
Transformer-based Models for Answer
Extraction in Text-based
Question/Answering

by

Marzieh Ahmadi Najafabadi

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Science (MSc) in Computer Science

Faculty of Science
University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

April 2023

© Marzieh Ahmadi Najafabadi, 2023

THESIS EXAMINATION INFORMATION

Submitted by: Marzieh Ahmadi Najafabadi

Master of Science in Computer Science

Thesis Title: Transformer-based Models for Answer Extraction in Text-based Ques-

tion/Answering

An oral defense of this thesis took place on April 11th, 2023 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Andrew Houge

Research Supervisor Dr. Heidar Davoudi

Examining Committee Member Dr. Mehran Ebrahimi

Thesis Examiner Dr. Amirali Salehi-Abari

The above committee determined that the thesis is acceptable in form and content and

that a satisfactory knowledge of the field covered by the thesis was demonstrated by the

candidate during an oral examination. A signed copy of the Certificate of Approval is

available from the School of Graduate and Postdoctoral Studies.

ii

Abstract

The success of transformer-based language models has led to a surge of research in various

natural language processing tasks, among which extractive question-answering/answer

span detection, has received considerable attention in recent years. However, to date, no

comprehensive studies have been conducted to compare and examine the performance

of different transformer-based language models in the task of question-answering (QA).

Furthermore, while these models can capture significant semantic and syntactic knowl-

edge of a natural language, their potential for enhancing performance, in QA, through

the incorporation of linguistic features remains unexplored. In this study, we compare

the efficacy of multiple transformer-based models for the task of QA, as well as their

performance on particular question types. Moreover, we investigate whether augmenting

a set of linguistic features extracted from the question and context passage can enhance

the performance of transformer-based language models in QA. In particular, we examine

a few feature-augmented transformer-based architectures for the task of QA to explore

the impact of these linguistic features on several transformer-based language models.

Furthermore, an ablation study is conducted to analyze the individual effect of each

feature. Through conducting extensive experiments on two question-answering datasets

(i.e., SQuAD and NLQuAD), we show that the proposed framework can improve the

performance of transformer-based models.

Keywords: Question-Answering; Answer Span Detection; Transformer-based Models;

Pre-trained Models

iii

Author’s Declaration

I hereby declare that this submission is entirely my own work, in my own words, and

that all sources used in researching it are fully acknowledged. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech Univer-

sity) to lend this thesis to other institutions or individuals for the purpose of scholarly

research. I further authorize University of Ontario Institute of Technology (Ontario Tech

University) to reproduce this thesis by photocopying or by other means, in total or in

part, at the request of other institutions or individuals for the purpose of scholarly re-

search. I understand that my thesis will be made electronically available to the public.

Marzieh Ahmadi Najafabadi

iv

Statement of Contributions

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication. I have used standard referencing practices

to acknowledge ideas, research techniques, or other materials that belong to others. Fur-

thermore, I hereby certify that I am the sole source of the creative works and inventive

knowledge described in this thesis.

v

Acknowledgements

I would like to express my sincere appreciation to my supervisor Dr. Kourosh Davouid for

his patience, help, and support that allowed me to successfully accomplish my research.

He trusted me and gave me the opportunity to be a member of his team.

I would like to express my gratitude and appreciation to the faculty and the Computer

Science program members.

Last but not least, I would love to give my special regards to my amazing family

and express my deepest gratitude to my beloved sister, Malihe Ahmadi, for her endless

support. This journey would not have been possible without their patience, love and

support.

vi

Table of Contents

Thesis Examination Information . ii

Abstract . iii

Author’s Declaration . iv

Statement of Contributions . v

Acknowledgements . vi

Table of Contents . xi

List of Tables . xiii

List of Figures . xvii

1 Introduction 1

1.1 Overview . 1

1.2 Problem Definition . 2

1.3 Contribution . 3

1.4 Thesis Outline . 4

1.5 Software & Source Code . 5

2 Background 8

2.1 Transformers . 8

2.2 BERT . 15

2.3 RoBERTa . 22

2.4 BART . 24

vii

2.5 Longformer . 26

3 Literature Review 30

3.1 Categorization based on Scope or Domain of Accessible Information for

Answering Question . 32

3.1.1 Extractive Question-Answering [93] 32

3.1.2 Open Generative Question-Answering [39] 33

3.1.3 Closed Generative Question-Answering [39] 34

3.2 Categorization based on Question Type 34

3.2.1 Multiple-Choice Question-Answering or MCQA 34

3.2.2 Conversational Question-Answering or CQA 35

3.2.3 Visual Question-Answering or VQA 37

3.3 Categorizing based on Answer Type . 37

3.3.1 Factoid Questions Answering . 37

3.3.2 Definition-Based or Non-Factoid Question-Answering 37

3.3.3 Hybrid Question-Answering . 38

3.4 Categorization based on Evidence or Answer Source 38

3.4.1 Raw Text-Based Question-Answering 38

3.4.2 Knowledge-Based Question-Answering 39

3.5 Categorization based on Modeling Approach 39

3.5.1 Rule-Based Models . 39

3.5.2 Machine Learning Based Models 40

3.5.3 Deep Learning Based Models . 40

3.6 A Few Examples of Previously Proposed Question-Answering Models . . 40

3.6.1 LSTM-based Deep Learning Models for Non-factoid Answer Selec-

tion [86] – An example of multiple choice question-answering . . . 41

viii

3.6.2 Alignment over Heterogeneous Embeddings for Question-Answering

[99] – An example of using information retrieval systems in question-

answering . 44

4 Methodology 50

4.1 Transformer-Based Models for the task of Extractive Question-Answering 50

4.2 Feature-Augmented Architecture . 53

4.2.1 Linguistic Features . 54

4.2.2 Variants of Feature-Augmnted Architecture 57

5 Experiments and Results 62

5.1 Stanford Question Answering Dataset [73] 62

5.2 Non-Factoid Long Question Answering Dataset [82] 66

5.3 Performance Metrics for Question Answering 69

5.3.1 Precision . 69

5.3.2 Recall . 70

5.3.3 F1 Score . 71

5.3.4 Exact Match . 72

5.3.5 Jaccard Index . 72

5.4 Experimental Results . 74

5.4.1 Experimental Settings . 74

5.4.2 Comparing Transformer-Based Models on SQuAD using Different

Variants of Feature-Augmented Architecture 4.2.2 for All Ques-

tions Types . 75

5.4.3 Comparing Transformer-Based Models on SQuAD using the Direct

Feature Augmentation Architecture 4.2.2 for What Questions . . . 79

5.4.4 Comparing Transformer-Based Models on SQuAD using the Direct

Feature Augmentation Architecture 4.2.2 for When Questions . . . 80

ix

5.4.5 Comparing Transformer-Based Models on SQuAD using the Direct

Feature Augmentation Architecture 4.2.2 for Where Questions . . 81

5.4.6 Comparing Transformer-Based Models on SQuAD using the Direct

Feature Augmentation Architecture 4.2.2 for Why Questions . . . 82

5.4.7 Comparing Transformer-Based Models on SQuAD using the Direct

Feature Augmentation Architecture 4.2.2 for How Questions . . . 83

5.4.8 Comparing Transformer-Based Models on SQuAD using the Direct

Feature Augmentation Architecture 4.2.2 for Who Questions . . . 84

5.4.9 Comparing Transformer-Based Models on SQuAD using the Direct

Feature Augmentation Architecture 4.2.2 for Whom Questions . . 85

5.4.10 Comparing Transformer-Based Models on SQuAD using the Direct

Feature Augmentation Architecture 4.2.2 for Whose Questions . . 86

5.4.11 Comparing Transformer-Based Models on SQuAD using the Direct

Feature Augmentation Architecture 4.2.2 for Which Questions . . 87

5.5 Feature Augmentation for Long Passages 88

5.5.1 Experimental Settings . 88

5.5.2 Comparing Longformer Model on NLQuAD using Different Vari-

ants of Feature-Augmented Architecture 4.2.2 for All Questions

Types . 89

5.6 Ablation Study . 90

5.6.1 Absence of Named Entity Recognition (NER) 91

5.6.2 Absence of Part-of-Speech Tag (POS) 91

5.6.3 Absence of Syntactic Dependency (DEP) 92

5.6.4 Absence of Stop Words (STOP) 93

5.7 Case Study on SQuAD . 94

5.7.1 Effectiveness of Syntactic Dependency (DEP) 95

x

5.7.2 Simultaneous Effectiveness of Named Entity Recognition (NER)

and Syntactic Dependency (DEP) 96

5.8 Summary . 97

6 Conclusion and Future work 100

6.1 Thesis Contribution Highlights . 101

6.2 Limitations . 102

6.3 Future Work . 103

Bibliography 104

xi

List of Tables

5.1 Comparing the performance of different transformer-based models on SQuAD

using the Direct Feature Augmentation Architecture 4.2.2. This architec-

ture concatenates the extracted features directly with the output of the

backbone model. 75

5.2 Comparing the performance of different transformer-based models on SQuAD

using the LSTM Feature Transformation Architecture 4.2.2. This archi-

tecture concatenates the features that are modified throughout an LSTM

layer, with the output of the backbone model. 76

5.3 Comparing the performance of different transformer-based models on SQuAD

using the Linear Feature Transformation Architecture 4.2.2. This archi-

tecture concatenates the features that are modified throughout a simple

linear layer, with the output of the backbone model. 77

5.4 Comparing the performance of different transformer-based models on SQuAD’s

What questions using the Direct Feature Augmentation Architecture 4.2.2. 79

5.5 Comparing the performance of different transformer-based models on SQuAD’s

When questions using the Direct Feature Augmentation Architecture 4.2.2. 80

5.6 Comparing the performance of different transformer-based models on SQuAD’s

Where questions using the Direct Feature Augmentation Architecture 4.2.2. 81

5.7 Comparing the performance of different transformer-based models on SQuAD’s

Why questions using the Direct Feature Augmentation Architecture 4.2.2. 82

xii

5.8 Comparing the performance of different transformer-based models on SQuAD’s

How questions using the Direct Feature Augmentation Architecture 4.2.2. 83

5.9 Comparing the performance of different transformer-based models on SQuAD’s

Who questions using the Direct Feature Augmentation Architecture 4.2.2. 84

5.10 Comparing the performance of different transformer-based models on SQuAD’s

Whom questions using the Direct Feature Augmentation Architecture 4.2.2. 85

5.11 Comparing the performance of different transformer-based models on SQuAD’s

Whose questions using the Direct Feature Augmentation Architecture 4.2.2. 86

5.12 Comparing the performance of different transformer-based models on SQuAD’s

Which questions using the Direct Feature Augmentation Architecture 4.2.2. 87

5.13 Comparing the performance of different variants of Feature-augmented

Architecture, with the Longformer [5] serving as the backbone model, on

NLQuAD [82] dataset. 89

5.14 Comparing the performance of the Direct Feature Augmentation Architec-

ture 4.2.2 in the absence of Named Entity Recognition. 91

5.15 Comparing the performance of the Direct Feature Augmentation Architec-

ture 4.2.2 in the absence of Part-of-Speech Tag. 92

5.16 Comparing the performance of the Direct Feature Augmentation Architec-

ture 4.2.2 in the absence of Syntactic Dependency. 93

5.17 Comparing the performance of the Direct Feature Augmentation Architec-

ture 4.2.2 in the absence of Stop Words. 93

xiii

List of Figures

2.1 Scaled Dot-Product Attention vs. Multi-Head Attention. Multi-Head At-

tention consists of multiple parallel attention layers. 12

2.2 Transformer architecture. The left side of this figure shows the stack of

encoders, while the right side is showing the stack of decoders. 14

2.3 BERT uses a bidirectional transformer encoder, in which the represen-

tations are jointly conditioned on both left and right context in all the

layers. 16

2.4 Two versions of BERT, depending on the number of encoders stacked over

top of each other. BERT-Base model (left) has 12 Encoder Layers, with

768 Hidden Size and 12 Self-Attention Heads (L = 12, H = 768, A = 12).

In contrast, BERT-Large model (right) has 24 encoder layers, with 1024

Hidden Size and 16 Self-Attention Heads (L = 24, H = 1024, A = 16). . . 17

2.5 BERT overall pre-training procedure. [CLS] is a special token, which is

added to the start of every input sequence and [SEP] is another special

token, which is used to separate first sentence from the second sentence. . 19

2.6 An example of BERT initial embeddings calculation. 21

2.7 BERT fine-tuning procedure for question-answering task. Despite different

output layers, the same structure is used for both pre-training and fine-

tuning. 22

xiv

2.8 BART model: Denoising sequence to sequence auto-encoder. The cor-

rupted document, on the left, is encoded bidirectionally using the trans-

formers encoder. Then the likelihood of the original document, on the

right, is computed through an auto-regressive decoder. 24

2.9 Different transformation functions BART uses in pre-training step for cor-

rupting the original input text. 25

2.10 Different attention mechanisms introduced by Longformer compared to

the original full attention introduced by transformers [91]. 28

3.1 An example of Conversational Question-Answering. 35

3.2 Visual Question-Answering Examples. 36

3.3 The basic Bi-LSTM [26] architecture proposed by this work [86] for answer

selection task. 43

3.4 The Bi-LSTM/CNN architecture proposed by this work [86] for answer

selection task. 44

3.5 The Bi-LSTM [26] with attention architecture proposed by this work [86]

for answer selection task. 45

3.6 An example of a multiple-choice question along with the supporting para-

graph extracted from an external knowledge base. 46

3.7 AHE [99] architecture for multiple-choice question-answering. 47

3.8 Alignment score computation of AHE [99]. 48

4.1 Start of answer index prediction in BERT model. Start is a vector of

weights, which is learned by the last linear layer used on top of BERT

to classify the start and end of answer. The same weights are applied to

every position. Token with highest probability is chosen as the start of

answer. 51

xv

4.2 End of answer index prediction in BERT model. Same as the start vector,

end is a vector of weights, which is learned by the last linear layer used

on top of BERT. The same weights are applied to every position. Token

with highest probability is picked as the end of answer. 52

4.3 An example of dependency tree, showcasing the syntactic interrelations

among words within a sentence. The red labels signify the POS attributes

of individual words while the green labels correspond to the DEP features. 55

4.4 General Feature Augmentation Architecture. The component on the right

side first extracts the linguistic features from question-passage pair then

modifies them using a neural network. 57

4.5 Direct Feature Augmentation Architecture. In this variant of the architec-

ture the neural network component is removed from the General Feature

Augmentation Architecture. 58

4.6 LSTM Feature Transformation Architecture. In this variant of the archi-

tecture the neural network component from the General Feature Augmen-

tation Architecture is replaced with an LSTM [34] layer to transform the

features. 59

4.7 Linear Feature Transformation Architecture. In this variant of the archi-

tecture the neural network component from the General Feature Augmen-

tation Architecture is replaced with a linear layer to transform the features. 60

4.8 Linear Layer used in the Linear Feature Transformation Architecture. . . 60

5.1 An example of question-answer pairs for a sample passage from the SQuAD

[73] dataset. Each of the answers is a span of text extracted from the passage. 64

5.2 Different question types in SQuAD [73] dataset. 66

5.3 An example of question-answer pairs from NLQuAD [82]. The correct

answer span is bolded within the passage. 67

xvi

5.4 An example of question-passage pair from SQuAD [73], which showcases

the importance of Syntactic Dependency (DEP) linguistic feature. The

ground truth answer is bolded within the passage. 94

5.5 Dependency tree constructed for the sentence within the passage, which

contains the answer to the given question, in the example provided by

Figure 5.4. The red labels signify the POS attributes of individual words

while the green labels correspond to the DEP features. 95

5.6 An example of question-passage pair from SQuAD [73], which showcases

the importance of Named Entity Recognition (NER) and Syntactic De-

pendency (DEP) linguistic features. The ground truth answer is bolded

within the passage. 96

xvii

Chapter 1

Introduction

1.1 Overview

Extractive question-answering, which aims to find the answer to a question within the

given passage, has became critical among natural language processing tasks recently.

Transformer-based [91] language models are a type of neural network architecture that

have been used in question-answering tasks. The transformer [91] architecture is designed

to address the limitations of traditional neural network architectures, which struggle with

handling long sequences of text due to the vanishing gradient problem. In a question-

answering task, considered in this thesis, the inputs to the model are a question and a

passage of text that may contain the answer to the question. Transformer-based language

models process the input text using a series of self-attention mechanisms to identify

important features and relationships between the words in the text. Then, they use this

information to generate an answer (i.e. span of words within the passage) to the question.

Generally speaking, a question can be either factoid or non-factoid. A factoid ques-

tion is asking about an entity or an event (e.g. person, organization, location, etc.),

which is a simple and short fact. However, a non-factoid question is asking about a

body of information and the answer to these questions can be very complex, containing

1

Chapter 1. Introduction 2

definitions, opinions, examples, etc. Non-factoid questions can be defined as open-ended

questions as well, which cannot be answered by a simple yes or no or any other static

response [28]. Thus, the answer to a non-factoid question can be extended to multiple

sentences or paragraphs [82]. For example, What and Who questions are factoid ques-

tions, while How and Why questions are considered as non-factoid questions. When

we ask “How to cook burgers?” we’re looking for detailed description and explanation.

Despite when we ask “What is a female rabbit called?” we’re asking about a simple fact.

Non-factoid questions are closer to real-life questions and they play a crucial role in the

quality of question-answering [28].

Automatic question-answering (in general) can be helpful in finding information effi-

ciently. In customer support use cases, common questions get asked frequently. Question-

answering enables us to create a chat bot from existing supporting content to handle cus-

tomer queries. Moreover, with the help of question-answering models we can augment

search results with instant answers in order to provide the users with immediate access

to relevant information to their queries. Thus, question-answering models are useful in

most of the information retrieval use cases.

1.2 Problem Definition

In this thesis, we consider utilizing transformer-based models for the task of extractive

question-answering, where given a question and a passage, the goal is to identify the span

of words within the passage which contain the answer to the question. To elaborate,

the extractive question answering task involves a question-passage pair as input, with

the desired outputs being the start and end positions within the provided passage that

accurately encapsulate the answer to the given question.

Question-answering and information retrieval are two distinct yet interconnected re-

search domains. While extractive question-answering aims to provide precise and accu-

Chapter 1. Introduction 3

rate answers to a given question, information retrieval systems, on the other hand, do

not proffer explicit answers to questions, but rather present relevant documents or parts

of documents, requiring the user to extract relevant information themselves.

Transformer-based language models introduce promising performance in most of the

natural language processing tasks by proposing the attention mechanism. However, to

date, they are not well studied in the field of extractive question-answering. Moreover,

the performance of transformer-based models on different question types (e.g. what, how,

why, when, where, etc.) haven’t been explored yet.

This research aims to compare the performance of different state-of-the-art transformer-

based models in the extractive question-answering task. We also investigate how incor-

porating a set of off-the-shelf linguistic features can enhance the performance of these

transformer-based models. In particular, this study seeks to explore whether the aug-

mentation of transformer-based models’ architecture with these linguistic features can

improve their overall performance. Finally, we investigate the performance of different

transformer-based language models in handling long context passages in the extractive

question-answering task.

The SQuAD [73] dataset, known for its high quality, is selected as the benchmark

for evaluating both the proposed and investigated models by this thesis in the extractive

question-answering task. Each instance in the dataset consists of a triad comprising a

question, passage, and ground truth answer. For each question-passage pair, we evaluated

the predicted answer based on the available ground truth answer for that pair. Further

explanation on data collection and generation in SQuAD [73] dataset is given in Chapter

5.

1.3 Contribution

We summarize the main contributions in the following.

Chapter 1. Introduction 4

• This thesis studies and compares different transformer-based [91] models, such as

BERT [19], RoBERTa [52], BART [50] and Longformer [5] in the task of question-

answering.

• We explore and compare the performance of different transformer-based models on

different question types.

• We proposed three variants of a feature-augmented architecture, which augments

the transformer-based models with a few different token-level linguistic features

extracted from both question and context passage, to explore if linguistic features

can improve the performance of transformer-based models.

• We aim to conduct a comprehensive investigation of individual features and their

impact on various transformer-based models through an ablation study.

1.4 Thesis Outline

This thesis is organized in six Chapters and structured as follows:

• Chapter 2 introduces a few state-of-the-art language models that are aimed to

understand text for different natural language processing tasks. These models

achieved state-of-the-art performances on most of language modeling tasks as they

have a very precise understanding of language and are all based on transformers [91]

architecture.

• Chapter 3 focuses on the task of question-answering and presents different settings

and directions of this field. Finally, two distinct question-answering methods are

explained in depth to provide a clearer picture of the diverse settings and models

that are available in this field of research.

Chapter 1. Introduction 5

• Chapter 4 presents our proposed transformer-based feature-augmented architecture

designed for the task of question-answering, which predicts the answer span to a

given question from the provided passage. In this Chapter, we also describe the

question-answering related details of backbone models used in our design, which

are a few transformer-based models.

• Chapter 5 reports the results from different variants of proposed feature-augmented

architecture. In this chapter, we further compare the performance of various

transformer-based feature-augmented models for each specific question types on

SQuAD [73]. Additionally, we conduct an ablation study through which we eval-

uate the effect of each feature on the performance of the feature-augmented archi-

tecture. Lastly, this chapter presents case studies, chosen from SQuAD [73], that

demonstrate the influence of features on the backbone model.

• In Chapter 6, we highlight the key contributions and some of the limitations of the

thesis research. The Chapter also presents some interesting future directions along

which the thesis research can be extended.

1.5 Software & Source Code

Software

The implementation of the transformer-based language models for the task of question-

answering as well as the proposed feature augmentation architecture, along with its

variants, and all of the different experiments that we conducted are written in Python

programming language. Python is a high-level, interpreted, general-purpose program-

ming language. Its design philosophy emphasizes code readability with the use of sig-

nificant indentation. Python is meant to be an easily readable language. Majority of

the training and experiments in this research, were carried out on a cluster of 4 NVIDIA

Chapter 1. Introduction 6

V100 GPUs (Graphical Processing Units), while CPUs (Central Processing Units) were

used for data loading and pre-processing purposes. Following packages are examples of

Python packages used in this thesis.

• Transformers provides APIs and tools to easily download and train state-of-the-

art pre-trained models. Using pre-trained models can reduce the compute costs and

save the time and resources, which are required to train a model from scratch. These

models support common tasks in different modalities, such as: Natural Language

Processing (NLP), Computer Vision, Audio, etc.

https://huggingface.co/docs/transformers

• PyTorch is an open source machine learning library used for developing and train-

ing computer vision and Natural Language Processing (NLP) tasks. This package

provides two high-level features:

– Tensor computation (like NumPy) with strong GPU acceleration.

– Deep neural networks built on a tape-based autograd system.

https://pytorch.org/

• SpaCy is an open-source software library for Natural Language Processing (NLP)

in Python. It is designed to be fast and efficient, providing advanced NLP capabil-

ities such as tokenization, part-of-speech (POS) tagging, named entity recognition

(NER), dependency parsing, and sentiment analysis. SpaCy also supports mul-

tiple languages and integrates well with other popular libraries in the NLP and

machine learning communities, making it a popular choice for NLP-related tasks

and projects.

https://spacy.io/

https://huggingface.co/docs/transformers
https://pytorch.org/
https://spacy.io/

Chapter 1. Introduction 7

Source Code

You can access the Python implementations of our models, evaluation metrics, and all

the experiments at the following link.

https://github.com/MarziehAhmadiNa/Transformer-based-Models-For-Answer-Extraction

https://github.com/MarziehAhmadiNa/Transformer-based-Models-For-Answer-Extraction

Chapter 2

Background

Since the focus of this thesis is on transformer-based language models, which are natural

language models that are trained on unsupervised task and can be fine-tuned for different

natural language processing downstream tasks, for the task of question-answering by

comparing and improving their performance, in the following sections we will give a brief

introduction to each of the studied transformer-based language models by this work.

Prior to delving into the specifics of each model, we will provide an introduction to

transformers [91], which is the fundamental architecture underlying all of the models

under investigation by this thesis.

2.1 Transformers

Transformers, which were introduced in the paper Attention is All You Need [91], were

developed as an alternative to Recurrent Neural Networks (RNNs), Long Short-term

Memories (LSTMs) [34], and Gated Recurrent Neural Networks (GRNNs) [15]. These

traditional models had previously achieved state-of-the-art performance in sequence mod-

eling [85] tasks and transduction problems (also known as sequence labeling tasks), such

as language modeling and machine translation [4,14]. Further research has also explored

the effectiveness of recurrent language models in an encoder-decoder format [42,55,98].

8

Chapter 2. Background 9

When translating a sentence from English to French using a recurrent model, the

network would take an English sentence as input and process the words one by one,

sequentially generating the corresponding French words. The order of the words in a

sentence is critical in language, and rearranging them can significantly alter the meaning

of the sentence. Thus, the key factor here is the sequence. For example, the sentence

“Jane went looking for trouble” has a vastly different meaning from “Trouble went looking

for Jane”. In other words, any language model must account for word order, and RNNs

do this by examining each word in sequence, one at a time.

Despite their usefulness, recurrent models faced several issues. Firstly, they struggled

to handle large sequences of text, such as long paragraphs or essays, as they tended

to forget the beginning by the time they analyzed the end. On top of that, RNNs

were difficult to train due to their sequential word processing, making parallelization

with multiple GPUs impossible. As the sequence lengths become longer, the memory

constraints restrict the ability to batch across examples, and this becomes increasingly

critical. While recent studies have made considerable improvements in computational

efficiency by employing factorization tricks [48] and conditional computation [80], the

fundamental constraint of sequential computation persists. Moreover, a slow training

model can not be trained on much data. This is where transformers revolutionized the

field.

Initially, transformers were created for translation purposes, but their application

quickly expanded to various natural language processing tasks. Unlike recurrent mod-

els, transformers could be parallelized efficiently, enabling the training of large models

with sufficient resources. The success of transformers can be attributed to three key

innovations: positional encoding, attention, and self-attention, which will be explained

separately in the following.

The concept of positional encoding involves assigning a numerical value to each word

in a sentence based on its position in the sequence before feeding it into a neural network.

Chapter 2. Background 10

This method captures information about the order of the words within the data itself,

rather than relying on the structure of the network. As the neural network is trained on

multiple text data, it learns to interpret these positional encodings and understand the

significance of word order. This is particularly important in models lacking recurrence or

convolution, which require information about the relative or absolute position of tokens

in a sequence. However, assigning numbers based on word order may not be the optimal

approach as it can lead to large values and difficulty with longer sentences not seen in

the training data. There exists a wide range of positional encoding options, including

both learned and fixed methods [25]. In transformers, a sinusoidal function is chosen for

positional encoding. This innovation has contributed to the success of transformers by

simplifying the training process compared to recurrent models.

Attention mechanisms have become a crucial component of effective sequence model-

ing and transduction models for various tasks. They enable the modeling of dependencies

between input and output sequences regardless of their distance, as demonstrated by their

application in [4, 45]. This mechanism is a neural network structure that enables a lan-

guage model to consider every word in the input sentence when making decisions related

to the task at hand, such as translating a word in the input sequence. Unlike a subopti-

mal approach where each word is translated individually and in sequence, the attention

mechanism can account for the fact that words can be reordered when translating from

one language to another. The model is capable of looking at different words during trans-

lation, and this is learned from data over time. By training on thousands of examples of

French and English sentence pairs, the model acquires knowledge of grammatical rules,

such as gender, word order, and plurality, required for accurate sentence translation.

With attention mechanism being already invented before this paper, the real innova-

tion in transformers was self-attention (also called intra-attention), which was a twist on

traditional attention. Self-attention is an attention mechanism that enables the calcula-

tion of a sequence representation by relating various positions within a single sequence.

Chapter 2. Background 11

This approach has proven to be effective in multiple tasks such as reading comprehen-

sion [12], abstractive summarization [65], textual entailment [64], and generating task-

independent sentence representations [51].

The self-attention mechanism enables the model to comprehend the underlying se-

mantics in language and construct a network capable of solving various language tasks.

Transformers examine a wide range of textual data, allowing them to automatically

develop an internal representation of language. The quality of this internal language rep-

resentation learned by the neural network is directly proportional to its ability to perform

any language task proficiently. Incorporating attention onto the input text itself can be

an extremely effective approach to assist the neural network in understanding language.

For instance, the term server in the sentences “Server, can I have the check?” and

“Looks like I just crashed the server!” has two completely distinct meanings that we can

only discern by analyzing the context of the surrounding words. Self-attention enables

the neural network to comprehend a word within the context of the words adjacent to it.

Thus, when processing the term server in the first sentence, the model may focus on

the term check to differentiate it from a human server versus a mail server. However, in

the second sentence, the model may attend to the word crash to deduce that the server

is a machine. Self-attention can help the network not only disambiguate words, but also

recognize word tense and parts of speech. Rather than merely looking at preceding hid-

den vectors when considering a word embedding, self-attention combines all other word

embeddings (including those that appear later in the sequence) in a weighted manner.

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.1)

Attention refers to a function that takes a set of queries with their respective keys

and values as input and produces a set of outputs. Transformers use a specific type of

attention called Scaled Dot-Product Attention, where the function takes in queries Q and

keys K with a dimension of dk, and values V with a dimension of dv. The function first

Chapter 2. Background 12

Figure 2.1: Scaled Dot-Product Attention vs. Multi-Head Attention. Multi-Head Atten-

tion consists of multiple parallel attention layers.

calculates the matrix multiplication betweenQ andKT (KT is the transpose of vectorK),

scales the product by dividing it by
√
dk to improve the gradient flow, and then applies

a softmax function. Scaling is specially important in cases when the value of matrix

multiplication is too big. Finally, to preserve the most critical input values, the function

computes the matrix multiplication between these softmax scores and values vector V .

In other words, the function keeps the words with high softmax probability. The formula

for computing the scaled dot-product attention matrix is presented in equation 2.1 [91].

In transformer architecture, self-attention is computed independently, and it is per-

formed h times in parallel using different learned linear projections. This method is

referred to as Multi-Head Attention. The outputs of multiple self-attention operations

are concatenated and then linearly transformed. Equation 2.2 contains the formula for

multi-head attention computation, in which the projections (WO, WQ
i , WK

i and W V
i) are

Chapter 2. Background 13

parameter matrices. To elaborate, WQ
i is the parameter matrix for linear projection of Q

in headi, W
K
i is the parameter matrix for linear projection of K in headi and W V

i is the

parameter matrix for linear projection of V in headi. Ultimately, WO is the parameter

matrix for linear projection after concatenation of multiple attention heads [91].

MultiHead(Q,K, V) = Concat(head1, ..., headh)W
O (2.2)

where headi = Attention(QWQ
i , KWK

i , V W V
i) (2.3)

As mentioned previously, transformers are designed to address multiple language tasks

in a sequential manner while also handling long-range dependencies between words in a

sentence. Following an encoder-decoder architecture similar to other advanced neural

models for sequence transduction [4,14,85], the transformer model employs various com-

ponents as illustrated in Figure 2.2 [91].

Specifically, the encoder encodes the input sequence into a fixed-length vector known

as the context vector, associating the input tokens together while utilizing the self-

attention mechanism to learn their representation. Similarly, the decoder employs self-

attention when processing the encoder’s output while iterating over the generated output

sequence, with information drawn from the context vector. The encoder and decoder are

composed of a stack of N = 6 identical layers, which each layer comprise two and three

sub-layers, respectively [91].

The encoder consists of two sub-layers, namely the multi-head self-attention mecha-

nism and a position-wise fully connected feed-forward network. To ensure better perfor-

mance, each of these sub-layers is augmented with a residual connection [30] and followed

by layer normalization [3]. Consequently, the output of each sub-layer is computed as

LayerNorm(x + SubLayer(x)), where SubLayer(x) represents the function of the cor-

responding sub-layer [91].

Chapter 2. Background 14

Figure 2.2: Transformer architecture. The left side of this figure shows the stack of

encoders, while the right side is showing the stack of decoders.

The decoder includes a third sub-layer that conducts multi-head attention on the

encoder stack’s output, along with the two sub-layers in each encoder layer. Like the

encoder, each sub-layer is surrounded by residual connections [30] and followed by layer

normalization [3]. The decoder’s self-attention sub-layer is also adjusted toMasked Multi-

Head Attention, to prevent positions from attending to future positions. This masking,

along with the fact that the output embeddings are shifted by one position, guarantees

Chapter 2. Background 15

that the predictions for position i are solely reliant on the known outputs that come

before position i.

To summarize, transformers offer several benefits over recurrent models. Transform-

ers are capable of comprehending the relationship between sequential elements that are

widely spaced apart, leading to greater accuracy. Additionally, transformers assign equal

attention to all elements in a sequence. Furthermore, transformers are capable of man-

aging and training larger datasets in a shorter period of time.

2.2 BERT

BERT [19], short for Bidirectional Encoder Representation from Transformers, is a lan-

guage tool that surpasses other existing models in language understanding and learning.

It achieves this by utilizing an innovative approach to applying bidirectional training of

the transformer [91] to language modeling.

The effectiveness of language model pre-training has been demonstrated in enhanc-

ing numerous natural language processing tasks [17, 35, 67, 70]. Moreover, modern NLP

systems rely heavily on pre-trained word embeddings, which have been shown to provide

substantial benefits compared to embeddings that are learned from scratch [89]. Some of

the tasks that benefit from language model pre-training encompass sentence-level prob-

lems like natural language inference [7,96] and paraphrasing [20], which seek to assess the

correlation between sentences by examining them as a whole, and token-level operations

such as named entity recognition [78] and question-answering [73], where models need to

generate detailed results at the token level.

There are two primary methods for utilizing pre-trained language models in down-

stream tasks: feature-based and fine-tuning. The feature-based technique, exemplified

by ELMo [67], utilizes task-specific architectures that incorporate the pre-trained repre-

sentations as additional features. On the other hand, the fine-tuning method, such as

Chapter 2. Background 16

the Generative Pre-trained Transformer (OpenAI GPT) [70], incorporates minimal task-

specific parameters and is trained on downstream tasks by fine-tuning all pre-trained

parameters. During pre-training, both approaches share the same objective function, in

which they utilize unidirectional language models to acquire general language represen-

tations.

Figure 2.3: BERT uses a bidirectional transformer encoder, in which the representations

are jointly conditioned on both left and right context in all the layers.

Unidirectional language models process input sequences in a left-to-right or right-to-

left manner. Enforcing these limitations is not optimal for sentence-level tasks and can be

highly detrimental when implementing fine-tuning based techniques for token-level tasks

like question-answering, which require incorporating context from both directions. BERT

is considered to be bidirectional that trains the language model bidirectionally, which

Chapter 2. Background 17

enables it to have a more profound and comprehensive understanding of the language

context and flow compared to a single directional model. In essence, a bidirectional model

can comprehend the meaning of a word based on its entire context. Figure 2.3 depicts

BERT model’s bidirectional architecture [19].

Figure 2.4: Two versions of BERT, depending on the number of encoders stacked over

top of each other. BERT-Base model (left) has 12 Encoder Layers, with 768 Hidden

Size and 12 Self-Attention Heads (L = 12, H = 768, A = 12). In contrast, BERT-Large

model (right) has 24 encoder layers, with 1024 Hidden Size and 16 Self-Attention Heads

(L = 24, H = 1024, A = 16).

BERT consists of two phases: pre-training and fine-tuning. In essence, BERT is pre-

trained on unlabeled text datasets (the BooksCorpus [107] with 800M words and English

Wikipedia with 2,500M words) to help the model understand language, followed by fine-

tuning on specific tasks. During the fine-tuning phase, the model is initialized with the

pre-trained parameters, and then all parameters are fine-tuned using task-specific data.

Chapter 2. Background 18

BERT is applicable to various downstream tasks, including Sentiment Analysis, Question-

Answering, Text Classification, among others. It is noteworthy that BERT’s architecture

remains consistent across various tasks, and there are only minor distinctions between

the pre-trained and ultimate downstream architecture. Each downstream task has its

own separate fine-tuned model, while they are all initialized with the same pre-trained

parameter [19].

The goal of pre-training is to teach BERT “What is Language?” and “What is Con-

text?”. To achieve this, BERT is trained simultaneously on two unsupervised tasks [19]:

• Masked Language Modeling (MLM) inspired by the Cloze task [87], for

which BERT receives a sentence in which some words are randomly masked, and

the objective is to independently and simultaneously predict the original token for

these masked tokens. Unlike pre-training with a left-to-right language model, the

MLM objective allows the representation to combine the left and right contexts,

enabling pre-training of a deep bidirectional Transformer [19].

• Next Sentence Prediction (NSP), in which BERT is presented with two sen-

tences, and it determines whether the second sentence is the subsequent sentence

in the original document, aiding BERT’s comprehension of context across multiple

sentences [19].

By jointly training both unsupervised tasks and minimizing their combined loss, BERT

develops a robust understanding of language [19].

In order to enable BERT to tackle a range of downstream tasks, the input represen-

tation can distinctly represent a single sentence or a pair of sentences (such as a question

and answer) using a single token sequence [19].

During the random masking procedure for Masked Language Model, a randomly se-

lected word is masked 80% of the time (substituted with the [MASK] token). For instance,

the man went to the store →the man [MASK] to the store. While in

Chapter 2. Background 19

Figure 2.5: BERT overall pre-training procedure. [CLS] is a special token, which is added

to the start of every input sequence and [SEP] is another special token, which is used to

separate first sentence from the second sentence.

10% of cases, this randomly chosen word is replaced with another random word, e.g.

the man went to the store →the man spoke to the store. The remain-

ing 10% of the time, the randomly chosen word remains unchanged. For example,

the man went to the store →the man went to the store. This proce-

dure forces the transformer to preserve a contextual representation of every single input

tokens, since it cannot determine which token has been replaced with a random to-

ken. [19].

For the next sentence prediction task, 50% of the time the inputs consist of a pair

of sentences where the second sentence is the immediate subsequent sentence. While

in the other 50% of cases, a sentence is randomly selected from the corpus to serve as

the second sentence (assuming it will be unrelated to the first sentence). This can be

Chapter 2. Background 20

illustrated using an example:

Input = [CLS] the boys went to [MASK] store [SEP] they bought

different kinds [MASK] candies [SEP]

Output = IsNext

Input= [CLS] the boys [MASK] to the store [SEP] penguin [MASK]

are flight ##less birds [SEP]

Output = NotNext

The NSP objective of BERT shares similarities with the representation learning objec-

tives employed in [38] and [53]. However, these previous works only transferred sentence

embeddings to downstream tasks, while BERT transfers all parameters to initialize the

downstream task’s model parameter [19].

During the pre-training phase (as depicted in Figure 2.5), the input consists of a pair

of sentences (sentence A followed by sentence B) with certain words being masked. Each

token corresponds to a word and is transformed into initial embeddings by the model.

These embeddings are produced by combining three vectors: Token Embeddings, Seg-

ment Embeddings, and Position Embeddings. The Token Embeddings are pre-trained

embeddings, where this paper utilizes WordPieces [98], which has a vocabulary of 30,000

tokens. The Segment Embedding is a vector that encodes the sentence number and

specifies which sentence each token belongs to (either sentence A or B). The Positional

Embedding is a vector that encodes the word’s position within that sentence. The Seg-

ment and Positional Embeddings are crucial for preserving temporal ordering, as all

vectors are fed into BERT simultaneously, and language models require this ordering to

be maintained. Figure 2.6 presents an example to illustrate how these embeddings are

constructed.

The binary output for the next sentence prediction is represented by C in the output

sequence. C will output 1 if sentence B follows sentence A in context and 0 otherwise.

Furthermore, all word vectors Ti in the output sequence correspond to the outputs for the

Chapter 2. Background 21

Figure 2.6: An example of BERT initial embeddings calculation.

masked language model problem. All of the word vector Ti have the same size and are

generated concurrently. During training, the goal is to minimize the loss, which involves

passing each word vector into a fully connected layered output with the same number

of neurons as the vocabulary size. Then a softmax activation function is applied to this

output layer, consisting of 30,000 neurons in this case, in order to convert a word vector

into a distribution. The distribution’s actual label is a one-hot encoded vector for the

actual word, allowing for comparison with the predicted distribution. The network is

then trained using the Cross Entropy Loss. Note that the output contains all words,

regardless of whether they were masked or not. However, the loss only considers the

prediction of the masked tokens and it disregards all the other tokens that are output

by the network. By doing so, the model ensures that the focus is on predicting these

masked values, increasing the model’s context awareness [19].

The aim of fine-tuning BERT is to enable it to effectively perform specific NLP tasks.

For instance, in a question-answering task, we need to substitute the fully connected

output layers of the network with a linear layer followed by a softmax, that can provide

the answer span to the given question. Following this, we can perform a supervised

training using a question-answering dataset. The training process will not take much

time as only the output parameters are being learned from scratch, while the remaining

Chapter 2. Background 22

Figure 2.7: BERT fine-tuning procedure for question-answering task. Despite different

output layers, the same structure is used for both pre-training and fine-tuning.

model parameters are just fine-tuned slightly.

During the fine-tuning phase, the model is trained by adjusting both the input and

output layers. In the case of question-answering task for example (as shown in Figure

2.7), the input consists of the question followed by a passage containing the answer. In

the output layer, the model would generate the start and end indexes that encapsulate

the answer.

2.3 RoBERTa

RoBERTa [52], which stands for Robustly optimized BERT pre-training approach, is

a modified version of BERT [19] that trains the model for longer time, with a larger

batch over more data (different datasets) and longer sequences of data. This model re-

Chapter 2. Background 23

implements BERT and fixes some hyper parameters while tuning the others [52]. The

re-built model pre-training objective is in competition with other training objectives

that have been proposed before this work, such as perturbed auto-regressive language

modeling as described by XLNet [103].

RoBERTa uses the same architecture as BERT but removes the next sentence predic-

tion pre-training objective. As mentioned before, next sentence prediction objective is

necessary to incorporate long distance relationships within the corpus. This pre-training

task can be helpful in some of the downstream tasks such as Natural Language Inference,

in which understanding the relationship between pairs of sentences is required and neces-

sary. However, by conducting a few experiments and defining different formats of inputs,

the authors of this paper concluded that training without the next sentence prediction

loss outperforms the original BERT model’s performance in most of the downstream

tasks. Thus, eliminating the next sentence prediction loss can improve the performance

of the model [52].

Furthermore, the authors conducted a comparison between static masking and dy-

namic masking strategies for the masked language modeling task. The original BERT

model employed static masking, where the random masking is done only once during

pre-processing. Moreover, in static masking, to prevent the model from being trained

on the same masked sequence in every epoch, each training instance was masked in ten

different ways throughout the training. However, dynamic masking generates a new

masked sequence for each epoch during training rather than pre-computing and saving

the masking pattern. The authors found that using dynamic masking resulted in a slight

improvement in the model’s performance compared to using static masking [52].

To summarize, RoBERTa is trained with larger mini batches on more data using

dynamic masked language modeling, excluding the next sentence prediction loss for ex-

tended period of time [52].

Chapter 2. Background 24

2.4 BART

BART [50], which stands for Bidirectional Auto-Regressive Transformers, is a transformer-

based model which can be employed for a wide range of text generation tasks, including

translation and summarization, etc. as well as various other natural language processing

tasks like question-answering, etc. In essence, BART is a sequence-to-sequence archi-

tecture for natural language comprehension, generation, and translation that incorpo-

rates denoising capabilities [50]. BART utilizes the standard sequence-to-sequence trans-

former [91] architecture, with one exception: ReLU activation functions are replaced with

GeLUs [31].

Figure 2.8: BART model: Denoising sequence to sequence auto-encoder. The corrupted

document, on the left, is encoded bidirectionally using the transformers encoder. Then

the likelihood of the original document, on the right, is computed through an auto-

regressive decoder.

The architecture of BART, depicted in Figure 2.8, is that of an auto-encoder that aims

to remove noise from a corrupted document to recover the original version. The model

consists of a bidirectional transformer encoder that takes in the noisy text, as well as a left-

to-right transformer auto-regressive decoder. To ensure effective noise transformation,

Chapter 2. Background 25

the input to the encoder should not align with the decoder’s output. During the pre-

training phase, the model optimizes the negative log likelihood of the original text [50].

Figure 2.9: Different transformation functions BART uses in pre-training step for cor-

rupting the original input text.

In the pre-training step, BART formulates various innovative transformation objec-

tives (Figure 2.9):

• Token Masking: Similar to the masking strategy proposed by BERT [19], random

tokens are masked (replaced by [MASK] or) in the input sequence, enabling

prediction of the masked tokens based on their contextual meaning [50].

• Token Deletion: Random tokens within the input sequence are deleted. The

model is tasked with identifying the positions of the missing tokens and predicting

their values. Thus, this task is more complicated compared to the token masking

task [50].

• Text Infilling: Instead of masking only one token, a span of tokens is replaced

with a single [MASK] token (inspired by SpanBERT [40]), with the length of the

span ranging from 0 to 3 tokens. Thus, the model learns to identify the number of

missing tokens and predict their values [50].

• Sentence Permutation: The document’s sentences, which are segmented based

on full stops, are randomly shuffled [50].

Chapter 2. Background 26

• Document Rotation: A token is randomly selected from the document and is

moved to the beginning of the document, with the purpose of teaching the model

to identify the correct start for the document [50].

The model is presented with various transformation functions to learn different aspects

of language and improve its ability to adapt and generalize effectively to diverse trans-

formation scenarios [50].

2.5 Longformer

Longformer [5], which stands for the Long-Document Transformer, is a modified version

of the transformer [91] that is capable of processing lengthy documents. The success

of transformers [91] in a variety of natural language tasks, including Transformer-XL

[18] and GPT-2 [71] for generative language modeling and BERT [19] for discriminative

language understanding, partly relies on the self-attention mechanism, which allows the

network to comprehend contextual information from the entire sequence.

The transformer [91] model, while effective, has a significant limitation in that it can

only process a limited number of tokens simultaneously. Thus, processing long documents

poses a major challenge for the original transformer [91] model since it may require split-

ting the document into multiple segments of 512 tokens [41] or truncating the input [41].

In the former approach, the model processes each segment separately, and the predictions

are then combined, but this method prevents the model from establishing connections be-

tween tokens in different segments due to the attention mechanism’s inability to operate

across segment boundaries. On the other hand, the latter approach suffers from informa-

tion loss because of truncation. Therefore, Longformer [5] was developed with the goal of

processing long documents in their entirety, rather than dividing them into segments. To

achieve this, Longformer [5] introduces three different attention mechanisms, which are

illustrated and compared to the original transformer [91] attention mechanism in Figure

Chapter 2. Background 27

2.10. Each of these mechanisms is explained in detail in the following paragraphs.

Longformer model is inspired by the other approaches that involve defining a sparse

attention pattern and avoiding the computation of the full quadratic attention matrix

multiplication. The attention pattern used in this model is most similar to that of the

Sparse Transformer [13], which utilizes a dilated sliding window of blocks with a size of

8x8 provided by BlockSparse [27].

The classic transformer [91] model requires O(n2) memory when processing an input

sequence of length n, as each token in the sequence can attend to all other tokens resulting

in n2 connections (it is important to mention that the transformer transformers the

input sequence into a sequence with the same length). To address this issue, a sliding

window attention mechanism is used, which is similar to convolutional neural networks

(CNNs) [97]. With a sliding window of size w, each token can only attend to itself and

its immediate neighbors within the window, reducing memory requirements to n×w, or

O(n). However, this approach trades off some information as each token only attends to

a limited range of information in a single layer of attention. To compensate for this loss,

multiple stacked layers of sliding window attention are used to allow each token to gather

information from a wider range. Nevertheless, this also involves a trade-off, as deeper

layers may result in slower processing times [5]. Despite this, it is generally assumed

that the most important information is located in the immediate neighborhood of each

individual token [47].

The sliding window attention is merely one of the fundamental components of Long-

former. The second essential component is the dilated sliding window (similar to dilated

CNNs [90]). In the sliding window approach, a significant number of layers might be

required to incorporate the entire sequence’s attention, especially for longer sequences.

To address this, the dilated sliding window component introduces a substantially larger

attention window where the window has gaps size of dilation d, enabling faster integration

of global information across layers [5].

Chapter 2. Background 28

Figure 2.10: Different attention mechanisms introduced by Longformer compared to the

original full attention introduced by transformers [91].

Given the layer structure in a transformer, the sliding window attention (fully local)

can be utilized in the lower layers, while the dilated window can be employed in the

higher layers. This approach is based on the assumption that local information is crucial

in the lower layers to capture local features, while higher layers require more global

information [5].

The third essential component of Longformer [5] is referred to as global+sliding win-

dow. In this approach, sparse global attention is employed where a few designated tokens

from the sequence attend to all tokens at each layer, and any token in the sequence can

attend to those designated tokens at each layer. This provides flexibility to select which

tokens in the sequence are special. These special tokens can receive information from

anywhere in the sequence at each layer and transmit information to any other unit in

the sequence at each layer as well. The memory requirement for this component is

L× (n×w+ s×n× 2) , which is of O(n), where L represents the number of transformer

layers, n is the sequence length, w is the window size, and s is the number of special

tokens. In this case n is multiplied by 2 to account for the fact that each special token

can attend to any token in the sequence, and any token in the sequence can attend to

the special tokens [5].

Longformer was pre-trained on the masked language modeling task, with pre-training

continuing from the RoBERTa [52] released checkpoints, with minimal changes made

Chapter 2. Background 29

to adapt the longformer’s attention mechanism. The window size used was 512 tokens,

which is the size that a classic transformer-based model like RoBERTa [52] can handle

as an entire document [5].

Chapter 3

Literature Review

Question-Answering (QA) is an interdisciplinary research area that merges various related

fields, such as [2]:

• Information Retrieval (IR) is the process of retrieving relevant and useful in-

formation from a collection of data, such as text documents, images, or videos.

Information retrieval systems can be used to search for specific information, such

as a specific document or a particular piece of information within a document, or

to provide a ranked list of results based on their relevance to a user’s query. Exam-

ples of information retrieval systems include search engines, digital libraries, and

enterprise search systems. The goal of information retrieval is to help users quickly

and accurately find the information they need in a large and complex collection of

data. However, these systems do not provide actual answers to questions, leaving

it up to the user to extract the information they need from the returned documents

or parts of a document. While the goal of QA systems is to provide specific answers

to questions rather than just returning full documents or relevant passages, which

is the current practice of information retrieval systems [2].

• Information Extraction (IE) is the process of automatically extracting struc-

tured information from unstructured data sources, such as text documents, web

30

Chapter 3. Literature Review 31

pages, and databases. The goal of information extraction is to convert unstruc-

tured information into structured data that can be easily stored, analyzed, and

used for various purposes, such as populating databases, generating reports, and

supporting decision-making processes. For example, an information extraction sys-

tem might extract named entities (e.g., people, organizations, locations) from a

document and then organize this information into a structured format, such as a

table or a database. The goal of information extraction is to save time and reduce

the risk of errors associated with manual data entry, while providing structured

information that can be easily processed and analyzed by computers. Informa-

tion extraction systems often use techniques such as natural language processing

(NLP), machine learning, and pattern recognition to identify and extract relevant

information [81].

• Natural Language Processing (NLP) is a field of artificial intelligence and

computer science concerned with the interaction between computers and humans

using natural language. It deals with the ability of computers to understand, in-

terpret, and generate human language. NLP techniques are used for tasks such as

text classification, sentiment analysis, named entity recognition, machine transla-

tion, question-answering, and more. The goal of NLP is to enable computers to

understand, interpret, and generate human language as naturally as possible, mak-

ing it easier for people to communicate with machines and for machines to process

and analyze vast amounts of human language data [81].

Question-answering focuses on creating systems that can automatically answer ques-

tions asked by people in a natural language. With various challenges related to syntax,

semantics, and discourse, it has become a significant area of research in recent years.

The field of question-answering research is diverse due to factors such as the range of

information that can be used to answer a question, the type of question, answer type,

source of evidence for answers, and answer retrieval modeling approach. Thus, in the

Chapter 3. Literature Review 32

following sections, we explore the categorization of QA based on these parameters [63].

3.1 Categorization based on Scope or Domain of Ac-

cessible Information for Answering Question

Generally speaking, the task of question-answering is categorized into three different

groups based on the answer and the scope of information it employs to find this answer.

Focus of this thesis is on the extractive question-answering. However, the subsequent

subsections provide individual explanations for each of these categories.

3.1.1 Extractive Question-Answering [93]

For the task of extractive question-answering, the inputs typically include:

1. A question, posed in natural language by a user.

2. A text corpus or document, which contains the information needed to answer the

question. This can be a single document or a collection of documents, such as a

database, a website, or a set of news articles.

3. Optional additional information, such as background knowledge or context, that

can help the system determine the correct answer.

Based on these inputs, the extractive QA system will identify and extract the relevant

sentences or phrases in the given text corpus that contain the answer to the question. The

output will be the most relevant and accurate answer to the question, extracted from the

text corpus. Extractive QA is often used in information retrieval and text summarization

applications, where the goal is to provide quick and accurate answers to questions using

existing text resources [93].

Chapter 3. Literature Review 33

3.1.2 Open Generative Question-Answering [39]

The inputs for an open generative question-answering (OpenGQA) system typically in-

clude:

1. A question, posed in natural language by a user.

2. A text corpus or a knowledge base, which contains the information needed to answer

the question. This can be a collection of documents, a database, a website, a set

of news articles, or a structured knowledge graph.

3. Optional additional information, such as background knowledge or context, that

can help the system determine the correct answer.

Based on these inputs, the OpenGQA system will generate an answer to the question

by combining and synthesizing information from the text corpus or knowledge base, and

any additional information available. The output will be a coherent and contextually

appropriate answer to the question, generated by the system in natural language [39].

OpenGQA specifically refers to an open-domain QA system, meaning that it can

answer a wide range of questions on any topic, rather than being limited to a specific

domain or subject area. The system uses deep learning models, such as transformer-based

neural networks, to generate the answers. The models are trained on large amounts of

text data and are designed to understand the context, relationships, and patterns in the

data, allowing them to generate coherent and contextually appropriate answers [39].

OpenGQA systems have the advantage of being able to answer questions that require

interpretation, opinion, or judgment, as well as factoid questions. However, they can also

be more challenging to develop and may not be as accurate as extractive QA systems for

certain types of questions.

Chapter 3. Literature Review 34

3.1.3 Closed Generative Question-Answering [39]

Closed Generative Question-Answering (ClosedGQA) is a type of question-answering

system that generates answers to questions within a limited scope or domain. Unlike

open-domain QA systems, which can answer questions on any topic, closed-domain QA

systems are designed to answer questions within a specific subject area or domain, such

as medicine, finance, or sports [39].

The inputs for a ClosedGQA system are similar to those of an open-domain QA

system, including a question posed by a user, a text corpus or knowledge base, and any

additional information or context that may be relevant. However, the system is trained

on a smaller, more specific set of data that is relevant to the domain, allowing it to

generate more accurate and relevant answers.

ClosedGQA systems are generally easier to develop and may perform better than

open-domain QA systems for questions within the specific domain. However, they may

not be able to answer questions outside of the domain or those that require knowledge

from multiple domains.

3.2 Categorization based on Question Type

Additionally, the task of question-answering can be categorized into different classes

based on the type of question. In our study, we opted for a straightforward approach

of inputting a question and a passage to obtain the answer span from. However, in the

following subsections we will describe other possible question-answering tasks, classified

based on question type [63].

3.2.1 Multiple-Choice Question-Answering or MCQA

Answering questions with multiple options presents the challenge of equivocal reference

[61], which, coupled with the difficulties of retrieving linguistic and relevant evidence,

Chapter 3. Literature Review 35

can result in misleading solutions using standard information retrieval methods due to

the presence of distracting, distorted options. Thus, the primary challenge in this setting

is eliminating the misleading option [63].

Question 1: Can you tell me about the Mona Lisa painting?

Answer 1: The Mona Lisa is a 16th century portrait painted by the Italian master

Leonardo da Vinci. The subject of the painting is believed to be Lisa Gherardini, the

wife of a wealthy Florentine merchant. The Mona Lisa is renowned for the enigmatic

smile on the subject’s face, which has captured the imagination of art lovers for

centuries. The painting is housed in the Louvre Museum in Paris and is one of the

most famous artworks in the world.

Question 2: Who is the subject of the painting?

Answer 2: The subject of the Mona Lisa painting is believed to be Lisa Gherardini,

the wife of a wealthy Florentine merchant.

Question 3: Where is the painting housed?

Answer 3: The Mona Lisa painting is housed in the Louvre Museum in Paris.

Figure 3.1: An example of Conversational Question-Answering.

3.2.2 Conversational Question-Answering or CQA

In conversational question-answering the primary focus is on the conversation history. In

other words, discourse is a crucial factor in answering conversational questions. Simply

relying on context alone is insufficient as the answer to these type of questions also

depends on the previous conversation [8, 68, 69]. The answer expected can be a simple

fact (factoid question) or contain definitions and complex (non-factoid question). In

Chapter 3. Literature Review 36

this case, the model should be able to understand the context of the conversation and

provide relevant information in response to follow-up questions [63]. Figure 3.1 contains

an example of CQA.

Question: How many dogs are there in the picture?

Answer: Two.

Question: What is on the desk to the right of the keyboard?

Answer: Mouse.

Figure 3.2: Visual Question-Answering Examples.

Chapter 3. Literature Review 37

3.2.3 Visual Question-Answering or VQA

Visual question-answering involves answering questions based on visual content, which

can be either an image or video. This task combines natural language processing and

computer vision techniques [74,102] to generate answers that can be factoid, non-factoid,

yes/no, or any other type. Recent advancements in the field of VQA [11] utilize a

combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks

(RNNs) to convert the image and question features into a common representation [63].

Figure 3.2 shows two examples of VQA.

3.3 Categorizing based on Answer Type

Another method of categorizing current research in the field of question-answering is

based on the type of answer that is expected, which is typically divided into two sub-

categories: factoid and definition (or complex) question-answering. In this thesis we

conducted most of our experiments on SQuAD [73], which is a dataset for factoid as well

as non-factoid QA. Moreover, we briefly explored and conducted a limited number of

experiments on NLQuAD [82], which is a dataset for non-factoid QA. Next subsections

will explain the mentioned categories independently [63].

3.3.1 Factoid Questions Answering

Factoid questions are the questions that seek information about a straightforward fact or

entity. For instance, “What is the capital of India?” can be answered with a single word,

“Dehli”. Factoid questions typically require a brief and straightforward response [63].

3.3.2 Definition-Based or Non-Factoid Question-Answering

Definition-based question-answering [10, 49] involves finding a part of a given passage

that answers the question at hand. For example, a question-answer pair such as “Ques-

Chapter 3. Literature Review 38

tion: What is Machine Learning?” and “Answer: Machine learning is a field that gives

computer systems the ability to learn knowledge automatically”, exemplifies non-factoid

question-answering. The goal of this approach is to locate parts of a passage that fits

the constraints of the question [63].

3.3.3 Hybrid Question-Answering

Answering hybrid questions, such as “What is the second largest planet in the solar sys-

tem?” involves numerous challenges in natural language processing [100]. The response

to such questions could be either factoid or non-factoid, but the primary challenge lies in

selecting relevant information from a knowledge base or passage that satisfies the ques-

tion’s criteria. To achieve this, various semantic clues, such as the answer being a planet,

being contained within the solar system, ranking second, and following a descending

order, must be considered [63].

3.4 Categorization based on Evidence or Answer Source

Information can be stored either as unstructured raw text or as a knowledge graph.

Depending on where the information is stored, we can categorize the type of question-

answering into two subtypes: raw text-based QA and knowledge-based QA (KBQA).

We are focusing on raw text-based QA datasets for this study. However, the following

subsections represent an explanation for the mentioned classes [63].

3.4.1 Raw Text-Based Question-Answering

The difference in reasoning abilities between humans and machines becomes particularly

obvious when answering questions from a passage [63]. Humans can effortlessly identify

the relevant paragraph or sentences in a given passage, while this poses a challenge for

machines [37,44,63].

Chapter 3. Literature Review 39

3.4.2 Knowledge-Based Question-Answering

Information that is represented using an ontology is commonly referred to as a knowledge

graph. In a knowledge graph, information can be depicted as a [subject, relation, object]

triplet, where the relation shows the connection between the subject and object. The

primary challenge here is to map the words in a question onto the graph and find the

appropriate connections between nodes to obtain the answer [56]. Researchers have

been drawn to this field due to the opportunity to progress from simple question-answer

mapping [106] to breaking down the question into smaller parts and using deep learning

models to process each one [36,63].

3.5 Categorization based on Modeling Approach

The classification of QA models can be divided into rule-based, machine learning-based,

and deep learning-based models. This ranges from early word matching models to the

more recent transformer-based models. In this work, the main focus is on transformer-

based models and enhancing their performance by augmenting additional information

with them. Regardless, in the subsequent subsections, each of the noted categories will

be defined in details [63].

3.5.1 Rule-Based Models

In most rule-based models, different rules are designed based on the type of WH question

[76]. Language processing tasks such as semantic class tagging and entity recognition play

a significant role in these systems. A rule can consist of a logical combination of any of

these tasks. Each rule assigns points to all sentences of the input [43]. After all rules have

been applied, the sentence with the highest score is returned as the answer. Currently,

models for low-resource languages are mainly based on such rules [88], despite others have

shifted to machine learning or deep learning-based systems, which have shown significant

Chapter 3. Literature Review 40

performance improvement [63].

3.5.2 Machine Learning Based Models

In the majority of approaches utilizing machine learning models, the parsing result of

a question is used for classification tasks like support vector machine (SVM), decision

tree (DT), and naive bayes (NB). Other problems such as predicting whether a given

community question will receive an answer or not, can also be tackled by machine learning

through the use of predefined features sets [63].

3.5.3 Deep Learning Based Models

The advancement in QA research has shifted from traditional machine learning models

to deep learning models, largely due to the increased availability of computing power and

the introduction of Recurrent Neural Network (RNN) models in the text processing field.

Currently, the leading technique for a question-answering task is to fine-tune pre-trained

transformer models like Google’s BERT [19] or OpenAI’s GPT [9] [63].

3.6 A Few Examples of Previously Proposed Question-

Answering Models

In the next subsections we will specifically describe two of the studied models during

reviewing the literature, for the task of question-answering.

Chapter 3. Literature Review 41

3.6.1 LSTM-based Deep Learning Models for Non-factoid An-

swer Selection [86] – An example of multiple choice question-

answering

The authors of this article claim that previous investigations into the answer selection

issue have utilized feature engineering methods, linguistic tools, external resources, and

other approaches. Nevertheless, these approaches have several drawbacks. For instance,

these models’ reliance on additional resources may not be consistently possible, while

models that employ linguistic tools are subject to systematic complexity. Instead, the

authors propose a deep learning framework for the answer selection task that utilizes a

bidirectional long short term memory, Bi-LSTM [26], model on both the question and

the answer [86].

The answer selection problem is to find the best answer among the answer candidates

a1, a2, ..., ak for a given question q. The correct answer to the given question might be

only semantically related to the question and not lexically. This is the biggest challenge

of this task. Furthermore, the answers provided can be noisy and may contain irrelevant

information, further complicating the task [86].

There are three distinct categories of deep learning-based existing methods for the

answer selection task, and the proposed framework in this study belongs to the first

group [86]:

• First, the methods which learn the question and answer representation and measure

the similarity between them using different similarity metrics [21, 24,104].

• Second, methods in which a joint feature vector is constructed using both question

and the answer and then the task of answer selection is converted to a classification

or learning-to-rank problem [92].

• Third, the models that use textual generation for answer selection and generation

Chapter 3. Literature Review 42

[4].

RNNs encounter issues with vanishing and exploding gradients, and they struggle with

retaining long-term memory despite their effectiveness in capturing short-term memory.

On the other hand, LSTMs [34] address these problems through the use of a context

vector for long-term memory and a state (or hidden) vector for short-term memory,

thereby reducing the gradient vanishing and exploding problem. However, single direction

LSTMs [34] are limited in their ability to incorporate contextual information from future

tokens [86].

A bidirectional LSTM [26] has the ability to maintain sequential context information

in both directions by processing the sequence in two directions. With the Bi-LSTM [26]

model, the input sequence is processed independently in both the forward and reverse

directions, producing two separate sequences of LSTM output vectors. The overall output

at each time step is computed using either max pooling, min pooling, or concatenation

of the two output vectors from both directions. The framework then employs cosine

similarity to measure the distances between the question and answer representations in

order to identify the correct answer [86]. The fundamental architecture proposed by this

paper is illustrated in Figure 3.3.

Furthermore, to enhance performance and preserve local linguistic information, the

authors incorporate a Convolutional Neural Network (CNN) structure into the Bi-LSTM

[26] architecture. Utilizing CNN filters on top of the Bi-LSTM [26] model results in

improved embeddings for both the question and answer [86]. The architecture with this

added CNN structure is illustrated in Figure 3.4.

Moreover, the authors proposed a straightforward attention model to differentiate the

correct answer based on the given question. This approach has been employed previously

in several other natural language processing tasks, including machine translation [4, 85],

sentence summarization [77], and factoid question-answering [32, 83]. This model gener-

ates answer embeddings in accordance with the question context by utilizing both the

Chapter 3. Literature Review 43

Figure 3.3: The basic Bi-LSTM [26] architecture proposed by this work [86] for answer

selection task.

question representation and the answer choices provided. The attention mechanism as-

signs higher weights to words that are deemed more significant. In this mechanism, the

Bi-LSTM [26] hidden vector of the answer is first multiplied by a coefficient, which is

computed using the question’s average pooling vector, and then updated to a new hid-

den vector. Finally, the original question representation and the updated answer’s hidden

vectors are inputted into the CNN or mean/max pooling layer [86]. Figure 3.5 illustrates

this architecture.

The authors conducted an evaluation of their proposed approach on two datasets and

discovered that concatenating the last vectors from both directions yielded the poorest

performance. In addition, utilizing max pooling yielded better results than average pool-

ing. Moreover, the introduction of the attention model enhanced the performance of this

architecture. According to their final assertion, the experimental outcomes reveal that

their proposed method outperforms numerous robust baselines [86].

Chapter 3. Literature Review 44

Figure 3.4: The Bi-LSTM/CNN architecture proposed by this work [86] for answer se-

lection task.

3.6.2 Alignment over Heterogeneous Embeddings for Question-

Answering [99] – An example of using information re-

trieval systems in question-answering

As stated by the authors of this paper, there are numerous neural deep learning [57]

techniques available for the task of question-answering [79, 94, 95]. Therefore, other ap-

proaches, such as alignment methods [22, 84] that operate across various levels of rep-

resentation, are no longer regarded as significant or effective. Furthermore, existing

alignment methods do not consider contextualized word/sentence representations for the

purpose of question-answering, causing them to underperform compared to supervised

neural methods. For the first time, this paper proposes an unsupervised alignment ap-

Chapter 3. Literature Review 45

Figure 3.5: The Bi-LSTM [26] with attention architecture proposed by this work [86] for

answer selection task.

proach for non-factoid question-answering that considers contextualized representations.

This method models the underlying text at different levels of representation, including

character, word, and sentence [99].

This paper presents two distinct formats for addressing the task of non-factoid question-

answering [99]:

• Multiple Choice Question-Answering aims at identifying the correct answer

to the given question from a set of possible answers using a supporting explanatory

text that provides supplementary information obtained from an external knowledge

base [99] (as depicted in Figure 3.6).

• Answer Sentence Selection aims at locating the sentence that includes the ac-

curate information to answer the given question, among the available candidate

answers that are structured as sentences [99].

As previously stated, various neural supervised techniques have been proposed for

the question-answering task, utilizing stacked architecture and sometimes equipped with

an attention mechanism, such as those discussed in [29, 79, 101]. While, some other ap-

proaches combine neural methods with query expansion techniques [58,60,62]. Nonethe-

Chapter 3. Literature Review 46

Question: Which sequence of energy transformation occurs after a

battery-operated flashlight is turned on?

1. electrical → light → chemical

2. electrical → chemical → light

3. chemical → light → electrical

4. chemical → electrical → light

Supporting paragraph(s): A chemical cell converts chemical energy into

electrical energy; a flashlight chemical energy to light energy.

Figure 3.6: An example of a multiple-choice question along with the supporting paragraph

extracted from an external knowledge base.

less, all these methods heavily rely on the selected training data and the creation of

knowledge bases, which can be costly. Conversely, the method proposed by this paper is

unsupervised and does not necessitate any training [99].

Alignment over Heterogeneous Embeddings (AHE) is the name given to the proposed

approach, which leverages existing information retrieval (IR) components to identify the

relevant paragraphs from the knowledge base (KB), based on the provided question and

candidate answers. Subsequently, the algorithm aligns each word in the question and

answer choices with the most pertinent word in the selected paragraphs to determine

the correct answer. Consequently, the fundamental aspect of this methodology is the

computation of the score for each candidate response via the alignment of two texts [99].

Regarding multiple choice question-answering, the first text consists of the question

concatenated with each candidate answer individually, while the second text comprises

the supporting paragraph, which consists of two or three sentences extracted from the

Chapter 3. Literature Review 47

knowledge base. However, for the answer selection task, the first text is the given ques-

tion, and the second text is each of the provided answer sentences [99].

Figure 3.7: AHE [99] architecture for multiple-choice question-answering.

The alignment approach employed in both scenarios utilizes contextualized embed-

dings at three distinct levels of abstraction: character, word, and sentence. To generate

the character-based embedding, the paper utilizes the FLAIR contextual character lan-

guage model [1], which incorporates a Bi-LSTM [26] network to create character embed-

dings in both forward and backward directions, with the outputs from both directions

concatenated at the end. Moreover, two different word-based embedding techniques

are utilized: bidirectional encoder representations from transformers (BERT [19]) and

GloVe [66]. Sentence-based representation is created using InferSent [16] embeddings.

Finally, the unsupervised variant of the NoisyOr formula is employed to aggregate the

scores of candidate answers over these four distinct embedding representations [99].

NosiyOrM(i) = 1− (
M∏

m=0

(1− αm × Sm
i)) (3.1)

This calculation determines the total score for answer candidate i. In this equation,

M represents the total number of representations, which is four in this particular sce-

nario. Sm
i denotes the score of answer candidate i in representation m. Lastly, αm is a

Chapter 3. Literature Review 48

hyperparameter used to adjust high distributions of answer probabilities [99].

Additionally, the paper implemented a meta-classifier to directly learn the aggregation

function from the data. This meta-classifier contains two fully connected dense layers

with hidden sizes of 16 andK, respectively, whereK is the maximum number of candidate

answers for a given dataset. The activation function used in the first dense layer is tanh,

while softmax is applied to the second output layer [99].

Figure 3.8: Alignment score computation of AHE [99].

To compute alignment scores for character-based and word-based representations,

cosine similarity is used on the embedding vectors of the input query tokens Qi and the

supporting knowledge base paragraph tokens KBj. The resulting similarity matrix is

then fed through a max-pooling layer to find the most relevant supporting paragraph

for each query token. The resulting max-pooled vector is multiplied by the IDF (inverse

document frequency) of the query tokens, and the results are summed to produce the

overall alignment score for a given query Qa (question Q concatenated with candidate

answer a) and supporting paragraph Pj. Figure 3.8 illustrates the alignment component

of AHE [99] architecture for character and word representations. For sentence-based

representation, the alignment score between the query Qa and the supporting paragraph

Chapter 3. Literature Review 49

Pj is computed as the dot product between the two, which is then normalized using

softmax across all candidate answers [99].

AHE [99] was evaluated on the two different QA settings mentioned earlier, and the

results indicate that it has a consistent and robust performance across all three studied

datasets. Additionally, the authors reported that AHE outperforms many neural archi-

tectures, including some of the RNN-based models that incorporate augmented attention

mechanisms. Ultimately, they concluded that using a combination of two or more embed-

ding representations is more effective than relying on a single embedding representation

alone [99].

Chapter 4

Methodology

This study focuses on transformer-based models for extractive question-answering, with

the objective of evaluating their performance and suggesting a feature-augmented archi-

tecture to enhance their effectiveness.

4.1 Transformer-Based Models for the task of Ex-

tractive Question-Answering

As previously stated, all transformer-based language models undergo pre-training on

unsupervised tasks such as masked language modeling and next sentence prediction,

before being fine-tuned on various downstream tasks using task-specific data. When

examining these architectures for the purpose of extractive question-answering, it can

be observed that there is an additional linear layer placed on top of the base models to

identify the span of the answer. The input to each of theses transformer-based models

is a single packet consisting of the question and the passage, containing the answer to

the given question, separated by a [SEP] token, and the outputs are the start and end

positions of the answer span [19].

For the task of question-answering, in the fine-tuning step, the mentioned models use

50

Chapter 4. Methodology 51

Figure 4.1: Start of answer index prediction in BERT model. Start is a vector of weights,

which is learned by the last linear layer used on top of BERT to classify the start and

end of answer. The same weights are applied to every position. Token with highest

probability is chosen as the start of answer.

Start Token Classifier Vector (S) and End Token Classifier Vector (E) to predict the

beginning and end of the answer span, respectively. These two vectors are only generated

during the fine-tuning stage. The model then calculates the dot product between the last

hidden states (final embeddings) and S vector, and applies a softmax activation function

to the results of these dot products, to determine the highest probability for the start of

the answer. Similarly, to predict the end of the answer span, the model follows the same

process using the E vector [19].

The probability of word i being the start of answer span is calculated using this

formula [19]:

Pi =
eS.Ti∑
j e

S.Tj
(4.1)

Chapter 4. Methodology 52

Figure 4.2: End of answer index prediction in BERT model. Same as the start vector,

end is a vector of weights, which is learned by the last linear layer used on top of BERT.

The same weights are applied to every position. Token with highest probability is picked

as the end of answer.

In this formula Ti is the final embedding of the token i and . specifies dot product.

While, the probability of word k being the end of answer span is [19]:

Pk =
eE.Tk∑
j e

E.Tj
(4.2)

Finally, the score of a candidate span starting at position i and ending at position

k, where k ≥ i, is S.Ti + E.Tk. The goal is to predict the answer span with the highest

score as the correct answer to the given question [19].

The pre-trained versions of all the models for the task of questions answering are

provided by the transformers package on Huggingface website. These pre-trained models

come equipped with a span classification head on top of the base model, enabling them to

perform extractive question-answering tasks like question-answering using SQuAD [73].

https://huggingface.co/docs/transformers/main/en/index

Chapter 4. Methodology 53

Thus, as mentioned previously, the span classification head consists of a linear layer on

top of the hidden-states output, which generates span start and span end logits. However,

in order to enhance the base model in all of the studied transformer-based models, we

modified the architecture in order to incorporate additional linguistic features into each

model.

4.2 Feature-Augmented Architecture

Despite the performance metric of transformer-based models being high (in most of the

downstream natural language tasks), basic Natural Language Understanding (NLU) er-

rors are still present, particularly when the linguistic structures are complicated and the

model faces complex logic. NLU error is a type of error that occurs in the processing

of natural language input. It refers to a failure in correctly interpreting the meaning or

intent behind a spoken or written sentence. This can happen when the language model

used for NLU does not have enough context or data to accurately understand the input,

or when the input is poorly formed or unclear. As a result, the output generated by the

NLU system may be incorrect or not aligned with the intended meaning, leading to an

NLU error [105].

This motivates us to create a model that integrates additional linguistic features to

enhance the ability of the studied transformer-based models to comprehend linguistic

structures, reducing the number of NLU errors compared to the predictions of the base

models.

The architecture we propose involves augmenting linguistic features and draws in-

spiration from the work on feature engineering by [105]. However, our contribution is

the extension of this framework to various transformer-based models, as well as a few

modifications to the original architecture presented by [105] resulting in different variants

of this architecture. The backbone model for our proposed architecture can be any of

Chapter 4. Methodology 54

the studied transformer-based natural language models (i.e. BERT [19], RoBERTa [52],

BART [50] and Longformer [5]). We utilized the SpaCy NLP package to extract linguistic

features from the context passage and question.

4.2.1 Linguistic Features

The utilized subset of linguistic features include token-level features for both questions

and answers. We selected token-level features to align with the token-level input used

in transformer-based models architecture. The features set for each token includes four

attributes. In this work we use off-the-shelf feature extraction tools, however, it is possible

to extend this features set.

Named Entity Recognition

Named Entity Recognition (NER) is a subtask of Natural Language Processing (NLP)

that involves identifying named entities in a text, such as person names, companies,

organizations, locations, products and so on. NER is an important step in the process of

text analysis, as it allows for the extraction of structured information from unstructured

text data. For example, a NER system can be used to extract and categorize names,

places, and organizations from news articles or social media posts. The results of NER can

then be used for various purposes, such as information retrieval, relationship extraction,

and text classification. NER systems can use various techniques, including rule-based

methods, machine learning and deep learning methods, to perform the recognition task.

Part-of-Speech Tag

Part-of-Speech (POS) tagging is a task in Natural Language Processing (NLP) that

involves marking each word in a text with its corresponding word class or part-of-speech.

A word class is a category that a word belongs to based on its grammatical properties

and its role in a sentence.

Chapter 4. Methodology 55

There are several common categories of parts-of-speech, including nouns, verbs, ad-

jectives, adverbs, prepositions, and pronouns. In English, for example, nouns are words

that refer to objects, people, places, and ideas, verbs are words that express actions or

states, and adjectives are words that describe nouns.

POS tagging is a crucial task in NLP as it helps to disambiguate words and provides

information about the grammatical structure of sentences. This information is often used

as an input for other NLP tasks, such as Named Entity Recognition (NER), Parsing, and

Text Classification, among others.

Syntactic Dependency

Syntactic dependency (DEP) refers to the relationship between the words (or tokens) in a

sentence and how they are connected to each other to form a complete and grammatically

correct sentence. In syntactic dependency, words in a sentence are represented as nodes

and the relationships between the words are represented as directed edges or arcs. The

directed arcs capture the syntactic relationships between words, such as subject-verb,

object-verb, adjective-noun, etc.

Figure 4.3: An example of dependency tree, showcasing the syntactic interrelations

among words within a sentence. The red labels signify the POS attributes of individual

words while the green labels correspond to the DEP features.

Chapter 4. Methodology 56

The illustration presented in Figure 4.3 exemplifies the syntactic dependencies among

the words in a sentence. In this example, the relationship between the words cars and

autonomous is identified as an adjectival modifier, abbreviated as amod, which denotes

an adjectival phrase that serves to modify a noun (or pronoun). Additionally, the rela-

tionship between the words shift and cars is categorized as a nominal subject, or nsubj

for short, which represents a nominal element that serves as the syntactic subject and the

proto-agent of a clause. Moreover, the relationship between the words shift and liability

is labeled as a direct object, also known as dobj, which refers to the noun phrase that

functions as the accusative object of the verb. Ultimately, the DEP feature is assigned

to the head node by associating its corresponding edge label. Some words might not be

mapped to any DEP features when there is no syntactic relationship pointing towards

them. For instance, DEP feature for the word Autonomous is amod and there is no

DEP feature mapped to the word shift.

Syntactic dependencies provide valuable information about the grammatical structure

of a sentence and can be used to understand the relationships between words, to identify

the main subjects and objects in a sentence, and to determine the role of each word in a

sentence. This information can be useful in various NLP applications, such as Parsing,

Text Classification, Question-Answering, and many others.

Stop Words

Stop words (STOP) are common words in a language that are often filtered out before

natural language processing because they carry little to no meaning and are considered

to be of little value for most NLP tasks. Examples of stop words in English include a, an,

the, and, in, of, etc. The choice of stop words can depend on the specific NLP task, the

language being processed, and the domain or subject matter of the text being analyzed.

Stop words are often removed from a text corpus to reduce its size, speed up processing

times, and improve the results of NLP tasks by eliminating irrelevant information. The

Chapter 4. Methodology 57

list of stop words can vary, but typically includes high-frequency function words such as

articles, prepositions, conjunctions, and pronouns.

Figure 4.4: General Feature Augmentation Architecture. The component on the right

side first extracts the linguistic features from question-passage pair then modifies them

using a neural network.

4.2.2 Variants of Feature-Augmnted Architecture

General Feature Augmentation Architecture

The outputs of named entity recognition (NER), part-of-speech (POS), and dependency

parsing (DEP) are presented in the form of string labels. To employ these features as

inputs, we perform a conversion of these string labels into integer values. For instance,

we convert 18 distinct name entity labels into integers ranging from 1 to 18. The last

feature, STOP, is a true/false binary value that we map to 1 or 2, respectively, without

any additional processing. Given a paragraph context and a question, we extract these

four features from both context passage and question, which are tokenized using BERT’s

Chapter 4. Methodology 58

[19] tokenizer. For special tokens, such as [CLS] and [SEP], we consider the value of

0 for each of these four features. The resulting vector is then padded to match the

maximum sequence length (max seq len), which is the same size as the backbone model’s

maximum sequence length. These features are subsequently passed into a specific neural

network, which produces a vector that encompasses aggregated information from all of

these features.

The outputs generated by the transformer-based model and the linguistic features

component are merged to create an input for the last linear layer, located on top of the

transformer-based models for answer span detection. The output of this linear layer will

be passed through a softmax layer. The outcome of the softmax serves as the start and

end of the answer span. The proposed general architecture for integrating features with

transformer-based models is depicted in Figure 4.4.

Figure 4.5: Direct Feature Augmentation Architecture. In this variant of the architecture

the neural network component is removed from the General Feature Augmentation Ar-

chitecture.

Chapter 4. Methodology 59

Direct Feature Augmentation Architecture

A feasible alternative of the general architecture is to utilize the extracted features di-

rectly, without feeding them into any neural network and remove the neural network

component completely from the general architecture (shown in Figure 4.5). That is, we

concatenate the extracted feature vectors with the last hidden layer vectors calculated

by the transformer-based model.

Figure 4.6: LSTM Feature Transformation Architecture. In this variant of the architec-

ture the neural network component from the General Feature Augmentation Architecture

is replaced with an LSTM [34] layer to transform the features.

LSTM Feature Transformation Architecture

Moreover, the neural network component from the general architecture can be replaced

with a Long-Short Term Memory (LSTM, [34]). Figure 4.6 illustrates this variation of

the base architecture. That is, we concatenate the modified feature vectors (through an

LSTM [34] layer) with the last hidden layer vectors produced by the transformer-based

Chapter 4. Methodology 60

model.

Figure 4.7: Linear Feature Transformation Architecture. In this variant of the architec-

ture the neural network component from the General Feature Augmentation Architecture

is replaced with a linear layer to transform the features.

Figure 4.8: Linear Layer used in the Linear Feature Transformation Architecture.

Chapter 4. Methodology 61

Linear Feature Transformation Architecture

Additionally, the neural network element within the linguistic feature component in the

general architecture can be substituted by a basic linear layer succeeded by a rectified

linear unit (ReLU) activation layer, as illustrated in Figure 4.7. This thesis employed a

4-by-3 linear layer architecture, depicted in Figure 4.8, for aggregating information from

all the features.

Chapter 5

Experiments and Results

In this Chapter, we report, compare and discuss the experimental results of differ-

ent transformer-based models as well as the results of the proposed feature-augmented

transformer-based architecture and its different variants. First, we will give a brief sum-

mary for the two question-answering datasets that we used. Furthermore, we will cover

and explain all the performance metrics that are commonly used to evaluate question-

answering models. Moreover, we will discuss and compare the performance of proposed

architecture for different question types. Additionally, an ablation study will be per-

formed on one of the studied question-answering datasets to investigate the impact of

particular features on the proposed feature-augmented transformer-based architecture.

Finally, some case studies will be provided demonstrating the efficacy of some particular

employed linguistic features.

5.1 Stanford Question Answering Dataset [73]

SQuAD [73], which stands for Stanford Question Answering Dataset, is a popular bench-

mark dataset for evaluating question-answering models. It consists of a large set of

questions (over 100,000) that are based on a diverse set of texts, along with their corre-

sponding ground truth answers [73].

62

Chapter 5. Experiments and Results 63

The text passages in this dataset come from a diverse set of sources, including news

articles, Wikipedia pages. For each passage, crowdworkers were assigned the duty of

generating up to 5 questions and answering them using the content of passage. These

questions were required to be entered into a designated text field, while the corresponding

ground-truth answers had to be highlighted within the passage. Furthermore, the workers

were prompted to ask questions utilizing their own phrasing, without using the words

from the paragraph [73].

Previously available datasets for reading comprehension suffer from one of these two

issues:

• Datasets that are of high quality, such as MCTest [75] and ProcessBank [6], are

too small to train modern data-intensive models. Data-intensive refers to a type of

computing or data processing that involves handling and analyzing large amounts

of data, often in parallel or distributed computing environments.

• Large datasets, such as those proposed and used by [32] and [33], are semi-synthetic

and do not have the same features as explicit reading comprehension questions.

SQuAD dataset was introduced as a solution to the demand for a comprehensive reading

comprehension dataset that is both large in size and high in quality [73].

This dataset is unique in that it requires models to not only generate an answer

to a question but also to locate the answer within the given text. This is because the

questions are designed to be answerable by selecting a span of text from the corresponding

passage. Therefore, SQuAD [73] is often used to evaluate models that perform both

reading comprehension and text understanding tasks [73].

SQuAD [73] has been used to evaluate a variety of models, from traditional rule-

based systems to modern deep learning models. The current state-of-the-art models for

SQuAD [73] use deep learning techniques such as transformers [91] and other transformer-

based models (e.g. BERT [19]).

Chapter 5. Experiments and Results 64

Passage: The Normans (Norman: Nourmands; French: Normands; Latin: Nor-

manni) were the people who in the 10th and 11th centuries gave their name to Nor-

mandy, a region in France. They were descended from Norse (”Norman” comes from

”Norseman”) raiders and pirates fromDenmark, Iceland and Norway who, under

their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through

generations of assimilation and mixing with the native Frankish and Roman-Gaulish

populations, their descendants would gradually merge with the Carolingian-based

cultures of West Francia. The distinct cultural and ethnic identity of the Normans

emerged initially in the first half of the 10th century, and it continued to evolve

over the succeeding centuries.

Question 1: In what country is Normandy located?

France

Question 2: From which countries did the Norse originate?

Denmark, Iceland and Norway

Question 3: What century did the Normans first gain their separate identity?

10th century

Question 4: What is France a region of?

Not answerable

Figure 5.1: An example of question-answer pairs for a sample passage from the SQuAD

[73] dataset. Each of the answers is a span of text extracted from the passage.

SQuAD [73] has also been used as a benchmark for transfer learning, which is a

technique for training models on one task and then applying the learned knowledge

Chapter 5. Experiments and Results 65

to another related task. Transfer learning has been shown to be highly effective for

improving the performance of question-answering systems on SQuAD [73] and other

similar natural language processing tasks. All these models have helped to advance the

state-of-the-art in NLP and have led to many new applications of question-answering

technology in fields like customer service, education, and healthcare [73].

Furthermore, there are two versions available for this dataset:

• SQuAD 1.1 is the initial release of SQuAD [73] and it encompasses more than

100,000 question-answer pairs derived from over 500 articles.

• SQuAD 2.0 merges the question-answer sets from its predecessor version with

more than 50,000 unanswerable questions that resemble answerable ones, created

through adversarial writing by crowdworkers. Consequently, any system utilizing

this dataset must be capable of not only predicting answers when feasible, but also

recognizing instances where the paragraph does not provide support for an answer,

and refraining from answering in such cases. Figure 5.1 contains an example of

question-answer pairs for a passage taken from SQuAD 2.0.

As apart of the present study, we aim to investigate the efficacy of individual transformer-

based models and the proposed feature-augmented architecture across different question

types (e.g. What, Where, When, etc.) that are present in SQuAD [73] dataset. Accord-

ingly, we classified the dataset based on the type of question in order to illustrate their

respective distribution. The distribution percentages of each question type in SQuAD [73]

dataset are depicted in Figure 5.2.

https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/
https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/

Chapter 5. Experiments and Results 66

60.9

3.8

5.9

1.5
10.2 0.3

9.8

0.4

6.2

1.0

What

Where

When
Why

How

Whom

Who

Whose

Which

None

Figure 5.2: Different question types in SQuAD [73] dataset.

5.2 Non-Factoid Long Question Answering Dataset

[82]

NLQuAD [82], which stands for Non-Factoid Question Answering Dataset, is the first

dataset that establishes baseline approaches for long-passage non-factoid question-answering,

a challenging task that demands a comprehensive understanding of language at the doc-

ument level. Unlike other question-answering datasets that focus on span detection,

NLQuAD [82] features non-factoid questions that cannot be answered by a brief text

segment and require responses which encompass multiple sentences, including descrip-

tive answers and opinions [82].

This dataset contains 31,000 non-factoid questions and their corresponding long an-

swer passages, sourced from 13,000 news articles from the BBC. The questions and answer

Chapter 5. Experiments and Results 67

passages are extracted from the sub-headings and subsequent body paragraphs of these

articles, respectively [82].

Question: How are people coping in the lockdown?

Passage: China has widened its travel restrictions in Hubei province - the centre of

the coronavirus outbreak - as the death toll climbed to 26. The restrictions will affect

at least 20 million people across 10 cities, including the capital, Wuhan, where the

virus emerged. On Thursday, a coronavirus patient died in northern Hebei province

- making it the first death outside Hubei. [...] We now know this is not a virus that

will burn out on its own and disappear. [...] And we still don’t know when people

are contagious. Is it before symptoms appear, or only after severe symptoms emerge?

One is significantly harder to stop spreading than the other. [...] One doctor, who

requested anonymity, describes the conditions at a hospital in Wuhan.

[...] “I was planning to stay in my apartment because I’m scared to go

to the gym, and I’m scared to go to out in public, and not many people

are willing to go out.” (141 words). Vietnam and Singapore were on Thursday

added to the nations recording confirmed cases, joining Thailand, the US, Taiwan

and South Korea. [...] Taiwan has banned people arriving from Wuhan and the US

state department warned American travellers to exercise increased caution in China.

(passage length: 921 words)

Figure 5.3: An example of question-answer pairs from NLQuAD [82]. The correct answer

span is bolded within the passage.

In the majority of existing question-answering datasets, such as SQuAD [73], ques-

tions are generated by crowdworkers based on provided short passages, and answers

are extracted from these passages. This process of question generation can result in

question-answer pairs that are too easy, as models can simply rely on shallow pattern

Chapter 5. Experiments and Results 68

matching to detect the most relevant text span for a given question [46]. In contrast,

NLQuAD [82] annotations are automatically generated directly from the news articles

themselves, without any human input [82].

Furthermore, NLQuAD [82] stands out from other long-context question-answering

datasets, such as MS MARCO [59] and ELI5 [23], in that it does not use information

retrieval methods to identify supporting documents. The retrieved documents in these

datasets may not always contain all the facts needed to answer a question or may only

be related to the question but not provide a direct answer [82].

As mentioned previously, NLQuAD [82] necessitates a comprehensive understanding

of language at the document level, which is challenging due to the average length of the

documents and answers being 877 and 175 words, respectively. These exceed the max-

imum input length of some current state-of-the-art QA transformer-based models, like

BERT [19] and RoBERTa [52], due to their computational and memory requirements.

Therefore, it is impractical to train and assess (document, question, answer) tuples uti-

lizing these models in an end-to-end fashion and some adjustments are required to make

these model compatible with long question-answering [82].

Furthermore, the questions provided by NLQuAD are typically not self-contained.

For instance, to answer the question “How are people coping in the lockdown?” (Figure

5.3), the question-answering model must read the document to comprehend the idea of

lockdown first and then locate information on people’s behavior in lockdown [82].

In this thesis, we conducted most of our experiments on SQuAD [73] since this is

a well-known benchmark dataset for question-answering task. Moreover, we conducted

some experiments on NLQuAD [82] to investigate the effect of the proposed feature-

augmented architecture on a non-factoid, long question-answering dataset as well.

Chapter 5. Experiments and Results 69

5.3 Performance Metrics for Question Answering

5.3.1 Precision

In natural language processing (NLP), precision is a measure of the accuracy of a system

or model’s predictions. It measures the proportion of true positives (correctly identified

instances) out of all instances that were predicted as positive (i.e. both true positives

and false positives).

The formula for calculating precision is:

Precision =
TP

TP + FP
(5.1)

Here’s a breakdown of the terms used in the formula:

• True positives (TP): Instances that were correctly identified by the model as

positive.

• False positives (FP): Instances that were incorrectly identified by the model as

positive.

In question-answering models, which extract the span of answer, precision is still a

measure of the accuracy of the model’s predictions. However, it is usually calculated

slightly different from other NLP tasks.

For calculating precision for each instance in our dataset, we first standardize the

format of both the predicted answer and the ground truth. This involves removing

articles and punctuation, standardizing white spaces (removing extra white spaces), and

converting the text to lower case. This process is known as normalization. Then we use

the following formula to compute precision for one single sample of our dataset:

Precision = 1.0× num same

len(pred tokens)
(5.2)

Here’s a breakdown of the terms used in the formula:

Chapter 5. Experiments and Results 70

• num same: Number of common tokens between the normalized ground truth and

normalized predicted answer.

• len(pred tokens): Length of normalized predicted answer, or in other words the

number of tokens in the normalized predicted answer.

Finally, we report the average of precision scores calculated for all of the instances in

our evaluation set as the precision score of the model.

5.3.2 Recall

In natural language processing (NLP), recall is another commonly used evaluation metric

that measures the proportion of true positives (correctly identified instances) out of all

actual positive instances in the dataset (i.e. both true positives and false negatives).

The formula for calculating recall is:

Recall =
TP

TP + FN
(5.3)

Here’s a breakdown of the terms used in the formula:

• True positives (TP): Instances that were correctly identified by the model as

positive.

• False negatives (FN): Instances that were missed by the model and were incor-

rectly identified as negative.

Same as precision, in question-answering models, recall is usually calculated slightly

differently than in other NLP tasks. However, it is still a measure of the model’s ability

to correctly answer a question given a context

For calculating recall for each instance in our dataset, we first normalize both the

predicted answer and the ground truth (we explained the normalization process previ-

ously in subsection 5.3.1). Then we use the following formula to compute recall for one

Chapter 5. Experiments and Results 71

single sample of our dataset:

Recall = 1.0× num same

len(truth tokens)
(5.4)

Here’s a breakdown of the terms used in the formula:

• num same: Number of common tokens between the normalized ground truth and

normalized predicted answer.

• len(truth tokens): Length of the normalized ground truth, or in other words the

number of tokens in the normalized ground truth.

Finally, we report the average of recall scores calculated for all of the instances in our

test set as the overall recall score of the model.

5.3.3 F1 Score

In natural language processing (NLP), F1 score is a commonly used evaluation metric

that provides a balanced measure of a system’s precision and recall. F1 score is the

harmonic mean of precision and recall, and it is often used as an overall evaluation

metric for NLP tasks.

The formula for calculating F1 score is:

F1 Score =
2× Precision×Recall

Precision+Recall
(5.5)

In question-answering, F1 score is also a commonly used evaluation metric, and it is

calculated using the similar approach and formula as in other NLP tasks.

We calculate the F1 score of each instance individually and then take the average of

all F1 scores to derive the overall F1 score of the model.

Furthermore, we consider the scenario where neither the predicted answer nor the

ground truth contains an answer (i.e. len(pred tokens) = 0 and len(truth tokens) = 0)

as having an F1 score of 1. However, if either one of them is empty, we assign an F1

Chapter 5. Experiments and Results 72

score of 0. Additionally, if the predicted answer generated by the model and the ground

truth have no common tokens, according to the given formulas, the precision and recall

will both be 0, resulting in an F1 score of 0 as well.

5.3.4 Exact Match

Exact match is a common evaluation metric used to measure the performance of a model

in the question-answering task. Exact match (EM) measures the percentage of questions

for which the model provides an exact and complete answer that completely matches the

ground truth answer.

For calculating exact match for each instance in our dataset, we first normalize both

the predicted answer and the ground truth (we explained the normalization process

previously in subsection 5.3.1). Then, based on the following conditions we determine

the exact match for each sample in our dataset:

• If the normalized predicted answer matches the normalized ground truth answer

exactly (i.e., they have the same text and order of the tokens or in other words

they are identical), then the answer predicted by the model is considered correct

and the exact match score for that instance is 1.

• If the normalized predicted answer does not match the normalized ground truth

answer exactly (not identical), then the exact match score for that instance is 0.

Finally, we calculate the overall exact match score for the model by averaging the

exact match scores for all the instances in our dataset.

5.3.5 Jaccard Index

Jaccard Index is a popular similarity metric used in natural language processing (NLP)

to measure the similarity between two sets of words. It is also known as the Jaccard

similarity coefficient or Jaccard coefficient. In question-answering, the Jaccard measures

Chapter 5. Experiments and Results 73

the similarity between the set of words in the predicted answer and the set of words in

the ground truth answer. These are the steps we followed to compute the Jaccard Index

for each instance in our dataset:

1. Normalize both the model’s predicted answer and the ground truth answer. We

previously explained the normalization process in subsection 5.3.1.

2. Tokenize the ground truth and predicted answers in order to convert them into lists

of words/tokens.

3. Create sets of words from the ground truth answer’s list of tokens and the predicted

answer’s list of tokens.

4. Find the intersection and the union of the two sets of tokens.

5. Calculate the Jaccard Index, which is the ratio of the size of the intersection (inter-

section word length) of the two sets to the size of their union (union word length).

Thus, the formula for calculating Jaccard Index is:

Jaccard Index =
intersection word length

union word length
(5.6)

In order to prevent division by zero, when the sizes of the intersection and union of

the two sets (set of the words from the normalized predicted answer and set of the word

for the normalized ground truth answer) are both zero, we assign a Jaccard Index value

of 1.

Finally, we determine the Jaccard Index of the model by computing the average of

Jaccard Indexes that were calculated for every single instance in our evaluation set.

Chapter 5. Experiments and Results 74

5.4 Experimental Results

5.4.1 Experimental Settings

In all of our experiments on SQuAD [73] dataset, we randomly select 10% of the training

set as the evaluation set, since there is no published test set provided for this dataset,

and the remaining 90% as the training set.

We train all models with AdamW [54] optimizer using a learning rate of 5 × 10−5

and batch size of 16. We used these default hyper-parameters as they are used by

most of the state-of-the-art question-answering models. Additionally, the batch size

is set based on the model’s size and the capacity of our accessible GPU. We use a

cluster of 4 NVIDIA V100 GPUs (Graphical Processing Units) as well as the Cedar

cluster from Compute Canada GPU servers, to conduct all of our experiments. We

perform the essential preliminary configurations on these GPU servers before carrying

out our experiments. Our choice of the Cedar cluster is attributed to its substantial

computational resources.

Furthermore, we only used the base version of each transformer-based model, as we

examined several different experiments.

We use F1 score, Recall, Precision, Jaccard Index and Exact Match as performance

metrics to evaluate the studied transformer-based models for the task of question-answering

in different experiments.

The following subsections present the results of our experiments on SQuAD [73]

dataset, which is a popular question-answering benchmark. Specifically, we carried out

one set of experiments for different variants of our proposed feature-augmented architec-

ture on all question types. Furthermore, we conducted separate experiments to testify

performance of the best variant of the feature-augmented architecture on different ques-

tion types.

Chapter 5. Experiments and Results 75

5.4.2 Comparing Transformer-Based Models on SQuAD using

Different Variants of Feature-Augmented Architecture 4.2.2

for All Questions Types

Direct Feature Augmentation Architecture 4.2.2

Models Experiments F1 Recall Precision Jaccard Index Exact Match

BART-Base
Feature Augmentation 81.28 83.91 83.38 79.86 69.15

No Feature Augmentation 80.55 83.29 82.61 79.24 68.49

RoBERTa-Base
Feature Augmentation 81.23 84.17 83.09 79.76 69.31

No Feature Augmentation 81.15 83.11 83.76 79.65 68.96

Longformer-Base
Feature Augmentation 81.12 83.37 83.33 79.73 69.08

No Feature Augmentation 80.75 84.20 82.04 79.38 68.36

BERT-Base
Feature Augmentation 79.50 83.19 80.88 77.97 67.09

No Feature Augmentation 78.76 82.47 80.32 77.27 66.49

Table 5.1: Comparing the performance of different transformer-based models on SQuAD

using the Direct Feature Augmentation Architecture 4.2.2. This architecture concatenates

the extracted features directly with the output of the backbone model.

In this experiment, we analyze various transformer-based models and compare their

performance for all question types collectively on SQuAD [73]. Furthermore, an inves-

tigation was conducted on the impact of the feature-augmented architecture, which was

designed without a neural network, as explained previously in 4.2.2 and named as Direct

Feature Augmentation Architecture. Table 5.1 illustrates that, generally for most of the

performance metrics, BART exhibits the best performance among all models, followed

by RoBERTa, Longformer, and BERT. Additionally, the performance metrics indicate

that the feature-augmented architecture enhanced the performance of all of the back-

bone models, except precision score in RoBERTa and recall score in Longformer. Table

5.1 presents a few cases of trade-off between precision and recall score, where the pre-

cision score was increased with feature augmentation while the recall score did not (for

Chapter 5. Experiments and Results 76

Longformer-Base model) or the recall score was increased with feature augmentation but

precision score did not (for RoBERTa-Base model). In such cases, since F1 score is a

harmonic mean of precision and recall, it can serve as a reliable indicator of the enhanced

performance of the backbone model with the help of the feature-augmented architecture.

LSTM Feature Transformation Architecture 4.2.2

Models Experiments F1 Recall Precision Jaccard Index Exact Match

Longformer-Base
Feature Augmentation 81.40 84.33 82.87 80.12 69.30

No Feature Augmentation 80.75 84.20 82.04 79.38 68.36

RoBERTa-Base
Feature Augmentation 81.05 84.13 82.73 79.84 68.87

No Feature Augmentation 81.15 83.11 83.76 79.65 68.96

BART-Base
Feature Augmentation 80.89 83.16 83.13 79.67 69.00

No Feature Augmentation 80.55 83.29 82.61 79.24 68.49

BERT-Base
Feature Augmentation 79.32 83.30 80.40 77.85 66.97

No Feature Augmentation 78.76 82.47 80.32 77.27 66.49

Table 5.2: Comparing the performance of different transformer-based models on SQuAD

using the LSTM Feature Transformation Architecture 4.2.2. This architecture concate-

nates the features that are modified throughout an LSTM layer, with the output of the

backbone model.

Table 5.1 displays the outcomes of utilizing a feature-augmented architecture where

we directly merged the extracted features with the backbone model’s output, without

any alteration using a neural network architecture. In contrast, Table 5.2 displays the

results of a feature-augmented architecture that involves feeding the extracted features

through an LSTM layer and subsequently merging them with the backbone model’s

output. This variant of the feature-augmented architecture is named as LSTM Feature

Transformation Architecture and explained previously in 4.2.2. The performance metrics

presented in table 5.2, demonstrate that this approach to feature augmentation is reliable

and effective in enhancing the performance of the underlying backbone models as well.

Chapter 5. Experiments and Results 77

However, the degree of enhancement is greater when utilizing the set of features, directly,

in their original form (results provided in Table 5.1), rather than making modifications

using an LSTM layer (results provided in Table 5.2) in most of the cases. Thus, we

can conclude that Direct Feature Augmentation Architecture 4.2.2 is more successful in

improving the performance of the transformer-based models, compared to LSTM Feature

Transformation Architecture 4.2.2. Moreover, the table reveals that in this variant of the

feature-augmented architecture, Longformer demonstrates the best performance among

all models, followed by RoBERTa, BART, and BERT.

Linear Feature Transformation Architecture 4.2.2

Models Experiments F1 Recall Precision Jaccard Index Exact Match

RoBERTa-Base
Feature Augmentation 81.75 83.61 84.14 80.46 70.10

No Feature Augmentation 81.15 83.11 83.76 79.65 68.96

BART-Base
Feature Augmentation 80.83 83.69 82.89 79.65 68.91

No Feature Augmentation 80.55 83.29 82.61 79.24 68.49

Longformer-Base
Feature Augmentation 80.30 82.91 82.47 78.96 68.22

No Feature Augmentation 80.75 84.20 82.04 79.38 68.36

BERT-Base
Feature Augmentation 78.88 81.42 81.34 77.59 66.64

No Feature Augmentation 78.76 82.47 80.32 77.27 66.49

Table 5.3: Comparing the performance of different transformer-based models on SQuAD

using the Linear Feature Transformation Architecture 4.2.2. This architecture concate-

nates the features that are modified throughout a simple linear layer, with the output of

the backbone model.

Table 5.3 shows the result of utilizing a feature-augmented architecture where we fed

the extracted features through a linear layer, followed by a relu layer, before merging them

with the backbone model’s output. This variant of the feature-augmented architecture is

named as Linear Feature Transformation Architecture and described previously in 4.2.2.

This experiment is conducted across all types of questions on SQuAD [73]. Experimental

Chapter 5. Experiments and Results 78

results, provided in Table 5.3, indicate that this approach of feature augmentation yields

an improvement in the performance of the underlying backbone models. Nonetheless,

the extent of the enhancement achieved by this approach is overally less significant when

compared to the other two variants of the linguistic feature component, namely the

Direct Feature Augmentation Architecture 4.2.2 and the LSTM Feature Transformation

Architecture 4.2.2.

Comparison Between Different Variants of Feature-augmented Architecture

4.2.2 and Different Transformer-based Models

Through a process of averaging various reported performance metrics for different feature-

augmented architecture variants on the SQuAD [73] dataset, we can conclude that the

Direct Feature Augmentation Architecture 4.2.2 has yielded the most significant improve-

ment in the backbone transformer-based model and the overall feature-augmented archi-

tecture performance, with average performance score of 79.02 ±0.75. The second most

effective variant is the LSTM Feature Transformation Architecture 4.2.2, with the aver-

age performance score of 78.92 ±0.79, followed by the the Linear Feature Transformation

Architecture 4.2.2, with average performance score of 78.74 ±1.04. Thus, we have selected

the Direct Feature Augmentation Architecture, which is the most successful variant of the

proposed feature-augmented architecture, for the remainder of our experiments on the

SQuAD [73] dataset.

Moreover, after averaging performance metrics for different transformer-based models

on the SQuAD [73] dataset, we have concluded that RoBERTa [52] exhibits the highest

performance metrics among all models tested, in both cases of no feature augmentation

and different variants of feature augmentation.

Chapter 5. Experiments and Results 79

5.4.3 Comparing Transformer-Based Models on SQuAD using

the Direct Feature Augmentation Architecture 4.2.2 for

What Questions

For this setting, we examine multiple transformer-based models and measure their ef-

fectiveness only for What questions. To do so, we train each model on the complete

training set, using the Direct Feature Augmentation Architecture or architecture with no

augmentation, and then evaluate their performance on What questions from the test set.

The results presented in Table 5.4 indicate that BART displays the highest performance

out of all the models, followed by Longformer, RoBERTa, and BERT, respectively. As

the results show, the feature-augmented architecture was effective for improving the per-

formance of all the models when assessing What questions, except for RoBERTa. This

can show the importance of the selected features set in answering What questions. What

questions are considered as factoid questions (seeking for a single fact/entity). Linguistic

features such as named entity recognition (NER) and part-of-speech (POS) tag can be

helpful in answering these types of questions.

Models Experiments F1 Recall Precision Jaccard Index Exact Match

BART-Base
Feature Augmentation 80.66 83.74 82.46 78.98 68.35

No Feature Augmentation 79.90 82.95 81.63 78.43 67.71

Longformer-Base
Feature Augmentation 80.59 83.18 82.50 78.88 68.43

No Feature Augmentation 80.19 83.97 81.22 78.70 67.74

RoBERTa-Base
Feature Augmentation 80.47 83.63 82.17 78.66 68.61

No Feature Augmentation 80.48 82.55 83.12 78.73 68.38

BERT-Base
Feature Augmentation 78.74 83.01 79.76 77.13 66.29

No Feature Augmentation 78.20 82.33 79.49 76.75 66.09

Table 5.4: Comparing the performance of different transformer-based models on SQuAD’s

What questions using the Direct Feature Augmentation Architecture 4.2.2.

Chapter 5. Experiments and Results 80

5.4.4 Comparing Transformer-Based Models on SQuAD using

the Direct Feature Augmentation Architecture 4.2.2 for

When Questions

In this particular setup, we assess multiple transformer-based models and measure their

effectiveness solely forWhen questions. We accomplish this by training each model on the

complete training set, using the Direct Feature Augmentation Architecture or architecture

with no augmentation, and then evaluating their performance on When questions from

the test set. The outcomes shown in Table 5.5 reveal that RoBERTa achieved the highest

performance among all models, followed by BART, Longformer, and BERT, respectively.

Furthermore, the results indicate that the feature-augmented architecture enhances the

performance of all the models, except Longformer, when evaluatingWhen questions. This

can highlight the significance of the extracted features set for most of the transformer-

based models in answering When questions. When questions are considered as factoid

questions as well and linguistic features such as named entity recognition (NER) and

part-of-speech (POS) tag can be beneficial in answering these types of questions.

Models Experiments F1 Recall Precision Jaccard Index Exact Match

RoBERTa-Base
Feature Augmentation 88.62 89.88 89.95 86.58 79.87

No Feature Augmentation 88.14 89.26 89.40 85.35 79.48

BART-Base
Feature Augmentation 88.52 89.79 90.09 86.30 79.61

No Feature Augmentation 88.35 90.77 89.03 86.12 79.48

Longformer-Base
Feature Augmentation 87.67 89.20 89.24 85.22 78.05

No Feature Augmentation 88.66 90.56 89.49 85.91 78.83

BERT-Base
Feature Augmentation 87.10 89.30 87.94 83.74 77.14

No Feature Augmentation 85.01 87.11 86.15 82.26 74.42

Table 5.5: Comparing the performance of different transformer-based models on SQuAD’s

When questions using the Direct Feature Augmentation Architecture 4.2.2.

Chapter 5. Experiments and Results 81

5.4.5 Comparing Transformer-Based Models on SQuAD using

the Direct Feature Augmentation Architecture 4.2.2 for

Where Questions

In this configuration, we evaluate multiple transformer-based models and assess their

effectiveness in answering only Where questions. Our approach involves training each

model on the entire training set, using the Direct Feature Augmentation Architecture

or architecture with no augmentation, and then testing their performance on Where

questions from the test set. The results, as presented in Table 5.6, indicate that BART

outperformed all other models, with RoBERTa, Longformer, and BERT following in

descending order. Moreover, the results suggest that the feature-augmented architecture

improved the performance of all the models, except for F1, precision and exact match

score of RoBERTa as well as precision and exact match score of Longformer in answering

Where questions. Where questions are considered as factoid questions and extracted

linguistic features set contains features such as named entity recognition (NER) and part-

of-speech (POS) tag, which can be advantageous in answering these types of questions.

Models Experiments F1 Recall Precision Jaccard Index Exact Match

BART-Base
Feature Augmentation 81.98 84.71 84.93 78.88 69.40

No Feature Augmentation 80.67 83.22 83.57 77.11 66.60

RoBERTa-Base
Feature Augmentation 81.71 85.66 83.67 79.76 68.80

No Feature Augmentation 82.02 84.25 85.19 78.80 69.00

Longformer-Base
Feature Augmentation 80.82 83.83 83.07 77.50 67.80

No Feature Augmentation 80.35 83.14 83.08 76.76 68.8

BERT-Base
Feature Augmentation 79.10 82.42 81.43 76.81 66.80

No Feature Augmentation 77.84 82.41 79.22 74.83 65.20

Table 5.6: Comparing the performance of different transformer-based models on SQuAD’s

Where questions using the Direct Feature Augmentation Architecture 4.2.2.

Chapter 5. Experiments and Results 82

5.4.6 Comparing Transformer-Based Models on SQuAD using

the Direct Feature Augmentation Architecture 4.2.2 for

Why Questions

We assess the effectiveness of a few different transformer-based models in answering only

Why questions in this experiment. Our method involves training each model on the whole

training set, using the Direct Feature Augmentation Architecture or architecture with no

augmentation, and then evaluating their performance onWhy questions from the test set.

The results, as shown in Table 5.7, reveal that RoBERTa outperformed all other models,

followed by BART, BERT, and Longformer in that order. Additionally, the outcomes

suggest that theDirect Feature Augmentation Architecture had more impact on the ability

of BART, RoBERTa and Longformer models to answer Why questions, while it had less

effect on improving the performance of BERT model in this regard. Notwithstanding, in

general, the Direct Feature Augmentation Architecture has demonstrated the capacity to

enhance the efficacy of all models to a greater or lesser extent.

Models Experiments F1 Recall Precision Jaccard Index Exact Match

RoBERTa-Base
Feature Augmentation 70.26 78.40 70.37 76.17 40.63

No Feature Augmentation 70.20 79.51 68.59 77.89 39.58

BART-Base
Feature Augmentation 70.30 74.69 73.24 76.05 42.19

No Feature Augmentation 63.51 71.94 62.84 69.52 31.77

BERT-Base
Feature Augmentation 68.25 72.73 70.52 74.05 41.67

No Feature Augmentation 68.92 75.60 69.81 73.55 41.15

Longformer-Base
Feature Augmentation 66.55 69.73 69.08 74.64 42.19

No Feature Augmentation 63.65 72.80 63.06 70.45 35.42

Table 5.7: Comparing the performance of different transformer-based models on SQuAD’s

Why questions using the Direct Feature Augmentation Architecture 4.2.2.

Chapter 5. Experiments and Results 83

5.4.7 Comparing Transformer-Based Models on SQuAD using

the Direct Feature Augmentation Architecture 4.2.2 for

How Questions

In this experiment, we test several transformer-based models to determine their effec-

tiveness in answering How questions. Our methodology involves training each model on

the entire training dataset, using the Direct Feature Augmentation Architecture or archi-

tecture with no augmentation, and then assessing their performance on How questions

taken from the test dataset. The results presented in Table 5.8 indicate that Longformer

was the most successful model, followed by RoBERTa, BART, and BERT, in that order.

Moreover, the results suggest that the Direct Feature Augmentation Architecture had

the most significant impact on the performance of RoBERTa and Longformer in answer-

ing How questions, whereas it had less effect on improving the performance of BART

and BERT in this respect. However, in most cases the Direct Feature Augmentation

Architecture was able to improve the performance of the studied models.

Models Experiments F1 Recall Precision Jaccard Index Exact Match

Longformer-Base
Feature Augmentation 78.88 79.69 84.37 80.08 62.36

No Feature Augmentation 77.79 80.85 81.21 78.49 60.85

RoBERTa-Base
Feature Augmentation 78.53 80.42 83.75 79.20 61.22

No Feature Augmentation 77.79 78.78 83.23 78.23 59.86

BART-Base
Feature Augmentation 77.92 78.42 83.40 79.27 62.13

No Feature Augmentation 78.04 78.28 84.13 78.82 62.13

BERT-Base
Feature Augmentation 77.38 79.81 81.39 77.19 59.18

No Feature Augmentation 77.65 79.19 82.54 77.43 60.54

Table 5.8: Comparing the performance of different transformer-based models on SQuAD’s

How questions using the Direct Feature Augmentation Architecture 4.2.2.

Chapter 5. Experiments and Results 84

5.4.8 Comparing Transformer-Based Models on SQuAD using

the Direct Feature Augmentation Architecture 4.2.2 for

Who Questions

For this setting, we evaluate the effectiveness of different transformer-based models in

answering Who questions specifically. Our approach involves training each model on the

complete training dataset, using the Direct Feature Augmentation Architecture or archi-

tecture with no augmentation, and then measuring their performance on only Who ques-

tions extracted from the test dataset. The outcomes provided in Table 5.9 indicate that

Longformer was the most successful model, followed by RoBERTa, BART, and BERT.

Additionally, the results suggest that the Direct Feature Augmentation Architecture had

the most significant influence on the performance of BART, BERT and Longformer in

answering Who questions, whereas it had less impact on enhancing the performance of

RoBERTa in this aspect. Although the Direct Feature Augmentation Architecture ex-

hibited the ability to enhance performance in the majority of studied transformer-based

models for Who questions.

Models Experiments F1 Recall Precision Jaccard Index Exact Match

Longformer-Base
Feature Augmentation 84.53 86.13 86.01 82.91 78.26

No Feature Augmentation 84.52 86.98 85.30 83.13 77.72

RoBERTa-Base
Feature Augmentation 84.42 87.23 84.77 82.78 78.34

No Feature Augmentation 84.44 85.91 85.70 82.82 78.11

BART-Base
Feature Augmentation 84.52 86.85 85.31 82.80 78.19

No Feature Augmentation 83.72 86.49 85.03 82.38 77.48

BERT-Base
Feature Augmentation 82.58 85.02 83.46 81.27 76.54

No Feature Augmentation 81.56 85.58 82.03 79.96 74.90

Table 5.9: Comparing the performance of different transformer-based models on SQuAD’s

Who questions using the Direct Feature Augmentation Architecture 4.2.2.

Chapter 5. Experiments and Results 85

5.4.9 Comparing Transformer-Based Models on SQuAD using

the Direct Feature Augmentation Architecture 4.2.2 for

Whom Questions

In this particular scenario, we examine the efficacy of different transformer-based mod-

els in answering Whom questions. Our methodology involves training each model on

the entire training dataset, using the Direct Feature Augmentation Architecture or archi-

tecture with no augmentation, and then evaluating their performance solely on Whom

questions derived from the test dataset. The performance metrics presented in Table 5.10

demonstrate that BART was the most effective model, followed by BERT, RoBERTa,

and Longformer. Furthermore, the results reveal that the Direct Feature Augmentation

Architecture had the most significant impact on improving the ability of BART model to

answer Whom questions, whereas it had slightly less effect on improving the performance

of BERT and no effect on enhancing the performance of RoBERTa and Longformer in

this regard . However, we cannot make a strong claim about the metrics reported in this

particular setting due to the insufficient number of Whom questions present in both test

and entire training datasets (Figure 5.2).

Models Experiments F1 Recall Precision Jaccard Index Exact Match

BART-Base
Feature Augmentation 85.25 84.17 88.89 89.72 80.56

No Feature Augmentation 80.00 79.17 83.33 85.02 77.78

BERT-Base
Feature Augmentation 78.50 77.69 81.94 81.69 72.22

No Feature Augmentation 76.06 81.02 78.56 78.55 69.44

RoBERTa-Base
Feature Augmentation 76.03 75.46 79.17 79.48 72.22

No Feature Augmentation 81.28 80.46 84.72 84.46 75.00

Longformer-Base
Feature Augmentation 73.25 72.69 76.39 79.55 69.44

No Feature Augmentation 76.77 76.16 79.17 80.18 72.22

Table 5.10: Comparing the performance of different transformer-based models on

SQuAD’s Whom questions using the Direct Feature Augmentation Architecture 4.2.2.

Chapter 5. Experiments and Results 86

5.4.10 Comparing Transformer-Based Models on SQuAD using

the Direct Feature Augmentation Architecture 4.2.2 for

Whose Questions

This specific setting involves assessing the effectiveness of various transformer-based mod-

els in addressing Whose questions. Our approach includes training each model on the

complete training set, using the Direct Feature Augmentation Architecture or architec-

ture with no augmentation, and then evaluating their performance exclusively on Whose

questions from the test set. The results, as shown in Table 5.11, indicate that RoBERTa

was the most successful model, followed by Longformer, BERT, and BART. Further-

more, the findings demonstrate that the Direct Feature Augmentation Architecture had a

significant impact on enhancing BERT and Longformer’s performance to answer Whose

questions, but it has minor effect on improving RoBERTa and BART’s performance in

this regard. It is important to mention that a strong claim cannot be made about the

metrics presented in this particular scenario because of the limited number of Whose

questions present in both test and training sets (Figure 5.2).

Models Experiments F1 Recall Precision Jaccard Index Exact Match

RoBERTa-Base
Feature Augmentation 76.17 81.00 76.28 75.18 68.00

No Feature Augmentation 77.02 80.00 77.34 76.12 70.00

Longformer-Base
Feature Augmentation 76.58 79.10 77.78 72.03 64.00

No Feature Augmentation 72.22 74.35 74.75 71.14 64.00

BERT-Base
Feature Augmentation 71.96 78.67 73.14 69.59 56.00

No Feature Augmentation 66.30 71.00 66.27 62.32 52.00

BART-Base
Feature Augmentation 68.27 75.67 68.95 67.26 56.00

No Feature Augmentation 72.70 75.00 73.35 74.77 66.00

Table 5.11: Comparing the performance of different transformer-based models on

SQuAD’s Whose questions using the Direct Feature Augmentation Architecture 4.2.2.

Chapter 5. Experiments and Results 87

5.4.11 Comparing Transformer-Based Models on SQuAD using

the Direct Feature Augmentation Architecture 4.2.2 for

Which Questions

In this particular setup, we are examining the efficiency of different transformer-based

models in responding to questions that begin withWhich. Our approach involves training

each model on the complete training dataset, using the Direct Feature Augmentation

Architecture or architecture with no augmentation, and then evaluating their performance

solely on Which questions from the test dataset. The outcomes of our evaluation, as

illustrated in Table 5.12, suggest that BART was the most effective model, followed by

RoBERTa, Longformer, and BERT. Moreover, the results reveal that the Direct Feature

Augmentation Architecture did not have any impact on the ability of RoBERTa to answer

Which questions, whereas it significantly enhanced BERT’s performance and resulted in

slightly less improvement in Longformer’s and BART’s performance in this regard. Which

questions are categorized as factoid questions and some extracted linguistic features like

named entity recognition (NER) and part-of-speech (POS) tag, can be useful in answering

these types of questions.

Models Experiments F1 Recall Precision Jaccard Index Exact Match

BART-Base
Feature Augmentation 85.42 87.85 86.41 82.78 74.35

No Feature Augmentation 85.29 87.61 86.05 82.80 75.22

RoBERTa-Base
Feature Augmentation 85.39 87.57 86.39 83.19 75.46

No Feature Augmentation 85.98 87.68 87.47 84.38 75.71

Longformer-Base
Feature Augmentation 85.20 87.41 85.94 83.06 74.97

No Feature Augmentation 84.70 87.63 85.24 81.64 73.36

BERT-Base
Feature Augmentation 84.46 87.77 84.61 81.32 73.98

No Feature Augmentation 82.52 85.26 82.93 79.50 71.38

Table 5.12: Comparing the performance of different transformer-based models on

SQuAD’s Which questions using the Direct Feature Augmentation Architecture 4.2.2.

Chapter 5. Experiments and Results 88

5.5 Feature Augmentation for Long Passages

5.5.1 Experimental Settings

This research examines the performance of the Longformer model [5] on NLQuAD [82],

which is a long question-answering dataset, while focusing specifically on different vari-

ations of the proposed feature-augmented architecture. Since the NLQuAD [82] dataset

features non-factoid questions with long documents, the average sequence length of the

documents in this dataset is more than the maximum sequence length that can be pro-

cessed by some transformer-based models like BERT [19], RoBERTa [52], and BART [50].

Due to this constraint we opted not to assess these models on the NLQuAD [82] dataset

and only conduct our experiments on NLQuAD [82] using Longformer [5] model. How-

ever, various approaches can be implemented to address this issue, such as segmenting

the input sequence into chunks with the length that can be processed by BERT [19],

RoBERTa [52] and BART [50].

Throughout the training process, we employed the AdamW [54] optimizer with a

learning rate of 5× 10−5 and a batch size of 8. Once again we used these default hyper-

parameters as they are used by most of the state-of-the-art question-answering models.

We determined the batch size based on the model’s considerable size and our GPUs’

capacity. Additionally, we utilized only the base version of Longformer [5] for all of our

experiments.

Chapter 5. Experiments and Results 89

5.5.2 Comparing Longformer Model on NLQuAD using Differ-

ent Variants of Feature-Augmented Architecture 4.2.2 for

All Questions Types

Linear Feature Transformation Architecture 4.2.2

This experiment employs the feature-augmented architecture wherein the extracted fea-

tures are first passed through a linear layer, followed by a relu layer, prior to being

integrated with the output of the longformer [5] model. This variant of the architec-

ture is named as Linear Feature Transformation Architecture and previously described

in 4.2.2. The empirical results, as displayed in Table 5.13, provide evidence that out of

the three feature-augmented architecture variants, this particular variant demonstrates

the highest level of effectiveness in improving the performance of the backbone model

in NLQuAD [82]. By comparing the performance of this variant of the architecture on

NLQuAD [82] with the same variant on SQuAD [73], the performance metrics indicate a

greater improvement in the backbone model’s performance on NLQUAD [82] compared

to SQuAD [73].

Model Experiments F1 Recall Precision Jaccard Index Exact Match

Longformer-Base

Linear Feature Transformation Architecture 55.11 65.96 53.48 52.91 22.59

Direct Feature Augmentation Architecture 51.60 63.90 48.44 50.87 18.73

Backbone Architecture 50.59 61.06 48.22 50.66 20.75

LSTM Feature Transformation Architecture 42.79 52.38 41.51 38.86 15.43

Table 5.13: Comparing the performance of different variants of Feature-augmented Ar-

chitecture, with the Longformer [5] serving as the backbone model, on NLQuAD [82]

dataset.

Chapter 5. Experiments and Results 90

Direct Feature Augmentation Architecture 4.2.2

In contradistinction to the preceding experiment, the current experiment explores the

overall efficacy of the longformer [5], as the backbone model for the Direct Feature Aug-

mentation Architecture, which was designed without a neural network (described pre-

viously in 4.2.2), across all types of questions. Table 5.13 reveals that this variant of

feature-augmented architecture improves the performance of the backbone model, how-

ever, to a lesser extent compared to the Linear Feature Augmentation Architecture. After

conducting a comparative analysis of the Direct Feature Augmentation Architecture on

NLQuAD [82] and the Direct Feature Augmentation Architecture on SQuAD [73], it is

evident from the results that the improvement in the backbone model’s performance is

greater on NLQuAD [82] than on SQuAD [73].

LSTM Feature Transformation Architecture 4.2.2

In this experiment, we utilize one of the variants of the feature-augmented architecture

that incorporates feeding the extracted features through an LSTM layer, followed by

merging them with the output of the longformer [5] model. This variant is referred to as

LSTM Feature Transformation Architecture and previously explained in 4.2.2. The evalu-

ation metrics depicted in Table 5.13 reveal that this specific variant of feature-augmented

architecture fails to improve the performance of the backbone model on NLQUAD [82].

5.6 Ablation Study

We select the Direct Feature Augmentation Architecture 4.2.2, which is the best variant of

feature-augmented architecture on SQuAD [73], and the best transformer-based model,

which is RoBERTa [52], as the backbone model for conducting an ablation study, on

SQuAD [73] dataset, to evaluate the impact of individual extracted linguistic features

on the performance of the feature-augmented architecture. Ablation study is a scien-

Chapter 5. Experiments and Results 91

tific methodology that involves selectively disabling or removing specific components or

features of a model, system, or experiment to assess their individual impact to the over-

all performance of the model. In this study, we remove each linguistic feature one at

a time to investigate its effect on the performance of the Direct Feature Augmentation

Architecture.

5.6.1 Absence of Named Entity Recognition (NER)

The results depicted in Table 5.14 evince that despite the removal of named entity recog-

nition (NER) from the extracted linguistic feature set, the Direct Feature Augmentation

Architecture 4.2.2 still yields performance improvements over the backbone model (the

model with no feature augmentation). Nonetheless, the architecture that utilizes the

entire feature set exhibits a slightly greater performance boost. Hence, the exclusion of

NER has a discernible, albeit not significant, effect on the performance of the feature-

augmented architecture. It should be noted that NER is a valuable linguistic feature

that can enhance the ability of the transformer-based model to answer factoid questions,

since these questions ask about an entity, and SQuAD [73] is a factoid question-answering

dataset.

Model Experiments F1 Recall Precision Jaccard Index Exact Match

RoBERTa-Base

Direct Feature Augmentation Architecture 81.23 84.17 83.09 79.76 69.31

Direct Feature Augmentation Architecture No NER 81.22 83.53 83.41 79.89 69.06

No Feature Augmentation 81.15 83.11 83.76 79.65 68.96

Table 5.14: Comparing the performance of the Direct Feature Augmentation Architecture

4.2.2 in the absence of Named Entity Recognition.

5.6.2 Absence of Part-of-Speech Tag (POS)

The results presented in Table 5.15 demonstrate that the omission of part-of-speech

(POS) tagging had a deleterious impact on the efficacy of the Direct Feature Augmen-

Chapter 5. Experiments and Results 92

tation Architecture 4.2.2. In other words, the feature-augmented architecture failed to

improve the performance of the underlying model after the elimination of POS. This can

be because POS is a pivotal linguistic feature in question-answering tasks, as it provides

disambiguation of words and furnishes information about sentence structure. Moreover,

POS is frequently employed as an input for other features, such as Named Entity Recog-

nition (NER) and Parsing (DEP tree). Therefore, it can be inferred that in the absence

POS the linguistic feature set is disadvantageous for the Direct Feature Augmentation

Architecture.

Model Experiments F1 Recall Precision Jaccard Index Exact Match

RoBERTa-Base

Direct Feature Augmentation Architecture 81.23 84.17 83.09 79.76 69.31

No Feature Augmentation 81.15 83.11 83.76 79.65 68.96

Direct Feature Augmentation Architecture No POS 80.84 82.51 83.75 79.63 69.24

Table 5.15: Comparing the performance of the Direct Feature Augmentation Architecture

4.2.2 in the absence of Part-of-Speech Tag.

5.6.3 Absence of Syntactic Dependency (DEP)

The results provided in Table 5.16 illustrate that the exclusion of the syntactic depen-

dency (DEP) feature engenders an unfavorable impact on the efficacy of the Direct Fea-

ture Augmentation Architecture 4.2.2. Syntactic dependencies furnish valuable insight

into the grammatical structure of a sentence and can be utilized to comprehend the as-

sociations between words, identify the principal subjects and objects in a sentence, and

ascertain the role of each word within a sentence. This information can be advantageous

in the context of question-answering. Consequently, in the absence of the DEP feature,

the Direct Feature Augmentation Architecture is incapable of enhancing the performance

of the backbone model.

Chapter 5. Experiments and Results 93

Model Experiments F1 Recall Precision Jaccard Index Exact Match

RoBERTa-Base

Direct Feature Augmentation Architecture 81.23 84.17 83.09 79.76 69.31

No Feature Augmentation 81.15 83.11 83.76 79.65 68.96

Direct Feature Augmentation Architecture No DEP 80.92 84.08 82.53 79.49 68.83

Table 5.16: Comparing the performance of the Direct Feature Augmentation Architecture

4.2.2 in the absence of Syntactic Dependency.

5.6.4 Absence of Stop Words (STOP)

The provided results in Table 5.17 demonstrate that the Direct Feature Augmentation

Architecture 4.2.2 continues to yield performance improvements even after the exclusion

of stop words (STOP) from the extracted linguistic feature set. Specifically, the results

suggest that the Direct Feature Augmentation Architecture 4.2.2 without stop words

may outperform the Direct Feature Augmentation Architecture that uses all extracted

linguistic features, in some cases. This can show the success of the transformer-based

backbone model (which is RoBERTa [52] in this study) in capturing the stop words. Stop

words carry minimal semantic content and contribute little value to question-answering

tasks. Transformer-based models can learn to allocate less attention towards them as

they are unlikely to form a part of the answer.

Model Experiments F1 Recall Precision Jaccard Index Exact Match

RoBERTa-Base

Direct Feature Augmentation Architecture No STOP 81.41 83.81 83.53 79.88 69.28

Direct Feature Augmentation Architecture 81.23 84.17 83.09 79.76 69.31

No Feature Augmentation 81.15 83.11 83.76 79.65 68.96

Table 5.17: Comparing the performance of the Direct Feature Augmentation Architecture

4.2.2 in the absence of Stop Words.

Chapter 5. Experiments and Results 94

5.7 Case Study on SQuAD

We conduct a few case studies on the SQuAD [73] dataset, with the objective of demon-

strating how specifically certain linguistic features contribute to the performance of a

backbone transformer-based model in identifying answer spans within context passages

for given questions. The Direct Feature Augmentation Architecture is utilized along with

RoBERTa [52] as the backbone transformer-based model to showcase the observed im-

provements in performance.

Question: In which era was Frédéric leave a legacy of as a leading symbol?

Passage: In his native Poland, in France, where he composed most of his works, and

beyond, Chopin’s music, his status as one of music’s earliest superstars, his association

(if only indirect) with political insurrection, his love life and his early death have made

him, in the public consciousness, a leading symbol of the Romantic era. His works

remain popular, and he has been the subject of numerous films and biographies of

varying degrees of historical accuracy.

Predicted Answer by Feature Augmentation: Romantic era

Predicted Answer by No Feature Augmentation: Romantic

Figure 5.4: An example of question-passage pair from SQuAD [73], which showcases the

importance of Syntactic Dependency (DEP) linguistic feature. The ground truth answer

is bolded within the passage.

Chapter 5. Experiments and Results 95

5.7.1 Effectiveness of Syntactic Dependency (DEP)

The illustration presented in Figure 5.4 exemplifies a scenario where the transformer-

based model, serving as the backbone architecture without any feature augmentation,

falls short in identifying a comprehensive and complete answer to a given query. In

contrast, the Direct Feature Augmentation Architecture effectively locates the complete

and accurate answer.

Figure 5.5: Dependency tree constructed for the sentence within the passage, which

contains the answer to the given question, in the example provided by Figure 5.4. The

red labels signify the POS attributes of individual words while the green labels correspond

to the DEP features.

Figure 5.5 depicts the syntactic relationships among the words within the sentence

that encompasses the ground truth answer, from the example demonstrated in Figure

5.4. The relationship between the terms of and era is classified as pobj or object of

preposition, which is a nominal located in the object position. Additionally, the syntactic

dependency between the words era and romantic is denoted as amod or adjectival mod-

ifier, which represents an adjectival phrase that serves to modify the noun (or pronoun).

These syntactic dependencies enable the Direct Feature Augmentation Architec-

ture to locate the entire and precise answer to the given question, which is searching for

an object for the phrase symbol of.

Chapter 5. Experiments and Results 96

Question: On what date was Frédéric born on?

Passage: Fryderyk Chopin was born in Żelazowa Wola, 46 kilometres (29 miles)

west of Warsaw, in what was then the Duchy of Warsaw, a Polish state established

by Napoleon. The parish baptismal record gives his birthday as 22 February 1810,

and cites his given names in the Latin form Fridericus Franciscus (in Polish, he was

Fryderyk Franciszek). However, the composer and his family used the birthdate 1

March,[n 2] which is now generally accepted as the correct date.

Predicted Answer by Feature Augmentation: 22 February 1810

Predicted Answer by No Feature Augmentation: 22 February 1810, and

cites his given names in the Latin form Fridericus Franciscus (in Polish,

he was Fryderyk Franciszek). However, the composer and his family used

the birthdate 1 March,[

Figure 5.6: An example of question-passage pair from SQuAD [73], which showcases

the importance of Named Entity Recognition (NER) and Syntactic Dependency (DEP)

linguistic features. The ground truth answer is bolded within the passage.

5.7.2 Simultaneous Effectiveness of Named Entity Recognition

(NER) and Syntactic Dependency (DEP)

Figure 5.6 presents an example where a transformer-based model, with no feature aug-

mentation, fails to accurately identify the exact answer to a given question and instead

produces extraneous unnecessary information. Despite, the Direct Feature Augmentation

Architecture, employs named entity recognition and syntactic dependency analysis to lo-

cate the answer. Specifically, DATE is mapped to February 1810 as the named entity

Chapter 5. Experiments and Results 97

feature and nummod or numeric modifier, which is any number phrase that serves to

modify the meaning of the noun with a quantity, is the dependency between February

and 22, as well as between February and 1810. These linguistic features allow the Direct

Feature Augmentation Architecture to consider 22 February 1810 as a single phrase for

the date of birth, thereby accurately identifying the answer.

5.8 Summary

In this chapter, we presented an assessment of the effectiveness of the proposed feature-

augmented architecture, along with all of the designed variants of this architecture, for

the task of answer span detection in response to a given question, across two datasets:

SQuAD [73] and NLQuAD [82]. Our primary emphasis is on SQuAD [73] and most

of our experiments were conducted on this dataset. Moreover, we only utilized long-

former [5] model to conduct a few experiments on NLQuAD [82] given the challenges

posed by this dataset in processing lengthy text. We conducted several experiments on

different variations of feature-augmented architecture with different transformer-based

models on SQuAD [73]. Additionally, we examined the performance of each transformer-

based model, with feature augmentation and without feature augmentation, on extract-

ing answers from a given passage for different types of questions provided in SQuAD [73]

dataset.

The reported performance metrics on SQuAD [73] indicate that, in the majority of our

experiments, either RoBERTa [52], BART [50] or Longformer [5] outperform BERT [19]

model. This can highlight the significance of using larger mini-batches and more data dur-

ing training, as well as employing dynamic masked language modeling as a pre-training

task to improve language understanding in RoBERTa [52]. Additionally, it can under-

score the importance of BART’s [50] usage of various transformation functions during

pre-training for the masked language modeling unsupervised task to alter the original

Chapter 5. Experiments and Results 98

input text. Moreover, this can denote the proficiency of the longformer [5] architecture

in achieving favorable performance outcomes while trading off some information by only

attending to a restricted scope of information to reduce memory consumption.

Furthermore, when comparing the performance of each backbone model with its re-

spective feature-augmented architecture, in different variations of the architecture, the

evaluation metrics reveal that the suggested variants of feature-augmented architectures

are generally effective in enhancing the performance of the backbone models. Notably,

for SQuAD [73] dataset, the Direct Feature Augmentation Architecture 4.2.2 demon-

strate greater consistency and success in improving the backbone models’ performance

followed by the LSTM Feature Transformation Architecture 4.2.2 followed by Linear

Feature Transformation Architecture 4.2.2. While, for NLQuAD [82] dataset, the Lin-

ear Feature Transformation Architecture 4.2.2 is more successful in improving the per-

formance of Longformer [5] compared to the Direct Feature Augmentation Architecture

4.2.2. However, the LSTM Feature Transformation Architecture 4.2.2 does not yield any

improvement in the performance of the longformer model [5] on NLQuAD [82].

In addition, experiments on SQuAD [73] dataset, suggest that the Direct Feature

Augmentation Architecture 4.2.2 has been found to enhance the performance of the

transformer-based backbone model more significantly for certain types of questions com-

pared to the others. This disparity in performance improvement could be attributed to

the varying sizes of each question type’s category in the training and test sets. Further-

more, it can be due to the importance of the chosen linguistic features set for some specific

types of questions, such as What, Where or When questions, more than the others.

Moreover, the ablation study conducted on the SQuAD [73] dataset reveals that

the exclusion of either part-of-speech (POS) tags or syntactic dependencies (DEP) from

the feature set adversely affects the performance of the Direct Feature Augmentation

Architecture. Conversely, the removal of stop words (STOP) from the feature set can have

a positive impact on the performance of the aforementioned architecture. Furthermore,

Chapter 5. Experiments and Results 99

the omission of named entity recognition (NER) from the feature set does not significantly

impact the performance of the Direct Feature Augmentation Architecture. Even in the

absence of NER, this architecture can enhance the performance of the transformer-based

backbone model, albeit to a lesser degree than when NER is included in the feature set.

Ultimately, through an analysis of a few case studies taken from the SQuAD [73]

dataset, we have demonstrated the potential benefits of employing particular extracted

linguistic features in facilitating the process of locating the answer within the context to

the given question.

Chapter 6

Conclusion and Future work

This research aimed to study the performance of different transformer-based models in

the task of answer span detection or extractive question-answering.

We proposed a feature-augmented architecture, along with three variants, to enhance

the performance of the studied potent transformer-based language models in question-

answering. Furthermore, a comparative analysis was conducted among the investigated

models to determine the most efficacious transformer-based models on the SQuAD [73]

dataset, a comprehensive dataset designed for extractive question-answering task. Addi-

tionally, the impact of the proposed feature-augmented architectures on improving the

backbone transformer-based model’s performance was examined on SQuAD [73]. How-

ever, we only studied the effect of feature-augmented architecture for Longformer [5]

model on NLQUAD [82], with the aim of exploring a non-factoid long question-answering

dataset as well. Moreover, a series of experiments were carried out to assess the effective-

ness of each transformer-based model and feature-augmented transformer-based model

in answering specific types of questions on SQuAD [73] dataset.

Furthermore, an ablation study was carried out on the SQuAD [73] dataset, in or-

der to investigate the effect of each specific feature from the extracted set of features,

independently, on the efficacy of the most successful variant of the feature-augmented

100

Chapter 6. Conclusion and Future work 101

architecture.

6.1 Thesis Contribution Highlights

The main contribution of this thesis in Chapter 4 and Chapter 5 can be summarized as

follows:

• Feature-augmented Transformer-based Architecture

This study presents a feature-augmented architecture that incorporates linguis-

tic token-level features to enhance the performance of transformer-based models

in the task of question-answering. Although transformer-based language models

have demonstrated remarkable success across a variety of natural language pro-

cessing (NLP) tasks due to their high-level language understanding, they can face

challenges in analyzing complex linguistic structures present in certain questions.

Specifically, questions with intricate logic and clause structures can pose difficulties

for some transformer-based models. We propose three different variations of the

transformer-based feature-augmented architecture in this research, which can be

helpful in addressing this issue. The results indicate that incorporating additional

linguistic features can improve the performance of the backbone transformer-based

model in most cases. These findings suggest that employment of off-the-shelf lin-

guistic features can aid the backbone model in better understanding complex con-

text passages and consequently improve the accuracy of the question-answering

transformer-based model.

• Ablation Study Demonstrating the Effect of Individual Features on the

Feature-augmented Architecture

An ablation study was conducted to evaluate the effectiveness of individual features

on the most successful variant of feature-augmented architecture, referred to as

Direct Feature Augmentation Architecture. The results indicate that the absence

Chapter 6. Conclusion and Future work 102

of Syntactic Dependency (DEP) and Part-of-Speech (POS) Tag from the features

set had the greatest negative impact on the performance of the Direct Feature

Augmentation Architecture.

• Case Studies Demonstrating the Importance of Some Linguistic Features

This research presents a few examples, taken from SQuAD [73] dataset, to illustrate

the limitations of the backbone transformer-based model, as well as the superior

performance of the proposed feature-augmented transformer-based model in locat-

ing the exact accurate answer to the given question within thhe given context.

6.2 Limitations

The experimental results demonstrated that different variants of proposed feature-augmented

architecture can improve the performance of the transformer-based backbone model (with

no feature augmentation) in most cases. However, there are some limitations accompa-

nied within the conducted experiments as well as the proposed variants of the architec-

ture, which should be considered.

• The experiments conducted on NLQuAD [82] do not include the examination of

the performance of BERT [19], RoBERTa [52], and BART [50] models, as the

maximum sequence length accommodated by these models is substantially less

than the average length of the context passages in NLQuAD [82].

• Due to the need to evaluate each variant for four distinct transformer-based mod-

els, only a limited number of feature-augmented transformer-based architecture

variations were proposed and examined.

• The proposed feature-augmented transformer-based architecture for the task of

question-answering utilized only a restricted selection of linguistic token-level fea-

Chapter 6. Conclusion and Future work 103

tures, which were extracted using of-the-shelf linguistic features extraction tools,

and incorporated into the architecture.

• The scope of this study was limited to the evaluation and comparison of four

transformer-based models for the task of question-answering. All of the selected

models expect the similar input and output formats.

• The ablation study was carried out only on the transformer-based model with the

best performance and across all question types, not different question types, on

SQuAD [73].

6.3 Future Work

The proposed feature-augmented transformer-based architecture for the task of answer

span detection in this thesis presents a promising avenue for future work. Given that the

performance of some transformer-based models on NLQuAD [82] has yet to be explored,

we recommend incorporating those models by addressing the sequence length limitation

through the segmentation of context passages and searching for the answer in each seg-

ment. This approach allows each segment to contain a portion or the entirety of the

answer. Furthermore, it may be beneficial to expand the linguistic token-level feature set

to examine the impact of additional features that could aid in answering specific question

types, such as the use of cue words like because to answer why questions, or usage of more

features in general for all question types. Additionally, the proposed transformer-based

feature-augmented architecture for the task of question-answering is designed in a way

to accommodate the substitution of any neural network to modify the extracted feature

set. Further investigation could also consider evaluating other transformer-based models,

including T5 [72]. T5 differs from the studied transformer-based models in this thesis,

as it is a multi-task learning model that utilizes natural language prefixes and trains the

architecture in a unified objective manner, modeling all problems in a text-to-text format

Chapter 6. Conclusion and Future work 104

using the encoder-decoder format proposed by transformers [91]. Moreover, an ablation

study could be conducted to see the importance and effectiveness of each linguistic feature

on different question types for different transformer-based models.

Bibliography

[1] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings

for sequence labeling. In Proceedings of the 27th International Conference on Com-

putational Linguistics, pages 1638–1649, Santa Fe, New Mexico, USA, August 2018.

Association for Computational Linguistics.

[2] Ali Mohamed Nabil Allam and Mohamed Hassan Haggag. The question answering

systems: A survey. International Journal of Research and Reviews in Information

Sciences (IJRRIS), 2(3), 2012.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization,

2016.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

[5] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-

document transformer. CoRR, abs/2004.05150, 2020.

[6] Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby Vander Linden, Brittany

Harding, Brad Huang, Peter Clark, and Christopher D. Manning. Modeling biolog-

ical processes for reading comprehension. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 1499–1510,

Doha, Qatar, October 2014. Association for Computational Linguistics.

105

Bibliography 106

[7] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-

ning. A large annotated corpus for learning natural language inference. CoRR,

abs/1508.05326, 2015.

[8] Daniel Braun, Adrian Hernandez Mendez, Florian Matthes, and Manfred Langen.

Evaluating natural language understanding services for conversational question an-

swering systems. In Proceedings of the 18th Annual SIGdial Meeting on Discourse

and Dialogue, pages 174–185, Saarbrücken, Germany, August 2017. Association for

Computational Linguistics.

[9] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,

2020.

[10] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia

to answer open-domain questions. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1870–

1879, Vancouver, Canada, July 2017. Association for Computational Linguistics.

[11] Long Chen, Yuhang Zheng, Yulei Niu, Hanwang Zhang, and Jun Xiao. Counterfac-

tual samples synthesizing and training for robust visual question answering. CoRR,

abs/2110.01013, 2021.

[12] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks

for machine reading. CoRR, abs/1601.06733, 2016.

Bibliography 107

[13] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long

sequences with sparse transformers. CoRR, abs/1904.10509, 2019.

[14] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-

decoder for statistical machine translation. CoRR, abs/1406.1078, 2014.

[15] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empir-

ical evaluation of gated recurrent neural networks on sequence modeling. CoRR,

abs/1412.3555, 2014.

[16] Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bordes.

Supervised learning of universal sentence representations from natural language

inference data. CoRR, abs/1705.02364, 2017.

[17] Andrew M. Dai and Quoc V. Le. Semi-supervised sequence learning. CoRR,

abs/1511.01432, 2015.

[18] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and

Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-

length context. CoRR, abs/1901.02860, 2019.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understanding. CoRR,

abs/1810.04805, 2018.

[20] William B. Dolan and Chris Brockett. Automatically constructing a corpus of

sentential paraphrases. In Proceedings of the Third International Workshop on

Paraphrasing (IWP2005), 2005.

[21] Ćıcero dos Santos, Luciano Barbosa, Dasha Bogdanova, and Bianca Zadrozny.

Learning hybrid representations to retrieve semantically equivalent questions. In

Bibliography 108

Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-

guistics and the 7th International Joint Conference on Natural Language Processing

(Volume 2: Short Papers), pages 694–699, Beijing, China, July 2015. Association

for Computational Linguistics.

[22] Abdessamad Echihabi and Daniel Marcu. A noisy-channel approach to question

answering. In Proceedings of the 41st Annual Meeting of the Association for Com-

putational Linguistics, pages 16–23, Sapporo, Japan, July 2003. Association for

Computational Linguistics.

[23] Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and

Michael Auli. ELI5: long form question answering. CoRR, abs/1907.09190, 2019.

[24] Minwei Feng, Bing Xiang, Michael R. Glass, Lidan Wang, and Bowen Zhou. Ap-

plying deep learning to answer selection: A study and an open task. CoRR,

abs/1508.01585, 2015.

[25] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.

Convolutional sequence to sequence learning. CoRR, abs/1705.03122, 2017.

[26] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidi-

rectional lstm and other neural network architectures. Neural Networks, 18(5):602–

610, 2005. IJCNN 2005.

[27] Scott Gray, Alec Radford, and Diederik P. Kingma. Gpu kernels for block-sparse

weights. 2017.

[28] Helia Hashemi, Mohammad Aliannejadi, Hamed Zamani, and W. Bruce Croft.

ANTIQUE: A non-factoid question answering benchmark. CoRR, abs/1905.08957,

2019.

Bibliography 109

[29] Hua He and Jimmy Lin. Pairwise word interaction modeling with deep neural net-

works for semantic similarity measurement. In Proceedings of the 2016 Conference

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 937–948, San Diego, California, June 2016.

Association for Computational Linguistics.

[30] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 770–778, 2015.

[31] Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regular-

izers with gaussian error linear units. CoRR, abs/1606.08415, 2016.

[32] Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will

Kay, Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and com-

prehend. CoRR, abs/1506.03340, 2015.

[33] Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks

principle: Reading children’s books with explicit memory representations. CoRR,

abs/1511.02301, 2015.

[34] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural

Computation, 9(8):1735–1780, 11 1997.

[35] Jeremy Howard and Sebastian Ruder. Fine-tuned language models for text classi-

fication. CoRR, abs/1801.06146, 2018.

[36] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge graph embed-

ding based question answering. In ACM International Conference on Web Search

and Data Mining, 2019.

Bibliography 110

[37] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative

models for open domain question answering. CoRR, abs/2007.01282, 2020.

[38] Yacine Jernite, Samuel R. Bowman, and David A. Sontag. Discourse-based objec-

tives for fast unsupervised sentence representation learning. CoRR, abs/1705.00557,

2017.

[39] Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham Neubig. Understanding and

improving zero-shot multi-hop reasoning in generative question answering, 2022.

[40] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and

Omer Levy. Spanbert: Improving pre-training by representing and predicting spans.

CoRR, abs/1907.10529, 2019.

[41] Mandar Joshi, Omer Levy, Daniel S. Weld, and Luke Zettlemoyer. BERT for

coreference resolution: Baselines and analysis. CoRR, abs/1908.09091, 2019.

[42] Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.

Exploring the limits of language modeling. CoRR, abs/1602.02410, 2016.

[43] Hasangi Kahaduwa, Dilshan Pathirana, Pathum Liyana Arachchi, Vishma Dias,

Surangika Ranathunga, and Upali Sathyajith Kohomban. Question answering

system for the travel domain. 2017 Moratuwa Engineering Research Conference

(MERCon), pages 449–454, 2017.

[44] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain

question answering. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 6769–6781, Online, November

2020. Association for Computational Linguistics.

Bibliography 111

[45] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured at-

tention networks. CoRR, abs/1702.00887, 2017.

[46] Tomás Kociský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Her-

mann, Gábor Melis, and Edward Grefenstette. The narrativeqa reading compre-

hension challenge. CoRR, abs/1712.07040, 2017.

[47] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing

the dark secrets of BERT. CoRR, abs/1908.08593, 2019.

[48] Oleksii Kuchaiev and Boris Ginsburg. Factorization tricks for LSTM networks.

CoRR, abs/1703.10722, 2017.

[49] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur

Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,

Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M.

Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural questions: A benchmark

for question answering research. Transactions of the Association for Computational

Linguistics, 7:452–466, 2019.

[50] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising

sequence-to-sequence pre-training for natural language generation, translation, and

comprehension. CoRR, abs/1910.13461, 2019.

[51] Zhouhan Lin, Minwei Feng, Ćıcero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen

Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. CoRR,

abs/1703.03130, 2017.

[52] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly

optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

Bibliography 112

[53] Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sen-

tence representations. CoRR, abs/1803.02893, 2018.

[54] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam.

CoRR, abs/1711.05101, 2017.

[55] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective ap-

proaches to attention-based neural machine translation. CoRR, abs/1508.04025,

2015.

[56] Shangwen Lv, Daya Guo, Jingjing Xu, Duyu Tang, Nan Duan, Ming Gong, Linjun

Shou, Daxin Jiang, Guihong Cao, and Songlin Hu. Graph-based reasoning over

heterogeneous external knowledge for commonsense question answering. CoRR,

abs/1909.05311, 2019.

[57] Christopher D. Manning. Last words: Computational linguistics and deep learning.

Computational Linguistics, 41(4):701–707, December 2015.

[58] Ryan Musa, Xiaoyan Wang, Achille Fokoue, Nicholas Mattei, Maria Chang, Pavan

Kapanipathi, Bassem Makni, Kartik Talamadupula, and Michael Witbrock. An-

swering science exam questions using query rewriting with background knowledge.

CoRR, abs/1809.05726, 2018.

[59] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan

Majumder, and Li Deng. MS MARCO: A human generated machine reading com-

prehension dataset. CoRR, abs/1611.09268, 2016.

[60] Jianmo Ni, Chenguang Zhu, Weizhu Chen, and Julian J. McAuley. Learning to at-

tend on essential terms: An enhanced retriever-reader model for scientific question

answering. CoRR, abs/1808.09492, 2018.

Bibliography 113

[61] Bogdan-Ioan Nicula, Stefan Ruseti, and Traian Rebedea. Improving deep learn-

ing for multiple choice question answering with candidate contexts. In European

Conference on Information Retrieval, 2018.

[62] Rodrigo Frassetto Nogueira and Kyunghyun Cho. Task-oriented query reformula-

tion with reinforcement learning. CoRR, abs/1704.04572, 2017.

[63] Hariom A. Pandya and Brijesh S. Bhatt. Question answering survey: Directions,

challenges, datasets, evaluation matrices. CoRR, abs/2112.03572, 2021.

[64] Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decom-

posable attention model for natural language inference. CoRR, abs/1606.01933,

2016.

[65] Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for

abstractive summarization. CoRR, abs/1705.04304, 2017.

[66] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global

vectors for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar,

October 2014. Association for Computational Linguistics.

[67] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word represen-

tations. CoRR, abs/1802.05365, 2018.

[68] Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce Croft, and Mohit Iyyer.

Open-retrieval conversational question answering. CoRR, abs/2005.11364, 2020.

[69] Chen Qu, Liu Yang, Minghui Qiu, W. Bruce Croft, Yongfeng Zhang, and Mohit

Iyyer. Bert with history answer embedding for conversational question answering.

In SIGIR 2019 - Proceedings of the 42nd International ACM SIGIR Conference

Bibliography 114

on Research and Development in Information Retrieval, SIGIR 2019 - Proceedings

of the 42nd International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 1133–1136. Association for Computing Machinery,

Inc, July 2019. 42nd International ACM SIGIR Conference on Research and De-

velopment in Information Retrieval, SIGIR 2019 ; Conference date: 21-07-2019

Through 25-07-2019.

[70] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

language understanding by generative pre-training. 2018.

[71] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. 2019.

[72] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of

transfer learning with a unified text-to-text transformer. CoRR, abs/1910.10683,

2019.

[73] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:

100,000+ questions for machine comprehension of text. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pages 2383–

2392, Austin, Texas, November 2016. Association for Computational Linguistics.

[74] Mengye Ren, Ryan Kiros, and Richard S. Zemel. Image question answering: A

visual semantic embedding model and a new dataset. CoRR, abs/1505.02074, 2015.

[75] Matthew Richardson, Christopher J.C. Burges, and Erin Renshaw. MCTest: A

challenge dataset for the open-domain machine comprehension of text. In Proceed-

ings of the 2013 Conference on Empirical Methods in Natural Language Processing,

pages 193–203, Seattle, Washington, USA, October 2013. Association for Compu-

tational Linguistics.

Bibliography 115

[76] Ellen Riloff and Michael Thelen. A rule-based question answering system for read-

ing comprehension tests. In ANLP-NAACL 2000 Workshop: Reading Comprehen-

sion Tests as Evaluation for Computer-Based Language Understanding Systems,

2000.

[77] Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model

for abstractive sentence summarization. CoRR, abs/1509.00685, 2015.

[78] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-

2003 shared task: Language-independent named entity recognition. CoRR,

cs.CL/0306050, 2003.

[79] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidi-

rectional attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[80] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le,

Geoffrey E. Hinton, and Jeff Dean. Outrageously large neural networks: The

sparsely-gated mixture-of-experts layer. CoRR, abs/1701.06538, 2017.

[81] Sonit Singh. Natural language processing for information extraction. CoRR,

abs/1807.02383, 2018.

[82] Amir Soleimani, Christof Monz, and Marcel Worring. NLQuAD: A non-factoid long

question answering data set. In Proceedings of the 16th Conference of the European

Chapter of the Association for Computational Linguistics: Main Volume, pages

1245–1255, Online, April 2021. Association for Computational Linguistics.

[83] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. Weakly

supervised memory networks. CoRR, abs/1503.08895, 2015.

Bibliography 116

[84] Mihai Surdeanu, Massimiliano Ciaramita, and Hugo Zaragoza. Learning to rank

answers to non-factoid questions from web collections. Computational Linguistics,

37(2):351–383, June 2011.

[85] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with

neural networks. CoRR, abs/1409.3215, 2014.

[86] Ming Tan, Bing Xiang, and Bowen Zhou. Lstm-based deep learning models for

non-factoid answer selection. CoRR, abs/1511.04108, 2015.

[87] Wilson L. Taylor. “cloze procedure”: A new tool for measuring readability. Jour-

nalism & Mass Communication Quarterly, 30:415 – 433, 1953.

[88] Hrishikesh Terdalkar and Arnab Bhattacharya. Framework for question-answering

in Sanskrit through automated construction of knowledge graphs. In Proceedings

of the 6th International Sanskrit Computational Linguistics Symposium, pages 97–

116, IIT Kharagpur, India, October 2019. Association for Computational Linguis-

tics.

[89] Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. Word representations: A

simple and general method for semi-supervised learning. In Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics, pages 384–394,

Uppsala, Sweden, July 2010. Association for Computational Linguistics.

[90] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu.

Wavenet: A generative model for raw audio. CoRR, abs/1609.03499, 2016.

[91] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

CoRR, abs/1706.03762, 2017.

Bibliography 117

[92] Di Wang and Eric Nyberg. A long short-term memory model for answer sentence

selection in question answering. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Confer-

ence on Natural Language Processing (Volume 2: Short Papers), pages 707–712,

Beijing, China, July 2015. Association for Computational Linguistics.

[93] Luqi Wang, Kaiwen Zheng, Liyin Qian, and Sheng Li. A survey of extractive

question answering. In 2022 International Conference on High Performance Big

Data and Intelligent Systems (HDIS), pages 147–153, 2022.

[94] Shuohang Wang and Jing Jiang. A compare-aggregate model for matching text

sequences. CoRR, abs/1611.01747, 2016.

[95] Zhiguo Wang, Wael Hamza, and Radu Florian. Bilateral multi-perspective match-

ing for natural language sentences. CoRR, abs/1702.03814, 2017.

[96] Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage chal-

lenge corpus for sentence understanding through inference. CoRR, abs/1704.05426,

2017.

[97] Felix Wu, Angela Fan, Alexei Baevski, Yann N. Dauphin, and Michael Auli. Pay

less attention with lightweight and dynamic convolutions. CoRR, abs/1901.10430,

2019.

[98] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolf-

gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner,

Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,

Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nis-

hant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol

Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural ma-

Bibliography 118

chine translation system: Bridging the gap between human and machine transla-

tion. CoRR, abs/1609.08144, 2016.

[99] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Alignment over heterogeneous

embeddings for question answering. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, Volume 1 (Long and Short Papers), pages 2681–2691,

Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[100] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming

Li, and Jimmy Lin. End-to-end open-domain question answering with bertserini.

CoRR, abs/1902.01718, 2019.

[101] Yi Yang, Wen-tau Yih, and Christopher Meek. WikiQA: A challenge dataset for

open-domain question answering. In Proceedings of the 2015 Conference on Empir-

ical Methods in Natural Language Processing, pages 2013–2018, Lisbon, Portugal,

September 2015. Association for Computational Linguistics.

[102] Zekun Yang, Noa Garcia, Chenhui Chu, Mayu Otani, Yuta Nakashima, and Haruo

Takemura. Bert representations for video question answering. In Proceedings of

the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),

March 2020.

[103] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-

nov, and Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language

understanding. CoRR, abs/1906.08237, 2019.

[104] Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. Deep learning

for answer sentence selection. CoRR, abs/1412.1632, 2014.

[105] Yue Zhang. The death of feature engineering? —— bert with liguistic features on

squad 2.0. 2019.

Bibliography 119

[106] Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander Smola, and Le Song.

Variational reasoning for question answering with knowledge graph. Proceedings of

the AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018.

[107] Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-

like visual explanations by watching movies and reading books. In ICCV, pages

19–27. IEEE Computer Society, 2015.

	Thesis Examination Information
	Abstract
	Author’s Declaration
	Statement of Contributions
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Problem Definition
	Contribution
	Thesis Outline
	Software & Source Code

	Background
	Transformers
	BERT
	RoBERTa
	BART
	Longformer

	Literature Review
	Categorization based on Scope or Domain of Accessible Information for Answering Question
	Extractive Question-Answering extractive-qa
	Open Generative Question-Answering generative-qa
	Closed Generative Question-Answering generative-qa

	Categorization based on Question Type
	Multiple-Choice Question-Answering or MCQA
	Conversational Question-Answering or CQA
	Visual Question-Answering or VQA

	Categorizing based on Answer Type
	Factoid Questions Answering
	Definition-Based or Non-Factoid Question-Answering
	Hybrid Question-Answering

	Categorization based on Evidence or Answer Source
	Raw Text-Based Question-Answering
	Knowledge-Based Question-Answering

	Categorization based on Modeling Approach
	Rule-Based Models
	Machine Learning Based Models
	Deep Learning Based Models

	A Few Examples of Previously Proposed Question-Answering Models
	LSTM-based Deep Learning Models for Non-factoid Answer Selection bi-lstm-model – An example of multiple choice question-answering
	Alignment over Heterogeneous Embeddings for Question-Answering alignment-over-heterogeneous-embeddings – An example of using information retrieval systems in question-answering

	Methodology
	Transformer-Based Models for the task of Extractive Question-Answering
	Feature-Augmented Architecture
	Linguistic Features
	Variants of Feature-Augmnted Architecture

	Experiments and Results
	Stanford Question Answering Dataset squad
	Non-Factoid Long Question Answering Dataset nlquad
	Performance Metrics for Question Answering
	Precision
	Recall
	F1 Score
	Exact Match
	Jaccard Index

	Experimental Results
	Experimental Settings
	Comparing Transformer-Based Models on SQuAD using Different Variants of Feature-Augmented Architecture 4.2.2 for All Questions Types
	Comparing Transformer-Based Models on SQuAD using the Direct Feature Augmentation Architecture 4.2.2 for What Questions
	Comparing Transformer-Based Models on SQuAD using the Direct Feature Augmentation Architecture 4.2.2 for When Questions
	Comparing Transformer-Based Models on SQuAD using the Direct Feature Augmentation Architecture 4.2.2 for Where Questions
	Comparing Transformer-Based Models on SQuAD using the Direct Feature Augmentation Architecture 4.2.2 for Why Questions
	Comparing Transformer-Based Models on SQuAD using the Direct Feature Augmentation Architecture 4.2.2 for How Questions
	Comparing Transformer-Based Models on SQuAD using the Direct Feature Augmentation Architecture 4.2.2 for Who Questions
	Comparing Transformer-Based Models on SQuAD using the Direct Feature Augmentation Architecture 4.2.2 for Whom Questions
	Comparing Transformer-Based Models on SQuAD using the Direct Feature Augmentation Architecture 4.2.2 for Whose Questions
	Comparing Transformer-Based Models on SQuAD using the Direct Feature Augmentation Architecture 4.2.2 for Which Questions

	Feature Augmentation for Long Passages
	Experimental Settings
	Comparing Longformer Model on NLQuAD using Different Variants of Feature-Augmented Architecture 4.2.2 for All Questions Types

	Ablation Study
	Absence of Named Entity Recognition (NER)
	Absence of Part-of-Speech Tag (POS)
	Absence of Syntactic Dependency (DEP)
	Absence of Stop Words (STOP)

	Case Study on SQuAD
	Effectiveness of Syntactic Dependency (DEP)
	Simultaneous Effectiveness of Named Entity Recognition (NER) and Syntactic Dependency (DEP)

	Summary

	Conclusion and Future work
	Thesis Contribution Highlights
	Limitations
	Future Work

	Bibliography

