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Abstract

Continuous integration (CI) systems use automated tests to verify software builds and opti-

mize the testing process through test case prioritization (TCP). Recent research studies on

TCP in CI environments have employed machine learning (ML) techniques to address the

dynamic nature of CI. However, the performance of ML for TCP may decrease because

of the low volume of data or less failure rate, whereas using existing data with similar pat-

terns from other domains can be valuable. Therefore, this thesis investigates the potential of

transfer learning (TL) algorithms to improve test case failure prediction and prioritization

in CI environments.

We conduct a comparative analysis of traditional TL algorithms to improve test failure

prediction of large-scale industrial projects. Our experimental results show that parameter-

based TL is most effective, and its usefulness is further emphasized by the scarcity of pub-

licly available large-scale CI datasets due to data privacy regulations. We also present a new

technique called TCP TB that prioritizes test cases using the prediction probability of test

failures generated by a parameter-based transfer learning algorithm called TransBoost. We

compare TCP TB’s performance with different ML approaches and CI-RTP/S on 24 study

subjects and demonstrate that TCP TB outperforms them, improving TCP performance in

82.61% of the cases.
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Chapter 1

INTRODUCTION

Testing is an essential aspect of software development that can have a significant impact on

the overall cost of the project. The Continuous Integration (CI) approach is used in software

development to automate the compilation, building, and testing phases of a project. The

main objective of this approach is to reduce integration issues and development time [1],

[2]. In CI, developers frequently integrate their code changes with the mainline codebase,

which triggers a CI cycle. After each cycle is compiled, developers receive feedback on

their code [2]. The duration of each cycle depends on the number of tests required, which

can vary based on the size of the codebase. A high volume of tests requires significant

computational resources and time to execute, which can delay the CI process and prolong

the developer feedback time. For example, Microsoft documented a delay of three days for

executing 65K tests [3], and Google handles 800K builds and 150 million test suites daily,

with developers experiencing wait times of 45 minutes to 9 hours for results [4].

To address the issue of long test execution times and enhance testing efficiency in CI,

researchers have developed test optimization methods (e.g.,Test Case Prioritization (TCP)

and Test Case Selection (TCS)) [5], [6]. TCP involves reordering test cases based on their
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failure probability within a test suite instead of deleting any test cases [5]. On the con-

trary, TCS selects a test case subset which has a higher probability of failure [5]. Test

failure prediction is a preliminary step for both TCP and TCS methods. Test optimiza-

tion methods can be broadly categorized into heuristic-based and Machine Learning (ML)-

based approaches [7]. Heuristic-based techniques typically operate on a single feature,

whereas ML-based techniques use multiple features extracted from various resources, al-

lowing them to adapt to new changes through techniques such as retraining or incremental

learning.

To effectively address the dynamic and complex nature of CI systems, TCP techniques

have utilized various ML techniques that rely on different data sources such as CI test exe-

cution history, version control system (VCS) metadata, and code coverage information [8]–

[10]. However, collecting test coverage and dependency information through white-box

program analysis is often too time-consuming and costly, particularly for large-scale code-

bases with rapid CI testing. In addition, gathering test dependencies from different pro-

gramming languages of multi-language software can be infeasible [11]. In contrast, VCS

and CI metadata are automatically generated during each CI cycle, making them easily ac-

cessible and cost-effective [9]. Moreover these information are not software specific (e.g.,

type or language). For these reasons, TCP approaches that use CI and VCS metadata are

more preferable.

Traditional ML algorithms typically require a large volume of data to learn accurate

models and generalize to new, unseen data. However, when it comes to the TCP, tradi-

tional ML algorithms may face certain challenges. In industrial projects, test suites undergo

thorough testing, which reduces the number of failures, making it challenging to generate

enough positive samples for model training. As a result, there is often an imbalance in
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the data, where the number of positive samples is relatively small compared to negative

samples. Traditional ML algorithms can struggle with imbalanced data since they tend to

prioritize accuracy on the majority class, resulting in poor performance on the minority

class. In the case of TCP, this means that the model may not effectively identify test cases

with a high probability of failure, leading to ineffective prioritization. On the other hand, in

new projects, there is often a lack of historical data, which is necessary for the TCP model

to learn. The absence of sufficient data affects the model’s ability to learn the underlying

patterns in the data, leading to poor performance. Additionally, the model may be unable

to generalize to new, unseen data, as it may have learned to prioritize only a specific subset

of test cases based on the limited training data.

To overcome the challenges of imbalanced data in the test case prioritization task, re-

searchers have proposed various solutions, including data balancing techniques [12] that

balance the data and generate additional positive samples. Data balancing involves creating

synthetic data by modifying existing samples, such as by perturbing the input features, in-

troducing noise or randomization, and creating new test cases by combining existing ones.

However, data balancing techniques may not always be effective, and the quality of the

synthetic data may not accurately reflect the original data, leading to a reduction in model

performance. Furthermore, while data balancing can help balance imbalanced datasets, it

may not address the issue of insufficient data in new projects.

Transfer learning (TL) algorithms offer a potential solution for addressing the problem

of training data scarcity in the target domain, particularly for test case prioritization (TCP)

tasks in unbalanced low-volume software projects [13]. TL allows models to adapt quickly

to unknown situations, environments, and tasks by leveraging knowledge from a related

task [14]. Thus, incorporating transfer learning techniques in TCP may help to address the
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challenge of imbalanced data and insufficient training data in TCP for large-scale industrial

and newer projects.

1.1 MOTIVATION

Applying transfer learning to prioritize test case in a CI environment requires careful con-

sideration of several factors. Identifying an appropriate TL algorithm in terms of cost and

effectiveness, as well as a suitable feature set for the model, is critical. TCP models should

have generic features that can be shared across projects, while project-specific features

may not be useful. Statistical features of test failures (e.g., failure rate) and code changes

(e.g., number of files changed) are examples of such generic features. Previous studies

have shown that these features are inexpensive and easily accessible [9]. However, a de-

tailed analysis of different TL algorithms’ performance for test case prioritization and VCS

and CI features impact on TL models is required to suggest a baseline. One of the most

challenging tasks in TL-based TCP is identifying suitable source domains for the model.

While a large volume of data may be available in some cases, it may not be relevant or

useful for the target domain. Additionally, large software companies may be unwilling to

share failure information from their projects, which could be used to build efficient testing

models for newer projects. To overcome these challenges, we propose an approach that

analyzes the criteria for choosing a source dataset and the applicability of model-based TL

algorithms for TCP, where the source domain is referential, but data points are not available

to maintain privacy. By addressing these challenges, TL-based TCP methods can provide

a solution to enhance testing efficiency in CI for a wide range of software projects.
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1.2 NOVELTY OF THE THESIS

The novelty of this work lies in the implementation of a transfer learning (TL) approach for

test case prioritization (TCP) that leverages both test execution histories (CI metadata) and

code change information (VCS metadata) to improve testing efficiency. This study pro-

vides a comprehensive comparison of different datasets from both CI and GitHub sources

to identify source datasets that have the potential to transfer knowledge to enhance TCP

performance. Additionally, the study explores the applicability of internal domain knowl-

edge to prioritize test cases for large-scale projects.

The combination of CI metadata and VCS metadata provides a rich source of informa-

tion that enables the creation of a more robust TCP model. By leveraging both sources of

data, the proposed TL-based approach is able to capture a more complete understanding

of the underlying failure patterns, leading to improved TCP performance. The analysis of

VCS and CI features in the TL models provides insights into the factors that most signifi-

cantly affect TCP performance.

Through the comprehensive comparison of different datasets from various sources, this

study is able to identify the most suitable source datasets for the TCP model. By select-

ing the most appropriate source datasets, the proposed TL-based approach can effectively

transfer knowledge to the target domain, leading to better TCP performance. Additionally,

this study provides a valuable benchmark for future research in this area, allowing for more

accurate comparisons of different approaches and datasets.

Moreover, this study provides valuable insights into the internal domain knowledge

transfer to prioritize test cases for large-scale projects. While large-scale datasets contain

enough data for constructing effective ML models, test case volatility can pose challenges.

The assumption is that some old test cases may be removed and new ones added to the
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system. Consequently, running the ML model with old data can decrease its performance.

A study by Roza et al. [15] addresses this challenge by considering only recent data to build

ML models. However, old data may still be relevant if an old test case runs after a long

time. Thus, instead of discarding old data, the study considers it as a source and refines

it with recent data to create a more effective prediction model. This approach provides a

novel way to improve the performance of TCP models for large-scale projects.

These insights can be applied to a wide range of software projects and can help improve

the testing process by identifying high-risk test cases that require more attention. Overall,

the study contributes to the development of more efficient and effective testing methods by

utilizing the power of transfer learning.

1.3 CONTRIBUTIONS

In summary, the main contributions of this thesis are:

• Evaluation and comparison of different TL algorithms: This study systematically

evaluates and compares the performance of various TL algorithms against ML algo-

rithms for test failure prediction in CI environments. The findings provide insights

into the effectiveness and limitations of different TL algorithms.

• Identification of potential source datasets for TL: The study compares and analyzes

different datasets to identify the potential source datasets for transferring knowledge

to improve TCP performance of other projects.

• Development of a new TCP approach: We propose a new TCP approach called

TCP TB, which uses the prediction probability of test failures generated by a parameter-

based TL algorithm called TransBoost. TCP TB outperforms other machine learning
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approaches and the existing CI-RTP/S technique on 24 study subjects, improving

TCP performance in 82.61% of the cases.

• Evaluation of internal domain knowledge transfer for TCP: We explore the applica-

bility of internal domain knowledge to prioritize test cases for large-scale projects.

This approach addresses the challenge of test case volatility by utilizing old data of

a large project as a source and refines it with recent data to create a more accurate

prediction model.

1.4 RESEARCH QUESTIONS

We evaluate the proposed TCP approach, TCP TB, with 24 study subjects and compares

its performance with ten supervised ML algorithms and an existing method, CI-RTP/S.

Through these experiments, we aim to answer the following research questions

• RQ1: What should be the criteria for choosing a potential source dataset?

• RQ2: Can internal domain knowledge transfer increase the TCP effectiveness for

large-scale datasets?

• RQ3: How well the proposed TCP approach (TCP TB) perform in terms of TCP

effectiveness?

1.5 ORGANIZATION OF THE THESIS

In this thesis, we present our work in five sections. Chapter 2 provides a literature re-

view of methods for test failure prediction and prioritization, including existing machine

learning-based approaches. Chapter 3 proposes a transfer learning approach for test failure
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prediction and test case prioritization (TCP). Firstly, we evaluate and compare different TL

algorithms for test failure prediction, and analyze the impact of VCS and CI features on

TL. Secondly, we compare different datasets to identify potential source datasets for TCP

and explore the internal domain knowledge transfer for large-scale datasets to address the

challenge of test case volatility.

In chapter 4 of this thesis, we present the experimental results of our proposed ap-

proaches. We conducted three case studies to evaluate TL for test failure prediction and

24 case studies to evaluate TL for test case prioritization. Our results indicate that model-

based TL approaches are more suitable in terms of time, efficiency, and data privacy. We

also generalized the criteria for identifying potential source datasets. Additionally, our ex-

perimental results demonstrate that internal domain knowledge transfer can be a potential

TCP approach for large-scale datasets. Overall, the experimental results provide evidence

for the effectiveness of our proposed approaches and contribute to the existing knowledge

on TL-based approaches for test failure prediction and prioritization.

The final chapter of this thesis, Chapter 5, provides a conclusion and outlines possible

future research directions related to transfer learning for efficient test case prioritization.

This chapter summarizes the main contributions and findings of the thesis
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Chapter 2

LITERATURE REVIEW

This chapter offers technical background information on software testing, machine learn-

ing, and transfer learning to provide a foundation for the work presented in this thesis. The

primary objective of this research is to improve testing efficiency in Continuous Integration

(CI) environments by employing transfer learning (TL) techniques that utilize historical

test data and code change information.

In the context of software development, version control systems (VCS) and CI tools

are crucial for managing the codebase and ensuring that software development projects are

organized and streamlined. VCS is used to keep track of code changes and maintain a

history of modifications.In contrast, CI tools automate the building, testing, and integration

of code changes, thereby preventing new changes from disrupting the existing codebase.

Test case prioritization (TCP) and machine learning (ML) are essential for the testing

phase of software development. TCP is used to determine the order in which tests should be

executed, while ML is used to predict the likelihood of test case failures based on historical

test execution data. By using TCP and ML, developers and testers can ensure that the most

critical and error-prone test cases are executed first, thereby saving time and resources. Ad-

ditionally, the chapter discusses existing work on test failure prediction and prioritization
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in CI, which will help provide a context for the research carried out in this thesis.

2.1 CONTINUOUS INTEGRATION (CI) AND VERSION CONTROL SYSTEM (VCS)

CI is a common software development approach that entails regularly merging code changes

from multiple developers into a central repository throughout the day. This practice en-

ables developers to detect and resolve code conflicts and issues earlier in the development

process, which can significantly reduce the cost of fixing bugs and improve software qual-

ity [2]. CI involves the use of various tools and techniques, including automated testing,

VCSs, and build automation tools. The process starts with developers committing their

code changes to a shared repository, which then initiates an automated build and testing

process. If the build and tests are successful, the changes are integrated into the main code-

base. If there are any issues, the developers are notified, and the build process stops until the

issues are resolved. CI has become an essential practice in modern software development,

particularly in Agile and DevOps environments [16]. It provides several benefits, such as

faster time-to-market, improved code quality, and increased team productivity [17].

Large organizations like Google and Microsoft frequently update their software prod-

ucts to meet user demands and have adopted the CI environment for faster delivery and

transparency. Open-source projects have also begun to adopt this practice using available

CI tools like Travis CI [18], Circle CI [19], and Jenkins [20]. However, effective use of CI

poses additional challenges, requiring organizations to make their tasks executable with-

out human intervention, and control the duration of CI cycles to ensure timely feedback to

developers and optimal utilization of time and resources. Testing is a critical step in the

CI process, and optimizing test suites can help address these challenges, the details will be

discussed in section 2.4.
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VCS is a software tool to assists software developers in managing source code changes

over time. It enables teams to work collaboratively on the same codebase, track and man-

age changes, and maintain multiple versions of the code [21]. VCS is an essential tool for

any software development project and has become a standard practice in the industry [22].

Some popular VCS tools are Git, SVN, Mercurial, and Perforce. By utilizing these tools,

developers can collaborate on the same codebase simultaneously, merge changes, and re-

solve conflicts as needed.

In addition to tracking changes to source code, VCS also helps with other aspects of

software development, such as issue tracking, bug reporting, and code reviews. It helps

maintain the integrity of the codebase, reduces the risk of code loss, and makes it easier to

collaborate with other developers. They also offer capabilities for code review and rollback

to previous versions in case of issues. In software testing, VCSs are often used in con-

junction with CI practices to automate the building, testing, and deployment of software.

VCSs are crucial in implementing CI as they provide the means to track changes, manage

versions, and facilitate collaboration between team members.

In summary VCS and CI are two critical practices in software development that work

hand in hand to improve software development efficiency and quality. VCSs allow de-

velopers to keep track of changes to the source code, including author information, com-

mit timestamp, and changeset, among others. The VCS log is essential for tracking code

changes and ensuring code stability. On the other hand, a CI build can be triggered after

a code change or after the previous build or depending on available resources. The code

change that caused the CI build will contain at least one commit. The build log will contain

information such as build identifier, test suites, build result, build duration, test suite result,

test duration, etc. Most testing frameworks and CI systems provide structured build logs.
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Figure 2.1: Relationship between the CI environment and VCS

However, the build information can also be parsed from raw textual log data using regular

expressions [23].

Figure 2.1 illustrates the relationship between the VCS and CI environment. The dia-

gram illustrates two parallel timelines: the VCS commits at the bottom, and the CI builds

initiated by these commits at the top. The CI build and VCS log data are essential for

tracking the development process, and they can be used to improve software quality. By

comparing changes in the VCS and CI build logs, developers can identify which code

changes have caused test failures or build issues. This information helps developers to fix

issues more quickly and improve the software development process overall. Therefore,

VCS and CI logs provide valuable information for software development and continuous

improvement.
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2.2 MACHINE LEARNING (ML)

ML is a subfield of artificial intelligence that seeks to impart machines with the ability

to mimic intelligent human behavior [24]. ML algorithms employ statistical methods and

utilize data to derive rules that enable machines to learn and improve performance over

time. The structure of the data and the type of rules derived vary based on the category and

type of ML algorithm employed. There are three primary categories of ML algorithms:

supervised, unsupervised, and reinforcement learning.

Supervised learning (SL) involves training a model with a set of input and output ex-

amples, during which the model learns to approximate the relationship between the inputs

and expected outputs [25]. SL models can be used for various tasks such as image clas-

sification [26] and predicting the price of a house based on a set of attributes [27]. On

the other hand, unsupervised learning (UL) involves providing only input data without any

expected output labeling. These types of models are often used for clustering data points

into separate groups or compressing data for dimensionality reduction [28]. Finally, rein-

forcement learning enables a model to interact with an external environment by observing

the environment’s state and issuing corresponding actions [29]. Examples of reinforcement

learning applications include game-playing agents [30], learning robots [31], and content

placement agents that learn which articles or advertisements to suggest to particular users.

Transfer learning (TL) is a subfield of ML that involves applying previously acquired

knowledge to improve learning or performance in a related domain or problem. This ap-

proach allows for the transfer of knowledge learned from a source domain to a target do-

main, where it can be useful for solving a related problem. Transfer learning has been

applied in various domains, including computer vision, natural language processing, and

speech recognition, and can be utilized in supervised, unsupervised, and reinforcement
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Figure 2.2: Transfer Learning

learning [32]. By improving model performance in the target domain while reducing the

amount of labeled data required for training, transfer learning has significant potential for

enhancing machine learning applications. In this thesis, we will focus on transfer learning

as it relates to our objective of enhancing testing efficiency in continuous integration en-

vironments. Figure 2.2 illustrates the basic diagram of the transfer learning approach. We

will discuss transfer learning in more detail in the following section.

2.3 TRANSFER LEARNING (TL)

Transfer learning techniques aim to enhance the generalization of models and reduce the

training time by leveraging previously learned knowledge. It involves transferring knowl-

edge from a source domain to a target domain, where the feature spaces, distributions, and

output spaces may be different [32]. Let DS = XS, YS be the source domain, where XS is

the input space and YS is the output space, and DT = XT , YT be the target domain, where

XT is the input space and YT is the output space.

In transfer learning, a mapping function f(XS) is learned in the source domain, and the

knowledge gained from this mapping function is transferred to the target domain to learn
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Figure 2.3: Classification of Transfer Learning (TL) Approach

a new mapping function f(XT ) to improve performance [33]. The transfer of knowledge

can be achieved through different methods, such as reusing the parameters or intermediate

representations of the source data.

Formally, transfer learning can be defined as minimizing the risk in the target domain

while utilizing the knowledge gained from the source domain [32]:

min
fT

R(fT ) + λ · L(fT , DS)

where R(fT ) is the risk in the target domain, L(fT , DS) is the loss incurred by applying

fT to the source domain, and λ is a trade-off parameter.

By minimizing the above objective function, the mapping function fT is learned in the

target domain while utilizing the knowledge learned in the source domain to improve its

performance.

Transfer learning algorithms can be classified into two main categories based on the
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similarity between the source and target domains: homogeneous transfer learning and het-

erogeneous transfer learning [33]. Homogeneous transfer learning algorithms assume that

the source and target domains have the same feature space but differ in data distribution,

with the goal of minimizing this difference. In contrast, heterogeneous transfer learning

algorithms assume that the source and target domains have different feature spaces. Fig-

ure 2.3 displays the classification of transfer learning approaches.

To predict test suite failures, we assume that the feature spaces of both the source and

target domains are similar since they perform the same task and follow the same contin-

uous integration practices. Thus, we have chosen to use homogeneous transfer learning

algorithms to achieve our goal. Homogeneous transfer learning algorithms can be divided

into four subcategories: feature-based, instance-based, parameter-based, and relation-based

methods. In the following sections, we will provide a detailed discussion of each of these

approaches.

• Instance-based TL: This is an TL approach that focuses on transferring knowledge

from labeled instances in the source domain to the target domain. Rather than consid-

ering the general structure of the data, this method emphasizes individual instances of

data [34], [35]. The main idea behind instance-based transfer learning is to re-weight

the samples in the source domain to correct for marginal distribution differences and

use the re-weighted instances directly in the target domain for training. Instance-

based transfer learning methods work best when the conditional distribution is the

same in both domains.

Various approaches have been proposed to weight the source samples, such as match-

ing the mean of the target and source domains or training a binary classifier that sep-

arates source samples from target samples. This method assigns higher weight to
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Figure 2.4: An example of source instance weighting using a binary classifier

the source samples that are more similar to target samples [33]. Figure 2.4 provides

a simple example of source instance weighting using a binary classifier. Instance-

based transfer learning has been successfully applied in computer vision, natural lan-

guage processing, and speech recognition domains, and it can significantly reduce

the amount of labeled data required to train models while improving model perfor-

mance in the target domain. However, it has limitations when marginal distribution

differences between the source and target domains are significant or when there are

not enough labeled target samples [33].

• Feature-based TL: This methods focus on creating a new feature representation to

reduce the differences in feature distributions between the source and target do-

mains. This approach can be further divided into two subcategories: asymmetric and

symmetric feature-based transfer learning [33].In asymmetric feature-based transfer

learning, the features of the source domain are transformed to match the target feature
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Figure 2.5: An example of symmetric feature transformation

space, which can result in information loss due to marginal differences in feature dis-

tribution [36], [37]. This technique has been used in various domains, such as image

classification and sentiment analysis.

In contrast, symmetric feature-based transfer learning involves creating a common

latent feature space, and both the source and target features are transformed into this

new feature representation. This approach helps to reduce the feature distribution gap

between the source and target domains and can improve model performance [38],

[39]. Symmetric feature-based transfer learning has been used in several domains,

such as computer vision and natural language processing. Both asymmetric and sym-

metric feature-based transfer learning approaches have been successfully applied in

various domains, and their effectiveness depends on the characteristics of the source

and target domains [33].

• Relation-based TL: This thechniques utilize the underlying relational structure of the
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data to transfer knowledge from the source to the target domain [40], [41]. The ap-

proach assumes that the source and target domains share some relational structures

or dependencies, which can be used to improve learning in the target domain. These

methods are used in various applications, such as social network analysis, recom-

mender systems, and link prediction.

Relation-based transfer learning typically represents the data as a graph or network,

where the nodes represent the entities, and the edges represent the relationships be-

tween these entities. This relational structure can be used to identify the similarities

and differences between the source and target domains and to guide the transfer of

knowledge. However, this approach can be computationally expensive and may re-

quire significant domain-specific knowledge.

Relation-based transfer learning has shown promising results in improving model

performance in target domains, especially when the data has a clear relational struc-

ture. Nevertheless, there is a need for further research to develop efficient and effec-

tive algorithms that can handle larger and more complex relational structures [42].

• Parameter-based TL: This methods that transfers knowledge at the model level, in

which the source and target tasks share some model parameters or prior distributions

of the hyper-parameters of the models. The previous two transfer learning solutions,

namely instance-based and feature-based methods, transfer knowledge at the data

level [33]. Parameter-based transfer learning is particularly useful when the feature

space of the source and target domains differs, but the models learned from them

share a similar structure. This method is commonly used in deep learning models,

where the parameters are learned using a large amount of labeled data. Parameter-

based transfer learning can be further classified into three subcategories: fine-tuning,
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pre-training, and model adaptation [32].

In fine-tuning, a pre-trained model is further trained on the target domain data to

adapt to the new task. Pre-training involves training a model on a large, labeled

dataset to learn general representations, followed by fine-tuning on the target dataset.

Model adaptation aims to modify the source model to suit the target task. Parameter-

based transfer learning has shown success in various domains, including computer

vision and natural language processing [33].

Hybrid-based transfer learning combines instance-based and parameter-based transfer

learning approaches to transfer knowledge through both instances and shared parameters.

This approach has shown success in various domains, including image classification, nat-

ural language processing, and speech recognition [35]. The main goal of hybrid transfer

learning is to find a set of parameters optimized for the source task that can be fine-tuned for

the target task. This technique can significantly reduce the amount of labeled data required

for the target task and lead to improved model performance.

However, finding the optimal balance between the instance-based and parameter-based

transfer learning methods is challenging, and the best approach depends on the specific

application and the availability of labeled data [33]. Hybrid transfer learning methods can

be used with various machine learning algorithms, such as decision trees, support vector

machines, and neural networks, and can be customized to fit the specific requirements of

each application.

2.4 TEST CASE FAILURE PREDICTION AND PRIORITIZATION

Test failure prediction and prioritization are critical components of software testing. Test

failure prediction involves predicting which tests are likely to fail before they are executed,
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while test prioritization involves determining the order in which tests should be executed

based on their relative importance.

Test failure prediction can help identify problematic tests early in the testing process,

which can save time and resources. Predictive models are built using historical test exe-

cution data, and these models can be used to predict which tests are likely to fail based

on factors such as the code changes made since the last test execution and the execution

history of the tests. By identifying tests that are likely to fail early on, developers and

testers can focus on fixing these tests before executing them, thereby reducing the overall

test execution time.

Rothermel et al. [5] provided a formal definition of the test case prioritization (TCP)

problem as follows:

Definition: for a given test suite T, set of permutations of T as PT, and a function from

PT to the real numbers as f.

Find : T ′ ∈ PT such that (∀T ′′)(T ′ ∈ PT )(T ′ ̸= T ′′)[f(T ′) ≥ f(T ′′)]

According to the author’s definition, PT represents the set of all possible prioritizations

(orderings) of T, and f is a function that determines a score for every possible test ordering.

In other words, TCP helps ensure that the most important tests are executed first, which can

lead to earlier detection of defects and better overall quality. Test prioritization techniques

are based on different criteria, such as the likelihood of a test case failing, the criticality of

the code being tested, and the cost of fixing defects. By prioritizing tests in this way, de-

velopers and testers can ensure that the most critical tests are executed first, which can help

identify defects earlier in the testing process and ultimately lead to better quality software.

Previous studies on test failure prediction prioritization in the CI context can be divided

into two subcategories Heuristic-based TCP and ML-based TCP.
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2.5 APPLICABILITY OF TRANSFER LEARNING (TL) IN TEST CASE PRIORITIZA-

TION (TCP)

This section discusses the application of transfer learning (TL) in the context of test fail-

ure prediction and prioritization in the continuous integration (CI) environment. In CI,

automated regression test cases are run to ensure software quality. After predicting the

probability of test failures, test case prioritization (TCP) is used to reorder tests to locate

faults as early as possible. ML-based approaches have shown promising results in solving

TCP problems in CI due to their dynamic adaptability. However, these approaches can face

challenges in creating usable models due to unbalanced data and limited available data for

newer projects. Transfer learning (TL), a type of ML algorithm, addresses these challenges

by leveraging knowledge from a source domain with abundant data to create a usable model

for the target domain.

For most software companies, the tests run in CI to examine code modifications are

different, but they share some common failure characteristics due to the same testing envi-

ronment. For example, if a test has been failing in recent CI cycles, it is likely to fail in the

next cycle. These statistical features of test failures are independent of the software type

(e.g., web application or car application) and programming language (e.g., Java or C++).

Therefore, these features can be shared for TCP across different software projects to some

extent.

However, large software companies are often concerned with keeping their failure in-

formation private. Failure information from these projects can be valuable for building

efficient testing models for newer projects. In this context, model-based transfer learning

algorithms are particularly significant due to the data privacy concerns of giant companies



Chapter 2. LITERATURE REVIEW 23

where the source domain is referential, but the data points are not available. One such algo-

rithm is TransBoost [43], a boosting tree kernel-based transfer learning algorithm that has

been used in this thesis to predict and prioritize test failures. The details of this algorithm

discussed in the following section.

2.6 TransBoost

Homogeneous transfer learning algorithms assume that the source and target domains have

the same feature space, denoted by XS = XT , but different data distributions, which can

be marginal or conditional. For instance, the number of test runs in one project for each CI

cycle may vary from others, leading to different marginal distributions. Therefore, mini-

mizing the distribution discrepancies between domains is a crucial task for transfer learn-

ing.

This thesis employs TransBoost [43], a tree-kernel-based transfer learning algorithm

that is specifically designed for commercial tabular datasets and has proven to be efficient,

robust, and interpretable for real-world transfer learning applications. TransBoost leverages

the instances of developed products to enhance the performance of the newer target domain.

The working process of the TransBoost algorithm is illustrated in the Figure 2.6. It

builds two parallel boosting-tree models with identical tree structures but different node

weights.

The algorithm starts with initializing the weight vectors αS
i = 1

nS
and αT

i = 1
nT

for

the source and target instances, respectively. It then generates the two models hS(x) and

hT (x), and updates them simultaneously by minimizing the transfer loss function, which is

defined as:

TL(FS, FT ) = E(x,y)∼PS
[PT (x,y)
PS(x,y)

L(x, y;FT (x))− L(x, y;FS(x))]
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where L(x, y;FT (x)) and L(x, y;FS(x)) are the classification errors of the target and

source models, respectively, and PS(x, y) and PT (x, y) are the joint distributions of the

source and target domains, respectively.

The weight vectors are then updated using the proximal gradient descent algorithm,

which is a first-order optimization algorithm that is efficient for solving large-scale opti-

mization problems. The two models are combined using a linear combination:

fT (x) = γhS(x) + (1− γ)hT (x)

where γ is a weighting parameter. The resulting model fT (x) is a boosting tree kernel-

based transfer learning algorithm that can be used for test failure prediction and prioritiza-

tion in the CI environment.

In summary, TransBoost is a tree-kernel-based transfer learning algorithm that is ef-

ficient, robust, and interpretable for real-world transfer learning applications. It leverages

the instances of developed products to enhance the performance of the newer target domain

and simultaneously reduces the distribution discrepancy between domains.

2.7 RELATED WORK

Prior research on test failure prediction and prioritization in the context of continuous in-

tegration (CI) can be broadly categorized into two subcategories: heuristic-based and ma-

chine learning (ML)-based methods.

Heuristic-based methods utilize rule-based heuristics or statistical methods to prioritize

test cases based on factors such as code coverage, execution time, and past failures. While

these methods are easy to implement and interpret, they may not always be effective in

accurately predicting test failures or optimizing testing resources.

ML-based methods, on the other hand, utilize machine learning algorithms to analyze
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Figure 2.6: TranBoost

historical test execution data and predict the likelihood of test case failures. These methods

can be more accurate and effective in prioritizing tests, as they can take into account a

larger number of variables and analyze complex patterns in the data. However, ML-based

methods may require significant amounts of data to train and may be more complex to

implement.

Recent works on these approach are discussed in the below subsections.

2.7.1 HEURISTIC-BASED TCP METHODS

Previous studies on heuristic-based test case prioritization (TCP) mainly focused on code

coverage and test case execution history. The Coverage-based heuristics assume that higher

structural test coverage, such as function or statement coverage, increases the likelihood
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of detecting faults in the System Under Test (SUT) [44]. However, the complexity of

extracting exact coverage information is a major limitation. Two ways to collect coverage

information are static and dynamic analysis. The static technique is easier to implement

but less accurate, while dynamic analysis is more precise but time-consuming for large

codebases, making it unsuitable for the Continuous Integration (CI) environment[8].

Execution history-based heuristics assume that test cases that failed in the previous

build have a higher probability of failing in the next build. Kim and Porter [44] proposed

an execution history-based TCP to compute ranking scores based on the average failure

rate of test cases. Elbaum et al.[8] were the first to address the problem of multiple test

requests and the implication of using historical failure data in the CI context. They proposed

GoogleTCP, an algorithm that prioritizes test cases based on the time since a test’s last

failure or execution or when it was first introduced. Zhu et al.[45] extended this work by

re-prioritizing test cases based on the co-failure probability distribution. The execution

history of CI systems is easily accessible and inexpensive [9]. Recent studies [9], [46]

reported that execution history-based heuristics could achieve nearly the same accuracy as

ML-based TCP.

2.7.2 ML-BASED TCP METHODS

Prior studies describe test case prioritization (TCP) as a ranking problem. To solve this

problem, three different ranking models [47] (i.e., pointwise, pairwise, and listwise rank-

ing) are commonly available. The pointwise ranking model considers a single test case and

applies a prediction model to determine the priority score for this test case to fail. Then, it

sorts the test cases based on priority value to get the final ranking. The pairwise ranking

model takes a pair of test cases simultaneously and assigns a priority score. After that, it
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takes all the pairs, compares them with the ground truth, and determines an optimal order-

ing for all test cases. Unlike pointwise and pairwise, the listwise model evaluates a list of

test cases simultaneously and ranks each test case compared with other test cases.

Bertolino et al. [48], Lachmann et al. [49], and Tonella et al. [50] use pairwise ranking

models for TCP. Bertolino et al. [48] evaluate the performance of Random Forest (RF),

Multiple Additive Regression Tree (MART), L-MART, RankBoost, RankNet, and Coordi-

nate ASCENT (CA) for TCP, and MART achieves better performance among these models.

Lachmann et al. [49] consider SVM Rank [51], capable of handling large input vectors and,

based on training inputs, returns a ranked classification function. Tonella et al. [50] apply

the Rankboost algorithm for TCP and utilize statement coverage, cyclomatic complexity,

and developers’ ranking scores for model training.

On the othe hand, Busjaeger and Xie [52] use the listwise ranking model SVM MAP

for TCP. Many papers consider a pointwise ranking algorithm mainly XGBoost [53], Re-

current Neural Network (RNN) [54], Neural Network (NN) [55], K Nearest Neighbour

(KNN) [56], Bayesian Network [57], Logistic Regression [58], [59], and SVM [60] for

TCP. In another work [61], the authors employ natural language processing (NLP) for soft-

ware requirement analysis concentrating on test case prioritization.

Some recent studies [46], [62] investigate reinforcement learning (RL) techniques for

TCP, proving that RL models performed better than baseline models. To the best of our

knowledge, only one study by Rosenbauer [13] introduces transfer learning for test case

Prioritization. The authors of this work use the XCSF algorithm, a reinforcement learning-

based classifier system for transferring knowledge. They design a simplistic population

transformation and evaluate their approach with four study subjects considering only CI

metadata.
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VCS
Metadata

CI
Metadata

Study
Subject Approach

Elbaum et al. [8] ✓ 1 industrial project Heuristic

Zhu et al. [45] ✓ 2 industrial projects Heuristic

Liang et al. [63] ✓ 2 industrial projects Heuristic

Mattis et al. [23] ✓ ✓ 20 open-source projects Heuristic

Busjaeger et al. [52] ✓ 1 open-source project SL & NLP

Lachmann et al. [49] ✓ 1 academic and 1 industrial projects SL & NLP

Bertolino et al. [48] ✓ 6 open-source projects RL & SL

Noor et al. [58] ✓ 5 open-source projects SL

Chen et al. [53] ✓ 50 open-source projects SL

Mahdieh et al. [55] ✓ 5 open-source projects SL

Hasnain et al. [54] ✓ 5 open-source projects SL

Palma et al. [59] ✓ 5 open-source projects SL

Elsner et al. [9] ✓ ✓ 20 open-source and 3 industrial projects Heuristic & SL

Pan et al. [64] ✓ ✓ 242 open-source projects SL

Spieker et al. [46] ✓ 3 industrial projects RL

Bagherzadeh et al. [62] ✓ ✓ 6 open-source and 2 industrial projects RL

Shi et al. [65] ✓ 3 industrial projects RL

Carlson et al. [66] ✓ 1 industrial project UL

Rosenbauer et al. [67] ✓ 3 industrial projects RL

Rosenbauer et al. [13] ✓ 4 industrial projects TL

Table 2.1: Comparison of existing studies related to test case prioritization (TCP)

Table 2.1 provides a summary of existing techniques used for test case prioritization.

From the table, it is apparent that most studies have utilized supervised learning (SL) tech-

niques, while only a few have employed unsupervised (UL) or semi-supervised learning

(SSL) algorithms for TCP. In general, UL or SSL algorithms can be more suitable when

there is insufficient labeled data available. However, for TCP problems where there is suf-

ficient labeled data, supervised learning techniques may be more appropriate due to their

ability to leverage the labeled data to learn and make accurate predictions.
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Both RL and SL deliver good performance for TCP. However, RL may not be the most

suitable approach for TCP as it has well-defined outcomes and goals. Instead, SL methods

such as gradient-boosting trees, random forests, or neural networks may be more appro-

priate for the TCP problem. Moreover, the time complexity of SL algorithms is generally

lower than RL algorithms. It is important to note that the time complexity highly depends

on the choice of algorithms and data volume.

Pan et al. [68] deliver a systematic literature review of ML-based TCP and TCS. The

paper reviews 29 research papers published from 2006 to 2020 and addresses the variation

in the machine learning models, feature sets, evaluation metrics, and the earlier work’s re-

producibility. It is shown that most of the prior studies have used SL algorithms. Moreover,

Researchers explore various information resources for both Heuristic and ML-based TCP.

For example, test traces, build dependencies, test coverage, version control systems meta-

data, and test histories are different sources for collecting data. A study by Elsner et al. [9]

reports that CI and GitHub data are easily accessible and inexpensive. Therefore, we select

TransBoost [43], a transfer learning algorithm that integrates the XGBoost classifier (SP

algorithm) for TCP, considering VCS and CI metadata.
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Chapter 3

METHODOLOGY

In this chapter, we present the methodology and workflow of our study, which is divided

into two main parts: test failure prediction using transfer learning (TL) and test case prior-

itization (TCP) using TransBoost. The first part of our study investigates the applicability

of TL for test failure prediction and examines the impact of version control system (VCS)

features on TL. To achieve our research goals, we have designed a workflow as shown in

Figure 3.1. At the first step, we compare traditional machine learning (ML) and TL algo-

rithms based on their accuracy and F-measure score. Next, we compute the influence of

VCS features on the best TL model. Figure 3.2 shows the system model of TL for test

failure prediction, which involves selecting common features from the source and target

domains, training models for each domain, and predicting test failures in the new build.

In addition to test failure prediction, we also extend our work to prioritize test cases

using transfer learning, as discussed in Section 3.2. The system model for test case priori-

tization using TL is shown in Figure 3.3, and it consists of three successive steps: feature

extraction, predictive modeling, and evaluation. In the first step, we extract VCS and CI

metadata and apply feature engineering to generate useful information. Then, we feed this

feature vector to a TL model, which provides test failure prediction probability. We sort
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the test cases in descending order based on the predicted probability and evaluate the test

case prioritization using the average percentage of fault detected (APFD) metric, a well-

known metric for evaluating TCP. Data privacy is a significant concern in large software

companies, and to address this issue, we have evaluated a model-based transfer learning ap-

proach for TCP. The proposed approach utilizes a kernel-based transfer learning algorithm,

called TransBoost [43], and we refer to this technique as TCP TB. The working algorithm

of TCP TB is outlined in Algorithm 1. By applying this method, we aim to improve the

accuracy of TCP while maintaining data privacy.

3.1 TEST FAILURE PREDICTION USING TL

This section focuses on the practical application of transfer learning algorithms for test fail-

ure prediction, which involves two consecutive steps: building TL-based predictive models

and evaluating their performance. In this regard, we evaluate a set of transfer learning al-

gorithms used for test failure prediction and select the best-performing algorithm based on

evaluation metrics. The workflow of our proposed approach is illustrated in Figure 3.1.

In the first step, we evaluate various machine learning (ML) and transfer learning (TL)

algorithms on our dataset and select the best-performing models. This step involves pre-

processing the datasets and training and validating the models on the pre-processed data.

In the second step, we compare the best-performing ML and TL models based on their

recall and F-measure scores. This comparison helps us determine the effectiveness of TL

algorithms in improving test failure prediction performance compared to traditional ML

algorithms.

In the final step, we assess the impact of the continuous integration (CI) and version

control systems (VCs) feature sets on the performance of the TL model. This step involves
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Figure 3.1: Flow chart to evaluate the applicability of TL approaches for test failure pre-
diction

evaluating the model’s performance on the dataset with and without these features to deter-

mine their impact on the model’s recall and F-measure scores.

3.1.1 TL-BASED PREDICTIVE MODEL

To build an effective predictive model using transfer learning, it is necessary to have two

datasets: one for creating the source model and another for building the target model. The

data in these datasets should be generic, as project-specific features may not be applicable

to other projects. Generic features, such as statistical features of test failures (e.g., failure
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rate) and code changes (e.g., number of files changed), are examples of features that can be

used.

The data log created by continuous integration (CI) and version control system (VCS)

tools follows the same format, regardless of the specific tool being used. Data extraction

from these sources requires little time since they are automatically generated during the CI

build process. As a result, there is no time overhead in the test failure prediction process.

Therefore, this thesis selects this information to feed into the predictive transfer learning

model and assumes that the feature space of the source and target domains are similar.

Figure 3.2 shows the system model for test failure prediction using TL.

As a result, homogeneous transfer learning algorithms seem more suitable for test suite

failure prediction. Homogeneous transfer learning algorithms can be classified into four

subcategories: feature-based, instance-based, parameter-based, and relation-based. The

details of these approaches are discussed in section 2.3.

Among these approaches, the relation-based approach performs well on small-scale

datasets with thousands of samples, but it is not appropriate for large volumes of data

with millions of instances [32]. The case studies evaluated in this thesis mostly involve

large-scale datasets. Therefore, we do not consider any transfer learning algorithms from

this category. Instead, we focus on the other three subcategories of homogeneous transfer

learning algorithms to build our predictive models. These algorithms are effective in deal-

ing with the data volume and class imbalance issues that are commonly encountered in the

context of test failure prediction in the CI environment.

Feature-based transfer learning algorithms focus on finding common features between

the source and target domains that have similar behavior concerning the task at hand, result-

ing in similar data distribution. In this category, the following two algorithms are selected
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Figure 3.2: System model to predict test failures using TL

for evaluation:

• Subspace Alignment (SA) [69]: This is an unsupervised transfer learning algorithm

that utilizes the PCA (Principal Component Analysis) subspace to align the source

and target domains linearly. The algorithm projects the data in both domains onto a

shared subspace that retains the most significant variance of the original data. This

subspace is chosen to maximize the similarity between the source and target distri-

butions. The algorithm is unsupervised, meaning that it does not require labeled data

to operate.

• Correlation Alignment (CORAL) [70]: This approach utilizes second-order statis-

tics to correct the difference between source and target distribution. Specifically,

CORAL reduces the discrepancy between the source and target domain by aligning
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their second-order statistics, namely, their covariance matrices. The algorithm maps

the source and target data onto a common subspace to align their covariance matrices.

This alignment results in a better match between the source and target distributions,

which is critical for transfer learning.

Both SA and CORAL are unsupervised feature-based transfer learning algorithms that

do not require labeled data to operate. They are effective in transferring knowledge from

the source domain to the target domain by aligning their data distribution.

Instance-based transfer learning algorithms aim to reweight the labeled training data to

minimize the domain shift between source and target domain data distributions. This thesis

selects the following two instance-based TL algorithms.

• Nearest Neighbors Weighting (NNW) [71]: As the name suggests, this approach

relies on the nearest neighbor algorithm to reweight the source instances based on

their number of neighbors in the target dataset. The reweighted source data is then

used to train the target model. NNW is effective for scenarios where there is a limited

amount of labeled data in the target domain, as it can leverage the labeled data in the

source domain to improve the predictive performance on the target domain.

• Transfer AdaBoost (TrAdaBoost) [72]: This is a supervised transfer learning algo-

rithm that relies on a ”reverse boosting” principle where at each boosting iteration,

the weights of the source instances decrease, which causes poor predictions. The

target model is then trained on the weighted source data, which allows it to perform

better on the target dataset.

These algorithms are particularly effective for scenarios where there is a limited amount

of labeled data in the target domain, as they can leverage the labeled data in the source



Chapter 3. METHODOLOGY 36

domain to improve the predictive performance on the target domain. However, these al-

gorithms are sensitive to the distribution shift between the source and target domains, and

they may not work well when the data distributions are significantly different.

Parameter-based transfer learning algorithms assume that if two tasks are related, then

the structure of a well-trained model on the source domain can be transferred to the tar-

get model. This approach can be particularly useful when the feature spaces of the source

and target domains are similar but their data distributions are different. The following al-

gorithms are examples of parameter-based transfer learning algorithms that are commonly

used in the context of test failure prediction:

• TransferForestClassifier [73]: This algorithm modifies a random forest model learned

on source domain data using sampled data from the target domain. By adapting the

decision boundaries of the source domain model to the target domain, the algorithm

is able to improve the predictive performance on the target domain.

• TransferTreeClassifier [74]: This algorithm modifies a decision tree learned on the

source domain using a training set of sampled data collected from the target domain.

By adjusting the splitting criteria of the tree based on the target domain data, the

algorithm is able to improve the predictive performance on the target domain.

• TransBoost [75]: This is a tree-kernel-based transfer learning algorithm based on the

XGBoost algorithm. It considers two parallel boosting-tree models with similar tree

structures but distinct node weights. This specific design ensures the robustness and

interpretability of the tree-based models. The algorithm trains models and reduces

the discrepancy between domains simultaneously within O(n) complexity compared

to the traditional kernel method. The details of this algorithm is discussed in subsec-

tion 2.6.



Chapter 3. METHODOLOGY 37

These algorithms are effective in scenarios where the source and target domains share

similar feature spaces but have different data distributions. By leveraging the knowledge

gained from the source domain, they can improve the predictive performance on the target

domain.

3.1.2 EVALUATION SETUP FOR TEST FAILURE PREDICTION

In the context of test failure prediction, most real-world datasets are imbalanced, with the

number of failed tests being relatively small compared to the number of successful tests.

Therefore, accuracy alone is not an efficient way to measure the performance of a predictive

model. Instead, this thesis focuses on Recall and F-measure metrics for evaluation.

Recall, also known as sensitivity or True Positive Rate (TPR), measures the model’s

ability to detect the positive class by calculating the ratio between correct positive predic-

tions and all possible positive predictions. A high recall score means that the model is good

at detecting the relevant test cases that are likely to fail in the next CI cycle.

F-measure is the harmonic mean of precision and recall. It takes into account both pre-

cision and recall and is a more robust metric for imbalanced datasets. F-measure considers

both the false positive rate (FPR) and the false negative rate (FNR) and provides a balance

between the two. A higher F-measure score indicates a better balance between precision

and recall, which is desirable for test failure prediction.

Therefore, using Recall and F-measure metrics is suitable for evaluating the perfor-

mance of predictive models in the context of test failure prediction, especially for imbal-

anced datasets.

The following equations are used to compute the above-mentioned metrics:
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precision =
TP

TP + FP

recall =
TP

TP + FN

F −measure =
2 ∗ precision ∗ recall
precision+ recall

To calculate these metrics,it is necessary to identify the number of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN) from the prediction results.

For this scenario,

• TP (True Positive): indicates the number of failed tests correctly identified correctly

identified,

• TN (True Negative): represents the number of passed tests correctly identified,

• FP (False Positive): points out the number of passed tests misclassified as failed tests,

and

• FN (False Negative): indicates the number of failed tests misclassified as passed.

3.2 TEST CASE PRIORITIZATION USING TL

The second part of the proposed approach involves using transfer learning (TL) models to

prioritize test cases based on their failure probability. The approach takes into consideration

both VCS and CI metadata. To define the problem and notations, let S be a system under

test, C be a code change that is pushed to the codebase to construct S ′, and Ts be a set of

test suites. For each test suite T ∈ Ts, the transfer learning model M calculates the failure

probability value based on a feature vector F . The probability values are then sorted in

descending order to rank the test suites in Ts. Depending on the test budget, either the
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complete prioritized list (TCP), T ′
s, or a subset of it (TCS) will be executed to evaluate

S ′ [9], [52], [76]. After evaluating S ′, the feature vector and test results are added to

the dataset as historical data. This thesis utilizes TransBoost TL for TCP and names this

approach as TCP TB.

The system model of the proposed approach is shown in Figure 3.3, and it consists of

three successive steps: feature extraction, predictive modeling, and evaluation. The details

of these steps are discussed in the following subsections.

3.2.1 FEATURE EXTRACTION

This thesis utilizes information from both the VCS and CI log to generate feature vectors.

Based on the configuration, a CI cycle can be triggered either after a code change push

to VCS or after the previous cycle. The CI features are closely related to predicting the

outcome of a specific test in a CI build. They provide information about the test suite’s

execution, its history, and its failure rate. These features are useful in understanding the

behavior of individual test suites and their impact on the overall build result. On the other

hand, the VCS features define how the introduced commits affect the likelihood of failure

for all test suites in a CI build. They provide information about the changes made to the

source code repository and how they affect the build’s outcome. These features are helpful

in understanding the impact of code changes on the overall build result and can aid in

identifying potential issues and improving the quality of the software.

The details of VCS and CI, as well as the relationship between them, are discussed

in section 2.1. The metadata from these resources contains various information, includ-

ing commit identifier, author, commit timestamp, message, change set (i.e., the number of
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Figure 3.3: System model for test case prioritization using TL

files added, modified, or deleted), build identifier, build result, build duration, test identi-

fier, number of assertions in a test, test result, and test duration. However, some of these

information are stored as object types and cannot be used directly. For example, the ’test

identifier’ contains the name of each test suite, and since its data type is object, it needs to

be mapped to an integer value to be used as a feature.

Most of the prior studies [68] on TCP considered the ’last execution time’ or ’average
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test execution time’ feature for model training and achieved good results, yet it can be

misleading. The hypothesis behind considering this feature is that the test suite with higher

execution time may cover more significant parts of the code and thus may contain more

faults. However, many other factors can influence the test execution time, such as machine

speed. In large-scale CI projects, the test runs parallel on different machines, which do not

necessarily have the same configuration. A test suite run on a low-configuration machine

can have a higher execution time which contradicts the above hypothesis. Therefore, this

thesis paper does not consider any features that are solely dependent on the test execution

time.

The extracted metadata from both VCS and CI is used to extract nine CI and three VCS

features for the TCP TB input. In line with previous studies [9], we provide the definition

of each of these features below:

CI Features:

• Test identifier: A unique integer value that represents each test suite.

• Test suite runs [63]: The number of times a test suite has been executed.

• Test suite assertions [63]: The total number of assertions in the test suite.

• Failure count [3], [9], [58], [77], [78]: The total number of times a test suite has

failed.

• Last failure age [3], [8], [9], [79]: The number of CI builds since the last failure.

• Last failure: A Boolean value that indicates whether the test suite failed in the last

build.

• Failure rate [7]: The percentage of test suite failure in the previous run.
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• Transition count [80]: The total number of times a test suite changed its state (e.g.,

from pass to fail or fail to pass).

• Last transition [80]: The number of CI builds since the last transition.

VCS Features:

• #Files Changed [3], [77], [81]: The number of files changed as a result of a specific

change.

• #Lines Inserted: The number of lines of code added in all modified files as a result

of a specific change.

• #Lines Deleted: The number of lines of code deleted in all modified files as a result

of a specific change.

3.2.2 Predictive Modeling

The most straightforward way to create a predictive transfer model is by training a model on

the source dataset and then transferring it to the target domain for further training with the

target dataset. The resulting model inherits informative patterns from the source domain

and fine-tunes them with the target data points. However, if the data distribution in the

source and target domain is different, directly sharing the model can be ineffective due to

data drifting in previous analyses. To overcome this issue, this paper selects TransBoost,

which uses XGBoost to generate two parallel boosting-tree models (source and target) with

identical tree structures but different node weights. The details of TransBoost are discussed

in Section 2.6.

The source model is trained on a source dataset with a relatively large data volume, a
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high test failure rate, or both, and then shares its knowledge with the target model to im-

prove the test case prioritization (TCP). The performance of the predictive transfer learning

(TL) model decreases over time, but retraining them in each cycle can cause computational

overhead on the CI build. Therefore, the TL model is periodically retrained in an offline

environment to maintain its performance and avoid computational overhead.

A feature vector generated from the historical CI test data and VCS changeset is passed

to the pre-trained TL model as an input matrix to predict the failure probability score of the

current test set. The failure probabilities range from 0 to 1, and a probability value close

to 1 indicates a higher probability of failure. The list of probability scores is then sorted in

descending order. The algorithm 1 represents the working algorithm of TCP TB.

When training a predictive transfer learning (TL) model, selecting the appropriate source

dataset is a significant challenge. In natural language processing and computer vision, it

is common practice to choose a pre-trained model that performs well on a large dataset,

which can help improve predictions for small projects [82], [83]. However, with large-scale

datasets, sufficient data is available to construct efficient machine learning (ML) models,

but data volatility poses a challenge. Some studies [15] only consider the most recent data

when building ML models to address test case volatility, as old tests may be removed, and

new ones may be added to the system. Running the ML model with outdated data can

decrease its performance.

Roza et al. [15] proposed a sliding window-based ML model for TCP. They discard old

data outside the sliding window, and if the test case information is not present in the win-

dow, they consider that test as a new one. However, this approach may negatively impact

the prediction model’s performance as some old tests may still be relevant. Therefore, TL

can help large-scale projects by considering the old data as a source and refining it with
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Algorithm 1: Test prioritization model, TCP TB
1 Input: Ts, ET , C, model, {DS, DT}.

Result: Prioritized test execution order, T ′
s.

2 Ts = List of test suites;
3 ET = Test execution history;
4 C = code change informations;
5 model = TransBoost();
6 source and target data = {DS, DT};
7 Function feature extraction(Ts, ET , C):
8 for i = 0; i < length(Ts); i++ do
9 fs[i]← ET i;

10 end
11 fs← C;
12 return fs;
13 feature vector, fs = feature extraction(Ts, ET , C) ;
14 Function predictive model(Ts, TransBoost, fs):
15 while (retraining == True) do
16 clf = TransBoost();
17 model = clf.fit(Ds, Dt);
18 end
19 t prediction=model.predict(fs);
20 T ′

s = sort(t prediction, ascending = false);
21 return T ′

s;

recent data to build a more efficient prediction model.

This thesis follows the sliding window concept of Roza et al.[15]. The data inside the

window range is considered as the target domain data, and the data before the window range

is considered as the source domain data and name this process internal domain knowledge

transfer. Figure3.4 shows an example of creating a source and target dataset within the

same domain.
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Figure 3.4: Splitting dataset, D for internal domain knowledge transfer using sliding win-
dow (window size=2) and forward chaining

3.2.3 EVALUATION SETUP FOR TCP

Training and Testing Splits

Determining the appropriate training-testing split ratio for a dataset or the volume of train-

ing data needed to prepare a suitable model is not a straightforward task. For instance,

one study [81] used one year of data for training the model and tested it with the last two

months of data. As the performance of the predictive model decays with time, it requires

periodic updates. In this paper, we perform periodic offline training and use all available

historical data for training. Due to the temporal dependency between CI cycles, it is not

reasonable to perform k-fold cross-validation. Thus, it is more realistic to train models on

past data and test on more recent data [81].
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Figure 3.5: Split dataset, D using forward-chaining

Figure 3.5 shows the training-testing splits used in this thesis to divide a time-series tar-

get dataset, D. We follow the forward chaining method for splitting, which performs cross-

validation on a rolling basis. First, we take a small subset of data for training and predict

the probability of failure for the later data points. We then incorporate the same predicted

data points into the subsequent training dataset and test the subsequent data points.

Evaluation Metric

The datasets are imbalanced; therefore, accuracy is not an efficient way to measure the

prediction results. Also, Recall, F-measure, AUC, and MCC metrics are well for predic-

tion model evaluation. However, they are not appropriate for the evaluation of test case

prioritization as these metrics do not consider position in the equation. The average per-

centage of fault detected (APFD) [76] is a widely accepted metric for TCP evaluation. The

information regarding fault-to-failure mapping needs to be included in calculating APFD

based on faults. In the real world, we only have failures, i.e., failing tests. Therefore, we

entirely focus on detecting failures rather than faults, considering a one-to-one mapping

as proposed by previous research works [9]. We assume each failed test cases identifies
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tA tB tC tD tE tF tG tH tI tJ

F1 x

F2 x

F3 x

F4 x

F5 x

F6 x

F7 x

Table 3.1: Test order: T1 {tA, tB, tC , tD, tE , tF , tG, tH , tI , tJ}

one unique failure. APFD indicates how quickly a set of prioritized test list T ′
s can detect

the failures present in the system under test, and its value is measured from the weighted

average of the percentage of detected failures. The APFD ranges from 0 to 1, with higher

values indicating that the failures are detected more quickly.

Given a set of prioritized test T ′
s and a set of test failures F , the APFD is calculated as:

APFD = 1−
∑|T ′

s|
i=1(TF1 + TF2 + ...+ TFm)

m× n
+

1

2n
(3.1)

where TF1 is the position of the first test failure in T ′
s and n and m are the total number

of test and failures, respectively.

In addition, we consider the normalized version of APFD, NAPFD [84], to measure the

effectiveness of TCP TB for TCS. The NAPFD can be calculated as follow,

NAPFD = P −
∑|T ′

s|
i=1(TF1 + TF2 + ...+ TFm)

m× n
+

P

2n
(3.2)

where, p is the ratio between the number of failures detected for a specific test budget

and the total number of test failures.
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tI tJ tE tB tC tD tF tG tH tA

F1 x

F2 x

F3 x

F4 x

F5 x

F6 x

F7 x

Table 3.2: Test order: T2 {tI , tJ , tE , tB, tC , tD, tF , tG, tH , tA}

Let’s walk through an example of calculating APFD and NAPFD. Suppose we have two

different test case prioritization orders, T1 and T2, shown in Tables 3.1 and 3.2, respectively.

According to Equation 3.1, we can determine the APFD values for T1 and T2, where n (the

total number of tests) is 10 and m (the total number of failures) is 7.

APFD(T1) = 1− 2 + 3 + 4 + 8 + 9 + 10 + 5

7× 10
+

1

2× 10
= 0.4643

APFD(T2) = 1− 4 + 5 + 6 + 9 + 1 + 2 + 3

7× 10
+

1

2× 10
= 0.6214

From the above APFD values, we can see that prioritization order T2 is better than T1.

Now, let’s consider that we have only a 50% test budget. Then, T1 and T2 will be able

to detect four and five failures, respectively. So, the P value of T1 and T2 will be (4/7) and

(5/7), respectively. Finally, we can calculate the NAPFD values based on Equation 3.2 for

T1 and T2 as follows:

NAPFD(T1) = 0.5714− 2 + 3 + 4 + 5

7× 10
+

0.5714

2× 10
= 0.4000
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NAPFD(T2) = 0.7143− 4 + 5 + 1 + 2 + 3

7× 10
+

0.7143

2× 10
= 0.5357

For the case selection, the test order T2 is also better than T1.
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Chapter 4

EXPERIMENTAL RESULTS AND ANALYSIS

This chapter presents our experimental setup and results for evaluating transfer learning

(TL) in test failure prediction and test case prioritization (TCP). We divided this evaluation

process into two sections, each focused on achieving specific goals.

The first section evaluates various TL algorithms for predicting test failures in three case

studies and compares the results with three traditional tree-based machine learning (ML)

algorithms. We also analyze the impact of the features used for TL to validate our choice

of information selection. The experimental setup and results of test failure prediction are

presented in section 4.1.

The second section proposes a novel transfer learning-based test case prioritization

method called TCP TB. This method uses test execution history and version control system

(VCS) changeset features to efficiently reorder test suites. We evaluate the performance of

TCP TB against the state-of-the-art ML approach, CI-RTP/S, on 24 study subjects. We also

analyze the potential of internal domain knowledge transfer for large-scale projects. The

experimental setup and results of test case prioritization are presented in section 4.2.

To ensure the reliability of our experimental results, we also discuss the possible threats

to our findings in terms of internal and external validity. These are presented in the final
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section of this chapter

4.1 TEST FAILURE PREDICTION EVALUATION

This section presents the experimental setup and results to evaluate the performance of

various transfer learning algorithms in predicting test suite failures for large-scale industrial

datasets. The main objectives of these experiments are:

• To compare different transfer learning algorithms for predicting test suite failures.

• To analyze the impact of version control system (VCS) features on predicting test

suite failures using transfer learning.

We first provide a brief overview of the case studies and then analyze the experimental

results.

4.1.1 Case Studies

Table 4.1 presents the six software projects used in our experiments, along with their de-

scriptive statistics such as the number of builds, the number of failing builds, and the per-

centage of test failure. Five of these projects (three industrial and two open-source) are

collected from [9], while the remaining project (Open liberty) is obtained from IBM. The

test execution results of industrial projects [9] comprise both unit and integration testing

and are obtained from IVU Traffic Technologies. One of the industrial projects, IVU Cpp,

is primarily written in C/C++, while the other two (IVU Java 1 and IVU Java 2) are writ-

ten in Java. The Open liberty project is also written in Java and contains both unit and

integration testing.
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Project
Time
Period (days)

CI
Cycles #Tests

#Test
Executions

#Test
Failures

Test
Failure Rate

IVU Cpp 267 3996 1240 3608.4K 25973 0.72%

IVU Java 2 699 3209 1278 3526.4K 7603 0.22%

IVU Java 1 313 943 279 178.7K 14568 8.15%

buck 307 846 864 586.1K 1511 0.26%

sling 213 1403 304 268.1K 1158 0.43%

Open liberty 803 3421 1051 2408.8K 20639 0.86%

Table 4.1: Description of case studies

We consider IVU Cpp, IVU Java 2, and Open liberty as the target domain for evalu-

ating the transfer learning performance on large-scale projects, as they are representative

of large-scale projects and require a significant amount of time for testing. To evaluate

the transfer learning performance on these target domain projects, we use the following

industrial projects (i.e., IVU Cpp, IVU Java 2 and IVU Java 1) along with two large open-

source projects, buck and sling, which have comparatively higher test failure rates, as the

source.

The datasets collected from the Elsner et al. [9] paper contain sixteen features extracted

from VCS and CI data, as shown in Table 4.2. Among these, F1 and F4 consist of only

CI and VCS features, respectively, while F2 and F3 include features mapped from both

CI and VCS metadata. However, one of the features named ‘average test execution time’

can be misleading for projects that run in parallel environments. The hypothesis behind

this feature is that the test suite with higher execution time may cover a larger area of the

code and thus may contain more faults. However, many other factors, such as machine

speed, can influence test execution time. In large-scale CI projects, tests run in parallel

on different machines, which do not necessarily have the same configuration. As a result,

a test suite run on a low-configuration machine can have a higher execution time, which
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Feature Set Features

F1

Failure count (f1,1),
Last failure (f1,2),
Transition count (f1,3),
Last transition (f1,4),
Avg. test duration (f1,5)

F2

Max. (test, file)-failure freq. (f2,1),
Max. (test, file)-failure freq. (rel.) (f2,2),
Max. (test, file)-transition freq. (f2,3),
Max. (test, file)-transition freq. (rel.) (f2,4)

F3
Min. file path distance (f3,1),
Max. file path token similarity(f3,2),
Min. file name distance(f3,3)

F4

Distinct authors (f4,1),
Changeset cardinality (f4,2),
Amount of commits (f4,3),
Distinct file extensions(f4,4)

Fall F1, F2, F3, F4

Table 4.2: Features of CI-RTP/S approaches [9]

contradicts the above hypothesis. Therefore, this paper does not consider the test execution

time feature because our case studies are large-scale industrial projects that run their tests

in a parallel environment.

On the other hand, the dataset provided by the IBM Open liberty project has six fea-

tures, including Test Identifier, Test Total, Max. file path token similarity, and Changeset

cardinality (#Files Changed, #Line Inserted, and #Line Deleted). Only four of these fea-

tures (i.e., Max. file path token similarity and Changeset cardinality (#Files Changed,

#Line Inserted, and #Line Deleted) match with the features of the other datasets. There-

fore, knowledge transfer from the other datasets to the Open liberty dataset is challenging

due to the limited number of matching features.
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4.1.2 COMPARISON OF DIFFERENT TL ALGORITHMS

This paper evaluates popular TL algorithms used in classification problems, as described in

subsection 3.1.1. The performance of each model is assessed based on two evaluation met-

rics: recall and F-measure. Additionally, this paper compares the performance of TL algo-

rithms with the three most popular tree-based classification algorithms: decision tree (DT),

random forest (RF), and XGBoost, which are known for their fast performance compared to

neural network-based ML algorithms. However, a cost analysis model would be necessary

for a complete analysis. All algorithms are implemented using the scikit-learn and adapt

python libraries, and default hyperparameters are used for each model. The IVU Java 2,

IVU Cpp, and Open liberty datasets include test execution histories from 2019 to 2020,

with the last month of testing data used to predict failure and the rest used for ML training.

Table 4.3 compares the performance of various ML models, where we find that RF per-

forms better for IVU Cpp and IVU Java 2 datasets in terms of both Recall and F-measure

(highlighted in bold). Elsner et al. [9] also reported that RF is the best performing algo-

rithm for these two datasets. We evaluated the performance of TL algorithms on the same

testing set, considering the training set of the ML model as the target domain and data from

other projects as the source domain.

Table 4.4 presents the TL algorithms’ performance on the IVU Java 2 dataset, with the

best-performing algorithms highlighted in bold. The results show that parameter-based TL

algorithms outperformed the instance and feature-based approaches. TransferForestClas-

sifer (source: IVU Cpp) performed the best among the TL and ML algorithms, boosting

the recall and F-measure values by 0.64% and 0.21%, respectively, compared to RF. These

results suggest that the IVU Cpp dataset can be more beneficial as a source domain for the

IVU Java 2 dataset.
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DT RF XGBoost

recall precision F-measure recall precision F-measure recall precision F-measure

IVU Cpp 0.8348 0.5882 0.6901 0.8748 0.8895 0.8821 0.8679 0.8893 0.8785

IVU Java 2 0.8585 0.1501 0.2555 0.8907 0.8993 0.8950 0.8360 0.8755 0.8553

Open liberty 0.7208 0.8193 0.7669 0.6738 0.8520 0.7525 0.4707 0.9703 0.6339

Table 4.3: Performance of ML algorithms on IVU cpp, IVU Java2, and Ibm openliberty
dataset and highest values are highlighted in bold

Algorithm
IVU Cpp IVU Java 1 buck sling

recall precision F-measure recall precision F-measure recall precision F-measure recall precision F-measure

SA 0.1222 0.0077 0.0145 0.4437 0.0555 0.0986 0.0193 0.0142 0.0164 0.0836 0.0017 0.0033

Coral 0.4823 0.1670 0.2481 0.3826 0.0276 0.0515 0.7267 0.0020 0.0039 0.4469 0.0376 0.0693

NNW 0.8296 0.1301 0.2249 0.8778 0.0244 0.0474 0.8103 0.0854 0.1545 0.7331 0.0055 0.0110

TrAdaBoost 0.8585 0.7437 0.7970 0.8392 0.4350 0.5730 0.8521 0.6065 0.7086 0.8424 0.6023 0.7024

TransferTreeClassifier 0.7203 0.9143 0.8058 0.8746 0.5562 0.6800 0.8939 0.8967 0.8953 0.7942 0.7694 0.7816

TransferForestClassifier 0.8971 0.8971 0.8971 0.8939 0.8967 0.8953 0.8071 0.9128 0.8567 0.3698 0.9502 0.5324

TransBoost 0.8296 0.8897 0.8586 0.8842 0.8959 0.8900 0.8907 0.8963 0.8935 0.8810 0.8868 0.8839

Table 4.4: Performance of TL algorithms on IVU Java2 dataset for different sources and
highest values are highlighted in bold

Table 4.5 presents the performance of TL algorithms on the IVU cpp dataset, with the

best performances highlighted in red. Similar to the IVU java 2 dataset, TransferTreeClas-

sifier (source: IVU java 2) achieved better recall (0.8782) and F-measure values (0.8830)

than other TL and ML algorithms. Based on these results, we observe that there is an op-

portunity to improve test failure prediction in large-scale industrial projects if the source

domain has a large volume of data and a higher test failure rate.

Algorithm
IVU Java 2 IVU Java 1 buck sling

recall precision F-measure recall precision F-measure recall precision F-measure recall precision F-measure

SA 0.0715 0.0138 0.0231 0.4368 0.0064 0.0126 0.5563 0.0066 0.0130 0.5186 0.0129 0.0252

Coral 0.6535 0.0778 0.1390 0.5483 0.0093 0.0183 0.0663 0.0073 0.0132 0.5546 0.0155 0.0301

NNW 0.7782 0.3117 0.4451 0.8365 0.0098 0.0194 0.8222 0.0489 0.0923 0.6421 0.0047 0.0094

TrAdaBoost 0.8210 0.7925 0.8065 0.8285 0.7667 0.7964 0.8113 0.7581 0.7838 0.8182 0.7392 0.7767

TransferTreeClassifier 0.8634 0.8851 0.8741 0.8645 0.9004 0.8821 0.8782 0.8788 0.8785 0.8651 0.7704 0.8150

TransferForestClassifier 0.8782 0.8879 0.8830 0.8780 0.8800 0.8790 0.8719 0.8905 0.8811 0.8130 0.9087 0.8582

TransBoost 0.8679 0.8877 0.8777 0.8765 0.8795 0.8780 0.8776 0.8792 0.8784 0.8771 0.8795 0.8783

Table 4.5: Performance of TL algorithms on IVU Cpp dataset for different sources and
highest values are highlighted in bold



Chapter 4. EXPERIMENTAL RESULTS AND ANALYSIS 56

Algorithm
IVU Cpp IVU Java 2 IVU Java 1

Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

SA 0.4753 0.0094 0.0184 0.5908 0.0085 0.0168 0.8684 0.0086 0.0170

Coral 0.1274 0.0065 0.0123 0.1324 0.0098 0.0183 0.1581 0.0089 0.0168

NNW 0.1340 0.0090 0.0168 0.2460 0.0077 0.0149 0.3017 0.0082 0.0160

TrAdaBoost 0.4178 0.0326 0.0604 0.4211 0.0324 0.0602 0.4348 0.0326 0.0607

TransferTreeClassifier 0.0007 0.0042 0.0012 0.0009 0.0085 0.0017 0.0007 0.0042 0.0012

TransferForestClassifier 0.0000 0.0000 0.0000 0.0005 0.0012 0.0007 0.0004 0.0020 0.0007

TransBoost 0.0000 0.0000 0.0000 0.0003 0.0015 0.0005 0.0007 0.0042 0.0012

Table 4.6: Performance of TL algorithms on Open liberty dataset for different sources and
highest values are highlighted in bold

Table 4.6 displays the performance of TL algorithms on the Open liberty dataset, with

the best performance highlighted in red. The feature-based TL algorithm, SA outperforms

the decision tree in terms of recall value (0.8684). However, the F-measure value is quite

low, at 0.0170. This result indicates that the model is making random predictions and thus

is not efficient. The TL algorithms perform poorly for the Open liberty dataset as it has

been trained with fewer features than the ML algorithms, with all the features being VCS

features. To attain good TL performance, both VCS and CI features are required.

4.1.3 CI AND VCS FEATURES IMPACT ON TL MODEL PREDICTION

The TransferForestClassifier has demonstrated the best performance among the TL al-

gorithms for the IVU Java 2 and IVU Cpp datasets. According to Elsner et al.[9], VCS

metadata is inexpensive and easily accessible. Also does not have any language dependen-

cies. Additionally, we have found that ML models trained with both CI and VCS metadata

achieve better performance, indicating that VCS metadata greatly influences ML model

training. To investigate the impact of VCS metadata on TL performance, we have consid-

ered two feature sets: one including all the features (All’) and the other containing only the

CI features (CI’). Figures 4.1 and 4.2 display the TransferForestClassifier’s performance

on the IVU Java 2 and IVU Cpp datasets, respectively, for these two feature sets.
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Figure 4.1: ‘All’ and ‘CI’ feature sets impact on TransferForestClassifier of IVU Java2
dataset

Figure 4.2: ‘All’ and ‘CI’ feature sets impact on TransferForestClassifier of IVU Cpp
dataset
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The results of the experiment show a significant drop in the recall and F-measure val-

ues of the TransferForestClassifier for both the IVU Java 2 and IVU Cpp datasets when

VCS features are removed. As shown in Figure 4.1, the recall and F-measure values for

the IVU Java 2 dataset decreased by 9.65% and 5.16%, respectively. Similarly, the recall

and F-measure values for the IVU Cpp decreased by 6.82% and 5.53%, respectively, as

shown in Figure 4.2. This experiment highlights the importance of VCS metadata in the

performance of TL algorithms. Therefore, the findings suggest that for better prediction by

transfer learning algorithms, both CI and VCS metadata are necessary.

4.1.4 CONCLUSION

This experiment addresses the challenge of predicting test suite failures, particularly for

large-scale datasets with imbalanced class distributions. The results show that TL algo-

rithms can improve the test failure prediction rate for such datasets with low failure rates.

Among the various TL algorithms, TransferForestClassifier (parameter-based) outperforms

Random Forest by boosting the recall value of IVU Java 2 and IVU Cpp datasets by 0.64%

and 0.34%, respectively. However, it is worth noting that TransferForestClassifier requires

both CI and VCS features to achieve better predictions.

4.2 TCP TB EVALUATION

We conduct several experiments to evaluate the effectiveness of our proposed approach,

TCP TB, and present the experimental results addressing the research questions outlined in

Section 1.4.
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Project
Time
Period (days)

CI
Cycles #Tests

#Test
Executions

#Test
Failures

#Test
Failure Rate

SonarQube 532 4286 3122 6696.0K 2,156 0.03%

Open liberty 1168 6124 1158 4571.5K 17583 0.38%

IVU Cpp 267 3996 1240 3608.4K 25,973 0.72%

IVU Java 2 699 3209 1278 3526.3K 7,603 0.22%

graylog2-server 1381 3891 250 798.5K 403 0.05%

buck 307 846 864 586.1K 1,511 0.26%

jcabi-github 872 809 201 398.1K 740 0.19%

cloudify 909 4973 116 283.6K 602 0.21%

sling 213 1403 304 268.1K 1,158 0.43%

okhttp 1423 3412 266 236.5K 939 0.40%

IVU Java 1 313 943 279 178.7K 14,568 8.15%

Achilles 1114 642 627 139.9K 162 0.12%

DSpace 1043 1929 83 122.1K 1,697 1.39%

jsprit 368 267 107 91.8K 123 0.13%

jOOQ 961 1318 51 81.5K 573 0.70%

dynjs 1163 385 83 68.5K 496 0.72%

jetty.project 63 192 787 63.9K 415 0.65%

optiq 395 458 63 55.3K 110 0.20%

HikariCP 661 1575 23 44.0K 383 0.87%

titan 747 384 107 43.3K 551 1.27%

wicket-bootstrap 1245 904 91 41.4K 9007 21.76%

jade4j 1539 358 43 35.9K 1323 3.69%

deeplearning4j 727 982 174 14.6K 908 6.22%

LittleProxy 1580 271 50 11.0K 172 1.56%

Table 4.7: Overview of the study subjects

4.2.1 STUDY SUBJECTS

To evaluate TCP TB, we utilize the open liberty and 23 other publicly available datasets

(e.g., 20 open source and three industrial). The open liberty dataset is provided by Interna-

tional Business Machines Corporation (IBM). It is primarily written in Java and provides

an open framework for developing cloud-based applications and microservices. The other
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23 projects are collected from [9]. The details of all these 24 projects are listed in Table 4.7

in descending order based on the number of test execution. We remove jOOQ from our

experiment as it has no failure in the last seven months of the CI cycle. Table 4.7 shows

the number of CI cycles, tests, test executions, test failures, test failure rate, and data col-

lection period for each project. The wicket-bootstrap project has the highest test failure

rate (21.76%), while the SonarQube project has the lowest test failure rate (0.03%) but the

highest number of test execution. However, the open liberty dataset has the highest number

of CI cycles (6124) with 0.38% test failure rate.

4.2.2 BASELINE METHOD

In order to determine the efficiency of transfer learning approach for improving TCP per-

formance, it is important to compare it with other popular ML models. Therefore, we evalu-

ated ten commonly used ML models, including decision tree (DT), random forest (RF), gra-

dient boosting tree (GBT), Light-GBM, XGBoost (XGB), logistic regression (LR), naive

Bayes (NB), k-nearest neighbors, multilayer perceptron (MLP), and support vector ma-

chine (SVM), on each study subject using the feature set (fnew) described in Section 3.2.1.

These ML models have been employed in previous studies at least once, and we used the

default hyperparameters for running these algorithms, similar to [9]. The best ML results

for each study subject are stored in Table 4.8, and we refer to this baseline method as

TCP ML. The goal is to compare the performance of TCP TB with that of TCP ML and

assess whether the former outperforms the latter.
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CI-RTP/S TCP ML (Fnew) TCP TB (TransBoost, Fnew)

SonarQube 0.6330± 0.3348 (F2, LR) 0.9431± 0.1220 (XGB) 0.9522± 0.1044 (S2)

open liberty − 0.9217± 0.1304 (XGB) 0.9270± 0.1169 (S5)

IVU Cpp 0.9768± 0.0783 (Fall, RF) 0.9781± 0.0697 (XGB) 0.9823± 0.0588 (S10)

IVU Java 2 0.9606± 0.1384 (Fall, RF) 0.9609± 0.1217 (XGB) 0.9676± 0.1099 (S3)

graylog2-server 0.9832± 0.0003 (f3,3, H) 0.9618± 0.0329 (XGB) 0.9832± 0.0003 (Sall)

buck 0.5981± 0.1916 (f1,5, H) 0.9806± 0.0807 (RF) 0.9834± 0.0800 (S2)

jcabi-github 0.8640± 0.2056 (F1, LR) 0.8533± 0.2118 (XGB) 0.8935± 0.1743 (S10)

cloudify 0.9921± 0.0000 (Fall, GBM) 0.9286± 0.0000 (RF) 0.9286± 0.0000 (S4)

sling 0.9243± 0.2333 (Fall, GBM) 0.9845± 0.0450 (XGB) 0.9885± 0.0457 (S4)

okhttp 0.8571± 0.2689 (F2, MLP) 0.8837± 0.2099 (GBM) 0.9509± 0.0475 (S6)

IVU Java 1 0.8720± 0.1646 (f1,2, H) 0.8785± 0.1747 (Light-GBM) 0.8882± 0.1642 (S2)

Achilles 0.8452± 0.0000 (f3,1, H) 0.7024± 0.0000 (GBM) 0.9643± 0.0000 (S9)

DSpace 0.4186± 0.2956 (F1, GBM) 0.7565± 0.2778 (GBM) 0.7653± 0.2225 (S13)

jsprit 0.7259± 0.2489 (Fall, LR) 0.6736± 0.2386 (NB) 0.7649± 0.1679 (S10)

dynjs 0.0094± 0.0000 (f3,3, H) 0.9762± 0.00 (GBM) 0.9733± 0.00 (S11)

jetty.project 0.8308± 0.2556 (Fall, LR) 0.9715± 0.0765 (XGB) 0.9867± 0.0267 (S11)

optiq 0.6615± 0.1813 (f1,4, H) 0.8885± 0.1684 (RF) 0.8815± 0.2061 (S11)

HikariCP 0.4232± 0.1563 (F4, GBM) 0.5770± 0.2483 (RF) 0.6520± 0.2342 (S7)

titan 0.7838± 0.2643 (F1, LR) 0.8856± 0.1379 (GBM) 0.9327± 0.0776 (S2)

wicket-bootstrap 0.8032± 0.2666 (f1,2, H) 0.8607± 0.1855 (XGB) 0.9754± 0.0232 (S13)

jade4j 0.7093± 0.2146 (f3,3, H) 0.6598± 0.2394 (DT) 0.7791± 0.2422 (S4)

deeplearning4j 0.8139± 0.1924 (f1,1, H) 0.8669± 0.1769 (RF) 0.8969± 0.1503 (S3)

LittleProxy 0.6858± 0.2874 (F2, RF) 0.6708± 0.1804 (NB) 0.8092± 0.2365 (S13)

Table 4.8: Mean and standard deviation APFD values of CI-RTP/S, TCP ML, and TCP TB.
The highest values are highlighted in bold

4.2.3 IDENTIFICATION OF POTENTIAL SOURCE DATASET

In this experiment, we determine the best source datasets to develop a pre-trained source

model for TransBoost. In practice, the common assumption is that the source model trained

with a large-scale dataset will be the best source model for transferring knowledge. This

paper selects the top 13 projects from Table 4.7 with more than 100k test execution vol-

ume as potential source datasets. A source dataset will be efficient if it improves the TCP
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performance of Transboost compared to TCP ML. Figure 4.3 shows the performance of

source datasets for 23 study subjects. We calculate the difference of mean APFD values of

TCP TB model with the best ML model (TCP ML). The green color represents the number

of study subject which received an increment, while the orange indicates a decrement in

the mean APFD value compared to TCP ML. The results with no change are represented

with gray. SonarQube is the largest dataset among all the study subjects; it has a 6.6M test

execution history. According to the common assumption, a model pre-trained on Sonar-

Qube should perform better. However, the source model trained with SonarQube improves

the mean APFD of 13 projects while decreasing for nine others. We are assuming that

even if the SonarQube has the highest volume of test execution data, it could not be a good

data source because of its low test failure rate. The subsequent dataset (i.e., open liberty,

achieves the highest performance by enhancing the TCP performance of 16 projects. How-

ever, it diminishes the TCP performance of six projects. Six source datasets achieve the

second-best position by improving the TCP performance of 15 projects. All these projects

have a comparatively high test failure rate and a good volume of data. Jacabi-github and

achilles both these datasets performed poorly as source. The test failure rates of these two

datasets are 0.19% and 0.12%, respectively, which is low compared to other sources. Based

on the above discussion, we can assume that a balance between test execution volume and

failure rate is required to be a promising source dataset. This answers our first research

question RQ1, where test failure rate and volume are equally crucial for choosing a source

dataset. Thus, we characterize it as a general guideline for selecting a source dataset. How-

ever, one can analyze the data distribution similarity of the source and target dataset for a

more specific reference.



Chapter 4. EXPERIMENTAL RESULTS AND ANALYSIS 63

Figure 4.3: The performance of source datasets for 23 study subjects compared to TCP ML

4.2.4 INTERNAL DOMAIN KNOWLEDGE TRANSFER

The typical transfer learning strategy in industry leverages knowledge from a mature prod-

uct (large-scale source domain) to improve the performance of new products (small-scale

target domain). However, in this experiment, we look for a way to improve the TCP perfor-

mance of large-scale projects. The large-scale datasets have enough data for constructing
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efficient ML models; however, the low test failure rate also makes it challenging for large-

scale datasets. Some studies [9], [15] consider only the most recent data for building ML

models because of test case volatility. The assumption is that some old test cases may be

removed and new test cases added to the system. Thus, running the ML model with old data

can decrease the model’s performance. Roza et al. [15] proposed a sliding window-based

ML model for TCP. The process discards the old data outside of the sliding window, and if

test case information is not present in the window, the test is considered a new test. How-

ever, this new test case can be an old one that may run after a long time; thus, discarding

the old data can negatively impact the model prediction performance. Therefore, instead

of discarding old data, we consider them as the source and refine them on recent data to

build a more efficient prediction model. We can follow the same sliding window concept;

the data inside the window range will be considered target domain data, and the data before

the target window will be considered source domain data. We name this process internal

domain knowledge transfer. The example of creating a source and target dataset within the

same domain is shown in Figure 3.4.

We evaluate the performance of internal domain knowledge transfer with the same 13

source datasets. We set each project’s window size with a minimum of six months of

previous data. Figure 4.4 shows the performance of TCP TB considering internal domain

knowledge transfer. This process improves TCP performance for open liberty, IVU Cpp,

graylog2-server, jcabi-github, sling, okhttp, IVU Java 1, DSpace projects by an average

of 1.26% compared to TCP ML. For SonarQube, IVU Cpp, IVU Java 1 and graylog2-

server, the internal domain knowledge transfer achieves nearly the same result as TCP ML

with an average 0.29% decline in mean APFD. However, it performed worse for cloudify

and Achilles, and both these datasets have only one test failure in the last seven months.
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Figure 4.4: Mean APFD improvement of TCP TB using internal domain knowledge tranfer

Thus, we cannot conclude that internal domain knowledge transfer failed for these two

datasets. Based on the results shown in Figure 4.4, we can conclude that most large-scale

datasets achieved better or similar performance with internal domain knowledge transfer

compared to the baseline approach, TCP ML. These findings suggest that when all old data

is still relevant, ML and TL will have similar performance because the old data does not

negatively affect the performance of the ML model This discussion answers our second

research question RQ2 and indicates that internal domain knowledge transfer can benefit
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TCP for large-scale projects.

4.2.5 EFFECTIVENESS OF TCP TB

In this experiment, we compare our approach TCP TB with existing work CI-RTP/S [9]

to understand its effectiveness. The same 22 study subjects are considered to compare in

both approaches. We collect each study subject’s optimal settings (feature set, method)

and recreate the results for our training testing split. Features used in [9] are listed in Ta-

ble 4.2. Moreover, we compare TCP TB with ten popular ML algorithms. Among the ML

algorithms, XGBoost achieves the best performance. Table 4.8 shows a comparison among

TCP TB, TCP ML and CI-RTP/S [9] results. The best TCP performances are highlighted

in bold. The CI-RTP/S column indicates the results calculated based on the optimal setting

defined in [9]. The TCP ML column indicates the best ML results with the new feature set

fnew discussed in Section 3.2.1.

TCP TB improves the TCP performance of 19 projects compared to both CI-RTP/S and

TCP ML. Figure 4.6 and 4.5 show the performance of TCP TB in terms of mean APFD

on each study subjects compared to TCP ML and CI-RTP/S respectively. For Couldify,

the result of TCP TB remains the same as TCP ML and decreases by 6.35% compared to

CI-RTP/S. This project has only one failure in the last seven months, and the feature is also

different. We assume this occurs because of the feature set, and it is also not sufficient to

measure the effectiveness based on one failure. In the future, we plan to train TCP TB with

different feature sets to identify the optimal feature set for each study subject. However,

the mean APFD value of TCP TB for grayloglog2-server remains the same and improves

2.14% than CI-RTP/S and TCP ML respectively. The TCP performance of TCP TB de-

creases by 0.29% and 0.70% for dynjs and optiq respectively compared to TCP ML. We
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Figure 4.5: The percentage of mean APFD improvement of TCP TB for each study subject
compared to CI-RTP/S

Figure 4.6: The percentage of mean APFD improvement of TCP TB for each study subject
compared to TCP ML
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observe that the performance of TCP TB for these two projects is slightly decreased than

TCP ML. This may happen because of the different data distribution of these two projects

compared to their source datasets. For the remaining projects TCP TB performed better

than CI-RTP/S and TCP ML. For the most large-scale dataset, the performance improve-

ment is around 1% compared to TCP ML based on the mean APFD value. Project Achilles

receives the most significant gain, a 26.19% increase in the mean APFD score. For the

smaller datasets, the TCP TB achieves significant improvement, which is expected as they

have fewer data for ML model training. We find an average of 6.1% improvement in the

mean APFD value than TCP ML.

We conducted a comprehensive analysis to evaluate the effectiveness of the TCP TB ap-

proach for test case selection (TCS). The performance of CI-RTP/S, TCP ML, and TCP TB

were compared for three different test budgets (10%, 50%, and 80%), and the best per-

formances were highlighted in bold in Table 4.9,4.10, and4.11. Overall, TCP TB outper-

formed the other two methods for all three test budgets. However, when the test budget was

limited to 10%, TCP ML performed well for DSpace, dynjs, and optiq, while CI-RTP/S per-

formed well for IVU CPP and Cloudify. For both 50% and 80%, TCP ML performed better

for two study subjects (i.e., DSpace, dynjs, and optiq), and CI-RTP/S performed better for

one study subject (i.e., Cloudify). Our results demonstrate that TCP TB is an effective

approach for TCS across a range of test budgets and study subjects.

Figure 4.7 presents a box plot that shows the overall performance of the TCP TB ap-

proach in terms of NAPFD value. For the small 10% test execution budget, both the

CI-RTP/S and TCP ML approaches perform very poorly, with median NAPFD values of

around 0.58 and 0.78, respectively. In contrast, TCP TB achieves a median NAPFD value

of 0.88 across all study subjects. For the larger test budgets of 50% and 80%, the median
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Test Execution Rate 10%

CI-RTP/S TCP ML TCP TB

SonarQube 0.2837± 0.4472 0.8268± 0.3584 0.8301± 0.3668

open liberty - 0.7849± 0.3327 0.7938± 0.3279

IVU Cpp 0.9464± 0.1668 0.9299± 0.1969 0.9431± 0.1785

IVU Java2 0.9180± 0.2521 0.9080± 0.2627 0.9274± 0.2380

graylog2-server 0.9832± 0.0003 0.8573± 0.2412 0.9832± 0.0003

buck 0.0697± 0.2237 0.9568± 0.1696 0.9690± 0.1423

jcabi-github 0.6995± 0.4230 0.6858± 0.4276 0.7507± 0.3936

cloudify 0.9921± 0.0000 0.9286± 0.0000 0.9286± 0.0000

sling 0.9052± 0.2711 0.9666± 0.1484 0.9791± 0.1156

okhttp 0.6965± 0.4437 0.7319± 0.4204 0.8503± 0.3215

IVU Java 1 0.7359± 0.3385 0.7601± 0.3241 0.7807± 0.3160

Achilles 0.0000± 0.0000 0.0000± 0.0000 0.9643± 0.0000

DSpace 0.0380± 0.0849 0.4877± 0.4695 0.2307± 0.3971

jsprit 0.2137± 0.3626 0.2452± 0.3804 0.3376± 0.4427

dynjs 0.9416± 0.0000 0.9762± 0.0000 0.9661± 0.0000

jetty.project 0.5981± 0.4654 0.9438± 0.1363 0.9587± 0.1218

optiq 0.0505± 0.1339 0.7395± 0.4006 0.7235± 0.4391

HikariCP 0.0320± 0.0519 0.2107± 0.3047 0.2403± 0.3478

titan 0.6261± 0.4696 0.6508± 0.4882 0.8027± 0.3437

wicket-bootstrap 0.4959± 0.7013 0.4959± 0.7013 0.9754± 0.0232

jade4j 0.1770± 0.3464 0.1154± 0.1477 0.4512± 0.4190

deeplearning4j 0.4369± 0.4509 0.7072± 0.3924 0.7900± 0.3300

Little Proxy 0.1942± 0.4342 0.1942± 0.4342 0.3833± 0.5251

Table 4.9: Mean and standard deviation NAPFD values for CI-RTP/S, TCP ML, and
TCP TB considering test budget 10%

NAPFD values are positively skewed for all three approaches. Despite this, TCP TB con-

sistently achieves better performance than the other two methods across all study subjects.

From the above discussion, we can conclude TCP TB can perform better than ML models

with the same feature set for TCP and TCS.
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Test Execution Rate 50%

CI-RTP/S TCP ML TCP TB

SonarQube 0.6013± 0.3757 0.9309± 0.1773 0.9485± 0.1204

open liberty - 0.9114± 0.1693 0.9198± 0.1460

IVU Cpp 0.9724± 0.1010 0.9716± 0.0939 0.9794± 0.0761

IVU Java2 0.9557± 0.1600 0.9497± 0.1714 0.9597± 0.1481

graylog2-server 0.9832± 0.0003 0.9618± 0.0329 0.9832± 0.0003

buck 0.4998± 0.3104 0.9700± 0.1363 0.9793± 0.1055

jcabi-github 0.8253± 0.2893 0.8148± 0.2892 0.8681± 0.2389

cloudify 0.9921± 0.0000 0.9286± 0.0000 0.9286± 0.0000

sling 0.9227± 0.2381 0.9843± 0.0496 0.9864± 0.0715

okhttp 0.8381± 0.3179 0.8701± 0.2655 0.9491± 0.0573

IVU Java 1 0.8492± 0.2130 0.8504± 0.2260 0.8644± 0.2141

Achilles 0.8452± 0.0000 0.7024± 0.0000 0.9643± 0.0000

DSpace 0.3207± 0.3599 0.6762± 0.4076 0.7321± 0.2948

jsprit 0.6715± 0.3423 0.6066± 0.3349 0.7041± 0.2454

dynjs 0.9416± 0.0000 0.9762± 0.0000 0.9661± 0.0000

jetty.project 0.8185± 0.2911 0.9654± 0.1048 0.9867± 0.0267

optiq 0.6028± 0.2999 0.8885± 0.1684 0.8538± 0.2913

HikariCP 0.2069± 0.2336 0.4795± 0.3323 0.5367± 0.3325

titan 0.7096± 0.4070 0.8856± 0.1379 0.9327± 0.0776

wicket-bootstrap 0.8033± 0.2666 0.8607± 0.1855 0.9754± 0.0232

jade4j 0.6551± 0.2813 0.6114± 0.2827 0.7408± 0.2748

deeplearning4j 0.7877± 0.2483 0.8416± 0.2431 0.8831± 0.1882

Little Proxy 0.5342± 0.4902 0.6708± 0.1804 0.7300± 0.4112

Table 4.10: Mean and standard deviation NAPFD values for CI-RTP/S, TCP ML, and
TCP TB considering test budget 50%

4.3 THREATS TO VALIDITY

In this section, we discuss the possible threats to the internal and external validity of our

experimental results.

• Internal validity refers to the accuracy and reliability of the experimental results ob-

tained in a specific study. In our experiment, we use the default execution environ-

ments and parameter settings of different machine learning techniques to evaluate the
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Test Execution Rate 80%

CI-RTP/S TCP ML TCP TB

SonarQube 0.6310± 0.3384 0.9431± 0.1220 0.9522± 0.1044

open liberty - 0.9211± 1331 0.9265± 0.1195

IVU Cpp 0.9762± 0.0813 0.9746± 0.0778 0.9813± 0.0627

IVU Java2 0.9586± 0.1482 0.9601± 0.1259 0.9669± 0.1143

graylog2-server 0.9832± 0.0003 0.9618± 0.0329 0.9832± 0.0003

buck 0.5918± 0.2059 0.9756± 0.1096 0.9833± 0.0810

jcabi-github 0.8620± 0.2093 0.8496± 0.2208 0.8914± 0.1791

cloudify 0.9921± 0.0000 0.9286± 0.0000 0.9286± 0.0000

sling 0.9241± 0.2341 0.9845± 0.0458 0.9884± 0.0478

okhttp 0.8510± 0.2874 0.8829± 0.2269 0.9491± 0.0573

IVU Java 1 0.8689± 0.1717 0.8751± 0.1823 0.8849± 0.1757

Achilles 0.8452± 0.0000 0.7024± 0.0000 0.9643± 0.0000

DSpace 0.4125± 0.2995 0.7565± 0.2778 0.7596± 0.2350

jsprit 0.7217± 0.2548 0.6569± 0.2678 0.7625± 0.1707

dynjs 0.9416± 0.0000 0.9762± 0.0000 0.9661± 0.0000

jetty.project 0.8185± 0.2911 0.9715± 0.0765 0.9867± 0.0267

optiq 0.6591± 0.1821 0.8885± 0.1684 0.8815± 0.2061

HikariCP 0.4004± 0.1802 0.5632± 0.2600 0.6406± 0.2507

titan 0.7838± 0.2643 0.8856± 0.1379 0.9327± 0.0776

wicket-bootstrap 0.8033± 0.2666 0.8607± 0.1855 0.9754± 0.0232

jade4j 0.7015± 0.2253 0.6475± 0.2644 0.7734± 0.2591

deeplearning4j 0.8115± 0.1991 0.8645± 0.1845 0.8945± 0.1601

Little Proxy 0.6858± 0.2874 0.6708± 0.1804 0.8092± 0.2365

Table 4.11: Mean and standard deviation NAPFD values for CI-RTP/S, TCP ML, and
TCP TB considering test budget 80%

study subjects. However, hyperparameter tuning and feature selection may improve

the performance in different scenarios. Therefore, in our future work, we plan to

tune the hyperparameters and perform feature selection to determine their impact on

different scenarios. By doing so, we can ensure that our results are not affected by

suboptimal hyperparameters or irrelevant features.
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Figure 4.7: Mean NAPFD across study subjects

• External validity refers to the generalizability of the results to other contexts or pop-

ulations. Our experimental results are based on the evaluation of 24 datasets written

primarily in Java, and the selected features are extracted from CI and GitHub repos-

itories. The results may vary if different feature sets are selected or if the datasets

are written in different programming languages. However, we believe that our study

can be reproduced using the same model configurations and datasets available in the

repository [85]. Moreover, we have provided detailed descriptions of our methodol-

ogy, making it possible for other researchers to reproduce our results and apply our

approach to other datasets.
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4.3.1 CONCLUSION

In this experiment, we evaluate a transfer learning-based test case prioritization technique

called TCP TB. This approach utilizes both test execution history and VCS changeset fea-

tures to efficiently reorder test suites. We test our approach on 24 software projects and

observe an enhancement in TCP performance for 19 of them. The APFD metric is used to

evaluate the performance of TCP TB. For large-scale projects with a test execution history

greater than 100K, the APFD value is mostly increased by 2.82% when compared to the

performance of CI-RTP/S and TCP ML. Moreover, we find that Open liberty is the most

effective source dataset for creating transfer learning models as it improves the mean APFD

value for 16 projects. Overall, TCP TB demonstrates improved performance in TCP and

TCS in 82.61% and 79.71% of cases, respectively. These results suggest that TL can indeed

benefit test case prioritization and selection.
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Chapter 5

CONCLUSION AND FUTURE WORK

In conclusion, this paper tackles the challenges of test failure prediction and test case pri-

oritization (TCP) in continuous integration (CI) systems, which are critical to effective

software development. While machine learning (ML) techniques have been widely applied

to TCP, their performance can be limited when dealing with imbalanced or low-failure-rate

data. Transfer learning (TL) algorithms have been proposed to address these challenges

and enhance test failure prediction. This thesis presents a comparative analysis of various

TL algorithms and proposes a new test case prioritization method, TCP TB, which lever-

ages TransBoost, a model-based transfer learning algorithm. The proposed method uses

test execution history and VCS changeset features to predict test failure probability and

reorder test cases accordingly.

The experimental results demonstrate that TL algorithms can improve test failure pre-

diction rates for software projects, including large-scale industrial projects, and TCP TB

enhances TCP and TCS performance for most projects compared to the traditional ML and

baseline model CI-RTS/S. Moreover, the proposed approach TCP TB can facilitate knowl-

edge sharing between similar projects without compromising data confidentiality. This

thesis also explores internal domain knowledge transfer for large-scale projects using TL,
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which mitigates the challenge of searching for potential source datasets, one of the primary

issues in TL.

In summary, this paper provides valuable insights into the use of TL algorithms for

improving TCP in CI systems, and proposes a new test case prioritization method that

effectively utilizes transfer learning. The results suggest that TL can enhance test failure

prediction and TCP performance, especially for large-scale industrial projects. This paper

demonstrates the potential of TL in addressing imbalanced and low-failure-rate data issues

and improving the efficiency of software development.

One potential avenue for future research is to explore the optimal feature set for TCP TB.

While our approach utilizes test execution history and VCS changeset features, there may

be additional features that could improve the test failure prediction and prioritize test cases

more effectively. Further investigation could help identify these features and lead to more

accurate predictions.

Another research idea is to adapt real-time training methods. In our approach, we

build our model in an offline environment and periodically update it. However, as new test

results become available, it may be possible to incorporate this information into the model

to improve its accuracy. By updating the model with new data in real-time, we can adapt

to changes in the software development process and improve TCP performance over time.

However, in this study, we did not analyze the costs and benefits of the TL approach,

as we updated our model offline periodically. Therefore, a future direction could be to

investigate the costs and benefits of TCP with TL using real-time training methods. This

could help to determine the trade-offs between improved performance and the computa-

tional costs of real-time training with TL algorithms.

Finally, exploring multi-domain knowledge transfer could also be an interesting avenue
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for future research. Our approach focused on transferring knowledge from one software

project to another, but it may also be possible to transfer knowledge across multiple do-

mains. By utilizing knowledge from multiple domains, we may be able to improve the

accuracy of our TCP approach and prioritize test cases more effectively. This could be par-

ticularly useful in cases where there is limited training data available for a specific project,

as we could leverage knowledge from other domains to improve test failure prediction and

prioritize test cases more accurately.
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