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ABSTRACT 

Waste collection and street-sweeping play a vital role in public health, safety, and 

overall cleanliness. Since these processes cannot be ignored, they should be done in an 

efficient manner. The following thesis proposes a novel 2-stage clustering approach, 

namely the Static and Dynamic Clustering, to divide a municipalities road network into 

several operational areas in which the routes can be assigned. A method of generating 

optimal routes within the respective operational areas is also developed so statistics can be 

used to quantify the improvements made using the proposed clustering methods. The 

proposed algorithms were used to optimize the waste collection and street-sweeping 

processes in The City of Oshawa. The results of this work show that the proposed clustering 

algorithms can generate operational areas that better distribute the workload and overall 

simulated statistics when compared to existing configurations. Additionally, the proposed 

techniques may be applied to other routing applications, and other areas of research 

involving optimizing data partitions using clustering methods, such as machine learning. 
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Chapter 1. Introduction 

1.1. Introduction 

 Route optimization is a broad, yet complicated area of research that spans over many 

disciplines, including waste collection, street-sweeping, snowplowing, mail delivery, and 

many others. Common to all areas of route optimization, some organizations rely upon 

humans to create service routes manually while using their own judgment. In smaller cases, 

this seems like an ideal approach. However, manually creating servicing routes on a large 

scale can prove to be a time consuming and inefficient method that yields results far from 

optimal. Additionally, developing areas typically undergo rapid expansion and population 

growth. As a result, complications with existing servicing routes arise, and a method of 

efficiently updating existing routes, or creating new routes can be beneficial. 

 In large municipalities, it is common to divide a large area into several smaller 

operational regions or zones. This is seen in applications such as curbside waste collection 

and street-sweeping and allows for better dispatching organization and workload 

distribution for the operations team. However, creating arbitrary areas without any 

knowledge of the service demand in these areas can lead to an unbalanced workload and 

statistics distribution, resulting in less efficient routes. For the case of waste collection, 

some stop locations may generate more waste (in the case of multi-dwelling households), 

or in street-sweeping, some streets may accumulate more debris (in the case of dense tree 

canopies overhanging the roads), and it is critical that these areas are treated differently 

since they have an influence on the expected number of trips due to the capacity constraint.  

 Additionally, servicing vehicles of any type have several operational constraints that 

must be considered. Vehicle constraints such as debris and fuel capacity, and operational 
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constraints such as shift length and u-turn avoidance all play an important role in route 

optimization. With respect to creating routes manually, these concepts are difficult (if not, 

impossible) to incorporate.  

 Currently, route optimization is a largely researched area with many heuristic 

approaches that have been proposed and validated. However, some municipalities have 

different vehicle and operational constraints which require the development of new 

heuristic methods to properly optimize servicing routes.  

1.2. Scope and Objectives 

 The primary scope of this research is to develop novel heuristic algorithms capable 

of optimizing waste collection and street-sweeping routes for The City of Oshawa. The 

route optimization methods are to be applied on a city-wide scale, making use of large 

datasets representing the city’s complex road network. Due to the operational differences 

between waste collection and street-sweeping, different heuristics will be developed for 

each respective area.  

The detailed objectives of the waste collection route optimization include: 

• The development of a waste collection route optimization algorithm 

• The development of a collection area pairing algorithm with workload balancing 

• The development of a collection area generation algorithm with expected waste 

distribution balancing 

• A detailed comparison of the existing collection area configuration vs. the generated 

collection area configuration 

The detailed objectives of the street-sweeping route optimization include: 
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• The development of a street-sweeping route optimization algorithm capable of 

multi season (Spring/Summer/Fall) interpretation and unsafe u-turn elimination 

• The development of a street-sweeping area generation algorithm with service 

distance distribution balancing 

• A detailed comparison of the existing street-sweeping area configuration vs. the 

generated street-sweeping area configuration 

1.3. Outline of Thesis 

Chapter 1 introduces the research scope, objectives, thesis outline, and working 

foundations used to achieve the research objectives. 

Chapter 2 provides an in-depth literature review regarding route optimization models, 

route optimization algorithms, and clustering algorithms used in routing applications. 

Chapter 3 explains the developed heuristic used for waste collection route optimization in 

The City of Oshawa. The simulated results from the current collection area configuration 

were compared to the optimized collection area configuration. 

Chapter 4 explains the developed heuristic used for waste street-sweeping route 

optimization in The City of Oshawa. The simulated results from the current street-sweeping 

area configuration were compared to the optimized street-sweeping area configuration. 

Chapter 5 concludes the thesis by highlighting the contributions made to the route 

optimization research discipline and states the limitations of the proposed methods. Future 

research objectives and recommendations are also discussed. 
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1.4. Problem Background & Working Foundations 

 The problem background, working foundations, algorithms, and methodologies 

presented in this thesis will be discussed in the following section. The operational principle 

of waste collection and street-sweeping in The City of Oshawa will be explained. Next, the 

data preparation and software used will be discussed. From there, the utilized graph 

traversal algorithms will be explored. Followed by the optimization algorithms selected. 

The chosen clustering algorithms will be explained. Finally, parallel computing methods 

and resources will be explored. 

1.4.1. Waste Collection and Street-sweeping in The City of Oshawa 

This section will explain the operational principle behind the waste collection and 

street-sweeping operations in The City of Oshawa. These processes differ from 

municipality to municipality, so it is important to define the working procedure being 

examined in the following research. 

1.4.1.1. Waste Collection 

The City of Oshawa is divided into 10 different areas [1] (2 for each day of the 

working week) for curbside waste collection, and each of the 10 areas is divided into 11 

individual routes. Each day of the week, a fleet of 11 vehicles (made up of the Labrie Expert 

Co-Mingle Split Side Loader and the Shu-Pak PK Split Side Loader) is dispatched to 

service the 2 collection areas corresponding to the current day of the week. The vehicles 

will service a route in each area. The collection week alternates between Week 1 and Week 

2, meaning that one area will have only organics collected, while the other has garbage and 

organics collected. Each dwelling may have up to 4 bags of waste which can weigh up to 

20 kg each, and 1 green bin that can weigh up to 20 kg [1], and there may be multiple 
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dwellings at a single stop (e.g., basement apartments). The collection areas can be seen in 

Figure 1-1.  

 

Figure 1-1 Waste Collection Area Configuration for The City of Oshawa [1] 

 

1.4.1.2. Street-sweeping 

The City of Oshawa consists of 3 road classes, residential (RES), arterial and 

collector (AC), and central business district (CBD) for street-sweeping, each with their own 

set of standards. On AC roads, the travel speed and traffic volume are typically larger than 

RES roads, and RES roads contain direct connections (driveways) to most of the housing 
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in the city. For this study, only the RES and AC road classes will be considered as the CBD 

is a localized area that is treated differently than RES and AC roads. The AC roads can be 

divided into 5 sweeping areas, and RES can be divided into 12 different areas that are swept 

by Elgin Whirlwind mechanical street sweepers [2].  

AC sweeping areas are made up of a combination of city owned roads and regional 

owned roads, where all AC roads are swept in Spring and Summer, but only the city owned 

roads are swept in the Fall. RES roads are swept all 3 seasons; however, 2 subclasses of 

RES roads exist, canopy and non-canopy. Canopy roads are defined as roads with street or 

boulevard trees that have a denser canopy overhead, contributing to more debris generation 

(via. leaves) in the Fall season. It should be noted that canopy roads will change over time 

as some trees may die, and eventually non-canopy roads may become canopy roads as small 

trees will grow. Non-canopy roads still accumulate leaves in the Fall, but canopy roads 

accumulate more and must be treated as such, possibly requiring frequent and multiple trips 

due to the increase in volume of material collected. All roads must be swept twice, once in 

each direction for 2-way roads, and twice in the same direction for 1-way roads. 

1.4.2. QGIS and GIS Data 

Geographic information system (GIS) data was supplied by The City of Oshawa, 

and QGIS [3] is used to view/manipulate the data. GIS integrates location data (map) with 

descriptive data (attributes) [4]. The supplied GIS data represents the road network and can 

be seen in Figure 1-2, where each line is a road segment. Each road segment has several 

useful attributes associated with it that otherwise cannot be seen visually, such as speed 

limit, road class, jurisdiction, etc. 
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Figure 1-2 Road Network GIS Data for The City of Oshawa 

 

1.4.3. Capacitated Arc Routing Problem (CARP) 

The capacitated arc routing problem (CARP) model is commonly used to optimize 

servicing routes consisting of roads with demand and cost [5]. This directly correlates to 

waste collection in the form of collecting household waste and organics, and street-

sweeping in the form of debris collection. CARP can be used to model 1 or many servicing 

vehicles, which makes it a versatile approach for many applications. In most literature, the 

cost is typically the travel distance, and the demand is specific to the application. However, 

as the routing problem becomes increasingly complex, there may be several cost and 

demand variables. 
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CARP differs from the traditional vehicle routing problem (VRP) approach in the 

sense that the roads/edges themselves need to be serviced instead of servicing 

locations/nodes [6]. Although the curbside waste collection problem can technically be 

modelled as a VRP, it is assumed to be an edge routing problem because of the many 

servicing locations that exist on a road segment, as seen in Figure 1-3.  

 

Figure 1-3 Stop Locations (Pink) for the Curbside Waste Collection 

 

1.4.4. Graph Traversal Algorithms 

This section will explain the graph traversal algorithms used in the following 

research. Specifically, the operation principles and importance of Dijkstra’s algorithm, A* 

algorithm, ant colony optimization (ACO), and Hierholzer’s algorithm will be briefly 

discussed. 

1.4.4.1. Dijkstra’s Algorithm 

Dijkstra’s shortest path finding algorithm was proposed by E. W. Dijkstra in 1959 

[7] and has been used by hundreds of researchers in many different path finding 
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applications. Dijkstra’s algorithm finds the shortest path from one node to all other nodes 

in a weighted graph. For this research, Dijkstra’s algorithm was used to connect pairs of 

nodes together in a road network such that all nodes have an in-degree equal to their out-

degree. An example of Dijkstra’s algorithm can be seen in Figure 1-4. 

 

Figure 1-4 Dijkstra's Algorithm Example for a Simple Graph 

 

1.4.4.2. A* Algorithm 

The A* algorithm is similar to Dijkstra’s algorithm, however, A* simply finds the 

shortest path between any 2 nodes in a strongly connected multigraph rather than 1 node 

and all other nodes [8]. A* is a more informed version of Dijkstra’s algorithm because it 

consists of 2 cost functions, one to keep track of the current path distance (gcost), and the 

other to keep track of the Euclidian distance to the goal node (hcost). Each candidate node 

has a total cost that is equal to the sum of the gcost and hcost, thus providing insight as to 

which nodes are in the direction of the goal node, eventually exploiting the guaranteed 

shortest path without the need to explore all nodes in the network. For this research, A* 

was used to compute the shortest path between road segments in an efficient manner within 

a genetic algorithm (GA). A simple example of the A* algorithm can be seen in Figure 1-5. 
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Figure 1-5 A* Example for a Simple Graph 

 

1.4.4.3. Ant Colony Optimization (ACO) 

Different versions of ACO exist, however they all share the same operational 

principle. ACO is a stochastic process developed for combinatorial optimization problems 

of many types [9]. ACO simulates a colony of ants searching for food, and the least 

expensive paths found by ants will be rewarded with greater pheromone levels, thus making 

them more desirable after each iteration. In accordance with nature, the pheromone levels 

slowly evaporate from all paths, exploiting the paths with the best fitness.  

Each iteration simulates a colony of ants finding the shortest path to the goal 

location; a roulette style selection is used to choose the next edge to travel where the 

probability is proportional to the pheromone level of the corresponding edge. Once the ants 

reach the goal location, the algorithm stops and rewards the best path found by the colony. 
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ACO works best with a graph-like structure, which easily translates to a road network. For 

this research, the ACO algorithm was modified to work as a u-turn removal algorithm. A 

visual representation of the ACO algorithm can be seen in Figure 1-6. 

 

Figure 1-6 ACO Example 

 

1.4.4.4. Hierholzer’s Algorithm 

Hierholzer’s algorithm is a graph traversal algorithm that is used to generate an 

Eulerian circuit that traverses each edge once in directed multigraphs with all nodes having 

an in-degree equal to the out-degree [10]. Additionally, Hierholzer’s algorithm can create 

an Eulerian path in directed multigraphs only if the starting node has an in-degree equal to 

1 more than the out-degree, and the ending node has an out-degree equal to 1 more than the 

in-degree.  

Hierholzer’s algorithm works by randomly selecting unvisited outgoing edges from 

the current node until a node is reached with no unvisited edges. When this occurs, the path 

is reversed until the next node is reached that has unvisited edges. While the path is being 

reversed, the edges are added to a separate list representing the Eulerian circuit/path. Once 
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all edges have been visited, the algorithm will stop, and the Eulerian circuit/path can be 

seen. For this research, Hierholzer’s algorithm was modified to minimize the number of u-

turns in a servicing circuit/path. An example of Hierholzer’s algorithm being used to create 

an Eulerian tour can be seen in Figure 1-7. 

 

Figure 1-7 Hierholzer's Algorithm to Create an Eulerian Tour 

 

1.4.5. Optimization Algorithms 

This section will explain the optimization algorithms used in the following research. 

Specifically, the operation principles and importance of the GA, differential evolution 

(DE), tabu search (TS), and transitive reduction (TR) will be briefly discussed. 

1.4.5.1. Genetic Algorithm (GA)  

The GA is an evolutionary algorithm developed to replicate the natural process of 

evolution through survival of the fittest [11]. GAs are ideal for combinatorial optimization 

processes, but with proper encoding, they can be used for continuous optimization problems 

as well. To use a GA for the combinatorial case, the optimization problem should be 

formulated as a list of genes in a chromosome. For example, in the travelling salesman 
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problem (TSP), each gene in the chromosome would represent a city to visit, and the order 

of the genes in the chromosome would represent the order of which the cities will be visited. 

The GA works by first creating an initial population of chromosomes with a random 

order or configuration of genes in accordance with the optimization problem. A fitness 

function (specific to the optimization problem) will be used to evaluate the fitness of each 

member in the population, where the best solutions are the ones with the lowest fitness 

score. Typically, a small sample of the best solutions (chromosomes) are copied to the next 

generation to ensure they do not get destroyed by the next phase, crossover, and mutation. 

In the crossover phase, 2 parents will be randomly selected with probability 

proportional to their respective fitness, and their genes will be swapped at a randomly 

selected crossover point to create 2 children, an example of this can be seen in Figure 1-8. 

In the mutation phase, the genes of the children’s chromosomes are iterated over and the 

ones that are selected for mutation are changed to a random variable in accordance with the 

optimization problem, an example of this can be seen in Figure 1-9. This process is repeated 

until a new population is created with the same size as the original one. Over several 

generations, the chromosomes will gradually improve fitness, and the best solution from 

the final generation is selected as the optimal solution. For this research, the GA was used 

to pair waste collection areas together with the objective of balancing the workload, and it 

is used as a part of the 3-phase augment merge algorithm to optimize the order of roads to 

be swept. 
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Figure 1-8 GA Crossover Phase 

 

Figure 1-9 GA Mutation Phase 

 

1.4.5.2. Differential Evolution (DE) 

DE, like the GA, falls under the umbrella of evolutionary algorithms, but is more 

applicable to multi-dimensional continuous optimization problems [12]. DE also shares the 

concept of survival of the fittest through crossover and mutation, but this is done in a 

different manner due to the multi-dimensional nature of the problem.  

DE works by first creating an initial population of chromosomes with a random 

order or configuration of genes in accordance with the optimization problem. The fitness 

of each member of the population is evaluated using an objective function specific to the 

optimization problem. Then the population is iterated over, the current member of the 

population is called the target vector, and 3 other chromosomes are randomly selected from 

the current population. A difference vector is created by subtracting 2 of the randomly 

selected chromosomes, and this is multiplied by a weight factor. This is called the weighted 

difference vector. The weighted difference vector is added to the 3rd randomly selected 
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chromosome, creating the noisy vector. The mutant vector is created by iterating through 

the genes of the target vector, using a mutation probability, the current gene will be selected 

from either the mutant vector or target vector. Once the mutant vector has been created, the 

fitness is compared to the target vector and the better solution is added to the next 

population. An example of the DE process can be seen in Figure 1-10. For this research, 

DE was used to tune the β values in the Static and Dynamic waste collection and street-

sweeping area clustering. 

 

Figure 1-10 DE Example 

 

1.4.5.3. Tabu Search (TS) 

TS is a metaheuristic approach developed to overcome local optimality in 

combinatorial optimization problems by forbidding certain moves until a short time later 

[13]. TS can be used in many ways; however, all make use of the fixed length tabu list that 

stores recently evaluated solutions to prevent cycling.  

To use TS, an initial solution must be formulated, and depending on the 

optimization problem, a change will be made in the initial solution to create a new solution. 



16 

 

If the new solution is not in the tabu list, it will be used as the current solution and added 

to the tabu list. However, if the solution is a part of the tabu list, another change will be 

made to the current solution until a solution that is not in the tabu list is found. 

If the tabu list exceeds its defined length, the oldest solution will be removed from 

the list, thus allowing the solution to reappear again as a candidate. The fitness of each 

solution must be calculated, and the best-found solution must continuously update until the 

final iteration. For this research, TS was used to minimize u-turns in an Eulerian cycle/tour. 

1.4.5.4. Transitive Reduction (TR) 

A TR is defined as a subgraph of the original graph consisting of less edges. A TR 

must maintain the same strong connectivity as the original graph (all nodes reachable from 

each other) but it must also consist of the minimal number of edges to do so [14]. 

There are several ways to accomplish this. For removing redundancies in routing 

applications, an initial solution can be generated using an edge traversal algorithm, and 

cycles of the initial solution can be removed if they still yield a strongly connected 

subgraph. For this research, TR subgraphs were used to improve the solutions (reduce 

redundant deadhead travel) generated by the proposed heuristic. 

1.4.6. Clustering Algorithms 

This section will explain the clustering algorithms used in the following research. 

Specifically, the operation principles and importance of the weighted K-Means (WK-

Means) algorithm, and the developed Static and Dynamic clustering approaches will be 

briefly discussed. 
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1.4.6.1. Weighted K-Means (WK-Means) 

Clustering algorithms work by arranging a collection of instances into several 

clusters consisting of similar traits. One of the most commonly used clustering approaches 

is the K-Means algorithm, where the instances are clustered into k number of groups [15]. 

The K-Means algorithm works by selecting k number of instances to be the initial centers, 

and an equation is used to calculate the proximity of other instances surrounding each initial 

centers. The instances join the nearest cluster center, then the cluster center locations are 

updated. This process is repeated until the cluster centers converge, or the final iteration is 

reached. In the case of 2D data, a collection of points would be the instances, and the 

proximity equation would simply be the Euclidean distance. A visualization of clustering 

on 2D data can be seen in Figure 1-11. 

 

Figure 1-11 Clustering 2D Data 

 

In many cases, K-Means would simply be enough to cluster data. However, a more 

informed version of the K-Means algorithm exists for weighted data called the WK-Means 

algorithm [16]. The WK-Means algorithm works like K-Means, except for the proximity 
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calculation which includes a variable to consider the respective cluster weights. 

Conceptually, this can be thought of as the gravitational pull (or push) that different clusters 

may have on the dataset. For this research, the WK-Means algorithm was used in the 

developed Static and Dynamic clustering algorithms. 

1.4.6.2. Static and Dynamic Clustering 

The Static and Dynamic clustering methods were developed to balance the weights 

of all clusters while still retaining spatial similarities of the dataset. By combining WK-

Means and DE, the influence of the weights of each respective cluster can be optimized to 

yield clusters that are more balanced for the application. For optimal results, the Static 

cluster optimization should be used first, then the Dynamic cluster optimization should be 

used with the cluster centers and weights produced by the Static approach. 

The Static approach uses DE to tune a single influence factor that will be applied to 

all clusters simultaneously in the WK-Means clustering algorithm. Over several 

generations, an optimal cluster configuration will be found with balanced weights. 

However, the clusters can still be improved by optimizing the influence factor of each 

cluster individually. 

The Dynamic approach uses DE to tune each cluster’s influence factor while 

keeping the cluster center locations and weights from the Static approach fixed. Each 

instance can be joined to the nearest weighted cluster center to generate a new cluster 

configuration; however, the cluster centers and weights do not update like they would in 

WK-Means. The distribution of cluster weights in the new cluster configuration will be 

used to evaluate the effectiveness of the influence factors. Using DE, each clusters 

influence factor will be tuned to yield the optimal cluster configuration over several 
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generations. For this research, the Static and Dynamic clustering algorithms were used to 

divide the City of Oshawa into several well-balanced servicing areas for each respective 

application.  

1.4.7. Parallel Computing 

Traditional programming workflows require tasks to be executed in a serial manner, 

one after another. However, as algorithms become increasingly complex and lengthy, serial 

methods are no longer ideal and require a clever workaround. With access to a large 

collection of computing resources, developers can modify their algorithms to allow for a 

parallel approach where applicable [17]. By carefully distributing tasks amongst several 

CPUs, they may be executed alongside one another, and thus do not need to wait for the 

previous task to finish before the next one can start. In Southern Ontario, SHARCNET 

grants access to a vast amount of remote computing resources to be used for parallel 

computing [18]. For this research, parallel computing methods were carefully integrated 

into the Static and Dynamic clustering methods and are also used to generate routes within 

different servicing areas. 
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Chapter 2. Literature Review 

2.1. Introduction 

In this Chapter, a detailed literature review is conducted to present the state-of-the art 

techniques used within the field of route optimization. Since waste collection and street-

sweeping route optimization is a specialized area under the route optimization umbrella, 

other relevant routing applications (snowplow, mail delivery, etc.) will be explored which 

fall under the same scope as the research presented in this thesis. 

Specifically, this chapter will cover routing problems and models, clustering and 

zoning approaches, smart routing approaches with real time data access, GIS-based routing 

approaches, and workload balancing. 

2.2. Routing Problems & Models 

Routing problems can be classified into 2 main types of problems, the edge routing 

problem, and node routing problem. In node routing problems, there exist several points 

that must be visited, and the optimal visiting order must be found to minimize the travelling 

distance between points. In edge routing problems, there exists several edges that must be 

traversed and the optimal traversal order must be found to minimize the travelling distance 

between edges [19]. Due to the differences in the problem formulation, algorithms cannot 

be interchanged between edge routing and node routing problems [19]. 

Node routing problems are arguably easier to formulate, thus methods of converting 

edge routing problems to node routing problems have been proposed [20]. In this chapter, 

both edge routing and node routing applications will be explored. 
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2.2.1. Node Routing Problems 

The simplest version of the node routing problem is the TSP [21]. The TSP can be 

solved using a number of combinatorial optimization algorithms such as ACO, Simulated 

Annealing (SA), and the GA [22]. Expanding on the TSP, the capacitated vehicle routing 

problem (CVRP) is the most studied version of the node routing problem in which each 

node has a demand. Additionally, there may exist a fleet of homogeneous vehicles in the 

CVRP [23]. The CVRP is ideal for waste bin collection in the sense that each collection 

bin can be modelled as a node on a graph with a specific demand, and each edge traversed 

to get to the bin has a cost proportional to the distance travelled.  

There also exists several other variations of the CVRP that are used within the waste 

collection route optimization scope. The multi-depot vehicle routing problem (MDVRP) in 

which multiple depots serve as candidate depot locations to start and end trips. Wang et al. 

solved the MDVRP using particle swarm optimization (PSO) [24], Kyung Hwan et al. and 

Mingozzi used exact methods to solve the MDVRP [25, 26], and Polacek et al. used a 

variable neighborhood search (VNS) to solve the MDVRP [27]. 

2.2.2. Edge Routing Problems 

The simplest version of the edge routing problem is the Chinese postman problem 

(CPP) [28]. There is an exact algorithm to solve the CPP as it is just an Eulerian tour that 

visits all edges at least once. As the CPP is designed for undirected graphs, it is not ideal to 

use this approach for routing within road networks that contain 1-way roads, in these cases 

the directed Chinese postman problem (DCPP) may be used [29]. However, many more 

useful versions of CPP exist [30], such as the directed-rural Chinese postman problem 

(DRCPP) [31] and the windy-rural Chinese postman problem (WRCPP) [32].  
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In the DRCPP, only a subset of edges in a directed graph needs to be serviced, and in 

the WRCPP, the subset of edges that need to be serviced have a demand that is dependent 

on the direction of travel. The DRCPP can directly translate to curbside waste collection 

and street-sweeping as specific routes are a subset of edges within the city’s directed road 

network. Additionally, the WRCPP directly translates to curbside waste collection. Since 

the waste collection vehicles collect on the right-hand side, there may be more pickup 

points on one side of the road than the other, thus creating more (or less) of a demand 

depending on the direction of travel as seen in Figure 2-1.  

 

Figure 2-1 Directional Demand for the Curbside Waste Collection 

 

Through transformative approaches proposed by Pearn et al., any form of the CPP can 

be formulated as the generalized travelling salesman problem (GTSP) [20], in which the 

nearest neighbor (NN), repetitive nearest neighbor (RNN), improved nearest neighbor 
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(INN), repetitive improved nearest neighbor (RINN), or loneliest neighbor (NLN) can be 

used to approximately solve the problem [30]. 

Additionally, any version of CPP that considers a demand on its edges can be 

considered as a CARP. There are several studies that make use of the CARP model in waste 

collection literature. Lacomme et al. model the CARP as a version of the TSP with starting 

and ending locations at either end of a serviceable road, thus making use of the GA as the 

appropriate solver [33]. Tirkolaee et al. developed a novel mathematical model for the 

periodic capacitated arc routing problem (PCARP) that was solved using SA [34]. 

Tirkolaee et al. optimized the number of waste collection vehicles and the route for each 

collection vehicle using their proposed model. In a separate article, Tirkolaee et al. used a 

multi-objective invasive weed optimization algorithm to solve for a multi-trip PCARP for 

the waste collection problem [35]. Mourão et al. developed a novel heuristic to solve the 

CARP in Lisbon [36]. They allowed a vehicle to make multiple trips to the dump to dispose 

of waste, and the depot location is different from the dump location [36]. Their model made 

use of the single-vehicle multi-trip principle in which the algorithm generates optimal 

solutions until a feasible solution is generated.  

In some cases, municipalities separate different types of waste that may undergo 

different treatments at the disposal facility. For example, household waste may be disposed 

in a landfill, and organics waste may be used as compost for crops and cycled back into the 

environment. In these cases, municipalities may make use of the multi-compartment 

collection vehicle, as explored by Mofid-Nakhaee et al. [37]. They modelled their problem 

as a multi-compartment capacitated arc routing problem with intermediate facilities 

(MCCARPIF) in which 2 algorithms are developed to solve it; namely the adaptive large 
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neighborhood search algorithm (ALNS), and hybrid ALNS with whale optimization [37]. 

The purpose of this research was to confirm that using multi-compartment vehicles was 

beneficial compared to single-compartment vehicles making separate trips for different 

types of waste, and their case study in a district in Tehran proved this. 

The location-arc routing problem (LARP) is also considered to be under the same 

umbrella as CARP. LARPs bridge the gap between facility location and route generation 

and distribution [38], and are especially useful in the case of developing cities without any 

facilities. As the LARP is capacitated, it is especially ideal for applications such as waste 

collection, street-sweeping, postal delivery, and road maintenance [39]. A good example of 

a LARP was presented by Yang, in which TS and the Augment-Merge heuristic approaches 

were combined to solve a LARP [40]. 

Edge routing optimization is also seen in several street-sweeping applications in 

literature. Bodin et al. developed the primitive “route first-cluster second” and “cluster first-

route second” approaches for mechanical street-sweeping route optimization [41]. The 

“route first-cluster second” approach creates a giant tour of the road network that is divided 

into several feasible routes afterwards, and the “cluster first-route second” approach 

partitions the road network into several smaller areas in which the algorithm will generate 

tours in. Eglese et al. modelled their rural street-sweeping problem as the CCPP in which 

the deadhead travel is to be minimized [42]. Eglese et al. highlighted the importance of 

different road classes that require different frequencies of sweeping, something that is also 

seen in the street-sweeping problem in The City of Oshawa. Blazquez et al. proposed a 

unique method of graph construction for the street-sweeping optimization problem in which 

parallel edges are added to represent multiple passes needed to sweep roads with curbs on 
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each side of the road, even for 1-way and 2-way roads [43]. Blazquez et al. then used TSP 

to solve the street-sweeping routing problem [43]. This approach effectively models the 

real-world street-sweeping operations where multiple passes are needed to sweep against 

the curbs along the edge of the road. A physical representation of this can be seen in Figure 

2-2.  

 

Figure 2-2 Multiple Passes to Sweep Curbs on Either Side of the Road 

 

Outside the scope of waste collection and street-sweeping, edge routing is commonly 

used in snowplow route optimization problems. Rasul et al. were able to create an initial 

solution for the municipal snowplow route optimization problem using CPP, which was 

then improved using TS [44]. Similarly, Xu et al. used TS to improve the initial solution 

found by their k-trucks plowing algorithm [45]. In both cases mentioned, cycle permutation 

was used as the local search scheme to explore neighboring solutions [46].  
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2.3. Clustering & Zoning Approaches 

A majority of research in routing applications focuses on the optimization of routes 

themselves [47]. However, it is common for municipalities to divide a large area into 

several smaller areas for better productivity, dispatching, and organization of the operations 

team. This occurrence is seen in several real-world applications, such as waste collection, 

street-sweeping, and snowplowing. Little research has been done in this area, but the few 

related instances will be explored in this section. 

Xin et al. highlighted the importance of a well-designed waste management system 

within rapidly expanding urban areas [48]. When a population grows, some waste facilities 

become redundant, and thus relocation is needed. Using Voronoi polygons and WK-Means 

clustering methods, Xin et al. were able to identify redundant waste collection centers, and 

appropriately relocate them [48]. Al-Refaie et al. conducted similar research where the 

location of several communal waste bins needs to be optimized [49]. However, Al-Refaie 

et al. not only optimized the collection-bin-to-depot cost, they also considered maximizing 

the demand collected by the waste collection vehicles to ensure the vehicles had adequate 

workload [49]. Wei et al. proposed an improved hierarchical agglomerative clustering 

(IHAC) algorithm that clusters collection points together such that each cluster is expected 

to fill the waste collection vehicle, then a garbage collection path planning (GCPP) 

algorithm is used to generate the servicing path that visits all collection points within the 

respective clusters [50]. Pop et al. developed a 2-level approach to solve the clustered 

vehicle routing problem (CluVRP) where an upper-level subproblem uses a GA to generate 

clusters of customers, and a lower-level subproblem aims to find the optimal route within 

each cluster using the TSP model [51]. 
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Asides from waste management applications, Zheng et al. developed a novel grid based 

K-Means clustering method for traffic zone division of a city [52]. By carefully analyzing 

global positioning system (GPS) data from the city of Nanjing, the authors were able to 

effectively divide the city into several different traffic zones to accurately predict the flow 

of traffic. Zheng et al. overlaid the clustered GPS data on a grid map of Nanjing, and the 

grids were able to define hard boundaries for the clusters that a collection of points simply 

could not achieve [52]. Soor et al. modified K-Means to include connectivity constraints 

through a repeated application of the watershed transform [53]. With the addition of the 

watershed transformations, the developed clustering approach was verified to be ideal for 

road network applications. A case study shown using Mumbai’s road network showed ideal 

locations for 16 emergency stations, as well as the relationship between cost and number 

of emergency stations, which decreased with the number of emergency stations (as 

expected) [53]. 

2.4. Smart Routing Approaches 

As smart-technology becomes the norm, some researchers have explored the possibility 

of integrating smart-technology into routing scenarios via Internet of Things (IoT) 

applications. Waste management systems can benefit from smart-technology by providing 

intelligence to waste bins using IoT sensors [54]. By monitoring the fill level status of the 

waste collection bins in the network, empty bins can be ignored in the route optimization 

algorithms, thus reducing the deadhead travel. 

In recent years, IoT applications in waste management systems are becoming 

increasingly popular amongst researchers [55]–[61]. However, the main idea across all the 

works is almost identical. Each collection bin is equipped with a sensor that is capable of 
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transmitting information through cloud applications regarding the fill level of the waste, 

and an optimization algorithm is used to generate the service route collecting from the 

appropriate bins. Typically speaking, the mentioned IoT applications are ideal for node 

routing problems since the bins would be located at points in the road network. An example 

of the smart-bin approach can be seen in Figure 2-3.  

 

Figure 2-3 IoT Waste Bin Fill Level Example 

 

2.5. GIS-Based Approaches 

GIS data contains spatial data and numerical information in a single dataset, making it 

the ideal package for road network representation. Additionally, GIS applications (such as 

ArcGIS [62] and QGIS [3]) have built in tools that are capable of simple routing 

applications. For example, O’Connor [63], Malakahmad et al. [64], Abdallah et al. [65], 

Kallel et al. [66], and Chalkias [67] used The ArcGIS Network Analyst solve tool for their 

solid waste collection problems. The Network Analyst toolbox is used to maintain network 
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datasets, and optimize simple routing problems like the VRP and find the nearest facility 

[68]. Additionally, Apaydin et al. used the Route View ProTM software integrated with GIS 

data (containing numerical pathways, demographic distribution, container distribution, and 

solid waste production) as the optimization tool [69].  

Due to the limited scope of commercially available software and toolboxes, some 

researchers may choose to develop their own routing algorithms and still use the GIS data 

as it contains valuable information. This is the case with Vu et al., where GIS data was 

combined with an artificial neural network (ANN) to predict the waste generation rate of 

garbage and recycling streams in the future [70]. Vu et al. were able to recommend changes 

to the waste collection routes in Austin, Texas that coincide with the expected increase in 

waste generation rate predicted by the ANN [70]. Similarly, Ghose et al. determined the 

minimum cost path of the waste collection model using GIS road network data and bin 

locations for the Asansol Municipality Corporation of West Bengal State, India [71]. 

2.6. Workload Balancing 

In addition to generating optimal routes, the satisfaction of the operations team should 

be met. One way to achieve employee satisfaction and reduce fatigue is through a proper 

workload distribution [72]. Most of the research in workload balancing focuses on 

assembly lines in factories. However, a few instances that do consider the workload balance 

of waste collection routes will be discussed in this section. 

Rabbani et al. formulated the workload balance of a fleet of collection vehicles by 

calculating the deviation of each vehicle’s travel distance from the fleets total travel 

distance [73]. Jorge et al. developed the simulated annealing and neighborhood search 

(SANS) algorithm with workload concerns to penalize imbalanced solutions that do not 
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comply with the maximum shift duration [74]. Qiao et al. explored the workload balance 

of the disposal facilities by analyzing the expected workload for each day of the week from 

a fleet of vehicles optimized using the CVRP model [75]. Linfati et al. balanced the 

workload for each collection day by analyzing the average number of customers and daily 

containers delivered for the waste collection problem [76]. Ideally there should be a similar 

number of customers and containers delivered each day, which was noticed from their 

results [76]. Shih et al. quantified the workload distribution of the waste collection problem 

by calculating the difference between the maximum and minim daily travel distance, where 

a lower difference correlates to a more balanced result [77]. 

Some approaches used in assembly line workload distribution can be transferable to 

route optimization. For example, Qian, Kim et al., and Zaplana et al. all used some form of 

the GA to balance workloads amongst line workers in assembly plants [78]–[80]. The idea 

of balancing the workload for line workers directly translates the routing problem with 

multiple routes or areas. Due to the flexible nature of the GA, some simple modifications 

can be made to make it suitable for the application of route balancing. 

2.7. Conclusions 

Through the discussed literature review, state-of-the-art methods of route optimization 

have been explored in detail. Although some methods discussed were not directly applied 

to waste collection or street-sweeping route optimization, the respective applications shared 

enough similarity that the algorithms and methods can be interchanged with little 

modifications. However, there still exists gaps within the discussed literature for new 

heuristic approaches for the unique routing problems that will be explored in this thesis.  
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As seen in Section 2.2, several different models exist for the edge routing and node 

routing problems. The models discussed in the literature are more generalized in the sense 

that they work for different types of routing problems. Despite this, different problems 

require the use of different models. Routing problems that have not been seen in literature 

require new (and potentially complex) models to be developed. This paper aims to create a 

new model for the CARP with many constraints and service roads that have several 

demands (e.g., street dust/debris and water dispersion from the sweeping trucks to aid in 

collection), as well as a novel u-turn removal algorithm to make optimal routes feasible 

with respect to traffic operations. 

As seen in Section 2.3, several different clustering and zoning approaches have been 

explored that are used to group road networks. In most cases, these methods are used on 

smaller areas rather than city-wide. From the conducted literature review, there were no 

existing studies that used a cluster-based approach on a city-wide scale for operational area 

division (waste collection areas, street-sweeping areas, snowplow areas, etc.), so a novel 2-

stage clustering approach (Static and Dynamic clustering) was developed to fill this gap 

found in routing operations literature. 

As seen in Section 2.5, different GIS-based approaches to the route optimization 

problem were discussed. Since the scope of this research was to develop the route 

optimization algorithms, GIS-based solvers (ArcGIS Network Analyst) were not used. 

However, a comprehensive set of GIS data was supplied by the City of Oshawa to model 

the complex road network. Having access to such a detailed library of information allows 

for more realistic simulation results. Looking at existing research, little to no papers 

consider speed limits of different roads, and instead assume a constant travel speed in their 
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optimization model. In the real world, vehicles must follow the speed limit of the respective 

roads within the network, and different roads typically have different speed limits. The 

following research makes use of the detailed GIS data supplied by The City of Oshawa to 

dynamically change the speed of the service vehicle in the optimization model with respect 

to the current roads speed limit. 

As seen in Section 2.6, the workload balancing approaches in existing research was 

discussed. Several cases were examined that are applicable to the waste collection route 

optimization, however they were very primitive. For example, some studies quantified the 

workload balance strictly based on the distance travelled. In any type of route optimization 

problem, quantifying the workload balance by only considering one variable may be biased, 

thus more variables should be considered. The following research aims to fill this gap by 

defining a normalized objective function that consists of multiple variables to be considered 

in the workload balance amongst the operations team. Additionally, a problem specific 

method of pairing waste collection areas for each respective day of the week is proposed 

that makes use of the multi-variable workload balance objective function value. 

The following two chapters will explore the methodology behind the developed 

heuristic approaches used in each respective application for The City of Oshawa. Each 

chapter contains several components specifically developed to bridge the gap in literature 

highlighted in this chapter. 
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Chapter 3. Waste Collection Route Optimization 

3.1. Introduction  

Research shows that waste collection costs can range from 50-90% of the municipal 

solid waste budget [81], thus it is critical that the waste collection process is done in an 

efficient manner. For optimal results, the cost, environmental impact, collection and travel 

time, and social aspects of the waste collection process should all be considered [75].  

This chapter will cover the waste collection route optimization for The City of Oshawa 

in its entirety. Although comprehensive GIS data was supplied by the city, additional 

datasets and methods of data preparation were needed to complete the study, which will 

also be discussed. With a complete dataset, waste collection route optimization algorithms 

were developed, and the working principle and methods used to create the proposed 

algorithm will be explored. Using the proposed route optimization algorithm, realistic route 

simulations were used to calculate several statistics that can be combined into a single 

objective function to represent the fitness of each respective route. The dimensionless 

objective function values of all routes in each collection area were summed together to 

represent the fitness of each collection area, which was used to properly distribute the 

workload balance across each day of the working week through the proposed workload 

balance algorithm. Additionally, it was hypothesized that the existing waste collection areas 

can be improved with respect to the workload balance, so a novel 2-stage clustering 

algorithm was developed to generate (and optimize) waste collection areas without any 

previous knowledge of the existing configuration. Finally, a complete analysis of the 

current routing configuration was compared to the routing configuration generated by the 

proposed 2-stage clustering approach. 
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3.2. Data Preparation 

3.2.1. Supplied & Downloaded Data 

As mentioned earlier, a comprehensive set of GIS data was supplied by the city to 

conduct the following research. Specifically, several shapefiles were supplied that can be 

viewed and manipulated through GIS applications such as QGIS [3]. The supplied 

shapefiles include the “TeachingCity_RouteOptimization CityStreetNetwork,” 

“TeachingCity_RouteOptimization CollectionAreas,” “TeachingCity_RouteOptimization 

WasteView,” and “route_blocks.”  Table 3-1 depicts a visual representation of the supplied 

shapefiles as well as a brief description of the useful information contained. 

Table 3-1 Supplied Shapefiles and Their Useful Information 

Shapefile Name and Visual 

Representation 

Brief Description and Useful 

Information Contained 

“TeachingCity_RouteOptimization 

CityStreetNetwork” 

 
 

 

 

 

A multiline type shapefile representing the 

road network within The City of Oshawa. 

Each multiline segment contains the 

following useful information. 

 

• Unique Road ID 

• Street Name 

• Speed Limit 

• Traffic Operation (1-way or 2-

way) 

• Street Length 
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“TeachingCity_RouteOptimization 

CollectionAreas” 

 

A multipolygon type shapefile defining 

the boundaries of the existing 10 

collection areas within The City of 

Oshawa. Each area contains 11 servicing 

routes. This information is also seen in 

Figure 1-1. 

“TeachingCity_RouteOptimization 

WasteView” 

 
 

 

 

 

 

 

 

A multipoint type shapefile depicting all 

stop locations for curbside waste 

collection operations. Each point contains 

the following useful information. 

 

• The Number of Dwellings 

• The Adjacent Street Name 
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“route_blocks” 

 

A multipolygon type shapefile used to 

group stop locations into several well-

defined neighborhood blocks. Each 

polygon contains the following useful 

information. 

 

• The Collection Route which the 

Pickup Locations Contained in the 

Polygon Belong 

• The Area Covered by the Polygon 

 

In addition to this, a complete set of 111 route PDF maps used by the waste collection 

team were supplied showing the existing collection routes and pickup locations. An 

example of an existing route PDF map can be seen in Figure 3-1, where the orange 

highlighted locations show which side of the road collection is to be conducted.  

 

Figure 3-1 Monday Yellow - Route 8 PDF Map 
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As seen in Figure 3-1, the sequence of which to travel through the road network to 

collect the curbside waste is missing. This means that each week the collection sequence 

may be different from driver-to-driver, and thus a method of optimizing and standardizing 

the collection sequence can be beneficial from an operations point of view. 

There was still information missing regarding the connectivity of the road network 

shapefile. Referencing graph theory, a graph consists of several nodes connected with 

edges, mathematically modelled as 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣0, 𝑣1 … , 𝑣𝑛} is the set of 

nodes and 𝐸 = {(𝑣𝑖, 𝑣𝑗) |𝑣𝑖, 𝑣𝑗 ∈ 𝑉} is the set of directed edges. In the 

“TeachingCity_RouteOptimization CityStreetNetwork” shapefile, such intersection 

connectivity was missing to be modelled as a graph. So, separate datasets were used which 

can be found on Durham Region’s open source GIS database [82]. Specifically, a 

multipoint shapefile representing the intersections in the road network, and another 

multiline shapefile (like the “TeachingCity_RouteOptimization CityStreetNetwork”) were 

downloaded. In the new road network shapefile, each road has an “F_NODE” and 

“T_NODE” attribute (as seen in Figure 3-2) that references the IDs of the intersections 

found at either end of the road. In the intersection shapefile, each point has a unique ID and 

pair of coordinates that localize the intersection. 
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Figure 3-2 Road Connectivity Information - Downloaded Open-Source Dataset 

 

Each of the mentioned datasets contains valuable information used to formulate the 

routing problem, so a hybrid dataset needed to be created. Using the “Join Attributes by 

Location” tool in QGIS [3], the useful attributes found in the 

“TeachingCity_RouteOptimization CityStreetNetwork” discussed in Table 3-1 were added 

to the downloaded road network, thus creating a single multiline type shapefile for the road 

network with a complete set of useful attributes. 

3.2.2. Route Shapefiles 

To optimize the routes, they need to be isolated from the whole road network. To do 

so, the route PDF maps were used as a reference and the corresponding intersections and 

road segments were manually selected from the hybrid dataset. Additional roads were 

added to connect isolated parts of the route or to provide safe turnaround locations to 



39 

 

minimize u-turns in the route. At this point, each road represents a single direction of travel, 

so the route shapefile was copied and reversed, thus creating a single shapefile with bi-

directional roads. There exist several 1-way roads in the City of Oshawa, in these cases, the 

roads are not reversed to preserve the intended travel direction. Also, an additional attribute 

is added at this point to distinguish between serviceable roads with stop locations, and 

deadhead roads. This is a simple binary variable, 1 for service roads, and 0 for deadhead 

roads. A side-by-side comparison between a route PDF and the corresponding route 

shapefile can be seen in Figure 3-3.  

 

Figure 3-3 Side-By-Side Comparison of Route PDF Map and Shapefile 

 

The stop locations and dwelling unit information is also needed in the route simulations. 

Using the “route_blocks” shapefile, the corresponding stop locations were filtered for each 

respective route. A simple algorithm was developed that would use the polygons defined 

in the “route_blocks” shapefile to filter out stop locations from the 

“TeachingCity_RouteOptimization WasteView” shapefile for each route. The algorithm 

works by identifying which stop locations from the “TeachingCity_RouteOptimization 
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WasteView” are contained by the boundary of the corresponding “route_block” polygon. 

The stop location filtering algorithm can be visualized in Figure 3-4.  

 

Figure 3-4 "route_block" Stop Location Filtering Algorithm – Visualized 

 

3.3. Waste Collection Route Optimization Algorithm 

The objective of the proposed route optimization algorithm is to generate the shortest 

feasible Eulerian tour that services all required edges in each collection route. To do so, a 

combination of Dijkstra’s [7] algorithm and Hierholzer’s [10] algorithm is used. The 

proposed heuristic will only work if all nodes are reachable (strongly connected), thus 

proper route preparations are needed, as discussed in Section 3.2.2.  

Eulerian tours are only possible if each node has as many incoming edges as outgoing 

edges, mathematically formulated as ∑ 𝑑𝑒𝑔+(𝑣) − ∑ 𝑑𝑒𝑔−(𝑣)𝑣∈𝑉 = 0𝑣∈𝑉 . If this 

condition is not met, a node is called unbalanced. So, each node in the graph is checked for 

this condition. Depending on the route, this condition may not always be true, which is 

where Dijkstra’s algorithm is used. In the case where nodes are unbalanced, the nodes with 
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too many incoming edges are denoted as Dijkstra’s starting nodes, and nodes with too many 

outgoing edges are denoted as Dijkstra’s ending nodes. A brute-force method was used to 

find the optimal pairing of Dijkstra’s starting and ending nodes such that the minimum 

distance is needed to connect the starting and ending nodes together to create a balanced 

graph. In larger instances, a combinatorial optimization algorithm (like GA) can be applied 

to find the optimal pairing, but the individual routes are relatively small, so a brute force 

approach was used to identify all permutations of starting and ending nodes in a short 

amount of time. All edges used to balance the graph will be added back into the graph as 

deadhead edges, thus creating several instances of parallel edges. The significance of 

finding the optimal pairing of starting and ending nodes can be seen in Figure 3-5, as some 

pairs may add significantly more redundant travelling than others. 

 

Figure 3-5 Importance of Optimal Starting and Ending Node Connections 

 

With a balanced graph, an Eulerian tour can be generated using Hierholzer’s algorithm. 

Hierholzer’s algorithm was used instead of CPP due to its ability to work on directed 
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graphs, which is an important aspect of waste collection since the direction of travel is 

important for curbside waste collection (vehicles collect on the right-hand side). 

Additionally, the direction of travel should be consistent with the respective traffic 

operation of the road (1-way or 2-way). Hierholzer’s algorithm works by choosing a start 

node and randomly selecting an outgoing edge from the current node, but this process may 

not be ideal for generating feasible routes with respect to generating unsafe u-turns at 

intersections where u-turns are not allowed, such as the one seen in Figure 3-6 (b). As 

Hierholzer’s algorithm selects random outgoing edges, in the case of parallel edges, the 

previous node may be selected to travel to the next, thus creating a u-turn. A simple, yet 

effective modification is made to Hierholzer’s algorithm by randomly selecting the next 

outgoing edge that is not the previous edge. In some cases, selecting the previous edge may 

be the only option (in the case of dead-ends and courts, as seen in Figure 3-6 (a)), but the 

cases with multiple outgoing edges benefit from this simple modification. 

 
 

(a) (b) 

Figure 3-6 Example of a Safe U-Turn Location (a), and Unsafe U-turn Location (b) 

 

The starting node also has an influence on the feasibility of a route, so all nodes in the 

input graph were used as candidate starting locations, the optimal starting location is the 



43 

 

one that yields the least u-turns. The pseudocode for the proposed waste collection route 

optimization algorithm can be seen as follows. 

Algorithm 1 Waste Collection Route Optimization Algorithm 

Input: Route shapefile 

Output: Optimal feasible Eulerian tour 

identify unbalanced nodes in the input graph 

 

for all pairs of Dijkstra’s starting and ending nodes do 

 calculate the total distance needed to balance the graph 

 update the optimal pairing 

 

add edges used in the optimal pair back into the original graph 

 

for each node in the graph do 

 run modified Hierholzer’s algorithm 

 count the number of u-turns 

 update the best solution 

 

return optimal feasible Eulerian tour 

 

3.4. Dimensionless Objective Function 

3.4.1. Waste Collection Route Objective Function Values 

To quantify the fitness of the optimal tours generated by the waste collection route 

optimization algorithm, a dimensionless objective function was used that is composed of 

several statistics. Specifically, the travel distance, consumed fuel, collection time, and 

travel time will all be considered. The distance was simply calculated by summing the 

traversed edges in a route. Referencing the operation principle of The City of Oshawa’s 

waste collection program, the collection week alternates between Week 1 and Week 2 

where either garbage and organics, or only organics are collected. As a result, the collection 

time varies between Week 1 and Week 2 collection, thus requiring 2 separate fitness values. 

It is assumed that 10 s per dwelling unit are needed to collect for only organics, and 30 s 
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per dwelling unit are needed to collect garbage and organics. This assumption was supplied 

by the city as it is common for a 3:1 ratio of collection time between garbage and organics 

and only organics. The fuel consumption rate was also supplied by the city as 0.705 L/km 

for deadhead travelling, and 1.523 L/km for servicing. This makes sense because servicing 

requires continuous stop-and-go motion, thus a lot of acceleration and deceleration 

typically burns more fuel than travelling at a constant speed when the vehicle is not 

servicing. The travel time depends on the respective road’s speed limit and the service 

status. If a road is simply being used as deadhead travel, the collection vehicle will travel 

90% of the speed limit (because it is a considerably large truck), and the servicing collection 

speed is a function of the dwelling unit density in the route. It was assumed that the 

minimum average travel speed for a servicing road is 15 km/hr on the densest route, and 

90% the speed limit on the most sparsely populated route. The formula relating the route 

density to servicing travel speed can be seen in Eq. (3-1), where 𝑠𝑐 is the collection speed, 

𝑑𝑟 is the route density, 𝑠𝑙  is the speed limit, 𝑠𝑚 is the minimum assumed speed (15 

km/hr), min ({𝑑𝑅}) is the minimum calculated route density (13.15 DUs/km2), and 

max ({𝑑𝑅}) is the maximum route density (5313.15 DUs/km2). The route density was 

calculated by simply dividing the total number of dwelling units by the area covered for 

each respective route. The collection speed is a negative linear relationship where the 

densest routes have the lowest average servicing speed due to more frequent stops. 

𝑠𝑐(𝑑𝑟) =
0.9𝑠𝑙−𝑠𝑚

min ({𝑑𝑅})−max ({𝑑𝑅})
∗ 𝑑𝑟 + 0.9𝑠𝑙                                    (3-1) 

As mentioned earlier, the servicing roads and deadhead roads have different speed 

limits, this is also the case with travelling on a road that has already been serviced. The 

binary service variable of each edge needs to constantly be updated so the proper speed 



45 

 

limit and fuel consumption rate can be applied. If a road has already been serviced, it should 

not be serviced again, thus any additional travelling will be considered deadhead. Table 3-2 

summarizes the different servicing conditions that are seen in a simulation, and the 

corresponding variables used. 

Table 3-2 Service Condition and Corresponding Simulation Variables 

Condition 
Service 

Variable 
Travel Speed 

Fuel 

Consumption 

Coefficient 

A road is serviceable and has 

not been serviced 
1 

Linear relationship 

dependent on route 

density (3-1) 

1.523 L/km 

A road is serviceable, but has 

already been serviced 
0 0.9 ∗ 𝑠𝑙  0.705 L/km 

A road that is only included 

as deadhead to balance or 

connect the road network 

0 0.9 ∗ 𝑠𝑙  0.705 L/km 

 

The dimensionless objective function to represent the fitness of each route can be 

seen in Eq. (3-2), where 𝑑𝑖𝑗 is the distance along edge (𝑣𝑗, 𝑣𝑗),  𝑐𝑖𝑗𝑓𝑑𝑖𝑗 is the fuel burnt on 

edge (𝑣𝑗, 𝑣𝑗), 𝑑𝑖𝑗/𝑠𝑖𝑗𝑠  is the travel time along edge (𝑣𝑗, 𝑣𝑗), and 𝑑𝑢𝑡 is the time to collected 

from each dwelling unit t. As shown in Eq. (3-2), each component is normalized by dividing 

by the maximum of each respective component, thus allowing an unbiased comparison 

from route to route. It is also worth mentioning that all route simulations need to be 

completed to calculate the normalized objective function value because the maximum of 

each component is included in the objective function. Table 3-3 summarizes all the 

variables used to formulate the objective function value. 
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𝑓1 = ∑ ∑
𝑑𝑖𝑗

𝑚𝑎𝑥({𝑑𝐼𝐽})

𝑛

𝑗=0

𝑛

𝑖=0

 

+ ∑ ∑ ∑
𝑐𝑖𝑗𝑓𝑑𝑖𝑗

𝑚𝑎𝑥({𝑐𝐼𝐽𝐹𝑑𝐼𝐽})

𝐹

𝑓=0

𝑛

𝑗=0

𝑛

𝑖=0

 

+ ∑ ∑ ∑
(𝑑𝑖𝑗/𝑠𝑖𝑗𝑠)

𝑚𝑎𝑥 ({𝑑𝐼𝐽𝑠𝐼𝐽𝑆})

𝑆

𝑠=0

𝑛

𝑗=0

𝑛

𝑖=0

 

+ ∑
𝑑𝑢𝑡

𝑚𝑎𝑥(𝑑𝑢𝑇)

𝑇

𝑡=1

 

(3-2) 

Table 3-3 Objective Function and Simulation Parameters 

Parameter Meaning Value 

𝑓1 
Dimensionless objective 

function value 
Calculated in Eq. (3-2) 

𝑑𝑖𝑗 Road distance Dependent on road (km) 

𝑐𝑖𝑗𝑓  Fuel consumption rate 
0.705 L/km for deadhead 

1.523 L/km for servicing 

𝑠𝑖𝑗𝑠  Travel speed 

0.9 speed limit for deadhead 

Calculated in Eq. (3-1) for servicing 

(km/hr) 

𝑑𝑢𝑡 
Collection time per 

dwelling unit 

30 s for garbage and organics 

10 s for only organics 

 

3.4.2. Waste Collection Area Objective Function Values 

As discussed earlier, each of the 10 collection areas consist of 11 individual routes. The 

methods in Section 3.4.1 were used to calculate the 2 objective function values (Week 1 

and Week 2 collection) for all routes. The objective function values were expanded to 

represent the fitness of the collection areas themselves by summing the objective function 

values for all routes in each respective area. Similarly, each area consists of 2 fitness values 

for each collection week. Since 2 areas are collected for each day of the working week, the 
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collection area objective function values will be used to provide insight as to how these 

areas can be better paired. 

3.5. Workload Balance (Waste Collection Area Pairing) Algorithm 

Referencing Figure 1-1, each day of the week has a purple and a yellow area to collect 

waste in; from a spatial perspective, the areas seem to be unbalanced (Monday yellow is 

much larger than other areas). However, simply looking at the area coverage of the 

collection areas is not enough to ensure a proper workload balance is distributed across the 

days of the week as many other variables need to be considered. Using the collection area 

objective function values, a GA was developed to find the optimal pairing of collection 

areas for The City of Oshawa. A brute force method may be applied, but it would take 

significantly longer to optimize because of the many possible area combinations as seen in 

Figure 3-7. 
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Figure 3-7 All Possible Collection Area Combinations for the Current Configuration 

 

The proposed GA works very similarly to traditional GA with crossover and mutation 

operators, but some small modifications have been made to ensure that collection areas do 

not duplicate in the chromosome structure. In the traditional GA, the crossover operator 

works by selecting a random location to splice parent chromosomes together. However, if 

this was used for the collection area pairing problem, this would result in duplicated areas 

(visualized in Figure 3-8). The gene duplication issue is also seen in the traditional mutation 

operator as well.  
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Figure 3-8 Duplicates in Chromosome Structure After Crossover 

 

To combat the occurrence of duplication in the chromosomes, simple workarounds are 

used. In the case of the duplicates in crossover, one of the duplicated areas is randomly 

selected and removed from the chromosome structure, and one of the missing areas is 

inserted in the same location in the chromosome. This is repeated until all duplicated areas 

have been replaced. 

When mutation happens in the original GA, a gene is randomly changed to another. In 

the case of the collection area problem, all collection areas are already in the chromosome 

structure, so simply changing the gene to another value is insufficient. Instead of changing 

genes in the mutation phase, a swapping operation was used [83]. If mutation should occur, 

the gene would simply be swapped with another, changing their location in the chromosome 

structure. 

To calculate the fitness of the chromosome, an encoding method was applied. As each 

chromosome contains all collection areas in a unique sequence, every odd gene will be 

assigned Week 1 collection, and every even gene will be assigned Week 2 collection, thus 

making use of the 2 objective function values discussed in Section 3.4.2. The chromosome 

length was fixed at 10, and every 2 genes were paired together for each day of the week. 
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For example, the first 2 genes are assigned to Monday collection, where the first gene will 

be Week 1 collection, and the second gene will be Week 2 collection. The daily workload 

can be calculated by adding the objective function values for the 2 collection areas that 

make up each day of the week, resulting in 5 objective function values. The fitness of each 

chromosome was calculated as the standard deviation of the 5 objective function values for 

each day of the week, formulated in Eq. (3-3) where 𝑙 is the workload of day i, and 𝜇𝑙 is 

the average workload across all days D. 

𝑓2 = √
1

𝐷
∑ (𝑙𝑖 − 𝜇𝑙)2𝐷

𝑖=1      (3-3) 

The workload balance algorithm can be seen as follows. 

Algorithm 2 Workload Balance Algorithm 

Input: All collection areas Week 1 and Week 2 objective function value 

Output: Optimal collection area pairs 

create a population of random shuffled collection areas 

 

for generation in generations do 

 # Calculate fitness of all members 

 for member in population do 

  assign Week 1 to even genes 

  assign Week 2 to odd genes 

  sum the objective function values for each pair 

  calculate the fitness 

  

 # Create new population 

 add the 2 best solutions to the new population 

 while the new population size != the old population size do 

  roulette wheel to select parents 

  perform crossover 

  resolve duplicate areas 

  perform swap mutation 

  add children to new population 

 

return optimal collection area pairs 
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3.6. Waste Collection Area Generation Algorithms 

It is speculated that the existing waste collection area boundaries for The City of 

Oshawa can be improved. To do so, a novel 2-stage clustering algorithm is developed that 

uses the W-K Means clustering algorithm and DE. To understand how the 2-stage cluster 

algorithm works, the operating principle of the WK-Means algorithm needs to be explored. 

WK-Means is the weighted version K-Means, where the objective is to find the 

minimized cost partitioning of weighted points in a specified number of clusters [84]. With 

regards to the waste collection problem, the collection points would have a weight 

equivalent to the number of dwellings associated with the pickup location. In K-Means, the 

objective function is simply the minimum total distance of each point to its cluster center 

formulated in Eq. (3-4), where k is the number of clusters, n is the number of points to 

partition, 𝑥𝑖,𝑥
(𝑗)

 and 𝑥𝑖,𝑦
(𝑗)

 are the x and y locations of point x belonging to cluster j, and 𝑐𝑗,𝑥 

and 𝑐𝑗,𝑦  are the x and y locations of cluster center j. In the case of WK-Means, each cluster 

has a weight proportional to the weight of points belonging to the respective cluster. The 

WK-Means algorithm can be formulated in Eq. (3-5) where 𝑤𝑗 is the weight of cluster j, 

∑ 𝑤𝑗
𝑘
𝑗=1 = 1, and β is the cluster weight influence factor. 

𝑓3 = ∑ ∑ √(𝑥𝑖,𝑥

(𝑗)
− 𝑐𝑗,𝑥)

2

+ (𝑥𝑖,𝑦

(𝑗)
− 𝑐𝑗,𝑦)

2
𝑛
𝑖=1

𝑘
𝑗=1    (3-4) 

𝑓4 = ∑ ∑ 𝑤𝑗
𝛽√(𝑥𝑖,𝑥

(𝑗)
− 𝑐𝑗,𝑥)

2

+ (𝑥𝑖,𝑦

(𝑗)
− 𝑐𝑗,𝑦)

2
𝑛
𝑖=1

𝑘
𝑗=1    (3-5) 

Since the objective of the WK-Means algorithm is to find the minimum cost 

partitioning, it may not produce the best distribution of weights, which is why it was paired 

with advanced optimization methods. 
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3.6.1. GIS Data Preparation for the 2-Stage Clustering Algorithm 

If the clustering was used on only the curbside collection locations, this may lead 

to some streets having houses that belong to several different collection areas. Ideally, all 

the houses on a single street should belong to the same collection area. Because of this, 

additional data preparation was needed on the GIS data. 

All stop locations in the “TeachingCity_RouteOptimization WasteView” shapefile 

contain an attribute that relates the stop location to the adjacent street. An algorithm was 

developed that iterates through all stop locations in the “TeachingCity_RouteOptimization 

WasteView” shapefile and adds the corresponding pickup locations to the adjacent road 

segment with the same name. In doing so, a new attribute was created for each road segment 

that shows how many dwellings reside on each road, as seen in Figure 3-9. 

 

Figure 3-9 Joining Dwelling Counts to Road Segments 

 

Since the clustering is going to be done on the roads instead of the collection 

locations, the roads needed to be converted into points. Each road segment is a multiline 

(multiple lines connected head-to-tail), so the points used to create the geometry can be 
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easily extracted. By taking the average x and y coordinate locations of the points 

formulating the multiline, the approximate road center location was found. Upon doing so, 

the roads have successfully been converted to weighted points that can be used for 

clustering. 

3.6.2. Static Clustering 

The first stage of the 2-stage clustering algorithm is the Static clustering stage. In 

this stage, a single β value will be optimized to yield the cluster configuration with the best 

distribution of weights. The objective function can be formulated in Eqs. (3-6) and (3-7), 

where 𝑤𝑗 is the weight of cluster j, 𝜇𝑤 is the average cluster weight. 

𝑓5 = √
1

𝑘
∑ (𝑤𝑗 − 𝜇𝑤)2𝑘

𝑗=1       (3-6) 

0 ≤ 𝛽 ≤ 1       (3-7) 

DE was used to tune a single β value in the Static clustering process. For each β 

value, the WK-Means clustering algorithm was computed several times until the cluster 

centers converge or the maximum clustering iteration is reached. WK-Means involves 

stochastic processes, so multiple runs of WK-Means were executed for a single β value to 

ensure an ideal partition is found. Since β can be within the range of 0 to 1, some β values 

caused the cluster centers to shift indefinitely, so a maximum clustering iteration was 

defined to terminate the process in these cases. Through experimentation, it was found that 

the best distribution of weights occurs somewhere between the first and final iterations. As 

a result, the objective function was calculated at each iteration in the WK-Means clustering. 

For the Static cluster optimization, the DE algorithm was used as described in the literature.  
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Since the WK-Means algorithm was being executed several times for each member 

in the population, the computation time was significantly large for the serial approach. 

SHARCNET [18] was used to rent a single CPU for each member in the population, thus 

allowing WK-Means to be computed in parallel for the entire population.  In doing so, an 

entire generation was computed in the same amount of time as a single member. The 

pseudocode for the Static cluster optimization process can be seen as follows. 

Algorithm 3 Static Cluster Optimization Algorithm 

Input: Weighted road network points, number of clusters, maximum WK-Means 

iteration, and DE parameters 

Output: Optimal cluster center locations and weights 

create the population of random β values 

 

for generation in generations do 

 # Do this in parallel 

 for β in population do 

  run WK-Means 

  calculate the weight deviation 

  

 # Do this in parallel 

 # Create new population 

 for member in population do 

  select 3 random members of the population 

  create mutant vector 

  run WK-Means for mutant vector 

  calculate weight deviation 

  select member or mutant vector 

  add selection to new population 

 

return cluster center locations and cluster weights of optimal cluster configuration 

 

3.6.3. Dynamic Clustering 

The Dynamic cluster optimization process is very similar to the Static cluster 

optimization, except each cluster β value was tuned rather than a single β value for all 

clusters, this can be formulated in Eq. (3-8). Additionally, the cluster center locations and 
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weights remain fixed from the Static clustering, and rather than running the entire WK-

Means algorithm, all points were simply joined to the nearest weighted cluster. The 

objective of this clustering is to minimize the deviation of cluster weights in the new 

configuration which does not include the cluster weights used to partition the points. This 

can be formulated in Eq. (3-9). 

𝑓6 = ∑ ∑ 𝑤
𝑗

𝛽𝑗√(𝑥𝑖,𝑥

(𝑗)
− 𝑐𝑗,𝑥)

2

+ (𝑥𝑖,𝑦

(𝑗)
− 𝑐𝑗,𝑦)

2
𝑛
𝑖=1

𝑘
𝑗=1    (3-8) 

𝑓7 = √
1

𝑘
∑ (𝑤𝑗,𝑛𝑒𝑤 − 𝜇𝑤,𝑛𝑒𝑤)2𝑘

𝑗=1      (3-9) 

The Dynamic Cluster optimization algorithm can be seen as follows. 

Algorithm 4 Dynamic Cluster Optimization Algorithm 

Input: Weighted road network points, cluster center locations and weights from the 

Static optimization process, and DE parameters 

Output: Optimal cluster configuration 

create population of 10 random β values 

 

for generation in generations do 

 # Do this in parallel 

 for member in the population do 

  join each point in the road network to the nearest weighted cluster  

          center 

  calculate the new weight deviation 

  

 # Do this in parallel 

 # Create new population 

 for member in population do 

  select 3 random members of the population 

  create mutant vector 

  join each point in the road network to the nearest weighted cluster  

          center 

  calculate the new weight deviation 

  select member or mutant vector 

  add selection to new population 

 

return optimal cluster configuration 
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3.7. Results & Analysis 

This section covers the results and analysis of the current waste collection 

configuration, the clustered waste collection configuration, and a comparison between 

them. 

3.7.1. Current Configuration Analysis 

Using the methods discussed in this chapter, a complete analysis of the current 

routing configuration was conducted for The City of Oshawa. A complete set of route 

simulations were generated using the proposed waste collection route optimization 

algorithm, and accompanying statistics were used to quantify the fitness of the respective 

routes and collection areas. In total, 111 routes were simulated, and all route shapefiles and 

animations were created. The animations created can be used by the waste collection team 

as a recommendation for the best possible way to service a collection route. An example of 

a route simulation can be seen in Figure 3-10, where all roads start off grey, and as they get 

traversed, the colour updates according to the legend provided. Additionally, each 

collection area’s statistics can be seen in python-generated statistic tables, as seen in Figure 

3-11. 

 

Figure 3-10 Frame-by-Frame Animation Example 
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Figure 3-11 Python-Generated Statistic Table for the Purple Friday Area in Week 1 

Collection 

 

An analysis of the workload distribution across each day of the week for the current 

collection area configuration was used as the benchmark to quantify the improvements 

made through the proposed workload balance algorithm. By summing the objective 

function values for the areas covered each day, the deviation is calculated. Graphically, the 

current workload distribution can be seen in Figure 3-12. The workload deviation works 

out to be 103.69 and 102.84 for Week 1 and Week 2 collection, respectively. 

 
(a) (b) 

Figure 3-12 Workload Distribution for the Current Collection Area Configuration in 

Week 1 (a) and Week 2 (b) 
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Two other solutions are possible using the existing collection areas. The first one is 

where the colour assignment remains the same (purple areas remain purple, and yellow 

areas remain yellow) and different areas are paired together, and the second one is where 

all areas begin colourless and the workload balance algorithm chooses the colour and 

assigns the day of the week. A map of the first solution can be seen in Figure 3-13, and the 

corresponding workload distribution plots can be seen in Figure 3-14, where the workload 

deviation works out to be 83.80 and 85.69 for Week 1 and Week 2 collection, respectively. 

  

(a) (b) 

Figure 3-13 Current Configuration (a) vs. Solution 1 Configuration (b) 
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(a) (b) 

Figure 3-14 Workload Distribution for Solution 1 Collection Area Configuration in Week 

1 (a) and Week 2 (b) 

 

Finally, a map of the second solution can be seen in Figure 3-15, and the 

corresponding workload distribution plots can be seen in Figure 3-16, where the workload 

deviation works out to be 75.06 and 77.07 for Week 1 and Week 2 collection, respectively. 

  
(a) (b) 

Figure 3-15 Current Configuration (a) vs. Solution 2 Configuration (b) 
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(a) (b) 

Figure 3-16 Workload Distribution for Solution 2 Collection Area Configuration in Week 

1 (a) and Week 2 (b) 

 

The improvements made through the workload balance algorithm can be 

summarized in Table 3-4. Analyzing the results, the optimal workload distribution is found 

in Solution 2 where the colours and days are assigned from scratch. However, when it 

comes to implementing these solutions in the real world, Solution 1 may be ideal as it may 

cause less confusion amongst residence since none of the collection weeks change (e.g., 

garbage and organics, and only organics still go out on the same week). In Solution 2, only 

2 of the areas change the collection week, but this small change can yield much more 

improvement with respect to the workload balance across each day of the week. So 

ultimately, there is a tradeoff between the best workload distribution and customer 

satisfaction. 
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Table 3-4 Improvements Made by the Workload Balance Algorithm 

Solution 
Week 1 

Deviation 

Week 1 

Improvement 

Week 2 

Deviation 

Week 2 

Improvement 

Current 103.69  102.84  

Solution 1 (Same 

Colour Assignment) 
83.80 19.18% 85.69 16.68% 

Solution 2 (Colours 

and Pairs Assigned) 
75.06 27.61% 77.07 25.06% 

 

3.7.2. Clustered Configuration Analysis 

This section will make use of the Static and Dynamic cluster optimization processes 

mentioned in Section 3.6 to generate new waste collection areas in the city. To quantify the 

improvements of the proposed clustering methods, an analysis of the current dwelling 

distribution was conducted. The deviation was calculated to be 376.60 dwellings and can 

be seen graphically in Figure 3-17.  

 

Figure 3-17 Current Collection Area Configuration Dwelling Deviation 
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For both the Static and Dynamic clustering, a population size of 32 was used. To 

make use of parallel computing, 32 CPUs were rented from SHARCNET, 1 for each 

member of the population. The remainder of the clustering and optimization parameters 

can be found in Table 3-5 for both optimization processes. As seen in Table 3-5, the 

computation time for the Dynamic clustering was far less than that of the Static clustering. 

This is because the Static clustering runs the WK-Means several times for each member of 

the population, and the Dynamic clustering simply joins the points to the nearest weighted 

cluster center that has already been computed by the Static clustering. So, the Dynamic 

clustering can manage to have a significantly larger number of generations while still 

yielding far less computation time. 

Table 3-5 Static and Dynamic Cluster Optimization Parameters for Waste Collection 

 Value 

Parameter Static Clustering Dynamic Clustering 

Number of Control Variables (β) 1 10 

Population Size (Number of 

CPUs) 
32 32 

Crossover Rate 1 
Linearly decreasing 

(0.95-0.50) 

Mutation Rate 
Linearly decreasing (0.8-

0.05) 

Linearly decreasing 

(0.9-0.05) 

Generations 200 400 

Clusters 10 10 

WK-Means Runs 5 / 

WK-Means Stop Iteration 600 / 

Run Time ≈ 7 hr ≈ 0.4 hr 

 

The output of the Static clustering algorithm can be found in Figure 3-18. From 

Figure 3-18 (a), a deviation of 400.26 dwellings is observed when β is 0.1763 for all 

clusters. Examining Figure 3-18 (b), an exponentially decreasing trend is found for the 
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average deviation of each generation, which is ideal in optimization processes. Although 

the Static cluster optimization did not yield any improvement compared to the existing 

configuration, the cluster center location and weights were used in the Dynamic cluster 

optimization algorithm to fine tune the clusters. 

 

 

(a) (b) 

Figure 3-18 Clusters Produced by the Static Cluster Optimization Process (a), and the 

Evolutionary Improvement Trend (b) 

 

The output of the Dynamic clustering process can be found in Figure 3-19. 

Examining Figure 3-19 (a), a dwelling deviation of 46.13 is seen, and the legend shows 

each cluster’s respective β value that is proportional to the weights and locations. Like the 

Static process, an exponentially decreasing trend is shown in the average deviation for each 

generation in Figure 3-19 (b). 
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(a) (b) 

Figure 3-19 Clusters Produced by the Dynamic Cluster Optimization Process (a), and the 

Evolutionary Improvement Trend (b) 

 

The improvements made using the proposed 2-stage cluster optimization process 

can be summarized in Table 3-6. Examining Table 3-6, the best approach was the Dynamic 

clustering method with a dwelling deviation improvement of 87.75% compared to the 

existing configuration. 

Table 3-6 Dwelling Deviation Improvements 

Configuration Dwelling Deviation Improvement 

Current 376.61 / 

Static Clustering 400.26 -6.28% 

Dynamic Clustering 46.13 87.75% 

 

 To assign routes within the newly defined collection areas, the same clustering 

methods were applied on each area. First, some small manual modifications were made to 

the clusters to clearly define the collection area boundaries to prepare them for the vehicle 
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assignment clustering. The parameters used in the vehicle assignment clustering can be 

found in Table 3-7. An example of the vehicle assignment clustering can be seen in Figure 

3-20 when it is applied to cluster 6 in Figure 3-19 (a).  

Table 3-7 Static and Dynamic Cluster Optimization Parameters for the Vehicle 

Assignment 

 Value 

Parameter Static Clustering Dynamic Clustering 

Number of Control Variables (β) 1 11 

Population Size (Number of 

CPUs) 
32 32 

Crossover Rate 1 
Linearly decreasing 

(0.95-0.50) 

Mutation Rate 
Linearly decreasing (0.8-

0.05) 

Linearly decreasing 

(0.9-0.05) 

Generations 100 250 

Clusters 11 11 

WK-Means Runs 5 / 

WK-Means Stop Iteration 600 / 

Run Time ≈ 30 min/area ≈ 5 min/area 

 

 

Figure 3-20 Vehicle Assignment using Static and Dynamic Clustering in Cluster 6 
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Still some manual modifications were necessary to resolve minor clustering issues seen 

in the vehicle assignment. Specifically, there were some outliers in adjacent neighborhoods 

that had crescents and road segments protruding into a neighboring cul-de-sac without 

having any direct connection via the road network. Upon the completion of careful manual 

modifications, the new stop densities in each respective route were calculated. Since the 

new route configuration differs from the existing route configuration, using the 

“route_block” areas to filter out the pickup locations to calculate the route density in each 

respective route cannot be used. Instead, a new metric was used where the number of 

dwellings in the respective routes can be divided by the servicing distance, thus creating a 

DUs/km rate. When comparing results generated in the existing configuration to the areas 

created by the clustering methods, there were some discrepancies with regards to the travel 

time because of the new method used to approximate the route density. Additionally, more 

safe turn-around locations were added to avoid u-turns, which slightly increased the 

distance, travel time, and fuel consumed. The route simulations were completed for the new 

routes using the same methods discussed in Section 3.3, and animations with accompanying 

statistic tables were generated, like the ones in Figure 3-10 and Figure 3-11, respectively. 

Since the clustered collection area boundaries are different from the existing ones, a 

side-by-side comparison of the statistics for each collection area is not an ideal way to 

compare the effectiveness of the proposed clustering methods. Instead, the total statistics 

for the whole city were compared, which can be summarized in Table 3-8. 
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Table 3-8 Total City Statistics for the Current Arrangement and Clustered Arrangement 

for Week 1 Collection 

Configuration 

Total 

Travel 

Distance 

(km) 

Total Fuel 

Consumed 

(L) 

Total 

Travel 

Time (hr) 

Total 

Collection 

Time (hr) 

Total 

Objective 

Function 

Value 

Current 1461.67  1819.11 37.08 441.04 2482.92 

Clustered  1481.09  1868.25 44.28 441.04 2594.99 

Percentage 

Difference 

from the 

Current 

Configuration 

1.32% 2.70% 19.42% 0% 4.51% 

 

Examining the total statistics in Table 3-8, the largest percentage difference of 19.42% 

can be found in the travel time. As previously mentioned, a different method of calculating 

the average servicing speed for the routes was used, which would ultimately lead to this 

large difference. All other statistics differed by a maximum of 4.51%. The increase in each 

respective statistic can be justified though the inclusion of additional safe turn-around 

locations that were added to the routes to remove u-turns. The small difference between the 

clustered and current configuration leads to the conclusion that the proposed clustering 

methods can produce collection areas and assign servicing routes comparable to human 

judgment. This study validates the clustering methods as an appropriate means to cluster 

geographical data into several divisions with respect to balancing a specified workload, 

thus implying that it can be used in other routing applications such as street-sweeping and 

snowplowing. 

The final analysis of the clustered configuration consists of assigning the collection 

week and daily pairs. For this, the proposed workload balance algorithm was used described 

in Section 3.5. Again, the objective of this process is to properly distribute the workload 
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across each day of the week. The parameters used in the GA optimization can be seen in 

Table 3-9. 

Table 3-9 GA Parameters for the Workload Balance Algorithm 

Parameter Value 

Length of Chromosome 10 

Population Size 150 

Crossover Rate 0.9 

Mutation Rate 0.05 

Generations 100 

Runs 20 

Run Time < 1 min 

 

The structure of the best-found chromosome from the workload balance algorithm was 

found as ['area_7', 'area_2', 'area_1', 'area_5', 'area_9', 'area_10', 'area_3', 'area_4', 'area_6', 

'area_8']. As mentioned in Section 3.5, an encoding method was used to assign the 

collection week and daily pairs of collection areas in the chromosome. A side-by-side 

comparison of the existing configuration and the new configuration can be seen in Figure 

3-21 with the area number in brackets. The workload deviation was calculated to be 64.25 

and 64.23 for Week 1 and Week 2 collection, respectively. Examining Figure 3-21, the 

existing collection areas have a somewhat polygonal boundary, whereas the clustered 

configuration yields “blob-like” areas due to the unique β value optimized for each 

respective cluster.   
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(a) (b) 

Figure 3-21 Current Configuration (a) vs. Clustered Configuration with Collection Weeks 

and Daily Pairs Assigned (b) 

 

Table 3-10 summarizes the improvements of all possible collection area 

configurations with respect to the workload balance problem. The best solution is the 

clustered configuration with a Week 1 and Week 2 improvement of 38.04% and 37.54%, 

respectively. However, when it comes to implementing the proposed clustered collection 

areas in the real-world, some issues may arise. Examining the current configuration in 

Figure 3-21 (a), all daily pairs of collection areas are adjacent to each other, resulting in 

less travel distance from one area to the next. Figure 3-21 (b) yields an optimal workload 

balance at the expense of separating the daily collection area pairs. In the clustered 

configuration, the Thursday and Friday areas are not adjacent to each other, thus requiring 
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more deadhead travel between the areas. This presents a tradeoff in the optimal workload 

balance and the feasibility of the clustered collection area configuration.  

Table 3-10 Comparison of All Solutions for the Workload Balance Problem 

Solution 
Week 1 

Deviation 

Week 1 

Improvement 

Week 2 

Deviation 

Week 2 

Improvement 

Current 103.69  102.84  

Solution 1 (Same 

Colour Assignment 

for Existing Areas) 

83.80 19.18% 85.69 16.68% 

Solution 2 (Colours 

and Pairs Assigned 

for Existing Areas) 

75.06 27.61% 77.07 25.06% 

Solution 3 (Colours 

and Pairs Assigned to 

Clustered Areas) 

64.25 38.04% 64.23 37.54% 

 

3.8. Conclusions 

In this chapter, a complete analysis of the current routing configuration for The City of 

Oshawa was conducted. To do so, a combination of heuristic approaches were used to 

create simulations necessary for calculating route-specific statistics for Week 1 and Week 

collection. Then, a GA was used to provide recommendations as to how the existing 

collection areas can be assigned to minimize the workload distribution across each day of 

the week. Results show that simply changing the collection day pairs can dramatically 

improve the workload distribution for the waste collection team. 

A novel 2-stage cluster optimization algorithm was also proposed with the objective of 

minimizing the deviation of weights across each cluster. The proposed algorithm was 

tested, and verified, in The City of Oshawa by minimizing the deviation of dwellings in 

each cluster. The results show that the proposed clustering methods yield a collection area 

configuration that can reduce the workload distribution more than any combination of 
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existing collection areas. Although the proposed algorithms were tested on the waste 

collection process, it can be applied to any other routing application in which proper 

partitioning of an area is needed.  

Regarding the limitations of the proposed methods discussed in this chapter, all 

optimization algorithms used involve stochastic processes. This means that, each time the 

simulation is executed, a different set of results will present itself. Plus, it is not guaranteed 

that the global optimal solution can be found, which is why the heuristic methods are used 

to generate an acceptable solution. Also, the results in Table 3-8 show a slight increase in 

the overall statistics for the waste collection routes in the clustered configuration. This was 

justified by the inclusion of safe turn-around locations for the collection vehicles, but 

ideally a new solution should yield results that are improved with regards to the overall 

statistics and workload balance, thus leading to the conclusion that the proposed clustering 

algorithms can be improved to reduce the overall statistics. Chapter 4 aims to improve the 

clustering methods to reduce the overall statistics of the street-sweeping operations in The 

City of Oshawa, as well as ensure a proper workload distribution implemented across each 

sweeping area. 
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Chapter 4. Street-sweeping Route Optimization 

4.1. Introduction 

Street-sweeping plays an important role in public health as particulate matter from the 

abrasion of the roads surface, break dust, and litter, make their way into stormwater 

drainage systems and back into the ecosystem [85]. The accumulation of debris in catch 

basins also requires cleaning at an additional cost. Limiting the amount of debris on the 

roads before it reaches catch basins can further reduce this cost. Additionally, street-

sweeping can improve public safety in the Fall months where significant amounts of leaves 

accumulate on the roads surface making it hard to detect potholes, crosswalks, as well as 

reducing tire friction [86]. Similarly, roadway debris like oil, dirt, and sand in the Spring 

and Summer months can cause slippage when breaking. Mechanical street sweepers use a 

set of rotating brushes and suction nozzles to sweep and collect debris on the road [2], the 

debris is collected in the vehicle until it is deposited at a yard for testing and final disposal.  

It is also common to wet the pavement in this process to make smaller particles of debris 

easier to collect, thus each vehicle is equipped with a water tank and appropriate nozzles.  

Since street-sweeping operations are costly, realistic simulations with accompanying 

statistics can be used as a theoretical guide for real-world application. In this chapter, the 

street-sweeping operations in The City of Oshawa will be simulated and theoretically 

optimized. The supplied GIS data was modified to incorporate important information 

regarding the street-sweeping operations, which will be discussed. A novel street-sweeping 

route optimization algorithm was developed consisting of several different heuristic 

approaches, namely the 3-Phase Augment Merge algorithm, A*, GA, TS, Hierholzer’s 

algorithm, TR, and ACO. The operating principle behind the proposed algorithm will be 
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discussed. The 2-stage cluster optimization process will also be used to define new 

sweeping areas for the city, however some modifications to the clustering approaches 

mentioned in Section 3.6 are applied that will be explored. Finally, a complete analysis of 

the current sweeping configuration will be compared to the clustered configuration to 

highlight the improvements made using the new sweeping areas. Additionally, the proposed 

algorithms will make use of seasonal conditions, meaning that different debris collection 

rates will be used for Spring, Summer, and Fall to reflect the Spring cleanup after winter 

operations, and the increased volume of leaves in the Fall months. As a result, 3 sets of 

solutions will be analyzed. The proposed algorithms will also incorporate several real-

world constraints in the routing problem, such as the debris capacity, shift length, water 

capacity, fuel capacity, u-turn elimination, and different temporary debris storage facility 

and depot locations. 

4.2. Data Preparation 

The merged dataset discussed in Section 3.2.1 was used for the street-sweeping 

optimization problem, specifically merged attribute road network shapefile with 

intersection connectivity information and the downloaded intersection shapefile. A 

complete set of sweeping area PDFs were supplied by the city highlighting which roads 

belong to which sweeping area for the AC and RES road classes. The RES and AC road 

classes can be seen in Figure 4-1. 
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Figure 4-1 RES (Red) and AC (Blue) Roads in The City of Oshawa 

 

The PDF maps also highlight which roads have a dense tree canopy overhanging the 

road. This information is important for the Fall months as there will be a higher debris 

generation rate on these roads, possibly requiring multiple passes. The sweeping area and 

canopy information were not included in the supplied GIS data, so it was added manually 

by referencing the supplied PDF maps. Specifically, 3 new attributes were added to the 

road network GIS file, “SWEEP_CLAS,” “ROUTE_NUM,” and “CANOPY.” The data 

used for the canopy attribute was collected in 2018, thus this data may be out of date with 

regards to tree growth. A simple data query can be used to isolate each route from the whole 

road network. A side-by-side comparison of the RES sweeping area 1 in PDF and shapefile 

format can be seen in Figure 4-2. 
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(a) (b) 

Figure 4-2 Route Area PDF (a) to Shapefile (b) Conversion 

 

4.3. Street-sweeping Route Optimization Algorithm 

In Section 3.2.2, the route shapefiles were created manually, meaning human judgment 

was used when selecting the roads needed to connect isolated parts of the route and the safe 

turnaround locations. Ideally, this should be done in a systematic way without human 

intervention. Since a route area can be considered a disconnected subgraph of the total road 

network, safe turnaround locations and optimal connections between the roads should be 

found using advanced optimization techniques. Also, entire sweeping areas cannot be swept 

in a single pass with respect to constraints (fuel, water, shift length, and vehicle debris 

capacity). So, a method of systematically dividing a sweeping area into several routes 

satisfying all constraints is needed.  

To make the route optimization problem more realistic, each trip must begin at the 

depot, and end with a temporary debris storage facility-to-depot trip, thus requiring 

significant deadhead distances to travel to and from the depot and temporary debris storage 

facility locations in South Oshawa. The depot is the home base for equipment and vehicle 

storage, each shift begins and ends here. The temporary debris storage facility is modelled 
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as the waste management facility in the CARP. However, it is a location to temporarily 

store the street-sweeping debris before it is tested and properly disposed of. The general 

area of South Oshawa can be seen in Figure 4-3. South Oshawa contains both the temporary 

debris storage facility and depot locations which are approximately 1.5 km apart. 

 

Figure 4-3 General Area of South Oshawa 

 

For a disconnected subgraph g (representing a collection of serviceable roads) of G (the 

whole road network), there exists a minimum cost path from the depot that services every 

edge in g and ends with a temporary debris storage facility-to-depot trip. This can be 

formulated in Eqs. (4-1) to (4-3), where the traversal nodes in Eq. (4-2) include the starting 

and ending nodes of the edges in g, 𝑑𝑖𝑗 is the shortest path from node i to j, and 𝑥𝑖𝑗 is a 
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binary indicator equal to 1 if node j is the next node to visit after j in the sequence. This can 

be modelled as a version of the TSP, where each edge has a starting and ending node related 

to the direction of travel.  

𝑓8 = ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1      (4-1) 

𝑥 = {𝑥1, … , 𝑥𝑛}     (4-2) 

𝑥1 = 𝑥𝑑𝑒𝑝𝑜𝑡      (4-3) 

𝑥𝑛−1 = 𝑥𝑑𝑢𝑚𝑝      (4-4) 

𝑥𝑛 = 𝑥𝑑𝑒𝑝𝑜𝑡      (4-5) 

However, as previously mentioned, a single tour cannot be used in each area due to the 

operational constraints of the routing problem, so several heuristic approaches are 

combined to solve the street-sweeping route optimization algorithm with multi-demand 

edges and many constraints. The overall flow of the proposed algorithm can be seen in 

Figure 4-4. 

 

Figure 4-4 Overall Street-sweeping Route Optimization Algorithm Flow 
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4.3.1. 3-Phase Augment Merge Algorithm 

Inspired by the work of Yang [40], a 3-phase augment merge algorithm was developed 

to find the optimal servicing routes within a given collection area while maintaining the 

operational constraints. The algorithm can be explained as follows. 

Algorithm 5 3-Phase Augment Merge Algorithm 

Input: Subgraph (g) representing the serviceable edges, GA parameters 

Output: Several feasible routes for a given sweeping area 
# Phase 1 – Individual Routes 

for edge in g do 

 generate route servicing the edge 

 add route to route list 

 

sort route list (max to min distance) 
 

# Phase 2 – Merging Overlapping Routes 

for route in route list do 

 for smaller route after route in route list do 

  if route contains serviceable edge in smaller route do 

   merge serviceable edge from smaller route into route 

   delete smaller route 

 

sort route list (max to min efficiency) 

 

# Phase 3 – Combine Routes 
while True do 

 old route list == route list 

 for route in route list do 

  for less efficient route after route in route list do 

   run GA to service all serviceable edges in route and less   

          efficient route 

   calculate statistics and efficiency improvement 

   update max discovered efficiency improvement 

   

  for max efficiency improvement route do 

   if constraints satisfied and efficiency improvement > 0 do 
    add combined route to new route list 

    delete less efficient route from route list 

   else do 

    add route to new route list 

 

 if len(old route list) == len(new route list) do 

  break 

 

 route list == new route list 

 

return new route list 

 



79 

 

 The efficiency can be formulated in Eq. (4-6), where 𝑑𝑖𝑗
(𝑠)

 is the distance of 

serviceable edge (𝑣𝑗, 𝑣𝑗), and 𝑑𝑖𝑗
(𝑟)

 is the distance of edge (𝑣𝑗, 𝑣𝑗) in the total route. The 

efficiency improvement can be formulated in Eq. (4-7), where 𝑑𝑖𝑗
(𝑠,𝑚)

 is the distance of 

serviceable edge (𝑣𝑗, 𝑣𝑗) in the merged route, 𝑑𝑖𝑗
(𝑟,𝑚)

 is the distance of edge (𝑣𝑗, 𝑣𝑗) in the 

merged route, 𝑑𝑖𝑗
(𝑟,1)

 is the distance of edge (𝑣𝑗, 𝑣𝑗) in the first individual route, and 𝑑𝑖𝑗
(𝑟,2)

 

is the distance of edge (𝑣𝑗, 𝑣𝑗) in the second individual route. 

𝜂 =
∑ ∑ 𝑑𝑖𝑗

(𝑠)𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑑
𝑖𝑗
(𝑟)𝑛

𝑗≠𝑖,𝑗=1
𝑛
𝑖=1

                  (4-6) 

𝜂𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
∑ ∑ 𝑑𝑖𝑗

(𝑠,𝑚)𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑑
𝑖𝑗
(𝑟,𝑚)𝑛

𝑗≠𝑖,𝑗=1
𝑛
𝑖=1

−
∑ ∑ 𝑑𝑖𝑗

(𝑠,𝑚)𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1
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          (4-7) 

The GA in the 3-phase augment merge algorithm computes the shortest path between 

servicing edges and does not pay any attention to the feasibility of the generated route with 

regards to u-turns. To account for the unsafe u-turns, a penalty distance should be added to 

the total route distance computed by the GA. Mentioned in Section 3.3, there are safe 

locations to perform u-turns, so these u-turns will not be penalized. A study was conducted 

where safe turnaround locations were found for 20 randomly selected intersections in the 

city. From the study, an average distance of 839.2 m was needed to detour and return to 

same intersection to resolve a u-turn. This distance was used as the penalty for unsafe u-

turns in the GA. As a simplification, it was also assumed that the penalty travel speed was 

50 km/hr (since this is the average speed limit in The City of Oshawa), so the shift length 

constraint will also be affected by the unsafe u-turn penalty. The constraints for the route 
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optimization can be found in Table 4-1, and the route simulation variables can be found in 

Table 4-2. 

Table 4-1 Street-sweeping Constraints 

Constraint Value 

Shift Length (Not Including Breaks + 

Misc. Activities) 
6.5 hr 

Fuel Capacity 189 L 

Debris Capacity 6 m3 

Water Capacity 1268 L 

 

Table 4-2 Route Simulation Parameters 

Variable Value 

Fuel Consumption Rate 0.55 L/km 

Service Speed 5 km/hr 

Water Dispersion Rate 14.61 L/km 

RES Debris Collection Rate 

0.14 m3/km for Spring 

0.07 m3/km for Summer 

0.35 m3/km for Fall (Normal Road) 

0.44 m3/km for Fall (Dense Canopy Road) 

AC Debris Collection Rate 

0.175 m3/km for Spring 

0.105 m3/km for Summer 

0.35 m3/km for Fall 

 

In Table 4-2, the fuel consumption rate and service travel speed were directly 

supplied by the city, but the water dispersion rate and debris collection rates were calculated 

using field data that was collected by the operations team. For the water dispersion rate, 

data was supplied to highlight how much water was used for a small sample of routes. From 

that, the water dispersion rate was calculated by finding the average water dispersion rate 

for the sample of routes provided. For Fall, a small selection of RES route data was supplied 

that revealed the cubic yardage of leaves collected. The average debris collection rate was 

calculated from the small sample of RES routes with respect to the servicing distance, and 

the same rate was applied to AC routes (since this data was missing). For the case of RES 
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canopy roads, it was assumed that they produce 25% more debris. In Spring and Summer, 

pile mass information was supplied, but it was not used since the debris constraint of the 

vehicle was in terms of volume. This information may have been used if the density of the 

pile debris was known (so it can be converted from mass to volume), but this information 

was missing. So, a scale was applied to the Fall debris rates to calculate the Spring and 

Summer debris rates. From conversations with the operations team, they agreed that the 

Fall seasons contribute the largest volume of debris, so the Spring and Summer debris rates 

will be a factor of the Fall debris rate. Using a scale of 1 to 5, it was assumed that Fall 

would be a 5, Spring RES is a 2, Spring AC is a 2.5, Summer RES is a 1, and Summer AC 

is a 1.5, resulting in the values shown in Table 4-2. 

4.3.2. U-Turn Minimization Algorithm 

Eventually the u-turns will be eliminated from the route sequence, but deadhead 

distance is increased because of finding safe turn-around locations. Before removing the u-

turns, they should be minimized to reduce the amount of deadhead travel needed to resolve 

unsafe u-turns. So, a heuristic approach was developed that makes use of the modified 

Hierholzer’s algorithm discussed in Section 3.3, and a TS algorithm like the one proposed 

by in [44] and [45]. 

A route can be modelled as a sequence of nodes in a specified traversal order. Unsafe 

u-turns can be identified by examining the previous and next node in the sequence; if the 

nodes are the same, a u-turn has occurred, physically seen as there-and-back motion 

between 2 nodes. Since some routes consist of more edges than others, 2 different methods 

of u-turn minimization were used, and the solution that yields the least u-turns was selected 

for the next process. 
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The first method is to use the modified Hierholzer’s algorithm from Section 3.3. 

However, the solution needs to be encoded into a graph-like structure for Hierholzer’s 

algorithm to be executed. The input solution consists of a series of nodes in a specified 

traversal order, where each pair of nodes relates to a directed edge. Knowing that, a graph 

structure can easily be created by iterating through each node in the solution and creating 

the weighted connection to the next node. Since the trip starts at the depot and ends with a 

temporary debris storage facility-to-depot trip, the depot will be the start node, and the 

constant temporary debris storage facility-to-depot sequence can be removed from the end 

of the solution and added back after optimization since it is constant. By removing this, an 

Eulerian tour cannot be completed, and instead an Eulerian path was created that starts at 

the depot and ends at the temporary debris storage facility. The modified Hierholzer’s 

algorithm works as described in Section 3.3 with the objective of creating a Eulerian path 

with minimal u-turns. 

 

Figure 4-5 Cycle Permutation Example for U-Turn Minimization 

 

The other method of u-turn minimization is the TS approach. Cycle permutations were 

applied to the node sequence with the objective of minimizing the unsafe u-turns, an 

example can be seen in Figure 4-5. For this method, a multi tabu list approach was 

developed where one tabu list stores the tabu solutions, and the other stores tabu nodes that 

have been selected to evaluate permutations. By using 2 lists, the chances of getting stuck 



83 

 

in locally optimal solutions is further reduced while promoting greater exploration of the 

solution space. The multi tabu list approach works by selecting a node to perform cycle 

permutations with that is not in the tabu nodes list, and the optimal permutation with the 

least u-turns that is not in the tabu solutions list is used as the next solution. The tabu 

solutions and nodes lists remain fixed in length, so the items that have been in the list the 

longest get removed first. The search is an iterative process, where the global best solution 

is constantly being updated until the final tabu iteration. The pseudo code for the proposed 

multi-tabu list search algorithm can be seen as follows. 

Algorithm 6 Multi List TS Algorithm 

Input: Route and TS Parameters 

Output: Optimal node traversal order to minimize u-turns  

for iteration in iterations do 

 randomly select cycle node that is not in the tabu nodes list 

 evaluate fitness of all permutations of cycles for the selected node 

  

 current route == best permutation that is not in the tabu solutions list 

 

 add current route to tabu solutions list 

 add cycle node to tabu nodes list 

 

 update tabu solutions list if len(tabu soltions list) > max length 

 update tabu nodes list if len(tabu nodes list) > max length 

 

 update best found solution 

 

return best found solution 

 

Both the modified Hierholzer’s algorithm and multi-list TS algorithm were applied to 

the routes generated by the 3-phase augment merge algorithm. Through experimentation, 

it was found that the modified Hierholzer’s algorithm and multi-list TS algorithm would 

generate different results for some routes, so the best solution found by either method was 

used in the next part of the algorithm.  
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4.3.3. U-Turn Removal Algorithm & Redundant Edge Reduction 

After the u-turn minimization stage, there still may be remaining u-turns that could not 

be resolved. These u-turns should be removed as they pose a risk to public safety. To 

remove the unsafe u-turns, a forward searching ACO algorithm (FS-ACO) was developed. 

In ACO, a colony of ants can be simulated travelling on the weighted edges of a graph to 

find the shortest tour beginning at the nest location. After each iteration, the pheromone 

levels of the edges can be updated, all edges undergo a small percentage of pheromone 

evaporation, and the edges traversed in the best path are rewarded with an increase in 

pheromone proportional to the distance of the path. 

Initially, the ants generate random paths, but as the iterations increase, the shortest path 

begins to reveal itself through the reward of pheromones. When ants select the next edge 

to traverse, an informed random decision is made where the edges with higher pheromones 

have a greater chance of being selected. This probability of selecting node j can be seen in 

Eq. (4-8) [9] where 𝜏𝑖𝑗 is the pheromone level on edge (𝑣𝑖, 𝑣𝑗), α is the pheromone influence 

factor, 𝑑𝑖𝑗 is the distance of edge (𝑣𝑖, 𝑣𝑗), β is the distance influence factor, and S is the set 

of nodes adjacent to i. 

𝑝𝑖𝑗 =
𝜏𝑖𝑗

𝛼 (
1

𝑑𝑖𝑗
)𝛽

∑ 𝜏𝑖𝑘
𝛼 (

1

𝑑𝑖𝑘
)𝛽

𝑘𝜖𝑆
    (4-8) 

In the case of u-turn removal for the street-sweeping optimization problem, ACO was 

modified appropriately for the problem. First, the unsafe u-turns should be identified by the 

methods discussed in Section 4.3.2. As each u-turn is representative of there-and-back 

travel on an edge, this edge should be removed from the graph before running the FS-ACO 

algorithm to prevent more u-turns from being added by the ants. Additionally, the road 
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network is a large dataset, and if the ants were simply set out to find a seemingly random 

path in network to return to the start node, this will result in large computation time. To 

prevent this from happening, a radius was defined around the u-turn node to filter out a 

smaller portion of the road network.  Finally, when the ants were simulated travelling along 

the edges of the graph, they used a novel forward-searching approach where the previously 

visited edge is ignored when selecting the next edge to travel. In some cases, the previously 

visited edge will be the only available edge to travel, like courts and physical dead ends. 

These are the only exceptions to the FS-ACO as they are safe turnaround locations. An 

example of the FS-ACO process can be seen in Figure 4-6. 

 

Figure 4-6 FS-ACO for U-Turn Removal 

 

An extra measure is taken to further reduce the deadhead travelling. A method of 

redundant edge reduction was developed that is based on the concept of TR, first introduced 

by Aho et al. [14]. In literature, a TR is the minimum edge subgraph that provides a strong 

connection between all nodes in the original graph. This concept can be used in the routing 

problem as there should be a minimum number of edges added to service all required roads. 

Also, the service roads must remain in the TR as they are the main reason for the routing 

problem, so they will be constant between the original graph and the TR. 
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To remove redundant collections of edges, a simple heuristic was used. Like the TS u-

turn minimization approach described in Section 4.3.2, the initial solution can be 

represented as a sequence of nodes in which the order corresponds to the visiting order. For 

each node in the solution, cycles can be identified in the total sequence. A cycle may be 

removed if the following 2 conditions are met. 

1. Removing the cycle still yields a strongly connected solution 

2. Removing the cycle does not remove any servicing connections 

The order in which to do FS-ACO and TR differs route to route. When FS-ACO is used 

first, additional cycles can be created in the solution that can be removed by the TR 

afterwards. When TR is used first, the location of unsafe u-turn locations can be altered to 

a configuration that needs less total u-turn distance found by the FS-ACO. There is no way 

to distinguish which of these cases apply to a corresponding route, so FS-ACO first then 

TR, and TR first then FS-ACO will both be applied to the same solution. Since both orders 

of operation produce feasible routes, the optimal solution was selected as the one requiring 

the least distance. An example of when TR should be done first can be seen in Figure 4-7 

with an improvement of 0.911 km when compared to FS-ACO first. An example of when 

FS-ACO should be done first can be seen in Figure 4-8 with an improvement of 0.18 km 

when compared to TR first. In both figures, the green roads represent roads added to resolve 

u-turns, and the red dashed roads represent roads that can be removed to create the TR. 
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(a) (b) 

Figure 4-7 FS-ACO First (a), and TR First (0.911 km Improvement) (b) 

 

  

(a) (b) 

Figure 4-8 FS-ACO First (a) (0.18 km Improvement), and TR First (b) 

 

The pseudo code for the whole sweeping area route optimization process can be 

seen as follows. 
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Algorithm 7 Street-sweeping Route Optimization Algorithm 

Input: Street-sweeping area, constraints, optimization parameters for GA, TS, and 

 FS-ACO 

Output: Several feasible routes servicing all roads in the sweeping area  

# Generate Initial Solution of Routes 

run 3-phase augment merge algorithm on sweeping area 

 

for route in routes created by 3-phase augment merge algorithm do 

 # Minimize U-Turns 

 run modified Hierholzer’s algorithm on route 

 run TS on route 

 

 select minimal u-turn route 

 

 # Remove Unresolved U-Turns 

 run FS-ACO + TR on minimal u-turn route to remove unresolved u-turns 

 run TR + FS-ACO on minimal u-turn route to remove unresolved u-turns 

 

 update route with no u-turn route 

 

return feasible routes 

 

4.4. Street-sweeping Area Generation Algorithms 

Like the waste collection problem, the street sweeper operations rely on pre-assigned 

street-sweeping areas in the city. Specifically, there are 12 RES sweeping areas, and 5 AC 

sweeping areas. It is speculated that a better arrangement of street-sweeping areas can be 

found using advanced clustering methods with respect to minimize the deviation of 

workload across each area, as well as reducing the overall statistics. Previous methods show 

that a proposed 2-stage clustering approach can be used to properly balance the workload 

across areas, but the methods should be improved to reduce the total statistics as well. In 

this section, the modifications made to the Static and Dynamic clustering approaches used 

in Section 3.6 will be discussed in detail. 
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4.4.1. Static Clustering 

As previously explained, the Static clustering method makes use of WK-Means and DE 

to fine tune a single β value used in the weighted distance calculation for all clusters. 

Previously, the weights were proportional to the dwellings in each cluster. For the street-

sweeping problem, the weights will be proportional to the service distance, deadhead travel 

distance to-and-from the depot, and the approximate number of trips.  

In Chapter 3, the depot and waste transfer facility locations were not considered as part 

of the study, however both the depot and temporary debris storage facility were considered 

for the street-sweeping problem, and thus this information needed to be incorporated into 

the clustering methods. First, arbitrary cluster configurations were made for RES and AC 

roads without considering the depot location and number of trips. Complete simulations 

using the proposed heuristics in Section 4.3 were made using the cluster configurations for 

all 3 seasons, and the trip rate was calculated. The trip rate was used as a rough 

approximation for the number of trips needed in each cluster that is proportional to the 

amount of servicing distance, it will be incorporated into the new clustering algorithm. The 

trip rate was calculated by finding the average number of trips needed in each area for all 

3 seasons and dividing that by the serviceable distance in the respective areas. Since the 

topology of the RES roads are denser than AC, different trip rates were calculated. The 

expected trip rates for RES and AC road classes can be seen in Table 4-3. During clustering, 

the approximate number of trips will be rounded up to the next whole integer. 

Table 4-3 Experimental Trip Rates for RES and AC Road Classes for Arbitrary Clusters 

Road Class Trip Rate (trips/km) Trip Rate (km/trips) 

RES 0.0940 10.64 

AC 0.1171 8.54 
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Initially, the trips from the depot were calculated to the nearest intersection of each 

respective cluster center, but this was problematic for clusters that had center locations very 

near to the depot location. In these cases, the depot-to-cluster-center trips were very small, 

and thus did not accurately reflect the distance needed to travel from the depot to the cluster, 

causing the clusters near the depot to be very large as seen in Figure 4-9. So, another method 

of calculating the depot to cluster distance was needed. 

 

Figure 4-9 Depot-to-Cluster-Center Issue (Pink Area) 

 

To resolve the large clusters near the depot location, a new method of trip distance 

estimation was used. Each road has a node on either end, so the clusters can be represented 

as a collection of the road end points. Using the Shapely library in Python, a convex hull 

was used to create the smallest convex polygon that encapsulates all road end points within 



91 

 

each cluster [87]. Instead of using the cluster center as the estimated trip destination, several 

critical points along the boundary of the convex hull can be used, thus making use of the 

entire cluster’s area and not just the cluster center. The convex hull representation of 

clusters can be seen in Figure 4-10. 

 

Figure 4-10 Cluster Convex Hulls 

 

The mentioned Static clustering algorithm is used as explained in Section 3.6.2 with 

some small modifications to incorporate trip distance estimations. In each iteration in the 

WK-Means clustering, several critical points on the cluster’s boundary will be selected, and 

the distance to and from the depot will be calculated using A* in the road network. The 

total depot-to-cluster trip distances will be added to the clusters servicing distance, thus 

having an influence on the cluster weights in the WK-Means algorithm. By including the 

estimated number of depot trips in the clustering, sweeping areas further away from the 

depot should have less servicing distance to account for having to travel a considerably 
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longer distance to sweep. The opposite can be said for clusters near the depot as they would 

ideally have more servicing distance because less distance is needed to reach them. 

4.4.2. Dynamic Clustering 

The same Dynamic clustering methods used in Section 3.6.3 were used in the street-

sweeping application. By using the cluster center locations and weights calculated in the 

Static clustering process (described in Section 4.4.1), the depot-to-cluster distances have 

already been included in the initial cluster weighting, so no additional modifications to the 

Dynamic method were required. 

4.5. Results & Analysis 

In this section, a complete study of the existing street-sweeping configuration will be 

compared to the optimized street-sweeping configuration. The objective of this study is to 

quantify the improvements made using the proposed clustering algorithms with regards to 

the overall statistics and workload distribution. 

4.5.1. Current Configuration Analysis 

The street-sweeping route optimization algorithm discussed in Section 4.3 was used for 

all 12 RES areas, and all 5 AC areas to generate feasible street-sweeping routes for all 3 

seasons. Additionally, a collection of routes was also generated for all canopy roads, but 

this was ignored for this study as it is constant between the existing and clustered 

configurations. All the generated routes were feasible with respect to the problems 

constraints shown in Table 4-1, and operational constraints (u-turns and proper traffic 

operation on 1-way and 2-way roads). The parameters used in the route optimization 

algorithm can be found in Table 4-4. Each value in Table 4-4 was selected through 

experimentation to yield an acceptable solution within an appropriate timeframe. 
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Additionally, some values in the optimization algorithms were selected to be within the 

range that is commonly seen for that value, for example the crossover rate (typically near 

1) and mutation rate (typically near 0) in the GA. 

Table 4-4 Optimization Parameters for the Street-sweeping Route Optimization 

Algorithm 

Parameter Value 

GA 

Runs 5 

Generations 150 

Population Size 100 

Crossover Probability 0.85 

Mutation Probability 0.15 

TS 

Iterations 100 

Tabu Solutions List Length 30 

Tabu Nodes List Length  (Number of Cycle Nodes)/2 

ACO 

Iterations 100 

Number of Ants 100 

ρ (Evaporation Rate) 0.25 

α (Pheromone Influence) 0.5 

β (Edge Distance Influence) 0.5 

Graph Filter Radius 750 m 

 

Animations, like the one seen in Figure 3-10, were generated for all routes with the 

inclusion of the depot and temporary debris storage facility locations to show the entire 

street-sweeping route. Additionally, figures for all routes and route areas were generated 

depicting the respective service roads and deadhead roads required to complete the route. 

An example of a route figure and sweeping area figure can be seen in Figure 4-11 (a) and 

Figure 4-11 (b), respectively. 



94 

 

  

(a) (b) 

Figure 4-11 Route Figure (a) and Sweeping Area Figure (b) for Fall 

 

Through experimentation, it was observed that the same routes can be used for Spring 

and Summer since the debris capacity constraint is not violated for either case, thus the 

routes can be interchangeable across these seasons. So, the results presented in this section 

will use the larger debris rate (Spring), and the total debris for Summer can be calculated 

using the appropriate debris scale that was previously discussed. However, Fall still needs 

its own set of routes since the debris collection rate is much larger, which requires more 

trips to the temporary debris storage facility. Accompanying statistic tables for each route 

and each route area were made, like the one seen in Figure 3-11 for the waste collection 

optimization. To better visualize the statistic distribution, normalized statistic distribution 

plots were made for each sweeping area and road class. By normalizing the statistics 

(dividing each statistic by the maximum respective statistic), they can all be visualized on 

the same plot. An example of a sweeping area statistic distribution plot can be seen in Figure 

4-12 for RES sweeping area 1. 
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Figure 4-12 Normalized Total Statistic Plot for Routes in Existing Sweeping Area 1 in 

Fall 

 

The statistical distribution plots generated for routes within the sweeping areas provide 

good insight on the micro scale, but the bigger picture is still missing. To analyze the street-

sweeping problem on the macro scale, the total area statistics should be examined for each 

respective road class. Table 4-5 and Table 4-6 summarize the overall statistics for the 

current sweeping area configuration for Fall and Spring/Summer, respectively. 

Table 4-5 Fall Statistics for the Current Sweeping Areas 

Metric 
Fuel 

(L) 

Distance 

(km) 

Time 

(hr) 

Debris 

(m3) 

Water 

(L) 

Service 

Distance 

(km) 

Efficiency 

(%) 

AC 

Total 497.96 905.37 63.52 88.93 3709.18 253.88 28.04 

Average 99.59 181.07 12.70 17.79 741.84 50.78 27.90 

Deviation 13.61 24.75 2.88 4.86 202.20 13.84 5.57 

RES 

Total 1500.14 2727.53 179.08 256.59 10122.75 692.86 25.40 

Average 125.0 227.29 14.92 21.38 843.56 57.74 24.73 

Deviation 62.75 114.10 7.53 10.90 426.25 29.18 6.43 
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Table 4-6 Spring/Summer Statistics for the Current Sweeping Areas 

Metric 
Fuel 

(L) 

Distance 

(km) 

Time 

(hr) 

Debris 

(m3) 

Water 

(L) 

Service 

Distance 

(km) 

Efficiency 

(%) 

AC 

Total 692.96 1259.94 104.88 77.81 6496.10 444.63 35.29 

Average 138.59 251.99 20.97 15.56 1299.22 88.93 35.92 

Deviation 18.35 33.38 2.08 2.01 167.48 11.46 7.83 

RES 

Total 1460.50 2655.46 177.77 97.00 10122.75 692.86 26.09 

Average 121.71 221.29 14.81 8.08 843.56 57.74 25.63 

Deviation 62.12 112.95 7.51 4.08 426.25 29.18 7.06 

 

The statistics in Table 4-5 and Table 4-6 can be visualized in a normalized statistic 

distribution plot like Figure 4-12. To normalize the values, each statistic was divided by 

the respective statistic’s maximum. In Figure 4-13 and Figure 4-14, the normalized 

statistics for RES and AC sweeping areas can be seen for Fall and Spring/Summer.  

  
(a) (b) 

Figure 4-13 Normalized Total Statistic Plots for the Existing RES Areas in Fall (a) and 

Spring/Summer (b) 
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(a) (b) 

Figure 4-14 Normalized Total Statistic Plots for the Existing AC Areas in Fall (a) and 

Spring/Summer (b) 

 

Figure 4-13 and Figure 4-14 highlight the statistic deviation seen in Table 4-5 and Table 

4-6 for the respective road class and season, most notably the RES area 15 area for all 

seasons. Ideally, the deviation of statistics should be minimized in a properly assigned 

sweeping area configuration. This represents a properly balanced workload. Also, the 

overall statistics should be reduced, except for efficiency (calculated in Eq. (4-6)). The 

results from the current street-sweeping configuration will be used as a benchmark to 

quantify the improvements made by properly assigning the street-sweeping areas through 

the 2-stage cluster approach. 

4.5.2. Clustered Configuration Analysis 

Using the clustering methods discussed in Section 4.4.1 and 4.4.2, the new street-

sweeping areas can be assigned. As discussed, the street-sweeping Static and Dynamic 

clustering will differ from the waste collection approach since approximate trips to, and 

from, the depot will be included. Since the convex hull operation [87] explained in Section 

4.4.1 was needed in each iteration of WK-Means clustering, the computation time will 

increase significantly, thus not as many WK-Means runs can be used. The parameters for 
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the Static and Dynamic clustering can be found in Table 4-7. In Table 4-7, the population 

size is dependent on the number of CPUs available. Since each CPU will be computing a 

complete WK-Means algorithm for the corresponding weight influence factor(s), the 

execution time is reduced by assigning each member of the population to a single CPU. In 

doing so, an entire population can be computed in parallel. If more CPUs are available, a 

larger population size may be used which may yield better solutions. 

Table 4-7 Static and Dynamic Cluster Optimization Parameters for Street-sweeping 

 Value 

Parameter Static Clustering Dynamic Clustering 

Number of Control Variables (β) 1 10 

Population Size (Number of 

CPUs) 
32 32 

Crossover Rate 1 0.75 

Mutation Rate 
Linearly decreasing (0.8-

0.05) 

Linearly decreasing 

(0.8-0.05) 

Generations 100 1000 

Clusters 
12 (RES) 12 (RES) 

5 (AC) 5 (AC) 

WK-Means Runs 1 / 

WK-Means Stop Iteration 200 / 

Run Time 
≈ 14 hr (RES) ≈ 2 hr (RES) 

≈ 10 hr (AC) ≈ 0.5 hr (AC) 

 

The final clusters produced by the Dynamic clustering for RES and AC road classes 

can be seen in Figure 4-15 and Figure 4-16 , where the distance deviation is 95.36 m and 

88.98 m, respectively. The evolutionary plots for RES and AC show an exponentially 

decreasing trend, which highlights the effectiveness of the proposed clustering techniques. 

However, in both cases the solutions converge early in the evolutionary process (about 

generation 500 for RES and 200 for AC), so the remaining time spent exploring the solution 

space was not needed. 
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(a) (b) 

Figure 4-15 RES Clusters Produced by the Dynamic Cluster Optimization Process (a), 

and the Evolutionary Improvement Trend (b) 

 

 

 

(a) (b) 

Figure 4-16 AC Clusters Produced by the Dynamic Cluster Optimization Process (a), and 

the Evolutionary Improvement Trend (b) 
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Each of the clustered areas were used as an input to the street-sweeping route 

optimization discussed in Section 4.3 to generate feasible route simulations. Like the 

current area configuration, route and area plots area made for the clustered configuration to 

distinguish between deadhead and serviceable roads. Additionally, animations and route 

specific statistic tables were made. As the clustered areas are different than the existing 

configuration, a side-by-side comparison of each area will not be sufficient to quantify the 

improvements made. Instead, the overall statistics for each road class were compared for 

the respective seasons in the clustered sweeping areas. Table 4-8 and Table 4-9 show the 

total statistics for the clustered configuration areas for Fall and Spring/Summer, 

respectively. 

Table 4-8 Fall Statistics for the Clustered Sweeping Areas 

Metric 
Fuel 

(L) 

Distance 

(km) 

Time 

(hr) 

Debris 

(m3) 

Water 

(L) 

Service 

Distance 

(km) 

Efficiency 

(%) 

AC 

Total 491.64 893.90 63.34 89.03 3713.15 254.15 28.43 

Average 98.32 178.78 12.66 17.81 742.63 50.83 28.36 

Deviation 8.46 15.38 2.58 4.75 198.32 13.57 6.78 

RES 

Total 
1456.5

1 2648.19 
177.5

4 256.67 10126.19 693.10 26.17 

Average 121.38 220.68 14.79 21.39 843.85 57.76 26.04 

Deviation 25.26 45.93 3.35 5.39 197.40 13.51 2.09 
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Table 4-9 Spring/Summer Statistics for the Clustered Sweeping Areas 

Metric 
Fuel 

(L) 

Distance 

(km) 

Time 

(hr) 

Debris 

(m3) 

Water 

(L) 

Service 

Distance 

(km) 

Efficiency 

(%) 

AC 

Total 659.17 1198.50 103.75 77.86 6500.07 444.91 37.12 

Average 131.83 239.70 20.74 15.57 1300.01 88.98 36.78 

Deviation 15.28 27.79 5.32 4.73 394.90 27.03 7.90 

RES 

Total 1449.91 2636.19 177.28 97.03 10126.19 693.10 26.29 

Average 120.83 219.68 14.77 8.09 843.85 57.76 26.40 

Deviation 29.22 53.14 3.43 1.89 197.40 13.51 3.10 

 

The statistics in Table 4-8 and Table 4-9 can be visualized in normalized statistic plots 

for the respective road classes. The distribution plots can be seen in Figure 4-17 and Figure 

4-18 for the RES and AC areas, respectively. 

  
(a) (b) 

Figure 4-17 Normalized Total Statistic Plots for the Clustered RES Areas in Fall (a) and 

Spring/Summer (b) 
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(a) (b) 

Figure 4-18 Normalized Total Statistic Plots for the Clustered AC Areas in Fall (a) and 

Spring/Summer (b) 

 

Examining the plots in Figure 4-17, the normalized statistic values fluctuate around 0.8. 

Compared to Figure 4-13 (where the values fluctuate around 0.75), an increase in about 

0.05 is seen. This reflects the improvement of the workload distribution, where ideally, all 

sweeping areas would have the exact same statistics (normalized value of 1). If all statistics 

had a normalized value of 1, this means that all statistics would be equal across each 

sweeping area. However, examining Figure 4-18 (a), a decreasing trend in the normalized 

values is seen from 1 to about 0.6. This is comparable to the existing AC configuration seen 

in Figure 4-14 (a). The same decreasing trend is seen in Spring/Summer (Figure 4-18 (b)), 

except the normalized statistics extend just below 0.6. Additionally, the normalized 

efficiency values (brown line in Figure 4-18 (a)) for AC roads are smaller in Fall than 

Spring/Summer. This is because clustering was performed on all AC roads, and in the Fall, 

the regional roads are not swept. As explained in Section 1.4.1, the AC road class is 

comprised of city owned, and regional owned roads. Since clustering was performed on all 

AC roads, the regional and city roads were included. Since the regional roads are swept in 

2/3 sweeping seasons, they were included in the clustering. Ideally, different cluster 
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configurations should be used for AC roads in Spring/Summer and Fall because regional 

roads are not included in Fall. Having different sweeping areas for different seasons may 

cause confusion, specifically, when switching from one area configuration to another after 

a season ends. To standardize the sweeping areas, regional roads were included in the 

clustering as they are swept in most of the sweeping seasons. As a result, when the regional 

roads are removed from the AC clusters in Fall, the previously well-distributed clusters 

may become less efficient. 

To complete the analysis of the clustered sweeping area configuration, a comparison of 

the total statics will be made. The improvements of the proposed clustered sweeping areas 

can be summarized in Table 4-10 and Table 4-11 for Fall and Spring/Summer, respectively.  

Table 4-10 Improvements Made Using the Clustered Configuration in Fall 

Metric Fuel (L) Distance (km) Time (hr) Efficiency (%) 

AC 

Total 6.31 11.48 0.18 0.39 

Average 1.26 2.30 0.04 0.45 

Deviation 5.15 9.37 0.30 -1.21 

RES 

Total 43.64 79.34 1.54 0.77 

Average 3.64 6.612 0.13 1.30 

Deviation 37.49 68.17 4.18 4.34 

 

Table 4-11 Improvements Made Using the Clustered Configuration in Spring/Summer 

Metric Fuel (L) Distance (km) Time (hr) Efficiency (%) 

AC 

Total 33.79 61.44 1.14 1.83 

Average 6.76 12.29 0.23 0.85 

Deviation 3.07 5.58 -3.24 -0.07 

RES 

Total 10.60 19.27 0.49 0.20 

Average 0.88 1.61 0.04 0.77 

Deviation 32.90 59.81 4.07 3.95 

 



104 

 

Examining Table 4-10 and Table 4-11, almost all the metrics have been improved. Only 

three metrics were not improved, the deviation of efficiency (service distance divided by 

total distance for each area) for AC areas in Fall and Spring/Summer, and deviation of 

travel time for AC areas in Spring/Summer. The least improved arrangement of sweeping 

areas is the AC configuration for Fall. As previously discussed, this was because residential 

roads are not swept in Fall but were included in the clustering process. Overall, the proposed 

clustering methods were able to improve almost every aspect of the existing sweeping area 

configuration. 

4.6. Conclusions 

In this chapter, a complete analysis of the existing street-sweeping area configuration 

was conducted in The City of Oshawa for RES and AC roads in all operating seasons. To 

do so, a novel street-sweeping route optimization algorithm was developed using a 

combination of several different heuristic methods. The proposed algorithm could divide a 

street-sweeping area into several feasible routes while satisfying multiple real-world 

constraints. Additionally, the FS-ACO algorithm was developed to eliminate any unsafe u-

turns that could not be resolved using the modified Hierholzer’s algorithm or TS.  

The Static clustering approach was improved by considering the approximate number 

of trips needed to a cluster proportional to its servicing distance. Using A*, the depot-to-

cluster distance can be added to the cluster weight for several critical points along the 

cluster boundary. In doing so, clusters near the depot are larger than ones far from the depot; 

this reflects the travel distance required to reach the cluster. The new clustering methods 

were used to generate street-sweeping areas in The City of Oshawa, and the proposed street-

sweeping route optimization algorithm was used to validate the new clustering methods. 
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The results in Section 4.5.2 show considerable improvements with respect to the overall 

statistics and statistic distribution. 
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Chapter 5. Conclusion 

5.1. Conclusions 

Route optimization is a part of everyday life. Sometimes routing problems have simple 

solutions, such as finding the shortest path from point a to point b. But real-world 

applications in routing have many constraints that make a simple trip from point a to b less 

obvious. In this thesis, two real-world routing problems were theoretically optimized for 

The City of Oshawa, waste collection and street-sweeping. Waste collection and street-

sweeping play an important role in the cleanliness, health, and overall safety of the public. 

However, these operations require a great deal of planning and resources for an efficient 

implementation. 

Sometimes, a large problem needs to be separated into several smaller problems. Many 

routing applications make use of the macro and micro analysis, waste collection is no 

different. On a macro scale, a large road network can be separated into several smaller 

areas. On the micro scale, the smaller areas can be divided into several routes. To achieve 

such area division, a novel 2-stage clustering algorithm was developed, the Static and 

Dynamic clustering algorithm. The proposed clustering methods use DE to fine tune the 

weight influence factor of the WK-Means clustering algorithm such that the deviation of 

weights are minimized. The weights of the clusters are specific to the application. In waste 

collection, the weights are proportional to the number of dwellings within each area. In 

street-sweeping the weights are proportional to the amount of road to service. 

The proposed 2-stage clustering algorithm was used in The City of Oshawa to generate 

new waste collection areas. To validate the performance of the clustering, the routes within 

each cluster were simulated to generate statistics. A waste collection route optimization 
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algorithm was developed using Dijkstra’s algorithm and Hierholzer’s algorithm to find the 

minimum distance path that services all roads in a route. Several statistics were generated, 

and a dimensionless objective function value was used to quantify the fitness of a route. 

The dimensionless objective function values for the routes in each respective area were 

summed to quantify the fitness of a collection area. Using a GA, a workload balancing 

algorithm was developed that can pair collection areas together for each day of the week 

with the objective of minimizing the deviation of the expected workload. The results 

highlighted that the clustered areas offer a better workload distribution than any 

combination of existing areas. However, the balanced workload is at the expense of a slight 

increase in the total statistics. Specifically, a small increase in distance, fuel, and travel time 

was seen. This can be justified since the added statistics relate to the inclusion of safe turn-

around locations. However, the safe turn-around locations were added manually, and thus 

were not optimal, highlighted by the increased statistics. Leading to the conclusion that the 

proposed routing algorithm can be improved with regards to optimally selecting safe turn-

around locations. 

To achieve a proper workload balance and reduce the total statistics, the clustering 

methods needed to be improved. The street-sweeping operations within The City of 

Oshawa also divide the road network into several sweeping areas. The proposed clustering 

methods were improved by including the depot-to-cluster trip distance for the approximate 

number of trips needed. To divide the area into several feasible routes, a novel street-

sweeping route optimization algorithm was developed. The algorithm makes use of the 3-

phase augment merge algorithm, GA, Hierholzer’s algorithm, TS, and TR. The proposed 

algorithm satisfies all vehicle constraints (fuel capacity, water capacity, and debris 
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capacity) and operational constraints (shift length, proper travel direction and removal of 

u-turns) and resolves all unsafe u-turns using the developed FS-ACO algorithm. An 

analysis of the current and clustered street-sweeping area configurations was conducted, 

and the results show that the clustered configuration was able to improve the workload 

distribution across all areas and reduce the total statistics. Specifically, the routes were able 

to improve the overall fuel, distance, travel time, and efficiency for RES and AC sweeping 

areas in all operating seasons. In all routes, the proposed u-turn removal algorithm was able 

to find the optimal turn-around location for all unsafe u-turns. The sweeping areas made 

using the clustering algorithm were improved with respect to the statistical balance when 

compared to the existing sweeping areas. Results show the deviation of fuel, distance, travel 

time, and efficiency were improved (with some small exceptions that were discussed). 

In conclusion, the proposed 2-stage clustering approach for road network division offers 

a novel method to divide municipalities with the objective of minimizing the deviation of 

a specific attribute. For routing applications, the proposed clustering method can generate 

servicing areas that minimize the statistics deviation and total statistics. 

5.2. Recommendations and Future Work 

The works discussed in this thesis can be expanded upon by implementing smart routing 

technology. For waste collection route optimization, smart routing technology can be used 

to estimate the approximate amount of curbside waste that will be collected on a service 

road. In doing so, the waste collection rate for each road can be unique, and appropriate 

algorithms will be able to incorporate this information during optimization. In street-

sweeping, smart routing applications may include the use of drones to monitor the amount 

of debris on roads. If the debris on a road reaches a certain threshold, it will be included in 
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a route for sweeping. If the debris of a road is below a certain threshold, it will not be swept, 

thus increasing the efficiency of a route. 

In the waste collection problem, seasonal specific variations were not considered. For 

example, tree collection around Christmas time, or yard waste collection in 

Spring/Summer. Also, the depot and waste storage facility were not included in this study. 

For the street-sweeping problem, an updated tree canopy information study should also be 

conducted. As mentioned, the data used for the tree canopy information was collected in 

2018, thus more dense tree canopies may exist because of tree growth. 

For both the waste collection and street-sweeping, all data presented in this report is 

based upon simulated data. Future work can include the possibility of implementing the 

proposed solutions and modifying them based upon real-world data. 

Additionally, the performance of the proposed clustering algorithms can be improved. 

Examining Table 4-7, the computation time for the RES road class (2309 roads) was 

approximately 14 hr, thus any reductions to the computation time will be beneficial. 
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APPENDICIES 

Appendix A. Waste Collection 

1. Route Statistics (Existing – Garbage and Organics) 
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2. Route Statistics (Clustered – Garbage and Organics) 

 

 



121 

 

 

 

 



122 

 

 

 

 



123 

 

 

 

 

 

 

 

 



124 

 

Appendix B. Street-sweeping 

1. RES Route Statistics (Current - Fall) 
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2. AC Route Statistics (Current - Fall) 
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3. RES Route Statistics (Clustered - Fall) 
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4. AC Route Statistics (Clustered - Fall) 
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