 

given time according to its active desires, this maintains a fairly low memory 
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utilization rate of 311 bytes for an agent with one active plan. Figure 6.5 shows the 

average expected memory size by a number of plans. 

 

Figure 6.4 Memory Utilization of Agent and Plans 

 

Figure 6.5 Memory Size By Number of Plans 

6.2.3 Baseline Comparison 

The memory utilization results can be compared to a baseline of memory 

specifications to understand the resource impact expected on a set of IoT devices 

that can be found in a smart home. The devices identified in Table 6.6 range from 
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256 MB to 4 GB of memory, with the exception of the Raspberry Pi Pico at the 

lowest with 264 KB, and Raspberry Pi 4B at the highest with 8 GB of memory. The 

maximum current memory size of 1.21 KB would operate on less than 0.0005% of 

a device with 256 MB memory and less than 0.5% on the 264KB Pico.  

Table 6.6 Memory Specifications for Sample IoT Devices 

Device Model Memory 

Google ChromeCast 

[96] 

1 512 MB 

2 512 MB 

Raspberry Pi [97] B 256 MB/512MB 

A 256 MB 

B+/A+ 512 MB 

2 B 1 GB 

Zero/W/WH/2W 512 MB 

3 B/B+ 1 GB 

3 A+ 512 MB 

4 B 1/2/4/8 GB 

4 400 4 GB 

Pico/W 264 KB 

Amazon Echo Plus [98] 2nd Gen 1 GB 

Ubiquiti Dream 

Machine Router [99] 

UDM 2 GB DDR 

RAM /  

16GB flash 

Asus RT Router [100] RT-AC88U 516 MB RAM /  

128 MB flash 

 

These results indicate a very low expected resource impact to memory utilization 

on many IoT devices that can be found within a smart home network. Meanwhile, 

for lower capacity devices such as sensors and lightbulbs, coverage can be 

distributed accordingly to devices with higher capabilities as needed.  

6.3  Defence Capability Evaluation 

This section evaluates the performance of each scenario in protecting against the 

botnet attack from a security perspective. We analyze how different capabilities 

impact susceptibility to attack scenarios and highlight how agents can create plans 

to introduce proactive or reactive controls to improve security posture.  
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6.3.1 Evaluation Metrics 

Confusion matrix performance measurements are used to evaluate the results of 

each scenario’s ability to protect against the botnet attack. These metrics are 

commonly used in machine learning and cybersecurity domains to measure 

classifier performance of detections/predictions and their accuracy. The confusion 

matrix classifications are defined as follows [101]: True Positive (TP) is an instance 

that is positive and is classified as positive, while False Positive (FP) is a negative 

instance that is incorrectly classified as positive. True Negative (TN) is a negative 

instance that is correctly classified as negative, while False Negative (FN) is a 

positive instance that is incorrectly classified as negative. The True Positive Rate 

(TPR) shows how many detections were actual attacks, while the False Positive 

Rate (FPR) indicates detections that were not. Further, the False Negative Rate 

(FNR) is significant to show the attacks that were not detected, and True Negative 

Rate (TNR) indicates benign activity that was accurately categorized. The formulas 

for each are defined below in Equations ( 3) through ( 6) [101]: 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 ( 3 ) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =  
𝐹𝑃

𝑇𝑁 +  𝐹𝑃
 ( 4 ) 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 ( 5 ) 

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 ( 6 ) 

 

Next, we calculate Recall and Precision. Recall indicates the percentage of total 

positive rates that were predicted as positive. Precision indicates the percentage of 

true positive rates out of the total positive predicted values. The formulas for Recall 

and Precision are defined below [101]: 
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𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 ( 7 ) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 ( 8 ) 

 

Finally, the F1 Score can be calculated based on Precision and Recall. F1 Score is 

used when FN and FP are most important as evaluation criteria, as is the case in 

most security scenarios [101]: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 
2 ∗ (𝑃 ∗ 𝑅)

𝑃 + 𝑅
 ( 9 ) 

 

Further, we also consider the maximum attack stage achieved, as the risk is more 

significant as the attack is allowed to progress to advanced stages.  

 

6.3.2 Evaluation Results Per Scenario 

We proceed to generate the confusion metrics for each set based on the results. The 

table below shows the summary of each set and is further illustrated per scenario in 

the subsequent figure.  

Table 6.7 Confusion Metrics Per Set 

Set FNR TNR TPR FPR Recall Precision  F1 

Score 

AVG 

Attack 

Stage 

Set A 100% 0% 0% 0% 0% 0% 0% 100% 

Set B 0% 100% 100% 0% 100% 100% 100% 0% 

Set C 25% 75% 93% 0% 82% 93% 86% 25% 

Set D 0% 100% 100% 0% 100% 100% 100% 0% 
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Figure 6.6 Confusion Metrics Per Set 

 

Figure 6.7 Maximum Attack Stage Per Set 

We can see that the capabilities tested within Set A are insufficient for protection 

against the botnet attack, as expected, due to the nature of the attack making use of 

default passwords that will bypass authentication and authorization mechanisms. 

The false negative rate is 100% as the attack had succeeded in all scenarios, 

resulting in a maximum attack stage of 100 (full impact).  

Clearly, additional capabilities will be required to better protect the environment. 

We introduce two additional capabilities (DC 4.5 and 2.3) in Set B, which represent 

proactive controls. Secure default configurations ensure that unnecessary interfaces 

are disabled and secure passwords are enforced by not allowing default credentials 
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to be used. We can see the strong impact of these capabilities clearly, with an F1-

Score of 100%, and no attack stages are achieved.  

 

Figure 6.8 Results for Set A 

 

Figure 6.9 Results for Set B 

While the capabilities introduced in Set B show such a strong success rate, we chose 

to remove them from the following set of scenarios to better observe the impact of 

the next set of capabilities. Set C investigates another approach, making use of 

responsive agent controls (AC1, AC2, AC3), which support real-time monitoring 

and response to detected security vulnerabilities and threats. We can see the most 

interesting results from this set, where there is a more significant variance in F1-

Scores, and attack stages achieved depending on the different combinations of 

enabled capabilities. From the 20 out of 56 attacks that were successful, we can see 
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a distribution of different attack stages achieved, where only 4 had achieved full 

impact. The remaining 16 attempts had bypassed the initial attack stages. However, 

it had been blocked after the initial impact or command and control. We will 

provide additional analysis of these findings by capability in the following section.   

 

Figure 6.10 Results for Set C 

 

Figure 6.11 Results for Set D 

Finally, Set D introduced the remaining combinations of combinations between Set 

B and Set C. As shown, the proactive controls from Set B prove to be effective in 

compensating for the limitations of the Set B capabilities and have once again 

achieved a 100% F1-Score with no successful attacks. 
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6.3.3 Evaluation Results per Capability 

While the previous section provided a staged approach to evaluation per set, we 

now proceed with a statistical analysis of the individual impact per capability. As 

we observed from Set B, there are some capabilities that have been able to perform 

100% successfully independently of other capabilities being enabled. Figure 6.12 

illustrates a view of the enabled capabilities and corresponding F1-Score for each 

scenario. 

 

Figure 6.12 F1-Score and Capabilities per Scenario 

The summarized results per capability are shown in Table 6.8 and illustrated in 

Figure 6.13, where it is clear that DC4.5 and DC2.3 have the highest independent 

success rates. Other capabilities are dependent on others to support effective 

protective controls.  

Table 6.8 Results Per Capability 

 FNR TNR TPR FPR Max 

Attack 

Stage 

Recall Precision F1-

Score 

DC4.1 5% 95% 97% 0% 100% 95% 100% 97% 

DC4.2 8% 92% 95% 0% 100% 92% 100% 96% 

DC4.4 8% 92% 95% 0% 100% 92% 100% 96% 

DC4.5 0% 100% 100% 0% 0% 100% 100% 100% 

DC2.3 0% 100% 100% 0% 0% 100% 100% 100% 

AC1 6% 94% 97% 0% 25% 94% 100% 97% 

AC2 1% 99% 100% 0% 25% 99% 100% 100% 

AC3 1% 93% 100% 0% 75% 99% 100% 100% 
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Figure 6.13 Confusion Metrics by Capability 

Despite the lower scores for ACs 1-3, these capabilities provide effective protection 

against advanced attack phases, as shown in Figure 6.14, where many of the 

scenarios with these capabilities enabled did not progress further than Initial Access 

or CNC.  

 

Figure 6.14 Maximum Attack Stage Per Capability 
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Finally, an analysis of results by a number of enabled capabilities shows a 

correlation between the number of capabilities and performance. This is aligned 

with the probability distribution of capability performance rates evaluated earlier in 

this section.  

 

Figure 6.15 Results by Number of Capabilities 

 

6.4  Evaluation of Design Requirements 

To evaluate our model, we will proceed to reflect on how its design effectively 

addresses the requirements outlined in Chapter 2 to support (1) the architectural 

challenges for IoT security and (2) the security requirements for smart home 

environments. 

6.4.1 Addressing Design Challenges 

The proposed architecture has been developed with a vital consideration for the 

design challenges for IoT systems outlined in Chapter 2: resource limitations, 

interoperability, reliability and error handling, data volume and sensitivity, and ease 

of use. We describe each of the challenges below in relation to our solution: 

• Resource Limitations: The multi-agent architecture allows for adaptive 

hierarchies according to the environment and resource capabilities. Controller 

and coordinator agents can be generated as needed for a centralized, distributed, 

or partially distributed model according to the requirements of the system. 

While some IoT devices on the network may have limited resources with 
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limited ability to host agent capabilities, these limitations would be known to 

the system, and an appropriate control structure would be deployed as needed. 

Further, these limitations would be known by the control agent according to the 

environment graph, where implications to the situational awareness and security 

capabilities would be inferred to identify appropriate compensating controls. 

• Interoperability: The agent model is device agnostic, as the majority of the 

capabilities operate on a higher layer with a common language for agents. We 

operate with an assumption of a framework that device vendors can integrate 

the agent technology through middleware on the device. For devices that do not 

host an agent, agents on other devices or network devices can perform 

compensating actions. 

• Reliability: The system monitor maintains a view of the health of the system 

from the control level and can respond accordingly. The highly flexible 

distributed architecture can adapt to resource limitations or outages and deploy 

agents optimally across the network as available.  

• Data Volume: The agent hierarchy allows for effective management of data by 

maintaining a semi-distributed knowledge base where the controller and 

coordinators have a full view of the network, and device-level agents with lower 

capabilities are responsible only for a limited portion of the network according 

to their capacity. This model can be scalable and adapt to different deployments 

as necessary. 

• Ease of Use: The autonomous and context-driven design of our framework 

reduces the level of effort required from the user to maintain the security of their 

network, as agents can adapt to different situations and prepare and respond to 

security threats largely autonomously while balancing the availability of 

services to the user. While there may be cases where user notifications and/or 

intervention may be required, the communication mechanism can also be 

designed for ease of use. 
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6.4.2 Addressing Security Requirements 

Our framework provides visibility and coverage of security requirements through 

modeling the environment, cybersecurity domain knowledge, and BDI reasoning 

into knowledge graphs. Through this method, we establish security policies as code 

into agent behaviours, which are subsequently embedded into the environment 

genome as social agents are deployed across the network. The requirements are 

identified as BDI agent desires with relationships to appropriate belief states and 

actions to establish contextual plans. The security requirements are enforced in a 

scalable, pervasive, autonomous and context-based way by the multi-agent system 

BDI architecture.  

As outlined in Chapter 2, the key security requirements for smart home IoT systems 

are confidentiality, integrity, availability, authentication, and privacy. While the 

framework is scalable to address any security requirement that can be input into the 

knowledge graph, we leveraged the Baseline Security Requirements for IoT 

Devices defined by NIST [26] to identify actionable security requirements to 

achieve these objectives. Each of these requirements is then mapped to capabilities 

that are related in the graph to the environment and assets for a view of coverage. 

In combination with the cybersecurity domain knowledge base, we can further 

model each of these requirements and capabilities in relation to the environmental 

context.  

While this model is highly data-driven and dependent on a data model and data 

inputs through, there are several emerging opportunities with standardized data 

mapping initiatives that support this architecture: 

• The NIST cybersecurity labeling framework, while primarily intended for 

user informational purposes, introduces a common standard for labeling 

consumer IoT device capabilities which can be further applied to a codified data 

model. This labeling standard applied at scale to consumer IoT devices will 

provide standard data input for device capabilities. It can be easily integrated 

into the environment graph to model each device and its corresponding 

relationships for situational awareness and available actions. Further, the 
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security requirements are easily correlated with the device capabilities to 

understand the extent of coverage and inform the need for compensating 

controls. While our model remains flexible to adapt to a variety of frameworks, 

this is a promising direction that would accelerate potential adoption and 

effectiveness. 

• Cybersecurity Domain Knowledge databases, ontologies, and libraries have 

been an emerging focus within the industry as defending organizations aim to 

better understand the implications of vulnerabilities, assessment of risks, attack 

tactics and techniques, and defence techniques. In particular, the knowledge 

frameworks developed by MITRE provide comprehensive cybersecurity 

domain knowledge bases which are prominently referenced across the industry.  

The above data mapping initiatives provide a strong foundation for the required 

agent reference knowledge and environment modeling. Furthermore, within the 

multi-agent architecture, the control hierarchy allows for visibility and coordinated 

actions to be enforced according to the defined security requirements and generated 

policies.  

 

6.5  Additional Considerations for Implementation 

6.5.1 Securing the Multi-Agent System 

While we have presented a security solution based on multi-agent systems, it is 

essential to establish a secure design for implementing the agents themselves as 

potential threat vectors. As any system has the potential to introduce new security 

vulnerabilities, it is important to incorporate security during the design phase. 

Although specific implementation details have been so far outside of the scope of 

this work, we will identify some potential threats to multi-agent systems and discuss 

design considerations for secure implementation.  

Threats to Multi-Agent Systems 

Hedin and Moradian [102] identify security threats to multi-agent systems and 

present a model for secure design. The authors provide a list of potential threats at 
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the system level and at the agent level, as shown in Table 6.9 below, while 

highlighting the areas of agent identification and authentication, secure 

communication, and preventing unauthorized access to agents as key requirements 

for a secure multi-agent system.  

Table 6.9 Threats to Multi-Agent Systems [102] 

Threats at System Level Threats at Agent Level 

• Threats from mobile agents to hosts 

• Threats from the Internet: DoS, 

damage, event-triggered, 

compound, or user attacks 

• Altering the event logging system 

of a MAS 

• Altering the agent code, data, and 

configuration 

• Fake agent 

• Fake service 

• Delegation of services 

• Insecure communication channels 

• Insecure agent delegation 

• Lack of accountabilities 

• Agent authorization 

• Reputation attack 

• Threats from hosts to agents 

• Threats from agents to agents 

• Agent authentication 

• Verification of information that 

agents collect from the internet 

• Threats from users to agents  

• Threats to communication among 

agents: identification and 

authentication, unauthorized access 

to agents, ontology attack, active 

probing attack, message injection, 

modification of agents’ interaction 

by altering the transferring 

information, fake message 

 

Based on these key requirements, the authors propose an agent ID code and 

associated permissions to be included in message headers for secure 

communication, agent identification and authentication. Further, the concept of a 

Gate Agent is introduced to handle communications between the host system and 

components to protect the system level.  

With our specific multi-agent BDI architecture, we anticipate that key targets for 

security threats would fall on the controller or coordinator agents, the graph 

database, or within agents themselves. New devices joining the network will require 

special consideration and secure registration processes. Within agents, threats to 

data leakage or manipulation of BDI data, compromised agents, or potential 
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disruption of services are also potential concerns. The following section presents 

secure design considerations to address these challenges. 

Secure Design Considerations 

While the above model presents security solutions to some aspects of our threat 

model, we expand on further secure design considerations when designing the 

multi-agent system implementation. There have been some existing works on 

secure design solutions for mobile agents, with a particular interest in protecting 

the confidentiality and integrity of data. For example, Sabir et al. propose a 

blockchain-based solution to secure migration of smart home mobile agents. To 

ensure agent integrity, a security agent is responsible for managing agent migrations 

by registering and validating hashes of transactions stored on the Ethereum 

blockchain [103].  

Securing agents follows the same principles as any piece of software, where the 

host systems and overall threat model must be considered. Depending on the 

available resources of the host devices, implementation models can vary. However, 

we list the below considerations: 

• Host System Hardening and Security Controls: As agents can be deployed 

to and interact with various devices within the network, the security of the host 

systems is covered by our proposed model and can be correlated with potential 

implications for the multi-agent system. 

• Self-Healing System Capabilities: While appropriate security components for 

other aspects of the network are modeled within the knowledge graphs, our 

framework can also model the security of the multi-agent system as another 

layer of this. The system monitor provides a holistic view of the security states 

and relevant data of the system to maintain situational awareness of the system's 

health, including security telemetry of the agents. Based on this, security 

requirements, policies, capabilities and defensive actions for the multi-agent 

system can be generated and actioned in a similar way. The self-awareness and 

self-healing properties of the system apply to both the security of the IoT 

devices themselves and the supporting multi-agent system.  
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• Secure Communication: Communications between agents and between agents 

and devices can introduce a key vector for interception or tampering. Data 

security and encryption mechanisms should be in place to preserve 

confidentiality and integrity. The process for registering a new device joining 

the network must be developed with strong security considerations, as this is 

where the devices will be registered and considered for future communications 

with the system. Secure key management schemes can be used to provide 

private keys and identifiers to devices and agents to support authentication and 

identification. Depending on the capabilities of the host device, there may be 

varying capabilities for encryption and other security protocols. Devices with 

limited security capabilities should be treated with compensating controls and 

perhaps lower trust levels.  

• Agent Authentication & Identification: Aligned to the join process, agents 

can be given a unique identifier and private key. This can be used for secure 

communications and access control decisions. 

• Access Control: Access to data and systems should be provisioned with the 

principle of least privilege. Access control mechanisms should be applied to 

prevent unauthorized access to agents, as well as to limit access of agents 

themselves.  

• Logging and Auditing: Agent actions should be logged for auditing purposes 

and can also be monitored for suspicious or malicious behaviour. Further, as the 

system design is intended to be largely autonomous, logs that can provide 

artifacts to explain decisions made by the agents will be valuable for a 

trustworthy and auditable system [104].  

• Trust and Reputation of Agents: Trust and Reputation Management (TRM) 

systems for mobile agent systems have been of particular interest in the 

literature. For example, Geetha and Jayakumar [105] propose a TRM model for 

mobile agent security through trust-based secure routing tables and 

cryptographic algorithms to preserve the integrity and confidentiality of data 

and secure the execution of agents. For example, Xu et al. [106] present a 

hardware-based autonomic agent trust model for IoT systems where a 
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Trustworthy Agent Execution Chip (TAEC) is installed on each sensor node to 

provide a trusted execution environment for agents.   

6.5.2 Potential Economic Motivations for Adopting the Model 

We can define an “accredited,” or “compliant” device vendor as one which supports 

the functionality of our framework and has been validated as a participant. 

Accredited vendor products can be considered to have a higher level of trust as they 

have been validated to comply with a set of industry accepted security standards. 

However, as vulnerabilities remain an eternal possibility, the system maintains a 

cautious skepticism and ensures that layers of controls are always in effect. This 

model ensures that participants maintain a baseline level of security configuration, 

as well as a foundation for effective monitoring, analysis, and remediation of 

potential vulnerabilities or incidents. Smart home device vendors can opt into 

security accreditation with the intention of proving and enriching security 

capabilities to maintain customer trust. A coalition of smart home vendors and 

device owners are provided the platform for the security assurance of their homes 

and products. Given the economic factors and overall complications with enforcing 

a single industry standard, it is assumed that not all vendors will adopt accreditation 

for various reasons, including costs and/or inability to support functionality going 

forward. Our framework accounts for the inevitable diversion from the standard 

and has been developed with this in mind. These vendor products can still maintain 

some level of assurance if they exist in a smart home environment with other 

accredited vendors to offset the risk. In this case, the incentives for smaller vendors 

may not be enough to adapt the framework if they are able to continue to provide 

low-cost products and services with minimal security. The framework enables 

consumers to make their own informed product choices for the security of their 

homes while maintaining some resilience if they introduce any non-compliant 

products. While the consumer IoT industry is also moving towards greater 

interoperability, this framework allows for a common interface across multi-vendor 

platforms. While we have developed this model with the purpose of security 

services, it is also possible that the foundation could be extended to other areas, 
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such as cross-vendor coordination for cooperative smart home services. However, 

this is out of the scope of this work at this time.  

6.6  Chapter Summary 

This chapter has provided an evaluation and experimental results of our 

implemented architecture. As highlighted in earlier chapters, two major concerns 

for IoT-based solutions are availability and resource utilization. Our experimental 

results show that an agent's average response time is 3.9 ms with an average 

memory utilization of 311 bytes. The fast response time and low memory utilization 

prove to be good performance metrics that have a relatively low impact on the 

resource constraints of an IoT device. Further, the defence capability results have 

shown that the strategic application of compensating controls strategized by agents' 

situational awareness can effectively result in a better understanding of security 

risks and the implementation of defence mechanisms through layered controls and 

coordination of agents.  

Our architecture has been evaluated against the design requirements for IoT 

security devices defined in earlier chapters, providing an effective solution for 

resource limitations, interoperability and reliability requirements, high data 

volumes, and ease of use as is necessary for an effective security solution to exist 

within an IoT and smart home environment. Security requirements are addressed 

through policy as code within agent BDI knowledge and can adapt to evolving 

threats and environment scenarios with ongoing domain knowledge inputs.  

While the initial implementation has provided a strong proof of concept, we have 

provided some additional considerations for future works including security 

considerations for the multi-agent system itself, as well as potential economic 

motivations for industry adoption of this model. Additional limitations and future 

works will be discussed in the final chapter in conclusion of this thesis.  
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7 Conclusion and Future Works 

7.1  Thesis Summary 

The combined domains of IoT, agent-based modeling, and cybersecurity present 

many opportunities that have largely been underexplored in the literature to date, 

while the intersection of these topics show strong potential to address contemporary 

and emerging cybersecurity challenges. Based on the increasing demand for 

intelligent, distributed cyber defence capabilities within IoT systems, this work 

presents a framework and proof of concept for bridging the capabilities of agent-

based technologies into an adaptive cyber defence model for IoT smart home 

networks. While our framework has set the groundwork for the future application 

of key use cases in autonomous security, simulations, optimization of strategies, 

modeling and experimentation of theoretical frameworks, broader implications of 

the model can be applied to general distributed planning capabilities for enterprise 

security as well as non-security use cases. Our novel approach to BDI agent 

reasoning based on knowledge graphs introduces opportunities for distributed 

intelligence with shared knowledge and can be applied to broader agent-based use 

cases outside of the cybersecurity domain.  

The key contributions of this thesis have been summarized below: 

• Multi-agent Architecture for Adaptive Cyber Defence: Our architecture 

leverages agent-based technologies to provide autonomous, adaptive, 

cooperative goal-oriented behaviours in software agents deployed across an IoT 

network to achieve security goals. We presented our architecture in Chapter 3 

with an individual agent model as well as a control and coordination hierarchy. 

This design has been evaluated to demonstrate how it addresses the unique 

requirements and design challenges for smart home IoT environments including 

resource limitations, interoperability requirements, reliability, data volume, and 

ease of use.  
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• Knowledge Graphs for BDI Agent Reasoning: Chapter 4 introduced a design 

for knowledge graphs for cybersecurity modeling based on industry knowledge 

bases which can be leveraged for agent reasoning. Our novel approach to agent 

BDI reasoning powered by knowledge graphs introduces a data-driven and 

adaptable model for distributed contextual intelligence based on an evolving 

environment.  

Our implementation described in Chapter 5 provided the details of our 

implementation architecture developed to simulate the multi-agent capabilities for 

security policy generation and mission deployment, as well as BDI-agent reasoning 

with Neo4j knowledge graphs. Initial security use cases were modeled to illustrate 

the capabilities for vulnerability and access management. 

The experimental results in Chapter 6 demonstrated the practical feasibility of our 

model tested through simulation of a botnet scenario under 256 different 

environment configurations. The operational performance results showed an 

average response time and memory utilization with low impact to resource 

utilization of baseline smart home IoT devices. Further, the impact of different 

environment configurations in relation to available agent capabilities for defence 

mechanisms has shown how situational awareness enabled by our knowledge graph 

model can inform agent actions towards defending numerous environment types, 

as well as perform risk analysis and coordinated actions for compensating controls.  

7.2  Limitations 

While this thesis has presented a framework for very wide scope of capabilities, the 

key contributions have set the foundation for significant future work in refinement 

and optimization of each component in detail, with flexibility for the addition of 

modular components. The main limitations of the current work are highlighted 

below, where future works for each of these areas are elaborated in the following 

section. 

• Reference to NIST Labeling framework: the initial implementation is 

strongly aligned to the NIST labeling framework and assumes that devices 
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maintain “device profiles” or self-claim their capabilities when joining the 

network. While this demonstrates a strong use case for creating an industry 

labeling standard that can inform automated decisioning, the labeling 

framework is currently still in development and is not currently deployed across 

the industry. The labeling framework provided a reference for our data model 

to map security policies with device capabilities and associated agent actions. 

With this data model in mind, future works could investigate alternative 

methods of gathering similar data, such as through network/device analytics or 

community intelligence sharing. 

• Limitations with Datasets and Knowledge Graph: the cybersecurity domain 

knowledge graphs have been generated using industry datasets such as MITRE 

ATT&CK, CVE, and CAPEC. While this provides a strong initial reference 

point, we discovered some limitations and inconsistencies within the data which 

could cause challenges for automated decisioning in its current form. These 

datasets are constantly evolving with the industry, and we expect data quality 

improve over time, especially as the industry shifts towards greater automation 

rather than manual interpretations. Further, the BDI agent knowledge graphs 

have been manually developed for this work based on the NIST framework, and 

we believe this can also be expanded and refined to follow other standards and 

requirements. There are also opportunities for development of agents’ 

capabilities to continually refine the knowledge graph based on new 

observations and experiences which could provide enhancements to the datasets 

for greater context awareness and inferences.  

• Policy Inheritance and Conflicts: while our framework and implementation 

provide an initial model for policy generation and planning, the capabilities for 

managing conflicts and prioritization according to utility have not yet been fully 

built out for scale. This is highlighted as a future work, where there are many 

works in the literature that can be tested and applied within the BDI knowledge 

graph model and simulated with our model to find optimal methods. 

• Agent coordination and Learning capabilities: similar to the above, our 

model provides a foundation for expanded works in agent coordination and 
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learning capabilities to enhance situational awareness, risk analysis, action 

recommendations and predicted outcomes.  

• Implementation is Limited to Simulated Environment: our implementation 

has been deployed in a purpose-built simulated environment using abstractions 

and custom message formats. This has been effective for the development and 

evaluation of the initial design, however it will need to be expanded and 

integrated with larger datasets and real-life devices as a future work, which 

should also include provisions for securing the agents themselves as discussed 

in the previous chapter.  

7.3  Future Works 

This thesis has established a foundation for many future works as an emerging 

research area in agent-based applications for cybersecurity, for continued 

development on defining utility and modeling optimal behaviors for multi-agent 

defence systems and leveraging the existing model for enhanced simulations. While 

we have focused on applications to smart home and IoT environments specifically, 

the framework can be easily extended to broader domains of security or other 

applications of BDI agents where large collections of domain knowledge can be 

recorded in knowledge graphs. We will further elaborate on areas of future work in 

this section. 

7.3.1 Expansion of Simulation and Real-World Implementation 

The implementation discussed in Chapter 5 provides a foundation for further 

simulated experiments, which can reveal system behaviours and refine security 

strategies and optimization. Running large scale simulation experiments with 

different environment configurations will be useful for testing at scale. Additional 

capabilities for validation and auditing of agent actions and behaviours will provide 

relevant data for further enhancements to agent learning capabilities and 

optimization, as further described in the following section. Interactive simulations 

of IoT environments and security scenarios can also support the education and 

training of security professionals, provide modeling capabilities for threat modeling 
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and design of secure systems, and better understand the implications of various 

security capability deployments to inform the prioritization of controls. 

Our simulations thus far have been based on limited simulation data for proof of 

concept. Further integration with real life datasets will be valuable to further refine 

the model. An additional layer for parsing data will be required. Lastly, while we 

have demonstrated the feasibility of our solution from a modeling perspective, the 

next step after testing with larger datasets would be to further integrate with real 

life IoT devices with the considerations described in Section 6.5 .  

7.3.2 Agent Coordination and Learning Capabilities 

While our architecture and knowledge graph model provide a foundation for 

modeling agent knowledge, there are many opportunities for expansion to support 

future research on agent learning capabilities. The knowledge graphs in the present 

state are relatively static for demonstration. However, they provide flexibility for 

enhancement and extended applications of multi-agent learning, utility refinement, 

and other opportunities for the application and testing of various learning 

capabilities within a cybersecurity context.  

Coordination and Social Functions 

As multiple agents can exist in an environment, an important step is to negotiate 

missions and tasks between them to support the entire system. A coordination 

mechanism must be further defined to determine effective strategies. While each 

agent or mission may maintain independent security goals to achieve, they may also 

have common goals, in which case coalition formation is beneficial for the 

collective utility. Negotiation incentives include increased resources to performing 

certain tasks, greater visibility and information sharing, and shared utility. There 

may be cases where higher payoffs are awarded to missions completed in 

collaboration between two or more agents. Conversely, agents may also have 

conflicting priorities or missions. In this case, negotiation is required to achieve the 

highest possible utility for both. Coordination mechanisms exist to allow 

coordination between the controllers to achieve the highest utility for the overall 

system state.  
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The following social functions can be further defined for the collaboration and 

coordination of agents: Resource allocation; coalition formation; distributed 

cognitive abilities such as multi-agent planning, control and execution; conflict 

resolution functions through mechanism design using auction, voting, or 

negotiation protocols; and organizational evolution to enable changes and adaptive 

behaviour over time to meet new requirements and changes in the environment. 

Macro-level coordination can also be possible from a vendor perspective at a larger 

scale across smart home deployments. From the perspective of the global system, 

there are two major components: (1) the set of all vendor products vi = {pi,ci}, and 

(2) the set of all smart homes cj = {vj,pj}. Each vendor vi has a set of products p and 

clients c. Likewise, each client’s smart home consists of a set of vendors and 

products. The primary goal of each vendor is to ensure the operation and security 

of their products in their client’s homes. Each vendor does not explicitly regard the 

security of other vendor devices. However, if they exist within a client’s home, the 

vendor may be able to protect the other devices if it improves the security of the 

total system.  

Further, the primary goal of each client is to maintain the security of their own smart 

home and devices. While each client ci does not explicitly regard the state of other 

clients’ smart homes c’i, the collective coordination between clients works to 

achieve a global social optimum in the case of widespread attacks. This is 

demonstrated through the basic economics of cybersecurity, where the attacker will 

aim for a target with the greatest reward, requiring the least cost/effort. Often the 

most profitable form of attack is to exploit large numbers of vulnerable devices, for 

example, to join a botnet. By increasing the collective baseline for consumer IoT 

devices, the attacker will either adapt their strategy to invest more for each attack, 

choose a different target, or receive a generally lower reward.  

Trust Models 

In a multi-agent system as well as any environment with potential for cybersecurity 

concerns, the concept of trust is foundational. While this topic has been largely out 

of scope of this initial work, our framework provides a foundation for future 
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research in applying trust models for further enhancement. Potential directions 

could include extending the knowledge graphs with trust-based relationship or node 

properties, which can be dynamically enriched through environment observations. 

Trust scores could be developed for new or suspicious devices with associated 

controls to be implemented such as access control or network isolation. 

Additionally, relationships between agents can also be informed through trust 

models which can direct coordinated actions.  

Multi-agent Learning 

Multi-agent learning is defined as the problem of devising learning algorithms for 

agents that are capable of learning (sub)optimal solutions in the presence of other 

(learning) agents or algorithms – facing the difficulties of incomplete information, 

large state spaces, credit assignment, cooperative and/or competitive settings, and 

reward shaping [107] [108]. Reinforcement learning is based on behavioral change 

to reward desirable behavior and discourage undesirable behavior from obtaining 

maximum utility. Reinforcement learning capabilities can be adopted into our 

model for enhanced learning and planning capabilities.  

It is important to note that while baselines can be gathered, there will often be 

limited learning data available for attacks within an individual environment. 

Additionally, due to the environment's operational sensitivity, there is low risk 

tolerance for experimentation with negative reinforcement when there is an attack. 

This raises the question of how we can proactively gather data to learn the best 

responses to attacks. We suggest that to supplement the baseline anomaly detection, 

this can be done through a combination of knowledge base templates gathered by 

federated learning models across home environments, as well as data gathered 

through simulations of attack scenarios.  

Federated Learning and Intelligence 

It is useful to look at the bigger picture for large scale patterns and trends across 

different environments. Participating systems can provide sampling data at 

occasional intervals to develop collective strategies across environments. This data 

can be provided anonymously and in privacy through federated learning algorithms.  
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Types of data that can be shared and analyzed include baseline behaviour 

thresholds, recommended security requirements and user preferences from similar 

environments, feedback on ineffective and effective strategies, threat intelligence 

and countermeasures for attacks, and validation of similar behaviour across other 

environments. To preserve privacy and security in federated learning model, the 

system will require assurances for privacy preservation and anonymity, resilience 

to poisoning attacks or adversarial AI, data leak protection, data integrity, timing 

and accuracy. 

In a distributed system for collective data aggregation and computation, no single 

entity has visibility into the entire global system. Product vendors can only see data 

related to their products, and home users can only see data related to their own 

homes and products owned. Privacy is preserved within home local networks, with 

respective models federated at the cloud layer by each vendor for their products. 

Through federated learning, client models and alerts aggregate to the vendor for 

assessment and model refinement. Within each home network, the edge 

coordinators negotiate policies with each other, taking into consideration the 

recommendations from each vendor, in alignment with the risk posture of the local 

network. Once negotiation has been completed, the updated model will be sent back 

to each vendor for consideration.  

Vendor claims can be validated by consensus across other participating nodes in 

the global system. This can take the form of other vendors or MAS controllers, with 

validation functions predefined at nodes, or further validation agents (for example, 

through a bug bounty model) can be adapted. Smart contracts may be employed to 

ensure Service Level Agreements (SLAs) with regard to security posture. Vendors 

are incentivized to validate others as this resilience capability increases their 

security utility. Participation allows for their respective controls to be validated. 

Collective security concerns can be communicated across partner nodes, validated, 

and collective countermeasure strategies can be generated and redirected back to 

client sites (secure multiparty computation). Assurance, privacy, and trust through 
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federated learning and secure multi-party communication across multi-agent 

systems is a future research area. 

7.3.3 Refinement of Knowledge Graphs 

Enhancements to Data and Model 

While we have presented a preliminary proof of concept of knowledge graphs, 

continued expansion and modeling of different security considerations is a future 

research area to be refined. As this is the first work of our knowledge to define BDI 

agent plans within a knowledge graph correlated with cybersecurity domain 

knowledge, a focused research effort in further refinement would support practical 

extended implementation. Further, libraries of domain knowledge are continually 

evolving, and a mechanism for updating intelligence on an automated basis would 

be beneficial to ensure up to date awareness of the security domain.  

Enhancements for Agent Learning & Reasoning 

Enhancement of the knowledge graphs to support agent learning and decisioning 

can be possible by introducing additional properties within nodes, such as utility 

scores, to support the optimization of plan selection. With the continuously 

evolving and incomplete information available (i.e., partially observable 

environment), a probabilistic method for agent decision-making under uncertainty 

can be applied using the Partially Observable Markov Decision Process (POMDP). 

Probabilistic uncertainty involves the use of probability distributions for state 

transitions and observations, where agents can determine the transition to the next 

state according to a fixed conditional probability. An example by Rens et al. 

implements a BDI agent architecture for Partially Observable Markov Decision 

Process (POMDP) Planner [109].  

7.3.4 Applied Game Theory and Control Theory 

In the literature, there have been several recent works in modeling adversarial 

situations in cybersecurity, mainly with the goals of extracting optimal defence 

strategies and/or creating the foundation for autonomous adaptive defences. Two 

possible approaches include the applications of game theory and control theory. 
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Using the control-theoretic approach, the actions of the adversary are not assumed 

to be strategic and are not taken into consideration in defender strategies. In 

contrast, through a game theoretic model, adversarial behavior is modeled with its 

own utility associated with attack patterns. One major struggle is the complexity of 

the decision set due to the attributes of dynamic and partially observed information.  

Musman [110] presents a Cyber Security Game (CSG) to quantitatively identify 

cyber risks and determine the optimal deployment of security controls for the level 

of resources available in the environment. This method uses a calculated risk score 

based on mission impact models of the likelihood and impact of cyber incidents, 

aligned with applying threat modeling to the system topology and defender model. 

Musman’s approach uses attack path modeling to determine chain rules and 

probabilities. The Cyber Mission Impact Assessment (CMIA) tool [111] provides 

granular impact assessment according to levels of impact per effect of each type of 

asset. The attacker model can be determined using a chain rule of probabilities of 

success: 

P(A1, …,An) = P(A1|A2,…An) P(A2|A3,…An) P̈(An-1|An) P(An) 

With visibility into the topology of the system, we can overlay the attacker's 

behavior and impact on generating plausible attack trees for pathways into the 

system. The data obtained from the attack tree provides an expected value for loss 

for each branch of the attack option. This expected value can then be plugged into 

the risk calculation: 

(1) Risk = ∑ 𝑃𝐶𝐼𝐿𝐶𝐼
𝑁
𝐶𝐼=1   or  (2) MaxCI = 1,N(PCILCI) 

Where risk is calculated as either (1) the sum of all probabilities and losses 

associated with all possible cyber incidents or (2) the maximum probability and loss 

for the worst potential incident, depending on risk appetite. Once attack paths are 

generated and provided with associated risks, we can determine defence policies 

that can be employed as countermeasures. Each method will also have an associated 

expected success rate for reducing the probability of attack.  
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While many works exist to model cybersecurity scenarios for adaptive cyber 

defence, many are single purpose solutions or highly abstracted and have not been 

applied at a practical level. Our model provides a framework for further 

experimentation and application of agent-based game theory and control theory 

research applied to the cybersecurity domain in a modeled simulated environment 

to bridge this gap and further the industry. It is important to note that most of the 

time, it can be expected that the network will be operating in a normal operational 

state with no active security threats. Game-theoretic models often assume an active 

adversarial opponent with highly focused data inputs. However, this is highly 

unrealistic in an applied scenario. Control-theoretic models provide a single player 

control-based approach to responding to environmental observations more aligned 

to an applied context. We suggest a primary focus on control-based approaches, 

with potential opportunities for a hybrid response model where game theoretic 

strategies can be applied in detected adversarial scenarios.  

Utility and Incentivization for Agents 

Aligned to the above, further refinement to the utility calculation and 

incentivization for agent behaviours have also been noted for future work. There 

are several layers in which the utility is directed towards specific goals, which can 

form a utility hierarchy at each layer of the system used by different types of agents: 

Table 7.1 Utility Goals at each Layer 

Layer Goals 

Control Layer Minimize risk, achieve security goals, and 

operational availability. 

Coordination Layer Health of agents, optimize agent deployment. 

Vendor Layer Negotiate/generate strategies and missions to 

improve and/or maintain system state. 

Device Agent Layer Contribute to the completion of mission/task (i.e., 

sensor, detection, analysis, response). Beliefs, 

Desires, Intentions model. 

 

This hierarchy is defined to coordinate utility across strategic risks with impact to 

the entire home, along with tactical risks associated with individual components. 
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Each mission has prospective payoff values for increasing/decreasing each utility 

parameter, mapped to a particular reference ID, used to determine plans' 

prioritization, and validated on completion. The controller will be notified after the 

completion of each mission, receive the payoff, and cascade it down to the agents 

involved in the mission. A schema can be provided to classify each mission 

according to its benefit to the micro and macro level utility. 

7.4  Conclusion 

The contributions of this work have provided an agent-based modeling framework 

for adaptive cyber defense, addressing key requirements for adaptive and 

autonomous cybersecurity capabilities. While the implementation and experimental 

results demonstrate the feasibility of our design in smart home IoT systems, this 

model can also be easily expanded to other domains. It is our intention to provide 

the foundation to inspire further research works in this area for continued 

development, application, and optimization of this paradigm to support the 

advancement of the industry and bring autonomous cyber defence to realization.  

  



 

145 

 

References 

[1] D. Marriott, K. Ferguson-Walter, S. Fugate, and M. Carvalho, “Proceedings 

of the 1st International Workshop on Adaptive Cyber Defense,” 2021, doi: 

10.48550/ARXIV.2108.08476. 

[2] R. Coulter and L. Pan, “Intelligent agents defending for an IoT world: A 

review,” Computers & Security, vol. 73, pp. 439–458, Mar. 2018, doi: 

10.1016/j.cose.2017.11.014. 

[3] C. Savaglio, M. Ganzha, M. Paprzycki, C. Bădică, M. Ivanović, and G. 

Fortino, “Agent-based Internet of Things: State-of-the-art and research 

challenges,” Future Generation Computer Systems, vol. 102, pp. 1038–1053, 

Jan. 2020, doi: 10.1016/j.future.2019.09.016. 

[4] K. K. Patel, S. M. Patel, and P. Scholar, “Internet of Things-IOT: Definition, 

Characteristics, Architecture, Enabling Technologies, Application & Future 

Challenges,” p. 10, 2016. 

[5] International Telecommunication Union, “Overview of the Internet of things,” 

International Telecommunication Union, ITU-T Y.2060, Jun. 2012. [Online]. 

Available: https://handle.itu.int/11.1002/1000/11559 

[6] K. Gafurov and T.-M. Chung, “Comprehensive Survey on Internet of Things, 

Architecture, Security Aspects, Applications, Related Technologies, 

Economic Perspective, and Future Directions,” Journal of Information 

Processing Systems, vol. 15, no. 4, pp. 797–819, Aug. 2019, doi: 

10.3745/JIPS.03.0125. 

[7] M. Hasan, “State of IoT 2022: Number of connected IoT devices growing 18% 

to 14.4 billion globally,” IoT Analytics: Market Insights for the Internet of 

Things, May 18, 2022. https://iot-analytics.com/number-connected-iot-

devices/ 

[8] C. MacGillivray and D. Reinsel, “Worldwide Global DataSphere IoT Device 

and Data Forecast, 2021–2025,” International Data Corporation, Market 

Forecast US48087621, Jul. 2021. [Online]. Available: 

https://www.idc.com/getdoc.jsp?containerId=US48087621 

[9] Fortune Business Insights, “Internet of Things (IoT) Market Size, Share & 

COVID-19 Impact Analysis, By Component (Platform, Solution & Services), 

By End-Use Industry (BFSI, Retail, Government, Healthcare, Manufacturing, 

Agriculture, Sustainable Energy, Transportation, IT & Telecom, and Others), 

and Regional Forecase, 2022-2029,” Fortune Business Insights, Market 

Research Report FBI100307, Mar. 2022. [Online]. Available: 

https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-

iot-market-100307 

[10] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A 

Survey on IoT Security: Application Areas, Security Threats, and Solution 

Architectures,” IEEE Access, vol. 7, pp. 82721–82743, 2019, doi: 

10.1109/ACCESS.2019.2924045. 



 

146 

 

[11] B. Hammi, S. Zeadally, R. Khatoun, and J. Nebhen, “Survey on smart homes: 

Vulnerabilities, risks, and countermeasures,” Computers & Security, vol. 117, 

p. 102677, Jun. 2022, doi: 10.1016/j.cose.2022.102677. 

[12] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging Smart 

Home Applications,” in 2016 IEEE Symposium on Security and Privacy (SP), 

San Jose, CA, May 2016, pp. 636–654. doi: 10.1109/SP.2016.44. 

[13] Amazon, “Alexa,” 2022. https://developer.amazon.com/en-US/alexa 

[14] Google, “Google Home,” Google Home, 2022. 

https://home.google.com/welcome/ 

[15] Apple, “Apple Homekit,” Apple, 2022. https://www.apple.com/ca/home-app/ 

[16] N. M. Kumar and P. K. Mallick, “The Internet of Things: Insights into the 

building blocks, component interactions, and architecture layers,” Procedia 

Computer Science, vol. 132, pp. 109–117, 2018, doi: 

10.1016/j.procs.2018.05.170. 

[17] H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, M. Aledhari, and H. 

Karimipour, “A survey on internet of things security: Requirements, 

challenges, and solutions,” Internet of Things, vol. 14, p. 100129, Jun. 2021, 

doi: 10.1016/j.iot.2019.100129. 

[18] D. E. Kouicem, A. Bouabdallah, and H. Lakhlef, “Internet of things security: 

A top-down survey,” Computer Networks, vol. 141, pp. 199–221, Aug. 2018, 

doi: 10.1016/j.comnet.2018.03.012. 

[19] K. Boeckl et al., “Considerations for managing Internet of Things (IoT) 

cybersecurity and privacy risks,” National Institute of Standards and 

Technology, Gaithersburg, MD, NIST IR 8228, Jun. 2019. doi: 

10.6028/NIST.IR.8228. 

[20] P. Williams, I. K. Dutta, H. Daoud, and M. Bayoumi, “A survey on security 

in internet of things with a focus on the impact of emerging technologies,” 

Internet of Things, vol. 19, p. 100564, Aug. 2022, doi: 

10.1016/j.iot.2022.100564. 

[21] T. Rajmohan, P. H. Nguyen, and N. Ferry, “A decade of research on patterns 

and architectures for IoT security,” Cybersecurity, vol. 5, no. 1, p. 2, Dec. 

2022, doi: 10.1186/s42400-021-00104-7. 

[22] Federal Bureau of Investigation, “INTERNET OF THINGS POSES 

OPPORTUNITIES FOR CYBER CRIME,” Federal Bureau of Investigation, 

United States, Public Service Announcement I-091015-PSA, Sep. 2015. 

[Online]. Available: 

https://www.ic3.gov/Media/PDF/Y2015/PSA150910.pdf 

[23] US Department of Homeland Security, “Strategic Principles for Securing the 

Internet of Things (IoT),” US Department of Homeland Security, Nov. 2016. 

[24] US Federal Bureau of Investigation, “Cyber Actors Use Internet of Things 

Devices as Proxies for Anonymity and Pursuit of Malicious Cyber Activities,” 

US Federal Bureau of Investigation, Public Service Announcement I-080218-

PSA, Aug. 2018. [Online]. Available: 

https://www.ic3.gov/Media/Y2018/PSA180802 

[25] Executive Office of the President, “Executive Order 14028: Improving the 

Nation’s Cybersecurity,” Presidential Document: Executive Order, vol. 86, 

no. 93, May 2021. 



 

147 

 

[26] M. Fagan, K. N. Megas, K. Scarfone, and M. Smith, “IoT device cybersecurity 

capability core baseline,” National Institute of Standards and Technology, 

Gaithersburg, MD, NIST IR 8259A, May 2020. doi: 10.6028/NIST.IR.8259a. 

[27] IoT Security Foundation, “IoT Security Foundation,” Make it Safe to Connect. 

https://www.iotsecurityfoundation.org/about-us/ (accessed Aug. 06, 2022). 

[28] S. Deep, X. Zheng, A. Jolfaei, D. Yu, P. Ostovari, and A. Kashif Bashir, “A 

survey of security and privacy issues in the Internet of Things from the layered 

context,” Trans Emerging Tel Tech, vol. 33, no. 6, Jun. 2022, doi: 

10.1002/ett.3935. 

[29] A. Verma, R. Saha, N. Kumar, G. Kumar, and Tai-Hoon-Kim, “A detailed 

survey of denial of service for IoT and multimedia systems: Past, present and 

futuristic development,” Multimed Tools Appl, vol. 81, no. 14, pp. 19879–

19944, Jun. 2022, doi: 10.1007/s11042-021-11859-z. 

[30] M. Pelino and T. Shields, “Secure IoT As It Advances Through Maturity 

Phases: Predict And Prevent Attacks Targeting The Internet Of Things,” 

Forrester, Trend Report, Jan. 2016. 

[31] Unit 42, “2020 Unit 42 IoT Threat Report,” Palo Alto Networks, 2020. 

[32] B. Schneier, “The Internet of Things Is Wildly Insecure—And Often 

Unpatchable,” Schneier on Security, Jan. 06, 2014. 

https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.htm

l 

[33] OWASP, “OWASP IoT Top 10,” Open Web Application Security Project 

(OWASP), Dec. 2018. 

[34] Canonical, “Taking Charge of the IoT’s Security Vulnerabilities,” Canonical, 

Whitepaper, Jan. 2017. 

[35] Mandiant, “14 Cyber Security Predictions for 2022 and Beyond,” Mandiant, 

2022. 

[36] J. Leyden, “Samsung Smart Fridge Leaves Gmail Logins Open to Attack,” 

The Register, Aug. 24, 2015. 

https://www.theregister.com/2015/08/24/smart_fridge_security_fubar/ 

[37] A. Hashim, “Zero-Day Bugs Spotted in Nooie Baby Monitors,” Latest 

Hacking News, Feb. 14, 2022. 

https://latesthackingnews.com/2022/02/14/zero-day-bugs-spotted-in-nooie-

baby-monitors/ 

[38] I. Arghire, “Nuki Smart Lock Vulnerabilities Allow Hackers to Open Doors,” 

SecurityWeek, Jul. 27, 2022. https://www.securityweek.com/nuki-smart-lock-

vulnerabilities-allow-hackers-open-doors 

[39] J. Hollington, “Bluetooth hack compromises Teslas, digital locks, and more,” 

Digital Trends, May 16, 2022. 

https://www.digitaltrends.com/mobile/bluetooth-hack-compromises-teslas-

digital-locks-and-more/ 

[40] M. Kumar, “Cracking WiFi Passwords by Hacking Smart Kettles,” The 

Hacker News, Oct. 21, 2015. https://thehackernews.com/2015/10/hacking-

wifi-password.html 

[41] J. A. Jerkins, “Motivating a market or regulatory solution to IoT insecurity 

with the Mirai botnet code,” in 2017 IEEE 7th Annual Computing and 



 

148 

 

Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 

Jan. 2017, pp. 1–5. doi: 10.1109/CCWC.2017.7868464. 

[42] Nozomi Networks Labs, “New BotenaGo Variant Discovered by Nozomi 

Networks,” Nozomi Networks Blog, Apr. 18, 2022. 

https://www.nozominetworks.com/blog/new-botenago-variant-discovered-

by-nozomi-networks-labs/ 

[43] J. Salvio and R. Tay, “Fresh TOTOLINK Vulnerabilities Picked up by 

Beastmode Mirai Campaign,” Fortinet Threat Research Blog, Apr. 01, 2022. 

https://www.fortinet.com/blog/threat-research/totolink-vulnerabilities-

beastmode-mirai-campaign 

[44] A. Collen et al., “GHOST - Safe-Guarding Home IoT Environments with 

Personalised Real-Time Risk Control,” in Security in Computer and 

Information Sciences, vol. 821, E. Gelenbe, P. Campegiani, T. Czachórski, S. 

K. Katsikas, I. Komnios, L. Romano, and D. Tzovaras, Eds. Cham: Springer 

International Publishing, 2018, pp. 68–78. doi: 10.1007/978-3-319-95189-

8_7. 

[45] C. Lawson, P. Firstbrook, and P. Webber, “Market Guide for Extended 

Detection and Response,” Gartner, G00747261, Nov. 2021. 

[46] Johns Hopkins University Applied Physics Laboratory, “Integrated Adaptive 

Cyber Defense,” INTEGRATED ADAPTIVE CYBER DEFENSE. 

https://www.iacdautomate.org/ 

[47] H. Yu, Z. Shen, and C. Leung, “From Internet of Things to Internet of Agents,” 

in 2013 IEEE International Conference on Green Computing and 

Communications and IEEE Internet of Things and IEEE Cyber, Physical and 

Social Computing, Beijing, China, Aug. 2013, pp. 1054–1057. doi: 

10.1109/GreenCom-iThings-CPSCom.2013.179. 

[48] E. Bonabeau, “Agent-based modeling: Methods and techniques for simulating 

human systems,” Proc. Natl. Acad. Sci. U.S.A., vol. 99, no. suppl_3, pp. 7280–

7287, May 2002, doi: 10.1073/pnas.082080899. 

[49] C. Macal and M. North, “INTRODUCTORY TUTORIAL: AGENT-BASED 

MODELING AND SIMULATION,” p. 15. 

[50] M. E. Bratman, Intentions, Plans, and Practical Reason. Cambridge: Harvard 

University Press, 1987. 

[51] G. I. Simari and S. D. Parsons, Markov Decision Processes and the Belief-

Desire-Intention Model. New York, NY: Springer New York, 2011. doi: 

10.1007/978-1-4614-1472-8. 

[52] P. Gärdenfors, “Belief revision: An introduction,” in Belief Revision, 1st ed., 

P. Gärdenfors, Ed. Cambridge University Press, 1992, pp. 1–28. doi: 

10.1017/CBO9780511526664.001. 

[53] I. Nunes, “BDI4JADE: a BDI layer on top of JADE,” p. 16. 

[54] A. Pokahr, L. Braubach, and W. Lamersdorf, “A Goal Deliberation Strategy 

for BDI Agent Systems,” in Multiagent System Technologies, vol. 3550, T. 

Eymann, F. Klügl, W. Lamersdorf, M. Klusch, and M. N. Huhns, Eds. Berlin, 

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 82–93. doi: 

10.1007/11550648_8. 

[55] L. Males and S. Ribaric, “A model of extended BDI agent with autonomous 

entities (integrating autonomous entities within BDI agent),” in 2016 IEEE 



 

149 

 

8th International Conference on Intelligent Systems (IS), Sofia, Bulgaria, Sep. 

2016, pp. 205–214. doi: 10.1109/IS.2016.7737422. 

[56] Y.-B. Peng, J. Gao, J.-Q. Ai, C.-H. Wang, and H. Guo, “An Extended Agent 

BDI Model with Norms, Policies and Contracts,” in 2008 4th International 

Conference on Wireless Communications, Networking and Mobile 

Computing, Dalian, China, Oct. 2008, pp. 1–4. doi: 

10.1109/WiCom.2008.1197. 

[57] G. Shaw and E. van der Poel, “Genetic Algorithms as a feasible re-planning 

mechanism for Belief-Desire-Intention Agents,” in Proceedings of the 2015 

Annual Research Conference on South African Institute of Computer 

Scientists and Information Technologists - SAICSIT ’15, Stellenbosch, South 

Africa, 2015, pp. 1–9. doi: 10.1145/2815782.2815817. 

[58] J. Buford, G. Jakobson, and L. Lewis, “Extending BDI Multi-Agent Systems 

with Situation Management,” in 2006 9th International Conference on 

Information Fusion, Florence, Jul. 2006, pp. 1–7. doi: 

10.1109/ICIF.2006.301781. 

[59] S. Calderwood, K. McAreavey, W. Liu, and J. Hong, “Contextual merging of 

uncertain information for better informed plan selection in BDI systems,” in 

2015 World Congress on Industrial Control Systems Security (WCICSS), 

London, United Kingdom, Dec. 2015, pp. 64–65. doi: 

10.1109/WCICSS.2015.7420326. 

[60] Z. A. Khan, E. Pignaton de Freitas, T. Larsson, and H. Abbas, “A Multi-agent 

Model for Fire Detection in Coal Mines Using Wireless Sensor Networks,” in 

2013 12th IEEE International Conference on Trust, Security and Privacy in 

Computing and Communications, Melbourne, Australia, Jul. 2013, pp. 1754–

1761. doi: 10.1109/TrustCom.2013.275. 

[61] A. R. Hilal and O. A. Basir, “A Scalable Sensor Management Architecture 

Using BDI Model for Pervasive Surveillance,” IEEE Systems Journal, vol. 9, 

no. 2, pp. 529–541, Jun. 2015, doi: 10.1109/JSYST.2014.2334071. 

[62] J. Melgoza-Gutierrez, A. Guerra-Hernandez, and N. Cruz-Ramirez, 

“Collaborative Data Mining on a BDI Multi-agent System over Vertically 

Partitioned Data,” in 2014 13th Mexican International Conference on 

Artificial Intelligence, Tuxtla Gutierrez, Mexico, Nov. 2014, pp. 215–220. 

doi: 10.1109/MICAI.2014.39. 

[63] B. Wilsker, “A Study of Multi-Agent Collaboration Theories,” p. 26, 1996. 

[64] C. Stergiou, G. Arys, and M. Wooldridge, “A Policy Based Framework for 

Agents: On the Specification of an Agent Policy Language including Roles, 

Relationships, Conversation Patterns and Co-operation Patterns,” p. 2. 

[65] Y. Xiao, F. Deng, B. Liu, S. Liu, D. Luo, and G. Liang, “A Learning Process 

Using SVMs for Multi-agents Decision Classification,” in 2008 

IEEE/WIC/ACM International Conference on Web Intelligence and 

Intelligent Agent Technology, Sydney, Australia, Dec. 2008, pp. 583–586. doi: 

10.1109/WIIAT.2008.430. 

[66] Y. Uhm, Z. Hwang, M. Lee, Y. Kim, G. Kim, and S. Park, “A Context-Aware 

Multi-Agent System for Building Intelligent Services by the Classification of 

Rule and Ontology in a Smart Home,” in 32nd IEEE Conference on Local 



 

150 

 

Computer Networks (LCN 2007), Dublin, Ireland, Oct. 2007, pp. 203–204. 

doi: 10.1109/LCN.2007.28. 

[67] D. J. Kang and S. Park, “MAS based Approach to HEMS modeling: 

Application of social interaction mechanism to demand-side dynamics,” in 

2016 11th System of Systems Engineering Conference (SoSE), Kongsberg, 

Norway, Jun. 2016, pp. 1–6. doi: 10.1109/SYSOSE.2016.7542894. 

[68] K. Kravari and N. Bassiliades, “StoRM: A social agent-based trust model for 

the internet of things adopting microservice architecture,” Simulation 

Modelling Practice and Theory, vol. 94, pp. 286–302, Jul. 2019, doi: 

10.1016/j.simpat.2019.03.008. 

[69] H. F. Rafalimanana, J. L. Razafindramintsa, S. Cherrier, T. Mahatody, L. 

George, and V. Manantsoa, “Jason-RS, A Collaboration Between Agents and 

an IoT Platform,” in Machine Learning for Networking, vol. 12081, S. 

Boumerdassi, É. Renault, and P. Mühlethaler, Eds. Cham: Springer 

International Publishing, 2020, pp. 403–413. doi: 10.1007/978-3-030-45778-

5_28. 

[70] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “CASAS: A 

Smart Home in a Box,” Computer, vol. 46, no. 7, pp. 62–69, Jul. 2013, doi: 

10.1109/MC.2012.328. 

[71] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of security 

and privacy in distributed internet of things,” Computer Networks, vol. 57, no. 

10, pp. 2266–2279, Jul. 2013, doi: 10.1016/j.comnet.2012.12.018. 

[72] Y. Ye, V. Hilaire, A. Koukam, and C. Wandong, “A Holonic Model in 

Wireless Sensor Networks,” in 2008 International Conference on Intelligent 

Information Hiding and Multimedia Signal Processing, Harbin, China, Aug. 

2008, pp. 491–495. doi: 10.1109/IIH-MSP.2008.37. 

[73] L. Pazzi and M. Pellicciari, “From the Internet of Things to Cyber-Physical 

Systems: The Holonic Perspective,” Procedia Manufacturing, vol. 11, pp. 

989–995, 2017, doi: 10.1016/j.promfg.2017.07.204. 

[74] A. Kott et al., “Autonomous Intelligent Cyber-defense Agent (AICA) 

Reference Architecture, Release 2.0,” p. 154. 

[75] M. Major, B. Souza, J. DiVita, and K. Ferguson-Walter, “Informing 

Autonomous Deception Systems with Cyber Expert Performance Data.” 

arXiv, Aug. 31, 2021. Accessed: Oct. 15, 2022. [Online]. Available: 

http://arxiv.org/abs/2109.00066 

[76] M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and D. Marriott, 

“CybORG: A Gym for the Development of Autonomous Cyber Agents.” 

arXiv, Aug. 20, 2021. Accessed: Oct. 15, 2022. [Online]. Available: 

http://arxiv.org/abs/2108.09118 

[77] K. Tran et al., “Deep hierarchical reinforcement agents for automated 

penetration testing.” arXiv, Sep. 14, 2021. Accessed: Oct. 15, 2022. [Online]. 

Available: http://arxiv.org/abs/2109.06449 

[78] A. T. Nguyen, E. Raff, C. Nicholas, and J. Holt, “Leveraging Uncertainty for 

Improved Static Malware Detection Under Extreme False Positive 

Constraints.” arXiv, Aug. 09, 2021. Accessed: Oct. 15, 2022. [Online]. 

Available: http://arxiv.org/abs/2108.04081 



 

151 

 

[79] Forum of Incident Response and Security Teams (FIRST), “Common 

Vulnerability Scoring System (CVSS),” First.org, 2022. 

https://www.first.org/cvss/ 

[80] The MITRE Corporation, “CVE Program Mission,” CVE, 2022. 

https://cve.mitre.org/ 

[81] The MITRE Corporation, “MITRE ATT&CK Framework,” MITRE 

ATT&CK, 2022. https://attack.mitre.org/ 

[82] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly Media, 

2013. 

[83] J. Barrasa, A. E. Hodler, and J. Webber, “Knowledge Graphs: Data in Context 

for Responsive Businesses,” O’Reilly Meida, USA, 2021. 

[84] The MITRE Corporation, “CAR Data Model,” MITRE Cyber Analytics 

Repository, 2022. https://car.mitre.org/data_model/ 

[85] A. Brazhuk, “Security patterns based approach to automatically select 

mitigations in ontology-driven threat modelling,” p. 6. 

[86] The MITRE Corporation, “Common Weakness Enumeration: A Community 

Developed List of Software and Hardware Weakness Types,” CWE, 2022. 

https://cwe.mitre.org/ 

[87] MITRE, “Common Attack Pattern Enumeration and Classification,” Common 

Attack Pattern Enumeration and Classification (CAPEC). 

https://capec.mitre.org/ 

[88] The MITRE Corporation, “MITRE D3FEND: A Knowledge Graph of 

Cybersecurity Countermeasures,” MITRE D3FEND, 2022. 

https://d3fend.mitre.org/about/ 

[89] Neo4j Inc., “Neo4j Graph Database,” Neo4j Graph Database. 

https://neo4j.com/product/neo4j-graph-database 

[90] M. Westergaard and H. M. W. Verbeek, “CPN Tools.” Eindhoven University 

of Technology. [Online]. Available: https://cpntools.org/ 

[91] Google, “Go Language,” Oct. 01, 2022. https://go.dev/doc/ 

[92] K. Jensen, “A brief introduction to coloured Petri Nets,” in Tools and 

Algorithms for the Construction and Analysis of Systems, vol. 1217, E. 

Brinksma, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 203–

208. doi: 10.1007/BFb0035389. 

[93] K. Jensen and L. M. Kristensen, Coloured Petri Nets. Berlin, Heidelberg: 

Springer Berlin Heidelberg, 2009. doi: 10.1007/b95112. 

[94] I. Jimenez-Ochoa, O. Begovich, A. Ramirez-Trevino, and L. I. Aguirre-Salas, 

“Implementing BDI agents using petri nets,” in SMC’03 Conference 

Proceedings. 2003 IEEE International Conference on Systems, Man and 

Cybernetics. Conference Theme - System Security and Assurance (Cat. 

No.03CH37483), Washington, DC, USA, 2003, vol. 1, pp. 286–291. doi: 

10.1109/ICSMC.2003.1243830. 

[95] H. Zhang, Z. Shen, S. Y. Huang, and C. Miao, “Predicting Responsiveness of 

BDI Agent,” p. 6. 

[96] R. Smith, “Google’s Chromecast 2 is Powered by Marvell’s ARMADA 1500 

Mini Plus - Dual-Core Cortex-A7,” AnandTech, Oct. 05, 2015. 

https://www.anandtech.com/show/9688/googles-chromecast-2-is-powered-

by-marvells-armada-1500-mini-plus-dual-cortexa7 



 

152 

 

[97] Raspberry Pi (Trading) Ltd, “Raspberry Pi Products,” raspberrypi.com, 2022. 

https://datasheets.raspberrypi.com/ 

[98] Canada Computers & Electronics, “AMAZON Echo Plus (2nd gen),” Canada 

Computers, 2022. 

https://www.canadacomputers.com/product_info.php?cPath=1578&item_id=

137733 

[99] Ubiquiti Inc., “UniFi Dream Machine Datasheet,” Ubiquiti Inc., United States, 

Product Datasheet JL121819, 2019. [Online]. Available: 

https://dl.ui.com/ds/udm_ds 

[100] ASUSTeK Computer Inc., “RT-AC88U Tech Specs,” Asus.com, 2022. 

https://www.asus.com/ca-en/networking-iot-servers/wifi-routers/asus-wifi-

routers/rt-ac88u/techspec/ 

[101] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition 

Letters, vol. 27, no. 8, pp. 861–874, Jun. 2006, doi: 

10.1016/j.patrec.2005.10.010. 

[102] Y. Hedin and E. Moradian, “Security in Multi-Agent Systems,” Procedia 

Computer Science, vol. 60, pp. 1604–1612, 2015, doi: 

10.1016/j.procs.2015.08.270. 

[103] B. E. Sabir, M. Youssfi, O. Bouattane, and H. Allali, “Towards a New 

Model to Secure IoT-based Smart Home Mobile Agents using Blockchain 

Technology,” Eng. Technol. Appl. Sci. Res., vol. 10, no. 2, pp. 5441–5447, 

Apr. 2020, doi: 10.48084/etasr.3394. 

[104] H. Hagras, “Towards Human Understandable Explainable AI,” Computer, 

vol. 51, no. 9, pp. 28–36, Sep. 2018, doi: 10.1109/MC.2018.3620965. 

[105] G. Geetha and C. Jayakumar, “Implementation of Trust and Reputation 

Management for Free-Roaming Mobile Agent Security,” IEEE Systems 

Journal, vol. 9, no. 2, pp. 556–566, Jun. 2015, doi: 

10.1109/JSYST.2013.2292192. 

[106] X. Xu, N. Bessis, and J. Cao, “An Autonomic Agent Trust Model for IoT 

systems,” Procedia Computer Science, vol. 21, pp. 107–113, 2013, doi: 

10.1016/j.procs.2013.09.016. 

[107] K. Zhang, Z. Yang, and T. Başar, “Multi-Agent Reinforcement Learning: A 

Selective Overview of Theories and Algorithms.” arXiv, Apr. 28, 2021. 

Accessed: Jul. 17, 2022. [Online]. Available: http://arxiv.org/abs/1911.10635 

[108] L. Canese et al., “Multi-Agent Reinforcement Learning: A Review of 

Challenges and Applications,” Applied Sciences, vol. 11, no. 11, p. 4948, May 

2021, doi: 10.3390/app11114948. 

[109] G. Rens, “A BDI Agent Architecture for a POMDP Planner,” in 9th 

International Symposium on Logical Formalization of Commonsense 

Reasoning: Commonsense 2009, Toronto, Canada, Jun. 2009, p. 6. 

[110] S. Musman and A. Turner, “A game theoretic approach to cyber security 

risk management,” Journal of Defense Modeling & Simulation, vol. 15, no. 2, 

pp. 127–146, Apr. 2018, doi: 10.1177/1548512917699724. 

[111] S. Musman and A. Temin, “A Cyber Mission Impact Assessment Tool,” 

presented at the 2015 IEEE International Symposium on Technologies for 

Homeland Security (HST), Apr. 2015. doi: 10.1109/THS.2015.7225283. 

 



 

153 

 

Appendix 

IoT Device Baseline Security Requirements [19], 

[26]  

Security 

Requirement 

Description Device Capabilities (NIST 8259A) 

Asset 

Management 

Maintain a current, 

accurate inventory of all 

IoT devices and their 

relevant characteristics 

throughout the devices' 

lifecycles in order to use 

that information for 

cybersecurity and privacy 

risk management purposes. 

• DC1.1 A unique logical identifier. 

• DC1.2 A unique physical. The identifier 

at an external or internal location on the 

device accessible to the consumer. 

Device 

Configuration 

Identify and eliminate 

known vulnerabilities in 

IoT device software and 

firmware in order to 

reduce the likelihood and 

ease of exploitation and 

compromise. 

• DC2.1 The ability to change the product 

component's software configuration 

settings, including disabling unwanted 

features. 

• DC2.2 The ability to restrict configuration 

changes to unauthorized individuals and 

other IoT product components only. 

• DC2.3 A default setting for the initial 

configuration which makes the product 

component secure for unexpected use 

cases. Any security features should be 

enabled by default. 

• DC2.4 The ability for authorized 

individuals and other IoT product 

components to restore the product 

component to the default security 

configuration. 

Data 

Protection 

Prevent access to and 

tampering with data at rest 

or in transit that might 

expose sensitive 

information or allow 

manipulation or disruption 

of IoT device operations. 

• DC3.1 The ability to use demonstrably 

secure cryptography (e.g., modules 

consistent with FIPS 140-3) for 

cryptographic algorithms (e.g., encryption 

with authentication, cryptographic hashes, 

digital signature validation) to protect the 

confidentiality and integrity of all the 

product component’s stored (e.g., 

collected and received data, internal 

software) and transmitted data. Note: The 

product component host may depend on 

or limit available cryptographic modules.  

• DC3.2 The ability to protect the product 

component’s stored data from 

unauthorized change (e.g., protect against 
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injected code or data manipulation 

attacks).  

• DC3.3 The ability for authorized persons 

to render all data on the product 

component that is not the initial default 

configuration (see Device Configuration) 

and any initial software included on the 

device (including updates) inaccessible to 

anyone, whether previously authorized or 

not. Note: for components implemented 

in a shared environment (e.g., auxiliary 

backend), and this may be limited to data 

and configurations associated with the 

IoT product customer.  

• DC3.4 The ability for authorized 

individuals, other IoT product 

components, and/or systems to delete data 

at rest from the product component. Note: 

Components are implemented in a shared 

environment (e.g., auxiliary backend), 

and this may be limited to data associated 

with the IoT product customer. 

Access 

Management 

Prevent unauthorized and 

improper physical and 

logical access to, usage of, 

and administration of IoT 

devices by people, 

processes, and other 

computing devices. 

• DC4.1 The ability to logically or 

physically disable any local and network 

interfaces that are not necessary for the 

core functionality of the product 

component.  

• DC4.2 The ability to logically restrict 

access to each network interface to only 

authorized persons or devices.  

• DC4.3 The ability of the product 

component to validate that the input 

received through its interfaces matches 

specified definitions of format and 

content.  

• DC4.4 The ability to authenticate 

individuals and other IoT product 

components using appropriate 

mechanisms to technology, risk and use 

case. Authenticators could be biometrics, 

passwords, etc.  

• DC4.5 The ability to support secure use 

of authenticators (e.g., passwords) 

including a. if necessary, the ability to 

locally manage authenticators b. ability to 

ensure a strong, non-default authenticator 

is used (e.g., not delivering the product 

with any single default password or 

enforcing a change to a default password 

before the product component is deployed 

for use). 

• DC4.6 Configuration settings for use with 

the Device Configuration capability, 

including the ability to enable, disable, 

and adjust thresholds for any ability the 
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device might have to lock or disable an 

account or to delay additional 

authentication attempts after too many 

failed attempts (*NIST8259A only). 

Vulnerability 

Management 

Identify and eliminate 

known vulnerabilities in 

IoT device software and 

firmware in order to 

reduce the likelihood and 

ease of exploitation and 

compromise. 

• DC5.1 The ability to update the product 

component’s software remote (e.g., 

network download).  

• DC5.2 The ability for the product 

component to verify and authenticate any 

update before installing it.  

• DC5.3 The ability to enable or disable 

notifications about updates.  

Incident 

Detection 

Monitor and analyze IoT 

device activity for signs of 

incidents involving device 

security and data security. 

• DC6.1 The ability to log cybersecurity-

related state information (e.g., software 

update installations, failed login attempts, 

configuration changes).  

• DC6.2 The ability to restrict access to the 

state information so only authorized 

individuals and IoT product components 

can view it.  

• DC6.3 The ability to prevent any 

unauthorized edits of state information by 

any entity.  

Availability The ability for the device 

to perform its service 

operations as defined in 

the non-technical 

capability label. 

• DC7.1 The ability for the device to 

continue operating (possibly with limited 

digital functionality) in the case of a 

network outage or other connectivity 

disruption. Operational features of the 

device should continue to function 

without connectivity. 

 

 


