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ABSTRACT

Waste collection and street-sweeping play a vital role in public health, safety, and
overall cleanliness. Since these processes cannot be ignored, they should be done in an
efficient manner. The following thesis proposes a novel 2-stage clustering approach,
namely the Static and Dynamic Clustering, to divide a municipalities road network into
several operational areas in which the routes can be assigned. A method of generating
optimal routes within the respective operational areas is also developed so statistics can be
used to quantify the improvements made using the proposed clustering methods. The
proposed algorithms were used to optimize the waste collection and street-sweeping
processes in The City of Oshawa. The results of this work show that the proposed clustering
algorithms can generate operational areas that better distribute the workload and overall
simulated statistics when compared to existing configurations. Additionally, the proposed
techniques may be applied to other routing applications, and other areas of research

involving optimizing data partitions using clustering methods, such as machine learning.
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Chapter 1. Introduction

1.1. Introduction

Route optimization is a broad, yet complicated area of research that spans over many
disciplines, including waste collection, street-sweeping, snowplowing, mail delivery, and
many others. Common to all areas of route optimization, some organizations rely upon
humans to create service routes manually while using their own judgment. In smaller cases,
this seems like an ideal approach. However, manually creating servicing routes on a large
scale can prove to be a time consuming and inefficient method that yields results far from
optimal. Additionally, developing areas typically undergo rapid expansion and population
growth. As a result, complications with existing servicing routes arise, and a method of

efficiently updating existing routes, or creating new routes can be beneficial.

In large municipalities, it is common to divide a large area into several smaller
operational regions or zones. This is seen in applications such as curbside waste collection
and street-sweeping and allows for better dispatching organization and workload
distribution for the operations team. However, creating arbitrary areas without any
knowledge of the service demand in these areas can lead to an unbalanced workload and
statistics distribution, resulting in less efficient routes. For the case of waste collection,
some stop locations may generate more waste (in the case of multi-dwelling households),
or in street-sweeping, some streets may accumulate more debris (in the case of dense tree
canopies overhanging the roads), and it is critical that these areas are treated differently

since they have an influence on the expected number of trips due to the capacity constraint.

Additionally, servicing vehicles of any type have several operational constraints that

must be considered. Vehicle constraints such as debris and fuel capacity, and operational

1



constraints such as shift length and u-turn avoidance all play an important role in route
optimization. With respect to creating routes manually, these concepts are difficult (if not,

impossible) to incorporate.

Currently, route optimization is a largely researched area with many heuristic
approaches that have been proposed and validated. However, some municipalities have
different vehicle and operational constraints which require the development of new

heuristic methods to properly optimize servicing routes.

1.2. Scope and Objectives

The primary scope of this research is to develop novel heuristic algorithms capable
of optimizing waste collection and street-sweeping routes for The City of Oshawa. The
route optimization methods are to be applied on a city-wide scale, making use of large
datasets representing the city’s complex road network. Due to the operational differences
between waste collection and street-sweeping, different heuristics will be developed for

each respective area.

The detailed objectives of the waste collection route optimization include:

e The development of a waste collection route optimization algorithm

e The development of a collection area pairing algorithm with workload balancing

e The development of a collection area generation algorithm with expected waste
distribution balancing

e Adetailed comparison of the existing collection area configuration vs. the generated

collection area configuration

The detailed objectives of the street-sweeping route optimization include:



e The development of a street-sweeping route optimization algorithm capable of
multi season (Spring/Summer/Fall) interpretation and unsafe u-turn elimination

e The development of a street-sweeping area generation algorithm with service
distance distribution balancing

e A detailed comparison of the existing street-sweeping area configuration vs. the

generated street-sweeping area configuration

1.3. Outline of Thesis
Chapter 1 introduces the research scope, objectives, thesis outline, and working

foundations used to achieve the research objectives.

Chapter 2 provides an in-depth literature review regarding route optimization models,

route optimization algorithms, and clustering algorithms used in routing applications.

Chapter 3 explains the developed heuristic used for waste collection route optimization in
The City of Oshawa. The simulated results from the current collection area configuration

were compared to the optimized collection area configuration.

Chapter 4 explains the developed heuristic used for waste street-sweeping route
optimization in The City of Oshawa. The simulated results from the current street-sweeping

area configuration were compared to the optimized street-sweeping area configuration.

Chapter 5 concludes the thesis by highlighting the contributions made to the route
optimization research discipline and states the limitations of the proposed methods. Future

research objectives and recommendations are also discussed.



1.4. Problem Background & Working Foundations

The problem background, working foundations, algorithms, and methodologies
presented in this thesis will be discussed in the following section. The operational principle
of waste collection and street-sweeping in The City of Oshawa will be explained. Next, the
data preparation and software used will be discussed. From there, the utilized graph
traversal algorithms will be explored. Followed by the optimization algorithms selected.
The chosen clustering algorithms will be explained. Finally, parallel computing methods

and resources will be explored.

1.4.1. Waste Collection and Street-sweeping in The City of Oshawa

This section will explain the operational principle behind the waste collection and
street-sweeping operations in The City of Oshawa. These processes differ from
municipality to municipality, so it is important to define the working procedure being

examined in the following research.

1.4.1.1. Waste Collection

The City of Oshawa is divided into 10 different areas [1] (2 for each day of the
working week) for curbside waste collection, and each of the 10 areas is divided into 11
individual routes. Each day of the week, a fleet of 11 vehicles (made up of the Labrie Expert
Co-Mingle Split Side Loader and the Shu-Pak PK Split Side Loader) is dispatched to
service the 2 collection areas corresponding to the current day of the week. The vehicles
will service a route in each area. The collection week alternates between Week 1 and Week
2, meaning that one area will have only organics collected, while the other has garbage and
organics collected. Each dwelling may have up to 4 bags of waste which can weigh up to

20 kg each, and 1 green bin that can weigh up to 20 kg [1], and there may be multiple



dwellings at a single stop (e.g., basement apartments). The collection areas can be seen in

Figure 1-1.
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Figure 1-1 Waste Collection Area Configuration for The City of Oshawa [1]

1.4.1.2. Street-sweeping

The City of Oshawa consists of 3 road classes, residential (RES), arterial and
collector (AC), and central business district (CBD) for street-sweeping, each with their own
set of standards. On AC roads, the travel speed and traffic volume are typically larger than

RES roads, and RES roads contain direct connections (driveways) to most of the housing



in the city. For this study, only the RES and AC road classes will be considered as the CBD
is a localized area that is treated differently than RES and AC roads. The AC roads can be
divided into 5 sweeping areas, and RES can be divided into 12 different areas that are swept

by Elgin Whirlwind mechanical street sweepers [2].

AC sweeping areas are made up of a combination of city owned roads and regional
owned roads, where all AC roads are swept in Spring and Summer, but only the city owned
roads are swept in the Fall. RES roads are swept all 3 seasons; however, 2 subclasses of
RES roads exist, canopy and non-canopy. Canopy roads are defined as roads with street or
boulevard trees that have a denser canopy overhead, contributing to more debris generation
(via. leaves) in the Fall season. It should be noted that canopy roads will change over time
as some trees may die, and eventually non-canopy roads may become canopy roads as small
trees will grow. Non-canopy roads still accumulate leaves in the Fall, but canopy roads
accumulate more and must be treated as such, possibly requiring frequent and multiple trips
due to the increase in volume of material collected. All roads must be swept twice, once in

each direction for 2-way roads, and twice in the same direction for 1-way roads.

1.4.2. QGIS and GIS Data

Geographic information system (GIS) data was supplied by The City of Oshawa,
and QGIS [3] is used to view/manipulate the data. GIS integrates location data (map) with
descriptive data (attributes) [4]. The supplied GIS data represents the road network and can
be seen in Figure 1-2, where each line is a road segment. Each road segment has several
useful attributes associated with it that otherwise cannot be seen visually, such as speed

limit, road class, jurisdiction, etc.



Figure 1-2 Road Network GIS Data for The City of Oshawa

1.4.3. Capacitated Arc Routing Problem (CARP)

The capacitated arc routing problem (CARP) model is commonly used to optimize
servicing routes consisting of roads with demand and cost [5]. This directly correlates to
waste collection in the form of collecting household waste and organics, and street-
sweeping in the form of debris collection. CARP can be used to model 1 or many servicing
vehicles, which makes it a versatile approach for many applications. In most literature, the
cost is typically the travel distance, and the demand is specific to the application. However,
as the routing problem becomes increasingly complex, there may be several cost and

demand variables.



CARRP differs from the traditional vehicle routing problem (VRP) approach in the
sense that the roads/edges themselves need to be serviced instead of servicing
locations/nodes [6]. Although the curbside waste collection problem can technically be
modelled as a VRP, it is assumed to be an edge routing problem because of the many

servicing locations that exist on a road segment, as seen in Figure 1-3.
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Figure 1-3 Stop Locations (Pink) for the Curbside Waste Collection

1.4.4. Graph Traversal Algorithms

This section will explain the graph traversal algorithms used in the following
research. Specifically, the operation principles and importance of Dijkstra’s algorithm, A*
algorithm, ant colony optimization (ACO), and Hierholzer’s algorithm will be briefly

discussed.

1.4.4.1. Dijkstra’s Algorithm
Dijkstra’s shortest path finding algorithm was proposed by E. W. Dijkstra in 1959

[7] and has been used by hundreds of researchers in many different path finding



applications. Dijkstra’s algorithm finds the shortest path from one node to all other nodes
in a weighted graph. For this research, Dijkstra’s algorithm was used to connect pairs of
nodes together in a road network such that all nodes have an in-degree equal to their out-

degree. An example of Dijkstra’s algorithm can be seen in Figure 1-4,
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Figure 1-4 Dijkstra's Algorithm Example for a Simple Graph

1.4.4.2. A* Algorithm

The A* algorithm is similar to Dijkstra’s algorithm, however, A* simply finds the
shortest path between any 2 nodes in a strongly connected multigraph rather than 1 node
and all other nodes [8]. A* is a more informed version of Dijkstra’s algorithm because it
consists of 2 cost functions, one to keep track of the current path distance (gcost), and the
other to keep track of the Euclidian distance to the goal node (hcost). Each candidate node
has a total cost that is equal to the sum of the gcost and hcost, thus providing insight as to
which nodes are in the direction of the goal node, eventually exploiting the guaranteed
shortest path without the need to explore all nodes in the network. For this research, A*
was used to compute the shortest path between road segments in an efficient manner within

a genetic algorithm (GA). A simple example of the A* algorithm can be seen in Figure 1-5.
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Figure 1-5 A* Example for a Simple Graph

1.4.4.3. Ant Colony Optimization (ACO)

Different versions of ACO exist, however they all share the same operational
principle. ACO is a stochastic process developed for combinatorial optimization problems
of many types [9]. ACO simulates a colony of ants searching for food, and the least
expensive paths found by ants will be rewarded with greater pheromone levels, thus making
them more desirable after each iteration. In accordance with nature, the pheromone levels

slowly evaporate from all paths, exploiting the paths with the best fitness.

Each iteration simulates a colony of ants finding the shortest path to the goal
location; a roulette style selection is used to choose the next edge to travel where the
probability is proportional to the pheromone level of the corresponding edge. Once the ants

reach the goal location, the algorithm stops and rewards the best path found by the colony.
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ACO works best with a graph-like structure, which easily translates to a road network. For
this research, the ACO algorithm was modified to work as a u-turn removal algorithm. A

visual representation of the ACO algorithm can be seen in Figure 1-6.
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Figure 1-6 ACO Example

1.4.4.4. Hierholzer’s Algorithm

Hierholzer’s algorithm is a graph traversal algorithm that is used to generate an
Eulerian circuit that traverses each edge once in directed multigraphs with all nodes having
an in-degree equal to the out-degree [10]. Additionally, Hierholzer’s algorithm can create
an Eulerian path in directed multigraphs only if the starting node has an in-degree equal to
1 more than the out-degree, and the ending node has an out-degree equal to 1 more than the

in-degree.

Hierholzer’s algorithm works by randomly selecting unvisited outgoing edges from
the current node until a node is reached with no unvisited edges. When this occurs, the path
is reversed until the next node is reached that has unvisited edges. While the path is being

reversed, the edges are added to a separate list representing the Eulerian circuit/path. Once
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all edges have been visited, the algorithm will stop, and the Eulerian circuit/path can be
seen. For this research, Hierholzer’s algorithm was modified to minimize the number of u-

turns in a servicing circuit/path. An example of Hierholzer’s algorithm being used to create

an Eulerian tour can be seen in Figure 1-7.

Step: 1 Step: 2 Step: 3 Step: 4
4 4 4 4
® Start .p ® Start .} ® Start . .". ® St .,
>' ._, ' . ’.
o — o J o-—0 0 o .0 @ o .0 @
1 2 3 1 2 3 1 2 3 1 2 3
Path: 1 Path: 1-2 Path: 1-2-3 Path: 1-2-3-4
4 4
® Start .» ® Surt .-
¥ ¥
o .0 @ o .0 @
1 2 3 ! 2 3
Path: 1-2-3.4.2 Path: 1-2-3-4-2-1
Step: 5 Step: 6

Figure 1-7 Hierholzer's Algorithm to Create an Eulerian Tour

1.4.5. Optimization Algorithms

This section will explain the optimization algorithms used in the following research.
Specifically, the operation principles and importance of the GA, differential evolution

(DE), tabu search (TS), and transitive reduction (TR) will be briefly discussed.

1.4.5.1. Genetic Algorithm (GA)

The GA is an evolutionary algorithm developed to replicate the natural process of
evolution through survival of the fittest [11]. GAs are ideal for combinatorial optimization
processes, but with proper encoding, they can be used for continuous optimization problems
as well. To use a GA for the combinatorial case, the optimization problem should be

formulated as a list of genes in a chromosome. For example, in the travelling salesman
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problem (TSP), each gene in the chromosome would represent a city to visit, and the order

of the genes in the chromosome would represent the order of which the cities will be visited.

The GA works by first creating an initial population of chromosomes with a random
order or configuration of genes in accordance with the optimization problem. A fitness
function (specific to the optimization problem) will be used to evaluate the fitness of each
member in the population, where the best solutions are the ones with the lowest fitness
score. Typically, a small sample of the best solutions (chromosomes) are copied to the next

generation to ensure they do not get destroyed by the next phase, crossover, and mutation.

In the crossover phase, 2 parents will be randomly selected with probability
proportional to their respective fitness, and their genes will be swapped at a randomly
selected crossover point to create 2 children, an example of this can be seen in Figure 1-8.
In the mutation phase, the genes of the children’s chromosomes are iterated over and the
ones that are selected for mutation are changed to a random variable in accordance with the
optimization problem, an example of this can be seen in Figure 1-9. This process is repeated
until a new population is created with the same size as the original one. Over several
generations, the chromosomes will gradually improve fitness, and the best solution from
the final generation is selected as the optimal solution. For this research, the GA was used
to pair waste collection areas together with the objective of balancing the workload, and it
is used as a part of the 3-phase augment merge algorithm to optimize the order of roads to

be swept.
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Figure 1-9 GA Mutation Phase

1.4.5.2. Differential Evolution (DE)

DE, like the GA, falls under the umbrella of evolutionary algorithms, but is more
applicable to multi-dimensional continuous optimization problems [12]. DE also shares the
concept of survival of the fittest through crossover and mutation, but this is done in a

different manner due to the multi-dimensional nature of the problem.

DE works by first creating an initial population of chromosomes with a random
order or configuration of genes in accordance with the optimization problem. The fitness
of each member of the population is evaluated using an objective function specific to the
optimization problem. Then the population is iterated over, the current member of the
population is called the target vector, and 3 other chromosomes are randomly selected from
the current population. A difference vector is created by subtracting 2 of the randomly
selected chromosomes, and this is multiplied by a weight factor. This is called the weighted

difference vector. The weighted difference vector is added to the 3" randomly selected
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chromosome, creating the noisy vector. The mutant vector is created by iterating through
the genes of the target vector, using a mutation probability, the current gene will be selected
from either the mutant vector or target vector. Once the mutant vector has been created, the
fitness is compared to the target vector and the better solution is added to the next
population. An example of the DE process can be seen in Figure 1-10. For this research,
DE was used to tune the g values in the Static and Dynamic waste collection and street-

sweeping area clustering.
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Figure 1-10 DE Example

1.4.5.3. Tabu Search (TS)

TS is a metaheuristic approach developed to overcome local optimality in
combinatorial optimization problems by forbidding certain moves until a short time later
[13]. TS can be used in many ways; however, all make use of the fixed length tabu list that

stores recently evaluated solutions to prevent cycling.

To use TS, an initial solution must be formulated, and depending on the

optimization problem, a change will be made in the initial solution to create a new solution.
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If the new solution is not in the tabu list, it will be used as the current solution and added
to the tabu list. However, if the solution is a part of the tabu list, another change will be

made to the current solution until a solution that is not in the tabu list is found.

If the tabu list exceeds its defined length, the oldest solution will be removed from
the list, thus allowing the solution to reappear again as a candidate. The fitness of each
solution must be calculated, and the best-found solution must continuously update until the

final iteration. For this research, TS was used to minimize u-turns in an Eulerian cycle/tour.

1.4.5.4. Transitive Reduction (TR)
A TR is defined as a subgraph of the original graph consisting of less edges. A TR
must maintain the same strong connectivity as the original graph (all nodes reachable from

each other) but it must also consist of the minimal number of edges to do so [14].

There are several ways to accomplish this. For removing redundancies in routing
applications, an initial solution can be generated using an edge traversal algorithm, and
cycles of the initial solution can be removed if they still yield a strongly connected
subgraph. For this research, TR subgraphs were used to improve the solutions (reduce

redundant deadhead travel) generated by the proposed heuristic.

1.4.6. Clustering Algorithms

This section will explain the clustering algorithms used in the following research.
Specifically, the operation principles and importance of the weighted K-Means (WK-
Means) algorithm, and the developed Static and Dynamic clustering approaches will be

briefly discussed.
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1.4.6.1. Weighted K-Means (WK-Means)

Clustering algorithms work by arranging a collection of instances into several
clusters consisting of similar traits. One of the most commonly used clustering approaches
is the K-Means algorithm, where the instances are clustered into k number of groups [15].
The K-Means algorithm works by selecting k number of instances to be the initial centers,
and an equation is used to calculate the proximity of other instances surrounding each initial
centers. The instances join the nearest cluster center, then the cluster center locations are
updated. This process is repeated until the cluster centers converge, or the final iteration is
reached. In the case of 2D data, a collection of points would be the instances, and the

proximity equation would simply be the Euclidean distance. A visualization of clustering

on 2D data can be seen in Figure 1-11.

Cluster 1

Figure 1-11 Clustering 2D Data

In many cases, K-Means would simply be enough to cluster data. However, a more
informed version of the K-Means algorithm exists for weighted data called the WK-Means

algorithm [16]. The WK-Means algorithm works like K-Means, except for the proximity
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calculation which includes a variable to consider the respective cluster weights.
Conceptually, this can be thought of as the gravitational pull (or push) that different clusters
may have on the dataset. For this research, the WK-Means algorithm was used in the

developed Static and Dynamic clustering algorithms.

1.4.6.2. Static and Dynamic Clustering

The Static and Dynamic clustering methods were developed to balance the weights
of all clusters while still retaining spatial similarities of the dataset. By combining WK-
Means and DE, the influence of the weights of each respective cluster can be optimized to
yield clusters that are more balanced for the application. For optimal results, the Static
cluster optimization should be used first, then the Dynamic cluster optimization should be

used with the cluster centers and weights produced by the Static approach.

The Static approach uses DE to tune a single influence factor that will be applied to
all clusters simultaneously in the WK-Means clustering algorithm. Over several
generations, an optimal cluster configuration will be found with balanced weights.
However, the clusters can still be improved by optimizing the influence factor of each

cluster individually.

The Dynamic approach uses DE to tune each cluster’s influence factor while
keeping the cluster center locations and weights from the Static approach fixed. Each
instance can be joined to the nearest weighted cluster center to generate a new cluster
configuration; however, the cluster centers and weights do not update like they would in
WK-Means. The distribution of cluster weights in the new cluster configuration will be
used to evaluate the effectiveness of the influence factors. Using DE, each clusters

influence factor will be tuned to yield the optimal cluster configuration over several
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generations. For this research, the Static and Dynamic clustering algorithms were used to
divide the City of Oshawa into several well-balanced servicing areas for each respective

application.

1.4.7. Parallel Computing

Traditional programming workflows require tasks to be executed in a serial manner,
one after another. However, as algorithms become increasingly complex and lengthy, serial
methods are no longer ideal and require a clever workaround. With access to a large
collection of computing resources, developers can modify their algorithms to allow for a
parallel approach where applicable [17]. By carefully distributing tasks amongst several
CPUs, they may be executed alongside one another, and thus do not need to wait for the
previous task to finish before the next one can start. In Southern Ontario, SHARCNET
grants access to a vast amount of remote computing resources to be used for parallel
computing [18]. For this research, parallel computing methods were carefully integrated
into the Static and Dynamic clustering methods and are also used to generate routes within

different servicing areas.
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Chapter 2. Literature Review

2.1. Introduction

In this Chapter, a detailed literature review is conducted to present the state-of-the art
techniques used within the field of route optimization. Since waste collection and street-
sweeping route optimization is a specialized area under the route optimization umbrella,
other relevant routing applications (snowplow, mail delivery, etc.) will be explored which

fall under the same scope as the research presented in this thesis.

Specifically, this chapter will cover routing problems and models, clustering and
zoning approaches, smart routing approaches with real time data access, GIS-based routing

approaches, and workload balancing.

2.2. Routing Problems & Models

Routing problems can be classified into 2 main types of problems, the edge routing
problem, and node routing problem. In node routing problems, there exist several points
that must be visited, and the optimal visiting order must be found to minimize the travelling
distance between points. In edge routing problems, there exists several edges that must be
traversed and the optimal traversal order must be found to minimize the travelling distance
between edges [19]. Due to the differences in the problem formulation, algorithms cannot

be interchanged between edge routing and node routing problems [19].

Node routing problems are arguably easier to formulate, thus methods of converting
edge routing problems to node routing problems have been proposed [20]. In this chapter,

both edge routing and node routing applications will be explored.
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2.2.1. Node Routing Problems

The simplest version of the node routing problem is the TSP [21]. The TSP can be
solved using a number of combinatorial optimization algorithms such as ACO, Simulated
Annealing (SA), and the GA [22]. Expanding on the TSP, the capacitated vehicle routing
problem (CVRP) is the most studied version of the node routing problem in which each
node has a demand. Additionally, there may exist a fleet of homogeneous vehicles in the
CVRP [23]. The CVRP is ideal for waste bin collection in the sense that each collection
bin can be modelled as a node on a graph with a specific demand, and each edge traversed

to get to the bin has a cost proportional to the distance travelled.

There also exists several other variations of the CVRP that are used within the waste
collection route optimization scope. The multi-depot vehicle routing problem (MDVRP) in
which multiple depots serve as candidate depot locations to start and end trips. Wang et al.
solved the MDVRP using particle swarm optimization (PSO) [24], Kyung Hwan et al. and
Mingozzi used exact methods to solve the MDVRP [25, 26], and Polacek et al. used a

variable neighborhood search (VNS) to solve the MDVRP [27].

2.2.2. Edge Routing Problems

The simplest version of the edge routing problem is the Chinese postman problem
(CPP) [28]. There is an exact algorithm to solve the CPP as it is just an Eulerian tour that
visits all edges at least once. As the CPP is designed for undirected graphs, it is not ideal to
use this approach for routing within road networks that contain 1-way roads, in these cases
the directed Chinese postman problem (DCPP) may be used [29]. However, many more
useful versions of CPP exist [30], such as the directed-rural Chinese postman problem

(DRCPP) [31] and the windy-rural Chinese postman problem (WRCPP) [32].
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In the DRCPP, only a subset of edges in a directed graph needs to be serviced, and in
the WRCPP, the subset of edges that need to be serviced have a demand that is dependent
on the direction of travel. The DRCPP can directly translate to curbside waste collection
and street-sweeping as specific routes are a subset of edges within the city’s directed road
network. Additionally, the WRCPP directly translates to curbside waste collection. Since
the waste collection vehicles collect on the right-hand side, there may be more pickup
points on one side of the road than the other, thus creating more (or less) of a demand

depending on the direction of travel as seen in Figure 2-1.

Figure 2-1 Directional Demand for the Curbside Waste Collection

Through transformative approaches proposed by Pearn et al., any form of the CPP can
be formulated as the generalized travelling salesman problem (GTSP) [20], in which the

nearest neighbor (NN), repetitive nearest neighbor (RNN), improved nearest neighbor
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(INN), repetitive improved nearest neighbor (RINN), or loneliest neighbor (NLN) can be

used to approximately solve the problem [30].

Additionally, any version of CPP that considers a demand on its edges can be
considered as a CARP. There are several studies that make use of the CARP model in waste
collection literature. Lacomme et al. model the CARP as a version of the TSP with starting
and ending locations at either end of a serviceable road, thus making use of the GA as the
appropriate solver [33]. Tirkolaee et al. developed a novel mathematical model for the
periodic capacitated arc routing problem (PCARP) that was solved using SA [34].
Tirkolaee et al. optimized the number of waste collection vehicles and the route for each
collection vehicle using their proposed model. In a separate article, Tirkolaee et al. used a
multi-objective invasive weed optimization algorithm to solve for a multi-trip PCARP for
the waste collection problem [35]. Mouréo et al. developed a novel heuristic to solve the
CARRP in Lisbon [36]. They allowed a vehicle to make multiple trips to the dump to dispose
of waste, and the depot location is different from the dump location [36]. Their model made
use of the single-vehicle multi-trip principle in which the algorithm generates optimal

solutions until a feasible solution is generated.

In some cases, municipalities separate different types of waste that may undergo
different treatments at the disposal facility. For example, household waste may be disposed
in a landfill, and organics waste may be used as compost for crops and cycled back into the
environment. In these cases, municipalities may make use of the multi-compartment
collection vehicle, as explored by Mofid-Nakhaee et al. [37]. They modelled their problem
as a multi-compartment capacitated arc routing problem with intermediate facilities

(MCCARPIF) in which 2 algorithms are developed to solve it; namely the adaptive large
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neighborhood search algorithm (ALNS), and hybrid ALNS with whale optimization [37].
The purpose of this research was to confirm that using multi-compartment vehicles was
beneficial compared to single-compartment vehicles making separate trips for different

types of waste, and their case study in a district in Tehran proved this.

The location-arc routing problem (LARP) is also considered to be under the same
umbrella as CARP. LARPs bridge the gap between facility location and route generation
and distribution [38], and are especially useful in the case of developing cities without any
facilities. As the LARP is capacitated, it is especially ideal for applications such as waste
collection, street-sweeping, postal delivery, and road maintenance [39]. A good example of
a LARP was presented by Yang, in which TS and the Augment-Merge heuristic approaches

were combined to solve a LARP [40].

Edge routing optimization is also seen in several street-sweeping applications in
literature. Bodin et al. developed the primitive “route first-cluster second” and “cluster first-
route second” approaches for mechanical street-sweeping route optimization [41]. The
“route first-cluster second” approach creates a giant tour of the road network that is divided
into several feasible routes afterwards, and the ‘“cluster first-route second” approach
partitions the road network into several smaller areas in which the algorithm will generate
tours in. Eglese et al. modelled their rural street-sweeping problem as the CCPP in which
the deadhead travel is to be minimized [42]. Eglese et al. highlighted the importance of
different road classes that require different frequencies of sweeping, something that is also
seen in the street-sweeping problem in The City of Oshawa. Blazquez et al. proposed a
unique method of graph construction for the street-sweeping optimization problem in which

parallel edges are added to represent multiple passes needed to sweep roads with curbs on
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each side of the road, even for 1-way and 2-way roads [43]. Blazquez et al. then used TSP
to solve the street-sweeping routing problem [43]. This approach effectively models the
real-world street-sweeping operations where multiple passes are needed to sweep against
the curbs along the edge of the road. A physical representation of this can be seen in Figure

2-2.

2-Way 1-Way

Sweep . 7_7_>Sweep PR _,Sweep
Curb Curb Curb

Figure 2-2 Multiple Passes to Sweep Curbs on Either Side of the Road

Outside the scope of waste collection and street-sweeping, edge routing is commonly
used in snowplow route optimization problems. Rasul et al. were able to create an initial
solution for the municipal snowplow route optimization problem using CPP, which was
then improved using TS [44]. Similarly, Xu et al. used TS to improve the initial solution
found by their k-trucks plowing algorithm [45]. In both cases mentioned, cycle permutation

was used as the local search scheme to explore neighboring solutions [46].
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2.3. Clustering & Zoning Approaches

A majority of research in routing applications focuses on the optimization of routes
themselves [47]. However, it is common for municipalities to divide a large area into
several smaller areas for better productivity, dispatching, and organization of the operations
team. This occurrence is seen in several real-world applications, such as waste collection,
street-sweeping, and snowplowing. Little research has been done in this area, but the few

related instances will be explored in this section.

Xin et al. highlighted the importance of a well-designed waste management system
within rapidly expanding urban areas [48]. When a population grows, some waste facilities
become redundant, and thus relocation is needed. Using Voronoi polygons and WK-Means
clustering methods, Xin et al. were able to identify redundant waste collection centers, and
appropriately relocate them [48]. Al-Refaie et al. conducted similar research where the
location of several communal waste bins needs to be optimized [49]. However, Al-Refaie
et al. not only optimized the collection-bin-to-depot cost, they also considered maximizing
the demand collected by the waste collection vehicles to ensure the vehicles had adequate
workload [49]. Wei et al. proposed an improved hierarchical agglomerative clustering
(IHAC) algorithm that clusters collection points together such that each cluster is expected
to fill the waste collection vehicle, then a garbage collection path planning (GCPP)
algorithm is used to generate the servicing path that visits all collection points within the
respective clusters [50]. Pop et al. developed a 2-level approach to solve the clustered
vehicle routing problem (CluVRP) where an upper-level subproblem uses a GA to generate
clusters of customers, and a lower-level subproblem aims to find the optimal route within

each cluster using the TSP model [51].
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Asides from waste management applications, Zheng et al. developed a novel grid based
K-Means clustering method for traffic zone division of a city [52]. By carefully analyzing
global positioning system (GPS) data from the city of Nanjing, the authors were able to
effectively divide the city into several different traffic zones to accurately predict the flow
of traffic. Zheng et al. overlaid the clustered GPS data on a grid map of Nanjing, and the
grids were able to define hard boundaries for the clusters that a collection of points simply
could not achieve [52]. Soor et al. modified K-Means to include connectivity constraints
through a repeated application of the watershed transform [53]. With the addition of the
watershed transformations, the developed clustering approach was verified to be ideal for
road network applications. A case study shown using Mumbai’s road network showed ideal
locations for 16 emergency stations, as well as the relationship between cost and number
of emergency stations, which decreased with the number of emergency stations (as

expected) [53].

2.4. Smart Routing Approaches

As smart-technology becomes the norm, some researchers have explored the possibility
of integrating smart-technology into routing scenarios via Internet of Things (loT)
applications. Waste management systems can benefit from smart-technology by providing
intelligence to waste bins using 10T sensors [54]. By monitoring the fill level status of the
waste collection bins in the network, empty bins can be ignored in the route optimization

algorithms, thus reducing the deadhead travel.

In recent years, loT applications in waste management systems are becoming
increasingly popular amongst researchers [55]-[61]. However, the main idea across all the

works is almost identical. Each collection bin is equipped with a sensor that is capable of
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transmitting information through cloud applications regarding the fill level of the waste,
and an optimization algorithm is used to generate the service route collecting from the
appropriate bins. Typically speaking, the mentioned 10T applications are ideal for node
routing problems since the bins would be located at points in the road network. An example
of the smart-bin approach can be seen in Figure 2-3.

® Full Bin

® Empty Bin
® Dcpot

Figure 2-3 10T Waste Bin Fill Level Example

2.5. GIS-Based Approaches

GIS data contains spatial data and numerical information in a single dataset, making it
the ideal package for road network representation. Additionally, GIS applications (such as
ArcGIS [62] and QGIS [3]) have built in tools that are capable of simple routing
applications. For example, O’Connor [63], Malakahmad et al. [64], Abdallah et al. [65],
Kallel et al. [66], and Chalkias [67] used The ArcGIS Network Analyst solve tool for their

solid waste collection problems. The Network Analyst toolbox is used to maintain network
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datasets, and optimize simple routing problems like the VRP and find the nearest facility
[68]. Additionally, Apaydin et al. used the Route View Pro™ software integrated with GIS
data (containing numerical pathways, demographic distribution, container distribution, and

solid waste production) as the optimization tool [69].

Due to the limited scope of commercially available software and toolboxes, some
researchers may choose to develop their own routing algorithms and still use the GIS data
as it contains valuable information. This is the case with Vu et al., where GIS data was
combined with an artificial neural network (ANN) to predict the waste generation rate of
garbage and recycling streams in the future [70]. Vu et al. were able to recommend changes
to the waste collection routes in Austin, Texas that coincide with the expected increase in
waste generation rate predicted by the ANN [70]. Similarly, Ghose et al. determined the
minimum cost path of the waste collection model using GIS road network data and bin

locations for the Asansol Municipality Corporation of West Bengal State, India [71].

2.6. Workload Balancing

In addition to generating optimal routes, the satisfaction of the operations team should
be met. One way to achieve employee satisfaction and reduce fatigue is through a proper
workload distribution [72]. Most of the research in workload balancing focuses on
assembly lines in factories. However, a few instances that do consider the workload balance

of waste collection routes will be discussed in this section.

Rabbani et al. formulated the workload balance of a fleet of collection vehicles by
calculating the deviation of each vehicle’s travel distance from the fleets total travel
distance [73]. Jorge et al. developed the simulated annealing and neighborhood search

(SANS) algorithm with workload concerns to penalize imbalanced solutions that do not
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comply with the maximum shift duration [74]. Qiao et al. explored the workload balance
of the disposal facilities by analyzing the expected workload for each day of the week from
a fleet of vehicles optimized using the CVRP model [75]. Linfati et al. balanced the
workload for each collection day by analyzing the average number of customers and daily
containers delivered for the waste collection problem [76]. Ideally there should be a similar
number of customers and containers delivered each day, which was noticed from their
results [76]. Shih et al. quantified the workload distribution of the waste collection problem
by calculating the difference between the maximum and minim daily travel distance, where

a lower difference correlates to a more balanced result [77].

Some approaches used in assembly line workload distribution can be transferable to
route optimization. For example, Qian, Kim et al., and Zaplana et al. all used some form of
the GA to balance workloads amongst line workers in assembly plants [78]-[80]. The idea
of balancing the workload for line workers directly translates the routing problem with
multiple routes or areas. Due to the flexible nature of the GA, some simple modifications

can be made to make it suitable for the application of route balancing.

2.7. Conclusions

Through the discussed literature review, state-of-the-art methods of route optimization
have been explored in detail. Although some methods discussed were not directly applied
to waste collection or street-sweeping route optimization, the respective applications shared
enough similarity that the algorithms and methods can be interchanged with little
modifications. However, there still exists gaps within the discussed literature for new

heuristic approaches for the unique routing problems that will be explored in this thesis.
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As seen in Section 2.2, several different models exist for the edge routing and node
routing problems. The models discussed in the literature are more generalized in the sense
that they work for different types of routing problems. Despite this, different problems
require the use of different models. Routing problems that have not been seen in literature
require new (and potentially complex) models to be developed. This paper aims to create a
new model for the CARP with many constraints and service roads that have several
demands (e.g., street dust/debris and water dispersion from the sweeping trucks to aid in
collection), as well as a novel u-turn removal algorithm to make optimal routes feasible

with respect to traffic operations.

As seen in Section 2.3, several different clustering and zoning approaches have been
explored that are used to group road networks. In most cases, these methods are used on
smaller areas rather than city-wide. From the conducted literature review, there were no
existing studies that used a cluster-based approach on a city-wide scale for operational area
division (waste collection areas, street-sweeping areas, snowplow areas, etc.), so a novel 2-
stage clustering approach (Static and Dynamic clustering) was developed to fill this gap

found in routing operations literature.

As seen in Section 2.5, different GIS-based approaches to the route optimization
problem were discussed. Since the scope of this research was to develop the route
optimization algorithms, GIS-based solvers (ArcGIS Network Analyst) were not used.
However, a comprehensive set of GIS data was supplied by the City of Oshawa to model
the complex road network. Having access to such a detailed library of information allows
for more realistic simulation results. Looking at existing research, little to no papers

consider speed limits of different roads, and instead assume a constant travel speed in their
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optimization model. In the real world, vehicles must follow the speed limit of the respective
roads within the network, and different roads typically have different speed limits. The
following research makes use of the detailed GIS data supplied by The City of Oshawa to
dynamically change the speed of the service vehicle in the optimization model with respect

to the current roads speed limit.

As seen in Section 2.6, the workload balancing approaches in existing research was
discussed. Several cases were examined that are applicable to the waste collection route
optimization, however they were very primitive. For example, some studies quantified the
workload balance strictly based on the distance travelled. In any type of route optimization
problem, quantifying the workload balance by only considering one variable may be biased,
thus more variables should be considered. The following research aims to fill this gap by
defining a normalized objective function that consists of multiple variables to be considered
in the workload balance amongst the operations team. Additionally, a problem specific
method of pairing waste collection areas for each respective day of the week is proposed

that makes use of the multi-variable workload balance objective function value.

The following two chapters will explore the methodology behind the developed
heuristic approaches used in each respective application for The City of Oshawa. Each
chapter contains several components specifically developed to bridge the gap in literature

highlighted in this chapter.
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Chapter 3. Waste Collection Route Optimization

3.1. Introduction

Research shows that waste collection costs can range from 50-90% of the municipal
solid waste budget [81], thus it is critical that the waste collection process is done in an
efficient manner. For optimal results, the cost, environmental impact, collection and travel

time, and social aspects of the waste collection process should all be considered [75].

This chapter will cover the waste collection route optimization for The City of Oshawa
in its entirety. Although comprehensive GIS data was supplied by the city, additional
datasets and methods of data preparation were needed to complete the study, which will
also be discussed. With a complete dataset, waste collection route optimization algorithms
were developed, and the working principle and methods used to create the proposed
algorithm will be explored. Using the proposed route optimization algorithm, realistic route
simulations were used to calculate several statistics that can be combined into a single
objective function to represent the fitness of each respective route. The dimensionless
objective function values of all routes in each collection area were summed together to
represent the fitness of each collection area, which was used to properly distribute the
workload balance across each day of the working week through the proposed workload
balance algorithm. Additionally, it was hypothesized that the existing waste collection areas
can be improved with respect to the workload balance, so a novel 2-stage clustering
algorithm was developed to generate (and optimize) waste collection areas without any
previous knowledge of the existing configuration. Finally, a complete analysis of the
current routing configuration was compared to the routing configuration generated by the

proposed 2-stage clustering approach.
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3.2. Data Preparation

3.2.1. Supplied & Downloaded Data

As mentioned earlier, a comprehensive set of GIS data was supplied by the city to
conduct the following research. Specifically, several shapefiles were supplied that can be
viewed and manipulated through GIS applications such as QGIS [3]. The supplied
shapefiles include the “TeachingCity RouteOptimization  CityStreetNetwork,”
“TeachingCity RouteOptimization CollectionAreas,” “TeachingCity RouteOptimization
WasteView,” and “route_blocks.” Table 3-1 depicts a visual representation of the supplied

shapefiles as well as a brief description of the useful information contained.

Table 3-1 Supplied Shapefiles and Their Useful Information

Shapefile Name and Visual Brief Description and Useful
Representation Information Contained
“TeachingCity_RouteOptimization
CityStreetNetwork”

A multiline type shapefile representing the
road network within The City of Oshawa.
Each multiline segment contains the
following useful information.

Unique Road ID

Street Name

Speed Limit

Traffic Operation (1-way or 2-
way)

e Street Length
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“TeachingCity RouteOptimization
CollectionAreas”

A multipolygon type shapefile defining
the boundaries of the existing 10
collection areas within The City of
Oshawa. Each area contains 11 servicing
routes. This information is also seen in
Figure 1-1.

“TeachingCity RouteOptimization
WasteView”

A multipoint type shapefile depicting all
stop locations for curbside waste
collection operations. Each point contains
the following useful information.

e The Number of Dwellings
e The Adjacent Street Name
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“route_blocks”

A multipolygon type shapefile used to
group stop locations into several well-
defined neighborhood blocks. Each
polygon contains the following useful
information.

e The Collection Route which the
Pickup Locations Contained in the
Polygon Belong

e The Area Covered by the Polygon

In addition to this, a complete set of 111 route PDF maps used by the waste collection

team were supplied showing the existing collection routes and pickup locations. An

example of an existing route PDF map can be seen in Figure 3-1, where the orange

highlighted locations show which side of the road collection is to be conducted.

Figure 3-1 Monday Yellow - Route 8 PDF Map
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As seen in Figure 3-1, the sequence of which to travel through the road network to
collect the curbside waste is missing. This means that each week the collection sequence
may be different from driver-to-driver, and thus a method of optimizing and standardizing

the collection sequence can be beneficial from an operations point of view.

There was still information missing regarding the connectivity of the road network
shapefile. Referencing graph theory, a graph consists of several nodes connected with
edges, mathematically modelled as G = (V,E), where V = {vy,v; ..., v,} IS the set of
nodes and E ={(v;,v;)|v;,v; €V} is the set of directed edges. In the
“TeachingCity_RouteOptimization CityStreetNetwork” shapefile, such intersection
connectivity was missing to be modelled as a graph. So, separate datasets were used which
can be found on Durham Region’s open source GIS database [82]. Specifically, a
multipoint shapefile representing the intersections in the road network, and another
multiline shapefile (like the “TeachingCity RouteOptimization CityStreetNetwork’) were
downloaded. In the new road network shapefile, each road has an “F NODE” and
“T_NODE?” attribute (as seen in Figure 3-2) that references the IDs of the intersections
found at either end of the road. In the intersection shapefile, each point has a unique 1D and

pair of coordinates that localize the intersection.
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G

Figure 3-2 Road Connectivity Information - Downloaded Open-Source Dataset

Each of the mentioned datasets contains valuable information used to formulate the
routing problem, so a hybrid dataset needed to be created. Using the “Join Attributes by
Location” tool in QGIS [3], the useful attributes found in the
“TeachingCity_RouteOptimization CityStreetNetwork” discussed in Table 3-1 were added
to the downloaded road network, thus creating a single multiline type shapefile for the road

network with a complete set of useful attributes.

3.2.2. Route Shapefiles

To optimize the routes, they need to be isolated from the whole road network. To do
so, the route PDF maps were used as a reference and the corresponding intersections and
road segments were manually selected from the hybrid dataset. Additional roads were

added to connect isolated parts of the route or to provide safe turnaround locations to
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minimize u-turns in the route. At this point, each road represents a single direction of travel,
so the route shapefile was copied and reversed, thus creating a single shapefile with bi-
directional roads. There exist several 1-way roads in the City of Oshawa, in these cases, the
roads are not reversed to preserve the intended travel direction. Also, an additional attribute
is added at this point to distinguish between serviceable roads with stop locations, and
deadhead roads. This is a simple binary variable, 1 for service roads, and 0 for deadhead
roads. A side-by-side comparison between a route PDF and the corresponding route

shapefile can be seen in Figure 3-3.

Awa2Tan  Thursday ROUTES =i |

Figure 3-3 Side-By-Side Comparison of Route PDF Map and Shapefile

The stop locations and dwelling unit information is also needed in the route simulations.
Using the “route_blocks” shapefile, the corresponding stop locations were filtered for each
respective route. A simple algorithm was developed that would use the polygons defined
in the “route blocks” shapefile to filter out stop locations from the
“TeachingCity RouteOptimization WasteView” shapefile for each route. The algorithm

works by identifying which stop locations from the “TeachingCity RouteOptimization
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WasteView” are contained by the boundary of the corresponding “route _block™ polygon.

The stop location filtering algorithm can be visualized in Figure 3-4.

Figure 3-4 "route_block" Stop Location Filtering Algorithm — Visualized

3.3. Waste Collection Route Optimization Algorithm

The objective of the proposed route optimization algorithm is to generate the shortest
feasible Eulerian tour that services all required edges in each collection route. To do so, a
combination of Dijkstra’s [7] algorithm and Hierholzer’s [10] algorithm is used. The
proposed heuristic will only work if all nodes are reachable (strongly connected), thus

proper route preparations are needed, as discussed in Section 3.2.2.

Eulerian tours are only possible if each node has as many incoming edges as outgoing
edges, mathematically formulated as ey deg®(v) —Y,evdeg=(v) = 0. If this
condition is not met, a node is called unbalanced. So, each node in the graph is checked for
this condition. Depending on the route, this condition may not always be true, which is

where Dijkstra’s algorithm is used. In the case where nodes are unbalanced, the nodes with
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too many incoming edges are denoted as Dijkstra’s starting nodes, and nodes with too many
outgoing edges are denoted as Dijkstra’s ending nodes. A brute-force method was used to
find the optimal pairing of Dijkstra’s starting and ending nodes such that the minimum
distance is needed to connect the starting and ending nodes together to create a balanced
graph. In larger instances, a combinatorial optimization algorithm (like GA) can be applied
to find the optimal pairing, but the individual routes are relatively small, so a brute force
approach was used to identify all permutations of starting and ending nodes in a short
amount of time. All edges used to balance the graph will be added back into the graph as
deadhead edges, thus creating several instances of parallel edges. The significance of
finding the optimal pairing of starting and ending nodes can be seen in Figure 3-5, as some

pairs may add significantly more redundant travelling than others.
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Figure 3-5 Importance of Optimal Starting and Ending Node Connections

With a balanced graph, an Eulerian tour can be generated using Hierholzer’s algorithm.

Hierholzer’s algorithm was used instead of CPP due to its ability to work on directed
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graphs, which is an important aspect of waste collection since the direction of travel is
important for curbside waste collection (vehicles collect on the right-hand side).
Additionally, the direction of travel should be consistent with the respective traffic
operation of the road (1-way or 2-way). Hierholzer’s algorithm works by choosing a start
node and randomly selecting an outgoing edge from the current node, but this process may
not be ideal for generating feasible routes with respect to generating unsafe u-turns at
intersections where u-turns are not allowed, such as the one seen in Figure 3-6 (b). As
Hierholzer’s algorithm selects random outgoing edges, in the case of parallel edges, the
previous node may be selected to travel to the next, thus creating a u-turn. A simple, yet
effective modification is made to Hierholzer’s algorithm by randomly selecting the next
outgoing edge that is not the previous edge. In some cases, selecting the previous edge may
be the only option (in the case of dead-ends and courts, as seen in Figure 3-6 (a)), but the

cases with multiple outgoing edges benefit from this simple modification.

Dead-End / Court Intersection that is not
a Dead-End / Court

(@) (b)

Figure 3-6 Example of a Safe U-Turn Location (a), and Unsafe U-turn Location (b)

The starting node also has an influence on the feasibility of a route, so all nodes in the

input graph were used as candidate starting locations, the optimal starting location is the
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one that yields the least u-turns. The pseudocode for the proposed waste collection route

optimization algorithm can be seen as follows.

Algorithm 1 Waste Collection Route Optimization Algorithm
Input: Route shapefile

Output: Optimal feasible Eulerian tour

identify unbalanced nodes in the input graph

for all pairs of Dijkstra’s starting and ending nodes do
calculate the total distance needed to balance the graph
update the optimal pairing

add edges used in the optimal pair back into the original graph
for each node in the graph do

run modified Hierholzer’s algorithm

count the number of u-turns

update the best solution

return optimal feasible Eulerian tour

3.4. Dimensionless Objective Function

3.4.1. Waste Collection Route Objective Function Values

To quantify the fitness of the optimal tours generated by the waste collection route
optimization algorithm, a dimensionless objective function was used that is composed of
several statistics. Specifically, the travel distance, consumed fuel, collection time, and
travel time will all be considered. The distance was simply calculated by summing the
traversed edges in a route. Referencing the operation principle of The City of Oshawa’s
waste collection program, the collection week alternates between Week 1 and Week 2
where either garbage and organics, or only organics are collected. As a result, the collection
time varies between Week 1 and Week 2 collection, thus requiring 2 separate fitness values.

It is assumed that 10 s per dwelling unit are needed to collect for only organics, and 30 s
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per dwelling unit are needed to collect garbage and organics. This assumption was supplied
by the city as it is common for a 3:1 ratio of collection time between garbage and organics
and only organics. The fuel consumption rate was also supplied by the city as 0.705 L/km
for deadhead travelling, and 1.523 L/km for servicing. This makes sense because servicing
requires continuous stop-and-go motion, thus a lot of acceleration and deceleration
typically burns more fuel than travelling at a constant speed when the vehicle is not
servicing. The travel time depends on the respective road’s speed limit and the service
status. If a road is simply being used as deadhead travel, the collection vehicle will travel
90% of the speed limit (because it is a considerably large truck), and the servicing collection
speed is a function of the dwelling unit density in the route. It was assumed that the
minimum average travel speed for a servicing road is 15 km/hr on the densest route, and
90% the speed limit on the most sparsely populated route. The formula relating the route
density to servicing travel speed can be seen in Eq. (3-1), where s, is the collection speed,
d, is the route density, s; is the speed limit, s,, is the minimum assumed speed (15
km/hr), min ({dg}) is the minimum calculated route density (13.15 DUs/km?), and
max ({dr}) is the maximum route density (5313.15 DUs/km2). The route density was
calculated by simply dividing the total number of dwelling units by the area covered for
each respective route. The collection speed is a negative linear relationship where the

densest routes have the lowest average servicing speed due to more frequent stops.

_ 0.95;—Sm _
Se(dr) = ey -max (g * & 0951 (3-1)

As mentioned earlier, the servicing roads and deadhead roads have different speed
limits, this is also the case with travelling on a road that has already been serviced. The

binary service variable of each edge needs to constantly be updated so the proper speed
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limit and fuel consumption rate can be applied. If aroad has already been serviced, it should
not be serviced again, thus any additional travelling will be considered deadhead. Table 3-2
summarizes the different servicing conditions that are seen in a simulation, and the

corresponding variables used.

Table 3-2 Service Condition and Corresponding Simulation Variables

. Fuel
Condition Ser_vlce Travel Speed Consumption
Variable .0
Coefficient
. . Linear relationship
A road is serviceable and has
not been serviced 1 depende_nt on route 1.523 L/km
density (3-1)
A road is serviceable, but has
already been serviced 0 0.9 x5, 0.705 L/km
A road that is only included
as deadhead to balance or 0 0.9 * s, 0.705 L/km
connect the road network

The dimensionless objective function to represent the fitness of each route can be
seen in Eq. (3-2), where d;; is the distance along edge (v}, v;), c;jrd;; is the fuel burnt on
edge (v}, v)), d;;/sijs is the travel time along edge (v}, v;), and du, is the time to collected
from each dwelling unit t. As shown in Eqg. (3-2), each component is normalized by dividing
by the maximum of each respective component, thus allowing an unbiased comparison
from route to route. It is also worth mentioning that all route simulations need to be
completed to calculate the normalized objective function value because the maximum of
each component is included in the objective function. Table 3-3 summarizes all the

variables used to formulate the objective function value.
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Table 3-3 Objective Function and Simulation Parameters

Parameter Meaning Value

Dimensionless objective _
h function value Calculated in Eq. (3-2)

d; Road distance Dependent on road (km)

0.705 L/km for deadhead

Cijf Fuel consumption rate 1.523 L/km for servicing
0.9 speed limit for deadhead
Sijs Travel speed Calculated in Eq. (3-1) for servicing
(km/hr)
du Collection time per 30 s for garbage and organics
t dwelling unit 10 s for only organics

3.4.2. Waste Collection Area Objective Function Values

As discussed earlier, each of the 10 collection areas consist of 11 individual routes. The

methods in Section 3.4.1 were used to calculate the 2 objective function values (Week 1
and Week 2 collection) for all routes. The objective function values were expanded to
represent the fitness of the collection areas themselves by summing the objective function
values for all routes in each respective area. Similarly, each area consists of 2 fitness values

for each collection week. Since 2 areas are collected for each day of the working week, the
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collection area objective function values will be used to provide insight as to how these

areas can be better paired.

3.5. Workload Balance (Waste Collection Area Pairing) Algorithm

Referencing Figure 1-1, each day of the week has a purple and a yellow area to collect
waste in; from a spatial perspective, the areas seem to be unbalanced (Monday yellow is
much larger than other areas). However, simply looking at the area coverage of the
collection areas is not enough to ensure a proper workload balance is distributed across the
days of the week as many other variables need to be considered. Using the collection area
objective function values, a GA was developed to find the optimal pairing of collection
areas for The City of Oshawa. A brute force method may be applied, but it would take
significantly longer to optimize because of the many possible area combinations as seen in

Figure 3-7.
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Figure 3-7 All Possible Collection Area Combinations for the Current Configuration

The proposed GA works very similarly to traditional GA with crossover and mutation
operators, but some small modifications have been made to ensure that collection areas do
not duplicate in the chromosome structure. In the traditional GA, the crossover operator
works by selecting a random location to splice parent chromosomes together. However, if
this was used for the collection area pairing problem, this would result in duplicated areas
(visualized in Figure 3-8). The gene duplication issue is also seen in the traditional mutation

operator as well.
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Figure 3-8 Duplicates in Chromosome Structure After Crossover

To combat the occurrence of duplication in the chromosomes, simple workarounds are
used. In the case of the duplicates in crossover, one of the duplicated areas is randomly
selected and removed from the chromosome structure, and one of the missing areas is
inserted in the same location in the chromosome. This is repeated until all duplicated areas

have been replaced.

When mutation happens in the original GA, a gene is randomly changed to another. In
the case of the collection area problem, all collection areas are already in the chromosome
structure, so simply changing the gene to another value is insufficient. Instead of changing
genes in the mutation phase, a swapping operation was used [83]. If mutation should occur,
the gene would simply be swapped with another, changing their location in the chromosome

structure.

To calculate the fitness of the chromosome, an encoding method was applied. As each
chromosome contains all collection areas in a unique sequence, every odd gene will be
assigned Week 1 collection, and every even gene will be assigned Week 2 collection, thus
making use of the 2 objective function values discussed in Section 3.4.2. The chromosome

length was fixed at 10, and every 2 genes were paired together for each day of the week.
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For example, the first 2 genes are assigned to Monday collection, where the first gene will
be Week 1 collection, and the second gene will be Week 2 collection. The daily workload
can be calculated by adding the objective function values for the 2 collection areas that
make up each day of the week, resulting in 5 objective function values. The fitness of each
chromosome was calculated as the standard deviation of the 5 objective function values for
each day of the week, formulated in Eq. (3-3) where [ is the workload of day i, and y; is

the average workload across all days D.

fo = (EER G- w)? (3-3)

The workload balance algorithm can be seen as follows.

Algorithm 2 Workload Balance Algorithm

Input: All collection areas Week 1 and Week 2 objective function value
Output: Optimal collection area pairs

create a population of random shuffled collection areas

for generation in generations do
# Calculate fitness of all members
for member in population do
assign Week 1 to even genes
assign Week 2 to odd genes
sum the objective function values for each pair
calculate the fitness

# Create new population
add the 2 best solutions to the new population
while the new population size != the old population size do
roulette wheel to select parents
perform crossover
resolve duplicate areas
perform swap mutation
add children to new population

return optimal collection area pairs
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3.6. Waste Collection Area Generation Algorithms

It is speculated that the existing waste collection area boundaries for The City of
Oshawa can be improved. To do so, a novel 2-stage clustering algorithm is developed that
uses the W-K Means clustering algorithm and DE. To understand how the 2-stage cluster

algorithm works, the operating principle of the WK-Means algorithm needs to be explored.

WK-Means is the weighted version K-Means, where the objective is to find the
minimized cost partitioning of weighted points in a specified number of clusters [84]. With
regards to the waste collection problem, the collection points would have a weight
equivalent to the number of dwellings associated with the pickup location. In K-Means, the
objective function is simply the minimum total distance of each point to its cluster center

formulated in Eq. (3-4), where k is the number of clusters, n is the number of points to
partition, x ) and x ) are the x and y locations of point x belonging to cluster j, and c; ,

and c;,, are the x and y locations of cluster center j. In the case of WK-Means, each cluster

has a weight proportional to the weight of points belonging to the respective cluster. The

WK-Means algorithm can be formulated in Eq. (3-5) where w; is the weight of cluster j,

f 1wj =1, and p is the cluster weight influence factor.

=2 s (0 - 0.) + (0 - ) (3-4

fi= 121 LW J( L(Q - cj'x) + (xg,) — C]y)z (3-5)

Since the objective of the WK-Means algorithm is to find the minimum cost
partitioning, it may not produce the best distribution of weights, which is why it was paired

with advanced optimization methods.
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3.6.1. GIS Data Preparation for the 2-Stage Clustering Algorithm

If the clustering was used on only the curbside collection locations, this may lead
to some streets having houses that belong to several different collection areas. Ideally, all
the houses on a single street should belong to the same collection area. Because of this,

additional data preparation was needed on the GIS data.

All stop locations in the “TeachingCity _RouteOptimization WasteView” shapefile
contain an attribute that relates the stop location to the adjacent street. An algorithm was
developed that iterates through all stop locations in the “TeachingCity RouteOptimization
WasteView” shapefile and adds the corresponding pickup locations to the adjacent road
segment with the same name. In doing so, a new attribute was created for each road segment

that shows how many dwellings reside on each road, as seen in Figure 3-9.

Figure 3-9 Joining Dwelling Counts to Road Segments

Since the clustering is going to be done on the roads instead of the collection
locations, the roads needed to be converted into points. Each road segment is a multiline

(multiple lines connected head-to-tail), so the points used to create the geometry can be
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easily extracted. By taking the average x and y coordinate locations of the points
formulating the multiline, the approximate road center location was found. Upon doing so,
the roads have successfully been converted to weighted points that can be used for

clustering.

3.6.2. Static Clustering

The first stage of the 2-stage clustering algorithm is the Static clustering stage. In
this stage, a single  value will be optimized to yield the cluster configuration with the best
distribution of weights. The objective function can be formulated in Egs. (3-6) and (3-7),

where w; is the weight of cluster j, u,, is the average cluster weight.

= JEEhaw — (3-6)

0<p<1 (3-7)

DE was used to tune a single g value in the Static clustering process. For each j
value, the WK-Means clustering algorithm was computed several times until the cluster
centers converge or the maximum clustering iteration is reached. WK-Means involves
stochastic processes, so multiple runs of WK-Means were executed for a single S value to
ensure an ideal partition is found. Since f can be within the range of 0 to 1, some f values
caused the cluster centers to shift indefinitely, so a maximum clustering iteration was
defined to terminate the process in these cases. Through experimentation, it was found that
the best distribution of weights occurs somewhere between the first and final iterations. As
a result, the objective function was calculated at each iteration in the WK-Means clustering.

For the Static cluster optimization, the DE algorithm was used as described in the literature.
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Since the WK-Means algorithm was being executed several times for each member
in the population, the computation time was significantly large for the serial approach.
SHARCNET [18] was used to rent a single CPU for each member in the population, thus
allowing WK-Means to be computed in parallel for the entire population. In doing so, an
entire generation was computed in the same amount of time as a single member. The

pseudocode for the Static cluster optimization process can be seen as follows.

Algorithm 3 Static Cluster Optimization Algorithm

Input: Weighted road network points, number of clusters, maximum WK-Means
iteration, and DE parameters

Output: Optimal cluster center locations and weights

create the population of random S values

for generation in generations do
# Do this in parallel
for p in population do
run WK-Means
calculate the weight deviation

# Do this in parallel

# Create new population

for member in population do
select 3 random members of the population
create mutant vector
run WK-Means for mutant vector
calculate weight deviation
select member or mutant vector
add selection to new population

return cluster center locations and cluster weights of optimal cluster configuration

3.6.3. Dynamic Clustering
The Dynamic cluster optimization process is very similar to the Static cluster
optimization, except each cluster £ value was tuned rather than a single g value for all

clusters, this can be formulated in Eq. (3-8). Additionally, the cluster center locations and
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weights remain fixed from the Static clustering, and rather than running the entire WK-
Means algorithm, all points were simply joined to the nearest weighted cluster. The
objective of this clustering is to minimize the deviation of cluster weights in the new
configuration which does not include the cluster weights used to partition the points. This

can be formulated in Eq. (3-9).

B; . 2 : 2
o= B T (52 - )+ (x2 - 3,) (&)

fr = \[i Z}czl(wj,new - .uw,new)2 (3-9)

The Dynamic Cluster optimization algorithm can be seen as follows.

Algorithm 4 Dynamic Cluster Optimization Algorithm

Input: Weighted road network points, cluster center locations and weights from the
Static optimization process, and DE parameters

Output: Optimal cluster configuration

create population of 10 random g values

for generation in generations do
# Do this in parallel
for member in the population do
join each point in the road network to the nearest weighted cluster
center
calculate the new weight deviation

# Do this in parallel
# Create new population
for member in population do
select 3 random members of the population
create mutant vector
join each point in the road network to the nearest weighted cluster
center
calculate the new weight deviation
select member or mutant vector
add selection to new population

return optimal cluster configuration

55



3.7. Results & Analysis
This section covers the results and analysis of the current waste collection
configuration, the clustered waste collection configuration, and a comparison between

them.

3.7.1. Current Configuration Analysis

Using the methods discussed in this chapter, a complete analysis of the current
routing configuration was conducted for The City of Oshawa. A complete set of route
simulations were generated using the proposed waste collection route optimization
algorithm, and accompanying statistics were used to quantify the fitness of the respective
routes and collection areas. In total, 111 routes were simulated, and all route shapefiles and
animations were created. The animations created can be used by the waste collection team
as a recommendation for the best possible way to service a collection route. An example of
a route simulation can be seen in Figure 3-10, where all roads start off grey, and as they get
traversed, the colour updates according to the legend provided. Additionally, each
collection area’s statistics can be seen in python-generated statistic tables, as seen in Figure

3-11.

thurs2_r5_service Sequence

thurs2_r5_service Sequence
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Figure 3-10 Frame-by-Frame Animation Example
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Fri. Week 1 Area Stats (G+0)

Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
fril_rl_service 13.12 18.01 0.4 4.24 24.6
fril_r2_service 13.61 19.16 0.36 4.22 24.22
fril_r3_service 12.06 17.3 0.34 4.98 23.23
fril_r4_service 13.67 17.77 0.34 4.37 23.6
fril_r5_service 8.87 12.89 0.25 4.37 17.79
fril_r6_service 9.87 12.2 0.27 377 18.02
fril_r7_service 9.26 12.65 0.25 392 17.61
fril_r8_service 8.42 11.28 0.24 3.72 16.27
fril_r9_service 11.36 15.25 0.3 3.87 20.4
fril_rl0_service 14.75 18.94 0.4 4.58 25.86
fril_rll_service 12.47 17.02 0.33 4.31 22.6

Total 127.49 172.47 3.48 46.35 234.22

Figure 3-11 Python-Generated Statistic Table for the Purple Friday Area in Week 1
Collection

An analysis of the workload distribution across each day of the week for the current
collection area configuration was used as the benchmark to quantify the improvements
made through the proposed workload balance algorithm. By summing the objective
function values for the areas covered each day, the deviation is calculated. Graphically, the
current workload distribution can be seen in Figure 3-12. The workload deviation works

out to be 103.69 and 102.84 for Week 1 and Week 2 collection, respectively.

Week 1 (G+O for Purple Area, O for Yellow Area) Area Combination Objective Value Sum Week 2 (O for Purple Area, G+O for Yellow Area) Area Combination Objective Value Sum
STDEV = 103.68584763142557 STDEV = 102.83755708080275
600 00
¢ 300
§ a00
2
£ 300
H
§ 200
2
100
o
Monday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday
Areas Areas Areas Areas Areas Areas Areas Areas Areas Areas

(a) (b)
Figure 3-12 Workload Distribution for the Current Collection Area Configuration in
Week 1 (a) and Week 2 (b)

57



Two other solutions are possible using the existing collection areas. The first one is
where the colour assignment remains the same (purple areas remain purple, and yellow
areas remain yellow) and different areas are paired together, and the second one is where
all areas begin colourless and the workload balance algorithm chooses the colour and
assigns the day of the week. A map of the first solution can be seen in Figure 3-13, and the
corresponding workload distribution plots can be seen in Figure 3-14, where the workload

deviation works out to be 83.80 and 85.69 for Week 1 and Week 2 collection, respectively.

WED.

Town of Wity
Tromipe

Muicpalty of Clangton

TH

(a) | (b)
Figure 3-13 Current Configuration (a) vs. Solution 1 Configuration (b)
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Balanced Week 1 Area Stats (Sol. 1) Balanced Week 2 Area Stats (Sol. 1)

STODEV = 83.80079381487353 STDEV = B5.68619955986593
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(a) (b)
Figure 3-14 Workload Distribution for Solution 1 Collection Area Configuration in Week
1 (a) and Week 2 (b)

Finally, a map of the second solution can be seen in Figure 3-15, and the
corresponding workload distribution plots can be seen in Figure 3-16, where the workload

deviation works out to be 75.06 and 77.07 for Week 1 and Week 2 collection, respectively.
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Figure 3-15 Current Configuration (a) vs. Solution 2 Configuration (b)
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Shuffled Week 1 Area Stats (Sol. 4) X )
Shuffled Week 2 Area Stats (Sol. 4)
STDEV = 75.06452934689403 STDEV = 77.06625484895643

Fri. Purple + Thurs. Purple  Mon. Purple +  Mon. Yellow +  Tues. Purple +

Fri. Purple + Thurs. Purple  Mon. Purple+  Mon. Yellow+  Tues. Purple +
Fri. Yellow +Wed. Purple  Thurs, Yellow ~ Wed. Yellow Tues. Yellow

Fri. Yellow + Wed. Purple Thurs. Yellow Wed. Yellow Tues. Yellow

(a) (b)
Figure 3-16 Workload Distribution for Solution 2 Collection Area Configuration in Week
1 (a) and Week 2 (b)

The improvements made through the workload balance algorithm can be
summarized in Table 3-4. Analyzing the results, the optimal workload distribution is found
in Solution 2 where the colours and days are assigned from scratch. However, when it
comes to implementing these solutions in the real world, Solution 1 may be ideal as it may
cause less confusion amongst residence since none of the collection weeks change (e.g.,
garbage and organics, and only organics still go out on the same week). In Solution 2, only
2 of the areas change the collection week, but this small change can yield much more
improvement with respect to the workload balance across each day of the week. So
ultimately, there is a tradeoff between the best workload distribution and customer

satisfaction.
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Table 3-4 Improvements Made by the Workload Balance Algorithm

. Week 1 Week 1 Week 2 Week 2
Solution o e
Deviation Improvement Deviation Improvement
Current 103.69 h 102.84 h
Solution 1 (Same 83.80 19.18% 85.69 16.68%
Colour Assignment) ' ' ' '
Solution 2 (Colours 0 0
and Pairs Assigned) 75.06 27.61% 77.07 25.06%

3.7.2. Clustered Configuration Analysis

This section will make use of the Static and Dynamic cluster optimization processes

mentioned in Section 3.6 to generate new waste collection areas in the city. To quantify the

improvements of the proposed clustering methods, an analysis of the current dwelling

distribution was conducted. The deviation was calculated to be 376.60 dwellings and can

be seen graphically in Figure 3-17.

Current Cluster Arrangement
Travel Time: STDEV=0.3971453533219327
Dwelling Units: STDEV=376.60670466681813
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Figure 3-17 Current Collection Area Configuration Dwelling Deviation
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For both the Static and Dynamic clustering, a population size of 32 was used. To
make use of parallel computing, 32 CPUs were rented from SHARCNET, 1 for each
member of the population. The remainder of the clustering and optimization parameters
can be found in Table 3-5 for both optimization processes. As seen in Table 3-5, the
computation time for the Dynamic clustering was far less than that of the Static clustering.
This is because the Static clustering runs the WK-Means several times for each member of
the population, and the Dynamic clustering simply joins the points to the nearest weighted
cluster center that has already been computed by the Static clustering. So, the Dynamic
clustering can manage to have a significantly larger number of generations while still

yielding far less computation time.

Table 3-5 Static and Dynamic Cluster Optimization Parameters for Waste Collection

| Value
Parameter Static Clustering Dynamic Clustering
Number of Control Variables () 1 10
Population Size (Number of
CPUs) 32 32
Linearly decreasing
Crossover Rate 1 (0.95-0.50)
. Linearly decreasing (0.8- | Linearly decreasing
Mutation Rate 0.05) (0.9-0.05)
Generations 200 400
Clusters 10 10
WK-Means Runs 5 /
WK-Means Stop Iteration 600 /
Run Time ~7hr ~0.4 hr

The output of the Static clustering algorithm can be found in Figure 3-18. From
Figure 3-18 (a), a deviation of 400.26 dwellings is observed when £ is 0.1763 for all

clusters. Examining Figure 3-18 (b), an exponentially decreasing trend is found for the
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average deviation of each generation, which is ideal in optimization processes. Although
the Static cluster optimization did not yield any improvement compared to the existing
configuration, the cluster center location and weights were used in the Dynamic cluster

optimization algorithm to fine tune the clusters.

New Collection Area Assignment (k=10, beta=0.17633581609859733, runs=5)
Generations=200
Dwelling Units: STDEV=400.2594283711503

P \ \

o \ \ —

% \ \ Generation vs. Average Standard Deviation
(Favoring Dwelling Unit Balance)
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600 4
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Generation

(a) (b)
Figure 3-18 Clusters Produced by the Static Cluster Optimization Process (a), and the
Evolutionary Improvement Trend (b)

The output of the Dynamic clustering process can be found in Figure 3-19.
Examining Figure 3-19 (a), a dwelling deviation of 46.13 is seen, and the legend shows
each cluster’s respective S value that is proportional to the weights and locations. Like the

Static process, an exponentially decreasing trend is shown in the average deviation for each

generation in Figure 3-19 (b).
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New Collection Area Assignment (k=10, beta=Dynamic, Generations=400)
Dwelling Units: STDEV=46.12819094653507
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Figure 3-19 Clusters Produced by the Dynamic Cluster Optimization Process (a), and the
Evolutionary Improvement Trend (b)

BN 1: Beta=0.7622
N 2: Beta=0.8410
BN 3: Beta=0.7553
4: Beta=0.9983
N 5: Beta=0.9232
6: Beta=0.8129
7: Beta=0.7738
8: Beta=0.8325

. \mmm 9:Beta=0.8283
\__\— EEE 10: Beta=0.7994
A\

5000

4000

w
=3
S
=

Average STDEV

2000

1000

Generation vs. Average Standard Deviation
{Favoring Dwelling Unit Balance ~ New Dynamic Beta)

T T T T T T o T T
0 50 100 150 200 250 300 350 400
Generation

(b)

The improvements made using the proposed 2-stage cluster optimization process

can be summarized in Table 3-6. Examining Table 3-6, the best approach was the Dynamic

clustering method with a dwelling deviation improvement of 87.75% compared to the

existing configuration.

Table 3-6 Dwelling Deviation Improvements

Configuration Dwelling Deviation Improvement
Current 376.61 /
Static Clustering 400.26 -6.28%
Dynamic Clustering 46.13 87.75%

To assign routes within the newly defined collection areas, the same clustering

methods were applied on each area. First, some small manual modifications were made to

the clusters to clearly define the collection area boundaries to prepare them for the vehicle
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assignment clustering. The parameters used in the vehicle assignment clustering can be

found in Table 3-7. An example of the vehicle assignment clustering can be seen in Figure

3-20 when it is applied to cluster 6 in Figure 3-19 (a).

Table 3-7 Static and Dynamic Cluster Optimization Parameters for the Vehicle

Assignment
Value
Parameter Static Clustering Dynamic Clustering
Number of Control Variables (5) 1 11
Population Size (Number of
CPUS) 32 32
Linearly decreasing
Crossover Rate 1 (0.95-0.50)
. Linearly decreasing (0.8- | Linearly decreasing
Mutation Rate 0.05) (0.9-0.05)
Generations 100 250
Clusters 11 11
WK-Means Runs 5 /
WK-Means Stop Iteration 600 /
Run Time ~ 30 min/area ~ 5 min/area

Route Assignment ~ Cluster 6 (k=11, beta=Dynamic, Generations=250)
Dwelling Units: STDEV=30.20180061404582

I 1: Beta=0.9972
N 2: Beta=0.9892
N 3: Beta=0.9998
4: Beta=0.9968
I 5: Beta=0.9599
6: Beta=0.9657
7. Beta=0.9972
8: Beta=0.9642
N 9: Beta=0.9860
N 10: Beta=0.9228
N 11: Beta=0.9934

\

Figure 3-20 Vehicle Assignment using Static and Dynamic Clustering in Cluster 6
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Still some manual modifications were necessary to resolve minor clustering issues seen
in the vehicle assignment. Specifically, there were some outliers in adjacent neighborhoods
that had crescents and road segments protruding into a neighboring cul-de-sac without
having any direct connection via the road network. Upon the completion of careful manual
modifications, the new stop densities in each respective route were calculated. Since the
new route configuration differs from the existing route configuration, using the
“route_block™ areas to filter out the pickup locations to calculate the route density in each
respective route cannot be used. Instead, a new metric was used where the number of
dwellings in the respective routes can be divided by the servicing distance, thus creating a
DUs/km rate. When comparing results generated in the existing configuration to the areas
created by the clustering methods, there were some discrepancies with regards to the travel
time because of the new method used to approximate the route density. Additionally, more
safe turn-around locations were added to avoid u-turns, which slightly increased the
distance, travel time, and fuel consumed. The route simulations were completed for the new
routes using the same methods discussed in Section 3.3, and animations with accompanying

statistic tables were generated, like the ones in Figure 3-10 and Figure 3-11, respectively.

Since the clustered collection area boundaries are different from the existing ones, a
side-by-side comparison of the statistics for each collection area is not an ideal way to
compare the effectiveness of the proposed clustering methods. Instead, the total statistics

for the whole city were compared, which can be summarized in Table 3-8.
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Table 3-8 Total City Statistics for the Current Arrangement and Clustered Arrangement

for Week 1 Collection

Ve Total Fuel Total Total T_ota_l
. . Travel . Objective
Configuration Distance Consumed Travel C(_)IIectlon Eunction
(km) (L) Time (hr) | Time (hr) Value
Current 1461.67 1819.11 37.08 441.04 2482.92
Clustered 1481.09 1868.25 44.28 441.04 2594.99
Percentage
Difference
from the 1.32% 2.70% 19.42% 0% 4.51%
Current
Configuration

Examining the total statistics in Table 3-8, the largest percentage difference of 19.42%
can be found in the travel time. As previously mentioned, a different method of calculating
the average servicing speed for the routes was used, which would ultimately lead to this
large difference. All other statistics differed by a maximum of 4.51%. The increase in each
respective statistic can be justified though the inclusion of additional safe turn-around
locations that were added to the routes to remove u-turns. The small difference between the
clustered and current configuration leads to the conclusion that the proposed clustering
methods can produce collection areas and assign servicing routes comparable to human
judgment. This study validates the clustering methods as an appropriate means to cluster
geographical data into several divisions with respect to balancing a specified workload,
thus implying that it can be used in other routing applications such as street-sweeping and

snowplowing.

The final analysis of the clustered configuration consists of assigning the collection
week and daily pairs. For this, the proposed workload balance algorithm was used described

in Section 3.5. Again, the objective of this process is to properly distribute the workload
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across each day of the week. The parameters used in the GA optimization can be seen in

Table 3-9.
Table 3-9 GA Parameters for the Workload Balance Algorithm
Parameter Value
Length of Chromosome 10
Population Size 150
Crossover Rate 0.9
Mutation Rate 0.05
Generations 100
Runs 20
Run Time <1 min

The structure of the best-found chromosome from the workload balance algorithm was
found as ['area_7', 'area_2', 'area_1', 'area_5', 'area_9', 'area_10', 'area_3', 'area_4', 'area_6',
‘area_8']. As mentioned in Section 3.5, an encoding method was used to assign the
collection week and daily pairs of collection areas in the chromosome. A side-by-side
comparison of the existing configuration and the new configuration can be seen in Figure
3-21 with the area number in brackets. The workload deviation was calculated to be 64.25
and 64.23 for Week 1 and Week 2 collection, respectively. Examining Figure 3-21, the
existing collection areas have a somewhat polygonal boundary, whereas the clustered
configuration yields “blob-like” areas due to the unique S value optimized for each

respective cluster.
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Figure 3-21 Current Configuration (a) vs. Clustered Configuration with Collection Weeks
and Daily Pairs Assigned (b)

Table 3-10 summarizes the improvements of all possible collection area
configurations with respect to the workload balance problem. The best solution is the
clustered configuration with a Week 1 and Week 2 improvement of 38.04% and 37.54%,
respectively. However, when it comes to implementing the proposed clustered collection
areas in the real-world, some issues may arise. Examining the current configuration in
Figure 3-21 (a), all daily pairs of collection areas are adjacent to each other, resulting in
less travel distance from one area to the next. Figure 3-21 (b) yields an optimal workload
balance at the expense of separating the daily collection area pairs. In the clustered

configuration, the Thursday and Friday areas are not adjacent to each other, thus requiring
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more deadhead travel between the areas. This presents a tradeoff in the optimal workload

balance and the feasibility of the clustered collection area configuration.

Table 3-10 Comparison of All Solutions for the Workload Balance Problem

. Week 1 Week 1 Week 2 Week 2
Solution o o

Deviation | Improvement Deviation Improvement
Current 1360 T 2
Solution 1 (Same
Colour Assignment 83.80 19.18% 85.69 16.68%
for Existing Areas)
Solution 2 (Colours
and Pairs Assigned 75.06 27.61% 77.07 25.06%
for Existing Areas)
Solution 3 (Colours
and Pairs Assigned to 64.25 38.04% 64.23 37.54%
Clustered Areas)

3.8. Conclusions

In this chapter, a complete analysis of the current routing configuration for The City of
Oshawa was conducted. To do so, a combination of heuristic approaches were used to
create simulations necessary for calculating route-specific statistics for Week 1 and Week
collection. Then, a GA was used to provide recommendations as to how the existing
collection areas can be assigned to minimize the workload distribution across each day of
the week. Results show that simply changing the collection day pairs can dramatically

improve the workload distribution for the waste collection team.

A novel 2-stage cluster optimization algorithm was also proposed with the objective of
minimizing the deviation of weights across each cluster. The proposed algorithm was
tested, and verified, in The City of Oshawa by minimizing the deviation of dwellings in
each cluster. The results show that the proposed clustering methods yield a collection area

configuration that can reduce the workload distribution more than any combination of
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existing collection areas. Although the proposed algorithms were tested on the waste
collection process, it can be applied to any other routing application in which proper

partitioning of an area is needed.

Regarding the limitations of the proposed methods discussed in this chapter, all
optimization algorithms used involve stochastic processes. This means that, each time the
simulation is executed, a different set of results will present itself. Plus, it is not guaranteed
that the global optimal solution can be found, which is why the heuristic methods are used
to generate an acceptable solution. Also, the results in Table 3-8 show a slight increase in
the overall statistics for the waste collection routes in the clustered configuration. This was
justified by the inclusion of safe turn-around locations for the collection vehicles, but
ideally a new solution should yield results that are improved with regards to the overall
statistics and workload balance, thus leading to the conclusion that the proposed clustering
algorithms can be improved to reduce the overall statistics. Chapter 4 aims to improve the
clustering methods to reduce the overall statistics of the street-sweeping operations in The
City of Oshawa, as well as ensure a proper workload distribution implemented across each

sweeping area.
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Chapter 4. Street-sweeping Route Optimization

4.1. Introduction

Street-sweeping plays an important role in public health as particulate matter from the
abrasion of the roads surface, break dust, and litter, make their way into stormwater
drainage systems and back into the ecosystem [85]. The accumulation of debris in catch
basins also requires cleaning at an additional cost. Limiting the amount of debris on the
roads before it reaches catch basins can further reduce this cost. Additionally, street-
sweeping can improve public safety in the Fall months where significant amounts of leaves
accumulate on the roads surface making it hard to detect potholes, crosswalks, as well as
reducing tire friction [86]. Similarly, roadway debris like oil, dirt, and sand in the Spring
and Summer months can cause slippage when breaking. Mechanical street sweepers use a
set of rotating brushes and suction nozzles to sweep and collect debris on the road [2], the
debris is collected in the vehicle until it is deposited at a yard for testing and final disposal.
It is also common to wet the pavement in this process to make smaller particles of debris

easier to collect, thus each vehicle is equipped with a water tank and appropriate nozzles.

Since street-sweeping operations are costly, realistic simulations with accompanying
statistics can be used as a theoretical guide for real-world application. In this chapter, the
street-sweeping operations in The City of Oshawa will be simulated and theoretically
optimized. The supplied GIS data was modified to incorporate important information
regarding the street-sweeping operations, which will be discussed. A novel street-sweeping
route optimization algorithm was developed consisting of several different heuristic
approaches, namely the 3-Phase Augment Merge algorithm, A*, GA, TS, Hierholzer’s

algorithm, TR, and ACO. The operating principle behind the proposed algorithm will be
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discussed. The 2-stage cluster optimization process will also be used to define new
sweeping areas for the city, however some modifications to the clustering approaches
mentioned in Section 3.6 are applied that will be explored. Finally, a complete analysis of
the current sweeping configuration will be compared to the clustered configuration to
highlight the improvements made using the new sweeping areas. Additionally, the proposed
algorithms will make use of seasonal conditions, meaning that different debris collection
rates will be used for Spring, Summer, and Fall to reflect the Spring cleanup after winter
operations, and the increased volume of leaves in the Fall months. As a result, 3 sets of
solutions will be analyzed. The proposed algorithms will also incorporate several real-
world constraints in the routing problem, such as the debris capacity, shift length, water
capacity, fuel capacity, u-turn elimination, and different temporary debris storage facility

and depot locations.

4.2. Data Preparation

The merged dataset discussed in Section 3.2.1 was used for the street-sweeping
optimization problem, specifically merged attribute road network shapefile with
intersection connectivity information and the downloaded intersection shapefile. A
complete set of sweeping area PDFs were supplied by the city highlighting which roads
belong to which sweeping area for the AC and RES road classes. The RES and AC road

classes can be seen in Figure 4-1.
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Figure 4-1 RES (Red) and AC (Blue) Roads in The City of Oshawa

The PDF maps also highlight which roads have a dense tree canopy overhanging the
road. This information is important for the Fall months as there will be a higher debris
generation rate on these roads, possibly requiring multiple passes. The sweeping area and
canopy information were not included in the supplied GIS data, so it was added manually
by referencing the supplied PDF maps. Specifically, 3 new attributes were added to the
road network GIS file, “SWEEP_CLAS,” “ROUTE_NUM,” and “CANOPY.” The data
used for the canopy attribute was collected in 2018, thus this data may be out of date with
regards to tree growth. A simple data query can be used to isolate each route from the whole
road network. A side-by-side comparison of the RES sweeping area 1 in PDF and shapefile

format can be seen in Figure 4-2.
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Figure 4-2 Route Area PDF (a) to Shapefile (b) Conversion

4.3. Street-sweeping Route Optimization Algorithm

In Section 3.2.2, the route shapefiles were created manually, meaning human judgment
was used when selecting the roads needed to connect isolated parts of the route and the safe
turnaround locations. Ideally, this should be done in a systematic way without human
intervention. Since a route area can be considered a disconnected subgraph of the total road
network, safe turnaround locations and optimal connections between the roads should be
found using advanced optimization techniques. Also, entire sweeping areas cannot be swept
in a single pass with respect to constraints (fuel, water, shift length, and vehicle debris
capacity). So, a method of systematically dividing a sweeping area into several routes

satisfying all constraints is needed.

To make the route optimization problem more realistic, each trip must begin at the
depot, and end with a temporary debris storage facility-to-depot trip, thus requiring
significant deadhead distances to travel to and from the depot and temporary debris storage
facility locations in South Oshawa. The depot is the home base for equipment and vehicle

storage, each shift begins and ends here. The temporary debris storage facility is modelled

75



as the waste management facility in the CARP. However, it is a location to temporarily
store the street-sweeping debris before it is tested and properly disposed of. The general

area of South Oshawa can be seen in Figure 4-3. South Oshawa contains both the temporary

debris storage facility and depot locations which are approximately 1.5 km apart.
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Figure 4-3 General Area of South Oshawa

For a disconnected subgraph g (representing a collection of serviceable roads) of G (the
whole road network), there exists a minimum cost path from the depot that services every
edge in g and ends with a temporary debris storage facility-to-depot trip. This can be
formulated in Egs. (4-1) to (4-3), where the traversal nodes in Eg. (4-2) include the starting

and ending nodes of the edges in g, d;; is the shortest path from node i to j, and x;; is a
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binary indicator equal to 1 if node j is the next node to visit after j in the sequence. This can

be modelled as a version of the TSP, where each edge has a starting and ending node related

to the direction of travel.

fo = Xie1 Xjeij=14ijXij

X ={Xq, ..., Xn}

X1 = Xdepot

Xn-1 = Xdump

Xn = Xdepot

(4-1)
(4-2)
(4-3)
(4-4)

(4-5)

However, as previously mentioned, a single tour cannot be used in each area due to the

operational constraints of the routing problem, so several heuristic approaches are

combined to solve the street-sweeping route optimization algorithm with multi-demand

edges and many constraints. The overall flow of the proposed algorithm can be seen in

Figure 4-4.

Input: Collection of
Serviceable Roads

1.

. 2.
Merge Algorithm 3

3-Phase Augment

U-Turn Minimization
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Output: Feasible Routes

in Sweeping Area

Figure 4-4 Overall Street-sweeping Route Optimization Algorithm Flow
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4.3.1. 3-Phase Augment Merge Algorithm
Inspired by the work of Yang [40], a 3-phase augment merge algorithm was developed
to find the optimal servicing routes within a given collection area while maintaining the

operational constraints. The algorithm can be explained as follows.

Algorithm 5 3-Phase Augment Merge Algorithm
Input: Subgraph (g) representing the serviceable edges, GA parameters
Output: Several feasible routes for a given sweeping area
# Phase 1 — Individual Routes
for edge in g do
generate route servicing the edge
add route to route list

sort route list (max to min distance)

# Phase 2 — Merging Overlapping Routes
for route in route list do
for smaller route after route in route list do
if route contains serviceable edge in smaller route do
merge serviceable edge from smaller route into route
delete smaller route

sort route list (max to min efficiency)

# Phase 3 — Combine Routes
while True do
old route list == route list
for route in route list do
for less efficient route after route in route list do
run GA to service all serviceable edges in route and less
efficient route
calculate statistics and efficiency improvement
update max discovered efficiency improvement

for max efficiency improvement route do
if constraints satisfied and efficiency improvement > 0 do
add combined route to new route list
delete less efficient route from route list
else do
add route to new route list

if len(old route list) == len(new route list) do
break

route list == new route list

return new route list
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The efficiency can be formulated in Eq. (4-6), where d(s) is the distance of
serviceable edge (v;,v;), and dl.(;) is the distance of edge (v;, v;) in the total route. The
efficiency improvement can be formulated in Eq. (4-7), where d(s ™ js the distance of
serviceable edge (v;, v;) in the merged route, d( ™) s the distance of edge (v, v;) in the
merged route, di(jr'l) is the distance of edge (v;, v;) in the first individual route, and di(jr'z)

is the distance of edge (v;, v;) in the second individual route.
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The GA in the 3-phase augment merge algorithm computes the shortest path between
servicing edges and does not pay any attention to the feasibility of the generated route with
regards to u-turns. To account for the unsafe u-turns, a penalty distance should be added to
the total route distance computed by the GA. Mentioned in Section 3.3, there are safe
locations to perform u-turns, so these u-turns will not be penalized. A study was conducted
where safe turnaround locations were found for 20 randomly selected intersections in the
city. From the study, an average distance of 839.2 m was needed to detour and return to
same intersection to resolve a u-turn. This distance was used as the penalty for unsafe u-
turns in the GA. As a simplification, it was also assumed that the penalty travel speed was
50 km/hr (since this is the average speed limit in The City of Oshawa), so the shift length

constraint will also be affected by the unsafe u-turn penalty. The constraints for the route

79



optimization can be found in Table 4-1, and the route simulation variables can be found in

Table 4-2.

Table 4-1 Street-sweeping Constraints

Constraint Value
Shift Length (Not Including Breaks + 6.5 hr
Misc. Activities) '
Fuel Capacity 189 L
Debris Capacity 6 m
Water Capacity 1268 L

Table 4-2 Route Simulation Parameters

Variable Value
Fuel Consumption Rate 0.55 L/km
Service Speed 5 km/hr
Water Dispersion Rate 14.61 L/km

0.14 m%km for Spring
0.07 m3/km for Summer
0.35 m3/km for Fall (Normal Road)
0.44 m3/km for Fall (Dense Canopy Road)
0.175 m3/km for Spring
AC Debris Collection Rate 0.105 m%/km for Summer
0.35 m3/km for Fall

RES Debris Collection Rate

In Table 4-2, the fuel consumption rate and service travel speed were directly
supplied by the city, but the water dispersion rate and debris collection rates were calculated
using field data that was collected by the operations team. For the water dispersion rate,
data was supplied to highlight how much water was used for a small sample of routes. From
that, the water dispersion rate was calculated by finding the average water dispersion rate
for the sample of routes provided. For Fall, a small selection of RES route data was supplied
that revealed the cubic yardage of leaves collected. The average debris collection rate was
calculated from the small sample of RES routes with respect to the servicing distance, and

the same rate was applied to AC routes (since this data was missing). For the case of RES
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canopy roads, it was assumed that they produce 25% more debris. In Spring and Summer,
pile mass information was supplied, but it was not used since the debris constraint of the
vehicle was in terms of volume. This information may have been used if the density of the
pile debris was known (so it can be converted from mass to volume), but this information
was missing. So, a scale was applied to the Fall debris rates to calculate the Spring and
Summer debris rates. From conversations with the operations team, they agreed that the
Fall seasons contribute the largest volume of debris, so the Spring and Summer debris rates
will be a factor of the Fall debris rate. Using a scale of 1 to 5, it was assumed that Fall
would be a 5, Spring RES is a 2, Spring AC is a 2.5, Summer RES is a 1, and Summer AC

is a 1.5, resulting in the values shown in Table 4-2.

4.3.2. U-Turn Minimization Algorithm

Eventually the u-turns will be eliminated from the route sequence, but deadhead
distance is increased because of finding safe turn-around locations. Before removing the u-
turns, they should be minimized to reduce the amount of deadhead travel needed to resolve
unsafe u-turns. So, a heuristic approach was developed that makes use of the modified
Hierholzer’s algorithm discussed in Section 3.3, and a TS algorithm like the one proposed

by in [44] and [45].

A route can be modelled as a sequence of nodes in a specified traversal order. Unsafe
u-turns can be identified by examining the previous and next node in the sequence; if the
nodes are the same, a u-turn has occurred, physically seen as there-and-back motion
between 2 nodes. Since some routes consist of more edges than others, 2 different methods
of u-turn minimization were used, and the solution that yields the least u-turns was selected

for the next process.
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The first method is to use the modified Hierholzer’s algorithm from Section 3.3.
However, the solution needs to be encoded into a graph-like structure for Hierholzer’s
algorithm to be executed. The input solution consists of a series of nodes in a specified
traversal order, where each pair of nodes relates to a directed edge. Knowing that, a graph
structure can easily be created by iterating through each node in the solution and creating
the weighted connection to the next node. Since the trip starts at the depot and ends with a
temporary debris storage facility-to-depot trip, the depot will be the start node, and the
constant temporary debris storage facility-to-depot sequence can be removed from the end
of the solution and added back after optimization since it is constant. By removing this, an
Eulerian tour cannot be completed, and instead an Eulerian path was created that starts at
the depot and ends at the temporary debris storage facility. The modified Hierholzer’s
algorithm works as described in Section 3.3 with the objective of creating a Eulerian path

with minimal u-turns.
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Figure 4-5 Cycle Permutation Example for U-Turn Minimization

The other method of u-turn minimization is the TS approach. Cycle permutations were
applied to the node sequence with the objective of minimizing the unsafe u-turns, an
example can be seen in Figure 4-5. For this method, a multi tabu list approach was
developed where one tabu list stores the tabu solutions, and the other stores tabu nodes that

have been selected to evaluate permutations. By using 2 lists, the chances of getting stuck
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in locally optimal solutions is further reduced while promoting greater exploration of the
solution space. The multi tabu list approach works by selecting a node to perform cycle
permutations with that is not in the tabu nodes list, and the optimal permutation with the
least u-turns that is not in the tabu solutions list is used as the next solution. The tabu
solutions and nodes lists remain fixed in length, so the items that have been in the list the
longest get removed first. The search is an iterative process, where the global best solution
is constantly being updated until the final tabu iteration. The pseudo code for the proposed

multi-tabu list search algorithm can be seen as follows.

Algorithm 6 Multi List TS Algorithm

Input: Route and TS Parameters

Output: Optimal node traversal order to minimize u-turns

for iteration in iterations do
randomly select cycle node that is not in the tabu nodes list
evaluate fitness of all permutations of cycles for the selected node

current route == best permutation that is not in the tabu solutions list

add current route to tabu solutions list
add cycle node to tabu nodes list

update tabu solutions list if len(tabu soltions list) > max length
update tabu nodes list if len(tabu nodes list) > max length

update best found solution

return best found solution

Both the modified Hierholzer’s algorithm and multi-list TS algorithm were applied to
the routes generated by the 3-phase augment merge algorithm. Through experimentation,
it was found that the modified Hierholzer’s algorithm and multi-list TS algorithm would
generate different results for some routes, so the best solution found by either method was

used in the next part of the algorithm.
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4.3.3. U-Turn Removal Algorithm & Redundant Edge Reduction

After the u-turn minimization stage, there still may be remaining u-turns that could not
be resolved. These u-turns should be removed as they pose a risk to public safety. To
remove the unsafe u-turns, a forward searching ACO algorithm (FS-ACO) was developed.
In ACO, a colony of ants can be simulated travelling on the weighted edges of a graph to
find the shortest tour beginning at the nest location. After each iteration, the pheromone
levels of the edges can be updated, all edges undergo a small percentage of pheromone
evaporation, and the edges traversed in the best path are rewarded with an increase in

pheromone proportional to the distance of the path.

Initially, the ants generate random paths, but as the iterations increase, the shortest path
begins to reveal itself through the reward of pheromones. When ants select the next edge
to traverse, an informed random decision is made where the edges with higher pheromones
have a greater chance of being selected. This probability of selecting node j can be seen in

Eq. (4-8) [9] where ;; is the pheromone level on edge (v;, v;), a is the pheromone influence
factor, d;; is the distance of edge (v;, v;), £ is the distance influence factor, and S is the set

of nodes adjacent to i.

1
rf‘j(ﬁ)ﬁ

= T
Tkes Tik (a)ﬁ

Dij (4-8)

In the case of u-turn removal for the street-sweeping optimization problem, ACO was
modified appropriately for the problem. First, the unsafe u-turns should be identified by the
methods discussed in Section 4.3.2. As each u-turn is representative of there-and-back
travel on an edge, this edge should be removed from the graph before running the FS-ACO

algorithm to prevent more u-turns from being added by the ants. Additionally, the road

84



network is a large dataset, and if the ants were simply set out to find a seemingly random
path in network to return to the start node, this will result in large computation time. To
prevent this from happening, a radius was defined around the u-turn node to filter out a
smaller portion of the road network. Finally, when the ants were simulated travelling along
the edges of the graph, they used a novel forward-searching approach where the previously
visited edge is ignored when selecting the next edge to travel. In some cases, the previously
visited edge will be the only available edge to travel, like courts and physical dead ends.
These are the only exceptions to the FS-ACO as they are safe turnaround locations. An

example of the FS-ACO process can be seen in Figure 4-6.

AT
- Apply Radius to Filter | ) |+
o Graph and Run FS-ACO | — ¢

Identify U-Turn Node | \Q\_ .
and Remove Edge 7
\ N v

Figure 4-6 FS-ACO for U-Turn Removal

An extra measure is taken to further reduce the deadhead travelling. A method of
redundant edge reduction was developed that is based on the concept of TR, first introduced
by Aho et al. [14]. In literature, a TR is the minimum edge subgraph that provides a strong
connection between all nodes in the original graph. This concept can be used in the routing
problem as there should be a minimum number of edges added to service all required roads.
Also, the service roads must remain in the TR as they are the main reason for the routing

problem, so they will be constant between the original graph and the TR.
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To remove redundant collections of edges, a simple heuristic was used. Like the TS u-
turn minimization approach described in Section 4.3.2, the initial solution can be
represented as a sequence of nodes in which the order corresponds to the visiting order. For
each node in the solution, cycles can be identified in the total sequence. A cycle may be

removed if the following 2 conditions are met.

1. Removing the cycle still yields a strongly connected solution

2. Removing the cycle does not remove any servicing connections

The order in which to do FS-ACO and TR differs route to route. When FS-ACO is used
first, additional cycles can be created in the solution that can be removed by the TR
afterwards. When TR is used first, the location of unsafe u-turn locations can be altered to
a configuration that needs less total u-turn distance found by the FS-ACO. There is no way
to distinguish which of these cases apply to a corresponding route, so FS-ACO first then
TR, and TR first then FS-ACO will both be applied to the same solution. Since both orders
of operation produce feasible routes, the optimal solution was selected as the one requiring
the least distance. An example of when TR should be done first can be seen in Figure 4-7
with an improvement of 0.911 km when compared to FS-ACO first. An example of when
FS-ACO should be done first can be seen in Figure 4-8 with an improvement of 0.18 km
when compared to TR first. In both figures, the green roads represent roads added to resolve

u-turns, and the red dashed roads represent roads that can be removed to create the TR.
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Figure 4-7 FS-ACO First (a), and TR First (0.911 km Improvement) (b)
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Figure 4-8 FS-ACO First (a) (0.18 km Improvement), and TR First (b)

The pseudo code for the whole sweeping area route optimization process can be

seen as follows.

87



Algorithm 7 Street-sweeping Route Optimization Algorithm

Input: Street-sweeping area, constraints, optimization parameters for GA, TS, and
FS-ACO

Output: Several feasible routes servicing all roads in the sweeping area

# Generate Initial Solution of Routes

run 3-phase augment merge algorithm on sweeping area

for route in routes created by 3-phase augment merge algorithm do
# Minimize U-Turns
run modified Hierholzer’s algorithm on route
run TS on route

select minimal u-turn route

# Remove Unresolved U-Turns

run FS-ACO + TR on minimal u-turn route to remove unresolved u-turns
run TR + FS-ACO on minimal u-turn route to remove unresolved u-turns

update route with no u-turn route

return feasible routes

4.4. Street-sweeping Area Generation Algorithms

Like the waste collection problem, the street sweeper operations rely on pre-assigned
street-sweeping areas in the city. Specifically, there are 12 RES sweeping areas, and 5 AC
sweeping areas. It is speculated that a better arrangement of street-sweeping areas can be
found using advanced clustering methods with respect to minimize the deviation of
workload across each area, as well as reducing the overall statistics. Previous methods show
that a proposed 2-stage clustering approach can be used to properly balance the workload
across areas, but the methods should be improved to reduce the total statistics as well. In
this section, the modifications made to the Static and Dynamic clustering approaches used

in Section 3.6 will be discussed in detail.
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4.4.1. Static Clustering

As previously explained, the Static clustering method makes use of WK-Means and DE
to fine tune a single £ value used in the weighted distance calculation for all clusters.
Previously, the weights were proportional to the dwellings in each cluster. For the street-
sweeping problem, the weights will be proportional to the service distance, deadhead travel

distance to-and-from the depot, and the approximate number of trips.

In Chapter 3, the depot and waste transfer facility locations were not considered as part
of the study, however both the depot and temporary debris storage facility were considered
for the street-sweeping problem, and thus this information needed to be incorporated into
the clustering methods. First, arbitrary cluster configurations were made for RES and AC
roads without considering the depot location and number of trips. Complete simulations
using the proposed heuristics in Section 4.3 were made using the cluster configurations for
all 3 seasons, and the trip rate was calculated. The trip rate was used as a rough
approximation for the number of trips needed in each cluster that is proportional to the
amount of servicing distance, it will be incorporated into the new clustering algorithm. The
trip rate was calculated by finding the average number of trips needed in each area for all
3 seasons and dividing that by the serviceable distance in the respective areas. Since the
topology of the RES roads are denser than AC, different trip rates were calculated. The
expected trip rates for RES and AC road classes can be seen in Table 4-3. During clustering,

the approximate number of trips will be rounded up to the next whole integer.

Table 4-3 Experimental Trip Rates for RES and AC Road Classes for Arbitrary Clusters

Road Class Trip Rate (trips/km) Trip Rate (km/trips)
RES 0.0940 10.64
AC 0.1171 8.54
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Initially, the trips from the depot were calculated to the nearest intersection of each
respective cluster center, but this was problematic for clusters that had center locations very
near to the depot location. In these cases, the depot-to-cluster-center trips were very small,
and thus did not accurately reflect the distance needed to travel from the depot to the cluster,
causing the clusters near the depot to be very large as seen in Figure 4-9. So, another method

of calculating the depot to cluster distance was needed.
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Figure 4-9 Depot-to-Cluster-Center Issue (Pink Area)
To resolve the large clusters near the depot location, a new method of trip distance
estimation was used. Each road has a node on either end, so the clusters can be represented

as a collection of the road end points. Using the Shapely library in Python, a convex hull

was used to create the smallest convex polygon that encapsulates all road end points within
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each cluster [87]. Instead of using the cluster center as the estimated trip destination, several
critical points along the boundary of the convex hull can be used, thus making use of the
entire cluster’s area and not just the cluster center. The convex hull representation of

clusters can be seen in Figure 4-10.
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Figure 4-10 Cluster Convex Hulls

The mentioned Static clustering algorithm is used as explained in Section 3.6.2 with
some small modifications to incorporate trip distance estimations. In each iteration in the
WK-Means clustering, several critical points on the cluster’s boundary will be selected, and
the distance to and from the depot will be calculated using A* in the road network. The
total depot-to-cluster trip distances will be added to the clusters servicing distance, thus
having an influence on the cluster weights in the WK-Means algorithm. By including the
estimated number of depot trips in the clustering, sweeping areas further away from the

depot should have less servicing distance to account for having to travel a considerably
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longer distance to sweep. The opposite can be said for clusters near the depot as they would

ideally have more servicing distance because less distance is needed to reach them.

4.4.2. Dynamic Clustering

The same Dynamic clustering methods used in Section 3.6.3 were used in the street-
sweeping application. By using the cluster center locations and weights calculated in the
Static clustering process (described in Section 4.4.1), the depot-to-cluster distances have
already been included in the initial cluster weighting, so no additional modifications to the

Dynamic method were required.

4.5. Results & Analysis

In this section, a complete study of the existing street-sweeping configuration will be
compared to the optimized street-sweeping configuration. The objective of this study is to
quantify the improvements made using the proposed clustering algorithms with regards to

the overall statistics and workload distribution.

4.5.1. Current Configuration Analysis

The street-sweeping route optimization algorithm discussed in Section 4.3 was used for
all 12 RES areas, and all 5 AC areas to generate feasible street-sweeping routes for all 3
seasons. Additionally, a collection of routes was also generated for all canopy roads, but
this was ignored for this study as it is constant between the existing and clustered
configurations. All the generated routes were feasible with respect to the problems
constraints shown in Table 4-1, and operational constraints (u-turns and proper traffic
operation on 1-way and 2-way roads). The parameters used in the route optimization
algorithm can be found in Table 4-4. Each value in Table 4-4 was selected through

experimentation to yield an acceptable solution within an appropriate timeframe.
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Additionally, some values in the optimization algorithms were selected to be within the
range that is commonly seen for that value, for example the crossover rate (typically near

1) and mutation rate (typically near 0) in the GA.

Table 4-4 Optimization Parameters for the Street-sweeping Route Optimization

Algorithm
Parameter | Value
GA
Runs 5
Generations 150
Population Size 100
Crossover Probability 0.85
Mutation Probability 0.15
TS
Iterations 100
Tabu Solutions List Length 30
Tabu Nodes List Length (Number of Cycle Nodes)/2
ACO
Iterations 100
Number of Ants 100
p (Evaporation Rate) 0.25
o (Pheromone Influence) 0.5
B (Edge Distance Influence) 0.5
Graph Filter Radius 750 m

Animations, like the one seen in Figure 3-10, were generated for all routes with the
inclusion of the depot and temporary debris storage facility locations to show the entire
street-sweeping route. Additionally, figures for all routes and route areas were generated
depicting the respective service roads and deadhead roads required to complete the route.
An example of a route figure and sweeping area figure can be seen in Figure 4-11 (a) and

Figure 4-11 (b), respectively.
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Figure 4-11 Route Figure (a) and Sweeping Area Figure (b) for Fall

Through experimentation, it was observed that the same routes can be used for Spring
and Summer since the debris capacity constraint is not violated for either case, thus the
routes can be interchangeable across these seasons. So, the results presented in this section
will use the larger debris rate (Spring), and the total debris for Summer can be calculated
using the appropriate debris scale that was previously discussed. However, Fall still needs
its own set of routes since the debris collection rate is much larger, which requires more
trips to the temporary debris storage facility. Accompanying statistic tables for each route
and each route area were made, like the one seen in Figure 3-11 for the waste collection
optimization. To better visualize the statistic distribution, normalized statistic distribution
plots were made for each sweeping area and road class. By normalizing the statistics
(dividing each statistic by the maximum respective statistic), they can all be visualized on
the same plot. An example of a sweeping area statistic distribution plot can be seen in Figure

4-12 for RES sweeping area 1.
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Figure 4-12 Normalized Total Statistic Plot for Routes in Existing Sweeping Area 1 in
Fall

The statistical distribution plots generated for routes within the sweeping areas provide
good insight on the micro scale, but the bigger picture is still missing. To analyze the street-
sweeping problem on the macro scale, the total area statistics should be examined for each
respective road class. Table 4-5 and Table 4-6 summarize the overall statistics for the

current sweeping area configuration for Fall and Spring/Summer, respectively.

Table 4-5 Fall Statistics for the Current Sweeping Areas

Metric Fuel | Distance | Time Deb3ri5 Water S;:;'ncfe Efficiency
(L) (km) (hr) | (m°) (L) (km) (%)
AC
Total 497.96 905.37 63.52 88.93 3709.18 253.88 28.04
Average 99.59 181.07 12.70 17.79 741.84 50.78 27.90
Deviation 13.61 24.75 2.88 4.86 202.20 13.84 5.57
RES
Total 1500.14 | 272753 | 179.08 | 256.59 | 10122.75 692.86 25.40
Average 125.0 227.29 14.92 21.38 843.56 57.74 24.73
Deviation 62.75 114.10 7.53 10.90 426.25 29.18 6.43
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Table 4-6 Spring/Summer Statistics for the Current Sweeping Areas

Metric Fuel | Distance | Time | Debris | Water [?iesglncfe Efficiency
(L) (km) (hr) | (m%) (L) (km) (%)
AC
Total 692.96 1259.94 104.88 77.81 6496.10 444.63 35.29
Average 138.59 251.99 20.97 15.56 1299.22 88.93 35.92
Deviation 18.35 33.38 2.08 2.01 167.48 11.46 7.83
RES
Total 1460.50 | 2655.46 | 177.77 | 97.00 | 10122.75 | 692.86 26.09
Average 121.71 221.29 14.81 8.08 843.56 57.74 25.63
Deviation 62.12 112.95 7.51 4.08 426.25 29.18 7.06

The statistics in Table 4-5 and Table 4-6 can be visualized in a normalized statistic
distribution plot like Figure 4-12. To normalize the values, each statistic was divided by
the respective statistic’s maximum. In Figure 4-13 and Figure 4-14, the normalized

statistics for RES and AC sweeping areas can be seen for Fall and Spring/Summer.
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Figure 4-13 Normalized Total Statistic Plots for the Existing RES Areas in Fall (a) and
Spring/Summer (b)
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Figure 4-14 Normalized Total Statistic Plots for the Existing AC Areas in Fall (a) and
Spring/Summer (b)

Figure 4-13 and Figure 4-14 highlight the statistic deviation seen in Table 4-5 and Table
4-6 for the respective road class and season, most notably the RES area 15 area for all
seasons. ldeally, the deviation of statistics should be minimized in a properly assigned
sweeping area configuration. This represents a properly balanced workload. Also, the
overall statistics should be reduced, except for efficiency (calculated in Eq. (4-6)). The
results from the current street-sweeping configuration will be used as a benchmark to
quantify the improvements made by properly assigning the street-sweeping areas through

the 2-stage cluster approach.

4.5.2. Clustered Configuration Analysis

Using the clustering methods discussed in Section 4.4.1 and 4.4.2, the new street-
sweeping areas can be assigned. As discussed, the street-sweeping Static and Dynamic
clustering will differ from the waste collection approach since approximate trips to, and
from, the depot will be included. Since the convex hull operation [87] explained in Section
4.4.1 was needed in each iteration of WK-Means clustering, the computation time will

increase significantly, thus not as many WK-Means runs can be used. The parameters for
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the Static and Dynamic clustering can be found in Table 4-7. In Table 4-7, the population
size is dependent on the number of CPUs available. Since each CPU will be computing a
complete WK-Means algorithm for the corresponding weight influence factor(s), the
execution time is reduced by assigning each member of the population to a single CPU. In

doing so, an entire population can be computed in parallel. If more CPUs are available, a

larger population size may be used which may yield better solutions.

Table 4-7 Static and Dynamic Cluster Optimization Parameters for Street-sweeping

| Value
Parameter Static Clustering Dynamic Clustering
Number of Control Variables (5) 1 10
Population Size (Number of
CPUS) 32 32
Crossover Rate 1 0.75
. Linearly decreasing (0.8- | Linearly decreasing
Mutation Rate 0.05) (0.8-0.05)
Generations 100 1000
12 (RES) 12 (RES)
Clusters 5 (AC) 5 (AC)
WK-Means Runs 1 /
WK-Means Stop Iteration 200 /
. ~ 14 hr (RES) ~ 2 hr (RES)
Run Time ~ 10 hr (AC) ~0.5 hr (AC)

The final clusters produced by the Dynamic clustering for RES and AC road classes
can be seen in Figure 4-15 and Figure 4-16 , where the distance deviation is 95.36 m and
88.98 m, respectively. The evolutionary plots for RES and AC show an exponentially
decreasing trend, which highlights the effectiveness of the proposed clustering techniques.
However, in both cases the solutions converge early in the evolutionary process (about
generation 500 for RES and 200 for AC), so the remaining time spent exploring the solution

space was not needed.
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Figure 4-15 RES Clusters Produced by the Dynamic Cluster Optimization Process (a),
and the Evolutionary Improvement Trend (b)

AC Sweeping Areas - Dynamic Cluster Optimization
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Figure 4-16 AC Clusters Produced by the Dynamic Cluster Optimization Process (a), and
the Evolutionary Improvement Trend (b)
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Each of the clustered areas were used as an input to the street-sweeping route
optimization discussed in Section 4.3 to generate feasible route simulations. Like the
current area configuration, route and area plots area made for the clustered configuration to
distinguish between deadhead and serviceable roads. Additionally, animations and route
specific statistic tables were made. As the clustered areas are different than the existing
configuration, a side-by-side comparison of each area will not be sufficient to quantify the
improvements made. Instead, the overall statistics for each road class were compared for
the respective seasons in the clustered sweeping areas. Table 4-8 and Table 4-9 show the
total statistics for the clustered configuration areas for Fall and Spring/Summer,

respectively.

Table 4-8 Fall Statistics for the Clustered Sweeping Areas

Metric Fuel | Distance | Time Debgis Water Dsizgffe Efficiency
(L) (km) | (hr) (m°) (L) (km) (%)
AC
Total 491.64 893.90 63.34 89.03 3713.15 254.15 28.43
Average 98.32 178.78 12.66 17.81 742.63 50.83 28.36
Deviation | 8.46 15.38 2.58 4,75 198.32 13.57 6.78
RES
Total 1456.5 177.5
1 2648.19 4 256.67 10126.19 693.10 26.17
Average | 121.38 220.68 14.79 21.39 843.85 57.76 26.04
Deviation | 25.26 45.93 3.35 5.39 197.40 13.51 2.09
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Table 4-9 Spring/Summer Statistics for the Clustered Sweeping Areas

Metric Fuel | Distance | Time | Debris | Water g; ',;;'ncfe Efficiency
(L) (km) (hr) | (M (L) (km) (%)
AC
Total 659.17 1198.50 | 103.75 77.86 6500.07 44491 37.12
Average 131.83 239.70 20.74 15.57 1300.01 88.98 36.78
Deviation 15.28 27.79 5.32 4,73 394.90 27.03 7.90
RES
Total 1449.91 | 2636.19 | 177.28 97.03 10126.19 693.10 26.29
Average 120.83 219.68 14.77 8.09 843.85 57.76 26.40
Deviation 29.22 53.14 3.43 1.89 197.40 13.51 3.10

The statistics in Table 4-8 and Table 4-9 can be visualized in normalized statistic plots
for the respective road classes. The distribution plots can be seen in Figure 4-17 and Figure

4-18 for the RES and AC areas, respectively.

ALL Clustered RES Areas FALL Normalized Total Statistics Plot ~ ALL Clustered RES Areas SPRING/SUMMER Normalized Total Statistics Plot
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Figure 4-17 Normalized Total Statistic Plots for the Clustered RES Areas in Fall (a) and
Spring/Summer (b)
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Figure 4-18 Norméﬁ)zed Total Statistic Plots for the Clustered A((t;)Areas in Fall (a) and
Spring/Summer (b)

Examining the plots in Figure 4-17, the normalized statistic values fluctuate around 0.8.
Compared to Figure 4-13 (where the values fluctuate around 0.75), an increase in about
0.05 is seen. This reflects the improvement of the workload distribution, where ideally, all
sweeping areas would have the exact same statistics (normalized value of 1). If all statistics
had a normalized value of 1, this means that all statistics would be equal across each
sweeping area. However, examining Figure 4-18 (a), a decreasing trend in the normalized
values is seen from 1 to about 0.6. This is comparable to the existing AC configuration seen
in Figure 4-14 (a). The same decreasing trend is seen in Spring/Summer (Figure 4-18 (b)),
except the normalized statistics extend just below 0.6. Additionally, the normalized
efficiency values (brown line in Figure 4-18 (a)) for AC roads are smaller in Fall than
Spring/Summer. This is because clustering was performed on all AC roads, and in the Fall,
the regional roads are not swept. As explained in Section 1.4.1, the AC road class is
comprised of city owned, and regional owned roads. Since clustering was performed on all
AC roads, the regional and city roads were included. Since the regional roads are swept in

2/3 sweeping seasons, they were included in the clustering. Ideally, different cluster
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configurations should be used for AC roads in Spring/Summer and Fall because regional
roads are not included in Fall. Having different sweeping areas for different seasons may
cause confusion, specifically, when switching from one area configuration to another after
a season ends. To standardize the sweeping areas, regional roads were included in the
clustering as they are swept in most of the sweeping seasons. As a result, when the regional
roads are removed from the AC clusters in Fall, the previously well-distributed clusters

may become less efficient.

To complete the analysis of the clustered sweeping area configuration, a comparison of
the total statics will be made. The improvements of the proposed clustered sweeping areas

can be summarized in Table 4-10 and Table 4-11 for Fall and Spring/Summer, respectively.

Table 4-10 Improvements Made Using the Clustered Configuration in Fall

Metric | Fuel (L) | Distance (km) | Time (hr) | Efficiency (%)
AC
Total 6.31 11.48 0.18 0.39
Average 1.26 2.30 0.04 0.45
Deviation 5.15 9.37 0.30 -1.21
RES
Total 43.64 79.34 1.54 0.77
Average 3.64 6.612 0.13 1.30
Deviation 37.49 68.17 4.18 4.34

Table 4-11 Improvements Made Using the Clustered Configuration in Spring/Summer

Metric | Fuel (L) | Distance (km) | Time (hr) | Efficiency (%)
AC
Total 33.79 61.44 1.14 1.83
Average 6.76 12.29 0.23 0.85
Deviation 3.07 5.58 -3.24 -0.07
RES
Total 10.60 19.27 0.49 0.20
Average 0.88 1.61 0.04 0.77
Deviation 32.90 59.81 4.07 3.95
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Examining Table 4-10 and Table 4-11, almost all the metrics have been improved. Only
three metrics were not improved, the deviation of efficiency (service distance divided by
total distance for each area) for AC areas in Fall and Spring/Summer, and deviation of
travel time for AC areas in Spring/Summer. The least improved arrangement of sweeping
areas is the AC configuration for Fall. As previously discussed, this was because residential
roads are not swept in Fall but were included in the clustering process. Overall, the proposed
clustering methods were able to improve almost every aspect of the existing sweeping area

configuration.

4.6. Conclusions

In this chapter, a complete analysis of the existing street-sweeping area configuration
was conducted in The City of Oshawa for RES and AC roads in all operating seasons. To
do so, a novel street-sweeping route optimization algorithm was developed using a
combination of several different heuristic methods. The proposed algorithm could divide a
street-sweeping area into several feasible routes while satisfying multiple real-world
constraints. Additionally, the FS-ACO algorithm was developed to eliminate any unsafe u-

turns that could not be resolved using the modified Hierholzer’s algorithm or TS.

The Static clustering approach was improved by considering the approximate number
of trips needed to a cluster proportional to its servicing distance. Using A*, the depot-to-
cluster distance can be added to the cluster weight for several critical points along the
cluster boundary. In doing so, clusters near the depot are larger than ones far from the depot;
this reflects the travel distance required to reach the cluster. The new clustering methods
were used to generate street-sweeping areas in The City of Oshawa, and the proposed street-

sweeping route optimization algorithm was used to validate the new clustering methods.
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The results in Section 4.5.2 show considerable improvements with respect to the overall

statistics and statistic distribution.
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Chapter 5. Conclusion

5.1. Conclusions

Route optimization is a part of everyday life. Sometimes routing problems have simple
solutions, such as finding the shortest path from point a to point b. But real-world
applications in routing have many constraints that make a simple trip from point a to b less
obvious. In this thesis, two real-world routing problems were theoretically optimized for
The City of Oshawa, waste collection and street-sweeping. Waste collection and street-
sweeping play an important role in the cleanliness, health, and overall safety of the public.
However, these operations require a great deal of planning and resources for an efficient

implementation.

Sometimes, a large problem needs to be separated into several smaller problems. Many
routing applications make use of the macro and micro analysis, waste collection is no
different. On a macro scale, a large road network can be separated into several smaller
areas. On the micro scale, the smaller areas can be divided into several routes. To achieve
such area division, a novel 2-stage clustering algorithm was developed, the Static and
Dynamic clustering algorithm. The proposed clustering methods use DE to fine tune the
weight influence factor of the WK-Means clustering algorithm such that the deviation of
weights are minimized. The weights of the clusters are specific to the application. In waste
collection, the weights are proportional to the number of dwellings within each area. In

street-sweeping the weights are proportional to the amount of road to service.

The proposed 2-stage clustering algorithm was used in The City of Oshawa to generate
new waste collection areas. To validate the performance of the clustering, the routes within
each cluster were simulated to generate statistics. A waste collection route optimization
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algorithm was developed using Dijkstra’s algorithm and Hierholzer’s algorithm to find the
minimum distance path that services all roads in a route. Several statistics were generated,
and a dimensionless objective function value was used to quantify the fitness of a route.
The dimensionless objective function values for the routes in each respective area were
summed to quantify the fitness of a collection area. Using a GA, a workload balancing
algorithm was developed that can pair collection areas together for each day of the week
with the objective of minimizing the deviation of the expected workload. The results
highlighted that the clustered areas offer a better workload distribution than any
combination of existing areas. However, the balanced workload is at the expense of a slight
increase in the total statistics. Specifically, a small increase in distance, fuel, and travel time
was seen. This can be justified since the added statistics relate to the inclusion of safe turn-
around locations. However, the safe turn-around locations were added manually, and thus
were not optimal, highlighted by the increased statistics. Leading to the conclusion that the
proposed routing algorithm can be improved with regards to optimally selecting safe turn-

around locations.

To achieve a proper workload balance and reduce the total statistics, the clustering
methods needed to be improved. The street-sweeping operations within The City of
Oshawa also divide the road network into several sweeping areas. The proposed clustering
methods were improved by including the depot-to-cluster trip distance for the approximate
number of trips needed. To divide the area into several feasible routes, a novel street-
sweeping route optimization algorithm was developed. The algorithm makes use of the 3-
phase augment merge algorithm, GA, Hierholzer’s algorithm, TS, and TR. The proposed

algorithm satisfies all vehicle constraints (fuel capacity, water capacity, and debris
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capacity) and operational constraints (shift length, proper travel direction and removal of
u-turns) and resolves all unsafe u-turns using the developed FS-ACO algorithm. An
analysis of the current and clustered street-sweeping area configurations was conducted,
and the results show that the clustered configuration was able to improve the workload
distribution across all areas and reduce the total statistics. Specifically, the routes were able
to improve the overall fuel, distance, travel time, and efficiency for RES and AC sweeping
areas in all operating seasons. In all routes, the proposed u-turn removal algorithm was able
to find the optimal turn-around location for all unsafe u-turns. The sweeping areas made
using the clustering algorithm were improved with respect to the statistical balance when
compared to the existing sweeping areas. Results show the deviation of fuel, distance, travel

time, and efficiency were improved (with some small exceptions that were discussed).

In conclusion, the proposed 2-stage clustering approach for road network division offers
a novel method to divide municipalities with the objective of minimizing the deviation of
a specific attribute. For routing applications, the proposed clustering method can generate

servicing areas that minimize the statistics deviation and total statistics.

5.2. Recommendations and Future Work

The works discussed in this thesis can be expanded upon by implementing smart routing
technology. For waste collection route optimization, smart routing technology can be used
to estimate the approximate amount of curbside waste that will be collected on a service
road. In doing so, the waste collection rate for each road can be unique, and appropriate
algorithms will be able to incorporate this information during optimization. In street-
sweeping, smart routing applications may include the use of drones to monitor the amount

of debris on roads. If the debris on a road reaches a certain threshold, it will be included in
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a route for sweeping. If the debris of aroad is below a certain threshold, it will not be swept,

thus increasing the efficiency of a route.

In the waste collection problem, seasonal specific variations were not considered. For
example, tree collection around Christmas time, or yard waste collection in
Spring/Summer. Also, the depot and waste storage facility were not included in this study.
For the street-sweeping problem, an updated tree canopy information study should also be
conducted. As mentioned, the data used for the tree canopy information was collected in

2018, thus more dense tree canopies may exist because of tree growth.

For both the waste collection and street-sweeping, all data presented in this report is
based upon simulated data. Future work can include the possibility of implementing the

proposed solutions and modifying them based upon real-world data.

Additionally, the performance of the proposed clustering algorithms can be improved.
Examining Table 4-7, the computation time for the RES road class (2309 roads) was

approximately 14 hr, thus any reductions to the computation time will be beneficial.
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APPENDICIES

Appendix A. Waste Collection

1. Route Statistics (Existing — Garbage and Organics)

Mon. Week 1 Area Stats (G+0)

Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
monl_rl_service 1312 17.07 0.41 5.4 25.8
monl_r2_service 1037 14.33 0.33 5.02 2154
monl_r3_service 1164 14.66 0.34 4.79 2216
monl_r4_service 12.85 18.67 0.35 5.11 24.43
monl_rS_service 13.43 19.24 0.36 5.15 2515
monl_r6_service 14.59 18.43 0.37 4.84 25.3
monl_r7_service 15.1 2112 0.39 5.0 27.02
mon1_r8_service 14.48 21.61 0.39 4.79 26.49
monl_r9_service 1539 20.14 0.39 4.05 25.79
maonl_rl0_service 1053 14.88 0.27 3.98 19.21
Total 131.48 180.15 3.6 48.13 242.88
Mon. Week 2 Area Stats (G+0)
Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
mon2_rl_service 15.26 219 0.38 3.89 25.77
mon2_r2_service 13.05 17.26 032 3.86 22.08
mon2_r3_service 1093 15.71 029 3.86 20.09
mon2_rd_service 33.62 40.85 0.6 4.0 44.79
mon2_r5_service 1553 18.07 0.36 3.93 24.37
mon2_r6_service 15.98 18.09 042 417 26.29
mon2_r7_service 1053 13.82 0.29 3.65 19.12
mon2_r8_service 7.29 947 021 2.79 13.68
mon2_r9_service 9.35 10.62 043 4.04 213
mon2_rl0_service 1017 13.73 028 357 18.7
mon2_rll_service 181.82 128.18 321 6.05 198.5
Total 323.53 307.7 6.79 43.81 434.69
Tues. Week 1 Area Stats (G+0)
Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
tues1_rl_service 7.95 1.12 0.22 3.97 15.82
tuesl r2_service 8.41 12.81 0.25 4.0 17.29
tuesl_r3_service 12.14 16.49 0.34 4.08 22.26
tuesl_r4_service 8.16 12.42 0.27 4.09 17.63
tuesl_r5_service 16.04 19.51 0.42 4.1 26.8
tuesl_r6_service 8.29 11.14 0.29 4.5 18.25
tuesl_r7_service 8.96 12.19 0.29 4.09 18.5
tuesl_r8_service 11.75 14.85 031 439 2121
tuesl _r9_service 11.87 16.5 0.41 4.03 23.57
tues1_rl0_service 7.62 11.18 0.29 4.37 17.77
tuesl_r11_service 14.32 181 043 463 26.25

Total

115.49

156.31

3.53

46.26

225.35
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Tues. Week 2 Area Stats (G+0)

Distance (km)

Fuel Consumed (L)

Time Travelling (hr)

Time Collecting (hr)

Objective Function Value

tues2 _rl_service 11.35 15.77 0.3 3.65 20.19
tues2_r2_service 14.72 20.88 0.35 3.9 24.68
tues2_r3_service 9.37 12.49 0.27 4.02 18.23
tues2_r4_service 13.33 18.34 0.34 3.97 23.23
tues2 _r5_service 13.97 17.5 0.32 4.96 23.74
tues2_r6_service 15.34 19.99 0.35 4.05 24.82
tues2_r7_service 13.13 16.57 0.33 4.08 22.45
tues2_r8_service 11.65 15.32 0.29 3.91 20.25
tues2_r9_service 12.83 18.57 0.31 4.21 22.58
tues2_r10_service 10.74 12.57 0.31 3.97 19.61
tues2 rll_service 9.09 13.15 0.25 4.01 17.67

Total 135.52 181.15 3.43 44.72 237.46

Wed. Week 1 Area Stats (G+0)

Distance (km)

Fuel Consumed (L)

Time Travelling (hr)

Time Collecting (hr)

Objective Function Value

wedl rl_service 12.54 15.82 031 3.37 20.71
wedl_r2_service 9.04 10.37 0.28 3.63 17.28
wed1_r3_service 16.73 23.36 03 3.87 25.14
wedl_r4_service 633 8.75 0.19 4.16 13.87
wed1_r5_service 9.85 12.78 0.29 3.82 18.66
wedl_r6_service 13.78 15.88 0.34 411 22.68
wedl r7_service 13.15 16.01 033 3.68 21.89
wedl_r8 service 10.04 15.0 0.28 3.7 19.0
wed1_r9_service 9.34 13.83 0.25 3.74 17.73
wed1_r10_service 8.86 13.12 0.23 363 16.75
wedl rll_service 9.6 13.59 0.28 3.57 18.22
Total 119.26 158.51 3.07 41.3 211.92
Wed. Week 2 Area Stats (G+0)
Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
wed2_rl_service 19.79 23.69 0.37 3.78 28.02
wed2_r2_service 11.04 13.81 0.28 3.27 18.8
wed2 r3_service 6.95 9.96 0.22 3.46 14.57
wed2_rd_service 10.57 14.79 0.28 39 104
wed2_r5_service 9.36 1221 0.27 3.86 17.88
wed2_ré_service 9.89 12.44 0.25 4.43 18.31
wed2_r7_service 7.19 10.07 0.19 3.59 14.16
wed2_r8_service 7.2 9.96 0.22 3.78 15.13
wed2_r9_service 9.52 1161 0.26 3.41 17.03
wed2_rl0_service 9.16 11.27 0.25 3.73 16.85
wed2_rll_service 8.68 12.09 0.23 3.62 16.43
Total 109.37 141.89 2.83 40.84 196.59
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Thurs. Week 1 Area Stats (G+0)

Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value

thursl_rl_service 11.28 14.32 0.3 3.34 19.47
thursl _r2_service 10.28 14.03 0.29 3.97 19.41
thurs1_r3_service 10.59 14.09 0.29 3.87 19.32
thursl _r4_service 9.34 12.64 0.24 3.34 16.75
thurs1_r5_service 22.16 26.15 0.48 4.1 32.68
thursl_r6_service 12.22 16.88 0.31 4.17 21.79
thursl_r7_service 13.17 18.6 0.36 4.29 23.94
thurs1_r8_service 15.81 20.48 0.37 3.93 25.51
thursl_r9_service 14,15 18.03 0.36 4.68 24.59
thurs1_r10_service 14.08 18.58 0.4 4.58 25.54
thursl_rll_service 1241 15.88 0.33 411 22,04

Total 145.49 189.68 3.73 44.39 251.03

Thurs. Wee

k 2 Area Stats (G+0)

Distance (km)

Fuel Consumed (L)

Time Travelling (hr)

Time Collecting (hr)

Objective Function Value

thurs2_rl_service 26.61 32.56 0.45 3.87 35.61
thurs2_r2_service 10.58 14.12 0.28 3.32 18.62
thurs2_r3_service 6.63 9.82 0.18 3.12 13.12
thurs2_r4_service 8.21 11.75 0.22 3.7 16.0
thurs2_r5_service 9.65 12.62 0.27 3.7 17.92
thurs2_r6_service 7.81 10.56 0.2 3.22 14.41
thurs2_r7_service 8.97 12.02 0.25 3.94 17.24
thurs2_r8_service 11.26 14.28 0.27 3.92 19.38
thurs2_r9_service 8.5 12.04 0.25 4.04 17.05
thurs2_r10_service 15.31 19.13 0.33 3.75 23.9
thurs2_rll_service 11.83 16.02 0.32 3.87 21.15
Total 125.35 164.92 3.02 40.44 214.39
Fri. Week 1 Area Stats (G+0)
Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
fril_rl_service 13.12 18.01 0.4 4.24 246
fril_r2_service 13.61 19.16 0.36 4.22 24.22
fril_r3_service 12.06 17.3 0.34 4.98 23.23
fril_r4_service 13.67 17.77 0.34 4.37 23.6
fril_r5_service 8.87 12.89 0.25 4.37 17.79
fril_r6_service 9.87 12.2 0.27 3.77 18.02
fril_r7_service 9.26 12.65 0.25 3.92 17.61
fril_r8_service 8.42 11.28 0.24 3.72 16.27
fril_r9_service 11.36 15.25 0.3 3.87 20.4
fril_r10_service 14.75 18.94 0.4 4.58 25.86
fril_rll_service 12.47 17.02 0.33 4.31 22.6
Total 127.49 172.47 3.48 46.35 234.22
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Fri. Week 2 Area Stats (G+0)

Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value

fri2_rl_service 10.18 13.79 0.29 4.02 19.27
fri2_r2_service 10.25 14.2 0.28 4.0 19.21
fri2_r3_service 9.71 11.68 0.28 4.03 18.22
fri2_r4_service 7.63 10.46 0.25 4.03 16.39
fri2_r5_service 12.88 15.83 0.34 4.45 22.75
fri2_r6_service 15.26 18.6 0.43 4.24 26.45
fri2_r7_service 18.52 24.05 0.5 4.57 31.54
fri2_r8_service 9.56 13.12 0.27 3.74 18.08
fri2_r9_service 9.14 12.22 0.27 4.02 18.04
fri2_r10_service 9.25 11.71 0.26 3.32 17.0
fri2_rll_service 16.3 20.66 0.42 4.38 27.44
Total 128.69 166.33 3.6 44.8 234.39

2. Route Statistics (Clustered — Garbage and Organics)

area_1 Stats (G+0)

Distance (km)

Fuel Consumed (L)

Time Travelling (hr)

Time Collecting (hr)

Objective Function Value

route_1 13.14 20.01 0.41 3.82 2441
route_2 8.55 12.22 0.29 3.48 17.06
route_3 6.62 8.68 0.3 3.87 15.43
route_4 14.15 19.23 0.39 3.54 23.98
route_5 12.56 17.86 0.45 4.94 25.14
route_6 14.28 17.64 0.4 4.18 24.3
route_7 16.28 21.66 0.47 4.57 28.24
route_8 13.26 15.77 0.38 3.76 22.44
route_9 8.48 11.68 0.31 3.88 17.45
route_10 10.92 15.55 0.43 5.35 237
route_11 7.14 10.11 0.31 3.74 16.21
Total 125.37 170.4 4.14 45.13 238.35
area_2 Stats (G+0)

Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value

route_1 16.07 23.34 0.46 4.18 28.12
route_2 15.89 20.92 0.47 4.14 27.42
route_3 7.38 11.23 0.32 3.96 17.09
route_4 8.89 11.64 0.36 4.25 19.14
route_5 12.14 14.77 0.34 4.04 21.03
route_6 12.25 15.16 0.35 4,1 21.39
route_7 7.97 9.51 03 4.58 16.96
route_8 8.59 11.86 0.32 4.18 18.2
route_9 8.78 13.07 0.37 4.1 19.49
route_10 10.96 15.19 0.36 4.22 21.17
route_11 13.85 19.35 0.41 4.29 25.0
Total 122.78 166.05 4.06 46.03 235.01
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area_3 Stats (G+0)

Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
route_1 10.32 13.11 0.34 4.13 19.62
route_2 12.78 18.65 0.48 4.77 25.96
route_3 12.68 16.68 0.35 3.46 21.57
route_4 11.46 16.14 0.46 4.92 24.39
route_5 9.37 12.82 0.29 3.28 17.33
route_6 7.66 10.78 0.27 3.37 15.53
route_7 9.27 13.09 0.34 4.27 19.37
route_8 9.14 13.17 0.33 3.68 18.64
route_9 10.39 13.8 0.31 3.09 18.41
route_10 9.57 13.31 0.3 3.38 17.88
route_11 11.0 13.07 0.4 4.57 21.6
Total 113.65 154.61 3.87 42.91 220.29
area_4 Stats (G+0)
Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
route_1 10.27 15.35 0.35 3.9 20.41
route_2 30.47 34.46 0.68 3.86 42.56
route_3 117.68 82.96 23 3.93 131.37
route_4 43.98 31.0 0.87 3.93 51.52
route_5 8.06 11.48 0.31 373 17.13
route_6 27.46 32,72 0.61 4.48 39.88
route_7 11.99 15.82 0.36 4.22 21.79
route_8 13.66 18.48 0.4 4.17 24.32
route_9 15.18 19.72 0.41 3.63 25.03
route_10 9.97 13.73 0.34 3.89 19.45
route_11 21.67 28.43 0.45 3.69 31.68
Total 310.37 304.16 7.07 43.44 425.14
area_5 Stats (G+0)
Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
route_1 15.1 19.72 0.43 411 25.84
route_2 11.81 16.13 0.38 4.07 22.02
route_3 13.37 17.68 0.41 3.91 23.79
route_4 821 11.31 0.32 3.96 17.52
route_5 6.63 8.32 0.35 4.28 16.66
route_6 13.41 17.93 0.37 3.88 23.16
route_7 17.1 2091 0.44 4.21 27.4
route_8 109 13.38 0.34 4.17 20.06
route_9 11.67 14.86 0.36 3.88 21.16
route_10 11.78 15.17 0.35 3.87 21.06
route_11 12.69 16.31 0.38 4.09 22.6
Total 132.66 171.72 4.12 44.4 241.26
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area_6 Stats (G+0)

Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
route_1 15.31 21.96 0.46 4.47 27.66
route_2 11.18 15.09 0.33 3.79 20.31
route_3 16.7 22.95 0.47 4.17 28.43
route_4 16.24 22.06 0.47 4.73 28.54
route_5 8.55 11.22 0.31 3.51 17.05
route_6 17.74 25.59 0.51 4.45 30.85
route_7 17.63 21.66 0.47 4.18 28.56
route_8 12.22 17.64 0.38 3.75 22.54
route_9 11.09 15.65 0.35 3.85 20.86
route_10 12.61 17.2 0.41 4.92 24.16
route_11 11.22 15.01 0.34 3.97 20.64
Total 150.48 206.03 4.5 45.78 269.58
area_7 Stats (G+0)
Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
route_1 10.39 14.1 0.33 3.86 19.62
route_2 16.99 21.66 0.46 3.77 27.62
route_3 18.73 25.79 0.5 4.06 30.91
route_4 8.79 12.5 0.32 3.61 17.84
route_5 11.37 16.12 0.34 4.09 21.2
route_6 12.59 15.68 0.36 3.93 21.81
route_7 13.66 18.29 0.39 4.21 24.01
route_8 9.8 13.07 0.35 4.04 19.62
route_9 12.29 15.27 0.35 3.98 21.42
route_10 9.12 13.67 0.5 5.13 23.41
route_11 6.23 8.58 0.31 4.04 15.73
Total 129.97 174.73 4.22 44.72 243.2
area_8 Stats (G+0)
Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
route_1 11.64 15.79 0.36 3.88 21.39
route_2 7.3 9.98 0.29 3.55 15.79
route_3 9.46 14.0 0.37 4.38 20.37
route_4 13.21 17.89 0.4 3.89 23.52
route_5 6.54 9.01 0.28 3.79 15.19
route_6 13.07 17.73 0.38 3.75 22.87
route_7 13.32 16.48 0.37 3.67 223
route_8 13.2 15.25 0.36 3.97 21.98
route 9 9.86 13.05 0.29 3.44 17.83
route_10 14.97 18.25 0.39 4.25 24.65
route_11 10.3 14.41 0.33 3.86 19.75
Total 122.87 161.84 3.82 42.43 225.65
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area_9 Stats (G+0)

Distance (km)

Fuel Consumed (L)

Time Travelling (hr)

Time Collecting (hr)

Objective Function Value

route_1 14.68 195 0.45 4.26 26.2
route_2 10.72 14.97 0.37 4.42 21.45
route_3 7.69 10.68 0.32 3.97 17.22
route_4 12.35 16.15 0.37 3.87 21.98
route_5 9.79 13.17 0.32 3.9 18.9
route_6 9.85 13.32 0.36 411 19.87
route_7 12.12 16.23 0.39 4.64 23.1
route_8 14.31 18.56 0.44 4.79 25.85
route_9 9.7 11.7 0.29 3.43 17.36
route_10 12.82 16.85 0.38 4.17 22.98
route_11 10.79 13.61 0.33 3.93 19.61
Total 124.82 164.74 4.03 45.49 234.51
area_10 Stats (G+0O)
Distance (km) Fuel Consumed (L) Time Travelling (hr) Time Collecting (hr) Objective Function Value
route_1 10.14 13.99 0.36 4.07 20.19
route_2 7.47 11.38 0.37 3.89 18.09
route_3 11.44 14.83 0.35 3.94 20.88
route_4 16.85 21.13 0.42 3.77 26.6
route_5 11.43 15.1 0.35 4.08 21.04
route_6 20.63 28.59 0.59 3.84 34.27
route_7 12.28 16.9 0.37 3.97 22.37
route_8 22.74 26.74 0.58 4.87 35.46
route_9 12.58 16.97 0.38 4.16 22.79
route_10 11.51 13.62 0.32 3.85 19.82
route_11 11.06 14.71 0.34 3.99 20.5
Total 148.13 193.97 4.44 44.42 262.01

123




Appendix B. Street-sweeping

1. RES Route Statistics (Current - Fall)

Existing RES Sweeping Area 1 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 7.790312975559102 14.164205410107465 5.105825564371379 1.2000980271831112 1.7870389475299828 74.59611149546586 36.04738435046912
2 11.324223403076168 20.58949709650214 6.588983469479024 1.596998246774357 2.7419893377000224 96.26504848908857 32.00167269067683
3 10.997421499070809 19.995311816492393 7.1376101654022355 1.6832167195992465 2.7258425302776463 104.2804845165267 35.696418395011186
4 15.03307789570145 27.332868901275372 8.062018384791603 2.0039261079957 2.8730955542710017 117.78608860180529 29.495690386220026
5 11.80696512662877 21.46720932114323 5.000489208078093 1.3318075284746806 2.093725083827759 73.05714733002095 23.293615547657936
6 22.621423957846385 41.12986174153889 10.991638435806204 2.8034831219538443 4328625562445784 160.58783754712866 26.724228991767447
7 11.648812416046768 21.179658938266854 4.778267506034313 1.2855591031326834 1.7982178627349594 69.81048826316129 22.560644248152002
8 12.038468734474892 21.888124971772527 3.642326823810597 1.093834251634195 1.3674982430580624 53.21439489567283 16.640652538798243
TOTAL| 103.26070600840434 187.74673819709886 51.30715955777345 12.998923106747819 19.716033121845214 749.5976011390701 27.327856691662234
Existing RES Sweeping Area 2 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 12.051836558073886 21.912430105588886 6.924516568913826 1.6790108050331698 2.7679771508461 101.16718707183098 31.600860952193933
2 16.25335010701112 29.55154564911112 9.39834745842853 2.28576017506199 3.692302976295668 137.3098563676409 31.803234829144117
TOTAL| 28.305186665085003 | 51.4639757547 | 16.322864027342355 | 3.96477098009516 | 6.460280127141768 238.47704343947186 | 31.71706769244631
Existing RES Sweeping Area 3 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 16.033350599508402 29.15154654456073 7.985403846398222 2.0307497927548295 2.8360801457026823 116.66675019587797 21.392727976822861
2 21.465370239321356 39.02794588967511 10.671433163148858 2.701896245988706 3.735001607102098 155.9096385136047 27.343056161128885
3 19.1022435446849 34.73135189942709 10.85355006003489 2.668738959825486 3.9453687722615345 158.5703663771098 31.250007461454228
4 29.237563869363008 53.15920703520544 16.389435909928597 4.012722389633499 5.7363025684750095 239.44965864405663 30.830850992706605
5 18.13049439593434 32.96453526533516 7.631264621313853 2.0291320084116053 2.6709426174598487 111.49277611739534 23.149923273266154
6 26.540870632910803 48.25612842347416 11.616259191316821 3.0732024941613014 4,065690716960886 169.71354678513873 24,07209109147285
li 13.184367463530618 23.971577206419287 4.471801316410936 1.2868987779987175 1.6292729778792174 65.3330172327638 18.654597809331644
TOTAL| 143.69426074525342 | 261.262292264097 | 69.61914810855218 | 17.803340668774144 | 24.618659405841278 | 1017.1357538659471 | 26.647223946951232
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Existing RES Sweeping Area 4 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 20.679020443420722 37.59821898803767 14.892302247214063 3.427881248571361 5.47903731645839 217.5765358317974 39.60906300362852
2 10.075425257765572 18.318955014119222 6.577311435163169 1.5490551571530098 2.3020590023071086 96.0945200677339 35.904403008216065
3 13.240643629204946 24.073897507645356 6.772742159737271 1.7039671495685396 2.5879874811649155 98.94976295376152 28.13313530800898
4 17.19733313435179 31.26787842609414 9.712347463568243 2.3781497801011042 3.4951370011901135 141.89739644273197 31.061741162019324
5 14.97455370184635 27.226461276084265 8.53634612254133 2.0784013897509452 3.2470003361124293 124.71601685032876 31.353123845145674
6 12.668800474307254 23.034182680558636 6.035393402009395 1.540136859435991 2.538952384413794 88.17709760335725 26.201899523456508
7 20.026588709351923 36.41197947154896 10.980128288235836 2.7156116620130297 3.9844350735229472 160.41967429112557 30.155263316061465
8 18.930920941431598 34.41985625714833 10.375619742753829 2.560155599937365 4.044604600018153 151.5878044416335 30.14428551135804
9 10.809438803466001 19.653525097210903 4.7675253582404595 1.2412784726131267 2.061944800353949 69.6535454838931 24.25786384202921
10 9.780641071350052 17.782983766091014 3.893527495463205 1.0634095399012056 1.4496991617017352 56.88443670871743 21.894680592845557
11 11.208401865486044 20.378912482701903 3.0369722956973852 0.9564119489844962 1.1102427806923145 44,370165240138775 14.902523862719555
12 6.574352164975348 11.953367572682454 1.2996402590516654 0.4702145373274378 0.49128715282980223 18.98774418474483 10.872586751383679
TOTAL | 166.16612019695762 302.12021853992286 86.87985626967586 21.684673345357613 32.79238709076565 1269.314700099964 28.756717008065895
Existing RES Sweeping Area 5 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 20.320666001106286 36.94666545655689 10.397831545639715 2.6301936750752017 3.8949528579386787 151.9123188817962 28.142814560263435
2 27.64805905603151 50.26919828369356 13.423023148720072 3.4407176774058006 4.83092082798433 196.11036820280037 26.702282127054055
3 21.91237385252843 39.8406797318698 12.02746839347688 2.959422084433505 4.465648485325681 175.72131322869723 30.18891362904066
4 21.831651679341988 39.693912144258114 8.192027415428786 2.276814656062788 2.9625040967815934 119.68552053341453 20.63799452585274
5 18.339065452884633 33.34375536888114 6.808595203719926 1.8906632268632344 2.449539579115875 99.4735759263481 20.41940125938607
6 33.756471901307606 61.37540345692284 12.141806529018519 3.441963480465931 4.301372489866259 177.3917933889605 19.782854116047336
7 29.389247463661427 53.43499538847523 9.305415062466823 2.758860388416489 3.318245912350081 135.95211406264028 17.414458436490854
8 29.97173544188167 54.49406443978482 13.847619018807771 3.607566394139921 5.139027323763538 202.3137138647814 25.411242786100484
9 11.861391724817143 21.566166772394784 3.441880971963423 1.0518216519608505 1.2046583401871982 50.28588100038562 15.959632549856352
TOTAL| 215.03066257356068 390.9648410428372 89.58566728924193 24.05802323482372 32.5668699133133 1308.8465990958243 22.913995808494253
Existing RES Sweeping Area 6 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 15.88489566971509 28.881628490391087 9.729434303164346 2,320458515614951 3.9359873134460943 142,14703516923112 33.687277386042574
2 18.291930320940747 33.25805512898318 12.047241137804473 2.8304296052544258 4.843375024758146 176.01019302332327 36.2235286792394
3 13.213970014063143 24.02540002556937 7.864289387520142 1.8886590289518979 3.3632017730207333 114.89726795166926 32.73322974498015
4 13.757236446232696 25.01315717496854 7.123941103733836 1.774264445196592 3.073887677465102 104.08077952555132 28.4807753531529
5 21.832109208113188 39.69474401475129 11.063531605224915 2.788507274366582 4.582819640514449 161.63819675233597 27.87152777988316
6 24.764316708932764 45.02603037987774 10.396630920190026 2.7530727440863147 3.989588467616505 151.89477774397625 23.090267635132918
7 19.85309000198402 36.09652727633456 8.771692001784281 2.2857476447334086 3.231651142530754 128.1544201460682 24.300653452430968
8 19.205307561261826 34.91874102047601 7.489944955680357 2.0424745964147912 2.9859390985084184 109.42809580249005 21.44964204548018
9 14.294160312097416 25.989382385631643 3.4136678804714236 1.124616813234926 1.3961216831634933 49.87368773368748 13.134855726154873
TOTAL| 161.09701624334087 292.90366589698345 77.9003732955738 19.80823066785389 31.402571821023695 1138.124453848333 26.595902464044947
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Existing RES Sweeping Area 7 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 22.93558366013018 41.70106120023667 13.683592733659989 3.3051234632811735 5.411852980168951 199.9172898387724 32.81353601040332
2 22.221933213988375 40.403514934524324 9.7793092479658 2.566215755640463 3.774740108253864 142.8757081127804 24.204105172071298

3 16.407144885777743 29.831172519595874 6.799951191624856 1.8185929440571362 2.7747583981581605 99.34728690963912 22.794783500910057
4 24.2317156737482 44.0576648613604 10.645006973165318 2.8092615426951286 3.8103828874366985 155.52355187794538 24.16153240681904
5 27.292429997174207 49.62259999486219 12.58986998596827 3.2628310271572953 4.752989032224878 183.9380004949964 25.371242109989794
6 26.682107683748068 48.51292306136012 11.945635120156417 3.1277720543802863 4.326553678768874 174.52572910548525 24.623614423413198
7 25.834304242635515 46.97146225933734 8.83933946469494 2.5263765161234275 3.250514527498058 129.142749579193 18.818531592419795

TOTAL| 165.6052193572023

301.1003988312769

74.28270471723559

19.41617330333491

28.101791612509484

1085.2703159188118

24.67041060243174

Existing RES Sweeping Area 8 FALL Statistics

Subroute Fuel (L)

Distance (km)

Serviceable Distance (km)

Travel Time (hr)

Debris (m3)

Water (L)

Efficiency (%)

19.770104974561676

35.94564540829399

9.844138358993249

2.4752307127862543

3.8699835259284066

143.8228614248913

27.386177789206815

28.178399888117383

51.2334543420316

14.362702031545128

3.5863800089308517

5.125785359633124

209.83907668087426

28.03383495413086

3 22.59254732621507 41.07735877493651 11.163033550909272 2.8238465753173294 3.907061742818243 163.09192017878442 27.175636126148483
4 29.151697963036604 53.00308720552106 12.21817226489708 3.256004056161309 4.327486588745251 178.5074967901464 23.05181246805634
5 15.47887643247042 28.143411695400765 6.286707430300062 1.6768477852925896 2.371723718828215 91.84879555668394 22.338114150273558
6 17.698761760241812 32.179566836803325 6.068456497315858 1.7191018312869357 2.3474226682979378 88.66014942578464 18.858104983487376
7 22.11815588105797 40.21482887465082 8.756356993416876 2.384672616058114 3.586636713168687 127.9303756738206 21.773950650667555
TOTAL| 154.98854422570093 281.7973531376381 68.69956712737752 17.922083585833384 25.536100317419862 1003.7006757309857 24.379067568396444
Existing RES Sweeping Area 9 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 28.69186400821631 52.16702546948421 14.394685602122433 3.6298651808372866 5.038139960742852 210.30635664700876 27.593456733588912
2 27.02403967266873 49.13461758667041 13.718337209137585 3.4399809182698564 4.801418023198155 200.4249066255001 27.919902266338582
TOTAL | 55.71590368088504 101.30164305615462 28.113022811260016 7.069846099107143 9.839557983941006 410.73126327250884 27.751793517974928
Existing RES Sweeping Area 10 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 29.873138959364695 54.314798107935765 16.06158772794679 3.971158210755937 5.621555704781376 234.65979670530265 29.57129233184074
2 31.73724136364059 57.70407520661926 14.203954387500294 3.7098270400540074 4.9713840356251024 207.51977360137926 24.615166843313265
3 37.99834860445876 69.08790655356127 15.965147066760276 4.276213207965802 5.5878014733661 233.25079864536772 23.108453943937487
4 16.15820128167574 29.378547784865 6.136986991952302 1.6852689369864746 2.1479454471833055 89.66137995242312 20.88934768625257
5 35.9696039085273 65.39927983368592 16.46803598341516 4.249755274835931 5.7638125941953025 240.59800571769551 25.18076043848542
6 35.44270511473563 64.44128202679202 15.154240562328704 4.008177596303902 5.303984196815048 221.40345461562248 23.516354867099317
TOTAL| 187.17923923240272 340.32588951345923 83.98995271990353 21.900400266902054 29.39648345196623 1227.0932092377907 24.67927222344978
Existing RES Sweeping Area 11 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 29.802295509896506 54.18599183617553 15.20003043926902 3.7893382784485596 5.3200106537441565 222.07244471772051 28.05158662634502
2 30.45635666174203 55.375193930440105 12.706901693649773 3.3570982869183554 4.447415592777417 185.64783374422305 22.946920438078514
3 32.9306610665338 59.87392921187962 15.578600728839763 3.9789906394341314 5.452510255093915 227.60335664834895 26.019005156168713
TOTAL | 93.18931323817233 169.43511497849525 43.48553286175856 11.125427204801047 15.21993650161549 635.3236351102926 25.66500625757403
Existing RES Sweeping Area 15 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 25.911361949509992 47.111567180927246 2.678859461108704 1.3255844361088625 0.9376008113880465 39.13813672679817 5.68620324350666
TOTAL| 25.911361949509992 47.111567180927246 2.678859461108704 1.3255844361088625 0.9376008113880465 39.13813672679817 5.68620324350666
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2. AC Route Statistics (Current - Fall)

Existing ARTCOL Sweeping Area 1 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 32.504003437532916 59.098188068241654 14.64618187779859 3.7671682022208124 5.126163657229506 213.98071723463744 24.782793443491705
2 34.705314581703846 63.10057196673421 13.789596272753009 3.692179112359717 4.826358695463549 201.46600154492143 21.853361773048118
3 16.863294304516522 30.660535099120956 5.499229124752203 1.5880772215498555 1.9247301936632715 80.3437375126297 17.935855023319103
4 21.402149194446288 38.91299853535687 5.613511782984376 1.7517815194066524 1.9647291240445315 82.01340714940171 14.42580113142364
TOTAL| 105.47476151819956 191.7722936694537 39.54851905828818 10.799206055537038 13.841981670400859 577.8038634415902 20.622644857372137
Existing ARTCOL Sweeping Area 2 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) ‘Water (L) Efficiency (%)
1 20.34232750790625 36.98605001437498 10.920583851172049 2.678434975508562 3.8222043479102186 159.5497300656237 29.526223662509675
2 20.217906707542657 36.75983037735029 9.256609216763675 2.3820905419169267 3.2398132258672856 135.23906065691727 25.18131645805191
3 26.529947603806665 48.236268370557546 10.107904883209047 2.7694233587637482 3.5377667112231665 147.67649043134415 20.954989327861668
4 19.828705740554224 36.05219225555313 7.342782547544976 2.0651546279480963 2.569973891640742 107.2780530196321 20.36709028814736
TOTAL| 86.9188875598098 158.03434101783597 37.62788050468975 9.895103504137333 13.169758176641414 549.7433341735173 23.809939195711276
Existing ARTCOL Sweeping Area 3 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 14.470523066909928 26.310041939836225 10.892095030363578 2.479592889587024 3.812233260627251 159.1335083936118 41.39900291786224
2 18.251871736032488 33.18522133824088 13.123774336216256 3.019641619068016 4.59332101767569 191.7383430521195 39.54704475962954
3 4.583471201759438 8.333584003198972 2.9545200068725954 0.6908113301228221 1.034082002405409 43.16553730040862 35.453173637398486
4 15.598415131606366 28.360754784738845 9.180108231668612 2.190907656054412 3.213037881084013 134.1213812646784 32.36905470727635
5 16.35950363036843 29.744552055215333 9.616225494563558 2.3140672730300538 3.365678923097244 140.4930544755736 32.3293673298989
6 15.420610002470616 28.037472731764737 1.275605197824576 1.8555535486794268 2.5464618192386004 106.296591940217 25.94957565337821
7 32.35662193960355 58.83022170837004 13.429935732870055 3.610315724443553 4.700477506504518 196.21136105723156 22.828293592779914
TOTAL| 117.04101670875082 | 212,801848561365 | 66.47226403037924 | 16.160890040985304 | 23.265292410632725 | 971.1597774838405 | 31.23669483125323
Existing ARTCOL Sweeping Area 4 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 23.057975219111988 41.92359130747635 12.114142338109524 3.0051872805836406 4.239949818338333 176.98761955978006 28.895764795677643
2 30.259973261329517 55.018133202417296 16.768055420681126 4.101883210918057 5.868819397238394 244.9812896961512 30.47732528290218
3 31.332889238424027 56.96888952440736 16.66293185400861 4.126643732667203 5.832026148903014 243.44543438706592 29.24917791643044
TOTAL | 84.65083771886553 153.910614034301 45.54512961279926 11.233714224168901 15.940795364479744 665.4143436429972 29.591935487080136

Existing ARTCOL Sweeping Area 5 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)

1 11.61482041392389 21.117855298043445 8.361800231247658 1.9237388688594736 2.926630080936679 122.16590137852822 39.59587805312017

2 19.157022327019117 34.83094968548929 12.362689399745129 2.922893647516148 4.379358878631239 180.6188921302763 35.49340316981215

3 14.636029046683731 26.61096190306131 10.513114496812438 2.430317364107708 3.6795900738843526 153.59660279842967 39.50670605260239

4 18.29437851885735 33.26250639792244 10.180279987232707 2.500200443407441 3.584421674241503 148.73389061346984 30.6058715643526

5 25.336442883415334 46.066259788027864 15.410143744339639 3.70633721633357 5.393550310518872 225.14220010480219 33.45212703451252

6 14.831757472008869 26.966831767288863 7.857945933700486 1.9560819975116652 2.75028107679517 114.80459009136413 29.139299720155787
TOTAL| 103.8704506619083 | 188.85536483983321 | 64.68597379307806 | 15.439569537736007 | 22.713832095007813 | 945.0620771168703 | 34.25159451940259
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3. RES Route Statistics (Clustered - Fall)

Clustered RES Sweeping Area 1 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 11.687807885563585 21.2505597919338 8.01914133957748 1.8658299296695282 3.3773839812050057 117.15965497122696 37.736141626826004
2 8.32993593007137 15.14533805467522 5.032824354511084 1.204980909188296 1.7614885240788796 73.52956381940695 33.23018830178901
3 5.077542973585741 9.23189631561044 2.7971054506435306 0.6845720927283694 0.9789869077252563 40.86571063390284 30.298276263783237
4 8.906910778265734 16.19438323321043 4.999842739938726 1.222351791448907 1.7499449589785534 73.04770243050478 30.873931213912247
5 9.891215869306913 17.984028853285306 5.172403294222422 1.2928138867687633 1.910775992496592 75.56881212858957 28.761093170052003
6 11.878968787106299 21.598125067466015 5.809963299765333 1.483576917992337 2.1331228569646403 84.88356380957154 26.900313252269648
7 5.689979525866553 10.34541731975737 2.574051076590031 0.6697997059896096 0.9009178768065108 37.60688622898034 24.881075330563853
8 21.49203364710742 39.076424812922596 12.57697562976328 3.0550682931539748 4.89831587814335 183.74961395084154 32.18558424926343
9 8.659606782407495 15.744739604377278 3.7728189630424795 0.9918494038867277 1.4021474455795997 55.12088505005063 23.962409400493218
10 8.4485836193791 15.361061126143822 4.424741554434336 1.1008034383119016 1.7069183627065543 64.64547411028562 28.804921210186635
11 5.942745283573599 10.804991424679267 2.7193602031754054 0.709230947698252 0.9517760711113917 39.72985256839267 25.16762944359418
12 9.14190920170838 16.621653094015247 3.8829956822802614 1.0279170939534552 1.3590484887980916 56.73056691811463 23.36106800158381
13 9.170686797067042 16.673975994667366 3.536289778736407 0.9654073359856468 1.2377014225577423 51.66519366733891 21.208437506851247
14 12.051689986398134 21.912163611632966 4.757633822517721 1.2952755860551997 1.9166500256918342 69.50903014698389 21.712295996146803
15 12.82872806636231 23.32496012065875 5.89592584916848 1.5320642104752578 2.0635740472089674 86.13947665635148 25.277324457015897
TOTAL | 149.19834513376972 271.2697184250359 75.97207303836703 19.101541543306226 28.34875284005297 1109.9519870905424 28.006101631782965
Clustered RES Sweeping Area 2 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) ‘Water (L) Efficiency (%)
1 24.158207861714207 43.92401429402584 13.603316068146178 3.3310219374335817 4.798172721131922 198.74444775561577 30.970111194951468
2 25.927057969007553 47.140105398195544 11.996260375449456 3.1179744329990067 4.220481740770936 175.26536408531646 25.44809833180529
3 20.826861141127058 37.86702025659468 10.303118750378022 2.6152927334611293 3.850221279931706 150.5285649430228 27.208686293671857
4 28.580262653370735 51.964113915219514 14.14911621230274 3.5998450457247793 5.399748616750326 206.7185878617429 27.228629810540607
5 25.22590858110522 45.865288329282194 9.179137201355838 2.5733203615424594 3.6055892761220516 134.10719451180873 20.013255199565634
TOTAL | 124.71829820632477 226.76054219331775 59.230948607632236 15.237454511160955 21.87421363470694 865.3641591575067 26.120482882395258
Clustered RES Sweeping Area 3 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 23.45959104448084 42.65380189905608 12.55685599168348 3.107236336473829 4.3948995970892195 183.4556660384956 29.43900762093932
2 30.502827638798234 55.45968661599679 15.259084048584148 3.8417427161424227 5.340679417004452 222.93521794981447 27.513830278627683
3 29.284053944959037 53.24373444538004 14.135553981267174 3.590839410963389 4.947443893443509 206.52044366631335 26.548765086656527
4 26.359853902200452 47.92700709490991 11.266370330688678 2.980313535469642 3.9432296157410374 164.60167053136158 23.50735214568661
TOTAL 109.60632653043857 199.28423005534285 53.21786435222348 13.520131999049283 18.626252523278218 777.512998185985 26.704503581364392

Clustered RES Sweeping Area 4 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)

1 16.406481276924364 29.829965958044294 7.011178296926633 1.8733828751183341 2.453912403924321 102.4333149180981 23.503809246003907

2 19.634447493384627 35.69899544251751 11.233740027358493 2.7459126048012914 4.1323868403860295 164.1249417997077 31.467944372404126

3 27.47247933061123 49.949962419293165 12.21158006059954 3.20351149116572 4.322919488874654 178.4111846853593 24.44762612250298

4 22.154354985870544 40.28064542885552 9.689158924987249 2.562056591656181 3.401396561319693 141.55861189406363 24.05413026983501

5 24.69369785756508 44.89763246830011 11.769432511154609 3.0298515208310284 4.267689754869366 171.95140898796885 26.213926802185828

6 14.5557117415809 26.464930439238007 5.25234394142528 1.4740163491821863 1.8383203794988474 76.73674498422332 19.846430178550314

7 26.064085484087034 47.38924633470377 10.662471978495313 2.8781788210635484 3.770115529817333 155.7787156058165 22.499771157337534
TOTAL| 150.98125817002378 274.5113784909524 67.82990574094713 17.76691025381829 24.18674095869024 990.9949228752374 24.7093239317884
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Clustered RES Sweeping Area 5 FALL Statistics

Subroute Fuel (L) Distance (km} Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 9.209160786626352 16.743928702956996 6.488232800773568 1.498695204937791 2.2972154861752694 94.79308121930187 38.74976366584587
2 6.938246392578813 12.614993441052388 4.273046090142627 1.0185924559742474 1.4955661315499196 62.4292033769838 33.87275712912423
3 10.922317662376392 19.85875938613888 7.3213837867766065 1.7127592776233365 2.6330808836742396 106.96541712480618 36.867276774030636
4 18.819918254480307 34.218033189964196 11.225446274877353 2.713170296973301 3.9813043267174875 164.0037700759582 32.805644358804535
5 21.406064965849488 38.92011811972631 11.361553213472003 2.8236118106492683 4.501802110114426 165.99229244882602 29.191980298008147
6 19.948306329874864 36.269647872499746 10.312334675936981 2.583044037579365 4.222981481548213 150.66320961543923 28.43240913776824
7 14.661086653718574 26.65652118857924 8.275440218386493 2.0254408552168957 2.8964040764352723 120.90418159062669 31.044711948129354
8 10.74845209563397 19.54264017387995 6.5307083975991596 1.5599200946806286 2.6490580475734107 95.41364968892373 33.417738542450834
9 11.320599624524283 20.582908408225972 5.201785581885832 1.3471281288663086 2.0597857409944 75.99808735135201 25.272354512382396
10 10.942916947697368 19.896212632177033 3.6515760815741105 1.0519875216601282 1.4245890689607161 53.34952655179774 18.35312151654743
TOTAL| 134.9170697133604 245.3037631152007 74.64150712142472 18.33434968416127 28.161787353743357 1090.5124190440154 30.428194893354014
Clustered RES Sweeping Area 6 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) ‘Water (L) Efficiency (%)
1 27.208296843667025 49.4696306248492 13.133099390261698 3.3468615131387907 4.689691063873342 191.87458209172343 26.54780159944186
2 24.756996689490997 45.01272125361997 12.760192199260565 3.195038466355448 4.466067269741197 186.42640803119684 28.347968849438036
3 29.619048528568822 53.85281550648876 13.116153789617423 3.438701768696422 4.665717882896717 191.62700686631047 24.35555813797154
4 27.570163126346184 50.127569320629426 13.680703630096545 3.4687459169392305 5.099205101218306 199.8750800357105 27.291775395274172
TOTAL | 109.15450518807303 198.46273670558736 52.69014900923623 13.449347665129892 18.920681317729564 769.8030770249412 26.549139593595473
Clustered RES Sweeping Area 7 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr} Debris (m3) ‘Water (L) Efficiency (%)
1 19.273157275857574 35.04210413792284 10.235663314441794 2.54483575651418 3.9758500104391024 149.54304102399462 29.20961388093325
2 26.63437520331784 48.426136733305164 12.967970276727126 3.311260731085146 5.2428081612009905 189.46204574298324 26.77886602465313
3 21.278509095109694 38.688198354744905 9.281738428273494 2.449005492106471 3.60729476180646 135.6061984370758 23.991136374886626
4 26.66847120213403 48.488129458425476 12.00384140314581 3.143617716984328 4.8047913792223085 175.37612289996034 24.756247636729526
5 33.745123314389716 61.35476966252688 12.683685174333885 3.5447142072821016 4.696441017267857 185.30864039701802 20.672696261592503
6 15.448220696655822 28.087673993919662 6.511223484721043 1.7328914463457308 2.2789282196523657 95.12897511177442 23.18178246490106
TOTAL | 143.04785678746467 260.0870123408449 63.68412208164315 16.726325350317957 24.606113549589082 930.4250236128064 24.48569865464289
Clustered RES Sweeping Area 8 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 27.85000384049466 50.636370619081276 11.943559368192354 3.139693308656546 4.180245778867324 174.49540236929033 23.586918300364264
2 38.93549783501834 70.79181424548798 14.627070586579222 3.930971442159167 5.119474705302723 213.70150126992252 20.662093128248227
TOTAL| 66.785501675513 121.42818486456926 26.570629954771576 7.0706647508157126 9.299720484170047 388.19690363921285 21.881764916774646
Clustered RES Sweeping Area 9 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 20.078883141336973 36.50706025697625 12.082855939144615 2.8996190319833732 4.8872525146185914 176.53052527090287 33.09731283234635
2 22.739968351647043 41.345397002994694 11.310272203811342 2.8470415764067423 4.565557865277432 165.24307689768372 27.355577703104718
3 23.658640330586497 43.01570969197544 12.89870283241425 3.161461765071434 5.180723855045318 188.45004838157215 29.98602818546662
4 12.64283517148571 22.98697303906492 5.146585655147806 1.376994101614881 1.9504888699006409 75.19161642170944 22.38914034658459
5 11.537638465511813 20.977524482748755 4.493192650941029 1.2143407658536125 1.6325112023149704 65.64554463024844 21.419079523115737
6 23.86365699557441 43.38846726468072 9.551153228709586 2.577370026327882 3.5545700355784637 139.54234867144706 22.013115076052618
7 14.356507777556825 26.102741413739693 5.219263633066342 1.4570941257495846 2.062573452548419 76.25344167909927 19.995078487499708
8 12.66993080198085 23.03623782178338 3.648812432559285 1.1085398878818076 1.3493141205537977 53.30914963969116 15.839445923365655
TOTAL | 141.54806103568015 257.36011097396386 64.35083857579426 16.642461280889314 25.182991915837633 940.1657515923541 25.004200663522557
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Clustered RES Sweeping Area 10 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 31.38222113499181 57.05858388180328 16.89586060998901 4.183068910354612 5.913551213496157 246.8485235119395 29.611426468257164
2 30.838356186296064 56.069738520538216 14.782160405697503 3.7832084585062735 5.173756141994126 215.9673635272406 26.36388325635375
3 28.869750713160666 52.49045584211027 13.145910028300813 3.4115257561285204 4.601068509905283 192.06174551347488 25.044381530698303
TOTAL| 91.09032803444855 165.61877824445176 44.82393104398733 11.377803124989406 15.688375865395564 654.877632552655 27.06452222333607
Clustered RES Sweeping Area 11 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 29.38295628382485 53.423556879681485 14.51145854809423 3.670408054707774 5.5178597344928635 212.01240938765667 27.16303330528214
2 26.657719638300982 48.468581160547224 13.290631723621793 3.3428364452154082 4.94411540369123 194.1761294821143 27.421128090376595
3 16.44294655788318 29.89626646887853 7.1016358608732055 1.856945450434203 2.4855725513056224 103.7548999273575 23.754256633569547
4 27.361246205354902 49.74772037337247 11.857175213758108 3.10722556650255 4.458936121977788 173.23332987300589 23.834610158548443
5 24.460096629400013 44.47290296254549 10.29976287357299 2.738483916997074 3.6466157205756207 150.47953558290126 23.15963696421463
TOTAL | 124.30496531476392 226.00902784502523 57.060664219920326 14.71589943385701 21.053099532043127 833.6563042530356 25.247072988184755
Clustered RES Sweeping Area 12 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 23.913203875614858 43.47855250111785 14.083169624261675 3.4049167886138525 5.8658674645175495 205.755108210463 32.39107287184777
2 26.411361885358527 48.02065797337912 13.171939989154229 3.334657334086183 4.983098431306444 192.44204324154313 27.429736586400516
3 27.124700256388753 49.31763682979773 12.792513351309164 3.2925827146727014 5.0172221605559315 186.89862006262703 25.939023387227518
4 18.88014641943387 34.32753894442522 8.693006971133288 2.2483496177298865 3.3293003797843306 127.00483184825731 25.323711627585315
5 14.824293163855462 26.953260297918998 4.2866232632685275 1.3147211687162648 1.5263662917648464 62.627565876353195 15.903913722821459
TOTAL| 111.15370560065146 202.0976465466389 53.027253199126875 13.595227623818888 20.721854727929106 774.7281692392437 26.238431820080375

4. AC Route Statistics (Clustered - Fall)

Clustered ARTCOL Sweeping Area 1 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 9.500356639911416 17.273375708929855 9.631446508552242 2.069121133091745 3.3710062779932852 140.71543348994828 55.758912854382324
2 14.171538053710176 25.76643282492759 11.865601343022876 2.646306759328836 4.152960470058005 173.35643562156417 46.05061718727152
3 18.578740057778276 33.77952737777869 13.384458784532768 3.068975509109418 4.684560574586468 195.5469428420237 39.62299008759227
4 14.776593985111724 26.86653451838495 11.03415605753488 2.5170181663698057 3.8619546201372073 161.20902000058462 41.070261778586044
5 4.583471201759438 8.333584003198972 2.9545200068725954 0.6908113301228221 1.034082002405409 43.16553730040862 35.453173637398486
6 22.064865512553215 40.11793729555132 14.025402901907158 3.31503185284948 4.908891015667506 204.91113639686358 34.960428794185376
7 16.65508717033115 30.281976673329336 7.9061437021584045 2.0214493226326815 2.7671502957554415 115.5087594885343 26.10841355386715
TOTAL| 100.3306526211554 182.4193684021007 70.80172930458092 16.328714073504788 24.780605256603323 1034.413265139927 38.812616184765595
Clustered ARTCOL Sweeping Area 2 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) Water (L) Efficiency (%)
1 20.97105721912178 38.1291949438578 13.448553614606556 3.180156278162491 4.743864398827546 196.48336830940184 35.27101381083047
2 25.55235223353291 46.45882224278715 13.525866717351327 3.355023400148633 4.749600306078159 197.61291274050294 29.113666822346644
3 19.7672289340373 35.94041624370419 12.06406664211089 2.879119939263281 4.222423324738814 176.2560136412401 33.56685287200644
4 30.62037862429857 55.673415680542874 8.817608869363697 2.689768427160494 3.107486782987353 128.82526558140364 15.838095725901969
TOTAL| 96.91101701099056 176.201849110892 47.85609584343247 12.1040680447349 16.82337481263187 699.1775602725485 27.159814772042722
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Clustered ARTCOL Sweeping Area 3 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) ‘Water (L) Efficiency (%)
1 18.62867255946104 33.8703137444746 11.27230558341905 2.7088945522171746 3.9453069541966665 164.6883845737523 33.28078289578273
2 23.181398972030603 42.14799813096472 14.870274905257695 3.5127187393164285 5.204596216840192 217.25471636581483 35.28109415553239
3 17.189163588115008 31.253024705663652 8.812898393139818 2.2004896563948466 3.0845144375989353 128.75644552377273 28.19854550443801
4 20.18338594446566 36.69706535357392 10.191605737168743 2.5616674402442854 3.5670620080090596 148.89935982003541 27.772263637359725
5 23.737812112514177 43,1596583863894 12.07883437015328 3.0272014778953578 4.227592029553648 176.4717701479395 27.9863993871703

TOTAL | 102.92043317658649 187.12806032106627 57.225918989138584 14.010971866068093 20.029071646198503 836.0706764313148 30.58115329734772

Clustered ARTCOL Sweeping Area 4 FALL Statistics

Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr) Debris (m3) ‘Water (L) Efficiency (%)
1 28.197961697984137 51.269021269062065 12.196589384590496 3.1727694253176706 4.268806284606674 178.19217090886713 23.789393834109415
2 31.24751114075478 56.81365661955415 14.774098953515654 3.720616504583796 5.170934633730476 215.84958571086375 26.00448524630027
3 26.117286278916847 47.485975052576094 8.793163976182583 2.503671420444011 3.077607391663904 128.46812569202757 18.51739164342074
4 20.619681043608676 37.49032917019759 5.282780840042845 1.6693316027100418 1.8489732940149954 77.18142807302596 14.091049497218918

TOTAL 106.18244016126445 193.0589821113899 41.04663315433158 11.066388953055519 14.36632160401605 599.6913103847844 21.261188008672274

Clustered ARTCOL Sweeping Area 5 FALL Statistics
Subroute Fuel (L) Distance (km) Serviceable Distance (km) Travel Time (hr)

Debris {m3)

‘Water (L)

Efficiency (%)

22.295196888093614

40.53672161471566

11.900670365240352

2.9666681345853534

4.1652346278341215

173.86879403616157

29.357752406203875

17.370085720831856

31.581974037876105

7.25564624375194

1.9348926139117253

2.539476185313179

106.00499162121582

22.97401117184847

17.960537904285488

32.65552346233721

7.08861123751318

1.9384448456766503

2.4810139331296135

103.56461018006755

21.707235058377584

26.915691462918385

48.937620841669734

10.790384288142132

2.9366981257223483

3.776634500849744

157.64751444975647

22.049262106657753

TOTAL

84.54151197612934

153.7118399565987

37.035312134647604

9.776703719896076

12.962359247126658

541.0859102872015

24.09398790952259
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