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Abstract

Honeywords are fictitious passwords inserted into databases in order to identify password

breaches. Producing honeywords that are difficult to distinguish from actual passwords

automatically is a time-consuming and sophisticated task, and the majority of existing re-

search assumes that attackers have no knowledge about users, which is a flawed assump-

tion. In this thesis, we introduce two honeyword generation techniques (HGT): Honey-

GAN and Chunk-GPT3, which can generate honeywords resistant to trawling attacks and

targeted attacks, respectively. In addition, we propose a trawling attack, termed as Nor-

malized Top-SW, to imitate trawling attackers and further assess the resilience of HGTs

to the attack. Furthermore, we propose two text similarity-based metrics to evaluate the

indistinguishability of honeywords. We analyze our HGTs compared with the other two

state-of-the-art HGTs quantitatively and qualitatively and demonstrate that our HGTs can

produce honeywords that are substantially more difficult for attackers to distinguish, hence

increasing the bar for attackers and accelerating the detection of passwor‘d breaches.

Keywords: generative adversarial networks; honeywords; authentication; security and pri-

vacy; natural language processing
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Chapter 1

Introduction

Passwords have dominated the authentication system for decades, despite their security

flaws compared to competing techniques such as cognitive authentication [76], biomet-

rics [57] and tokens [60]. Their irreplaceability is primarily due to its incomparable deploy-

ability and usability [8]. However, current password-based authentication systems store

sensitive password files that make them ideal targets for attackers because if successfully

obtained and cracked (recovering the hashed passwords’ plain-text representations), an ad-

versary may impersonate registered users undetectable [71]. Numerous prestigious online

services have been infiltrated, for example, Yahoo!1, RockYou2, Zynga3, resulting in the

exposure of millions of credentials. Unfortunately, there is often a large delay between a

credential database’s breach and its detection; estimates place the average latency at 287

days [2]. The resulting window of vulnerability enables attackers to crack passwords of-

fline (if the stolen credential database contains encrypted passwords rather than plain-text

1 Yahoo Triples Estimate of Breached Accounts to 3 Billion (2017),
https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804

2 RockYou2021: largest password compilation of all time leaked online with 8.4 billion entries (2022),
https://cybernews.com/security/rockyou2021-alltime-largest-password-compilation-leaked/

3 Password Breach of Game Developer Zynga Compromises 170 Million Accounts (2019),
https://www.cpomagazine.com/cyber-security/password-breach-of-game-developer-zynga-compromises-
170-million-accounts/

1

https://www.wsj.com/articles/yahoo-triples-estimate-of-breached-accounts-to-3-billion-1507062804
https://cybernews.com/security/rockyou2021-alltime-largest-password-compilation-leaked/
https://www.cpomagazine.com/cyber-security/password-breach-of-game-developer-zynga-compromises-170-million-accounts/
https://www.cpomagazine.com/cyber-security/password-breach-of-game-developer-zynga-compromises-170-million-accounts/


passwords); determine the value of these passwords by probing their associated accounts,

and then use them directly to extract value or sell them via illicit forums dealing in stolen

credentials [66]. Normally, the longer it takes to detect and remediate a data breach, the

more expensive it is. More precisely, data breaches that take more than 200 days to identify

and contain cost an average of 4.87 million, compared to 3.61 million for breaches that take

fewer than 200 days to identify and manage [2]. As a result, it is vital to have active, timely

password-breach detection systems in place to allow immediate counter-actions.

One way to reduce the cost of password breaches is to make offline guessing harder.

A variety of ways have been proposed in the literature, including machine-dependent func-

tions [5], external password-hardening services [38], and distributed cryptography [11].

All of these approaches, however, have major disadvantages, such as low scalability or a

need for large modifications to the server-side and client-side authentication systems, which

prevent the community from implementing them.

Another promising approach is to shorten the latency between password breaches and

detection. Juels and Rivest suggest the use of honeywords as a potential method for effi-

ciently detecting password leaks [34]. According to their proposal, a website could store

decoy passwords, called honeywords, alongside real passwords in its credential database,

so that even if an attacker steals and reverts the password file containing the users’ hashed

passwords, they must still choose a real password from a set of k distinct sweetwords (a

real password and its associated honeywords are referred to as sweetwords). The attacker’s

use of a honeyword could cause the website to become aware of the breach.

1.1 Motivation

One challenge of designing an HGT is that honeywords are only beneficial if they are

difficult to distinguish from real-world passwords; otherwise, a knowledgeable attacker

2



may be able to recognize them and compromise their security. Thus, when implementing

this security feature into current authentication systems, the honeyword generating process

is critical. Additionally, any suggested HGT should assure its irreversibility, meaning that

it should be computationally inefficient (or impossible) to revert to the original password

file containing just the true password for each user from the sweetword file [17].

Another challenge is to generate honeywords that are resistant to targeted attacks. For

targeted attacks, attackers exploit users’ Personally Identifiable Information (PII) to guess

passwords, which increases the likelihood of users’ accounts being compromised. This

is a critical problem because numerous PII and passwords become widely accessible as a

result of ongoing data breaches [1, 2], and people are used to creating easy-to-remember

passwords using their names, birthdays, and their variants [73]. Once an attacker obtains

user’s PII, and if only one sweetword in a user’s sweetword list contains the user’s PII, it is

easy to deduce that the only sweetword containing the user’s PII is the real password and

others are all fake.

To address these challenges, we propose two novel techniques to generate honeywords

that are resistant to offline trawling attacks, and targeted attacks, respectively.

1.2 Contributions

Our contributions are as follows:

• We introduce GNPassGAN, an offline password guessing tool, which outperforms

standalone password guessing methods in the literature on both one-site (models

trained and tested on subsets of the same dataset) and cross-site (models trained

and tested on various datasets) scenarios. It can serve as (a) a new state-of-the-art

benchmark for academics interested in the password guessing area, and can further

be utilized to (b) develop password strength meters that encourage users to choose

3



stronger passwords, and (c) to produce honeywords that detect password breaches

[34].

• Because GNPassGAN is capable of producing texts with the same character distri-

bution as the training data, and when trained on a real-world password dataset, it can

produce authentic-looking passwords. We then introduce HoneyGAN, a strategy for

generating honeywords that leverages GNPassGAN.

• We introduce two evaluation metrics for determining the indistinguishability of

honeywords in a trawling scenario and compare the honeywords generated by our

technique HoneyGAN to those generated by other two state-of-the-art HGTs in the

literature, and so could reliably infer about our framework’s true resistance to sophis-

ticated attackers.

• We highlight issues with password settings when deep learning algorithms are used

to guess passwords. More specifically, previous research mainly focused on guessing

passwords less than or equal to 8 characters, which are considered short passwords

and would be rejected by websites with a minimum length password policy. This

enables future research to focus only on password settings that adhere to password

creation policies.

• We propose a novel HGT, termed Chunk-GPT3, which generates honeywords by

segmenting passwords into semantic chunks and then instructing GPT-3 to construct

honeywords containing the given chunks. Without being trained on real passwords,

the off-the-shelf GPT-3 model could generate high-quality honeywords that are more

resistant than literature counterparts to targeted attacks. To the best of our knowledge,

we are the first to use language models to generate honeywords that are robust to

targeted attacks.

4



• We are the first to take semantics into consideration to evaluate HGTs. We pro-

pose HWSimilarity, for measuring an HGT’s capabilities under targeted attacks.

HWSimilarity employs a pre-trained language model MPNet to encode sweetwords

into vectors, and then calculates the cosine similarity between each honeyword vector

and its real password vector, taking into consideration the semantics of each sweet-

word.

• We evaluated the capabilities of Chunk-GPT3 and two state-of-the-art HGTs and

demonstrated that Chunk-GPT3-generated passwords are significantly similar to their

real passwords, making them more difficult to differentiate even when PII is available

to targeted attackers.

• We have made the source code4 available to the public to facilitate reproducibility.

1.3 Thesis Organization

The remainder of the thesis is structured as follows: Chapter 2 summarizes related work in

password guessing models and honeyword generating techniques. Chapter 3 introduces our

password guessing model GNPassGAN. Chapter 4 introduces HoneyGAN, our trawling

HGT. Chapter 5 introduces Chunk-GPT3, our targeted HGT. Each chapter contains the

proposed framework’s methodology, evaluations, and discussions. Chapter 6 is the thesis

conclusion, followed by the bibliography and appendices.

4 https://github.com/fangyiyu/GNPassGAN
https://github.com/fangyiyu/HoneyGAN
https://github.com/fangyiyu/Honeyword_GPT3.

5

https://github.com/fangyiyu/GNPassGAN
https://github.com/fangyiyu/HoneyGAN
https://github.com/fangyiyu/Honeyword_GPT3


Chapter 2

Related Work

2.1 Overview

Despite the prevalence of text-based passwords, the security of user-selected passwords

continues to be a significant concern. According to research examining susceptible behav-

iors that affect password crackability [25], there are three types of user actions that result

in the creation of insecure passwords: (1) Users often use basic terms in passwords and

perform simple string transformations to comply with websites’ password creation poli-

cies [47]. (2) Password reuse is prevalent. According to S. Pearman et al. [51], 40% of

users reuse their passwords across multiple platforms. (3) Users prefer to use simple-to-

remember passwords that include personal information such as their birth date or their pets’

name. All of these behaviors expose the user-created passwords to attacks. Additionally,

the recent large-scale leakage of passwords on multiple platforms across the world (listed

in Table 2.1) raises the alarm for researchers and stakeholders.

As a consequence, it becomes even more critical to aid users in establishing stronger

passwords. Due to the fact that password strength is a statistic that reflects a password’s

resistance to guessing attacks, the first step is to appropriately estimate password strength
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via password guessing attacks. Password guessing strategies can be categorized as offline

and online, or targeted and trawling.

2.1.1 Offline Attacks and Online Attacks

Password guessing attacks fall into two categories: offline and online. Offline attacks oc-

cur when attackers get cryptographic hashes of certain users’ passwords and attempt to

recover them by guessing and testing many passwords. The primary objective is to deter-

mine the difficulty of cracking a genuine user’s password, or the strength of a user-created

password, by producing a list of password guesses and checking for the possibility of the

genuine user’s password’s occurrence. Offline attacks are only considered when the fol-

lowing conditions are met: An attack gains access to the system and extracts the password

file, all while remaining unnoticed. Moreover, the file’s salting and hashing must be done

appropriately. Otherwise, an offline assault is either ineffective (the attacker may get cre-

dentials directly without requiring guesses, or an online approach is more effective), or

impossible [22].

An online attack occurs when an attacker makes password attempts against users us-

ing a web interface or an application. This situation is more constrained for attackers since

Table 2.1: Datasets used for training and evaluating deep learning models. Size is the
number of passwords in the dataset.

Name Size Brief Description

Yahoo! 4.4 × 105 A web services provider.

phpBB 3 × 105 A software website.

RockYou 1.4 × 107 A gaming platform.

MySpace 5.5 × 104 A social networking platform.

SkullSecurityComp 6.7 × 106 Compilations of passwords lists.

LinkedIn 1.3 × 106 A social online platform.
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most authentication systems automatically freeze accounts after several unsuccessful at-

tempts. Therefore, attackers must guess users’ passwords successfully within the allotted

number of tries, which is the primary difficulty of online password guessing. According

to Florêncio et al. [22], 106 is a reasonable upper limit for the number of online guesses a

secure password must survive, while the number of offline guesses is difficult to quantify

considering the attacker’s possible usage of unlimited computers each calculating hashes

thousands of times quicker than the target site’s backend server.

2.1.2 Trawling Attacks and Targeted Attacks

Targeted guessing attacks occur when attackers attempt to break users’ passwords using

their knowledge of users, specifically their PII, such as name, birth date, anniversary, home

address, etc. This is a considerable concern when PII becomes more accessible as a result of

constant data breaches. On the contrary, trawling attacks do not assume the users’ identities.

In this thesis, we propose two HGTs that can generate honeywords resistant to trawling

attacks and targeted attacks, respectively.

2.2 A Survey of Deep Learning in Password Guessing

The three predominant ways of password guessing are rule-based, probability-based, and

deep learning-based.

2.2.1 Rule-based Models

A large amount of stolen passwords simplifies the process of collecting password patterns.

Following that, other candidate passwords may be produced using these password patterns
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as guidelines. Hashcat1 and John the Ripper2 are two popular open-source password guess-

ing programs that use rule-based password guessing. They provide a variety of ways for

cracking passwords, including dictionary attacks, brute-force attacks, and rule-based at-

tacks. Among all these types, the rule-based one is the fastest, and Hashcat is the market

leader in terms of speed, hash function compatibility, updates, and community support [31].

However, rule-based systems create passwords solely based on pre-existing rules, and de-

veloping rules requires domain expertise. Once rules are defined, passwords that violate

those restrictions will not be identified.

2.2.2 Probability-based Models

Apart from rule-based password guessing models, conventional password guessing mod-

els are mostly probability-based, with two notable approaches being Markov Models and

Probabilistic Context-Free Grammar (PCFG). Markov Models are built on the assump-

tion that all critical password features can be specified in n-grams. Its central principle

is to predict the next character based on the preceding characters [47]. PCFG examines

the grammatical structures (combinations of special characters, digits, and alphanumerical

sequences) in disclosed passwords and generates the distribution probability, after which it

uses the distribution probability to produce password candidates [77].

Veras et al. [69] proposed a framework, termed as semantic guesser, that first employs

natural language processing techniques to segment, categorize, and generalize semantic

categories from passwords, then incorporate the semantic segments into the PCFG model

to guess passwords. In the first 3 billion attempts, their semantic guesser was able to

guess 67% more LinkedIn passwords and 32% more MySpace passwords than the PCFG

technique alone.

1 https://hashcat.net/wiki/
2 https://www.openwall.com/john/
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2.2.3 Deep Learning-based Models

Unlike rule-based or probability-based password guessing tools, deep learning-based meth-

ods make no assumptions about password structure. Deep neural network-generated pass-

word samples are not constrained to a particular subset of the password space. Rather

than that, neural networks can autonomously encode a broad range of password informa-

tion beyond the capabilities of human-generated rules and Markovian password-generating

methods.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are neural networks in which inputs are processed se-

quentially and restored using internal memory. They are often employed to solve sequen-

tial tasks such as language translation, natural language processing, and voice recognition.

Due to the fact that the vanilla RNN architecture is incapable of processing long-term de-

pendencies due to the vanishing gradient issue [49], therefore, Long Short Term Memory

Networks (LSTM) was designed to tackle the problem. LSTM networks make use of a

gating mechanism to retain information in memory for long periods of time [30].

To the best of our knowledge, Melicher et al. [44] were the first to utilize RNN to

extract and predict password features. They kept their model, named Fast, Lean, Ac-

curate (FLA), as lightweight as possible in order to integrate it into local browsers for

proactive password verification. Three LSTM layers and two highly connected layers com-

prise the proposed Neural Network. Various strategies for training neural networks on

passwords were used. It was proven that employing transfer learning [83] significantly

improves guessing efficacy, however, adding natural language dictionaries to the training

set and tutoring had little impact. Consequently, they discovered that Neural Networks

are superior at guessing passwords when the number of guesses is increased and when
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more complicated or longer password policies are targeted. Nevertheless, because of the

Markovian nature of FLA’s password generation process, any password feature that is not

included within the scope of an n-gram may be omitted from encoding [29].

Zhang et al. [85] presented Structure Partition and BiLSTM Recurrent Neural Net-

work (SPRNN), a hybrid password attack technique based on structural partitioning and

Bidirectional Long Short-term Memory (BiLSTM). The PCFG is used for structure parti-

tioning, which seeks to structure the password training set to learn users’ habits of password

construction and generate a collection of basic structures and string dictionaries ordered by

likelihood. The BiLSTM was then trained using the string dictionary produced by PCFG.

They compared SPRNN’s performance to probability-based approaches (Markov Models

and PCFG) on both cross-site (model trained and tested on various datasets) and one-site

(model trained and tested on subsets of the same dataset) scenarios. SPRNN outperforms

the other two models in all circumstances, albeit it performs worse cross-site than one-site.

Based on Zhang et al.’s work [85], the same year, Liu et al. [41] also developed a

hybrid model named GENPass that can be generalized to cross-sites attacks. The model

preprocesses a password by encoding it into a series of units that are then given tags based

on PCFG (e.g., “password123” can be separated into two units: “L8” and “D3”, where “L”

refers to letters, and “D” refers to digits.). After that, LSTM is used to create passwords.

Additionally, they built a Convolutional Neural Networks (CNN) classifier to determine

which wordlist the password is most likely to originate from. The results indicate that

GENPass can achieve the same degree of security as the LSTM model alone in a one-site

test while generating passwords with a substantially lower rank. GENPass enhanced the

matching rate by 16 to 30% when compared to LSTM alone in the cross-site test.
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Autoencoders

Autoencoders are any model architecture that is composed of two submodules: an encoder

and a decoder. The encoder is responsible for learning the representation of the source

text at each time step and generating a latent representation of the whole source sentence,

which the decoder uses as an input to build a meaningful output of the original phrase.

Typically, autoencoders are employed to deal with sequential data and various NLP tasks,

such as machine translation, text summarization, and question answering. RNN and CNN

are often used as encoder and decoder components, respectively.

Pasquini et al. [79] applied this strategy to a dataset containing leaked passwords,

using Generative Adversarial Networks (GANs) and Wasserstein Autoencoders (WAEs) to

develop a suitable representation of the observed password distribution rather than directly

predicting it. Their methodology, called Dynamic Password Guessing (DPG), can guess

passwords that are unique to the password set. and they are the first to apply completely

unsupervised representation learning to the area of password guessing.

Attention-based models

When we use the phrase “Attention” in English, we mean concentrating our focus on some-

thing and paying closer attention. The Attention mechanism in Deep Learning is based

on this principle, and it prioritizes certain tokens (words, letters, and phrases) while pro-

cessing text inputs. This, intuitively, aids the model in gaining a better knowledge of the

textual structure (e.g., grammar, semantic meaning, word structure, and so on) and hence

improve text classification, generation, and interpretability. In language models, attention

mechanisms are often utilized in combination with RNN and CNN. However, even with

LSTM, these models cannot manage lengthy dependencies since transforming the whole

source sentence to a fixed-length context vector is challenging when the source sentence
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is too long. As a result, Transformers [68] were invented that were built just on Atten-

tion, without convolution or recurrent layers. Bidirectional Encoder Representations from

Transformers (BERT) [16], ELMO [53], and GPT [54] are all well-known instances of

attention-based applications built on top of Transformers.

Li et al. [39] proposed a curated Deep Neural Network architecture consisting of five

LSTM layers and an output layer, and then tutored and improved the created model us-

ing BERT. They proved that the tutoring process by BERT can help increase the model

performance significantly.

GANs

Unlike the previously described deep learning-based algorithms commonly employed in

Natural Language Processing tasks, GANs [24] have been used to construct simulations

of pictures, texts, and voices across all domains. Behind the scenes, GANs consist of two

sub-modules: a discriminator (D) and a generator (G), both of which are built of deep

learning neural networks. G accepts noise or random features as input; learns the prob-

ability of the input’s features; and generates fake data that follows the distribution of the

input data. While D makes every effort to discriminate between actual samples and those

created artificially by G by estimating the conditional probability of an example being false

(or real) given a set of inputs (or features). The model architecture diagram is illustrated

in Figure 2.1. This cat-and-mouse game compels D to extract necessary information in

training data; this information assists G in precisely replicating the original data distribu-

tion. D and G compete against one another during the training phase, which progressively

improves their performance with each iteration. Typically, proper gradient descent and

regularization techniques must be used to accelerate the whole process. More formally, the

optimization problem solved by GANs can be summarized as follows:
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min
θG

max
θD

n∑
i=1

log f (xi; θD) +
n∑

i=1

log(1 − f (g(z j; θG); θD))

where f (xi; θD) and g(z j; θG) represents the discriminator D and the generator G respec-

tively.

Real Passwords

GeneratorNoise

Discriminator Loss

Back Propogation

Fake Password

Real or Fake?

Figure 2.1: GAN’s model architecture.

The optimization demonstrates the min-max game between D and G. After the ini-

tial GANs work was published in 2014, several enhancements were made, and Hitaj et

al. [29] leveraged the Improved Training of Wasserstein GANs (IWGAN) [26] to apply

GANs on password guessing, which is the first in literature. They trained the discriminator

using a collection of leaked passwords (actual samples). Each iteration brings the gen-

erator’s output closer to the distribution of genuine passwords, increasing the likelihood

of matching real-world users’ passwords. Consequently, PassGAN outperformed current

rule-based password guessing tools and state-of-the-art machine learning password guess-

ing technologies (FLA) after sufficient passwords were generated (109). They matched 51%

- 73% of passwords when combining PassGAN with Hashcat, compared to 17.67% when

using Hashcat alone and 21% when using PassGAN alone. One disadvantage of PassGAN

is that it has intrinsic training instability due to the final softmax activation function in the

generator, which may easily result in the network being vulnerable to vanishing gradients,

lowering the guessing accuracy.

Following the publication of PassGAN in 2019, other researchers saw the possibili-
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ties of using GANs for password guessing, and more refinements have been done on top

of PassGAN. In 2020, Nam et al. [46] developed REDPACK that employs a variant of

GANs in conjunction with various password generation models for improved cracking per-

formance. They suggested rPassGAN in their prior study, which enhanced PassGAN by

altering its fundamental Neural Network architecture. More precisely, they employed RNN

in PassGAN instead of ResNet in PassGAN’s original paper. However, during rPassGAN’s

training process, it became unstable at times, and REDPACK introduced the RaSGGAN-

GP cost function to stabilize the training process. Nam et al. also introduced a selection

phase to REDPACK, during which the password candidates are generated using several

password generators (Hashcat, PCFG, and rPassGAN). The discriminator then determines

the chance of each generator’s password candidates being realistic and sends the candidates

with the greatest probability to password cracking tools such as Hashcat. We regard Pass-

GAN to be a good representation of GANs-based password guessing tools, and PassGAN

enhancement is the inspiration for our proposed password guessing model.

A comparison of prior published deep learning-based password guessing tools is il-

lustrated in Table2.2.

Table 2.2: A comparison for Deep Learning Models used for Password Guessing.

Category Methods Models used Year

Autoencoders DPG [79] WAE, GANs 2021

GANs REDPACK [46] IWGAN, RaGAN, HashCat, PCFG 2020

GANs PassGAN [29] IWGAN 2019

Attention Language Model [39] BERT, LSTM 2019

RNN GENPass [41] PCFG, LSTM, CNN 2018

RNN SPRNN [85] PCFG, BiLSTM 2018

RNN FLA [44] LSTM 2016
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2.3 A Survey of Honeyword Generation Techniques

To the best of our knowledge, Bojinov et al. [7] were the first to propose using honey-

words for theft-resistant password managers. Their architecture Kamouflage produces a

fixed number of fake managers with accompanying decoy master passwords and keeps

them alongside the real password manager. The first phase of their HGT is tokenization, in

which the password manager transforms the user’s real passwords into a collection of to-

kens, and then substitutes each token with a random one that matches the token’s type. For

instance, “ jones34monkey” is tokenized as “l5d2l6” (a five-letter word followed by two dig-

its and a six-letter word), indicating that some possible honeywords are “apple10laptop”,

“tired93braces”, and “hills28highly”. This technique, as outlined in [17], demands con-

siderable modifications to the client-side authentication system, which has a significant

impact on usability. Additionally, it is incapable of generating honeywords of varying

lengths or structures, thus limiting the spectrum of possible honeywords. In comparison,

our technique needs minimum modifications to the server-side authentication system and

also supports the generation of honeywords of varying lengths and structures.

Erguler [20] proposed a different technique in which honeywords are derived from the

system’s current user passwords. In this case, all honeywords are realistic and adhere to

the operator’s password-creating policy. However, their HGT is restricted by the limited

number of viable honeywords created by selecting genuine passwords from the website’s

password corpus, which is particularly the case if the website has a small user database.

On the other hand, since the generator of GNPassGAN can produce as many passwords

as needed, our HGT can thus generate a significantly larger amount of honeywords than

selecting real passwords from other corpus.

In contrast to our HGT, which utilizes GNPassGAN for honeyword generation, Fauzi

et al. [21] directly generated honeywords using PassGAN. The advantage of our model

16



over Fauzi et al.’s work is twofold: 1) As proven in Section 3, our password guessing model

GNPassGAN can better learn the distribution of genuine passwords and create passwords

that match the distribution of real passwords. 2) Fauzi et al.’s approach needs that they train

their HGT on the attack dataset; future attackers with access to the stolen passwords dataset

may significantly enhance their attacking performance. In comparison, we recommend to

website administrators that they train our HGT on their password corpus in order to create

system-specific honeywords and prevent any security consequences. Finally, Fauzi et al.’s

technique should be assessed using more advanced attack that simulates sophisticated real-

world attackers (such as Normalized Top-SW) in order to determine whether or not their

HGT generates susceptible honeywords for readily distinguishable user accounts.

To the best of our knowledge, there is only one publication that discusses how to

generate honeywords that are resistant to targeted attacks by Wang et al. [74]. They first

proposed four attack models each representing a potential attacker A’s strategy, with each

model based on different information available to A (e.g., public datasets, the victim’s per-

sonal information and registration order). They further develop four HGTs for each attack

strategy, by using various representative probabilistic password guessing models proposed

in their previous paper [73]. These assumptions about attackers are flawed since the attack-

ers may utilize whatever information they can get to attack users’ accounts, particularly if

the user is a person of interest. What we are proposing is a much simpler yet robust, and

generalized approach. Rather than assuming A’s attack strategy and creating HGTs accord-

ingly, we construct honeywords based on the information contained in the real password.

The challenge is to partition the real password into tokens while retaining tokens that corre-

spond to PII and replacing tokens that do not correspond to PII with random ones. Consider

the real password ‘Elena1986@327”, the challenge is to produce honeywords containing

the token“Elena”, which is the user’s first name as indicated by her email address. To do

this, we propose to employ a chunking algorithm proposed by Xu et al. [81] to divide pass-
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words into chunks consisting of frequently occurring sequences of related characters, and

a language model [10] capable of generating high-quality honeywords incorporating PII.
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Chapter 3

GNPassGAN

3.1 Methodology

As mentioned in Section 2.2.3, the IWGAN used in PassGAN implements gradient penalty

to impose the 1-Lipschitz continuous of the discriminator; however, Wu et al. [80] proved

that to achieve a balance between the Lipschitz restriction required by earth mover dis-

tance and the neural network’s capacity is a difficult challenge; the combination of gradient

penalty and earth mover distance is not the ideal solution to GAN’s mode collapse and

vanishing gradient issues. To address these issues, our approach adopted a different kind

of normalization technique: gradient normalization, as introduced in [80]. Gradient nor-

malization imposes a gradient norm restriction on the GANs discriminator to increase its

capacity. Wu et al. [80] proved that GANs trained with gradient normalization outperform

previous GANs in the computer vision area by conducting comprehensive experiments.

In our study, we expect that in the password guessing domain, we can also outperform

previous methods when generating passwords with the same rank by applying gradient

normalization to PassGAN.

Fig. 3.1 illustrates the architecture of our model, termed as GNPassGAN. The key
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Figure 3.1: GNPassGAN model architecture diagram.

improvements we made to PassGAN are as follows: We add gradient normalization [80] to

the discriminator, and the generator’s activation function in the last layer is modified from

softmax to tanh. Additionally, instead of the Wasserstein loss, we use the binary entropy

loss inside a sigmoid layer as the loss function.

3.2 Evaluation

Our model GNPassGAN was implemented using PyTorch 1.10. Our experiments were

conducted on a workstation running Ubuntu 20.04.0 LTS, with 30 GB of RAM, an Intel(R)

Xeon(R) Silver 4114 CPU, and an NVIDIA Tesla P100 GPU with 16 GB Global Memory.

The hyperparameter settings for running GNPassGAN can be found in Table 3.1.

3.2.1 Experimental Design

We only compare our model with PassGAN in this paper since PassGAN has conducted ex-

tensive experiments and shown that their work exceeds traditional rule-based and probability-

based password guessing tools. As with PassGAN’s work, we use the rockyou dataset1 for

1 http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
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Table 3.1: Hyperparameter Setting for Trainning GNPassGAN

Hyperparameters Value
Batch size 64

Number of iterations 200,000

Number of discriminator iterations

for each generator iteration
10

Layer dimension for generator and discriminator 128

Adam learning rate 0.0001

Adam coefficient β1 0.5

Adam coefficient β2 0.9

training, and the phpbb dataset2 and a disjoint subset of rockyou for testing. The distribu-

tion of the two datasets based on length can be found in Table 3.2. Testing on two different

sets with varying data distributions allows us to assess if our model generalizes well to

cross-site password guessing. We conducted experiments on passwords of two lengths:

less than or equal to 10 characters, as most password guessing experiments do; between

8 and 12 characters inclusively, which corresponds to the real-world password setting sce-

nario as most websites require passwords to be at least 8 characters. We refer to these two

experimental settings as Char10 and Char812, respectively. To better assess the models’

guessing capability, we delete duplicates in the datasets. The training and testing sets are

randomly divided by a ratio of 4:1, and there is no overlap between the two sets. Hitaj et

al. [29] tested their PassGAN model on passwords with less than 10 characters only; by

testing on Char812, we can see if the models are capable of properly guessing more com-

plicated passwords. Both PassGAN and GNPassGAN are trained for 200,000 iterations

in our experiment, with checkpoints for D and G retained every 10,000 iterations for the

purpose of storing the neural network parameters.

Notably, the justification for using GANs to guess passwords is based on the assump-

2 https://github.com/danielmiessler/SecLists/blob/master/Passwords/Leaked-Databases/phpbb.txt
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Table 3.2: The comparison of the data distribution based on length in the rockyou and
phpbb dataset. Around 95% of passwords in phpbb are less than or equal to 10 characters.

Range RockYou phpBB
(0,8) 33.025% 48.039%

[8,10] 50.004% 46.864%

(10,12] 9.906% 4.031%

(12,∞) 7.065% 1.066%

Total 100% 100%

tion that the training and testing sets have a similar distribution, and therefore, by simu-

lating samples from the training set, the generated samples may approximate the test set

sufficiently. By shuffling before splitting into the two sets, we assume that they have a

similar distribution. In Section 3.2.2, we demonstrate empirically that our hypothesis is

correct.

3.2.2 Experimental Results

Measuring Guessing Accuracy. GANs are typically applied in the computer vision area.

The Inception Score [61] and the Frechet Inception Distance [28] are the most frequently

used metrics for evaluating GAN’s performance. However, since we are measuring GANs

in the context of password guessing, the metrics employed in computer vision are inap-

propriate for our task. Instead of that, we measure the performance of GANs using the

matching accuracy as most previous works did. This metric indicates the percentage of

actual passwords generated by the algorithms on an unseen dataset (test set).

Assume that the generated file is FG and the testing file is FT. We define the matching

accuracy by dividing the number of unique passwords that exist in both FG and FT, by the

total number of unique passwords in FT. The following formula can be used to represent

the calculation:
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Figure 3.2: Proportion of unique passwords created by GNPassGAN that matched the rock-
you testing set and the phpbb testing set at different checkpoints when experimented on
passwords with length ≦ 10 characters (a) and in [8, 12] (b). The x axis denotes the check-
point used in the generating process. For each checkpoint, we sampled 107 passwords.
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Table 3.3: The comparison of the data distribution based on length in the training set,
the rockyou testing set and files containing fake passwords generated by PassGAN and
GNPassGAN. All passwords are unique and in Char10.

Range Training Testing PassGAN GNPassGAN
(0,5] 0.213% 0.213% 0.115% 0.166%

(5,8] 47.661% 47.645% 46.079% 46.178%

(8,10] 52.126% 52.142% 53.801% 53.645%

(10,∞) 0 0 0.005% 0.011%

Total 100% 100% 100% 100%

Table 3.4: The matched passwords by PassGAN and GNPassGAN over the rockyou testing
dataset in Char10. When 108 passwords are generated, GNPassGAN is able to generate
31.69% fewer duplicates, and match 88.03% more passwords than PassGAN

Passwords Generated
Models

PassGAN GNPassGAN
Unique Passwords Matching Accuracy Unique Passwords Matching Accuracy

104 9,738 103 (0.005%) 9,980 153 (0.008%)

105 94,400 975 (0.048%) 99,545 1,622 (0.082% )

106 855,972 7,543 (0.381%) 973,436 14,328 (0.724%)

107 7,064,483 40,320 (2.038%) 8,806,659 48,263 (4.258%)

108 52,815,412 133,061 (6.726%) 69,551,549 250,309 (12.647%)

Matching Accuracy =
Count(set(FG) ∩ set(FT ))

Count(set(FT ))

GNPassGAN’s Output Space. Table 3.3 shows the data distribution of the training set, the

rockyou testing set, and passwords produced by PassGAN and GNPassGAN on Char10 by

length. As expected, the distributions of the training and testing sets are quite comparable,

and the output of PassGAN and GNPassGAN both have a similar distribution to the testing

set. The majority of passwords have between 5 to 10 characters. Note that a small percent-

age of GANs-generated passwords exceed 10 characters. This is because GANs models are

attempting to simulate the distribution of the training data while also attempting to achieve

sample variety.
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Table 3.5: The matched passwords by PassGAN and GNPassGAN over the rockyou testing
dataset in Char812. When 108 passwords are generated, GNPassGAN is able to generate
61.80% fewer duplicates, and match six times more passwords than PassGAN

Passwords Generated
Models

PassGAN GNPassGAN
Unique Passwords Matching Accuracy Unique Passwords Matching Accuracy

104 9,969 7 (0.0003%) 9,983 26 (0.0012%)

105 98,705 116 (0.0055%) 99,917 281 (0.0133%)

106 992,774 974 (0.0462%) 995,713 2803 (0.1329%)

107 7,720,173 4,962 (0.2353%) 9,672,555 23,416 (1.1102%)

108 53,025,885 16,404 (0.7777%) 85,793,575 115,851 (5.4927%)

Both PassGAN and GNPassGAN were trained for 200,000 iterations, with the dis-

criminator and generator competing and improving throughout each iteration. We want to

see how GNPassGAN performs throughout iterations and evaluate if 200,000 is the opti-

mal iteration parameter value for password file generation. To determine the association

between iteration and matching accuracy, we display the proportion of unique passwords

created by GNPassGAN that match the rockyou and phpbb testing sets at different check-

points (Fig. 3.2). As shown in Fig. 3.2 (a), the greatest matching accuracy occurs at the

180,000th checkpoints for both testing sets in Char10. Additionally, despite the fact that

our model was trained on the rockyou dataset, the matching accuracy on the phpbb dataset is

greater than on rockyou. A possible explanation is that the passwords in phpbb are weaker

in strength, and thus easier to guess. It also indicates that our model can perform well in

cross-site guessing situations.

Comparison with PassGAN. For Char10, we generated passwords using the 180,000th

checkpoints and compared them to the rockyou testing set to determine the models’ guess-

ing capability. 104 up to 108 passwords were generated. Table 3.4 compares the matching

accuracy of PassGAN with GNPassGAN, and the numbers of PassGAN are taken from the

PassGAN publication [29]. Hitaj et al. [29] used the 200, 000th iteration because PassGAN

obtains the highest matching accuracy at the 200, 000th iteration. It is more appropriate to
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compare our model’s performance with their best performance to demonstrate which one is

superior at guessing capability. Our comparison shows that as the number of created pass-

words increases, both models can successfully guess more passwords appearing in the test

dataset. Our model GNPassGAN is capable of guessing more passwords than PassGAN

and generates fewer duplicates, which suggests that PassGAN is experiencing mode col-

lapsing. More precisely, when 108 passwords are generated, GNPassGAN is able to match

88.03% more passwords than PassGAN, and generate 31.69% fewer duplicates3.

For Char812, as shown in Fig. 3.2 (b), the 200, 000th checkpoint has the maximum

matching accuracy for both testing sets; hence, we utilize the 200, 000th checkpoint to gen-

erate passwords in Char812. The performance of PassGAN and GNPassGAN in matching

passwords in Char812 is shown in Table 3.5. As can be observed, GNPassGAN continues

to outperform PassGAN in terms of properly guessing more genuine passwords. When

108 passwords are generated, GNPassGAN is able to match six times more passwords than

PassGAN, and generate 61.80% fewer duplicates. However, when compared with Table

3.4, we can find that when the same rank of passwords (108) are generated, the matching

accuracy for passwords in Char812 (5.4927%) is significantly lower than for passwords

in Char10 (12.647%), which demonstrates that lengthier passwords are more difficult to

guess, and is consistent with other studies [15, 36]. Therefore, we emphasize the impor-

tance of imposing a minimum password length restriction of eight characters to prevent

passwords from being readily guessed.

Examining Non-matched Passwords. We examined a list of GNPassGAN-generated

passwords that did not match any of the testing sets and discovered that a substantial num-

ber of these passwords are plausible candidates for human-generated passwords. As a

result, we expect that the passwords created by GNPassGAN might be exploited as hon-

eyword candidates to reduce attackers’ success rate at compromising users’ accounts and

3 Both implementations took about the same time to finish the training process.
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Table 3.6: Passwords produced by GNPassGAN that did not match the testing sets.

claia02001 cas043712 mannda235 all53002

badanan24 nsha1105 livemilo namrasbdo

mintesa01 jonern14 tikiocmo dendiona

maketa11 moritin1 pilk2711 fish1053

detect data breaches.

Honeywords were introduced by Juels and Rivest as a potential method for efficiently

detecting password leaks [34]. According to their proposal, a website could store decoy

passwords, called honeywords, alongside real passwords in its credential database, so that

even if an attacker steals and reverts the password file containing the users’ hashed pass-

words, they must still choose a real password from a set of distinct sweetwords (a real

password and its associated honeywords are referred to as sweetwords). The attacker’s use

of a honeyword could cause the website to become aware of the breach. Notably, hon-

eywords are only beneficial if they are difficult to distinguish from real-world passwords;

otherwise, a knowledgeable attacker may be able to recognize them and compromise their

security. Table 3.6 illustrates some samples of the passwords generated by GNPassGAN

that did not match the testing set but seem to be viable honeyword candidates.

3.3 Discussion

3.3.1 Limitation and Future Work

This section discusses the limitations of GNPassGAN, the future work that can be done to

enhance GNPassGAN, and potential applications.

Inappropriate Password Setting. PassGAN and GNPassGAN both conduct exper-

iments with passwords that are less than or equal to 10 characters in length, with nearly

27



half of them being less than or equal to 8 characters. This is unworkable in practice, since

the majority of websites need a minimum of 8 characters. Additionally, some websites

require a mix of numeric characters, special symbols, and special characters in passwords.

Previously published research [65] shows that altering password criteria, such as required

minimum length and class, may have a considerable positive influence on both usability

and security. As a result, while preprocessing datasets and assessing the models, we need

to take the password policy and minimum length requirements into account to simulate

real-world password generating scenarios.

Hybrid Models. Given that prior work [50] and [29] demonstrated that deep neural

networks can mimic the domain knowledge of professional attackers, GNPassGAN can

be used in conjunction with rule-based models such as HashCat to provide more accurate

dynamic password guessing solutions than GNPassGAN alone.

Honeyword Generation. Because GNPassGAN is capable of synthesizing texts with

the same distribution as the training data, it can generate authentic-looking passwords that

can be considered honeyword candidates when trained on real-world password datasets.

In Section 4, we introduce a technique to generate honeywords robust to offline trawling

attacks by utilizing GNPassGAN.

3.3.2 Conclusion

In this chapter, we introduced GNPassGAN, a GANs-based deep learning password guess-

ing tool. The original motivation comes from PassGAN [29], and by applying gradient

normalization to the discriminator, modifying the loss function, and tweaking the archi-

tecture of the generator, we are able to outperform PassGAN by 88.03% while generating

108 passwords and create 31.69% less duplicates. The result indicates that GNPassGAN

is superior than PassGAN in terms of resolving the mode collapse issue and achieving a

better guessing capability. We argue that there is no need to compare GNPassGAN to tradi-
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tional rule-based and probability-based password guessing tools, given that Hitaj et al. [29],

the authors of PassGAN have conducted extensive experiments and shown that their work

outperforms others.

We encourage researchers interested in password guessing with deep learning tech-

niques to adopt GNPassGAN as a new state-of-the-art benchmark. Additionally, the poten-

tial for using GNPassGAN to construct password strength meters that encourage users to

create stronger passwords, and honeywords that detect password breaches is promising.
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Chapter 4

HoneyGAN

4.1 Introduction

In this chapter, we propose HoneyGAN, a trawling attack-resistant HGT. HoneyGAN uti-

lizes GANs to automatically learn distributions for a large collection of unstructured data

(leaked password datasets) and then utilize the learnt distribution to produce honeywords

that are indistinguishable from actual passwords. Due to the policy-neutral nature of our

method, it can be easily integrated into any password-based authentication system. Ad-

ditionally, our machine-learning-based technique for honeyword production permits the

creation of honeywords of any length or structure.

4.2 Preliminaries

4.2.1 The Honeyword Mechanism

According to Juels and Rivest [34], the honeyword system is comprised of four entities,

as shown in Figure 4.2: a user Ui, an authentication server S , a honeychecker, and the

attacker A. User Ui initially registers an account(IDi, PWi) on the server S . Apart from the
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standard user registration processes, S runs a command GEN(k, PWi) to produce a list of

k− 1 unique fake passwords (called honeywords) to be stored alongside Ui’s true password

PWi, where k = 20 as recommended in [34]. PWi and its k − 1 honeywords are referred to

as k sweetwords.

Figure 4.1: Password (PW) authentication with honeywords.

Honeyword-enabled systems could reliably identify a password file leak by pairing

each user’s account with k − 1 honeywords. If attackers obtain a copy of the password

file along with its hashing parameters and salts, and successfully recover all the passwords

via brute-force or other password guessing techniques [19, 44, 77, 79], and suppose the

attackers know which k sweetwords are associated with each user, then their target is to

distinguish each user’s true password from the k sweetwords. The honeyword-enabled

system features honeychecker to aid in the usage of honeywords, and the computer system

could interact with the honeychecker whenever a login attempt is made or users change their

passwords. Additionally, the honeychecker is capable of triggering an alert if an anomaly is

discovered. The warning signal may be sent to an administrator or to a third party other than
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the computer system itself [34]. This approach is compatible with existing authentication

systems since it needs little adjustments to the server-side systems and no alterations to the

client-side systems; nevertheless, it is very reliable due to the high probability of capturing

adversaries. For instance, if the likelihood of an attacker selecting each sweetword is equal,

the probability of capturing an attacker is 3/4 = 75% for k = 4, and the probability grows

as k increases.

4.2.2 Honeyword Generation and Evaluation

Automatically generating honeywords that are difficult to distinguish from genuine pass-

words is a difficult and intricate problem, and the strategy fails if an opponent can readily

discover the true passwords. Juels and Rivest [34] presented four traditional user-interface

(UI) HGTs that heavily rely on random letter, digit, and symbol substitution (chaffing-by-

tweaking). These techniques were subsequently shown to be inefficient in meeting antic-

ipated security requirements [71]. In Section 4 and 5, we demonstrate the inefficiency of

their methodologies using our metrics and a user study.

In terms of assessment, Juels and Rivest [34] developed a metric for assessing the effi-

ciency of HGTs, namely ε− f lat, which quantifies the highest success rate that a prospective

adversary A may achieve by submitting just one online guess in response to each user’s k

sweetwords. This statistic, however, is insufficient for assessing HGTs’ performance when

A is permitted to make multiple online guesses per user. Additionally, this statistic does

not represent the system’s most susceptible sweetwords which may be instantly discernible

due to the fact that different sweetwords have differing odds of being chosen depending on

the attacker’s experience.

Wang et al. [71] later proposed two alternative evaluation measures, namely flatness

graph and success-number graph, to address the shortcomings of ε − f lat. They evaluated

Juels and Rivest’s HGTs [34] and concluded that they all failed under these two metrics.
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Additionally, Wang et al. [71] stated that due to the Zipf-distribution of passwords [70], the

probabilistic password guessing model PCFG [77] cannot be used to generate high-quality

honeywords. As a result, the community should prioritize the development of new HGTs

that properly satisfy the expected security requirements.

4.2.3 Text Similarity

The similarity between two strings is crucial in HGT since it demonstrates the indistin-

guishability of a false password from a genuine one, and is employed in both the honey-

word creation and assessment processes (line 4 of Algorithm 4.1 and line 5 of Algorithm

4.2). Typically, in natural language processing tasks, the distance/similarity of two strings

is determined as follows: the strings are converted to vectors using word embedding tech-

niques, and then the cosine similarity of the two vectors is calculated as the distance. Here,

the strings might be composed of letters, symbols, or numbers, similar to how passwords

are composed. Popular word embedding methods include Word2vec [45], FastText [6],

and T F − IDF. While these techniques take into account the semantic and syntactic mean-

ings of a word/text, but in our case, the majority of passwords lack such meanings; hence,

we choose the simplest but still effective method of vectorization known as bag of words

(BoW).

In BoW, the core premise is that documents are similar if they contain comparable

information. We examine the histogram of the characters included inside the strings, that

is, each character count is considered as a feature. To be more precise, we first count the

unique characters and their occurrences in the two strings being compared, then create a

vector for each string with a length equal to the number of unique characters the strings

contain, assign the vector’s value in the associated index to the character’s occurrences

in each string, and finally compute the cosine similarity of the two vectors by definition.

Consider the following example: “11june1993” is a real password from the rockyou dataset,
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and the password “junte1189” created by HoneyGAN has a similarity score of 0.853 with

the real password, whereas “057519189harry” and “nastymarc” have similarity scores of

0.502 and 0.071 with the real password, respectively (the latter two are generated by the

fasttext HGT proposed in [17]).

4.3 Honeyword Generation Techniques

We propose our trawling HGT design HoneyGAN in this section, and compare (and subse-

quently assess) HoneyGAN to two baseline models: chaffing-by-fasttext proposed by Dioy-

siou et al. [17] and chaffing-by-tweaking proposed by Juels and Rivest [34]. We will use

the term chaffing-by-fasttext and fasttext interchangeably, as well as chaffing-by-tweaking

and tweaking.

4.3.1 HoneyGAN

The following procedure demonstrates how we generate honeywords for evaluation using

GNPassGAN (shown in Figure 4.2). (1) GNPassGAN first needs to be trained on a pass-

word corpus, and we train GNPassGAN for 200,000 iterations to get a thorough grasp of

the construction pattern of passwords in the training dataset. (2) We use the GNPassGAN

generator to produce a file named F containing 50,000 fake passwords as honeyword can-

didates. Notably, F must be stored separately from the authentication system in a secure

place. (3) We compare each user’s true password to each of the fake passwords in F and

calculate text similarity scores. Here, we convert each password to a vector using BoW

described in Section 4, and compute the cosine similarity of two passwords. (4) Finally, we

assign the honeywords for a genuine password to the k − 1 most similar fake passwords in

F. The pseudocode of HoneyGAN can be found in Appendeix, Algorithm 4.1.

We clarify that the administrator does not need to collect plaintext passwords for Hon-
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Algorithm 4.1 Generate Honeywords Using the GNPassGAN Model (HoneyGAN)
Input : A fake password list fake generated by GNPassGAN; a real password list real

from data breaches, one password per user; the number of sweetwords per user k.
Output: S W, a 2D sweetword list {S W1, S W2, ....S Wn}, each user has k − 1 honeywords.

1 Initialize a 2D sweatword list S W.
for real_password in real do

2 for i← 0; i <n do
3 scorei = cosdis(real_password, f akei)

Assignk-1 f akepasswordswiththehighestsimilarityscorestoSWi.

4 end
5 end
6 return S W.

Operator's 

password file

(Rockyou)

Discriminator

GeneratorInput Noise

Honeyword

 candidates (F)

Operator's

password file

(Rockyou)

Sweetwords (target)

GNPassGAN

Figure 4.2: HoneyGAN workflow

eyGAN to operate on current websites. When a user creates an account, HoneyGAN as-

sociates honeywords to the user based on the similarity scores between the honeyword

candidates in the pool and the user’s actual password; then all 20 sweetwords are processed

through whatever encryption mechanisms are in place, and stored in the system.
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4.3.2 Baseline Models

Chaffing-by-fasttext

This technique was proposed by Dionysiou et al. [17] which uses representation learning

for the generation of honeywords. They convert words to vectors using fasttext and then

assign honeywords to the k − 1 nearest neighbors of an actual password based on cosine

similarity.

More specifically, in the chaffing-by-fastext method, it needs a real password corpus as

the training dataset for the fasttext model. During the training phase, fasttext generates vec-

tor representations of each word in the corpus. After training is complete, the trained model

can be queried by providing a real password as input and receiving a multi-dimensional vec-

tor representing the provided password’s word embedding as a response. Following that,

Dionysiou et al. loop over each password in their password corpus (n records in total where

n is the number of users) and return its top k − 1 closest neighbors in decreasing order of

cosine similarity to create the list of k∗n sweetwords. As a consequence, for each password

in the password file, they generate a list of the k − 1 most similar honeywords.

Notably, the technique’s primary weakness is that the produced honeywords are all

genuine passwords in the fasttext training dataset, which means that if an attacker has access

to the training dataset, the honeywords will be readily discovered. Additionally, the size of

the training data has a significant impact on the quality of the honeywords created.

Chaffing-by-tweaking

The concept of chaffing-by-tweaking was initially presented in [34], and it is an approach

that mainly relies on random letter, digit, and symbol substitution. Dionysiou et al. [17]

highlight the intricacy of developing tweaking rules in such a way that it could be difficult

for an attacker to distinguish the password from its changed versions. For example, if a
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Table 4.1: Honeyword samples generated by the three HGTs compared in the paper (Hon-
eyGAN, fasttext and tweaking). Our password guessing model GNPassGAN and the fast-
text model have been trained on a subset of the rockyou dataset.

Real Passwords deshaun96 dafnny_24 Shauni16!

HoneyGAN
masdane69 andey124 nahuas11

sandesh89 badhyn24 hunhzan1

naueds09 maydona242 hanilin1

fasttext
boedha21 snuffy22 muchluv!

cutechica1 Dushido07 cliffordx

felli1330 Dampire2 10.04.88

tweaking
DeShauN37 dafnny=96 Shauni53+

deshaun87 dafNnY44 SHaunI73$

DesHaun56 dAfnny+47 SHaUnI73$

chaffing-by-tweaking strategy randomly perturbs the last three characters of a password, the

adversary may easily conclude that the authentic password is the first one in the instances

“18!morning", “18!morniey", and “18!gorndge". Thus, they replace all occurrences of a

particular symbol in a given password with a randomly chosen alternate symbol, lower-case

each letter in a password with probability p = 0.3, upper-case each letter in a password with

probability f = 0.03, and replace each digit occurrence with probability q = 0.05.

Rather than accepting duplicates as in [17], we eliminate all duplicates in each user’s

sweetwords, since duplication might indirectly assist attackers in choosing the correct pass-

word.

Honeyword examples generated by the three HGTs can be found in Table 4.1.

4.4 HoneyGAN Evaluation

We propose two metrics for assessing the indistinguishability of honeywords which is the

second contribution of this paper: one from the standpoint of the sweetwords themselves,
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and another from the attacker’s perspective. The performance of HoneyGAN is then com-

pared to that of chaffing-by-tweaking and chaffing-by-fasttext in producing indistinguish-

able honeywords. Our attack model is based on overcoming the conceptual ambiguity

inherent in Wang et al’s work [71].

4.4.1 Datasets

We analyze HoneyGAN’s performance and compare it to the other two HGTs using 13

datasets containing real-world passwords. Our password datasets include over 828 mil-

lion plain-text passwords and are derived from 13 different online providers (can be found

in Table 4.2). We analyze these datasets and choose only passwords with a length more

than 8 characters, as recommended by the National Institute of Standards and Technology

(NIST) in its most recent password length requirement standards1. Additionally, we ran-

domly choose 10,000 authentic passwords from each disclosed dataset to facilitate in the

assessment of the HGTs without sacrificing generality.

4.4.2 Internal Similarity between Honeywords and Real Passwords

The primary goal of HGTs is to create indistinguishable fake passwords; that is, the honey-

words and their corresponding actual passwords are too close to be differentiated. Consider

passwords to be texts; we can determine the similarity of two passwords by comparing their

text similarities. The greater the similarity score, the more similar the two passwords are,

and the more difficult it is to distinguish them. We use the BoW metric discussed in Sec-

tion 4.2.3 to determine the similarity of two words without considering the semantic and

syntactic meanings.

However, this metric is based on the assumption that an attacker attempts to differen-

1 Complying with NIST Password Guidelines in 2021:
https://safepass.me/2021/03/11/complying-with-nist-password-guidelines-in-2021/
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tiate genuine passwords using no resources. Indeed, they may have accessed a large num-

ber of previously compromised password files from data breaches. Because 40% of users

reuse their passwords [51], more sophisticated attackers would assault the sweetwords us-

ing these accessible passwords. As a result, we develop an attack model as described in

Section 4.3 and assess the resilience of the HGTs based on the aforementioned assump-

tion on attackers. The performance of an HGT is then determined by combining these two

evaluation metrics.

4.4.3 Attack Model: Normalized Top-SW

Our attack model is based on Wang et al.’s work “Normalized Top-PW" [71]. The goal

of Normalized Top-PW is to get the probability of recognizing genuine passwords within

a user’s allowed sweetword login attempts. Given an adversary A with a password file F

containing n ∗ k sweetwords (where n represents the total number of users and k denotes

the number of sweetwords per user), A tries a maximum of T logins per user to find as

many real passwords as possible, where the probability of each sweetword swi, j (1 ≤ i ≤ n

and 1 ≤ j ≤ k) is derived directly from the probability distribution of a leaked password

dataset D (attack dataset), such as the ones mentioned in Tabel 4.2. That is, Pr(swi, j) =

PD(swi, j) for each sweetword in D, else Pr(swi, j) = 0.∀x ∈ D, PD(x) = Count(x)/|D|,

where Count(x) is the number of occurrences of x in D and |D| is the size of the leaked

passwords dataset D. If the system permits multiple honeyword login attempts (T > 1),

when a sweetword is attempted, the probability of all remaining unattempted sweetwords

should be re-normalized.

The Normalized Top-PW adversary begins with the most vulnerable user accounts,

i.e. those whose most probable honeyword probability is closest to 1. However, since the

majority of honeywords never exist in the attack dataset, their probabilities of occurrence

are all zero. Wang et al. [71] circumvented this sparsity issue by using the "+1" smoothing.
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However, even after smoothing, all honeywords that are not included in the attack dataset

have the same probability; thus, which honeyword should the attacker choose in this in-

stance where all remaining sweetwords have the same probability? Should we assume that

the attacker is fortunate enough to discover the real passwords for each user in a single

attempt, or the opposite, that the attacker fail to compromise users’ accounts within all al-

lowed attempts? To avoid this ambiguity, we do not use probability derived on the basis

of occurrences to identify the next attempted sweetword; rather, we assign each sweetword

the largest cosine similarity of it with all genuine passwords in the attack dataset. We are

assuming the attacker’s best-case scenario in this case: the most sophisticated attacker can

identify which honeyword is most likely to be a real password. The approach is similar to

Normalized Top-PW, with the primary difference that we replace the probability of a sweet-

word occurring in the attack dataset with the sweetwords with the highest similarity score

to all true passwords in the attack dataset; additionally, our strategy would not encounter

the sparsity problem.

Our attack model, Normalized Top-SW, operates as follows: 1) Given a genuine pass-

word dataset (attack) obtained from, say, LinkedIn data breach, and the sweetword file

(target). The attacker employs the BoW described in Section 2 to vectorize all passwords

and sweetwords. 2) The attacker calculates the cosine similarity between each sweetword

in the target file and all genuine passwords in the attack dataset, and then assigns the max-

imum similarity score to the sweetword denoting the highest likelihood of it being a true

password. 3) The attacker tries the sweetwords of each user in decreasing order of their

score. If the guessed sweetword is a valid password for the associated user, then delete this

user from the dataset; otherwise, set the similarity of the guessed sweetword to 0 to prevent

it from being tried again.

In our experiment, we determine the efficiency of HGTs by computing the attacker’s

success rate under various attempts T . More precisely, we count the number of user ac-
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counts that are successfully cracked under varying T assignments and divided by the total

number of users to get the attack success rate. We place all genuine passwords in the first

column of the sweetword file for the simplicity of evaluation; in practice, operators should

shuffle the order of sweetwords and securely keep the index of the real passwords. Our

Normalized Top-SW technique is shown in the Appendix, Algorithm 4.2.

We employ two distinct datasets for target and attack so that we can investigate a more

realistic situation in which the target and attack datasets are derived from different distri-

butions, since various systems often use different password policies, resulting in distinct

password distributions. Additionally, if the target and attack datasets are owned by the

same operator and an attacker has access to both, the attacker can easily discover the gen-

uine passwords by querying the attack dataset directly, negating the need for honeywords.

As a result, it is critical to maintain a separate file for the sweetwords and one for the index

of the true passwords.

4.4.4 Results

As recommended in [34], we assign k = 19 honeywords to each user and calculate the

internal similarity score for each sweetword file generated by the three HGTs. Assume we

are the rockyou system operator and train our GNPassGAN and fasttext on our own dataset

(rockyou) to create honeywords for our users. We then attack the produced sweetword file

using all other datasets in Table 4.2. For each user, the attacker has T = 20 attempts.

Average Internal Similarity. As a result, the internal similarity score for honeywords

created by chaffing-by-GNPassGAN (HoneyGAN) is 0.8193, whereas chaffing-by-fasttext

is 0.2620, and chaffing-by-tweaking is 0.6270. These numbers indicate that the honeywords

created by HoneyGAN have the shortest average distance to their corresponding genuine

passwords, implying that they are more similar to their true passwords and hence more

difficult to differentiate.
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Algorithm 4.2 The Normalized Top-SW Attack Model
Input : A real password list from data breaches attack; a 2D sweetwords list

{S W1, S W2, ....S Wn}; the number of sweetwords per user k; the number of at-
tempts allowed per user T .

Output: A list success_rate with the success attack rate under different number of attempts.
7 Initiate a 2D list similarity to store similarity scores for all sweetwords.

for i← 0; i < n do
8 for j← 0; j < k do
9 for password in attack do

10 score = cosdis(password, S Wi, j)
11 end
12 Assign the highest similarity score to similarityi, j.
13 end
14 end

15 Initialize a list success_rate to store the rate of accounts being successfully attacked.
Initialize an integer count = 0 to store the number of accounts being successfully attacked.
for a← 0; a < T do

16 u = n
while u > 0 and size(similarityu) > 0 do

17 Get the column_index of the highest similarity score.
if column_index == 0 then

18 count + + and delete this user.

19 else
20 Assign the highest similarity score to 0.

21 end
22 u − −
23 end
24 success_ratea = count/n

25 end
26 return success_rate.
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Figure 4.3: The Attack Success Rate by using the datasets in Table 4.2 (except for rockyou
as it is the target file) to attack the sweetword file generated by the three HGTs under the
Normalized Top-SW attack. Line closer to the y axis means the HGT is more vulnerable
to attacks. As a result, honeywords generated by chaffing-by-tweaking are the easiest to
attack, and HoneyGAN is the hardest.
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Table 4.2: The Average Success Rate of attacks on the three HGTs when various attack
datasets with rockyou as the target dataset are used. The number of allowed attempts per
user T = 20. A number in bold indicates that the relevant HGT performs the best.

Dataset Tweak FastText HoneyGAN
have-i-been-pwned-v2 0.9149 0.6863 0.5923

linkedin 0.9092 0.6863 0.5943
myspace 0.9279 0.6857 0.6090
youku 0.9072 0.6858 0.6090
zynga 0.9300 0.6907 0.6213

adultfriendfinder 0.9230 0.6902 0.6006
dubsmash 0.9229 0.6886 0.6138

last.fm (2016) 0.9226 0.6854 0.5880
chegg 0.9123 0.6888 0.6032

dropbox 0.9257 0.6928 0.6096
yahoo 0.9188 0.6881 0.5868
phpbb 0.9260 0.6855 0.5972

Attack Success Rate (AS R). As illustrated in Figure 4.3, under our Normalized Top-

SW attack, when all datasets except Rockyou (exclude it since it is the target) are used as

the attack dataset, we see the same pattern: we are able to crack all users’ accounts in 4

attempts under the chaffing-by-tweaking condition, in 11 attempts under the chaffing-by-

fasttext condition, and in 14 attempts under the HoneyGAN condition. Furthermore, 13

attempts are sufficient for the zynga dataset under the HoneyGAN condition. As a result,

honeywords formed by tweaking are the simplest to discern, while those generated using

HoneyGAN are the most difficult.

We show the average attack success rate (AAS R) in Table 4.2, where AAS R =

1
20

∑20
i=1 AS R(i). As can be seen in the table, an attacker could achieve a success rate of

around 60% when honeywords are created using HoneyGAN and 68% when honeywords

are generated using fasttext when given 20 attempts per user, and it is statistically significant
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(p = 3.09 ∗ 10−12 for a one-tale t-test) that the attack success rate is lower when attacking

honeywords generated by HoneyGAN than fasttext. Honeywords generated by tweaking

is the most vulnerable with more than 90% attack success rate. Furthermore, HoneyGAN

can produce better undetectable honeywords than fasttext and tweaking regardless of which

dataset is used as the resource for attacking.

HoneyGAN outperforms fastext and tweaking in terms of both average internal simi-

larity and attack success rate, indicating that HoneyGAN-generated honeywords are more

similar to real passwords, therefore deceiving attackers and reducing their attack success

rate, and alerting honeycheck towards the password breach.

Normalized Top-SW vs Normalized Top-PW. Our adversarial Normalized Top-SP

model is inspired by Normalized Top-SW [71] and addresses its ambiguity and sparsity

problems, as detailed in Section 4.4.3. As a consequence, we anticipate that our adversar-

ial model will be more robust than Normalized Top-PW and capable of properly guessing

real passwords in less attempts than Normalized Top-PW. Dionysious et al. [17] conducted

experiments and discovered that when honeywords are created via fasttext, the adversary

attack Normalized Top-PW takes 20 attempts to achieve a 100% attack success rate. In con-

trast, our Normalized Top-SW attack model needs only 11 attempts to correctly guess all

real passwords (as shown in Figure 4.3). In this regard, our adversarial model Normalized

Top-SW is more robust than Normalized Top-PW.

4.5 User Study

We introduce our third contribution in this section: apart from evaluating the three HGTs

using the two metrics we proposed, we conducted a user study to test the indistinguisha-

bility of the sweetwords generated by the three HGTs. To the best of our knowledge,

we are the first to conduct a research ethics-approved human participant study related to
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honeywords. Dionysious et al. [17] also conducted a human study to test their HGT’s per-

formance, however, their study is oversimplified: they did not mention the sample size and

each survey comprised only ten questions. Additionally, their study was not approved by

the research ethics committee.

4.5.1 Research Hypothesis

We want to validate the hypothesis that individuals need more attempts to correctly find the

real password when honeywords are generated by HoneyGAN than tweaking and fasttext.

4.5.2 Study Design

We conducted a within-subjects experiment with 300 participants where each person per-

formed all three HGTs. In our experiment, we have one independent variable: the type

of HGT; three conditions: HoneyGAN, tweaking and fasttext; and one dependent variable:

the number of attempts required to find the real password. Our study is REB-approved by

our institution.

Similar to previous security-related studies [32, 35, 58, 67], we recruited participants

through Amazon Mechanical Turk (AMT), where we embedded a survey designed on an

online survey platform called Qualtrics. Qualified respondents were encouraged to com-

plete our survey. We imposed three requirements on participants: (1) To avoid misunder-

standings about our instructions, we need participants to be proficient in English; hence,

we required participants exclusively from English-speaking countries including Canada,

the US, the UK, and Australia. (2) Participants should have general knowledge as to what

secure passwords look like, and we would expect that normally people savvy in informa-

tion technology have such knowledge. So we only recruited those who self-identify as

having a job related to information technology. (3) Additionally, we aim to include only
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Table 4.3: The order of each HGT appearing in the 18 survey questions.

HoneyGAN FastText Tweaking

HoneyGAN Tweaking FastText

Tweaking HoneyGAN FastText

Tweaking FastText HoneyGAN

FastText Tweaking HoneyGAN

FastText HoneyGAN Tweaking

individuals who accomplish high task quality on AMT, as measured by two AMT scores:

the total number of approved Human Intelligence Tasks (HITs) and the percentage of ap-

proved HITs. We selected individuals who have 1,000 or more approved HITs and a 90%

or greater approval rate for HITs.

Participants were required to answer 18 rank-order questions, which match 6 sets of

honeyword samples produced from each of the three HGTs. Each question has 19 honey-

words and 1 real password. The order of the 20 sweetwords is randomized. The partic-

ipants were asked to sort the 20 sweetwords in each question according to their level of

confidence that the sweetword is a real password. We compensated each participant with

CAD$5.00 for completing the experiment, and the compensation was prorated using the

Ontario minimum wage at the time of the study.

To mitigate the negative impacts of learning effects and fatigue caused by the within-

group experiment, we employed the Balanced Latin Square Design [9], in which each HGT

appears the same amount of times as the first, second, and third. Table 4.3 illustrates the

sequence in which each HGT appears in the survey’s 18 questions.

The user study documents can be found in Appendix, including test instructions, Ama-

zon MTurk recruitment parameters, consent form, and TCPS2 certificate.
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4.5.3 Results

Our analysis is based on the responses to our survey that each participant provided. We

want to determine if there is a significant difference in the average number of attempts re-

quired for users to properly guess the real password in the HoneyGAN condition compared

with the other two conditions.

Among all 300 responses, 7 responses were detected as robots by Qualtrics, and we

deleted these suspicious responses. The remaining 293 responses took between 47 seconds

and 211 minutes to complete. To ensure validity, we removed 13 of the 293 replies from

participants who finished the exam in less than 3 minutes, as it is possible that they were

not concentrating. Additionally, we eliminated outliers with completion time longer than

39 minutes and 30 seconds (boxplot maximum), leaving us with 272 responses to analyze.

The average completion time for the remaining 272 survey was 14 minutes with 58

seconds, with a standard deviation of 7.86 minutes, which is consistent with our expecta-

tion. This suggests that the remaining participants were diligent in their responses.

We concatenated the responses for each HGT and got a dataset containing three columns

(the three HGTs), and 1632 (6×272) rows, where each value represents the attempts needed

to find the real password in one of the questions in the corresponding HGT. We analyzed

the data using two-factor ANOVA without replication to examine the effect that the HGTs

have on attempts needed to find the real password. The results indicated that the type of

HGT resulted in statistically significant differences in the number of attempts required to

find the real password (F(2, 3262) = 448.276, p ≤ 0.001). We also ran two paired-samples

t-tests to examine if there are significant differences between attempts required to find the

real password for HoneyGAN vs tweaking, and HoneyGAN vs fasttext. As a result of

comparing HoneyGAN and fasttext, the mean number of attempts required to find the real

password is 12.479 in the HoneyGAN condition, meaning that participants require approx-
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imately 13 attempts to find the real password when HoneyGAN generates the honeywords,

compared to 6.734 when fasttext generates the honeywords. And the result is statistically

significant (t(1631)=29.767, p ≤ 0.001). A similar result can be found in the comparison

of HoneyGAN vs tweaking: HoneyGAN requires 12.479 attempts while tweaking requires

8.89 (t(1631)=16.948, p ≤ 0.001).

4.6 Discussion

In this part, we highlight the limitations and future work of our study.

Implication of Attempts. As demonstrated in Section 4.4.4, using the Top Normalized-

SW attack, attackers need in average 4, 11 and 14 attempts to successfully discover all real

passwords in a sweetword file. In this case, if a website administrator sets the default num-

ber of allowed login attempts to be between 11 and 13 for each user, then attackers could

easily compromise users’ accounts without triggering an alert from the honeychecker if

honeywords are generated by fasttext and tweaking. In contrast, if honeywords are created

by HoneyGAN, as attackers need 14 attempts to find the real passwords, the honeychecker

will notify the administrator of a password breach after the maximum number of attempts

has been reached. In other words, the better the HGT, the higher the number of attempts

required to identify all legitimate passwords.

Text Similarity Metric. In the design of Top-SW, we assign each sweetword the high-

est cosine similarity to all genuine passwords in the attack dataset to signify its likelihood

of being a true password, since we are considering the best-case scenario from the attack-

ers’ perspective. To be more realistic and to eliminate outliers in the generated similarity

score, we may utilize the mean or medium value rather than the maximum value.

Text similarity could also be employed during the password reset process once the

website operator receives an alarm from honeychecker or breach notification services [48]
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and sends a password reset requirement to the specific user whose account has been leaked.

Given that users continue to use passwords with equal strength despite the implementation

of more secure password mechanisms [18], we can use the text similarity metric to nudge

users to construct a stronger password that is not similar to the original one. More specif-

ically, if the new password is too similar to the original password, it will be rejected due

to the ease with which attackers might compromise this user’s account by tweaking their

stolen password.

Word Embedding. The choice of word representation technique is critical in evalu-

ating the indistinguishibility of honeywords since it is used in both honeyword generation

and evaluation process. In our study, we use the simplest BoW approach since we presume

that passwords lack semantic or syntactic significance. This may not be the case for sys-

tems that rely on passphrases for authentication. In contrast to passwords, a passphrase is a

whole phrase, sentence, or statement comprised of 4 to 10 words with semantic and gram-

matical implications. Some studies suggest that operators should employ passphrases to aid

users in improving memorization [32, 62]. In this case, other word embedding approaches

that include semantic meaning, such as Word2vec or GloVe [52], should be used.

F is Required to be Private. The HoneyGAN method we propose requires that the

honeyword pool F be stored privately and in a safe place. This is consistent with other prior

studies [17, 20]. However, the generator (including the GNPassGAN model and the Hon-

eyGAN mechanism) can be publicly disclosed because GNPassGAN generates different

honeyword pools each time; thus, even if the attacker gains access to GNPassGAN and the

HoneyGAN mechanism and uses the same training data as the operator does to generate

honeywords, the generated honeywords will remain different, preventing attackers from

distinguishing real passwords.

Targeted Attacks. We emphasized the threat of targeted attacks in Section 1.1. No-

tably, once an attacker obtains users’ PII, and if only one sweetword in a user’s sweetword
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list contains the user’s PII, it is highly likely that this sweetword is the real password and

others are fake. For example, for a sweetword list “elaine@11, Mortons11, jaymeg12,

gopin542, 487sheba, Newbell1, jacki5304, Makena2two, Win4Kevin, 45wootton” which

are generated using a user’s real password2 “elaine@11” and the HGT fasttext [17] trained

on the rockyou dataset. In this case, if the attacker has no information about the user, it

will be difficult to determine which of the ten sweetwords is the real password, since all

of the fake passwords are from data breaches and are legitimate passwords belonging to

other users. However, if the attacker knows the user’s username is “elaine”, it is quite

straightforward to deduce that “elaine@11” is this user’s real password and the others are

all fake.

To the best of our knowledge, Wang et al. [74] are the only ones that discuss how

to generate honeywords that are resistant to targeted attacks. In Section 5, we propose

another approach that utilizes Generative Pre-trained Transformer 3 (GPT-3) to generate

honeywords that are resistant to targeted attacks.

4.7 Conclusions

In this chapter, we propose HoneyGAN, an HGT built on top of GNPassGAN that gener-

ates high-quality honeywords capable of luring attackers and detecting password breaches.

HoneyGAN can be easily integrated into any current password-based authentication sys-

tem. Additionally, we present internal text similarity to assess the quality of honeywords

and Normalized Top-SW, a honeyword attack model that mimics the real-world attack sit-

uation and avoids any ambiguity. We compare HoneyGAN’s performance to two state-

of-the-art HGTs using these two metrics, as well as a human study and discovered that

2 To prevent disclosing authors’ information and to avoid using a real password that has been compromised
and contains PII, we acquired written consent from one of the author’s friends to use one of her real
passwords in this study.
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HoneyGAN is capable of creating more hard-to-find honeywords and decreasing the suc-

cess rate of sophisticated attackers.
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Chapter 5

Chunk-GPT3

5.1 Introduction

Although the generation of honeywords has been widely investigated in the past, the ma-

jority of existing research assumes attackers have no knowledge of the users. These HGTs

may utterly fail if attackers exploit users’ PII and the real passwords include users’ PII.

The literature has demonstrated that password guessing is more effective when focusing on

each of the chunks that compose a password (e.g., “P@ssword123” contains two chunks:

“P@ssword” and “123”) and it’s been suggested that, when available, PII should be used

to generate honeywords [74]. We thus leverage these findings to base our HGT method on

PII, and introduce a new, and more robust than its literature counterparts, method to gener-

ate honeywords, which consists of generating honeywords with GPT-3 using the chunks of

their corresponding real passwords.

The biggest challenge of designing an HGT is to generate honeywords that are re-

sistant to targeted attacks [73]. For targeted attacks, attackers exploit users’ PII to guess

passwords, which increases the likelihood of users’ accounts being compromised. This

is a critical problem because numerous PII and passwords become widely accessible as a
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Table 5.1: Examples of data breaches containing PII and passwords in the past five years

Dataset Number of Accounts Year Type of PII breached
Neiman Marcus 4,800,000 2021 Name, Encrypted Password, Security questions, Financial information

CAM4 10,880,000,000 2020 Name, Email, Encrypted Password, Chat transcripts, IP, Payment logs

Canva 137,000,000 2019 Name, Email, Encrypted Password

Quora 100,000,000 2018 Name, Email, Encrypted Password, Questions and answers posted

Yahoo 3,000,000,000 2017 Name, Email, Encrypted Password, DoB, Security question and answer

result of ongoing data breaches [1, 2] and people are used to creating easy-to-remember

passwords using their names, birthdays, and their variants [73]. Once an attacker obtains

users’ PII, and if only one sweetword in a user’s sweetword list contains the user’s PII, it

is highly likely that this sweetword is the real password and others are fake. For example,

for a sweetword list “gaby1124, abg71993, australiaisno#1, 10L026378, noviembre9101,

Elena1986@327, rhin223, cken22305” which are generated using a made-up password

“Elena1986@327” (suppose this is the real password) and the HGT proposed by Diony-

siou et al. [17]. In a nutshell, this HGT is first trained on a real password dataset, and it

converts all real passwords in the dataset into vectors using a word embedding technique

called fasttext [6]. For each user, the HGT assigns k − 1 honeywords to the k − 1 real

passwords that have the closest distance to this user’s actual password based on cosine sim-

ilarity. In this case, if the attacker has no information about the user, it will be difficult to

determine which of the eight sweetwords is the real password, since all of honeywords are

from data breaches and are legitimate passwords belonging to other users. However, if the

attacker knows the user’s first name is “Elena”, it is quite straightforward to deduce that

“Elena1986@327” is this user’s real password and the others are all fake.

Following the introduction of the honeywords security mechanism by Juels and Rivest

[34], the academic community has been actively exploring the technique. However, to our

knowledge, only Wang et al. [74] concentrated on the production of honeywords in a tar-

geted manner. All other works make the invalid assumption that attackers have no knowl-

edge about the users. Each year, as demonstrated in Table 5.1, billions of password datasets
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including PII are leaked. Attackers might use the PII to determine which sweetword is the

real password. If all the sweetwords do not include any PII existing in the password breach,

the attackers may still create a knowledge map for each user by searching their information

purposefully through social media and search engines using the known PII exposed in data

breaches. This is especially a concern if the user is a celebrity or a public figure. Compro-

mised accounts may have substantial financial, political, and societal consequences.

5.2 Preliminaries and Password Chunks

5.2.1 Dataset

This section introduces the password dataset (termed 4iQ) we used in this paper and pass-

word selection process. The dataset contains a leaked compilation of various password

breaches over time and was first discovered by 4iQ in the Dark Web1. The dataset con-

sists of 1.4 billion email-password pairs, with 1.1 billion unique emails and 463 million

unique passwords. Duplicate email-password pairs were removed by an unknown cura-

tor. The listed leaks are from websites such as Canva, Chegg, Dropbox, LinkedIn, Yahoo!,

Poshmark, etc. We eliminate the suffix of each email address and only use the prefix as

usernames for simplification.

To acquire legitimate passwords, we exclude those that are too short or too lengthy,

with fewer than 8 characters or more than 32 characters, respectively [43, 72], resulting

in 28,492 username-password pairs. Such short strings are not permitted by most authen-

tication systems [65], and such lengthy strings are unlikely created by users or password

managers owing to their default settings of 12, 16 or 20 characters (LastPass, 1Password

and Dashlane) [81]. We further calculate the strength of each password using zxcvbn [78],

1 1.4 Billion Clear Text Credentials Discovered in a Single Database:
https://medium.com/4iqdelvedeep/1-4-billion-clear-text-credentials-discovered-in-a-single-database-
3131d0a1ae14
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Table 5.2: The number of passwords in each zxcvbn score.

zxcvbn score num of passwords
4 24,661

3 2,706

2 277

1 3

and found that 24,661 passwords have a zxcvbn score of 4, and only 3 passwords have a

zxcvbn score of 1 (shown in Table 5.2).

To compare HGTs’ capability on various password strengths, we constructed two

sets of username-password combinations depending on the computed zxcvbn password

strength. One zxcvbn-weak set with 1000 username-password pairs whose passwords have

the lowest zxcvbn score, and one zxcvbn-strong set with 1000 username-password pairings

whose passwords have the highest strength zxcvbn score. Note that all passwords in the

zxcvbn-strong set has a zxcvbn score of 4, and the zxcvbn-weak set has passwords with

score ranging from 0 to 2. We further analyze and compare the chunks in the two sets and

generate honeywords for both sets with our proposed method and two other HGTs.

5.2.2 Password Chunking

We use the password-specific segmentation technique PwdSegment [81] to interpret a pass-

word as a collection of chunks. PwdSegment conceptually trains a Byte-Pair-Encoding

(BPE) technique for producing chunk vocabularies using training data of plain-text pass-

words. The BPE algorithm, which was initially proposed in 1994 as a data compression

technique [23], is widely used in machine translation for subword segmentation (e.g., the

GPT-2 model [55] proposed by OpenAI and the RoBERTa model [87] proposed by Meta),

which preserves the frequent words while dividing the rare ones into multiple units. Pwd-

Segment enhances the BPE technique by substituting the number of merging operations
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with the configurable parameter average length (avg_len) of chunk vocabulary. PwdSeg-

ment counts all character pairs and terminates the merging operation when the avg_len of

the resultant chunk vocabulary equals or exceeds the threshold length. PwdSegment could

be parameterized with a threshold avg_len to control the segmentation result with varied

granularity more simply where a longer avg_len yields a more coarse-grained result.

The PwdSegment algorithm is first trained using a plain-text corpus. Then it repeat-

edly merges the most common pair of tokens into a single, new (i.e., previously unseen)

token comprising the subword (i.e. chunk) vocabulary. Every merging procedure generates

a new chunk by exchanging the most common pair of letters or character sequences (for

example, “r”, “d”) with a new subword (for example, “rd”). The merging procedure is re-

peated until avg_len of the resultant chunk vocabulary equals or exceeds a pre-determined

threshold length.

5.2.3 Chunk Analysis for zxcvbn-weak and zxcvbn-strong Password

Sets

Difference of Chunk Numbers. We segment passwords into chunks for both zxcvbn-

weak and zxcvbn-strong password sets using the PwdSegment algorithm. As shown in Fig

5.1 (b), around 370 out of 1000 zxcvbn-strong passwords contain six chunks, only around

10% contain less than three chunks. Conversely, more than 80% zxcvbn-weak passwords

contain 3 chunks or less (shown in Fig 5.1 (a)).

Difference of Common Chunk Frequencies. To further investigate the differences

between zxcvbn-strong password set and zxcvbn-weak password set, we list all chunks in

both sets and visualize the result in Fig 5.2, from which we can observe that most chunks

in the zxcvbn-weak password set contain semantic meaning or easy-to-guess patterns, such

as English words (such as “football, builder, Vietnamese, microsoft”), phrases (“iloveyou”),
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(a) The distribution of the number of chunks in the zxcvbn-weak password set.

(b) The distribution of the number of chunks in the zxcvbn-strong password set.

Figure 5.1: The comparison of password chunk numbers in zxcvbn-weak and zxcvbn-
strong sets.
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(a) Common chunks in the zxcvbn-weak password set.

(b) Common chunks in the zxcvbn-strong password set.

Figure 5.2: The comparison of common chunks in zxcvbn-weak and zxcvbn-strong sets.
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Chinese names ( “chenchen, liang, jiang, shan”), English names (“benjamin, Erick, sasha,

elena”), and patterns (“qwert, zxcvbn, QWEASDZXC”). Many of them are plausible PII

that attackers could take advantage of to compromise users’ accounts. In contrast, the ma-

jority of chunks in the zxcvbn-strong password set are random and short combinations of

characters with no apparent semantic meanings, whereas semantic words still exist (such

as “sasha, jj, wang”). This indicates that although passwords that are zxcvbn-strong in

strength are mostly comprised of short chunks and are harder to guess in a trawling sce-

nario, many of them still contain semantic words, which can be PII that is accessible to

attackers, thereby increasing the likelihood of passwords being guessed and accounts be-

ing compromised. As a result, regardless of the strength of the real password, as long as it

contains PII which attackers could utilize all their resources to get, the trawling-honeyword-

integrated authentication system will fail since most trawling-generated honeywords do not

contain PII, and a targted-honeyword-integrated system is needed.

5.3 Honeywords Generation with Chunk-GPT3

To preserve the PII in honeywords, it is necessary to segment passwords into chunks in

which the PII is included. The chunks can then be used as inputs for a lanauge model to

produce honeywords that retain the PII intact while altering the real passwords.

Language models can learn the probabilities of occurrences of a series of words in a

regularly spoken language (for example, English) and predict the next potential word in that

sequence. Generative GPT-3 is an autoregressive language model that uses deep learning

to generate text that appears to be written by a person. It was introduced in 2020 by Elon

Musk et al.’s AI research lab, OpenAI, and excels at a variety of NLP tasks, including

translation, question-answering, and cloze [10]. The model was trained on trillions of

words in text documents. It turns the words into vectors or mathematical representations
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Table 5.3: Honeywords generated by GPT-3 when using different prompts. “toby” in the
real password is highly likely to be a piece of PII, and honeywords generated in the prompt
2 condition replaced the PII. As we see, a more precise prompt could result in higher-
quality honeywords.

Prompt 1 Suggest three passwords that are similar to “toby2009bjs”.

Honeywords toby2009bjd, toby2009bjx, toby2009bjz

Prompt 2 Suggest three words that look like “toby2009bjs”.

Honeywords toy2009bjs, tab2009bjs, boy2009bjs

and then decodes the encoded text into human-readable phrases. The model can be utilized

to execute NLP tasks without requiring fine-tuning on particular downstream task datasets.

It is capable of producing texts that are difficult for humans to differentiate from human-

written articles.

Therefore, we propose to use GPT-3 to generate honeywords that are robust to tar-

geted attacks. Since honeyword is a new term specified in the computer security do-

main and does not exist in the GPT-3’s training data, we need to specify what the model

should do by giving it a prompt, for example, “Derive five passwords that are similar to

“toby2009b js” and contain ‘‘toby”, “2009” and “b js”. Do not add digits at the end of the

passwords.” Here, “toby”, “2009” and “b js” are chunks generated by PwdSegment. GPT-

3 will then produce outputs “tobyEmma2009bjs, toby2009Katiebjs, toby2009bjsKaitlyn,

toby2009bjsRiley, toby2009bjsSavannah.” by following the instruction. The quality and

the diversity of the output depends on three attributes: prompt, temperature and examples

given to the model.

The prompt. The prompt is the instruction GPT-3 received. The quality of the prompt

can determine the quality of the generated honeywords. Usually, the more concise and in-

structive the prompt is, the better the completion is [40]. The same can be seen in honey-

word generation, as shown in Table 5.3.

The temperature. The temperature is a numeric variable between 0 and 1 that ef-
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Table 5.4: Honeywords generated by GPT-3 when using different temperatures and given
the prompt "Suggest five words that are similar to "toby2009bjs"". A higher temperature
will result in more diverse honeywords.

Temperature Honeywords
0 toby2009bjd, toby2009bjx, toby2009bjz, toby2009bjf, toby2009bjh

1 Toby2009BJS, toby2009bjs1, tobybjs2009, Bjs2009toby, bjs2009toby1

fectively regulates the model’s degree of confidence when generating predictions. A lower

temperature implies that the model will take fewer risks, and the honeywords created will

be more repetitive and predictable, while increasing the temperature results in more diversi-

fied honeywords. The temperature is a vital parameter that determines the irreversibility of

our HGT, as discussed in Section 5.5. Table 5.4 contains examples of honeywords formed

at temperatures 0 and 1.

Zero-shot learning and Few-shot learning. Zero-shot learning refers to a situation

in which no demonstrations are permitted and the model is given simply a plain language

description of the task. In comparison, few-shot learning refers to a situation in which the

model is given a few demonstrations of the task during inference time, but the model is

not re-trained on the demonstrations. This is particularly advantageous since many web-

sites have varying policies regarding password creation, such as beginning with letters and

requiring uppercase, lowercase, symbols, and numbers. When the operators demonstrate

how they want the honeywords to appear, GPT-3 will generate honeywords that match the

examples. An image illustration is in Fig 5.3.

Since the introduction of Generative Pre-trained Transformers, they have been ex-

tensively investigated in a variety of domains, including creating summaries of media dia-

logues [13], generating code from natural-language instructions [12], generating passphrases

[32], and generating graphics from text descriptions [56]. To the best of our knowledge, we

are the first to employ GPT-3 in the sphere of computer security, to generate honeywords
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Zero-shot


The model predicts the answer given only a natural language description of the task.

Suggest three passwords that are similar to “Abcd-3344”


Abcd-3344, Abcd-3345, Abcd-3346

Task description

Generated honeywords

(a) Give GPT-3 no examples when generating honeywords. The honeywords simply add on the last digit.

Few-shot


The model predicts the answer given only a natural language description of the task.

Suggest three passwords that are similar to the following word.


toby2019bjs => toby2019eog, toby2019uiq, toby2019pwg
Elaine2211_JJ => Elaine3344_JJ, Elaine_9900JJ, Elaine9988_JJ
Abcd-3344 =>Abcd-4433, Abcd-1122, Abcd-0099

Task description

 Generated honeywords

Examples

Prompt

(b) Give GPT-3 two examples for generating better honeywords. Through examples, the model can learn the
expected pattern of honeywords and create honeywords with the same pattern as the real password.

Figure 5.3: The comparison of honeywords generated by GPT-3 in two conditions: given
no examples and given two examples. The model is able to generate honeywords that
conform to the operators’ expectations by given demonstrations.
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that are resistant to targeted attacks.

The process of our HGT, termed Chunk-GPT3, is shown in Fig 5.4, and contains

two main steps: 1). Passwords are segmented using PwdSegment Chunking algorithm

detailed in Section 5.2.2. For example, password “Elena1986@327” is segmented into

chunks “Elena”, “1986” and “‘327”. 2). The resulting chunks are used as inputs to

prompt GPT-3 to generate honeywords. We prompted GPT-3 with instruction “Please de-

rive three passwords that are similar to “Elena1986@327” and contain “Elena”, “1986”

and “327”. The length of the passwords should be at most 13 (the length of the real pass-

word “Elena1986@327”).”

"Elena1986@327" "Elena", "1986",
"327"

Password

"Elena327@1986"

"1986327@Elena"

"Elena!1986327"

PwdSegment

 Chunking

Honeywords

Generation

Chunks Honeywords

Figure 5.4: Honeyword generation with Chunk-GPT3. In this example, a password
“Elena1986@327” is segmented to chunks “Elena”, “1986”, and “327” using the Pwd-
Segment Chunking algorithm. The chunks are then used as inputs for GPT-3 to generate
honeywords.

5.4 Evaluation

Two common metrics in HGT evaluation are flatness and success-number graphs which

measure HGTs’ resistance against the honeyword distinguishing attacker from the aver-

age and worse-case point perspective [71]. The honeyword distinguishing attacker is re-

quired for using the two metrics. Previous works [17, 27] used the trawling attack algo-

rithm Normalized Top-PW model to construct flatness and success-number graphs and to

evaluate their HGTs, since their HGTs are used to generate honeywords against trawling

attacks [84]. The Normalized Top-PW is not applicable to targeted attacks because trawl-
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ing attackers have no knowledge about users’ PII while targeted attacks do, which make

targeted attackers more capable. To the best of our knowledge, the only work proposing

targeted attacks [74] are constructing their attack models based on various kinds of capabil-

ities allowed to an attacker (PII and registration order), we do not give these assumptions

to attackers since websites would not know what kind of attackers they may have when

generating honeywords. In fact, attackers may take advantage of any resources they may

have, not limiting to PII, registration order and more. Since there is no general targeted

attack proposed in the literature, the flatness and success-number graphs are not used in

our HGT evaluation. In these regards, we propose an evaluation metric that measures

the effectiveness of HGTs by comparing the similarity between a honeyword and its real

password using another pre-trained language model. We also intend to draw the commu-

nity’s attention to targeted scenarios, since trawling situations have been intensively studied

but targeted honeyword generation and attack models are under-researched yet represent a

pressing problem, as outlined in Section 5.1 and in [73].

5.4.1 Metric: HWSimilarity

In this section, we introduce the evaluation metric (termed HWSimilarity) to measure the

indistinguishability of honeywords in terms of their corresponding real passwords.

Similarity between two strings is crucial in HGT since it demonstrates the indistin-

guishability of a false password from a genuine one. Typically, in natural language pro-

cessing tasks, the distance/similarity of two strings is determined as follows: the strings are

converted to vectors using word embedding techniques, and then the cosine similarity of

the two vectors is calculated as the distance. Here, the strings might be composed of letters,

symbols, or numbers, similar to how passwords are composed. Popular word embedding

methods include Word2vec [45], fasttext [6], and T F − IDF [33]. Since passwords may

contain PII which has semantic meanings, while measuring the similarity of two sweet-
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words, the semantic meanings contained in a sweetword have to be considered. Therefore,

in this paper, we propose to use a pre-trained language model MPNet [64] to encode pass-

words. MPNet utilizes the interdependence among predicted tokens via permuted language

modeling (vs. MLM in BERT [16]) and accepts auxiliary position information as input to

help the model view a whole phrase, hence minimizing position discrepancy (vs. PLM in

XLNet [82]).

5.4.2 Comparable HGTs and Evaluation Results

We compare our Chunk-GPT3 with other three HGTs: generating honeywords using GPT-

3 alone without chunks provided, and two state-of-the-art HGTs chaffing-by-tweaking and

fasttext.

The details of chaffing-by-tweaking and fasttext can be found in Section 4.3.2.

GPT-3 without chunks. We also tested when no chunks are given to GPT-3 when

generating honeywords to examine the effect of chunks. In this case, the prompt we gave

GPT-3 is “Derive 19 passwords that are similar to real_password. The length of the pass-

words should be at most len(real_password). Do not add digits at the end of the pass-

words.”

A few examples of honeywords developed by Chunk-GPT3, GPT-3, tweaking and

fasttext are illustrated in Table 5.5.

Results. The HWSimilarity of honeywords is shown in Tabel 5.6. For both zxcvbn-

strong and zxcvbn-weak password sets, honeywords generated by fasttext and tweaking

have a much lower HWSimilarity score than the score of honeywords generated by GPT-3

and Chunk-GPT3, indicating that the majority of fasttext and tweaking-generated honey-

word do not contain users’ PII.

We also compared GPT-3 and Chunk-GPT3 using paired t-tests, and found the Chunk-

GPT3-generated honeywords are significantly more similar to their corresponding real
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Table 5.5: Honeyword samples generated by the four HGTs compared in the chapter
(Chunk-GPT3, GPT-3, fasttext and chaffing-by-tweaking). fasttext is required to be trained
on a real password dataset (the rockyou dataset in our experiment). Other three HGTs can
generate honeywords directly without being trained on a password dataset. Only Chunk-
GPT3-generated honeywords preserve the PII in the real password intact.

HGTs
Chunk-GPT3 GPT-3 fasttext tweaking

h2omega-tania
tania-home123 h2omega-alex Karert_334 4oMega<tANia

Tania@home5 h2omega-zoe Adery993 H2oMega"tAnia

home!tania12 h2omega-sam brobe31 h4omega,tania

0000_mila_0000
1111_mila_0000 0000_lila_0000 octavia3 7434∼MIla$6421

0000_MILA_0000 0000_lela_0000 Bushido07 364\MIlA—9353

0000@Mila@0000 0000_lola_0000 Dampire2 3124/MiLa‘2089

007skyblueboy
Skyblueboys007 007skybluegirl gz152sha 903SkyBlUeboY

Blueboysky007 007babyblueboy Calepepi 561SkYblUEbOy

007blueboysky 007lightblueboy hajenrai 960SKybluebOy

Table 5.6: HWSimilarity of honeywords generated by the four techniques (Chunk-
GPT3, GPT-3, fasttext, and tweaking). Honeywords generated by Chunk-GPT3 have the
biggest HWSimilarity score compared with other HGTs, indicating that the Chunk-GPT3-
generated honeywords are the most similar to their corresponding real passwords taking
into account the semantics contained in pass- words

Chunk-GPT3 GPT-3 fasttext tweaking
Strong PW 0.8525 0.8348 0.3441 0.7297

Weak PW 0.8367 0.8144 0.3445 0.7527
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passwords considering semantics contained in passwords, and thus are harder to distinguish

by targeted attacks (tzxcvbn−weak(999) = 3.935, P < 0.001, tzxcvbn−strong(999) = 3.237, P <

0.001) .

5.5 Discussion

We talk about the limitations of our study and future directions in this section.

The Chunking Algorithm. It is important that the chunking algorithm always seg-

ments chunks correctly. If incorrect chunks are segmented, the final honeywords created

by Chunk-GPT3 may leak information of the real password to attackers. For example,

the real password “h2omega-tania” in Table 5.5 is segmented to two chunks “home” and

“tania” with “2” being removed; hence the generated honeywords contain both “home” and

“tania”. If all sweetwords except one include the chunks “home” and “tania”, a sophisti-

cated attacker may conclude that the sweetword that does not contain the two chunks is the

real password, and that the others are all fakely produced.

User Study. We argue that there is no need to conduct user studies to qualitatively

evaluate Chunk-GPT3-generated honeywords. Since the difference is significant. If being

given a question: Suppose you are an attacker and know a victim’s user name is “mila”,

which one in the following list would most probably be his/her password: “0000_mila_0000,

octavia3, Bushido07, Dampire2” (real password and honeywords generated by fasttext.)

The task is easy to complete while if the choices are “0000_mila_0000, 1111_mila_0000,

0000_MILA_0000, 0000@Mila@0000” (real password and honeywords generated by Chunk-

GPT3), the task becomes obviously much more difficult.

Irreversibility. The irreversibility of an HGT is critical. We need to make sure that

even when attackers know our methodology and the specifications we were using for gen-

erating honeywords, such as the prompt and the temperature, they still cannot reproduce

68



the honeywords we generated. This is ensured by careful prompt-engineering [37, 59] and

temperature setting. We suggest to set temperature to 1 to get the most randomness [10],

and after experimenting with various prompts, we decided to use the prompt

“Derive 19 passwords that are similar to real_password, and contain chunks. The

length of the passwords should be at most len(real_password). Do not add digits at the

end of the passwords.”

since it generates the most diversified honeywords compared with other prompts we

experimented with, and the honeywords generated each time are different.

Will HWSimilarity leak information about the real passwords to attackers? Con-

sider this scenario: An attacker takes the 20 sweetwords and creates 20 different sets S 1, S 2,

..., and S 20 of 19 sweetwords each (i.e., leaving a different sweetword out every time). Then

for each of S 1, S 2, ..., and S 20, the attacker computes the HWSimilarity of each element of

S i against the sweetword that is not in S i. Will this expose some pattern revealing which of

the 20 sweetwords is the real password? In order to examine this, we did a pilot experiment

and took a subset of our data with 500 username-password pairs and 4 honeywords per user

from the generated honeywords by the 4 HGTs. In this case, in the sweetword files with

honeywords generated by different HGTs, each user has 4 honeywords stored along with

the real passwords. For each sweetword list, the attacker takes one sweetword as p, and

then 1) Computes the average HWSimilarity score of each sweetword sw1 to sw4 against

the target sweetword p. Call this average score p̄. 2) Then computes the average HWSim-

ilarity score of sweetwords sw2, sw3, sw4, and p against sw1. Call this average score ā1.

3) Next, computes the average HWSimilarity score of sweetwords sw1, sw3, sw4, and p

against sw2. Call this average score ā2. 4) Then computes the average cosine similarity

score of sweetwords sw1, sw2, sw4, and p against sw3. Call this average score ā3. 5) Then

computes the average HWSimilarity score of sweetwords sw1, sw2, sw3, and p against sw4.
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Figure 5.5: Each boxplot represents the HWSimilarity scores of sweetwords at all indices
with the sweetword at the target index. No significant difference in the average scores at
different indices is observed for each HGT.

Call this average score ā4. 6) Finally, checks if one of the values (i.e., p̄, ā1, ā2, ā3, ā4) is

significantly “different” from the other 4 values.

The average similarity scores for each HGT are shown in Figure 5.5. ANOVA tests

on each HGT’s averages did not reject the null hypotheses, concluding that there is no

significant difference between the averages, suggesting that HWSimilarity would not reveal

the real password.
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5.6 Conclusions

In this chapter, we propose a novel HGT, Chunk-GPT3, which segments passwords into

chunks and then utilizes GPT-3 to generate high-quality honeywords that contain PII exist-

ing in users’ real passwords. Honeywords generated by Chunk-GPT3 are robust to targeted

attacks where attackers get access to both breached password databases and users’ personal

identifiable information. Unlike other machine learning-based HGTs, GPT-3 can be eas-

ily integrated into any current password-based authentication system without any further

training on real passwords. Additionally, we proposed a targeted HGT evaluation metric

that incorporates another pre-trained language model. We compared Chunk-GPT3’s per-

formance with GPT-3 alone, and two state-of-the-art HGTs with the proposed metric and

demonstrated that Chunk-GPT3-generated honeywords are significantly harder to decipher

and thus could raise the bar for targeted attackers in compromising users’ accounts.
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Chapter 6

Conclusions

In this dissertation, we first proposed a deep learning-based password guessing model GN-

PassGAN, which is able to guess 88.3% more real passwords than its counterpart PassGAN

when 108 passwords are generated. We investigated the passwords created by GNPass-

GAN that are not included in the test sets and discovered that they are plausible human-

derived passwords that could be utilized as honeyword candidates. Hence, we proposed

a novel honeyword generation technique, HoneyGAN, which uses GNPassGAN to gen-

erate honeyword candidates and selects the highest quality honeywords according to the

cosine similarity between each honeyword and its respective real password. When analyz-

ing the resilience of our honeywords by implementing the attack model presented in [71],

we found the attack model’s weakness and, as a result, proposed the improved attack model

Normalized Top-SW. Since HoneyGAN does not take the semantics of passwords into ac-

count while producing honeywords, we created Chunk-GPT3, which segments passwords

into semantic chunks and then instructs GPT-3 to generate honeywords containing the pro-

vided chunks. We evaluated honeywords produced by HoneyGAN and Chunk-GPT3 and

proved that HoneyGAN and Chunk-GPT3 can generate honeywords that are more resistant

to trawling and targeted assaults, respectively, than their counterparts.
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Nevertheless, our work has limitations, and more work could be done in the future.

6.1 Limitations

As mentioned in Chapter 4, we created a honeyword candidate file F by using GNPassGAN

in HoneyGAN. One constraint is that F must be privately kept in a secure environment,

which is consistent with previous work [17,20]. The generator (including the GNPassGAN

model and the HoneyGAN mechanism) can be released publicly because GNPassGAN

generates different honeyword pools each time; therefore, even if an attacker gains access

to GNPassGAN and the HoneyGAN mechanism and uses the same training data as the

operator, the generated honeywords will remain unique, preventing attackers from distin-

guishing real passwords.

As mentioned in Chapter 5, we only quantitatively evaluated the indistinguishability

of Chunk-GPT3-generated honeywords by measuring the cosine similarity between real

passwords and their associated honeywords, and we did not conduct a user study to qualita-

tively evaluate their robustness. This is because when using HGTs other than Chunk-GPT3,

it seems too easy for a human to tell the real password apart from its honeywords if PII is

known, whereas the same task readily looks quite challenging when using Chunk-GPT3

even when PII is known. Hence we argue that a user study is dispensable.

6.2 Future work

As described in Chapter 3, our GNPassGAN model is a stand-alone deep learning model

for password guessing. A future direction is to combine GNPassGAN with rule-based

models like HashCat to provide more accurate and dynamic password guessing solutions.

GNPassGAN may also be used to create password strength meters.
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For the two HGTs we proposed in this dissertation, HoneyGAN does not take the se-

mantics of passwords into account while generating honeywords, but Chunk-GPT3 does.

Targeted honeyword generation is a somewhat unexplored field. More efforts may be put

into generating honeywords that take into account the semantics of real passwords. The

implementation of semantic guesser [69], a password guessing model that contains syntac-

tic and semantic language patterns, is a potential method for generating robust honeywords

resistant to targeted attacks.

We are the first to suggest using large language models to generate honeywords that

are resistant to targeted attacks, and the potential is enormous. Large neural networks

trained for language understanding and generation have achieved impressive results across

a wide range of tasks [14]. Therefore, apart from GPT-3, other large language models such

as PaLM [14] by Google, BLOOM [3] by BigScience, and YaLM [4] by Yandex could also

be experimented with to test if their generated honeywords have better qualities. Moreover,

a simple modification to the prompt may result in a significant change in GPT-3’s com-

pletions [40, 42, 63]. Another intriguing research idea is to conduct prompt engineering to

find the most instructive and efficient prompt that could lead to the highest quality hon-

eywords in the few-shot or zero-shot settings. These prompts could be language model-

automatically generated prompts [63], human-calibrated prompts [86] or chain-of-thought

prompts [37, 75].
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with BOINC and Hashcat. Digit. Investig. 30, C (sep 2019), 161–172.

[32] Jagadeesh, N., and Martin, M. V. Alice in passphraseland: Assessing the mem-

orability of familiar vocabularies for system-assigned passphrases. arXiv preprint

arXiv:2112.03359 (2021).

[33] Jones, K. S. A statistical interpretation of term specificity and its application in re-

trieval. Journal of documentation (1972).

[34] Juels, A., and Rivest, R. L. Honeywords: Making password-cracking detectable. In

Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security (2013), pp. 145–160.

[35] Kelley, P. G. Conducting usable privacy & security studies with Amazon’s Mechan-

ical Turk. In Symposium on Usable Privacy and Security (SOUPS)(Redmond, WA

(2010).

[36] Kelley, P. G., Komanduri, S., Mazurek, M. L., Shay, R., Vidas, T., Bauer, L.,

Christin, N., Cranor, L. F., and Lopez, J. Guess again (and again and again): Mea-

suring password strength by simulating password-cracking algorithms. In 2012 IEEE

Symposium on Security and Privacy (2012), IEEE, pp. 523–537.

[37] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. Large language mod-

els are zero-shot reasoners. In ICML 2022 Workshop on Knowledge Retrieval and

Language Models (2022).

79
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Appendix A

Password Authenticity Test Instructions

A.1 Purpose

The purpose of this survey is to test if humans can distinguish real passwords from syn-

thetic ones, where a synthetic password is a password generated using machine learning or

statistical models, and a real password is a password found in a public domain dataset of

leaked passwords. This research helps detect potential password data breaches. In this sur-

vey, you will be asked 18 "rank order" questions. Each question contains up to 19 synthetic

passwords and 1 real password. You’re going to sort the 20 passwords in each question ac-

cording to your level of confidence that the password looks like a real one. Order 1 means

you have the most confidence that this password is real, and order 20 means you have the

least confidence. This survey has no time limit but it shouldn’t take more than 20 mins to

complete Please ensure that you answer the online survey on your own without any assis-

tance from others. We would kindly ask you to take your time to carefully consider your

answers to each of the questions.
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A.2 Input format

Please drag and drop the choices (passwords) according to your level of confidence in the

password’s validity. You should drop the password that you believe is most likely to be real

to the top of the list, the second most likely to be real to the second top of the list, and so

on. You will repeat the procedure for all 18 questions.

A.3 Sample Question

There are up to 19 synthetic passwords and 1 real password in this question, where a syn-

thetic password is a password generated using machine learning or statistical models, and

a real password is a password found in a public domain dataset of leaked passwords.

Please sort the following 20 passwords according to your level of confidence that

the password looks like a real one by drag and drop. Order 1 means you have the most

confidence that this password is real, and order 20 means you have the least confidence.

Please do the same for the following 17 questions.

Passwords:

1. don05445

2. joseon54

3. roonn5452

4. 5ong4oni43

5. kon55544

6. noa25445

7. hoon4045

8. eon54452

9. jon54jon54
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10. 5456roon

11. joo14055

12. deon445

13. cusoon554

14. koan44525

15. jonnre14052

16. jen045547

17. joodra554

18. ons425450

19. tonnn44582

20. oloven5455
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Appendix B

Amazon MTurk Recruitment

Parameters

B.1 Describle your survey to workers

Project Name: Password Authenticity Test (This name is not displayed to Workers).

Project Title: Answer a survey about password authenticity in your opinion.

Description: You will be asked 18 "rank order" questions in this survey. Each question

contains up to 19 synthetic passwords and 1 real password, where a synthetic password is

a password generated using machine learning or statistical models, and a real password is

a password found in a public domain dataset of leaked passwords. You’re going to sort

the 20 passwords in each question according to your level of confidence that the password

looks like a real one. Order 1 means you have the most confidence that this password is

real, and order 20 means you have the least confidence. This survey has no time limit but

it shouldn’t take more than 20 mins to complete.

Keywords: Password, Authenticity Test, Survey
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B.2 Setting up your survey

Reward per response: CA$5.0

Number of respondents: 300

Time allotted per worker: 20 mins

Survey expires in: 7 Days

B.3 Worker Requirements

Require that workers be masters to do your tasks: No.

Specify any additional qualifications Workers must meet to work on your tasks:

1) Location is in one of the following countries: the United States, the UK, Canada, Aus-

tralia;

2) Hit Approval Rate (%) for all requester’s HITs, greater than or equal to 90%;

3) The number of HITs approved is greater than or equal to 1,000;

4) Job Function: Information Technology.

Task Visibility: Hidden (only workers that meet my qualification requirements can see and

preview my tasks).
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Appendix C

Consent Form
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 Consent Form to Participate in a Research Study 

 Title of Research Study:  How distinguishable are synthetic  passwords from real passwords? 

 Name of Principal Investigator (PI):  Miguel V. Martin 

 PI’s contact email:  Miguel.Martin@ontariotechu.ca 

 Names of Student Lead and contact email:  Fangyi Yu  (fangyi.yu@ontariotechu.ca) 

 Departmental  and  institutional  affiliation:  Faculty  of  Business  and  Information  Technology, 
 Ontario Tech University. 

 Introduction 

 You  are  invited  to  participate  in  a  research  study  entitled  How  distinguishable  are  synthetic 
 passwords  from  real  passwords?  You  are  being  asked  to  take  part  in  a  research  study.  Please  read 
 the  information  about  the  study  presented  in  this  form.  The  form  includes  details  on  the  study’s 
 procedures,  risks  and  benefits  that  you  should  know  before  you  decide  if  you  would  like  to  take 
 part.  You  should  take  as  much  time  as  you  need  to  make  your  decision.  You  should  ask  the 
 Principal  Investigator  (PI)  or  study  team  to  explain  anything  that  you  do  not  understand  and 
 make  sure  that  all  of  your  questions  have  been  answered  before  signing  this  consent  form. 
 Before  you  make  your  decision,  feel  free  to  talk  about  this  study  with  anyone  you  wish  including 
 your friends and family.  Participation in this study is voluntary. 

 This  study  has  been  reviewed  by  the  University  of  Ontario  Institute  of  Technology  (Ontario  Tech 
 University) Research Ethics Board [15160] on [2022/03/15]. 

 Purpose and Procedure: 

 The  purpose  of  this  study  is  to  test  if  humans  can  distinguish  real  passwords  from  synthetic  ones, 
 where  a  synthetic  password  is  a  password  generated  using  machine  learning  or  statistical  models, 
 and  a  real  password  is  a  password  found  in  a  public  domain  dataset  of  leaked  passwords.  This 
 research helps detect potential password data breaches. 

 You  have  been  invited  to  participate  in  this  study  because  your  native  language  is  English,  have 
 some  background  in  information  technology,  and  you  have  a  perfect  track  record  of  completing 
 Amazon  MTurk  tasks  with  high-quality  answers.  Please  kindly  quit  this  research  if  you  think  you 
 don’t meet any of these three requirements. 

 You  are  taking  this  online  survey  in  Amazon  Mturk.  You  will  be  presented  with  18  “rank  order” 
 questions.  Each  question  contains  up  to  19  synthetic  passwords  and  1  real  password.  You're 
 going  to  sort  the  20  passwords  in  each  question  according  to  your  level  of  confidence  that  the 
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 password  looks  like  a  real  password.  Order  1  means  you  have  the  most  confidence  that  this 
 password  is  real,  and  order  20  means  you  have  the  least  confidence.  This  survey  has  no  time 
 limit  but  it  shouldn’t  take  more  than  20  mins  to  complete.  There  are  300  participants  in  this 
 study. 

 Please  ensure  that  you  answer  the  online  survey  on  your  own  without  any  assistance  from  others. 
 We  would  kindly  ask  you  to  take  your  time  to  carefully  consider  your  answers  to  each  of  the 
 questions. 

 Potential Benefits: 

 Your participation in the survey may help the research community to build a novel password 
 breach detection system, and further help society timely detects data breaches. 

 Potential Risk or Discomforts: 

 Although  very  unlikely,  it  is  still  possible  that  you  may  find  some  of  your  own  passwords  in  our 
 questions.  If  that  is  the  case,  this  would  suggest  that  these  passwords  were  compromised.  It  is 
 recommended that you change these passwords to secure your accounts. 

 It  is  unlikely  but  possible,  that  some  of  the  words  in  the  questions  have  a  negative  connotation  as 
 honeywords  are  synthetic  passwords  generated  by  machines,  and  real  passwords  are  taken 
 verbatim from password leaks. 

 Use and Storage of Data: 

 No personal information will be collected in the survey. 

 The  collection  of  the  data  will  be  occurring  from  April  17th,  2022  to  August  30th,  2023,  during 
 which this project will be posted on Amazon Mturk. 

 We  will  use  Qualtrics  to  design  our  survey  and  embed  it  in  Amazon  Mturk.  After  you  finish  the 
 survey  and  submit  it,  we  will  receive  the  data  from  Qualtrics.  The  data  contain  all  of  your 
 answers  in  the  survey  and  some  descriptive  statistics.  Amazon  Mturk  will  provide  us  with  your 
 worker  ID  which  is  composed  of  random  strings  and  digits.  Your  worker  ID  will  be  removed 
 from  the  dataset  and  deleted  by  the  study  team  immediately  after  the  data  is  received  from 
 Amazon.  ;  we  will  only  include  your  answers  in  the  dataset.  The  data  will  be  anonymized  since 
 the dataset will be stripped of the worker IDs. 

 After  we  have  downloaded  and  analyzed  the  data  file  from  Qualtrics,  we  will  remove  it  from  our 
 Qualtrics  account.  The  data  file  will  be  protected  by  compressing  within  password-protected 
 RAR  (Roshal  Archive  Compressed  file)  archives.  Anybody  who  tries  to  open  the  encrypted  RAR 
 will  need  to  enter  the  password  for  the  archive  for  extraction,  and  the  password  is  only  accessible 
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 by  our  student  research  team  member,  Fangyi  Yu.  The  RAR  file  will  then  be  stored  in  Fangyi 
 Yu’s Google Drive and only be shared with the PI, Prof. Martin. 

 The  analysis  of  the  data  is  to  count  on  average,  at  which  attempt  can  humans  find  the  real 
 password  among  all  20  passwords  for  each  question.  We  will  only  put  the  average  attempts  and 
 results  of  the  statistical  analysis  in  the  publication  to  represent  the  indistinguishability  of  the 
 synthetic passwords. No personal information about you will be revealed in our publication. 

 The data files related to this research will be kept perpetually. 

 The  research  activity  will  be  conducted  on  Amazon  Mturk.  We  recruit  participants  located  in 
 English-speaking  countries  including  Canada,  The  United  States,  The  UK,  and  Australia.  The 
 use of the data will take place in Canada. 

 All  information  collected  during  this  study,  including  your  worker  ID  and  answers  to  the  survey, 
 will  be  kept  confidential  and  will  not  be  shared  with  anyone  outside  the  study  unless  required  by 
 law.  You  will  not  be  named  in  any  reports,  publications,  or  presentations  that  may  come  from  this 
 study. 

 Confidentiality: 

 The  study  is  anonymized  given  that  the  data  will  include  your  worker  ID,  which  is  an  indirect 
 identifier,  but  will  be  stripped  upon  data  analysis.  .  Additionally,  the  data  we  will  collect  and 
 analyze  from  Qualtircs  will  consist  of  only  the  responses  you  provide  to  each  question  and  the 
 associated descriptive statistics. 

 Your  privacy  shall  be  respected.  No  information  about  your  identity  will  be  shared  or  published 
 without  your  permission  unless  required  by  law.  Confidentiality  will  be  provided  to  the  fullest 
 extent  possible  by  law,  professional  practice,  and  ethical  codes  of  conduct.  Please  note  that 
 confidentiality cannot be guaranteed while data is in transit over the Internet. 

 Voluntary Participation: 

 Your  participation  in  this  study  is  voluntary  and  you  may  partake  in  only  those  aspects  of  the 
 study  in  which  you  feel  comfortable.  You  may  also  decide  not  to  be  in  this  study,  or  to  be  in  the 
 study now, and then change your mind later. You may leave the study at any time. 

 Right to Withdraw: 
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 If  you  withdraw  from  the  research  project  at  any  time,  any  data  that  you  have  contributed  will  be 
 removed from the study and you do not need to offer any reason for making this request. 

 You  can  simply  withdraw  by  closing  the  webpage.  Your  data  will  not  be  saved  in  Amazon  Mturk 
 if you close the webpage before clicking submit, but you will get no incentives if you withdraw. 

 Please  be  aware  that  our  dataset  will  be  anonymized;  we  will  only  save  the  answer  to  each 
 question  you  input  in  our  dataset.  The  original  data  will  be  deleted  from  our  Qualtrics  account. 
 As  a  result,  once  you  click  submit,  the  data  cannot  be  removed  from  the  dataset,  and  it  will  be 
 impossible  for  us  to  remove  your  data  from  Amazon  MTurk  since  we  will  not  have  a  way  to 
 associate the data with your worker ID. 

 Compensation, Reimbursement, Incentives: 

 You will use your own personal computer to complete this survey. 

 There  is  no  expense  as  a  result  of  your  participation,  and  you  will  be  paid  CA$5.0  for  completing 
 this  online  survey  on  Amazon  Mturk  after  submitting  your  answers.  The  submission  procedure  is 
 controlled  by  Amazon  MTurk  and  we  are  unable  to  compensate  you  if  you  withdraw,  and 
 Amazon MTurk does not provide us with any information about you if you withdraw. 

 Debriefing and Dissemination of Results: 

 After  all  of  the  participants  submit  this  online  survey,  we  will  analyze  on  average,  at  which 
 attempt can participants find the real password among all 20 passwords for each question. 

 This  study  was  done  using  Amazon  MTurk.  We  do  not  collect  personal  information  from  you, 
 and  Amazon  MTurk  simply  supplies  us  with  the  worker  ID,  which  will  be  removed  immediately 
 after we receive the data. As a result, we are unable to offer feedback to you. 

 Participant Rights and Concerns: 

 Please  read  this  consent  form  carefully  and  feel  free  to  ask  the  researchers  any  questions  that  you 
 might  have  about  the  study.  If  you  have  any  questions  about  your  rights  as  a  participant  in  this 
 study,  complaints,  or  adverse  events,  please  contact  the  Research  Ethics  Office  at  (905)  721-8668 
 ext. 3693 or at  researchethics@ontariotechu.ca  . 
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 If  you  have  any  questions  concerning  the  research  study  or  experience  any  discomfort  related  to 
 the  study,  please  contact  the  Principle  Investigator  Miguel  V.  Martin  at 
 Miguel.Martin@ontariotechu.ca. 

 By  signing  this  form,  you  do  not  give  up  any  of  your  legal  rights  against  the  investigators, 
 sponsor  or  involved  institutions  for  compensation,  nor  does  this  form  relieve  the  investigators, 
 sponsor or involved institutions of their legal and professional responsibilities. 

 Consent to Participate: 

 I have read the consent form and understand the study being described. 

 I  freely  consent  to  participate  in  the  research  study,  understanding  that  I  may  discontinue 
 participation  at  any  time  without  penalty.  A  copy  of  this  Consent  Form  has  been  made  available 
 to me. 

 ☐  I agree 
 ☐  I disagree 
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