
Optimizing Relational Search With Embedded Neural

Network

by

Limin Ma

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Science in Computer Science

Faculty of Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

April 2023

© Limin Ma, 2023

THESIS EXAMINATION INFORMATION

SXbPLWWed b\: LLPLQ Ma

MaVWHU RI SFLHQFH LQ CRPSXWHU SFLHQFH

TKeVLV WLWOe: OSWLPL]LQg ReOaWLRQaO SeaUcK WLWK EPbedded NeXUaO NeWZRUN

AQ RUaO defeQVe Rf WKLV WKeVLV WRRN SOace RQ MaUcK 29, 2023 LQ fURQW Rf WKe fROORZLQg
e[aPLQLQg cRPPLWWee:

E[aPLQLQJ CRPPLWWHH:

CKaLU Rf E[aPLQLQg CRPPLWWee DU. YLQg ZKX

ReVeaUcK SXSeUYLVRU DU. KeQ PX

E[aPLQLQg CRPPLWWee MePbeU DU. HeLdaU DaYRXdL

TKeVLV E[aPLQeU DU. SWeYeQ LLYLQgVWRQe

TKe abRYe cRPPLWWee deWeUPLQed WKaW WKe WKeVLV LV acceSWabOe LQ fRUP aQd cRQWeQW aQd
WKaW a VaWLVfacWRU\ NQRZOedge Rf WKe fLeOd cRYeUed b\ WKe WKeVLV ZaV dePRQVWUaWed b\ WKe
caQdLdaWe dXULQg aQ RUaO e[aPLQaWLRQ. A VLgQed cRS\ Rf WKe CeUWLfLcaWe Rf ASSURYaO LV
aYaLOabOe fURP WKe ScKRRO Rf GUadXaWe aQd PRVWdRcWRUaO SWXdLeV.

LL

Abstract

Our research focuses on a novel method to query relational data. We propose the par-

tial tuple search problem where a user can utilize keyword search to explore complex

relational datasets. The challenge of evaluation of partial tuple queries is the perfor-

mance bottleneck of fuzzy string matching using traditional full-text index structures.

We propose a solution to overcome the bottleneck by incorporating horizontally par-

titioned full-text indexes and an embeddable neural network classifier in the query

processing pipeline. The classifier is trained with self-supervision. It learns to opti-

mize the partitioned indexes access pattern to accelerate query performance. Using

textual features of user queries, the classifier infers the index access pattern so that

fuzzy string matching subqueries are e�ciently evaluated. We studied various net-

work architectures and evaluated them against real-world datasets. Our experimental

evaluation demonstrates that neural networks successfully learned how to optimize

index access patterns for this use case.

Keywords: neural network; relational database; keyword search; optimization

iii

Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech Uni-

versity) to lend this thesis to other institutions or individuals for the purpose of

scholarly research. I further authorize University of Ontario Institute of Technol-

ogy (Ontario Tech University) to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research. I understand that my thesis will be made electronically

available to the public.

Limin Ma

iv

Statement of Contributions

Part of the work described in Chapter 3 has been published as:

L. Ma and K. Q. Pu, “Neural Network Accelerated Tuple Search For Relational Data,”

2022 IEEE 23rd International Conference on Information Reuse and Integration for

Data Science (IRI), San Diego, CA, USA, 2022, pp. 81-82, doi: 10.1109/IRI54793.2022.00029.

I performed the majority of design, implementation, experimental evaluation and

preparation of the manuscript.

v

Acknowledgements

I would like to express my utmost gratitude to my supervisor, Dr. Ken Pu, for his

guidance, encouragement and support. I would also like to thank my committee

members, Dr. Heidar Davoudi and Dr. Steven Livingstone. I am grateful for their

valuable feedback on this thesis. Last but not least, I am thankful to my wife Xiao

Wang and the rest of my family. All have provided me with patience and support for

the challenges I faced in order to perform research and write this thesis. None of this

would have been possible without their support.

vi

Contents

Thesis Examination Information ii

Abstract iii

Author’s Declaration iv

Statement of Contributions v

Acknowledgements vi

Contents vii

List of Tables x

List of Figures xi

List of Abbreviations xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Machine Learning . 4

1.3 Overview of thesis . 6

2 Background 8

2.1 Relational Data Model . 8

2.2 Document Models . 10

2.2.1 Documents . 10

2.2.2 Tokenization . 11

2.2.3 Keyword queries and matching scores 12

vii

VIII CONTENTS

2.3 Document Indexes and Search Engines 14

2.3.1 Keyword query performance 16

2.3.2 Fuzzy string matching and collisions 17

2.4 Learning with neural networks . 19

2.4.1 General framework of machine learning 19

2.4.2 Embedding layer . 22

2.4.3 Multilayer perceptrons . 23

2.4.4 Sequence learning with recurrent neural networks 25

2.4.5 Convolution in sequence learning 26

2.4.6 Attention and transformer models 29

2.4.7 MLP Mixer . 30

3 Search Algorithm and Neural Network Accelerated Indexing 33

3.1 Problem definition of partial tuple search 33

3.2 Partial tuple search using full-text search 37

3.2.1 Encoding of tuples as documents 38

3.2.2 Encoding partial tuple queries as keyword queries 39

3.2.3 From search results to partial tuple completion 40

3.3 Optimizing query processing pipeline with neural networks 41

3.3.1 Partition of full-text index . 41

3.3.2 Vectorization of queries . 43

3.3.3 Neural network architectures for query classification 45

3.3.4 Unsupervised training of neural network classifiers 47

3.4 Overall query processing pipeline . 47

4 Implementation and Performance Evaluation of Neural Networks

For Index Acceleration 49

4.1 Some assumptions about datasets . 50

4.2 Datasets . 50

4.3 Architecture and software stack . 53

4.3.1 Lucene and a customized search engine 53

4.3.2 Partitioned indexes and an aggregate index 55

4.4 Evaluation methodology . 57

4.4.1 Training data generation and tokenization 58

4.4.2 Query workload generation and tokenization 60

CONTENTS IX

4.5 Experiments and observations . 61

4.5.1 Performance of aggregate vs optimal index lookup 61

4.5.2 Performance of optimal matching for partial tuple completion 63

4.5.3 Neural network based predictive access 65

4.5.4 Impact of noisy queries on models’ performance 91

5 Related Work 94

5.1 Relational keyword search . 94

5.2 Machine learning based database optimization 95

6 Conclusions and Future Work 97

6.1 Summary . 97

6.2 Discussion of limitations and Future work 99

Bibliography 101

List of Tables

4.1 Dataset ids and names . 51

4.2 5 samples from the labour force survey dataset “ds01”, showing only

10 attributes. 51

4.3 10 attributes and their descriptions from the labour force survey dataset

“ds01”. 52

4.4 Number of attributes and tuples in each dataset. 52

4.5 Vocabulary size of six sets of training datasets. 60

4.6 Query workload names and descriptions. 60

4.7 Mean query processing time in milliseconds of the query workload A. 62

4.8 Mean query processing time in milliseconds of the query workload B. 62

4.9 MLP model names and corresponding training datasets. 68

4.10 LSTM model names and corresponding training datasets. 71

4.11 Conv1D model names and corresponding training datasets. 76

4.12 Transformer model names and corresponding training datasets. 81

4.13 MLP-Mixer model names and corresponding training datasets. 85

4.14 Comparison of models under the workload A with the top-3 measure-

ments highlighted. 87

x

List of Figures

2.1 Inverted Term Index . 17

3.1 Matching a partial tuple ~q to a complete tuple t 37

4.1 High-level overview of architecture 54

4.2 The distribution of query processing times of workload A and B. . . . 63

4.3 Distribution of optimal matching response times (ms) 64

4.4 Optimal matching response time (ms) w.r.t. varying edge connectivity

densities . 64

4.5 Optimal matching response time (ms) w.r.t. varying tuple sizes . . . 65

4.6 MLP model . 67

4.7 Top-k accuracies of six MLP models under the workload A and B. . . 68

4.8 Distribution of query processing time with MLP models under the

workload A. 69

4.9 Distribution of query processing time with MLP models under the

workload B. 70

4.10 LSTM model . 72

4.11 Top-k accuracies of six LSTM models under the workload A and B. . 73

4.12 Distribution of query processing time with LSTM models under the

workload A. 74

4.13 Distribution of query processing time with LSTM models under the

workload B. 75

4.14 Conv1D model . 76

4.15 Top-k accuracies of six Conv1D models under the workload A and B. 77

4.16 Distribution of query processing time with Conv1D models under the

workload A. 78

xi

XII LIST OF FIGURES

4.17 Distribution of query processing time with Conv1D models under the

workload B. 79

4.18 Transformer model . 81

4.19 Top-k accuracies of six Transformer models under the workload A and

B. 82

4.20 Distribution of query processing time with Transformer models under

the workload A. 83

4.21 Distribution of query processing time with Transformer models under

the workload B. 84

4.22 MLP-Mixer model . 86

4.23 Top-k accuracies of six MLP-Mixer models under the workload A and B. 87

4.24 Distribution of query processing time with MLP-Mixer models under

the workload A. 88

4.25 Distribution of query processing time with MLP-Mixer models under

the workload B. 89

4.26 Top-5 accuracy degradation of all models under the workload A. . . . 92

4.27 Top-5 accuracy degradation of all models under the workload B3. . . 93

List of Abbreviations

API Application Programming Interface

CNN Convolutional Neural Network

Conv1D 1D Convolution

CSV Comma-Separated Values

GPU Graphics Processing Unit

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

ML Machine Learning

NER Named Entity Recognition

NLP Natural Language Processing

OOV Out-Of-Vocabulary

RDBMS Relational Database Management System

RNN Recurrent Neural Network

SQL Structured Query Language

TF–IDF Term Frequency-Inverse Document Frequency

xiii

Chapter 1

Introduction

1.1 Motivation

For many decades, with the availability of low cost computers and Internet access,

the amount of digital information or data has increased at an ever growing pace. This

poses a challenge to managing information reliably and e�ciently.

Various database technologies and query processing engines have been developed

over the past several decades to meet the appetite of information management. There

are two main types of databases, relational database and non-relational database.

Relational database management system (RDBMS) is a pillar of database technology.

MySQL and PostgreSQL are two examples of open source RDBMS. Examples of non-

relational databases include semi-structured databases such as MongoDB [30] and

graph databases such as Neo4j [31].

In contrast to its peers, RDBMS is proven to be the preferred choice for most of

the data management needs. There are several reasons:

• Relational databases help businesses’ utilization of data by maintaining data

in a simple and e�cient way. The relational data model is simple, easy to use

1

2 CHAPTER 1. INTRODUCTION

and type-safe. Relational databases are typically capable of handling transac-

tions, which is often required by businesses. The schema management features

of RDBMS are robust enough to accurately model business and application re-

quirements, and yet at the same time, provide a rich set of constraints and data

consistency checks. Thus, RDBMS provides a higher level of data consistency.

• The Structured Query Language (SQL) is the standard programming language

for managing data in relational databases. SQL has been the de facto industry

standard for data analysis for several decades, and is still the most widely used

method. It can quickly and e�ciently process queries with the help of highly

optimized SQL engines. It does not require extensive coding and programming

skills, and o↵ers users an interactive interface with underlying databases.

• Storing data using relational format is the safest choice when facing with the

risks of digital data decay and software incompatibility issues. RDBMSes are

widely used in various applications including mobile apps, Web services, dis-

tributed computing clusters, etc. because they o↵er robust data management

capabilities. Combined with SQL’s portability, RDBMS and SQL provide the

most readily available software compatibility.

The dominance of RDBMS started to be challenged by the rise of the World

Wide Web. The default mode of content creation on the World Wide Web is textual

data and unstructured data. Such content apparently lacks relational structures.

Therefore, it is unnatural to fit such data into RDBMS systems. Consequently, SQL is

no longer the most suitable language to express queries over textual and unstructured

data.

The need to carry out web searches gave the birth of search engines. Search

engines started to popularize key-value stores as a preferred choice of data storage,

1.1. MOTIVATION 3

and keyword search as a preferred choice for data retrieval. As modern search en-

gines demonstrated, keyword search is a surprisingly e↵ective approach of data re-

trieval. Furthermore, highly scalable and performant full-text indexes, such as Apache

Lucene, are available to support keyword search queries at scale. But at the same

time, keyword search has limitations that can not be ignored. Primarily, keyword

search does not o↵er ways to reason over a data schema, and thus does not o↵er the

end users ways to easily provide relational joins, selection over predicates or data

analytics.

In attempts to overcome the limitations of keyword search while preserving its

advantages, many researchers have proposed hybrid query languages that share fea-

tures of SQL and keyword search. Most of the proposed systems extend SQL with

keyword search, and use a relational database as data storage. While such systems do

address the limitations of both SQL and keyword search over relational data to some

extent, a common issue is scalability. The performance bottleneck is the ine�ciency

of relational database indexes when used for full-text search.

In this thesis, we are motivated by the following questions:

• Can we extend keyword search queries to enhance their expressive power when

the underlying data is relational?

• Can we utilize full-text indexes that are designed for keyword search to answer

searching of relational data?

• What are di↵erent ways to optimize the evaluation of keyword search queries?

4 CHAPTER 1. INTRODUCTION

1.2 Machine Learning

The rise of machine learning in recent years was due to two major factors, the ex-

plosion of data and the ever more a↵ordable computing power. The ubiquitousness

of Internet created the explosion of data that machine learning can consume, and

cheap computing resources made it possible to train machine learning algorithms

using large amounts of data. Machine learning has found successful applications in

almost every corner of computer science and engineering. The most prominent tool

in machine learning is neural networks. Complex neural network architectures have

been designed and trained to perform various tasks at near-human or superhuman

levels. One example is AlphaGo, which is a computer program that plays the board

game Go. It grabbed the world’s attention by defeating a Go world champion in 2016

[1].

What is particularly amazing about machine learning’s success is how widely neu-

ral network approaches can be applied, ranging from images to texts, from semantic

understanding to content generation.

The best aspects of applying neural networks as part (or whole) of a solution are:

• Neural networks are more robust than deterministic and combinatorial algo-

rithms. Given when the input to the network deviates from expectation, the

network can complete the processing in a continuous fashion, often producing

near optimal results.

• Neural networks can be much faster during inference mode. Since neural net-

works essentially involve only matrix based numerical operations, they are well

suited for modern CPUs and general purpose GPUs. In contrast, traditional al-

gorithms utilize more complex data structures which often require large amounts

1.2. MACHINE LEARNING 5

of random memory access, making them di�cult to optimize at the CPU / GPU

level.

• Neural networks are easier at design time. Machine learning approaches shift

the solution complexity from algorithmic design to data collection. When de-

signing a neural network, we are essentially choosing the right black box that

fits the overall system the best. The challenge is not to design the internal

parameters of the black box, but rather to gather su�cient data to evaluate the

quality of di↵erent candidate blackboxes. It’s been repeatedly demonstrated in

the domains including but not limited to image processing, natural language

processing and combinatorial games, neural networks with simple architectures

(but large number of parameters) outperform sophisticated handcrafted algo-

rithms.

Traditionally, network based approaches require the availability of a large corpora

of training data. Often this requires either expensive data collection schemes or

human manual labeling of data. But in situations where training data is not available,

it is still possible to apply neural networks. Self-supervised learning and reinforcement

learning are just two examples of training neural networks without prior labeled

training data.

While our research objective is novel keyword queries of relational databases, we

are particularly motivated to incorporate neural networks into our query processing

pipeline in a self-supervised manner. Towards this goal, we will need to

• identify problems that can be solved using self-supervised neural networks.

• design neural networks and incorporate them into the query processing pipeline.

6 CHAPTER 1. INTRODUCTION

1.3 Overview of thesis

The problems we address in this thesis are:

• extension of keyword search queries over relational data in ways that we can

still enjoy e�cient query evaluation using full-text indexes.

• identify components in the query evaluation pipeline that can be optimized by

self-supervised neural networks.

Towards the first problem, we proposed a novel relational search problem we call

partial tuple search. It is a generalization of keyword search by allowing users to spec-

ify partial tuples as queries, which can have both value-based keywords and schema-

based structure information. Partial tuples can be used for information retrieval

when users have limited, but nonzero, knowledge over the schema of the underlying

relational database.

We demonstrate that a partial tuple search query can be evaluated in a pipeline

consisting of the following stages:

• Generating a keyword query from a partial tuple.

• Evaluating the keyword query using one or more full-text indexes.

• Completing the partial tuple by matching keyword search results with the par-

tial tuple.

It is well known that fuzzy string matching is generally more expensive to evaluate

keyword search queries. In our use case, when we perform fuzzy partial tuple search,

the full-text index becomes the performance bottleneck. A solution is to partition

the full-text index, and perform fuzzy keyword search over multiple partitions. This

1.3. OVERVIEW OF THESIS 7

creates a query optimization opportunity: a well selected index access pattern can

speed up the keyword search performance without the additional burden of parallel

CPU load.

We have designed neural networks that can learn from the relational data to

optimize index access patterns. The neural network performs classification based

on features from textual data in the relational database. Using the classification

probability we can optimize index access patterns so that search time is minimized.

Chapter 2

Background

2.1 Relational Data Model

We describe the relational data model in this section. It is the foundation of the

search problem that is studied in this thesis.

Let R be a relation and attr(R) be the attributes of R. The attributes are a set

of names. Each tuple of R is a function that maps attributes of R to values:

t : attr(R) ! Values

The relation R is a set of such tuples:

R = {t1, t2, . . . , tn}

Example 1. Consider a table shown below:

8

2.1. RELATIONAL DATA MODEL 9

Name Address

Jack 100 Simcoe Street

Jill 56 Taunton Road

Joe 5 Collin Road

The attributes are:

attr(R) = {Name,Address}

The relation consists of three tuples:

R = {t1, t2, t3}

where t1 is a mapping given by:

t1 =

2

64
Name 7! Jack

Address 7! 100 Simcoe Street

3

75

The other two tuples, t2 and t3, are defined similarly.

A relational database will have more features added to its relational model. For

example,

• Primary keys and foreign keys

• Dependencies and constraints

• Structured query language (SQL)

More details can be found in texts such as Garćıa-Molina et al [18]. However, in the

context of our thesis, we do not rely on these additional features of a relational model.

More precisely, the relational model we focus on is the first normal form [2].

10 CHAPTER 2. BACKGROUND

2.2 Document Models

While the relational model is widely used, it does have limitations. One such limi-

tation is the lack of flexibility of its schema, namely, all tuples of the same relation

must have the same set of attributes.

Text search engines popularized the document model [16]. It supports schema-less

data management. In the document model, a document is defined as a mapping from

fields to text values.

2.2.1 Documents

Let d be a document and attr(d) be its set of fields. The fields attr(d) is a set of

names, similar to the attributes of a relation. The document d is a function that

maps fields to text:

d : attr(d) ! Text

A document collection is denoted by D = {d1, d2, . . . , dn}. It’s important to note

that a document collection is fundamentally di↵erent from a relation, that is,

di↵erent documents d, d0 (d 6= d0) can have di↵erent fields: attr(d) 6= attr(d0).

Example 2. Consider three documents in a document collection D. The first has

two fields: Name and Address. It can be denoted as:

d1 =

2

64
Name 7! Jack

Address 7! 100 Simcoe Street

3

75

The second has three fields: Name, Occupation, and Address. It can be denoted

2.2. DOCUMENT MODELS 11

as:

d2 =

2

66664

Name 7! Jack

Occupation 7! Student

Address 7! 100 Simcoe Street

3

77775

The third has four fields: Restaurant Name, City, Rating, and Comment. It

can be denoted as:

d3 =

2

66666664

RestaurantName 7! The Best Grill

City 7! Oshawa

Rating 7! 5

Comment 7! very nice place

3

77777775

2.2.2 Tokenization

The main objective of the document model is to support keyword search e�ciently.

This involves searching for documents whose fields contain certain sub-strings, which

we call tokens. The process of token generation is referred to as tokenization (also

known as lexical analysis). Tokenization is an important step in natural language

processing [21, 24], especially for non-English languages [36, 14].

Before we can store the documents, we first need to transform text values into

lists of tokens. We do this by using a tokenizer:

tokenize : Text ! List[Token]

Given a document d, a term is a field-token pair that is derived from the result of

tokenzing the text value of a field. Then the term set of a document d is given by:

termset(d) = {(f, x) : f 2 attr(d), x 2 tokenize(d(f))}

12 CHAPTER 2. BACKGROUND

Given a document collection D, a simple document query is to find all documents

with a specific term: term⇤ = (f ⇤, x⇤). The answer set to the query is given as:

answerset(D, term⇤) = {d 2 D : term⇤
2 termset(d)}

Example 3. Consider the above three documents in the document collection D of

Example 2. If we search field “Address” by keyword “Simcoe”, the search query is:

term⇤ = (Address, Simcoe)

. The answer set will be:

answerset(D, term⇤) = {d1, d2}

2.2.3 Keyword queries and matching scores

Internet search engines made keyword queries as a standard way of accessing text

documents [32]. Important aspects of keyword queries are:

• There is no fixed syntax: queries can be as simple as a phrase or a piece of plain

text.

• The search results do not need to match the query perfectly. They are ranked

by some matching scores instead.

A keyword query is a text, annotated by a field name.

Q = (fq, q)

where fq is a field name, and q 2 Text.

2.2. DOCUMENT MODELS 13

The matching between the query Q = (fq, q) and the documents in a collection D

is determined by the matching of their respective termsets. The termset of the query

is defined as:

termset(Q) = {(fq, x) : x 2 tokenize(q)}

A natural matching score between Q and some document d is the overlap between

their termsets. The Jaccard similarity measures a normalized overlap as defined as:

sim(Q, d) =
|termset(Q) \ termset(d)|

|termset(Q) [termset(d)|

Jaccard similarity is su�cient in many document retrieval scenarios. However,

it is not the ideal measure for documents based on natural languages. There are

many words in the vocabulary of natural language text that have overwhelming

high frequencies, for example, the, a, this, etc. Their occurrences should be dis-

counted towards the similarity score. Term frequency-inverse document frequency

(tf-idf) measure is a term-normalized score better suited for natural language based

query-document matching.

Each term t 2 termset(d) in a document d has a weight, known as its tf-idf

weight, defined as follows.

Denote the number of occurrences of t in d as #(t, d). The term frequency is the

normalized number of occurrences of t:

TF(t, d) =
#(t, d)P

x2termset(d) #(x, d)

In order to discount frequent words, we also compute the inverse document frequency

14 CHAPTER 2. BACKGROUND

of t with respect to the entire document collection D:

IDF(t) = log
|D|

|{d 2 D : t 2 termset(d)}|

Note that IDF(t) is inversely proportional to the popularity of a word. Frequently

occurring words have lower IDF weights.

Finally, the TF-IDF weight is the produce:

TFIDF(t, d) = TF(t, d) · IDF(t)

If a term t does not appear in a document d, then its TF-IDF weight is zero.

Each document and query can be seen as a (sparse) vector of TF-IDF weights, and

their matching score is measured by the cosine similarity of their TF-IDF vector

representation.

sim(Q, d) =

P
x TFIDF(x,Q)TFIDF(x, d)qP

x TFIDF(x,Q)2
P

y TFIDF(y, d)2
(2.1)

Equation 2.1 provides an unbiased measure of similarity between the termsets of

the query and a document by discounting frequently occurring words.

2.3 Document Indexes and Search Engines

In the previous section, we have defined a number of similarity measures which can

be used to rank all documents with respect to a user defined query.

A search engine needs to e�ciently identify the top-k matching documents using

some similarity score. A naive approach would require evaluating the similarity score

of all the documents, which has a data complexity ofO(n), where n is the total number

2.3. DOCUMENT INDEXES AND SEARCH ENGINES 15

of documents. For large document corpora, search engines need better algorithms for

keyword query processing.

The most widely used data structure for keyword search is the inverted term index.

Let D be a document collection. The term set of D is given by,

termset(D) = {termset(d) : d 2 D}

Let id(d) be the id of a document d. The inverted term index is a function mapping

terms to lists of document ids,

index : termset(D) ! List[id(d) : d 2 D]

Example 4. Consider the three examples in Example 2. The inverted term index

16 CHAPTER 2. BACKGROUND

can be denoted as,

2

66666666666666666666666666666666666664

(Name, Jack) 7! {d1, d2}

(Address, 100) 7! {d1, d2}

(Address, Simcoe) 7! {d1, d2}

(Address, Street) 7! {d1, d2}

(Occupation, Student) 7! {d2}

(RestaurantName,The) 7! {d3 }

(RestaurantName,Best) 7! {d3 }

(RestaurantName,Grill) 7! {d3 }

(City,Oshawa) 7! {d3}

(Rating, 5) 7! {d3}

(Comment, very) 7! {d3}

(Comment, nice) 7! {d3}

(Comment, place) 7! {d3}

3

77777777777777777777777777777777777775

2.3.1 Keyword query performance

Inverted term index [34], as illustrated in Figure 2.1, has two main components: a

dictionary and lists of document ids. We use the dictionary to look up a search

term. After that, we retrieve the list of document ids associated with the term.

Therefore, the query performance is determined by looking up terms of the query in

the dictionary and merging all matched document id lists.

Let q =< t1, t2, . . . , tk > be a query, where ti are terms and k is the number of

terms of the query. The average length of document id lists is denoted as l. The total

number of terms in the inverted index is denoted as N . Looking up a term ti has

O(logN) complexity. Merging matched document lists requires linear scan, which

2.3. DOCUMENT INDEXES AND SEARCH ENGINES 17

Figure 2.1: Inverted Term Index

has O(k ⇥ l) complexity . Therefore, the time complexity of processing the query is

O(k ⇥ logN) +O(k ⇥ l).

2.3.2 Fuzzy string matching and collisions

A particularly important feature of keyword search based information retrieval is

fuzzy string matching. A common practice in performing fuzzy string matching based

on the n-grams of the text [22].

Definition 1 (n-grams). Let s be a string where s(i) is the i-th character from some

alphabet ⌃. Let n � 1 be an integer. The n-padded string of s is obtained by prepend-

ing and appending n� 1 special symbols to s, defined as:

s0 = 0$0 . . . 0$0| {z }
n�1 times

·s · 0$0 . . . 0$0| {z }
n�1 times

18 CHAPTER 2. BACKGROUND

The n-gram of s is the set of strings of length n defined as:

Gn(s) = {s0(i) . . . s0(i+ n� 1) : 1  i  |s0|� n+ 1}

By definition, Gn(s) ✓ (⌃[{$})n, namely all of its segments of length n including

the padded special character $.

Example 5. Suppose that s = “computer00. Its 3-grams are given as:

G3(s) = {$$c, $co, com, omp, mpu, put, ute, ter, er$, r$$}

Since Gn(s) is a set that is derived from the content of s, we can use it as a feature

to compare strings in an approximate way.

Definition 2 (Jaccard Similarity). Given two sets A and B, their Jaccard similarity

is given by:

J(A,B) =
|A \B|

|A [B|

Note 0  J(A,B)  1, with J(A,B) = 1 if and only if A = B.

Using Jaccard similarity (and its derivatives), we can introduce a similarity mea-

sure over strings. Given two strings s1 and s2, the Jaccard similarity of the two strings

is given by:

J(s1, s2) = J(Gn(s1), Gn(s2))

Now we can perform fuzzy string search using Jaccard similarity over strings. We

index documents by storing their n-gram sets. The inverted index, therefore, will have

n-gram tokens. We also break all queries into n-gram sets for searching. Commonly

3-grams yield the best trade-o↵ for the English language.

2.4. LEARNING WITH NEURAL NETWORKS 19

Recall that the inverted term index maps tokens to documents. When 3-gram

tokens are used, the total possible number of distinct tokens are given by |⌃|3. For

the English language, |⌃| ' 50 (based on ASCII encoding). So, there will only be

503 = 125, 000 possible tokens. But, at the same time, a typical text index needs

to support up to billions of documents. As the number of documents exceeds the

number of possible tokens, we run into the bad situation of severe collisions, which

degrades the performance from log-time O(log n) to sequential scan O(n).

In this thesis, we will encounter the bottleneck of collision when 3-grams are used

as tokens. We will study methods involving partitioning the index, and optimizing

index access pattern so that the search speed is improved. Our optimization method

will involve neural networks to learn the optimal access patterns using self-supervised

learning.

In subsequent sections, we will review some elements of neural network design

that are necessary to construct our embedded networks.

2.4 Learning with neural networks

A neural network allows us to find patterns based on its training data. A trained

neural network is an approximation of a function that maps its input data to its

output data. In the context of this thesis, we explore ways to design neural networks

as classifiers that will map partial tuple search queries to the relations that contain

the tuples.

2.4.1 General framework of machine learning

The general framework of machine learning consists of three main components: rep-

resentation of training data, a trainable model, and an optimization algorithm [25,

20 CHAPTER 2. BACKGROUND

3].

There are di↵erent types of data that can be used for machine learning, such as

numerical data, text documents, images, and so on. They have to be converted to

some format before they can be consumed by a machine learning model. In natu-

ral language processing, we use embedding vectors, which are numerical vectors, to

represent texts [26, 41].

Fundamentally, the problem that machine learning (ML) is addressing must be

modeled as a function:

f : X ! Y

whereX is a vector space that is the encoding of the input objects, and Y is the output

(usually also a vector space). In the context of machine learning, the exact form of

f , either mathematically or computationally, is not available. However, we assume

that we have many observations of the input-output pairs {(xi, yi) : i = 1 . . . n} of f .

The collection of (x, y) pairs is known as the training data.

A trainable model is an algorithm that can learn from the training data. In the

case of a neural network model, we define its structure by layers. We specify the

number of layers the model consists of, the layer types, the number of neurons in

each layer, and the connections between layers. The network structure determines

the capabilities of the model.

We highlight the following layer architectures that are used in this thesis.

• Embedding layer: this layer architecture converts discrete and categorical in-

puts to dense vectors using a hard coded lookup table that maps tokens from

a vocabulary to embedding vectors. We will discuss this in more detail in Sec-

tion 2.4.2. The parameters of the embedding layer store the lookup table.

2.4. LEARNING WITH NEURAL NETWORKS 21

• Linear layer: this is the layer that is capable of performing linear separation

in high dimensional space. A linear layer is most commonly used as a hidden

layer or an output layer to produce the intermediate or final logits for a multi-

class classification problem. It has a dense connection between the input and

output. Generally, its dense connection makes it unsuitable to capture spatial

and sparsely distributed features in the input. The parameters of the linear

layer store the matrix and bias used in the linear transformation.

• Convolution layer: this layer architecture is designed to address the dense con-

nection problem of the linear layer. Using the mathematical operation known

as convolution, the convolution layer has spare connections between its input

and output, and thus can learn localized features in the input. The parameters

of the convolution layer store the kernels used in the convolution.

• Recurrent layer: the recurrent layer processes sequential inputs, namely it main-

tains an internal high dimensional state so that its output sequence depends

(indirectly) on all previous inputs. The parameters of the recurrent layer store

the matrices (and bias) used to update the internal state, and generate the

sequential output.

• Attention layer: the attention layer is motivated by the inter-input dependen-

cies. It performs transformation on two sets of input vectors by finding depen-

dencies between vectors in one set and those in the other set. In the case of

self-attention, the same set of vectors are used as both sets. The parameters of

the attention layer store the transformation matrices that combine the two sets

of input vectors.

A complete model consists of compositions of di↵erent layers by connecting the

22 CHAPTER 2. BACKGROUND

output of one or more layers to the input of downstream layers. A final output layer

produces the output of the model. The parameters of the model are the collection of

the parameters of all layers.

An optimization algorithm is the working force to tune the model. We define an

objective function and use the optimization algorithm to minimize or maximize it.

One typical example of an objective function is a loss function. It computes the error

between the prediction and the target. Therefore, the goal of model training is to

minimize the error. Various optimization algorithms exist, such as gradient descent,

least square error minimization, etc. For neural network model training, we can use

gradient descent to iteratively update the network weights to minimize the loss.

Once the model is trained, we can use it for prediction. A neural network model

will process input data through its layers and produce an output, which is the pre-

diction of the model. The quality of the prediction will depend on the quality of the

training data, the model’s architecture, and the e↵ectiveness of the training process.

In the following sections, we describe embedding layer and specific neural network

architectures that we use in our research.

2.4.2 Embedding layer

Embeddings are vectors of floating point numbers that can be used to represent var-

ious types of data, such as text, images, audio, etc. In a natural language processing

(NLP) system, the embedding layer is a crucial component. It converts words into

numerical vectors with fixed dimensions, which are dense representations of texts.

The main advantage of using embedding layers is that they can capture the com-

plex relationships and semantic meanings of words within a language. Traditional

NLP techniques often rely on one-hot encoding, where each word is represented by

2.4. LEARNING WITH NEURAL NETWORKS 23

a binary vector with a “1” in the position corresponding to the word and “0”s in

all other positions. This approach does not account for the semantic or syntactic

relationships between words.

In contrast, embedding layers use a continuous vector space where words with

similar meanings are clustered together. This allows the NLP model to better un-

derstand the context and meaning of words in a sentence, improving its performance

on tasks such as sentiment analysis or language translation. Additionally, because

embedding layers have fewer dimensions than one-hot encoded vectors, they require

less computational resources and can be trained more e�ciently.

Let Voc be a set of categorical values. Each element t 2 Voc is called a token.

Without loss of generality, we arbitrarily sort the vocabulary, and thus we can assume

Voc = {1, 2, . . . , N} where N = |Voc|. Thus, we can assume that each token is a

natural number in [1, N].

The embedding layer has a trainable parameter: E 2 RN⇥k for some k > 0. It

maps each possible token t to a k-dimensional vector: E[t] 2 Rk, which is known as

the embedding vector of the token t.

Since all other layers assume vectors as inputs, the embedding layer is almost

always used as the input layer to a neural network that processes discrete values.

2.4.3 Multilayer perceptrons

AMultilayer Perceptron (MLP) is a type of neural network with a simple, feedforward

architecture. It consists of an input layer, one or more hidden layers, and an output

layer. The input layer receives the input data, and each subsequent layer receives the

output of the previous layer as input. The output of the final layer is the network’s

prediction.

24 CHAPTER 2. BACKGROUND

MLPs are simple and easy to train, making them a popular choice for many

applications. They are also versatile, as they can be used for a wide variety of tasks,

including classification, regression, and clustering. Additionally, MLPs are able to

learn non-linear relationships, which is not possible with simpler models such as

linear regression. This makes them well-suited for many real-world problems where

the relationship between the input and output is not strictly linear.

The MLP consists of two linear layers: a hidden layer and an output layer.

f1 : Rm
! Rh : x 7! �1(W1x+ b1)

f2 : Rh
! Rn : x 7! �2(W2x+ b2)

where (Wi, bi) is the transformation matrix and bias vector of layer i, and �i is a

non-linear activation function.

MLP is the composition of the two layers:

MLP(x) = f2(f1(x))

MLPs can be applied to Natural Language Processing (NLP) applications in sev-

eral ways. One common approach is to use an MLP to classify text documents or

sentences according to their content. For example, an MLP could be trained to clas-

sify a sentence as positive or negative sentiment, or to categorize it into one of several

predefined categories such as sports, politics, or entertainment.

Another way in which MLPs can be used in NLP is for language translation. In

this case, the MLP would be trained on a large dataset of sentence pairs in di↵erent

languages, with the goal of learning to translate a sentence in one language to the

2.4. LEARNING WITH NEURAL NETWORKS 25

corresponding sentence in the other language. The input to the network would be

a sentence in the source language, and the output would be the translation in the

target language.

2.4.4 Sequence learning with recurrent neural networks

Sequence learning is a type of machine learning that trains models to make predictions

based on sequential data, such as time series data or natural language texts. Recurrent

neural networks (RNNs) are a type of neural network that is very capable of handling

sequence learning tasks. This is because they are able to retain information from

previous time steps and use it to inform their prediction of the next time step. This

allows RNNs to make predictions about data that has dependencies on previous data

points, such as the next value in a time series or the next word in a sentence of natural

language.

The input of a RNN is a sequence of vectors from (Rm)⇤. An RNN has two inner

layers:

fS : Rm
⇥ Rh

! Rh

fO : Rh
! Rn

The vector space Rh is the h-dimensional state space, and Rn is the n-dimensional

output space. The function fS computes the next state and fO computes the final

output.

Given an input sequence (x1, x2, . . . , xL), and an initial s0 2 Rh, we compute a

26 CHAPTER 2. BACKGROUND

sequence of states (s1, s2, . . . , sL), where

si = fS(xi, si�1) for i 2 [1, L]

Thus, for each step i, si indirectly depends on x1, x2, . . . xi.

The final output is given by:

y = fO(sL)

We can design fS and fO using general vector-to-vector layers (such as MLP). See

the survey [43] for di↵erent design possibilities.

RNNs can also be “unrolled” in time to remove cycles from its graph. It can be

conceptualized as copying the network for each time step along the input sequence,

with the same weights shared. This means that RNNs can process inputs of any

length and make predictions at any point in the sequence. The training of RNN is

challenging because unrolling creates numerical challenges to the gradient optimiza-

tion algorithms.

Generally speaking LSTM (long short term memory) is considered the most nu-

merically e↵ective design to implement an RNN.

2.4.5 Convolution in sequence learning

1D convolution is a mathematical operation that takes two input signals and produces

a third output signal. In the context of natural language processing (NLP), 1D

convolution can be used to process text data. The input signals are typically the

words or characters in a sentence, and the output signal is a new representation of

the sentence that is more useful for downstream tasks such as sentiment analysis or

named entity recognition (NER).

2.4. LEARNING WITH NEURAL NETWORKS 27

To define the 1D convolution operation, we need to make a few auxiliary defini-

tions.

Consider a sequence of length L of scalar values: ~x = (x1, x2, . . . xL) 2 RL.

• l-window: at each position in the sequence 1  i  L, the l-window is defined

as xi, xi+1, . . . xi+l�1. It is the consecutive sequence from i to i+ l� 1. We will

denote it as x[i : i+ l � 1] 2 Rl.

• Kernel: a kernel K is a sequence of length l where l < L.

• Convolution: is a process of generating a sequence of outputs ~y = (y1, y2, . . . yL�l+1)

of length L� l + 1. It is given by:

yi = hx[i : i+ l � 1], Ki =
lX

j=1

x[i+ j � 1] ·K[j]

Namely, ~y = ~x ⇤K.

The convolution layer generalizes 1D convolution in two important ways:

1. Multidimensional input vectors: each xi is a vector in Rm. Thus, each yi is the

sum of the scalar convolutions:

yi =
lX

j=1

hx[i+ j � 1], K[j]i

2. Multiple kernels are used to generate multidimensional output vectors: With n

28 CHAPTER 2. BACKGROUND

kernels K1, K2, . . . Kn, for each window i, we generate:

yi =

2

66666664

hx[i : i+ l � 1], K1i

hx[i : i+ l � 1], K2i

...

hx[i : i+ l � 1], Kni

3

77777775

Thus, with n kernels, the 1D convolutional layer maps an input sequence of Rm

vectors to an output sequences of Rn vectors. The n kernels with window size l are

the model parameters.

A complete convolutional neural network (CNN) requires some additional features:

• Non-linear activation function. The output conv(x,K) is processed by a

non-linear activation function �:

y = �(conv(x,K))

• Padding and pooling. By default the convolution layer changes the sequence

length L to (L�l+1). Padding is to augment the initial sequence with additional

l � 1 special boundary vectors such that the length of convolution output is L.

Padding is to preserve the sequence length during convolution. Pooling is to

aggregate each w-window to a single value. Thus, pooling with a stride of w

is to convert a sequence of length L to bL/wc. Together, padding and pooling

allows us to fine control the output sequence length of the convolution layer.

• Output linear layer. The final output of the CNN is a probability distribution

of p 2 Rc if we are to perform a c-category classification task. A linear layer is

used to convert bL/wc⇥n output from the convolution/pooling layer to size c.

2.4. LEARNING WITH NEURAL NETWORKS 29

2.4.6 Attention and transformer models

Attention is a mechanism used in some neural networks to allow a model to focus on

certain parts of its input. This allows the model to handle inputs of variable length

and to learn to weight di↵erent parts of the input di↵erently. For example, in natural

language processing (NLP), attention mechanism can be used to allow a model to

focus on certain words in a sentence to better understand its meaning.

Given a finite set of vectors, X = {x1, x2, . . . xn} ✓ Rm, the (self) attention layer

processes all the vectors in X simultaneously:

(y1, y2, . . . yn) = Attention(x1, x2, . . . , xn)

where each input vector xi is transformed to its respective attended output yi. The

output yi should capture information about xi augmented by other input vectors that

xi attends to. For example, if {xi} forms a sequence, then it’s possible for xi to

pay attention to its immediately adjacent vectors {xi�1, xi+1}. The attention layer

dynamically computes the attention and the attended output for each input vector

xi.

The attention is modeled by a n⇥ n matrix of attention scores:

aij = AttentionScore(xi, xj) 2 [0, 1]

A popular approach to compute the attention score is to learn latent representa-

tions known as keys and queries of each xi using simple linear layers:

• ki = W1xi + b1 2 Rd

• qi = W2xi + b2 2 Rd

30 CHAPTER 2. BACKGROUND

The key and query vectors belong to the same vector space, and their scaled inner

products give us the attention score:

aij = softmaxj

✓
hqi, kji
p
d

◆

Finally, the attended output yi is the linear combination of {xi} with the attention

scores as the mixture coe�cients:

yi =
X

j

aijxi

Transformer models are based on neural network architectures that use attention

mechanisms extensively. The original transformer model was introduced in a paper

by Vaswani et al. [42] in 2017. It was considered a major advance in the field of NLP,

and since then various transformer-based models have appeared and been widely

used in NLP tasks. Transformer models are notable for their ability to process input

sequences in parallel, which makes them much faster to train and evaluate than other

models.

2.4.7 MLP Mixer

MLP Mixer [39] is a neural network that processes multi-channel inputs in two stages:

token mixing followed by channel mixing.

The input to a MLP mixer is a fixed-length sequence of feature vectors:

~x = (x1, x2, . . . , xL)

where each xi 2 RC , and L is the length of the sequence. C is the number of channels.

Each xi is a feature of a token consisting of C channels of scalars. Collectively we

2.4. LEARNING WITH NEURAL NETWORKS 31

have ~x 2 RL⇥C .

In order to explain token mixing and channel mixing, we need to introduce the

notation of distributed function application first.

Suppose we have two functions, f : Rm
! Rm and g : RL

! RL. Given a matrix

X 2 RL⇥m, its column vectors are in RL, and its row vectors are in Rm. Therefore,

we can apply f to row vectors, and g to column vectors. This creates two possible

outputs by distributedly applying f and g.

U [i, :] = f(X[i, :]) for all i 2 [1, L]

V [:, j] = g(X[:, j]) for all j 2 [1,m]

In MLP mixer, the input ~x will be processed by two separate MLPs: the first

MLP is distributed along its tokens (token mixing), and then the second MLP is

distributed along the channels (channel mixing). The MLP mixer mixes the output

of the two mixing MLPs back to the original feature vectors.

The first stage, token mixing, produces the output defined by:

U [:, j] = ~x[:, j] +W2�(W1~x[:, j])

where W1,W2 are the matrices of the first MLP.

The second stage, channel mixing, produces the output by distributing the second

MLP:

Y [i, :] = U [i, :] +W4�(W3U [i, :])

where W3,W4 are the matrices of the second MLP.

The mixing MLPs do not use any bias vectors.

32 CHAPTER 2. BACKGROUND

As demonstrated [39], MLP mixer exhibits many desirable qualities such as faster

training time for very large training datasets, smaller model size when compared to

very large computer vision models, and finally its performance is nearly and sometimes

exceeds state-of-the-art models in many vision tasks.

Chapter 3

Search Algorithm and Neural

Network Accelerated Indexing

In this chapter, we define our problem and present our proposed solution.

Problem statement: We want to extend keyword search to relational data us-

ing full-text index with the help of an embeddable neural network that optimizes

the query processing pipeline. Given a relational database consists of K relations

R1, R2, R3, . . . , RK , the goal is to build a system that takes a partial tuple as user

query and can find an optimally matching complete tuple ~r 2 Ri (i 2 {1, 2, . . . , K})

e�ciently.

3.1 Problem definition of partial tuple search

In this section, we provide some definitions related to partial tuple search. Let R

be a relational table. Recall that attr(R) is the attributes of R, and tuples in R are

mappings from attr(R) to Values.

Definition 3 (Labeled values and partial tuple). Let R be a relational table. A labeled

33

34CHAPTER 3. SEARCHALGORITHMANDNEURAL NETWORKACCELERATED INDEXING

value in R is a pair (l : x) where l 2 attr(R) [{?} and x 2 Values. A partial tuple

~x is a set of labeled values: ~x = {(li, xi) : i 2 I}. We define the attributes of a partial

tuple ~x as the labels of the partial tuple:

attr(~x) = {li}i2I

. A partial tuple is considered complete if attr(~x) = attr(R).

We will write ~x[li] to denote the corresponding value xi.

Note that a partial tuple is a set of values and their respective attribute names

from a relational table. However, we allow a special symbol “?” to be in place of

the attribute name. The special attribute “?” indicates that the attribute name is

unspecified (or unknown). The following example illustrates two partial tuples. The

second partial tuple has a wild card “?” as its attribute name:

Example 6.

~s1 = {name : Einstein}

~s2 = {name : Einstein, ? : Professor}

A query is a partial tuple: ~Q = {(li, qi) : i 2 IQ}. The values qi are keyword

queries. We want to find a complete tuple ~r 2 R that matches ~Q optimally. This

requires us to define how to compare the partial tuple ~Q with a complete tuple ~r.

The guiding principle of comparing the two tuples is to match labeled values from ~Q

with those from ~r according to the following:

• Match the labels if they are not the wild card “?”.

• Match the values using a fuzzy string matching score.

3.1. PROBLEM DEFINITION OF PARTIAL TUPLE SEARCH 35

• Optimize the sum of similarities between labeled values from ~Q and those from

~r.

Towards this end, we define the following similarity measures:

Definition 4 (Similarity of labeled values). Consider two labeled values: (l1 : x1)

and (l2, x2), where l1 and l2 are two labels from attr(R)[{?}. The similarity between

the two labels l1 and l2 is given by:

sim(l1, l2) =

8
>>>><

>>>>:

1 if l1 = l2 and l1 6=?, l2 6=?

0 if l1 6= l2 and l1 6=?, l2 6=?

0.5 if l1 =? or l2 =?

Thus, whenever li is the wildcard “ ?”, the similarity is 0.5. Otherwise, it is deter-

mined by the equality comparison of the two labels.

The similarity between the two values x1 and x2 is based on string comparison.

We utilize the Jaccard similarity between the 3-grams of xi:

sim(x1, x2) = Jaccard(3grams(x1), 3grams(x2))

Finally, the similarity of the two labeled values is computed as the product of the

similarity between labels and similarity between values.

sim((l1 : x1), (l2, x2)) = sim(l1, l2) · sim(x1, x2)

Recall that the user query is a partial tuple {(li, qi) : i 2 IQ}, and the search

results are complete tuples of the form {(lj, vj) : j 2 IR}. We need to generalize the

similarity measure in Definition 4 to partial tuples.

Definition 5 (Similarity of partial tuples). Given two tuples: ~q = {(li, qi) : i 2 IQ}

36CHAPTER 3. SEARCHALGORITHMANDNEURAL NETWORKACCELERATED INDEXING

and ~r = {(lj, vj) : j 2 IR}. We define their similarity based on the optimal matching

of labeled values from ~q to ~r.

Let H ✓ IQ⇥IR be the optimal matching that maximizes the total similarity score.

The similarity of two tuples is given as:

sim(~q,~r) =
X

(i,j)2H

sim((li, qi), (lj, vj))

Note that in order to compute the similarity between a query ~q and a complete

tuple ~r, we need to first compute the similarities between labeled values from ~q and

those from ~r. Then we find optimal matches from ~q to ~r, and use those to get the

total similarity score.

Definition 6 (Partial tuple search). Let R1, R2, R3, . . . , RK be K relations. Given a

user query that is a partial tuple:

~Q = {(li, qi) : i 2 IQ}

where li 2 attr(R)[{?} and qi are keyword queries, we want to find a complete tuple

~r 2 Ri, i 2 {1, 2, . . . , K}, that maximizes the similarity score sim(~Q,~r).

The process of partial tuple search, illustrated in Figure 3.1, consists of encoding

partial tuple queries, searching full-text indexes, and find optimal matching among

search results for the partial tuple. We provide detailed descriptions about partial

tuple search in Section 3.2.

We use a neural network to optimize the query processing pipeline. Detailed

description can be found in Section 3.3. We define the neural network classifier as:

Definition 7 (Neural network classifier). Let R1, R2, R3, . . . , RK be K relations. The

neural network classifier takes a partial tuple query ~q and estimates the probabilities

3.2. PARTIAL TUPLE SEARCH USING FULL-TEXT SEARCH 37

VeaUch
Wokeni]e

candidaWe WXpleV

Inde[

Ma[imi]e
SimilaUiW\ compleWe WXple

UelaWional
WXpleV

VaYe Wokeni]e

paUWial WXple
TXeU\

Figure 3.1: Matching a partial tuple ~q to a complete tuple t

that the search result of ~q belongs to relation Ri, 8i 2 {1, 2, . . . , K}.

3.2 Partial tuple search using full-text search

Traditional full-text indexes, such as Apache Lucene, support keyword queries over

large document collections using an inverted index data structure. In this section, we

describe how a full-text index is incorporated as the first stage of the query processing

pipeline for partial tuple search.

The advantages of using a full-text index are:

• Flexible and partial string matching between query keywords and document

text

• E�cient query processing provided that the inverted document lists are not too

long due to collisions.

We first encode complete relational tuples as documents to be stored in the full-

text index. The partial tuple query ~q is encoded as a keyword query. It is important

to point out that we must specify the same tokenizer to convert relational tuples and

38CHAPTER 3. SEARCHALGORITHMANDNEURAL NETWORKACCELERATED INDEXING

query tuples to tokenized terms. We use the 3-gram tokenizer to support fuzzy string

matching for the values.

The full-text index evaluates the keyword query, and computes a top-k result set of

the best matching documents as relational tuple candidates. These top-k candidates

guarantee high similarity between the labeled values in ~q and those in relational

tuples.

3.2.1 Encoding of tuples as documents

Let us denote the tokenizer function as tokenize. A tuple ~r is converted into a

document doc as follows:

attr(doc) = attr(~r) [{fulltext}

For each a 2 attr(~r),

doc[a] = tokenize(~r[a])

Also,

doc[fulltext] =
[�

tokenize(~r[a]) : a 2 attr(~r)

The special field fulltext of doc contains all tokenized terms of the tuple ~r.

Example 7. Given a tuple ~r as:

(Name : Jack, Address : 100 Simcoe Street)

Its attributes attr(~r) are {Name,Address}. Therefore, the document attributes attr(doc)

are {Name, Address, fulltext}.

3.2. PARTIAL TUPLE SEARCH USING FULL-TEXT SEARCH 39

If we use a standard tokenizer, the result of tokenization will be,

2

66664

Name 7! Jack

Address 7! 100, Simcoe, Street

fulltext 7! Jack, 100, Simcoe, Street

3

77775

On the other hand, if we use a character-based 3-gram tokenizer with a special

padding character “ ”, the result will be,

2

66666664

Name 7! J Ja Jac ack ck k

Address 7! 1 10 100 00 0 S Si Sim imc mco coe oe e S St Str tre ree eet et t

fulltext 7! J Ja Jac ack ck k 1 10 100 00 0 S Si Sim imc mco coe oe e S

St Str tre ree eet et t

3

77777775

3.2.2 Encoding partial tuple queries as keyword queries

Given a partial tuple ~q, we want to encode it as a keyword query such that the search

engine can find the documents that correspond to the relevant tuples.

For each labeled value (li, xi) in the partial tuple, we generate a query clause.

• If li 6=?, then the query clause is qi = li : xi.

• If li =?, then the query clause is qi = fulltext : xi.

The generated query is:

q = q1 or q2 or . . .

One can see that any complete tuple ~r that satisfy the query ~q will have its

encoding document satisfying the keyword query q.

40CHAPTER 3. SEARCHALGORITHMANDNEURAL NETWORKACCELERATED INDEXING

3.2.3 From search results to partial tuple completion

For our problem, we need to match the partial tuple ~q with a complete tuple t. This

can be done by further post-process the documents in search results returned by the

search engine.

Recall that a tuple matching is a function h : LV(~q) ! LV(t), where LV(~q) and

LV(t) are labeled values of ~q and t, respectively. The top completion of ~q should

be a complete tuple that has the highest matching score based on the similarity

measure. Since the search engine already returns the top-k candidate documents, we

can compute the optimal matching between ~q to each of the candidates in order to

rank the candidates with respect to their matching scores.

Finding optimal matching of labeled values from the partial tuple ~q to a candidate

tuple t is equivalent to solving the maximum weighted matching of a bipartite graph.

Define the graph G as:

• The vertices are: V = LV(t) [LV(~q).

• The edges and their respective weights are defined as:

E = {hx1, x2, sim(V (x1), V (x2)i : x1 2 LV(t) and x2 2 LV(~q) and (L(x1) = L(x2) or L(x2) =?)}

where L(x1) and L(x2) are labels of x1 and x2, respectively.

• G is the weighted graph (V,E).

The max-weighted matching of G is necessarily a matching h from LV(~q) to LV(t).

The weight sum of h is the matching score based on the similarity of matched labeled

values. It is now that the optimal matching can be found exactly in polynomial time

using various algorithms, e.g., Hungarian algorithm [15].

3.3. OPTIMIZING QUERY PROCESSING PIPELINE WITH NEURAL NETWORKS 41

3.3 Optimizing query processing pipeline with neu-

ral networks

As described in Section 2.3.2, a potential bottleneck associated with inverted index

structures for full-text search is the hashing collision which creates long linked lists

at the leaf nodes of the index tree (See Figure 2.1).

In our application, the character based 3-gram tokenizer will generate a compact

vocabulary consisting of at most |charset|3 distinct tokens where charset is the total

character set. So, when the number of documents grow greater than |charset|3, the

linked lists at the leaf nodes will grow linearly with respect to the number of relational

tuples.

The concern is that the full-text index will degrade as the dataset size grows

due to the 3-gram tokenization that we employ to support fuzzy string matching.

Unfortunately, our experimental evaluation in Section 4.5.1 confirms the performance

degradation in practice.

In this section, we will describe a method to perform partitioning of the full-text

index to overcome the performance bottleneck caused by hash collisions.

Our method utilizes a neural network to optimize the index access order during

partial tuple search. The neural network is to be embedded in the overall query

processing pipeline, and will be self-supervised based on existing data.

3.3.1 Partition of full-text index

An aggregated index is a function as follows:

index : Query ! List[Tuple]

42CHAPTER 3. SEARCHALGORITHMANDNEURAL NETWORKACCELERATED INDEXING

It indexes all the tuples from every relation.

However, we advocate to partition the tuples based on the relation they below

to. Thus, if we have relations R1, R2, R3, . . . , Rn, we will have n indexes {index1,

index2, . . . , indexn}, each indexing the tuples of a single relation.

indexi : Query ! List[Tuple]

The search can be done concurrently over all indexes:

priority_queue

for index_i in all_indexes {

spawn index_i.search(q) into priority_queue

}

We can also do sequential access of the indexes:

for index_i in sorted(all_indexes, q) {

index_i.search(q) into priority_queue

}

In this thesis we focus on the sequential access approach in favour of saving CPU

load. The challenge is to sort the indexes dynamically based on the user query ~q. The

sorting should place relations that can satisfy ~q with higher priority, so that successful

matches are found as early as possible.

Thus, our strategy to sort the indexes is based on a sorting key function:

S : (indexi, ~q) ! [0, 1] 7! prob(result(~q) 2 Ri)

The sorting score S(indexi, ~q) is the (estimate of the) probability that the search

3.3. OPTIMIZING QUERY PROCESSING PIPELINE WITH NEURAL NETWORKS 43

result of ~q belongs to the relation Ri. Since there are only a finite many relations, we

can reformulate the scoring function S to as an n-way classification function:

classify : ~q 7!

2

66666664

S(index1, ~q)

S(index2, ~q)

...

S(indexn, ~q)

3

77777775

Our objective is to learn the classify function using a neural network.

3.3.2 Vectorization of queries

The classifier can be trained using a neural network that can be embedded in the

query processing pipeline. The design objectives are:

• The neural network must be compact in size so that it incurs minimal perfor-

mance overhead, and can be embedded in a search system.

• The training of the network must require minimal manual intervention. Thus

the neural network must be trained with self-supervision from existing data.

The classification function is:

classify : Query ! Rn (3.1)

where the output of classify is the probability distribution over the n partitioned

indexes. Elements we presented in Section 2.4 present several options for the neural

network architecture.

Token representation of queries: given a query ~q = {(li, xi) : 1  i  m},

we generate the text representation of the query by simply concatenating the text

44CHAPTER 3. SEARCHALGORITHMANDNEURAL NETWORKACCELERATED INDEXING

representation of labels and the tokenized query values.

tokens(~q) = {l1}� tokenize(x1)� {l2}� tokenize(x2)� . . . {lm} [tokenize(xm)

where � is sequence concatenation.

Integer encoding of queries: next we encode tokens(~q) using a universal vocabu-

lary vocab. The vocabulary consists of all known tokens, and their respective ordinal

integer code. This vocabulary will be built using the existing relational tuples. The

construction of the vocabulary is described in subsequent sections. The vocabulary

is described as a function from tokens to integers:

vocab : Token ! N

The integer sequence of a query is given by:

sequence(~q) = vocab � tokens(~q) 2 N⇤

Embedding vectors of queries: Using a standard embedding layer (Section 2.4.2),

embed the integer sequence representation of the query to a sequence of latent vectors.

vector(~q) = Embedding(sequence(~q)) 2 R|q|⇥d

At this point, we have many options in mapping the vector sequence to the prob-

ability distribution in Rn.

For the remainder of this chapter, we denote the vector sequence representation

of ~q as:

3.3. OPTIMIZING QUERY PROCESSING PIPELINE WITH NEURAL NETWORKS 45

~x = sequence(~q) = (x1, x2, . . . , x|q|)

where each xi 2 Rd is the embedding vector of the i-th token in a d-dimensional latent

space.

3.3.3 Neural network architectures for query classification

MLP based classification.

Given the input of vectorized query representation ~x, we first flatten it using

global average over the entire sequence length. Then, we process it with a MLP with

softmax activation function. The MLP must have n output neurons.

~x (|q|, d)

!

✓P|q|
i=1 xi

|q|

◆
(d)

! MLP(output-dim = n) (n)

! softmax(·) (n)

Recurrent network architecture with LSTM cells.

Since recurrent neural networks (RNN) are specifically designed to process se-

quence inputs, we can utilize a RNN to map the input ~x to a flattened state vector,

which can then be processed by a MLP to compute the output probability distribu-

tion.

The advantage of RNN is that it can learn inter-token dependencies in the query

at the cost of a bigger model size and higher training cost.

46CHAPTER 3. SEARCHALGORITHMANDNEURAL NETWORKACCELERATED INDEXING

~x (|q|, d)

! LSTM(output-state=True) (d)

! MLP(output-dim = n) (n)

! softmax(·) (n)

1D convolution architecture.

Another standard technique to learn sequential features is to use 1D convolution.

The 1D convolution layer (Section 2.4.5) produces a sequence of feature vectors that

capture the short-range token dependencies within the convolution window size. We

then use global averaging to flatten the convolution features for further processing

using a MLP.

~x (|q|, d)

! Conv1D (|q|, d)

! Global Average (d)

! MLP(output-dim = n) (n)

! softmax(·) (n)

Transformer and MLP Mixer

Transformers have shown to be a superior architecture for many tasks in the

domain of MLP and sequence learning. The exact architecture of a transformer block

is shown in the implementation section (See Figure 4.18a). Due to the nature of our

problem, we chose to use only a single transformer block so that the model remains

small enough to be embedded in the query processing pipeline.

A more recent MLP based architecture is MLP mixer which is a concatenation

of two MLP layers separated by a matrix transpose operation. Details of the MLP

mixer are shown in Figure 4.22d.

3.4. OVERALL QUERY PROCESSING PIPELINE 47

3.3.4 Unsupervised training of neural network classifiers

The classifier needs to be trained with data of the following form:

(~q, i)

where ~q is a sample query, and i is the relation Ri that contains the best matching

tuple of ~q.

The training data is generated directly from the relational tuples from the database.

For each complete tuple ~r = {(li, xi) : i 2 I}, we formed a query ~qr by random sam-

pling from the labeled values while masking the labels.

~qr = {(?, xi) : i 2 sample(I)}

Thus, given a database with n relations R1, R2, . . . , Rn:

train =
n[

i=1

{(~qr, i) : r 2 Ri}

3.4 Overall query processing pipeline

To summarize the proposed query processing pipeline for partial tuple search, we

have the following stages:

1. A partial tuple is entered as user input.

2. The partial tuple is tokenized and converted to a structured keyword query.

3. The neural network classifier sorts the partitioned indexes based on the proba-

bility scores.

48CHAPTER 3. SEARCHALGORITHMANDNEURAL NETWORKACCELERATED INDEXING

4. The partitioned indexes are scanned to find top-k complete tuple candidates

from the database.

5. The candidates are ranked by max-matching based similarity scores.

Our pipeline requires that partitioned full-text indexes are built from tuples of

each relation in o✏ine mode. In addition, the neural network classifier should be

trained using sampled tuples from each relation.

In Chapter 4, we will describe the implementation of each neural network ar-

chitecture. We will also discuss the experimental evaluation and comparison of the

performance gain of each neural network architecture.

Chapter 4

Implementation and Performance

Evaluation of Neural Networks For

Index Acceleration

In the previous chapter, we have presented the neural network based algorithm to

accelerate the partial tuple search of relational data. Our algorithm relies on a partial

tuple classifier to optimize the ordering of text index search. In particular, we have

shown that a variety of neural network architectures can be used in the design of the

classifier.

In this chapter, we will describe the evaluation of the proposed solutions. We

will verify the e↵ectiveness and limitations of our solutions, and perform a compara-

tive study of di↵erent network architectures. For each network architecture, we will

present the benefits and drawbacks, and provide our understanding of the explanation

of the observations.

49

50CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

4.1 Some assumptions about datasets

In this section, we list some assumptions for our experimental evaluation:

• The numbers of tuples of relations are not skewed, this is, there is no relation

that has an extremely large number of tuples than other relations.

• Applying operations of inserting new tuples, updating or deleting existing tuples

to a database does not introduce new vocabulary.

These assumptions imply limitations of our proposed solutions. We will provide

some discussion about the limitations and possible future work in Section 6.2.

4.2 Datasets

The datasets we have used to evaluate our system is a collection of survey data from

Statistics Canada [13, 8, 7, 11, 9, 10, 12, 6, 4, 5], which includes one labour force

survey, six COVID-19 surveys, one income survey, one community health survey, and

one housing survey. They o↵er many real-world characteristics that pose as challenges

to neural network classifiers. Given the intended application scenarios of our research,

we felt that it was important to evaluate our work using real-world datasets. For easy

reference in subsequent sections, we give each dataset an id, as shown in Table 4.1.

These 10 datasets contain both numerical and textual data with di↵erent numbers

of attributes and tuples. For example, the labour force survey contains data of the

Canadian labour market. It has total 60 attributes related to the job market, such as

employment status, industry, status of working full-time or part-time, hourly wage,

etc. Table 4.2 shows 5 samples with a subset of 10 attributes. The descriptions of

the selected 10 attributes are shown in table 4.3. Table 4.4 shows the number of

4.2. DATASETS 51

Dataset id Dataset name

ds01 Labour Force Survey, April 2019 [Canada]
ds02 Crowdsourcing: Impacts of COVID-19 on Canadians’ Experiences

of Discrimination Public Use Microdata File
ds03 Crowdsourcing: Impacts of COVID-19 on Canadians Public Use Mi-

crodata File, [2020]
ds04 Crowdsourcing: Impacts of the COVID-19 on Canadians – Your

Mental Health Public Use Microdata File, [2020]
ds05 Crowdsourcing: Impacts of COVID-19 on Canadians’ Perception of

Safety Public Use Microdata File, [2020]
ds06 Crowdsourcing: Impacts of the COVID-19 on Canadians – Trust in

Others Public Use Microdata File [2020]
ds07 Impacts of the COVID-19 pandemic on postsecondary students

(ICPPS) 2020, Crowdsource file, Public use microdata file
ds08 Canadian Income Survey (CIS), 2017
ds09 Canadian Community Health Survey - Annual Component (CCHS)

2017-2018
ds10 Canadian Housing Survey, 2018

Table 4.1: Dataset ids and names

survyear survmnth lfsstat prov age 12 educ immig noc 10 ftptmain hrlyearn

2019 April Employed,
at work

Ontario 25 to 29 years Postsecondary
certificate or
diploma

Non-immigrant Natural
resources,
agriculture and
related
production
occupations

Full-time 33.00

2019 April Not in
labour
force

British
Columbia

70 and over Bachelor''s
degree

Non-immigrant

2019 April Employed,
at work

British
Columbia

45 to 49 years High school
graduate

Non-immigrant Business, finance
and
administration
occupations

Full-time 26.00

2019 April Employed,
at work

Ontario 20 to 24 years Postsecondary
certificate or
diploma

Non-immigrant Health
occupations

Full-time 37.60

2019 April Employed,
at work

Ontario 70 and over Some
postsecondary

Immigrant,
landed more
than 10 years
earlier

Occupations in
art, culture,
recreation and
sport

Part-time 32.00

Table 4.2: 5 samples from the labour force survey dataset “ds01”, showing only 10
attributes.

attributes and tuples in each dataset.

Sometimes di↵erent datasets share common attributes. For example, the COVID-

19 datasets have a common attribute about community size and metropolitan influ-

52CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

Attribute Description

survyear Survey year
survmnth Survey month
lfsstat Labour force status
prov Province
age 12 Five-year age group of respondent
educ Highest educational attainment
immig Immigration status
noc 10 2016 NOC (10 categories)
ftptmain Full- or part-time status at main or only job
hrlyearn Usual hourly wages, employees only

Table 4.3: 10 attributes and their descriptions from the labour force survey dataset
“ds01”.

Dataset id No. of attrs. No. of tuples

ds01 60 100,885
ds02 129 36,662
ds03 47 242,512
ds04 43 45,989
ds05 23 43,631
ds06 47 36,538
ds07 42 101,902
ds08 194 92,286
ds09 1051 113,286
ds10 132 61,750

Table 4.4: Number of attributes and tuples in each dataset.

ence zones where the survey correspondents live in. By using multiple partial tuple

completion, users can “jump” from one dataset to another. For example, users may

find some data related to discrimination from the dataset of impacts of COVID-19

on Canadians’ experiences of discrimination. Then they can use the results to search

more information about people’s perception of safety in the communities with the

same sizes in the dataset of impacts of COVID-19 on Canadians’ perception of safety.

This will help users to gain more insights from the survey results.

4.3. ARCHITECTURE AND SOFTWARE STACK 53

4.3 Architecture and software stack

In order to thoroughly evaluate the end-to-end search system, we have developed

a platform with the following technology stack. We use Lucene [38] as the full-

text index. A customized search engine is developed on top of Lucene to support

partial tuple search queries. This is necessary for us to have detailed instrumentation

to collect performance metrics, and to gain control over the ordering of text index

search. We have implemented all neural network based classifiers using TensorFlow

[19]. The trained models are used to generate the ordering of Lucene index access.

The evaluation of the neural network acceleration is based on the speed-up of query

performance between the machine learning generated ordering and other alternatives.

In addition, top-k accuracy is also used to evaluate models. The query workloads used

in evaluation are generated from the datasets themselves. Figure 4.1 shows the high-

level architectural overview of our implementation. More details about the training

datasets and the query workload generation will be presented in subsequent sections.

4.3.1 Lucene and a customized search engine

We developed a customized search engine on top of Lucene. It has two main functions.

The first is to index datasets to create Lucene indexes. When indexing datasets, each

tuple is converted to a Lucene document, which contains a set of (attribute name,

attribute value) pairs. We apply character-based 3-gram tokenization to attribute

values. We use the special character “ ” for padding. In addition, we add an extra

field “fulltext” to the document, which contains all 3-gram tokens of all attribute

values. This field is needed to support full-text search. For example, given a tuple t

54CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

Figure 4.1: High-level overview of architecture

as,

{Name : Jack, Gender : Male, Occupation : Software developer}

4.3. ARCHITECTURE AND SOFTWARE STACK 55

our search engine will first apply Lucene’s standard tokenization, and then our character-

based 3-gram tokenization. The resulting Lucene document will be,

2

666666666666666664

name : j ja jac ack ck k

gender : m ma mal ale le e

occupation : s so sof oft ftw twa war are re e d de dev eve vel

elo lop ope per er r

fulltext : j ja jac ack ck k m ma mal ale le e s so sof

oft ftw twa war are re e d de dev eve vel elo lop ope

per er r

3

777777777777777775

The second main function is to support partial tuple search queries. We also use

character-based 3-gram tokenization when constructing a search query. For example,

given a partial tuple as:

{Name : Jack, Gender : Male}

the search query will be:

{fulltext : j ja jac ack ck k m ma mal ale le e }

4.3.2 Partitioned indexes and an aggregate index

We have indexed the tuples from all datasets into a single Lucene index. The tuples

are tokenized using the 3-gram tokenizer in order to support fuzzy string matching

as described in Section 2.3.2. This index will be referred to as the aggregate index

since it contains all the tuples from 10 datasets in a single index. The aggregate index

contains approximately 877,000 documents.

56CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

We also have an alternative way of indexing the tuples using Lucene. We partition

the tuples based on which relation they belong to. Given that we have 10 datasets, we

have created 10 individual indexes, each containing the tuples from their respective

relation. We refer to the set of indexes as partitioned indexes. The number of docu-

ments in each partitioned index is the same as the number of tuples in each dataset,

as shown in Table 4.4.

With the two types of indexing schemes (partitioned vs aggregate indexing), we

have many alternatives in evaluating a user query.

Aggregate index lookup: we can simply issue the user query against the aggregate

index as it contains all the available tuples.

• Pro: This is the traditional approach. It requires the least system design. Only

a single thread is needed for each user query.

• Con: As we have indicated previously and will show in our experimental evalu-

ation, this approach su↵ers from a performance bottleneck resulting from high

token hashing collision rate.

Parallel lookup of partitioned indexes: we can issue the query against all in-

dividual index in the partitioned index set. This will perform parallel index lookup

using multiple concurrent threads.

• Pro: The result can be found quickly. The index with the correct tuple will

contain much less documents compared to the aggregate index, and thus will

respond with the search result faster. In fact, we argue that this is the optimal

performance one can expect.

• Con: The concurrency will impose a higher CPU and disk IO demand as each

user query will take up to n threads to process. In high tra�c or low resource

4.4. EVALUATION METHODOLOGY 57

scenarios, this may be prohibitively expensive.

Predictive sequential lookup of partitioned indexes: we advocate to perform

single threaded access of the partitioned indexes. But rather than simple or random

sequential scan of the index set, we utilize predictive neural networks to generate an

optimized access pattern, as described in Section 3.3.

• Pro: This method enjoys the advantage of both single-threaded index lookup

and low disk latency due to the potential early hit in a smaller partitioned index.

So we argue that the predictive lookup will yield high query performance and

low resource usage.

• Con: This method requires a self-supervised neural network to perform the

prediction.

4.4 Evaluation methodology

We evaluate five model architectures, including Multilayer Perceptron (MLP), Long

Short-Term Memory (LSTM), 1D Convolution (Conv1D), Transformer and MLP-

Mixer. We also exam how misspelled keywords a↵ect the models’ top-5 accuracies.

We use two metrics for model evaluation. The first metric is query processing

time. We submit queries to partitioned indexes and the aggregate index, and record

the response times as evaluation benchmark. More details are given in the subsection

4.5.1.

The second metric is top-k accuracy. A model’s prediction gives us the ordering

of Lucene index access. If the Lucene index that a query belongs to is among the

top-k of the model’s prediction, we consider the prediction accurate. For example,

for a query sampled from ds02, if the predicted access ordering is

58CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

idx_ds06, idx_ds10, idx_ds07, idx_ds05, idx_ds02, ...

we consider it an accurate top-5 prediction.

In the following subsections, we give more details about our training data, query

workloads and experiments. We first describe how training data and query workloads

are generated and tokenized in subsections 4.4.1 and 4.4.2, respectively. After that,

we describe our experiments in subsections starting from 4.5.1 to 4.5.4.

4.4.1 Training data generation and tokenization

The raw datasets are in SAS7BDAT format, which is a binary database format. To

make data processing easier for the downstream model training and evaluation, we

convert all raw datasets to CSV files. Then we remove some unuseful attributes.

For example, the labour force survey dataset contains the attribute rec num, which

indicates the record number in the file. This attribute is removed since it is not useful

for our model training. After that the preprocessed CSV files are splitted into data

for model training and data for model evaluation. Data for model evaluation are used

to generate query workloads. More details about the query workloads generation will

be presented in subsection 4.4.2.

Our next step is to generate training datasets from data reserved for model train-

ing. We randomly sample tuples from each CSV file without replacement. Then we

normalize the sampled tuples to lowercase and remove special characters from them,

which gives us word-based training data. In addition, we also apply character-based

3-gram tokenization to normalized tuples. We use “ ” as the special character for

padding in our implementation. This results in 3-gram based training data. For

example, given a raw tuple:

(2019,April,"Employed, at work",Nova Scotia,Other CMA or non-CMA,

4.4. EVALUATION METHODOLOGY 59

45 to 49 years,,Female,Married,Above bachelor''s degree,

"Single jobholder")

the normalized tuple will be:

(2019,april,employed at work,nova scotia,other cma or non cma,

45 to 49 years,female,married,above bachelors degree,

single jobholder)

and the 3-gram tokenized tuple will be:

(__2 _20 201 019 19_ 9__,__a _ap apr pri ril il_ l__,__e _em emp mpl

plo loy oye yed ed_ d__ __a _at at_ t__ __w _wo wor ork rk_ k__,__n

no nov ova va a__ __s _sc sco cot oti tia ia_ a__,__o _ot oth the

her er_ r__ __c _cm cma ma_ a__ __o _or or_ r__ __n _no non on_ n__

__c _cm cma ma_ a__,__4 _45 45_ 5__ __t _to to_ o__ __4 _49 49_ 9__

__y _ye yea ear ars rs_ s__,__f _fe fem ema mal ale le_ e__, __m _ma

mar arr rri rie ied ed_ d__,__a _ab abo bov ove ve_ e__ __b _ba bac

ach che hel elo lor ors rs_ s__ __d _de deg egr gre ree ee_ e__,__s

si sin ing ngl gle le e__ __j _jo job obh bho hol old lde der er_

r__)

Since we evaluate our models using partial tuple queries, a natural question is whether

training models using partial tuples will have any impact on models’ performance.

Therefore, besides training datasets containing full tuples, we also create datasets

containing partial tuples with 75% and 50% of attributes. Since each dataset will

have an additional 3-gram tokenzed version, we have total six sets of training datasets.

Table 4.5 shows their vocabulary sizes. In addition, we use dataset names as labels,

so there is no need to manually label training tuples.

60CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

100% attrs. 75% attrs. 50% attrs.

word-based 3-gram based word-based 3-gram based word-based 3-gram based
vocabulary size 56,482 4,136 47,536 4,130 37,183 4,109

Table 4.5: Vocabulary size of six sets of training datasets.

Workload name Description

workload A 5 randomly sampled attributes
workload B 3 randomly sampled attributes

Table 4.6: Query workload names and descriptions.

4.4.2 Query workload generation and tokenization

Query workloads are sets of partial tuples. We first randomly sample tuples from

data reserved for model evaluation. Then we apply the same normalization process

to them as we do to training datasets. After that we convert them to partial tuples

by randomly sampling some attributes from them. We create di↵erent workloads by

varying the number of attributes sampled. Table 4.6 shows two query workloads we

used for model evaluation.

4.4.2.1 Converting partial tuples to Lucene queries for searching

We use Lucene’s Query API to construct search queries from partial tuples. First we

apply 3-gram tokenization to a partial tuple to get a list of tokens. Then we convert

each token to a search term. After that we use the logical OR operator to combine all

search terms to form a query. For example, given a partial tuple as the following:

no very easy no

by adding the character “ ” for padding, the constructed query will be:

__n OR _no OR no_ OR o__ OR __v OR _ve OR ver OR ery OR ry_ OR y__ OR

__e OR _ea OR eas OR asy OR sy_ OR y__ OR __n OR _no OR no_ OR o__

4.5. EXPERIMENTS AND OBSERVATIONS 61

4.5 Experiments and observations

In this section, we will enumerate over the experiments we conducted to evaluate our

methodology. For each experiment, we will focus on the motivation, experimental

setup, the observation and their respective conclusions.

4.5.1 Performance of aggregate vs optimal index lookup

Description:

Our first experiment tries to establish a baseline for the evaluation of our method-

ology using the query processing time. We measure three types of performance. The

first is the optimal performance, which is achievable by parallel partitioned indexes

lookup. The second is the performance of the aggregate index lookup. The last is

the performance of sequential scan of all partitioned indexes. This will be the worst

sequential scan if the predicted ordering of index access from our neural network clas-

sifiers puts the true partitioned index, i.e., the one contains the tuple, as the last one

to scan.

To create the performance benchmark, we perform search against partitioned in-

dexes and the aggregate index using the constructed partial tuple queries and log

the response times. We repeat the process 10 times and compute the mean response

times to be used as benchmark for model evaluation. Table 4.7 and 4.8 show the

mean response times in milliseconds (ms) of the first 20 queries of the workload A

and B, respectively. Both of the workloads have 1,000 queries. In both tables, the

first 10 columns are the results of partitioned indexes, and the last one is that of the

aggregate index. Details about the query workloads are described in subsection 4.4.2.

Observations:

62CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

idx ds01 idx ds02 idx ds03 idx ds04 idx ds05 idx ds06 idx ds07 idx ds08 idx ds09 idx ds10 idx agg

0 46.57 18.074 11.766 12.315 11.681 10.991 8.146 32.037 42.178 12.506 171.814
1 9.785 95.191 9.112 3.577 5.211 5.076 42.509 25.545 11.406 8.152 34.883
2 41.464 30.662 15.134 7.381 9.833 6.114 16.265 25.711 130.263 28.414 340.52
3 81.665 71.147 10.45 11.374 13.238 62.585 24.985 33.262 89.623 22.483 214.195
4 11.86 12.193 4.124 3.576 2.569 4.466 5.933 14.683 10.914 7.414 27.807
5 111.691 35.233 23.712 14.259 37.553 32.163 90.013 38.077 64.649 56.575 410.775
6 10.171 15.061 6.72 6.757 5.178 6.366 20.423 9.027 17.965 13.738 48.165
7 8.565 17.936 3.222 11.276 3.91 9.101 12.828 8.33 29.897 50.721 113.489
8 4.702 2.492 3.492 2.109 1.748 2.76 1.972 10.48 6.715 5.909 18.459
9 29.805 25.247 4.121 3.972 3.618 8.858 21.882 65.882 40.683 97.196 403.81
10 12.438 28.071 11.567 7.722 8.266 8.296 17.631 25.093 28.216 30.15 69.155
11 78.894 199.486 36.34 16.409 59.3 19.544 52.956 31.944 81.945 49.079 269.655
12 34.995 17.869 6.531 8.366 4.515 9.189 11.174 38.777 33.707 16.754 98.553
13 27.613 291.843 36.575 18.002 16.23 21.494 10.564 35.939 35.287 9.281 513.177
14 14.984 19.801 18.374 7.259 9.394 10.142 11.601 10.555 24.247 5.859 181.814
15 13.587 7.268 3.283 4.145 2.499 3.895 11.989 9.273 72.258 10.647 210.635
16 13.702 95.056 9.045 3.973 5.103 8.488 38.507 36.359 12.235 17.131 49.995
17 56.258 33.413 15.297 20.917 77.721 36.136 20.222 23.676 60.217 25.79 200.614
18 82.657 47.663 13.094 16.612 20.459 22.733 250.602 23.769 66.409 15.952 349.091
19 54.616 101.808 19.846 10.232 17.782 10.651 15.67 20.257 31.221 18.2 170.922

Table 4.7: Mean query processing time in milliseconds of the query workload A.

idx ds01 idx ds02 idx ds03 idx ds04 idx ds05 idx ds06 idx ds07 idx ds08 idx ds09 idx ds10 idx agg

0 98.113 57.467 10.403 37.902 12.051 62.483 38.51 26.149 165.856 16.691 314.936
1 14.557 55.388 28.667 5.697 9.935 7.249 11.154 12.134 71.949 8.198 238.055
2 8.631 3.937 3.175 2.545 5.582 2.101 9.151 4.998 15.669 4.413 67.788
3 11.335 102.476 9.366 3.973 5.219 5.831 43.672 31.271 11.799 10.532 38.502
4 5.308 3.488 1.841 1.794 1.599 1.831 2.318 5.721 5.43 4.208 16.736
5 3.67 3.528 1.455 0.888 1.378 1.309 1.754 3.788 5.68 5.098 7.443
6 91.594 71.66 13.706 19.588 13.286 26.387 19.932 34.864 100.266 149.223 534.203
7 31.022 8.103 3.399 3.869 10.046 19.07 24.614 21.792 12.224 21.41 79.365
8 12.886 2.355 1.921 1.164 1.289 1.857 2.255 21.522 13.225 8.419 57.589
9 22.284 24.1 5.037 5.806 5.746 6.755 29.814 47.61 18.798 95.213 123.481
10 15.28 100.405 18.486 22.014 10.342 14.922 23.115 46.89 71.578 44.932 257.194
11 25.516 112.658 16.634 7.536 10.233 3.534 10.162 23.997 23.325 17.062 208.747
12 10.205 14.475 2.911 8.536 14.028 10.525 28.727 13.78 13.006 6.637 144.816
13 22.995 37.862 31.601 5.188 6.149 12.015 13.627 12.671 37.18 7.093 263.558
14 19.333 17.295 22.824 9.389 7.053 8.066 14.066 14.804 28.168 12.026 143.885
15 19.342 15.851 17.527 8.61 10.577 10.279 6.839 13.137 94.481 5.259 151.432
16 14.672 6.689 3.557 3.29 5.204 5.284 8.676 4.322 17.68 4.766 98.075
17 37.963 110.194 27.724 24.375 57.606 39.03 10.182 58.863 56.036 16.456 235.116
18 53.005 31.016 6.474 14.265 10.915 30.343 160.273 9.875 18.179 11.012 263.5
19 8.122 40.389 4.695 2.191 19.547 7.517 8.134 6.303 25.256 9.781 56.903

Table 4.8: Mean query processing time in milliseconds of the query workload B.

As shown in figures 4.2a and 4.2b, the mean values of processing times of the

worst sequential scan are longer than that of searching the aggregate index. The

worst sequential scan is slower than searching the aggregate index by 45% and 35%,

respectively. The goal of our neural network classifiers is to improve the performance

of sequential scan by generating an optimized access pattern.

4.5. EXPERIMENTS AND OBSERVATIONS 63

(a) Workload A (b) Workload B

Figure 4.2: The distribution of query processing times of workload A and B.

4.5.2 Performance of optimal matching for partial tuple com-

pletion

In this experiment, we examine the performance of optimal matching in three di↵erent

steps. In our first step, we set query size to be 10, tuple size to be 200, and edge

connectivity density to be 0.1. We compute the optimal matching for 100 times and

record the response times. Figure 4.3 shows the histogram of the results. In our

second step, we vary edge connectivity densities with the same fixed query size and

tuple size as in step one. We repeat the process 100 times and compute the mean

response times as results, which are shown in Figure 4.4. In our last step, we fix the

query size and edge connectivity density to be the same as in step one, but change

the tuple size so that it goes from 100 to 1,000. Again, we repeat the process for 100

times and compute the mean values. Figure 4.5 shows the results.

Our workloads A and B have query sizes of 3 and 5, respectively. The average

number of attributes of the 10 datasets is less than 200. The experiment results from

the above three steps indicate that the response time of optimal matching will be less

64CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

5 6 7 8 9 10
response time (ms)

0

10

20

30

40

fr
eq

ue
nc

y

Query size=10, Tuple size=200, p=0.1

Figure 4.3: Distribution of optimal matching response times (ms)

0.0 0.2 0.4 0.6 0.8 1.0
edge connectivity density p

5

10

15

20

25

re
sp

on
se

tim
e

(m
s)

Query size=10, Tuple size=200

Figure 4.4: Optimal matching response time (ms) w.r.t. varying edge connectivity
densities

than 30 milliseconds in our use case. The performance cost of optimal matching will

not be as significant as that of full-text index lookup. Therefore, the majority of our

work focuses on how to optimize index lookup using neural networks.

4.5. EXPERIMENTS AND OBSERVATIONS 65

200 400 600 800 1000
tuple size

6

8

10

12

14

re
sp

on
se

tim
e

(m
s)

Query size=10, p=1.0

Figure 4.5: Optimal matching response time (ms) w.r.t. varying tuple sizes

4.5.3 Neural network based predictive access

We evaluate five neural network architectures including MLP, LSTM, Conv1D, Trans-

former and MLP-Mixer. While all of them can be made into deep networks, or in

conjunction with other network architectures, our motivation is to make our models

as small as possible so that they can be embedded in a search system. Therefore, we

focus on the minimalist approach to network design.

4.5.3.1 Common experimental setup and evaluation metrics

Evaluation scenarios: We evaluate models with the following combination of di↵erent

scenarios in all experiments:

• We train the models using di↵erent sampling rates of attributes, as described

in Section 4.4.1.

• We consider both word-based and 3-gram based training.

66CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

• We evaluate the performance of index scan using models’ predictions and com-

pare with the optimal and aggregate index lookup for each query in our query

workloads.

Tokenization and embedding of texts: The tokens are either words or 3-grams of the

values in the partial tuples. Let Voc be the vocabulary. The vocabulary size is

determined by the attribute sampling rate during training. The vocabulary sizes are

given in Table 4.5. Each token is embedded into R64 by a simple embedding layer

that has |Voc|⇥ 64 parameters.

Evaluation metrics: We evaluate our models using the following metrics:

• Top-k classification accuracy: since we know the true relations that contain

the partial tuples in our query workloads, we can evaluate the classification

accuracy of our model. The top-k accuracy is defined as the percentage of the

correct label among the top-k labels predicted.

• Index lookup response time using the predicted access pattern: using the likeli-

hoods produced by our model, we can sort the indexes by their likelihoods and

access the most likely index first. The scan continues until the true relation is

reached.

4.5.3.2 Multilayer perceptron (MLP)

Description:

Multilayer perceptron (MLP) is probably the most widely used neural network

architecture. In this experiment, we will test the e↵ectiveness of MLP by itself with

a single hidden layer.

Model architecture:

4.5. EXPERIMENTS AND OBSERVATIONS 67

• Since each query is a sequence of tokens, each query is embedded into RL⇥64

where L is the token sequence length. We use global average pooling to generate

a flat vector in R64, which is used as the input to the MLP layer.

• MLP has one hidden layer of size 100.

• We utilize one drop-out layer to prevent overfitting by the large embedding

layer.

The overall network architecture can be found in Figure 4.6. Since we have six

InputLayer
input:

output:
[(None, None)]
[(None, None)]

Embedding
input:

output:
(None, None)

(None, None, 64)

GlobalAveragePooling1D
input:

output:
(None, None, 64)

(None, 64)

Dropout
input:

output:
(None, 64)
(None, 64)

Dense
input:

output:
(None, 64)
(None, 100)

Dense
input:

output:
(None, 100)
(None, 10)

Figure 4.6: MLP model

sets of training datasets, we have 6 trained MLP models, as shown in Table 4.9.

Observations:

• The top-1 to top-5 accuracies for all variations of MLP models under the work-

loads A and B are shown in Figure 4.7. Word-based models perform better than

68CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

Model name Training dataset

mlp100 100% attrs., word-based
mlp100-3gram 100% attrs., 3-gram based
mlp75 75% attrs., word-based
mlp75-3gram 75% attrs., 3-gram based
mlp50 50% attrs., word-based
mlp50-3gram 50% attrs., 3-gram based

Table 4.9: MLP model names and corresponding training datasets.

3-gram based models under both workloads, which do not contain misspelled

and unknown keywords.

• Figure 4.8 and Figure 4.9 show the distribution of query processing time under

the workloads A and B, respectively. Word-based models improve query pro-

cessing more than 3-gram based models do. In addition, the models trained

using partial tuples with less attributes perform better than those trained using

partial tuples with more attributes.

(a) Under the workload A. (b) Under the workload B.

Figure 4.7: Top-k accuracies of six MLP models under the workload A and B.

4.5. EXPERIMENTS AND OBSERVATIONS 69

(a) Word-based MLP models (b) 3-gram based MLP models

Figure 4.8: Distribution of query processing time with MLP models under the work-
load A.

70CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

(a) Word-based MLP models (b) 3-gram based MLP models

Figure 4.9: Distribution of query processing time with MLP models under the work-
load B.

4.5. EXPERIMENTS AND OBSERVATIONS 71

4.5.3.3 Long short-term memory (LSTM)

Description:

Long short-term memory (LSTM) is a neural network architecture for sequence

learning. Even though attributes in a tuple is not considered as a sequence since they

are not ordered, the attribute values can be considered as short sequences of tokens.

We test how LSTM performs when dealing with relational data in this experiment.

Again we apply the minimalist approach to its network design by a single LSTM

layer.

Model architecture:

• Each query is embedded into RL⇥64 where L is the token sequence length, which

is used as the input to the LSTM layer.

• We apply one drop-out layer to the output of the LSTM layer to prevent over-

fitting.

• The LSTM model has one hidden layer of size 100.

The model architecture is shown in Figure 4.10. The 6 trained LSTM models are

listed in Table 4.10.

Model name Training dataset

lstm100 100% attrs., word-based
lstm100-3gram 100% attrs., 3-gram based
lstm75 75% attrs., word-based
lstm75-3gram 75% attrs., 3-gram based
lstm50 50% attrs., word-based
lstm50-3gram 50% attrs., 3-gram based

Table 4.10: LSTM model names and corresponding training datasets.

Observations:

72CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

InputLayer
input:

output:
[(None, None)]
[(None, None)]

Embedding
input:

output:
(None, None)

(None, None, 64)

LSTM
input:

output:
(None, None, 64)

(None, 64)

Dropout
input:

output:
(None, 64)
(None, 64)

Dense
input:

output:
(None, 64)

(None, 100)

Dense
input:

output:
(None, 100)
(None, 10)

Figure 4.10: LSTM model

• The top-1 to top-5 accuracies for all variations of LSTM models under the

workloads A and B are shown in Figure 4.11. Word-based models perform

better than 3-gram based models. When compared to MLP models, LSTM

models underperform under both workloads.

• Figure 4.12 and Figure 4.13 show the distribution of query processing time

under the workloads A and B, respectively. Word-based models improve query

processing more than 3-gram based models do. In addition, similar to MLP

models, the models trained using partial tuples with less attributes perform

4.5. EXPERIMENTS AND OBSERVATIONS 73

better than those trained using partial tuples with more attributes.

(a) Under the workload A. (b) Under the workload B.

Figure 4.11: Top-k accuracies of six LSTM models under the workload A and B.

4.5.3.4 One dimensional convolution (Conv1D)

Description:

Another way of doing sequence learning is 1-dimensional convolutional neural

networks (Conv1D). Similar to what we do to LSTM, we want to see how Conv1D

performs when processing relational data. We also minimize the network structure

by using a single Conv1D layer.

Model architecture:

• Each query is embedded into RL⇥64 where L is the token sequence length, which

is used as the input to the Conv1D layer.

• The Conv1D layer has 64 kernels with kernel size of 3.

• We apply global average pooling to the output of Conv1D layer to generate a

flat vector in R64.

74CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

(a) Word-based LSTM models (b) 3-gram based LSTM models

Figure 4.12: Distribution of query processing time with LSTM models under the
workload A.

4.5. EXPERIMENTS AND OBSERVATIONS 75

(a) Word-based LSTM models (b) 3-gram based LSTM models

Figure 4.13: Distribution of query processing time with LSTM models under the
workload B.

76CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

• We apply one drop-out layer to the flattened vector to prevent overfitting.

The model architecture is shown in Figure 4.14. The 6 trained Conv1D models

are listed in Table 4.11.

InputLayer
input:

output:
[(None, None)]
[(None, None)]

Embedding
input:

output:
(None, None)

(None, None, 64)

Conv1D
input:

output:
(None, None, 64)
(None, None, 64)

GlobalAveragePooling1D
input:

output:
(None, None, 64)

(None, 64)

Dropout
input:

output:
(None, 64)
(None, 64)

Dense
input:

output:
(None, 64)
(None, 10)

Figure 4.14: Conv1D model

Model name Training dataset

conv1d100 100% attrs., word-based
conv1d100-3gram 100% attrs., 3-gram based
conv1d75 75% attrs., word-based
conv1d75-3gram 75% attrs., 3-gram based
conv1d50 50% attrs., word-based
conv1d50-3gram 50% attrs., 3-gram based

Table 4.11: Conv1D model names and corresponding training datasets.

Observations:

4.5. EXPERIMENTS AND OBSERVATIONS 77

• The top-1 to top-5 accuracies for all variations of Conv1D models under the

workloads A and B are shown in Figure 4.15. Word-based models perform

better than 3-gram based models.

• Figure 4.16 and Figure 4.17 show the distribution of query processing time

under the workloads A and B, respectively. Word-based models improve query

processing more than 3-gram based models do. Under the workload A, the

3-gram based models trained using partial tuples with less attributes perform

better than those trained using partial tuples with more attributes, but the

word-based models show an opposite relationship. Under the workload B, both

word-based and 3-gram based models do better when trained using partial tuples

with less attributes.

(a) Under the workload A. (b) Under the workload B.

Figure 4.15: Top-k accuracies of six Conv1D models under the workload A and B.

4.5.3.5 Single transformer block

Description:

78CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

(a) Word-based Conv1D models (b) 3-gram based Conv1D models

Figure 4.16: Distribution of query processing time with Conv1D models under the
workload A.

4.5. EXPERIMENTS AND OBSERVATIONS 79

(a) Word-based Conv1D models (b) 3-gram based Conv1D models

Figure 4.17: Distribution of query processing time with Conv1D models under the
workload B.

80CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

The Transformer architecture introduced in the original Transformer paper [42]

is one of the main advances in natural language processing. In this experiment, we

evaluate Transformer architecture for relational data. We largely follow the encoder

architecture of the vanilla Transformer presented in the paper [42]. However, since

our data are relational, we remove positional encoding. In addition, we only create

one Transformer block to minimize the model architecture.

Model architecture:

• Each query is embedded into RL⇥64 where L is the token sequence length, which

is used as the input to the Transformer block.

• Inside the Transformer block, the attention layer has 4 attention heads. We

add an extra drop-out layer after both the attention layer and the feed-forward

network to prevent overfitting.

• The feed-forward network has a hidden layer of size 64.

• We apply global average pooling to the output of the Transformer block to

generate a flat vector in R64.

• Then we apply a drop-out layer to the flattened vector.

Figure 4.18 shows its architecture. The 6 trained Transformer models are listed

in Table 4.12.

Observations:

• The top-1 to top-5 accuracies for all variations of Transformer models under

the workloads A and B are shown in Figure 4.19. Again, word-based models

perform better than 3-gram based models.

4.5. EXPERIMENTS AND OBSERVATIONS 81

InputLayer
input:

output:
[(None, None)]
[(None, None)]

Embedding
input:

output:
(None, None)

(None, None, 64)

Transformer Block
input:

output:
(None, None, 64)
(None, None, 64)

GlobalAveragePooling1D
input:

output:
(None, None, 64)

(None, 64)

Dropout
input:

output:
(None, 64)
(None, 64)

Dense
input:

output:
(None, 64)
(None, 10)

(a) Overall architecture

InputLayer
input:

output:
[(None, None, 64)]
[(None, None, 64)]

Dense
input:

output:
(None, None, 64)
(None, None, 64)

Dense
input:

output:
(None, None, 64)
(None, None, 64)

(b) Feed-forward network

InputLayer
input:

output:
[(None, None, 64)]
[(None, None, 64)]

MultiHeadAttention
input:

output:
(None, None, 64)
(None, None, 64)

Add
input:

output:
[(None, None, 64), (None, None, 64)]

(None, None, 64)

Dropout
input:

output:
(None, None, 64)
(None, None, 64)

LayerNormalization
input:

output:
(None, None, 64)
(None, None, 64)

Feed-forward Network
input:

output:
(None, None, 64)
(None, None, 64)

Add
input:

output:
[(None, None, 64), (None, None, 64)]

(None, None, 64)

Dropout
input:

output:
(None, None, 64)
(None, None, 64)

LayerNormalization
input:

output:
(None, None, 64)
(None, None, 64)

(c) Transformer block

Figure 4.18: Transformer model

Model name Training dataset

transformer100 100% attrs., word-based
transformer100-3gram 100% attrs., 3-gram based
transformer75 75% attrs., word-based
transformer75-3gram 75% attrs., 3-gram based
transformer50 50% attrs., word-based
transformer50-3gram 50% attrs., 3-gram based

Table 4.12: Transformer model names and corresponding training datasets.

• Figure 4.20 and Figure 4.21 show the distribution of query processing time

under the workloads A and B, respectively. Word-based models improve query

82CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

processing more than 3-gram based models do. In addition, the models trained

using partial tuples with less attributes perform better than those trained using

partial tuples with more attributes.

(a) Under the workload A. (b) Under the workload B.

Figure 4.19: Top-k accuracies of six Transformer models under the workload A and
B.

4.5.3.6 MLP-Mixer

Description:

MLP-Mixer is an architecture based on MLPs only, which is proposed by Tol-

stikhin et al. [40]. It is intended for computer vision. However, we want to see

whether we could use it for our use case. In this experiment, we modify its architec-

ture for text processing. The same minimalist approach and evaluation scenarios are

used as in other experiments.

Model architecture:

• Each query is embedded into RL⇥64 where L is the token sequence length, which

is used as the input to the Mixer Layer.

4.5. EXPERIMENTS AND OBSERVATIONS 83

(a) Word-based Transformer models (b) 3-gram based Transformer models

Figure 4.20: Distribution of query processing time with Transformer models under
the workload A.

84CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

(a) Word-based Transformer models (b) 3-gram based Transformer models

Figure 4.21: Distribution of query processing time with Transformer models under
the workload B.

4.5. EXPERIMENTS AND OBSERVATIONS 85

• The Mixer Layer is implemented following the architecture presented in the

paper [40].

• Layer normalization is applied to outputs from the Mixer Layer.

• We apply global max pooling to the outputs of layer normalization to generate

a flat vector in R64, which is used as input to the output layer.

Figure 4.22 shows its architecture. The 6 trained MLP-Mixer models are listed in

Table 4.13.

Model name Training dataset

mlpmixer100 100% attrs., word-based
mlpmixer100-3gram 100% attrs., 3-gram based
mlpmixer75 75% attrs., word-based
mlpmixer75-3gram 75% attrs., 3-gram based
mlpmixer50 50% attrs., word-based
mlpmixer50-3gram 50% attrs., 3-gram based

Table 4.13: MLP-Mixer model names and corresponding training datasets.

Observations:

• The top-1 to top-5 accuracies for all variations of MLP-Mixer models under the

workloads A and B are shown in Figure 4.23.

• Figure 4.24 and Figure 4.25 show the distribution of query processing time

under the workloads A and B, respectively. The word-based models perform

slightly better than 3-gram based models, with the exception of two models

mlpmixer75 and mlpmixer75-3gram. In addition, the models trained using

partial tuples with less attributes perform better than those trained using partial

tuples with more attributes, with the exception of the model mlpmixer75 under

the workload B.

86CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

InputLayer
input:

output:
[(None, 64, 50)]
[(None, 64, 50)]

Dense
input:

output:
(None, 64, 50)
(None, 64, 50)

Dense
input:

output:
(None, 64, 50)
(None, 64, 50)

Dropout
input:

output:
(None, 64, 50)
(None, 64, 50)

(a) Token mixing

InputLayer
input:

output:
[(None, 50, 64)]
[(None, 50, 64)]

Dense
input:

output:
(None, 50, 64)
(None, 50, 128)

Dense
input:

output:
(None, 50, 128)
(None, 50, 64)

Dropout
input:

output:
(None, 50, 64)
(None, 50, 64)

(b) Channel mixing

InputLayer
input:

output:
[(None, 50, 64)]
[(None, 50, 64)]

LayerNormalization
input:

output:
(None, 50, 64)
(None, 50, 64)

Add
input:

output:
[(None, 50, 64), (None, 50, 64)]

(None, 50, 64)

Permute
input:

output:
(None, 50, 64)
(None, 64, 50)

Token Mixing
input:

output:
(None, 64, 50)
(None, 64, 50)

Permute
input:

output:
(None, 64, 50)
(None, 50, 64)

LayerNormalization
input:

output:
(None, 50, 64)
(None, 50, 64)

Add
input:

output:
[(None, 50, 64), (None, 50, 64)]

(None, 50, 64)

Channel Mixing
input:

output:
(None, 50, 64)
(None, 50, 64)

(c) Mixer Layer

InputLayer
input:

output:
[(None, 50)]
[(None, 50)]

Embedding
input:

output:
(None, 50)

(None, 50, 64)

Mixer Layer
input:

output:
(None, 50, 64)
(None, 50, 64)

LayerNormalization
input:

output:
(None, 50, 64)
(None, 50, 64)

GlobalMaxPooling1D
input:

output:
(None, 50, 64)

(None, 64)

Dense
input:

output:
(None, 64)
(None, 10)

(d) Overall architecture

Figure 4.22: MLP-Mixer model

4.5. EXPERIMENTS AND OBSERVATIONS 87

(a) Under the workload A. (b) Under the workload B.

Figure 4.23: Top-k accuracies of six MLP-Mixer models under the workload A and
B.

4.5.3.7 Comparison of di↵erent models

Based on the observations from Section 4.5.3.2 to Section 4.5.3.6, we have compiled

the following table to compare their relative performances with respect to the optimal

and the aggregate index lookup under the workload A.

Word tokens 3-gram tokens
Model parameters model

optimal
model
aggr parameters model

optimal
model
aggr

MLP 3.02M 1.10 0.37 272K 1.49 0.51
LSTM 3.05M 1.52 0.52 305K 1.78 0.61
Conv1D 3.03M 1.12 0.38 277K 1.68 0.57
Transformer 3.09M 1.12 0.38 340K 1.66 0.57
MLP Mixer 3.04M 1.65 0.56 287K 1.65 0.56

Table 4.14: Comparison of models under the workload A with the top-3 measurements
highlighted.

The observation supports our proposal of utilizing neural networks to accelerate

index lookup. As shown in Table 4.14, many of the models perform well compared to

the optimal index lookup, and significantly outperform the aggregate index lookup.

For word based tokens, MLP is only 10% slower than the optimal index lookup,

88CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

(a) Word-based MLP-Mixer models (b) 3-gram based MLP-Mixer models

Figure 4.24: Distribution of query processing time with MLP-Mixer models under
the workload A.

4.5. EXPERIMENTS AND OBSERVATIONS 89

(a) Word-based MLP-Mixer models (b) 3-gram based MLP-Mixer models

Figure 4.25: Distribution of query processing time with MLP-Mixer models under
the workload B.

90CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

and outperforms the aggregate index by almost 3 times. The Conv1D and Trans-

former are only slightly worse than MLP. But the transformer models have larger

model sizes. Both LSTM and MLP Mixer do not perform that well when compared

to the other three networks.

We realize that we only use one transformer block and one MLP Mixer Layer,

respectively. In our context, we are interested in embedded networks as part of the

query processor. Therefore, our focus is limited to small network architectures.

Regarding the model sizes, the main source of parameters is the embedding layer.

Word based tokens produce far more bigger vocabulary, which then requires many

more embedding vectors as model parameters. The vocabulary of 3-grams is much

smaller, and thus produces much more compact models.

Since 3-gram tokens individually capture less information than word-based tokens,

we expect the observed performance degradation when using the 3-gram tokens. With

that being said, MLP has shown to outperform the aggregate index with twice the

performance even for 3-grams.

The value of 3-gram vocabularies becomes more apparent in scenarios with noisy

queries. When query strings contain spelling and other noises at a sub-word level,

the two methods of tokenization, i.e., word-based and 3-gram based, behave quite

di↵erently. For word-based tokenization, noisy words will generate out-of-vocabulary

(OOV) tokens which do not contribute to the classification of the network. However,

the 3-gram tokenization can still produce some 3-gram tokens even for misspelled and

unknown words in a query string. The next section is dedicated to evaluate how well

word-based and 3-gram based networks behave in the presence of noisy queries.

4.5. EXPERIMENTS AND OBSERVATIONS 91

4.5.4 Impact of noisy queries on models’ performance

Descriptions:

In this experiment, we investigate the impact of misspelled words in queries on

the models’ performance of top-5 accuracy. We simulate the scenario by replacing a

randomly selected character in a word with the special character “ ”. For example,

the city name toronto becomes to_onto after mutation. Its 3-gram tokens will be

[__t, _to, to_, o_o, _on, ont, nto, to_, o__].

Observations:

The impact of noisy queries on models’ performance of top-5 accuracy is shown

in Figure 4.26 and 4.27 under the workload A and B, respectively. The performance

degradation of word-based models is much faster than that of 3-gram based models.

This clearly shows that 3-gram based models are more resilient to query noises.

92CHAPTER 4. IMPLEMENTATION AND PERFORMANCE EVALUATIONOF NEURAL NETWORKS FOR INDEX ACCELERATION

(a) Word-based models

(b) 3-gram based models

Figure 4.26: Top-5 accuracy degradation of all models under the workload A.

4.5. EXPERIMENTS AND OBSERVATIONS 93

(a) Word-based models

(b) 3-gram based models

Figure 4.27: Top-5 accuracy degradation of all models under the workload B3.

Chapter 5

Related Work

5.1 Relational keyword search

A lot of work has been done for relational keyword search. In this section, we review

some of the previous works.

Early papers: Hristidis and Papakonstantinou [20] presented DISCOVER, a sys-

tem that allowed users to submit keyword queries to relational databases without

the knowledge of the underlying database schema. DISCOVER processes keyword

queries to generate candidate networks of relations and create execution plans to be

submitted to RDBMS, which will return search results. Liu et al. [27] proposed

an information retrieval (IR) ranking strategy for e↵ective keyword search related to

relational databases. The ranking strategy used four normalization factors for com-

puting ranking scores. All answers of a query were ranked based on computed ranking

scores, and the top-k answers were returned as results.

Extension to include frequent co-occurring term (FCT): Tao and Yu [37]

proposed an operator called frequent co-occurring term (FCT) search, and an algo-

rithm that could solve FCT search e↵ectively without using the conventional keyword

94

5.2. MACHINE LEARNING BASED DATABASE OPTIMIZATION 95

search methods. The purpose of FCT search is to extract the terms that most accu-

rately represent a set of keywords, i.e., to discover the concepts closely related to the

keywords set.

Survey of keyword search: A survey about research on keyword search in relational

databases was done by Park and Lee [33]. First they listed fundamental character-

istics of keyword search in relational databases: an indexing structure, being able

to formalize internal queries based on query keywords, being able to correctly con-

structing candidate answers, and an answer ranking strategy. Then they investigated

five research dimensions, including data representation, ranking, e�cient processing,

query representation, and result presentation. At the end, they pointed out some

promising research directions. One of them is e�cient top-k query processing. The

authors believed that keyword search in relational databases would benefit from ad-

vance in top-k query processing techniques.

Interpretation of keywords in query: Zeng et al. [44] presented a framework

based on keyword query interpretations. It incorporated human feedback to remove

keyword vaguenesses and use a ranking model for query interpretation evaluation

afterwards.

Top-k recommendation: Meng et al. [29] presented an approach to solve typical

and semantically related queries to a given query. This can help users to explore their

query intentions and improve their query formulation.

5.2 Machine learning based database optimization

Index optimization: Ding et al. [17] presented an updatable learned index called

ALEX, an in-memory index structure, for index optimization. ALEX addressed prac-

tical issues related to various types of workloads with dynamic updates. RadixS-

96 CHAPTER 5. RELATED WORK

pline [23], another learned index, tackled the issue of index implementation di�culty.

RadixSpline o↵ered quick build using a single pass over data while achieving compet-

itive performance.

Query optimization: Bao [28] is a learned query optimization system using re-

inforcement learning. It can learn from mistakes and adapt to dynamic workloads,

data, and schema, thus is capable of applying per-query optimization hints.

Cost models for query processing: Siddiqui1 et al. [35] investigated how to learn

cost models from cloud workloads for big data systems. The learned cost models

could be integrated with existing query optimizers. Such a query optimizer could

make accurate cost predictions, which can improve resource e�ciency in big data

systems.

Chapter 6

Conclusions and Future Work

In this chapter, we summarize our work and describe possible continuing work that

could be done in future.

6.1 Summary

Contributions from our work can be summarized as:

• We propose partial tuple search as an extension of keyword search over relational

data. It is a generalization of keyword search by allowing users to submit partial

tuple queries, which can have both value-based keywords and schema-based

structure information. Partial tuple search can be used by users with limited,

but nonzero, knowledge over the schema of the underlying relational database.

• We demonstrate a query processing pipeline that can evaluate partial tuple

search queries e�ciently. It consists of four main steps: convert a partial tuple

to a keyword query, use an embedded neural network classifier to predict a

dynamic access pattern of partitioned full-text indexes based on the keyword

97

98 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

query, scan indexes to find top-k candidates, and finally complete the partial

tuple by finding an optimal match.

The pipeline requires indexing each relation to a separate full-text index. It

also needs a trained neural network classifier using sampled tuples from each

relation.

• We identify bottleneck related to performing fuzzy string matching when using

a monolithic full-text index. The bottleneck is related to the inverted index

data structure used in a full-text index. When using 3-gram tokenization to

support fuzzy string matching, severe hash collision will happen because the

number of documents is a lot bigger than that of 3-gram search terms. The

performance will degrade from log-time O(log n) to sequential scan O(n).

• We design an index partition scheme to speed up index lookup. We partition

tuples by their corresponding relations, i.e., each relation is indexed into a

separate full-text index. The partitioned indexes give us an opportunity to

optimize query evaluation by using a neural network. This approach does not

incur the additional costs of parallel CPU loads.

• We design self-supervised neural networks to optimize partitioned index access,

which is incorporated in the query processing pipeline. We use relation names

as labels to avoid manual labelling of training data, which are generated using

sampled tuples from each relation.

• Our experimental evaluation shows that small neural networks work well for our

use case. Our MLP models perform particularly well, while Conv1D models and

MLP based transformer models are pretty close. On the other hand, the 3-grams

trained networks are highly robust w.r.t. spelling errors.

6.2. DISCUSSION OF LIMITATIONS AND FUTURE WORK 99

6.2 Discussion of limitations and Future work

As described in Section 4.1, we assume that the counts of relations’ tuples are not

skewed, and that the vocabulary of the database is not a↵ected by any operation

applied to the database.

If the first assumption is violated, for example, one relation has an extremely

large number of tuples, our approach of partitioning index based on relations can

not e↵ectively tackle the bottleneck related to the inverted index any more. The

partitioned indexes corresponding to large relations will have the same bottleneck

caused by hashing collision in the inverted index data structure. Therefore, we will

have to partition large relations based on some criteria. The key is to have the

resultant partitions having di↵erent vocabularies, which could help training a more

accurate neural network. We could partition a large relation by attributes or attribute

values.

• Partition a large relation by dividing its attributes into subsets. An intuition

is to group attributes with similar vocabulary into the same partition. Thus,

di↵erent partitions are likely to have quite di↵erent vocabularies.

• Partition a large relation based on certain attribute values. For example, if a

relation has an attribute about “city”, we can divide the relation by city names.

Each partition holds the data for a continuous range of the first letter of the city

name, e.g., A-I, J-R and S-Z. The key of this approach is to pick an appropriate

partition key for the relation.

• To the end of having partitions with vocabularies as di↵erent as possible, the

first partitioning scheme could be a better option. This is because di↵erent

attributes in a relation usually have di↵erent sets of limited values. On the

100 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

other hand, partitions resulting from grouping by certain attribute values will

have the same schema as the original relation, which means they are more likely

to have similar vocabulary.

This is a possible future work direction that can improve the solutions proposed in

the thesis.

Regarding the second assumption, if the vocabulary of the database changes, we

can apply fine-tuning to the neural network classifier.

• We freeze the network and apply incremental fine-tuning to embeddings only.

We could freeze existing embeddings and only train new embeddings, or fine-

tune all embeddings.

• We don’t freeze the network. We simply apply fine-tuning to both embeddings

and the network. This approach will take longer training time than the first

approach. But since our network is relatively small, the extra training time is

likely not significant.

This can be another direction of future work.

The current sizes of our neural networks are small enough to be embedded in a

mobile application. For deployment scenarios involving a backend server, we can relax

its size limit. This means that we can design deeper neural network architectures that

are still embeddable in a system running on a server. In order to do that, we will need

to resort to automatic tuning of hyperparameters to find optimal network designs.

This can be an interesting future work, too.

Our work uses full-text index, Apache Lucene in particular, to index relational

data and evaluate partial tuple queries. A possible future work is to integrate partial

tuple search into existing RDBMS. This would give users a more flexible and powerful

way to query relational databases.

Bibliography

[1] Google Arts and Culture. The story of AlphaGo. The first computer program

to defeat a Go world champion. url: https://artsandculture.google.com/

story/the-story-of-alphago-barbican-centre/kQXBk0X1qEe5KA (visited

on 02/20/2023).

[2] Catriel Beeri and Philip A Bernstein. “Computational problems related to the

design of normal form relational schemas”. In: ACM Transactions on Database

Systems (TODS) 4.1 (1979), pp. 30–59.

[3] Yoshua Bengio, Ian Goodfellow, and Aaron Courville. Deep learning. Vol. 1.

MIT press Cambridge, MA, USA, 2017.

[4] Statistics Canada. Canadian Community Health Survey - Annual Component

(CCHS) 2017-2018. Version V1. 2020. doi: 11272.1/AB2/SEB16A. url: https:

//hdl.handle.net/11272.1/AB2/SEB16A.

[5] Statistics Canada. Canadian Housing Survey, 2018. Version V1. 2021. doi:

11272.1/AB2/EZJYQI. url: https://hdl.handle.net/11272.1/AB2/EZJYQI.

[6] Statistics Canada. Canadian Income Survey (CIS), 2017. Version V1. 2019. doi:

11272.1/AB2/HFWKLV. url: https://hdl.handle.net/11272.1/AB2/HFWKLV.

101

https://artsandculture.google.com/story/the-story-of-alphago-barbican-centre/kQXBk0X1qEe5KA
https://artsandculture.google.com/story/the-story-of-alphago-barbican-centre/kQXBk0X1qEe5KA
https://doi.org/11272.1/AB2/SEB16A
https://hdl.handle.net/11272.1/AB2/SEB16A
https://hdl.handle.net/11272.1/AB2/SEB16A
https://doi.org/11272.1/AB2/EZJYQI
https://hdl.handle.net/11272.1/AB2/EZJYQI
https://doi.org/11272.1/AB2/HFWKLV
https://hdl.handle.net/11272.1/AB2/HFWKLV

102 BIBLIOGRAPHY

[7] Statistics Canada. Crowdsourcing: Impacts of COVID-19 on Canadians Public

Use Microdata File, [2020]. Version V1. 2020. doi: 11272.1/AB2/SMGRHJ. url:

https://hdl.handle.net/11272.1/AB2/SMGRHJ.

[8] Statistics Canada. Crowdsourcing: Impacts of COVID-19 on Canadians’ Expe-

riences of Discrimination Public Use Microdata File. Version V1. 2020. doi:

11272.1/AB2/8GUSBY. url: https://hdl.handle.net/11272.1/AB2/8GUSBY.

[9] Statistics Canada. Crowdsourcing: Impacts of COVID-19 on Canadians’ Per-

ception of Safety Public Use Microdata File, [2020]. Version V1. 2020. doi:

11272.1/AB2/PVCY7B. url: https://hdl.handle.net/11272.1/AB2/PVCY7B.

[10] Statistics Canada. Crowdsourcing: Impacts of the COVID-19 on Canadians –

Trust in Others Public Use Microdata File [2020]. Version V1. 2020. doi: 11272.

1/AB2/UQKWIZ. url: https://hdl.handle.net/11272.1/AB2/UQKWIZ.

[11] Statistics Canada. Crowdsourcing: Impacts of the COVID-19 on Canadians –

Your Mental Health Public Use Microdata File, [2020]. Version V1. 2020. doi:

11272.1/AB2/RHP5H5. url: https://hdl.handle.net/11272.1/AB2/RHP5H5.

[12] Statistics Canada. Impacts of the COVID-19 pandemic on postsecondary stu-

dents (ICPPS) 2020, Crowdsource file, Public use microdata file. Version V1.

2020. doi: 11272.1/AB2/J4X8SG. url: https://hdl.handle.net/11272.1/

AB2/J4X8SG.

[13] Statistics Canada. Labour Force Survey, April 2019 [Canada]. 2019. url: https:

//www.odesi.ca.

[14] Liang Cao, Weiming Wu, and Yonghao Gu. “The research of performance of

Lucene’s Chinese tokenizer”. In: 2011 2nd International Conference on Artificial

https://doi.org/11272.1/AB2/SMGRHJ
https://hdl.handle.net/11272.1/AB2/SMGRHJ
https://doi.org/11272.1/AB2/8GUSBY
https://hdl.handle.net/11272.1/AB2/8GUSBY
https://doi.org/11272.1/AB2/PVCY7B
https://hdl.handle.net/11272.1/AB2/PVCY7B
https://doi.org/11272.1/AB2/UQKWIZ
https://doi.org/11272.1/AB2/UQKWIZ
https://hdl.handle.net/11272.1/AB2/UQKWIZ
https://doi.org/11272.1/AB2/RHP5H5
https://hdl.handle.net/11272.1/AB2/RHP5H5
https://doi.org/11272.1/AB2/J4X8SG
https://hdl.handle.net/11272.1/AB2/J4X8SG
https://hdl.handle.net/11272.1/AB2/J4X8SG
https://www.odesi.ca
https://www.odesi.ca

BIBLIOGRAPHY 103

Intelligence, Management Science and Electronic Commerce (AIMSEC). IEEE.

2011, pp. 7398–7401.

[15] Thomas H Cormen et al. Introduction to algorithms. MIT press, 2022.

[16] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: Infor-

mation retrieval in practice. Vol. 520. Addison-Wesley Reading, 2010.

[17] Jialin Ding et al. “ALEX: an updatable adaptive learned index”. In: Proceedings

of the 2020 ACM SIGMOD International Conference on Management of Data.

2020, pp. 969–984.

[18] Héctor Garćıa-Molina, Je↵rey Ullman, and Jennifer Widom. “Database Sys-

tems—The Complete Book Second Edition—Chapter 18—Concurrency Con-

trol”. In: Database systems the complete book, (2005).

[19] Google LLC. TensorFlow. url: https://www.tensorflow.org/ (visited on

02/20/2023).

[20] Vagelis Hristidis and Yannis Papakonstantinou. “Discover: Keyword search in

relational databases”. In: VLDB’02: Proceedings of the 28th International Con-

ference on Very Large Databases. Elsevier. 2002, pp. 670–681.

[21] Matthieu Jimenez et al. “On the impact of tokenizer and parameters on n-

gram based code analysis”. In: 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE. 2018, pp. 437–448.

[22] Jong Yong Kim and John Shawe-Taylor. “Fast string matching using an n-gram

algorithm”. In: Software: Practice and Experience 24.1 (1994), pp. 79–88.

[23] Andreas Kipf et al. “RadixSpline: a single-pass learned index”. In: Proceedings

of the third international workshop on exploiting artificial intelligence techniques

for data management. 2020, pp. 1–5.

https://www.tensorflow.org/

104 BIBLIOGRAPHY

[24] Taku Kudo and John Richardson. “Sentencepiece: A simple and language in-

dependent subword tokenizer and detokenizer for neural text processing”. In:

arXiv preprint arXiv:1808.06226 (2018).

[25] Yann LeCun, Yoshua Bengio, and Geo↵rey Hinton. “Deep learning”. In: nature

521.7553 (2015), pp. 436–444.

[26] Yang Li and Tao Yang. “Word embedding for understanding natural language:

a survey”. In: Guide to big data applications (2018), pp. 83–104.

[27] Fang Liu et al. “E↵ective keyword search in relational databases”. In: Proceed-

ings of the 2006 ACM SIGMOD international conference on Management of

data. 2006, pp. 563–574.

[28] Ryan Marcus et al. “Bao: Making learned query optimization practical”. In:

ACM SIGMOD Record 51.1 (2022), pp. 6–13.

[29] Xiangfu Meng et al. “Top-k coupled keyword recommendation for relational

keyword queries”. In: Knowledge and Information Systems 50 (2017), pp. 883–

916.

[30] MongoDB, Inc. MongoDB: The Developer Data Platform. url: https://www.

mongodb.com (visited on 02/20/2023).

[31] Neo4j, Inc. Neo4j Graph Data Platform. url: https://neo4j.com (visited on

02/20/2023).

[32] Alexandros Ntoulas, Junghoo Cho, and Christopher Olston. “What’s new on

the Web? The evolution of the Web from a search engine perspective”. In:

Proceedings of the 13th international conference on World Wide Web. 2004,

pp. 1–12.

https://www.mongodb.com
https://www.mongodb.com
https://neo4j.com

BIBLIOGRAPHY 105

[33] Jaehui Park and Sang-goo Lee. “Keyword search in relational databases”. In:

Knowledge and Information Systems 26.2 (2011), pp. 175–193.

[34] Steve Putz. “Using a relational database for an inverted text index”. In: Xerox

Palo Alto Research Center Technical Report SSL-91-20, Xerox PARC (1991).

[35] Tarique Siddiqui et al. “Cost models for big data query processing: Learning,

retrofitting, and our findings”. In: Proceedings of the 2020 ACM SIGMOD In-

ternational Conference on Management of Data. 2020, pp. 99–113.

[36] Kazuma Takaoka et al. “Sudachi: A Japanese tokenizer for business”. In: Pro-

ceedings of the Eleventh International Conference on Language Resources and

Evaluation (LREC 2018). 2018.

[37] Yufei Tao and Je↵rey Xu Yu. “Finding frequent co-occurring terms in relational

keyword search”. In: Proceedings of the 12th International Conference on Ex-

tending Database Technology: Advances in Database Technology. 2009, pp. 839–

850.

[38] The Apache Software Foundation. Apache Lucene. url: https://lucene.

apache.org/ (visited on 02/20/2023).

[39] Ilya O Tolstikhin et al. “Mlp-mixer: An all-mlp architecture for vision”. In:

Advances in neural information processing systems 34 (2021), pp. 24261–24272.

[40] Ilya O. Tolstikhin et al. “MLP-Mixer: An all-MLP Architecture for Vision”. In:

CoRR abs/2105.01601 (2021). arXiv: 2105.01601. url: https://arxiv.org/

abs/2105.01601.

[41] Jatin Karthik Tripathy et al. “Comprehensive analysis of embeddings and pre-

training in NLP”. In: Computer Science Review 42 (2021), p. 100433.

https://lucene.apache.org/
https://lucene.apache.org/
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601

106 BIBLIOGRAPHY

[42] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural infor-

mation processing systems 30 (2017).

[43] Yong Yu et al. “A review of recurrent neural networks: LSTM cells and network

architectures”. In: Neural computation 31.7 (2019), pp. 1235–1270.

[44] Zhong Zeng et al. “iSearch: an interpretation based framework for keyword

search in relational databases”. In: Proceedings of the Third International Work-

shop on Keyword Search on Structured Data. 2012, pp. 3–10.

	Thesis Examination Information
	Abstract
	Author’s Declaration
	Statement of Contributions
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Machine Learning
	Overview of thesis

	Background
	Relational Data Model
	Document Models
	Documents
	Tokenization
	Keyword queries and matching scores

	Document Indexes and Search Engines
	Keyword query performance
	Fuzzy string matching and collisions

	Learning with neural networks
	General framework of machine learning
	Embedding layer
	Multilayer perceptrons
	Sequence learning with recurrent neural networks
	Convolution in sequence learning
	Attention and transformer models
	MLP Mixer

	Search Algorithm and Neural Network Accelerated Indexing
	Problem definition of partial tuple search
	Partial tuple search using full-text search
	Encoding of tuples as documents
	Encoding partial tuple queries as keyword queries
	From search results to partial tuple completion

	Optimizing query processing pipeline with neural networks
	Partition of full-text index
	Vectorization of queries
	Neural network architectures for query classification
	Unsupervised training of neural network classifiers

	Overall query processing pipeline

	Implementation and Performance Evaluation of Neural Networks For Index Acceleration
	Some assumptions about datasets
	Datasets
	Architecture and software stack
	Lucene and a customized search engine
	Partitioned indexes and an aggregate index

	Evaluation methodology
	Training data generation and tokenization
	Query workload generation and tokenization

	Experiments and observations
	Performance of aggregate vs optimal index lookup
	Performance of optimal matching for partial tuple completion
	Neural network based predictive access
	Impact of noisy queries on models' performance

	Related Work
	Relational keyword search
	Machine learning based database optimization

	Conclusions and Future Work
	Summary
	Discussion of limitations and Future work

	Bibliography

