

Agent-Based Modeling Framework

for Adaptive Cyber Defence of the

Internet of Things

by

Laura Rafferty

A thesis submitted to the

School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Faculty of Business and IT

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

December 2022

© Laura Rafferty, 2022

ii

Thesis Examination Information

Submitted by: Laura Rafferty

Doctor of Philosophy in Computer Science

Thesis title: Agent-Based Modeling Framework for Adaptive Cyber Defence

of the Internet of Things

An oral defence of this thesis took place on November 24, 2022, in front of the

following examining committee:

Examining Committee:

Chair of Examining Committee Dr. Stephen Jackson

Research Supervisor Dr. Patrick Hung

Research Co-supervisor Dr. Farkhund Iqbal, Zayed University

Examining Committee Member Dr. Miguel Vargas Martin

Examining Committee Member Dr. Bill Kapralos

University Examiner Dr. Stephen Marsh

External Examiner Dr. Mohammad Zulkernine, Queen’s

University

The above committee determined that the thesis is acceptable in form and content

and that a satisfactory knowledge of the field covered by the thesis was

demonstrated by the candidate during an oral examination. A signed copy of the

Certificate of Approval is available from the School of Graduate and Postdoctoral

Studies.

iii

Abstract

The adoption of the Internet of Things (IoT) continues to increase significantly,

introducing unique challenges and threats to cybersecurity. In parallel, adaptive and

autonomous cyber defence has become an emerging research topic leveraging

Artificial Intelligence for cybersecurity solutions that can learn to recognize,

mitigate, and respond to cyber attacks, and evolve over time as the threat surface

continues to increase in complexity. This paradigm presents an environment

strongly conducive to agent-based systems, which offer a model for autonomous,

cooperative, goal-oriented behaviours which can be applied to perform adaptive

cyber defence activities. This thesis aims to bridge the gap between theoretical

multi-agent systems research and cybersecurity domain knowledge by presenting a

novel applied framework for adaptive cyber defence that can address a wide range

of challenges and provide a foundation for significant future research in systems

modeling for cybersecurity. Belief-Desire-Intention (BDI) agent architecture is

extended within this work through a novel application of knowledge graphs to

provide a scalable data model for agents to understand their environment, infer the

context of threats, create goals associated with security requirements, and select

plans based on possible actions and expected results. The framework has been

implemented to demonstrate the feasibility of the architecture and evaluate the

design properties through applied security use cases. While the experimental results

have demonstrated the value of the framework applied to IoT systems, the concept

can be easily expanded to other domains. This thesis provides the foundation to

inspire further research works in this area for continued development, application,

and optimization to support the advancement of the industry and bring autonomous,

adaptive cyber defence to realization.

Keywords: Multi-Agent Systems (MAS); Security; Belief-Desire-Intention (BDI);

Internet of Things (IoT); Adaptive Cyber Defence; Knowledge Graphs

iv

Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech

University) to lend this thesis to other institutions or individuals for the purpose of

scholarly research. I further authorize the University of Ontario Institute of

Technology (Ontario Tech University) to reproduce this thesis by photocopying or

by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research. I understand that my thesis will be made

electronically available to the public.

 Laura Rafferty

v

Statement Of Contributions

In the development of this thesis, I have created the architecture, design, and testing

of the proposed model, as well as the writing of this manuscript. Standard

referencing practices have been used throughout this work to acknowledge ideas,

research techniques, or other materials that belong to others.

In this work, I have accomplished the following contributions:

• Development of a multi-agent architecture for adaptive cyber defence with an

individual agent reasoning model as well as control and coordination hierarchy.

• A novel extension of the BDI model enabled by knowledge graphs for

cybersecurity modeling based on industry knowledge bases which can be

leveraged for policy-based, adaptive agent reasoning.

• Implementation and experimental results to prove the design through use cases.

Parts of this work have been published or are pending publication as:

L. Rafferty, P.C.K. Hung, E. Kafeza, “BDI Agents for Adaptive Cyber Defense of

IoT Systems,” Transactions on Computational Science & Computational

Intelligence, Proceedings of the 2021 International Conference on Artificial

Intelligence (ICAI21), Springer. Accepted for publication.

L. Rafferty, F. Iqbal, S. Aleem, Z. Lu, S. -C. Huang and P. C. K. Hung, "Intelligent

Multi-Agent Collaboration Model for Smart Home IoT Security," 2018 IEEE

International Congress on Internet of Things (ICIOT), 2018, pp. 65-71, DOI:

10.1109/ICIOT.2018.00016.

L. Rafferty, F. Iqbal, P.C.K. Hung (2017). A Security Threat Analysis of Smart

Home Network with Vulnerable Dynamic Agents. In: Tang, J., Hung, P. (eds)

Computing in Smart Toys. International Series on Computer Entertainment and

Media Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62072-

5_8.

vi

Table of Contents

Agent-Based Modeling Framework for Adaptive Cyber Defence of the

Internet of Things .. i

Thesis Examination Information ... ii

Abstract .. iii

Author’s Declaration .. iv

Statement Of Contributions ... v

Table of Contents ... vi

List Of Tables .. x

List Of Figures ... xi

List Of Abbreviations and Symbols ... xiii

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Research Contributions .. 2

1.3 Thesis Outline .. 3

2 Background and Literature Review ... 4

2.1 IoT and Smart Home Security .. 5

2.1.1 Overview of IoT and Smart Home .. 5

2.1.2 Security Requirements and Guidelines ... 9

2.1.3 Common Vulnerabilities and Attacks ... 13

2.1.4 Security Solutions ... 18

2.2 Multi-Agent Systems .. 21

2.2.1 Agent-Based Modeling & Reasoning ... 22

2.2.2 Multi-Agent Collaboration .. 27

2.2.3 Applications in IoT ... 29

vii

2.2.4 Applications in Security and Adaptive Defence 31

2.3 Chapter Summary ... 32

3 Multi-Agent System Architecture ... 34

3.1 System Architecture and Design .. 34

3.1.1 System Architecture Overview ... 34

3.1.2 Agent Hierarchy .. 39

3.1.3 High-Level Algorithm and Data Structures 40

3.2 System Control and Policy Generation .. 42

3.2.1 Security Requirements .. 43

3.2.2 System Monitor ... 45

3.2.3 Policy Engine .. 49

3.3 Agent Modeling for Cyber Defence ... 53

3.3.1 Mission Generation ... 54

3.3.2 Multi-Agent System Preliminary Definitions 54

3.3.3 Communication and Policy Enforcement 57

3.4 Chapter Summary ... 58

4 Knowledge Graphs for BDI Agent Reasoning ... 59

4.1 Graph Architecture and Model ... 60

4.2 Environment Graph .. 63

4.2.1 Device Profiles and Instances ... 64

4.2.2 Events and Analytics ... 65

4.3 BDI Agent Knowledge Graph .. 68

4.3.1 Node and Relationship Definitions ... 69

4.3.2 Cypher Queries for Agent Functions .. 70

4.4 Cybersecurity Domain Knowledge Ontology .. 71

viii

4.4.1 Reference Knowledge Bases ... 72

4.4.2 Node and Relationship Definitions ... 73

4.4.3 Cypher Queries ... 75

4.5 Chapter Summary ... 78

5 Implementation ... 79

5.1 Model Smart Home Scenario ... 79

5.1.1 Devices and Network .. 79

5.1.2 Security Requirements .. 81

5.2 Implementation Architecture .. 81

5.2.1 Coloured Petri Nets ... 82

5.2.2 Simulation Engine ... 88

5.2.3 Neo4j Graph Database .. 89

5.3 Implementation of Control and Coordination .. 90

5.3.1 Defence Policy Generation ... 91

5.3.2 Coordination ... 91

5.4 Implementation of Agent Use Cases .. 93

5.4.1 Use Case 1: Vulnerability Management and Patching 93

5.4.2 Use Case 2: Access Management ... 103

5.5 Chapter Summary ... 107

6 Evaluation and Results ... 109

6.1 Experiment Design ... 109

6.2 Operational Performance Evaluation ... 112

6.2.1 Average Response Time ... 112

6.2.2 Memory Utilization ... 114

6.2.3 Baseline Comparison .. 115

ix

6.3 Defence Capability Evaluation ... 116

6.3.1 Evaluation Metrics .. 117

6.3.2 Evaluation Results Per Scenario ... 118

6.3.3 Evaluation Results per Capability ... 122

6.4 Evaluation of Design Requirements ... 124

6.4.1 Addressing Design Challenges ... 124

6.4.2 Addressing Security Requirements ... 126

6.5 Additional Considerations for Implementation 127

6.5.1 Securing the Multi-Agent System ... 127

6.5.2 Potential Economic Motivations for Adopting the Model 131

6.6 Chapter Summary ... 132

7 Conclusion and Future Works .. 133

7.1 Thesis Summary ... 133

7.2 Limitations ... 134

7.3 Future Works .. 136

7.3.1 Expansion of Simulation and Real-World Implementation 136

7.3.2 Agent Coordination and Learning Capabilities 137

7.3.3 Refinement of Knowledge Graphs .. 141

7.3.4 Applied Game Theory and Control Theory 141

7.4 Conclusion .. 144

References ... 145

Appendix ... 153

IoT Device Baseline Security Requirements [19], [26] 153

x

List Of Tables

Table 2.1 NIST 8228 IoT Cybersecurity Risk Mitigation Areas [19] 10

Table 2.2 OWASP IoT Top 10 Vulnerabilities [33] ... 15

Table 2.3 Attacks to Smart Home Devices [11] ... 18

Table 3.1 Baseline Security Requirements Definition Format 44

Table 3.2 Policy Definition Format .. 53

Table 3.3 Sensor Agent Role Description ... 56

Table 4.1 Device Profile Node Descriptions .. 64

Table 4.2 Events and Analytics Node Descriptions .. 66

Table 4.3 Object-Action-Field Mapping for Analytics ... 68

Table 4.4 BDI Graph Node Descriptions .. 70

Table 4.5 Reference Knowledge Bases... 72

Table 4.6 Cybersecurity Domain Knowledge Graph Node Definitions 74

Table 5.1 Smart Home Device Listing.. 80

Table 5.2 Message "Kind" Definitions ... 84

Table 6.1 Capability Descriptions ... 110

Table 6.2 Overview of Experiment Scenarios .. 111

Table 6.3 Specifications of Devices Used in Simulation Experiment 111

Table 6.4 Response Time Thresholds (ms) ... 112

Table 6.5 Average Response Time for Agents (ms) ... 114

Table 6.6 Memory Specifications for Sample IoT Devices 116

Table 6.7 Confusion Metrics Per Set .. 118

Table 6.8 Results Per Capability ... 122

Table 6.9 Threats to Multi-Agent Systems [102].. 128

Table 7.1 Utility Goals at each Layer ... 143

xi

List Of Figures

Figure 2.1 Simple Multi-Agent System .. 23

Figure 2.2 BDI Components [53] ... 25

Figure 2.3 BDI High-Level Process Description [51] .. 25

Figure 3.1 High-Level System Architecture ... 35

Figure 3.2 BDI Hierarchy ... 39

Figure 3.3 Multi-Agent BDI Inheritance of Policy Desires 40

Figure 3.4 Data Structure Diagram ... 41

Figure 3.5 Security Requirement Example - Vulnerability Management 45

Figure 3.6 System Security States .. 46

Figure 3.7 Relational System Model .. 52

Figure 3.8 Multi-Agent System Components ... 55

Figure 3.9 Communication and Policy Enforcement .. 58

Figure 4.1 Basic graph with a relationship between two nodes 59

Figure 4.2 High-level Graph Layer Interactions ... 61

Figure 4.3 Knowledge Graph Meta Model ... 62

Figure 4.4 Environment Graph Layer ... 64

Figure 4.5 Events and Analytics Detail .. 67

Figure 4.6 BDI Agent Graph... 69

Figure 4.7 Cybersecurity Domain Knowledge Graph .. 74

Figure 5.1 Model Smart Home Environment ... 80

Figure 5.2 Implementation Architecture ... 82

Figure 5.3 Environment CPN ... 83

Figure 5.4 Agent CPN ... 87

Figure 5.5 Simulation Functions ... 88

Figure 5.6 Environment and BDI Graph in Neo4j .. 90

Figure 5.7 Model Components ... 91

Figure 5.8 Coordinator BDI Graph ... 92

Figure 5.9 Agent BDI Graph for "Update" Desire .. 94

Figure 5.10 Patching Agent Sequence Diagram ... 95

Figure 5.11 (a) update notification received as percept .. 96

xii

Figure 5.12 (b) new belief revision ... 96

Figure 5.13 (c) action is selected and performed by the agent 98

Figure 5.14 (d) request is sent to the environment round results queue 98

Figure 5.15 (e) device downloads the update ... 99

Figure 5.16 (f) action response is sent to the agent ... 99

Figure 5.17 (g) belief revision for downloaded update 100

Figure 5.18 (h) the action selected to install an update 101

Figure 5.19 (i) action response to the agent that update is installed 101

Figure 5.20 (j) belief revision that software is up to date 102

Figure 5.21 (k) "Update" desire has been achieved .. 103

Figure 5.22 Access Management BDI Graph ... 104

Figure 5.23 Agent Processing Login Request ... 106

Figure 5.24 Denied Command Execution Request ... 106

Figure 6.1 Botnet Attack Stages ... 110

Figure 6.2 Average Time Per Query (ms) .. 112

Figure 6.3 Query Time Per Request Type (ms) .. 113

Figure 6.4 Memory Utilization of Agent and Plans .. 115

Figure 6.5 Memory Size By Number of Plans .. 115

Figure 6.6 Confusion Metrics Per Set ... 119

Figure 6.7 Maximum Attack Stage Per Set .. 119

Figure 6.8 Results for Set A .. 120

Figure 6.9 Results for Set B .. 120

Figure 6.10 Results for Set C .. 121

Figure 6.11 Results for Set D .. 121

Figure 6.12 F1-Score and Capabilities per Scenario... 122

Figure 6.13 Confusion Metrics by Capability ... 123

Figure 6.14 Maximum Attack Stage Per Capability ... 123

Figure 6.15 Results by Number of Capabilities .. 124

xiii

List Of Abbreviations and Symbols

AAA Authentication, Authorization, Accounting

ABC Agent-Based Computing

ABM Agent-Based Modeling

AI Artificial Intelligence

API Application Programming Interface

ART Average Response Time

BDI Belief-Desire-Intention

CAPEC Common Attack Pattern Enumeration and Classification

CAR Cyber Analytics Repository

CIA Confidentiality, Integrity, Availability

CPN Coloured Petri Net

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DC Device Capabilities

DoS/DDoS Denial of Service / Distributed Denial of Service

FNR False Negative Rate

FPR False Positive Rate

IoT Internet of Things

IT Information Technology

MAC Multi-Agent Collaboration

MAS Multi-Agent System

ML Machine Learning

NIST National Institute of Standards and Technology

PDP Policy Decision Point

PEP Policy Enforcement Point

POMDP Partially Observable Markov Decision Process

TNR True Negative Rate

TPR True Positive Rate

1

1 Introduction

1.1 Motivation

Connected devices across the Internet of Things (IoT) are becoming more

prominent and pervasive within enterprises, industries, consumers, and hybrid

environments with varying device capabilities. Particularly within the consumer

market, smart home devices introduce a unique environment with sensitive personal

data, automation and availability requirements, limited expertise of users, and

unique security threats.

Securing IoT devices is becoming progressively more complex due to the

expanding attack surface, the volume of data, and environmental complexity.

Automation, Artificial Intelligence (AI) and machine learning are becoming

increasingly adopted in cybersecurity, where increased data sharing, indexing and

organization of knowledge and cybersecurity frameworks can be leveraged.

Adaptive cyber defence is an emerging research topic bridging the AI and

cybersecurity domains to create semi-autonomous cyber defences that can learn to

recognize and respond to cyber attacks, discover and mitigate weaknesses while

evolving over time in response to changes in attacker behaviour, system health and

readiness, and natural shifts in user behaviour [1]. Some limitations of current

works include standalone solutions that do not provide interoperability or are too

theoretical or abstract. There is a strong need for a practical framework for the

implementation of these capabilities, not only for security but also for regular IoT

services [2] [3].

While it has been an evolving subject of research for several decades, agent-based

computing is now an emerging research topic within the IoT domain with many

applications including cybersecurity. A systems approach can consider the

cybersecurity domain from the perspective of an organic system, where intelligent

agents that can perform self-healing capabilities in response to evolving threats.

Many existing multi-agent approaches have been highly theoretical or maintained

2

limited practical application, but show potential to achieve the necessary

capabilities for securing IoT devices if provided a solution to bridge the gap

between these research fields [2].

This thesis creates a modular applied framework to leverage data models, domain

knowledge, and multi-agent architecture to perform adaptive cyber defence

capabilities through contextual policy generation and enforcement. The Belief-

Desire-Intention (BDI) model is extended for behavioural modeling of agents to

perform practical reasoning and deliberation of actions in pursuit of goals.

By addressing gaps in theoretical and applied research, this framework provides a

foundation for applications in further works for simulations for adversarial learning,

optimization, scalability for new services, attack path modeling, risk analysis,

predictions, probabilistic reasoning, utility engineering and experiments, and

behavioural analysis, and can be used for testing and practical applications for

advancing cybersecurity controls.

1.2 Research Contributions

This work aims to bridge the gap between theoretical multi-agent systems research

and cybersecurity domain knowledge to provide a novel applied framework for

adaptive cyber defence that can address a wide range of challenges and provide a

foundation for significant future research in systems modeling for cybersecurity.

Cybersecurity can be modelled as a defence control problem, where autonomous

defence capabilities can be integrated into adaptive intelligent software agents.

Processes are modelled as multi-agent plans and tasks, where agents work together

to achieve common goals to defend the network. We define a multi-agent adaptive

cyber defence model within IoT smart home environments, using the BDI agents

to perform autonomous and adaptive goal-based reasoning for defence actions

enabled by cybersecurity domain knowledge graphs.

The key contributions of this thesis are as follows:

3

• Development of a multi-agent architecture for adaptive cyber defence with an

individual agent reasoning model as well as control and coordination hierarchy.

• A novel extension of the BDI model enabled by knowledge graphs for cyber

modeling based on industry knowledge bases which can be leveraged for

policy-based, adaptive agent reasoning.

The presented framework has been implemented to demonstrate the feasibility of

the architecture and evaluate the design properties through applied security use

cases. While the experimental results have demonstrated the framework applied to

IoT systems, the concept can be easily expanded to other domains. This thesis

provides the foundation to inspire future research works on agent-based solutions

for continued development, application, and optimization to support the

advancement of the industry and bring autonomous, adaptive cyber defence to

realization.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides context

into the background and review of existing literature on IoT and smart home

technologies and associated security requirements, along with a background on

agent-based modeling and multi-agent systems. Chapter 3 presents the multi-agent

architecture for adaptive cyber defence with a detailed review of each component

and design. Chapter 4 presents the data model and knowledge graphs in detail as a

foundation for the following Chapter 5, which illustrates an implementation of the

model to simulate agent control and coordination, as well as individual agent

examples for specific security use cases. Next, Chapter 6 provides the experimental

results and an evaluation of the design properties. Finally, Chapter 7 concludes the

thesis and identifies future works.

4

2 Background and Literature Review

This chapter provides a review of relevant background information and existing

research on IoT and smart home security, agent-based modeling, and multi-agent

systems. The contributions of this thesis have been inspired by a wide range of

research domains and topics, with a considerable review of literature across

adjacent fields. While our contribution sits on an intersection of a variety of topics

of considerable depth, we have positioned the contribution of our work as a unifying

framework to enable the convergence of topics. This chapter will provide the

essential background knowledge required as a prerequisite for understanding and

appreciating the model described in the following chapters.

We will begin with a brief overview of the key themes of IoT, Smart Homes,

Security, Adaptive Cyber Defense, and Agent-Based Modeling. While several of

these topics have limited relationships in the existing literature, much of our review

will highlight key works from the primary field or relate to a subset of the topics.

We will also highlight any related works bridging two or more topics.

The literature review within this chapter has been performed to analyze relevant

studies and background information with the below research questions:

• What are the characteristics and security concerns of IoT and smart homes?

• What security solutions have been proposed for smart home/IoT?

• What solutions have been proposed for multi-agent systems, BDI, reasoning,

planning, etc.?

• How have agent-based approaches been applied to IoT and security domains?

• What are the challenges and gaps?

5

2.1 IoT and Smart Home Security

2.1.1 Overview of IoT and Smart Home

The explosion of the Internet of Things (IoT) in recent years has made a prominent

impact on almost all areas of modern life [4], introducing a network of physical

devices endowed with embedded sensors and networking capabilities to enable a

vast array of pervasive services. IoT is “a global infrastructure for the information

society, enabling advanced services by interconnecting physical and virtual things

based on existing and evolving interoperable information and communication

technologies” [5]. The development of IoT and smart home solutions are driven by

advances in mobile devices, embedded and ubiquitous communication, cloud

computing, and data analytics to enable data collection, sharing and analysis in

heterogeneous pervasive networks [6]. IoT is one of the fastest growing sectors in

the technology industry, as an enabler of the intersection of numerous technology

fields to bridge opportunities into services tightly coupled with the physical world.

While insights and predictions vary across industry reports, significant investments

and expansion are expected to continue over the next decade. A recent report from

IoT Analytics has identified that the market for IoT is expected to grow to 14.4

billion active connections by the end of 2022 and to increase to 27 billion by 2025

[7]. The International Data Corporation forecasted an even more significant

increase of 55.7 billion connected IoT devices by 2025 [8]. IoT technologies are

becoming widely adopted across many industries and applications, including

supply chain, lifestyle, retail, industrial control systems, environment, emergency

services, agriculture, transportation, energy, healthcare, smart cities, and buildings

[4]. Recent trends have shown the adoption of IoT devices as a response to the

COVID-19 pandemic has introduced new opportunities for IoT in the healthcare

and home consumer industries, while there has also been an emergence of Smart

City initiatives driving the market growth, such as in the Kingdom of Saudi Arabia

(KSA) and the United Arab Emirates (UAE) [9].

Smart Home technologies are some of the most widely used and deployed

applications for consumer IoT solutions [10], which provide digital services within

6

and outside the home through a range of networked devices. Smart homes introduce

an environment where IoT exists in the context of everyday objects in homes, such

as fridges, furnaces, televisions and lighting, and allow for greater automation and

comfort of daily activities. Users can control devices such as lighting, air

conditioning, sound systems and security systems through remote interfaces such

as smartphones or virtual assistants. There may be automation, personalized, and

contextual services based on preferences or previously observed behaviour, such as

dimming the lights and turning on the television when a user sits on the couch at 6

PM. A notification may be sent to the user if a plant needs watering, or a device

may automatically water the plant. An alert can be sent to a healthcare provider if

an individual is displaying abnormal behaviour symptomatic of a health issue. The

possibilities are endless while the overall goals of smart home technologies include

increased comfort, reduced costs of energy and resource consumption, and creating

new opportunities for services within the home [10].

Smart Home Architecture

While much of the literature envisions an eventual direction for fully autonomous,

interconnected and pervasive smart home services, this vision has not yet been

prominently adopted across the industry. Hammi et al. define contemporary smart

home deployments from an industry standpoint as a network of predominantly

independent devices focused on specific tasks triggered by a schedule or controlled

through a user interface [11]. In this model, many deployments make use of a

centralized control platform such as an Intelligent Virtual Assistant (IVA) in the

form of a smart speaker or smartphone application to integrate and control multiple

smart devices across the home. Such solutions include capabilities for voice

commands and programming frameworks for third-party developers to build

applications to interact with the devices [12]. Popular solutions include Amazon

Alexa [13], Google Home [14], and Apple Homekit [15], which are compatible

with a wide range of consumer IoT devices on the market. These solutions allow

for ease of use, centralized control of multiple devices, and opportunities for

enhanced services for users.

7

As smart home and IoT environments are comprised of multiple interacting services

and components, many layered architectures have been proposed across the

literature with varying granularity and objectives. The three-layer architecture [16]

(perception, network, application) is defined below, which is sufficient to provide

an appreciation for the overall components of a general IoT deployment for the

purpose of this work:

• Perception Layer: This layer resides on the physical devices to provide

sensory and actuation capabilities to gather information and/or perform physical

actions within the environment. This has also been referred to as the Edge layer

in some models.

• Network Layer: This layer enables the transmission and processing of data

between devices across the network, including over the internet. Cloud backend

services have been consolidated into this layer. Common communication

protocols at this layer include IEEE 802.x, Near-Field Communication (NFC),

Zigbee, and Bluetooth [17].

• Application Layer: This layer provides applications and services to users and

devices based on the application type. The application layer can operate as

middleware and commonly interacts through an Application Programming

Interface (API) such as REpresentational State Transfer (REST) and Hypertext

Transfer Protocol (HTTP).

Key Characteristics and Challenges

IoT and smart home technologies maintain a set of unique characteristics and

challenges that differ from traditional Information Technology (IT) systems,

motivating appropriate design considerations along with their development, as

shown in [4].

Key characteristics of IoT technologies include interconnectivity, heterogeneity,

pervasiveness, dynamic environment, and scale [4]. Inherently, a smart home

ecosystem can consist of many interconnected heterogeneous devices across

different hardware, platforms, and protocols that communicate with each other over

a network. The sensor and networking capabilities allow the systems to collect and

8

exchange substantial amounts of data on users and the environment. With this data,

inferences can be made about user interactions to provide personalized context-

aware services and integrate with other technologies, such as smart phones and

smart watches, to improve the user experience further. In addition, smart home

technologies often make use of cloud services, where the mass amounts of data

collected are processed and stored in the cloud. This creates new opportunities for

providing valuable services to users but also requires capabilities for secure and

effective management of personal data.

Key challenges for the implementation of IoT and smart home services include

resource limitations, interoperability, reliability, data volume and sensitivity [4],

[18], [19] due to resource constraints on devices, sensitivity and volume of data

collected, and requirements for connectivity. Resource constrained devices must

consider lightweight applications due to potential power, storage, bandwidth, and

memory limitations. Availability and ease of use are additional key considerations

in smart home deployments, aligned with the primary objective of providing

convenient services to users. Solutions should be straightforward to users and

provide real-time services as needed [10], [20].

The characteristics of IoT technologies affect cybersecurity and privacy risks in

unique ways that differ from traditional IT devices as defined by the National

Institute of Standards and Technology (NIST) [19] below:

1. Many IoT devices interact with the physical world in ways conventional IT

devices usually do not.

2. Unlike conventional IT devices, many IoT devices cannot be accessed,

managed, or monitored.

3. The availability, efficiency, and effectiveness of cybersecurity and privacy

capabilities are often different for IoT devices than conventional IT devices.

With these characteristics in mind, the following sections elaborate on the

cybersecurity challenges, requirements, and proposed solutions in the literature.

9

2.1.2 Security Requirements and Guidelines

Industry Standards and Regulation

Along with the vast opportunities introduced by IoT, there are increasing concerns

across the industry, governments and consumers regarding the privacy and security

of these technologies. Limitations associated with the security, integrity, and

privacy of connected devices have been identified as an inhibitor to growth and

adoption [9]. From an IoT solution provider's perspective, security is often

deprioritized due to complexity, time-to-market pressure, or lack of knowledge

[21]. A well-defined framework and standard for an end-to-end IoT application are

unavailable due to the diversity of protocols, technologies, and devices involved.

The industry has been challenged to balance the trade-offs between cost-

effectiveness, security, reliability, privacy, and other factors [10].

However, the escalating risk of IoT threats has caught the attention of governments

and regulators internationally, with several notable developments in recent years.

In September 2015, the Federal Bureau of Investigation (FBI) issued its first public

service announcement stating that “the Internet of Things poses opportunities for

cyber crime” in the United States [22], indicating that insufficient security

capabilities and complications with patching devices open opportunities for

attackers to exploit IoT device weaknesses. Following the Mirai botnet attacks in

October 2016, concerns about cyber threats to IoT gained increasing attention,

when the US Department of Homeland Security in collaboration with NIST

released a report on Strategic Principles for Securing the Internet of Things [23]

which further identified the need to prioritize the security of IoT devices. Another

public service announcement by the FBI in 2018 brought attention to cases where

“Cyber Actors Use IoT Devices as Proxies for Anonymity and Pursuit of Malicious

Cyber Activities” [24]. Most notably, in 2021, the United States issued an executive

order on “Improving the Nation’s Cybersecurity,” which, among other items,

directed NIST to initiate a pilot program for cybersecurity product labeling to

educate the public on the security capabilities and requirements for IoT devices

[25].

10

This directive to NIST followed a series of existing works by the organization on

the evolution of cybersecurity requirement definitions. In 2019, NIST published

NISTIR 8228 Considerations for Managing Internet of Things Cybersecurity

Privacy Risks” [19], which provides a reference for organizations to better

understand and manage cybersecurity and privacy risks associated with IoT

devices. Three high-level risk mitigation goals have been defined as protecting

device security, data security, and individuals’ privacy. For each of these goals, a

set of risk mitigation areas have been proposed in Table 2.1 below. Following this,

NISTIR 8259A [26] issued a set of IoT security core baseline capabilities in 2020

which were strongly aligned with the identified risk mitigation goals. The work has

continued in response to the executive order, and NIST published a recommended

criteria for cybersecurity labeling for consumer IoT Products [19] in February 2022,

reflecting the capabilities defined in NISTIR 8259A. Our proposed model

references these capabilities and will be further expanded in Chapter 4.

Table 2.1 NIST 8228 IoT Cybersecurity Risk Mitigation Areas [19]

Risk Mitigation Goal Risk Mitigation Areas

Goal 1: Protect Device

Security
• Asset Management

• Vulnerability Management

• Access Management

• Device Security Incident Detection

Goal 2: Protect Data

Security
• Data Protection

• Data Security Incident Detection

Goal 3: Protect Individuals’

Privacy
• Information Flow Management

• Personal Identifiable Information (PII)

Processing Permissions Management

• Informed Decision Making

• Disassociated Data Management

• Privacy Breach Detection

Outside of these initiatives, other notable organizations are contributing to the

enablement of security within IoT devices. For example, the IoT Security

Foundation [27] is a non-profit organization established to promote security efforts

for IoT by providing a mechanism for sharing knowledge, best practices and advice.

The IoT Security Foundation’s guide entitled “Establishing Principles for Internet

11

of Things Security” outlines several security best practices, including designing

with security in mind from the beginning, offering appropriate protection for all

potential attack surfaces (i.e., device, network, server, cloud, etc.), managing

encryption keys securely, verifying the integrity of software, using a hardware-

rooted trust chain, applying authentication and integrity protection to data,

identifying and revoking compromised or malfunctioning devices, isolating data

where applicable, and ensuring device metadata is trusted and verifiable.

Security Requirements

Balancing the need for security and privacy with the characteristics and challenges

of the unique architecture of a smart home proves to be a challenging task.

Nevertheless, there have been several common security requirements defined in the

literature, primarily aligned to the Confidentiality Integrity and Availability (CIA)

or Authentication Authorization and Accounting (AAA) models common to

traditional security paradigms [21], [28], [29]. The key security requirements of

smart home applications include confidentiality, integrity, availability, privacy, and

authentication.

While smart home devices can collect large volumes of personal data, preserving

the confidentiality and privacy of this data is critical. Additionally, authentication

mechanisms to restrict access to unauthorized users are also required to protect the

data and access to devices within the home. Smart home systems themselves are

also dependent on the integrity of data received from sensors to provide appropriate

services. The requirement for availability and convenience to users is of the utmost

importance in the smart home, as countering this with stifling security controls

would defeat the purpose. For these reasons, a lightweight solution is required for

maintaining the security of masses of data collected from lightweight endpoints

while embracing the functionality goals of the smart home by appearing seamless

to the user. Although the goal of the smart home is automation and convenience,

the management of device security must be also straightforward for users.

Smart home technologies include sensors, monitors, interfaces, appliances, and

devices networked together to enable automation as well as localized and remote

12

control of the domestic environment. The volumes of sensor data across a variety

of sources, in combination with usage patterns and other inferred information, are

growing significantly and introduce new assets that need to be protected. As more

data can be collected from the smart home environment, the home is able to provide

more customized services. Sensor data can be collected from a variety of inputs

such as a microphone, camera, accelerometer, and thermometer. Data available to

smart home systems can be of volunteered, observed, or inferred types. Volunteered

data is explicitly provided through the user in terms of profile preferences.

Observed data is collected through sensors such as microphones or usage data.

Finally, inferred data refers to information that has been correlated between

volunteered and observed data, such as what time a user is likely to return home

based on previous usage patterns. Users may be unaware of observed or inferred

data that is collected and stored by the system, and this information can become

very personal, such as behaviour and life patterns.

Due to the personal value of the data collected and retained by smart home systems,

such data can be a target for attackers for a variety of reasons. As sensors are

integrated into “things'' within the household, collected data can frequently be

equated to physical observations, which can be further correlated with information

collected from other sensors and sources. As IoT and smart homes are typically

connected, other devices on the network, including smartphones and wearable

devices, can interact with each other and share data. This makes it possible for

further correlation across devices and for the data to be shared externally.

Information collected can become increasingly intimate, such as health

information, and can be correlated with data collected from other devices for further

context extraction. Therefore, the privacy of all individuals within the home is at

risk, including children who may be the primary users of some IoT technologies in

the home, such as smart toys and social robots.

The physical nature of smart homes also introduces physical safety risks [30] since

compromised home automation systems might be in control of devices such as door

locks, health systems or furnaces. Smart home IoT devices may also be movable or

13

located in sensitive locations, which further raises the severity of security concerns

beyond the traditional digital model. Furthermore, the technology limitations

implicit in the nature of IoT devices in smart homes introduce new vulnerabilities

and attack vectors for potential intrusion into the home network. Although the

compromise of a smart light bulb may not pose immediate risk aside from turning

it on or off, if access to the light bulb allows an attacker to connect and gain control

of other devices on the internal network (i.e., lateral movement and escalation of

privileges), there are far greater risks.

2.1.3 Common Vulnerabilities and Attacks

Common Vulnerabilities

The technology in IoT and smart homes introduce new challenges to security,

differing from traditional computing architectures. These challenges include low

processing power and storage available to IoT endpoints leading to a lack of

adequate endpoint security and encryption. Further, software loaded on devices is

often outdated. Palo Alto’s Unit 42 reported that the general security posture of IoT

devices is declining, leaving organizations vulnerable to new IoT-targeted malware

as well as older attack techniques [31]. The report further indicated that 98% of all

IoT traffic is unencrypted, and 57% of IoT devices are vulnerable to medium or

high-severity attacks, making them a convenient target for attackers. Low patching

rates encourage opportunities for the exploitation of long-known vulnerabilities,

while many attacks also focus on attacks on default passwords or legacy protocols.

One study found that software components of home routers were often four to five

years older than the device [32]. Patching or software upgrades are often not

possible or are rarely applied, while many IoT devices do not have mechanisms for

automated updates. The data is often most vulnerable at the sensor/collector level

and when it is in transit at the edge of the network to the cloud. For this reason,

endpoints need to be hardened as much as possible, and network communications

should be made secure. Internet-facing devices with insufficient authentication,

default passwords or other vulnerabilities such as cross-site scripting or code

injection create further opportunities for unauthorized external access [33].

14

Smart homes in particular consist of an array of appliances that can be static or

mobile, each with different security concerns while the large volume of devices

creates an increased threat vector. Static devices are often large and are not intended

to move around, such as a smart fridge or furnace. Many home appliances

exceedingly long lifespans, such as refrigerators and televisions, which are likely

to go without firmware updates, exposing them to threats associated with unpatched

vulnerabilities. Some devices are more dynamic and likely to be moved around,

either independently or with a user, possibly in and out of the home network.

Mobile phones, wearable devices, and smart phones fall into this category. These

types of devices are exposed to external threats outside of the home and may

connect to unsecured external networks and expose the devices to external threats.

While these devices take the form of traditional home items and appliances, users

tend to have higher levels of trust and are perhaps unaware of the capabilities of

these devices if they are abused through security breaches [34]. The complex

network of devices from multiple vendors and standards presents further difficulty

in achieving a unified approach for security across all devices in the smart home.

With the rise in the number of connected devices which may be available in a smart

home soon rivaling the number of devices in a mid-sized company, users are faced

with the complexity of managing all of these devices without the assistance of

sophisticated enterprise security tools or staff to monitor or respond to attacks. Each

additional device introduces a new potential threat vector into the home network,

which is only as secure as its weakest link.

Often the product development and support structure between third-party

manufacturers and suppliers are not conducive to a healthy security posture. With

a large number of heterogeneous devices and layers involved in providing end-to-

end IoT services, there is usually no one entity responsible for security.

Manufacturers may not integrate security into the software development lifecycle,

focusing only on functionality. The limited processing and memory resources on

the devices also inhibit security solutions from being run on the devices. Third-

party manufacturers often do not monitor for vulnerabilities in their old systems or

provide updates or support for old models, focusing mainly on the development of

15

future models. Finally, another line of defence is the capabilities of the users

themselves to implement security controls and configurations within their own

networks. For a common user with limited technical knowledge, this is often

overwhelming or not considered.

Across the different layers of an IoT and smart home architecture, different

vulnerabilities can exist. Several notable contributions have been to the literature,

including surveying existing works and mapping security and privacy issues to

layered architectures. Deep et al. comprehensively study security and privacy issues

across the 4-layered (perception, network, middleware, application) IoT

architectures [28]. Another survey by [10] identified threats across the 5-layered

architecture. HaddadPajouh et al. [17] on the 3-layered architecture. Verma et al.

present a survey of Denial-of-Service (DoS) and Distributed Denial-of-Service

(DDoS) attacks on IoT devices [29].

A final contribution of note is the Open Web Application Security Project

(OWASP) IoT Top 10 [33], which is a commonly referenced listing of the top

vulnerabilities found within IoT devices, described in Table 2.2 below. This listing

shows the most predominant vulnerabilities within IoT devices, which also apply

to smart homes and are commonly exploited by malicious actors.

Table 2.2 OWASP IoT Top 10 Vulnerabilities [33]

Vulnerability Description

1. Weak, Guessable, or

Hardcoded Passwords

Use of easily brute forced, publicly available, or

unchangeable credentials, including backdoors or client

software that grants unauthorized access to deployed

systems.

2. Insecure Network

Services

Unneeded or insecure network services running on

the device itself, especially those exposed to the

internet, that compromise the confidentiality,

integrity/authenticity, or availability of information

or allow unauthorized remote control.

3. Insecure Ecosystem

Interfaces

Insecure web, backend Application Programming

Interfaces (API), and cloud or mobile interfaces in

the ecosystem outside the device allow a

compromise of the device or its related components.

Common issues include a lack of

16

authentication/authorization, lacking or weak

encryption, and a lack of input and output filtering.

4. Lack of Secure

Update Mechanism

Lack of ability to securely update the device. This

includes a lack of firmware validation on a device, a

lack of secure delivery (un-encrypted in transit), a

lack of anti-rollback mechanisms, and a lack of

notifications of security changes due to updates.

5. Use of Insecure or

Outdated

Components

Use of deprecated or insecure software

components/libraries that could allow the device to

be compromised. This includes insecure

customization of operating system platforms and the

use of third-party software or hardware components

from a compromised supply chain.

6. Insufficient Privacy

Protection

Users’ personal information is stored on the device

or in the ecosystem that is used insecurely,

improperly, or without permission.

7. Insecure Data

Transfer and Storage

Lack of encryption or access control of sensitive

data anywhere within the ecosystem, including at

rest, in transit, or during processing.

8. Lack of Device

Management

Lack of security support on devices deployed in

production, including asset management, update

management, secure decommissioning, systems

monitoring, and response capabilities.

9. Insecure Default

Settings

Devices or systems shipped with insecure default

settings or lack the ability to make the system more

secure by restricting operators from modifying

configurations.

10. Lack of Physical

Hardening

Lack of physical hardening measures, allowing

potential attackers to gain sensitive information that

can help in a future remote attack or take local

control of the device.

Attacks on IoT and Smart Home Devices

Common attacker motivations for targeting smart home devices can vary from

targeted attacks on homeowner's physical safety, privacy, or disruption to

opportunity-based attacks assimilating vulnerable devices into a botnet aimed

toward another target. Threats to users’ physical safety can be enabled by

vulnerable devices, while home burglaries have increased after the deployment of

home automation systems which have been used to determine the behavior and

presence of residents [10]. Financial loss, physical damage, or service disruption

can be incurred by remotely targeted appliances such as smart washing machines,

17

faucets, or thermostats, and potentially at communities on a larger scale to target

the power grid [11]. Further, while IoT devices can be the weakest link in a network,

seemingly innocuous devices such as smart light bulbs or door locks can be

exploited as an entry point into a user’s network to obtain more lucrative objectives

[10].

Current trends indicate a rise in security issues related to IoT over the past few

years, with industry predictions showing a continuous upward trend. Mandiant

predicts continued growth of the IoT device attack surface in 2022 and beyond,

with the potential for serious impact as defenders struggle to keep up with no

coordinated security initiative for IoT devices [35]. Publicized attacks and

vulnerabilities illustrate the troubling state of security threats to consumer IoT

devices over the past few years. Countless examples exist including hacked smart

fridges exposing gmail credentials [36], vulnerabilities allowing unauthorized

access to baby monitors [37] and smart locks [38] [39], and smart kettles leaking

WiFi passwords [40].

The most impactful attacks on IoT devices in recent years have been related to the

Mirai botnet and its variants. First active in 2016, the Mirai botnet exploited the

widespread use of default credentials across millions of internet-facing IoT devices.

The exploited devices were weaponized to perform large-scale DDoS attacks

directed at high profile targets. An attack on the major Domain Name System

(DNS) provider, Dyn, in October 2016 resulted in extreme service disruption to the

majority of the U.S. east coast for several hours, with a downward impact on

numerous major services such as Twitter, Netflix, and Reddit [41]. Although the

end target of these DDoS attacks is not IoT devices, IoT devices such as Digital

Video Recorders (DVRs), webcams, and other appliances are effectively being used

as a tool for mass impact on greater targets. IoT botnets are one of the biggest threats

to internet stability, and risk is expanding as more devices are created. These

implications could be devastating as targets could shift to hospitals or critical

systems. With the success of Mirai in achieving attacker objectives, similar variants

of this malware have continued to evolve over subsequent years, moving from

18

exploiting credentials to additional vulnerabilities. In 2022, Mirai variants such as

beast mode and BotenaGo continue to target millions of routers and IoT devices

with various exploits [42], [43].

Based on a survey by Hammi et al. [11], a summary of the major types of attacks

on smart home devices is shown below in Table 2.3 according to the layer that is

targeted, while some attacks can occur on multiple layers:

Table 2.3 Attacks to Smart Home Devices [11]

Layer Attack

Device • Physical node compromise

Network • Scanning attack

• Message forging or substitution attack

• Message replay attack

• Sybil attack

• Spoofing attack

• Eavesdropping

Application • Default/hardcoded passwords

• Malware/botnet

• Compromised or over-privileged applications

Multiple Layers • Denial of Service (DoS)

• Adversarial machine learning

2.1.4 Security Solutions

Along with the prominent threats to IoT devices, contributions to the literature on

IoT security solutions have been abundant. This section provides an overview of

key themes and notable directions in this area.

To address common concerns with the lack of standardization across IoT

architectures, the authors of [21] propose that security patterns could help address

security concerns by providing reference architectures. However, current

architectures focus on general system issues or specific domains and do not address

specific technical concerns, and the majority of the works surveyed focus on a

specific capability. Key themes of IoT security solution literature fall into the

19

categories of intrusion detection systems, confidentiality, authentication or

authorization systems, and DDoS protection solutions. Further, many works

focused on emerging technologies such as blockchain, Artificial Intelligence (AI),

Machine Learning (ML), and edge/fog/cloud solutions.

Intrusion detection systems, particularly at the network level, have been a

prominent area of focus in the literature to relieve end devices of resource

constraining tasks. Much of the literature makes use of AI or ML solutions for

statistical analysis or anomaly detection to detect threats within network traffic [11].

GHOST [44] is a notable initiative funded by the European Union Horizon 2020

Research and Innovation Programme, which aims to increase the level and

effectiveness of automation of existing cybersecurity services and enhance the self-

defence of home IoT environments. The solution focuses on usable and transparent

security, and presents a vendor agnostic reference architecture that is embedded in

a smart home network gateway. Advanced packet flow analysis with self-learning

capabilities is used to generate user and device profiles for automated real-time risk

assessment, while users are provided with visualization of data analytics to

understand their system's security status as well as mitigation guidelines. This

solution as well as others are focused heavily on centralized models, however, they

maintain limited view or interaction with devices directly

Confidentiality/authentication/authorization systems must consider key

challenges to IoT devices, including bandwidth and low power consumption,

complexity, sensing, and the requirement for lightweight solutions, as indicated by

Deep et al. [28]. The authors elaborate that there is no common mechanism to apply

security to resource-constrained devices, and lightweight solutions are a future

research direction for services such as key management, authentication,

authorization, and access control. Hardware-based lightweight cryptographic

solutions have also been recommended as a solution for the security of data at rest

within devices [20].

DDoS solutions for prevention, detection, response and mitigation techniques,

including filtering, honeypots, signature and anomaly-based detection, and others,

20

are presented in [29]. The authors also identify open research problems for IoT

DDoS protection, including functionality, deployment location, cost of the solution,

scalability, specificity, accuracy rate, and false positives/negatives.

Emerging trends in the areas of fog and edge computing, AI and ML, and

blockchain technologies have been identified across several works as showing

promising solutions both integrated and independently [20]. However, there are still

several open challenges and security issues with these technologies as a continued

area of research [10].

• Fog and Edge computing have been identified in much of the literature as an

enabler for processing large volumes of data securely and efficiently not only

for regular IoT services but also for security services [28].

• Artificial Intelligence and Machine Learning techniques introduce

opportunities for the detection of malicious or anomalous behaviour across

large datasets. Many solutions have been proposed at the network or cloud level,

but some more lightweight solutions can also be applied within edge devices to

detect threats at run-time [28].

• Blockchain technologies have also been an emerging area for security solutions

to IoT based on their decentralized architecture, the ability for pseudonymity,

and the security and integrity of transactions [28].

Automation and Integration: With the increasing complexity of the expanding

attack surface, trends in enterprise security solutions have been moving towards

automation and integration of layered defences to reduce manual workload,

detection and response times for protection against security threats. Extended

Detection and Response (XDR) is a SaaS-based security threat detection and

incident response solution that integrates, correlates, and contextualizes data and

alerts from multiple sources [45]. This combines telemetry from other security tools

such as endpoint detection and network analysis for more accurate detections and

simplified visibility and response. XDR can integrate Security Orchestration,

Automation and Response (SOAR) capabilities, which have also been increasingly

adopted independently of XDR. Researchers at Johns Hopkins University, in

21

collaboration with the US Department of Homeland Security (DHS) and the

National Security Agency (NSA), have developed a framework and strategy for

Integrated Adaptive Cyber Defence (IACD) [46]. The IACD provides guidelines,

playbooks and workflows for SOAR implementation in combination with

automated threat intelligence information sharing communities to improve

response time and maintain adaptive defences in response to evolving threats.

While these solutions are designed for enterprise environments, the benefits of

automation and integrated security capabilities can be considered for a consumer

environment where maintaining secure systems with low user interaction is a strong

requirement.

As we conclude our coverage of the background defining the characteristics of IoT

and smart home technologies, along with the security considerations and current

solutions in the literature, the following section will introduce the concepts of multi-

agent systems as a foundation of our proposed solution. In addition, it will also

build on the case for the unification of these concepts into an adaptive cyber defence

system for smart home devices.

2.2 Multi-Agent Systems

Agent-based systems have been a topic of extensive research for several decades.

While the focus in this area of research seems to have slowed down, challenges

with the practical application of a traditionally academic field, as well as limited

tools and knowledge, have limited the barrier to agent applications [47]. However,

the field is once again gaining increased interest with the expansion of IoT

technologies presenting characteristics that are aligned with agent systems [3].

There have been some notable contributions in recent years to agent research in the

fields of IoT, security, and in some cases, an intersection of these topics.

This section will provide a background on the preliminaries of agent-based

modelling and multi-agent systems and present a review of the relevant literature

in applications to the IoT and cybersecurity domains.

22

2.2.1 Agent-Based Modeling & Reasoning

Agent-based modeling (ABM) is a method of modeling systems composed of

autonomous decision-making entities, known as agents, interacting with each other

and their environment [48]. Agents execute actions based on a set of rules and often

operate within an environment with other agents, known as Multi-Agent Systems

(MAS), as shown in Figure 2.1. ABM has been used to simulate complex

decentralized systems of autonomous agents to predict global system outcomes

based on local interactions. In the biological world, this can be observed within the

flocking behaviour of birds, movements of schools of fish, or waves in water. These

concepts have also been applied to social network modeling, economic modeling,

and market analysis, while more recently has been extended to the areas of IoT and

AI.

An agent-based model consists of three basic elements: agents, relationships, and

the environment [49], as defined below. The rules for how agents make individual

decisions and interact with each other are formally defined in the model.

• Agent: An agent is an autonomous entity that makes decisions and actions

based on a set of rules based on independent goals and perceptions.

• Environment: The physical or logical environment is shared by all agents in a

system and contains artifacts that can be perceived and impacted by the actions

of the agents.

• Relationships: The rules through which agents interact with each other, work

together, or resolve conflicts.

23

Figure 2.1 Simple Multi-Agent System

Intelligent agents also exhibit additional properties of reactivity, proactiveness, and

social ability. A reactive agent is able to sense its environment and perform an

action in response. Proactive agents display goal-oriented behaviour and will

actively perform actions to reach a pre-defined goal. The social ability of agents

allows them to interact with other agents to achieve their goals through cooperation

or negotiation. For example, Macal and North [49] identify the following properties

exhibited by intelligent agents:

• Autonomy: Discrete entity with attributes, behaviors and decision-making

capability, and Independent and self-directing functionality.

• Decision-making ability: Rules to define agent behavior and decision-making.

• Sociality: The agent’s ability to interact with other agents in the system through

interaction protocols for mechanisms such as collision avoidance, agent

recognition, communication and information exchange.

• Conditionality: A state consisting of a set or subset of the agent’s attributes or

behaviors.

Agents may also exhibit the following additional properties:

• Goal-Oriented: Possessing explicit goals to drive behaviour.

• Adaptability: Ability to learn and adapt behaviors based on past experiences.

The practical reasoning and decision-making ability of an agent is central to the

operation of the system. Our research makes use of the BDI model for this purpose.

24

Further, there are various architectures that agents can follow for control models

and shared resources, particularly in the case of collaborating agents, which will be

described in the following section.

Belief-Desire-Intention (BDI)

The BDI model, originally developed by Bratman [50], is used for behavioural

modeling of agents to perform practical reasoning and the process of deciding what

actions to perform to reach a goal. In this architecture, agents receive sensory input

through perceptions that influence their beliefs and implement their intended

behaviours (intentions) to achieve desired states based on these beliefs, as

illustrated in Figure 2.2. The components and functions of BDI can be modeled as

per below [51]:

• Percept Pn = {p0, p1, …, pn} represents a set of perceptions p taken as input by

agents.

• Beliefs Bn = {b0, b1, …, bn} represents a set of the information b maintained by

the agent on its internal state and the environment states, updated according to

each perception p.

• Desires Dn = {d0, d1, …, dn} represents a set of the agent’s goals to be

achieved d, including properties and costs associated with each goal.

• Intentions In = {i0, i1, …, in} represents an action plan providing a set of states

i the agent intends to bring about. The set of intentions must be consistent and

not contain any conflicts.

• Belief Revision Function BRF(pn,Bn) → Bm takes a perceptual input pn and the

agent’s current belief set Bn, and determines a new set of beliefs Bm. Belief

revision can include the following [52]:

o Expansion: a new sentence bn+1 is added to the belief set B.

o Revision: a new sentence bn+1 that is inconsistent with a belief set B is

added, but to maintain consistency with the resulting belief set, some

old sentences are deleted.

o Contraction: some sentence b is retracted from belief set B without

adding any new artifacts.

25

• Option Generation Function OPG(Bn,In) → Dn determines the possible

alternatives (desires) available to an agent-based on its current beliefs and

intentions.

• Filter Function FIL(Bn,Dn,In) → In determines a consistent set of intentions

based on the agent’s current beliefs, desires and intentions.

• Action Selection Function ACT(Bn,In,) → {a0, a1,…,an} implements means-

ends reasoning to map the current set of beliefs B and intentions to a sequence

of actions a.

Figure 2.2 BDI Components [53]

The high-level process of the BDI model is described below in Figure 2.3. It is

important to note that the BDI model does not account for dynamic plan generation

and instead depends on a predefined plan database. While this approach is

commonly static and has limitations to scalability and adaptation to evolving

collections of knowledge, we expand on this approach by introducing a novel

integration with knowledge graphs in Chapter 4.

B := B0;

I := I0;

while true do

 get next percept p;

 B := BRF(B,p);

 D := OPG(B,I);

 I := FIL(B,D,I);

 N := PLN(B,I);

 execute()

end while

Figure 2.3 BDI High-Level Process Description [51]

26

Related Works

There have been many research works in extending the original concept of BDI,

particularly to adapt to the concept of dynamic environments. While the limitations

of BDI do not allow for dynamic goal deliberation, Pokahr et al. [54] present an

enhanced BDI architecture for allowing goal deliberation at any point in time.

Males and Ribaric [55] model an extended BDI agent with autonomous entities.

Peng et al. [56] extend the BDI model with norms, policies and contracts. Shaw and

van der Poel [57] propose genetic algorithms as a mechanism for re-planning in

BDI agents. Lastly, Buford et al. [58] extend BDI for situation management,

following the steps of event correlation, situation recognition, plan deliberation,

plan instantiation and intention execution.

In environments where uncertain or incomplete sensor information is collected, it

can be difficult for BDI agents to make appropriate plans. For example, Calderwood

et al. [59] present a framework using Dempster-Shafer theory for a contextual

merging of data for better informed plan selection in Supervisory Control and Data

Acquisition (SCADA) systems. In terms of recent applications, BDI has been used

for multi-agent modeling of fire detection in coal mines using wireless sensor

networks [60] and pervasive surveillance sensor management architecture [61].

Melgoza-Gutierrez et al. [62] propose a collaborative learning protocol to share

decision trees over vertically partitioned data. In a comparison of results with a

centralized approach based on Weka, there was not a significant difference in

accuracy, although the centralized approach showed faster time due to the reasoning

cycle of each agent.

For agent-based development, the Java Agent Development Framework (JADE)

has been highlighted as a Java-based platform often used in conjunction with the

BDI model (BDI4Jade). Jason is an agent-oriented java-based programming

language based on AgentSpeak, which is an agent-oriented programming language

for based on logic programming and the BDI architecture for autonomous agents.

These frameworks and languages have been researched in development of our

27

implementation, however a custom solution has been developed for the purpose of

this work to better fit our use case and extended capabilities.

2.2.2 Multi-Agent Collaboration

Multi-Agent Collaboration (MAC) involves the collaboration between multiple

agents through predefined protocols to achieve a common goal. Multi-Agent

collaboration goes beyond the concept of agents with independent goals,

introducing shared goals across the system. In this model, the distributed nature

allows for resiliency if an agent is lost or compromised. Traditional service-oriented

architecture does not follow this concept. With a large number of agents all

attempting to access the same central resource, this introduces a bottleneck and

single point of failure. This collaboration occurs as a system initiative where agents

operate in the background to achieve goals, ultimately decided by the user (user

initiative) through an interface (i.e., the user is able to configure their security

preferences). In addition to BDI, which is relative to an individual agent, a

collaboration between agents also requires the establishment of joint intentions,

shared plans, and planned team activity. Three theories of multi-agent collaboration

as defined by Wilsker [63]:

• Joint Intentions: commitment to act in a certain mental state. When an agent

adopts a notion not shared by the rest of the team, the agent must communicate

the belief to the rest of the team.

• Shared Plans: shared responsibility towards other team members and

performing individual actions for the achievement of goals and explicit

communications requirements.

• Planned team activity: forming teams of agents to coordinate actions and

tasks.

Organizational Structure

The organizational structure of a multi-agent collaborative system could hold the

following:

28

• Shared or partially shared perception/resources: the perception of one agent

is shared or partially shared with the other agents for a shared knowledge base.

• Distributed and shared tasks and results: complex tasks are broken into

smaller parts and coordinated amongst agents. For example, cooperative

distributed problem-solving can share resources amongst agents to complete a

task quicker or more efficiently.

• Synthesizing agents: when a requirement is an input to a task environment, an

agent can be automatically generated that will succeed in the environment.

• Handling inconsistency: the system must be prepared to deal with inconsistent

beliefs or goals of agents and have a method for conflict resolution.

From the perspective of security, agents can have different responsibilities for

security tasks in the smart home environment, breaking up large tasks such as

scanning into smaller coordinated tasks amongst agents.

Collaboration Mechanisms

Regarding multi-agent collaboration, [63] studies multi-agent collaboration

theories, including joint intentions, shared plans and planned team activity. Stergiu

et al. [64] propose an XML policy-based framework for managing and modeling

social interaction among agents. The framework includes roles, relationships,

conversation patterns, and cooperation patterns for agent collaboration and is

compatible with BOID (beliefs, obligations, intentions, and desires – an extension

to BDI). The framework is implemented using JADE and can be used for peer-to-

peer agent communication or agent-management services.

Further, multi-agent systems introduce a problem of decision classification. Xiao et

al. [65] explore an effective solution to the multi-agent decision classification

problem with a learning processing using Support Vector Machines (SVMs). Uhm

et al. [66] propose a multi-agent system architecture for providing context-aware

services in a smart home. This architecture uses an ontology-based context model

and rule-based reasoning engine to identify the context of an environment and

resolve conflicts between entities to provide context-specific services. The

performance evaluations found that the ontology-based model offered better query

29

response time than the ontology and rule-based combined to provide faster and

more convenient services within the home. MAC architectures have been applied

to smart grids and home energy systems by Kang et al. [67].

2.2.3 Applications in IoT

The common characteristics of complex, dynamic autonomous systems between

IoT and agents have inspired a recent interest in the convergence of technologies in

recent years. Agent-based computing (ABC) has been acknowledged as a

comprehensive, effective enabler for cooperating, decentralized, dynamic, and open

IoT systems [3], and further supports the vision that “research in the IoT is expected

to shift from intelligent objects to objects with a real social consciousness” [68].

Sevaglio et al. present a comprehensive survey of state-of-the-art research in agent-

based IoT, which indicates a strong conceptual alignment between IoT

development requirements and (multi-)agent systems benefits, which has been

exploited to drive and speed up the development of IoT systems. In particular, the

survey identifies ABC as a promising paradigm for modeling, programming, and

simulations of IoT environments [3] as further described below:

• IoT Modeling: the agent model naturally embeds IoT autonomic, proactiveness

and situatedness, among other features which can be explicitly described

through agent-related concepts.

• IoT Programming: agent-oriented programming approaches support uniform

interfaces for heterogeneous resources and protocols, providing technical and

syntactical interoperability of devices, as well as semantic operability by means

of shared ontology and knowledge representation.

• IoT Simulation: agent-based simulation can enable verification and validation

of individual and system-level emergent behaviours, protocols and performance

of complex deployments of IoT ecosystems. These simulations can be further

enhanced to integrate evolutionary game theory concepts to analyze cooperative

patterns, dynamic processes, and macro emerging actions in the IoT scenario.

A notable approach to agent-based solutions within IoT integrates the use of

microservices. Kravari et al. [68] introduce further commonalities of characteristics

30

between IoT, multi-agent systems, and microservice architecture due to their

distributed, autonomous, collaborative and goal-oriented nature. The authors apply

this approach through a novel reputation-oriented trust model to support the

challenge of intelligence and trustworthiness of IoT, using reputation estimation

based on social principles, microservices combined with learning and adoption

properties, and a distributed locating mechanism based on social graphs and peer-

to-peer networks. Further, Rafalimanana et al. [69] adopt a collaborative agent-

based approach to create a link between artificial intelligence and services

choreography in IoT. The authors pair BDI-agents with Representational State

Transfer (REST) service technologies to exploit the agent capabilities as a service.

Agent-based approaches have also been applied to smart home environments, as

illustrated by [70], where “In the home environment, computer software that plays

the role of an intelligent agent perceives the state of the physical environment and

residents using sensors, reasons about this state using AI techniques, and then takes

actions to achieve specific goals”. There are several approaches to designing IoT

architecture in a smart home environment, as defined by Roman et al. [71]:

• Centralized: A centralized architecture connects the service to the user

directly.

• Collaborative: The IoT architecture consists of intelligent entities that

exchange data.

• Connected Intranets: segregated intranets connect to a central entity, with the

possibility of also connecting to each other depending on the configuration.

• Distributed: All entities can retrieve, process, combine and provide

information or services to other entities.

Hilal et al. [61] propose an agent-based sensor management architecture for

pervasive surveillance to support the coordination of sensor nodes and maintain

situational awareness of the environment. The approach combines the advantages

of holonic, federated, and market-based coordination architectures and models each

node as an intelligent sensor using BDI. The architecture aims to address the design

goals for scalability, flexibility, structured control, localized operation, and

31

distributed autonomy within the system. It demonstrates higher effectiveness when

compared with a centralized approach.

Holonic architectures have been a notable approach to the organization and

collaboration of distributed multi-agent systems to achieve shared objectives. Ye et

al. [72] provide a model for multi-agent holonic architecture for wireless sensor

networks, including communication models, control and decision-making

capabilities, and self-organization. Further, Pazzi et al. [73] adopt a holonic-model

for cyber-physical systems, which provides modularity and hierarchy to control

physical nodes while addressing the complexity of decomposing feedback loops,

maintaining distributed invariants, and maintaining ongoing interactions with

controlled entities.

2.2.4 Applications in Security and Adaptive Defence

A notable survey connecting the concepts of cybersecurity, intelligent agents, and

IoT is provided by Coulter et al. [2], who identify that “the structure of an IoT

environment sees communication and cooperation across many different system

levels, while the evolution of computing structures requires adaptive and self-

adaptive technologies to maintain affordable security.” The authors illustrate the

motivation for addressing the outdated integration of these domains for autonomous

defence and discuss applications within the intrusion detection domain. A

distributed agent model enables higher level reasoning through the network, where

defence transcends independent layers and is achieved as a collective effort through

knowledge-sharing and coordination. Further, the authors suggest that reflex and

state agents can better utilize the benefits of machine learning through a more

individualized approach to rule construction and state training. While goal, utility,

and learning agents can benefit from natural, nature-inspired approaches.

Recent efforts of the North Atlantic Treaty Organization (NATO) to develop an

Autonomous Cyber-Defence Agent (AICA) reference architecture [74] have been

the most significant development in the literature toward an autonomous agent

system for cyber defence. Although it has been developed independently of our

work, we have found that it is very much aligned with our vision at a conceptual

32

level. While not specific to IoT or BDI agents, the focus of NATO’s work is to

enable future defence actions on largely autonomous military assets where human

intervention may not be possible. The authors present a concept of intelligent,

autonomous, mobile agents specialized in active cyber defence with capabilities to

monitor networks, detect malicious cyber activities, and destroy or degrade

adversary malware. The architecture provides capabilities for autonomous planning

and execution of multi-step activities, adversarial reasoning in response to

intelligent, adaptive malware, and the ability to remain undetected through

deception and camouflage capabilities. At this stage, the architecture has been

provided only at a very high level with limited detail. A multi-phased roadmap for

continued development over the next 9 years as further development in specific

approaches for knowledge-based planning of actions, learning and negotiation, and

multi-agent collaboration is planned for the future.

Adaptive and autonomous cyber defence is an emerging research topic bridging

between AI and cybersecurity domains to create semi-autonomous cyber defences

that can learn to recognize and respond to cyber attacks, discover and mitigate

weaknesses in cooperation with other cyber operation systems and human experts

[1]. Adaptive defence systems are able to evolve over time in response to changes

in attacker behaviour, system health and readiness, and natural shifts in user

behaviour over time [1]. Current works in this area include machine learning agent-

based solutions for autonomous deception systems [75], attack simulation [76],

penetration testing [77], and malware detection [78]. While the existing works

demonstrate promising directions in applications of agent-based approaches to

cybersecurity, they have been mainly focused on specific security capabilities

rather than approaching the problem from a holistic point of view.

2.3 Chapter Summary

There are many layers of opportunity for security issues for IoT devices in smart

homes. While the attack surface continues to increase as IoT devices become more

prominent, security threats continue to increase in severity and frequency. While

many have argued that manufacturers should provide security in the development

33

of devices, this is not the current reality. Legislation and regulations attempt to

improve security posture. However, enforcement of these policies across such a

wide target is an extreme task. Although recent advancements are making some

improvements, the complexity of this issue spanning across multiple domains does

not have an indication of a near solution. While there have been many prominent

contributions in the literature, the majority of the proposed solutions for smart home

and IoT security are focused on a single purpose approach (DDoS, encryption,

access control, intrusion detection) and do not consider the end-to-end security

services for the IoT environment at a holistic level. Further, there is limited attention

to embracing IoT technologies distributed, heterogeneous and data-centric

architecture toward intelligent autonomous security services.

Agent-based modeling and multi-agent systems approaches are promising research

areas for IoT and smart home systems with their ability to operate within complex,

dynamic autonomous environments. With the unique architecture and increased

need for autonomous reasoning, coordination, sharing, and analysis of data, a multi-

agent architecture can be applied to achieve cybersecurity defence goals. While

each of the domains of IoT, MAS, and security have rich collections of literature

independently, the intersection of these topics provides an underexplored

opportunity for enabling autonomous cyber defence within IoT environments.

Security for IoT requires an adaptive approach, where agent-based systems offer a

flexible design for autonomous actions and goal-oriented decisioning. While agent-

based solutions have previously been applied to the cybersecurity domain, there

have been limited applications with barriers of adoption to the industry. The

remaining chapters of this thesis will proceed to address these gaps with a proposed

architecture for agent-based adaptive cyber defence to enable a modular and

accessible framework towards a wide range of cyber defence capabilities. Domain

knowledge graphs are leveraged to extend the traditional BDI model through a

novel approach to support context-based modeling and agent reasoning of the

cybersecurity domain, enabled by domain knowledge and frameworks available to

the industry.

34

3 Multi-Agent System Architecture

This chapter presents our proposed multi-agent system architecture, which

integrates autonomous defence capabilities into adaptive intelligent software agents

situated to respond to the evolving cybersecurity threat landscape. Processes are

modelled as multi-agent plans and tasks, where agents work together through a

control and coordination hierarchy to achieve common goals to defend the network

according to security requirements. Agents use the Belief-Desire-Intention (BDI)

model to perform multi-agent goal-based deliberative reasoning for defence actions

which are informed by domain knowledge graphs further described in Chapter 4.

3.1 System Architecture and Design

3.1.1 System Architecture Overview

The Multi-Agent System (MAS) architecture is composed of 3 main components:

Security Services, Coordination, and Mission Deployment into the Internet of

Things (IoT) environment. The high-level system architecture is shown in Figure

3.1 below, illustrating how the core model interacts with the IoT environment.

Within each of these layers, agents perform operations, communicate with each

other, and make use of the available resources throughout the system.

The Security Services layer is where high-level security decisions are made by

control agents, making use of system observations, security requirements, and

domain knowledge graphs to generate defence policies to be actioned by agents

throughout the network. The results of these policies are utilized by the

Coordination Layer, where coordination agents take the defence policy as input,

identify security goals to be achieved and map them to actions with corresponding

utility for prioritization. These goals and actions are planned and prioritized through

workflow planning and coordination of available resources to generate subsequent

missions, which are monitored by mission control.

35

Each mission consists of an action set, goal(s), prospective utility, and a set of

agents with predefined beliefs, desires, intentions, and roles. Agents deployed

through missions interact with each other in an agent collaboration environment as

well as directly in the IoT environment to perform actions to achieve their mission

objectives. An agent can interact with different components within the IoT

environment, including devices, applications, and cloud services, either through

API or directly hosted within the resource. We will continue to describe each of

these components in detail in the remainder of this section.

Figure 3.1 High-Level System Architecture

Security Services & Control

Control agents maintain an overall system view, leveraging the system monitor and

defence policy engine to provide updated requirements to the coordination agents.

Defence Policy Engine

The Defence Policy Engine takes security requirements as input from industry

standards, vendor policies, and user preferences in a common format. These

requirements are combined with observations from the system monitor and

36

ontological domain knowledge to generate context-aware policies with respect to

availability, coverage, and exposures. Together these form the defence policy used

by the MAS control agent(s) to generate security goals and corresponding plans. If

any changes are made to the requirements, the defence policy will be updated as

necessary. The policy engine is described in detail in Section 3.2.3.

System Monitor & Environment Graph

System observations are shared resources used by the agents to make informed

decisions on courses of action based on the system security state. These

observations are maintained within the system monitor and are separated into four

categories: operational availability, coverage, exposures, and attacks. These are

used as parameters in system state calculations and the utility function for

generating defence policy rules, missions, and their respective payoff. The

exposures and attack monitors maintain an inventory of known vulnerabilities and

exposures, suspicious activity, and active attacks observed on the network. These

indicate negative system security states that must be remediated through

appropriate security coverage. The coverage monitor maintains visibility of

countermeasures in place, including access control rules, security controls, active

missions, etc. Within coverage, situational awareness is also tracked to ensure the

system monitor has appropriate visibility into the network. Lastly, operational

availability is also monitored to ensure that IoT services are operational and

experiencing minimal impact due to security controls or attacks. The security

parameters within the system monitor and applications for system utility are

described in detail in Section 3.2.3.

Environment data, including known assets, device capabilities, and associated

attributes, are tracked within an environment graph for ongoing situational

awareness of the network. The environment graph can be overlayed with the

domain knowledge graph for informed decisions and policies. The environment and

domain knowledge graphs will be elaborated on in more detail in the following

chapter.

37

Domain Knowledge Graph

To understand security threats and corresponding defence actions, security domain

knowledge and intelligence is used in a structured framework for relating entities

and mapping relevant threat libraries. The domain knowledge ontology is described

in detail in the following chapter on knowledge graphs.

Coordination

Workflow Planning

The workflow planner maps items from the defence policy to options for action

selection and corresponding utility. Once these are defined, these options are

prioritized and defined into missions.

Resource Manager

The resource manager works with the workflow planner and mission control to

identify required resources for a mission, maintains an active inventory of available

resources, and supports the organization model templates for agents to be assigned

to missions. This includes role descriptions, action sets, as well as initial beliefs,

desires, and intentions.

Mission Deployment

Mission Control

The mission controller is created for a specific mission to oversee the deployment

and monitoring of the mission to its success. The mission controller is responsible

for ongoing communication and re-evaluation of mission requirements if necessary.

Once a mission is completed, the mission controller provides an evaluation of the

success of the mission and reports back with the results and utility.

Agent Collaboration Environment

When missions are created and agents are deployed, an agent collaboration

environment is established where agents can interact and collaborate with each

other to achieve their goals. This is also the interface where agents are deployed to

each layer of the IoT environment, as well as a proxy to shared agents’ resources.

38

IoT Environment

Agents can interact with the IoT environment through API connection or deployed

and directly hosted on the device, application, or cloud resource. From this layer,

agents can perform a variety of actions by interacting with the IoT environment for

activities such as data gathering, remediation activities, or control actions. The three

components of the IoT environment are described below:

Device

The IoT devices exist in the device layer, comprised of the embedded device,

sensors, radio communications, software, and firmware. Our model interacts at the

firmware level through an open firmware architecture for the agent microservices

to execute. Devices can also include edge devices such as IoT hubs or controllers

and the network gateway. The IoT hub devices act as a bridge and controller for

IoT devices across the network. While most IoT devices have limited processing

and storage capability, the hub provides additional capabilities for coordinating

these services. The network gateway can provide basic security functionality

through firewall and intrusion detection capabilities. We provide an interface for

agent interaction with the devices as this layer.

Application

The application layer provides mobile or Web application services to IoT devices.

User-facing applications also provide capabilities for personalized configurations

and settings. We introduce an Application Programming Interface (API) at this

layer for agent interaction.

Cloud

The cloud layer is where many resources and processing capabilities can exist for

vendor provided services. This also provides an opportunity for accessing services

and analytics. Device or service vendors must also provide internal testing and

support for security concerns through our model. Our model can also access these

capabilities through an API at this layer.

39

3.1.2 Agent Hierarchy

A hierarchical agent structure is used for organization-level insights and emergent

behavior in agents across the network to achieve holistic security goals. In this

section, we continue to expand on our model for the generation of agents to perform

the actions selected by the controller. Section 3.3.2 describes the behaviors of the

MAS controller (Level 0) as a strategic defensive BDI agent which generates

defence policies (intentions) based on beliefs and desires for an ideal security state.

As shown in Figure 3.2, this results in a hierarchical BDI agent structure where the

coordinator generates a high-level intention which is the template for the creation

of sub-agents (Level 1+) with corresponding desires.

Figure 3.2 BDI Hierarchy

Coordination mechanisms allow coordination between the controllers and

coordinators to allocate resources according to the requirements. Taking as input

the profile of the defenders 𝜃, attack types a, and resources available k, a

coordination mechanism function  : (𝜃, k, a) → (x, t) is generated, which outputs

a strategy x for the target t.

40

3.1.3 High-Level Algorithm and Data Structures

While all decisions and sensory aspects of the system are performed by Belief-

Desire-Intention (BDI) agents of different functions, Figure 3.3 below shows how

initial security requirements are inherited as desires by downstream agents with the

ability to perform required actions accordingly, where the security requirements are

first received by the controller to create the defence policy according to the

knowledge of the environment from the system monitor. The defence policy

translates into agent desires, in which the coordinator performs mission generation

through planned workflows and resource management. Missions are created to

assign associated desires and functions to capable agents deployed within the

environment to achieve the overall desires. Each of these functions will be defined

in further detail in the following sections.

Figure 3.3 Multi-Agent BDI Inheritance of Policy Desires

Modeling the environment in a way that can be understood and reasoned by the

agents is critical to situational awareness and understanding of environment states

for the agents to act upon. As the system leverages environmental contextual data,

41

in combination with domain knowledge through industry frameworks, we have

provided a data structure diagram below in Figure 3.4 to show the relations between

different data elements. This data model will be utilized and further expanded in

the following sections and chapters.

Figure 3.4 Data Structure Diagram

42

3.2 System Control and Policy Generation

In a common format, security requirements can be defined by industry standards,

vendor policies, and user preferences. These requirements are combined with

observations from the system monitor and domain knowledge graph to generate

context-aware policies with respect to availability, coverage, and exposures.

Together these form the defence policy used by the MAS control agent(s) to

generate security goals and corresponding plans. If any changes are made to the

requirements, the defence policy will be updated as necessary.

Our knowledge graphs provide a data model for security requirements to be

interpreted by a policy engine according to the context of the environment and

inferences to cybersecurity domain knowledge. The policy engine generates the

policies by validating the security requirements provided as input. Through the

hierarchical agent model, multiple layers of policy types can be maintained. The

first is the device level policy, which applies to each individual device within the

network. The second is the domain-level policy, which may apply to grouping

devices in different domains. These can include domains of similar devices,

individual network segments, roles, or groups of agents participating in a particular

mission. The third is the system level policy, which inherits and synthesizes the

requirements of each individual device into the context of the entire system. These

policies are used by the controller in the prioritization and design of agent plans and

missions. The policy engine performs top-down and bottom-up validation to

achieve compatibility of policies and negotiate any conflicts. Conflicts will indicate

contradictory policies or policies which are unachievable within the current

configuration. If a conflict is identified, the user will be notified.

Once the policies are created, they are used to define the goals of the system that

the agents work towards achieving. Policies drive the decision-making of the

system as enforced through utility, while requirements are mapped to the categories

of security state parameters defined in the following section and can include an

agent reward or penalty value for compliance or non-compliance, respectively, to

influence prioritization and strategy selection. Violations of policies will result in a

43

penalty as well as an appropriate response which may involve user notification or

intervention steps.

This section defines the functions of the defence policy engine and how policies are

generated to address security requirements based on the domain knowledge graph

and situational awareness through the system monitor.

3.2.1 Security Requirements

Baseline Requirements

While our overall architecture can be agnostic to a specific set of requirements, we

have selected to reference National Institute of Standards and Technology (NIST)

recommendations as a baseline for demonstration. NIST IR 8228 defines a set of

IoT Risk Mitigation Goals which we have leveraged as a baseline for initial security

requirements. These include Protect Device Security, Protect Data Security, and

Protect Individuals’ privacy. As the focus of this research is on the security domain,

the risk mitigation areas for Goal 3: Protect Individuals’ Privacy are currently out

of scope; however, the model can be extended for privacy applications as a potential

future work. A Presidential Executive Order on Improving the Nation’s

Cybersecurity (14028) [25] published in May 2021 directed NIST to develop two

labeling programs on cybersecurity capabilities of IoT consumer devices and

software development practices. While these labeling baselines align with the NIST

Interagency/Internal Report (NISTIR) 8228 risk mitigation goals, this enables an

opportunity to validate security requirements against labeled devices within the

network.

We have built on NISTIR 8228 and NIST 8259A [19] [26] to develop a high-level

baseline set of security requirements for a smart home IoT network, as defined in

Appendix A. The requirements for asset management, device configuration, data

protection, access management, vulnerability detection, incident detection, and

availability are mapped to a set of corresponding Device Capabilities (DC) defined

by NIST 8259A. Through the device, the label can be determined if each device

can achieve the defined security requirement. Further, each requirement also maps

44

to a corresponding set of security properties (confidentiality, integrity, availability,

authenticity, and non-repudiation).

Device-Specific Requirements

While the above can be used as generic requirements, further granular requirements

can be developed specifically for the unique security needs of certain devices

according to the prioritization of certain properties of labels or individual user

configurations. For example, when considering a smart lock's unique needs for

availability and integrity, these corresponding requirements can be given higher

priority. Priority-based thresholds can be configured according to user preference

and environment-specific needs. Thresholds according to an individual device, type

of device, area of a network, or other groupings can be recommended or configured

by users. For this initial demonstration, we have added security property

prioritization to the device profiles to provide customization according to the type

of device.

Requirements Definition

The security requirements will be defined in a common format to allow for

processing into the defence policy. Table 3.1 below shows the elements of the

baseline security requirement definition format. This concept will be expanded

upon in Chapter 4 on BDI and knowledge graphs.

Table 3.1 Baseline Security Requirements Definition Format

Field Data

ID int

Name string

Requirement string

Priority [1-5]

Associated platforms Global |Group | Device Profile | Device

Desired state (“Subject”, “State”)

Associated Security

Properties

Confidentiality | Integrity | Availability | Non-

Repudiation | Authenticity | All

Associated Device

Capabilities

DC […]

45

The security requirements can be in any common format, such as JavaScript Object

Notation (JSON) or eXtensible Markup Language (XML). JSON was selected for

demonstrative purposes of this work. For illustration, Figure 3.5 below provides an

example of the Vulnerability Management requirement, which is applied globally

to all devices on the network. The requirement includes the associated device

capabilities which can achieve it, as well as the desired state of “Device Version is

Up to Date,” which will define the target state for the agents’ inherited desires.

{

"ID": 004,

"Name": "Vulnerability Management",

"Requirement": "Identify and eliminate known

vulnerabilities"

"Priority": 1,

"Associated Platforms": "Global",

"Desired State": "Device Version = Up to Date",

"Associated Security Properties": "All",

"Associated Device Capabilities": ["DC5.1", "DC5.2",

"DC5.3"]

}
Figure 3.5 Security Requirement Example - Vulnerability Management

3.2.2 System Monitor

The system monitor maintains situational awareness of the network and is used by

the controller and coordinator agents as a reference for policy updates and

prioritization to achieve optimal coverage of the security requirements while

maintaining an ongoing view of the overall system's health. The system monitor

consists of four components: Operational Monitoring, Coverage, Exposures, and

Attacks.

The system monitor components are updated through agent messages and queries

within the environment graph and enriched by the domain knowledge graph. While

each of the four components maintains an ongoing view into different elements of

the health and security state of the network, the data can be leveraged in a granular

view to inform contextual decisions regarding individual devices, as well as a high-

level summarized view for tracking overall system state. This section defines each

46

System Monitor component that will be leveraged by the multi-agent system in the

following sections.

Operational Monitoring

The operational monitor is used to track services' availability and devices' overall

security state. The asset model referenced by the operational monitor is an

inventory of assets registered to the network, as well as any that are not registered

but have been detected through other agents. The asset model exists within the

environment graph and will be further described in Section 4.2

The operational monitor maintains entries for each device with the below fields:

• Asset ID: An asset model is maintained separately by the agents and used as

input into the operational monitor.

• Security State: the security state of the device is updated according to the

associated device's coverage, exposures, and attacks. Security states, as defined

below, include initialization, disabled/failed, normal, vulnerable/suspicious,

and exploited.

• Availability: tracks the operational status of a device for availability, if it has

been unreachable or disabled

The system can be categorized into the following security states, as shown in Figure

3.6. This can be assigned to each device, network segment, or entire system state.

The state of the system will reflect the risk level and type of missions in place.

Figure 3.6 System Security States

47

(0) The initialization state has limited knowledge of the true security state of the

system. It will be the most active in terms of processing in order to achieve

coverage, initial configurations, patching, and coordinating missions. When a

new device is added to the network, it will also join in an initialization state.

(1) Once initialization is complete and any security requirements have been

satisfied, the system will move to a normal state. In this state, monitoring and

situational awareness missions will be in place to gather baseline information

as well as monitor for suspicious behavior or new devices. If free processing

cycles are available, this can also be used to fortify controls and projective

scenario strategy calculations.

(2) The system will move to this state if a vulnerability or suspicious event is

detected. Missions will be established to patch, project attack paths,

countermeasures, and advance monitoring of high-risk devices.

(3) In the event of an attack being detected within the system, it will transition to

the exploited state. In this state, remediation missions will be in place to contain

the attack and enforce relevant countermeasures. Forensic data may also be

collected, and the user will be notified.

(4) A device may also be in a disabled state, where it is offline or unreachable.

Coverage

The Coverage Monitor tracks security controls in place in relation to security

requirements and compensating controls for exposures/attacks. This is leveraged by

the controller to track overall coverage to inform the policy prioritization. The

below fields are tracked by the coverage monitor:

• Security Requirement / Exposure ID: a mapping to the security requirement

or exposure that the coverage is designed to address.

• Associated Mission(s): a list of missions in place.

• Level of Coverage: an indicator of the level of coverage for.

• Associated Assets: the assets protected by the control.

• Defence Technique Implemented: mapping to defence technique or

mitigation

48

• Status: current status of the coverage (active, planned, disabled).

While some devices may be required to comply with a certain security requirement

without having corresponding device capabilities to achieve it, compensating

controls will need to be put in place. Once the controller has situational awareness

of the limitations and capabilities of the network, appropriate missions can be

deployed to provide coverage, as further described in Section 3.3.1.

Exposures

The exposure monitor tracks known vulnerabilities and configuration risks within

the network, as well as an understanding of the risk associated with the exposure.

The domain knowledge ontology is used for enriching exposure data based on

Common Vulnerability Scoring System (CVSS) [79], which will be further

expanded in the following chapter. While exposures are known vulnerabilities that

have not been exploited, if an attack is detected targeted in the exposure, it would

be listed in the attack monitor. Each exposure should be prioritized by the controller

for coverage according to the level of risk. The exposures monitor contains the

following fields:

• Type: the type of exposure as Common Vulnerabilities and Exposures (CVE)

[80] or configuration risk

• CVE ID: the CVE associated with the exposure.

• Risk Score: as listed in CVE.

• Impact: the impact of the exposure as listed in CVE (confidentiality, integrity,

or availability).

• Exploitability: as listed in CVE (privileges required, attack vector, user

interaction, scope).

• Associated Assets: the assets affected by the exposure.

• Status: tracking of the status to indicate whether the exposure is active or

remediated.

49

Alerts

The alerts monitor tracks alert indicating suspicious or malicious behavior on the

network to be investigated and/or remediated. Alerts are created within the

monitoring controls and analytics and are further described in Section 4.2.2. The

alerts monitor contains the following fields:

• Alert ID: unique ID for the alert.

• Impacted asset(s): the assets affected by the alert.

• Risk level: level of risk determined by the domain knowledge graph.

• Related attack technique(s): the MITRE ATT&CK [81] data associated with

the alert.

• Data source: the data source telemetry that the alert originated from.

• Applicable platforms: the type of platform associated with the alert.

• Data model references: object, actions, and fields associated with the CAR

data model.

3.2.3 Policy Engine

Once the requirements have been defined, a Defence Policy is generated and

prioritized by the control agent based on the security requirements and knowledge

of the system security state. This policy provides the high-level security objectives

to be performed and passed down to the coordination layer in the form of agent

desires.

Utility Function

The utility functions are used to guide agent actions by providing rewards and

penalties as feedback for reinforced emergent behavior towards the desired system

state. In this case, the system utility is used to build an effective strategy profile for

the particular environment at a given time step. Utility functions require feedback

in order to reinforce the behavior of the agents. This feedback can be collected

either from environment artifacts or as a response from another agent. The

requirements of an effective utility function are described below:

50

• Consistent: Utility function must be consistent across similar agent types to

ensure unified behavior sets.

• Attributable: Feedback must provide timely and clear attribution for a

particular action to reinforce the intended behavior.

• Goal-Oriented: The function must accurately reflect the goals of the system

and be evaluated to ensure it will not cause unanticipated agent behaviors that

contradict the ultimate security goals in order to receive rewards.

• Contextually Scalable: Changes in system states must be taken into

consideration. Learned behaviors in a normal state will likely not follow the

required risk levels while operating within a system in a vulnerable or exploited

state.

We define a system security state utility function in Equation (1), which maintains

the overall security posture of the smart home and provides incentive/feedback for

mission selection in accordance with the system security goals. This function is

maintained at the controller level with visibility into the environment. The utility is

calculated as a high-level function of the security policies’ adherence within the

security parameters described below, taking into consideration the operational

availability (OPS) and coverage (COV), with respect to the level of exposures

(EXP) and attack detections (ATK).

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = ∑[𝑂𝑃𝑆𝑝 + 𝐶𝑂𝑉𝑝]

𝑝∈𝑃

− ∑[𝐸𝑋𝑃𝑝 + 𝐴𝑇𝐾𝑝]

𝑝∈𝑃

(1)

The utility consists of the parameters defined by the System Monitor, which are

quantified and mapped to the predefined security requirements to issue individual

penalty and reward values for violation or compliance, respectively. These are

maintained in the “system monitor” of the logical architecture. The values of the

security parameters provide context to translate observations into the security state

of the system and each device within it. While the defender aims to maintain a

“normal” security state, the parameters also provide additional granularity and

quantifiable feedback to determine the utility of defence actions.

51

Policy Generation

Our model adopts a control-theoretic approach for the defender to maintain a secure

state of the system. The controller is a strategic rational BDI agent acting as the

“defender,” which aims to maintain the system's preferred security state while

considering the observations, defence capabilities, and associated utility. In this

model, we represent a control problem with one strategic rational agent as the

defender, while adversarial actions are considered non-strategic events (nature).

The following section describes the foundations of this model, with the relations

further illustrated in Figure 3.7.

The system state st  S is used to quantify the security state of the system at time

t, where the set of system states S = {s0, s1, …, sn} is defined as per Section 3.2.2.

A state transition is represented as st → st+1, which evolves as a function of

defender actions and environment events ft: S  A  E → S. Given an action-event

pair of event et  ℰ and defender actions at  A, the state is updated to St+1 = ft(st,

at, et). For this thesis, state transitions are defined as Non-deterministic Finite

Automaton (NFA). The limitation of this initial design is that all successor states

are considered equally possible as opposed to probabilistic reasoning. This can be

enhanced through future improvements to increase the probability of interrelated

states based on observations.

The set of events is defined as ℰ = {e1, e2, …., en}, where an Event et  ℰ is an

observable event from the environment (nature) and is generated from a possible

set of events given the system state ℰ(st) ⊆ ℰ. While defenders maintain an

incomplete view of system states as all events are not able to be observed, defender

observations ot  O are defined where observation ot = O(st, et) is generated as a

function of the true underlying system state and the event. Agents are aware of their

state at all times and can maintain a history of observations based on their actions

and observed state as ht = (a0, o1, …, at-1, ot)  (A  O)t. The history can then be

compressed into belief state Bt for making optimal decisions based on historical

observations. A new observation will result in belief update bt(st) = p(st|bt-1, Ot),

52

which is the probability of the system state being st given the previous belief and

new observations.

In alignment with the system security goals, the defender maintains a set of desires

DE  S for the aspired secure system state, which influences their decisions.

Defence action at  A = A1  A2  …  An at time t represents the actions that a

defender can perform to inhibit an adversary's actions. Each action space Ai consists

of a finite set of possible defence actions Ai = {ai,1, ai,2, …, ai,n}, where each action

affects the state si of element i. Each defence action at has an associated utility c(st,

at) = ∑ [𝑂𝑃𝑆𝑖 + 𝐶𝑂𝑉𝑖] 𝑖∈𝑁 − ∑ [𝐸𝑋𝑃𝑖 + 𝐴𝑇𝐾𝑖] 𝑖∈𝑁 , which the defender is provided

through a feedback observation. The utility is represented as a function of the value

of the security parameters defined in Section 3.2.2.

Defence policy d = (d0, d1, …, dT-1) contains the action(s) the defenders will take

to change system states to the objective system state (desires), where dt is the

function from given belief state Bt to a distribution over defence actions dt: S

→(A). The optimal defence policy d* = (d*
0, d*

1, …, d*
T-1) can be generated

according to the defender’s risk tolerance, for example, using ‘minmax’ criterion to

minimize the worst-case cost. Optimizations through approximation, sequential

decomposition and dynamic programming have been applied in the literature.

Figure 3.7 Relational System Model

53

In this scenario, the defender is the controller of a larger system of agents and

security resources that can be utilized. While definitions in this section are

sufficient for the base model, we will expand on the defence policy and actions in

further detail below.

Policy Definition Format

The policy engine maintains a translation of security requirements into agent

desires, which are then inherited by the coordination agents for further action. A

defence policy entry contains the following fields:

Table 3.2 Policy Definition Format

Field Data

ID int
Name string

Defence Technique string

Priority [1-5]

Associated

artifacts/assets/platforms

Global |Group | Device Profile | Device

Associated Requirement string

Similar to the security requirements definitions, policies are also maintained in a

common format such as JSON. Once a policy is created, new agent “desires” will

be created, and the controller agent will send a message to the coordinator(s) to

inform them of the policy change for further action.

3.3 Agent Modeling for Cyber Defence

This section expands further on the concept of agent modeling in relation to cyber

defence techniques, where a hierarchy of agents is deployed across the network to

coordinate actions to perform the security goals defined by the policies. While this

section describes the agent structure at a high level, the following chapter will go

into further detail on agent behavioural modeling and reasoning through BDI

knowledge graphs.

54

3.3.1 Mission Generation

A mission is a coordinated action set defined in accordance with the security

strategy and requirements. Missions are generated and prioritized at the coordinator

level, where they can be negotiated with other coordinators that may exist within

the system. Each mission has prospective payoff values for increasing/decreasing

each utility parameter, mapped to a particular reference ID, which is used to

determine the prioritization of plans, and validated on completion. After completing

each mission, the controller will be notified, receive the payoff, and cascade it down

to the agents involved in the mission.

Once a mission has been selected, the coordinator will deploy agents assigned to

specific roles to perform the mission tasks. Missions are composed of one or more

action sets assigned to one or more agents. These missions can be categorized into

Specifically defined (e.g., patch device x), Open ended (e.g., scan network to collect

baseline data), Cooperative shared (e.g., agent x and y will work together to scan),

Cooperative distinct (e.g., analysis agent will continuously send relevant data to

response agent), or Hybrid.

3.3.2 Multi-Agent System Preliminary Definitions

Moving on to the detailed components of the multi-agent system model, we proceed

to define the below:

• Multiagent System = {A, E, O}: is the system comprising all Agents,

Environment states, and Organization relationships.

• Agents = {ag0, ag1, …, agN}: is a set of n agents in the system. An agent is

defined as an autonomous entity that makes decisions and actions based on rules

based on independent goals and perceptions.

• Environment = {e0, e1, …, eN}: is a set of n environment states. The physical

or logical environment is shared by all agents in a system and contains artifacts

that can be perceived and impacted by agent actions.

55

• Organization = {o0, o2, …, oN}: The rules through which agents interact with

each other, work together, or resolve conflicts. Organization o = {R, G, N, SP}

comprises roles r, groups g, norms n, and social plans sp.

Figure 3.8 Multi-Agent System Components

Roles

Agent roles are defined for the consistent inheritance of objectives and capabilities.

Roles commit an agent to specific obligations and may include associated

permissions or prohibitions. Roles define the responsibilities of the agents assigned

to the role. We define two categories of roles, which can be extended depending on

requirements. These roles provide a core model for security capabilities within an

environment and are scalable to various use cases.

Control-Based Entities

The second type of role is for the control of the MAS. These entities perform tasks

to maintain the health of the system and to ensure effective decision-making. Some

example control-based entities are listed below:

• Controller: performs high-level rationalization on the security state of the

system and manages security policies (as described in Section 3.2).

56

• Coordinator: receives a goal from the controller and gathers necessary

resources to create missions and deploy agents.

• Mission control: oversees missions involving multiple agents with a common

goal.

Security-Based Entities

We define the below agent roles within the system to function with different

capabilities to perform distinct security functions. These roles have been developed

to enable the range of capabilities defined by the NIST Cyber Security Framework

(identity, protect, detect, respond, recover), as will be further described below. The

following parent roles provide archetypal functions, which can further be broken

down into sub-roles for more specific functions.

• Sensor: sensors to collect data across the network, i.e., monitoring, scanning,

and sharing.

• Analyzer: process data for uses such as anomaly detection, risk assessment,

reputation services, and policy generation; Input processed data to detect attacks

and malicious activity.

• Investigator: request gathering of additional data and perform further analysis

on the reported attack. Determine if an activity is malicious; Escalate to a

responder.

• Responder: perform responsive action in response to malicious activity or

trigger, i.e., policy enforcement, patching, access control, network isolation,

traffic filtering/limiting, firewall rules, and configuration update.

An example role description of a Sensor agent is shown below, where the objective

of the agent to scan environment env is fulfilled through sub-objectives utilizing its

capabilities such as scan element e, and update environment graph db.

Table 3.3 Sensor Agent Role Description

Id Sensor

Objectives Environment_scanned(env)

Sub-Objectives Scan(e), update(db), …

Capabilities Scan(), query(), report()

57

3.3.3 Communication and Policy Enforcement

While agents can interact with all layers of the IoT network, all communications

are established through a secure agent channel providing an additional layer of

security assurance. As shown in Figure 3.9, all interactions are facilitated through

an agent interface, which validates and performs actions on behalf of the requestor.

Through this architecture, an agent can be deployed to be hosted on any IoT device,

act as a Policy Enforcement Point (PEP), and perform sensory and response actions

through the Application Programming Interface (API). This architecture allows for

high levels of insight into network and device events to support security monitoring

and analytics, as well as an additional layer of control for the enforcement of access

control policies. With further validation, this channel can also prevent attacks such

as agent spoofing and replay attacks. Requests from a device are facilitated by

agents according to trust and risk levels calculated by the security parameters and

utility function at the Policy Decision Point (PDP) at the controller resources. For

example, if a device has certain attributes, such as active vulnerabilities, only

limited access is provided to it, and other devices are accessing it. This allows for

the containment of potential exploits until a patch is issued while allowing basic

availability requirements as per user needs.

In addition to the requests and response messages proxied through an agent, devices

maintain access control policies to allow access to resources according to the role

of the agent. This ensures that the least privilege is assigned according to the

required permissions of the agent accessing the resources. For example, agents

assigned to security and administrator level roles will have certain permissions

granted, while operational activities will maintain a lower level of permissions to

achieve their requirements.

58

Figure 3.9 Communication and Policy Enforcement

3.4 Chapter Summary

Agent-based technologies provide autonomous, adaptive, cooperative goal-

oriented behaviours which can be leveraged to address the unique cybersecurity

challenges of an IoT environment. The multi-agent architecture presented in this

chapter provides an extendible framework for enabling the coordination of agents

deployed across an IoT environment to achieve security goals. The hierarchical

structure allows for shared objectives aligned to security requirements, which can

be coordinated across the multi-agent system based on environment states, resource

capabilities and ongoing requirements where autonomous and coordinated actions

are informed by partial and full views of the environment at different layers.

While the architecture shows the overall system capabilities and design, there is a

requirement for a strong data model to inform agent reasoning and deliberation

based on an understanding of the environment and inferences within the

cybersecurity domain context. The following chapter will introduce knowledge

graphs as a solution for modeling the system environment along with cybersecurity

domain knowledge and BDI agent reasoning, which will be implemented by each

agent within our architecture for contextual and goal-based decisioning.

59

4 Knowledge Graphs for BDI Agent

Reasoning

The system architecture and services described in the previous chapter require a

comprehensive solution to model and analyze the large volume of environmental

data telemetry as well as the agent rationalization and rules with context to

cybersecurity domain knowledge. In this chapter, we introduce knowledge graphs

as a solution for the below functions:

• To model the various entities and states within the environment.

• To inform decisions with cybersecurity domain knowledge.

• To model BDI agent behaviours and inference rules for rationalization.

Graphs are used to model and analyze data interconnected through complex

relationships. A graph contains a set of entities as nodes and the relationships that

connect them, as illustrated through a simple example in Figure 4.1 below.

Compared to a traditional relational database model, graph databases provide the

benefits of increased performance with larger datasets, as well as increased

flexibility to add new components to an evolving data model according to ongoing

requirements without the confines of a restrictive schema [82]. With this highly

flexible and high-level structure, graphs can be used to model all kinds of systems

and have countless use cases across many industries and applications.

Figure 4.1 Basic graph with a relationship between two nodes

Graphs can be further extended to more descriptive models, such as the commonly

used property graph model, which allows nodes and relationships to contain key-

60

value pairs as properties. As described by Barrasa et al. [83], a property graph

model consists of the following characteristics:

1. Nodes representing entities in the domain:

• Nodes can contain zero or more properties, which are key-value pairs

representing entity data.

• Nodes can have zero or more labels, which declare the node’s purpose in

the graph.

2. Relationships representing how entities interrelate:

• Relationships have a type.

• Relationships have a direction, going from one node to another.

• Relationships can contain zero or more properties, which are key-value

pairs representing some characteristic of the link.

• Relationships never dangle – there is always a start and end node.

With a basis on the property graph model, knowledge graphs can provide further

emphasis on contextual understanding. Knowledge graphs provide a contextualized

understanding of data, where interlinked sets of properties describe real-world

entities, events, or things and their interrelations in a human and machine-readable

format [83]. The modeling rules of a knowledge graph are defined using an

organizing principle, or semantics, which provide a layer of organizing metadata

to connect context for reasoning and knowledge discovery.

4.1 Graph Architecture and Model

The flexibility and rich ability to model complex entity relationships motivate the

adoption of a graph-based solution for the modeling of cybersecurity domain

knowledge and agent behaviours in relation to the environment. Our model

integrates knowledge graphs to model the data and inform system workflows as a

foundation for multi-agent system intelligence. Our graph architecture integrates

three separate layers for context into the network environment, cybersecurity

domain knowledge and BDI agent knowledge, as shown in Figure 4.2 below:

61

• The Environment layer is used to model the devices and entities within the

network to provide ongoing context and state awareness.

• The Cybersecurity Domain Knowledge layer integrates industry frameworks

into a common model for identifying vulnerabilities and exposures, inferring

security risks, attack detections and analysis, and informing applicable defence

techniques based on policies and environmental awareness.

• The BDI Agent layer is used to model agent planning, actions and workflows

based on knowledge of device capabilities, security requirements and context

from the other two layers.

Figure 4.2 High-level Graph Layer Interactions

Each of these layers is highly related to inform agent decisions based on knowledge

of the environment states and capabilities and cybersecurity domain knowledge to

support courses of action based on risk profiles of the known environment and

security requirements. Figure 4.3 below shows an overall view of the relationships

between each graph component of the environment, agent, and domain knowledge,

which will be further described in detail in the remaining sections of this chapter.

62

Figure 4.3 Knowledge Graph Meta Model

63

4.2 Environment Graph

Maintaining ongoing knowledge of the environment is a critical function for

rational agents to interact and receive timely feedback on their environment states.

In the field of cybersecurity, the same holds true for defenders to understand the

environment they aim to secure. Knowledge of assets, behaviours, capabilities, and

network topologies allows the defender to know where security vulnerabilities may

exist, what controls are or are not deployed, and knowledge of security threats and

possible attack paths.

The environment graph is the basis of the agents’ situational awareness and is

further augmented by domain knowledge enrichment data to infer the security

implications. Using a graph model, key components of the environment can be

defined, categorized, labelled, and related using a data model that allows for

interconnectivity with domain knowledge graphs and agent planning.

The environment graph has been designed with the following key requirements and

integrations in mind:

1. Model the environment for agents to interpret devices, attributes, states,

capabilities, and possible actions;

2. Attributes to be mapped to security domain knowledge for understanding

vulnerabilities, risk analysis, and relation to security requirements and

policies; and

3. Flexible reference data profiles and maintenance.

Figure 4.4 illustrates a detailed illustration of the nodes and relationships within the

environment graph, which we have divided into two major categories: device

profiles and instances and events and analytics. This section will detail the

environment graph layer, our design approach, and usage. The node labels within

the environment graph are further described in this section.

64

Figure 4.4 Environment Graph Layer

4.2.1 Device Profiles and Instances

The first major category of nodes within the environment graph is to model device

profiles and instances. In support of the first and third requirements listed above,

we implement the concept of “Device Profiles” to introduce a scalable and

repeatable design for instances of devices to inherit the applicable properties and

relationships of their parent Device Profile. This is ideal for consistency in asset

management, classification, and modeling capabilities for possible agent actions

and expected effects.

Table 4.1 Device Profile Node Descriptions

Node Label Properties Relationships

Device Profile Name

Version

ProductName

Platform

DeviceState

DeviceCapability

Device

Device Name

Internet Protocol (IP)

Address

DeviceProfile

Event

Sensor

Agent

65

Media Access Control

(MAC) Address

Ports

Configs

Access Control

Current States

Security Policy

Device Capability Name

Description

DeviceProfile

Action

Action Function DeviceCapability

Event

The common attributes related to device profiles, such as product name and

platform, have been adopted for integration with MITRE framework fields to be

described further in Section 4.4 .

The Device Capabilities in our model are based on NISTIR 8259A Internet of

Things (IoT) Product Cybersecurity Capabilities [26] which defines a set of device

capabilities that directly correlate to the NISTIR 8228 Security Requirements [19]

as described in Chapter 3. Using the IoT security product labeling standard

proposed in this document, all compliant IoT devices would be accompanied by a

product label in this format which can be imported into our graph when a device is

registered to the network.

Device capabilities are associated with corresponding actions which can be

performed by agents. Action sets have been developed as abstract functions which

can be called by agents through Application Programming Interface (API) requests

to devices to perform actions related to the device's capabilities. While the focus of

this work at this time is on the overall framework and agent reasoning, a simulated

environment with simple function calls has been sufficient for initial demonstration.

It will be further detailed in the following chapter.

4.2.2 Events and Analytics

The second category of nodes within the environment graph pertains to the ability

to model system events, or messages, in a consistent way that can be interpreted by

agents. While this provides a model for agents to communicate and understand their

66

environment, the data model also integrates with the domain knowledge ontology

to be used for security monitoring and analytics. The below table provides an

overview of the node relationships and definitions:

Table 4.2 Events and Analytics Node Descriptions

Node Label Properties Relationships

Event ID

Data

Action

Artifact

Device

Artifact Object

Action

Field

Event

DeviceState

Platform

Analytic

Analytic Name Artifact

Sensor

ATT&CK Technique

Sensor Type Analytic

Device

Message formats are defined for events as a result of device activities or agent

actions. Agents receive messages as percepts in this format and can interpret them

using the agent graph. Events are an instance of an artifact, which models the event

data in a way that can be easily parsed and analyzed by analytics. Our data model

for artifacts and analytics has been heavily influenced by the MITRE Cyber

Analytics Repository (CAR) data model [84]. In this model, artifacts are modeled

as a tuple of (object, action, field) which details the properties and state changes for

an event.

The events and analytics components are illustrated in greater detail in Figure 4.5

below.

67

Figure 4.5 Events and Analytics Detail

Although CAR provides a great data model for event modeling and analytics, the

dataset is limited in terms of integration with other frameworks for further

enrichment. We found that the model could be mapped more directly to existing

fields in MITRE ATT&CK for direct correlation to attack techniques which would

provide greater contextual enrichment through our domain knowledge graph. Based

on this finding, we leveraged the below MITRE ATT&CK fields to the same effect

and imported this data set into our graph:

• “Data source” field in place of “object.”

• “Relationship” in place of “actions.”

• “Source element” and “target element” as appropriate in place of “fields.”

Below are some examples from our filtered dataset:

68

Table 4.3 Object-Action-Field Mapping for Analytics

Object (data_source) Actions (relationship) Fields

(Src/Target Elements)

command executed User

Process

Command

drive created Process

Drive accessed

modified

driver loaded Process

Host

Driver
retrieved information

about

file accessed User

Process

File

Filestream

requested access to

created

retrieved information

about

modified

deleted

4.3 BDI Agent Knowledge Graph

The reasoning capabilities of the BDI agents within the system are driven through

the BDI agent knowledge graph. This knowledge graph contains all relevant data

to support agents’ rationalization and decisive actions while supported by additional

context within the environment and domain knowledge graphs. The objectives of

the BDI agent knowledge graph are as follows:

• Interpret environment perceptions into agent beliefs.

• Model desires based on security policies and requirements.

• Capabilities to interact with the environment through available actions.

• Create a plan based on beliefs and desires.

Figure 4.6 below shows the nodes and relationships within the BDI agent graph to

be described in further detail within this section.

69

Figure 4.6 BDI Agent Graph

4.3.1 Node and Relationship Definitions

The BDI model within the agent graph is consistent with the BDI definitions as

described in earlier chapters. In relation to the rest of the graph, the design is not

able to enable the agents to interact with their environment through percepts

(events) and actions based on the device capabilities defined in the environment

graph. An agent deployed to a particular device with the appropriate role and

permissions will be able to perform the available actions on that device.

The foundation of agent reasoning and intelligence is also within the graph to

support rational decisions and planning based on contextual awareness and security

goals. Desires generated from the security requirements and policies are placed on

the graph and related to a belief state. Modeling available actions based on device

capabilities and belief states allows an agent to query the graph for a plan of action

to achieve a path to a target desired state.

70

Table 4.4 BDI Graph Node Descriptions

Node Label Properties Relationships

Percept value Belief

Belief value Percept

AgentAction

Desire value State/Belief

Plan

AgentAction value DeviceCapability

Belief

4.3.2 Cypher Queries for Agent Functions

BDI agents can leverage the graph to support their belief revision, plan selection,

and action selection functions, as further described in this section, using Neo4j

cypher queries.

Belief Revision

Belief revision is triggered by an agent receiving a new percept. The agent graph

supports the agent’s belief revision function by providing relationships between

types of percepts and the beliefs to be inferred. The below cypher query is used to

return the beliefs obtained in response to an observed percept:

MATCH (:Percept {Value: "$percept"}) -[:CreatesBelief]-> (beliefs)

RETURN beliefs

Plan Selection

When a new desire is obtained, such as through a new security policy or mission,

the agent must retrieve an appropriate plan from the graph to pursue the desired

state. Below is the process of plan selection along with the applicable cypher query,

which will return a plan in the form of belief-action pairs:

1. Find a state/belief that is the objective of the active desire

2. Find a actions that the target state is "achieved by" (i.e., download update,

install update)

3. Find b beliefs that precede these as "next action" (i.e., update available, update

downloaded)

4. Build belief/action pairs based on b and a

71

MATCH (:Desire {value: "$desire"}) -[:OBJECTIVE]-> (targetbelief)

MATCH (targetbelief) -[:ACHIEVEDBY]-> (selectedActions)

MATCH (preBeliefs) -[:NEXTACTION]-> (selectedActions)

RETURN targetbelief, selectedActions, preBeliefs

Action Selection

Based on a plan to achieve a particular desired state, an agent must select an

appropriate next action. The below query is used to return the next action based on

the agent’s current beliefs:

MATCH (:Desire {value:"$desire"}) -[:OBJECTIVE]-> (targetbelief)

MATCH (targetbelief) -[:ACHIEVEDBY]-> (selectedAction)

MATCH (preBeliefs:Belief{value:"$belief"})-[:NEXTACTION]->

(selectedAction)

RETURN selectedAction

4.4 Cybersecurity Domain Knowledge Ontology

While the other sections of this chapter have covered the environment and BDI

agent models, another key element of the system is the cybersecurity domain

knowledge ontology, which is required to support the contextual understanding of

situational awareness as well as direct agent reasoning toward effective security

decisions. In addition, interpreting the security implications of observed events and

selecting appropriate plans to achieve specific goals requires a structured

framework for relating entities and mapping relevant threat libraries.

Fortunately, there has been much attention over the past few years in the

cybersecurity industry to develop and maintain many frameworks and knowledge

bases to provide classifications, relationships, and descriptions of key information

such as vulnerabilities, weaknesses, attack techniques, threat intelligence, defensive

controls, and more. Many of these frameworks are leveraged prominently across

the industry as a reference for understanding and prioritizing security controls and

72

responses and provide a solid foundation of reference data for the purposes of this

work.

However, some current limitations with this reference data must be augmented to

support our purposes. While these frameworks are prominent and well utilized

within the industry, the approach is often standalone and without interoperability

between frameworks for different stages. While there have notably been some

recent works to combine a knowledge base of frameworks, there currently does not

exist a full solution to the end-to-end entirety that our system requires. A notable

work is the OdTM Base Threat Model Ontology framework [85] which provides a

base threat model ontology using Web Ontology Language (OWL). The ontology

framework can be used to build mappings of domain relevant threats and

countermeasures. Based on our observations, it appears that it is likely that

relationships between frameworks will soon be bridged, as there currently already

exist many similar fields across these frameworks that can be easily related. With

the emerging prevalence of automation and machine learning in the security

industry, a common and relatable data model for leveraging reference data would

provide a strong foundational contribution. However, since no current solution yet

publicly exists according to our knowledge, we have proceeded to design our own

model to relate the available knowledge bases, according to our requirements.

4.4.1 Reference Knowledge Bases

The cybersecurity domain knowledge ontology has been generated based on several

industry frameworks shown below, which can be used for mapping relationships

between elements of the environment from vulnerability data into

recommendations for mitigations and controls.

Table 4.5 Reference Knowledge Bases

Reference

Framework/Database

Description

Common Vulnerability

Enumeration (CVE) [80]

Identifies, defines and catalog publicly disclosed

cybersecurity vulnerabilities. The Common

Vulnerability Scoring System (CVSS) [79] is

73

also used for scoring and characteristics of

vulnerabilities

Common Weakness

Enumeration (CWE) [86]

A community-developed list and software and

hardware weakness types in a common language

as a baseline for weakness identification,

mitigation and prevention efforts.

Common Attack Pattern

Enumeration and

Classification (CAPEC)

[87]

Provides a dictionary of known attack patterns

employed by adversaries to exploit known

weaknesses in cyber-enabled capabilities.

ATT&CK [81] A knowledge base of adversary tactics and

techniques based on real-world observations

D3FEND [88] A knowledge graph of cybersecurity

countermeasures

Cyber Analytics Repository

(CAR) [84]

A knowledge base of analytics based on the

MITRE ATT&CK adversary model. The CAR

analytics have not been used directly in our

graph, however the data model has been used as

a reference as a framework for modeling

analytics based on data relationships.

We then proceed to map these to associated attack patterns from the MITRE library,

which provides a catalog of common attack patterns, attributes, prerequisites, and

mitigations. This data is then used to build a domain-specific ontology for IoT

devices to be used by the agent plan library at an abstract level. While outside of

the implementation scope for this paper, this can be further expanded to more

detailed technical-level capabilities as future work.

4.4.2 Node and Relationship Definitions

The meta-graph shown in Figure 4.7 below illustrates the node and relationships

within the cybersecurity domain knowledge graph pulled from the knowledge bases

described in the previous section. Each of these knowledge bases provide a data

model that can be easily related to each other and has been further related within

our graph to provide end to end relationships between security weaknesses to

mitigation techniques along with their associated properties for risk analysis and

prioritization. The node labels, properties, and associated relationships are listed in

Table 4.6 below.

74

Figure 4.7 Cybersecurity Domain Knowledge Graph

Table 4.6 Cybersecurity Domain Knowledge Graph Node Definitions

Node Label Properties Relationships

Technique id

name

description

Permission

Platform

AttackPattern

DataComponent

KillChainPhase

Mitigation

Technique

Platform name Technique

Mitigation id

name

description

Technique

AttackPattern id

name

description

likelihood

severity

Technique

Weakness

Consequence

Weakness id

name

description

likelihood

AttackPattern

Consequence - Scope

Impact

Scope name Consequence

Impact name Consequence

75

4.4.3 Cypher Queries

An important function of the domain knowledge graph is to enrich agents’

understanding of the security implications of their environment, including assessing

the security implications and level of risk related to known or suspected

vulnerabilities and weaknesses. This is the first step towards establishing an

appropriate mitigation plan aligned with the priorities identified within the policy.

This section provides an overview of the types of queries that can be used to gather

information in support of agent situational awareness and defence control planning.

Summary of Impact and Scope of a Known CWE

The below query shows an example Cypher query which returns the associated

impact and scope for a particular CWE-521: “Weak Password Requirements” on a

Linux system:

MATCH (t:Technique)-[:TARGETS_PLATFORM]-> (p:Platform { name:

"Linux"})

MATCH (w:Weakness {id:"CWE-521"}) <- [:EXPLOITS_WEAKNESS] -

(atp:AttackPattern)<-[:MATCHES_PATTERN]-(t)-[:MITIGATED_BY]->

(m:Mitigation)

MATCH (atp) - [:HAS_CONSEQUENCE] -> (c:Consequence) -

[:AFFECTS_SCOPE] ->(scope:Scope)

MATCH (c)-[:HAS_IMPACT]->(impact:Impact)

RETURN w.id AS CWE_ID, collect(distinct impact.name) AS Impact,

collect(distinct scope.name) AS Scope

The results of the query are shown below, where a summary of the impact and scope

of the CWE are listed. This provides useful information to be stored within the

Security Monitor exploits to be used for prioritizing remediation of CWEs based

on the priorities of the security policy.

76

Enriched Data for Attack Patterns Associated with a Known CWE

Further, there may be multiple attack patterns associated with a CWE, raising the

requirement for a more granular view of the different types of CAPEC attack

patterns and their associated consequences. In addition to this, an understanding of

the likelihood and severity of a potential attack pattern will be useful for prioritizing

specific remediation plans. The below query is used to retrieve this data from the

graph:

MATCH (t:Technique)-[:TARGETS_PLATFORM]-> (p:Platform

{name:"Linux"})

MATCH (w:Weakness {id:"CWE-521"}) <- [:EXPLOITS_WEAKNESS] -

(atp:AttackPattern) <- [:MATCHES_PATTERN]- (t) -[:MITIGATED_BY] ->

(m:Mitigation)

MATCH (atp) - [:HAS_CONSEQUENCE] -> (c:Consequence) -

[:AFFECTS_SCOPE] ->(scope:Scope)

MATCH (c)-[:HAS_IMPACT]->(impact:Impact)

RETURN atp.name AS AttackPattern, atp.likelihood AS Likelihood, at

p.severity AS Severity, collect(distinct impact.name) AS Impact,

collect(distinct scope.name) AS Scope

Mitigation Techniques and Prioritization

While the results of the previous query can support the prioritization of selecting

mitigations mapped to attack patterns, it is also important to consider that there are

mitigation techniques that can protect against multiple types of attacks. The

following query can be used to retrieve the list of related mitigations for the CWE

with the associated attack techniques, severity, and likelihood.

77

MATCH (t:Technique)-[TARGETS_PLATFORM]-> (p:Platform {name:

"Linux"})

MATCH (w:Weakness {id:"CWE-521"}) <- [EXPLOITS_WEAKNESS] -

(atp:AttackPattern) <- [MATCHES_PATTERN]- (t) - [MITIGATED_BY] -

> (m:Mitigation)

RETURN m.name AS Mitigation, collect(t.name) AS Techniques_Mitigat

ed, collect(atp.severity) AS severity, collect(atp.likelihood) AS

likelihood

Based on the below results, multi-factor authentication and password policies

would protect against the largest number of techniques related to CWE-521:

Mitigations are related to Device Capabilities (DCs) described in the previous

sections. The prioritization and selection process take all of the above criteria into

consideration as well as the available DCs that the agents can leverage to select the

most effective available mitigation. If no mitigations are possible, the system

monitor will still maintain a view of the possible risks and can provide notifications

to the users.

78

4.5 Chapter Summary

While recent years have observed increasing attention towards data modeling and

intelligence sharing within the cybersecurity industry, this data provides a

foundation of knowledge that can be applied for structured agent reasoning.

Existing BDI research and applications have utilized ontologies in other forms,

however to our knowledge there has been no previous work integrating BDI agents

with knowledge graphs. The flexibility and ability to model complex relationships

motivate the adoption of our presented graph-based solution for modeling

cybersecurity domain knowledge and agent behaviours in relation to the

environment as a foundation for multi-agent intelligence.

This chapter introduced our model and examples for the environment graph,

cybersecurity domain knowledge graph, and BDI agent knowledge graphs to

inform agent behaviours and inference rules for rationalization. With the

foundations defined, the following chapter will proceed to discuss our

implementation which brings the knowledge graph model together with the multi-

agent system architecture described in Chapter 3.

79

5 Implementation

This chapter presents an implementation of our multi-agent system architecture for

adaptive cyber defence in a smart home network. Our implementation architecture

consists of three components: coloured petri nets, knowledge graph database, and

the simulation engine. We will proceed to describe the implementation for the

control and coordination functions and associated policy generation, followed by

two agent use cases for vulnerability management and access management. The

implementation described in this chapter will provide a foundation for the

experimental evaluation and results discussed in Chapter 6.

5.1 Model Smart Home Scenario

The implementation simulates a fictional smart home environment, as shown in

Figure 5.1 as an illustrative example of a realistic use case. The scenario illustrates

a single-bedroom apartment that contains a variety of IoT devices for physical

security, lighting, temperature control, entertainment, personal devices, and

network devices. In addition, the home contains a single user with moderate

adoption of consumer IoT devices for the primary purposes of home automation

and comfort.

5.1.1 Devices and Network

The model smart home environment contains the following devices shown in Table

5.1 below, which have been added to the Neo4j [89] environment graph and basic

functions created within the simulation engine. We have also generated a set of

device capabilities for each device according to the National Institute of Standards

and Technology (NIST) device capabilities[19]. Some devices have been

configured with limited capabilities to show how the system would respond to

constrained resources.

80

Figure 5.1 Model Smart Home Environment

Table 5.1 Smart Home Device Listing

Type ProductName

Physical Security Security System

Smart Lock

Lighting Light Hub

Light1

Light2

Light3

Light4

Temperature

Control

Thermostat

Temp Sensor 1

Temp Sensor 2

Audio/Video Smart TV

Smart Speaker

Personal Devices Laptop

Smart Phone

Network &

Control

Router

IoT Hub

81

5.1.2 Security Requirements

The security requirements that need to be addressed through our model have been

defined using the NIST framework discussed in Chapter 3. Each requirement maps

to a corresponding agent Desire within the knowledge graph:

• Asset Management

• Device Configuration

• Data Protection

• Access Management

• Vulnerability Management

• Incident Detection

• Availability

5.2 Implementation Architecture

The architecture for our implementation is shown in Figure 5.2 below, with the

following three major components to be described in further detail throughout the

rest of this section:

• Coloured Petri Nets (CPN): the message exchanges between agents and

devices are simulated within CPN. CPN Tools [90] is used to visualize and

facilitate the network environment and agent BDI through each time step of the

simulation.

• Simulation Engine: a set of scripts developed in Go [91] to simulate basic

device and agent instances and the interface between CPN Tools and Neo4j.

The device and agent instances are called from CPN tools to execute appropriate

actions when they receive messages.

• Neo4j Graph Database [89]: contains the knowledge graphs for agent

reasoning, including the domain knowledge ontology, BDI knowledge graph,

and knowledge graph. A dashboard has also been created for the visualization

of system states and summarized data within the graph.

82

Figure 5.2 Implementation Architecture

This architecture enables a demonstration of each major component of our model,

from the controller, coordinator and missions, and device agents acting in different

use cases.

5.2.1 Coloured Petri Nets

Colored Petri Nets (CPN) are a graphical oriented language for the design,

specification, simulation and verification of systems [92]. CPN can be used for

modeling and simulating behaviours of systems where concurrency and

communication are key characteristics, such as business processes and workflows,

manufacturing systems, and agent systems [93]. For example, Petri Nets have been

used to implement BDI agents by Jimenez-Ochoa et al. [94] to model Interpreted

Petri Nets (IPN) to represent agent beliefs and beliefs revision transitions for

flexible manufacturing systems.

Our simulation makes use of CPN Tools [90], a tool for editing, simulating and

analyzing our model through colored Petri Nets. A CPN model represents states of

the system (places), and events that can change states (transitions). Through this

model, it is possible to walk through and execute simulated systems to better

understand system behaviour and design. CPN ML is based on Standard ML, a

functional programming language that provides the definition of data types.

83

We simulate our environment and agent instances in CPN Tools to visualize the

states and transitions as messages are sent through the network. While early

versions of our model were designed using CPN Tools for validation of basic agent

BDI reasoning and communication, our implementation has now expanded to

leverage our external integrations with Neo4j and Simulation engine as the basis

for larger scale intelligence and knowledge reasoning.

We have modeled the environment and BDI agent nets, as shown in Figure 5.3 and

Figure 5.4 respectively. The environment net provides a model for simulating the

environment, including device instances, messages, and network communications

while the agent net models the rationality of the BDI agents that interact with it. We

proceed to describe each component in more detail within the rest of this section.

Figure 5.3 Environment CPN

84

Message Format

Within the simulation, we define a common message format for simple simulated

network communications within the system. A colorset of “MSG” has been defined

consisting of the following fields: msg = { src=””, dst=””, kind=””, data=[] }.

• src: the source of the message.

• dst: the destination of the message.

• kind: identifies the type of message to handle data fields.

• data: a string list is consisting of the actual data of the message within the

appropriate fields.

The below “kinds” of messages described in Table 5.2 have been defined to pass

messages across the network as well as for internal messages between the agent and

host device.

Table 5.2 Message "Kind" Definitions

Kind Data Format Usage

notify [("value","UpdateNotification"),

("ver", "$ver")]

For update

notifications

request Same as action

Request msg to

another device

response [("Function name", "id"),("status",

"Success/Failed"),(result/error))]

Response msg to

another device

action (Function name, ID),(Function

parameters)

[("update", "id"), ("ver", "$ver")]

Agent action on host

device

actionResponse [("Function name", "id"),("status",

"Success/Failed"),(result/error))]

Host device

response to action

successful/failed

While the actions and functions are not performed within CPN tools directly, the

simulation engine parses the message format to perform the appropriate functions

and update states accordingly.

85

Network Simulation and Round Management

The design of our system models concurrent behaviours through discrete time

events in a “turn-based” model, where each time interval runs through a queue of

concurrent events in a “round.” Rather than hard-coding each device and agent into

the net, the environment and agent nets have been reduced to a simple shell to

represent the basic structure of any device or agent receiving, processing, and acting

on an event. The device and agent transitions load the state and attributes of the

appropriate device and agent when their turn begins. This allows for the scalability

of testing scenarios as the device and agent instances also sit outside of CPN tools

in the simulation engine.

A major component for managing the message flows and timing of the simulation

is the “Round Management and Network” transition. This is a transition to simulate

the routing of network communications to the appropriate devices while enforcing

the coordination of event processing for each round. When a device or agent sends

a response message, it will append to the “Round Results Queue,” which will collect

all messages from the round. All actions during a round will leverage the same state

space for the round time step, which will be released after the completion of the

round. If any conflicts occur during a round, a random number will determine which

event happened “first” and send a failure response to the unsuccessful requestor to

be evaluated in the following round. Based on our simulations, there has been a

negligible operational impact with this design. However, it would need to be

revisited in the future.

Another key capability within this transition is to act as an interface to inject events

for simulation as well as respond to Internet requests through simulated functions

within the simulation engine. For example, events such as update notifications or

malicious activity can be triggered here for simulation activity.

Device Artifact

The device artifact is a transition that takes a message as input and processes it as

the recipient device. When a message is received, the below action calls the

86

recvMessage() function, which outputs the message to the simulation engine to

interpret as the appropriate device.

input (msg);

output (msg2);

action

let

 val newmsg = recvMessage(msg)

in newmsg

end

The output message for this transition can be directed either to an agent percept or

the round results queue for processing in the next round.

Agent BDI

The Agent BDI net is a useful tool to model and visualize the BDI reasoning for an

agent. Following the BDI architecture described in previous chapters, the net shown

in the figure below demonstrates the agent’s BDI capabilities in action with

percepts, beliefs, desires, intentions, and actions represented as places that contain

tokens for relevant data at any given time. The belief revision function and reasoner

are represented as transitions that implement the functions through interfacing with

the BDI knowledge graph in Neo4j.

Similar to the device artifact described above, the agent net is a general model that

initiates the BDI of the appropriate agent that is acting at any given time. When a

message is sent to an agent, the related agent attributes are loaded into the

corresponding beliefs, desires, and intentions placed in the net.

input (dst);

output(b,d,p);

action

let

 val b = loadB(dst);

 val d = loadD(dst);

 val p = loadP(dst);

in b,d,p

end

A percept is received in the form of a message and input into the belief revision

transition, which performs the function below to update the new beliefs:

87

input (msg);

output (b3);

action

let

 val newb =recvMessage(msg)

in #data newb

end

Next, the reasoner transition inputs the new belief, desires, and intentions (plans)

to generate a resulting plan and action, as shown in the function below:

input (b,d);

output (msg);

action

let

 val plan = selectPlan(d)

 val action = selectAction(b)

in action

end

While the CPN walks through all of the logical steps of the environment and agent

algorithm and visualizes the data at each step within the corresponding place and

transition, the actual intelligence and processing take place outside of the net

through the functions called to the simulation engine integration to execute the

corresponding functions and execute cypher queries to the Neo4j graphs

accordingly. The simulation engine and Neo4j components will be discussed

further in the following sections.

Figure 5.4 Agent CPN

88

5.2.2 Simulation Engine

The simulation engine was developed for the purposes of simulating the device and

agent instances for demonstrating our model. While the network environment and

round management are orchestrated within CPN Tools, this component hosts the

actual instances of the devices loaded into CPN tools as needed. The simulation

engine has been developed in Go and performs a set of functions shown in Figure

5.5. The engine sends and receives messages to the appropriate device and agent as

the simulation is executed and executes its functions supported by Neo4j graph

integration.

Figure 5.5 Simulation Functions

The simulation engine consists of the below services:

Integration Connectors

The simulation engine integrates CPN tools and Neo4j using the respective

connectors to send and receive messages between the platforms.

Device Simulation

This acts in place of a real device for the purposes of our simulation. The device

simulation contains the functions to receive and process messages to perform basic

actions within the action sets defined in the graph.

89

Agent Simulation

An instance of each agent is created to maintain an ongoing memory and reasoning

of the agent’s beliefs, desires, and intentions throughout the simulation. The agent

instance is called by CPN tools as described in the previous section, which is called

through the transition for belief revision and reasoning. The agent has the ability to

query the BDI Knowledge Graph in Neo4j for belief inferences and applicable

plans.

The basic functions within the simulated device and agent instances are sufficient

to model a responsive demonstration for the defined actions within our initial action

set for the simulation. While this is sufficient to demonstrate the overall architecture

implementation of the system, future work would be to integrate with actual devices

which can host the agents and execute actions directly. This would require another

level of integration beyond the scope of this work.

5.2.3 Neo4j Graph Database

As described in the previous chapter, we make use of Neo4j graph databases for

domain knowledge, agent BDI, and environment graphs. Neo4j [89] is a widely

used graph data platform that has widespread applications across industries and

uses cases such as fraud detection, financial services, life science, data science and

knowledge graphs. Neo4j uses Cypher query language, a declarative graph-

optimized language for expressive and efficient queries for nodes and relationships

in property graphs. For our implementation, we have populated the agent BDI,

environment, and domain knowledge graphs within Neo4j to be leveraged for agent

reasoning.

Figure 5.6 below shows the merged agent BDI and environment graphs visualized

in Neo4j Bloom. As shown in the node label index on the right side of the Figure,

agent desires have been created, corresponding to security requirements in the

defence policy. Our knowledge graphs have been created to represent BDI

relationships for each of the security requirements and corresponding device

capabilities related to each device as applicable within the environment graph.

90

Agents can leverage the graph for belief revision and planning to select appropriate

actions based on their beliefs and desires.

Figure 5.6 Environment and BDI Graph in Neo4j

5.3 Implementation of Control and Coordination

The first component is the control and coordination functions, which maintain a

high-level view of the network and security states to direct the overall goals for the

rest of the multi-agent system. As discussed in Chapter 3 and further visualized in

Figure 5.7 below, the controller begins by taking the security requirements and

creating a defence policy to be passed on to the coordinator. Next, the coordinator

manages the resources and workflow planning to coordinate and deploy missions

for the device agents to act on the environment.

91

Figure 5.7 Model Components

5.3.1 Defence Policy Generation

As described in Section 5.1.2, we have defined a set of security requirements based

on NIST 8259A to be enforced by the system. Based on the security requirements,

a defence policy is created by the controller according to the knowledge of the

environment, which defines the high-level agent's desires for the system.

The elements of the defence policy are input into the knowledge graph, where the

goal of each policy is identified as an agent “desire” associated with the desired

system state. Each desire is related to each device or group of devices to which the

policy is to be applied.

5.3.2 Coordination

After the defence policy is defined and passed on to the coordinator, it must take

the appropriate actions to ensure the policy is enforced. The agent profile and BDI

graph for the coordination agent are shown below, where the agent has an action

set of CoordinatePolicy() and DeployMission(). The coordination agent maintains

an ongoing desire to “CoordinatePolicy,” where the objective desired state of each

policy is “up to date.”

92

Role: “coordinator”

ActionSet: CoordinatePolicy(), DeployMission()

Beliefs: “”

Desires: “CoordinatePolicy”

Intentions: “”

As shown in Figure 5.8 below, when a new policy is received without any

associated coverage, it is in a state of “new.” Therefore, the coordination agent

proceeds to perform actions in pursuit of the desired state of “covered” for each

policy by coordinating and deploying the required missions according to the

resources available.

Figure 5.8 Coordinator BDI Graph

93

5.4 Implementation of Agent Use Cases

This section demonstrates the implementation of two use cases to demonstrate how

an agent can deliberate upon different security-focused desires and enforce policies

embedded into the BDI knowledge graphs. The first use case demonstrates

vulnerability management and patching capabilities, and the second demonstrates

access management capabilities.

5.4.1 Use Case 1: Vulnerability Management and Patching

This section demonstrates how a device agent acts within the device to maintain the

most up-to-date version of the software. While patch management is a significant

concern for the security posture of a home or enterprise network, this example may

appear simplistic. However, we have presented it here to demonstrate the basic

functions of an agent and how it would receive percepts from the environment,

rationalize using the BDI model, and perform actions in pursuit of a goal. The

foundation shown through this example can be expanded to more complex

capabilities.

Agent Profile and Reasoning

The profile of a basic patching agent's initial BDI is shown below, where the agent

has a set of actions available on the host device to installUpdate() and

DownloadUpdate(). The agent does not have any initial beliefs or intentions until it

receives an initial percept, and it has inherited a desire to “update” based on the

defence policy.

Role: “deviceAgent”

ActionSet: InstallUpdate(), DownloadUpdate()

Beliefs: “”

Desires: “Update”

Intentions: “”

The agent leverages the below subset of the BDI graph for belief revision and

planning related to the “Update” desire defined in the policy and mission. For

example, the graph in Figure 5.9 shows the relationships between percepts and

94

beliefs, a series of actions based on the possible belief set, available actions based

on device capabilities, and expected state outcomes of performing the actions.

Figure 5.9 Agent BDI Graph for "Update" Desire

Detailed Simulation Walkthrough

Figure 5.10 shows the message format and flow of the scenario, where the agent

receives a notification that there is a new software version available. This triggers

a series of actions by the agent to pursue its desired state of “up-to-date” software.

The agent leverages the plan obtained through the BDI knowledge graph to select

an appropriate action based on each percept and updated belief of the state of the

environment. Each step will be described further with screenshots as we walk

through the implementation in the remainder of this section.

95

Figure 5.10 Patching Agent Sequence Diagram

First, a notification is sent to the agent on the device, which is passed to the agent

and received as a percept as follows. (a) The agent receives a percept in the form of

an update notification message which (b) triggers the belief revision transition to

update the agent’s belief that the device version is out-of-date, and an updated

version is available. The cypher query request and response for the belief revision

are shown below:

Query:

MATCH (:Percept { Value: "UpdateNotification"}) -

[:CREATESBELIEF]-> (beliefs) RETURN beliefs

Response:

╒══╕

│"beliefs" │

╞══╡

│{"Value":"OutOfDate"} │

├──┤

│{"Ver":"string","Value":"UpdateAvailable"}│

└──┘

96

Figure 5.11 (a) update notification received as percept

Figure 5.12 (b) new belief revision

97

Next, the reasoner transition is triggered with the input of the new belief and current

desire and references to the plans (intentions) stored in the agent’s memory. Finally,

an action is selected using a cypher query based on the plan and current belief, as

shown below:

Plan:

╒════════════════════╤══════════════════════╤══════════════════════╕

│"targetbelief" │"selectedActions" │"preBeliefs" │

╞════════════════════╪══════════════════════╪══════════════════════╡

│{"Value":"UpToDate"}│{"Ver":"string","Value│{"Ver":"string","Value│

│ │":"InstallUpdate"} │":"UpdateDownloaded"} │

├────────────────────┼──────────────────────┼──────────────────────┤

│{"Value":"UpToDate"}│{"Ver":"string","Value│{"Ver":"string","Value│

│ │":"DownloadUpdate"} │":"UpdateAvailable"} │

└────────────────────┴──────────────────────┴──────────────────────┘

Cypher Query for Action Selection:

MATCH (:Desire { Value: "Update"}) -[:OBJECTIVE]-

> (targetbelief)

MATCH (targetbelief) -[:ACHIEVEDBY]-> (selectedAction)

MATCH (preBeliefs:Belief { Value: "UpdateAvailable"}) -

[:NEXTACTION]-> (selectedAction)

RETURN selectedAction

Response:

╒═══╕

│"selectedAction" │

╞═══╡

│{"Ver":"string","Value":"DownloadUpdate"}│

└───┘

Through the belief-action pairs retrieved through the query, (c) the agent is able to

select an action of “DownloadUpdate(2.1)” which is (d) performed through a

request to the host device. Once the next round begins, the agent’s request is sent

to the host device, which then proceeds to (e) download the update from the

internet. Once downloaded, the device (f) sends a successful action response to the

agent to inform that the download has been completed.

98

Figure 5.13 (c) action is selected and performed by the agent

Figure 5.14 (d) request is sent to the environment round results queue

99

Figure 5.15 (e) device downloads the update

Figure 5.16 (f) action response is sent to the agent

100

The agent receives the response as a new percept and performs its next belief

revision accordingly. With the new (g) belief that the update has been downloaded,

(h) the agent responds with a subsequent action to install the update, sent again as

a request to the host device. Once receiving the request, the host device proceeds to

install the update and (i) sends a successful response to the agent. (j) The agent’s

belief is now updated to reflect that the most current version is installed.

 Figure 5.17 (g) belief revision for downloaded update

101

Figure 5.18 (h) the action selected to install an update

Figure 5.19 (i) action response to the agent that update is installed

102

Figure 5.20 (j) belief revision that software is up to date

Finally, the new belief and active desire are input into the reasoner transition and

(k) confirms that its desired state has now been achieved. With no further actions

required in pursuit of this desire, the agent can send an update back to the

coordinator to update the status of the mission. This data will be tracked within the

system monitor for awareness of the security state of the device.

103

Figure 5.21 (k) "Update" desire has been achieved

As the agent is aware that it has now achieved its current goal and no other actions

are required at this time, if a new percept is received to indicate that a new update

is available, the process will begin again to continue to maintain the most recent

version available. While this demonstration may appear simplistic, it provides a

simple example demonstrating the deliberation of just one of many possible agent

desires. An agent can maintain multiple desires simultaneously and prioritize the

appropriate actions according to its ongoing belief set.

5.4.2 Use Case 2: Access Management

The following use case to be demonstrated is an access control scenario. Access

management is one of the core foundations of information security to restrict access

to systems and data based on authentication and authorization procedures.

Furthermore, with agents deployed throughout the network with access to

contextual environment data, access control capabilities provide many

opportunities for the enforcement of policies within the multi-agent system.

104

Access management is central to many functions within security, and our BDI

graph contains many relationships to access-related capabilities. It is possible to

code access management policies further into the agent BDI graph by creating

additional relationships as a prerequisite to other agent actions. This illustrates the

effectiveness of the graph database as a platform for modeling complex

relationships between actions. Depending on the device capabilities available on

each device, agents can perform queries to traverse the graph to find the optimal

plan of action based on available resources and security requirements for a

particular environment. The graph is also modular to allow additional functions to

be added based on evolving capabilities. Figure 5.22 shows the basic BDI graph for

access management functions used within our implementation. The access

management subset of the graph is related to other functions, such as input

validation.

Figure 5.22 Access Management BDI Graph

Access Management can be performed by a device agent as defined below.

Role: “deviceAgent”

105

ActionSet: AccessControl(), Authenticate(),

AllowRequest(), BlockRequest()

Beliefs: “”

Desires: “AccessManagement”

Intentions: “”

While IoT devices may have different capabilities available for access control, an

agent can leverage the knowledge graph to determine the best course of action based

on the available resources, shared knowledge, and collaboration with other agents

or compensating controls. As each agent hosted on a device will evaluate all

requests to and from the device, the agent can act as a Policy Enforcement Point

(PEP) to enforce policy decisions. Policy decisions are made at the Policy Decision

Point (PDP), which can be defined by the controller or coordinated through a

mission in response to an incident or compensating control. Alternatively, the PDP

can be expanded through additional security services, which could be added in

future works.

In this scenario, we will demonstrate how an agent can enforce access control

policies based on the available device capabilities. We will show two examples of

successful and unsuccessful access requests.

Successful Login Request

This scenario will show a simple example of a successful access request to illustrate

the basic access control capabilities where DeviceA sends a login request to

DeviceB. As shown in Figure 5.23, DeviceA sends a login request to DeviceB,

which processes the request and passes it to the agent hosted on the device. The

agent proceeds with its BDI reasoning first to authenticate the request, perform

access control, and finally provide an access control decision to successfully allow

the request.

106

Figure 5.23 Agent Processing Login Request

Denied Command Execution Request

In this scenario, a potentially compromised DeviceA has made a suspicious

command execution request to DeviceB on the network. As illustrated in Figure

5.24, DeviceA has obtained a legitimate token according to the previous scenario

and has successfully authenticated to DeviceB. However, the device is now

attempting to send a command to download a malicious file and is subsequently

denied permission to execute the request as per the access control policy. The agent

subsequently responds with a deny message back to the host device, which proceeds

to deny the requested action.

Figure 5.24 Denied Command Execution Request

While we are showing this as a standalone scenario, access control policies can be

adapted in response to situational awareness of security states within the network

and can be used as a response to a detected threat.

107

5.5 Chapter Summary

The results of our implementation described in this chapter demonstrate our model's

feasibility for intelligent agent defence capabilities leveraging BDI agents and

knowledge graphs. Using our knowledge graphs to model the relationships across

environment artifacts and their properties and linking to security domain knowledge

provides a rich contextual dataset that can be leveraged by BDI agents to maintain

a strong level of situational awareness about the environment state and perform

intelligent actions and reasoning for autonomous cyber defence capabilities.

The hierarchical agent model has been designed to limit unnecessary

communications between agents while allowing autonomous agent behavior with

distributed control and knowledge. Leveraging reusable agent templates and control

hierarchies, we can limit unnecessary agent calls to the neo4j graph by retaining

appropriate plans within agent memory after they are deployed. Through this

design, the control and coordination agents will perform most of the Neo4j requests

to the environment and BDI graphs. In contrast, the majority of the decisions and

queries would take place during the initialization of the system when the defence

policy is being created and missions are coordinated.

Through the demonstration of the current implementation in this chapter, we have

shown a smart home environment with 16 devices and 8 security requirements to

be enforced by the multi-agent system. While the simulation environment contains

synthetic devices and data, our implementation can provide initial results to infer

how the model would scale to perform in a real-world scenario.

While Chapters 6 and 7 will provide a more in-depth evaluation of our model and

implementation in line with the potential implications and future works, we will

summarize some initial limitations and assumptions with the implementation

described in this chapter. Our implementation proves the initial design and

feasibility of the architecture, and future work would be to implement with real data

and devices to evaluate and expand the model for real-life scenarios and events.

Due to the simulated environment, device functions have been simplified and

108

limited to basic capabilities for demonstration. Hard coded functions and actions

have been modeled, which would be more complex in a real-life environment.

Another significant assumption was that device profiles are available for all devices

according to the NIST labeling framework, which has been heavily referenced as a

foundation of the BDI graphs. While the labeling system is not yet prominent in the

industry as a standard, our model demonstrates a useful use case for leveraging this

framework for automation. While this limitation had been strongly considered

before making the design choice, several workarounds for a real-world

implementation have been considered and will be discussed further in the following

chapter, along with other considerations for the potential of the model.

109

6 Evaluation and Results

To evaluate the implemented design, this chapter provides an experimental

evaluation to demonstrate operational and defence capability performance of the

implemented system. We then proceed to evaluate the design against the IoT design

challenges and security requirements identified earlier in this work. Lastly,

additional considerations are discussed in support of implementation

recommendations for future works.

6.1 Experiment Design

A set of experiments have been conducted to evaluate the performance of the

proposed architecture in response to an active botnet attack under different

environment scenarios with varying device capabilities. Different environment

states can exist depending on which capabilities are enabled on the devices and

different actions are available to the agents. We proceed to analyze the results to

evaluate the operational performance and defence capability performance across

each scenario:

• Operational Performance – Results evaluating the average response time and

memory utilization for the BDI agents.

• Defence Capability Performance – Results evaluating the performance of

classification of attacks (True Positive Rate, True Negative Rate, False Positive

Rate, False Negative Rate, Error Rate, Recall, Precision, F1-Score).

The botnet attack follows a four-stage process targeting the network gateway, as

illustrated in Figure 6.1. The attacker first attempts initial access using default

credentials on a public-facing port. Upon successful login, a command is sent to

download and execute the malicious payload on the target device. Once executed,

the device runs a service to listen for commands from the command and control

server. Once a command is received, the device resources are used to execute the

botnet commands sending malicious traffic to another external target.

110

Figure 6.1 Botnet Attack Stages

Our experiment runs through 256 scenarios implementing different combinations

of device capabilities enabled within the environment. Based on the device

capabilities that are utilized within the above attack scenario from an exploitation

or protection perspective, we have chosen a set of relevant capabilities for our

experiment, as described in Table 6.1.

Table 6.1 Capability Descriptions

Type Description Capabilities

Base

Capabilities

Base access

control-related

capabilities

DC4.1 ability to disable interfaces

DC4.2 ability to restrict access to interfaces

DC4.4 ability to authenticate

Secure

Configurati

on

Proactive

controls

DC4.5 secure auth (no default passwords)

DC2.3 secure default settings

Enhanced

Agent

Capabilities

Active agent

capabilities to

respond to

vulnerabilities

and threats

AC1 Update Port Settings - review open

ports and disable unnecessary ones

AC2 Endpoint Controls - block weird access

and execution

AC3 Network Controls - block weird traffic

To demonstrate the impact of different device capabilities, the following four sets

of scenarios were evaluated, each with different combinations of device capabilities

enabled within the environment, as shown in Table 6.2. Set A includes

combinations of only base device capabilities for access management. Set B

simulates an environment with additional proactive controls for secure default

settings, including open ports and secure authentication practices such as changing

default passwords. Next, Set C introduces three other capabilities for enhanced

111

agent actions for detection and response, which can make use of the previous

capabilities. Finally, Set D iterates through the entire set of remaining

combinations. The total number of scenarios run in our experiment is 256, for each

combination of the 8 capabilities relevant to this attack scenario (28).

Table 6.2 Overview of Experiment Scenarios

Set # of

Scenarios

Base DCs

[4.1, 4.2, 4.4]

Configuration

DCs

[4.5, 2.3]

Enhanced ACs

[AC1, AC2,

AC3]

Set A 8 X

Set B 24 X X

Set C 56 X X

Set D 168 X X X

TOTAL 256

The simulation environment has been executed on two devices: a Linux virtual

machine hosting the Neo4j graph database, and a Windows laptop running the CPN

Tools application and simulation engine. The technical specifications of the

simulation environment are shown below:

Table 6.3 Specifications of Devices Used in Simulation Experiment

Device OS Processor RAM Application Info

Neo4j

Server –

Virtual

Machine

Burmilla

4.14.248

AMD Ryzen 9

3900X, 4267

Mhz, 12-Core (

1 allocated)

4GB Neo4j Enterprise 4.4.4

• Database size: 1.02

MiB

• Nodes: 190

• Properties: 125

• Relationships: 175

Laptop Windows

10.0.19044

AMD Ryzen 9

5900HS Radeon

Graphics, 3301

Mhz, 8 Cores, 16

logical

processors

16GB CPN Tools 4.0.1

112

6.2 Operational Performance Evaluation

This section evaluates the operational performance of our simulation based on

memory utilization and the average response time of agents. The following results

have been generated from 179 measured agent queries that had been executed for

access control and authentication capabilities within the simulations of the botnet

scenario described in the previous section.

6.2.1 Average Response Time

As agent behaviors are directed through the BDI knowledge graph, Neo4j cypher

queries are performed to retrieve the appropriate rational inferences and

corresponding actions. We evaluate the performance of the average query time for

agent plan selection, belief revision, and action selection, shown in Table 6.4 and

illustrated in Figure 6.2 and Figure 6.3 below, from a sample of request types.

Table 6.4 Response Time Thresholds (ms)

Request Type Avg Min Max Count

Plan Selection 2.8 0.96 5.67 37

Belief Revision 1.7 0.7 4.33 71

Action Selection 1.2 0.84 3 71

Figure 6.2 Average Time Per Query (ms)

113

Figure 6.3 Query Time Per Request Type (ms)

While plan selection has the highest average query time of 2.8 ms, our

implementation has been designed to optimize the performance by limiting the

number of plan selection queries to the agent initialization stage. With this design,

plan selection will only need to be performed when the agent is initialized or if there

are any updates to the capabilities or desires. The graph for the plan is stored within

the agent’s memory going forward, so subsequent decisions will only need to be

performed through local queries for belief revision or action selection within this

graph.

Agent actions leverage the device resources and are executed through messages.

Due to this, the agent response time is very lightweight at 0.25ms to receive and

send messages from the host device. After the command is sent to the device to

execute, the operational performance of the implementation of specific actions is

highly variable, depending on the implementation of external functions and device

resources. However, this is out of the scope of the direct agent response time

measurement.

The Average Response Time (ART) in Equation (2) [95] evaluates the performance

of a BDI agent’s average response time from when an event occurs to when the

agent’s response is completed. The below formula is used to calculate the ART,

114

where S1 is the average detection time for the agent’s beliefs are revised based on

a received percept, S2 is the average deliberation time where an intention is created

for a selected action, and S3 is the average time needed to execute the action. WT1,

WT2, and WT3 represent the average waiting times for the detection, deliberation,

and intention queues, respectively.

𝐴𝑅𝑇 = 𝑊𝑇﷩1﷩ + 𝑆﷩1﷩ + 𝑊𝑇﷩2﷩ + 𝑆﷩2﷩ +

 𝑊𝑇﷩3﷩ + 𝑆﷩3﷩

(2)

As described above, the values of S1, and S2 have been measured at 1.7ms and

1.2ms, respectively. S3 and WT1 are each 0.25ms based on the average time to

receive an event message and execute an action. While the current implementation

manages the event queue sequentially through CPN tools, the waiting times W2 and

W3 are 0ms as the agent does not currently receive enough messages to accumulate

into a queue.

We have calculated the agent ART in our simulation as 3.9ms, as shown in Table

6.5 below.

Table 6.5 Average Response Time for Agents (ms)

S1 S2 S3 WT1 WT2 WT3 ART

1.7 1.2 0.25 0.25 0 0 3.9ms

6.2.2 Memory Utilization

Measurements of memory size for agents have been captured through our

experiments to show the impact of agent resources on an IoT device. The agent

design has been optimized to reduce plan selection time and network overhead by

storing the agent plans in memory after initialization. The average size of an agent

independent of its plans is 158 bytes. Memory requirements increase based on the

number of plans, as shown in Figure 6.4, where the average plan size is 153 bytes.

An agent with all plans currently in the 190-node database reaches a maximum

memory size of 1.21KB. While an agent will likely only have 0-2 plans active at a

given time according to its active desires, this maintains a fairly low memory

115

utilization rate of 311 bytes for an agent with one active plan. Figure 6.5 shows the

average expected memory size by a number of plans.

Figure 6.4 Memory Utilization of Agent and Plans

Figure 6.5 Memory Size By Number of Plans

6.2.3 Baseline Comparison

The memory utilization results can be compared to a baseline of memory

specifications to understand the resource impact expected on a set of IoT devices

that can be found in a smart home. The devices identified in Table 6.6 range from

116

256 MB to 4 GB of memory, with the exception of the Raspberry Pi Pico at the

lowest with 264 KB, and Raspberry Pi 4B at the highest with 8 GB of memory. The

maximum current memory size of 1.21 KB would operate on less than 0.0005% of

a device with 256 MB memory and less than 0.5% on the 264KB Pico.

Table 6.6 Memory Specifications for Sample IoT Devices

Device Model Memory

Google ChromeCast

[96]

1 512 MB

2 512 MB

Raspberry Pi [97] B 256 MB/512MB

A 256 MB

B+/A+ 512 MB

2 B 1 GB

Zero/W/WH/2W 512 MB

3 B/B+ 1 GB

3 A+ 512 MB

4 B 1/2/4/8 GB

4 400 4 GB

Pico/W 264 KB

Amazon Echo Plus [98] 2nd Gen 1 GB

Ubiquiti Dream

Machine Router [99]

UDM 2 GB DDR

RAM /

16GB flash

Asus RT Router [100] RT-AC88U 516 MB RAM /

128 MB flash

These results indicate a very low expected resource impact to memory utilization

on many IoT devices that can be found within a smart home network. Meanwhile,

for lower capacity devices such as sensors and lightbulbs, coverage can be

distributed accordingly to devices with higher capabilities as needed.

6.3 Defence Capability Evaluation

This section evaluates the performance of each scenario in protecting against the

botnet attack from a security perspective. We analyze how different capabilities

impact susceptibility to attack scenarios and highlight how agents can create plans

to introduce proactive or reactive controls to improve security posture.

117

6.3.1 Evaluation Metrics

Confusion matrix performance measurements are used to evaluate the results of

each scenario’s ability to protect against the botnet attack. These metrics are

commonly used in machine learning and cybersecurity domains to measure

classifier performance of detections/predictions and their accuracy. The confusion

matrix classifications are defined as follows [101]: True Positive (TP) is an instance

that is positive and is classified as positive, while False Positive (FP) is a negative

instance that is incorrectly classified as positive. True Negative (TN) is a negative

instance that is correctly classified as negative, while False Negative (FN) is a

positive instance that is incorrectly classified as negative. The True Positive Rate

(TPR) shows how many detections were actual attacks, while the False Positive

Rate (FPR) indicates detections that were not. Further, the False Negative Rate

(FNR) is significant to show the attacks that were not detected, and True Negative

Rate (TNR) indicates benign activity that was accurately categorized. The formulas

for each are defined below in Equations (3) through (6) [101]:

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (4)

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑁𝑅) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5)

𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑁𝑅) =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 (6)

Next, we calculate Recall and Precision. Recall indicates the percentage of total

positive rates that were predicted as positive. Precision indicates the percentage of

true positive rates out of the total positive predicted values. The formulas for Recall

and Precision are defined below [101]:

118

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (8)

Finally, the F1 Score can be calculated based on Precision and Recall. F1 Score is

used when FN and FP are most important as evaluation criteria, as is the case in

most security scenarios [101]:

𝐹1 𝑆𝑐𝑜𝑟𝑒
2 ∗ (𝑃 ∗ 𝑅)

𝑃 + 𝑅
 (9)

Further, we also consider the maximum attack stage achieved, as the risk is more

significant as the attack is allowed to progress to advanced stages.

6.3.2 Evaluation Results Per Scenario

We proceed to generate the confusion metrics for each set based on the results. The

table below shows the summary of each set and is further illustrated per scenario in

the subsequent figure.

Table 6.7 Confusion Metrics Per Set

Set FNR TNR TPR FPR Recall Precision F1

Score

AVG

Attack

Stage

Set A 100% 0% 0% 0% 0% 0% 0% 100%

Set B 0% 100% 100% 0% 100% 100% 100% 0%

Set C 25% 75% 93% 0% 82% 93% 86% 25%

Set D 0% 100% 100% 0% 100% 100% 100% 0%

119

Figure 6.6 Confusion Metrics Per Set

Figure 6.7 Maximum Attack Stage Per Set

We can see that the capabilities tested within Set A are insufficient for protection

against the botnet attack, as expected, due to the nature of the attack making use of

default passwords that will bypass authentication and authorization mechanisms.

The false negative rate is 100% as the attack had succeeded in all scenarios,

resulting in a maximum attack stage of 100 (full impact).

Clearly, additional capabilities will be required to better protect the environment.

We introduce two additional capabilities (DC 4.5 and 2.3) in Set B, which represent

proactive controls. Secure default configurations ensure that unnecessary interfaces

are disabled and secure passwords are enforced by not allowing default credentials

120

to be used. We can see the strong impact of these capabilities clearly, with an F1-

Score of 100%, and no attack stages are achieved.

Figure 6.8 Results for Set A

Figure 6.9 Results for Set B

While the capabilities introduced in Set B show such a strong success rate, we chose

to remove them from the following set of scenarios to better observe the impact of

the next set of capabilities. Set C investigates another approach, making use of

responsive agent controls (AC1, AC2, AC3), which support real-time monitoring

and response to detected security vulnerabilities and threats. We can see the most

interesting results from this set, where there is a more significant variance in F1-

Scores, and attack stages achieved depending on the different combinations of

enabled capabilities. From the 20 out of 56 attacks that were successful, we can see

121

a distribution of different attack stages achieved, where only 4 had achieved full

impact. The remaining 16 attempts had bypassed the initial attack stages. However,

it had been blocked after the initial impact or command and control. We will

provide additional analysis of these findings by capability in the following section.

Figure 6.10 Results for Set C

Figure 6.11 Results for Set D

Finally, Set D introduced the remaining combinations of combinations between Set

B and Set C. As shown, the proactive controls from Set B prove to be effective in

compensating for the limitations of the Set B capabilities and have once again

achieved a 100% F1-Score with no successful attacks.

122

6.3.3 Evaluation Results per Capability

While the previous section provided a staged approach to evaluation per set, we

now proceed with a statistical analysis of the individual impact per capability. As

we observed from Set B, there are some capabilities that have been able to perform

100% successfully independently of other capabilities being enabled. Figure 6.12

illustrates a view of the enabled capabilities and corresponding F1-Score for each

scenario.

Figure 6.12 F1-Score and Capabilities per Scenario

The summarized results per capability are shown in Table 6.8 and illustrated in

Figure 6.13, where it is clear that DC4.5 and DC2.3 have the highest independent

success rates. Other capabilities are dependent on others to support effective

protective controls.

Table 6.8 Results Per Capability

 FNR TNR TPR FPR Max

Attack

Stage

Recall Precision F1-

Score

DC4.1 5% 95% 97% 0% 100% 95% 100% 97%

DC4.2 8% 92% 95% 0% 100% 92% 100% 96%

DC4.4 8% 92% 95% 0% 100% 92% 100% 96%

DC4.5 0% 100% 100% 0% 0% 100% 100% 100%

DC2.3 0% 100% 100% 0% 0% 100% 100% 100%

AC1 6% 94% 97% 0% 25% 94% 100% 97%

AC2 1% 99% 100% 0% 25% 99% 100% 100%

AC3 1% 93% 100% 0% 75% 99% 100% 100%

123

Figure 6.13 Confusion Metrics by Capability

Despite the lower scores for ACs 1-3, these capabilities provide effective protection

against advanced attack phases, as shown in Figure 6.14, where many of the

scenarios with these capabilities enabled did not progress further than Initial Access

or CNC.

Figure 6.14 Maximum Attack Stage Per Capability

124

Finally, an analysis of results by a number of enabled capabilities shows a

correlation between the number of capabilities and performance. This is aligned

with the probability distribution of capability performance rates evaluated earlier in

this section.

Figure 6.15 Results by Number of Capabilities

6.4 Evaluation of Design Requirements

To evaluate our model, we will proceed to reflect on how its design effectively

addresses the requirements outlined in Chapter 2 to support (1) the architectural

challenges for IoT security and (2) the security requirements for smart home

environments.

6.4.1 Addressing Design Challenges

The proposed architecture has been developed with a vital consideration for the

design challenges for IoT systems outlined in Chapter 2: resource limitations,

interoperability, reliability and error handling, data volume and sensitivity, and ease

of use. We describe each of the challenges below in relation to our solution:

• Resource Limitations: The multi-agent architecture allows for adaptive

hierarchies according to the environment and resource capabilities. Controller

and coordinator agents can be generated as needed for a centralized, distributed,

or partially distributed model according to the requirements of the system.

While some IoT devices on the network may have limited resources with

125

limited ability to host agent capabilities, these limitations would be known to

the system, and an appropriate control structure would be deployed as needed.

Further, these limitations would be known by the control agent according to the

environment graph, where implications to the situational awareness and security

capabilities would be inferred to identify appropriate compensating controls.

• Interoperability: The agent model is device agnostic, as the majority of the

capabilities operate on a higher layer with a common language for agents. We

operate with an assumption of a framework that device vendors can integrate

the agent technology through middleware on the device. For devices that do not

host an agent, agents on other devices or network devices can perform

compensating actions.

• Reliability: The system monitor maintains a view of the health of the system

from the control level and can respond accordingly. The highly flexible

distributed architecture can adapt to resource limitations or outages and deploy

agents optimally across the network as available.

• Data Volume: The agent hierarchy allows for effective management of data by

maintaining a semi-distributed knowledge base where the controller and

coordinators have a full view of the network, and device-level agents with lower

capabilities are responsible only for a limited portion of the network according

to their capacity. This model can be scalable and adapt to different deployments

as necessary.

• Ease of Use: The autonomous and context-driven design of our framework

reduces the level of effort required from the user to maintain the security of their

network, as agents can adapt to different situations and prepare and respond to

security threats largely autonomously while balancing the availability of

services to the user. While there may be cases where user notifications and/or

intervention may be required, the communication mechanism can also be

designed for ease of use.

126

6.4.2 Addressing Security Requirements

Our framework provides visibility and coverage of security requirements through

modeling the environment, cybersecurity domain knowledge, and BDI reasoning

into knowledge graphs. Through this method, we establish security policies as code

into agent behaviours, which are subsequently embedded into the environment

genome as social agents are deployed across the network. The requirements are

identified as BDI agent desires with relationships to appropriate belief states and

actions to establish contextual plans. The security requirements are enforced in a

scalable, pervasive, autonomous and context-based way by the multi-agent system

BDI architecture.

As outlined in Chapter 2, the key security requirements for smart home IoT systems

are confidentiality, integrity, availability, authentication, and privacy. While the

framework is scalable to address any security requirement that can be input into the

knowledge graph, we leveraged the Baseline Security Requirements for IoT

Devices defined by NIST [26] to identify actionable security requirements to

achieve these objectives. Each of these requirements is then mapped to capabilities

that are related in the graph to the environment and assets for a view of coverage.

In combination with the cybersecurity domain knowledge base, we can further

model each of these requirements and capabilities in relation to the environmental

context.

While this model is highly data-driven and dependent on a data model and data

inputs through, there are several emerging opportunities with standardized data

mapping initiatives that support this architecture:

• The NIST cybersecurity labeling framework, while primarily intended for

user informational purposes, introduces a common standard for labeling

consumer IoT device capabilities which can be further applied to a codified data

model. This labeling standard applied at scale to consumer IoT devices will

provide standard data input for device capabilities. It can be easily integrated

into the environment graph to model each device and its corresponding

relationships for situational awareness and available actions. Further, the

127

security requirements are easily correlated with the device capabilities to

understand the extent of coverage and inform the need for compensating

controls. While our model remains flexible to adapt to a variety of frameworks,

this is a promising direction that would accelerate potential adoption and

effectiveness.

• Cybersecurity Domain Knowledge databases, ontologies, and libraries have

been an emerging focus within the industry as defending organizations aim to

better understand the implications of vulnerabilities, assessment of risks, attack

tactics and techniques, and defence techniques. In particular, the knowledge

frameworks developed by MITRE provide comprehensive cybersecurity

domain knowledge bases which are prominently referenced across the industry.

The above data mapping initiatives provide a strong foundation for the required

agent reference knowledge and environment modeling. Furthermore, within the

multi-agent architecture, the control hierarchy allows for visibility and coordinated

actions to be enforced according to the defined security requirements and generated

policies.

6.5 Additional Considerations for Implementation

6.5.1 Securing the Multi-Agent System

While we have presented a security solution based on multi-agent systems, it is

essential to establish a secure design for implementing the agents themselves as

potential threat vectors. As any system has the potential to introduce new security

vulnerabilities, it is important to incorporate security during the design phase.

Although specific implementation details have been so far outside of the scope of

this work, we will identify some potential threats to multi-agent systems and discuss

design considerations for secure implementation.

Threats to Multi-Agent Systems

Hedin and Moradian [102] identify security threats to multi-agent systems and

present a model for secure design. The authors provide a list of potential threats at

128

the system level and at the agent level, as shown in Table 6.9 below, while

highlighting the areas of agent identification and authentication, secure

communication, and preventing unauthorized access to agents as key requirements

for a secure multi-agent system.

Table 6.9 Threats to Multi-Agent Systems [102]

Threats at System Level Threats at Agent Level

• Threats from mobile agents to hosts

• Threats from the Internet: DoS,

damage, event-triggered,

compound, or user attacks

• Altering the event logging system

of a MAS

• Altering the agent code, data, and

configuration

• Fake agent

• Fake service

• Delegation of services

• Insecure communication channels

• Insecure agent delegation

• Lack of accountabilities

• Agent authorization

• Reputation attack

• Threats from hosts to agents

• Threats from agents to agents

• Agent authentication

• Verification of information that

agents collect from the internet

• Threats from users to agents

• Threats to communication among

agents: identification and

authentication, unauthorized access

to agents, ontology attack, active

probing attack, message injection,

modification of agents’ interaction

by altering the transferring

information, fake message

Based on these key requirements, the authors propose an agent ID code and

associated permissions to be included in message headers for secure

communication, agent identification and authentication. Further, the concept of a

Gate Agent is introduced to handle communications between the host system and

components to protect the system level.

With our specific multi-agent BDI architecture, we anticipate that key targets for

security threats would fall on the controller or coordinator agents, the graph

database, or within agents themselves. New devices joining the network will require

special consideration and secure registration processes. Within agents, threats to

data leakage or manipulation of BDI data, compromised agents, or potential

129

disruption of services are also potential concerns. The following section presents

secure design considerations to address these challenges.

Secure Design Considerations

While the above model presents security solutions to some aspects of our threat

model, we expand on further secure design considerations when designing the

multi-agent system implementation. There have been some existing works on

secure design solutions for mobile agents, with a particular interest in protecting

the confidentiality and integrity of data. For example, Sabir et al. propose a

blockchain-based solution to secure migration of smart home mobile agents. To

ensure agent integrity, a security agent is responsible for managing agent migrations

by registering and validating hashes of transactions stored on the Ethereum

blockchain [103].

Securing agents follows the same principles as any piece of software, where the

host systems and overall threat model must be considered. Depending on the

available resources of the host devices, implementation models can vary. However,

we list the below considerations:

• Host System Hardening and Security Controls: As agents can be deployed

to and interact with various devices within the network, the security of the host

systems is covered by our proposed model and can be correlated with potential

implications for the multi-agent system.

• Self-Healing System Capabilities: While appropriate security components for

other aspects of the network are modeled within the knowledge graphs, our

framework can also model the security of the multi-agent system as another

layer of this. The system monitor provides a holistic view of the security states

and relevant data of the system to maintain situational awareness of the system's

health, including security telemetry of the agents. Based on this, security

requirements, policies, capabilities and defensive actions for the multi-agent

system can be generated and actioned in a similar way. The self-awareness and

self-healing properties of the system apply to both the security of the IoT

devices themselves and the supporting multi-agent system.

130

• Secure Communication: Communications between agents and between agents

and devices can introduce a key vector for interception or tampering. Data

security and encryption mechanisms should be in place to preserve

confidentiality and integrity. The process for registering a new device joining

the network must be developed with strong security considerations, as this is

where the devices will be registered and considered for future communications

with the system. Secure key management schemes can be used to provide

private keys and identifiers to devices and agents to support authentication and

identification. Depending on the capabilities of the host device, there may be

varying capabilities for encryption and other security protocols. Devices with

limited security capabilities should be treated with compensating controls and

perhaps lower trust levels.

• Agent Authentication & Identification: Aligned to the join process, agents

can be given a unique identifier and private key. This can be used for secure

communications and access control decisions.

• Access Control: Access to data and systems should be provisioned with the

principle of least privilege. Access control mechanisms should be applied to

prevent unauthorized access to agents, as well as to limit access of agents

themselves.

• Logging and Auditing: Agent actions should be logged for auditing purposes

and can also be monitored for suspicious or malicious behaviour. Further, as the

system design is intended to be largely autonomous, logs that can provide

artifacts to explain decisions made by the agents will be valuable for a

trustworthy and auditable system [104].

• Trust and Reputation of Agents: Trust and Reputation Management (TRM)

systems for mobile agent systems have been of particular interest in the

literature. For example, Geetha and Jayakumar [105] propose a TRM model for

mobile agent security through trust-based secure routing tables and

cryptographic algorithms to preserve the integrity and confidentiality of data

and secure the execution of agents. For example, Xu et al. [106] present a

hardware-based autonomic agent trust model for IoT systems where a

131

Trustworthy Agent Execution Chip (TAEC) is installed on each sensor node to

provide a trusted execution environment for agents.

6.5.2 Potential Economic Motivations for Adopting the Model

We can define an “accredited,” or “compliant” device vendor as one which supports

the functionality of our framework and has been validated as a participant.

Accredited vendor products can be considered to have a higher level of trust as they

have been validated to comply with a set of industry accepted security standards.

However, as vulnerabilities remain an eternal possibility, the system maintains a

cautious skepticism and ensures that layers of controls are always in effect. This

model ensures that participants maintain a baseline level of security configuration,

as well as a foundation for effective monitoring, analysis, and remediation of

potential vulnerabilities or incidents. Smart home device vendors can opt into

security accreditation with the intention of proving and enriching security

capabilities to maintain customer trust. A coalition of smart home vendors and

device owners are provided the platform for the security assurance of their homes

and products. Given the economic factors and overall complications with enforcing

a single industry standard, it is assumed that not all vendors will adopt accreditation

for various reasons, including costs and/or inability to support functionality going

forward. Our framework accounts for the inevitable diversion from the standard

and has been developed with this in mind. These vendor products can still maintain

some level of assurance if they exist in a smart home environment with other

accredited vendors to offset the risk. In this case, the incentives for smaller vendors

may not be enough to adapt the framework if they are able to continue to provide

low-cost products and services with minimal security. The framework enables

consumers to make their own informed product choices for the security of their

homes while maintaining some resilience if they introduce any non-compliant

products. While the consumer IoT industry is also moving towards greater

interoperability, this framework allows for a common interface across multi-vendor

platforms. While we have developed this model with the purpose of security

services, it is also possible that the foundation could be extended to other areas,

132

such as cross-vendor coordination for cooperative smart home services. However,

this is out of the scope of this work at this time.

6.6 Chapter Summary

This chapter has provided an evaluation and experimental results of our

implemented architecture. As highlighted in earlier chapters, two major concerns

for IoT-based solutions are availability and resource utilization. Our experimental

results show that an agent's average response time is 3.9 ms with an average

memory utilization of 311 bytes. The fast response time and low memory utilization

prove to be good performance metrics that have a relatively low impact on the

resource constraints of an IoT device. Further, the defence capability results have

shown that the strategic application of compensating controls strategized by agents'

situational awareness can effectively result in a better understanding of security

risks and the implementation of defence mechanisms through layered controls and

coordination of agents.

Our architecture has been evaluated against the design requirements for IoT

security devices defined in earlier chapters, providing an effective solution for

resource limitations, interoperability and reliability requirements, high data

volumes, and ease of use as is necessary for an effective security solution to exist

within an IoT and smart home environment. Security requirements are addressed

through policy as code within agent BDI knowledge and can adapt to evolving

threats and environment scenarios with ongoing domain knowledge inputs.

While the initial implementation has provided a strong proof of concept, we have

provided some additional considerations for future works including security

considerations for the multi-agent system itself, as well as potential economic

motivations for industry adoption of this model. Additional limitations and future

works will be discussed in the final chapter in conclusion of this thesis.

133

7 Conclusion and Future Works

7.1 Thesis Summary

The combined domains of IoT, agent-based modeling, and cybersecurity present

many opportunities that have largely been underexplored in the literature to date,

while the intersection of these topics show strong potential to address contemporary

and emerging cybersecurity challenges. Based on the increasing demand for

intelligent, distributed cyber defence capabilities within IoT systems, this work

presents a framework and proof of concept for bridging the capabilities of agent-

based technologies into an adaptive cyber defence model for IoT smart home

networks. While our framework has set the groundwork for the future application

of key use cases in autonomous security, simulations, optimization of strategies,

modeling and experimentation of theoretical frameworks, broader implications of

the model can be applied to general distributed planning capabilities for enterprise

security as well as non-security use cases. Our novel approach to BDI agent

reasoning based on knowledge graphs introduces opportunities for distributed

intelligence with shared knowledge and can be applied to broader agent-based use

cases outside of the cybersecurity domain.

The key contributions of this thesis have been summarized below:

• Multi-agent Architecture for Adaptive Cyber Defence: Our architecture

leverages agent-based technologies to provide autonomous, adaptive,

cooperative goal-oriented behaviours in software agents deployed across an IoT

network to achieve security goals. We presented our architecture in Chapter 3

with an individual agent model as well as a control and coordination hierarchy.

This design has been evaluated to demonstrate how it addresses the unique

requirements and design challenges for smart home IoT environments including

resource limitations, interoperability requirements, reliability, data volume, and

ease of use.

134

• Knowledge Graphs for BDI Agent Reasoning: Chapter 4 introduced a design

for knowledge graphs for cybersecurity modeling based on industry knowledge

bases which can be leveraged for agent reasoning. Our novel approach to agent

BDI reasoning powered by knowledge graphs introduces a data-driven and

adaptable model for distributed contextual intelligence based on an evolving

environment.

Our implementation described in Chapter 5 provided the details of our

implementation architecture developed to simulate the multi-agent capabilities for

security policy generation and mission deployment, as well as BDI-agent reasoning

with Neo4j knowledge graphs. Initial security use cases were modeled to illustrate

the capabilities for vulnerability and access management.

The experimental results in Chapter 6 demonstrated the practical feasibility of our

model tested through simulation of a botnet scenario under 256 different

environment configurations. The operational performance results showed an

average response time and memory utilization with low impact to resource

utilization of baseline smart home IoT devices. Further, the impact of different

environment configurations in relation to available agent capabilities for defence

mechanisms has shown how situational awareness enabled by our knowledge graph

model can inform agent actions towards defending numerous environment types,

as well as perform risk analysis and coordinated actions for compensating controls.

7.2 Limitations

While this thesis has presented a framework for very wide scope of capabilities, the

key contributions have set the foundation for significant future work in refinement

and optimization of each component in detail, with flexibility for the addition of

modular components. The main limitations of the current work are highlighted

below, where future works for each of these areas are elaborated in the following

section.

• Reference to NIST Labeling framework: the initial implementation is

strongly aligned to the NIST labeling framework and assumes that devices

135

maintain “device profiles” or self-claim their capabilities when joining the

network. While this demonstrates a strong use case for creating an industry

labeling standard that can inform automated decisioning, the labeling

framework is currently still in development and is not currently deployed across

the industry. The labeling framework provided a reference for our data model

to map security policies with device capabilities and associated agent actions.

With this data model in mind, future works could investigate alternative

methods of gathering similar data, such as through network/device analytics or

community intelligence sharing.

• Limitations with Datasets and Knowledge Graph: the cybersecurity domain

knowledge graphs have been generated using industry datasets such as MITRE

ATT&CK, CVE, and CAPEC. While this provides a strong initial reference

point, we discovered some limitations and inconsistencies within the data which

could cause challenges for automated decisioning in its current form. These

datasets are constantly evolving with the industry, and we expect data quality

improve over time, especially as the industry shifts towards greater automation

rather than manual interpretations. Further, the BDI agent knowledge graphs

have been manually developed for this work based on the NIST framework, and

we believe this can also be expanded and refined to follow other standards and

requirements. There are also opportunities for development of agents’

capabilities to continually refine the knowledge graph based on new

observations and experiences which could provide enhancements to the datasets

for greater context awareness and inferences.

• Policy Inheritance and Conflicts: while our framework and implementation

provide an initial model for policy generation and planning, the capabilities for

managing conflicts and prioritization according to utility have not yet been fully

built out for scale. This is highlighted as a future work, where there are many

works in the literature that can be tested and applied within the BDI knowledge

graph model and simulated with our model to find optimal methods.

• Agent coordination and Learning capabilities: similar to the above, our

model provides a foundation for expanded works in agent coordination and

136

learning capabilities to enhance situational awareness, risk analysis, action

recommendations and predicted outcomes.

• Implementation is Limited to Simulated Environment: our implementation

has been deployed in a purpose-built simulated environment using abstractions

and custom message formats. This has been effective for the development and

evaluation of the initial design, however it will need to be expanded and

integrated with larger datasets and real-life devices as a future work, which

should also include provisions for securing the agents themselves as discussed

in the previous chapter.

7.3 Future Works

This thesis has established a foundation for many future works as an emerging

research area in agent-based applications for cybersecurity, for continued

development on defining utility and modeling optimal behaviors for multi-agent

defence systems and leveraging the existing model for enhanced simulations. While

we have focused on applications to smart home and IoT environments specifically,

the framework can be easily extended to broader domains of security or other

applications of BDI agents where large collections of domain knowledge can be

recorded in knowledge graphs. We will further elaborate on areas of future work in

this section.

7.3.1 Expansion of Simulation and Real-World Implementation

The implementation discussed in Chapter 5 provides a foundation for further

simulated experiments, which can reveal system behaviours and refine security

strategies and optimization. Running large scale simulation experiments with

different environment configurations will be useful for testing at scale. Additional

capabilities for validation and auditing of agent actions and behaviours will provide

relevant data for further enhancements to agent learning capabilities and

optimization, as further described in the following section. Interactive simulations

of IoT environments and security scenarios can also support the education and

training of security professionals, provide modeling capabilities for threat modeling

137

and design of secure systems, and better understand the implications of various

security capability deployments to inform the prioritization of controls.

Our simulations thus far have been based on limited simulation data for proof of

concept. Further integration with real life datasets will be valuable to further refine

the model. An additional layer for parsing data will be required. Lastly, while we

have demonstrated the feasibility of our solution from a modeling perspective, the

next step after testing with larger datasets would be to further integrate with real

life IoT devices with the considerations described in Section 6.5 .

7.3.2 Agent Coordination and Learning Capabilities

While our architecture and knowledge graph model provide a foundation for

modeling agent knowledge, there are many opportunities for expansion to support

future research on agent learning capabilities. The knowledge graphs in the present

state are relatively static for demonstration. However, they provide flexibility for

enhancement and extended applications of multi-agent learning, utility refinement,

and other opportunities for the application and testing of various learning

capabilities within a cybersecurity context.

Coordination and Social Functions

As multiple agents can exist in an environment, an important step is to negotiate

missions and tasks between them to support the entire system. A coordination

mechanism must be further defined to determine effective strategies. While each

agent or mission may maintain independent security goals to achieve, they may also

have common goals, in which case coalition formation is beneficial for the

collective utility. Negotiation incentives include increased resources to performing

certain tasks, greater visibility and information sharing, and shared utility. There

may be cases where higher payoffs are awarded to missions completed in

collaboration between two or more agents. Conversely, agents may also have

conflicting priorities or missions. In this case, negotiation is required to achieve the

highest possible utility for both. Coordination mechanisms exist to allow

coordination between the controllers to achieve the highest utility for the overall

system state.

138

The following social functions can be further defined for the collaboration and

coordination of agents: Resource allocation; coalition formation; distributed

cognitive abilities such as multi-agent planning, control and execution; conflict

resolution functions through mechanism design using auction, voting, or

negotiation protocols; and organizational evolution to enable changes and adaptive

behaviour over time to meet new requirements and changes in the environment.

Macro-level coordination can also be possible from a vendor perspective at a larger

scale across smart home deployments. From the perspective of the global system,

there are two major components: (1) the set of all vendor products vi = {pi,ci}, and

(2) the set of all smart homes cj = {vj,pj}. Each vendor vi has a set of products p and

clients c. Likewise, each client’s smart home consists of a set of vendors and

products. The primary goal of each vendor is to ensure the operation and security

of their products in their client’s homes. Each vendor does not explicitly regard the

security of other vendor devices. However, if they exist within a client’s home, the

vendor may be able to protect the other devices if it improves the security of the

total system.

Further, the primary goal of each client is to maintain the security of their own smart

home and devices. While each client ci does not explicitly regard the state of other

clients’ smart homes c’i, the collective coordination between clients works to

achieve a global social optimum in the case of widespread attacks. This is

demonstrated through the basic economics of cybersecurity, where the attacker will

aim for a target with the greatest reward, requiring the least cost/effort. Often the

most profitable form of attack is to exploit large numbers of vulnerable devices, for

example, to join a botnet. By increasing the collective baseline for consumer IoT

devices, the attacker will either adapt their strategy to invest more for each attack,

choose a different target, or receive a generally lower reward.

Trust Models

In a multi-agent system as well as any environment with potential for cybersecurity

concerns, the concept of trust is foundational. While this topic has been largely out

of scope of this initial work, our framework provides a foundation for future

139

research in applying trust models for further enhancement. Potential directions

could include extending the knowledge graphs with trust-based relationship or node

properties, which can be dynamically enriched through environment observations.

Trust scores could be developed for new or suspicious devices with associated

controls to be implemented such as access control or network isolation.

Additionally, relationships between agents can also be informed through trust

models which can direct coordinated actions.

Multi-agent Learning

Multi-agent learning is defined as the problem of devising learning algorithms for

agents that are capable of learning (sub)optimal solutions in the presence of other

(learning) agents or algorithms – facing the difficulties of incomplete information,

large state spaces, credit assignment, cooperative and/or competitive settings, and

reward shaping [107] [108]. Reinforcement learning is based on behavioral change

to reward desirable behavior and discourage undesirable behavior from obtaining

maximum utility. Reinforcement learning capabilities can be adopted into our

model for enhanced learning and planning capabilities.

It is important to note that while baselines can be gathered, there will often be

limited learning data available for attacks within an individual environment.

Additionally, due to the environment's operational sensitivity, there is low risk

tolerance for experimentation with negative reinforcement when there is an attack.

This raises the question of how we can proactively gather data to learn the best

responses to attacks. We suggest that to supplement the baseline anomaly detection,

this can be done through a combination of knowledge base templates gathered by

federated learning models across home environments, as well as data gathered

through simulations of attack scenarios.

Federated Learning and Intelligence

It is useful to look at the bigger picture for large scale patterns and trends across

different environments. Participating systems can provide sampling data at

occasional intervals to develop collective strategies across environments. This data

can be provided anonymously and in privacy through federated learning algorithms.

140

Types of data that can be shared and analyzed include baseline behaviour

thresholds, recommended security requirements and user preferences from similar

environments, feedback on ineffective and effective strategies, threat intelligence

and countermeasures for attacks, and validation of similar behaviour across other

environments. To preserve privacy and security in federated learning model, the

system will require assurances for privacy preservation and anonymity, resilience

to poisoning attacks or adversarial AI, data leak protection, data integrity, timing

and accuracy.

In a distributed system for collective data aggregation and computation, no single

entity has visibility into the entire global system. Product vendors can only see data

related to their products, and home users can only see data related to their own

homes and products owned. Privacy is preserved within home local networks, with

respective models federated at the cloud layer by each vendor for their products.

Through federated learning, client models and alerts aggregate to the vendor for

assessment and model refinement. Within each home network, the edge

coordinators negotiate policies with each other, taking into consideration the

recommendations from each vendor, in alignment with the risk posture of the local

network. Once negotiation has been completed, the updated model will be sent back

to each vendor for consideration.

Vendor claims can be validated by consensus across other participating nodes in

the global system. This can take the form of other vendors or MAS controllers, with

validation functions predefined at nodes, or further validation agents (for example,

through a bug bounty model) can be adapted. Smart contracts may be employed to

ensure Service Level Agreements (SLAs) with regard to security posture. Vendors

are incentivized to validate others as this resilience capability increases their

security utility. Participation allows for their respective controls to be validated.

Collective security concerns can be communicated across partner nodes, validated,

and collective countermeasure strategies can be generated and redirected back to

client sites (secure multiparty computation). Assurance, privacy, and trust through

141

federated learning and secure multi-party communication across multi-agent

systems is a future research area.

7.3.3 Refinement of Knowledge Graphs

Enhancements to Data and Model

While we have presented a preliminary proof of concept of knowledge graphs,

continued expansion and modeling of different security considerations is a future

research area to be refined. As this is the first work of our knowledge to define BDI

agent plans within a knowledge graph correlated with cybersecurity domain

knowledge, a focused research effort in further refinement would support practical

extended implementation. Further, libraries of domain knowledge are continually

evolving, and a mechanism for updating intelligence on an automated basis would

be beneficial to ensure up to date awareness of the security domain.

Enhancements for Agent Learning & Reasoning

Enhancement of the knowledge graphs to support agent learning and decisioning

can be possible by introducing additional properties within nodes, such as utility

scores, to support the optimization of plan selection. With the continuously

evolving and incomplete information available (i.e., partially observable

environment), a probabilistic method for agent decision-making under uncertainty

can be applied using the Partially Observable Markov Decision Process (POMDP).

Probabilistic uncertainty involves the use of probability distributions for state

transitions and observations, where agents can determine the transition to the next

state according to a fixed conditional probability. An example by Rens et al.

implements a BDI agent architecture for Partially Observable Markov Decision

Process (POMDP) Planner [109].

7.3.4 Applied Game Theory and Control Theory

In the literature, there have been several recent works in modeling adversarial

situations in cybersecurity, mainly with the goals of extracting optimal defence

strategies and/or creating the foundation for autonomous adaptive defences. Two

possible approaches include the applications of game theory and control theory.

142

Using the control-theoretic approach, the actions of the adversary are not assumed

to be strategic and are not taken into consideration in defender strategies. In

contrast, through a game theoretic model, adversarial behavior is modeled with its

own utility associated with attack patterns. One major struggle is the complexity of

the decision set due to the attributes of dynamic and partially observed information.

Musman [110] presents a Cyber Security Game (CSG) to quantitatively identify

cyber risks and determine the optimal deployment of security controls for the level

of resources available in the environment. This method uses a calculated risk score

based on mission impact models of the likelihood and impact of cyber incidents,

aligned with applying threat modeling to the system topology and defender model.

Musman’s approach uses attack path modeling to determine chain rules and

probabilities. The Cyber Mission Impact Assessment (CMIA) tool [111] provides

granular impact assessment according to levels of impact per effect of each type of

asset. The attacker model can be determined using a chain rule of probabilities of

success:

P(A1, …,An) = P(A1|A2,…An) P(A2|A3,…An) P̈(An-1|An) P(An)

With visibility into the topology of the system, we can overlay the attacker's

behavior and impact on generating plausible attack trees for pathways into the

system. The data obtained from the attack tree provides an expected value for loss

for each branch of the attack option. This expected value can then be plugged into

the risk calculation:

(1) Risk = ∑ 𝑃𝐶𝐼𝐿𝐶𝐼
𝑁
𝐶𝐼=1 or (2) MaxCI = 1,N(PCILCI)

Where risk is calculated as either (1) the sum of all probabilities and losses

associated with all possible cyber incidents or (2) the maximum probability and loss

for the worst potential incident, depending on risk appetite. Once attack paths are

generated and provided with associated risks, we can determine defence policies

that can be employed as countermeasures. Each method will also have an associated

expected success rate for reducing the probability of attack.

143

While many works exist to model cybersecurity scenarios for adaptive cyber

defence, many are single purpose solutions or highly abstracted and have not been

applied at a practical level. Our model provides a framework for further

experimentation and application of agent-based game theory and control theory

research applied to the cybersecurity domain in a modeled simulated environment

to bridge this gap and further the industry. It is important to note that most of the

time, it can be expected that the network will be operating in a normal operational

state with no active security threats. Game-theoretic models often assume an active

adversarial opponent with highly focused data inputs. However, this is highly

unrealistic in an applied scenario. Control-theoretic models provide a single player

control-based approach to responding to environmental observations more aligned

to an applied context. We suggest a primary focus on control-based approaches,

with potential opportunities for a hybrid response model where game theoretic

strategies can be applied in detected adversarial scenarios.

Utility and Incentivization for Agents

Aligned to the above, further refinement to the utility calculation and

incentivization for agent behaviours have also been noted for future work. There

are several layers in which the utility is directed towards specific goals, which can

form a utility hierarchy at each layer of the system used by different types of agents:

Table 7.1 Utility Goals at each Layer

Layer Goals

Control Layer Minimize risk, achieve security goals, and

operational availability.

Coordination Layer Health of agents, optimize agent deployment.

Vendor Layer Negotiate/generate strategies and missions to

improve and/or maintain system state.

Device Agent Layer Contribute to the completion of mission/task (i.e.,

sensor, detection, analysis, response). Beliefs,

Desires, Intentions model.

This hierarchy is defined to coordinate utility across strategic risks with impact to

the entire home, along with tactical risks associated with individual components.

144

Each mission has prospective payoff values for increasing/decreasing each utility

parameter, mapped to a particular reference ID, used to determine plans'

prioritization, and validated on completion. The controller will be notified after the

completion of each mission, receive the payoff, and cascade it down to the agents

involved in the mission. A schema can be provided to classify each mission

according to its benefit to the micro and macro level utility.

7.4 Conclusion

The contributions of this work have provided an agent-based modeling framework

for adaptive cyber defense, addressing key requirements for adaptive and

autonomous cybersecurity capabilities. While the implementation and experimental

results demonstrate the feasibility of our design in smart home IoT systems, this

model can also be easily expanded to other domains. It is our intention to provide

the foundation to inspire further research works in this area for continued

development, application, and optimization of this paradigm to support the

advancement of the industry and bring autonomous cyber defence to realization.

145

References

[1] D. Marriott, K. Ferguson-Walter, S. Fugate, and M. Carvalho, “Proceedings

of the 1st International Workshop on Adaptive Cyber Defense,” 2021, doi:

10.48550/ARXIV.2108.08476.

[2] R. Coulter and L. Pan, “Intelligent agents defending for an IoT world: A

review,” Computers & Security, vol. 73, pp. 439–458, Mar. 2018, doi:

10.1016/j.cose.2017.11.014.

[3] C. Savaglio, M. Ganzha, M. Paprzycki, C. Bădică, M. Ivanović, and G.

Fortino, “Agent-based Internet of Things: State-of-the-art and research

challenges,” Future Generation Computer Systems, vol. 102, pp. 1038–1053,

Jan. 2020, doi: 10.1016/j.future.2019.09.016.

[4] K. K. Patel, S. M. Patel, and P. Scholar, “Internet of Things-IOT: Definition,

Characteristics, Architecture, Enabling Technologies, Application & Future

Challenges,” p. 10, 2016.

[5] International Telecommunication Union, “Overview of the Internet of things,”

International Telecommunication Union, ITU-T Y.2060, Jun. 2012. [Online].

Available: https://handle.itu.int/11.1002/1000/11559

[6] K. Gafurov and T.-M. Chung, “Comprehensive Survey on Internet of Things,

Architecture, Security Aspects, Applications, Related Technologies,

Economic Perspective, and Future Directions,” Journal of Information

Processing Systems, vol. 15, no. 4, pp. 797–819, Aug. 2019, doi:

10.3745/JIPS.03.0125.

[7] M. Hasan, “State of IoT 2022: Number of connected IoT devices growing 18%

to 14.4 billion globally,” IoT Analytics: Market Insights for the Internet of

Things, May 18, 2022. https://iot-analytics.com/number-connected-iot-

devices/

[8] C. MacGillivray and D. Reinsel, “Worldwide Global DataSphere IoT Device

and Data Forecast, 2021–2025,” International Data Corporation, Market

Forecast US48087621, Jul. 2021. [Online]. Available:

https://www.idc.com/getdoc.jsp?containerId=US48087621

[9] Fortune Business Insights, “Internet of Things (IoT) Market Size, Share &

COVID-19 Impact Analysis, By Component (Platform, Solution & Services),

By End-Use Industry (BFSI, Retail, Government, Healthcare, Manufacturing,

Agriculture, Sustainable Energy, Transportation, IT & Telecom, and Others),

and Regional Forecase, 2022-2029,” Fortune Business Insights, Market

Research Report FBI100307, Mar. 2022. [Online]. Available:

https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-

iot-market-100307

[10] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A

Survey on IoT Security: Application Areas, Security Threats, and Solution

Architectures,” IEEE Access, vol. 7, pp. 82721–82743, 2019, doi:

10.1109/ACCESS.2019.2924045.

146

[11] B. Hammi, S. Zeadally, R. Khatoun, and J. Nebhen, “Survey on smart homes:

Vulnerabilities, risks, and countermeasures,” Computers & Security, vol. 117,

p. 102677, Jun. 2022, doi: 10.1016/j.cose.2022.102677.

[12] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging Smart

Home Applications,” in 2016 IEEE Symposium on Security and Privacy (SP),

San Jose, CA, May 2016, pp. 636–654. doi: 10.1109/SP.2016.44.

[13] Amazon, “Alexa,” 2022. https://developer.amazon.com/en-US/alexa

[14] Google, “Google Home,” Google Home, 2022.

https://home.google.com/welcome/

[15] Apple, “Apple Homekit,” Apple, 2022. https://www.apple.com/ca/home-app/

[16] N. M. Kumar and P. K. Mallick, “The Internet of Things: Insights into the

building blocks, component interactions, and architecture layers,” Procedia

Computer Science, vol. 132, pp. 109–117, 2018, doi:

10.1016/j.procs.2018.05.170.

[17] H. HaddadPajouh, A. Dehghantanha, R. M. Parizi, M. Aledhari, and H.

Karimipour, “A survey on internet of things security: Requirements,

challenges, and solutions,” Internet of Things, vol. 14, p. 100129, Jun. 2021,

doi: 10.1016/j.iot.2019.100129.

[18] D. E. Kouicem, A. Bouabdallah, and H. Lakhlef, “Internet of things security:

A top-down survey,” Computer Networks, vol. 141, pp. 199–221, Aug. 2018,

doi: 10.1016/j.comnet.2018.03.012.

[19] K. Boeckl et al., “Considerations for managing Internet of Things (IoT)

cybersecurity and privacy risks,” National Institute of Standards and

Technology, Gaithersburg, MD, NIST IR 8228, Jun. 2019. doi:

10.6028/NIST.IR.8228.

[20] P. Williams, I. K. Dutta, H. Daoud, and M. Bayoumi, “A survey on security

in internet of things with a focus on the impact of emerging technologies,”

Internet of Things, vol. 19, p. 100564, Aug. 2022, doi:

10.1016/j.iot.2022.100564.

[21] T. Rajmohan, P. H. Nguyen, and N. Ferry, “A decade of research on patterns

and architectures for IoT security,” Cybersecurity, vol. 5, no. 1, p. 2, Dec.

2022, doi: 10.1186/s42400-021-00104-7.

[22] Federal Bureau of Investigation, “INTERNET OF THINGS POSES

OPPORTUNITIES FOR CYBER CRIME,” Federal Bureau of Investigation,

United States, Public Service Announcement I-091015-PSA, Sep. 2015.

[Online]. Available:

https://www.ic3.gov/Media/PDF/Y2015/PSA150910.pdf

[23] US Department of Homeland Security, “Strategic Principles for Securing the

Internet of Things (IoT),” US Department of Homeland Security, Nov. 2016.

[24] US Federal Bureau of Investigation, “Cyber Actors Use Internet of Things

Devices as Proxies for Anonymity and Pursuit of Malicious Cyber Activities,”

US Federal Bureau of Investigation, Public Service Announcement I-080218-

PSA, Aug. 2018. [Online]. Available:

https://www.ic3.gov/Media/Y2018/PSA180802

[25] Executive Office of the President, “Executive Order 14028: Improving the

Nation’s Cybersecurity,” Presidential Document: Executive Order, vol. 86,

no. 93, May 2021.

147

[26] M. Fagan, K. N. Megas, K. Scarfone, and M. Smith, “IoT device cybersecurity

capability core baseline,” National Institute of Standards and Technology,

Gaithersburg, MD, NIST IR 8259A, May 2020. doi: 10.6028/NIST.IR.8259a.

[27] IoT Security Foundation, “IoT Security Foundation,” Make it Safe to Connect.

https://www.iotsecurityfoundation.org/about-us/ (accessed Aug. 06, 2022).

[28] S. Deep, X. Zheng, A. Jolfaei, D. Yu, P. Ostovari, and A. Kashif Bashir, “A

survey of security and privacy issues in the Internet of Things from the layered

context,” Trans Emerging Tel Tech, vol. 33, no. 6, Jun. 2022, doi:

10.1002/ett.3935.

[29] A. Verma, R. Saha, N. Kumar, G. Kumar, and Tai-Hoon-Kim, “A detailed

survey of denial of service for IoT and multimedia systems: Past, present and

futuristic development,” Multimed Tools Appl, vol. 81, no. 14, pp. 19879–

19944, Jun. 2022, doi: 10.1007/s11042-021-11859-z.

[30] M. Pelino and T. Shields, “Secure IoT As It Advances Through Maturity

Phases: Predict And Prevent Attacks Targeting The Internet Of Things,”

Forrester, Trend Report, Jan. 2016.

[31] Unit 42, “2020 Unit 42 IoT Threat Report,” Palo Alto Networks, 2020.

[32] B. Schneier, “The Internet of Things Is Wildly Insecure—And Often

Unpatchable,” Schneier on Security, Jan. 06, 2014.

https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.htm

l

[33] OWASP, “OWASP IoT Top 10,” Open Web Application Security Project

(OWASP), Dec. 2018.

[34] Canonical, “Taking Charge of the IoT’s Security Vulnerabilities,” Canonical,

Whitepaper, Jan. 2017.

[35] Mandiant, “14 Cyber Security Predictions for 2022 and Beyond,” Mandiant,

2022.

[36] J. Leyden, “Samsung Smart Fridge Leaves Gmail Logins Open to Attack,”

The Register, Aug. 24, 2015.

https://www.theregister.com/2015/08/24/smart_fridge_security_fubar/

[37] A. Hashim, “Zero-Day Bugs Spotted in Nooie Baby Monitors,” Latest

Hacking News, Feb. 14, 2022.

https://latesthackingnews.com/2022/02/14/zero-day-bugs-spotted-in-nooie-

baby-monitors/

[38] I. Arghire, “Nuki Smart Lock Vulnerabilities Allow Hackers to Open Doors,”

SecurityWeek, Jul. 27, 2022. https://www.securityweek.com/nuki-smart-lock-

vulnerabilities-allow-hackers-open-doors

[39] J. Hollington, “Bluetooth hack compromises Teslas, digital locks, and more,”

Digital Trends, May 16, 2022.

https://www.digitaltrends.com/mobile/bluetooth-hack-compromises-teslas-

digital-locks-and-more/

[40] M. Kumar, “Cracking WiFi Passwords by Hacking Smart Kettles,” The

Hacker News, Oct. 21, 2015. https://thehackernews.com/2015/10/hacking-

wifi-password.html

[41] J. A. Jerkins, “Motivating a market or regulatory solution to IoT insecurity

with the Mirai botnet code,” in 2017 IEEE 7th Annual Computing and

148

Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,

Jan. 2017, pp. 1–5. doi: 10.1109/CCWC.2017.7868464.

[42] Nozomi Networks Labs, “New BotenaGo Variant Discovered by Nozomi

Networks,” Nozomi Networks Blog, Apr. 18, 2022.

https://www.nozominetworks.com/blog/new-botenago-variant-discovered-

by-nozomi-networks-labs/

[43] J. Salvio and R. Tay, “Fresh TOTOLINK Vulnerabilities Picked up by

Beastmode Mirai Campaign,” Fortinet Threat Research Blog, Apr. 01, 2022.

https://www.fortinet.com/blog/threat-research/totolink-vulnerabilities-

beastmode-mirai-campaign

[44] A. Collen et al., “GHOST - Safe-Guarding Home IoT Environments with

Personalised Real-Time Risk Control,” in Security in Computer and

Information Sciences, vol. 821, E. Gelenbe, P. Campegiani, T. Czachórski, S.

K. Katsikas, I. Komnios, L. Romano, and D. Tzovaras, Eds. Cham: Springer

International Publishing, 2018, pp. 68–78. doi: 10.1007/978-3-319-95189-

8_7.

[45] C. Lawson, P. Firstbrook, and P. Webber, “Market Guide for Extended

Detection and Response,” Gartner, G00747261, Nov. 2021.

[46] Johns Hopkins University Applied Physics Laboratory, “Integrated Adaptive

Cyber Defense,” INTEGRATED ADAPTIVE CYBER DEFENSE.

https://www.iacdautomate.org/

[47] H. Yu, Z. Shen, and C. Leung, “From Internet of Things to Internet of Agents,”

in 2013 IEEE International Conference on Green Computing and

Communications and IEEE Internet of Things and IEEE Cyber, Physical and

Social Computing, Beijing, China, Aug. 2013, pp. 1054–1057. doi:

10.1109/GreenCom-iThings-CPSCom.2013.179.

[48] E. Bonabeau, “Agent-based modeling: Methods and techniques for simulating

human systems,” Proc. Natl. Acad. Sci. U.S.A., vol. 99, no. suppl_3, pp. 7280–

7287, May 2002, doi: 10.1073/pnas.082080899.

[49] C. Macal and M. North, “INTRODUCTORY TUTORIAL: AGENT-BASED

MODELING AND SIMULATION,” p. 15.

[50] M. E. Bratman, Intentions, Plans, and Practical Reason. Cambridge: Harvard

University Press, 1987.

[51] G. I. Simari and S. D. Parsons, Markov Decision Processes and the Belief-

Desire-Intention Model. New York, NY: Springer New York, 2011. doi:

10.1007/978-1-4614-1472-8.

[52] P. Gärdenfors, “Belief revision: An introduction,” in Belief Revision, 1st ed.,

P. Gärdenfors, Ed. Cambridge University Press, 1992, pp. 1–28. doi:

10.1017/CBO9780511526664.001.

[53] I. Nunes, “BDI4JADE: a BDI layer on top of JADE,” p. 16.

[54] A. Pokahr, L. Braubach, and W. Lamersdorf, “A Goal Deliberation Strategy

for BDI Agent Systems,” in Multiagent System Technologies, vol. 3550, T.

Eymann, F. Klügl, W. Lamersdorf, M. Klusch, and M. N. Huhns, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2005, pp. 82–93. doi:

10.1007/11550648_8.

[55] L. Males and S. Ribaric, “A model of extended BDI agent with autonomous

entities (integrating autonomous entities within BDI agent),” in 2016 IEEE

149

8th International Conference on Intelligent Systems (IS), Sofia, Bulgaria, Sep.

2016, pp. 205–214. doi: 10.1109/IS.2016.7737422.

[56] Y.-B. Peng, J. Gao, J.-Q. Ai, C.-H. Wang, and H. Guo, “An Extended Agent

BDI Model with Norms, Policies and Contracts,” in 2008 4th International

Conference on Wireless Communications, Networking and Mobile

Computing, Dalian, China, Oct. 2008, pp. 1–4. doi:

10.1109/WiCom.2008.1197.

[57] G. Shaw and E. van der Poel, “Genetic Algorithms as a feasible re-planning

mechanism for Belief-Desire-Intention Agents,” in Proceedings of the 2015

Annual Research Conference on South African Institute of Computer

Scientists and Information Technologists - SAICSIT ’15, Stellenbosch, South

Africa, 2015, pp. 1–9. doi: 10.1145/2815782.2815817.

[58] J. Buford, G. Jakobson, and L. Lewis, “Extending BDI Multi-Agent Systems

with Situation Management,” in 2006 9th International Conference on

Information Fusion, Florence, Jul. 2006, pp. 1–7. doi:

10.1109/ICIF.2006.301781.

[59] S. Calderwood, K. McAreavey, W. Liu, and J. Hong, “Contextual merging of

uncertain information for better informed plan selection in BDI systems,” in

2015 World Congress on Industrial Control Systems Security (WCICSS),

London, United Kingdom, Dec. 2015, pp. 64–65. doi:

10.1109/WCICSS.2015.7420326.

[60] Z. A. Khan, E. Pignaton de Freitas, T. Larsson, and H. Abbas, “A Multi-agent

Model for Fire Detection in Coal Mines Using Wireless Sensor Networks,” in

2013 12th IEEE International Conference on Trust, Security and Privacy in

Computing and Communications, Melbourne, Australia, Jul. 2013, pp. 1754–

1761. doi: 10.1109/TrustCom.2013.275.

[61] A. R. Hilal and O. A. Basir, “A Scalable Sensor Management Architecture

Using BDI Model for Pervasive Surveillance,” IEEE Systems Journal, vol. 9,

no. 2, pp. 529–541, Jun. 2015, doi: 10.1109/JSYST.2014.2334071.

[62] J. Melgoza-Gutierrez, A. Guerra-Hernandez, and N. Cruz-Ramirez,

“Collaborative Data Mining on a BDI Multi-agent System over Vertically

Partitioned Data,” in 2014 13th Mexican International Conference on

Artificial Intelligence, Tuxtla Gutierrez, Mexico, Nov. 2014, pp. 215–220.

doi: 10.1109/MICAI.2014.39.

[63] B. Wilsker, “A Study of Multi-Agent Collaboration Theories,” p. 26, 1996.

[64] C. Stergiou, G. Arys, and M. Wooldridge, “A Policy Based Framework for

Agents: On the Specification of an Agent Policy Language including Roles,

Relationships, Conversation Patterns and Co-operation Patterns,” p. 2.

[65] Y. Xiao, F. Deng, B. Liu, S. Liu, D. Luo, and G. Liang, “A Learning Process

Using SVMs for Multi-agents Decision Classification,” in 2008

IEEE/WIC/ACM International Conference on Web Intelligence and

Intelligent Agent Technology, Sydney, Australia, Dec. 2008, pp. 583–586. doi:

10.1109/WIIAT.2008.430.

[66] Y. Uhm, Z. Hwang, M. Lee, Y. Kim, G. Kim, and S. Park, “A Context-Aware

Multi-Agent System for Building Intelligent Services by the Classification of

Rule and Ontology in a Smart Home,” in 32nd IEEE Conference on Local

150

Computer Networks (LCN 2007), Dublin, Ireland, Oct. 2007, pp. 203–204.

doi: 10.1109/LCN.2007.28.

[67] D. J. Kang and S. Park, “MAS based Approach to HEMS modeling:

Application of social interaction mechanism to demand-side dynamics,” in

2016 11th System of Systems Engineering Conference (SoSE), Kongsberg,

Norway, Jun. 2016, pp. 1–6. doi: 10.1109/SYSOSE.2016.7542894.

[68] K. Kravari and N. Bassiliades, “StoRM: A social agent-based trust model for

the internet of things adopting microservice architecture,” Simulation

Modelling Practice and Theory, vol. 94, pp. 286–302, Jul. 2019, doi:

10.1016/j.simpat.2019.03.008.

[69] H. F. Rafalimanana, J. L. Razafindramintsa, S. Cherrier, T. Mahatody, L.

George, and V. Manantsoa, “Jason-RS, A Collaboration Between Agents and

an IoT Platform,” in Machine Learning for Networking, vol. 12081, S.

Boumerdassi, É. Renault, and P. Mühlethaler, Eds. Cham: Springer

International Publishing, 2020, pp. 403–413. doi: 10.1007/978-3-030-45778-

5_28.

[70] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “CASAS: A

Smart Home in a Box,” Computer, vol. 46, no. 7, pp. 62–69, Jul. 2013, doi:

10.1109/MC.2012.328.

[71] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of security

and privacy in distributed internet of things,” Computer Networks, vol. 57, no.

10, pp. 2266–2279, Jul. 2013, doi: 10.1016/j.comnet.2012.12.018.

[72] Y. Ye, V. Hilaire, A. Koukam, and C. Wandong, “A Holonic Model in

Wireless Sensor Networks,” in 2008 International Conference on Intelligent

Information Hiding and Multimedia Signal Processing, Harbin, China, Aug.

2008, pp. 491–495. doi: 10.1109/IIH-MSP.2008.37.

[73] L. Pazzi and M. Pellicciari, “From the Internet of Things to Cyber-Physical

Systems: The Holonic Perspective,” Procedia Manufacturing, vol. 11, pp.

989–995, 2017, doi: 10.1016/j.promfg.2017.07.204.

[74] A. Kott et al., “Autonomous Intelligent Cyber-defense Agent (AICA)

Reference Architecture, Release 2.0,” p. 154.

[75] M. Major, B. Souza, J. DiVita, and K. Ferguson-Walter, “Informing

Autonomous Deception Systems with Cyber Expert Performance Data.”

arXiv, Aug. 31, 2021. Accessed: Oct. 15, 2022. [Online]. Available:

http://arxiv.org/abs/2109.00066

[76] M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and D. Marriott,

“CybORG: A Gym for the Development of Autonomous Cyber Agents.”

arXiv, Aug. 20, 2021. Accessed: Oct. 15, 2022. [Online]. Available:

http://arxiv.org/abs/2108.09118

[77] K. Tran et al., “Deep hierarchical reinforcement agents for automated

penetration testing.” arXiv, Sep. 14, 2021. Accessed: Oct. 15, 2022. [Online].

Available: http://arxiv.org/abs/2109.06449

[78] A. T. Nguyen, E. Raff, C. Nicholas, and J. Holt, “Leveraging Uncertainty for

Improved Static Malware Detection Under Extreme False Positive

Constraints.” arXiv, Aug. 09, 2021. Accessed: Oct. 15, 2022. [Online].

Available: http://arxiv.org/abs/2108.04081

151

[79] Forum of Incident Response and Security Teams (FIRST), “Common

Vulnerability Scoring System (CVSS),” First.org, 2022.

https://www.first.org/cvss/

[80] The MITRE Corporation, “CVE Program Mission,” CVE, 2022.

https://cve.mitre.org/

[81] The MITRE Corporation, “MITRE ATT&CK Framework,” MITRE

ATT&CK, 2022. https://attack.mitre.org/

[82] I. Robinson, J. Webber, and E. Eifrem, Graph Databases. O’Reilly Media,

2013.

[83] J. Barrasa, A. E. Hodler, and J. Webber, “Knowledge Graphs: Data in Context

for Responsive Businesses,” O’Reilly Meida, USA, 2021.

[84] The MITRE Corporation, “CAR Data Model,” MITRE Cyber Analytics

Repository, 2022. https://car.mitre.org/data_model/

[85] A. Brazhuk, “Security patterns based approach to automatically select

mitigations in ontology-driven threat modelling,” p. 6.

[86] The MITRE Corporation, “Common Weakness Enumeration: A Community

Developed List of Software and Hardware Weakness Types,” CWE, 2022.

https://cwe.mitre.org/

[87] MITRE, “Common Attack Pattern Enumeration and Classification,” Common

Attack Pattern Enumeration and Classification (CAPEC).

https://capec.mitre.org/

[88] The MITRE Corporation, “MITRE D3FEND: A Knowledge Graph of

Cybersecurity Countermeasures,” MITRE D3FEND, 2022.

https://d3fend.mitre.org/about/

[89] Neo4j Inc., “Neo4j Graph Database,” Neo4j Graph Database.

https://neo4j.com/product/neo4j-graph-database

[90] M. Westergaard and H. M. W. Verbeek, “CPN Tools.” Eindhoven University

of Technology. [Online]. Available: https://cpntools.org/

[91] Google, “Go Language,” Oct. 01, 2022. https://go.dev/doc/

[92] K. Jensen, “A brief introduction to coloured Petri Nets,” in Tools and

Algorithms for the Construction and Analysis of Systems, vol. 1217, E.

Brinksma, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 203–

208. doi: 10.1007/BFb0035389.

[93] K. Jensen and L. M. Kristensen, Coloured Petri Nets. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009. doi: 10.1007/b95112.

[94] I. Jimenez-Ochoa, O. Begovich, A. Ramirez-Trevino, and L. I. Aguirre-Salas,

“Implementing BDI agents using petri nets,” in SMC’03 Conference

Proceedings. 2003 IEEE International Conference on Systems, Man and

Cybernetics. Conference Theme - System Security and Assurance (Cat.

No.03CH37483), Washington, DC, USA, 2003, vol. 1, pp. 286–291. doi:

10.1109/ICSMC.2003.1243830.

[95] H. Zhang, Z. Shen, S. Y. Huang, and C. Miao, “Predicting Responsiveness of

BDI Agent,” p. 6.

[96] R. Smith, “Google’s Chromecast 2 is Powered by Marvell’s ARMADA 1500

Mini Plus - Dual-Core Cortex-A7,” AnandTech, Oct. 05, 2015.

https://www.anandtech.com/show/9688/googles-chromecast-2-is-powered-

by-marvells-armada-1500-mini-plus-dual-cortexa7

152

[97] Raspberry Pi (Trading) Ltd, “Raspberry Pi Products,” raspberrypi.com, 2022.

https://datasheets.raspberrypi.com/

[98] Canada Computers & Electronics, “AMAZON Echo Plus (2nd gen),” Canada

Computers, 2022.

https://www.canadacomputers.com/product_info.php?cPath=1578&item_id=

137733

[99] Ubiquiti Inc., “UniFi Dream Machine Datasheet,” Ubiquiti Inc., United States,

Product Datasheet JL121819, 2019. [Online]. Available:

https://dl.ui.com/ds/udm_ds

[100] ASUSTeK Computer Inc., “RT-AC88U Tech Specs,” Asus.com, 2022.

https://www.asus.com/ca-en/networking-iot-servers/wifi-routers/asus-wifi-

routers/rt-ac88u/techspec/

[101] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition

Letters, vol. 27, no. 8, pp. 861–874, Jun. 2006, doi:

10.1016/j.patrec.2005.10.010.

[102] Y. Hedin and E. Moradian, “Security in Multi-Agent Systems,” Procedia

Computer Science, vol. 60, pp. 1604–1612, 2015, doi:

10.1016/j.procs.2015.08.270.

[103] B. E. Sabir, M. Youssfi, O. Bouattane, and H. Allali, “Towards a New

Model to Secure IoT-based Smart Home Mobile Agents using Blockchain

Technology,” Eng. Technol. Appl. Sci. Res., vol. 10, no. 2, pp. 5441–5447,

Apr. 2020, doi: 10.48084/etasr.3394.

[104] H. Hagras, “Towards Human Understandable Explainable AI,” Computer,

vol. 51, no. 9, pp. 28–36, Sep. 2018, doi: 10.1109/MC.2018.3620965.

[105] G. Geetha and C. Jayakumar, “Implementation of Trust and Reputation

Management for Free-Roaming Mobile Agent Security,” IEEE Systems

Journal, vol. 9, no. 2, pp. 556–566, Jun. 2015, doi:

10.1109/JSYST.2013.2292192.

[106] X. Xu, N. Bessis, and J. Cao, “An Autonomic Agent Trust Model for IoT

systems,” Procedia Computer Science, vol. 21, pp. 107–113, 2013, doi:

10.1016/j.procs.2013.09.016.

[107] K. Zhang, Z. Yang, and T. Başar, “Multi-Agent Reinforcement Learning: A

Selective Overview of Theories and Algorithms.” arXiv, Apr. 28, 2021.

Accessed: Jul. 17, 2022. [Online]. Available: http://arxiv.org/abs/1911.10635

[108] L. Canese et al., “Multi-Agent Reinforcement Learning: A Review of

Challenges and Applications,” Applied Sciences, vol. 11, no. 11, p. 4948, May

2021, doi: 10.3390/app11114948.

[109] G. Rens, “A BDI Agent Architecture for a POMDP Planner,” in 9th

International Symposium on Logical Formalization of Commonsense

Reasoning: Commonsense 2009, Toronto, Canada, Jun. 2009, p. 6.

[110] S. Musman and A. Turner, “A game theoretic approach to cyber security

risk management,” Journal of Defense Modeling & Simulation, vol. 15, no. 2,

pp. 127–146, Apr. 2018, doi: 10.1177/1548512917699724.

[111] S. Musman and A. Temin, “A Cyber Mission Impact Assessment Tool,”

presented at the 2015 IEEE International Symposium on Technologies for

Homeland Security (HST), Apr. 2015. doi: 10.1109/THS.2015.7225283.

153

Appendix

IoT Device Baseline Security Requirements [19],

[26]

Security

Requirement

Description Device Capabilities (NIST 8259A)

Asset

Management

Maintain a current,

accurate inventory of all

IoT devices and their

relevant characteristics

throughout the devices'

lifecycles in order to use

that information for

cybersecurity and privacy

risk management purposes.

• DC1.1 A unique logical identifier.

• DC1.2 A unique physical. The identifier

at an external or internal location on the

device accessible to the consumer.

Device

Configuration

Identify and eliminate

known vulnerabilities in

IoT device software and

firmware in order to

reduce the likelihood and

ease of exploitation and

compromise.

• DC2.1 The ability to change the product

component's software configuration

settings, including disabling unwanted

features.

• DC2.2 The ability to restrict configuration

changes to unauthorized individuals and

other IoT product components only.

• DC2.3 A default setting for the initial

configuration which makes the product

component secure for unexpected use

cases. Any security features should be

enabled by default.

• DC2.4 The ability for authorized

individuals and other IoT product

components to restore the product

component to the default security

configuration.

Data

Protection

Prevent access to and

tampering with data at rest

or in transit that might

expose sensitive

information or allow

manipulation or disruption

of IoT device operations.

• DC3.1 The ability to use demonstrably

secure cryptography (e.g., modules

consistent with FIPS 140-3) for

cryptographic algorithms (e.g., encryption

with authentication, cryptographic hashes,

digital signature validation) to protect the

confidentiality and integrity of all the

product component’s stored (e.g.,

collected and received data, internal

software) and transmitted data. Note: The

product component host may depend on

or limit available cryptographic modules.

• DC3.2 The ability to protect the product

component’s stored data from

unauthorized change (e.g., protect against

154

injected code or data manipulation

attacks).

• DC3.3 The ability for authorized persons

to render all data on the product

component that is not the initial default

configuration (see Device Configuration)

and any initial software included on the

device (including updates) inaccessible to

anyone, whether previously authorized or

not. Note: for components implemented

in a shared environment (e.g., auxiliary

backend), and this may be limited to data

and configurations associated with the

IoT product customer.

• DC3.4 The ability for authorized

individuals, other IoT product

components, and/or systems to delete data

at rest from the product component. Note:

Components are implemented in a shared

environment (e.g., auxiliary backend),

and this may be limited to data associated

with the IoT product customer.

Access

Management

Prevent unauthorized and

improper physical and

logical access to, usage of,

and administration of IoT

devices by people,

processes, and other

computing devices.

• DC4.1 The ability to logically or

physically disable any local and network

interfaces that are not necessary for the

core functionality of the product

component.

• DC4.2 The ability to logically restrict

access to each network interface to only

authorized persons or devices.

• DC4.3 The ability of the product

component to validate that the input

received through its interfaces matches

specified definitions of format and

content.

• DC4.4 The ability to authenticate

individuals and other IoT product

components using appropriate

mechanisms to technology, risk and use

case. Authenticators could be biometrics,

passwords, etc.

• DC4.5 The ability to support secure use

of authenticators (e.g., passwords)

including a. if necessary, the ability to

locally manage authenticators b. ability to

ensure a strong, non-default authenticator

is used (e.g., not delivering the product

with any single default password or

enforcing a change to a default password

before the product component is deployed

for use).

• DC4.6 Configuration settings for use with

the Device Configuration capability,

including the ability to enable, disable,

and adjust thresholds for any ability the

155

device might have to lock or disable an

account or to delay additional

authentication attempts after too many

failed attempts (*NIST8259A only).

Vulnerability

Management

Identify and eliminate

known vulnerabilities in

IoT device software and

firmware in order to

reduce the likelihood and

ease of exploitation and

compromise.

• DC5.1 The ability to update the product

component’s software remote (e.g.,

network download).

• DC5.2 The ability for the product

component to verify and authenticate any

update before installing it.

• DC5.3 The ability to enable or disable

notifications about updates.

Incident

Detection

Monitor and analyze IoT

device activity for signs of

incidents involving device

security and data security.

• DC6.1 The ability to log cybersecurity-

related state information (e.g., software

update installations, failed login attempts,

configuration changes).

• DC6.2 The ability to restrict access to the

state information so only authorized

individuals and IoT product components

can view it.

• DC6.3 The ability to prevent any

unauthorized edits of state information by

any entity.

Availability The ability for the device

to perform its service

operations as defined in

the non-technical

capability label.

• DC7.1 The ability for the device to

continue operating (possibly with limited

digital functionality) in the case of a

network outage or other connectivity

disruption. Operational features of the

device should continue to function

without connectivity.

