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ABSTRACT 

Design and Evaluation of GAN-based Models for Adversarial Training Robustness 

in Deep Learning  

Weimin Zhao         Advisor 

Ontario Tech University, 2023    Dr. Qusay H. Mahmoud 

        Dr. Sanaa Alwidian 

Adversarial attacks show one of the generalization issues of current deep learning models 

on special distribution shifted data. The adversarial samples generated by the attack 

algorithm can introduce malicious behavior to any deep learning system that affects the 

consistency of the deep learning model. This thesis presents the design and evaluation of 

multiple possible component architectures of a GAN that can provide a new direction for 

training a robust convolution classifier. Each component is related to a different aspect of 

the GAN that impacts the generalization and the robustness outcomes. The best formulation 

can achieve around 45% accuracy under 8/255 L∞ PGD attack and 60% accuracy under 

128/255 L2 PGD attack that outperforms L2 PGD adversarial training. The other 

contributions include the research on gradient masking, robustness transferability across 

the constraints and the generalization limitations. 

 

Keywords: Adversarial attacks; adversarial samples; adversarial robustness; adversarial 

training; generative adversarial networks  
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Chapter 1. Introduction  

Deep learning is utilized for various applications, such as image classification, language 

recognition, signal transformation, and sample generation [1]. Deep learning models have 

also played an important role in the development of self-driving vehicles, fault detection, 

and other mission-critical and safety-critical systems. The recent expansion of deep 

learning models adds more concerns and challenges related to the consistency and security 

of machine learning models. Deep neural networks are referred to as black-box machine 

learning algorithms in which large quantities of parameters and complex structures are 

highly uninterpretable [1]. The behavior of these deep learning models can be impossible 

to explain or understand by humans.  

Adversarial samples expose one of the black-box properties of deep learning models 

and highlight the limitations of the interpretability of the deep learning system [1], [2]. 

These samples typically have different representations or meanings when they are 

interpreted by human learning systems and deep learning systems. Adversarial sample is 

one of the anomalies that is humanly crafted and targets machine learning or deep learning 

model themselves. Hence, cyber attackers could exploit these adversarial samples to 

perform attacks on critical systems that build upon deep learning models to conduct 

malicious activities. From the researcher’s perspective, the existence of adversarial 

samples means that the current understanding of the deep learning models remains limited. 

The current research suggests that the adversarial samples represent one type of shifted 

data distributions, often referred to as adversarial distribution shift and deep learning 

models have failed to generalize on this adversarial distribution shifted data samples [3]. 
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The discovery of the integrity properties of the models are important to resolve future 

optimization problems.  

The algorithm for finding adversarial samples is called adversarial attacks. The 

attack algorithms can be categorized based on their optimization methods, required access 

information, and constraint types [1]. One of the most efficient methods to generate 

adversarial samples can involve using a multi-step gradient descent algorithm to update 

the input vectors of the model based on the loss functions of the model [4], [5]. There are 

also multiple algorithms that work on different objective functions or that are not required 

to access inner model information [6]. 

The current research primarily focuses on using detection methods [7], denoise 

models [8], [9], [10], certified methods [11], and adversarial training [5], [12] to defend 

adversarial samples or to improve the adversarial robustness of deep learning models. 

However, most of these methods cannot provide a direct robustness increase with the 

original classifier. Some of the methods are also limited in terms of effectiveness [13] and 

scalability [1] and may require additional model deployments. 

Adversarial training is one of the defense methods that directly improves the 

adversarial robustness of the deep learning model [12]. The advantages of adversarial 

training include the simplicity of facilitating an understanding and implementation of the 

formulation, and the high effectiveness in enabling the current state-of-the-art adversarial 

robustness [5], [12]. Adversarial training focuses on data augmentation and trains the 

model on additional generated data to improve the overall data generalization of the model. 

Adversarial attack algorithms are typically implemented to generate the augmentation data 

by computing the adversarial noises from the training data set [5]. Both clean training data 
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and adversarially-perturbed data are used in the adversarial training process. Thus, deep 

learning models can generalize the distribution of the data based on clean data samples and 

adversarially-perturbed samples. It is essential that the implemented attack algorithm is 

effective. Hence, higher-complexity iterative algorithms are generally used in the training 

processes to maximize the possibility of finding precise adversarial noises [5]. However, 

the limitations include high training complexity, across-the-board generalization, and 

accuracy-robustness trade-offs [12].  

Generative models have recently provided a new solution to discover more data 

samples in a hidden distributional space. Some research has demonstrated that it is possible 

to implement these generative models to produce more training data or to perform data 

augmentation to improve model training [14]. In adversarial machine learning settings, the 

generative model can be used to produce high-quality adversarial samples when the 

generative model is optimized in attack settings [15].  

Generative adversarial networks (GANs) are one of the approaches to realize the 

generative architecture. In defensive cases, both the generative properties of GANs and the 

adversarial training properties of GANs can be utilized together to construct an effective 

framework to formulate a similar schema to adversarial training. The generator of GANs 

can learn to generate adversarial noises by optimizing with gradient descent or Adam 

optimizers [15], [16], and the generated adversarial noises can be used to train a classifier 

to improve the classification robustness on defending adversarial attacks [16].  

Compared to conventional adversarial training, GAN architecture can be 

implemented in a low training complexity formulation that can achieve similar training 

results for small and medium sized models [16]. In this thesis, the size of models refer to 
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the deep learning models around or less than ten million parameters. The output layers of 

the generator are also interchangeable, as they switch the adversarial noise outputs based 

on the required norm constraint. Hence, the deep learning classifier can be generalized on 

different constrained adversarial samples without implementing an additional attack 

algorithm. The model trained with the GANs augmentation method could improve its 

generalization on a wide range of adversarial samples without significant architecture 

changes and increased complexity. 

The challenge of GAN training is that GANs are limited to generalizing on the 

gradient of the classifier. The generalization of GANs is heavily affected by the generator 

design and other hyperparameters. Hence, a low-capability set of generators and 

parameters cannot consistently estimate the worst-case loss of the classifier, resulting in 

the low robustness of the overall training results. Therefore, an improved GAN is required 

to resolve the training complexity issue of the conventional adversarial training and to 

improve the generalization of GAN methods. 

1.1 Motivation 

The primary motivation of the proposed architecture is to reformulate conventional 

adversarial training and to address the limitations of adversarial training regarding the 

training complexity, flexibility, and data generalization. The secondary motivation is to 

utilize GAN methods to generate adversarial distribution shifted data points and to 

formulate the problem within the deep learning model itself to compare the differences 

between the adversarial samples found by deep learning models and conventional attack 

algorithms. 
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Adversarial samples can be obtained by using multiple attack algorithms with 

different optimization formulations. The most common attacks are gradient-based attacks, 

which backpropagate the gradient of the loss back to the input space to calculate the 

adversarial noises by using gradient descent [4], [5]. The other method involves using 

metaheuristic optimization or other optimizers to find adversarial samples [6]. In general, 

attackers aim to maximize the loss of the target model while minimizing the information 

loss to humans. Hence, adversarial samples can refer to any intentionally crafted data 

sample that results in significant differences in predictions between human and machine 

learning models [1], [3]. This thesis mainly focuses on one particular case of crafting 

methodology, since it is primarily utilized by gradient-based attack algorithms and is easily 

accessible within white-box situations or transferred attack situations. This crafting 

methodology is predicated upon an assumption of an adversarial sample as x+δ, where x is 

a selected sample from the data set, and δ is a small adversarial perturbation or adversarial 

noise vector that is added to the sample x while minimizing the human perception loss. The 

attack model uses gradient descent to generate adversarial perturbation δ based on a sample 

x and a given deep learning model in one or iterative process. Then the perturbation δ is 

added to sample x to generate an adversarial sample that has a high possibility of causing 

the deep learning model to misclassify the sample. Hence, the consistency of the 

classification of the sample within the data set are the first priority of the proposed defense 

method. Under this assumption, the adversarial noise vector is constrained by a norm size 

under a distance metric to be mathematically small to minimize the human perception 

differences. Hence, the adversarial sample is assumed to be located close to a possible data 

sample within a selected data set under a distance metric.  
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This thesis focuses mainly on adversarial attack defenses against deep learning image 

classifiers. In particular, deep convolution image classifiers. The research uses convolution 

classifier model as a baseline deep learning model to evaluate the effectiveness and the 

performance of the proposed defensive methodology because these models are well-

studied in the related research field [3]. Furthermore, the GAN models are commonly used 

for image synthesis [15]; hence, the thesis capitalized on this model to augment image data 

that is well suited for convolution image classification. 

In image classification, L0, L2, and L∞ norm metrics are commonly used to minimize 

the adversarial vector size. The L0 norm constraint limits the upper pixel number that can 

be changed, whereas the L2 norm constraint limits the adversarial vector size in Euclidean 

space. The L∞ constraint applies an upper bound to the maximum value change across all 

the pixels. This thesis explores the use of GANs to improve the adversarial robustness of a 

deep learning convolution classifier under the assumption of the adversarial sample being 

x+δ. The primary constraints considered in this work are L∞ and L2 constraint adversarial 

samples. The L0 constraint is more challenging to formulate with differentiable gradient 

optimization methods, and it requires more research to implement in the GAN architecture.  

1.2 Research Scope 

The scope of this research primarily encompasses a small to a medium-size deep learning 

image classifier that categorizes any user input image in (Red Green Blue) RGB channels 

according to a specified set of label classes. The size of the classifier depends on the 

parameter numbers of the model, and the main focus of this thesis is the classifier model 

with less than ten million parameters. The target image classifier primarily trains with a 

supervised learning technique to generalize on every image-label pair with training set data 
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and to provide an accurate classification of any given same-dimensional images. Ideally, 

this training architecture can be applied to any deep learning image classifier with 

supervised training. However, it is particularly beneficial for small and medium image 

classifiers to reduce adversarial training time and improve adversarial robustness. This 

research addresses adversarial attacks within L∞ and L2 norm constraints.  

The primary attack algorithms considered in this thesis are the single and the multi-

step white-box gradient attacks, which are the attack algorithms that exploit the loss 

gradient of the model to generate adversarial perturbation. The scenario entails a situation 

in which attackers gain access to the information of the target model or when the attackers 

use a transfer-based gradient attack to generate adversarial samples. The primary focus of 

the solution is to resolve the problem when the correct classification is affected by an attack 

algorithm that is converted into a false classification. 

1.3 Contributions 

The main contribution of this thesis is an improved GAN-based architecture to augment 

the training of deep learning image classifiers’ adversarial robustness against adversarial 

attacks under L∞ and L2 norm constraints. The architecture uses a deep neural network 

generator to produce adversarial perturbation solutions for a target classifier for data 

augmentation. A target classifier can be adversarially-trained with the generator to learn to 

generalize on such adversarial noise that can provide general robustness against adversarial 

attacks under the same constraints. In the process of training, the generator captures the 

loss gradient of the classifier and learns to determine the vulnerability of the target classifier 

in its loss landscape. The generated noises can be used for later study. The architecture is 

used on a modified Visual Geometry Group (VGG) classifier with the 10 classes of data 
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samples from the Modified National Institute of Standards and Technology database 

(MNIST) and the Canadian Institute for Advanced Research (CIFAR). The following 

research contributions are presented: 

• A GAN architecture that realizes data augmentation for training robust deep 

learning image classifiers against gradient-based adversarial attacks under L∞ and 

L2 constraints. 

• Evaluations of different implementations of the GAN to enable a discussion of the 

effectiveness of each implementation. 

• A GAN adversarial training methodology that facilitates low-complexity 

adversarial training and achieves improved accuracies against gradient-based 

attacks. The best accuracies are around 45% against 8/255 L∞ projected gradient 

descent adversarial samples and 60% against 128/255 L2 projected gradient descent 

adversarial samples. 

• An attack-independent adversarial training architecture to provide flexible 

robustness against two selected norm constraints (L∞ and L2) without significant 

modification requirements. 

• A demonstration of the performance of GAN regarding the transferability between 

constraints and a visualization of the generated adversarial samples. 

The research results from this thesis have been disseminated in the papers [17]-[19]. 

1.4 Thesis Outline 

The remainder of the thesis is organized as follows. 
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Chapter 2 introduces the main concepts and the research related to adversarial attacks and 

adversarial training. The chapter also introduces the concept of the generative adversarial 

network (GAN) and its relationship to adversarial training for adversarial attack defenses.  

Chapter 3 provides a detailed formulation of the proposed defensive strategy against 

gradient-based adversarial attacks. The chapter introduces the basic formulation and 

several detailed components of the proposed model that are used for evaluating the models’ 

performances. 

Chapter 4 presents the implementation tools and libraries. The chapter also describes the 

realization of the model’s components and the implementation of the training logic. 

Furthermore, the chapter elucidates the experimental settings for evaluating the attack 

algorithm used and presents the datasets utilized for the experiments. The model 

parameters used for each dataset and experiment are also discussed in this chapter. 

Chapter 5 discusses the experimental evaluation and results. The chapter is divided into 

two main sections for the different datasets. The more advanced dataset is divided into 

subsections. The experiments related to different model components are reported in the 

corresponding subsections.  

Finally, Chapter 6 presents the conclusion and the potential future direction of this 

research. 

1.5 Summary 

This chapter includes a brief discussion of the current challenges regarding the adversarial 

samples in a deep learning context. It also presents an outline and the scope of the thesis. 

The primary goal of the thesis is to implement a novel GAN architecture to generate 
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augmentation adversarial samples and to provide adversarial training to a given image 

classifier to improve its generalization on adversarial samples. Chapter 2 discusses the 

related works and introduces other important background information regarding 

adversarial machine learning and adversarial training. 

2  
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Chapter 2. Background and Related Work 

This chapter surveys the related research regarding adversarial samples, adversarial 

attacks, and adversarial training algorithms. The concepts related to gradient-based 

adversarial attack algorithms are presented, and the state-of-the-art adversarial training 

frameworks are reviewed in detail. The other defensive strategies are not closely related to 

the approach in this thesis; hence, they are not reviewed. The gradient-based attacks are 

categorized based on their computational cost and the constraint types. The adversarial 

training is categorized based on the components used for data augmentation, and more 

specifically, the attack algorithms used to generate adversarial samples. The major contents 

of this chapter have been published as a systematic literature review [17]. 

2.1 Background 

Deep learning is one of the machine learning methodologies that utilizes deep-stacked 

neuron networks to realize function transformation and feature extraction. Recent advances 

within deep learning have been applied to a wide range of applications, including image 

recognition, language recognition, generative models, and other domains. To realize these 

domain applications, multiple architectural designs have been proposed, including 

convolution networks, recurrent networks, transformers, and many others [20]. Within 

image recognition models, the convolution neuron network is one of the commonly used 

architectures that has realized state-of-the-art performance in image classification and 

image synthesis. Furthermore, the generative adversarial network (GAN) is one of the 

generative model architectures that can utilize convolution neuron networks for image 

generation and synthesis. The image synthesis in GAN typically combines the components 

of convolution neuron networks and the knowledge of image classification and data 
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synthesis to realize its functionality. This thesis focuses on issues related to the deep 

learning convolution classifier and the utilization of GAN to address the vulnerability of 

these types of classifiers. Hence, this section provides basic information relating to GAN 

and the related attack algorithms for convolution image classifiers. The overview of the 

relationship between machine learning, deep learning, and GAN is illustrated in Figure 2.1. 

 

Figure 2.1: Relationship between machine learning, deep learning, and GAN. 

2.1.1 Generative Adversarial Network 

A generative Adversarial Network (GAN) is a specific architecture that incorporates a 

generator model and a discriminator to form an adversarial training architecture [21]. The 

architecture realizes a self-supervised learning formation through the min-max 

optimization of two network models. The generator is typically responsible for learning to 

generate high-quality synthetic data samples, and the discriminator is used to differentiate 

the generated synthesis data samples and the real data samples and to guide the 

optimization process of the generator. A standard architecture of GAN is illustrated in 
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Figure 2.2. In image synthesis tasks, a convolution GAN is commonly utilized, where the 

generator and the discriminator are both implemented with convolution neuron networks. 

The generator usually learns to transfer an input vector to the synthetic images and the 

discriminator, as a binary classifier outputs a label to indicate whether its input samples are 

real or fake. The overall GAN formulation can be described as min-max optimization 

between the generator and discriminator networks. The objective function can be described 

using Equation (2.1): 

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝔼𝑥~𝑝(𝑥)[log 𝐷(𝑥)] + 𝔼𝑧~𝑞(𝑧)[log (1 − 𝐷(𝐺(𝑧)))] (2.1) 

where discriminator D maximizes the probability to distinguish the real and synthetic data, 

and generator G minimizes the discriminator’s probability of it. The term x and z represent 

the real sample and the latent vector, respectively. Both networks can be optimized using 

gradient descent or a more advanced optimizer, such as Adam. The recent application of 

GAN has entailed generating augmentation data for training other learning models [14], 

[16].  

 

Figure 2.2: A GAN architecture. 
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2.1.2 Adversarial Attacks on Image Classifiers 

An adversarial sample of an image classifier is a type of image sample that is classified 

differently by the model classifier and a human [1]. In adversarial machine learning studies, 

the common example is typically a sample that exists close to a selected evaluation sample 

that is indistinguishable by humans but that has a significantly different model 

classification compared to the selected evaluation sample. Several distance metrics are used 

to measure the adversarial distortion size in a mathematical manner. Generally, it is 

assumed that a small mathematical distance measurement is sufficient to make the 

distortion indistinguishable from human visions. Hence, the general assumption can be 

written as the Equation (2.2) for an adversarial sample generated from an evaluation sample 

x: 

 𝑥𝑎𝑑𝑣 = 𝑥 +  𝛿 (2.2) 

where δ is the adversarial perturbation vector or adversarial distortion noise, and xadv is an 

adversarial sample generated from the sample x. The common distance metrics used to 

constrain the mathematical norm size of δ include L0, L2, and L∞ norm constraints. The 

formulation of the Lp norm is written as Equation (2.3): 

 ||𝑥||𝑝 =  ∑ |𝑥|𝑝 𝑝 ≥ 1𝑛
𝑖=1  (2.3) 

where x is a given vector, and p is a real number greater than 1. When p equals zero, the L0 

norm of a vector is the maximum value of the vector that is not equal to zero. When p 

equals 2, Equation (2.3) is the Euclidean length of the vector, and when p equals infinity, 

Equation (2.3) is the maximum value within the vector x.  
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An adversarial attack that targets a visual classifier could implement any of the norm 

constraints to generate an adversarial sample. However, the adversarial sample generated 

from different constraints has a different distribution. Since the L0 norm size computation 

is not differentiable, L0 constraint adversarial samples are typically generated from black-

box algorithms that use metaheuristic optimizers to determine the effective adversarial 

distortion [3]. These types of algorithms are more flexible in their optimization methods 

and can create adversarial samples without any differentiable formulation. Within the scope 

of this thesis, gradient-based attacks are the primary focus; hence, the L2 and L∞ norms are 

mostly considered in this work.  

2.1.3 Gradient Descent 

Gradient Descent is one of the optimization algorithms that is widely used in deep learning 

optimizations [3], [20], including training, finetuning, and adversarial attacks. The 

algorithm of gradient descent can be described using Equation (2.4) [20]: 

 𝜃𝑛+1 = 𝜃𝑛 − 𝛼∇𝐿(𝜃𝑛)  (2.4) 

where the θn+1 and θn represent the optimizing parameter of a differentiable model, and L 

represents the loss function of the optimization. The gradient descent algorithm computes 

the gradient of the loss function ∇L regarding the parameter θn and multiplies the gradient 

with a learning rate parameter α to determine the value update on the parameter θn. θn+1 is 

the updated parameter after gradient descent. 

In the case of the training and finetuning process of a deep learning model, the 

gradient descent usually pairs with backpropagation to update the model parameters within 

neural network layers [20]. The training algorithm of a deep learning model requires the 
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definition of a loss function L and a set of sample-label pairs of training data (xi, yi). The 

gradient of the loss function regarding the inner parameters of the model is computed from 

the errors of the model outputs based on training sample-label pairs. The error values of 

the outputs can be backpropagated to the shallower layers of the deep learning model to 

obtain the gradient of the loss with respect to all the parameters. Hence, all the parameters 

of the model can be optimized using the gradient descent algorithm. 

In the case of adversarial attacks, the algorithms using gradient descent to optimize 

the adversarial samples are referred to as gradient-based attacks [3], [5]. Assuming a deep 

learning model with sample-label pairs (xi, yi) and loss function L, the gradient-based attack 

optimizing sample xi based on the gradient of the loss function regarding each sample-label 

pair (xi, yi). The details of the gradient-based attack algorithms will be introduced in 

subsequent sections. 

In this thesis, gradient descent is used as the primary optimization algorithm. The 

implementation of gradient descent is included in all the model optimization and attacks 

from the thesis, such as GAN training process, classifier training process, and all gradient-

based attack algorithms.  

2.1.4 Fast Gradient Method Adversarial Attacks 

Fast gradient method attacks are one of the gradient-based attack algorithms that can target 

convolution classifier models. These attacks use the backpropagated gradient information 

of a target model to compute adversarial noise. Hence, this requires one gradient 

backpropagation to perform the attack and necessitates access to a selected target model’s 

inner parameter. When the attack operates in the L∞norm constraint, the sign of the loss 
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gradient is used to keep the signed direction of the gradient for constraining the L∞ norm. 

This version of the attack is called the fast gradient sign method (FGSM) [4]. The FGSM 

attack corresponds to Equation (2.5): 

 𝑥’ =  𝑥 +  Ɛ ˑ 𝑠𝑖𝑔𝑛(𝛻𝑥 𝐿(𝑥, 𝑦)) (2.5) 

where x’ is the adversarial sample of an original sample x. The Ɛ ˑ sign(∇x L(x,y)) is the 

computational vector or adversarial perturbation vector. The ∇x L(x,y) represents the loss 

gradient of the sample-label pair (x,y) from the target classifier, and the sign function 

constrains the gradient vector into the L∞ norm. The parameter Ɛ is a scalar parameter that 

limits the maximum norm size of the perturbation vector. The method can also be used in 

the L2 norm by simply removing the sign function. 

2.1.5 Iterative Gradient Descent Methods 

The iterative gradient descent method [1], [3], [5] includes multiple gradient-based attack 

algorithms that utilize multi-step gradient descent and backpropagation to generate 

adversarial samples; the algorithm is more effective in attacking convolution classifiers. 

Similar to FGSM, these methods require the model’s inner parameters to perform a 

successful adversarial sample generation.  

Projected gradient descent (PGD) [5] is a common optimization algorithm that uses 

gradient descent as a core optimization strategy. In adversarial machine learning, PGD is 

an effective iterative gradient descent attack method that incorporates vector projection and 

random initialization. The selected data sample is added by a random perturbation before 

the start of the gradient descent, and projection is performed when the solution runs out of 

feasible space. The basic formulation is written in Equation (2.6): 
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 𝑥𝑡+1 = ∏𝑥+𝑠(𝑥’ +  𝛼 𝑠𝑖𝑔𝑛(𝛻𝑥 𝐿(𝑥, 𝑦))) (2.6) 

Compared to the FGSM formula, the PGD includes the iterative addition of adversarial 

perturbation and projection. The xt+1 represents the current result of an adversarial sample, 

where the x’ is the previous iteration’s adversarial sample. The overall sample vector is 

projected to the feasible space to compute the current sample xt+1.  Similar to FGSM, the 

sign function transforms the perturbation into the L∞ constraint. The formulation can also 

be implemented in the L2 constraint by removing the sign function from the formula. 

2.2 Related Work 

This section provides details about the state-of-the-art adversarial training methods that are 

used to improve the adversarial robustness against gradient-based adversarial attack 

algorithms. The general formulation can be described using Equation (2.7): 

 min ∑ max 𝐿(𝑓(𝐺)), 𝑦𝑖) (2.7) 

The algorithm trains the classifier model to generalize on the adversarial samples produced 

by a selected adversarial attack. The formulation uses the adversarial attack to generate 

adversarial samples for maximizing the loss of the target classifier. The target classifier 

then trains with these samples to minimize the loss to provide generalization on the 

adversarial samples. The selected attack algorithm determines the type of robustness of the 

trained classifier model. The quality of the generated adversarial sample impacts the 

robustness level of the trained model. Hence, the adversarial sample generation algorithm 

should be carefully selected for adversarial training to provide a proper type of robustness, 

and generalization depends upon scenarios of potential threat. 
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 Table 2.1 lists the adversarial sample generation algorithms (i.e., the attack 

algorithms) used in adversarial training. Each type of augmentation algorithm is 

systematically reviewed, and the advantages and limitations are listed and discussed.  

Table 2.1: Overview of adversarial training. 

Category Related 

works 

Description Advantage Limitation 

Gradient-

based 

single step 

algorithm 

[22]-[41] FGSM/eFGSM/SIM Efficient and 

fast with low 

training 

complexity 

compared to 

iterative 

methods 

Low 

precision; 

causes 

overfitting 

and provides 

poor 

generalization 

of robustness 

Gradient-

based 

multi-step 

algorithm 

[5], [22], 

[31]-[34], 

[36], [42]-

[73] 

PGD/IFGSM/BIM/JSMA High precision 

and accurate 

adversarial 

sample 

generation; can 

provide more 

robustness 

compared to 

single-step 

algorithms 

High 

complexity; 

overfitting; 

poor 

generalization 

on clean data 

samples 

Generative 

models 

[16], [62], 

[74]-[83] 

Auto-encode-decoder 

and GANs 

Semi-

supervised or 

self-supervised 

learning; more 

efficient for 

implementation 

and for training 

complexity 

compared to 

multi-step 

methods 

Performance 

varies from 

different 

generative 

models; low 

transferability 

and 

catastrophic 

forgetting and 

overfitting 

Ensemble 

methods 

[22], [84]-

[86] 

Combining ensemble 

models 

Lower the 

transferability 

of adversarial 

samples across 

different 

models with 

Require 

pretrained 

models; 

provide less 

robustness to 

target model 

itself 
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efficient 

training time 

Our 

proposed 

method 

N/A Contributions: 

• Improving upon GAN model and utilizing it for 

adversarial training 

• Providing more advanced formulations to enhance 

GAN’s augmentation ability to train a robust 

convolution classifier 

• Providing low-complexity training methodology 

• Constructing an attack-independent adversarial 

training method with L∞ and L2 constraints and 

providing insight into the transferability of 

robustness between the constraints 

• Providing insight into the overfitting problem of 

GAN and discovering the effect of training epochs 

 

The limitation of the proposed method: 

• Overfitting of generator and classifier 

• Accuracy and robustness tradeoffs  

 

 

2.2.1 Gradient-Based Single-Step Algorithm 

Adversarial training frequently uses gradient backpropagation to generate adversarial 

samples for data augmentation. This category of the gradient-based method incorporates 

one-time computation to obtain the adversarial vector that is used to modify the original 

data. The basic idea concept incorporates the gradient descent algorithm to optimize the 

loss gradient onto the input data. The inner part of the adversarial training maximization is 

generally implemented by the FGSM algorithm or by a similar algorithm for generating 

augmentation data. The benefit of this single-step generation is that only one additional 

gradient descent is required for each training step. Hence, the overall training complexity 

is not heavily affected. This type of adversarial training can provide baseline robustness 

for the trained model to defend against similar single-step gradient descent attacks. 

However, single-step gradient attacks are known to be ineffective in finding the worst-case 
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adversarial sample [5]. This means that the model trained with a single-step attack 

algorithm cannot guarantee robustness against the worst-case adversarial samples [5]. This 

ineffectiveness can also be applied to smaller models. Hence, in most cases, single-step 

adversarial training is less practical, since any attacker can use multiple gradient descents 

to generate adversarial samples. Conversely, the model trained with a single-step attack 

still has adversarial samples that exist in false decision boundaries; therefore, the model 

cannot be trusted for capturing robust features of the data. The other problems include 

overfitting [28] and accuracy-robustness trade-offs [50]. 

Several studies have targeted the improvement of this type of adversarial training to 

provide an enhanced robustness generalization and retain the advantages associated with 

low computational complexity. The improved versions include the implementation of 

dropout scheduling to reduce overfitting [23] and optimization regularization to provide a 

better estimate of adversarial direction [24]-[41]. Fast adversarial training [26], [27], [31] 

is one of the most well-known efficient adversarial training concepts that relates to 

implementing adversarial training with a single-step gradient attack. This method uses 

random initialization incorporated with a single-step attack to generate a similar adversarial 

sample compared to other multi-step attacks. However, these improvements are also 

reported to have problems with overfitting [31], and they still do not promote the accuracy 

against adversarial samples compared to the current state-of-the-art accuracy with regular 

classification tasks. 

2.2.2 Gradient-Based Multi-Step Algorithm 

The adversarial training that uses a multi-step gradient attack has been developed from 

single-step attack adversarial training. Rather than using simple one-step backpropagation, 
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this type of adversarial training uses multiple backpropagation gradient descents to 

generate adversarial samples in each training step [5]. The commonly implemented multi-

step attacks are variations of PGD or basic iterative method (BIM) attacks. With the 

repetitive gradient descent, the loss gradient of the model can be accurately explored to 

produce more precise and effective adversarial samples [5]. Hence, the model trained with 

this augmented data can yield enhanced overall robustness compared to single-step 

algorithms [5]. However, the disadvantage of the multi-step algorithm is that it includes 

another iterative loop within each training step; hence, it can cause heavy computational 

overhead, particularly with a larger model [12]. This increased complexity can impact the 

practical efficiency of training a robust model. Furthermore, the robustness-accuracy trade-

offs are also presented in the trained model with these attacks [50]. The other problem also 

involves overfitting [12], which demonstrates the limitation of the generalization. The other 

challenge related to the usage of PGD attacks is that it is typically more effective in 

generating L infinity norm adversarial samples [5]. Hence, robustness against other norm-

constraint adversarial samples cannot be guaranteed.  

PGD adversarial training [5] is one of the most popular adversarial training methods. 

Hence, various studies have addressed the prospect of improving PGD adversarial training. 

The general improvement direction encompasses reducing overfit, reducing training 

complexity, improving attack effectiveness, progressing toward better training objectives, 

and developing solutions to data limitations. The research related to these improvements is 

presented in Table 2.2, with a summary of the improved direction.  

Table 2.2: PGD adversarial training subcategories. 

PGD AT improved 

versions 

Related works Improvements 
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Curriculum training [42], [43], [44] Reducing overfit and 

improving generalization 

Adaptive training [45], [46], [47] Reducing overfit and 

improving generalization 

Efficient training [48], [49], [31]  Reducing training 

complexity and training 

time 

Improved regularization [50], [51], [52], [53], [54] Improving loss functions 

and improving 

generalization 

Unsupervised training [55], [56], [57], [58] Providing more data and 

improving generalization 

 

Curriculum adversarial training primarily resolves issues of overfitting. It 

incorporates an accuracy monitoring step and adjusts the attack strength based on the 

current performance of the model [42]. The entire process of curriculum training involves 

a gradually increasing norm size of the adversarial sample; there is also a version of 

curriculum adversarial training with an early stop [43], [44]. 

Adaptive adversarial training applies different attack norm sizes for different data 

samples within the training data set [45]-[47]. The adaptive training prevents the 

adversarial attack augmentation from overshooting the decision boundary around the 

training data and applies an adjustable adversarial perturbation based on the distance 

between the data point and the decision boundary. 

Efficient training [31], [48], [49] is another improvement associated with PGD 

training that aims to reduce the training complexity of PGD training. Free adversarial 

training [48] is one of the proposals that could improve the gradient efficiency of the 

training and modify the training schemas to include model parameter updates and the single 

gradient descent adversarial sample generation within a one-step update. Hence, the 

training step and the single iteration of the adversarial attack are shared in one iteration to 
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improve the efficiency of training. An enhancement of this training has been proposed that 

uses a layer-wised heuristic learning method to further improve the efficiency [49]. Other 

methods [31] combine the single-step attack and multi-step attack for different stages of 

the training to accelerate the adversarial training.  

There are various methods, including the modification of objective functions and 

optimization terms. These methods [50]-[54] typically modify or include a regularization 

function for better training performance. The TRadeoff-inspired Adversarial DEfense via 

Surrogate-loss minimization (TRADES) regularization [50] is one of the methods that 

proposes a theoretical optimization trade-off between accuracy and robustness and that 

applies the trade-off as an objective in a regularization function. The training using this 

regularization term has a new training objective to reach a balance point between natural 

errors and adversarial errors. The other regularization proposals include logit pairing [51], 

sample correctness regularization [52], and triplet loss [53], [54].  

Unsupervised and semi-unsupervised adversarial training have been proposed to 

leverage the data-hungry problem of adversarial training. Zhai et al. [57] suggest that more 

data is necessary to achieve robust results. Hence, some research [55]-[58] has proposed 

adversarial training with unlabeled data samples. 

Aside from these categories of PGD adversarial training, several other proposals 

have been provided with other benefits regarding robustness. Maini et al. and Stutz et al. 

[59], [60] developed a training method to address the problem of the unseen adversarial 

samples. These adversarial samples can be concealed beyond the normal norm size of the 

attacks and cannot be addressed by the usual adversarial training. The other method 

incorporates other unique regularization methods and addresses issues with real-life 
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adversarial samples [61]-[73]. Despite these modifications and improvements, the 

limitations of adversarial training still exist and generally cannot be fully tackled via one 

solution. 

2.2.3 Generative Models 

Generative models represent one of the useful types of models of architectures for data 

generation and synthesis. Multiple proposals have considered the use of these generative 

networks for robust adversarial training purposes. The architectures of these generative 

models include GANs, auto-encode-decoder, and diffusion models. Of these architectures, 

the GANs and auto-encode-decoder fit the adversarial training schema; hence, these two 

types of models are reviewed in this section. 

The GANs model used for adversarial attack defense typically focuses on one of two 

major concepts: distribution transferring and data augmentation. Distribution transferring 

GANs [77], [78], [83] capitalize on the encode-decoder generative architectures, such as 

cycle GAN and U-net, to transfer the adversarial distributional data to the normal data 

distribution to mitigate the effects. The benefit of this method is that it utilizes an efficient 

architecture, and the generative structures can be interchanged to work with different 

classifiers. On the other hand, the limitation of this method is that it can only be effective 

with the specific adversarial samples it trained for and cannot be universally generalized. 

It also requires a heavy adversarial sample generating process similar to PGD adversarial 

training, and it does not improve the original model’s robustness. Additionally, extra 

models must be deployed in real time to realize the adversarial denoise process. Another 

type of GAN [79]-[82] utilizes a self-supervised learning method that provides sample 

reconstruction to realize a simpler cleansing effect. It generally does not require attack 
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method implementation during the training. However, the method shares the limitation of 

additional model deployment and also does not address the original classifier’s robustness.  

Data augmentation GANs [16], [62] enhance the conventional adversarial training 

using GAN architecture or directly implement GAN for data augmentation. Liu et al. [62] 

use the GANs model to enhance the adversarial training process, wherein an extra 

discriminator is involved during the training to guide the optimization of the target 

classifier model toward the robustness parameters. However, this model does not address 

the issue of training complexity and introduces more parameters into the training process. 

Another GAN defense strategy [16] directly utilizes the original idea of GAN [21] and is 

significantly similar to conventional adversarial training. This model uses the generator to 

capture the loss gradient of the adversarially-trained classifier and to produce maximized 

loss samples; it then makes the classifier generalize on these samples. The benefit of this 

type of GANs is that it is generally less computationally complex compared to PGD 

adversarial training, and it can be implemented without a specific attack method. The 

generator can also effectively produce more data samples during the training process, 

which leverages the problem of data-hungry limitations. However, the training result of 

this type of model heavily depends upon the generator formulations and the capability of 

the generator to capture the proper gradient information [87]. One challenge of formulating 

the generator to realize different constraints of adversarial samples is that most lectures 

only include one type of generation constraint [16], [62], [83]. The other limitations include 

overfitting [87] and gradient saturation [87], which are the traditional challenges involved 

in GAN training. This thesis extends the GAN augmentation models and aims to provide 

more insight into the potential details of GAN used for adversarial robustness purposes. 
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The thesis evaluates the different components of GAN and particularly its adversarial 

sample generator network to provide improvement directions regarding the overall training 

performance of the GAN model. 

The auto-encode-decoder [74]-[76] can also be used to generate adversarial samples. 

The general formulations include a similar min-max formulation compared to GAN [75] 

and the classifier latent space decoder [74], [76] for adversarial sample generation and 

training. The major disadvantages are similar to GAN, in that the performance depends 

upon the generative model’s capabilities. 

2.2.4 Ensemble Models 

Ensemble adversarial training provides a different approach compared to other adversarial 

training methods. Ensemble adversarial training mainly focuses on decreasing the 

transferability of an adversarial attack across multiple different models [22], [84]-[86]. The 

method generates adversarial samples from a pre-trained model and includes these samples 

to train other independent models. Hence, the new model can generalize on these 

adversarial samples that the adversarial sample cannot simultaneously target both models. 

Ensemble adversarial training is highly effective for defending against transfer-based 

black-box adversarial attacks [22]. However, if the attack algorithm directly operates on 

the target classifier, the ensemble adversarial training cannot provide such robustness 

against these attacks [22]. Another benefit is that this training method does not require real-

time adversarial sample generation, which results in heavy training overhead.  

2.2.5 Limitations 

The overall limitations of the current algorithm-based adversarial training frameworks for 

adversarial attack defenses include generalization problems, overfitting, computational 
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complexity, and limitations related to unseen distributional shifted data [1], [12]. There are 

also limited strategies and information to understand the effects of these adversarial 

samples. Hence, a flexible and universally applicable method is necessary to provide more 

usability in terms of generalization on different constraint attacks, to diminish the training 

complexity, and to reduce other negative effects of adversarial training. 

The GANs augmentation frameworks may not provide state-of-the-art training 

results in terms of accuracy against adversarial sample and overfitting, since these 

frameworks are limited to the conventional problems related to GAN, such as gradient 

saturation and overfitting. They are also limited to their architectural design and additional 

parameters of the generators involved during the training process. However, the GAN 

model can provide some unique benefits for formulating the adversarial training framework. 

With proper design, GAN can typically be more backpropagate efficient compared to PGD 

adversarial training. The generator can also be modified to adapt it to different formulations 

for different constraints of adversarial sample generation with minimal changes. The 

generated adversarial sample also provides additional data points for classifier 

generalization. This generator can also be regarded as an alternative adversarial sample 

generation method for further research exploring the differences between generator-

captured adversarial samples and adversarial samples from other algorithms.  

2.3 Summary 

This thesis focuses on the benefits of GAN models and proposes a GAN adversarial 

training architecture with several novel formulations. The formulations are experimented 

with and compared to improve the training performance and the robustness of the GAN 

training method. Furthermore, the proposed method enables low-complexity adversarial 
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training and can also defend more complex attacks. The method also does not require 

specific attack algorithm implementation and is attack-independent compared to 

conventional adversarial training. The thesis provides a deeper evaluation of training 

epochs and the overfitting effect of the model to identify the hidden relationships. The 

summarized information is also presented in Table 2.1. 

This chapter has presented the necessary background information and related 

research to understand adversarial attacks and adversarial training. The limitations of the 

current research indicate the need for more research regarding adversarial training 

strategies and a further exploration of adversarial samples. Chapter 3 discusses the 

proposed architecture and the different considerations regarding the generator formulations 

and constraint settings of GAN for robust data augmentation. 

3  
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Chapter 3. Proposed GAN-Based Architecture 

This chapter discusses the proposed architecture and formulation of the GAN model for 

data augmentation. The basic architecture is presented first. The basic generation and 

training strategy are also described and discussed. Subsequently, the different variations of 

generator formulations are listed. These formulations will be used in later experiments for 

performance comparison. Finally, the chapter introduces the basic classifier architecture 

and different types of constraint GANs. The architecture and the formulations of the 

proposed GAN have been published in paper [18], [19]. 

3.1 Basic Formulations 

The proposed architecture involves a standard composition of GAN with a generator and 

discriminator min-max formulation. Since the GAN is used for robust classifier training, 

the discriminator is referred to as a classifier in later sections. The generator of the 

architecture learns the gradient from the classifier and provides the adversarially-generated 

data. The classifier then learns to classify the clean sample data and the adversarially-

generated data using the correct labels. The optimization function of the overall 

architecture is based on the traditional GAN’s objective function [21] and the previous 

work [16], and adapted as Equation (3.1): 

 𝑚𝑖𝑛𝐷𝑚𝑎𝑥𝐺 ∑ 𝐿 (𝐷(𝑥𝑖), 𝑦𝑖) +  ∑ 𝐿(𝐷(𝑥𝑖 + 휀𝑁(𝐺(𝑰))), 𝑦𝑖) (3.1) 

where xi represents the original clean data sample, and the generator G produces a synthesis 

data sample under the limitation of norm size Ɛ from a selected input I. The N function is 

a Lp constraint function that limits the output vector of G into a certain Lp constraint norm 

vector; as a result, the scalar Ɛ can restrict the vector from N into a vector with a length of 
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Ɛ in any Lp constraint. The generator learns to generate the synthesis data that maximizes 

the loss of the classifier D. The classifier D learns to minimize its loss on both synthesis 

data and clean data x. The loss functions L for both are the categorical cross-entropy loss, 

and can be described as Equation (3.2): 

 − ∑ 𝑦𝑡𝑟𝑢𝑒 ∗ log (𝑦𝑝𝑟𝑒𝑑) (3.2) 

where ytrue is the expected output, and ypred is the predicted output. This loss function 

represents the Kullback-Leibler (KL) divergence with the GAN model [21]. In this case, 

the generator maximizes the loss of the classifier; hence, the loss value is reversed for the 

generator by multiplying a negative one value. There is a more advanced loss, and 

divergence can be used for GAN models (i.e., the Jensen-Shannon divergence) [88]. 

However, the Jensen-Shannon divergence does not suit this type of training purpose, which 

includes classifier training. 

A dual-generator formulation has been introduced to improve the overall stability of 

the architecture. The dual-generator formulation can provide a regularization for the GAN 

to generate more diverse data and to improve the overall quality of the synthesis data [89]. 

This formulation can also compromise the stability issue of using KL divergence. Figure 

3.1 illustrates the overall architecture of the proposed GAN. With this dual-generator 

design, the input vector I of the generator is simultaneously fed into the generator, and each 

generator provides its output on the same input I. The output of each generator is scaled 

with the Ɛ and added with the corresponding sample from the training data set 

simultaneously. The addition samples are the adversarial augmentation samples learned by 

the generator models. Then these addition samples are mixed with original training samples 
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and used for classifier training. The thesis implements two generators as the architecture 

used in experiments. The architecture performs well within the evaluation and is sufficient 

with the implemented datasets. Hence, all experiments are conducted with this design. The 

generator population can have an impact on training performance. However, it is not the 

focus of the thesis, and further research is required to conclude the impact of the generator 

population. 

 

Figure 3.1: The proposed GAN-based Architecture. 

Several symbols from the basic formula can be extended and described in detail. 

These include the input I, the constraint function N, the architecture of the generator G, and 

the classifier D. These components represent each of the adjustable parts that are evaluated 

independently in this thesis.  

To evaluate the impact of each component, two major types of GANs are proposed 

for each L∞ and L2 constraint. These two constraint GANs require the different structures 

of the generator to realize L∞  and L2 vector generation. Hence, different constraint 

functions N are added to the overall formulation of GAN to transfer the output vector of 

the generator into different constraint vectors. As a result, the overall architecture of the 
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generator can be consistent, and only the switching in constraint function N are necessary 

to transform the augmentation into different constraints. 

The second difference between the two types of GAN is scalar value Ɛ. The scalar Ɛ 

is used for limiting the maximum output vector size of each generator under their constraint 

settings. A classifier can have varying accuracies against same-sized adversarial 

perturbation under different constraints. Hence, it is necessary to select a scalar to limit the 

perturbation vector within the classifier generalization compatibility. However, the 

selection of the scalar value also depends upon the dataset dimensions. Hence, the exact 

scalar values are introduced in Chapter 4’s “Dataset” section. The method of selecting the 

scalars was developed from extensive experiments and testing. 

The third difference between the types is the generator architecture. Both types of 

GAN involved an image-to-image generator architecture; however, the two generator 

architectures were implemented in a slightly different manner. Since the L∞ constraint 

adversarial is a more challenging problem, the generator uses a more flexible design so that 

the parameters can be adjusted based on the demand. Conversely, the L2 constraint 

generator contains long-range skip connect to maximize the gradient backpropagation and 

to avoid potential gradient masking problems. However, the two designs can be alternated 

and switched for each type with minor differences. Additionally, the input vector I and the 

architecture of the classifier is shared with both types. This chapter discusses the shared 

components first and then introduces the components of each GAN type. The following 

sections introduce input formulation I, classifier architecture, and the two types of GANs 

in order.  
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3.2 Input Formulations of the Generator 

This section lists the different formulations of the generator’s input that are considered for 

evaluation. Equation (3.1) from Section 3.1 includes the generator symbol G. G can be 

written as a function estimation of an input I and an output O as in Equation (3.3): 

 𝑂 = 𝐺(𝐼) (3.3) 

where O is the final estimated adversarial perturbation vector based on input I. The 

generator G must provide a reasonable estimation learned from the classifier’s gradient.  It 

is necessary to provide generator G with an input I that maximizes the possibility of 

successful estimation. In traditional GANs, the synthesis data frequently uses a latent noise 

z as an input I to provide a randomized diverse output sample [21]. However, the generator 

in the proposed architecture must transfer the input I into an adversarial perturbation vector 

of an original sample x. The generator is required to learn based on the current gradient of 

the classifier and the provided input I. Hence, an independent latent vector is insufficient 

to provide deterministic information for mapping the relationship between sample x and 

the adversarial perturbation output vector. In previous research [16], an encode-decoder 

generator was used to generate an adversarial sample based on the input of the clean sample 

x. Based on this paper and the gradient attack properties, four different input formulations 

have been proposed for evaluation. The included formulations are given as Equations (3.4), 

(3.5), (3.6), and (3.7): 

 𝐼 = 𝑥 (3.4) 

 𝐼 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑥, 𝑧) (3.5)  

 𝐼 = 𝑠𝑖𝑔𝑛(∇) (3.6) 
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 𝐼 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑠𝑖𝑔𝑛(∇), 𝑥) (3.7) 

where the four formulations represent different conditions, assumptions, and learning 

objectives of the adversarial sample generation: 

• Equation (3.4): Formulation provides the input I as the vector of the original clean 

sample x. It assumes that the adversarial perturbation is the direct transformation of 

the original sample x;  

• Equation (3.5): Formulation provides the input I as the original data vector x and 

the combination of a latent vector z. It assumes that aside from the original sample, 

a randomized vector z can help to generate more diverse perturbation vectors; 

• Equation (3.6): Formulation provides the input I as a one-step signed gradient 

vector from the current state of the classifier. It assumes that the more complex 

adversarial perturbation is the function transformation from the current state loss 

gradient of the classifier. To prevent the model overfit of the simple gradient vector, 

the additional sign function is applied on the gradient vector to only keep the sign 

direction of the vector; 

• Equation (3.7): Formulation provides the input I as the combination of the one-step 

signed gradient vector and the original sample vector x. It assumes that the 

adversarial perturbation is related to both the current state classifier gradient and 

the original sample. 

The generator G must use one of these pieces of input information to transfer the 

input vector into an adversarial vector. The input formulations are significant for this work 

and are necessary considerations to achieve an effective result in terms of robustness and 
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accuracy. The experiments compare and evaluate these formulations to determine which 

formulation is the optimal input to estimate the adversarial perturbation direction. 

Theoretically, these four types of inputs I can be used for all of the suggested types of 

models (L∞, L2, and small model). However, during the implementation and experiment, 

the L∞ constraint GAN will evaluate all the inputs I, and rest of the model types will 

consider the best solution found by using the L∞ constraint GAN. The reason for this is that 

the L∞ adversarial samples from gradient-based attacks are more difficult to defend 

compared to the L2 constraint, and L2 constraint attacks are less effective against any 

classifier because of gradient masking [5]. Hence, the L2 constraint GAN is used to evaluate 

the effectiveness compared to conventional adversarial training and the transferability of 

the robustness between the different types of models. 

3.3 Classifier Architecture 

The classifier architecture is a modified design based on the Visual Geometry Group (VGG) 

classifier model [93]. The VGG model is a famous deep learning architecture classifier for 

high-resolution image classification. The reason why a more advanced architecture such as 

ResNet is not considered is because the dimensions of data used in this thesis are low in 

sizes, and deeper architecture is not required to provide generalization. Hence, a simpler 

classifier model is preferred to conduct an efficient evaluation. The architecture of the 

model is modified and adapted for the proposed GAN’s classifier. Figure 3.2 shows the 

general design of the classifier. Compared to the original VGG classifier, the proposed 

classifier has a shallower layer number and reduces the dense layer number. The model 

involves ten convolution 2D layers and one dense output layer. Each convolution layer uses 

a three-by-three kernel size and one stride size. There are four max pooling operations 



37 

 

between the layers. Each max pooling layer reduces the image size by half and increases 

the channel by the power of two. 

 

Figure 3.2: Modified small VGG model. 

Other deep learning classifier architectures are also possible to use in the proposed 

GAN model; however, this thesis focuses on a comparison of the components of GANs. 

Hence, this standardized classifier architecture is used to control the variable. 

3.4 L∞ GAN 

In this section, the detailed architecture of the L∞ type GAN is presented. This section first 

discusses the constraint function that realizes the L∞ norm vector generation and then 

presents the generator design. At the end, a summarized plot is presented to represent the 

overall design of this type. 

3.4.1 L∞ Constraint Function 

The L∞ constraint limits the maximum value across all the elements of a vector. Hence, the 

constraint function of the L∞ constraint requires a value limitation of the output vector from 
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generator G. Hence, the tanh activation function is used to provide a soft value limitation 

with a properly defined gradient. The output after the tanh function is guaranteed to be 

within the value range [-1,1]. This tanh function can constrain the adversarial perturbation 

from the generator to be an L∞ constraint with a maximum value of 1. The scalar Ɛ can then 

multiply the vector into a vector with any L∞ norm size of Ɛ. 

3.4.2 L∞ Generator Design 

The generator of the proposed GAN is built to transfer the selected input vector to the 

augmentation adversarial perturbation. All four of the input vectors proposed involve a 

consistent dimensional vector transformation, which means that an encode-decoder or 

image-to-image generator architecture is preferred. This thesis considers two main 

architectures for the generator. The first architecture is the Cycle-Gan [90] generator with 

a residual network backbone. This type of architecture is illustrated in Figure 3.3.  

 

Figure 3.3: Residual generator model. 

This architecture is well-known for texture and image style transformation [90]. The 
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to construct the main body of the model. The benefit of this design is that the skip 

connection of each residual block can promote gradient backpropagation [95], and the 

stacked residual block numbers can be easily adjusted to change the model layer numbers 

on demand. The overall design of the L∞ GAN is illustrated in Figure 3.4. 

 

Figure 3.4: L∞ GAN overview. 

3.5 L2 GAN 

In this section, the detailed architecture of the L2 type GAN is presented. The section 

follows a same order with the L∞ type GAN section, introducing the constraint function N, 

scalar value, generator design, and a summary. 

3.5.1 L2 Constraint Function 

The L2 constraint limits the overall length of the vector in Euclidean space. Different from 

the L∞ constraint function, there is no activation function that can limit the overall size of 

a vector. Hence, an L2 normalization is implemented for the L2 constraint function to 

convert the output vector of the generator to an L2 constraint vector. The formulation of 

the L2 normalization is written as Equation (3.8): 
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𝐺(𝐼)

||𝐺(𝐼)||2
 (3.8) 
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The G(I) is the generator output vector, and I is any input vector. In the Equation 

(3.8), the L2 norm size of the G(I) is calculated, and the G(I) is divided by the L2 norm of 

itself to limit the overall L2 norm size of G(I) to a value of 1. In this case, N as the constraint 

function transforms the vector output G(I) into an L2 unit vector. In the subsequent process, 

the scalar Ɛ can modify the unit vector of G(I) into an L2 vector of a size Ɛ. One 

disadvantage of this process is that the L2 norm size of the resulting vector always has a 

fixed size of Ɛ. However, the learning objective of the generator can be simplified, since 

the generator is only required to discover the perturbation direction aligned with the unit 

vector.  

3.5.2 L2 Generator Design 

The L2 generator architecture is a U-net architecture, which is illustrated in Figure 3.5. 

 

Figure 3.5: U-net generator model. 
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U-net architecture is well-known for instance segmentation [91] as well as diffusion 

models [92]. Different from the previous residual backbone generator, the U-net 

architecture does not include residual block modular design, which means that it is more 

challenging to modify such architecture for parameter tweaking. However, the U-net 

generator uses a long-range concatenate connection that formulate a symmetric style of 

structure. This long-range connection can further leverage the gradient problem of the 

generation process [92] and is more beneficial for generating L2 constraint adversarial 

perturbation. Figure 3.6 depicts the overall design of the L2 GAN. 

 

Figure 3.6: L2 GAN overview. 

3.6 Summary 

This chapter has described the proposed architecture of GAN for adversarial data 

augmentation. It discussed the basic components of GAN, including the input formulations, 

constraint function, and generator and classifier architectures. Chapter 4 elucidates the 

details of implementation using the TensorFlow framework and the case studies performed 

to evaluate the GAN architecture. 
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Chapter 4. Implementation  

This chapter introduces the libraries and frameworks used to implement the proposed 

GAN. The tools and attacks used for evaluation are also discussed. In subsequent sections, 

the implementation of the generator and classifier, training hyperparameters, and datasets 

are addressed. 

4.1 Libraries and Tools 

This section presents all the libraries and tools used for building the models and evaluation. 

The library used for building and training the model is primarily TensorFlow 2 [98], and 

the tool involved in the evaluation is the Adversarial Robustness Toolbox (ART) [99]. 

4.1.1 TensorFlow 2 

TensorFlow 2 [98] is an open-source deep learning library provided by Google Brain. The 

library can use the Python programming language and provide a broad range of supported 

features for building, training, and evaluating deep neural networks. The dynamic graph-

building features are designed to support common deep learning architectures, including 

VGG net, residual net, GAN, and diffusion models. The built-in layer modules also provide 

seamless access to common deep learning operations, such as convolution, recurrent, and 

multiheaded attention operations. Multiple loss functions are provided for different 

learning objectives of deep learning models, including mean squared error loss and cross-

entropy loss for regression and classification. The library also provides various optimizers, 

including the stochastic gradient descent and Adam optimizer with changeable 

hyperparameters, which renders the model’s implementation and training convenient and 

accessible.  
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The proposed generators and classifier implementations use TensorFlow 2’s layer 

API. The layer API consists of the basic building blocks to construct a deep neural network 

model with tensor process computation functions. The layer functions include the basic 

convolution layer, dense layer, pooling layer, and activation function layers. Each layer 

function can use the “call” function to stack and connect to the prior layer’s output or any 

input tensor. Figure 4.1 demonstrates the process of the layer object. 

 

 

Figure 4.1: Layer object. 

There are other options for the deep learning library. However, due to the high 

functionality coverage and the user experience of the researcher, TensorFlow 2 is the 

library that we have opted to utilize for the implementation of the models in this thesis. 

4.1.2 Adversarial Robustness Toolbox 

The Adversarial Robustness Toolbox is an open-source library that provides various 
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exploit the vulnerability of any deep learning system. The gradient-based adversarial attack 

algorithms are included in the evasion attack category that directly attacks the input sample 

of a given classifier. The defensive strategies provided by the library include the 

preprocessor, postprocessor, trainer, transformer, and detector. However, this thesis 

implements its own strategy, and no defensive strategy is used from the library. The 

adversarial robustness toolbox also provides a high degree of compatibility with the 

TensorFlow 2 frameworks. The attack and defense strategies can be easily used for any 

TensorFlow 2 model.  

4.2 Implementation Details 

This section presents the implementation details regarding the GAN-based architecture to 

augment and train a robust deep learning classifier model. In particular, this section focuses 

on explaining the detailed implementation of the different generator formulations, output 

constraint functions, and the model parameters. The input layers’ implementations and the 

classifier parameters are shared by both types of GANs, and they are discussed first. The 

output constraint function implementation and generator parameters are then presented in 

separate sections. Finally, the data processing method and the adversarial attack 

implemented for evaluation are discussed at the end. 

4.2.1 Input Implementation 

Several different layers have been built using the TensorFlow layer API to implement a 

flexible input formulation. The basic input layers for the image sample, latent noise vector, 

and gradient vector use the layer.Input() function to initiate the input tensor with a 

symbolic tensor object. The input shape for the image sample and gradient vector is the 

image’s dimension (e.g., the image with 32×32 pixels and three color channels will result 
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in an input shape of 32×32×3). The input shape for the latent noise is set at 128×1, since 

the generator takes in 128-dimensional randomly distributed real numbers as latent vectors. 

The combination of the input formulation is implemented using the 

layer.Concatenate() function to concatenate selected input tensors in channel-

wised concatenation. For example, the image with three color channels will concatenate 

with its gradient vector with three channels to produce a new tensor with six channels. The 

128-dimension latent vector will first connect to a linear dense layer and reshape into a 

shape consistent with the image dimension to realize the concatenation. After all the inputs 

are defined, the generator’s main graph can select any input formulation that the user 

desires during the runtime. Only the inputs used will be realized for the runtime objective. 

Figure 4.2 illustrates the realization of the inputs. 

 

Figure 4.2: Generator input implementation diagram. The orange dotted line represents 

the import relationship of each input formulation. 
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To obtain the gradient vector, the proposed model pre-calculates the loss gradient 

using TensorFlow 2’s auto-differentiation function GradientTape(). The function first 

computes the loss gradient regarding the current input image to the classifier. After the loss 

gradient is obtained, the tf.sign() function is used only to keep the vector sign of the 

gradient. This signed vector is then used as one of the inputs of the generator. 

4.2.2 Classifier Parameters 

This thesis uses a modified VGG model as the classifier model to demonstrate the function 

and performance of GAN augmentation. The VGG net is capable of classifying large-

resolution image data [93] and is widely used in image classification applications. This 

thesis primarily concerns small-image datasets (32×32×3 maximum in pixel dimensions); 

hence, a reduced-size version of VGG net has been implemented. In real applications, this 

classifier network can be implemented with another common convolution classifier model, 

such as Resnet [95]. The parameters of implementation are presented in Table 4.1. The 

table includes the layers’ output vector sizes, convolution kernel sizes and filter numbers. 

The output vector sizes are formatted by “height×width×channels” in values. The layer’s 

kernel sizes and filter numbers are presented within squared brackets as “[kernel 

size×kernel size, filter number]”. The values behind the squared brackets indicate there are 

duplication of the same parameterized layers in sequence. The stride size used for all the 

convolution layers is 1; hence it is omitted in the table. In addition, dropout regularization 

layers are also applied after each convolution layer to reduce the overfitting effect. The 

parameter for dropout is 0.3 for the first two convolution layers and 0.4 for the rest of the 

layers. 
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Table 4.1: VGG classifier parameters. 

Output size Discriminator 

32×32×32 [3×3, 32] × 2 

16×16×32 Max pooling 

16×16×64 [3×3, 64] × 2 

8×8×64 Max pooling 

8×8×128 [3×3, 128] × 2 

4×4×128 Max pooling 

4×4×256 [3×3, 256] × 2 

2×2×256 Max pooling 

1024 Flatten 

10 Dense (10) 

 

4.2.3 L∞ GAN 

This section presents the implementation of the L∞ GAN model. The implementation 

details include the API used for the output constraint function and the L∞ constraint 

generator parameter settings. 

4.2.3.1 L∞ GAN Output Constraint Function 

The constraint function relates to the generator’s graph output tensors. After the final 

generator’s main layers, several different computation layers are added according to the 

constraint settings of the generator to realize the different constraint functions. 

The L∞ norm constraint function accepts the output tensor from the generator’s main 

graph and converts it into a constraint size vector under the L∞ norm. The process entails 

tanh activation and multiplication. The tanh activation is implemented using the activation 

layer object with the built-in tanh activation function from TensorFlow 2. The tensor from 

the final main layer of the generator should be soft-clipped by this tanh activation layer and 

constrained within the value range of [-1,1]. The element-wised multiplication is then used 

to scale up the tensor by the scalar Ɛ. The final tensor vector will generate the adversarial 



48 

 

perturbation from the generator and add to the original corresponding image vector to 

produce an adversarial augmentation image. 

4.2.3.2 L∞ GAN Generator Parameters 

This section presents the L∞ generator parameters settings in Table 4.2. The table includes 

the dimensions of each layer’s output tensors, the filter size of each convolution layer, and 

the stride size of each convolution layer. Each layer’s output is presented as 

“height×width×channels” format and each layer’s parameters are presented as “filter 

size×filter size, filter number, stride number” format. The squared bracket indicates the 

implementation of residual blocks, and the value after the “×” represents the repetition time 

of the residual blocks in sequence. The stride size for residual block layers is always one; 

hence it is omitted in these layers. In addition to these basic parameters, a width value is 

implemented to adjust the global filter numbers of the layers in the generator. Table 4.2 

presents the residual generator parameters. 

Table 4.2: Residual generator parameters. 

Output size Generator filters (×width) 

32×32×32 7×7, 32, stride 1 

16×16×64 5×5, 64 × width, stride 2 

8×8×128 5×5, 128 × width, stride 2 

8×8×128 
[
3×3, 128×width

3×3, 128×width
] ×4 

16×16×64 5×5, 64 × width, stride 2 

32×32×32 5×5, 32 × width, stride 2 

32×32×3 7×7, 3, stride 1 

 

4.2.4 L2 GAN 

This section presents the implementation of the L2 GAN model. The implementation details 

include the API used for the output constraint function and the L2 constraint generator’s 

parameter settings. 
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4.2.4.1 L2 GAN Output Constraint Function 

The L2 norm constraint function calls the built-in function tf.math.l2_normalize 

from TensorFlow 2. The calculation formula of the function is represented in Section 3.5.1. 

The output tensor for the L2 constraint is normalized by the function to determine the unit 

vector of the tensor. The unit vector then multiplies with a scalar Ɛ by using elementwise 

multiplication. The scaled output tensor is finally used as the adversarial perturbation for 

the L2 constraint and is added onto the original corresponding image vector to produce an 

adversarial augmentation image.  

4.2.4.2 L2 GAN Generator Parameters 

The L2 constraint generator uses U-net architecture. The parameter settings are displayed 

in Table 4.3. The table includes the dimensions of each layer’s output tensors and the filter 

size of each convolution layer. The output sizes are presented as “height×width×channels” 

format and the layer parameters are presented as “filter size×filter size, filter number” 

format. The squared bracket indicates a unit of building block of the model. In contrast to 

the L∞ generator, the sampling methods used in this architecture include average pooling 

and bilinear up sampling, and the rest of the convolution 2D layers use the same stride size 

of one. Hence, the strides’ values are omitted in this table.  

Table 4.3: U-net generator parameters. 

Output size Generator 

32×32×32 [1×1, 32] × 1 

[
3×3, 32

3×3, 32
] ×2 

16×16×32 Average pooling 

16×16×64 [1×1, 64] × 1 

[
3×3, 64

3×3, 64
] ×2 

8×8×64 Average pooling 
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8×8×96 [1×1, 96] × 1 

[
3×3, 96

3×3, 96
] ×2 

4×4×96 Average pooling 

4×4×128 [1×1, 128] × 1 

[
3×3, 128

3×3, 128
] ×2 

8×8×128 Up sampling 

8×8×64 [1×1, 96] × 1 

[
3×3, 96

3×3, 96
] ×2 

16×16×64 Up sampling 

16×16×32 [1×1, 64] × 1 

[
3×3, 64

3×3, 64
] ×2 

32×32×32 Up sampling 

32×32×32 [1×1, 32] × 1 

[
3×3, 32

3×3, 32
] ×2 

32×32×3 [1×1, 3] × 1 

 

4.2.5 Training Methodology Implementation 

The training process of the proposed GAN architecture involved the adversarial training of 

the generator and the classifier. The training schema was directly modified from the 

TensorFlow 2 model API with two training loops. The outside training loop is called the 

“fit()” function and controls the maximum training epochs of the entire training process. 

Within this loop function, the data is split into different batches. The batch size of the data 

is established before the training starts. This thesis uses 512 as the standard batch size. The 

batch of the training data is sent to the inner training loop that represents the training step 

of each batch of data. Within each training step, the “train_step()” function is called, 

and the parameters of the generator and classifier are updated accordingly. The inner 

training loop ends when all batches of data are finished or updated. The new epoch then 

starts with a new update of the batches. The outer training loop ends until an established 

maximum epoch is reached. The details of the maximum training epochs depend on the 
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case studies of the thesis. The overall process is illustrated in Figure 4.3 and the 

pseudocodes is provided in Appendix A: Training Algorithms. 

In each training step, the generators first produce an adversarial sample as additional 

training data. These adversarial samples mix with normal samples that feed into the 

classifier for the forward pass process. The loss gradient is calculated based on the mixed 

dataset, and the optimizer can use the gradient to update the parameters of the classifier to 

minimize the classifier’s loss on both the adversarial sample and the normal sample. In the 

section half of the training step, the same procedure is performed for the forward pass 

process. However, this time, the generator’s parameters are updated based on the loss 

gradient of the classifier.  

The training step implementation is directly modified from the “train_step” 

function provided by TensorFlow 2. The training function of the GAN accepts three 

network models (dual generators and one classifier) to perform the training process 

illustrated in Figure 4.3. Additionally, during each training epoch loop, the random flip and 

shift augmentation method is used, as mentioned in Chapter 3. The random shift 

augmentation is set to shift the maximum 0.1 fractions of the image size in a random 

direction. 

The optimizer selected for training is the Adam optimizer, which is widely used in 

GAN models [96]. Adam optimizer is an extension of the gradient descent [96] and its 

adaptive properties can accelerate the training process of the complex model with more 

advanced training objectives. The learning rate for the classifier is set at 0.0001, with 0.5 

beta1 and 0.9 beta2. The learning rate for the generator is 0.0002, with the same beta values. 

The learning rate for the generator is larger because, during the adversarial training, the 
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generator should capture the loss gradient of the classifier first to generate an effective 

adversarial sample for augmentation. The larger learning rate can accelerate the learning 

speed of the generator.  

 

Figure 4.3: Training method of the GAN model. 
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execution time of the proposed model’s training process. This is because the algorithm is 

implemented in a complex environment; hence, the runtime is heavily dependent upon the 

background hardware and the software environment at the time of the training. As a result, 

the exact training time is less convincing to represent the execution efficiency compared to 

the complexity analysis. In a real-life scenario, the big-O notation can also reflect the upper 

bound of the execution complexity and enable a comparison between the two algorithms’ 

upper-bound runtimes within the same environment. Based on the standard training 

methodology, the big-O of a training function of a deep learning model can be expressed 

as Equation (4.1): 

 𝑂(𝐸𝑝𝑜𝑐ℎ × 𝑆𝑡𝑒𝑝 × 𝐾) (4.1) 

where Epoch represents the overall training epochs of the model, Step represents the 

training step within one training epoch, and K is the backpropagation operation time within 

one training step. The proposed GAN does not modify the implementation of the training 

epoch and training step. Hence, the backpropagation time must be identified to analyze the 

training complexity. In the proposed GAN, three neural networks are involved during the 

training. Each of the networks required one backpropagation to update its parameters.  

According to the input formulations of the generator, there are two proposals with 

the Equations (3.6), (3.7) that required a pre-calculation of the gradient. Each pre-

calculation requires one-time backpropagation, and each time a generator produces an 

output, the pre-calculation is called. Both generators also share the input vector. Hence, the 

summarized number of backpropagations within one training step is five times at the most. 

In conclusion, this can be represented as K=5 for the proposed GAN method. In 

conventional adversarial training, the backpropagation time is dependent upon the 
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implemented attack iteration and the model number. One model is generally trained at a 

time. Hence, the K for conventional adversarial training is (1+N), where N is the attack 

iteration time. In comparison, the proposed method has a lower upper-bound complexity 

when N > 4. In most cases, conventional adversarial training requires more iterations than 

four to generate augmented adversarial samples. Hence, most of the time, the proposed 

GAN has a lower worst-case execution time within the same environment. 

4.2.6 Attack Algorithms 

Within the scope of this thesis, the primary attacks are the gradient-based white-box attacks, 

which use the backpropagate gradient descent to generate an adversarial sample. The thesis 

selects this category of attack algorithms since they are effective and easy to implement to 

target any deep learning classifier with parameter access [3]. The proposed GAN training 

also uses gradient descent as core optimization methodology; hence the thesis can evaluate 

similar optimization methodologies with different formulations but act as different roles 

within attack and defense. The proposed GAN must be evaluated against this type of attack 

algorithm to determine the effectiveness of the training. The proposed GAN should be able 

to provide similar performance against other types of attack algorithms with similar 

optimization methodologies. However, the attacks with different optimization methods and 

constraints may results in different data distribution [3]. Hence, the proposed GAN does 

not provide the generalization on these attacks. GAN augmentation is a defensive strategy 

that does not include additional layers of the preprocessing of data or any significant 

modifications to the layer structure of the convolution classifier. Hence, the gradient is 

well-defined for all layers of the convolution classifier used in experiments. There is no 

requirement to implement a gradient attack with an approximate gradient to prevent 
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artificial gradient masking [3], which is sometimes used as a defensive mechanism. In these 

cases, the thesis uses the basic gradient-based attacks, namely FGSM and PGD, to evaluate 

all classifiers’ performance. The algorithms of these attacks are provided by the 

Adversarial Robustness Toolbox (ART) library, introduced in Section 4.1.2. The FGSM is 

a simple one-step attack that is efficient in generating adversarial samples. However, the 

robustness evaluation using FGSM may not reflect the actual adversarial robustness of the 

classifier [5]. The robustness of a classifier requires a repetitive search of the vulnerability 

by using multi-iteration attacks, such as PGD [5]. However, it is still interesting to present 

the performance gap of a trained classifier between the FGSM and PGD. Hence, the FGSM 

is included for evaluation. 

The operation of FGSM and PGD attacks is based on the assumption of the 

adversarial sample x+δ [3], where the implemented attack algorithms provide the solution 

of adversarial perturbation vector δ and the perturbation vector δ adds with test data sample 

x to construct the final adversarial sample. The test data sample x includes every data 

sample within the testing datasets. The procedure of the evaluation and attacks is as 

following: 

1. Training the classifier used for evaluation with the proposed GAN architecture with 

training dataset. 

2. Selecting testing dataset and the trained classifier. Using FGSM and PGD to 

generate the adversarial perturbation vector δ for each data sample within the testing 

set. During the generation, gradient descent is used as the optimization method to 

optimize the perturbation vectors based on the trained classifier and each testing 

sample. 
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3. Adding the generated adversarial perturbations to their corresponding testing 

samples to construct the adversarial samples for each testing data sample. 

4. Using the trained classifier to classify the adversarial version of the testing data 

samples and record the accuracies of the classification. The accuracies are used for 

robustness evaluation. 

The parameters of these gradient attacks include perturbation norm size, Lp constraint, 

and iteration number (PGD only). This research focuses on L∞ and L2 constraints, since the 

primary implementations of GAN are also on these two constraints. The perturbation norm 

sizes depend on the dataset, constraints, and the model’s practical robustness. A proper 

value should be established around the upper limit of the robustness of the classifiers to 

ensure a valid evaluation. For this reason, the thesis proposes different sets of norm values 

for different datasets and constraints. The details of the value implementation are 

delineated within the dataset section and discussed under each dataset subsection. The 

iteration number of PGD attacks must satisfy the high effectiveness of attacking the target 

classifier; however, the increasing iteration number may cause the evaluation to be finished 

in an extensive time. For this reason, the PGD iteration is set to 100 iterations for most of 

the L∞ evaluations; however, an individual section is provided in Chapter 5 to validate the 

best PGD 100 results, with PGD 1,000 iteration attacks for L∞ GAN. For the L2 evaluation, 

the gradient-based attacks are naturally less effective in this constraint [5]. Hence, the 

experimental evaluations will directly use PGD with 1,000 iterations as the default setting 

for this constraint. Furthermore, the L2 constraint PGD attack cannot reflect the actual 

robustness of the model for the same reason. Hence, the L2 evaluation is primarily a 
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comparison of the effectiveness between conventional adversarial training and GAN 

training to evaluate the effect of natural gradient masking. 

4.3 Datasets 

This section discusses the case studies conducted on two datasets used in the evaluation 

and verification of the implementation. The two datasets considered include the grayscale 

MNIST dataset and the CIFAR 10 small colorful image dataset. In the primary evaluations, 

CIFAR 10 has been used, as it is a dataset with higher dimensions, and it presents a more 

challenging task for classifiers to generalize on. The MNIST dataset with low-dimensional 

data has been used to verify the model’s performance in low dimensions. In this case, the 

low dimensions refer to grayscale images with a similar image size to CIFAR 10 images. 

These datasets are well-studied within the adversarial machine learning research, and they 

are well-suited for this thesis as a standard for evaluation. During the evaluation, the 

proposed classifier can reach good classification results without adversarial attacks. 

However, it is still challenging for the deep learning model with proposed parameter 

numbers and the sizes to generalize on the adversarial samples of these datasets. Hence, 

the thesis focuses on these datasets to provide robustness improvement. More complex 

datasets, such as ImageNet, have not been considered in this thesis, since they are beyond 

the scope of the thesis, and the hardware environment is also limited to supporting a larger 

model implementation. The other datasets may require deep learning models and GANs 

with different parameter numbers to perform a successful defense. Hence, extensive study 

is required to evaluate different datasets.   
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4.3.1 CIFAR 10 

The Canadian Institute for Advanced Research (CIFAR) 10 dataset is a dataset with 

32×32×3-dimension images with three RGB color channels. This dataset includes 60,000 

low-resolution colorful images with ten class labels (airplane, automobile, bird, cat, deer, 

dog, frog, horse, ship, and truck). CIFAR 10 is also embedded in the library of TensorFlow 

and is widely used to test the image classification of convolution neuron networks.  

The training data of CIFAR 10 is set at 50,000 individual images by default. This 

thesis implements two output constraint functions to train the CIFAR 10 classifier with 

GAN. In the L∞ constraint setting, the scalar is established as 16/255, and in the L2 

constraint setting, the scalar is 64/255. The reason for the larger L2 value is that the L2 

constraint adversarial perturbation is more easily affected by gradient masking [5], and it 

typically represents a different adversarial attack scenario. A smaller value may not be 

effective in attacking the classifier. For the same reason, the L∞ PGD attack is used for an 

overall comparison between the classifiers. The generator architecture used in L∞ constraint 

training is the residual generator architecture, since it is flexible in adjusting the parameter 

settings. The U-net architecture is used for L2 training after more data is collected. 

The other 10,000 individual images are used for testing and evaluation. The same 

attack algorithms, namely FGSM and PGD, are implemented for a robust evaluation. The 

classifiers trained with different constraint settings are tested with the corresponding 

constraint adversarial sample. The L∞ constraint adversarial sample uses 4/255, 8/255, and 

16/255 as perturbation norm sizes, and the L2 constraint adversarial sample uses 8/255, 

16/255, 32/255, 64/255, and 128/255 as norm sizes to construct an evaluation of adversarial 

samples. This thesis includes four groups of experiments to test the detailed formulations 
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of the GAN architecture. The experiments include a comparison of the input formulations, 

a generator width comparison, a training epochs comparison, an L2 robustness comparison, 

and an L∞ robustness transferability evaluation for the L2 constraint-trained classifier. The 

following delineates the details of these experiments and their purposes. 

• The input formulation comparison experiments evaluate the formulations of the 

generator proposed in Chapter 3. This experiment examines the impact of the 

generator formulation on the adversarial training results of the classifier. Four GAN 

models are built with the proposed methods for this experiment, and all the GAN 

models are trained with 100 epochs. 

• The generator width comparison involves conducting a parameter number 

evaluation and investigating whether the parameter number of the generator exerts 

a significant impact on the training results. Three GANs are built for this 

experiment, with width values of ×1, ×2, and ×3 and trained with 100 epochs.  

• The training epochs experiment involves employing the optimal GAN settings from 

previous experiments. The optimal GAN is trained with 100, 200, and 300 epochs 

for the robustness comparison. This experiment is used to identify any positive or 

negative effects with an increasing amount of training.  

• The classifier trained with L2 generators is then evaluated with the adversarial 

sample under the same constraint. Furthermore, this version of the classifier is also 

tested with an L∞ constraint adversarial sample to evaluate the transferability of 

different forms of constraint training.  
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The thesis also involves another convolution classifier with proposed architecture of 

Section 3.3 trained with no defenses and compares the robustness improvements in major 

experiments. This undefended model serves as a baseline model. 

4.3.2 MNIST  

The Modified National Institute of Standards and Technology database (MNIST) dataset 

is a well-known machine learning dataset that includes 70,000 small, hand-written digital 

images in grayscale. Each image vector within the dataset has 28×28×1 dimensions with 

one color channel. In the classification task, the classifier must classify the number within 

the image into 0 to 9 class labels. The dataset is easy to implement with the default inclusion 

of the TensorFlow database. Hence, it is an appropriate resource for evaluating the 

adversarial robustness of small convolution networks.  

The dataset is split into the training part and the testing part with a default setup; 

60,000 images are used for training, and 10,000 are used for testing. The training 

implementation for this dataset required a slight shift in the input dimensions of the 

generator and classifier. To make the input size consistent with the standard classifier, the 

28×28 image size is padded with zero to scale the image up to 32×32 in size; as a result, 

all the neuron network models of GAN can accept the input. The scalar Ɛ is set at 0.3 with 

the L∞ output constraint function, which limits the maximum perturbation for a pixel within 

[-0.3,0.3]. Furthermore, the MNIST dataset is a rather simple dataset to generalize on; 

hence, the training epochs for this data set are set at ten epochs. 

The attack algorithms used in the evaluation include the one-step gradient attack 

FGSM and the iterative gradient attack PGD. The GAN model only involves augmentation 

as a defensive strategy; therefore, no other method is required for these attack algorithms 
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to perform a successful attack, since the gradient is well-defined for all layers of the 

classifier model. The evaluation constraint of this dataset is mainly the L∞ constraint, since 

this dataset is primarily used for validating the functionality of the model, and the L∞ 

constraint typically reflects a more realistic robustness of the model. A more detailed 

evaluation of components is presented in the next case study. During the L∞ constraint 

evaluation, three norm sizes are considered for adversarial perturbation: 0.1 (25.5/255), 0.2 

(51/255), and 0.3 (76.5/255). These values define the maximum L∞ norm size for the 

evaluation of adversarial samples. All accuracies under these norm sizes are evaluated. In 

addition to the comparison, the same structured classifier without the GAN architecture is 

trained using the default training method with the SGD optimizer (0.001 learning rate). 

This undefended classifier is tested alongside with the GAN classifier to compare the 

robustness improvements. 

4.3.3 Data Preprocessing 

This section describes the data preprocessing process before the training of the proposed 

GAN model. The data preprocessing prior to training any image classifier involves a 

standardized normalization and randomization processes. This thesis focuses on the 

augmentation process’s contributions to the adversarial robustness of a classifier. Hence, 

the procedure uses a standardized dataset to perform the evaluation. As a result, no other 

significant feature selection and data analysis process is included in the implementation of 

the framework. The standardized normalization process for the image classification task 

converts the pixel value of the standard range [0,255] into a normalized range [0,1] using 

Equation (4.2): 

 𝑢 =  
𝑢′

255
 (4.2) 
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u' is the pre-normalized pixel value, and u is the normalized pixel value. The other 

preprocess includes standard augmentation techniques, such as random flips and shifts for 

each instance of the training data sample. These techniques can be used to reduce the 

overfitting effect of image classifier training [94]. 

4.4 Summary 

This chapter elucidates the details of the implementation of the GAN. The library and tools 

are described and presented. The other information includes the implementation of detailed 

architecture and parameters of the models, training methods, attack implementations, the 

case studies dataset used, and data preprocessing. Chapter 5 presents the evaluations for 

both case studies and discusses the results. 

 

5  
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Chapter 5. Evaluation Results 

This chapter discusses and presents all of the experiments and evaluations for all the model 

formulations. The subsections are organized based on the model types, and within each 

subsection, different sets of experiments and evaluations are conducted based on the 

purpose of the model. The results are plotted and analyzed to indicate the accuracy against 

different types of attacks. 

5.1 Evaluation Metrics 

The evaluation involves multiclass scenarios; hence, the accuracy metric is used for 

evaluating the accuracy of the classifiers. The formula of the accuracy metric is described 

as Equation (5.1): 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5.1) 

where the TP, TN, FP, and FN represent true positive, true negative, false positive, and 

false negative predictions, respectively. The accuracy metric is applied to all of the 

performance evaluations of our trained classifiers. In each experiment, the suggested GAN 

is trained with the proposed training methodology. Subsequently, the trained classifiers are 

attacked by the evaluation attack algorithms, and the accuracy metric is applied to calculate 

the accuracy of the model on the adversarial samples as well as on clean data. For the ease 

of description, the accuracy that represents the performance of the classification under 

adversarial attacks is defined as robust accuracy. The accuracy that represents the 

performance of classification with original data sample from the testing dataset is defined 

after clean accuracy. In subsequent sections, these two words are used to describe the 

performance of the classification for different scenarios. 
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In the experiments and evaluations, the primary methodologies to generate 

adversarial samples are the fast gradient sign method (FGSM) and projected gradient 

descent (PGD), introduced in Section 4.2.6. These attack algorithms are used as threat 

models to evaluate the robustness of the proposed model formulations. 

5.2 L∞ GAN 

This section introduces the L∞ GAN experiments and evaluations. First, the generator input 

formulations are evaluated. The optimal formulation is used to compare the effects of 

different parameter numbers. The generator with the best formulation and parameter 

settings is then used to train three classifiers with different epochs. The L2 constraint 

experiment is conducted based on the knowledge gleaned from the L∞ experiments with a 

more complex generator setting. To make each section easy to keep track of, the basic 

parameter settings to train the classifiers are listed within each section before the 

evaluation. 

5.2.1 Input Comparison 

This section presents an evaluation and comparison of the robust accuracy of the training 

results from different generator input formulations. The accuracies are obtained by testing 

the trained classifiers on the 10,000 testing data from CIFAR 10. The experiment includes 

four different groups of classifiers adversarially-trained with different generators. The 

performance of the classifiers reflects the effectiveness of the training and data 

augmentation yielded by different generator formulations. All attacks and generators are 

implemented in the L∞ setting. The followings are the parameter settings used for this 

experiment section. These settings are mentioned before in the Implementation chapter 

(Chapter 4) and this list is for reminder and ease of reading: 
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• GAN training parameters:  

o Generator input: x, x+z, sign(∇), x + sign(∇) 

o Generator width: ×1 

o Generator output constraint function: L∞ constraint with scalar Ɛ 16/255 

o Trained epochs: 100 

• Attack of evaluation: 

o Attack used: FGSM and PGD 

o Constraint: L∞ 

o Norm size: 4/255, 8/255, 16/266 

Figure 5.1 presents three groups of behaviors according to the accuracies of the 

classifier. The first group is the baseline model. The baseline model has an optimal 

accuracy when it classifies original samples. However, with the lowest adversarial 

perturbation size, the model’s accuracy decreases to around 10% against FGSM and 0% 

against PGD. With a greater perturbation size, the classification accuracies remain around 

the same value for the baseline model. This suggests that without any defense, the classifier 

cannot defend the smallest sizes of adversarial noises. Another observation regarding the 

baseline accuracies is that the FGSM accuracies remain 10% across all the perturbation 

sizes. This suggests that FGSM is limited in its optimization ability to find adversarial 

samples. 

The second group includes the classifier trained with I = x and I = concat(x,z) input 

formulations. These classifiers generally exhibit similar performance and display some 

adversarial robustness improvement compared to the baseline. The accuracies against the 

strongest PGD attacks are above 10% for this group of classifiers, and the accuracies 
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against smaller perturbation sizes exhibit more significant improvements. Another 

observation is that the PGD accuracies of this group of classifiers have close values 

compared to the FGSM accuracies. This result indicates that after training, the classifier 

gained a similar robustness against the one-step gradient attack FGSM and the multi-step 

gradient attack PGD. A deeper explanation of this is that the perturbation directions 

uncovered by both FGSM and PGD become similar. This indicates two scenarios, namely 

that the gradient landscape of the classifier becomes more simple or more complicated. The 

more probable explanation is that the landscape is simplified because the PGD and FGSM 

accuracies remain low, which suggests that the adversarial samples are indeed effective 

and that the GAN training promotes this type of gradient from the classifier. However, 

regardless of the context, the robust accuracies of these classifiers are not ideal in the 

comparison and remain vulnerable to the attacks. 

The third group, namely the classifiers adversarially trained with the generator of I 

= sign(∇) and I = concat(sign(∇),x), also exhibit a similar performance. The classifiers 

trained with these generators achieve the most robust accuracies with all attack settings. 

Compared to the previous group, the PGD accuracies remain significantly higher in most 

situations. However, the PGD accuracy starts to decay more rapidly when a 16/255 

perturbation size is introduced and only results in a slight improvement under this 

perturbation size. In this case, the classifier is more robust against a perturbation size below 

or equal to 8/255. Furthermore, the difference between the FGSM accuracies and PGD 

accuracies are larger, especially at the 16/255 perturbation size. The dramatic increase in 

difference indicates that the worse gradient direction of the classifier becomes more 

different when the perturbation is larger. Overall, the result indicates a close relationship 
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between the gradient information regarding the classifier and its adversarial sample. It 

suggests that the generator involving the signed gradient can provide an enhanced estimate 

of adversarial samples and that the classifier trained against them can have more robust 

accuracy. However, due to the difference between the FGSM and PGD accuracies, it 

suggests that with a sufficiently large perturbation size, the GANs of these formulations 

start to lose their effectiveness in augmenting the classifier against complex attacks. The 

reason for this might be that the estimation of the worst-case adversarial sample becomes 

excessively challenging for the generators under a large perturbation size. Hence, 

improvements are still required to allow the generator to provide a better estimation within 

a complex gradient landscape. 

 

Figure 5.1: Generator input formulations comparison results. 

The detailed comparison between the I = sign(∇ ) and I = concat(sign(∇ ),x) 

formulations indicates that the formulation of I = concat(sign(∇),x) maintains more robust 
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accuracies. However, the I = sign(∇) model has a lower trade-off in terms of clean 

accuracies (0/255), which is the performance on clean data samples. Overall, the I = sign(

∇) model involves a more simplified input formulation and high performance across all 

the metrics. This formulation is used for other subsequent experiments. Despite the 

improvement, the GAN formulation cannot achieve over 25% accuracy under 16/255 PGD 

attacks, indicating the potential for future improvements.  

5.2.2 Width Parameter Comparison 

The filter numbers for the convolution network models are important hyperparameters that 

can affect the performance, complexity, and capability of the model. This section presents 

the evaluation results regarding the number of filters within the generator model and 

discusses the effects of filter numbers on the augmentation performance. The following are 

the parameter settings used for this experiment section. The generator input formulation 

uses the optimal formulation found in Section 5.2.1. Other parameters are mentioned in the 

Implementation chapter (Chapter 4): 

• GAN training parameters:  

o Generator input: sign(∇) 

o Generator width: ×1, ×2, ×3 

o Generator output constraint function: L infinity constraint with scalar Ɛ 

16/255 

o Trained epochs: 100 

• Attack of evaluation: 

o Attack used: FGSM and PGD 
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o Constraint: L∞ 

o Norm size: 4/255, 8/255, 16/266 

 

Figure 5.2: Generator width comparison results. 

The filter number of the generator is controlled by a width parameter, which is 

defined in Chapter 4. Figure 5.2 also presents the width parameters following the “×” 

marks. The experiment includes three width settings, with ×1, ×2, and ×3 filters for each 

layer. The result indicates that the ×1 width-generator-trained classifier has the lowest 

robust accuracy in relation to 4/255, 8/255, and 16/255 PGD adversarial perturbation, and 

the ×2 and ×3 width values have similar robustness levels. The ×3-width-value-trained 

classifier has a lower clean accuracy. Overall, the ×2-width residual generator has the best 

training result in this comparison. It can be concluded that more parameters are not 

invariably beneficial in obtaining an overall accurate classifier. The generator with more 

parameters may have an increased capability of adversarial sample generation; however, 
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the generated sample distribution may also affect the classifier generalization on clean 

samples. In this case, the classifier’s robustness undergoes a slight improvement after it is 

trained with the ×3 width GAN compared to the ×2 width; however, it overfits more into 

the generated sample distribution, since the clean accuracy undergoes a significant 

downgrade. This clean accuracy and robustness tradeoff is still present in the ×1-width 

GAN classifier; however, it is less significant. The experiment suggests that an adjustment 

of parameter numbers can be useful to control this tradeoff.  

5.2.3 Training Epoch Comparison 

The training epoch number is an important hyperparameter for classifier training. The 

classifier may underfit or overfit depending on the training epochs of the model. This 

section presents the results regarding three classifiers trained with the proposed GAN to 

compare the effects of training epochs. The training epochs for these three classifiers are 

100, 200, and 300 epochs. This experiment uses the best parameters found thus far from 

the previous experiment, which includes the I = sign(∇) generator formulation, and “×2” 

width. Other parameters are mentioned in the Implementation chapter (Chapter 4). The 

following are the parameter settings used for this experiment section: 

• GAN training parameters:  

o Generator input: sign(∇) 

o Generator width: ×2 

o Generator output constraint function: L infinity constraint with scalar Ɛ 

16/255 

o Trained epochs: 100, 200, 300 
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• Attack of evaluation: 

o Attack used: FGSM and PGD 

o Constraint: L∞ 

o Norm size: 4/255, 8/255, 16/255 

 

Figure 5.3: GAN training epochs comparison results. 

Figure 5.3 presents the results of the comparison. Because of the FGSM’s weaker 

attack property, the robustness accuracies against FGSM are higher than against PGD 

across all perturbation norms. The FGSM accuracies of the classifier indicate a slight 

robustness improvement with increasing training epochs. This robustness improvement 

against FGSM indicates that the increasing training epoch improves the generalization of 

the classifier on the one-step gradient perturbation. However, the PGD accuracies of the 

classifier start to decline as the epochs increase. This reveals an opposite effect compared 

to FGSM accuracies. The results suggest that GAN did not enhance the generalization of 
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PGD samples when the training epochs comprised more than 100 epochs. The classifier 

indicates a sign of overfitting that starts fitting on FGSM adversarial samples over the PGD 

samples. The reason for this may also relate to the overfit of the generator, where the 

generator starts to produce overfitted samples after a certain epoch of training. This can 

also explain the reason for the increase in the FGSM accuracies, which is because the 

generator overfits more into the simple gradient vector and produces adversarial samples 

similar to FGSM samples. The classifier generalizes on these flawed adversarial samples 

to increase only the FGSM robustness. This also suggests that the classifier’s gradient 

landscape might become increasingly more challenging to estimate. 

5.2.4 Low-Dimension Image Evaluation (MNIST) 

This section presents the results of the evaluation of the MNIST test dataset. This 

experiment aims to validate the implementation of the L∞ GAN with a low-dimensional 

dataset. The following are the parameter settings used for this experiment section. The 

generator width for this experiment is reduced back to “×1” and the training epoch value 

is set to be 10 since the data dimension is lower and more parameters and more training is 

not necessary to obtain an accurate result. Other parameters are the optimal parameter 

found from previous sections or mentioned in the Implementation chapter (Chapter 4): 

• GAN training parameters:  

o Generator input: sign(∇) 

o Generator width: ×1 

o Generator output constraint function: L∞ constraint with scalar Ɛ 0.3 

o Trained epochs: 10 

• Attack of evaluation: 
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o Attack used: FGSM and PGD 

o Constraint: L∞ 

o Norm size: 0.1 (25.5/255), 0.2 (51/255), 0.3 (76.5/255) 

 

Figure 5.4: MNIST experiment results. 

One classifier model is trained with the proposed GAN model, and one baseline 

model with identical parameters is trained without any defenses. The accuracies under 

different attack norms are reported under the L∞ norm constraint. The MNIST dataset is a 

simple dataset that, with previously developed defensive adversarial training, can achieve 

high robustness results against L∞ iterative gradient attacks. However, the proposed GAN 
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convolution models and can achieve a more consistent performance compared to CIFAR 

10 results. It also suggests that reduced dimensions can lower the difficulty of the 

generalization of the classifier and provide it with a much more reliable robustness increase 

against the attack algorithms. However, the model can be challenging to implement for a 

higher-dimension dataset in the future. Figure 5.4 presents the results. The x-axis is 

represented in two value formats. The previous research [3], [16] commonly uses 0.1, 0.2, 

and 0.3 as standard metrics for this dataset. Hence, the two value formats can provide 

consistency with previous studies and the standard format used in this thesis. 

5.3 L2 GAN 

This section presents the L2 GAN experiments and evaluations. The purpose of the L2 GAN 

implementation and experiments is to evaluate whether GAN can be more effective in 

augmenting L2 robustness compared to conventional adversarial training and whether L2 

GAN can also provide the robustness in the L∞ constraint, which refers to the transferability 

of the robustness. To make each section easy to keep track of, the basic parameter settings 

to train the classifiers are listed within each section before the evaluation. 

5.3.1 L2 Robustness 

This section presents the training results of the L2 constraint generator augmentation. The 

generators used in this experiment are implemented using the L2 output constraint function. 

This experiment aims to demonstrate the training effect with the proposed L2 adversarial 

sample augmentation on adversarial robustness against L2 gradient attacks. This section 

also compares the proposed GAN training method with the traditional PGD adversarial 

training method with the L2 constraint. The following are the parameter settings used for 

this experiment section. The generator input formulation uses the optimal formulation 
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found in Section 5.2.1. Other parameters are mentioned in the Implementation chapter 

(Chapter 4): 

• GAN training parameters:  

o Generator input: sign(∇) 

o Generator width: N/A 

o Generator output constraint function: L2 constraint with scalar Ɛ 64/255 

o Trained epochs: 100 

• Attack of evaluation: 

o Attack used: PGD 

o Constraint: L2 

o Norm size: 16/255, 32/255, 64/255, 128/255 

When the PGD adversarial attack is applied to the L2 norm constraint, the algorithm 

may face the issue of gradient masking, wherein the gradient descent can only find the local 

optimal perturbation vector. This phenomenon may also affect its effectiveness in 

adversarial training. The proposed GAN applies a fixed norm size perturbation vector in 

the L2 norm space, and this solution can leverage the gradient masking issue and can enable 

better data augmentation compared to a traditional gradient descent. The U-net architecture 

can also be helpful with its long-range skip connection for easier gradient backpropagation. 

Figure 5.5 presents the results of the comparison. The classifier trained with L2 PGD 

adversarial training is named after PGD L2 AT. The GAN-trained classifier performs 

significantly better than other classifiers. The L2 robustness accuracies remain above 60% 

across all attack norm sizes with PGD L2 attacks. The parallel comparison between the 

GAN-trained classifier and PGD L2 AT suggests that GAN can be more effective in this 
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constraint. However, the clean accuracy at the 0/255 norm size is significantly lower than 

the baseline, indicating that the classifier cannot provide a high-quality generalization on 

both normal and L2 adversarial samples at the same time. This clean accuracy and 

robustness tradeoff is consistent with the L∞ results. 

In addition, the L2 PGD attack is not effective itself to generate L2 constrained 

adversarial samples. Hence this comparison cannot fully conclude the L2 robustness of 

these models. The results of this experiment mostly demonstrate the comparison between 

the GAN L2 model and the conventional adversarial training model and suggest that the 

GAN L2 model can be more advantageous to trained under L2 constraint. 

 

Figure 5.5: Training results under L2 constraint against L2 PGD attack. 
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classifier trained with GAN under the L2 setting. The following are the parameter settings 

used for this experiment section. The generator input formulation uses the optimal 

formulation found in Section 5.2.1. Other parameters are mentioned in the Implementation 

chapter (Chapter 4): 

• GAN training parameters:  

o Generator input: sign(∇) 

o Generator width: N/A 

o Generator output constraint function: L2 constraint with scalar Ɛ 64/255 

o Trained epochs: 100 

• Attack of evaluation: 

o Attack used: FGSM and PGD 

o Constraint: L∞ 

o Norm size: 4/255, 8/255, 16/266 

Under normal circumstances, the classifier trained with a constraint or attack type of 

adversarial training results in limited robustness against different constraints or attack 

types. However, the proposed L2 and L∞ GAN models’ most architectural designs and 

methodologies are consistent with each other. This experiment can demonstrate the 

transferability of the robustness between the L2 and L∞ GAN augmentation.  

Figure 5.6 presents the comparison results regarding three classifiers against 

different norm sizes of L∞ PGD attacks. Two of the classifiers are trained with GAN 

architecture and selected from the highest-performing parameters. With the comparison, 

the L∞ GAN and L2 GAN-trained classifiers exhibit a similar performance against the L∞ 
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PGD attack. The results indicate that there is some transferability within the robustness 

between the different constraints. Under some perturbation sizes, the L2 GAN classifier 

appears to exhibit better robustness against the L∞ PGD attack; however, the scalar used 

during the training for L2 GAN is 64/255, which is substantially larger than L∞ GAN’s 

16/255. It suggests equilibrium between these value constraints.  

 

Figure 5.6: L∞ robustness comparison between different constraint training results. 

5.4 Summary of Results 

This section provides the combined results across the models in terms of the L∞ PGD 

attacks’ accuracies. Figure 5.7 presents a parallel comparison over the maximum 
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issues [5]. The PGD L∞ can demonstrate a more valid conclusion about the adversarial 

robustness of gradient attacks.  
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Figure 5.7: Comparison of the accuracies between all formulations. 
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robustness. The constraint of augmentation can be flexible in providing overall robustness 

against gradient attacks, but the norm size needs to be considered along with the constraint. 

5.5 Visualization 

This section provides an additional interpretation of the adversarial samples from the 

generator of the GAN. The following are the parameter settings of the selected model used 

for this interpretation: 

• GAN training parameters:  

o Generator input: sign(∇) 

o Generator width: ×2 

o Generator output constraint function: L∞ constraint with scalar Ɛ 16/255 

o Trained epochs: 300 

This model is not the best-performing model regarding the training epochs. However, more 

training epochs make the comparison between classifier outputs more obvious; hence, this 

model has been selected for this section. 

Figure 5.8 presents one of the testing samples and its adversarial perturbation, as well 

as its classifier outputs. Image z) is an example image from the dataset. The images a), b), 

c), and d) represent different perturbation vectors that are used to perturb the image. These 

perturbation vectors are generated by using different corresponding algorithms and by 

being normalized so that all of the perturbation vectors have a mean of zero and a standard 

distribution of one. The e), f), g), and h) are the classifier pre-SoftMax outputs regarding 

the different levels of perturbation. The x-axes of the e), f), g), and h) plots indicate the 

norm size of the perturbation. During the visualization, the value of the x-axis of the plots 
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is multiplied with the a), b), c), and d) vectors and added to the image z). The additional 

results are fed into the classifier to generate the plots e), f), g), and h), accordingly. The 

formula used for producing the perturbed images is given as Equation (5.2): 

 𝐼′ = 𝐼 +  𝜖 𝑉 (5.2) 

where I’ is the result of addition, and ϵ is the value from the plots’ x-axes, and the V is the 

selected perturbation vector.  

 

Figure 5.8: Extra visualization. 
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From the plots in Figure 5.8, it is obvious that the classifier exhibits more robust 

behavior when the image z) is perturbed by vector a). The shape of the correct class 

activation of the pre-SoftMax layer has a sufficiently wide margin until the wrong class 

activation surpasses it. However, if the image z) is perturbed by vectors b), c), and d), the 

shape of the activation of the correct class becomes steeper towards the positive side. The 

points where an erroneous class activation becomes larger than the correct class are labeled 

with different color lines; the orange line labels the middle where no vector is added; the 

blue line represents the point of surpassing caused by the FGSM vector; and the yellow 

line represents the point of surpassing caused by the PGD vector. From the observation, 

the point of surpassing caused by the generator-produced vector is between the points of 

the FGSM and PGD. This suggests that the generator captured the adversarial perturbation 

direction successfully; however, the captured direction is not as effective as the PGD 

algorithm. 

5.6 Discussion 

This thesis demonstrates a defensive training strategy against the gradient-based 

adversarial attack based on the GAN architecture. The experimental results indicate that 

the proposed GAN can improve the adversarial robustness of a convolution classifier; 

however, the robustness improvement is related to the GAN’s input selection, parameter 

numbers, and the training epochs. The results suggest that the gradient information of the 

classifier is the most important feature for the generator to estimate the classifier’s worst-

case loss. The generator without this gradient information has a diminished ability to 

provide valid augmentation for the classifier, which results in lower adversarial robustness 

after the training. The width parameter also has a slight impact on the final results. A more 
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complex generator is not always better to train a robust and accurate model. Finally, the 

training epochs can also affect the model’s performance after training. It is possible to over-

train the model, causing the GAN to overfit on specific data distributions and resulting in 

lower adversarial robustness against iterative gradient-based attacks. 

The L2 constraint experiments demonstrate the effectiveness of the GAN in 

estimating and improving the L2 constraint’s adversarial robustness. The GAN-trained 

classifier shows a larger improvement in the L2 constraint robustness against gradient 

attacks compared to conventional adversarial training. This suggests that the proposed 

GAN can mitigate the gradient masking problem of the L2 gradient-based adversarial 

training. The other finding is that the classifiers trained with the L∞ and L2 constraint shared 

a similar robustness against L∞ PGD attacks. This finding indicates that there is some 

transferability of robustness across the constraint types. 

The limitation remains for the generalization capabilities of the proposed GAN 

model. In all experiments, the robustness classifiers have their clean accuracies decrease 

around 10% to 15%. The results indicate a clean accuracy and robustness tradeoff within 

all GAN-trained classifiers. The tradeoff suggests that these classifiers overfit into the 

generated samples from the generator and it is challenging for the classifier to generalize 

on both generated and clean sample distributions. By controlling the parameter numbers of 

the generator can reduce this overfit but the tradeoff cannot be completely mitigated.  

Furthermore, the generator can also overfits to produce not precise outputs with more 

training epochs. This generator overfitting effect leads to reduction in the augmentation 

performance and results in the robustness decline of the classifier with increasing training 

iterations. The other challenges are related to the implementation of the GAN architecture 
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that the current GAN cannot provide augmentation under L0 and L1 constraints. New 

constraint functions are required to realize the functionalities.  

Ultimately, the visualization presents the additional information about the generator-

generated adversarial sample. It suggests that the adversarial noises captured by the 

generator are indeed different than the ones produced using gradient-based algorithms. 

There is still a limitation of GAN in terms of finding the worst adversarial sample of the 

classifier. However, in the MNIST experiment, this limitation is not significant when the 

classifier remains accurate across different attack norms. Hence, the data dimension 

matters in the GAN optimization. The current implementation of GAN is more favorable 

to train a low-dimension convolution classifier. 

5.7 Threats to Validity  

The threat to validity includes internal and external validity threats that could challenge the 

implementation of the GAN models. The internal validity threats include the internal 

factors that have to be considered during the implementation and evaluation. The external 

validity threat includes the outside factors when the GAN model is applied to other datasets 

or real-life scenarios. The following identify the internal validity threats that affect the 

implementation and evaluation of the thesis: 

• The parameter settings for the GAN model can depend upon the classifier 

architecture types and the parameters. The classifier used in this thesis is a VGG-

like convolution network, which can only represent the general performance of 

convolution neural networks. The other architecture, such as the transformer 

models [97], can define a different gradient backpropagation and result in different 

robustness improvements. Some of the architecture may have some compatibility 
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issues with the current implementations, which is one of the limitations of the 

research. However, the proposed model is flexibly modified, and it can be 

implemented with different network architectures, but more experiments should be 

conducted to identify the optimal hyperparameters. 

• The robustness improvement of the model depends upon the random initialization 

of the parameters of the models. The current model parameter initialization uses the 

traditional random initialization method. The random initialization of the 

parameters can result in accuracy variance during the evaluation. To address this, 

multiple models have been trained within one experiment, and the best one is used 

for the evaluation; hence, the real results can reflect the upper-bound performance 

of the GAN training. 

• The PGD attack used in the evaluation represents a multi-iteration gradient attack. 

The iteration number of the PGD used in most of the evaluations is 100 to ensure a 

balance between an effective evaluation and the computation time. However, these 

attacks could be used with more iterations, which could result in lower accuracies. 

Hence, a PGD 1000 iteration attack is implemented and attacks on the best-

performing model with the following parameter settings: 

o Input: sign(∇) 

o Width: 2 

o Output constraint: L∞with scalar Ɛ 16/255 

Table 5.1 presents this additional evaluation. The result suggests that the 

performance of the model did not differ much between the 100 and 1000 iterations. 
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It suggests that PGD 100 is valid; however, there can be a slight difference in 

performance when using different iteration values. 

Table 5.1: PGD 1000 validation. 

L∞ norm 

size 

4/255 8/255 16/255 

Accuracy 

PGD 100 

57.41% 45.6% 23.71% 

Accuracy 

PGD 1000 

57.33% 45.28% 23.31% 

 

The following discusses the external validity of the study, which may affect the GAN 

implementation in different scenarios: 

• The dataset can be a factor that affects the model’s performance. This thesis mostly 

uses a 32×32×3 dimensionality of the image in the RGB color channel to perform 

the evaluation; however, more dimensionalities can affect the training results 

regarding the generalization and the robustness of the classifier.  

• The attack type used focused by this thesis is the gradient-based algorithm using 

gradient descent to perform the attack. The other attack algorithms using different 

optimizers, such as genetic algorithms, can result in different robustness results. 

• The vulnerability of the machine learning model can also include the data poisoning 

attack and other attack types. These attacks are not evaluated by this paper. There 

are other cases in which the classifier can also provide poor generalization, such as 

a natural distributional shift of the data. These distributional shifts may need to be 

addressed in future research. 



87 

 

5.8 Summary 

The chapter has summarized the results from the evaluation of all classifiers. The two 

datasets are used and evaluated with two gradient-based attack algorithms on the GAN-

trained classifiers. The evaluation results report the training effectiveness of GAN with 

different considerations of input formulations, width, training epochs, and constraint types. 

The experiments demonstrate how GAN can improve the adversarial robustness of the 

models and the limitations. 

6   
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Chapter 6. Conclusion and Future Work 

6.1 Conclusion 

This thesis presents a method that uses GAN formulation to improve the adversarial 

robustness of deep learning convolution classifiers. The model uses a generative model and 

adversarial training techniques to generate an adversarial sample and to perform data 

augmentation on the generated adversarial sample. The classifier adversarially-trained with 

the generative model can improve the adversarial robustness against a gradient-based 

adversarial attack, such as FGSM and PGD attacks. The GAN represents a possible 

defensive strategy against such attacks. 

In this thesis, several studies are presented to compare the effectiveness of different 

components and settings of the proposed GAN. The results indicate that the improvement 

of the adversarial robustness is related to the assumption of the generator formulation. The 

formulation includes more gradient information from the classifier, which can result in a 

better training result. The GAN model can provide over 20% robust accuracy improvement 

with the strongest attack implemented, with a 10% clean accuracy tradeoff. Furthermore, 

the GAN model can resist the gradient-based attack for small-image classifiers, such as the 

MNIST classifier. It suggests that with a lower-dimensional dataset, such as grayscale 

images, GAN can be useful to defend against adversarial attacks. 

The primary limitation of the GAN adversarial training is the upper limit of the 

generalization. The generalization refers to both the generator generalization and the 

classifier generalization. According to the experimental results, the classifier model has a 

significant trade-off between the robustness and clean accuracy, and it indicates the 

difficulty for the classifier to generalize on both adversarial data distribution and clean data 
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distribution at the same time. The generator generalization is limited by its capability to 

discover adversarial samples. Compared to the PGD algorithm, the generator-generated 

adversarial samples are significantly different in visualization and are less effective than 

PGD adversarial samples. This represents another tradeoff between the algorithm 

complexity and the attack effectiveness. Another limitation is that the current formulations 

cannot be applied to L0 and L1 constraints since the generator cannot generate adversarial 

sample with these constraints. New constraint functions must be implemented to realize 

the augmentation. 

This thesis proposed a GAN architecture to realize low-complexity adversarial 

training for defending adversarial samples from gradient-based attacks. The significance 

of the works includes the proposal of the different formulations and implementations of 

GAN to address the problems of adversarial samples from L∞ and L2 constraint gradient-

based attacks and suggesting optimal formulation of GAN on defending these attacks. A 

further evaluation also reveals the relationship between the training epoch and the 

performance of the model and demonstrates the transferability of the robustness between 

constraints. Additional visualization is also provided to illustrate the differences between 

algorithms generated adversarial samples and the GAN’s estimations. The thesis provides 

an extension solution of adversarial training and introduced GAN to this domain of 

application. Compared to other GAN solutions, the proposed architecture is implemented 

with more advanced formulations and under variety constraints, which as a result, provides 

more insight into the optimal GAN for adversarial training. 
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6.2 Future Work 

This section discusses the possible future direction of the GAN, adversarial training and 

the solutions to data distributional shift problems. An extension of the dataset can be 

helpful for improving the generalization of the classifier. More aggressive data 

augmentation methods can be utilized to overcome the overfitting effect. Transfer learning 

can also be considered to perform the training on more data samples or more advanced 

datasets such as the ImageNet dataset. With a more advanced dataset, the classifier’s 

performance can be improved compared to the current results. 

More advanced model architecture can be considered, such as the Vision 

Transformer model [97]. The Transformer model can be used as a more advanced 

classifier. The Transformer model can also provide additional benefits with attention-based 

weights, which can provide more interpretation about the generalization. 

A new cost function can be improved to make the equilibrium point of GAN easier 

to achieve. This thesis uses KL divergence, which has been found to have issues with 

gradient saturation. Recently, more advanced divergence functions have been proposed for 

better GAN performance. These functions can be adapted to fit the training goal of the 

proposed model. 

Another limitation of the research is the limited evaluation of datasets type within 

this thesis. The image dataset only represents one of the possible scenarios of the deep 

learning application. The other data types, such as sequence data and text data, have their 

own deep learning model implementation and design. The adversarial attacks that target 

other types of deep learning models can be different in their optimization methodologies 

and operate under different constraints. More specifically, the L2 and L∞ are primarily 
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designed to target image data. The thesis can only provide an overview of convolution 

architectures with the data type that is attackable within L2 and L∞ constraints. The 

proposed GAN defense needs to be adapted to other constraints and model design to be 

able to provide effective defense for other applications. 

Extensive research is also needed to evaluate the performance of other datasets with 

different dimensionalities. The proposed GAN only evaluated against the adversarial 

sample with 32×32×3 and 28×28×1 dimensions; however, there are more datasets available 

with higher dimensions. The study can be used to determine the relationship between the 

robustness performance and the dimensionalities of the data sample.  

Mover over, the proposed defense only provides the evaluation of robustness against 

two gradient-based attack algorithms, FGSM and PGD. The other attacks include different 

methodologies for optimizing and generating adversarial samples. These other 

optimization strategies can result in different distributions within the generated adversarial 

samples, and the proposed defense may have different performance against adversarial 

samples with different optimization. Hence more research is required to evaluate the 

defense against other attack algorithms. 

Furthermore, the generalization of distribution-shifted data has been a common issue 

in relation to deep learning models. Interpretation can be pivotal to find the reason for these 

generalization failures. A new interpretable deep learning model architecture can be used 

to provide more useful information regarding the model’s decision-making. One of the 

suggested architectures is a self-interpretable model that defines both learning goals for 

classification and interpretation. Such a model can be used in data distributional shift 
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research to provide a feedback loop regarding model design. The proposed model has the 

following layer formulation as Equation (6.1): 

 𝑂𝑡 = 𝑥 × 𝑓𝑡(𝑥, 𝜃) (6.1) 

This layer formulation includes the layer input sample x and the layer network ft. The 

θ represents the layer-trainable parameters. The benefit of this formulation is that the layer 

ft needs to output a vector that is multiplied with the input x. The multiplication promotes 

the output of ft aligning with the input x. The x and output vector of ft can represent a set of 

dynamic weights that promotes the most important features within the sample x. Appendix 

B: Example Feature Maps of Proposed Interpretable Model presents the feature map 

examples of the interpretable model. Within these feature maps, more obvious features are 

presented that can provide a deeper explanation of the model’s decision making. The model 

can be used to improve the research regarding the adversarial sample. 
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Appendix A: Training Algorithms 

Pseudocode for proposed GAN training with input Equation (3.4) from the 

Implementation chapter. 

Input: Dataset images xi, dataset labels yi, max number of epochs E, batch size B, total 

number of sample V, generator network G1 and G2, generator learning rate Rg, 

generator scalar Ɛ, classifier network D, classifier leaning rate Rd, classifier loss 

function Fd  

for N = 1,2,3…E do 

 for M= 1,2,3…⸢V/B⸣ do 

  Generating adversarial sample xi’1 from Ɛ G1 (xi)+xi 

  Generating adversarial sample xi’2 from Ɛ G2 (xi)+xi 

  Getting classifier output Oi1, Oi2, Oi3 from D(xi’1), D(x i’2), D(x) 

  Calculating loss LD from Fd(Oi1,yi), Fd(Oi2,yi), Fd(Oi3,yi) 

  Updating D using Adam (Rd, LD) 

  Generating adversarial sample xi’1’ from Ɛ G1 (xi)+xi 

  Generating adversarial sample xi’2’ from Ɛ G2 (xi)+xi 

  Getting classifier output Oi1’, Oi2’ from D(xi’1’), D(xi’2’) 

  Calculating loss Lg1 and Lg2 from Fd (Oi1’,yi), Fd (Oi2’,yi) 

  Updating G1 using Adam (Rg, -Lg1)  

  Updating G2 using Adam (Rg, -Lg2) 

 

Pseudocode for proposed GAN training with input Equation (3.5) from the 

Implementation chapter. 

Input: Dataset images xi, dataset labels yi, max number of epochs E, batch size B, total 

number of sample V, generator network G1 and G2, generator learning rate Rg, 

generator scalar Ɛ, classifier network D, classifier leaning rate Rd, classifier loss 

function Fd  

for N = 1,2,3…E do 

 for M= 1,2,3…⸢V/B⸣ do 

  Generating latent vector ui from random gaussian distribution 

  Generating adversarial sample xi’1 from Ɛ G1 (xi, ui)+xi 
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  Generating adversarial sample xi’2 from Ɛ G2 (xi, ui)+xi 

  Getting classifier output Oi1, Oi2, Oi3 from D(xi’1), D(x i’2), D(x) 

  Calculating loss LD from Fd(Oi1,yi), Fd(Oi2,yi), Fd(Oi3,yi) 

  Updating D using Adam (Rd, LD) 

  Generating latent vector ui’ from random gaussian distribution 

  Generating adversarial sample xi’1’ from Ɛ G1 (xi, ui’)+xi 

  Generating adversarial sample xi’2’ from Ɛ G2 (xi, ui’)+xi 

  Getting classifier output Oi1’, Oi2’ from D(xi’1’), D(xi’2’) 

  Calculating loss Lg1 and Lg2 from Fd (Oi1’,yi), Fd (Oi2’,yi) 

  Updating G1 using Adam (Rg, -Lg1)  

  Updating G2 using Adam (Rg, -Lg2) 

 

Pseudocode for proposed GAN training with input Equation (3.6) from the 

Implementation chapter. 

Input: Dataset images xi, dataset labels yi, max number of epochs E, batch size B, total 

number of sample V, generator network G1 and G2, generator learning rate Rg, 

generator scalar Ɛ, classifier network D, classifier leaning rate Rd, classifier loss 

function Fd  

for N = 1,2,3…E do 

 for M= 1,2,3…⸢V/B⸣ do 

  Calculating sign(∇) from D using gradient descent 

  Generating adversarial sample xi’1 from Ɛ G1 (sign(∇))+xi 

  Generating adversarial sample xi’2 from Ɛ G2 (sign(∇))+xi 

  Getting classifier output Oi1, Oi2, Oi3 from D(xi’1), D(x i’2), D(x) 

  Calculating loss LD from Fd(Oi1,yi), Fd(Oi2,yi), Fd(Oi3,yi) 

  Updating D using Adam (Rd, LD) 

  Calculating sign(∇) from D using gradient descent 

  Generating adversarial sample xi’1’ from Ɛ G1 (sign(∇))+xi 

  Generating adversarial sample xi’2’ from Ɛ G2 (sign(∇))+xi 
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  Getting classifier output Oi1’, Oi2’ from D(xi’1’), D(xi’2’) 

  Calculating loss Lg1 and Lg2 from Fd (Oi1’,yi), Fd (Oi2’,yi) 

  Updating G1 using Adam (Rg, -Lg1)  

  Updating G2 using Adam (Rg, -Lg2) 

 

Pseudocode for proposed GAN training with input Equation (3.7) from the 

Implementation chapter. 

Input: Dataset images xi, dataset labels yi, max number of epochs E, batch size B, total 

number of sample V, generator network G1 and G2, generator learning rate Rg, 

generator scalar Ɛ, classifier network D, classifier leaning rate Rd, classifier loss 

function Fd  

for N = 1,2,3…E do 

 for M= 1,2,3…⸢V/B⸣ do 

  Calculating sign(∇) from D using gradient descent 

  Generating adversarial sample xi’1 from Ɛ G1 (xi, sign(∇))+xi 

  Generating adversarial sample xi’2 from Ɛ G2 (xi, sign(∇))+xi 

  Getting classifier output Oi1, Oi2, Oi3 from D(xi’1), D(x i’2), D(x) 

  Calculating loss LD from Fd(Oi1,yi), Fd(Oi2,yi), Fd(Oi3,yi) 

  Updating D using Adam (Rd, LD) 

  Calculating sign(∇) from D using gradient descent 

  Generating adversarial sample xi’1’ from Ɛ G1 (xi, sign(∇))+xi 

  Generating adversarial sample xi’2’ from Ɛ G2 (xi, sign(∇))+xi 

  Getting classifier output Oi1’, Oi2’ from D(xi’1’), D(xi’2’) 

  Calculating loss Lg1 and Lg2 from Fd (Oi1’,yi), Fd (Oi2’,yi) 

  Updating G1 using Adam (Rg, -Lg1)  

  Updating G2 using Adam (Rg, -Lg2) 
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Appendix B: Example Feature Maps of Proposed Interpretable Model 

Figure B.1 and Figure B.2 show the feature maps learned by the interpretable model 

suggested in Section 6.2. These feature maps represent the important features and patterns 

learned by the proposed interpretable model before used in the task of classification. The 

feature maps’ colors and the patterns of each class show some consistency and may 

represent deeper meaning within these image samples. 
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Figure B.1: Example feature maps. 
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Figure B.2: Example feature maps 2. 
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