
Java Lock Contention Antipatterns and Their Detection

within Java Code

by

Joseph Robertson

A thesis submitted to the

School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Science in Computer Science

Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

April 2023

© Joseph Robertson, 2023

Java Lock Contention Antipatterns and Their

Detection within Java Code

Joseph Robertson

April 20, 2023

Abstract

Java Based Multithreaded programs are used in a wide variety of applications and con-

sequently many developers are required to create code designed for synchronized environ-

ments. However, finding problems in synchronized code can be a time-consuming task,

and an inability to properly find and fix all problems results in contention problems and

failures. Currently the approach used to find these problems is to run the code and, if prob-

lems are found, further investigate related areas. We have created a static analysis program

that examines input Java code and checks it against a series of antipatterns to determine

possible issues. The program was tested on several programs designed as examples of the

antipatterns, and a set of open-source code.

It was found that some of the antipatterns created do appear in open-source java code,

and the tool created for their identification was able to reliably locate them in testing and

open-source code.

Keywords— Java Concurrency; Lock-Contention; Run-time Faults; Static Analysis; Antipat-

terns;

i

Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored. This is a true

copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize

the University of Ontario Institute of Technology (Ontario Tech University) to lend this thesis to

other institutions or individuals for the purpose of scholarly research. I further authorize University

of Ontario Institute of Technology (Ontario Tech University) to reproduce this thesis by photocopy-

ing or by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research. I understand that my thesis will be made electronically available to

the public.

Joseph Alexander Robertson

ii

Statement of Contributions

A majority of this work was performed by me, some components appear in other previous work

that I was a part of:

N. H. Khan, J. Robertson, R. Liscano, A. Azim, V. Sundaresan, and Y.-K. Chang, “Lock con-

tention performance classification for java intrinsic locks,” eng, in Runtime Verification, ser. Lecture

Notes in Computer Science, Cham: Springer International Publishing, 2022, pp. 274–282, ISBN:

9783031171956.[1]

J. Robertson, A. Ahmed, A. Azim, R. Liscano, V. Sundaresan, and Y.-K. Chang, Java lock con-

tention classification and recommendation through synchronization antipatterns[2]

R. Liscano, A. Azim, J. Robertson, et al., A preliminary investigation into runtime fault identi-

fication and localization of java-based cloud-native microservice applications.[3]

iii

Table of Contents

Abstract i

Author’s Declaration ii

Statement of Contributions iii

Table of Contents iv

List of Tables vi

List of Figures vii

Chapter1: INTRODUCTION 1

1.1 INTRODUCTION . 1

1.2 MOTIVATIONS . 2

1.3 RESEARCH QUESTIONS . 3

1.4 CONTRIBUTIONS . 3

1.5 ORGANIZATION . 4

Chapter2: RELATED WORK 6

2.1 ANTI-PATTERNS . 6

2.2 DYNAMIC ANALYSIS . 11

2.3 STATIC ANALYSIS . 13

Chapter3: METHODOLOGY 17

3.1 ANTI-PATTERN BACKGROUND INFORMATION 18

3.2 Anti-pattern definitions . 21

3.3 APPROACH . 33

3.4 READING AND CLASSIFICATION PROCESS . 35

3.4.1 Reading Files/Parsing . 35

3.4.2 Analysis/Pattern Matching . 36

3.4.3 Recommendations . 39

3.4.4 Antipattern Sources . 40

3.5 classification output explanation . 41

iv

Chapter4: VALIDATION 44

4.1 SAMPLE DATASET . 45

4.2 VALIDATION TEST SETUP FOR OPEN SOURCE DATA TESTING 46

4.3 TEST DATASET . 47

4.3.1 Reviewing Samples From Test Data . 48

Chapter5: CONCLUSION 54

5.1 THREATS TO VALIDITY . 55

5.2 FUTURE WORK . 55

5.3 LIMITATIONS . 55

Appendices 61

AppendixA: 62

v

List of Tables

2.1 Table summarising important points taken from related works. 7

3.1 Table Summary of Antipattern types. 24

4.1 Results of classification(horizontal) vs expected result(vertical) 1’s mark antipat-

tern identification result. 46

vi

List of Figures

3.1 Antipattern definition ”Busy Database antipattern” from Microsoft Azure docu-

mentation[20] . 19

3.2 Example antipattern (bug pattern) description from SpotBugs documentation.[5] . 20

3.3 AST of antipattern generated from Hot1 . 22

3.4 AST generated from open source code taken from Apache Hbase 23

3.5 Process used for classification . 35

3.6 Detailed reading process . 35

3.7 Detailed analysis process . 37

3.8 Detailed recommendation process . 38

4.1 Output categories of Apache HBase. The vectors represent

[Hot1 Hot2 Hot3 1 Hot3 2 OverlySplit Simultaneous Unpredictable] 47

4.2 Apache Hbase, Glide, and EventBus open source projects distribution of antipat-

terns found. The vectors represent [Hot1 Hot2 Hot3 1 Hot3 2 OverlySplit Simulta-

neous Unpredictable] . 53

A.1 Hot1 AST annotated with signs of contention . 63

A.2 Hot2 AST annotated with signs of contention part 1 64

A.3 Hot2 AST annotated with signs of contention part 2 65

vii

1

Chapter 1

INTRODUCTION

1.1 INTRODUCTION

Multithreading is used in a variety of applications as it makes it possible for a program to organize

multiple tasks to while having them avoid obstructing each other, while still reaching the correct

result. Due to this there is a demand for software that is able to automate the detection of problems

that occur in these systems.

In Java, which is one of the most widely used programming languages and the focus of this thesis,

concurrency is handled primarily through the use of synchronized blocks and methods. This allows

the programmer to control the interaction behavior of objects through the monitors. Each object in

java has an intrinsic lock, also known as monitor lock or monitor, that allows the program to control

access to objects and ensure that code is executed in an order that satisfies the dependencies.

This means that a programmer can easily ensure that threads will not interfere with each other’s

processes, without needing to manually implement that at a system level. However, if concurrent

programming is used it will also introduce contention, this is expected and introduces acceptable

overhead in an ideal situation, but if the contention reaches a point where it interferes significantly

with the execution of the program then it becomes an issue.

One approach used to find potential instances of lock contention problems in source code is static

1.2. MOTIVATIONS 2

analysis. Static analysis is the process of examining code without its execution. This has the ad-

vantages of directly analysing the code, being faster than dynamic analysis, not requiring a full test

environment, and not being reliant on runtime conditions. This has the trade off of not being able to

directly run code and confirm any conclusions.

A method of testing that could check for lock contention problems would execute the program while

measuring performance statistics and if those match with numbers that indicate lock contention is-

sues, then a possible issue would be identified, examples of dynamic analysis tools are async-profiler

or perf[4]. Additionally, it can be combined with dynamic analysis to give a more in-depth look at

the possible issues with a program.

As the application described in this work targets concurrent programming specifically, it is designed

to work with a dynamic analysis tool to first confirm the presence of contention which it cannot be

reliably done through static analysis alone.

The program, that will be described in further detail later in this work, will take in code from syn-

chronized regions which show signs of contention and then decide which of a series of patterns

that it may belong to. These are Hot1,Hot2,Hot3 1, Hot3 2, Overly Split, Simultaneous, and Un-

predictable. The Hot Antipatterns relate to one portion of the code that generates the problem,

Overly Split describes a group of critical sections that cause an issue due to increasing the volume

of requests, Simultaneous is a incorrectly handled synchronization, and Unpredictable is a problem,

usually syntactic, that causes the program to contend or fail unexpected. Of these types the Hot

antipatterns are the most important and represent the largest group in actual code. The antipatterns

will contain the name, a definition, how it may be found or sings of its presence, example code, and

general recommendations.

1.2 MOTIVATIONS

Many currently used static analysis tools are not designed for detecting contention problems, and

antipattern definitions of contention issues are frequently informally defined. Static analysis tools

1.3. RESEARCH QUESTIONS 3

normally focus on finding bugs and making sure that code sticks to coding standards, this work to

find a majority of problems with a given program, however it is not effective at finding or solv-

ing contention problems. This means that developers need to struggle to find the actual cause of

a problem or consult someone with specialist knowledge to find the source of the problem. If an

automated system could find the source of the problem and describe what is wrong, then it would

make the creation of concurrent programs much easier for many developers.

However, the informal nature of many code patterns makes them unsuitable for an automated ap-

proach, some systems resolve this by using other systems to introduce patterns such as a User

Interaction Model[5], but that requires a pre-existing dataset and needs the classifier to be able to

differentiate between the positive and negative examples, which is not simple with concurrency is-

sues.

Therefore, we propose an automated static analysis system that will use a new set of code concur-

rency antipatterns to classify problematic contended regions accordingly and propose solutions that

are applicable to each.

1.3 RESEARCH QUESTIONS

As this work focuses on both pattern definitions and classification both must be addressed in this

paper. The research questions that this work hopes to answer are:

• Are the proposed antipatterns represented in real world code?

• Can recommendations based on the type of the antipattern be constructed provide unique

solutions?

• How reliably can this system differentiate between anti-patterns?

1.4 CONTRIBUTIONS

The contributions of this work are:

1.5. ORGANIZATION 4

• The creation of a set of antipatterns describing Java lock contention issues.

• The creation of a dataset of the antipatterns to be used in testing and training.

• A program that identifies the antipatterns in java source code.

• Validation of the antipatterns on open source data.

1.5 ORGANIZATION

This thesis in split into the following chapters. Chapter two will review the related work around the

topics of code patterns and anti patterns, as well as the topic of static code analysis. The review of

antipatterns shows formats and uses of antipatterns that occur in other work and how they relate to

Java lock contention problems. The review of static analysis covers multiple techniques and tools

used to analyze code as well as advantages and disadvantages for each of them.

Chapter three will go over the methodology, the first item covered is the process used by the program

to analyze Java source code, including detail on how it reads, matches, and provides recommenda-

tions. Additionally, there is an analysis of anti pattern formats with advantages and disadvantages

for each, including how well they work in a lock contention context.

Next, there are definitions and example code for each of the lock contention antipatterns in this the-

sis as well as some background information. It starts by reviewing some other ways that antipatterns

are used and stored and evaluates how well they apply to the context of lock contention and automa-

tion. Finally, there are detailed explanations of each of the code antipattern, talking about how each

works, why it causes problems, how it may be detected in static analysis, and briefly discuss the

code example.

In chapter four there is the validation of the work in chapter three, it starts by describing the second

dataset and the test setup that is used. The first dataset is the dataset given as an example at the

start of chapter 3, it is executed and checked to see if they return the correct patterns as expected by

their definitions. For open source the Apache HBase GitHub repository was used, the results of its

1.5. ORGANIZATION 5

execution were manually verified to evaluate the correctness of the algorithm.

Chapter five is the conclusion which will give an overview of the results, threats to the validity of

this work based on the approach, and what future work is planned in relation to this.

6

Chapter 2

RELATED WORK

Both lock contention and static analysis are fields that are currently being worked on, there are

many tools designed to check code for errors and style violations. However, they are not designed

to locate the types of problems that are specified in the list of antipatterns. Some of them are able to

detect a subset of the anti-patterns in our list, but they are not the ones related most directly to lock

contention.

We will discuss several methods of static and dynamic analysis currently used and give background

on anti-patterns with some examples of their use.

2.1 ANTI-PATTERNS

Concurrent Bug Patterns and How to Test Them by Eitan Farchi et al.[6] presents a categorized

taxonomy of concurrent bug patterns and then tested their patterns by creating heuristics for Con-

Test[19] and evaluating their performance.

The paper initially presents the patterns by category: ”Code Assumed to Be Protected”, ”Interleav-

ings Assumed Never to Occur”, and ”Blocking or Dead Thread Bug Pattern”. ”Code Assumed to

Be Protected” is straight forward, the code should use a synchronization method but due to the pro-

grammers mistake it does not, the first example type named is ”Nonatomic Operations Assumed to

Be Atomic”, it is also present in the antipattern list as Simultaneous Access.

2.1. ANTI-PATTERNS 7

Paper Important point(s)

Concurrent Bug Patterns and How to Test Them[6] Pattern categories

ConTest tool

SyncPerf: Categorizing, Detecting, and Diagnosing

Synchronization Performance Bugs[7]

Bug categories with related solu-

tions

Example detection tools

DECOR: A Method for the Specification and Detection

of Code and Design Smells[8]

Code smell descriptions

DECOR tool

Defining a Catalog of Programming Anti-Patterns for

Concurrent Java[9]

Listing of antipatterns

System of antipattern definitions

Recognizing Antipatterns and Analyzing their Effects

on Software Maintainability[10]

Evaluating source code

An Empirical Study of the Impact of Two Antipatterns,

Blob and Spaghetti Code, On Program Comprehen-

sion[11]

Impacts of antipatterns

HaLock: Hardware-assisted lock contention detection

in multithreaded applications[12]

Dynamic analysis methods

Profiling and tracing support for Java applications[4] Evaluation of JVM performance

tools

Continuous and Efficient Lock Profiling for Java on

Multicore Architectures[13]

”Free Lunch” profiler, critical

section pressure

Type 1/2 contention

Static analyses for eliminating unnecessary synchro-

nization from java programs[14]

Static analysis tool that removes

unnessisary conention

Comparing Four Static Analysis Tools for Java Concur-

rency Bugs[15]

Bug patterns vs antipatterns

How to evaluate static classifiers

Discussion of non-determinism

A security pattern detection framework for building

more secure software[16]

Static pattern detection method

Detecting Anti-Patterns in Java EE Runtime System

Model.[17]

Antipattern template format dis-

cussion

Falcon: Fault localization in concurrent programs[18] pattern frequency statistics

runtime behaviors

Table 2.1: Table summarising important points taken from related works.

2.1. ANTI-PATTERNS 8

”Interleavings Assumed Never to Occur” is a similar issue to ”Code Assumed to Be Protected”,

however it refers to a different source of issue, it is mostly present as a race condition type issue and

the first example type is The sleep() Bug Pattern where a parent thread waits a set amount of time

for a child thread to return a value and there are issues with timing. This type of issue is not present

in the types we defined types due to them focusing on static analysis of lock contention issues inside

the critical section. The final type, ”Dead Thread Bug Pattern”, relates to situations where a thread

will hold a lock indefinitely either by attempting to preform an operation that will never terminate

or due to an unexpected and improperly handled exception. Again, this is not present in our set of

code anti patterns as it has more to do with runtime issues and is not an issue that static analysis is

well suited to.

The tool that is used for analysis, ConTest, is a dynamic analysis tool that works by instrumenting

the critical sections in code and manipulates the behavior of the code to attempt to discover potential

sources of contention. As a dynamic analysis tool its approach does not translate well to a static

setting, however its categorization of bug patterns is useful for analysis purposes.

SyncPerf: Categorizing, Detecting, and Diagnosing Synchronization Performance Bugs by Mo-

hammad Mejbah ul Alam et al.[7] outlines a set of categories fixes and strategies that relate to ex-

plicit synchronization primitives. The types are Improper Primitives, Improper Granularity, Over-

Synchronization, Asymmetric Contention, and Load Imbalance. Improper Primitives and Improper

Granularity are when the lock is not set up efficiently, Over-synchronization is synchronization of

safe operations, Asymmetric Contention is where the parts of a divided lock do not have balanced

traffic, and Load Imbalance is where a group of threads are contending more than others similar to

Hot Section.

SyncPerf also presents two tools related to these types. The first is a detection tool that is very

light and designed to run in a development setting, it is able to detect susceptible callsites and syn-

chronization variables with potential performance issues as well as identify some root causes. The

2.1. ANTI-PATTERNS 9

second tool is used when the first is unable to tell what the root cause of a problem is and collects

more data.

DECOR: A Method for the Specification and Detection of Code and Design Smells by N. Moha

et al.[8] analyses several approaches to detect code smells and their limitations. To address those

problems they propose DEtection & CORrection(DECOR) which contains all the steps necessary

for the specification and detection of code and design smells. The correction component was left

for future work. The detection component was named DETection EXpert (DETEX).

Descriptions of code smells in related work are discussed in section 2.1, however these mostly use

text-based descriptions. Next a series of detection methods were described the first used manual

inspection of the code so it does not scale well, next a metric based approach using the IPLASMA

tool was described, it extracted metrics that were applied to a series of thresholds to match to smells.

There are several other approaches that use their own language, or significantly involve a human in

their execution.

DETEX detects code and design smells by this process: Step 1 is to extract a vocabulary from de-

sign pattern descriptions, step 2 combines the vocabulary with several other features that describe

the code smells, step 3 translates the descriptions into an algorithm form, step 4 is detection that

uses algorithms from step 3, and step 5 is validation that uses manual verification to check results.

For the application proposed in this thesis the DETEX process is somewhat applicable, a vocabulary-

based approach would not work due to the similarity of many operations in a synchronized setting

as well as the importance of the order in which operations occur, however some of the other data

that they collect in the second step such as structural and behavioural metrics could be used for this

classification.

Defining a Catalog of Programming Anti-Patterns for Concurrent Java by Jeremy S. Bradbury

et al.[9] organizes and defines a set of low-level antipatterns for use with concurrent Java. It first

provides the format for how the antipatterns will be laid out: the pattern name, the problem, the

2.1. ANTI-PATTERNS 10

context, and the solution. Pattern name, problem, and solution are straightforward definitions, con-

text describes how the problem occurs from a programmer perspective.

The set of antipatterns that this paper provides are: Nonatomic operations assumed to be atomic,

Two-state access bug(synchronized operations are not necessarily in the right order), Wrong lock

or no lock bug, Doublechecked lock, Sleep()(manually delaying a thread to try to help with syn-

chronization and race conditions), Missing or nonexistent signals, Notify instead of notify all, A

“blocking” critical section(a lock is never released), Interference, Deadlock, Starvation, Resource

exhaustion, And Incorrect count initialization.

These antipatterns a good summary of types of contention issues, however they mainly focus on

functional issues, rather than performance problems.//

Recognizing Antipatterns and Analyzing their Effects on Software Maintainability by Denes

Ban et al.[10] works to evaluate the relationships between antipatterns and software maintainability,

number of bugs, and future faults. It starts by defining patterns as recommended solutions to com-

mon design problems according to their situation and antipatterns as common solutions to a problem

that produce negative outcomes. Additionally, it states that an antipattern must have a solution that

fixes the problem while maintaining the function of the code.

Their approach involved using a machine learning system to use a set of metrics generated from a

LIM model (Language Independent Model) to test connections between the presence of their listed

antipatterns and software maintainability, number of bugs, and future faults. The nine antipatterns

they examined are: Feature Envy, Lazy Class, Large Class Code, Large Class Data, Long Function,

Long Parameter List, Refused Bequest, Shotgun Surgery, and Temporary Field. They found a pos-

itive correlation between the number of bugs and the number of antipatterns, a negative correlation

between the number of antipatterns and maintainability, and it was able to perform almost as well

as several other methods.

The patterns presented in this paper are mostly not relevant to the field of concurrent programming,

however the method used to evaluate the source code is related to the approach we used.

2.2. DYNAMIC ANALYSIS 11

An Empirical Study of the Impact of Two Antipatterns, Blob and Spaghetti Code, On Program

Comprehension by Marwen Abbes et al.[11] seeks to detect the correlation between program read-

ability and the presence of antipatterns. They looked at two antipatterns “Blob” a single large class

the holds a significant portion of a system’s functionality and only uses other classes as data holders,

and Spaghetti Code where classes are not properly structured, methods are badly named and use few

parameters, and global variables are used heavily.

The testing was done on Java based systems with combinations of Blob, Spaghetti Code, and no

antipatterns by a group of graduate students and professional developers. It found that the presence

of the a single antipattern was not a major problem for the participants, however both antipatterns

resulted in a significant increase in difficulty.

While this paper does not connect directly to the problems addressed in this thesis, it does help to

illustrate what types of problems other antipatterns can cause to developers.

2.2 DYNAMIC ANALYSIS

HaLock: Hardware-assisted lock contention detection in multithreaded applications bs Yongbing

Huang et al.[12] presents a hardware-based lock profiling tool that works by observing memory.

Due to its use of a memory tracing tool, it has minimal overhead.

This paper establishes two parts of dynamic analysis, the first is observing a system without inter-

fering in its operations, and the second is recording the data so that it can later be analyzed. The

described ways of observing a system are instrumentation, performance counting, and sampling.

Instrumentation is the act of modifying the original code to produce outputs that can be monitored

to evaluate the performance of the system. Performance counting is a system like JLM that monitors

the actions of the program to produce certain values, such as operation types and time information.

Sampling is an alternative to these two methods that attempts to reduce overhead by only collecting

2.2. DYNAMIC ANALYSIS 12

data at intervals, this has the advantage of less execution time and less data written, but also has the

possibility of missing short critical sections.

Once this data is gathered it can be analyzed through manual or automatic systems, however they

would all be examined outside of the operation of the original test environment in order not to in-

terfere.

HaLock has good accuracy and scalability, it also quickly reads read performance counters and

eliminates clock inconsistencies due to the additionally hardware.

Profiling and tracing support for Java applications by Andy Nisbet et al.[4] tests and evaluates

JVM with different tools for performance evaluation. This paper focuses on sampling-based tools,

and the limitations they have due to the system they use to acquire sample points. Sampling profilers

work by recording the call stack of functions and methods that should represent the state of the

program at that point in time.

Thread execution time for methods is calculated by the number of times the method appears in stack

traces, this relies on the sampling points being fully random and being collected fairly. The problem

is that many approaches are reliant on restricting sampling to safe points that are inserted by the JIT

compiler to support GC which introduces bias.

Continuous and Efficient Lock Profiling for Java on Multicore Architectures by Florian David et

al.[13] describes a profiler called free lunch that uses a metric called critical section pressure using a

modified Java Virtual Machine Tool Interface (JVMTI) and thread data. This paper also established

a distinction between lock contention types at runtime: type one where the contention is a result of a

large slowdown, and type two where the contention is a result of multiple smaller threads accessing

a locked region too quickly. This work applies the types to static analysis as well: type one is where

the problem originates from a single lock object, and type two is where the problem lies outside of

the critical section. Due to this distinction, the code examples provided in this paper are primarily

type one.

2.3. STATIC ANALYSIS 13

2.3 STATIC ANALYSIS

Static analyses for eliminating unnecessary synchronization from java programs by Jonathan Aldrich

et al.[14] presents and evaluates static analyses that help to reduce synchronization overhead by de-

tecting and removing unnecessary synchronization. The situations that it looks for are where there

is no contention possible during the task, or there are relationships between monitors that mean

some may not be required.

The optimizations that this paper discusses are split into three parts reentrant monitors, enclosed

monitors, and thread local monitors. Reentrant monitors are where a thread attempts to acquire a

lock that it already possesses, the optimization is to create multiple versions of the same code but

only one is explicitly synchronized, while the other is only able to be accessed from the first.

An enclosed monitor is a dependency between monitors that allows one to rely on the other’s syn-

chronization, this is only possible if it can be proven that the dependency is always true, if there is

another situation where the second can be accessed or another monitor that can take the place of the

first in the dependency order then the optimization is not possible.

Thread local monitors are where a thread creates a class that can only be accessed by itself, in this

situation the synchronization does nothing, as the is only one possible thread that can enter.

The enclosed monitor optimization is a possible element that could be added to the recommender

created for this thesis in the future as it focuses only on critical sections and their structure.

Comparing Four Static Analysis Tools for Java Concurrency Bugs by A Mamun et al.[15] is an

evaluation of 2 open source and 2 commercial static analysis tools with regards to how well they

can detect bugs in multithreaded code. The goal is to determine whether commercial or open source

is better and how well static analysis performs in general.

During the paper they discuss non-determinism and why it makes it static analysis particularly

difficult for multithreaded code due to interactions between threads that are decided at runtime.

2.3. STATIC ANALYSIS 14

Additionally multithreaded programs have an additional set of problems on top of what other pro-

grams can. This paper splits the problems by two properties: safety and liveness, however states

that they are not helpful for classification. The paper also makes a distinction between bug patterns

and antipatterns. Bug patterns are common errors that can occur in the program, while anti patterns

are mistakes that are made while designing the program. However, in the context of concurrent

software testing, bug patterns and antipatterns are used interchangeably.

The data used for testing came from two sources: a set representing concurrency bugs and the sec-

ond set representing concurrency bug patterns. The first came from a concurrency bug benchmark

suite, and the second set is a collection of Java concurrency bug patterns and antipatterns which

they collected or wrote programs for, each one is 10 to 30 lines long. They identified 87 unique bug

patterns from 141 bug patterns.

The end result was that the commercial classifier Jlint was most effective with a 0.47 detection ratio,

however the other commercial classifier used was ranked last with a ratio of 0.13 so there is no con-

clusion on commercial vs open-source classifiers. Additionally, the average performance was 0.25

and each one produced a false positive rate approximately equal to the number of true positives, so

they state that static analysis alone is not sufficient to properly detect concurrency bugs

A security pattern detection framework for building more secure software Aleem Khalid Alvi

et al.[16] presents a framework for detecting security patterns. Security patterns are the solution to

security design problems or anti-patterns. The framework consists of three parts: class relationship

discovery, security pattern matching, semantic analysis, and detection report.

The class relationship discovery takes, a software system model and an empty class relationship

matrix as input and uses the software model to detect and record the interactions between the classes

in the relationship matrix. The relationship matrix contains values of one or zero showing whether

or not the classes are connected.

Security pattern matching uses the filled class relationship from the first step and a set of security

2.3. STATIC ANALYSIS 15

pattern matrices that correspond to the set of known patterns, it will then return a list of patterns

which match with the original relationship matrix.

Semantic analysis uses dictionary data extracted from documentation and system requirements to

reduce the number of possible matches to make them more useful.

The detection report returns the information for the previous step in a human readable format and

includes information about the identified pattern(s) and important locations in the code.

For testing three open-source Java-based systems were used: Simple Android Instant Messaging

(SAIM) client (Mermerkaya, 2013), the Automated Teller Machine Simulator (ATM sim.) (Bjork,

2019), and the Electronic Voting System (VoteBox).

Security patterns are always present in any security application and there are catalogs available that

provide details of security patterns using standard security pattern templates.

Detecting Anti-Patterns in Java EE Runtime System Model Lei Zhang et al.[17] proposes an

approach to classification of java antipatterns based on a Java EE meta-model that uses QVT

(Query/View/Transformation) for the detection process.

In this work antipatterns are represented as a template that contains the name of the antipattern,

what runtime elements are needed to detect it, a text description of the pattern, and the QVT scripts

to identify and locate the elements in code.

The approach creates a runtime model based on the actual code using SM@RT, then classifies that

abstract model based on the execution of the QVT script.

This work also points out that although there is significant work and documentation on anti-patterns

they are usually represented graphically or textually using informal language and, in the case of

Java EE anti-patterns, they are usually designed with one specific system in mind. This makes clas-

sification difficult to fully automate, due to the lack of an appropriate dataset. This issue is shared

by out setup as well, as readily available datasets are not available for all types of antipatterns.

This model is limited by the QVT language and is unable to detect any pattern that cannot be repre-

sented in it. These patterns include those that are “highly tangled in source code”, and ones that are

2.3. STATIC ANALYSIS 16

not well suited to the language, which includes some contention issues such as Excessive Dynamic

Allocation and Spin Wait.

Falcon: Fault localization in concurrent programs by Sangmin Park et al.[18] presents a dynamic

fault localization technique that locates problematic data access patterns in concurrent programs by

examining data gathered from code instrumentation. The actual process used is not relevant as it is

dynamic. However, the background information provided is quite helpful.

The first point they make is that concurrency faults are hard to find because they usually only appear

under specific situations and are dependant on runtime behavior and thread parameters which are

somewhat random. Because of this many fault detection tools will detect patterns without being able

to distinguish problematic patterns from benign ones, this is also true in the case of lock contention,

where the degree of the convention is dependant on runtime factors and therefore problematic pat-

terns found in code are not necessarily bad.

Additionally, the paper provides some statistics on concurrency usage from 2007 from Microsoft,

one of the statistics they report is that nearly two-thirds of the developers and testers reported that

they had to deal with concurrency issues and over half of those had to work on debugging concur-

rency issues at least once a month.

Finally, the paper cites that these types of faults are most commonly data races(multiple threads ac-

cessing improperly protected resources), atomicity violations(operations treated as atomic that are

not), and order violations(order dependant tasks improperly handled), and that they are also ranked

as the most common and difficult source of concurrency faults

17

Chapter 3

METHODOLOGY

The beginning of this work was a list of lock contention anti-patterns. Once that was constructed

and examples were created, then the classifier was made to locate instances of those anti-patterns in

Java code and which was then tested against real world examples to verify the anti-pattern list. The

static classifier is designed to work together with a larger system that will include dynamic analysis

to provide more context for the recommendation.

Limits of Static Analysis

Static analysis is effective at determining the source of a problem in code without running it and it is

generally faster and more transferable than dynamic analysis, however it does have limitations. The

first is that without running code it is impossible to tell the actual result of that code. Additionally, in

the case of concurrent programming, more complex interactions between critical sections are hard

to spot and external factors cannot be accurately accounted for.

For this reason, it is impossible to say without runtime data whether or not a contention anti pattern

will result in an actual performance problem.

3.1. ANTI-PATTERN BACKGROUND INFORMATION 18

3.1 ANTI-PATTERN BACKGROUND INFORMATION

Definition Format

The antipatterns defined will have several components, the first is a text description of the problem,

where indicators of the antipattern may be located in code, and what might fix the problem, next

there is a code example of the antipattern that will help to illustrate the problem and how it occurs.

Additionally, there is a highlighted Abstract Syntax Tree to help show what signs might point to

specific antipatterns and how they manifest in an AST.

Comparison With Other Antipattern Formats

To decide how to represent antipatterns we went through several possible options, to find the most

appropriate form to record and explain them.

Plain Text and Examples

The most classic and widely used form is to use plaintext descriptions and possibly code examples,

this has been used for patterns and antipatterns since they were first formally created for use in

computer engineering. This description could be formal or informal, and software design textbooks

will usually use this format to explain in detail what a pattern is and how it may be used.

The text component of the description should cover what the antipattern is, how it is created,

what effects it may have, and the antipattern’s name. In figure 3.1 is included an example from

Microsoft’s Azure performance antipattern page “Busy Database antipattern”[20] to show what one

of these might look like The code example may be included to illustrate how a pattern is used or

what situation it may be used in in code, these can be as actual code or pseudocode. The example

from f igure 3.1 also contains a code example on its web page to support their definition.

This format is used because it allows a human to clearly understand the definition, however it is

not suitable for an automated application, even if the pattern is represented formally. Therefore, it

3.1. ANTI-PATTERN BACKGROUND INFORMATION 19

Figure 3.1: Antipattern definition ”Busy Database antipattern” from Microsoft Azure doc-

umentation[20]

is not the only format that is needed.

User Interaction Model

A user interaction model is a way of representing antipatterns that is only readable by a computer,

it works by providing an initial description of the antipattern, and having a user provide feedback

to classify code examples as positive or negative. the feedback is then fed into the algorithm along

3.1. ANTI-PATTERN BACKGROUND INFORMATION 20

with the other data from the rest of the patterns in the dataset and to match to each of the starting

set of antipatterns.

An example of this is SpotBugs, a Java static analysis tool for finding bugs, that uses a set of over

400 bug patterns. Each pattern has a name associated with it and a short description. An example

description is in figure 3.2. This is the only description of the antipatterns provided. Additionally,

it is possible to add new detectors to an instance of SpotBugs, however as this is a User Interaction

model based tool adding patterns and antipatterns to it is done by adding good and bad examples to

the system and letting the classifier create the detector.

Figure 3.2: Example antipattern (bug pattern) description from SpotBugs documenta-

tion.[5]

The detector did not work well for the examples tested from the example dataset, this may be due

to static analysis not being able to fully differentiate between contention scenarios by itself.

This model was not used due to this limitation.

Structure based AST

An Abstract Syntax Tree(AST) is a way of representing code that eliminates some inconsistency in

code and allows an observer to capture the structure and meaning of the code.

An example AST of one of the sample codes is shown if figure 3.3. This AST does not capture a

full program, but rather a single critical section extracted from a program, this was done to focus on

the relevant parts.

3.2. ANTI-PATTERN DEFINITIONS 21

Analysis of this would then work by comparing the structure of the tree and values of nodes to

determine similarity to other trees, however the problem that arose during investigation was that

many ASTs generated from java code have a very similar structure, especially in the case where

they are all generated from synchronized regions. A second AST example is shown in figure 3.4.

Each tree shares the features of mostly extending to the left of the root node and sharing a similar

number of nodes at each level. This problem is only increased by the analysis of open source code

that shows that many critical sections are mostly short, meaning there is not much of a structure to

analyse.

To fix this issue the primary focus was shifted to the values of nodes, and only on some structural

elements that may exist in code samples.

3.2 Anti-pattern definitions

Hot Section 1 Antipattern

Description

A Hot Section is a situation where one critical section is the cause of a significant portion of the

contention issues in a system, there are multiple ways it can be created. The first way that a Hot

Section can be created is that one critical section is causing the contention issues by itself. This can

be due to either the process in the critical section being very large and taking the thread a significant

amount of time, or a large amount of traffic through the lock which will create a problem regardless

of the length of the process.

Detection/solution notes

As this is a problem that relies on the entire critical section there is no one sign that there is a prob-

lem, making Hot Section type 1 a general category rather than a situation with a specific solution.

Despite there being no specific solution to this problem there are some solutions that can be applied

to this type of problem, they are to reduce the time needed for the task inside the lock to complete

3.2. ANTI-PATTERN DEFINITIONS 22

Figure 3.3: AST of antipattern generated from Hot1

3.2. ANTI-PATTERN DEFINITIONS 23

Figure 3.4: AST generated from open source code taken from Apache Hbase

or to break apart the critical section where possible and non synchronized operations.

If the problem comes from too many attempts to access the critical section, a frequent access prob-

lem, then the solution would need to change the code around the critical section and other compo-

nents because the source of the problem is outside of the critical section, the first solution would be

to switch the synchronized object to a different style to allow it to have multiple users at once and

split the required throughput if possible. If that is not an option, then you need to either significantly

speed up the critical section or reduce the number of calls made to it.

Due to these lock contention antipatterns being designed for a static context, they are not directly

tied to performance metrics. The same code could manifest different runtime behavior depending

3.2. ANTI-PATTERN DEFINITIONS 24

Type Problem Signs General Solutions

Hot Section 1 Significant slow from one critical sec-

tion Function calls/network calls inside

critical section Long tasks

Lock splitting

Lock stripping

Hot Section 2 Significant slow from one lock monitor.

Many critical sections use the same lock

object.

Change in synchronization

method

Remove/speed up bottleneck

Critical section

Hot Section

3 1

Frequent acquires to one critical section

Loop immediately outside relevant crit-

ical section

Lock stripping

Hot Section

3 2

Significant slow from critical section

Loop inside relevant critical section

Reduce lock granularity

Unpredictable Unreliable/unexpected performance

data

Correct improper definitions

Simultaneous Unexpected contention or data modifi-

cation

Fix synchronization

Overly Split Significant slow from one lock monitor

primarily from one method Short syn-

chronized regions

Reduce lock granularity

Table 3.1: Table Summary of Antipattern types.

on what the rest of the program is doing. The antipattern only describes a possible source of con-

tention and it is only problematic once the frequency or duration of the task becomes too much, the

exact amount that describes “too much” depends on the user.

Hot Section 2 Antipattern

Description

The second type of Hot Section is where the one synchronized object is being accessed throughout

the program. Similar to the frequent access portion of Hot Section 1, it is harder to pinpoint the

issue here due to the problem not occurring inside an individual critical section as it has to do with

the behavior of the program, or with a lock variable that is used in multiple places that combine to

create the problem.

3.2. ANTI-PATTERN DEFINITIONS 25

Listing 1 Hot Section One Code Example

class Hot1{

Object Hot1;

public void doSomething(){

synchronized(Hot1){

while(true){

System.out.println(Hot1);

}

}

}

}

Listing 2 Hot Section One Code Example With Solution

class Hot1{

Object Hot1;

public void doSomething(){

while(true){

Object A;

synchronized(Hot1){

A=Hot1

}

System.out.println(A);

}

}

}

Detection/solution notes

Due to the described behavior this can be detected either through repeated use of the lock object, or

by examining the structure directly around the synchronized region.

However, this may not be possible, if it is not then the solutions that remain are what was used in

the previous section of modifying the critical section(s) it takes less time or reducing the overall

number of calls made to significant critical sections.

As this is not a problem due to one section, the solution also works differently, the most straightfor-

ward option is to split the lock into multiple smaller ones, either by changing to logic or by using a

3.2. ANTI-PATTERN DEFINITIONS 26

data type that allows concurrent access.

This situation is not necessarily a problem, as many locks using the same object may be part of the

system design. However, if there are enough locks spread across the program then they can cause

a overall slowdown, additionally if one critical section holds the lock for a long time, then it can

affect the rest of the program.

In Listing 3 there is an example of Hot Section 2 where the object “Hot2” is used in both critical

sections. In the example solution, Listing 4, one of the critical sections is removed due to the object

type being changed to an atomic type to reduce the time spent in critical sections across the program.

Listing 3 Hot Section Two Code Example

public class Hot2{

int Hot2;

public void task1(){

synchronized(Hot2){

System.out.println(Hot2.toString());

}

}

public void task2(){

synchronized(Hot2){

Hot2+=1;

}

}

}

Hot Section 3 Antipattern

Description

The third type of contention is caused by loops in or around critical sections.

This type of problem will look very similar to Hot Section-Type 1 at runtime depending on the

positioning and functions of the loops. Determining if this would be a problem with purely static

3.2. ANTI-PATTERN DEFINITIONS 27

Listing 4 Hot Section Two Code Example Fixed

public class Hot2{

AtomicInteger Hot2;

public void task1(){

System.out.println(Hot2.get());

}

public void task2(){

synchronized(Hot2){

Hot2.set(Hot2.get()+1);

}

}

}

analysis may be impossible due to variables only set during runtime. However, given that this as-

sumes that the system already knows that there is contention occurring, static analysis should be

sufficient to find the problem. To fix the problem would be done in two general methods depending

on how the loops are constructed and placed, the solutions are similar to Hot Section-Type 1.

Detection/solution notes

Listing 5, class Hot3 1, has the loop outside of the critical section which causes the thread to attempt

to enter the critical section quickly after exiting, this should result in a frequent access problem due

to not changing the length of the task but increasing the number of acquires and percentage of time

spent with the lock held. Therefore, detecting it would involve looking for loops or equivalent be-

havior close to the beginning of the critical section, if there is a critical section inside of a loop

it does not necessarily mean that it is this type of problem as the other tasks inside the loop may

reduce the effect to a manageable level.

In Hot3 2 there is a loop inside the critical section which multiplies the execution time of the oper-

ation inside the critical section, in that case the solutions from Hot Section-Type 1 should apply, as

this problem is a subtype of Hot Section Type 1. In Hot1 The code example is a loop inside a critical

section that extends the time spent inside the critical section, detecting this would involve looking

for loops or recursive structures inside critical section and moving as much as is possible outside of

3.2. ANTI-PATTERN DEFINITIONS 28

Listing 5 Hot Section Three One Code Example

public class Hot3_1{

Object Hot3_1;

public void doSomething(){

Boolean x=true;

while(x){

synchronized(Hot3_1){

x=System.currentTimeMillis()==123456789;

}

}

}

}

Listing 6 Hot Section Three One Code Example fixed

public class Hot3_1{

Object Hot3_1;

public void doSomething(){

int time;

do{

synchronized(Hot3_1){

time=System.currentTimeMillis();

}

}while(time==123456789);

}

}

the critical section to create the non problematic state of Hot Section Type 3 2, additionally Hot3 1

becomes a problem depending on how much of the loop is spent inside the critical section as it

significantly increases the hold time of the lock.

3.2. ANTI-PATTERN DEFINITIONS 29

Listing 7 Hot Section Three Two Code Example

public class Hot3_2{

Object Hot3_2;

public int doSomething(ArrayList A){

synchronized(Hot3_2){

int x=0;

while(A.get(x)!=15){

x++;

}

return x;

}

}

}

Listing 8 Hot Section Three Two Code Example fixed

public class Hot3_2{

Object Hot3_2;

public int doSomething(ArrayList A){

int x=0;

synchronized(Hot3_2){

value =Hot3_2.value();

}

while(A.get(x)!=value){

x++;

synchronized(Hot3_2){

value =Hot3_2.value();

}

}

return x;

}

}

3.2. ANTI-PATTERN DEFINITIONS 30

Unpredictable Outcome/Bad Form Antipattern

Description

Unpredictable outcome or bad form describes a situation where the performance is negatively af-

fected by the code not properly handling synchronization in a way that causes locks and makes

synchronized data interfere with other data unintentionally. This type of issue will usually result in

strange unexplained behavior for both functional and performance issues.

The specific case used here is based on improper definitions for synchronized objects, in the exam-

ple the monitor object is defined as an object that exists as part of the Boolean class, this can cause

issues with contention and is dependant on the compiler.

Detection/solution notes

Identifying this type of antipattern involves examining monitor definitions, or points in the code

where the monitor value is changed, which should mean examining the critical sections. Those op-

erations could then be compared against a list of known problematic definitions to identify potential

issues.

The actual runtime behavior of this antipattern could be anything, as there are many possible forms

of this issue. Additionally, each problem will only appear occasionally in a runtime environment,

and the location of the problem in code is far from where problems would appear.

Simultaneous Access Antipattern

Description

Simultaneous access is where the code accidentally allows a variable to be accessed without the

correct protection or permission, such as outside of its critical section. This can be done either by

having the object accessed outside of a critical section by accident, or by having two objects interact

with each other in an unexpected way.

Detection/solution notes

3.2. ANTI-PATTERN DEFINITIONS 31

Listing 9 Bad Form Code Example

public class Unpredictable{

private final Boolean Unpredictable = Boolean.FALSE;

public void doSomething(){

int x=0;

synchronized(Unpredictable){

if(Unpredictable){

x+=1;

}

}

}

}

Listing 10 Bad Form Code Example fixed

public class Unpredictable{

private final Boolean Unpredictable = false;

public void doSomething(){

int x=0;

synchronized(Unpredictable){

if(Unpredictable){

x+=1;

}

}

}

}

This problem is likely to happen occasionally on accident and checking for the pattern is time con-

suming for a human. The first step of identifying the problem is to construct a list of all know

synchronized objects, this can be done by checking each critical section and extracting the syn-

chronized objects used. Next the project would need to be checked for any violation of the normal

synchronization which is not necessarily straightforward. In an ideal case each objects synchro-

nized block starts within the method it is used in, however as a method can be called from within a

critical section it is possible to have regions synchronized in a way that is not immediately visible,

this means that you must trace where in the program each instance of the object can come from, up

3.2. ANTI-PATTERN DEFINITIONS 32

Listing 11 Improper Access Code Example

public class Simultaneous{

Object SimultaneousA,SimultaneousB,SimultaneousC;

public void doSomething(){

synchronized(SimultaneousA){

synchronized(SimultaneousB){

SimultaneousC=SimultaneousA+SimultaneousB;

}

}

}

}

Listing 12 Improper Access Code Example

public class Simultaneous{

Object SimultaneousA,SimultaneousB,SimultaneousC;

public void doSomething(){

synchronized(SimultaneousA){

synchronized(SimultaneousB){

synchronized(SimultaneousC){

SimultaneousC=SimultaneousA+SimultaneousB;

}

}

}

}

}

to entering the relevant critical section, to determine if it is properly synchronized. Also, due to how

this issue is reached it does not generate contention, but is a related type that can be reached while

attempting to fix contention issues. If an instance of the antipattern is found it is simple to fix by

adding a critical section around the relevant lines.

Overly Split Locks Antipattern

Description

Overly split locks means that the locks have been significantly divided, perhaps in an attempt to

3.3. APPROACH 33

resolve a hot section, to the extent that they begin to cause a problem for performance. The delay

could be due to the overhead of entering and exiting a lock rather than the waiting or executing time

of the lock itself. This is an instance of a frequent access problem, it was included due to its strong

relation to the Hot Section antipatterns.

Detection/solution notes

Detecting this antipattern involves looking for multiple instances of critical sections with the same

lock object in the same code block, additionally if there is little or no code in between the blocks

then it might be beneficial to combine adjacent blocks to reduce the number of acquires to the

lock. Therefore, this antipattern, in general, may be resolved by lock merging or switching the

synchronization method if that is not possible.

The code example given is where the critical section is split as far as it can be, an ideal situation is

a balance between one large Hot Section and many small Overly Split sections.

While attempting to find that balance it is very similar in behavior to Hot Section 2, there is a

point where each task is small enough to function well, but not too split that it causes other issues,

however in this case it can also produce functional issues.

3.3 APPROACH

The first stop was to decide what types of anti-patterns it should use. This work started from a dy-

namic analysis approach similar to Brian Goetz[21], among others, and stated that lock contention

fits into two classes: type 1 where the lock is held by a thread that spend too much time inside a

critical section and type 2 where a lock is held by many smaller lock over a short period of time,

and a problem arises from the frequency of the lock acquisition.

When comparing this to static analysis a type one contention problem is most likely related to a

problem that occurs inside the critical section, due to it being based on the time the lock is held for,

and a type two problem is related to a problem that occurs outside of the critical section, due to it

being based on the behavior of the program, and not reliant on execution time.

3.3. APPROACH 34

Listing 13 Significantly Overly Split Code Example

public class OverlySplit_1{

Object OverlySplit_1A,OverlySplit_1B,OverlySplit_1C;

public void doSomething(){

int x=0;

String name;

synchronized(OverlySplit_1A){

OverlySplit_1=new Scanner(System.in);

}

System.out.println("Enter username");

synchronized(OverlySplit_1A){

name = myObj.nextLine();

}

synchronized(OverlySplit_1A){

name=null;

}

}

}

It is also worth noting that type one contention is dominant as the frequency of acquisitions is lim-

ited by the duration a lock is held for, as a new acquire cannot happen until the previous one has

released the lock.

For these reasons this work focuses primarily on type 1 contention, contention that originates inside

the critical section, and problems that can occur together with those. Due to this all of the antipat-

terns have sources inside the critical section and are able to be represented simply.

Patterns need to be defined in such a way that they can be properly sorted and split into types. That

lets helps to create a system to categorize inputs and use categories for recommendations.

Recommendations work based on an analysis of each of the antipatterns. Each antipattern has a

set of recommendations in table 3.1 that forms the basis for the final recommendations. Each of

the recommendations comes from recommended solutions from resources about reducing or fixing

lock contention issues. Once the program has created the list of what antipatterns a section of code

3.4. READING AND CLASSIFICATION PROCESS 35

matches to, it will be able to first output a list of recommendations in order, according to what

antipattern is most narrow up to the most general.

3.4 READING AND CLASSIFICATION PROCESS

This section will review the process used by the program to classify critical sections into the an-

tipattern classes. The program initially reads through the input files and extracts all of the critical

sections, if a class and method is input as the location of contention, then it will proceed only with

synchronized objects that appear inside of that class and method, this may include synchronized

regions outside of the requested method if the objects are shared. The process is shown in figure

3.5.

Figure 3.5: Process used for classification

Figure 3.6: Detailed reading process

3.4.1 Reading Files/Parsing

In the first step, the program reads through the input directory and its sub directories it finds the java

files, shown in figure 3.6 and shown as pseudo code in listing 14.

3.4. READING AND CLASSIFICATION PROCESS 36

Listing 14 Algorithm for reading Java code.

def read()

readFiles(inputDirectory)

locate synchronized regions in returned structured list

record name and location as strings

record critical section as reference to structured

list↪→

def readFiles(directory):

instantiate structured list

for each folder in directory:

readFiles(folder)

add returned structured list to this structured list

in subfolder↪→

for each javaFile in directory:

add java file and file name to structured list

java file is stored as AST

return structured list

It then parses each file into an AST using the JavaParser library[22] that will be stored for the

duration of the program and used later. Next the program will search through the ASTs to find each

critical section these will also be stored and grouped according to the lock object, and the method

and class where each critical section occurs will be recorded.

3.4.2 Analysis/Pattern Matching

Next for each of the lock objects the list of critical section ASTs is fed into the analysis step, shown

in figure 3.7 and displayed as pseudo code in listing 15, the first step is to examine each of the

ASTs to find method calls, each of those will be replaced with the contents of their method where

possible, this allows the program to get a better idea of what the program may do at runtime, if

the method cannot be found it may be from a source that does not have java files inside the input

directory such as a library, in this case it is left as a function call. Modified ASTs are stored as a

copy of the original, the original is not changed.

3.4. READING AND CLASSIFICATION PROCESS 37

Figure 3.7: Detailed analysis process

Then the program will search through each modified critical section for signs of each antipattern.

The initial classification is between Hot1 and Hot2, it is a straightforward classification depending

on the number of critical sections that use that sane lock object as the current one, if the critical

section being examined is the only one using that object, then it is assigned Hot1, otherwise it is

Hot2. Next Hot3 1 is examined, it is different as the examination is of the outside of the critical

section while the rest focus primarily on the inside, therefore it uses the original non modified copy

of the code. To check the program will look at the code near to the start of the critical section and

look for loops that contain the critical section and not much else, a larger distance becomes less

helpful and more complex due to function calls. Hot3 2 is checked the opposite way, the inside of

the loop is checked for loops, and recursion that has been marked earlier, then the maximum depth

of the loop is returned and recorded. In the case of Unpredictable and Simultaneous the unmodified

critical section is used because it holds a reference to the entire program’s AST and can be used

to examine the code outside of the critical section. Both of them search for specific statements,

Unpredictable for the lock object being assigned one of the invalid values, and Simultaneous for

uses of the lock object outside of a valid synchronized setting. Additionally, the output can be read

as priority, the rightmost entries refer to more specific issues, while the leftmost, such as Hot1, refer

3.4. READING AND CLASSIFICATION PROCESS 38

to more general problems.

Additional information is given in section 4.3.1 with a walkthrough of the logic for example out-

puts.

These features are found primarily according to the contents of AST nodes, and their immediate

relations. As was previously stated, the structure of the ASTs was found to be of little use distin-

guishing the antipattern examples, because of this the literal layout of the AST is not a focus of the

analysis. However, there are examples where the AST is used to analyse the code structure such as

Hot3 2 as previously mentioned, and Hot2, which requires knowledge of other critical sections in

the code.

The AST node analysis is done to extract information about the java code with all of the variation

from the programmer removed. This means that the tool can accurately identify the code contents.

Those are then compared to known signs of the listed antipatterns and recorded for later use.

The Program will then use that information to output a binary vector that represents the features of

various antipatterns.That binary vector can then be used to determine what the problem most likely

i. The categories are arranged in order of ascending precision, so the rightmost entry is the most

specific.

Figure 3.8: Detailed recommendation process

3.4. READING AND CLASSIFICATION PROCESS 39

Listing 15 Algorithm for analysing Java project.

def analyze(read, target):

for each critical section in keyList:

if is target OR target==nul:

AST_Copy=replace(critical section AST reference)

search for features based on modified critical

section AST and original↪→

reference AST is able to access upper levels

of tree and get information on parent

class

↪→

↪→

output classification results if specified

return binary vector to main class

def replace(AST):

create AST copy

locate function calls inside critical section

search project directory for function

if found append function contents to section

else add function information to list of functions not

found↪→

return modified critical section

3.4.3 Recommendations

The output of the analysis will be fed into the recommender system, figure 3.8, which will gen-

erate potential fixes based on the antipattern definitions in table 3.1. The recommender also uses

information from the ASTs to make the recommendations more relevant to the program.

3.4. READING AND CLASSIFICATION PROCESS 40

3.4.4 Antipattern Sources

Hot section is the most common source of contention, because of this it has multiple forms which

were divided into 1, 2, 3 1, and 3 2, however they are all contention caused by a single lock object

or synchronized region being significantly more contended than the rest of the program.

When looking for sources it is important to note that many causes of contention are not language

specific, this means that, in addition to java specific resources, resources from other languages can

be used, as long as it is confirmed that they do not rely on things only present in that language.

The Microsoft support page “How to reduce lock contention in SQL Server” it states that the main

way is to avoid having multiple processes update or insert the same data page, this is somewhat

helpful, but mainly means to reduce contention by not contending. It later goes into more detail,

with the most relevant to this work points being: avoid transactions that contain user interaction,

keep modification transactions short, and keep transactions in one batch. As these all relate to keep-

ing the duration of the critical section low they directly support this paper’s definition of Hot1, and

Hot3 2.

The IBM documentation page “Resolving lock contention” states that “There are two mechanisms

for reducing the rate of lock contention”, they are to reduce the time the lock is held for and to

reduce the scope of the lock. In this scope is used to mean the proportion of the data controlled by

the lock, for example locking rows of a table individually rather than as a whole.

These also support Hot1 and Hot3 2 as the length of a synchronized region is important for them,

however it also supports Hot2, Overly Split, and Hot3 2 as splitting a critical section should result

in a reduced rate at which it is acquired.

It is also worth noting that this page supports the recommended fixes to lock contention, Lock Split-

ting and Lock Stripping.

Reducing lock contention on multi-core platforms by Haimiao Ding et al. states that they evalu-

ate lock contention in two ways. The problem of large critical sections, and frequent lock request.

These are the two divisions made in between runtime contention issues, and they connect to this

3.5. CLASSIFICATION OUTPUT EXPLANATION 41

work in the same way.

Simultaneous and Unpredictable both appear in the SpotBugs Bug list as IS: Inconsistent synchro-

nization (IS2 INCONSISTENT SYNC) and DL: Synchronization on Boolean

(DL SYNCHRONIZATION ON BOOLEAN) respectively.

All types or related solutions also appear in many other locations defined in the form of both prob-

lems and solutions. The Spotbugs[5] documentation contains many references to possible sources

of contention or issues with synchronized regions, it mostly focuses on problems such as Simul-

taneous and Unpredictable. The article ”Improving Lock Performance in Java”[23] covers several

tips for improving lock performance, which can be turned around to determine what problems they

are related to. The article recommends reducing the lock scope, removing unnecessary code from

the synchronized region, splitting the lock, and switching to synchronized data types, these mostly

relate to the Hot1 antipattern, but are related to most of the ”Hot” antipatterns. The IBM Docu-

mentation about resolving lock contention[24] suggests two methods: reducing lock duration and

reducing lock scope. Scope of a lock refers to how much data is controlled by a single lock, the

problems related to these types would be Hot1 for duration and Hot2 for scope. The Oracle ATG

Repository Guide page ”Resolving Lock Contention”[25] suggests information on how to resolve

contention on a database, the recommended solution is to split the database to allow synchronous

access, this would help to resolve a Hot2 issue. Sonar Source[26] is a code analysis tool, they have

a documentation page that lists the rules that are checked for in Java by filtering it to the types of

rules related to synchronization and locks, it shows the types of problems it looks for. They are

issues like those in Spotbugs where many are functional rather than performance issues, but of the

performance issues shown they relate most to Hot2.

3.5 classification output explanation

The classification process prior to the recommendations will be shown with several parts shown

in listing 16, each part is separated by a line to make reading easier. The parts are the name of the

3.5. CLASSIFICATION OUTPUT EXPLANATION 42

Listing 16 Example output in file HFileCleaner.cancel 0.txt.

looking:HFileCleaner.cancel

HFileCleaner cancel

@Override

public synchronized void cancel(boolean mayInterruptIfRunning) {

super.cancel(mayInterruptIfRunning);

for (Thread t : this.threads) {

t.interrupt();

}

}

@Override

public synchronized void cancel(boolean mayInterruptIfRunning) {

super.cancel(mayInterruptIfRunning);

for (Thread t : this.threads) {

t.interrupt();

}

{

super.cancel(mayInterruptIfRunning);

for (Thread t : this.threads) {

t.interrupt();

}

}

}-----------------------

possible Hot1

possible type Hot3_2

1

lock object and location of the critical section, next the critical section as it exists in the source code,

followed by the critical section as it has been modified to include contents of function calls, finally

the classification results are shown on separate rows.

The name of the critical section is either the object that is used to synchronize, or based on the

location of the critical section in the case synchronizing on ”this” or a synchronized method.

In situations where a critical section contains a function call the code from inside function will be

3.5. CLASSIFICATION OUTPUT EXPLANATION 43

added to the end of that section, provided that it can be found in the provided source code.

Each antipattern found in each critical section is output individually, additionally Hot3 2 will output

the largest loop depth in the critical section. The order the antipatterns are printed in is the same used

in the vector that represents the output: Hot1, Hot2, Hot3 1, Hot3 2, overlySplit, Simultaneous, and

Unpredictable.

44

Chapter 4

VALIDATION

This section will describe the effectiveness of the algorithm on the test and real datasets with regards

to how accurately it can determine what antipatterns are present. The test data is the set of patterns

that are presented in section 3.2, and they are included to determine that it can distinguish between

the antipattern types. The more important test data is pulled from the Apache HBase GitHub, it is

an open-source project written primarily in java.

The output will be given for each critical section examined in two parts: a text file that contains

the object that the critical section locks on, the location of the critical section in the code(class and

method) , two variants of the method(The original unmodified method and another containing the

method with function calls expanded where possible), and the results of the classification, the second

part is a binary vector representing the presence of each antipattern to be used by the recommender.

An example is shown in listing 17 for reference the binary vector would be [1 0 0 0 0 0 0].

When determining the output it will return multiple possible results, as shown above, this is because

there is overlap between patterns, especially in the static space and many differences only appear at

runtime. An example of overlap is between Hot section 1 shown in Listing1 and Hot Section 3 Type

2 show in Listing7. This is partially because the anti patterns were created to describe problematic

behavior and were then represented as code, and also due to the somewhat hierarchical layout of the

antipatterns.

4.1. SAMPLE DATASET 45

Listing 17 Example output in file AbstractWALRoller.this 0.txt, this is a file selected

from the HBase output to demonstrate the replacement of a line(controller.requestRoll()

is swapped for the method’s contents.)

This object is classified as possible Hot1.

looking:AbstractWALRoller.this

AbstractWALRoller logRollRequested

// TODO logs will contend with each other here, replace with

e.g. DelayedQueue↪→

synchronized (AbstractWALRoller.this) {

RollController controller = wals.computeIfAbsent(wal, rc

-> new RollController(wal));↪→

controller.requestRoll();

AbstractWALRoller.this.notifyAll();

}

// TODO logs will contend with each other here, replace with

e.g. DelayedQueue↪→

synchronized (AbstractWALRoller.this) {

RollController controller = wals.computeIfAbsent(wal, rc

-> new RollController(wal));↪→

controller.requestRoll();

AbstractWALRoller.this.notifyAll();

{

this.rollRequest.set(true);

}

}-----------------------

possible Hot1

4.1 SAMPLE DATASET

The classification of the sample antipattern code presented in section 3.2 performed as expected,

each of them properly classified the with their intended classes, however as expected many of the

entries were classified as additional antipatterns. Table 4.1 lists the results from each of the sample

codes with this classifier. As you can see the classifier worked, but all of them also classified

as either Hot1 or Hot2, this is because they function as a general category which can be further

4.2. VALIDATION TEST SETUP FOR OPEN SOURCE DATA TESTING 46

Hot1 Hot2 Hot3 1 Hot3 2 OverlySplit Simultaneous Unpredictable

Hot1 1

Hot2 1

Hot3 1 1 1

Hot3 2 1 1

OverlySplit 1 1

Simultaneous 1 1

Unpredictable 1 1

Table 4.1: Results of classification(horizontal) vs expected result(vertical)

1’s mark antipattern identification result.

dividend to provide more information.

Hot1 is a situation where the critical section is causing the contention due to single long processes,

and Hot2 is where the critical section is where a synchronized object is slowed down by a large

number of requests. Therefore, the classifier works for the sample data.

4.2 VALIDATION TEST SETUP FOR OPEN SOURCE DATA TESTING

To test and validate the program it was given an entire project from which it would pull data. The

program would then perform the analysis on the critical sections that it extracted from the code.

Once it returned the critical sections and their matching anti-patterns, it would be manually reviewed

to confirm that the critical sections that were examined for instances of anti-patterns were matched

correctly, and that the features that indicate their presence were correctly identified. Once the code

review was complete, it could then be compared to the generated classification to determine how

well it functioned.

4.3. TEST DATASET 47

4.3 TEST DATASET

The test data as stated was taken from the Apache HBase GitHub page, the entire repository was

searched for critical sections which were used in the classification, no all of the proposed antipat-

terns occur in this dataset, however that may be expected as this is a actively maintained project

which functions properly. The breakdown of classes in shown in figure 4.1, the categories are given

as the binary vectors of the antipatterns as described above. The exact numbers for each section are

Hot1 only 318 (49.9%), Hot2 only 173 (27.2%), Hot2 and Hot3 2 67 (10.5%), and Hot1 and Hot3 2

79 (12.4%). There are 637 total samples.

Hot1 is present in 62.3% of the dataset, Hot2 is present in 37.7% of the dataset, and Hot3 2 is

present in 22% of the dataset. As you can see Hot1 is the larges category by far, at almost half of the

Figure 4.1: Output categories of Apache HBase. The vectors represent

[Hot1 Hot2 Hot3 1 Hot3 2 OverlySplit Simultaneous Unpredictable]

dataset, and including partial matches to Hot1 it is 62% of the dataset, this is to be expected because

4.3. TEST DATASET 48

Hot1 is the most simple case, as it involves as little as one line of code inside of a critical section

and due to the constraints of this static analysis approach it will include every critical section that is

only a single minor operation, Hot2 is large for the same reason, however it is less so because it is

requires the synchronized object to be used in many places.

4.3.1 Reviewing Samples From Test Data

This section will review how accurate the classification of the test was, this will be done by selecting

examples from the output randomly until one from each category if found, and then comparing that

to the output result, all 636 from the HBase dataset were manually examined and found to be correct,

but only one of each category are shown here. The first sample output is shown in listing 18. The

result given is just Hot1. This makes sense because, by examining the list of outputs we can see

that that is the only critical section where the key “AbstractWALRoller.this” was used therefore it

can’t belong to Hot2, and it belongs to Hot1 because it acts as a default state. It has no looping,

split critical sections, improper synchronization, or variable definition, so it can’t be any of the other

categories.

The second sample output is shown in listing 19, from entries 4.txt. The result is only Hot2,

similarly to the first example this example has no looping, split critical sections, improper synchro-

nization, or variable definition so most of the categories are eliminated. The difference is that in

the output listing the synchronized object shows up 4 times rather than just once, this means that

it is more likely to be a Hot2 antipattern instance than Hot1, therefore the classification results are

correct.

The third example is from HFileCleaner.cancel 0.txt it is shown in listing 20. The result shows

Hot1 and Hot3 2. There is only one place this critical section is used therefore it cannot be Hot2, it

has no looping outside of the critical section, split critical sections, and no improper synchronization

or variable definition so it can’t be any of them. There are two loops in the critical section, however

they are separate, and the depth is only one, but that is enough to be Hot3 2.

4.3. TEST DATASET 49

Listing 18 Example output in file AbstractWALRoller.this 0.txt, an example output from

the HBase project that is classified as Hot1.

looking:AbstractWALRoller.this

AbstractWALRoller logRollRequested

// TODO logs will contend with each other here, replace with

e.g. DelayedQueue↪→

synchronized (AbstractWALRoller.this) {

RollController controller = wals.computeIfAbsent(wal, rc

-> new RollController(wal));↪→

controller.requestRoll();

AbstractWALRoller.this.notifyAll();

}

// TODO logs will contend with each other here, replace with

e.g. DelayedQueue↪→

synchronized (AbstractWALRoller.this) {

RollController controller = wals.computeIfAbsent(wal, rc

-> new RollController(wal));↪→

controller.requestRoll();

AbstractWALRoller.this.notifyAll();

{

this.rollRequest.set(true);

}

}-----------------------

possible Hot1

The final example is shown in listing 21, file storefiles 1.txt. This is very similar to the fourth

example, it has no looping outside of the critical section, split critical sections, and no improper

synchronization or variable definition and it contains 3 loops with a maximum depth of 1, the

difference is that there are multiple places that the storefiles object is used. Therefore, it matches

with Hot2 and Hot3 2.

Overall the classifier is accurate on the types that were present in the dataset, however OverlySplit

and Hot3 1 did not appear which are the patterns that were expected to appear more, however that

4.3. TEST DATASET 50

Listing 19 Example output in file entries 4.txt, an example output from the HBase project

that is classified as Hot2.
looking:entries

RegionReplicationSink getFailedReplicas

synchronized (entries) {

return this.failedReplicas;

}

synchronized (entries) {

return this.failedReplicas;

}-----------------------

possible Hot2

was not the case, the other patterns not appearing in the dataset was expected Simultaneous and Un-

predictable are both very specific problems that would have a significant effect and be fixed while

doing testing, the majority of this code is not currently being written, therefore these errors would

be strange to see.

Other Data

The program was also run on several other open source programs Glide and EventBus. They also

show similar behavior of antipatterns as HBase, they all have the same set of labels, however they

do not all have the same proportions shown in figure 4.2 each of the bars represents the percentage

of each repository that matched with those antipatterns.

They all follow the same pattern of Hot1 and Hot2 being the most common, with Hot3 2 being

third. No other antipattern types were found in the three repositories. The other two repositories

had more of Hot1 than Hot2 but that is most likely due to differences in the function of the program

rather than anything meaningful.

4.3. TEST DATASET 51

Listing 20 Example output in file HFileCleaner.cancel 0.txt, an example output from the

HBase project that is classified as Hot3 2 and Hot1.

looking:HFileCleaner.cancel

HFileCleaner cancel

@Override

public synchronized void cancel(boolean mayInterruptIfRunning) {

super.cancel(mayInterruptIfRunning);

for (Thread t : this.threads) {

t.interrupt();

}

}

@Override

public synchronized void cancel(boolean mayInterruptIfRunning) {

super.cancel(mayInterruptIfRunning);

for (Thread t : this.threads) {

t.interrupt();

}

{

super.cancel(mayInterruptIfRunning);

for (Thread t : this.threads) {

t.interrupt();

}

}

}-----------------------

possible Hot1

possible type Hot3_2

1

4.3. TEST DATASET 52

Listing 21 Example output in file storefiles 1.txt, an example output from the HBase

project that is classified as Hot3 2 and Hot2.

looking:storefiles

FileBasedStoreFileTracker doAddNewStoreFiles

synchronized (storefiles) {

StoreFileList.Builder builder = StoreFileList.newBuilder();

for (StoreFileInfo info : storefiles.values()) {

builder.addStoreFile(toStoreFileEntry(info));

}

for (StoreFileInfo info : newFiles) {

builder.addStoreFile(toStoreFileEntry(info));

}

backedFile.update(builder);

for (StoreFileInfo info : newFiles) {

storefiles.put(info.getPath().getName(), info);

}

}

synchronized (storefiles) {

StoreFileList.Builder builder = StoreFileList.newBuilder();

for (StoreFileInfo info : storefiles.values()) {

builder.addStoreFile(toStoreFileEntry(info));

}

for (StoreFileInfo info : newFiles) {

builder.addStoreFile(toStoreFileEntry(info));

}

backedFile.update(builder);

for (StoreFileInfo info : newFiles) {

storefiles.put(info.getPath().getName(), info);

}

}-----------------------

possible Hot2

possible type Hot3_2

1

4.3. TEST DATASET 53

Figure 4.2: Apache Hbase, Glide, and EventBus open source projects distribution of an-

tipatterns found. The vectors represent [Hot1 Hot2 Hot3 1 Hot3 2 OverlySplit

Simultaneous Unpredictable]

54

Chapter 5

CONCLUSION

In this work we set out to create a set of antipatterns that represent possible and frequent types of

lock contention that appear in Java code and then create a tool that will classify java code according

to those antipatterns.

Many of the antipatterns established do appear in the open-source code that was examined (Apache

HBase, glide, eventBus). Out of the seven types listed 3 appeared in that project, and 3 appeared in

the list of types used by other classifiers such as SpotBugs[5]. This is what was expected as Hot1

is the most common type of contention, and Unpredictable, Simultaneous, and Overly Split are un-

likely to appear in a finished project due to their ability in introduce errors in the codes execution

and would likely be fixed early on in development.

For recommendations details are mostly left for future work, however general solutions that apply to

each antipattern type are provided in table 3.2. When the user is provided with the list of antipatterns

that match with the given lock objects critical sections, they will have a set of recommendations that

may fix the problem.

The classifier is able to reliably differentiate between the antipatterns, however many critical sec-

tions will match with multiple antipatterns, this is due to overlap between critical sections. As an

example the code example for Hot11 matches with the definition and example for 7, supported by

the runtime example in table 4.1. This also means that each of the antipatterns have overlapping

5.1. THREATS TO VALIDITY 55

solutions to the lock contention, as seen in table 3.1. This is not a problem and means the classifier

is functioning as expected. If more antipatterns are added it will be possible to organise the antipat-

terns into a hierarchy that should be able to provide more detailed information about the critical

section and provide more precise recommendations.

5.1 THREATS TO VALIDITY

The primary threat to the validity of this work is that it is the source of all of the antipatterns, the

classifier, and the verification of the classification. This means that the classification may be correct,

but without an additional party to confirm it, both the classification and the confirmation are based

on the same logic.

5.2 FUTURE WORK

In the future we plan to add more categories to the antipattern database to provide more detail on

issues and cover a wider area. Additionally, we plan to create the recommendation system to make

the antipattern identification more helpful. Once the components are created, we plan to integrate

these into a tool that will fully cover the full analysis process including the dynamic analysis. The

static analysis component will also be tested on a larger data sample.

5.3 LIMITATIONS

This work is limited mostly by the situation it is designed for, as this tool is not designed to run

independently and is a static analysis tool, it is not able to determine the presence of lock contention

or other problems, only to find possible sources of those problems, this means that it won’t provide

helpful information by itself. Additionally, recommendations are very simple in this work and need

further detail.

BIBLIOGRAPHY 56

Bibliography

[1] N. H. Khan, J. Robertson, R. Liscano, A. Azim, V. Sundaresan, and Y.-K. Chang,

“Lock contention performance classification for java intrinsic locks,” eng, in Run-

time Verification, ser. Lecture Notes in Computer Science, Cham: Springer Interna-

tional Publishing, 2022, pp. 274–282, ISBN: 9783031171956.

[2] J. Robertson, A. Ahmed, A. Azim, R. Liscano, V. Sundaresan, and Y.-K. Chang,

“Java lock contention classification and recommendation through synchronization

antipatterns,” in WeaveSphere 2022.

[3] R. Liscano, A. Azim, J. Robertson, et al., “A preliminary investigation into runtime

fault identification and localization of java-based cloud-native microservice applica-

tions,” in Cascon 2020.

[4] A. Nisbet, N. M. Nobre, G. Riley, and M. Luján, “Profiling and tracing support for

java applications,” ICPE 2019 - Proceedings of the 2019 ACM/SPEC International

Conference on Performance Engineering, pp. 119–126, 2019. DOI: 10.1145/329

7663.3309677.

[5] Spotbugs, Spotbugs/spotbugs at fa9e53ac7d969e8f945ee8a90365173c31ce6f8a. [On-

line]. Available: https://github.com/spotbugs/spotbugs/tree/fa

9e53ac7d969e8f945ee8a90365173c31ce6f8a.

https://doi.org/10.1145/3297663.3309677
https://doi.org/10.1145/3297663.3309677
https://github.com/spotbugs/spotbugs/tree/fa9e53ac7d969e8f945ee8a90365173c31ce6f8a
https://github.com/spotbugs/spotbugs/tree/fa9e53ac7d969e8f945ee8a90365173c31ce6f8a

BIBLIOGRAPHY 57

[6] E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns and how to test them,” 2003,

7–pp.

[7] M. M. u. Alam, T. Liu, G. Zeng, and A. Muzahid, “Syncperf: Categorizing, de-

tecting, and diagnosing synchronization performance bugs,” in Proceedings of the

Twelfth European Conference on Computer Systems, ser. EuroSys ’17, Belgrade,

Serbia: Association for Computing Machinery, 2017, pp. 298–313, ISBN: 9781450349383.

DOI: 10.1145/3064176.3064186. [Online]. Available: https://doi.or

g/10.1145/3064176.3064186.

[8] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A method for

the specification and detection of code and design smells,” IEEE Transactions on

Software Engineering, vol. 36, no. 1, pp. 20–36, 2010. DOI: 10.1109/TSE.200

9.50.

[9] J. Bradbury and K. Jalbert, “Defining a catalog of programming anti-patterns for

concurrent java,” Oct. 2009.

[10] D. Bán and R. Ferenc, “Recognizing antipatterns and analyzing their effects on soft-

ware maintainability,” Jun. 2014, pp. 337–352, ISBN: 978-3-319-09155-6. DOI: 10

.1007/978-3-319-09156-3_25.

[11] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical study of the

impact of two antipatterns, blob and spaghetti code, on program comprehension,”

in 2011 15th European Conference on Software Maintenance and Reengineering,

2011, pp. 181–190. DOI: 10.1109/CSMR.2011.24.

https://doi.org/10.1145/3064176.3064186
https://doi.org/10.1145/3064176.3064186
https://doi.org/10.1145/3064176.3064186
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1007/978-3-319-09156-3_25
https://doi.org/10.1007/978-3-319-09156-3_25
https://doi.org/10.1109/CSMR.2011.24

BIBLIOGRAPHY 58

[12] Y. Huang, Z. Cui, L. Chen, W. Zhang, Y. Bao, and M. Chen, “Halock: Hardware-

assisted lock contention detection in multithreaded applications,” Parallel Architec-

tures and Compilation Techniques - Conference Proceedings, PACT, pp. 253–262,

2012, ISSN: 1089795X. DOI: 10.1145/2370816.2370854.

[13] F. David, “Continuous and efficient lock profiling for java on multicore architec-

tures. (profilage continu et efficient de verrous pour java pour les architectures mul-

ticœurs),” Ph.D. dissertation, Pierre and Marie Curie University, Paris, France, 2016.

[14] J. Aldrich, C. Chambers, E. G. Sirer, and S. Eggers, “Static analyses for eliminating

unnecessary synchronization from java programs,” Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 1694, pp. 19–38, 1999, ISSN: 16113349. DOI: 10.1007/3

-540-48294-6_2.

[15] M. A. Mamun, A. Khanam, H. Grahn, and R. Feldt, “Comparing four static analysis

tools for java concurrency bugs,” Sep. 2010.

[16] A. K. Alvi and M. Zulkernine, “A security pattern detection framework for building

more secure software,” Journal of Systems and Software, vol. 171, p. 110 838, 2021,

ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.2020.11083

8. [Online]. Available: https://www.sciencedirect.com/science/ar

ticle/pii/S0164121220302296.

[17] L. Zhang, Y. Sun, H. Song, W. Wang, and G. Huang, “Detecting anti-patterns in java

ee runtime system model,” in Proceedings of the Fourth Asia-Pacific Symposium

on Internetware, ser. Internetware ’12, Qingdao, China: Association for Computing

Machinery, 2012, ISBN: 9781450318884. DOI: 10.1145/2430475.2430496.

[Online]. Available: https://doi.org/10.1145/2430475.2430496.

https://doi.org/10.1145/2370816.2370854
https://doi.org/10.1007/3-540-48294-6_2
https://doi.org/10.1007/3-540-48294-6_2
https://doi.org/https://doi.org/10.1016/j.jss.2020.110838
https://doi.org/https://doi.org/10.1016/j.jss.2020.110838
https://www.sciencedirect.com/science/article/pii/S0164121220302296
https://www.sciencedirect.com/science/article/pii/S0164121220302296
https://doi.org/10.1145/2430475.2430496
https://doi.org/10.1145/2430475.2430496

BIBLIOGRAPHY 59

[18] S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: Fault localization in concurrent

programs,” Proceedings - International Conference on Software Engineering, vol. 1,

pp. 245–254, 2010, ISSN: 02705257. DOI: 10.1145/1806799.1806838.

[19] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur, “Framework for

testing multi-threaded java programs,” Concurrency and Computation: Practice and

Experience, vol. 15, no. 3-5, pp. 485–499, 2003. DOI: https://doi.org/10.1

002/cpe.654. eprint: https://onlinelibrary.wiley.com/doi/pdf

/10.1002/cpe.654. [Online]. Available: https://onlinelibrary.wil

ey.com/doi/abs/10.1002/cpe.654.

[20] Martinekuan, Busy database antipattern - performance antipatterns for cloud apps.

[Online]. Available: https://learn.microsoft.com/en-us/azure/ar

chitecture/antipatterns/busy-database/.

[21] B. Göetz and A. W. Professional, “Java concurrency in practice,” Building, vol. 39,

p. 384, 11 2006, ISSN: 03008495. [Online]. Available: http://scholar.goog

le.com/scholar?hl=en&btnG=Search&q=intitle:Java+Concurr

ency+in+Practice#0.

[22] Tools for your java code. [Online]. Available: https://javaparser.org/.

[23] Improving lock performance in java, Jan. 2015. [Online]. Available: https://dz

one.com/articles/improving-lock-performance.

[24] Resolving lock contention. [Online]. Available: https://www.ibm.com/docs

/en/mon-diag-tools?topic=perspective-resolving-lock-con

tention.

https://doi.org/10.1145/1806799.1806838
https://doi.org/https://doi.org/10.1002/cpe.654
https://doi.org/https://doi.org/10.1002/cpe.654
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.654
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.654
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.654
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.654
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/busy-database/
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/busy-database/
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Java+Concurrency+in+Practice#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Java+Concurrency+in+Practice#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Java+Concurrency+in+Practice#0
https://javaparser.org/
https://dzone.com/articles/improving-lock-performance
https://dzone.com/articles/improving-lock-performance
https://www.ibm.com/docs/en/mon-diag-tools?topic=perspective-resolving-lock-contention
https://www.ibm.com/docs/en/mon-diag-tools?topic=perspective-resolving-lock-contention
https://www.ibm.com/docs/en/mon-diag-tools?topic=perspective-resolving-lock-contention

BIBLIOGRAPHY 60

[25] “Resolving lock contention,” ATG Repository Guide, [Online]. Available: https:

//docs.oracle.com/cd/E23095_01/Platform.93/RepositoryGu

ide/html/s1005resolvinglockcontention01.html.

[26] Java static code analysis. [Online]. Available: https://rules.sonarsourc

e.com/java/.

https://docs.oracle.com/cd/E23095_01/Platform.93/RepositoryGuide/html/s1005resolvinglockcontention01.html
https://docs.oracle.com/cd/E23095_01/Platform.93/RepositoryGuide/html/s1005resolvinglockcontention01.html
https://docs.oracle.com/cd/E23095_01/Platform.93/RepositoryGuide/html/s1005resolvinglockcontention01.html
https://rules.sonarsource.com/java/
https://rules.sonarsource.com/java/

61

Appendices

62

Appendix A

63

Figure A.1: Hot1 AST annotated with signs of contention

64

Figure A.2: Hot2 AST annotated with signs of contention part 1

65

Figure A.3: Hot2 AST annotated with signs of contention part 2

	Abstract
	Author's Declaration
	Statement of Contributions
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Introduction
	Motivations
	Research Questions
	Contributions
	Organization

	Related Work
	Anti-patterns
	Dynamic Analysis
	Static Analysis

	Methodology
	Anti-pattern Background Information
	Anti-pattern definitions
	Approach
	Reading and Classification Process
	Reading Files/Parsing
	Analysis/Pattern Matching
	Recommendations
	Antipattern Sources

	classification output explanation

	Validation
	Sample Dataset
	Validation Test Setup for Open Source Data Testing
	Test Dataset
	Reviewing Samples From Test Data

	Conclusion
	Threats to Validity
	Future Work
	Limitations

	Appendices
	

