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Abstract

Automatic grading of computer programs has a great impact on both computer science

education and the software industry as it saves human evaluators a tremendous amount

of time required for assessing programs. However, to date, this problem lacks extensive

research from the machine learning/deep learning perspective. Currently, the existing

auto-grading systems are mostly based on test-case execution results. However, these

approaches lack insight into the syntax and semantics of the codes, and therefore, are far

from human-level evaluation. In this study, we leverage the power of language models

pre-trained on programming languages. We introduce two simple deep architectures and

show that they consistently outperform the shallow models built upon extensive feature

engineering approaches by a high margin. We also develop an incremental transduc-

tive learning algorithm that only requires a single reference solution to a problem and

takes advantage of the correct implementations in the set of programs to be evaluated.

Furthermore, our human evaluation results show that the proposed approaches provide

partial marks having a strong correlation with the marks given by human graders. We

prepare and share a dataset of C++ and Python programs for future research. Finally,

we provide some interpretations and explainability of the deep-learning models as well as

insights to the decisions and potential feedback to programming submissions in real-world

applications.

Keywords: Automatic program grading; Pre-trained language representation models;

Siamese network; Incremental learning; Contrastive learning; Interpretability
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Chapter 1

Introduction

1.1 Overview

The automatic and accurate grading of computer programs is of paramount importance

due to its tremendous impact on educational programming courses. Compared to man-

ually grading programming assignments, the use of such tools can immensely reduce the

time of grading and help maintain impartial grading across all students. Moreover, this

technology can help software development companies largely in the recruitment process

and assessment of the sheer volume of applicants by providing instant feedback on the

programming ability of applicants.

The traditional auto-grading approaches require creation of an appropriate test suite

for each question facilitating their prompt evaluation. However, building such test suites

demands ample time and effort. To ensure loophole-free test suites designers are required

to perform rigorous analysis on the coverage of all possible combinations of inputs and

outputs for each problem. This limits the complexity of questions that can be asked

since a higher complexity question requires a larger test suite and more time to ensure its

validity and completeness. Moreover, in the case that a program fails to compile/execute

or for certain reasons fails to pass any test-cases, there is no way to evaluate the program

1



Chapter 1. Introduction 2

using a test suite for potential partial marks (see Figure 1.1).

Figure 1.1: This program is only missing the “cout” statement, but it does not pass any

test-cases. The human evaluators grade the program 3 and 4 out of 5. The proposed

model predicts the grade of 3.32 out of 5.

Although effective auto-grading of computer programs is a demanding need, there are

only few studies on the analytical side that make this mechanism more effective [1, 62, 64].

To date, the majority of these works in machine learning are based on shallow models

(e.g. LASSO, Support Vector Machine) designed on top of handcrafted features. While

designing these features is a tedious task and may vary from one programming language

to another one, they are far from deep insights, which are required for human-level

assessment of programs.

In educational programming courses where evaluators manually grade programming

submissions, the use of such tool can immensely reduce the time of grading and help
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maintain impartial grading across all students. Currently, due to workload distribution,

grading strictness varies across graders, and grading time is proportional to the program’s

length and complexity. There is an even bigger need of such technology in Massive Open

Online Courses where class sizes can reach up to thousands of students. This is not

the case for our model. Our automatic grading model is idempotent and grading time is

invariant to the program’s length and complexity. Our proposed model does not evaluate

the program based on possible inputs and corresponding outputs, but instead evaluates

the code itself just like a human evaluator would do.

For software development companies, this technology would largely aid in the recruit-

ment process. Due to the sheer volume of applicants, the evaluation of programming

skills is usually done with the aid of test-suites. The interviewer could get instant feed-

back on the validity of the code and programming ability of the applicant with the help

of our model.

In the area of code generation, to measure the quality and correctness of generated

code responding to natural language specifications, researchers have used automatic met-

rics such as BLEU score and test-cases [30]. As they find that BLEU is a troublesome

metric, they sacrifice the evaluation of the quality of generated code for the correct-

ness since their main objective is to produce correct programs. Test-case evaluation of

generated code poses security risks (since generated code can have unknown intent and

potentially be malicious) and requires the time-consuming creation of test-cases, thus it

is unpractical in certain environments.

Recently, advancements in Natural Language Processing (NLP) approaches based

on pre-trained language models (e.g., BERT [19]) have shown significant performance

improvement in many natural language understanding tasks [19, 41, 54]. Similar ideas

are adapted in programming languages models such as CodeBERT [23] and GraphCode-

BERT [27]. However, to the best of our knowledge, these Tranformer-based [68] models

have not been investigated for automatic program grading. We aim to further discover its
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capabilities in the domain of programming language processing on our task. In this work,

we leverage the advantages of models pre-trained on a large set of computer programs

and adapt them for the problem of computer program grading.

The problem of grading computer programs is facing several other challenges from

the data mining/machine learning point of view. Fine-tuning existing models requires a

large number of labeled samples (i.e., programs and their grades) which are not usually

available. Furthermore, in order to provide maximal effectiveness, the proposed model

should be invariant to questions, that is, the model trained for marking a particular

question should be used for assessing other questions as well.

To that end, we propose different models and end-to-end solutions for the problem

of automatic computer program grading. Our proposed models take advantage of pre-

trained models built upon large collections of unlabeled programs. In particular, our

models leveraging the pre-trained models CodeBERT [23] and UniXcoder [28] are fine-

tuned on the task of predicting the correctness of computer programs. Additionally, we

implement a Siamese network architecture with a contrastive loss function, as defined in

[29], to increase the memory-bounded limitation on the maximum size of input programs

and to reduce the information loss on the model’s output embedding.

In order to make the models invariant to a specific question, we feed models with

a question-specific correct solution (as a reference) and use appropriate loss functions

(i.e., cross-entropy loss, contrastive loss). We train the proposed models by utilizing

weakly labeled samples, where the labels (i.e., correct/incorrect) are determined by the

test suite results available for each program. That is, if the program fails on any test-case

then it is incorrect, otherwise, it is correct. Our extensive experiments show that the

proposed models trained on weakly labeled samples significantly outperform the shallow

models. Moreover, our user study shows that the proposed approaches have a strong

correlation with marks given by human evaluators. As a case study, we gather a small

graded dataset of programs and use that to further evaluate the correlation and mean
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squared error between the model’s logits (non-normalized predictions) and the given

grades. Considering the small size of this graded data, we cannot use it to train deep

neural networks, and thus resort to training on test-case labeled data.

We also extend the proposed methods by approaching the problem from an instruc-

tor’s point of view. In a real-world academic scenario, an instructor usually only provides

a single solution to a problem instead of multiple solutions. However, the use of multiple

solutions as different point of views can help the model make better predictions. Thus,

to address this situation, we propose an incremental transductive algorithm built upon

a majority vote scheme that takes advantage of the available correct implementations in

the set of programs to be evaluated. We propose two algorithms, one of which allows

us to utilize multiple correct references with our proposed models and the other, resem-

bling more to a real-world environment, requires only one correct solution, but extends

the solution set, and makes use of the prior algorithm to incorporate multiple points of

reference in its prediction.

1.2 Contribution

The contributions of this thesis can be summarized as follows:

• We propose end-to-end deep architectures for the problem of grading computer

programs and show the possibility of training them using weakly labeled samples.

To the best of our knowledge, this is the first work investigating the potential of

pre-trained deep learning models for this problem.

• We provide different neural network architectures to help the model’s predictive

capabilities in distinct ways.

• We provide a new inference method for more realistic scenarios, where only one

correct solution is available, which is usually the case in the academic field. We
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propose an incremental learning approach to train our model using only a single

ground truth correct solution per problem. The incremental transductive learning

approach takes advantage of correct programs in the test set based on a majority

voting approach.

• We design comprehensive hand-crafted features capturing the program’s syntax

and structure. We further conduct extensive experiments and show that while

the proposed architectures need less supervision than shallow models built upon

hand-crafted features, they also outperform the shallow models by a high margin.

• We conduct a user study and find that partial grades predicted by the proposed

models appear to have a strong correlation with human graders’ marks.

• We collect and clean a dataset of C++ and Python programs, and release it for

further research in evaluating the correctness of computer programs.

• We provide an analysis on explainability and interpretability of our proposed deep

learning models including an attention weights analysis and insights of the models’

decisions.

• We show the potential of using our proposed models in the task of program synthesis

as a useful application.

1.3 Thesis Outline

This thesis is organized in six Chapters as follows:

• Chapter 2 goes over the related work in the field of Programming Language (PL)

processing followed by more specific works related to the task of computer program

grading.

• Chapter 3 presents the concepts and definitions necessary to understand the field.
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• Chapter 4 presents the problem definition consisting of a high level description

of our task, followed by our proposed models and baselines intended to produce

maximal results for the automatic grading of programs.

• Chapter 5 presents our data, possible evaluation methods, the empirical results,

and a user study to better evaluate the proposed models.

• Chapter 6 concludes the thesis, provides some limitations of the work, and suggests

possible future work in the area.

• Chapter 7 presents an application of our proposed methods which can bring im-

provements to the task of program synthesis.

1.4 Software & Source Code

Software

Our models were implemented in the Python programming language. Python is a high-

level programming language (PL) used as the main PL for machine learning (ML). The

ML models in this research were trained and evaluated on graphical processing units

(GPUs) due to their high computational efficiency and parallelization capability. Some

of the necessary Python libraries used in this thesis are:

• NumPy is a library mainly used for scientific computation including multi-dimensional

data manipulation and comprising of a large collection of mathematical functions.

• Pandas is a library used for dataset analysis thanks to its DataFrame object and

coupled with data manipulation capabilities similar to NumPy.

• Tree-sitter is parsing library used in this research to assure the compilability of a

program and to build concrete syntax trees from source code.
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• PyMinifier is a tool used to reduce the size of python source code while maintaining

its functionality with methods such as removing comments, dosctrings, unnecessary

whitespaces, and so on. Although it required some modifications, it was used in

the preprocessing of our data.

• PyTorch is a machine learning (ML) framework used to build and train ML models

with a focus on deep neural networks.

• Scikit-learn is a library used for general machine learning (ML) including different

ML algorithms such as the decision tree classifier, support vector machines, k-

nearest neighbors algorithm, etc.

Source Code

The code implementations necessary to perform automatic grading of computer pro-

grams, including our proposed models, and the data used to train our deep-neural net-

work models are available at the following link.

https://github.com/peter-nagy1/Deep-Grader

(Please contact to request access. This link is restricted due to the work being

prepared for an anonymous publication.)

https://github.com/peter-nagy1/Deep-Grader


Chapter 2

Literature Review

2.1 Computer Program Grading

The grading of computer programs using machine learning has only been tackled with

a feature-engineering approach in [1, 62, 64]. In this paper, they propose a grammar of

features that is composed of six categories where each category specifies the type of code

occurrences that are counted as features. The categories start from simple keyword counts

to more complex data dependency and control-context between programming expressions.

They then transform the features to make them invariant across questions. Finally,

they experiment with multiple models including linear regression with L1 regularization

(LASSO), ridge regression, support vector machines (SVM), and random forest to train a

supervised model for this task. This design necessitates a test-suite to acquire a number of

correct programs in order to accurately grade responses to an unseen question. The main

drawback of this approach comes from the features that need to be redefined specifically

to the programming language at hand. Algorithms for certain graph representations of

code would need to be rewritten for every programming language as they mostly depend

on specific keywords and structure of code which vary across languages. Furthermore,

this design inevitably requires multiple correct solutions as reference to accurately grade

9
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responses which may not be feasible in deployment.

Outside of machine learning, few research papers proposed grading computer pro-

grams based on the number of test-cases passed [20, 37, 70, 80]. However, this approach

does not evaluate the program’s efficiency and style of writing. Furthermore, a minor

error in an almost correct program can make it fail all test-cases judging it as completely

incorrect by this approach (see Figure 1.1). On another note, a recent paper [44] has

suggested grading computer programs by comparing their execution paths to a reference

solution within a problem. In the case, that the proposed system finds a semantically

different execution path it deems the program incorrect. On the downside, this approach

cannot provide a partial grade to a program.

Other related papers focus on finding errors and providing feedback [59, 63] or cor-

recting them [10, 26, 51] in computer programs. The task of plagiarism detection [85]

or code clone detection [74, 79], involving the detection of similar programs, can also

be linked to our task, as likewise, we attempt to deduce the similarity between program

pairs. Some have approached their problem with recurrent neural network (RNN) mod-

els [10, 51] using Seq2seq [66] and LSTM [34] architectures. While others used methods

involving abstract syntax tree (AST) representations of programs and developed complex

algorithms such as AutoGrader [63] and CLARA [26] to solve their problem.

2.2 Transformer Models

Recently, great innovations have emerged in the natural language (NL) processing field

due to the Transformer [68] architecture, more specifically, by the use of pre-trained

large language models such as BERT [19], BART [41], T5 [54], etc. Similar models have

surfaced in the programming language (PL) field based on their NL counter-part including

CodeBERT [23], GraphCodeBERT [27], CuBERT [38], UniXcoder [28], PLBART [2],

CodeT5 [78], etc. Some of these models have incorporated multiple input modalities to
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pre-train their model other than the PL source code such as NL in the form of code

comments and graph representations of code in the form of AST [28, 78] or data flow

[27]. Although these models have aided to produce better results in many downstream

tasks in the PL field, they have never been utilized for computer program assessment.

To measure the capabilities of a wide spectrum of state-of-the-art PL models, we

decided to leverage CodeBERT and UniXcoder into our model architectures, since these

pre-trained models have been proven to perform outstandingly on many code-related

downstream tasks. To the best of our knowledge, CodeBERT is the earliest imple-

mentation of a pre-trained Transformer-based model dedicated for PL data. It is then

continuously used by future research in the field as a strong baseline [2, 27, 28, 78].

Following CodeBERT, researchers introduce graph representations into their model, and

amongst them, UniXcoder shows to outperform the previously mentioned rivals on most

downstream tasks [28].



Chapter 3

Background

3.1 Current Grading Practices

Currently, educators and recruiters mainly use test-cases to automatically evaluate the

programming competency of programmers. In the case that a submitted program passes

a set of test-cases, the program is deemed correct. Usually, evaluators assign partial

marks for programs that only pass a fraction of test-cases.

A test-case is a problem specific evaluation of a program which compares (e.g., using

exact matching) an expected output against the program’s output given a set of inputs.

A complete set of test-cases make up a test-suite for a given problem. A test-suite should

cover all possible combination of inputs that can be provided to the program and test

all requirements of the problem. Formally, each requirement should be tested with a

positive test-case and a negative test-case.

There are many shortcomings to the approach of using test-cases to evaluate pro-

grams.

• Creating a test-suite is time-consuming, laborious, and harder as programs get

more complex. Currently, in educational programming courses, when evaluators

manually grade programming submissions, due to workload distribution, grading

12
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strictness tends to vary across graders, and grading time is proportional to the

program’s length and complexity. Additionally, there is a limit to the complexity

of questions that can be asked since a higher complexity question requires a larger

test-suite and more time to ensure its validity and completeness.

• Test-case evaluation fails in cases where the solution is close to perfect but missing

an output related element. Due to the nature of unit-testing, if the program’s

output format is not exactly the same as intended by the test-suite, the program

will fail all test-cases. A reoccurring common example is if the program outputs

an extra newline character at the end of the output; then all test-cases will fail.

Another frequent example is when the programming language numerical precision

varies over compilations. The output floating point values will be slightly different

at different executions of the code.

• Test-cases do not evaluate the content of the code, containing characteristics such

as the programming ability of the coder, just like a human evaluator would do, but

instead only evaluate outputs based on given inputs.

• Test-case evaluation may cause out of memory issues if the program is too large or

too complex leading to failed test-cases and therefore incorrectly labeled programs.

The same is true for the elapsed time. If a test-suite runs for too long then the

program is marked incorrect due to a timeout inconsiderate of its actual correctness.

These two aspects further limit the solution size and complexity of programming

questions that can be asked.

• Test-case evaluation is unusable if a program does not compile. There exists multi-

ple cases causing compilation issues depending on the programming language used

such as incorrect indentation, missing semi-colon, etc. However, in some scenarios,

the correctness of the program should not be entirely determined by its compilation
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status. For example, in educational institutions, professors believe students should

get part marks on their assignments even if their code doesn’t compile.

3.2 Natural Language Processing

Natural language processing (NLP) is a field of machine learning studying the interac-

tion between computers and human language. The field covers a wide range of tasks

from natural language understanding to generation. Researchers proposed many ma-

chine learning solutions such as statistical methods by computing word occurrences and

making probabilistic decisions, recurrent neural networks models with LSTM [34] and

gated recurrent neural networks [14], and language models using word embeddings to

capture semantic properties of natural language sentences. The most recent state-of-the-

art advancements were brought by the discovery of the Transformer [68] which is a neural

network architecture built using attention mechanisms.

3.3 Tokenization

The preprocessing phase of NLP pipelines mainly include a tokenization process. The

process of tokenization involves a tokenizer which groups a sequence of characters into

tokens. This process ensures the parsing of long text into individual tokens. The tokenizer

will then perform indexing by assigning an index value for each distinct token. Hence,

by converting natural language text into a sequence of indices, we can compute token

representation embeddings using neural network models.

3.4 Feature Extraction

There exists many ways to extract feature vectors from input text. One way is to use

machine learning models to extract representations from a sequence of tokens. Another
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approach is to manually extract statistical features from the text such as counts of spe-

cific keywords or keyword combinations. This is also called feature engineering, where

the goal is to extract the syntactic and semantics of a given text using the most descrip-

tive features. In the case of computer programs, designing such features requires a deep

knowledge of the programming language at hand. Since each programming language

works differently and uses different syntax to achieve a certain goal. For example, there

are low-level and high-level programming languages. There are also multiple program-

ming paradigms such as procedural (e.g., C, FORTRAN), object-oriented (e.g., C++,

Java), functional (e.g., Clojure, Scala), logical (e.g., Absys, Prolog), mathematical (e.g.,

Maple, MATLAB), and reactive (e.g., RxJava, RxJS) programming languages. There

are also multi paradigm languages like Python. We can also extract structural properties

of programming languages with structural representations such as abstract syntax trees,

control flow graphs, and data flow graphs.

3.5 Representation Learning

There has been a growing interest in the field of representation learning over the past

decade [40, 42, 47]. In representation learning, the goal is to capture the semantic repre-

sentation of instances (e.g., text documents, words, images) in a low-dimensional vector

space. That is, each instance is represented by a vector representing its rich set of features.

The information captured in the representation vectors (i.e., embedding) can be used in

many downstream tasks, such as similarity search [56], classification [39], and clustering

[84] and it reduces/eliminates the need for expert knowledge in feature engineering.

For example, in the NLP domain, context-free models such as word2vec [47] and

GloVe [49] learn word representations without considering the context of words (e.g., the

sentence in which they are appearing). However, many words have different meanings

depending on the context they are used (e.g., “Apple” for instance, may be a name
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of company or a fruit depending on the context). The context-based models such as

BERT [19] learns representations based on the context in which words appear. Therefore,

BERT is more powerful in learning semantically meaningful representations that captures

context-dependent meanings of words.

Most often, models, such as BERT, are optimized using supervised-training. That is,

randomly selected tokens are masked from the input sentence before going through the

encoder. The encoder learns the embedding vectors for each word/token in the sentence

in order to predict the most likely word/token for each masked word/token. This process

does not require manually annotated data and can take advantage of large unlabelled

training data, which is available in many domains.

3.6 Structures in Programming Languages

In order to understand semantics of the code, we need to learn about the basic structures

in the code and the way of extracting them. This is important as multiple methods

[4, 5, 27, 28, 36, 75, 76] have leveraged the code’s structural representation in order to in-

corporate the structure of the code containing crucial code semantics into the embedding

space. A lexical analyzer or tokenizer is used to convert the code to a token-based se-

quence in which the order of tokens follows the order of appearance in code. Then, some

models opt to utilize a parser, which is also known as a syntax analyzer, that produces

an abstract syntax tree (AST) from the token-based sequence based on the grammar

rules. The root node in this tree is the start symbol of the grammar, the interior nodes

are the non-terminals in the grammar and the leaf nodes are the terminals, which are

code tokens such as programming language specific keywords, variables and identifiers

defined by the programmer. Finally, a semantic analyzer can utilize the AST to generate

the flow graphs that contain the semantic information of the source code. There are two

common flow graphs:
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• Control Flow Graph (CFG): This graph illustrates different possible execution paths

of a program.

• Data Flow Graph (DFG): This graph describes the dependency relation between

variables in a program and shows how the data traverses across the variables.

Furthermore, since DFGs are only capable of representing basic blocks without branches

(blocks without any conditions in other words), they can be replaced by the basic blocks

of a CFG resulting in a control/data flow graph. Utilizing the following piece of code

snippet in Python (Figure 3.1), we constructed the AST (Figure 3.2) as well as CFG

(Figure 3.3.a) and DFG (Figure 3.3.b) to illustrate their definitions.

def subt rac t ( a , b ) :

x = 0

i f ( a > b ) :

x = a − b

else :

x = a + b

return x

r e s u l t = subt rac t (2 , 1 )

print ( r e s u l t )

Figure 3.1: A Python code snippet example.

An encoder-only model encodes an input sequence, in our case, a set of code tokens,

into internal state vectors which can be used for program classification or regression tasks.

Whereas a decoder-only model predicts the next tokens given some previous tokens

as context which is mainly used for code completion tasks or code generation tasks.

Finally, an encoder-decoder model will encode an input sequence and then generate a



Chapter 3. Background 18

0 Module: NULL

30 Assign: NULL 36 Expr: NULL

1 FunctionDef: subtract

31 NameStore: result 32 Call: NULL

7 body: NULL 29 detector_list: NULL2 arguments: NULL

37 Call: NULL

38 NameLoad: print 39 NameLoad: result34 Num: 233 NameLoad: subtract 35 Num: 1

6 defaults: NULL3 args: NULL

4 arg: NULL 5 arg: NULL

11 If: NULL 27 Return: NULL8 Assign: NULL

9 NameStore: x 10 Num: 0

15 body: NULL12 CompareGt: NULL 21 orelse: NULL

13 NameLoad: a 14 NameLoad: b 16 Assign: NULL
22 Assign: NULL

17 NameStore: x 18 BinOpSub: NULL

19 NameLoad: a 20 NameLoad: b

23 NameStore: x 24 BinOpAdd: NULL

25 NameLoad: a 26 NameLoad: b

28 NameLoad: x

Figure 3.2: An example of Abstract Syntax Tree.

new output sequence not necessarily as a continuation of the input sequence, but as an

original token sequence such as in code summarization or code translation tasks.

We mainly focus on deep-learning models developed for code understanding tasks.

Some models have been developed with networks such as Recurrent Neural Networks

(RNNs) [60], more specifically, Long Short-Term Memory (LSTM) [34], bidirectional

LSTMs, or Graph Neural Networks (GNNs). Bidirectional LSTMs allow the input to flow

in both directions through the neural network. GNNs can receive graph representation

inputs such as ASTs, CFGs, DFGs and learn directly from the graphs instead of learning

from a sequence representation of the graphs.
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3.7 Transformer Architecture

The Transformer [68] architecture is constructed using an attention mechanism connect-

ing the encoder to the decoder and assigning attention weights which inform the model

about which input tokens should be more influential. The encoder associates the in-

put tokens with each other while learning their representation through a self-attention

mechanism (which is also used by the decoder when receiving the encoder’s output).

3.7.1 CodeBERT

CodeBERT [23] is a pre-trained programming language model utilizing an encoder-only

architecture identical to that of the base RoBERTa [45] model. RoBERTa is derived from

BERT [19], both using a Transformer-based architecture. CodeBERT is trained using the

Masked-Language Modeling (MLM) objective, consisting of predicting randomly masked

code tokens, as well as the Replaced Token Detection (RTD) objective, aiming to predict

whether a token at a specific location appears in the original program or it has been

replaced. Both of these objectives were originally developed for natural language models

and then adapted to programming language models. The adaptations mainly involve

addressing both bimodal (i.e., training based on pairs of natural language and program-

ming language examples) and unimodal (i.e., training upon pairs of two programming

language instances) data. The model has a total of 125M parameters which are trained

on the CodeSearchNet [35] dataset with six programming languages including Go, Java,

Javascript, PHP, Python, and Ruby.

3.7.2 GraphCodeBERT

GraphCodeBERT [27] introduces data flow into the architecture with a graph-guided

masked attention function. GraphCodeBERT improves on CodeBERT in programming

language understanding and code representation by leveraging the code’s structure with
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Data Flow Graphs (DFGs). The code’s structure is incorporated into the model using a

graph guided masked attention function. In addition to the MLM objective, it introduces

two new objectives for pre-training in a structure-aware manner. The first one consists of

predicting data flow edges between variable nodes which they refer to as Edge Prediction

(EP), and the second involves predicting edges between variable nodes and source code

tokens with is referred to as Node Alignment (NA). This encoder-only model follows

the BERT architecture using a multi-layer bidirectional Transformer design. They also

utilize code comments in their pre-training data which most pre-trained models omit as it

can be misleading and does not affect the execution of the program. This model contains

125M trainable parameters and was trained on the CodeSearchNet dataset using the six

given programming languages.

3.7.3 CodeT5

CodeT5 [78] is an encoder-decoder pre-trained model which is able to perform with both

code understanding tasks and code generation tasks. This model’s architecture is based

on the T5 [54] NLP model. They introduce new pre-training tasks including Masked

Span Prediction (MSP) which masks arbitrary length spans of text and then attempts

to predict them. They also makes use of the Identifier Tagging (IT) task where the goal

is to predict if a certain code token is an identifier. Furthermore, using the Masked

Identifier Prediction (MIP) task, the model learns to predict the missing identifier code

tokens from the masked source code. Finally, they employ the Bimodal Dual Generation

(BDG) task which consists of generating NL or PL from a NL-PL pair. This can also be

viewed as a MSP where the NL or the PL is masked in one single span and the task is to

predict the span. The CodeT5 model was built with two sizes: a small version consisting

of 60M parameters and a base version consisting of 220M parameters. It was pretrained

on two datasets: CodeSearchNet and the GitHub fraction of Google BigQuery dataset
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1. In addition to the six programming languages present in the CodeSearchNet dataset,

the model is also trained on C and C# programming languages.

3.7.4 PLBART

PLBART [2] is another encoder-decoder pre-trained model originating from the BART

[41] model’s architecture well established in the NLP field. This model is pre-trained

with a single objective named Denoising Autoencoding (DA). The objective consists of

reconstructing an input text affected by a noise function. The input is modified with noise

by masking certain tokens (similar to MLM), by deleting certain tokens or by masking

out spans of tokens (similar to MSP). The PLBART model has 140M parameters and was

trained on the Java and Python written GitHub fraction of Google BigQuery dataset and

they used data from StackOverflow to extract NL questions and answers to programming

problems. They also evaluated their model on seven additional programming languages

(i.e., Go, JavaScript, PHP, Ruby, C, C++, C#) which were not presented to the model

during its pre-training phase. The PLBART model performed surprisingly well, even

outperforming other models that were explicitly pre-trained on those languages on several

tasks.

3.7.5 Codex

Codex [13] introduces a decoder-only model that generates code solutions based on a

given natural language problem denoted as the context. This model’s architecture was

inspired by the GPT-3 [12] model family and showed performance improvements on code

related tasks over GPT models which were partially trained on code. They train this

model with the objective of minimizing the negative log-likelihood between the reference

code and the generated code. They publish this model in multiple sizes ranging from

1https://console.cloud.google.com/marketplace/details/github/github-repos
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12M to 12B parameters. The model is trained on a large dataset (179 GB) of repositories

from GitHub using only the Python programming language. This model proves capable

of generating solutions to a wide variety of introductory difficulty problems, however,

it falls short when tasked with harder problems. It is presumed that the Codex model

under-performs a strong student having completed an introductory computer science

course.

3.7.6 UniXcoder

UniXcoder [28] is a general pre-trained model that proposes an encoder-only, a decoder-

only, and an encoder-decoder framework for a range of code-related tasks. The different

behavior modes (encoder-only, decoder-only, and encoder-decoder) are enabled using an

input prefix ([Enc], [Dec], and [E2D]). The model takes advantage of code comments

and Abstract Syntax Tree (AST) to enrich code representations. While code comments

could be helpful for translation-related tasks (e.g., translating from one programming lan-

guage to another one), abstract syntax trees retain all structural information of codes in

embeddings. They utilize multiple pre-training tasks including Masked Language Mod-

eling (MLM) in the encoder-only mode, Unidirectional Language Modeling (ULM) for

the decoder-only mode, where the task consists of predicting the next token conditioned

on previous tokens. They further employ a DeNoiSing (DNS) objective in an encoder-

decoder mode which consists of predicting random masked spans. The model also learns

semantic embeddings from multi-modal code using Multi-modal Contrastive Learning

(MCL), and Cross-Modal Generation (CMG). The former employs a contrastive learning

approach based on SimCSE [25] framework and the latter consists of generating code

comments. They also mention that while AST representations are crucial in pre-training

the model, they are not required when fine-tuning the model to specific downstream tasks.

The model includes 125M trainable parameters and follows a Transformer-based model

architecture. The UniXcoder model was trained on the CodeSearchNet [35] dataset and
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additionally, on the C4 dataset [54], consisting of English text, with a denoising objective

to help the model with various bimodal tasks.

3.7.7 Code-MVP

Code-MVP [76] presents an encoder-only pre-trained model which integrates multiple

representations of a program in the model input at the same time with a contastive learn-

ing framework. Thus, they extract the natural language (NL) description/comment, the

programming language (PL) source code, the abstract syntax tree (AST) representation,

the control flow graph (CFG) representation, and the program transformation (PT) vari-

ant from a program and use those views as the input to the model. They utilize various

functionally-invariant PT techniques to help the model understand functional semantics

and also serves as a data augmentation. The model is trained on Multi-View Masked

Language Modeling (MMLM) which predicts masked out tokens from data points. The

model is also trained on Multi-View Contrastive Learning (MVCL) which functions dif-

ferently depending on a single-view or a dual-view approach. In both cases they perform

contrastive learning which requires positive and negative samples. In a single-view ap-

proach, positive samples consist of paired identical programs with different views and

negative samples consist of different programs with different views. In the dual-view

scenario, the setup is similar, however, they prepend the program pairs with their corre-

sponding NL representation. Finally, the model is trained using the Fine-Grained Type

Inference (FGTI) task which consists of predicting the type information of code tokens.

They use a model containing 125M trainable parameters and they train on the Code-

SearchNet dataset solely on Python code.

3.7.8 SynCoBERT

SynCoBERT [75] provides a pre-trained encoder-only model derived from BERT. The

parameters and initializations are adopted from CodeBERT and GraphCodeBERT. The
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dataset used and learned programming languages are also identical to CodeBERT. Syn-

CoBERT, however, introduces a contrastive pre-training approach, coupled with AST

representations, and two novel pre-training tasks. First, the model is trained on Multi-

Modal Masked Language Modeling (MMLM), similar to Code-MVP, although, in this

case, the modalities used are NL, PL, and AST. They form triplets from these modalities

for each data point and predict masked tokens from the data sequences. They fur-

ther pre-train using the novel Identifier Prediction (IP) task which consists of predicting

whether tokens are identifiers or not as binary classification task. Furthermore, they use

AST Edge Prediction (TEP) to encode structural information directly from AST into

the model by predicting masked edges between tree nodes. The main goal is to predict

whether two nodes have an edge between them or not. Finally, they employ Multi-Modal

Contrastive Learning (MCL), similar to Code-MVP, they create positive and negative

samples by pairing different combinations of NL, PL, and AST and train to maximize

the similarity for positive pairs while minimizing it for negative pairs.

3.8 Other Models

Some influential models have been proposed which do not rely on a Tranformer archi-

tecture, however, they do utilize the attention mechanism. Although, they are not large

models, they introduce important and successful code representation models.

3.8.1 Code2vec

Code2vec [5] provides an encoder-only trained model which is designed to aggregate

syntactic paths from the AST representation of source code into a single vector. The

model architecture is a path-based attention model which is trained with the objective

of predicting a probability distribution of assigned tags to code snippets. The model

is inspired by the NL model Doc2vec [40]. Code2vec was trained on a Github dataset
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containing 14M Java methods.

3.8.2 Code2seq

Code2seq [4] presents an encoder-decoder model which is designed to convert source code

snippets to natural language sequences. It was inspired by the Seq2seq [66] NL model.

Similarly to Code2vec, source code snippets are represented as compositional paths in

their AST representation. The encoder takes in a vector representation of each path

in the AST rather than code tokens. Code2seq was trained to predict the next token

based on previously generated tokens as context. The model architecture encapsulates a

combination of bidirectional LSTMs coupled with an attention mechanism in the decoder.

The model was trained on Java (Java-Small, Java-Med, Java-Large) and C# datasets

from GitHub and has a total of 37M trainable parameters.

3.9 Shallow Models

3.9.1 Random Forest

The Random Forest [33] classifier is composed of a collection of decision tree classifiers

which are fitted to distinct sub-sets of the training data. The average of the decision

trees’ predictions will be considered as the final prediction. The classifier can also con-

trol over-fitting by adjusting the characteristics of the decision trees in order to reduce

their complexity. For example, reducing the maximum tree depth of the decision trees,

reducing the number of splits at each node, and reducing the number of variables con-

sidered at each split increase the variability of the decision trees.
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3.9.2 Support vector machine (SVM)

Support vector machines [17, 22] are considered a non-probabilistic binary linear classifier

mapping training instances to points in an embedding space while maximizing the gap

between the two classes. New points can then be classified based on which side of the

separation line they fall in.

3.9.3 LASSO (L1)

The least absolute shrinkage and selection operator (LASSO) [67] is a linear regression

model with L1 regularization performing variable selection and regularization to enhance

the predictive capability and interpretability of regression models.

3.9.4 Ridge regression (L2)

The ridge regression [31] method is a linear regression model with L2 regularization

which estimates the coefficients of multiple-regression models when the variables are

highly correlated. The method was mainly developed to tackle multicollinearity in linear

regression.
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0: start

9: result = subtract(2,1)

2: x = 0

1: enter: subtract(2,1)

3: if (a>b)

6: x = a+b4: x = a-b

7: return x

1: exit: subtract(2,1)

10: print(result)

0: stop

(a)

a b

x

-

(b)

a b

x

+

(c)

Figure 3.3: An example of Flow Graphs. (a) Control Flow Graph, (b) Data Flow Graph

of the expression x = a - b (c) Data Flow Graph of the expression x = a + b
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Methodology

4.1 Problem Definition

The true assessment of a computer program’s grade requires a thorough analysis by

external expert evaluators. However, building a large dataset of programs paired with

their corresponding true labels (i.e., grades) is an extremely time-consuming task. To

that end, we utilize weakly-labeled samples where the label is determined by a test suite

created for each given problem. A program is deemed correct or positive if it passes all

test-cases within the test suite, otherwise, it is deemed incorrect. More formally, the j’th

solution for problem i is denoted by P i
j =< sij,1, s

i
j,2, . . . , s

i
j,mj

>, where sij,k is the k’th

token in the j’th solution for problem i. The label lij = 1 if P i
j is correct, and lij = 0 if P i

j

is incorrect. Our training dataset is composed of programs and corresponding labels as

follows:

D = {(P i
j , l

i
j)|i = 1, 2, . . . j = 1, 2, . . . } (4.1)

where P i
j is the j’th program for problem i and its corresponding label lij. Furthermore,

in the following sections, we assume P i
+ is a correct solution for problem i, and P i is a

solution that could be correct or incorrect.

28
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Problem Statement: Given a training set D, the goal is to build a model that takes

a correct program/solution P̂ q
+ /∈ D for problem q, and estimates the correctness of an

unseen solution P̂ q /∈ D for an unseen problem/question q.

It is worth mentioning that we are considering only smaller sized programs composed

of about 512 tokens. However, it would be possible to adapt a NL model like Longformer

[9] that can handle large sequences of text to the PL field. We consider this as a potential

future work.

A program is correct or positive if it is verified by an external party to be correct.

In our data, correct programs are those that pass the test-suite created for the given

problem. However, there is no need for a test-suite if a human expert evaluates the

program as correct. A program is deemed incorrect or negative if it fails a test-case

inside the test-suite.

Table 4.1: Summary of notations and their definitions

Notation Definition

D the dataset

P the collection of programs

s the collection of tokens in a program

l the labels assigned to a collection of programs (correct/incorrect)

P i an unlabeled solution to a given problem i

P i
+ a correct solution to a given problem i

We propose two architectures leveraging these pre-trained models for programming

language grading.
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4.2 Deep Grader

Figure 4.1 shows the Deep Grader architecture. We create our dataset by combining all

coding submissions with a random correct submission belonging to the same question. In

this way, we can achieve question-independent grading since the model only has to learn

to differentiate the two input submissions irrespective of the problem. Furthermore, this

architecture requires only one single correct reference to successfully assess the grade of

a new program. The programs are then processed through a pre-trained tokenizer which

joins the two programs into one sequence padded and truncated to a fixed sequence

length.

The token sequence starts with the [CLS] special token followed by two tokenized

programs separated by a [SEP] token and ends with the [EOS] token. For example, a

program pair (P i, P i
+) is encoded as:

< [CLS], P i, [SEP], P i
+, [EOS] > (4.2)

Note that P i
+ is a correct solution for question i, and P i is a solution that could be

correct or incorrect. In addition to this token sequence, the tokenizer also provides the

pre-trained model with an attention mask which specifies which program each token

belongs to.

The output of the pre-trained models incorporates contextual vector representation

for each token and an aggregate representation of the sequence is captured in the [CLS]

token embedding, denoted by C⃗. The pre-trained model’s output (i.e., C⃗) is then fed

into a softmax layer to provide the final output.

The model is trained using the cross-entropy loss:

L
(
W,Y, P i, P i

+

)
= −(Y i log(Ŷ ) + (1− Y i) log(1− Ŷ )) (4.3)

where W is the model parameters, Ŷ is the predicted probability of P i’s correctness, and

Y i is the class label, which is 1 if P i is a correct program, and 0 otherwise.
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Figure 4.1: Deep Grader Architecture

A sample program P i and a reference solution P i
+ are tokenized using a pre-trained

tokenizer (i.e., CodeBERT, UniXcoder). The tokenized programs are concatenated into

one sequence separating the program tokens by a separator token [SEP]. This sequence

is fed through the pre-trained model, and the [CLS] token embedding denoted by C⃗ is

the model’s output. The C⃗ is then passed through a softmax layer to obtain a

normalized output.

4.3 Deep Siamese Grader

Figure 4.2 shows the Siamese-based architecture for grading computer programs. The

anchor program P i and correct program P i
+ are tokenized independently and fed into two

separate instances of the pre-trained models sharing weights with each other. The model

uses the contrastive loss function [29] to learn the parameters. That is, the outputs of

the models, which represent low-dimensional embedding of the programs P i, and P i
+,

denoted by P⃗ i, and P⃗ i
+ respectively, are compared using the parameterized Euclidean

distance function:

DW

(
P⃗ i, P⃗ i

+

)
=

∥∥∥P⃗ i − P⃗ i
+

∥∥∥
2

(4.4)
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The distance is then combined with the labels assigned to the pair of programs to

generate the loss function:

L
(
W,Y, P i, P i

+

)
= (Y )

1

2
(DW )2 + (1− Y )

1

2
{max (0,m−DW )}2 (4.5)

where Y is the label representing the anchor program P i’s correctness, 0 if incorrect and

1 if correct, W represents the model weights, DW is the parameterized Euclidean distance

function, and m is the margin or radius.

The stochastic gradient approach is used to update the weights. In the inference

phase, we normalize the distance between the anchor and correct programs using a sig-

moid function to generate the model’s predictions.

A key advantage of the Siamese network is that we are able to extend the limit on

the input program length due to the fact that the programs are tokenized into separate

sequences and fed to the model separately. Thus, in our case, with this architecture each

program has 512 allocated token slots when encoded as token sequences.

4.4 Incremental Learning

In incremental learning, initially, our correct set contains only one solution for each

problem. As we train the model using only that one solution as the anchor, we find

other correct solutions within P i. We then continue training the model now with an

extended correct set including the newly found correct solutions to the problems. We

repeat this process for k iterations (2-3) until the validation performance converges. The

same process is used for both the training set and the validation set simultaneously.

4.4.1 Majority Vote Grading

As we have a trained model, we can predict the grade of a new unseen program P̂ i

using the set of correct solutions P i
+ more effectively. In order to take advantage of all



Chapter 4. Methodology 33

Figure 4.2: Deep Siamese Grader Architecture

A sample program P i and a reference solution P i
+ are tokenized using a pre-trained

tokenizer (i.e., CodeBERT, UniXcoder). The tokenized programs are fed separately

through two instances of the pre-trained model while sharing weights. The models’

output is the [CLS] token embedding of each program denoted by P⃗ i and P⃗ i
+. By

applying the Euclidean distance function (DW ) on the vectors, we obtain a distance that

is normalized using the sigmoid function. During training, the model does not make use

of the sigmoid layer as the distance is passed directly into the contrastive loss function.

potential solutions in P i
+, we utilize a majority voting scheme. Algorithm 1 outlines the

general procedure. The algorithm takes the trained model, the program to be evaluated

for question i, denoted by P̂ i, and the set of correct programs for question i, denoted by

P i
+, in order to predict the grade for P̂ i. While looping through each correct program

P̂ i
+ ∈ P i

+, first, we pair the program P̂ i with a correct program P̂ i
+ ∈ P i

+, then, tokenize

the pair, and compute the label of P̂ i using our trained model M. Finally within the

loop, we add the predicted label for P̂ i to a set L. Lastly, we compute the mode of
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labels in L to obtain the final weak label for P̂ i (this weak label will be used in the next

section where we perform incremental grading). The P̂ i’s predicted grade is the average

of grades predicted based on all P̂ i
+ ∈ P i

+. We also ensure that the current program is

not paired with itself by being in the correct set (P̂ i ̸= P̂ i
+).

Algorithm 1 Majority Vote Grading (MajV ote)

Input: M, trained model

Input: P̂ i, the program to be evaluated for question i

Input: P i
+, the set of correct programs for question i

1: L ← {}

2: for each P̂ i
+ ∈ P i

+ do

3: seq ← Tokenizer(P̂ i, P̂ i
+)

4: ŷ ←M(seq)

5: L ← L ∪ {ŷ}

6: end for

7: ypred ←Mode(L) ▷ predicted label for P̂ i

8: spred ← Average
y∈L

(prob(y))

4.4.2 Incremental Transductive Grading

In section 4.4.1, we assumed that there is a set of correct solutions for each question

i. However, in a more realistic setting, we have only one correct solution in P i
+. In

order to address this issue, we design an incremental transduction grading scheme, taking

advantage of other potential correct solutions in the set of programs to be evaluated. The

procedure is demonstrated by Algorithm 2. While this approach assumes only one correct

program initially in the correct set P i
+ (line 3), it expands this set with newly found

correct solutions using the majority vote algorithm’s predictions. The final correct set

represents the predicted correct programs and the rest represents the predicted incorrect
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programs. In particular, this algorithm requires a trained model, the set of programs to

be evaluated for each question i ∈ Q (set of questions), and a single correct program P i
+.

For each question, we repeat the following process until the correct set for that specific

question remains unchanged: First, for each program, we predict the program label based

on the majority vote grading approach outlined in Algorithm 1 (line 5). If the program

is predicted as a correct one (based on the predicted weak label), we add the program

to our correct set P i
+ (line 7). We repeat the process until no new correct programs are

found for the question. Similar to the previous algorithm, we do not pair up a program

with itself when the program is also contained in the correct set for a question.

Algorithm 2 Incremental Transductive Grading

Input: Q, the set of questions

Input: M, trained model

Input: P i, the set of programs to be evaluated for question i

Input: P i
+, a correct program for each question i ∈ Q

1: for each i ∈ Q do

2: P i
+ ← {P i

+}

3: repeat

4: for each p ∈ P i do

5: (yipred, s
i
pred)←MajV ote(M, p,P i

+)

6: if ypred = 1 then ▷ correct label

7: P i
+ ← P i

+ ∪ p

8: end if

9: end for

10: until P i
+ is unchanged

11: end for
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4.5 Interpretability / Explainability

Large neural network language models have achieved state-of-the-art results on many

NLP tasks [13, 23, 28, 73], however, they lack interpretability and explainability of

their decisions involved in many different tasks [69]. This caused people to question

the trustworthiness of these models’ predictions especially when considering high risk en-

vironments [21]. In the field of Explainable Artificial Intelligence (XAI), researchers are

searching for ways to explain black-box neural network models such like ours [65, 71, 77].

Thus, we decided to use attention analysis and LIME methods to interpret our deep

language models and to provide feedback for programs.

4.5.1 Attention Analysis

The most recent state-of-the-art language models have one important commonality.

Most, if not all, share the same Transformer [68] architecture revolving around the atten-

tion mechanism [7]. With attention the model is able to assign weights to each feature

representing the importance of the feature for the prediction. For example, when pre-

dicting whether an image contains a cat or a dog, a convolutional neural network will

pay more attention to some specific parts of the image such as the nose of the animal.

Similarly, in the next-token prediction task in NLP, a language model will have higher

attention weights on tokens that are most important in predicting the next token (e.g.,

the subject of the sentence). Researchers have discovered the possibility of analyzing

the attention layers to explain the intentions of large language models such as BERT

[15]. These large models’ architecture contain multiple attention heads and layers which

exhibit different patterns that can be analyzed. For example, we can deduce based on

a given textual input to what tokens or part of the sentence does the model pay most

attention to. These patterns reveal that certain attention heads correspond to syntactical

linguistic notions. In natural language, certain heads attend to determinants, others to
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nouns or verbs. While in programming language, the attention is more prominent to

“for” and “while” loops in some heads or variables in others.

When extracting the self-attention matrix learned by the language model for an input

sequence, we can observe how certain tokens attend to other tokens in the sequence. The

attention matrix is a four-dimensional matrix where the dimensions are the number

of heads, followed by the number of layers for each head, the number of tokens that

attend, and the number of tokens that receive attention. We can then aggregate over

different dimensions in order to obtain distinct visualizations for which we can derive

corresponding interpretations.

4.5.2 LIME

Local Interpretable Model-agnostic Explanations (LIME) [58] is a method used to ex-

plain predictions of large black-box models by presenting the features that had the most

influence on the prediction. Given an input to the model, LIME creates random perturba-

tions to the input sequence and constructs a locally linear model using the ground-truth

predictions obtained from the distinct perturbations. Following LIME, other pertur-

bation methods were investigated on sequence-to-sequence models in natural language

processing by providing causal relational explanations of token groups [6].

In our case, LIME will provide us with the specific programming keywords that mostly

influenced the decisions of our deep language models. It will create perturbations of

the evaluated programs while leaving the reference solution intact. It will only use the

reference solution as part of the input to the model in order to make predictions.

4.6 Feature Engineering Approaches

In order to show the effectiveness of the proposed deep learning models, we develop some

baselines based on extensive feature engineering approaches. Our baseline models are
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inspired by the model proposed in [62]. The pipeline includes feature extraction, feature

invariant transformation, and a shallow prediction model. Similar to our deep learning

approaches, we train the models using a set of correct and incorrect solutions, but unlike

our approaches, we utilize more than one correct solution for each question to evaluate

a program’s correctness.

Figure 4.3 presents the pipeline of our baseline model for a specific question. This

model requires a large amount of correct responses to perform well since it utilizes all

correct responses to compare and judge the correctness of a program. Hence, it aims

to predict the correctness of a response to a new question given a large enough correct

response set. This is quite an inconvenience since developers of new programming ques-

tions do not have a large array of correct responses to the question. They usually write

a solution and grade the responses based on that. Producing multiple solutions is very

expensive in terms of time and labour.

Set of correct 

responses

𝑆+

Correct/Incorrect 

responses

𝑥
Feature Extraction

Feature Invariant 

Transformation
Model

Count-based features

Graph-based features

Distance computations

Aggregated distances

Random Forest 

Classifier

Question (i)

Test-

Cases

Figure 4.3: Feature-based Model Pipeline

Test-cases allow us to weakly label the responses in order to create a set of posi-

tive (correct) responses to a question. We can then extract lexical count-based features

and semantic graph-based features from the programs. For each response, we compute

distances between the given response (x) and each positive response (s+) for a specific

question, and aggregate the computed distances using the mean of the 10% minimum
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distances. Finally, we input these vectors to the classifier and the model outputs the

label coinciding with the given response’s correctness.

4.6.1 Feature Extraction

This section presents a set of features that can be extracted from the programming solu-

tions. It is important to extract both lexical and semantic features from the programs.

Thus, we focus on features capturing both aspects of the programs using count-based and

graph-based features. The features emphasize key tokens, the overall structure, and data

dependency between both statements and expressions, which are the essential properties

of a computer program.

Count-based features: We first define different lexical count-based features sepa-

rated into categories. Examples of keywords that are considered can be seen in Table 4.2.

The keywords adhere to the grammar of the specific programming language being used.

We have found that similar features exist in both C++, Python, and other programming

languages.

Graph-based features: In some cases, incorrect programs can have similar keyword

counts to correct programs, however, they could be structurally different. In order to

identify the structure of the program and compare the programs based on their structures,

we need graph-based features. As such, we define semantic features extracted from graphs

representing the programs’ structure. We define a control-flow graph, statement data

dependency graph, and expression data dependency graph as well as the Abstract Syntax

Tree (AST) graph.

The control-flow graph (see Figure 4.4) presents the overall structure of the program

showing which statements are inside others. Nodes represent statements and edges repre-

sent containment of statements in the code. For example, if a “for” loop code statement

contains a variable declaration statement, then a directed edge would exist from the loop

statement to the variable declaration statement in a control-flow graph.
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Table 4.2: Count-based feature categories

Categories Examples

Basic alphabet characters, numeric characters, . . .

Loops ‘for’, ‘while’, . . .

Data types ‘int’, ‘float’, . . .

Operator addition, subtraction, . . .

Punctuation semicolons, commas, . . .

Bracket curly, round, square, . . .

Objects ‘new’, ‘class’, . . .

Access modifier ‘public’, ‘private’, . . .

Exception ‘try’, ‘catch’, . . .

Conditional ‘if’, ‘else’, . . .

Function function declarations, function calls, . . .

Input and output ‘cin’, ‘cout’, . . .

Advanced maximum integer, maximum array dimension, . . .

Other ‘using’, ‘include’, ‘define’, . . .

The statement data dependency graph (see Figure 4.5) presents the data flow between

statements containing variables. Nodes represent statements containing variables and

edges represent the supply of data. For example, a variable initialization statement will

have a directed edge to all the statements that utilize that variable in some way.

The expression data dependency graph (see Figure 4.6) presents the data flow between

variable expressions. Nodes represent expressions and edges represent the supply of

data. Although similar to the previous graph representation, this graph breaks up the

statements into individual expressions and allow a more detailed representation of the

data flow in a program.
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The abstract syntax tree (see Figure 4.7) is a complex graph representation of source

code widely used for parsing and program analysis [74, 79, 83, 85]. The nodes are written

in a formal language similar to a syntactic tree in natural languages. The leaf nodes

contain the actual code keywords and their parents contain different abstract constructs.

Due to the amount and complexity of existing distinct constructs, an abstract syntax

tree representation of a program is often considerably larger than the previous graph

representations. The tree can be also be represented as a graph with directed edges

from the root of tree to the leaf nodes. Figure 4.8 shows an example of the full abstract

tree representation of a medium sized program. As can be seen in the figure, these

representations are quite complex and large in size.

In a computer program, a statement is defined as a fragment of code that carries out

a specific task. While an expression is composed of an operator and its corresponding

operand which forms a computation.

int main(){

int n,k;

cin>>n>>k;

int sum=0;

for(int i=0;i<n;i++){

int a; cin>>a; if(a>k){

sum++;}}

Figure 4.4: Control-flow graph

As we have these graphs, we extract different features from them, such as mini-
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int n,k;

cin>>n>>k; for(int i=0;i<n;i++){ if(a>k){

int sum=0;

sum++;}} cout<<sum;}

int a;

cin>>a;

Figure 4.5: Statement data dependency graph

cin>>n

i<n

cin>>k

a>k

sum=0

sum++

cout<<sum

i=0

i++

cin>>a

Figure 4.6: Expression data dependency graph

mums, maximums, means of degrees, centrality, closeness, and clustering coefficients in

the graph. We also consider the number of edges, the density, and the transitivity of the

graphs as features. Compared to our approach, in [62], they simply maintain counts of

specific keywords following each other in different graph representations. We wanted to

extend this part of the work by also providing the models with multiple properties that

can be extracted from the graphs. For example, the degree centrality of nodes in a graph

encode the fraction of nodes each node is connected to. The closeness centrality is the

reciprocal of the average shortest path distances from all nodes connected to each node

[24]. The clustering coefficients of each node is the fraction of triangles that pass through

that node. The density of a graph is a ratio between the number of directed edges and
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...

if_statement

if compound_statement

{ } expression_statement

; update_expression

identifier ++

Figure 4.7: Abstract Syntax Tree

the maximum number of edges that can be in the graph. The transitivity encodes the

fraction of all triangles over all possible triangles (triads) in the graph.

4.6.2 Feature Invariant Transformation

In order to create a question-independent model, we followed the feature invariant trans-

formation approach introduced in [62]. The idea is that the input to the model of a

correct response for a question has to be similar to the input of a correct solution for

a different question. The feature invariant transformation implies that we compute the

distances between a solution (represented by a vector of feature) and the set of correct

solutions for a specific question. We then take an aggregate of the distances and use that
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Figure 4.8: Complete Abstract Syntax Tree

as the predictive model input for that solution. The intuition behind this is that two

correct programs should be similar and return a low distance while the distance between

an incorrect and a correct program should be higher. In the following definition, we

assume that we have multiple correct solutions for each problem. However, in the case

that we only have a single correct solution, we simply compute a single distance vector

and use that as the input to our model as aggregation becomes unnecessary.

D+ = Ψ(P̂ i, P̂ i
+) ∀ P̂ i

+ ∈ P i
+ (4.6)

x̄ = Mean(Min10(D+)) (4.7)
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Ψ: Distance function

Min10: Minimum 10%

In the approach from [62], they took the average of the top 25% of closest solution vectors.

However, we found that the average of the top 10% of closest solution vectors will result

in better performance (see Figure 5.8). Thus, we set this hyper-parameter to 10 when

using multiple correct solutions per problem.

Multiple distance functions exist that compute distances between two 1-Dimensional

vectors. For the empirical results, we used the Euclidean distance or L2 norm to be

consistent with the previous research paper [62].

Ψ(u, v) = ||u− v||2 =

√√√√ n∑
i=1

(ui − vi)
2 (4.8)

where u and v are arbitrary input vectors to the distance function. Additionally, the

following distance functions between two vectors (u, v) were examined:

Canberra ∑
i

|ui − vi|
|ui|+ |vi|

(4.9)

Chebyshev

max
i
|ui − vi| (4.10)

Cityblock ∑
i

|ui − vi| (4.11)

Bray-Curtis ∑
|ui − vi|∑
|ui + vi|

(4.12)

Correlation

1− (u− ū) · (v − v̄)

||(u− ū)||2||(v − v̄)||2
(4.13)

Cosine

1− u · v
||u||2||v||2

(4.14)
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4.6.3 Shallow Prediction Models

We tested many shallow models in our experiments and report the results of the best

performing models as the baselines. In particular, we utilize linear regression with both

L1 regularization (LASSO) and L2 regularization (Ridge regression), Random Forest,

and support vector machine (SVM) for training and evaluation purposes.

The Random Forest model’s default parameters use 100 decisions trees as estimators,

with the Gini impurity metric to measure the quality of the splits, and the number of

features to consider when looking for the best split is set to the square root of the number

of features the input has. By tweaking the default parameters, using 1000 estimators,

with entropy metric, and using all the features when determining the best split, we

achieved a superior performance. We tweaked some of the default parameters for LASSO,

mainly, we set the regularization strength to 1.0, the max iterations to 1E9, and the

optimization tolerance to 5E-5. For the ridge regression model, which uses the linear

least squares function as its loss function, we used similar parameters to LASSO. The

support vector machine adjusted for binary classification uses 1.0 for the regularization

parameter, the radial basis function kernel, and a optimization tolerance of 5E-5.

Since the scale of the distance vectors can vary over questions we scaled the data over

features before inputting it into the model. We also attempted normalizing the input by

the average distance between the responses and the correct set.
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Experiments and Results

5.1 Data Collection and Preprocessing

The data was retrieved from an open-access coding website called Codeforces that hosts

competitive programming contests. A total of 200K Python programs and 200K C++

programs were retrieved from 1000 programming problems. The data was then cleaned

to remove duplicate programs and problems with missing submissions, ending up with a

total of 190K Python submissions from 985 questions and 168K C++ submissions from

992 questions. The website also provided labels (correct/incorrect) for each submission

based on question specific test-cases created by the authors of the questions. A balance

of correct and incorrect submissions was maintained during the retrieval process.

The collected dataset was then pre-processed. First, each program was ensured to

be compilable using the tree-sitter1 parsing tool. The code was then minimized and

standardized using a custom modified version of the pyminifier2 tool. The programs

were stripped from blank lines, indentation was standardized, multi-line code was mini-

mized to a single line, comments and doc-strings were removed and finally, unnecessary

space characters around operators and other keywords were removed. Programs that still

1https://github.com/tree-sitter/tree-sitter
2https://github.com/liftoff/pyminifier

47
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https://github.com/liftoff/pyminifier
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did not compile because of white-space inconsistencies or other formatting errors which

could not be automatically fixed were manually adjusted. In our proposed deep neural

network models the maximum sequence length is bounded by the available memory and

the input batch size. This poses a problem for long programs as their token vector gets

truncated and lose part of their solution to the problem. Hence, the models lose the

ability to accurately assess their correctness. To address this issue, we removed problems

consisting majorly of long programs or requiring a substantial amount of code to solve

the problem.

The final dataset3 includes problems ranging from a beginner’s programming level

requiring few simple control structures to an expert level including functions, recursion,

multiple interlaced loops, many subtle conditional cases and high dimensional array ma-

nipulations. The statistics of the data are presented in Table 5.1.

Python C++

No. of programs 190,451 168,110

No. of correct programs 96,934 82,430

No of incorrect programs 93,517 85,680

No. of questions 985 992

Avg. No. of programs/question 193.4 169.5

Avg. No. of correct prog./question 98.4 83.1

Avg. No. of incorrect prog./question 95.0 86.4

Table 5.1: Dataset Statistics

When observing our test set, we find various interesting properties related to our

collected data. We computed histograms (see Figure 5.1) comparing the correct and

3Code and data are available at https://github.com/peter-nagy1/Deep-Grader

https://github.com/peter-nagy1/Deep-Grader
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incorrect programs based on their distance level using our feature-based algorithms. Their

distance level is computed simply by aggregating their distance vectors.

We observe that there is a majority of correct programs at low distance levels and

a majority of incorrect programs at high distance levels. This validates our previously

mentioned goal in the feature invariant transformation section, where we define a trans-

formation of our features with the goal of producing this specific property in the data.

Additionally, these histograms are left-skewed which means that the data is more

concentrated at low distance levels. This suggests that most programs are somewhat

similar to their related set of correct programs in our data.

Figure 5.1: Histograms presenting the distance levels in features for correct and incorrect

programs used for evaluation.

Finally, when plotting a pair of graph representation features from instances of our test

data (see Figure 5.2), we observe many outlier points. The same observation can be made



Chapter 5. Experiments and Results 50

with different feature pairs. These outliers indicate potential mistakes in the problems’

test-suite. The removal of such outliers could potentially improve the performance and

the robustness of the models.

With some further investigation, we have found that some programs which are correct

are labelled incorrect by the source website due to the test-suite failing for unknown

reasons. When re-executing the test-suite on such programs manually, we find that the

programs pass the test-cases without a problem. The time and memory usage during the

execution of programs are captured. When programs do not complete the test-suite due

to time or memory limits, the data source clearly indicates this and we do not consider

these programs as their correctness is unknown. Thus, these constraints cannot be the

reason for errors in the data. We also disregard programs that fail the test-suite due to

compilation errors.

5.2 Baselines and Experimental Setup

We compare the proposed models with four shallow models (i.e., Random Forest, SVM,

LASSO, and Ridge). The feature engineering pipeline is based on the previous state-of-

the-art method [62] built upon the features discussed in section 4.6. The set of programs

is split along questions. In particular, 80% of questions will appear in the training set,

10% will appear in the validation set and the responses from the remaining 10% of

questions will be used in our evaluation set. We optimize all hyper-parameters using the

validation set. We run the experiments 3 times and report the performance of models,

namely, Accuracy, F1-measure (F1) in predicting weak labels, and the Correlation, Mean

Squared Error (MSE) between the model’s predicted scores and the marks given by

experts. We present the results for both Python and C++ datasets.

F1 = 2 · (precision · recall)
(precision + recall)

(5.1)
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Figure 5.2: Pair of graph representation feature distances for correct and incorrect pro-

grams used for evaluation.

5.2.1 Feature Engineering

Along experimentation performed on our test dataset, we found that with the inclusion

of graph-based features, the model was able to correctly label 5.5% of our test data

which was initially mislabeled by the model trained solely on count-based features.

In the following examples (see Figure 5.3) of two programs retrieved from our dataset,

the incorrect solution does not account for a specific input case. Although the count-

based features alone do not detect this program as incorrect, graph-based features help

the model notice the structural differences and data dependency differences between this

program and the correct program. Merging the two conditions present in the if statements

with an “&&” operator can make this program correct.

Also, note that 68% of the correct submissions gathered for this problem use at least
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Figure 5.3: Importance of graph-based features.

In terms of count-based features, the programs are similar, however, in terms of

graph-based features, the programs show a distinct structure.

one loop to solve this problem. Despite the fact that this incorrect submission does not

have any loops it does not produce a large feature distance for the loop category. It

accurately assimilates with other correct submissions that do not use loops.

5.2.2 Feature Importance

We provide an impurity-based feature importance graph showing the importance of each

feature category in Figure 5.4. Also known as the Gini importance, the importance

values represent the total reduction of the criterion brought by that feature. We observe

that most of our features contribute similarly to the prediction of the models with the

exception of the object, access-modifier, and exception category features which show

close to zero Gini importance. Our basic features which encode the underlying program’s

statistics obtain the highest importance.
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We investigate the importance of different graph-based features using correct and

incorrect example programs and find interesting results in Figures 5.5 and 5.6.

Figure 5.5: Comparing examples of correct and incorrect programs using control-flow.

Closing the bracket of the first for loop after the second for loop would render this

program incorrect. The count-based features remain nearly identical even though the

two programs are structurally different. The incorrect program has a nested for loop

while the correct program does not.

5.2.3 Distance Functions

We investigated multiple distance functions and arrived to the conclusion that the Cheby-

shev distance function produced the best results (see Table 5.7). Furthermore, we ex-

plored using different percentage values (ρ) to aggregate the computed distance vectors
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Figure 5.6: Comparing examples of correct and incorrect programs using data depen-

dency.

Replacing the assignment “m = m * 3” by “m = n * 3” will render the program

incorrect. The count-based features remain nearly identical even though the two

programs have different data dependencies. In the incorrect program, the value of the

variable “m” depends on the value of the variable “n” while this dependency is not

present in the correct program.
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using the average of a fraction of the top closest solution vectors. From Figure 5.8, we

arrived to the conclusion that the top 10% of closest solution vectors returns the best

performance.
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Figure 5.8: Percentage of minimum distances (evaluated with Random Forest and Python

code)
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5.3 Proposed Models

Tables 5.2, 5.3 show the performance of the proposed models as well as the baselines where

we use only one correct solution to evaluate an unknown solution. As can be seen, the

proposed models outperform the baseline models consistently by a large margin for both

Python and C++ datasets. We also see that in most cases Deep Grader outperforms Deep

Siamese Grader especially when evaluated on Python data. Moreover, the CodeBERT

pre-trained model performs better for both Deep Grader and Deep Siamese Grader in

terms of F1 measure and Correlation. As another observation, although the pre-trained

models (CodeBERT, UniXcoder) were never trained on C++ code, the results show

similar performance for both programming languages. This proves that the pre-trained

models are highly flexible for this task and the pre-trained model trained based on one

language can be fine-tuned and used in our framework for grading the solutions of a

question in another language. The reason we see slightly higher results from the models

on C++ data overall can be due to the distinct collection of problems and distribution

of programs used in the data.

Although the Deep Grader models always perform in superiority over all metrics

compared to the baseline models, the Deep Siamese Grader models do not reach high

results on the Python dataset. The decreased performance from the Siamese models may

be due to the contrastive learning method employed showing its downside in capturing

the embedding distance with this specific programming language.

5.3.1 The Effect of Majority Vote Grading

Tables 5.4, 5.5 illustrate the performance of the proposed models as well as the baselines

where we use multiple correct solutions (in our Python dataset we have on average

98.4 correct solutions for each question) to evaluate unknown solutions for a question.

Similar to Tables 5.2, 5.3, the proposed models perform much better than the baselines
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consistently in terms of all performance measures for both Python and C++ datasets.

Furthermore, in most cases, we observe that for this setting Deep Grader is superior to

Model Accuracy F1 Correlation MSE

Random Forest 62.3 63.7 51.0 2.18

SVM 63.9 68.7 61.0 1.82

LASSO (L1) 61.5 70.1 48.7 2.03

Ridge (L2) 61.3 68.9 54.3 1.89

Deep Grader (CodeBERT) 74.5 74.4 77.2 1.24

Deep Grader (UniXcoder) 73.9 71.9 77.1 1.03

Deep Siamese Grader (CodeBERT) 67.9 71.5 71.9 1.12

Deep Siamese Grader (UniXcoder) 67.8 71.7 73.8 1.04

Table 5.2: Performance of models with single correct solution on Python code

Model Accuracy F1 Correlation MSE

Random Forest 64.4 61.8 55.7 1.61

SVM 65.2 66.0 55.8 1.49

LASSO (L1) 63.9 65.2 51.3 1.47

Ridge (L2) 65.2 66.0 51.0 1.49

Deep Grader (CodeBERT) 75.8 76.4 75.6 2.87

Deep Grader (UniXcoder) 76.6 76.8 75.2 2.90

Deep Siamese Grader (CodeBERT) 74.4 77.1 75.7 1.47

Deep Siamese Grader (UniXcoder) 73.6 76.1 75.4 1.86

Table 5.3: Performance of models with single correct solution on C++ code
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Deep Siamese Grader in terms of both datasets. It is worth mentioning that the baseline

approaches based on the proposed framework in [62] feed the average of distances of all

feature vectors of correct solutions to the feature vector of an unknown solution into the

models and predict the unknown solution’s label/score accordingly. While in the proposed

majority vote approach, we predict the label for each pair of unknown and correct solution

individually and then consider the majority of the predicted labels/average of the scores

as the final label/score.

When comparing the results of the models exploiting a single correct pairing presented

in Tables 5.2, 5.3 with Majority Vote Grading in Tables 5.4, 5.5, we observe that in most

cases Majority Vote Grading helps improve the grading capability of our models. The

reason is that the Majority Vote Grading uses the full correct set containing all correct

responses for a question i for the input P i
+ when computing the majority vote of the test

programs.

In Tables 5.4, 5.5, there is a difference between the way we evaluate the baselines and

our proposed models using the full correct set. The main difference between the baseline

method’s standard evaluation and its majority vote evaluation is the way in which the

distances get forwarded to the model. The standard evaluation computes the distances

between the program pairs and aggregates them creating one aggregated distance which

is then fed to the model to obtain the label. The majority vote based evaluation differs

in that each distance computed is individually fed to the model producing multiple labels

which are then aggregated using the mode function to obtain one final label.

5.3.2 The Incremental Transductive Learning Analysis

Starting from a single solution, we can expand the correct set for each problem and uti-

lize Majority Vote Grading to evaluate programs using multiple correct solutions. From

Tables 5.6, 5.7, we can discern that Incremental Transductive Grading helps improve the

results in most cases. For example, Deep Grader (UniXcoder) accuracy (Acc) is 73.9%
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and 76.6% when using a single correct solution and multiple correct solutions to evalu-

ate an unknown solution for the Python dataset accordingly. In this case, incremental

Model Accuracy F1 Correlation MSE

Random Forest 67.1 70.3 70.2 1.75

SVM 65.7 71.4 71.9 1.63

LASSO (L1) 62.0 70.7 63.8 1.98

Ridge (L2) 62.8 70.6 69.8 1.87

Deep Grader (CodeBERT) 77.0 77.3 77.3 1.08

Deep Grader (UniXcoder) 76.6 75.2 79.8 0.86

Deep Siamese Grader (CodeBERT) 70.9 66.6 75.2 1.01

Deep Siamese Grader (UniXcoder) 70.3 65.0 74.7 0.97

Table 5.4: Performance of models with multiple correct solutions on Python code

Model Accuracy F1 Correlation MSE

Random Forest 69.2 67.5 53.6 1.66

SVM 68.6 70.0 55.8 1.47

LASSO (L1) 66.5 68.1 51.7 1.46

Ridge (L2) 68.1 69.8 49.3 1.44

Deep Grader (CodeBERT) 77.1 78.4 76.8 2.77

Deep Grader (UniXcoder) 78.2 79.0 76.2 2.88

Deep Siamese Grader (CodeBERT) 80.0 78.1 76.4 2.14

Deep Siamese Grader (UniXcoder) 77.4 75.9 75.3 1.85

Table 5.5: Performance of models with multiple correct solutions on C++ code
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learning can achieve 75.7% accuracy which is an increase of 1.8pp when 2.7pp (76.6 -

73.9) is the room for improvement by using all correct solutions in the evaluation of an

unknown solution. Furthermore, we observe that our Incremental Transductive Grading

results mostly tend to approach the Majority Vote Grading results.

Model Accuracy F1 Correlation MSE

Random Forest 64.6 69.5 63.7 1.81

SVM 63.3 70.1 66.8 1.72

LASSO (L1) 60.0 69.9 58.0 2.05

Ridge (L2) 59.3 68.8 65.0 1.95

Deep Grader (CodeBERT) 75.0 75.1 75.7 1.15

Deep Grader (UniXcoder) 75.7 73.9 78.1 0.97

Deep Siamese Grader (CodeBERT) 72.0 69.8 75.9 1.00

Deep Siamese Grader (UniXcoder) 71.9 69.5 74.4 0.98

Table 5.6: Performance of models on Incremental Transductive Grading on Python code

5.3.3 Comparing with Human Grading

To compare the proposed models’ grades with partial marks given by a domain expert,

two experts have graded 200 random submissions from 10 random problems (with 10

incorrect and 10 correct solutions). The selected problems are of medium level difficulty

necessitating few loops and conditionals to solve. The submissions are given a grade from

1 to 5 following the rubric described in Table 5.8. The average of the two graders’ marks is

considered as the final grade. The output of the proposed models that have been trained

on weakly labelled data (i.e., the output of the sigmoid function) are normalized between

1 to 5. The correlation and MSE between the partial marks (given by the domain expert)
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Model Accuracy F1 Correlation MSE

Random Forest 65.6 66.7 50.2 1.60

SVM 65.4 68.6 56.6 1.45

LASSO (L1) 62.3 66.3 49.7 1.50

Ridge (L2) 63.2 67.2 48.5 1.45

Deep Grader (CodeBERT) 76.4 77.6 76.9 2.76

Deep Grader (UniXcoder) 76.7 77.0 76.2 2.87

Deep Siamese Grader (CodeBERT) 77.5 76.9 76.4 2.15

Deep Siamese Grader (UniXcoder) 75.1 74.5 75.2 1.84

Table 5.7: Performance of models on Incremental Transductive Grading on C++ code

and the models’ normalized scores are reported in the performance tables.

Tables 5.2, 5.3 show significant improvement in the correlation measures when using

the proposed methods. In particular, Deep Grader (CodeBERT) reveals a 16.2pp im-

provement over the best baseline (i.e., SVM) for the Python dataset, and Deep Siamese

Grader (CodeBERT) is 19.9pp better than SVM for the C++ dataset. Tables 5.4, 5.5

demonstrate a similar improvement when multiple correct solutions are available in in-

ference time. The results are outstanding given the fact that the models have not seen

human grade labelled data during training. When comparing our Incremental Trans-

ductive Grading method’s results presented in Tables 5.6, 5.7 with our single correct

solution method’s results from Tables 5.2, 5.3, we see improvements in the correlation

values when considering the best results achieved by our models. Thus, our proposed

Incremental Transductive Grading allows us to also improve on the partial grades that

our models produce.
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Score Interpretation

5
Exceptional: The code meets all of the requirements

specified in the problem.

4
Acceptable: Necessary control structures and data de-

pendencies are present with minor errors.

3
Amateur: Correct control structures are present with

problems in data dependency.

2
Unsatisfactory: Demonstrating a slight understand-

ing of the problem.

1 Unrelated: Solution is unrelated to the problem.

Table 5.8: Grading Rubric

Direct training on soft labelled data is unfeasible as these large language models

rapidly overfit due to the small size of the data. Both supervised and semi-supervised

learning on soft labelled data produces poor, unstable and unreliable results.

5.3.4 Runtime Analysis

Figure 5.9 shows the average runtime of grading a program with the proposed models.

The experiments were carried out on a cluster of 4 NVIDIA V100 GPUs. As can be seen,

the grading time per program is fast (a fraction of a second).

5.4 Evaluation Methods

There are two ways to train and evaluate the models in this problem. We can split

the data along questions (question independent model) or we can split the data along
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Figure 5.9: Models’ Grading Time per Submission

responses (question dependent model). We focus our attention towards the former since

it better reflects the real-life needs of such a model. By training a model on a sufficiently

large scale of questions, we would be able to accurately predict labels for responses to

any newly created programming questions.

5.4.1 Question Independent Grading

With our question independent model, responses are split along questions, thus 80% of

the questions will appear in the training set, 10% will appear in the validation set and

the responses from the remaining 10% of questions will be used for our test set. In this

study, we mainly focus on this type of evaluation since it is the most closely related to

a real-world deployment scenario of this model. However, if the environment permits,

training a separate model for each programming question could possibly improve the

models’ performance.
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5.4.2 Question Dependent Grading

The data can also be split along responses such that each set contains a portion of

responses from all existing questions. The same percentage split would apply here, where

80% of responses for each question will appear in the training set and the rest will be

equally separated between the validation and test set. Therefore, in this case, the model

is trained on a number of questions that will have new unseen responses to predict. This

method is useful if we reuse previously created questions with labeled responses to grade

new responses. Naturally, this approach also provides us with greater results as the

models, having already seen the questions, have an easier time predicting the weak labels

for unseen programs (see Tables 5.9, 5.10).

Model Accuracy F1 Correlation MSE

Random Forest 65.3 67.2 58.0 1.91

SVM 66.2 70.7 63.1 1.73

LASSO (L1) 66.5 73.9 48.5 2.03

Ridge (L2) 65.6 71.9 53.7 1.88

Deep Grader (CodeBERT) 82.4 84.2 76.5 1.67

Deep Grader (UniXcoder) 82.8 84.3 78.7 1.03

Deep Siamese Grader (CodeBERT) 73.4 73.4 76.5 0.97

Deep Siamese Grader (UniXcoder) 70.0 71.3 75.7 0.93

Table 5.9: Performance of models using single correct solution with a question dependent

setting on Python code
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Model Accuracy F1 Correlation MSE

Random Forest 63.2 65.7 48.8 1.79

SVM 63.1 68.2 54.7 1.53

LASSO (L1) 61.9 67.9 48.8 1.48

Ridge (L2) 61.9 67.0 48.5 1.49

Deep Grader (CodeBERT) 82.1 83.3 76.3 3.25

Deep Grader (UniXcoder) 84.5 85.6 75.0 3.16

Deep Siamese Grader (CodeBERT) 78.0 76.4 70.9 3.65

Deep Siamese Grader (UniXcoder) 73.1 77.0 71.4 3.67

Table 5.10: Performance of models using single correct solution with a question dependent

setting on C++ code

5.5 Interpretability

5.5.1 Attention Analysis

We performed an attention analysis on our deep-learning models. Transformer-based

models process all tokens simultaneously and form direct connections between the tokens

with an attention mechanism. This allows them to have great parallelization and high

accuracy. We extracted the hidden layers’ parameters as well as the attention layers

from our trained models. In our case, the model is performing self-attention by searching

for other tokens in the sequence that could positively influence the encoding of each

token. We obtained an attention matrix of four-dimensionality where the dimensions

represent the heads, the layers per head, the tokens that attend, and the tokens that

receive attention. We can visualize this attention matrix to understand how the model

forms composite representations to encode programs.
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Let’s take an example question i and a model input consisting of two programs: a

sample program P i (see Figure 5.10) and a correct solution P i
+ (see Figure 5.11). The

sample program is predicted as correct by the grading model with a 86% score. So we

will attempt to interpret the decision of the model for this sample program given this

correct solution as reference.

n ,m = map( int , input ( ) . s p l i t ( ) )

l = [ 0 ] ∗ n

for i in range (n ) :

a , b = map( int , input ( ) . s p l i t ( ) )

l [ i ] = (m∗a )/b

print (min( l ) )

Figure 5.10: A sample program P i

m, n = map( int , input ( ) . s p l i t ( ) )

x = [ ]

for i in range (m) :

a , b = map( int , input ( ) . s p l i t ( ) )

x . append ( a/b∗n)

print (min( x ) )

Figure 5.11: A correct program P i
+

We can select a specific token in the sample program P i, in this case the keyword

“for”, and plot out the attention scores for each layer and each head (see Figures 5.12,

5.13). Thus, we will analyze which tokens contributed the most to produce the encoding
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of the “for” token. From these visualizations, we see that the model has designated

specific heads and layers to pay attention to specific tokens. For example, in the first

two heads, the models pays more attention to the tokens surrounding the “for” token

to compute the encoding. While, in the third and fifth head, the model identifies the

“for” token in the correct program as well and uses it to bake part of its representation

into the encoding. We also observe that in most heads and layers, the [CLS] token or

the sequence’s start token has a high importance. This is the case when we analyze any

token since the [CLS] token contains the embedding for the whole sequence. Thus, the

model mostly uses the whole sequence’s embedding to compute each token’s encoding.

We can also reduce the heads and layers from the attention matrix and create a

self-attention two-dimensional matrix to examine the attention of the whole sequence

(see Figure 5.14). For illustration purposes, we remove the start token since it has a

dominating effect on the matrix preventing us to clearly visualize the other attention

locations. From this figure we observe that the highest attention scores are along the

diagonal, in other words, tokens attend to themselves and their close surroundings the

most.

We can also visualize this as a graph where the tokens are connected by lines of dif-

ferent strength dependent on the attention score between two tokens (see Figure 5.15a).

However, there are too many lines in the graph, and thus, we cannot easily derive in-

terpretations from this graph. Hence, we filter out the least important lines, in other

words, the top 30% lowest attention score relational lines from the graph (see Figure

5.15b). From this filtered graph, we can interpret that some tokens have strong attention

relations with tokens far away in the sequence. Although, these relations only appear

for reoccurring tokens. We also observe that some tokens’ encoding are highly influenced

by neighbouring tokens. For example, the token “min” at the end of the sequence is

mostly influenced by eight neighbouring tokens and a previous occurrence of the token.

The apparent takeaway is that our program grading models mostly focus their attention
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Figure 5.12: Attention for the token “for” over heads and layers (Heads 1-6)
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Figure 5.13: Attention for the token “for” over heads and layers (Heads 7-12)
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Figure 5.14: Self-attention plot



Chapter 5. Experiments and Results 73

(a) Self-attention graph (b) Self-attention graph filtered
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on neighbouring tokens and co-occurring tokens when encoding the embeddings of the

sequence.

Since we have two programs in our input sequence, we can partition the self-attention

matrix in order to visualize how the two programs attend to each other, and therefore,

explain the model’s prediction. In order to create the partition, we take only the bottom

left part of our self-attention matrix (see Figure 5.16). That is, we have the correct

program’s tokens on the y-axis and the sample program’s tokens on the x-axis. We

generate a filtered version (see Figure 5.17) and line plots (see Figures 5.18a, 5.18b) with

this partitioned matrix. In the line plot representations, the left-side shows the tokens of

the correct program P i
+ and the right-side shows the tokens of the sample program P i.

From the filtered self-attention plot, we observe an incomplete diagonal line with missing

pieces, however, a large number of tokens appear in both programs at around the same

location. From the filtered graph, we see that most tokens co-occur in both programs,

and thus, we have high attention scores between co-occurrences. However, variables in

the programs do not have strong attention relations with each other. This is a crucial

finding from the model, since generally in two programs, variables can be defined with

the same keyword but have different purposes and hold different values. So the model

should not rely on variable keywords to measure the similarity of programs.

Finally, we can reduce the dimension of the attention matrix even more by obtaining

the attention weights of each specific token in the sequence. This way we can visualize

which tokens were the most important in the decision of the model. We decide to display

this matrix directly on the code using a highlighting technique where lightly highlighted

tokens represent low attention weights and strongly highlighted tokens represent high

attention weights (see Figure 5.19). With this visualization, we observe that some tokens

present in both programs have strong attention scores and we interpret these tokens as

the most important tokens that need to be present for a program to be considered correct.

Conversely, we also observe that some tokens with high attention scores only appear in
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Figure 5.16: Self-attention plot (partition)
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Figure 5.17: Self-attention plot filtered (partition)
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(a) Self-attention graph (partition) (b) Self-attention graph filtered (partition)
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one program signifying that since these tokens are missing in the other program, the

sample program is more likely to be considered incorrect. All in all, by investigating

the attention mechanism of our deep language models, we have found numerous insights

from the models by analyzing multiple types of visualizations of programs as attention

matrices.

Figure 5.19: Program highlighted with attention weights

5.5.2 Case Study of using LIME

We use LIME to evaluate our program 5.10 and retrieve the tokens that contributed the

most to the prediction of the model both negatively and positively (see Figure 5.20).

LIME generated 100 perturbations of the program and yielded the 10 most influential

features or tokens from the sequence. From the explanations given from LIME, we derive

that the use of the “min” function was the most influential feature of the program followed

by the “print” function, and the “split” function. It seems that for this problem omitting

any of these functions will render the program incorrect. The “min” function can be
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justified by the fact that the output should be the minimum value from a list and it is

the default approach, however, there are multiple ways of retrieving the minimum value

from a list without using the “min” function. The “print” function is obviously important

for the program to produce an output and there is not many alternatives. Finally, the

“split” function is important to split the inputs over commas and it is the most logical

approach. The rest of the features have low weights so they don’t influence the prediction

as much. We also provide an example of a program that is considered incorrect by the

model using the same correct reference solution (see Figure 5.21). Although, in this case,

LIME does not provide as strong feature weights as previously to explain the prediction

even though the prediction strongly indicates that this is an incorrect implementation.

The most influential feature found which explains the sample program’s incorrectness is

the “if” token since the correct reference program does not contain an “if” statement. All

in all, LIME successfully identifies the most important parts of the program that justify

the prediction. This feedback provided from LIME can easily be used by evaluators to

understand the critical points of the program that influence its grade.

Figure 5.20: LIME explanation of a correct implementation
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Figure 5.21: LIME explanation of an incorrect implementation

5.6 Summary

In this chapter, we evaluated our proposed deep language models leveraging the pre-

trained CodeBERT and UniXcoder models on the task of computer program grading

providing both binary correctness and partial grading. We then compared a feature

engineering approach against our models to justify the importance and performance

of large deep neural networks pre-trained specifically on programming language with

millions of programs. These results prove the usefulness and efficiency of an automatic

program grader powered by our proposed models. We also proposed different algorithms

and settings tackling different type of deployment environments the models can perform

in. Additionally, we present multiple ways of analyzing and interpreting the decisions of

our deep language models.
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Conclusion and Future work

In this thesis, we presented a question-independent framework to automatically grade

computer programs without the need of test-cases. We designed two architectures and

fine-tuned the state-of-the-art pre-trained deep programming language models (i.e., Code-

BERT [23], UniXCoder [28]) for the code grading task. Considering that the proposed

approaches do not need any feature engineering, which depends on the programming

language that we consider, they outperform the shallow models by a high margin. We

also present a feature-engineering approach to this problem by computing different met-

rics from the keywords and graph representations of programs. Thus, we contribute to

the field of computer program grading with new approaches to tackle the problem and

provide a multitude of resources for future research.

When considering the ethical and social implications of an automatic program grader

in a real-world scenario, we need to examine the fairness of such a technology. As it has

certain limitations, there will always be edge cases where an automatic grader will fail.

In those cases, the programs will need to be manually graded to obtain reliable grades.

Further implications of the ethical and social aspects of this work will need to be further

examined in a future work.

81
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6.1 Thesis Contribution Highlights

The main contributions of this thesis can be summarized as follows:

• First, we demonstrate a straightforward architecture built by fine-tuning the state-

of-the-art deep learning models: CodeBERT, UniXCoder.

• Additionally, we present a more complex architecture, namely the Siamese network,

which circumvent some of the shortcomings of large language models (i.e., input

vector size limitation), and introduce a contrastive learning approach.

• In particular, we developed a set of baselines based on both count-based and graph-

based features and showed that they underperform compared to the proposed mod-

els.

• Furthermore, we developed a transductive learning algorithm taking advantage of

correct solutions in the test set to make better predictions. In fact, this algo-

rithm builds on another algorithm (i.e., Majority vote) which enables the model to

evaluate programs using multiple reference solutions.

• We successfully teach deep learning models how to grade computer programs with-

out the need of test-cases. To the best of our knowledge, this is the first work

towards using deep learning models for the computer program grading task.

• We conduct different methods of analyzing the interpretability of deep language

models and obtain various insights and potential feedback that can be provided to

a human evaluator to specify the reasoning that have led to the given grade.

• We also investigate an application of our automatic program grader by providing

certain improvements to the current work in program synthesis.
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6.2 Limitations

The proposed models in this research demonstrated great results on automatic program

grading. However, there are some limitations to this work that would need to be consid-

ered.

• While this work’s main objective is the grading of computer programs, the proposed

models were not trained on giving a partial grade to a program. Although, we see

promising correlations between the model’s grades and human grades, we would

require a larger set of graded programs in order to be able to specifically train the

model on predicting program grades. Since test-cases present multiple drawbacks,

a human labelled training dataset would also serve to completely remove test-cases

from the framework.

• The selection of the correct reference solution greatly influences the grading results

obtained from our model. One possible research direction would be to improve

on the random selection by selecting the reference solution that best represents a

correct solution for the problem.

• Lastly, the size and complexity of the problems and corresponding solutions affects

the performance of the models. By training the models restrictively on separate

problem categories ranging from simple to more complex problems, we could min-

imize the disturbance in training.

6.3 Future Work

With an extended soft label data we could experiment using supervised learning directly

on graded programs data. Developing semi-supervised models taking advantage of a

large pool of weakly labeled programs and a smaller pool of programs evaluated by

human graders in the training phase would be another interesting research direction.
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The collection of graded data would be a simple process with the incorporation of data

collection in programming courses while respecting the institution’s regulations.

Another approach to tackle the problem would be to develop a Graph Neural Network

model utilizing abstract syntax trees to leverage the code’s structural properties inside

the model. This approach requires a considerably large memory as abstract syntax tree

representations of programs are immense. Additionally, all programs will have different

size representations, thus a padding and a truncation method would have to be used

considerably limiting the program’s size.

We hope that the proposed models and the resources (including the models and

datasets) which are prepared by this work pave the way for further research.
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Appendix I

7.1 Training Details

We provide the training details for the proposed models in Table 7.1.

Table 7.1: Training details

Models
Batch size

(per gpu)

Learning

rate

Number

of epochs

Time per

epoch

Deep Grader (CodeBERT) 16 5e-5 3 0:29:27

Deep Grader (UniXcoder) 16 5e-5 3 0:30:31

Deep Siamese Grader (CodeBERT) 8 5e-5 3 1:13:40

Deep Siamese Grader (UniXcoder) 8 5e-5 3 1:18:55
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7.2 Applications of Deep Grader in Program Syn-

thesis

7.2.1 Overview

The emergence of deep learning has substantially advanced the field of programming

language (PL) learning with generative models. The main tasks tackled in this field are

the task of program induction and program synthesis. The former consists of generating

program outputs from contextual program representations. The latter is the task of gen-

erating code based on a given context specification. In [82], they proved that language

models can learn to use operators such as addition, subtraction in a general way and they

could also memorize effectively. Researchers have then continued work towards program

induction by introducing the Neural Program Interpreter [50, 55, 61] and the Universal

Transformer [18]. On the other hand, program synthesis involves the generation of code

based on a natural language contextual specification. Popular approaches in this field

have tried using abstract syntax trees (ASTs) to incorporate the code’s structure into

the model and generate structurally correct code [3, 4, 46, 81]. Others have found that

omitting AST representations and using n-grams or character-level language models have

higher success in program synthesis [8, 32, 43], for example, with the Latent Predictor

Networks [43] or the DeepCoder [8] model which was trained on predicting methods

in code based on function definitions or docstrings. With an interesting approach, Ba-

log et al. [8] focus on solving difficult programming problems using provided input and

expected output examples. They approach the problem from a more indirect view by

searching for specific pre-written code from the community and puzzling the snippets of

code together to answer the programming problems.

Recently, a large body of research has been made towards the longstanding challenge

of program synthesis prompted by the great advancements of Transformer-based language
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models and the substantial amount of code publicly available on Github. Due to the large

success of Transformer-based language models in the NLP field like T5 [54] and GPT

[11, 12, 52, 53, 73], researchers have proposed programming language counter parts like

PyMT5 [16], GPT-J [73], and Codex [13] for program synthesis, or more specifically,

for translating between function signature/docstring and body. The GPT-J model has

a size of approximately 6 billion parameters and was trained on the Mesh Transformer

JAX [72] codebase. Unlike most of the other large GPT models, the GPT-J model was

publicly released along with a web demo version 1.

From Chen et al. [13], the approach has become more direct in the way the model

learns to understand and generate code without the need of any corpus or reference,

however, the difficulty of problems tackled has not improved. In this task, the generated

code samples are evaluated using test-suites. Unlike with natural language generative

models which are evaluated with heuristics such as the BLEU [48] score. Using such

heuristics proves to be detrimental in capturing semantic features specific to code [57].

Furthermore, match-based metrics are unable to accommodate for the large space of cor-

rect programs functionally equivalent to a given solution. Thus, Chen et al. [13] evaluate

their models with the pass@k metric which is defined as the fraction of problems that

are solved by generating k sample programs. To solve programming problems, they gen-

erate multiple samples from the models, and check if any of them pass the unit tests.

The number of samples generated appears to be proportional with the chance of one of

them passing the test suite. The method of generating a single sample solves 28% of

problems, while the method of generating 100 samples and selecting the one that passes

the test suite solves 77% of problems. If the test-case evaluation of 100 samples per

problem is too demanding or not feasible in deployment, they propose using the mean

log-probability to determine the best sample. With this approach 44% of problems are

solved. To train their models they use 159GB of unique Python files retrieved from 54

1https://6b.eleuther.ai/
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million public software repositories hosted on GitHub. To benchmark their models they

create a dataset, called HumanEval, which is composed of 164 hand-written program-

ming problems unseen to the models. Each problem consists of a docstring, a function

signature, a body, and a test-suite to test the function.

Current generative models show difficulty in generating a correct solution when faced

with complex problems. What makes a problem harder than another is the natural lan-

guage specification that is provided. It’s length, vocabulary complexity, and number of

components regulates the difficulty of a problem. For example, the further we increase

the number of chained components in the context (see Figure 7.1), the worse the gener-

ative model performs on generating a correct solution to the problem even though the

individual components are trivial for the model to solve (see Figure 7.2).

# Add 3 to b ,

# then su b t r a c t 4 from a and b ,

# then re turn the product o f the 4 numbers .

def compute ( a , b , c , d ) :

t = b + 3

u = a − 4

v = c ∗ d

return v

Figure 7.1: Example of a generated solution for a three component problem.

An important drawback of [13] that we attempt to address is the use of test-cases to

evaluate generated programs. They generate multiple program samples for each problem

and filter out the best one by running the programs on test-cases. Thus, the current code

generative models are highly dependent on unit-testing. Generative language models

are trained on publicly available code, hence, they have unknown intent and are often
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Figure 7.2: Effect of multiple components on the performance of generative models.

incorrect; some posing a serious security risk if executed. Running potentially malicious

generated code on test-cases requires proper security measures taken in place and certain

deployment environments do not have access to such infrastructures.

Thus, we suggest a more efficient sampling strategy without the need of test-cases

which correlates more to the program’s correctness than some of the previously pro-

posed methods. At the same time, it poses less security risks and requires less resources

compared to the best performing sampling strategy.

The following examples (see Figure 7.2, 7.3) show how our proposed program grading

model handles different situations when it comes to syntactically different generated

programs. The first generated example (see Figure 7.2) gets attributed a score of 81%

by the correctness model and we can observe that it is only missing the definition of the

variable “x mean” when compared to the reference solution. In the second example (see

Figure 7.3), the generated solution gets a 100% score even though the reference solution
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uses a different variable naming.
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Table 7.2: Example of a generated program with a correctness score of 81% and its

reference correct solution.

7.2.2 Improved Sampling Strategy

In [13], they proposed generating k solutions to a problem and sampling the best one.

They proved that a larger value of k produces better results (up to k = 100). They

used test-cases for sampling the best generated codes (i.e., oracle) and proposed the

mean log-probability from the sampling tree in environments where running a test-suite

numerous times is not possible or practical in certain deployment scenarios. The mean
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Table 7.3: Example of a generated program with a correctness score of 100% and its

reference correct solution.

log-probability is taken from the probabilities of tokens along a path in the sampling tree

of the generative model. An example of a natural language sampling tree can be seen in

Figure 7.3.

As these probabilities have little to do with the correctness of programs, we propose

a test-case free sampling method using our correctness score that aims to outperform

the mean log-probability method. Since the final evaluation is based on passing the test-

suite, the oracle sampling, which is based on test-cases, acts as an upper bound baseline

to our proposed sampling technique.

We evaluated the sampling methods within the repeated sampling environment pro-

posed by Chen et al. [13] and we benchmarked our correctness score based method to

the oracle and to the mean log-probability sampling on the HumanEval dataset with
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Figure 7.3: Example of Sampling Tree

the GPT-NEO 1.3B model (see Figure 7.4). We observe that as the k value increases

our proposed method appears to better correlate to the oracle compared to the mean

log-probability method.

Due to resource constraints, the chosen generative model is not capable of solving

many problems. Furthermore, we could only evaluate the model up to k = 10. Thus,

the pass rates are low and it is difficult to draw statistical conclusions from the sampling

techniques. When we visualize the distribution of correctness scores for the problems

in the HumanEval dataset, we notice a clear demonstration of the capabilities of the

generative model (see Figure 7.5). We observe that, for the majority of problems, the

GPT-NEO 1.3B model does not produce high correctness score solutions which explains

the low pass rates in Figure 7.4.
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Figure 7.4: Sampling methods for generated programs

Figure 7.5: Distribution of Correctness Scores (k=10)
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editors, Proceedings of the 37th International Conference on Machine Learning, vol-

ume 119 of Proceedings of Machine Learning Research, pages 5110–5121. PMLR,

13–18 Jul 2020. URL https://proceedings.mlr.press/v119/kanade20a.html.

[39] Yoon Kim. Convolutional neural networks for sentence classification. In Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1746–1751, Doha, Qatar, October 2014. Association for Computa-

tional Linguistics. doi: 10.3115/v1/D14-1181. URL https://aclanthology.org/

D14-1181.

[40] Quoc Le and Tomas Mikolov. Distributed representations of sentences and docu-

ments. In Eric P. Xing and Tony Jebara, editors, Proceedings of the 31st Inter-

national Conference on Machine Learning, volume 32 of Proceedings of Machine

Learning Research, pages 1188–1196, Bejing, China, 22–24 Jun 2014. PMLR. URL

https://proceedings.mlr.press/v32/le14.html.

[41] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denois-

ing sequence-to-sequence pre-training for natural language generation, translation,

and comprehension. In Proceedings of the 58th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 7871–7880, Online, July 2020. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL

https://aclanthology.org/2020.acl-main.703.

[42] Yiyi Liao, Yue Wang, and Yong Liu. Graph regularized auto-encoders for image

representation. IEEE Transactions on Image Processing, 26(6):2839–2852, 2017.

doi: 10.1109/TIP.2016.2605010.

https://proceedings.mlr.press/v119/kanade20a.html
https://aclanthology.org/D14-1181
https://aclanthology.org/D14-1181
https://proceedings.mlr.press/v32/le14.html
https://aclanthology.org/2020.acl-main.703


BIBLIOGRAPHY 102

[43] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomás Kociský, An-
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