

Design and Evaluation of GAN-based Models for Adversarial Training

Robustness in Deep Learning

by

Weimin Zhao

A thesis submitted to the

School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Applied Science in Electrical and Computer Engineering

Department of Electrical, Computer, and Software Engineering

Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

April 2023

© Weimin Zhao, 2023

ii

THESIS EXAMINATION INFORMATION

Submitted by: Weimin Zhao

Master of Applied Science in Electrical and Computer Engineering

Thesis title: Design and Evaluation of GAN-based Models for Adversarial Training Robustness

in Deep Learning

An oral defense of this thesis took place on April 3rd, 2023 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee

Dr. Masoud Makrehchi

Research Supervisor

Dr. Qusay H. Mahmoud

Research Co-supervisor

Dr. Sanaa Alwidian

Examining Committee Member

Dr. Akramul Azim

Thesis Examiner

Dr. Khalil El-Khatib, Ontario Tech University

The above committee determined that the thesis is acceptable in form and content and that

a satisfactory knowledge of the field covered by the thesis was demonstrated by the

candidate during an oral examination. A signed copy of the Certificate of Approval is

available from the School of Graduate and Postdoctoral Studies.

iii

ABSTRACT

Design and Evaluation of GAN-based Models for Adversarial Training Robustness

in Deep Learning

Weimin Zhao Advisor

Ontario Tech University, 2023 Dr. Qusay H. Mahmoud

 Dr. Sanaa Alwidian

Adversarial attacks show one of the generalization issues of current deep learning models

on special distribution shifted data. The adversarial samples generated by the attack

algorithm can introduce malicious behavior to any deep learning system that affects the

consistency of the deep learning model. This thesis presents the design and evaluation of

multiple possible component architectures of a GAN that can provide a new direction for

training a robust convolution classifier. Each component is related to a different aspect of

the GAN that impacts the generalization and the robustness outcomes. The best formulation

can achieve around 45% accuracy under 8/255 L∞ PGD attack and 60% accuracy under

128/255 L2 PGD attack that outperforms L2 PGD adversarial training. The other

contributions include the research on gradient masking, robustness transferability across

the constraints and the generalization limitations.

Keywords: Adversarial attacks; adversarial samples; adversarial robustness; adversarial

training; generative adversarial networks

iv

AUTHOR’S DECLARATION

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted by my

examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech

University) to lend this thesis to other institutions or individuals for the purpose of scholarly

research. I further authorize University of Ontario Institute of Technology (Ontario Tech

University) to reproduce this thesis by photocopying or by other means, in total or in part,

at the request of other institutions or individuals for the purpose of scholarly research. I

understand that my thesis will be made electronically available to the public.

Weimin Zhao

v

STATEMENT OF CONTRIBUTIONS

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication. I have used standard referencing practices to

acknowledge ideas, research techniques, or other materials that belong to

others. Furthermore, I hereby certify that I am the sole source of the creative works and/or

inventive knowledge described in this thesis.

Results from this thesis research have been disseminated in the following publications:

• W. Zhao, Q. H. Mahmoud, and S. Alwidian, “Evaluation of GAN-based

Adversarial Training” Sensors, vol. 23, no. 5, p. 2697, Jan. 2023, doi:

10.3390/s23052697.

• W. Zhao, S. Alwidian, and Q. H. Mahmoud, “Evaluation of GAN Architectures

for Adversarial Robustness of Convolution Classifier” The AAAI-23 Workshop

on Artificial Intelligence Safety (SafeAI 2023), Washington, DC, Feb 2023.

• W. Zhao, S. Alwidian, and Q. H. Mahmoud, “Adversarial Training Methods for

Deep Learning: A Systematic Review,” Algorithms, vol. 15, no. 8, p. 283, Aug.

2022, doi: 10.3390/a15080283.

vi

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis supervisors, Dr. Qusay H. Mahmoud

and Dr. Sanaa Alwidian, for their support, patience, and guidance throughout my graduate

studies. They provided me with resourceful guidance and support that allowed me to

successfully conduct the research. I also want to thank all my course instructors for their

valuable guidance and knowledge during the master’s degree. Finally, I also would like to

thank my family and Ontario Tech University for giving me good support and a valuable

platform to conduct the research.

vii

TABLE OF CONTENTS

Thesis Examination Information …………………………………………………… ii

Abstract ……………………………………………………………………………... iii

Authors Declaration ………………………………………………………………... iv

Statement of Contributions …………………………………………………………. v

Acknowledgements ………………………………………………………………….. vi

Table of Contents …………………………………………………………………... vii

List of Tables ………………………………………………………………………... ix

List of Figures ……………………………………………………………………..… x

List of Abbreviations ……………………………………………………………….. xi

Chapter 1 Introduction ……………………………………………………………... 1

1.1 Motivation …………………………………………………………………… 4

1.2 Research Scope ……………………………………………………………… 6

1.3 Contributions ……………………………………...…………………………. 7

1.4 Thesis Online ………………………………………………………………... 8

1.5 Summary …………………………………………………………………….. 9

Chapter 2 Background and Related Work ……………………………………….. 11

2.1 Background …………………………………………………………………...11

2.1.1 Generative Adversarial Network ………………………………………. 12

2.1.2 Adversarial Attacks on Image Classifiers ……………………..………. 14

2.1.3 Gradient Descent……………………………………………………….. 15

2.1.4 Fast Gradient Method Adversarial Attacks ……………………………. 16

2.1.5 Iterative Gradient Descent Methods …………………………………… 17

2.2 Related Work ………………………………………………………………… 18

 2.3.1 Gradient-Based Single-Step Algorithm …………………………..…… 20

2.3.2 Gradient-Based Multi-Step Algorithm …………………………..……. 21

2.3.3 Generative Models ……………………………………………..….…... 25

2.3.4 Ensemble Models ……………………………………………………… 27

2.3.5 Limitations …………………………………………………………….. 27

2.4 Summary …………………………………………………………………….. 28

Chapter 3 Proposed GAN-Based Architecture ……………………………………30

3.1 Basic Formulations …………………………………………………………... 30

3.2 Input Formulations of the Generator ………………………………………… 34

3.3 Classifier Architecture ………………………………………………………. 36

3.4 L∞ GAN ……………………………………………………………………… 37

 3.4.1 L∞ Constraint Function ………………………………………………… 37

 3.4.2 L∞ Generator Design ……………………………………………………38

3.5 L2 GAN ……………………………………………………………………… 39

 3.5.1 L2 Constraint Function ………………………………………………… 39

 3.5.2 L2 Generator Design …………………………………………………… 40

3.6 Summary …………………………………………………………………….. 41

viii

Chapter 4 Implementation ……………………………………………………….... 42

4.1 Libraries and Tools …………………………………………………………... 42

 4.1.1 TensorFlow 2 …………………………………………………………... 42

 4.1.2 Adversarial Robustness Toolbox ……………………………………….43

4.2 Implementation Details ……………………………………………………… 44

 4.2.1 Input Implementation ………………………………………………….. 44

 4.2.2 Classifier Parameters …………………………………………………... 46

 4.2.3 L∞ GAN ………………………………………………………………... 47

 4.2.3.1 L∞ GAN Output Constraint Function ……………………….. 47

 4.2.3.2 L∞ GAN Generator Parameters ……………………………… 48

 4.2.4 L2 GAN …………………………………………………………………48

 4.2.4.1 L2 GAN Output Constraint Function …………………………49

 4.2.4.2 L2 GAN Generator Parameters ………………………………. 49

 4.2.4 Training Methodology Implementation ……………..………………… 50

 4.2.5 Attack Algorithms ……………………………………………………... 54

4.3 Datasets ……………………………………………………………………… 57

 4.3.1 CIFAR 10 ……………………………………………………………… 58

 4.3.2 MNIST ………………………………………………………………… 60

 4.3.3 Data Preprocessing …………………………………………………….. 61

4.4 Summary …………………………………………………………………….. 62

Chapter 5 Evaluation Results ……………………………………………………… 63

5.1 Evaluation Metrics …………………………………………………………... 63

5.2 L∞ GAN ……………………………………………………………………… 64

5.2.1 Input Comparison ……………………………………………………… 64

5.2.2 Width Parameter Comparison …………………………………………. 68

5.2.3 Training Epoch Comparison ………………………………………….. 70

5.2.4 Low Dimension Image Evaluation (MNIST) …………………………. 72

5.3 L2 GAN ……………………………………………………………………… 74

5.3.1 L2 Robustness …………………………………………………………. 74

5.3.2 Robustness Transferability ……………………………………………. 76

5.4 Summary of Results …………………………………………………………. 78

5.5 Visualization …………………………………………………………………. 80

5.6 Discussion …………………………………………………………………… 82

5.7 Threats to Validity …………………………………………………………… 84

5.8 Summary …………………………………………………………………….. 87

Chapter 6 conclusion and Future Work ………………………………………….. 88

6.1 Conclusion …………………………………………………………………… 88

6.2 Future Work …………………………………………………………………. 90

Bibliography ………………………………………………………………………. 93

Appendix A: Training Algorithms ………………………………………………. 101

Appendix B: Example Feature Maps of Proposed Interpretable Model ……… 104

ix

LIST OF TABLES

CHAPTER 2

Table 2.1: Overview of adversarial training………………………………………….. 19

Table 2.2: PGD adversarial training subcategories…………………………………... 22

CHAPTER 4

Table 4.1: VGG classifier parameters………………………………………………... 47

Table 4.2: Residual generator parameters…………………………………………… 48

Table 4.3: U-net generator parameters……………………………………………..... 49

CHAPTER 5

Table 5.1: PGD 1000 validation……………………………………………………… 86

x

LIST OF FIGURES

CHAPTER 2

Figure 2.1: Relationship between machine learning, deep learning, and GAN……… 12

Figure 2.2: A GAN architecture……………………………………………………… 13

CHAPTER 3

Figure 3.1: The proposed GAN-based Architecture…………………………………. 32

Figure 3.2: Modified small VGG model... 37

Figure 3.3: Residual generator model………………………………………………... 38

Figure 3.4: L∞ GAN overview………………………………………………………...39

Figure 3.5: U-net generator model. ………………………………………………….. 40

Figure 3.6: L2 GAN overview………………………………………………………... 41

CHAPTER 4

Figure 4.1: Layer object ……………………………………………………………... 43

Figure 4.2: Generator input implementation diagram. The orange dotted line represents the

import relationship of each input formulation. ………………………………………. 45

Figure 4.3: Training method of the GAN model……………………………………... 52

CHAPTER 5

Figure 5.1: Generator input formulations comparison results………………………... 67

Figure 5.2: Generator width comparison results……………………………………... 69

Figure 5.3: GAN training epochs comparison results………………………………... 71

Figure 5.4: MNIST experiment results………………………………………………..73

Figure 5.5: Training results under L2 constraint against L2 PGD attack……………... 76

Figure 5.6: L∞ robustness comparison between different constraint training results… 78

Figure 5.7: Comparison of the accuracies between all formulations………………… 79

Figure 5.8: Extra visualization………………………………………………………...81

CHAPTER 6

Figure B.1: Example feature maps……………………………………………………105

Figure B.2: Example feature maps 2…………………………….……………………106

xi

LIST OF ABBREVIATIONS

API Application Programming Interface

ART Adversarial Robustness Toolbox

BIM Basic Iterative Method

CIFAR Canadian Institute for Advanced Research

eFGSM Enhanced Fast Gradient Sign Method

FGSM Fast Gradient Sign Method

GAN Generative Adversarial Network

IFGSM Iterative Fast Gradient Sign Method

JSMA Jacobian-based Saliency Map Attack

KL divergence Kullback-Leibler divergence

MNIST Modified National Institute of Standards and Technology

PGD Projected Gradient Descent

RGB Red Green Blue

SIM Single-step epoch-Iterative Method

TRADES TRadeoff-inspired Adversarial DEfense via Surrogate-loss minimization

VGG Visual Geometry Group

1

Chapter 1. Introduction

Deep learning is utilized for various applications, such as image classification, language

recognition, signal transformation, and sample generation [1]. Deep learning models have

also played an important role in the development of self-driving vehicles, fault detection,

and other mission-critical and safety-critical systems. The recent expansion of deep

learning models adds more concerns and challenges related to the consistency and security

of machine learning models. Deep neural networks are referred to as black-box machine

learning algorithms in which large quantities of parameters and complex structures are

highly uninterpretable [1]. The behavior of these deep learning models can be impossible

to explain or understand by humans.

Adversarial samples expose one of the black-box properties of deep learning models

and highlight the limitations of the interpretability of the deep learning system [1], [2].

These samples typically have different representations or meanings when they are

interpreted by human learning systems and deep learning systems. Adversarial sample is

one of the anomalies that is humanly crafted and targets machine learning or deep learning

model themselves. Hence, cyber attackers could exploit these adversarial samples to

perform attacks on critical systems that build upon deep learning models to conduct

malicious activities. From the researcher’s perspective, the existence of adversarial

samples means that the current understanding of the deep learning models remains limited.

The current research suggests that the adversarial samples represent one type of shifted

data distributions, often referred to as adversarial distribution shift and deep learning

models have failed to generalize on this adversarial distribution shifted data samples [3].

2

The discovery of the integrity properties of the models are important to resolve future

optimization problems.

The algorithm for finding adversarial samples is called adversarial attacks. The

attack algorithms can be categorized based on their optimization methods, required access

information, and constraint types [1]. One of the most efficient methods to generate

adversarial samples can involve using a multi-step gradient descent algorithm to update

the input vectors of the model based on the loss functions of the model [4], [5]. There are

also multiple algorithms that work on different objective functions or that are not required

to access inner model information [6].

The current research primarily focuses on using detection methods [7], denoise

models [8], [9], [10], certified methods [11], and adversarial training [5], [12] to defend

adversarial samples or to improve the adversarial robustness of deep learning models.

However, most of these methods cannot provide a direct robustness increase with the

original classifier. Some of the methods are also limited in terms of effectiveness [13] and

scalability [1] and may require additional model deployments.

Adversarial training is one of the defense methods that directly improves the

adversarial robustness of the deep learning model [12]. The advantages of adversarial

training include the simplicity of facilitating an understanding and implementation of the

formulation, and the high effectiveness in enabling the current state-of-the-art adversarial

robustness [5], [12]. Adversarial training focuses on data augmentation and trains the

model on additional generated data to improve the overall data generalization of the model.

Adversarial attack algorithms are typically implemented to generate the augmentation data

by computing the adversarial noises from the training data set [5]. Both clean training data

3

and adversarially-perturbed data are used in the adversarial training process. Thus, deep

learning models can generalize the distribution of the data based on clean data samples and

adversarially-perturbed samples. It is essential that the implemented attack algorithm is

effective. Hence, higher-complexity iterative algorithms are generally used in the training

processes to maximize the possibility of finding precise adversarial noises [5]. However,

the limitations include high training complexity, across-the-board generalization, and

accuracy-robustness trade-offs [12].

Generative models have recently provided a new solution to discover more data

samples in a hidden distributional space. Some research has demonstrated that it is possible

to implement these generative models to produce more training data or to perform data

augmentation to improve model training [14]. In adversarial machine learning settings, the

generative model can be used to produce high-quality adversarial samples when the

generative model is optimized in attack settings [15].

Generative adversarial networks (GANs) are one of the approaches to realize the

generative architecture. In defensive cases, both the generative properties of GANs and the

adversarial training properties of GANs can be utilized together to construct an effective

framework to formulate a similar schema to adversarial training. The generator of GANs

can learn to generate adversarial noises by optimizing with gradient descent or Adam

optimizers [15], [16], and the generated adversarial noises can be used to train a classifier

to improve the classification robustness on defending adversarial attacks [16].

Compared to conventional adversarial training, GAN architecture can be

implemented in a low training complexity formulation that can achieve similar training

results for small and medium sized models [16]. In this thesis, the size of models refer to

4

the deep learning models around or less than ten million parameters. The output layers of

the generator are also interchangeable, as they switch the adversarial noise outputs based

on the required norm constraint. Hence, the deep learning classifier can be generalized on

different constrained adversarial samples without implementing an additional attack

algorithm. The model trained with the GANs augmentation method could improve its

generalization on a wide range of adversarial samples without significant architecture

changes and increased complexity.

The challenge of GAN training is that GANs are limited to generalizing on the

gradient of the classifier. The generalization of GANs is heavily affected by the generator

design and other hyperparameters. Hence, a low-capability set of generators and

parameters cannot consistently estimate the worst-case loss of the classifier, resulting in

the low robustness of the overall training results. Therefore, an improved GAN is required

to resolve the training complexity issue of the conventional adversarial training and to

improve the generalization of GAN methods.

1.1 Motivation

The primary motivation of the proposed architecture is to reformulate conventional

adversarial training and to address the limitations of adversarial training regarding the

training complexity, flexibility, and data generalization. The secondary motivation is to

utilize GAN methods to generate adversarial distribution shifted data points and to

formulate the problem within the deep learning model itself to compare the differences

between the adversarial samples found by deep learning models and conventional attack

algorithms.

5

Adversarial samples can be obtained by using multiple attack algorithms with

different optimization formulations. The most common attacks are gradient-based attacks,

which backpropagate the gradient of the loss back to the input space to calculate the

adversarial noises by using gradient descent [4], [5]. The other method involves using

metaheuristic optimization or other optimizers to find adversarial samples [6]. In general,

attackers aim to maximize the loss of the target model while minimizing the information

loss to humans. Hence, adversarial samples can refer to any intentionally crafted data

sample that results in significant differences in predictions between human and machine

learning models [1], [3]. This thesis mainly focuses on one particular case of crafting

methodology, since it is primarily utilized by gradient-based attack algorithms and is easily

accessible within white-box situations or transferred attack situations. This crafting

methodology is predicated upon an assumption of an adversarial sample as x+δ, where x is

a selected sample from the data set, and δ is a small adversarial perturbation or adversarial

noise vector that is added to the sample x while minimizing the human perception loss. The

attack model uses gradient descent to generate adversarial perturbation δ based on a sample

x and a given deep learning model in one or iterative process. Then the perturbation δ is

added to sample x to generate an adversarial sample that has a high possibility of causing

the deep learning model to misclassify the sample. Hence, the consistency of the

classification of the sample within the data set are the first priority of the proposed defense

method. Under this assumption, the adversarial noise vector is constrained by a norm size

under a distance metric to be mathematically small to minimize the human perception

differences. Hence, the adversarial sample is assumed to be located close to a possible data

sample within a selected data set under a distance metric.

6

This thesis focuses mainly on adversarial attack defenses against deep learning image

classifiers. In particular, deep convolution image classifiers. The research uses convolution

classifier model as a baseline deep learning model to evaluate the effectiveness and the

performance of the proposed defensive methodology because these models are well-

studied in the related research field [3]. Furthermore, the GAN models are commonly used

for image synthesis [15]; hence, the thesis capitalized on this model to augment image data

that is well suited for convolution image classification.

In image classification, L0, L2, and L∞ norm metrics are commonly used to minimize

the adversarial vector size. The L0 norm constraint limits the upper pixel number that can

be changed, whereas the L2 norm constraint limits the adversarial vector size in Euclidean

space. The L∞ constraint applies an upper bound to the maximum value change across all

the pixels. This thesis explores the use of GANs to improve the adversarial robustness of a

deep learning convolution classifier under the assumption of the adversarial sample being

x+δ. The primary constraints considered in this work are L∞ and L2 constraint adversarial

samples. The L0 constraint is more challenging to formulate with differentiable gradient

optimization methods, and it requires more research to implement in the GAN architecture.

1.2 Research Scope

The scope of this research primarily encompasses a small to a medium-size deep learning

image classifier that categorizes any user input image in (Red Green Blue) RGB channels

according to a specified set of label classes. The size of the classifier depends on the

parameter numbers of the model, and the main focus of this thesis is the classifier model

with less than ten million parameters. The target image classifier primarily trains with a

supervised learning technique to generalize on every image-label pair with training set data

7

and to provide an accurate classification of any given same-dimensional images. Ideally,

this training architecture can be applied to any deep learning image classifier with

supervised training. However, it is particularly beneficial for small and medium image

classifiers to reduce adversarial training time and improve adversarial robustness. This

research addresses adversarial attacks within L∞ and L2 norm constraints.

The primary attack algorithms considered in this thesis are the single and the multi-

step white-box gradient attacks, which are the attack algorithms that exploit the loss

gradient of the model to generate adversarial perturbation. The scenario entails a situation

in which attackers gain access to the information of the target model or when the attackers

use a transfer-based gradient attack to generate adversarial samples. The primary focus of

the solution is to resolve the problem when the correct classification is affected by an attack

algorithm that is converted into a false classification.

1.3 Contributions

The main contribution of this thesis is an improved GAN-based architecture to augment

the training of deep learning image classifiers’ adversarial robustness against adversarial

attacks under L∞ and L2 norm constraints. The architecture uses a deep neural network

generator to produce adversarial perturbation solutions for a target classifier for data

augmentation. A target classifier can be adversarially-trained with the generator to learn to

generalize on such adversarial noise that can provide general robustness against adversarial

attacks under the same constraints. In the process of training, the generator captures the

loss gradient of the classifier and learns to determine the vulnerability of the target classifier

in its loss landscape. The generated noises can be used for later study. The architecture is

used on a modified Visual Geometry Group (VGG) classifier with the 10 classes of data

8

samples from the Modified National Institute of Standards and Technology database

(MNIST) and the Canadian Institute for Advanced Research (CIFAR). The following

research contributions are presented:

• A GAN architecture that realizes data augmentation for training robust deep

learning image classifiers against gradient-based adversarial attacks under L∞ and

L2 constraints.

• Evaluations of different implementations of the GAN to enable a discussion of the

effectiveness of each implementation.

• A GAN adversarial training methodology that facilitates low-complexity

adversarial training and achieves improved accuracies against gradient-based

attacks. The best accuracies are around 45% against 8/255 L∞ projected gradient

descent adversarial samples and 60% against 128/255 L2 projected gradient descent

adversarial samples.

• An attack-independent adversarial training architecture to provide flexible

robustness against two selected norm constraints (L∞ and L2) without significant

modification requirements.

• A demonstration of the performance of GAN regarding the transferability between

constraints and a visualization of the generated adversarial samples.

The research results from this thesis have been disseminated in the papers [17]-[19].

1.4 Thesis Outline

The remainder of the thesis is organized as follows.

9

Chapter 2 introduces the main concepts and the research related to adversarial attacks and

adversarial training. The chapter also introduces the concept of the generative adversarial

network (GAN) and its relationship to adversarial training for adversarial attack defenses.

Chapter 3 provides a detailed formulation of the proposed defensive strategy against

gradient-based adversarial attacks. The chapter introduces the basic formulation and

several detailed components of the proposed model that are used for evaluating the models’

performances.

Chapter 4 presents the implementation tools and libraries. The chapter also describes the

realization of the model’s components and the implementation of the training logic.

Furthermore, the chapter elucidates the experimental settings for evaluating the attack

algorithm used and presents the datasets utilized for the experiments. The model

parameters used for each dataset and experiment are also discussed in this chapter.

Chapter 5 discusses the experimental evaluation and results. The chapter is divided into

two main sections for the different datasets. The more advanced dataset is divided into

subsections. The experiments related to different model components are reported in the

corresponding subsections.

Finally, Chapter 6 presents the conclusion and the potential future direction of this

research.

1.5 Summary

This chapter includes a brief discussion of the current challenges regarding the adversarial

samples in a deep learning context. It also presents an outline and the scope of the thesis.

The primary goal of the thesis is to implement a novel GAN architecture to generate

10

augmentation adversarial samples and to provide adversarial training to a given image

classifier to improve its generalization on adversarial samples. Chapter 2 discusses the

related works and introduces other important background information regarding

adversarial machine learning and adversarial training.

2

11

Chapter 2. Background and Related Work

This chapter surveys the related research regarding adversarial samples, adversarial

attacks, and adversarial training algorithms. The concepts related to gradient-based

adversarial attack algorithms are presented, and the state-of-the-art adversarial training

frameworks are reviewed in detail. The other defensive strategies are not closely related to

the approach in this thesis; hence, they are not reviewed. The gradient-based attacks are

categorized based on their computational cost and the constraint types. The adversarial

training is categorized based on the components used for data augmentation, and more

specifically, the attack algorithms used to generate adversarial samples. The major contents

of this chapter have been published as a systematic literature review [17].

2.1 Background

Deep learning is one of the machine learning methodologies that utilizes deep-stacked

neuron networks to realize function transformation and feature extraction. Recent advances

within deep learning have been applied to a wide range of applications, including image

recognition, language recognition, generative models, and other domains. To realize these

domain applications, multiple architectural designs have been proposed, including

convolution networks, recurrent networks, transformers, and many others [20]. Within

image recognition models, the convolution neuron network is one of the commonly used

architectures that has realized state-of-the-art performance in image classification and

image synthesis. Furthermore, the generative adversarial network (GAN) is one of the

generative model architectures that can utilize convolution neuron networks for image

generation and synthesis. The image synthesis in GAN typically combines the components

of convolution neuron networks and the knowledge of image classification and data

12

synthesis to realize its functionality. This thesis focuses on issues related to the deep

learning convolution classifier and the utilization of GAN to address the vulnerability of

these types of classifiers. Hence, this section provides basic information relating to GAN

and the related attack algorithms for convolution image classifiers. The overview of the

relationship between machine learning, deep learning, and GAN is illustrated in Figure 2.1.

Figure 2.1: Relationship between machine learning, deep learning, and GAN.

2.1.1 Generative Adversarial Network

A generative Adversarial Network (GAN) is a specific architecture that incorporates a

generator model and a discriminator to form an adversarial training architecture [21]. The

architecture realizes a self-supervised learning formation through the min-max

optimization of two network models. The generator is typically responsible for learning to

generate high-quality synthetic data samples, and the discriminator is used to differentiate

the generated synthesis data samples and the real data samples and to guide the

optimization process of the generator. A standard architecture of GAN is illustrated in

Deep
learning

Application domains

Architecture designs

Convolution

Recurrent

Transformer

Others

Image recognition

Language recognition

Data synthesis

Others
GAN

Others:
SVM,

Random forest,
etc.

Machine learning

13

Figure 2.2. In image synthesis tasks, a convolution GAN is commonly utilized, where the

generator and the discriminator are both implemented with convolution neuron networks.

The generator usually learns to transfer an input vector to the synthetic images and the

discriminator, as a binary classifier outputs a label to indicate whether its input samples are

real or fake. The overall GAN formulation can be described as min-max optimization

between the generator and discriminator networks. The objective function can be described

using Equation (2.1):

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝔼𝑥~𝑝(𝑥)[log 𝐷(𝑥)] + 𝔼𝑧~𝑞(𝑧)[log (1 − 𝐷(𝐺(𝑧)))] (2.1)

where discriminator D maximizes the probability to distinguish the real and synthetic data,

and generator G minimizes the discriminator’s probability of it. The term x and z represent

the real sample and the latent vector, respectively. Both networks can be optimized using

gradient descent or a more advanced optimizer, such as Adam. The recent application of

GAN has entailed generating augmentation data for training other learning models [14],

[16].

Figure 2.2: A GAN architecture.

DiscriminatorGenerator

Real
sample

set

Latent vector

Real

Fake

Minimizing loss toward Real label

Minimizing loss toward correct labels

14

2.1.2 Adversarial Attacks on Image Classifiers

An adversarial sample of an image classifier is a type of image sample that is classified

differently by the model classifier and a human [1]. In adversarial machine learning studies,

the common example is typically a sample that exists close to a selected evaluation sample

that is indistinguishable by humans but that has a significantly different model

classification compared to the selected evaluation sample. Several distance metrics are used

to measure the adversarial distortion size in a mathematical manner. Generally, it is

assumed that a small mathematical distance measurement is sufficient to make the

distortion indistinguishable from human visions. Hence, the general assumption can be

written as the Equation (2.2) for an adversarial sample generated from an evaluation sample

x:

 𝑥𝑎𝑑𝑣 = 𝑥 + 𝛿 (2.2)

where δ is the adversarial perturbation vector or adversarial distortion noise, and xadv is an

adversarial sample generated from the sample x. The common distance metrics used to

constrain the mathematical norm size of δ include L0, L2, and L∞ norm constraints. The

formulation of the Lp norm is written as Equation (2.3):

 ||𝑥||𝑝 = ∑ |𝑥|𝑝 𝑝 ≥ 1𝑛
𝑖=1 (2.3)

where x is a given vector, and p is a real number greater than 1. When p equals zero, the L0

norm of a vector is the maximum value of the vector that is not equal to zero. When p

equals 2, Equation (2.3) is the Euclidean length of the vector, and when p equals infinity,

Equation (2.3) is the maximum value within the vector x.

15

An adversarial attack that targets a visual classifier could implement any of the norm

constraints to generate an adversarial sample. However, the adversarial sample generated

from different constraints has a different distribution. Since the L0 norm size computation

is not differentiable, L0 constraint adversarial samples are typically generated from black-

box algorithms that use metaheuristic optimizers to determine the effective adversarial

distortion [3]. These types of algorithms are more flexible in their optimization methods

and can create adversarial samples without any differentiable formulation. Within the scope

of this thesis, gradient-based attacks are the primary focus; hence, the L2 and L∞ norms are

mostly considered in this work.

2.1.3 Gradient Descent

Gradient Descent is one of the optimization algorithms that is widely used in deep learning

optimizations [3], [20], including training, finetuning, and adversarial attacks. The

algorithm of gradient descent can be described using Equation (2.4) [20]:

 𝜃𝑛+1 = 𝜃𝑛 − 𝛼∇𝐿(𝜃𝑛) (2.4)

where the θn+1 and θn represent the optimizing parameter of a differentiable model, and L

represents the loss function of the optimization. The gradient descent algorithm computes

the gradient of the loss function ∇L regarding the parameter θn and multiplies the gradient

with a learning rate parameter α to determine the value update on the parameter θn. θn+1 is

the updated parameter after gradient descent.

In the case of the training and finetuning process of a deep learning model, the

gradient descent usually pairs with backpropagation to update the model parameters within

neural network layers [20]. The training algorithm of a deep learning model requires the

16

definition of a loss function L and a set of sample-label pairs of training data (xi, yi). The

gradient of the loss function regarding the inner parameters of the model is computed from

the errors of the model outputs based on training sample-label pairs. The error values of

the outputs can be backpropagated to the shallower layers of the deep learning model to

obtain the gradient of the loss with respect to all the parameters. Hence, all the parameters

of the model can be optimized using the gradient descent algorithm.

In the case of adversarial attacks, the algorithms using gradient descent to optimize

the adversarial samples are referred to as gradient-based attacks [3], [5]. Assuming a deep

learning model with sample-label pairs (xi, yi) and loss function L, the gradient-based attack

optimizing sample xi based on the gradient of the loss function regarding each sample-label

pair (xi, yi). The details of the gradient-based attack algorithms will be introduced in

subsequent sections.

In this thesis, gradient descent is used as the primary optimization algorithm. The

implementation of gradient descent is included in all the model optimization and attacks

from the thesis, such as GAN training process, classifier training process, and all gradient-

based attack algorithms.

2.1.4 Fast Gradient Method Adversarial Attacks

Fast gradient method attacks are one of the gradient-based attack algorithms that can target

convolution classifier models. These attacks use the backpropagated gradient information

of a target model to compute adversarial noise. Hence, this requires one gradient

backpropagation to perform the attack and necessitates access to a selected target model’s

inner parameter. When the attack operates in the L∞norm constraint, the sign of the loss

17

gradient is used to keep the signed direction of the gradient for constraining the L∞ norm.

This version of the attack is called the fast gradient sign method (FGSM) [4]. The FGSM

attack corresponds to Equation (2.5):

 𝑥’ = 𝑥 + Ɛ ˑ 𝑠𝑖𝑔𝑛(𝛻𝑥 𝐿(𝑥, 𝑦)) (2.5)

where x’ is the adversarial sample of an original sample x. The Ɛ ˑ sign(∇x L(x,y)) is the

computational vector or adversarial perturbation vector. The ∇x L(x,y) represents the loss

gradient of the sample-label pair (x,y) from the target classifier, and the sign function

constrains the gradient vector into the L∞ norm. The parameter Ɛ is a scalar parameter that

limits the maximum norm size of the perturbation vector. The method can also be used in

the L2 norm by simply removing the sign function.

2.1.5 Iterative Gradient Descent Methods

The iterative gradient descent method [1], [3], [5] includes multiple gradient-based attack

algorithms that utilize multi-step gradient descent and backpropagation to generate

adversarial samples; the algorithm is more effective in attacking convolution classifiers.

Similar to FGSM, these methods require the model’s inner parameters to perform a

successful adversarial sample generation.

Projected gradient descent (PGD) [5] is a common optimization algorithm that uses

gradient descent as a core optimization strategy. In adversarial machine learning, PGD is

an effective iterative gradient descent attack method that incorporates vector projection and

random initialization. The selected data sample is added by a random perturbation before

the start of the gradient descent, and projection is performed when the solution runs out of

feasible space. The basic formulation is written in Equation (2.6):

18

 𝑥𝑡+1 = ∏𝑥+𝑠(𝑥’ + 𝛼 𝑠𝑖𝑔𝑛(𝛻𝑥 𝐿(𝑥, 𝑦))) (2.6)

Compared to the FGSM formula, the PGD includes the iterative addition of adversarial

perturbation and projection. The xt+1 represents the current result of an adversarial sample,

where the x’ is the previous iteration’s adversarial sample. The overall sample vector is

projected to the feasible space to compute the current sample xt+1. Similar to FGSM, the

sign function transforms the perturbation into the L∞ constraint. The formulation can also

be implemented in the L2 constraint by removing the sign function from the formula.

2.2 Related Work

This section provides details about the state-of-the-art adversarial training methods that are

used to improve the adversarial robustness against gradient-based adversarial attack

algorithms. The general formulation can be described using Equation (2.7):

 min ∑ max 𝐿(𝑓(𝐺)), 𝑦𝑖) (2.7)

The algorithm trains the classifier model to generalize on the adversarial samples produced

by a selected adversarial attack. The formulation uses the adversarial attack to generate

adversarial samples for maximizing the loss of the target classifier. The target classifier

then trains with these samples to minimize the loss to provide generalization on the

adversarial samples. The selected attack algorithm determines the type of robustness of the

trained classifier model. The quality of the generated adversarial sample impacts the

robustness level of the trained model. Hence, the adversarial sample generation algorithm

should be carefully selected for adversarial training to provide a proper type of robustness,

and generalization depends upon scenarios of potential threat.

19

 Table 2.1 lists the adversarial sample generation algorithms (i.e., the attack

algorithms) used in adversarial training. Each type of augmentation algorithm is

systematically reviewed, and the advantages and limitations are listed and discussed.

Table 2.1: Overview of adversarial training.

Category Related

works

Description Advantage Limitation

Gradient-

based

single step

algorithm

[22]-[41] FGSM/eFGSM/SIM Efficient and

fast with low

training

complexity

compared to

iterative

methods

Low

precision;

causes

overfitting

and provides

poor

generalization

of robustness

Gradient-

based

multi-step

algorithm

[5], [22],

[31]-[34],

[36], [42]-

[73]

PGD/IFGSM/BIM/JSMA High precision

and accurate

adversarial

sample

generation; can

provide more

robustness

compared to

single-step

algorithms

High

complexity;

overfitting;

poor

generalization

on clean data

samples

Generative

models

[16], [62],

[74]-[83]

Auto-encode-decoder

and GANs

Semi-

supervised or

self-supervised

learning; more

efficient for

implementation

and for training

complexity

compared to

multi-step

methods

Performance

varies from

different

generative

models; low

transferability

and

catastrophic

forgetting and

overfitting

Ensemble

methods

[22], [84]-

[86]

Combining ensemble

models

Lower the

transferability

of adversarial

samples across

different

models with

Require

pretrained

models;

provide less

robustness to

target model

itself

20

efficient

training time

Our

proposed

method

N/A Contributions:

• Improving upon GAN model and utilizing it for

adversarial training

• Providing more advanced formulations to enhance

GAN’s augmentation ability to train a robust

convolution classifier

• Providing low-complexity training methodology

• Constructing an attack-independent adversarial

training method with L∞ and L2 constraints and

providing insight into the transferability of

robustness between the constraints

• Providing insight into the overfitting problem of

GAN and discovering the effect of training epochs

The limitation of the proposed method:

• Overfitting of generator and classifier

• Accuracy and robustness tradeoffs

2.2.1 Gradient-Based Single-Step Algorithm

Adversarial training frequently uses gradient backpropagation to generate adversarial

samples for data augmentation. This category of the gradient-based method incorporates

one-time computation to obtain the adversarial vector that is used to modify the original

data. The basic idea concept incorporates the gradient descent algorithm to optimize the

loss gradient onto the input data. The inner part of the adversarial training maximization is

generally implemented by the FGSM algorithm or by a similar algorithm for generating

augmentation data. The benefit of this single-step generation is that only one additional

gradient descent is required for each training step. Hence, the overall training complexity

is not heavily affected. This type of adversarial training can provide baseline robustness

for the trained model to defend against similar single-step gradient descent attacks.

However, single-step gradient attacks are known to be ineffective in finding the worst-case

21

adversarial sample [5]. This means that the model trained with a single-step attack

algorithm cannot guarantee robustness against the worst-case adversarial samples [5]. This

ineffectiveness can also be applied to smaller models. Hence, in most cases, single-step

adversarial training is less practical, since any attacker can use multiple gradient descents

to generate adversarial samples. Conversely, the model trained with a single-step attack

still has adversarial samples that exist in false decision boundaries; therefore, the model

cannot be trusted for capturing robust features of the data. The other problems include

overfitting [28] and accuracy-robustness trade-offs [50].

Several studies have targeted the improvement of this type of adversarial training to

provide an enhanced robustness generalization and retain the advantages associated with

low computational complexity. The improved versions include the implementation of

dropout scheduling to reduce overfitting [23] and optimization regularization to provide a

better estimate of adversarial direction [24]-[41]. Fast adversarial training [26], [27], [31]

is one of the most well-known efficient adversarial training concepts that relates to

implementing adversarial training with a single-step gradient attack. This method uses

random initialization incorporated with a single-step attack to generate a similar adversarial

sample compared to other multi-step attacks. However, these improvements are also

reported to have problems with overfitting [31], and they still do not promote the accuracy

against adversarial samples compared to the current state-of-the-art accuracy with regular

classification tasks.

2.2.2 Gradient-Based Multi-Step Algorithm

The adversarial training that uses a multi-step gradient attack has been developed from

single-step attack adversarial training. Rather than using simple one-step backpropagation,

22

this type of adversarial training uses multiple backpropagation gradient descents to

generate adversarial samples in each training step [5]. The commonly implemented multi-

step attacks are variations of PGD or basic iterative method (BIM) attacks. With the

repetitive gradient descent, the loss gradient of the model can be accurately explored to

produce more precise and effective adversarial samples [5]. Hence, the model trained with

this augmented data can yield enhanced overall robustness compared to single-step

algorithms [5]. However, the disadvantage of the multi-step algorithm is that it includes

another iterative loop within each training step; hence, it can cause heavy computational

overhead, particularly with a larger model [12]. This increased complexity can impact the

practical efficiency of training a robust model. Furthermore, the robustness-accuracy trade-

offs are also presented in the trained model with these attacks [50]. The other problem also

involves overfitting [12], which demonstrates the limitation of the generalization. The other

challenge related to the usage of PGD attacks is that it is typically more effective in

generating L infinity norm adversarial samples [5]. Hence, robustness against other norm-

constraint adversarial samples cannot be guaranteed.

PGD adversarial training [5] is one of the most popular adversarial training methods.

Hence, various studies have addressed the prospect of improving PGD adversarial training.

The general improvement direction encompasses reducing overfit, reducing training

complexity, improving attack effectiveness, progressing toward better training objectives,

and developing solutions to data limitations. The research related to these improvements is

presented in Table 2.2, with a summary of the improved direction.

Table 2.2: PGD adversarial training subcategories.

PGD AT improved

versions

Related works Improvements

23

Curriculum training [42], [43], [44] Reducing overfit and

improving generalization

Adaptive training [45], [46], [47] Reducing overfit and

improving generalization

Efficient training [48], [49], [31] Reducing training

complexity and training

time

Improved regularization [50], [51], [52], [53], [54] Improving loss functions

and improving

generalization

Unsupervised training [55], [56], [57], [58] Providing more data and

improving generalization

Curriculum adversarial training primarily resolves issues of overfitting. It

incorporates an accuracy monitoring step and adjusts the attack strength based on the

current performance of the model [42]. The entire process of curriculum training involves

a gradually increasing norm size of the adversarial sample; there is also a version of

curriculum adversarial training with an early stop [43], [44].

Adaptive adversarial training applies different attack norm sizes for different data

samples within the training data set [45]-[47]. The adaptive training prevents the

adversarial attack augmentation from overshooting the decision boundary around the

training data and applies an adjustable adversarial perturbation based on the distance

between the data point and the decision boundary.

Efficient training [31], [48], [49] is another improvement associated with PGD

training that aims to reduce the training complexity of PGD training. Free adversarial

training [48] is one of the proposals that could improve the gradient efficiency of the

training and modify the training schemas to include model parameter updates and the single

gradient descent adversarial sample generation within a one-step update. Hence, the

training step and the single iteration of the adversarial attack are shared in one iteration to

24

improve the efficiency of training. An enhancement of this training has been proposed that

uses a layer-wised heuristic learning method to further improve the efficiency [49]. Other

methods [31] combine the single-step attack and multi-step attack for different stages of

the training to accelerate the adversarial training.

There are various methods, including the modification of objective functions and

optimization terms. These methods [50]-[54] typically modify or include a regularization

function for better training performance. The TRadeoff-inspired Adversarial DEfense via

Surrogate-loss minimization (TRADES) regularization [50] is one of the methods that

proposes a theoretical optimization trade-off between accuracy and robustness and that

applies the trade-off as an objective in a regularization function. The training using this

regularization term has a new training objective to reach a balance point between natural

errors and adversarial errors. The other regularization proposals include logit pairing [51],

sample correctness regularization [52], and triplet loss [53], [54].

Unsupervised and semi-unsupervised adversarial training have been proposed to

leverage the data-hungry problem of adversarial training. Zhai et al. [57] suggest that more

data is necessary to achieve robust results. Hence, some research [55]-[58] has proposed

adversarial training with unlabeled data samples.

Aside from these categories of PGD adversarial training, several other proposals

have been provided with other benefits regarding robustness. Maini et al. and Stutz et al.

[59], [60] developed a training method to address the problem of the unseen adversarial

samples. These adversarial samples can be concealed beyond the normal norm size of the

attacks and cannot be addressed by the usual adversarial training. The other method

incorporates other unique regularization methods and addresses issues with real-life

25

adversarial samples [61]-[73]. Despite these modifications and improvements, the

limitations of adversarial training still exist and generally cannot be fully tackled via one

solution.

2.2.3 Generative Models

Generative models represent one of the useful types of models of architectures for data

generation and synthesis. Multiple proposals have considered the use of these generative

networks for robust adversarial training purposes. The architectures of these generative

models include GANs, auto-encode-decoder, and diffusion models. Of these architectures,

the GANs and auto-encode-decoder fit the adversarial training schema; hence, these two

types of models are reviewed in this section.

The GANs model used for adversarial attack defense typically focuses on one of two

major concepts: distribution transferring and data augmentation. Distribution transferring

GANs [77], [78], [83] capitalize on the encode-decoder generative architectures, such as

cycle GAN and U-net, to transfer the adversarial distributional data to the normal data

distribution to mitigate the effects. The benefit of this method is that it utilizes an efficient

architecture, and the generative structures can be interchanged to work with different

classifiers. On the other hand, the limitation of this method is that it can only be effective

with the specific adversarial samples it trained for and cannot be universally generalized.

It also requires a heavy adversarial sample generating process similar to PGD adversarial

training, and it does not improve the original model’s robustness. Additionally, extra

models must be deployed in real time to realize the adversarial denoise process. Another

type of GAN [79]-[82] utilizes a self-supervised learning method that provides sample

reconstruction to realize a simpler cleansing effect. It generally does not require attack

26

method implementation during the training. However, the method shares the limitation of

additional model deployment and also does not address the original classifier’s robustness.

Data augmentation GANs [16], [62] enhance the conventional adversarial training

using GAN architecture or directly implement GAN for data augmentation. Liu et al. [62]

use the GANs model to enhance the adversarial training process, wherein an extra

discriminator is involved during the training to guide the optimization of the target

classifier model toward the robustness parameters. However, this model does not address

the issue of training complexity and introduces more parameters into the training process.

Another GAN defense strategy [16] directly utilizes the original idea of GAN [21] and is

significantly similar to conventional adversarial training. This model uses the generator to

capture the loss gradient of the adversarially-trained classifier and to produce maximized

loss samples; it then makes the classifier generalize on these samples. The benefit of this

type of GANs is that it is generally less computationally complex compared to PGD

adversarial training, and it can be implemented without a specific attack method. The

generator can also effectively produce more data samples during the training process,

which leverages the problem of data-hungry limitations. However, the training result of

this type of model heavily depends upon the generator formulations and the capability of

the generator to capture the proper gradient information [87]. One challenge of formulating

the generator to realize different constraints of adversarial samples is that most lectures

only include one type of generation constraint [16], [62], [83]. The other limitations include

overfitting [87] and gradient saturation [87], which are the traditional challenges involved

in GAN training. This thesis extends the GAN augmentation models and aims to provide

more insight into the potential details of GAN used for adversarial robustness purposes.

27

The thesis evaluates the different components of GAN and particularly its adversarial

sample generator network to provide improvement directions regarding the overall training

performance of the GAN model.

The auto-encode-decoder [74]-[76] can also be used to generate adversarial samples.

The general formulations include a similar min-max formulation compared to GAN [75]

and the classifier latent space decoder [74], [76] for adversarial sample generation and

training. The major disadvantages are similar to GAN, in that the performance depends

upon the generative model’s capabilities.

2.2.4 Ensemble Models

Ensemble adversarial training provides a different approach compared to other adversarial

training methods. Ensemble adversarial training mainly focuses on decreasing the

transferability of an adversarial attack across multiple different models [22], [84]-[86]. The

method generates adversarial samples from a pre-trained model and includes these samples

to train other independent models. Hence, the new model can generalize on these

adversarial samples that the adversarial sample cannot simultaneously target both models.

Ensemble adversarial training is highly effective for defending against transfer-based

black-box adversarial attacks [22]. However, if the attack algorithm directly operates on

the target classifier, the ensemble adversarial training cannot provide such robustness

against these attacks [22]. Another benefit is that this training method does not require real-

time adversarial sample generation, which results in heavy training overhead.

2.2.5 Limitations

The overall limitations of the current algorithm-based adversarial training frameworks for

adversarial attack defenses include generalization problems, overfitting, computational

28

complexity, and limitations related to unseen distributional shifted data [1], [12]. There are

also limited strategies and information to understand the effects of these adversarial

samples. Hence, a flexible and universally applicable method is necessary to provide more

usability in terms of generalization on different constraint attacks, to diminish the training

complexity, and to reduce other negative effects of adversarial training.

The GANs augmentation frameworks may not provide state-of-the-art training

results in terms of accuracy against adversarial sample and overfitting, since these

frameworks are limited to the conventional problems related to GAN, such as gradient

saturation and overfitting. They are also limited to their architectural design and additional

parameters of the generators involved during the training process. However, the GAN

model can provide some unique benefits for formulating the adversarial training framework.

With proper design, GAN can typically be more backpropagate efficient compared to PGD

adversarial training. The generator can also be modified to adapt it to different formulations

for different constraints of adversarial sample generation with minimal changes. The

generated adversarial sample also provides additional data points for classifier

generalization. This generator can also be regarded as an alternative adversarial sample

generation method for further research exploring the differences between generator-

captured adversarial samples and adversarial samples from other algorithms.

2.3 Summary

This thesis focuses on the benefits of GAN models and proposes a GAN adversarial

training architecture with several novel formulations. The formulations are experimented

with and compared to improve the training performance and the robustness of the GAN

training method. Furthermore, the proposed method enables low-complexity adversarial

29

training and can also defend more complex attacks. The method also does not require

specific attack algorithm implementation and is attack-independent compared to

conventional adversarial training. The thesis provides a deeper evaluation of training

epochs and the overfitting effect of the model to identify the hidden relationships. The

summarized information is also presented in Table 2.1.

This chapter has presented the necessary background information and related

research to understand adversarial attacks and adversarial training. The limitations of the

current research indicate the need for more research regarding adversarial training

strategies and a further exploration of adversarial samples. Chapter 3 discusses the

proposed architecture and the different considerations regarding the generator formulations

and constraint settings of GAN for robust data augmentation.

3

30

Chapter 3. Proposed GAN-Based Architecture

This chapter discusses the proposed architecture and formulation of the GAN model for

data augmentation. The basic architecture is presented first. The basic generation and

training strategy are also described and discussed. Subsequently, the different variations of

generator formulations are listed. These formulations will be used in later experiments for

performance comparison. Finally, the chapter introduces the basic classifier architecture

and different types of constraint GANs. The architecture and the formulations of the

proposed GAN have been published in paper [18], [19].

3.1 Basic Formulations

The proposed architecture involves a standard composition of GAN with a generator and

discriminator min-max formulation. Since the GAN is used for robust classifier training,

the discriminator is referred to as a classifier in later sections. The generator of the

architecture learns the gradient from the classifier and provides the adversarially-generated

data. The classifier then learns to classify the clean sample data and the adversarially-

generated data using the correct labels. The optimization function of the overall

architecture is based on the traditional GAN’s objective function [21] and the previous

work [16], and adapted as Equation (3.1):

 𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝐺 ∑ 𝐿 (𝐷(𝑥𝑖), 𝑦𝑖) + ∑ 𝐿(𝐷(𝑥𝑖 + 휀𝑁(𝐺(𝑰))), 𝑦𝑖) (3.1)

where xi represents the original clean data sample, and the generator G produces a synthesis

data sample under the limitation of norm size Ɛ from a selected input I. The N function is

a Lp constraint function that limits the output vector of G into a certain Lp constraint norm

vector; as a result, the scalar Ɛ can restrict the vector from N into a vector with a length of

31

Ɛ in any Lp constraint. The generator learns to generate the synthesis data that maximizes

the loss of the classifier D. The classifier D learns to minimize its loss on both synthesis

data and clean data x. The loss functions L for both are the categorical cross-entropy loss,

and can be described as Equation (3.2):

 − ∑ 𝑦𝑡𝑟𝑢𝑒 ∗ log (𝑦𝑝𝑟𝑒𝑑) (3.2)

where ytrue is the expected output, and ypred is the predicted output. This loss function

represents the Kullback-Leibler (KL) divergence with the GAN model [21]. In this case,

the generator maximizes the loss of the classifier; hence, the loss value is reversed for the

generator by multiplying a negative one value. There is a more advanced loss, and

divergence can be used for GAN models (i.e., the Jensen-Shannon divergence) [88].

However, the Jensen-Shannon divergence does not suit this type of training purpose, which

includes classifier training.

A dual-generator formulation has been introduced to improve the overall stability of

the architecture. The dual-generator formulation can provide a regularization for the GAN

to generate more diverse data and to improve the overall quality of the synthesis data [89].

This formulation can also compromise the stability issue of using KL divergence. Figure

3.1 illustrates the overall architecture of the proposed GAN. With this dual-generator

design, the input vector I of the generator is simultaneously fed into the generator, and each

generator provides its output on the same input I. The output of each generator is scaled

with the Ɛ and added with the corresponding sample from the training data set

simultaneously. The addition samples are the adversarial augmentation samples learned by

the generator models. Then these addition samples are mixed with original training samples

32

and used for classifier training. The thesis implements two generators as the architecture

used in experiments. The architecture performs well within the evaluation and is sufficient

with the implemented datasets. Hence, all experiments are conducted with this design. The

generator population can have an impact on training performance. However, it is not the

focus of the thesis, and further research is required to conclude the impact of the generator

population.

Figure 3.1: The proposed GAN-based Architecture.

Several symbols from the basic formula can be extended and described in detail.

These include the input I, the constraint function N, the architecture of the generator G, and

the classifier D. These components represent each of the adjustable parts that are evaluated

independently in this thesis.

To evaluate the impact of each component, two major types of GANs are proposed

for each L∞ and L2 constraint. These two constraint GANs require the different structures

of the generator to realize L∞ and L2 vector generation. Hence, different constraint

functions N are added to the overall formulation of GAN to transfer the output vector of

the generator into different constraint vectors. As a result, the overall architecture of the

Classifier
(discriminator)

Constraint
function

Constraint
function

Generator

Label outputs

Generator

Training
dataset

+

+

Maximize Loss

Minimize Loss

Input I

x

x

Ɛ

Ɛ

33

generator can be consistent, and only the switching in constraint function N are necessary

to transform the augmentation into different constraints.

The second difference between the two types of GAN is scalar value Ɛ. The scalar Ɛ

is used for limiting the maximum output vector size of each generator under their constraint

settings. A classifier can have varying accuracies against same-sized adversarial

perturbation under different constraints. Hence, it is necessary to select a scalar to limit the

perturbation vector within the classifier generalization compatibility. However, the

selection of the scalar value also depends upon the dataset dimensions. Hence, the exact

scalar values are introduced in Chapter 4’s “Dataset” section. The method of selecting the

scalars was developed from extensive experiments and testing.

The third difference between the types is the generator architecture. Both types of

GAN involved an image-to-image generator architecture; however, the two generator

architectures were implemented in a slightly different manner. Since the L∞ constraint

adversarial is a more challenging problem, the generator uses a more flexible design so that

the parameters can be adjusted based on the demand. Conversely, the L2 constraint

generator contains long-range skip connect to maximize the gradient backpropagation and

to avoid potential gradient masking problems. However, the two designs can be alternated

and switched for each type with minor differences. Additionally, the input vector I and the

architecture of the classifier is shared with both types. This chapter discusses the shared

components first and then introduces the components of each GAN type. The following

sections introduce input formulation I, classifier architecture, and the two types of GANs

in order.

34

3.2 Input Formulations of the Generator

This section lists the different formulations of the generator’s input that are considered for

evaluation. Equation (3.1) from Section 3.1 includes the generator symbol G. G can be

written as a function estimation of an input I and an output O as in Equation (3.3):

 𝑂 = 𝐺(𝐼) (3.3)

where O is the final estimated adversarial perturbation vector based on input I. The

generator G must provide a reasonable estimation learned from the classifier’s gradient. It

is necessary to provide generator G with an input I that maximizes the possibility of

successful estimation. In traditional GANs, the synthesis data frequently uses a latent noise

z as an input I to provide a randomized diverse output sample [21]. However, the generator

in the proposed architecture must transfer the input I into an adversarial perturbation vector

of an original sample x. The generator is required to learn based on the current gradient of

the classifier and the provided input I. Hence, an independent latent vector is insufficient

to provide deterministic information for mapping the relationship between sample x and

the adversarial perturbation output vector. In previous research [16], an encode-decoder

generator was used to generate an adversarial sample based on the input of the clean sample

x. Based on this paper and the gradient attack properties, four different input formulations

have been proposed for evaluation. The included formulations are given as Equations (3.4),

(3.5), (3.6), and (3.7):

 𝐼 = 𝑥 (3.4)

 𝐼 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥, 𝑧) (3.5)

 𝐼 = 𝑠𝑖𝑔𝑛(∇) (3.6)

35

 𝐼 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑠𝑖𝑔𝑛(∇), 𝑥) (3.7)

where the four formulations represent different conditions, assumptions, and learning

objectives of the adversarial sample generation:

• Equation (3.4): Formulation provides the input I as the vector of the original clean

sample x. It assumes that the adversarial perturbation is the direct transformation of

the original sample x;

• Equation (3.5): Formulation provides the input I as the original data vector x and

the combination of a latent vector z. It assumes that aside from the original sample,

a randomized vector z can help to generate more diverse perturbation vectors;

• Equation (3.6): Formulation provides the input I as a one-step signed gradient

vector from the current state of the classifier. It assumes that the more complex

adversarial perturbation is the function transformation from the current state loss

gradient of the classifier. To prevent the model overfit of the simple gradient vector,

the additional sign function is applied on the gradient vector to only keep the sign

direction of the vector;

• Equation (3.7): Formulation provides the input I as the combination of the one-step

signed gradient vector and the original sample vector x. It assumes that the

adversarial perturbation is related to both the current state classifier gradient and

the original sample.

The generator G must use one of these pieces of input information to transfer the

input vector into an adversarial vector. The input formulations are significant for this work

and are necessary considerations to achieve an effective result in terms of robustness and

36

accuracy. The experiments compare and evaluate these formulations to determine which

formulation is the optimal input to estimate the adversarial perturbation direction.

Theoretically, these four types of inputs I can be used for all of the suggested types of

models (L∞, L2, and small model). However, during the implementation and experiment,

the L∞ constraint GAN will evaluate all the inputs I, and rest of the model types will

consider the best solution found by using the L∞ constraint GAN. The reason for this is that

the L∞ adversarial samples from gradient-based attacks are more difficult to defend

compared to the L2 constraint, and L2 constraint attacks are less effective against any

classifier because of gradient masking [5]. Hence, the L2 constraint GAN is used to evaluate

the effectiveness compared to conventional adversarial training and the transferability of

the robustness between the different types of models.

3.3 Classifier Architecture

The classifier architecture is a modified design based on the Visual Geometry Group (VGG)

classifier model [93]. The VGG model is a famous deep learning architecture classifier for

high-resolution image classification. The reason why a more advanced architecture such as

ResNet is not considered is because the dimensions of data used in this thesis are low in

sizes, and deeper architecture is not required to provide generalization. Hence, a simpler

classifier model is preferred to conduct an efficient evaluation. The architecture of the

model is modified and adapted for the proposed GAN’s classifier. Figure 3.2 shows the

general design of the classifier. Compared to the original VGG classifier, the proposed

classifier has a shallower layer number and reduces the dense layer number. The model

involves ten convolution 2D layers and one dense output layer. Each convolution layer uses

a three-by-three kernel size and one stride size. There are four max pooling operations

37

between the layers. Each max pooling layer reduces the image size by half and increases

the channel by the power of two.

Figure 3.2: Modified small VGG model.

Other deep learning classifier architectures are also possible to use in the proposed

GAN model; however, this thesis focuses on a comparison of the components of GANs.

Hence, this standardized classifier architecture is used to control the variable.

3.4 L∞ GAN

In this section, the detailed architecture of the L∞ type GAN is presented. This section first

discusses the constraint function that realizes the L∞ norm vector generation and then

presents the generator design. At the end, a summarized plot is presented to represent the

overall design of this type.

3.4.1 L∞ Constraint Function

The L∞ constraint limits the maximum value across all the elements of a vector. Hence, the

constraint function of the L∞ constraint requires a value limitation of the output vector from

C channels

2C channels

4C channels
8C channels

Dense

Max pooling, size/2

Convolution 2D layer, 3x3 kernel, 1 stride

38

generator G. Hence, the tanh activation function is used to provide a soft value limitation

with a properly defined gradient. The output after the tanh function is guaranteed to be

within the value range [-1,1]. This tanh function can constrain the adversarial perturbation

from the generator to be an L∞ constraint with a maximum value of 1. The scalar Ɛ can then

multiply the vector into a vector with any L∞ norm size of Ɛ.

3.4.2 L∞ Generator Design

The generator of the proposed GAN is built to transfer the selected input vector to the

augmentation adversarial perturbation. All four of the input vectors proposed involve a

consistent dimensional vector transformation, which means that an encode-decoder or

image-to-image generator architecture is preferred. This thesis considers two main

architectures for the generator. The first architecture is the Cycle-Gan [90] generator with

a residual network backbone. This type of architecture is illustrated in Figure 3.3.

Figure 3.3: Residual generator model.

This architecture is well-known for texture and image style transformation [90]. The

uniqueness of the residual backbone is that it uses the modular design of a residual block

C
o

n
v 7

x7

C
o

n
v 5

x5

C
o

n
v 5

x5

C
o

n
v 5

x5

C
o

n
v 5

x5

C
o

n
v 7

x7

Input I
32x32x3

Output Constraint
Function

x2 x2

Convolution layer with filter size

C
o

n
v 3

x3

C
o

n
v 3

x3

+

Residual Blocks
x4

39

to construct the main body of the model. The benefit of this design is that the skip

connection of each residual block can promote gradient backpropagation [95], and the

stacked residual block numbers can be easily adjusted to change the model layer numbers

on demand. The overall design of the L∞ GAN is illustrated in Figure 3.4.

Figure 3.4: L∞ GAN overview.

3.5 L2 GAN

In this section, the detailed architecture of the L2 type GAN is presented. The section

follows a same order with the L∞ type GAN section, introducing the constraint function N,

scalar value, generator design, and a summary.

3.5.1 L2 Constraint Function

The L2 constraint limits the overall length of the vector in Euclidean space. Different from

the L∞ constraint function, there is no activation function that can limit the overall size of

a vector. Hence, an L2 normalization is implemented for the L2 constraint function to

convert the output vector of the generator to an L2 constraint vector. The formulation of

the L2 normalization is written as Equation (3.8):

 Ɛ ∗ 𝑁(𝐺(𝐼)) = 휀
𝐺(𝐼)

||𝐺(𝐼)||2
 (3.8)

small VGG
(discriminator)

Tanh
activation

Tanh
activation

Residual
generator

Label outputs

Residual
generator

Training
dataset

+

+

Maximize Loss

Minimize Loss

Input I
From

(9)(10)
(11)(12)

x

x

Ɛ

Ɛ

40

The G(I) is the generator output vector, and I is any input vector. In the Equation

(3.8), the L2 norm size of the G(I) is calculated, and the G(I) is divided by the L2 norm of

itself to limit the overall L2 norm size of G(I) to a value of 1. In this case, N as the constraint

function transforms the vector output G(I) into an L2 unit vector. In the subsequent process,

the scalar Ɛ can modify the unit vector of G(I) into an L2 vector of a size Ɛ. One

disadvantage of this process is that the L2 norm size of the resulting vector always has a

fixed size of Ɛ. However, the learning objective of the generator can be simplified, since

the generator is only required to discover the perturbation direction aligned with the unit

vector.

3.5.2 L2 Generator Design

The L2 generator architecture is a U-net architecture, which is illustrated in Figure 3.5.

Figure 3.5: U-net generator model.

C
o

n
v 1

x1

C
o

n
v 1

x1

C
o

n
v 1

x1

C
o

n
v 1

x1

C
o

n
v 1

x1

C
o

n
v 1

x1

C
o

n
v 1

x1

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

C
o

n
v 3

x3

3
2

x3
2

x3
2

1
6

x1
6

x6
4

8
x8

x9
6

4
x4

x1
2

8

Input I
32x32x3

Average Pooling

Up sampling

Output Constraint
Function

x2

x2

x2

x2

x2

x2

x2

Concatenate

x2 Repeat the process 2 times

Convolution layer with filter size

41

U-net architecture is well-known for instance segmentation [91] as well as diffusion

models [92]. Different from the previous residual backbone generator, the U-net

architecture does not include residual block modular design, which means that it is more

challenging to modify such architecture for parameter tweaking. However, the U-net

generator uses a long-range concatenate connection that formulate a symmetric style of

structure. This long-range connection can further leverage the gradient problem of the

generation process [92] and is more beneficial for generating L2 constraint adversarial

perturbation. Figure 3.6 depicts the overall design of the L2 GAN.

Figure 3.6: L2 GAN overview.

3.6 Summary

This chapter has described the proposed architecture of GAN for adversarial data

augmentation. It discussed the basic components of GAN, including the input formulations,

constraint function, and generator and classifier architectures. Chapter 4 elucidates the

details of implementation using the TensorFlow framework and the case studies performed

to evaluate the GAN architecture.

4

U-net
generator

Label outputssmall VGG
(discriminator)

U-net
generator

Training
dataset

+

+

Maximize Loss

Minimize Loss

Input I

(Best one
from L∞)

x

x

Ɛ

Ɛ

42

Chapter 4. Implementation

This chapter introduces the libraries and frameworks used to implement the proposed

GAN. The tools and attacks used for evaluation are also discussed. In subsequent sections,

the implementation of the generator and classifier, training hyperparameters, and datasets

are addressed.

4.1 Libraries and Tools

This section presents all the libraries and tools used for building the models and evaluation.

The library used for building and training the model is primarily TensorFlow 2 [98], and

the tool involved in the evaluation is the Adversarial Robustness Toolbox (ART) [99].

4.1.1 TensorFlow 2

TensorFlow 2 [98] is an open-source deep learning library provided by Google Brain. The

library can use the Python programming language and provide a broad range of supported

features for building, training, and evaluating deep neural networks. The dynamic graph-

building features are designed to support common deep learning architectures, including

VGG net, residual net, GAN, and diffusion models. The built-in layer modules also provide

seamless access to common deep learning operations, such as convolution, recurrent, and

multiheaded attention operations. Multiple loss functions are provided for different

learning objectives of deep learning models, including mean squared error loss and cross-

entropy loss for regression and classification. The library also provides various optimizers,

including the stochastic gradient descent and Adam optimizer with changeable

hyperparameters, which renders the model’s implementation and training convenient and

accessible.

43

The proposed generators and classifier implementations use TensorFlow 2’s layer

API. The layer API consists of the basic building blocks to construct a deep neural network

model with tensor process computation functions. The layer functions include the basic

convolution layer, dense layer, pooling layer, and activation function layers. Each layer

function can use the “call” function to stack and connect to the prior layer’s output or any

input tensor. Figure 4.1 demonstrates the process of the layer object.

Figure 4.1: Layer object.

There are other options for the deep learning library. However, due to the high

functionality coverage and the user experience of the researcher, TensorFlow 2 is the

library that we have opted to utilize for the implementation of the models in this thesis.

4.1.2 Adversarial Robustness Toolbox

The Adversarial Robustness Toolbox is an open-source library that provides various

attacks and defensive strategies for adversarial machine learning research [99]. The library

includes evasion, poisoning, extraction, and inference attack types, which can be used to

Layer object

Layer parameters

Input tensor

Layer function

Output tensor

Call function

Convolution
Recurrent
Dot product (dense)
etc.

Call function return

44

exploit the vulnerability of any deep learning system. The gradient-based adversarial attack

algorithms are included in the evasion attack category that directly attacks the input sample

of a given classifier. The defensive strategies provided by the library include the

preprocessor, postprocessor, trainer, transformer, and detector. However, this thesis

implements its own strategy, and no defensive strategy is used from the library. The

adversarial robustness toolbox also provides a high degree of compatibility with the

TensorFlow 2 frameworks. The attack and defense strategies can be easily used for any

TensorFlow 2 model.

4.2 Implementation Details

This section presents the implementation details regarding the GAN-based architecture to

augment and train a robust deep learning classifier model. In particular, this section focuses

on explaining the detailed implementation of the different generator formulations, output

constraint functions, and the model parameters. The input layers’ implementations and the

classifier parameters are shared by both types of GANs, and they are discussed first. The

output constraint function implementation and generator parameters are then presented in

separate sections. Finally, the data processing method and the adversarial attack

implemented for evaluation are discussed at the end.

4.2.1 Input Implementation

Several different layers have been built using the TensorFlow layer API to implement a

flexible input formulation. The basic input layers for the image sample, latent noise vector,

and gradient vector use the layer.Input() function to initiate the input tensor with a

symbolic tensor object. The input shape for the image sample and gradient vector is the

image’s dimension (e.g., the image with 32×32 pixels and three color channels will result

45

in an input shape of 32×32×3). The input shape for the latent noise is set at 128×1, since

the generator takes in 128-dimensional randomly distributed real numbers as latent vectors.

The combination of the input formulation is implemented using the

layer.Concatenate() function to concatenate selected input tensors in channel-

wised concatenation. For example, the image with three color channels will concatenate

with its gradient vector with three channels to produce a new tensor with six channels. The

128-dimension latent vector will first connect to a linear dense layer and reshape into a

shape consistent with the image dimension to realize the concatenation. After all the inputs

are defined, the generator’s main graph can select any input formulation that the user

desires during the runtime. Only the inputs used will be realized for the runtime objective.

Figure 4.2 illustrates the realization of the inputs.

Figure 4.2: Generator input implementation diagram. The orange dotted line represents

the import relationship of each input formulation.

Image

Signed
Gradient

Latent Reshape

D
e

n
se

Gradient
Tape()

Sign()

Generator
Model Graph

Concatenate
Layer

Concatenate
Layer

Classifier

46

To obtain the gradient vector, the proposed model pre-calculates the loss gradient

using TensorFlow 2’s auto-differentiation function GradientTape(). The function first

computes the loss gradient regarding the current input image to the classifier. After the loss

gradient is obtained, the tf.sign() function is used only to keep the vector sign of the

gradient. This signed vector is then used as one of the inputs of the generator.

4.2.2 Classifier Parameters

This thesis uses a modified VGG model as the classifier model to demonstrate the function

and performance of GAN augmentation. The VGG net is capable of classifying large-

resolution image data [93] and is widely used in image classification applications. This

thesis primarily concerns small-image datasets (32×32×3 maximum in pixel dimensions);

hence, a reduced-size version of VGG net has been implemented. In real applications, this

classifier network can be implemented with another common convolution classifier model,

such as Resnet [95]. The parameters of implementation are presented in Table 4.1. The

table includes the layers’ output vector sizes, convolution kernel sizes and filter numbers.

The output vector sizes are formatted by “height×width×channels” in values. The layer’s

kernel sizes and filter numbers are presented within squared brackets as “[kernel

size×kernel size, filter number]”. The values behind the squared brackets indicate there are

duplication of the same parameterized layers in sequence. The stride size used for all the

convolution layers is 1; hence it is omitted in the table. In addition, dropout regularization

layers are also applied after each convolution layer to reduce the overfitting effect. The

parameter for dropout is 0.3 for the first two convolution layers and 0.4 for the rest of the

layers.

47

Table 4.1: VGG classifier parameters.

Output size Discriminator

32×32×32 [3×3, 32] × 2

16×16×32 Max pooling

16×16×64 [3×3, 64] × 2

8×8×64 Max pooling

8×8×128 [3×3, 128] × 2

4×4×128 Max pooling

4×4×256 [3×3, 256] × 2

2×2×256 Max pooling

1024 Flatten

10 Dense (10)

4.2.3 L∞ GAN

This section presents the implementation of the L∞ GAN model. The implementation

details include the API used for the output constraint function and the L∞ constraint

generator parameter settings.

4.2.3.1 L∞ GAN Output Constraint Function

The constraint function relates to the generator’s graph output tensors. After the final

generator’s main layers, several different computation layers are added according to the

constraint settings of the generator to realize the different constraint functions.

The L∞ norm constraint function accepts the output tensor from the generator’s main

graph and converts it into a constraint size vector under the L∞ norm. The process entails

tanh activation and multiplication. The tanh activation is implemented using the activation

layer object with the built-in tanh activation function from TensorFlow 2. The tensor from

the final main layer of the generator should be soft-clipped by this tanh activation layer and

constrained within the value range of [-1,1]. The element-wised multiplication is then used

to scale up the tensor by the scalar Ɛ. The final tensor vector will generate the adversarial

48

perturbation from the generator and add to the original corresponding image vector to

produce an adversarial augmentation image.

4.2.3.2 L∞ GAN Generator Parameters

This section presents the L∞ generator parameters settings in Table 4.2. The table includes

the dimensions of each layer’s output tensors, the filter size of each convolution layer, and

the stride size of each convolution layer. Each layer’s output is presented as

“height×width×channels” format and each layer’s parameters are presented as “filter

size×filter size, filter number, stride number” format. The squared bracket indicates the

implementation of residual blocks, and the value after the “×” represents the repetition time

of the residual blocks in sequence. The stride size for residual block layers is always one;

hence it is omitted in these layers. In addition to these basic parameters, a width value is

implemented to adjust the global filter numbers of the layers in the generator. Table 4.2

presents the residual generator parameters.

Table 4.2: Residual generator parameters.

Output size Generator filters (×width)

32×32×32 7×7, 32, stride 1

16×16×64 5×5, 64 × width, stride 2

8×8×128 5×5, 128 × width, stride 2

8×8×128
[
3×3, 128×width

3×3, 128×width
] ×4

16×16×64 5×5, 64 × width, stride 2

32×32×32 5×5, 32 × width, stride 2

32×32×3 7×7, 3, stride 1

4.2.4 L2 GAN

This section presents the implementation of the L2 GAN model. The implementation details

include the API used for the output constraint function and the L2 constraint generator’s

parameter settings.

49

4.2.4.1 L2 GAN Output Constraint Function

The L2 norm constraint function calls the built-in function tf.math.l2_normalize

from TensorFlow 2. The calculation formula of the function is represented in Section 3.5.1.

The output tensor for the L2 constraint is normalized by the function to determine the unit

vector of the tensor. The unit vector then multiplies with a scalar Ɛ by using elementwise

multiplication. The scaled output tensor is finally used as the adversarial perturbation for

the L2 constraint and is added onto the original corresponding image vector to produce an

adversarial augmentation image.

4.2.4.2 L2 GAN Generator Parameters

The L2 constraint generator uses U-net architecture. The parameter settings are displayed

in Table 4.3. The table includes the dimensions of each layer’s output tensors and the filter

size of each convolution layer. The output sizes are presented as “height×width×channels”

format and the layer parameters are presented as “filter size×filter size, filter number”

format. The squared bracket indicates a unit of building block of the model. In contrast to

the L∞ generator, the sampling methods used in this architecture include average pooling

and bilinear up sampling, and the rest of the convolution 2D layers use the same stride size

of one. Hence, the strides’ values are omitted in this table.

Table 4.3: U-net generator parameters.

Output size Generator

32×32×32 [1×1, 32] × 1

[
3×3, 32

3×3, 32
] ×2

16×16×32 Average pooling

16×16×64 [1×1, 64] × 1

[
3×3, 64

3×3, 64
] ×2

8×8×64 Average pooling

50

8×8×96 [1×1, 96] × 1

[
3×3, 96

3×3, 96
] ×2

4×4×96 Average pooling

4×4×128 [1×1, 128] × 1

[
3×3, 128

3×3, 128
] ×2

8×8×128 Up sampling

8×8×64 [1×1, 96] × 1

[
3×3, 96

3×3, 96
] ×2

16×16×64 Up sampling

16×16×32 [1×1, 64] × 1

[
3×3, 64

3×3, 64
] ×2

32×32×32 Up sampling

32×32×32 [1×1, 32] × 1

[
3×3, 32

3×3, 32
] ×2

32×32×3 [1×1, 3] × 1

4.2.5 Training Methodology Implementation

The training process of the proposed GAN architecture involved the adversarial training of

the generator and the classifier. The training schema was directly modified from the

TensorFlow 2 model API with two training loops. The outside training loop is called the

“fit()” function and controls the maximum training epochs of the entire training process.

Within this loop function, the data is split into different batches. The batch size of the data

is established before the training starts. This thesis uses 512 as the standard batch size. The

batch of the training data is sent to the inner training loop that represents the training step

of each batch of data. Within each training step, the “train_step()” function is called,

and the parameters of the generator and classifier are updated accordingly. The inner

training loop ends when all batches of data are finished or updated. The new epoch then

starts with a new update of the batches. The outer training loop ends until an established

maximum epoch is reached. The details of the maximum training epochs depend on the

51

case studies of the thesis. The overall process is illustrated in Figure 4.3 and the

pseudocodes is provided in Appendix A: Training Algorithms.

In each training step, the generators first produce an adversarial sample as additional

training data. These adversarial samples mix with normal samples that feed into the

classifier for the forward pass process. The loss gradient is calculated based on the mixed

dataset, and the optimizer can use the gradient to update the parameters of the classifier to

minimize the classifier’s loss on both the adversarial sample and the normal sample. In the

section half of the training step, the same procedure is performed for the forward pass

process. However, this time, the generator’s parameters are updated based on the loss

gradient of the classifier.

The training step implementation is directly modified from the “train_step”

function provided by TensorFlow 2. The training function of the GAN accepts three

network models (dual generators and one classifier) to perform the training process

illustrated in Figure 4.3. Additionally, during each training epoch loop, the random flip and

shift augmentation method is used, as mentioned in Chapter 3. The random shift

augmentation is set to shift the maximum 0.1 fractions of the image size in a random

direction.

The optimizer selected for training is the Adam optimizer, which is widely used in

GAN models [96]. Adam optimizer is an extension of the gradient descent [96] and its

adaptive properties can accelerate the training process of the complex model with more

advanced training objectives. The learning rate for the classifier is set at 0.0001, with 0.5

beta1 and 0.9 beta2. The learning rate for the generator is 0.0002, with the same beta values.

The learning rate for the generator is larger because, during the adversarial training, the

52

generator should capture the loss gradient of the classifier first to generate an effective

adversarial sample for augmentation. The larger learning rate can accelerate the learning

speed of the generator.

Figure 4.3: Training method of the GAN model.

Additionally, according to the proposed training procedure, the algorithm’s

execution complexity can be calculated using the big-O notation. The big-O notation can

be used to represent the upper bound relationship between the input space variable numbers

and the algorithm execution time. The experiment sections do not indicate the exact

Generator produces
adversarial sample

Feed mixed samples to
the classifier and get

prediction

Compute classifier loss
and use it to update

classifier

Generator produces
adversarial sample

Feed mixed samples to
the classifier and get

prediction

Compute generator loss
and use it to update

generator

If n > max
epochs?

End

Start

Initialize training
parameters and

optimizers

Y
N

Train classifier

Train generator

Select next batch of data

Call train_step and use
the batch of data to train

If m > max
batch?

Start current epoch

Y

N

53

execution time of the proposed model’s training process. This is because the algorithm is

implemented in a complex environment; hence, the runtime is heavily dependent upon the

background hardware and the software environment at the time of the training. As a result,

the exact training time is less convincing to represent the execution efficiency compared to

the complexity analysis. In a real-life scenario, the big-O notation can also reflect the upper

bound of the execution complexity and enable a comparison between the two algorithms’

upper-bound runtimes within the same environment. Based on the standard training

methodology, the big-O of a training function of a deep learning model can be expressed

as Equation (4.1):

 𝑂(𝐸𝑝𝑜𝑐ℎ × 𝑆𝑡𝑒𝑝 × 𝐾) (4.1)

where Epoch represents the overall training epochs of the model, Step represents the

training step within one training epoch, and K is the backpropagation operation time within

one training step. The proposed GAN does not modify the implementation of the training

epoch and training step. Hence, the backpropagation time must be identified to analyze the

training complexity. In the proposed GAN, three neural networks are involved during the

training. Each of the networks required one backpropagation to update its parameters.

According to the input formulations of the generator, there are two proposals with

the Equations (3.6), (3.7) that required a pre-calculation of the gradient. Each pre-

calculation requires one-time backpropagation, and each time a generator produces an

output, the pre-calculation is called. Both generators also share the input vector. Hence, the

summarized number of backpropagations within one training step is five times at the most.

In conclusion, this can be represented as K=5 for the proposed GAN method. In

conventional adversarial training, the backpropagation time is dependent upon the

54

implemented attack iteration and the model number. One model is generally trained at a

time. Hence, the K for conventional adversarial training is (1+N), where N is the attack

iteration time. In comparison, the proposed method has a lower upper-bound complexity

when N > 4. In most cases, conventional adversarial training requires more iterations than

four to generate augmented adversarial samples. Hence, most of the time, the proposed

GAN has a lower worst-case execution time within the same environment.

4.2.6 Attack Algorithms

Within the scope of this thesis, the primary attacks are the gradient-based white-box attacks,

which use the backpropagate gradient descent to generate an adversarial sample. The thesis

selects this category of attack algorithms since they are effective and easy to implement to

target any deep learning classifier with parameter access [3]. The proposed GAN training

also uses gradient descent as core optimization methodology; hence the thesis can evaluate

similar optimization methodologies with different formulations but act as different roles

within attack and defense. The proposed GAN must be evaluated against this type of attack

algorithm to determine the effectiveness of the training. The proposed GAN should be able

to provide similar performance against other types of attack algorithms with similar

optimization methodologies. However, the attacks with different optimization methods and

constraints may results in different data distribution [3]. Hence, the proposed GAN does

not provide the generalization on these attacks. GAN augmentation is a defensive strategy

that does not include additional layers of the preprocessing of data or any significant

modifications to the layer structure of the convolution classifier. Hence, the gradient is

well-defined for all layers of the convolution classifier used in experiments. There is no

requirement to implement a gradient attack with an approximate gradient to prevent

55

artificial gradient masking [3], which is sometimes used as a defensive mechanism. In these

cases, the thesis uses the basic gradient-based attacks, namely FGSM and PGD, to evaluate

all classifiers’ performance. The algorithms of these attacks are provided by the

Adversarial Robustness Toolbox (ART) library, introduced in Section 4.1.2. The FGSM is

a simple one-step attack that is efficient in generating adversarial samples. However, the

robustness evaluation using FGSM may not reflect the actual adversarial robustness of the

classifier [5]. The robustness of a classifier requires a repetitive search of the vulnerability

by using multi-iteration attacks, such as PGD [5]. However, it is still interesting to present

the performance gap of a trained classifier between the FGSM and PGD. Hence, the FGSM

is included for evaluation.

The operation of FGSM and PGD attacks is based on the assumption of the

adversarial sample x+δ [3], where the implemented attack algorithms provide the solution

of adversarial perturbation vector δ and the perturbation vector δ adds with test data sample

x to construct the final adversarial sample. The test data sample x includes every data

sample within the testing datasets. The procedure of the evaluation and attacks is as

following:

1. Training the classifier used for evaluation with the proposed GAN architecture with

training dataset.

2. Selecting testing dataset and the trained classifier. Using FGSM and PGD to

generate the adversarial perturbation vector δ for each data sample within the testing

set. During the generation, gradient descent is used as the optimization method to

optimize the perturbation vectors based on the trained classifier and each testing

sample.

56

3. Adding the generated adversarial perturbations to their corresponding testing

samples to construct the adversarial samples for each testing data sample.

4. Using the trained classifier to classify the adversarial version of the testing data

samples and record the accuracies of the classification. The accuracies are used for

robustness evaluation.

The parameters of these gradient attacks include perturbation norm size, Lp constraint,

and iteration number (PGD only). This research focuses on L∞ and L2 constraints, since the

primary implementations of GAN are also on these two constraints. The perturbation norm

sizes depend on the dataset, constraints, and the model’s practical robustness. A proper

value should be established around the upper limit of the robustness of the classifiers to

ensure a valid evaluation. For this reason, the thesis proposes different sets of norm values

for different datasets and constraints. The details of the value implementation are

delineated within the dataset section and discussed under each dataset subsection. The

iteration number of PGD attacks must satisfy the high effectiveness of attacking the target

classifier; however, the increasing iteration number may cause the evaluation to be finished

in an extensive time. For this reason, the PGD iteration is set to 100 iterations for most of

the L∞ evaluations; however, an individual section is provided in Chapter 5 to validate the

best PGD 100 results, with PGD 1,000 iteration attacks for L∞ GAN. For the L2 evaluation,

the gradient-based attacks are naturally less effective in this constraint [5]. Hence, the

experimental evaluations will directly use PGD with 1,000 iterations as the default setting

for this constraint. Furthermore, the L2 constraint PGD attack cannot reflect the actual

robustness of the model for the same reason. Hence, the L2 evaluation is primarily a

57

comparison of the effectiveness between conventional adversarial training and GAN

training to evaluate the effect of natural gradient masking.

4.3 Datasets

This section discusses the case studies conducted on two datasets used in the evaluation

and verification of the implementation. The two datasets considered include the grayscale

MNIST dataset and the CIFAR 10 small colorful image dataset. In the primary evaluations,

CIFAR 10 has been used, as it is a dataset with higher dimensions, and it presents a more

challenging task for classifiers to generalize on. The MNIST dataset with low-dimensional

data has been used to verify the model’s performance in low dimensions. In this case, the

low dimensions refer to grayscale images with a similar image size to CIFAR 10 images.

These datasets are well-studied within the adversarial machine learning research, and they

are well-suited for this thesis as a standard for evaluation. During the evaluation, the

proposed classifier can reach good classification results without adversarial attacks.

However, it is still challenging for the deep learning model with proposed parameter

numbers and the sizes to generalize on the adversarial samples of these datasets. Hence,

the thesis focuses on these datasets to provide robustness improvement. More complex

datasets, such as ImageNet, have not been considered in this thesis, since they are beyond

the scope of the thesis, and the hardware environment is also limited to supporting a larger

model implementation. The other datasets may require deep learning models and GANs

with different parameter numbers to perform a successful defense. Hence, extensive study

is required to evaluate different datasets.

58

4.3.1 CIFAR 10

The Canadian Institute for Advanced Research (CIFAR) 10 dataset is a dataset with

32×32×3-dimension images with three RGB color channels. This dataset includes 60,000

low-resolution colorful images with ten class labels (airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck). CIFAR 10 is also embedded in the library of TensorFlow

and is widely used to test the image classification of convolution neuron networks.

The training data of CIFAR 10 is set at 50,000 individual images by default. This

thesis implements two output constraint functions to train the CIFAR 10 classifier with

GAN. In the L∞ constraint setting, the scalar is established as 16/255, and in the L2

constraint setting, the scalar is 64/255. The reason for the larger L2 value is that the L2

constraint adversarial perturbation is more easily affected by gradient masking [5], and it

typically represents a different adversarial attack scenario. A smaller value may not be

effective in attacking the classifier. For the same reason, the L∞ PGD attack is used for an

overall comparison between the classifiers. The generator architecture used in L∞ constraint

training is the residual generator architecture, since it is flexible in adjusting the parameter

settings. The U-net architecture is used for L2 training after more data is collected.

The other 10,000 individual images are used for testing and evaluation. The same

attack algorithms, namely FGSM and PGD, are implemented for a robust evaluation. The

classifiers trained with different constraint settings are tested with the corresponding

constraint adversarial sample. The L∞ constraint adversarial sample uses 4/255, 8/255, and

16/255 as perturbation norm sizes, and the L2 constraint adversarial sample uses 8/255,

16/255, 32/255, 64/255, and 128/255 as norm sizes to construct an evaluation of adversarial

samples. This thesis includes four groups of experiments to test the detailed formulations

59

of the GAN architecture. The experiments include a comparison of the input formulations,

a generator width comparison, a training epochs comparison, an L2 robustness comparison,

and an L∞ robustness transferability evaluation for the L2 constraint-trained classifier. The

following delineates the details of these experiments and their purposes.

• The input formulation comparison experiments evaluate the formulations of the

generator proposed in Chapter 3. This experiment examines the impact of the

generator formulation on the adversarial training results of the classifier. Four GAN

models are built with the proposed methods for this experiment, and all the GAN

models are trained with 100 epochs.

• The generator width comparison involves conducting a parameter number

evaluation and investigating whether the parameter number of the generator exerts

a significant impact on the training results. Three GANs are built for this

experiment, with width values of ×1, ×2, and ×3 and trained with 100 epochs.

• The training epochs experiment involves employing the optimal GAN settings from

previous experiments. The optimal GAN is trained with 100, 200, and 300 epochs

for the robustness comparison. This experiment is used to identify any positive or

negative effects with an increasing amount of training.

• The classifier trained with L2 generators is then evaluated with the adversarial

sample under the same constraint. Furthermore, this version of the classifier is also

tested with an L∞ constraint adversarial sample to evaluate the transferability of

different forms of constraint training.

60

The thesis also involves another convolution classifier with proposed architecture of

Section 3.3 trained with no defenses and compares the robustness improvements in major

experiments. This undefended model serves as a baseline model.

4.3.2 MNIST

The Modified National Institute of Standards and Technology database (MNIST) dataset

is a well-known machine learning dataset that includes 70,000 small, hand-written digital

images in grayscale. Each image vector within the dataset has 28×28×1 dimensions with

one color channel. In the classification task, the classifier must classify the number within

the image into 0 to 9 class labels. The dataset is easy to implement with the default inclusion

of the TensorFlow database. Hence, it is an appropriate resource for evaluating the

adversarial robustness of small convolution networks.

The dataset is split into the training part and the testing part with a default setup;

60,000 images are used for training, and 10,000 are used for testing. The training

implementation for this dataset required a slight shift in the input dimensions of the

generator and classifier. To make the input size consistent with the standard classifier, the

28×28 image size is padded with zero to scale the image up to 32×32 in size; as a result,

all the neuron network models of GAN can accept the input. The scalar Ɛ is set at 0.3 with

the L∞ output constraint function, which limits the maximum perturbation for a pixel within

[-0.3,0.3]. Furthermore, the MNIST dataset is a rather simple dataset to generalize on;

hence, the training epochs for this data set are set at ten epochs.

The attack algorithms used in the evaluation include the one-step gradient attack

FGSM and the iterative gradient attack PGD. The GAN model only involves augmentation

as a defensive strategy; therefore, no other method is required for these attack algorithms

61

to perform a successful attack, since the gradient is well-defined for all layers of the

classifier model. The evaluation constraint of this dataset is mainly the L∞ constraint, since

this dataset is primarily used for validating the functionality of the model, and the L∞

constraint typically reflects a more realistic robustness of the model. A more detailed

evaluation of components is presented in the next case study. During the L∞ constraint

evaluation, three norm sizes are considered for adversarial perturbation: 0.1 (25.5/255), 0.2

(51/255), and 0.3 (76.5/255). These values define the maximum L∞ norm size for the

evaluation of adversarial samples. All accuracies under these norm sizes are evaluated. In

addition to the comparison, the same structured classifier without the GAN architecture is

trained using the default training method with the SGD optimizer (0.001 learning rate).

This undefended classifier is tested alongside with the GAN classifier to compare the

robustness improvements.

4.3.3 Data Preprocessing

This section describes the data preprocessing process before the training of the proposed

GAN model. The data preprocessing prior to training any image classifier involves a

standardized normalization and randomization processes. This thesis focuses on the

augmentation process’s contributions to the adversarial robustness of a classifier. Hence,

the procedure uses a standardized dataset to perform the evaluation. As a result, no other

significant feature selection and data analysis process is included in the implementation of

the framework. The standardized normalization process for the image classification task

converts the pixel value of the standard range [0,255] into a normalized range [0,1] using

Equation (4.2):

 𝑢 =
𝑢′

255
 (4.2)

62

u' is the pre-normalized pixel value, and u is the normalized pixel value. The other

preprocess includes standard augmentation techniques, such as random flips and shifts for

each instance of the training data sample. These techniques can be used to reduce the

overfitting effect of image classifier training [94].

4.4 Summary

This chapter elucidates the details of the implementation of the GAN. The library and tools

are described and presented. The other information includes the implementation of detailed

architecture and parameters of the models, training methods, attack implementations, the

case studies dataset used, and data preprocessing. Chapter 5 presents the evaluations for

both case studies and discusses the results.

5

63

Chapter 5. Evaluation Results

This chapter discusses and presents all of the experiments and evaluations for all the model

formulations. The subsections are organized based on the model types, and within each

subsection, different sets of experiments and evaluations are conducted based on the

purpose of the model. The results are plotted and analyzed to indicate the accuracy against

different types of attacks.

5.1 Evaluation Metrics

The evaluation involves multiclass scenarios; hence, the accuracy metric is used for

evaluating the accuracy of the classifiers. The formula of the accuracy metric is described

as Equation (5.1):

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5.1)

where the TP, TN, FP, and FN represent true positive, true negative, false positive, and

false negative predictions, respectively. The accuracy metric is applied to all of the

performance evaluations of our trained classifiers. In each experiment, the suggested GAN

is trained with the proposed training methodology. Subsequently, the trained classifiers are

attacked by the evaluation attack algorithms, and the accuracy metric is applied to calculate

the accuracy of the model on the adversarial samples as well as on clean data. For the ease

of description, the accuracy that represents the performance of the classification under

adversarial attacks is defined as robust accuracy. The accuracy that represents the

performance of classification with original data sample from the testing dataset is defined

after clean accuracy. In subsequent sections, these two words are used to describe the

performance of the classification for different scenarios.

64

In the experiments and evaluations, the primary methodologies to generate

adversarial samples are the fast gradient sign method (FGSM) and projected gradient

descent (PGD), introduced in Section 4.2.6. These attack algorithms are used as threat

models to evaluate the robustness of the proposed model formulations.

5.2 L∞ GAN

This section introduces the L∞ GAN experiments and evaluations. First, the generator input

formulations are evaluated. The optimal formulation is used to compare the effects of

different parameter numbers. The generator with the best formulation and parameter

settings is then used to train three classifiers with different epochs. The L2 constraint

experiment is conducted based on the knowledge gleaned from the L∞ experiments with a

more complex generator setting. To make each section easy to keep track of, the basic

parameter settings to train the classifiers are listed within each section before the

evaluation.

5.2.1 Input Comparison

This section presents an evaluation and comparison of the robust accuracy of the training

results from different generator input formulations. The accuracies are obtained by testing

the trained classifiers on the 10,000 testing data from CIFAR 10. The experiment includes

four different groups of classifiers adversarially-trained with different generators. The

performance of the classifiers reflects the effectiveness of the training and data

augmentation yielded by different generator formulations. All attacks and generators are

implemented in the L∞ setting. The followings are the parameter settings used for this

experiment section. These settings are mentioned before in the Implementation chapter

(Chapter 4) and this list is for reminder and ease of reading:

65

• GAN training parameters:

o Generator input: x, x+z, sign(∇), x + sign(∇)

o Generator width: ×1

o Generator output constraint function: L∞ constraint with scalar Ɛ 16/255

o Trained epochs: 100

• Attack of evaluation:

o Attack used: FGSM and PGD

o Constraint: L∞

o Norm size: 4/255, 8/255, 16/266

Figure 5.1 presents three groups of behaviors according to the accuracies of the

classifier. The first group is the baseline model. The baseline model has an optimal

accuracy when it classifies original samples. However, with the lowest adversarial

perturbation size, the model’s accuracy decreases to around 10% against FGSM and 0%

against PGD. With a greater perturbation size, the classification accuracies remain around

the same value for the baseline model. This suggests that without any defense, the classifier

cannot defend the smallest sizes of adversarial noises. Another observation regarding the

baseline accuracies is that the FGSM accuracies remain 10% across all the perturbation

sizes. This suggests that FGSM is limited in its optimization ability to find adversarial

samples.

The second group includes the classifier trained with I = x and I = concat(x,z) input

formulations. These classifiers generally exhibit similar performance and display some

adversarial robustness improvement compared to the baseline. The accuracies against the

strongest PGD attacks are above 10% for this group of classifiers, and the accuracies

66

against smaller perturbation sizes exhibit more significant improvements. Another

observation is that the PGD accuracies of this group of classifiers have close values

compared to the FGSM accuracies. This result indicates that after training, the classifier

gained a similar robustness against the one-step gradient attack FGSM and the multi-step

gradient attack PGD. A deeper explanation of this is that the perturbation directions

uncovered by both FGSM and PGD become similar. This indicates two scenarios, namely

that the gradient landscape of the classifier becomes more simple or more complicated. The

more probable explanation is that the landscape is simplified because the PGD and FGSM

accuracies remain low, which suggests that the adversarial samples are indeed effective

and that the GAN training promotes this type of gradient from the classifier. However,

regardless of the context, the robust accuracies of these classifiers are not ideal in the

comparison and remain vulnerable to the attacks.

The third group, namely the classifiers adversarially trained with the generator of I

= sign(∇) and I = concat(sign(∇),x), also exhibit a similar performance. The classifiers

trained with these generators achieve the most robust accuracies with all attack settings.

Compared to the previous group, the PGD accuracies remain significantly higher in most

situations. However, the PGD accuracy starts to decay more rapidly when a 16/255

perturbation size is introduced and only results in a slight improvement under this

perturbation size. In this case, the classifier is more robust against a perturbation size below

or equal to 8/255. Furthermore, the difference between the FGSM accuracies and PGD

accuracies are larger, especially at the 16/255 perturbation size. The dramatic increase in

difference indicates that the worse gradient direction of the classifier becomes more

different when the perturbation is larger. Overall, the result indicates a close relationship

67

between the gradient information regarding the classifier and its adversarial sample. It

suggests that the generator involving the signed gradient can provide an enhanced estimate

of adversarial samples and that the classifier trained against them can have more robust

accuracy. However, due to the difference between the FGSM and PGD accuracies, it

suggests that with a sufficiently large perturbation size, the GANs of these formulations

start to lose their effectiveness in augmenting the classifier against complex attacks. The

reason for this might be that the estimation of the worst-case adversarial sample becomes

excessively challenging for the generators under a large perturbation size. Hence,

improvements are still required to allow the generator to provide a better estimation within

a complex gradient landscape.

Figure 5.1: Generator input formulations comparison results.

The detailed comparison between the I = sign(∇) and I = concat(sign(∇),x)

formulations indicates that the formulation of I = concat(sign(∇),x) maintains more robust

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

0/255 4/255 8/255 16/255

A
cc

u
ra

cy
 U

n
d

e
r

A
tt

ac
ks

Attack L∞ Norm Constraint

Different Generator Input Comparison

I = x, FGSM

I = x, PGD

I = concat(x,z), FGSM

I = concat(x,z), PGD

I = sign(▽), FGSM

I = sign(▽), PGD

I = concat(sign(▽),x), FGSM

I = concat(sign(▽),x), PGD

Baseline FGSM

Baseline PGD

68

accuracies. However, the I = sign(∇) model has a lower trade-off in terms of clean

accuracies (0/255), which is the performance on clean data samples. Overall, the I = sign(

∇) model involves a more simplified input formulation and high performance across all

the metrics. This formulation is used for other subsequent experiments. Despite the

improvement, the GAN formulation cannot achieve over 25% accuracy under 16/255 PGD

attacks, indicating the potential for future improvements.

5.2.2 Width Parameter Comparison

The filter numbers for the convolution network models are important hyperparameters that

can affect the performance, complexity, and capability of the model. This section presents

the evaluation results regarding the number of filters within the generator model and

discusses the effects of filter numbers on the augmentation performance. The following are

the parameter settings used for this experiment section. The generator input formulation

uses the optimal formulation found in Section 5.2.1. Other parameters are mentioned in the

Implementation chapter (Chapter 4):

• GAN training parameters:

o Generator input: sign(∇)

o Generator width: ×1, ×2, ×3

o Generator output constraint function: L infinity constraint with scalar Ɛ

16/255

o Trained epochs: 100

• Attack of evaluation:

o Attack used: FGSM and PGD

69

o Constraint: L∞

o Norm size: 4/255, 8/255, 16/266

Figure 5.2: Generator width comparison results.

The filter number of the generator is controlled by a width parameter, which is

defined in Chapter 4. Figure 5.2 also presents the width parameters following the “×”

marks. The experiment includes three width settings, with ×1, ×2, and ×3 filters for each

layer. The result indicates that the ×1 width-generator-trained classifier has the lowest

robust accuracy in relation to 4/255, 8/255, and 16/255 PGD adversarial perturbation, and

the ×2 and ×3 width values have similar robustness levels. The ×3-width-value-trained

classifier has a lower clean accuracy. Overall, the ×2-width residual generator has the best

training result in this comparison. It can be concluded that more parameters are not

invariably beneficial in obtaining an overall accurate classifier. The generator with more

parameters may have an increased capability of adversarial sample generation; however,

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0/255 4/255 8/255 16/255

A
cc

u
ra

cy
 U

n
d

er
 A

tt
ac

ks

Attack L∞ Norm Constraint

Width of Generator Comparison

Filter x1 FGSM

Filter x1 PGD

Filter x2 FGSM

Filter x2 PGD

Filter x3 FGSM

Filter x3 PGD

70

the generated sample distribution may also affect the classifier generalization on clean

samples. In this case, the classifier’s robustness undergoes a slight improvement after it is

trained with the ×3 width GAN compared to the ×2 width; however, it overfits more into

the generated sample distribution, since the clean accuracy undergoes a significant

downgrade. This clean accuracy and robustness tradeoff is still present in the ×1-width

GAN classifier; however, it is less significant. The experiment suggests that an adjustment

of parameter numbers can be useful to control this tradeoff.

5.2.3 Training Epoch Comparison

The training epoch number is an important hyperparameter for classifier training. The

classifier may underfit or overfit depending on the training epochs of the model. This

section presents the results regarding three classifiers trained with the proposed GAN to

compare the effects of training epochs. The training epochs for these three classifiers are

100, 200, and 300 epochs. This experiment uses the best parameters found thus far from

the previous experiment, which includes the I = sign(∇) generator formulation, and “×2”

width. Other parameters are mentioned in the Implementation chapter (Chapter 4). The

following are the parameter settings used for this experiment section:

• GAN training parameters:

o Generator input: sign(∇)

o Generator width: ×2

o Generator output constraint function: L infinity constraint with scalar Ɛ

16/255

o Trained epochs: 100, 200, 300

71

• Attack of evaluation:

o Attack used: FGSM and PGD

o Constraint: L∞

o Norm size: 4/255, 8/255, 16/255

Figure 5.3: GAN training epochs comparison results.

Figure 5.3 presents the results of the comparison. Because of the FGSM’s weaker

attack property, the robustness accuracies against FGSM are higher than against PGD

across all perturbation norms. The FGSM accuracies of the classifier indicate a slight

robustness improvement with increasing training epochs. This robustness improvement

against FGSM indicates that the increasing training epoch improves the generalization of

the classifier on the one-step gradient perturbation. However, the PGD accuracies of the

classifier start to decline as the epochs increase. This reveals an opposite effect compared

to FGSM accuracies. The results suggest that GAN did not enhance the generalization of

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0/255 4/255 8/255 16/255

A
cc

u
ra

cy
 U

n
d

e
r

A
tt

ac
ks

Attack L∞ Norm Constraint

Train Epochs Comparison

100 epochs FGSM

100 epochs PGD

200 epochs FGSM

200 epochs PGD

300 epochs FGSM

300 epochs PGD

72

PGD samples when the training epochs comprised more than 100 epochs. The classifier

indicates a sign of overfitting that starts fitting on FGSM adversarial samples over the PGD

samples. The reason for this may also relate to the overfit of the generator, where the

generator starts to produce overfitted samples after a certain epoch of training. This can

also explain the reason for the increase in the FGSM accuracies, which is because the

generator overfits more into the simple gradient vector and produces adversarial samples

similar to FGSM samples. The classifier generalizes on these flawed adversarial samples

to increase only the FGSM robustness. This also suggests that the classifier’s gradient

landscape might become increasingly more challenging to estimate.

5.2.4 Low-Dimension Image Evaluation (MNIST)

This section presents the results of the evaluation of the MNIST test dataset. This

experiment aims to validate the implementation of the L∞ GAN with a low-dimensional

dataset. The following are the parameter settings used for this experiment section. The

generator width for this experiment is reduced back to “×1” and the training epoch value

is set to be 10 since the data dimension is lower and more parameters and more training is

not necessary to obtain an accurate result. Other parameters are the optimal parameter

found from previous sections or mentioned in the Implementation chapter (Chapter 4):

• GAN training parameters:

o Generator input: sign(∇)

o Generator width: ×1

o Generator output constraint function: L∞ constraint with scalar Ɛ 0.3

o Trained epochs: 10

• Attack of evaluation:

73

o Attack used: FGSM and PGD

o Constraint: L∞

o Norm size: 0.1 (25.5/255), 0.2 (51/255), 0.3 (76.5/255)

Figure 5.4: MNIST experiment results.

One classifier model is trained with the proposed GAN model, and one baseline

model with identical parameters is trained without any defenses. The accuracies under

different attack norms are reported under the L∞ norm constraint. The MNIST dataset is a

simple dataset that, with previously developed defensive adversarial training, can achieve

high robustness results against L∞ iterative gradient attacks. However, the proposed GAN

model has the advantage of reducing the training complexity of the entire training process,

which only requires several additional backward passes to update the generator parameters

rather than multiple gradient descents. The classifier accuracies remain above 90% for all

attack settings and exhibit significant improvements under a strong PGD attack algorithm.

The results indicate that the GAN augmentation has a strong performance with small

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0
(0/255)

0.1
(25.5/255)

0.2
(51/255)

0.3
(76.5/255)

A
cc

u
ra

cy
 U

n
d

er
 A

tt
ac

ks

Attack L∞ Norm Constraint

MNIST Model Robustness

MNIST baseline FGSM

MNIST baseline PGD

MNIST GANs FGSM

MNIST GANs PGD

74

convolution models and can achieve a more consistent performance compared to CIFAR

10 results. It also suggests that reduced dimensions can lower the difficulty of the

generalization of the classifier and provide it with a much more reliable robustness increase

against the attack algorithms. However, the model can be challenging to implement for a

higher-dimension dataset in the future. Figure 5.4 presents the results. The x-axis is

represented in two value formats. The previous research [3], [16] commonly uses 0.1, 0.2,

and 0.3 as standard metrics for this dataset. Hence, the two value formats can provide

consistency with previous studies and the standard format used in this thesis.

5.3 L2 GAN

This section presents the L2 GAN experiments and evaluations. The purpose of the L2 GAN

implementation and experiments is to evaluate whether GAN can be more effective in

augmenting L2 robustness compared to conventional adversarial training and whether L2

GAN can also provide the robustness in the L∞ constraint, which refers to the transferability

of the robustness. To make each section easy to keep track of, the basic parameter settings

to train the classifiers are listed within each section before the evaluation.

5.3.1 L2 Robustness

This section presents the training results of the L2 constraint generator augmentation. The

generators used in this experiment are implemented using the L2 output constraint function.

This experiment aims to demonstrate the training effect with the proposed L2 adversarial

sample augmentation on adversarial robustness against L2 gradient attacks. This section

also compares the proposed GAN training method with the traditional PGD adversarial

training method with the L2 constraint. The following are the parameter settings used for

this experiment section. The generator input formulation uses the optimal formulation

75

found in Section 5.2.1. Other parameters are mentioned in the Implementation chapter

(Chapter 4):

• GAN training parameters:

o Generator input: sign(∇)

o Generator width: N/A

o Generator output constraint function: L2 constraint with scalar Ɛ 64/255

o Trained epochs: 100

• Attack of evaluation:

o Attack used: PGD

o Constraint: L2

o Norm size: 16/255, 32/255, 64/255, 128/255

When the PGD adversarial attack is applied to the L2 norm constraint, the algorithm

may face the issue of gradient masking, wherein the gradient descent can only find the local

optimal perturbation vector. This phenomenon may also affect its effectiveness in

adversarial training. The proposed GAN applies a fixed norm size perturbation vector in

the L2 norm space, and this solution can leverage the gradient masking issue and can enable

better data augmentation compared to a traditional gradient descent. The U-net architecture

can also be helpful with its long-range skip connection for easier gradient backpropagation.

Figure 5.5 presents the results of the comparison. The classifier trained with L2 PGD

adversarial training is named after PGD L2 AT. The GAN-trained classifier performs

significantly better than other classifiers. The L2 robustness accuracies remain above 60%

across all attack norm sizes with PGD L2 attacks. The parallel comparison between the

GAN-trained classifier and PGD L2 AT suggests that GAN can be more effective in this

76

constraint. However, the clean accuracy at the 0/255 norm size is significantly lower than

the baseline, indicating that the classifier cannot provide a high-quality generalization on

both normal and L2 adversarial samples at the same time. This clean accuracy and

robustness tradeoff is consistent with the L∞ results.

In addition, the L2 PGD attack is not effective itself to generate L2 constrained

adversarial samples. Hence this comparison cannot fully conclude the L2 robustness of

these models. The results of this experiment mostly demonstrate the comparison between

the GAN L2 model and the conventional adversarial training model and suggest that the

GAN L2 model can be more advantageous to trained under L2 constraint.

Figure 5.5: Training results under L2 constraint against L2 PGD attack.

5.3.2 Robustness Transferability

This section presents the results from the L∞ robustness tests with the same classifier from

the last section. The purpose of this experiment is to evaluate the L∞ robustness of a

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0/255 16/255 32/255 64/255 128/255

A
cc

u
ra

cy
 u

n
d

er
 a

tt
ac

ks

Adversarial noise perturbation norm (L2)

Accuracy under L2 PGD perturbation

GAN Trained

Baseline

PGD L2 AT

77

classifier trained with GAN under the L2 setting. The following are the parameter settings

used for this experiment section. The generator input formulation uses the optimal

formulation found in Section 5.2.1. Other parameters are mentioned in the Implementation

chapter (Chapter 4):

• GAN training parameters:

o Generator input: sign(∇)

o Generator width: N/A

o Generator output constraint function: L2 constraint with scalar Ɛ 64/255

o Trained epochs: 100

• Attack of evaluation:

o Attack used: FGSM and PGD

o Constraint: L∞

o Norm size: 4/255, 8/255, 16/266

Under normal circumstances, the classifier trained with a constraint or attack type of

adversarial training results in limited robustness against different constraints or attack

types. However, the proposed L2 and L∞ GAN models’ most architectural designs and

methodologies are consistent with each other. This experiment can demonstrate the

transferability of the robustness between the L2 and L∞ GAN augmentation.

Figure 5.6 presents the comparison results regarding three classifiers against

different norm sizes of L∞ PGD attacks. Two of the classifiers are trained with GAN

architecture and selected from the highest-performing parameters. With the comparison,

the L∞ GAN and L2 GAN-trained classifiers exhibit a similar performance against the L∞

78

PGD attack. The results indicate that there is some transferability within the robustness

between the different constraints. Under some perturbation sizes, the L2 GAN classifier

appears to exhibit better robustness against the L∞ PGD attack; however, the scalar used

during the training for L2 GAN is 64/255, which is substantially larger than L∞ GAN’s

16/255. It suggests equilibrium between these value constraints.

Figure 5.6: L∞ robustness comparison between different constraint training results.

5.4 Summary of Results

This section provides the combined results across the models in terms of the L∞ PGD

attacks’ accuracies. Figure 5.7 presents a parallel comparison over the maximum

adversarial perturbation norm size (16/255). The PGD L2 attack is not included in this

evaluation because the PGD L2 attack will suffer from the previously mentioned gradient

issues [5]. The PGD L∞ can demonstrate a more valid conclusion about the adversarial

robustness of gradient attacks.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

0/255 4/255 8/255 16/255

A
cc

u
ra

cy
 u

n
d

er
 a

tt
ac

ks

Adversarial noise perturbation norm (L∞)

Accuracy under L∞ PGD perturbation

L2 GAN trained

L∞ GAN trained

Baseline

79

Figure 5.7: Comparison of the accuracies between all formulations.

Across the accuracies, the classifier beside the baseline exhibits lower clean

accuracies, indicating the robustness and accuracy trade-offs. The generalization of the

adversarial distributional shifts cannot be completely resolved by the proposed model.

However, the model helps to improve the overall adversarial robustness and provides an

option in the application when the robustness is required and is more important than the

clean accuracy. Based on Figure 5.7, the highest-performing classifiers are associated with

the GAN with the following settings:

• Input: sign(∇), width 2, epochs 100, augmentation constraint: L∞ 16/255,

• Input: sign(∇), width N/A, epochs 100, augmentation constraint: L2 64/255,

These models have a better balance between clean and robust accuracies compared to the

others. The results indicate that the generator formulations, parameters, and training epochs

can affect the training performance of GAN and affect both clean accuracies and

1.98% 11.07% 9.95%

22.70% 20.08% 23.71% 23.68% 21% 19.79% 21.13%

80.97% 77.95% 77.46%
66.18% 70.38% 71.24% 67.76% 70.82% 72.64% 72.21%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Baseline Input: x,
Width: 1,

Epochs: 100,
augment

constraint:
L∞ 16/255

Input: x+z,
Width: 1,

Epochs: 100,
augment

constraint:
L∞ 16/255

Input: x+∇,
Width: 1,

Epochs: 100,
augment

constraint:
L∞16/255

Input: ∇,
Width: 1,

Epochs: 100,
augment

constraint:
L∞ 16/255

Input: ∇,
Width: 2,

Epochs: 100,
augment

constraint:
L∞ 16/255

Input: ∇,
Width: 3,

Epochs: 100,
augment

constraint:
L∞ 16/255

Input: ∇,
Width: 2,

Epochs: 200,
augment

constraint:
L∞ 16/255

Input: ∇,
Width: 2,

Epochs: 300,
augment

constraint:
L∞ 16/255

Input: ∇,
Width: N/A,
Epochs: 100,

augment
constraint:
L2 64/255

Classifier comparison for clean accuracy and PGD L∞ 16/255 accuracy

Robust accuracy Clean accuracy

80

robustness. The constraint of augmentation can be flexible in providing overall robustness

against gradient attacks, but the norm size needs to be considered along with the constraint.

5.5 Visualization

This section provides an additional interpretation of the adversarial samples from the

generator of the GAN. The following are the parameter settings of the selected model used

for this interpretation:

• GAN training parameters:

o Generator input: sign(∇)

o Generator width: ×2

o Generator output constraint function: L∞ constraint with scalar Ɛ 16/255

o Trained epochs: 300

This model is not the best-performing model regarding the training epochs. However, more

training epochs make the comparison between classifier outputs more obvious; hence, this

model has been selected for this section.

Figure 5.8 presents one of the testing samples and its adversarial perturbation, as well

as its classifier outputs. Image z) is an example image from the dataset. The images a), b),

c), and d) represent different perturbation vectors that are used to perturb the image. These

perturbation vectors are generated by using different corresponding algorithms and by

being normalized so that all of the perturbation vectors have a mean of zero and a standard

distribution of one. The e), f), g), and h) are the classifier pre-SoftMax outputs regarding

the different levels of perturbation. The x-axes of the e), f), g), and h) plots indicate the

norm size of the perturbation. During the visualization, the value of the x-axis of the plots

81

is multiplied with the a), b), c), and d) vectors and added to the image z). The additional

results are fed into the classifier to generate the plots e), f), g), and h), accordingly. The

formula used for producing the perturbed images is given as Equation (5.2):

 𝐼′ = 𝐼 + 𝜖 𝑉 (5.2)

where I’ is the result of addition, and ϵ is the value from the plots’ x-axes, and the V is the

selected perturbation vector.

Figure 5.8: Extra visualization.

Noise L infinity norm size

Lo
git O

u
tp

u
ts o

f th
e

 C
lassifie

rs (D
iscrim

in
ato

rs)

Random noise
perturbation

The adversarial
noise generated
by FGSM

The adversarial
noise generated
by PGD

The adversarial
noise generated
by our generator

30

20

10

0

30

20

10

0

-10

30

20

10

0

-10

30

15

10

5

-0

-5

-10

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

a)

b)

c)

d)

e)

f)

g)

h)

z)

82

From the plots in Figure 5.8, it is obvious that the classifier exhibits more robust

behavior when the image z) is perturbed by vector a). The shape of the correct class

activation of the pre-SoftMax layer has a sufficiently wide margin until the wrong class

activation surpasses it. However, if the image z) is perturbed by vectors b), c), and d), the

shape of the activation of the correct class becomes steeper towards the positive side. The

points where an erroneous class activation becomes larger than the correct class are labeled

with different color lines; the orange line labels the middle where no vector is added; the

blue line represents the point of surpassing caused by the FGSM vector; and the yellow

line represents the point of surpassing caused by the PGD vector. From the observation,

the point of surpassing caused by the generator-produced vector is between the points of

the FGSM and PGD. This suggests that the generator captured the adversarial perturbation

direction successfully; however, the captured direction is not as effective as the PGD

algorithm.

5.6 Discussion

This thesis demonstrates a defensive training strategy against the gradient-based

adversarial attack based on the GAN architecture. The experimental results indicate that

the proposed GAN can improve the adversarial robustness of a convolution classifier;

however, the robustness improvement is related to the GAN’s input selection, parameter

numbers, and the training epochs. The results suggest that the gradient information of the

classifier is the most important feature for the generator to estimate the classifier’s worst-

case loss. The generator without this gradient information has a diminished ability to

provide valid augmentation for the classifier, which results in lower adversarial robustness

after the training. The width parameter also has a slight impact on the final results. A more

83

complex generator is not always better to train a robust and accurate model. Finally, the

training epochs can also affect the model’s performance after training. It is possible to over-

train the model, causing the GAN to overfit on specific data distributions and resulting in

lower adversarial robustness against iterative gradient-based attacks.

The L2 constraint experiments demonstrate the effectiveness of the GAN in

estimating and improving the L2 constraint’s adversarial robustness. The GAN-trained

classifier shows a larger improvement in the L2 constraint robustness against gradient

attacks compared to conventional adversarial training. This suggests that the proposed

GAN can mitigate the gradient masking problem of the L2 gradient-based adversarial

training. The other finding is that the classifiers trained with the L∞ and L2 constraint shared

a similar robustness against L∞ PGD attacks. This finding indicates that there is some

transferability of robustness across the constraint types.

The limitation remains for the generalization capabilities of the proposed GAN

model. In all experiments, the robustness classifiers have their clean accuracies decrease

around 10% to 15%. The results indicate a clean accuracy and robustness tradeoff within

all GAN-trained classifiers. The tradeoff suggests that these classifiers overfit into the

generated samples from the generator and it is challenging for the classifier to generalize

on both generated and clean sample distributions. By controlling the parameter numbers of

the generator can reduce this overfit but the tradeoff cannot be completely mitigated.

Furthermore, the generator can also overfits to produce not precise outputs with more

training epochs. This generator overfitting effect leads to reduction in the augmentation

performance and results in the robustness decline of the classifier with increasing training

iterations. The other challenges are related to the implementation of the GAN architecture

84

that the current GAN cannot provide augmentation under L0 and L1 constraints. New

constraint functions are required to realize the functionalities.

Ultimately, the visualization presents the additional information about the generator-

generated adversarial sample. It suggests that the adversarial noises captured by the

generator are indeed different than the ones produced using gradient-based algorithms.

There is still a limitation of GAN in terms of finding the worst adversarial sample of the

classifier. However, in the MNIST experiment, this limitation is not significant when the

classifier remains accurate across different attack norms. Hence, the data dimension

matters in the GAN optimization. The current implementation of GAN is more favorable

to train a low-dimension convolution classifier.

5.7 Threats to Validity

The threat to validity includes internal and external validity threats that could challenge the

implementation of the GAN models. The internal validity threats include the internal

factors that have to be considered during the implementation and evaluation. The external

validity threat includes the outside factors when the GAN model is applied to other datasets

or real-life scenarios. The following identify the internal validity threats that affect the

implementation and evaluation of the thesis:

• The parameter settings for the GAN model can depend upon the classifier

architecture types and the parameters. The classifier used in this thesis is a VGG-

like convolution network, which can only represent the general performance of

convolution neural networks. The other architecture, such as the transformer

models [97], can define a different gradient backpropagation and result in different

robustness improvements. Some of the architecture may have some compatibility

85

issues with the current implementations, which is one of the limitations of the

research. However, the proposed model is flexibly modified, and it can be

implemented with different network architectures, but more experiments should be

conducted to identify the optimal hyperparameters.

• The robustness improvement of the model depends upon the random initialization

of the parameters of the models. The current model parameter initialization uses the

traditional random initialization method. The random initialization of the

parameters can result in accuracy variance during the evaluation. To address this,

multiple models have been trained within one experiment, and the best one is used

for the evaluation; hence, the real results can reflect the upper-bound performance

of the GAN training.

• The PGD attack used in the evaluation represents a multi-iteration gradient attack.

The iteration number of the PGD used in most of the evaluations is 100 to ensure a

balance between an effective evaluation and the computation time. However, these

attacks could be used with more iterations, which could result in lower accuracies.

Hence, a PGD 1000 iteration attack is implemented and attacks on the best-

performing model with the following parameter settings:

o Input: sign(∇)

o Width: 2

o Output constraint: L∞with scalar Ɛ 16/255

Table 5.1 presents this additional evaluation. The result suggests that the

performance of the model did not differ much between the 100 and 1000 iterations.

86

It suggests that PGD 100 is valid; however, there can be a slight difference in

performance when using different iteration values.

Table 5.1: PGD 1000 validation.

L∞ norm

size

4/255 8/255 16/255

Accuracy

PGD 100

57.41% 45.6% 23.71%

Accuracy

PGD 1000

57.33% 45.28% 23.31%

The following discusses the external validity of the study, which may affect the GAN

implementation in different scenarios:

• The dataset can be a factor that affects the model’s performance. This thesis mostly

uses a 32×32×3 dimensionality of the image in the RGB color channel to perform

the evaluation; however, more dimensionalities can affect the training results

regarding the generalization and the robustness of the classifier.

• The attack type used focused by this thesis is the gradient-based algorithm using

gradient descent to perform the attack. The other attack algorithms using different

optimizers, such as genetic algorithms, can result in different robustness results.

• The vulnerability of the machine learning model can also include the data poisoning

attack and other attack types. These attacks are not evaluated by this paper. There

are other cases in which the classifier can also provide poor generalization, such as

a natural distributional shift of the data. These distributional shifts may need to be

addressed in future research.

87

5.8 Summary

The chapter has summarized the results from the evaluation of all classifiers. The two

datasets are used and evaluated with two gradient-based attack algorithms on the GAN-

trained classifiers. The evaluation results report the training effectiveness of GAN with

different considerations of input formulations, width, training epochs, and constraint types.

The experiments demonstrate how GAN can improve the adversarial robustness of the

models and the limitations.

6

88

Chapter 6. Conclusion and Future Work

6.1 Conclusion

This thesis presents a method that uses GAN formulation to improve the adversarial

robustness of deep learning convolution classifiers. The model uses a generative model and

adversarial training techniques to generate an adversarial sample and to perform data

augmentation on the generated adversarial sample. The classifier adversarially-trained with

the generative model can improve the adversarial robustness against a gradient-based

adversarial attack, such as FGSM and PGD attacks. The GAN represents a possible

defensive strategy against such attacks.

In this thesis, several studies are presented to compare the effectiveness of different

components and settings of the proposed GAN. The results indicate that the improvement

of the adversarial robustness is related to the assumption of the generator formulation. The

formulation includes more gradient information from the classifier, which can result in a

better training result. The GAN model can provide over 20% robust accuracy improvement

with the strongest attack implemented, with a 10% clean accuracy tradeoff. Furthermore,

the GAN model can resist the gradient-based attack for small-image classifiers, such as the

MNIST classifier. It suggests that with a lower-dimensional dataset, such as grayscale

images, GAN can be useful to defend against adversarial attacks.

The primary limitation of the GAN adversarial training is the upper limit of the

generalization. The generalization refers to both the generator generalization and the

classifier generalization. According to the experimental results, the classifier model has a

significant trade-off between the robustness and clean accuracy, and it indicates the

difficulty for the classifier to generalize on both adversarial data distribution and clean data

89

distribution at the same time. The generator generalization is limited by its capability to

discover adversarial samples. Compared to the PGD algorithm, the generator-generated

adversarial samples are significantly different in visualization and are less effective than

PGD adversarial samples. This represents another tradeoff between the algorithm

complexity and the attack effectiveness. Another limitation is that the current formulations

cannot be applied to L0 and L1 constraints since the generator cannot generate adversarial

sample with these constraints. New constraint functions must be implemented to realize

the augmentation.

This thesis proposed a GAN architecture to realize low-complexity adversarial

training for defending adversarial samples from gradient-based attacks. The significance

of the works includes the proposal of the different formulations and implementations of

GAN to address the problems of adversarial samples from L∞ and L2 constraint gradient-

based attacks and suggesting optimal formulation of GAN on defending these attacks. A

further evaluation also reveals the relationship between the training epoch and the

performance of the model and demonstrates the transferability of the robustness between

constraints. Additional visualization is also provided to illustrate the differences between

algorithms generated adversarial samples and the GAN’s estimations. The thesis provides

an extension solution of adversarial training and introduced GAN to this domain of

application. Compared to other GAN solutions, the proposed architecture is implemented

with more advanced formulations and under variety constraints, which as a result, provides

more insight into the optimal GAN for adversarial training.

90

6.2 Future Work

This section discusses the possible future direction of the GAN, adversarial training and

the solutions to data distributional shift problems. An extension of the dataset can be

helpful for improving the generalization of the classifier. More aggressive data

augmentation methods can be utilized to overcome the overfitting effect. Transfer learning

can also be considered to perform the training on more data samples or more advanced

datasets such as the ImageNet dataset. With a more advanced dataset, the classifier’s

performance can be improved compared to the current results.

More advanced model architecture can be considered, such as the Vision

Transformer model [97]. The Transformer model can be used as a more advanced

classifier. The Transformer model can also provide additional benefits with attention-based

weights, which can provide more interpretation about the generalization.

A new cost function can be improved to make the equilibrium point of GAN easier

to achieve. This thesis uses KL divergence, which has been found to have issues with

gradient saturation. Recently, more advanced divergence functions have been proposed for

better GAN performance. These functions can be adapted to fit the training goal of the

proposed model.

Another limitation of the research is the limited evaluation of datasets type within

this thesis. The image dataset only represents one of the possible scenarios of the deep

learning application. The other data types, such as sequence data and text data, have their

own deep learning model implementation and design. The adversarial attacks that target

other types of deep learning models can be different in their optimization methodologies

and operate under different constraints. More specifically, the L2 and L∞ are primarily

91

designed to target image data. The thesis can only provide an overview of convolution

architectures with the data type that is attackable within L2 and L∞ constraints. The

proposed GAN defense needs to be adapted to other constraints and model design to be

able to provide effective defense for other applications.

Extensive research is also needed to evaluate the performance of other datasets with

different dimensionalities. The proposed GAN only evaluated against the adversarial

sample with 32×32×3 and 28×28×1 dimensions; however, there are more datasets available

with higher dimensions. The study can be used to determine the relationship between the

robustness performance and the dimensionalities of the data sample.

Mover over, the proposed defense only provides the evaluation of robustness against

two gradient-based attack algorithms, FGSM and PGD. The other attacks include different

methodologies for optimizing and generating adversarial samples. These other

optimization strategies can result in different distributions within the generated adversarial

samples, and the proposed defense may have different performance against adversarial

samples with different optimization. Hence more research is required to evaluate the

defense against other attack algorithms.

Furthermore, the generalization of distribution-shifted data has been a common issue

in relation to deep learning models. Interpretation can be pivotal to find the reason for these

generalization failures. A new interpretable deep learning model architecture can be used

to provide more useful information regarding the model’s decision-making. One of the

suggested architectures is a self-interpretable model that defines both learning goals for

classification and interpretation. Such a model can be used in data distributional shift

92

research to provide a feedback loop regarding model design. The proposed model has the

following layer formulation as Equation (6.1):

 𝑂𝑡 = 𝑥 × 𝑓𝑡(𝑥, 𝜃) (6.1)

This layer formulation includes the layer input sample x and the layer network ft. The

θ represents the layer-trainable parameters. The benefit of this formulation is that the layer

ft needs to output a vector that is multiplied with the input x. The multiplication promotes

the output of ft aligning with the input x. The x and output vector of ft can represent a set of

dynamic weights that promotes the most important features within the sample x. Appendix

B: Example Feature Maps of Proposed Interpretable Model presents the feature map

examples of the interpretable model. Within these feature maps, more obvious features are

presented that can provide a deeper explanation of the model’s decision making. The model

can be used to improve the research regarding the adversarial sample.

93

Bibliography

[1] S. H. Silva and P. Najafirad, “Opportunities and Challenges in Deep Learning

Adversarial Robustness: A Survey.” arXiv, Jul. 03, 2020. Accessed: Jan. 26, 2023.

[Online]. Available: http://arxiv.org/abs/2007.00753

[2] C. Szegedy et al., “Intriguing properties of neural networks.” arXiv, Feb. 19, 2014.

Accessed: Jan. 26, 2023. [Online]. Available: http://arxiv.org/abs/1312.6199

[3] Y. Li, M. Cheng, C.-J. Hsieh, and T. C. M. Lee, “A Review of Adversarial Attack and

Defense for Classification Methods,” The American Statistician, vol. 76, no. 4, pp.

329–345, Oct. 2022, doi: 10.1080/00031305.2021.2006781.

[4] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harnessing Adversarial

Examples.” arXiv, Mar. 20, 2015. Accessed: Jan. 26, 2023. [Online]. Available:

http://arxiv.org/abs/1412.6572

[5] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards Deep Learning

Models Resistant to Adversarial Attacks.” arXiv, Sep. 04, 2019. Accessed: Jan. 26,

2023. [Online]. Available: http://arxiv.org/abs/1706.06083

[6] J. Chen, M. Su, S. Shen, H. Xiong, and H. Zheng, “POBA-GA: Perturbation optimized

black-box adversarial attacks via genetic algorithm,” Computers & Security, vol. 85,

pp. 89–106, Aug. 2019, doi: 10.1016/j.cose.2019.04.014.

[7] W. Xu, D. Evans, and Y. Qi, “Feature Squeezing: Detecting Adversarial Examples in

Deep Neural Networks,” in Proceedings 2018 Network and Distributed System

Security Symposium, 2018. Doi: 10.14722/ndss.2018.23198.

[8] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense Against Adversarial

Attacks Using High-Level Representation Guided Denoiser,” 2018, pp. 1778–1787.

Accessed: Jan. 26, 2023. [Online]. Available:

https://openaccess.thecvf.com/content_cvpr_2018/html/Liao_Defense_Against_Adve

rsarial_CVPR_2018_paper.html

[9] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: Protecting Classifiers

Against Adversarial Attacks Using Generative Models.” arXiv, May 17, 2018. Doi:

10.48550/arXiv.1805.06605.

[10] J. Wang, Z. Lyu, D. Lin, B. Dai, and H. Fu, “Guided Diffusion Model for Adversarial

Purification.” arXiv, Jun. 28, 2022. Doi: 10.48550/arXiv.2205.14969.

[11] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified Robustness

to Adversarial Examples with Differential Privacy.” arXiv, May 29, 2019. Doi:

10.48550/arXiv.1802.03471.

[12] T. Bai, J. Luo, J. Zhao, B. Wen, and Q. Wang, “Recent Advances in Adversarial

Training for Adversarial Robustness.” arXiv, Apr. 20, 2021. Accessed: Jan. 26, 2023.

[Online]. Available: http://arxiv.org/abs/2102.01356

[13] N. Carlini and D. Wagner, “Adversarial Examples Are Not Easily Detected:

Bypassing Ten Detection Methods,” in Proceedings of the 10th ACM Workshop on

Artificial Intelligence and Security, New York, NY, USA, Nov. 2017, pp. 3–14. Doi:

10.1145/3128572.3140444.

[14] C. Bowles et al., “GAN Augmentation: Augmenting Training Data using Generative

Adversarial Networks.” arXiv, Oct. 25, 2018. Doi: 10.48550/arXiv.1810.10863.

http://arxiv.org/abs/2007.00753
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1706.06083
https://openaccess.thecvf.com/content_cvpr_2018/html/Liao_Defense_Against_Adversarial_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Liao_Defense_Against_Adversarial_CVPR_2018_paper.html
http://arxiv.org/abs/2102.01356

94

[15] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song, “Generating Adversarial

Examples with Adversarial Networks.” arXiv, Feb. 14, 2019. Accessed: Jan. 26, 2023.

[Online]. Available: http://arxiv.org/abs/1801.02610

[16] H. Wang and C.-N. Yu, “A Direct Approach to Robust Deep Learning Using

Adversarial Networks.” arXiv, May 23, 2019. Accessed: Jan. 26, 2023. [Online].

Available: http://arxiv.org/abs/1905.09591

[17] W. Zhao, S. Alwidian, and Q. H. Mahmoud, “Adversarial Training Methods for Deep

Learning: A Systematic Review,” Algorithms, vol. 15, no. 8, p. 283, Aug. 2022, doi:

10.3390/a15080283.

[18] W. Zhao, S. Alwidian, and Q. H. Mahmoud, “Evaluation of GAN Architectures for

Adversarial Robustness of Convolution Classifier” in The AAAI-23 Workshop on

Artificial Intelligence Safety (SafeAI 2023), Washington, DC, Feb 2023.

[19] W. Zhao, Q. H. Mahmoud, and S. Alwidian, “Evaluation of GAN-based Adversarial

Training” Sensors, vol. 23, no. 5, p. 2697, Jan. 2023, doi: 10.3390/s23052697.

[20] P. P. Shinde and S. Shah, “A Review of Machine Learning and Deep Learning

Applications,” in 2018 Fourth International Conference on Computing

Communication Control and Automation (ICCUBEA), Aug. 2018, pp. 1–6. Doi:

10.1109/ICCUBEA.2018.8697857.

[21] I. Goodfellow et al., “Generative adversarial networks,” Commun. ACM, vol. 63, no.

11, pp. 139–144, Oct. 2020, doi: 10.1145/3422622.

[22] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel,

“Ensemble Adversarial Training: Attacks and Defenses.” arXiv, Apr. 26, 2020.

Accessed: Jan. 26, 2023. [Online]. Available: http://arxiv.org/abs/1705.07204

[23] B. S. Vivek and R. Venkatesh Babu, “Single-Step Adversarial Training With Dropout

Scheduling,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Jun. 2020, pp. 947–956. Doi: 10.1109/CVPR42600.2020.00103.

[24] T. Huang, V. Menkovski, Y. Pei, and M. Pechenizkiy, “Bridging the Performance Gap

between FGSM and PGD Adversarial Training.” arXiv, Oct. 03, 2022. Accessed: Jan.

26, 2023. [Online]. Available: http://arxiv.org/abs/2011.05157

[25] G. Liu, I. Khalil, and A. Khreishah, “Using Single-Step Adversarial Training to

Defend Iterative Adversarial Examples,” in Proceedings of the Eleventh ACM

Conference on Data and Application Security and Privacy, New York, NY, USA, Apr.

2021, pp. 17–27. Doi: 10.1145/3422337.3447841.

[26] E. Wong, L. Rice, and J. Z. Kolter, “Fast is better than free: Revisiting adversarial

training.” arXiv, Jan. 12, 2020. Accessed: Jan. 26, 2023. [Online]. Available:

http://arxiv.org/abs/2001.03994

[27] M. Andriushchenko and N. Flammarion, “Understanding and Improving Fast

Adversarial Training,” in Advances in Neural Information Processing Systems, 2020,

vol. 33, pp. 16048–16059. Accessed: Jan. 26, 2023. [Online]. Available:

https://proceedings.neurips.cc/paper/2020/hash/b8ce47761ed7b3b6f48b583350b7f9e

4-Abstract.html

http://arxiv.org/abs/1801.02610
http://arxiv.org/abs/1905.09591
http://arxiv.org/abs/1705.07204
http://arxiv.org/abs/2011.05157
http://arxiv.org/abs/2001.03994
https://proceedings.neurips.cc/paper/2020/hash/b8ce47761ed7b3b6f48b583350b7f9e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b8ce47761ed7b3b6f48b583350b7f9e4-Abstract.html

95

[28] H. Kim, W. Lee, and J. Lee, “Understanding Catastrophic Overfitting in Single-step

Adversarial Training,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 35, no. 9, pp. 8119–8127, May 2021, doi: 10.1609/aaai.v35i9.16989.

[29] C. Song, K. He, L. Wang, and J. E. Hopcroft, “Improving the Generalization of

Adversarial Training with Domain Adaptation.” arXiv, Mar. 15, 2019. Accessed: Jan.

26, 2023. [Online]. Available: http://arxiv.org/abs/1810.00740

[30] B. S. Vivek and R. V. Babu, “Regularizers for Single-step Adversarial Training.”

arXiv, Feb. 03, 2020. Accessed: Jan. 26, 2023. [Online]. Available:

http://arxiv.org/abs/2002.00614

[31] B. Li, S. Wang, S. Jana, and L. Carin, “Towards Understanding Fast Adversarial

Training.” arXiv, Jun. 04, 2020. Accessed: Jan. 26, 2023. [Online]. Available:

http://arxiv.org/abs/2006.03089

[32] J. Yuan and Z. He, “Adversarial Dual Network Learning With Randomized Image

Transform for Restoring Attacked Images,” IEEE Access, vol. 8, pp. 22617–22624,

2020, doi: 10.1109/ACCESS.2020.2969288.

[33] W. Wan, J. Chen, and M.-H. Yang, “Adversarial Training with Bi-directional

Likelihood Regularization for Visual Classification,” in Computer Vision – ECCV

2020, Cham, 2020, pp. 785–800. Doi: 10.1007/978-3-030-58586-0_46.

[34] Y. Qin, R. Hunt, and C. Yue, “On Improving the Effectiveness of Adversarial

Training,” in Proceedings of the ACM International Workshop on Security and Privacy

Analytics, New York, NY, USA, Mar. 2019, pp. 5–13. Doi: 10.1145/3309182.3309190.

[35] A. Laugros, A. Caplier, and M. Ospici, “Addressing Neural Network Robustness with

Mixup and Targeted Labeling Adversarial Training,” in Computer Vision – ECCV 2020

Workshops, Cham, 2020, pp. 178–195. Doi: 10.1007/978-3-030-68238-5_14.

[36] W. Li, L. Wang, X. Zhang, J. Huo, Y. Gao, and J. Luo, “Defensive Few-shot

Adversarial Learning.” arXiv, Nov. 16, 2019. Accessed: Jan. 26, 2023. [Online].

Available: http://arxiv.org/abs/1911.06968

[37] J. Liu and Y. Jin, “Evolving Hyperparameters for Training Deep Neural Networks

against Adversarial Attacks,” in 2019 IEEE Symposium Series on Computational

Intelligence (SSCI), Dec. 2019, pp. 1778–1785. Doi:

10.1109/SSCI44817.2019.9002854.

[38] Z. Ren, A. Baird, J. Han, Z. Zhang, and B. Schuller, “Generating and Protecting

Against Adversarial Attacks for Deep Speech-Based Emotion Recognition Models,” in

ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), May 2020, pp. 7184–7188. Doi:

10.1109/ICASSP40776.2020.9054087.

[39] C. Song et al., “MAT: A Multi-strength Adversarial Training Method to Mitigate

Adversarial Attacks,” in 2018 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), Jul. 2018, pp. 476–481. Doi: 10.1109/ISVLSI.2018.00092.

[40] S. K. Gupta, “Reinforcement Based Learning on Classification Task Could Yield

Better Generalization and Adversarial Accuracy.” arXiv, Dec. 08, 2020. Accessed: Jan.

26, 2023. [Online]. Available: http://arxiv.org/abs/2012.04353

http://arxiv.org/abs/1810.00740
http://arxiv.org/abs/2002.00614
http://arxiv.org/abs/2006.03089
http://arxiv.org/abs/1911.06968
http://arxiv.org/abs/2012.04353

96

[41] E.-C. Chen and C.-R. Lee, “Towards Fast and Robust Adversarial Training for Image

Classification,” 2020. Accessed: Jan. 26, 2023. [Online]. Available:

https://openaccess.thecvf.com/content/ACCV2020/html/Chen_Towards_Fast_and_R

obust_Adversarial_Training_for_Image_Classification_ACCV_2020_paper.html

[42] Q.-Z. Cai, M. Du, C. Liu, and D. Song, “Curriculum Adversarial Training.” arXiv,

May 12, 2018. Accessed: Jan. 26, 2023. [Online]. Available:

http://arxiv.org/abs/1805.04807

[43] J. Zhang et al., “Attacks Which Do Not Kill Training Make Adversarial Learning

Stronger,” in Proceedings of the 37th International Conference on Machine Learning,

Nov. 2020, pp. 11278–11287. Accessed: Jan. 26, 2023. [Online]. Available:

https://proceedings.mlr.press/v119/zhang20z.html

[44] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu, “On the Convergence and

Robustness of Adversarial Training.” arXiv, Apr. 23, 2022. Accessed: Jan. 26, 2023.

[Online]. Available: http://arxiv.org/abs/2112.08304

[45] Y. Balaji, T. Goldstein, and J. Hoffman, “Instance adaptive adversarial training:

Improved accuracy tradeoffs in neural nets.” arXiv, Oct. 17, 2019. Accessed: Jan. 26,

2023. [Online]. Available: http://arxiv.org/abs/1910.08051

[46] G. W. Ding, Y. Sharma, K. Y. C. Lui, and R. Huang, “MMA Training: Direct Input

Space Margin Maximization through Adversarial Training.” arXiv, Mar. 04, 2020.

Accessed: Jan. 26, 2023. [Online]. Available: http://arxiv.org/abs/1812.02637

[47] M. Cheng, Q. Lei, P.-Y. Chen, I. Dhillon, and C.-J. Hsieh, “CAT: Customized

Adversarial Training for Improved Robustness.” arXiv, Feb. 17, 2020. Accessed: Jan.

26, 2023. [Online]. Available: http://arxiv.org/abs/2002.06789

[48] A. Shafahi et al., “Adversarial Training for Free!” arXiv, Nov. 20, 2019. Accessed:

Jan. 26, 2023. [Online]. Available: http://arxiv.org/abs/1904.12843

[49] H. Zhang, Y. Shi, B. Dong, Y. Han, Y. Li, and X. Kuang, “Free Adversarial Training

with Layerwise Heuristic Learning,” in Image and Graphics, Cham, 2021, pp. 120–

131. Doi: 10.1007/978-3-030-87358-5_10.

[50] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. E. Ghaoui, and M. Jordan, “Theoretically

Principled Trade-off between Robustness and Accuracy,” in Proceedings of the 36th

International Conference on Machine Learning, May 2019, pp. 7472–7482. Accessed:

Jan. 26, 2023. [Online]. Available: https://proceedings.mlr.press/v97/zhang19p.html

[51] H. Kannan, A. Kurakin, and I. Goodfellow, “Adversarial Logit Pairing.” arXiv, Mar.

16, 2018. Accessed: Jan. 26, 2023. [Online]. Available:

http://arxiv.org/abs/1803.06373

[52] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu, “Improving Adversarial

Robustness Requires Revisiting Misclassified Examples,” Feb. 2022. Accessed: Jan.

26, 2023. [Online]. Available: https://openreview.net/forum?id=rklOg6EfwS

[53] C. Mao, Z. Zhong, J. Yang, C. Vondrick, and B. Ray, “Metric Learning for

Adversarial Robustness.” arXiv, Oct. 27, 2019. Accessed: Jan. 26, 2023. [Online].

Available: http://arxiv.org/abs/1909.00900

[54] Y. Zhong and W. Deng, “Adversarial Learning With Margin-Based Triplet

Embedding Regularization,” 2019, pp. 6549–6558. Accessed: Jan. 26, 2023. [Online].

https://openaccess.thecvf.com/content/ACCV2020/html/Chen_Towards_Fast_and_Robust_Adversarial_Training_for_Image_Classification_ACCV_2020_paper.html
https://openaccess.thecvf.com/content/ACCV2020/html/Chen_Towards_Fast_and_Robust_Adversarial_Training_for_Image_Classification_ACCV_2020_paper.html
http://arxiv.org/abs/1805.04807
https://proceedings.mlr.press/v119/zhang20z.html
http://arxiv.org/abs/2112.08304
http://arxiv.org/abs/1910.08051
http://arxiv.org/abs/1812.02637
http://arxiv.org/abs/2002.06789
http://arxiv.org/abs/1904.12843
https://proceedings.mlr.press/v97/zhang19p.html
http://arxiv.org/abs/1803.06373
https://openreview.net/forum?id=rklOg6EFwS
http://arxiv.org/abs/1909.00900

97

Available:

https://openaccess.thecvf.com/content_ICCV_2019/html/Zhong_Adversarial_Learnin

g_With_Margin-Based_Triplet_Embedding_Regularization_ICCV_2019_paper.html

[55] J. Uesato, J.-B. Alayrac, P.-S. Huang, R. Stanforth, A. Fawzi, and P. Kohli, “Are

Labels Required for Improving Adversarial Robustness?” arXiv, Dec. 05, 2019.

Accessed: Jan. 26, 2023. [Online]. Available: http://arxiv.org/abs/1905.13725

[56] Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang, and J. C. Duchi, “Unlabeled Data

Improves Adversarial Robustness.” arXiv, Jan. 13, 2022. Accessed: Jan. 26, 2023.

[Online]. Available: http://arxiv.org/abs/1905.13736

[57] R. Zhai et al., “Adversarially Robust Generalization Just Requires More Unlabeled

Data.” arXiv, Sep. 25, 2019. Accessed: Jan. 26, 2023. [Online]. Available:

http://arxiv.org/abs/1906.00555

[58] D. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, “Using Self-Supervised

Learning Can Improve Model Robustness and Uncertainty.” arXiv, Oct. 29, 2019.

Accessed: Jan. 26, 2023. [Online]. Available: http://arxiv.org/abs/1906.12340

[59] P. Maini, E. Wong, and Z. Kolter, “Adversarial Robustness Against the Union of

Multiple Perturbation Models,” in Proceedings of the 37th International Conference on

Machine Learning, Nov. 2020, pp. 6640–6650. Accessed: Jan. 26, 2023. [Online].

Available: https://proceedings.mlr.press/v119/maini20a.html

[60] D. Stutz, M. Hein, and B. Schiele, “Confidence-Calibrated Adversarial Training:

Generalizing to Unseen Attacks,” in Proceedings of the 37th International Conference

on Machine Learning, Nov. 2020, pp. 9155–9166. Accessed: Jan. 26, 2023. [Online].

Available: https://proceedings.mlr.press/v119/stutz20a.html

[61] Y. Dong, Z. Deng, T. Pang, J. Zhu, and H. Su, “Adversarial Distributional Training

for Robust Deep Learning,” in Advances in Neural Information Processing Systems,

2020, vol. 33, pp. 8270–8283. Accessed: Jan. 26, 2023. [Online]. Available:

https://proceedings.neurips.cc/paper/2020/hash/5de8a36008b04a6167761fa19b61aa6

c-Abstract.html

[62] G. Liu, I. Khalil, and A. Khreishah, “GanDef: A GAN Based Adversarial Training

Defense for Neural Network Classifier,” in ICT Systems Security and Privacy

Protection, Cham, 2019, pp. 19–32. Doi: 10.1007/978-3-030-22312-0_2.

[63] S. Rao, D. Stutz, and B. Schiele, “Adversarial Training Against Location-Optimized

Adversarial Patches,” in Computer Vision – ECCV 2020 Workshops, Cham, 2020, pp.

429–448. Doi: 10.1007/978-3-030-68238-5_32.

[64] T. Wu, L. Tong, and Y. Vorobeychik, “Defending Against Physically Realizable

Attacks on Image Classification.” arXiv, Feb. 14, 2020. Accessed: Jan. 26, 2023.

[Online]. Available: http://arxiv.org/abs/1909.09552

[65] N. Ruiz, S. A. Bargal, and S. Sclaroff, “Disrupting Deepfakes: Adversarial Attacks

Against Conditional Image Translation Networks and Facial Manipulation Systems,”

in Computer Vision – ECCV 2020 Workshops, Cham, 2020, pp. 236–251. Doi:

10.1007/978-3-030-66823-5_14.

https://openaccess.thecvf.com/content_ICCV_2019/html/Zhong_Adversarial_Learning_With_Margin-Based_Triplet_Embedding_Regularization_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Zhong_Adversarial_Learning_With_Margin-Based_Triplet_Embedding_Regularization_ICCV_2019_paper.html
http://arxiv.org/abs/1905.13725
http://arxiv.org/abs/1905.13736
http://arxiv.org/abs/1906.00555
http://arxiv.org/abs/1906.12340
https://proceedings.mlr.press/v119/maini20a.html
https://proceedings.mlr.press/v119/stutz20a.html
https://proceedings.neurips.cc/paper/2020/hash/5de8a36008b04a6167761fa19b61aa6c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5de8a36008b04a6167761fa19b61aa6c-Abstract.html
http://arxiv.org/abs/1909.09552

98

[66] Y. Jiang, X. Ma, S. M. Erfani, and J. Bailey, “Dual Head Adversarial Training,” in

2021 International Joint Conference on Neural Networks (IJCNN), Jul. 2021, pp. 1–8.

Doi: 10.1109/IJCNN52387.2021.9533363.

[67] L. Ma and L. Liang, “Increasing-Margin Adversarial (IMA) Training to Improve

Adversarial Robustness of Neural Networks.” arXiv, Aug. 21, 2022. Accessed: Jan. 26,

2023. [Online]. Available: http://arxiv.org/abs/2005.09147

[68] C. Zhang et al., “Interpreting and Improving Adversarial Robustness of Deep Neural

Networks With Neuron Sensitivity,” IEEE Transactions on Image Processing, vol. 30,

pp. 1291–1304, 2021, doi: 10.1109/TIP.2020.3042083.

[69] Q. Bouniot, R. Audigier, and A. Loesch, “Optimal Transport as a Defense Against

Adversarial Attacks,” in 2020 25th International Conference on Pattern Recognition

(ICPR), Jan. 2021, pp. 5044–5051. Doi: 10.1109/ICPR48806.2021.9413327.

[70] A. S. Rakin, Z. He, and D. Fan, “Parametric Noise Injection: Trainable Randomness

to Improve Deep Neural Network Robustness against Adversarial Attack.” arXiv, Nov.

22, 2018. Accessed: Jan. 26, 2023. [Online]. Available:

http://arxiv.org/abs/1811.09310

[71] H. Xu, X. Liu, Y. Li, A. Jain, and J. Tang, “To be Robust or to be Fair: Towards

Fairness in Adversarial Training,” in Proceedings of the 38th International Conference

on Machine Learning, Jul. 2021, pp. 11492–11501. Accessed: Jan. 26, 2023. [Online].

Available: https://proceedings.mlr.press/v139/xu21b.html

[72] M. Xu, T. Zhang, Z. Li, M. Liu, and D. Zhang, “Towards evaluating the robustness of

deep diagnostic models by adversarial attack,” Medical Image Analysis, vol. 69, p.

101977, Apr. 2021, doi: 10.1016/j.media.2021.101977.

[73] J. Wang and H. Zhang, “Bilateral Adversarial Training: Towards Fast Training of

More Robust Models Against Adversarial Attacks,” 2019, pp. 6629–6638. Accessed:

Jan. 26, 2023. [Online]. Available:

https://openaccess.thecvf.com/content_ICCV_2019/html/Wang_Bilateral_Adversarial

_Training_Towards_Fast_Training_of_More_Robust_Models_ICCV_2019_paper.ht

ml

[74] D. Stutz, M. Hein, and B. Schiele, “Disentangling Adversarial Robustness and

Generalization,” 2019, pp. 6976–6987. Accessed: Jan. 26, 2023. [Online]. Available:

https://openaccess.thecvf.com/content_CVPR_2019/html/Stutz_Disentangling_Adver

sarial_Robustness_and_Generalization_CVPR_2019_paper.html

[75] A. Sreevallabh Chivukula, X. Yang, and W. Liu, “Adversarial Deep Learning with

Stackelberg Games,” in Neural Information Processing, Cham, 2019, pp. 3–12. Doi:

10.1007/978-3-030-36808-1_1.

[76] W. Bai, C. Quan, and Z. Luo, “Alleviating adversarial attacks via convolutional

autoencoder,” in 2017 18th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

(SNPD), Jun. 2017, pp. 53–58. Doi: 10.1109/SNPD.2017.8022700.

[77] S. Shen, G. Jin, K. Gao, and Y. Zhang, “APE-GAN: Adversarial Perturbation

Elimination with GAN.” arXiv, Sep. 25, 2017. Accessed: Jan. 26, 2023. [Online].

Available: http://arxiv.org/abs/1707.05474

http://arxiv.org/abs/2005.09147
http://arxiv.org/abs/1811.09310
https://proceedings.mlr.press/v139/xu21b.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Wang_Bilateral_Adversarial_Training_Towards_Fast_Training_of_More_Robust_Models_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Wang_Bilateral_Adversarial_Training_Towards_Fast_Training_of_More_Robust_Models_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_ICCV_2019/html/Wang_Bilateral_Adversarial_Training_Towards_Fast_Training_of_More_Robust_Models_ICCV_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Stutz_Disentangling_Adversarial_Robustness_and_Generalization_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Stutz_Disentangling_Adversarial_Robustness_and_Generalization_CVPR_2019_paper.html
http://arxiv.org/abs/1707.05474

99

[78] F. Yu, L. Wang, X. Fang, and Y. Zhang, “The Defense of Adversarial Example with

Conditional Generative Adversarial Networks,” Security and Communication

Networks, vol. 2020, pp. 1–12, Aug. 2020, doi: 10.1155/2020/3932584.

[79] A. ArjomandBigdeli, M. Amirmazlaghani, and M. Khalooei, “Defense against

adversarial attacks using DRAGAN,” in 2020 6th Iranian Conference on Signal

Processing and Intelligent Systems (ICSPIS), Dec. 2020, pp. 1–5. Doi:

10.1109/ICSPIS51611.2020.9349536.

[80] G. K. Santhanam and P. Grnarova, “Defending Against Adversarial Attacks by

Leveraging an Entire GAN.” arXiv, May 27, 2018. Accessed: Jan. 26, 2023. [Online].

Available: http://arxiv.org/abs/1805.10652

[81] R. Bao, S. Liang, and Q. Wang, “Featurized Bidirectional GAN: Adversarial Defense

via Adversarially Learned Semantic Inference.” arXiv, Sep. 29, 2018. Accessed: Jan.

26, 2023. [Online]. Available: http://arxiv.org/abs/1805.07862

[82] Q. Liang, Q. Li, and W. Nie, “LD-GAN: Learning perturbations for adversarial

defense based on GAN structure,” Signal Processing: Image Communication, vol. 103,

p. 116659, Apr. 2022, doi: 10.1016/j.image.2022.116659.

[83] D. Wang, W. Jin, Y. Wu, and A. Khan, “Improving Global Adversarial Robustness

Generalization With Adversarially Trained GAN.” arXiv, Mar. 07, 2021. Accessed:

Jan. 26, 2023. [Online]. Available: http://arxiv.org/abs/2103.04513

[84] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu, “Improving Adversarial Robustness via

Promoting Ensemble Diversity,” in Proceedings of the 36th International Conference

on Machine Learning, May 2019, pp. 4970–4979. Accessed: Jan. 26, 2023. [Online].

Available: https://proceedings.mlr.press/v97/pang19a.html

[85] S. Kariyappa and M. K. Qureshi, “Improving Adversarial Robustness of Ensembles

with Diversity Training.” arXiv, Jan. 28, 2019. Accessed: Jan. 26, 2023. [Online].

Available: http://arxiv.org/abs/1901.09981

[86] H. Yang et al., “DVERGE: Diversifying Vulnerabilities for Enhanced Robust

Generation of Ensembles,” in Advances in Neural Information Processing Systems,

2020, vol. 33, pp. 5505–5515. Accessed: Jan. 26, 2023. [Online]. Available:

https://proceedings.neurips.cc/paper/2020/hash/3ad7c2ebb96fcba7cda0cf54a2e802f5-

Abstract.html

[87] J. Li, A. Madry, J. Peebles, and L. Schmidt, “On the Limitations of First-Order

Approximation in GAN Dynamics,” in Proceedings of the 35th International

Conference on Machine Learning, Jul. 2018, pp. 3005–3013. Accessed: Jan. 26, 2023.

[Online]. Available: https://proceedings.mlr.press/v80/li18d.html

[88] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv, Jan. 2017, doi:

10.48550/arXiv.1701.07875.

[89] D. J. Im, H. Ma, C. D. Kim, and G. Taylor, “Generative Adversarial Parallelization,”

arXiv, Dec. 2016, doi: 10.48550/arXiv.1612.04021.

[90] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation

using Cycle-Consistent Adversarial Networks.” arXiv, Aug. 24, 2020. Accessed: Jan.

26, 2023. [Online]. Available: http://arxiv.org/abs/1703.10593

http://arxiv.org/abs/1805.10652
http://arxiv.org/abs/1805.07862
http://arxiv.org/abs/2103.04513
https://proceedings.mlr.press/v97/pang19a.html
http://arxiv.org/abs/1901.09981
https://proceedings.neurips.cc/paper/2020/hash/3ad7c2ebb96fcba7cda0cf54a2e802f5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/3ad7c2ebb96fcba7cda0cf54a2e802f5-Abstract.html
https://proceedings.mlr.press/v80/li18d.html
http://arxiv.org/abs/1703.10593

100

[91] J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic Models,” in

Advances in Neural Information Processing Systems, 2020, vol. 33, pp. 6840–6851.

Accessed: Jan. 26, 2023. [Online]. Available:

https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-

Abstract.html

[92] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation.” arXiv, May 18, 2015. Doi:

10.48550/arXiv.1505.04597.

[93] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale

Image Recognition.” arXiv, Apr. 10, 2015. Accessed: Jan. 26, 2023. [Online].

Available: http://arxiv.org/abs/1409.1556

[94] J. Shijie, W. Ping, J. Peiyi, and H. Siping, “Research on data augmentation for image

classification based on convolution neural networks,” in 2017 Chinese Automation

Congress (CAC), Oct. 2017, pp. 4165–4170. Doi: 10.1109/CAC.2017.8243510.

[95] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” 2016, pp. 770–778. Accessed: Jan. 26, 2023. [Online]. Available:

https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning

_CVPR_2016_paper.html

[96] I. K. M. Jais, A. R. Ismail, and S. Q. Nisa, “Adam Optimization Algorithm for Wide

and Deep Neural Network,” Knowledge Engineering and Data Science, vol. 2, no. 1,

pp. 41–46, Jun. 2019, doi: 10.17977/um018v2i12019p41-46.

[97] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image

Recognition at Scale.” arXiv, Jun. 03, 2021. Doi: 10.48550/arXiv.2010.11929.

[98] TensorFlow Developers, “TensorFlow.” Zenodo, Feb. 15, 2023. Doi:

10.5281/ZENODO.4724125.

[99] M.-I. Nicolae et al., “Adversarial Robustness Toolbox v1.0.0.” arXiv, Nov. 15, 2019.

Doi: 10.48550/arXiv.1807.01069.

https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
http://arxiv.org/abs/1409.1556
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

101

Appendix A: Training Algorithms

Pseudocode for proposed GAN training with input Equation (3.4) from the

Implementation chapter.

Input: Dataset images xi, dataset labels yi, max number of epochs E, batch size B, total

number of sample V, generator network G1 and G2, generator learning rate Rg,

generator scalar Ɛ, classifier network D, classifier leaning rate Rd, classifier loss

function Fd

for N = 1,2,3…E do

 for M= 1,2,3…⸢V/B⸣ do

 Generating adversarial sample xi’1 from Ɛ G1 (xi)+xi

 Generating adversarial sample xi’2 from Ɛ G2 (xi)+xi

 Getting classifier output Oi1, Oi2, Oi3 from D(xi’1), D(x i’2), D(x)

 Calculating loss LD from Fd(Oi1,yi), Fd(Oi2,yi), Fd(Oi3,yi)

 Updating D using Adam (Rd, LD)

 Generating adversarial sample xi’1’ from Ɛ G1 (xi)+xi

 Generating adversarial sample xi’2’ from Ɛ G2 (xi)+xi

 Getting classifier output Oi1’, Oi2’ from D(xi’1’), D(xi’2’)

 Calculating loss Lg1 and Lg2 from Fd (Oi1’,yi), Fd (Oi2’,yi)

 Updating G1 using Adam (Rg, -Lg1)

 Updating G2 using Adam (Rg, -Lg2)

Pseudocode for proposed GAN training with input Equation (3.5) from the

Implementation chapter.

Input: Dataset images xi, dataset labels yi, max number of epochs E, batch size B, total

number of sample V, generator network G1 and G2, generator learning rate Rg,

generator scalar Ɛ, classifier network D, classifier leaning rate Rd, classifier loss

function Fd

for N = 1,2,3…E do

 for M= 1,2,3…⸢V/B⸣ do

 Generating latent vector ui from random gaussian distribution

 Generating adversarial sample xi’1 from Ɛ G1 (xi, ui)+xi

102

 Generating adversarial sample xi’2 from Ɛ G2 (xi, ui)+xi

 Getting classifier output Oi1, Oi2, Oi3 from D(xi’1), D(x i’2), D(x)

 Calculating loss LD from Fd(Oi1,yi), Fd(Oi2,yi), Fd(Oi3,yi)

 Updating D using Adam (Rd, LD)

 Generating latent vector ui’ from random gaussian distribution

 Generating adversarial sample xi’1’ from Ɛ G1 (xi, ui’)+xi

 Generating adversarial sample xi’2’ from Ɛ G2 (xi, ui’)+xi

 Getting classifier output Oi1’, Oi2’ from D(xi’1’), D(xi’2’)

 Calculating loss Lg1 and Lg2 from Fd (Oi1’,yi), Fd (Oi2’,yi)

 Updating G1 using Adam (Rg, -Lg1)

 Updating G2 using Adam (Rg, -Lg2)

Pseudocode for proposed GAN training with input Equation (3.6) from the

Implementation chapter.

Input: Dataset images xi, dataset labels yi, max number of epochs E, batch size B, total

number of sample V, generator network G1 and G2, generator learning rate Rg,

generator scalar Ɛ, classifier network D, classifier leaning rate Rd, classifier loss

function Fd

for N = 1,2,3…E do

 for M= 1,2,3…⸢V/B⸣ do

 Calculating sign(∇) from D using gradient descent

 Generating adversarial sample xi’1 from Ɛ G1 (sign(∇))+xi

 Generating adversarial sample xi’2 from Ɛ G2 (sign(∇))+xi

 Getting classifier output Oi1, Oi2, Oi3 from D(xi’1), D(x i’2), D(x)

 Calculating loss LD from Fd(Oi1,yi), Fd(Oi2,yi), Fd(Oi3,yi)

 Updating D using Adam (Rd, LD)

 Calculating sign(∇) from D using gradient descent

 Generating adversarial sample xi’1’ from Ɛ G1 (sign(∇))+xi

 Generating adversarial sample xi’2’ from Ɛ G2 (sign(∇))+xi

103

 Getting classifier output Oi1’, Oi2’ from D(xi’1’), D(xi’2’)

 Calculating loss Lg1 and Lg2 from Fd (Oi1’,yi), Fd (Oi2’,yi)

 Updating G1 using Adam (Rg, -Lg1)

 Updating G2 using Adam (Rg, -Lg2)

Pseudocode for proposed GAN training with input Equation (3.7) from the

Implementation chapter.

Input: Dataset images xi, dataset labels yi, max number of epochs E, batch size B, total

number of sample V, generator network G1 and G2, generator learning rate Rg,

generator scalar Ɛ, classifier network D, classifier leaning rate Rd, classifier loss

function Fd

for N = 1,2,3…E do

 for M= 1,2,3…⸢V/B⸣ do

 Calculating sign(∇) from D using gradient descent

 Generating adversarial sample xi’1 from Ɛ G1 (xi, sign(∇))+xi

 Generating adversarial sample xi’2 from Ɛ G2 (xi, sign(∇))+xi

 Getting classifier output Oi1, Oi2, Oi3 from D(xi’1), D(x i’2), D(x)

 Calculating loss LD from Fd(Oi1,yi), Fd(Oi2,yi), Fd(Oi3,yi)

 Updating D using Adam (Rd, LD)

 Calculating sign(∇) from D using gradient descent

 Generating adversarial sample xi’1’ from Ɛ G1 (xi, sign(∇))+xi

 Generating adversarial sample xi’2’ from Ɛ G2 (xi, sign(∇))+xi

 Getting classifier output Oi1’, Oi2’ from D(xi’1’), D(xi’2’)

 Calculating loss Lg1 and Lg2 from Fd (Oi1’,yi), Fd (Oi2’,yi)

 Updating G1 using Adam (Rg, -Lg1)

 Updating G2 using Adam (Rg, -Lg2)

104

Appendix B: Example Feature Maps of Proposed Interpretable Model

Figure B.1 and Figure B.2 show the feature maps learned by the interpretable model

suggested in Section 6.2. These feature maps represent the important features and patterns

learned by the proposed interpretable model before used in the task of classification. The

feature maps’ colors and the patterns of each class show some consistency and may

represent deeper meaning within these image samples.

105

Figure B.1: Example feature maps.

Plane

automobile

bird

cat

deer

106

Figure B.2: Example feature maps 2.

dog

frog

horse

ship

truck

