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Abstract

Small Modular Reactors (SMRs) have garnered significant interest in recent years, and
they may play an essential role in the future of energy supply and power generation. One
major advantage associated with SMRs is their improved safety, which is expected to be
accomplished by integrating a wide range of novel design elements, such as Passive Safety
Systems (PSS) and components. Passive safety systems rely on natural processes rather
than active intervention, hence possessing some unique features compared to traditional
safety systems. Safety analysis of SMR’s PSSs encounters challenges, including Limited
Operating Experience (OPEX), limited data availability, and above all, dynamic behaviour
of the system. Systematic analysis of the reliability and safety of PSSs is yet to be per-
formed to understand and evaluate the reliability and safety of these systems.

Probabilistic Safety Assessment (PSA) has played an important role in evaluating the reli-
ability and safety of Nuclear Power Plant (NPPs) operations in the past decades. However,
several limitations associated with the classical PSA, such as failing to capture the dynamic
processes and timing sequences of events, make it difficult to be directly utilized to evaluate
the safety of PSSs. These could potentially be addressed to a large extent by incorporating
fuzzy logic and Artificial Neural Network (ANN) into the analysis, thus addressing some
intrinsic properties associated with PSSs.

This thesis proposes a dynamic fuzzy-PSA, fuzzy-FMEA (Failure Mode and Effects Anal-
ysis) and ANN-based fault tree analysis. The Passive Residual Heat Removal System
(PRHRS) in the CAREM (Spanish: Central Argentina de Elementos Modulares)-25 small
reactors under the Station Blackout (SBO) accident is analyzed to demonstrate the perfor-
mance of the ANN-based FT analysis and dynamic fuzzy logic analysis. The effectiveness
of the PRHRS in removing residual heat is evaluated using both methods. It is shown that
engaging fuzzy logic into the PSA and Failure mode & Effects Analysis (FMEA) can handle
uncertainty and imprecision in data and knowledge and improve classical risk assessment
methods by implementing dynamics fuzzy operators and Pandora gates (Priority-AND and
Priority-OR). On the other hand, ANN-based FT can analyze and handle a large number
of data irrespective of the number of Basic Events (BEs), logical gates, and system com-
plexity and identify patterns that would be difficult and time-consuming for classical FT
analysis. Comparing the results of these two methods with existing research in the open
literature shows that these models are valid and more efficient than conventional PSA
methods.

In the future work, ANN and fuzzy logic are expected to be linked together to enhance the
capabilities of classical PSA when analyzing the reliability and safety of PSSs in SMRs.

Keywords: CAREM-25; Passive Safety System; Artificial Neural Network; Probabilistic
Safety Assessment; Fuzzy Logic, FMEA
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ular Reactors (SMRs) by evaluating and comparing traditional methods, such as Proba-
bilistic Safety Assessment (PSA) and Failure Modes and Effects Analysis (FMEA), with
innovative approaches employing fuzzy logic and Artificial Neural Networks (ANN). We
focus on the passive safety system of the CAREM-25 type reactor and address challenges
arising from the unique design, new technologies, complex interactions between systems
and components, and limited operating experience associated with SMRs.

We propose a fuzzy PSA technique that considers fuzzy numbers for failure rates and
combines fuzzy set theory with probability theory to represent and propagate uncertainties
in the failure rates of components and systems. Through a case study of the CAREM-25
type reactor’s Passive Residual Heat Removal System (PRHRS), we demonstrate that the
fuzzy PSA provides a more accurate understanding of the system’s overall failure risk by
capturing uncertainties more effectively than traditional PSA. Furthermore, we develop an
innovative risk analysis approach using Fuzzy Fault Tree Analysis (FFTA) and Fuzzy Event
Tree Analysis (FETA) to address the uncertainty in input data and improve the accuracy
of safety assessments. The proposed approach is applied to the Isolation Condenser System
(ICS) failure and coupled with a fuzzy-logic-based FMEA to identify the weaknesses and
potential failure modes of the PRHRS system.

In addition to the fuzzy probabilistic safety assessment approach, we propose mapping
fault trees into a deep learning framework to overcome the limitations of traditional Fault
Tree (FT) analysis, leveraging the capabilities of ANNs for fault prediction and consequence
analysis. The results indicate a high similarity between the traditional FT and ANN-based
models.

In summary, our thesis contributes to the risk and safety analysis of SMRs by proposing
innovative methods that improve the accuracy of traditional techniques and address the
challenges posed by uncertainties and imprecisions. Future research should enhance these
approaches by incorporating expert judgment, handling imprecise data, and addressing
uncertainties in the overall risk assessment process. This research paves the way for fur-
ther advancements in safety-critical system risk assessment by combining fuzzy set theory,
probability theory, and deep learning frameworks.
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Chapter 1

Introduction

1.1 Background

Small Modular Reactors (SMRs) have garnered significant interest in recent years, and
they may play an essential role in the future of energy supply and power generation.
With new safety system designs in these SMRs, power can be presented in remote areas
and implemented on the sea, underground, and under the sea, which makes SMRs an
important part of the future of global power generation. Canada has one of the most
promising SMR markets rapidly expanding, predicted to encompass a potential value of
$5.35 billion between 2025 and 2040 [2].

One of the primary advantages of SMRs is their potential safety improvement, which has
been accomplished by integrating a wide range of novel design elements. One of the vital
safety features of SMRs is their reliance on PSSs, which are designed to provide redundant
and reliable cooling for the reactor in the event of an emergency. Passive safety systems
have been implemented to increase the safety and robustness of SMRs, eliminate design
vulnerabilities, and reduce the consequences of accidents. In contrast to current active
systems, passive systems are the driving force behind nuclear reactor advancements. The
passive feature could rely on natural circulation without actuators such as pumps and valves
or gravity-driven systems that do not require external power or human intervention to
function. Utilizing passive systems is expected to result in increased safety levels for NPPs,
besides the cost reduction in power production (by means of simplified design, reduced
maintenance, lower staffing requirements and shorter construction times). Therefore, new
NPPs utilize PSSs in technological improvements or modernizations. Some examples of
passive safety systems that can be used in SMRs include:

• Natural circulation cooling: In this system, the coolant circulates through the reactor
naturally, without requiring pumps or other mechanical devices. This can be achieved
by using a properly designed coolant system that utilizes the difference in density
between hot and cool coolants to drive circulation.

• Gravity-driven cooling: This system uses gravity to drive the coolant through the
reactor in the event of a loss of coolant accident. This can be achieved by having
a coolant storage tank located above the reactor and connected to the reactor by
gravity.
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• Passive containment cooling: This system uses natural convection to transfer heat
from the containment building to the environment in the event of a loss of coolant
accident.

• Passive containment isolation: This system uses gravity or natural forces to close
and seal off the containment building in the event of an accident, without the need
for operator action or external power (Nuscale, Holtec SMR-160 and Integral Pres-
surized Water Reactor (iPWR)). These passive safety systems are designed to work
automatically and without operator intervention, ensuring the reactor’s safety in the
event of a loss of power or another emergency.

Although it is expected that PSSs should overperform the active safety systems in emer-
gency situations, systematic safety evaluation of these systems is still needed due to the
new and specific features associated with PSSs. The vulnerabilities and weaknesses of the
new design associated with the structure, systems and components of SMRs need to be
identified. Probabilistic safety assessment has been wildly adopted to evaluate the safety
of NPPs in the past decades. It involves examining the probability and potential reper-
cussions of various accident scenarios and using this data to suggest and prioritize safety
improvements. Probabilistic safety assessments for SMRs can be more challenging than
for traditional NPPs due to several factors, as detailed below:

• Modular design: SMRs are designed as smaller, factory-built units that can be as-
sembled on-site, which can introduce new failure modes and accident scenarios that
need to be considered in the PSA.

• New technologies: SMRs often use new and untested technologies, such as advanced
fuels and coolants, which can introduce new failure modes and accident scenarios
that need to be evaluated in the PSA.

• Limited OPerating EXperience (OPEX): As SMRs are a relatively new technology,
there is a limited operating experience to draw from, making it difficult to accurately
estimate the likelihood of different accident scenarios.

• Complex interactions: Due to the smaller size of SMRs, the interactions between
different systems and components may be more complex and harder to model than
in traditional NPPs.

• Dynamic features: Classical PSA cannot represent dynamic features associated with
the PSSs in SMRs.

1.2 Motivation

The design and operation of SMRs are still in their early stages, and there is a need for
further research and development to understand and evaluate the performance of these
reactors. This research investigates potential modifications and improvements in current
PSA practice to address the specific features associated with the PSSs in SMRs when
performing safety assessments for these systems.
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After a comprehensive analysis of existing literature and practical applications, this thesis
explores the potential benefits and limitations of using fuzzy logic and ANNs in the safety
assessment of the PSSs of SMRs. Some of the specific benefits of incorporating fuzzy logic
and ANN into the safety assessment include the following:

1. Improving the accuracy of PSA models: Fuzzy logic and ANN can incorporate un-
certainty and subjective judgment into the analysis, improving the robustness and
reliability of the models and providing more realistic and representative results.

2. Automating the PSA process: Fuzzy logic and ANN can be used to automate the PSA
process, reducing the time and effort required to conduct a comprehensive assessment
and increasing the efficiency and consistency of the process.

3. Addressing data unavailability: There may be limited data available about the per-
formance and reliability of a component or system due to innovative design or lack of
OPEX, in this case, using generic data leading to uncertainty in the estimated failure
rate. Using fuzzy logic and ANN, this problem is solved using data predictions and
linguistic variables.

4. Addressing uncertainty: Input inaccuracy can impact the results of a PSA, leading
to uncertainty in the estimated probabilities and consequences of different accident
scenarios. To address this, dynamic fuzzy-PSA is focused on improving the accuracy
and reliability of basic event failure rates.

This thesis aims to develop a dynamic fuzzy PSA to link fuzzy logic concepts with dynamics
PSA using a combination of fuzzy numbers and temporal logic gates.

1.3 Scope of the Research

This thesis developed methodologies to incorporate fuzzy logic and ANN in the PSA.
Firstly, the FT is mapped into the ANN, and the result shows that using this method can
increase the speed of evaluations, regardless of the number of BEs and other inputs and
the complex relationship between them. Secondly, a dynamic fuzzy method deals with two
significant drawbacks in modelling PSSs in reliability and safety analysis: the assumption of
constant failure rates and time treatment in dynamic systems. The former refers to the fact
that the assigned failure rates are not precise, making predictions less accurate. The latter
means that the failure rates for individual components in a real situation are inconsistent
and can vary over time depending on the circumstances of an operation. Dynamics fuzzy
PSA is used to fill in the gaps in PSSs reliability assessments to address these problems.
At the end the outputs of the fuzzy-PSA are used to feed fuzzy-FMEA to estimate the risk
priority number for different failure modes.

The CAREM-25, a kind of iPWR SMR, demonstrates the abovementioned method. As-
sessing the reliability and safety of the PSSs in the CAREM-25 poses several challenges
and uncertainties. This includes evaluating the reliability and performance of the Isolation
Condenser System (ICS) and other safety-critical components and systems. The accurate
and comprehensive assessment of the risks associated with the PSSs of the CAREM-25 is
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critical for ensuring the safety and reliability of the reactor. However, traditional methods
for conducting PSA can be time-consuming, labor-intensive, and prone to errors and biases.
This is where fuzzy logic and ANN can make a significant impact. By incorporating these
technologies into the PSA process, we can significantly improve the accuracy, efficiency,
and interpretability of the results and ensure that the PSSs of the CAREM-25 are robust,
reliable, and effective.

1.4 Thesis Organization

This thesis is composed of six chapters which are organized as below:

Chapter 1:
Introduces the background information about the research, motivations for the using Fuzzy
logic and ANN, the objectives of the research and organization of the thesis.

Chapter 2:
Contains a comprehensive literature survey on SMRs, PSSs, and traditional reliability and
safety assessment methodologies.

Chapter 3:
Is the major component of this thesis where ANN-based FT analysis, dynamic fuzzy PSA,
and fuzzy FMEA are proposed to address the deficiencies of the current PSA practice

Chapter 4:
Utilized the PRHRS system in the CAREM-25 SMR to demonstrate the implementation
of the ANN-based FT analysis, dynamic fuzzy PSA and fuzzy FMEA developed in chapter
3. Lastly, in

Chapter 5:
Conclusions are drawn based on the comparative assessment and the potential use of the
dynamic fuzzy PSA and fuzzy FMEA to impact the design of PSS is discussed. Finally,
the potential future work is proposed.
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Chapter 2

Literature Review

Small modular reactors are a promising technology for providing low-carbon energy, but
as with any nuclear power technology, it is important to assess their safety risks. One
approach to evaluating the safety of SMRs is through risk assessments, which involve
identifying and analyzing potential hazards and developing strategies to manage them.
Probabilistic safety assessments are a commonly used method for assessing the safety of
nuclear power plants, including SMRs. Probabilistic safety assessments use probabilistic
methods to estimate the likelihood of different types of accidents or incidents and the
consequences of those events. This information can be used to identify potential safety
vulnerabilities and develop strategies to mitigate them.

Another method for evaluating the safety of SMRs is Failure Mode and Effects Analysis
(FMEA). Failure mode and effects analysis is a systematic approach to identifying and as-
sessing potential failure modes in a system and developing strategies to prevent or mitigate
them. Failure mode and effects analysis can be particularly useful for evaluating PSSs, as
it can help identify potential failure modes and develop strategies to prevent them. How-
ever, there are also challenges associated with using PSAs and FMEA for evaluating the
safety of SMRs. For example, the complex nature of these systems can make it difficult
to accurately model their behaviour and assess the potential consequences of accidents or
incidents.

Overall, while PSAs and FMEA can be useful tools for evaluating the safety of SMRs and
their passive safety systems, it is important to recognize their limitations and approach
safety assessments cautiously and carefully, considering all available data and information.

2.1 Small Modular Reactors

The use of nuclear energy, specifically SMRs, is crucial in combating the urgent issue of
climate change. Small modular reactors have gained significant attention lately for their
ability to supply power to remote locations and their deployment versatility - on the sea,
underground, and under the sea. These features make SMRs an attractive solution for
reducing global carbon dioxide emissions and breaking away from fossil fuels. The nuclear
power sector and regulations worldwide are working towards achieving net-zero emissions
by 2050, and implementing SMRs can accelerate this transition. Additionally, SMRs can
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offer a non-emitting alternative to diesel in isolated areas. Canada, with its growing SMRs
market and a projected worth of $5.35 billion by 2040, is one of the most promising markets
for SMRs.

Small modular reactors have diverse applications due to their compact and modular design.
This flexibility makes them ideal for supplying power to remote areas and reducing reliance
on fossil fuels. Furthermore, their safety features and ability to lower carbon dioxide
emissions make them a feasible option for decarbonizing the electricity sector. The different
SMR designs and objectives, as shown in Table 2.1, demonstrate the potential for the
technology to be adapted and applied to meet the unique energy needs of various regions
and industries [3].

Table 2.1: Small Modular Reactors Diversity [1]

Applicability Small Modular Reactors

On-grid SMRs Advanced Reactors Off-grid SMRs

150 to 300 MWe 10 to 150 MWe 1 to 10 MWe
Reliable, base-load power Advanced reactors Remote industrial

Displace coal Heavy industrial applications Off grid communities
Near term deployment Deployed by 2030s Commercial in the 2020s.

• GE BWRX 300 • ARC-100 • Global First Power MMR
• Moltex • Westinghouse eVinci

• X Energy

The evolution of SMRs has been instrumental in developing clean energy solutions. With
core unit sizes ranging from 60 MWe to over 1600 MWe, and the creation of small and neu-
tron sources, SMRs have proven to be a key player in the clean energy transformation. As
defined by the International Atomic Energy Agency (IAEA), SMRs are further categorized
as small (less than 300 MWe) or big (up to 700 MWe) based on their capacity [4]. This
advancement in SMR technology has paved the way for their implementation in various
applications. These small reactors can be assembled individually or as modules in a larger
structure, allowing for incremental expansion. Compared to traditional NPPs, SMRs are
viewed as more financially manageable investments as they often incur lower costs that do
not exceed the utility’s capitalization.

2.1.1 SMRs Design Features

Nuclear power plant accidents, thought inevitable, have increased public distrust of nuclear
energy and eroded community confidence due to the growing concern about NPP safety.
Consequently, future nuclear power facilities will be built with a stronger focus on hazard
prevention and possible accident mitigation. As a result, it is believed that designing
nuclear power facilities with purely passive safety systems is no longer a choice but a must.
Additionally, passive safety solutions need to be considered more adequate. The following
aspects are made possible by the design and operational characteristics of SMRs, which
set them apart from existing LNPPs [5].

1. Passive safety systems (gravity, natural circulation);
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2. Modular design, Modularity and Modularization;

3. Inherent Safety-By-Design

These design features differentiate them from traditional large-scale nuclear power plants
and contribute to improved safety and efficiency and enhanced reliability and maintain-
ability.

2.1.2 SMRs Passive Safety System

Small modular reactors have several unique design features that can contribute to their
safety and efficiency, including using PSSs. Passive safety systems do not require opera-
tor intervention, external power, or cooling to maintain the reactor’s safety and contain
radioactive materials in the event of an emergency. The International Atomic Energy
Agency (IAEA) categorizes PSSs into three main groups: natural circulation cooling sys-
tems, gravity-driven cooling systems, and passive containment cooling systems:

• Natural Circulation Cooling Systems (NCCS): A NCCS is a PSS that uses natural
circulation to circulate cool water through the reactor in the event of a loss of coolant
accident. The natural buoyancy of hot water drives it to rise to the top of the reactor,
cool and then fall back down to the bottom, where it is re-circulated. This simple,
reliable, fail-safe system can maintain the reactor’s safety without requiring active
interventions such as pumps or external power supply. Examples of SMR designs that
utilize this type of PSS include the iPWR and the High-Temperature Gas-Cooled
Reactor (HTGR) [6, 7].

• Gravity-Driven Cooling Systems (GDCS): Is a PSS that uses gravity to circulate cool
water through the reactor in LOCA. The cool water is drawn from the bottom of
the reactor and returns to the top, where it is cooled and re-circulated. This simple,
reliable, fail-safe system can maintain the reactor’s safety without requiring active
interventions such as pumps or external power supply. Examples of SMR designs
include iPWR, BWRX-300 [8, 9].

• Passive Containment Cooling Systems (PCCS): The PCCS typically consists of a
pool of water, which acts as a heat sink, and various heat exchangers and passive
components that transfer heat from the reactor to the pool. The PCCS aims to
remove heat released inside the containment vessel following postulated design-basis
accident (DBA) such as LOCA or main steam-line break (MSLB). Examples of SMR
designs that utilize this type of PSS include the NuScale, Westinghouse SMR [10, 11].

These passive safety systems focus on ensuring reliable and safe operation, improving
incident control, minimizing consequences, and eliminating the need for off-site emergency
response from a technological standpoint. The reliability assessment of PSS is of utmost
importance as the safety of SMRs is dependent on multiple passive characteristics. To fulfill
the safety and reliability objectives, the following fundamental safety functions, known as
the 3Cs (cooling, containment, and control), must be implemented.
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• Passive Controlling: control rod insertion, boron dilution, and coolant-based reac-
tivity feedback are utilized for reactivity control. The reliability of these systems
in controlling reactivity is contingent on design, configuration, and interdependent
component factors.

• Passive Cooling: including passive heat removal systems and functions such as; nat-
ural circulation cooling, passive heat exchanger, gravity-driven cooling, and passive
containment cooling are assigned to cool the reactor core during normal and abnormal
operation;

• Passive Containing: underground containment, passive containment isolation, help-
ing to radioactive materials containing, regulating operating emissions, and prevent-
ing unintentional releases.

To ensure that the above 3Cs are achieved, Defense-In-Depth (DID) strategy is defined
as a safety approach. This safety approach, including accident prevention, accident mit-
igation, and accident accommodation, is characteristic of the design of the entire plant.
Defence-in-Depth has military origins and protects systems via overlapping series of phys-
ical barriers. The concept is based on the failure of one barrier shall not fail other barriers
and mitigating systems, eventually leading to a disaster. Two models of nuclear reactor
DID concepts are physical barriers, where multiple physical barriers are used to confine
radioactive material. The system-specific design varies based on the material’s behaviour
and any deviations from routine operations that could cause the barrier to collapse. Dis-
tinct physical barriers comprise the fuel matrix, the fuel cladding (sheath), the border of
the reactor coolant system, and the containment. Moreover, overlapping processes refer to
implementing multiple layers of control to ensure a backup is in place if a failure in the first
line of defence occurs. These processes may include emergency response plans, training,
and contingency planning.

By overlapping the physical and process-based defence, the DID strategy creates a com-
prehensive approach to managing risk and reducing the potential impact of an incident.

2.1.3 Modular, Modularity and Modularization

The 3 “M” concept - Modular, Modularization and Modularity - plays a crucial role in
defining the characteristics of SMRs. This concept refers to the design and implementa-
tion of these reactors, which are built into modules and can be assembled individually or
in a larger structure. The modular design allows for flexibility in expanding capability
as needed, making SMRs a more manageable investment than traditional NPPs, where
expenses often exceed the utility’s capitalization.

• A module is a system or component that is constructed, integrated, and validated in
a laboratory or factory prior to being transported to the job site. Various modules,
such as functional, production, and equipment, are independently assembled and
fabricated in a factory to reduce completion time and expenses, enable independent
parallel operation, and enhance safety.
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• Modularization is the process of transforming a system or design into a modular for-
mat. In the context of SMRs, modularization refers to the engineering and design
efforts to break down the reactor system into smaller, standardized, and manageable
modules or components. This process aims to improve the efficiency of manufactur-
ing, transportation, and on-site construction by streamlining the overall design and
assembly process.

• Modularity refers to the degree to which a system component can be detached or
use a standard component to produce products or systems. According to the IAEA,
scale modularity refers to developing a large NPP in small components or module
installations.

SMRs utilize modularity to minimize size and improve safety by incorporating or sepa-
rating modules to prevent a domino effect in the event of a malfunctioning module. The
reactor core and primary coolant system are incorporated into a single Reactor Pressure
Vessel (RPV) as part of an integrated design (Nuscale, CAREM-25). Modularity in SMRs
imposes additional constraints regarding well-defined interactions and predefined bounds.
Design modularity needs more effort to create a practical module and demands decisions
on methods, connections, and integrations. First-of-kind SMRs are more expensive due to
the lack of OPEX [12, 13].

2.1.4 Safety-By-Design

Safety-by-design is a design philosophy that considers accident mitigation and prevention
approaches in the design of SMRs. Implementing the safety-by-design concept Minimizes
plant accidents by design or drastically minimize their likelihood; for instance, the inte-
grated layout of SMRs removes extra coolant loop piping, leading to eliminating the Loss
Of Coolant Accident (LOCA). Therefore, for SMRs, the Core Damage Frequency (CDF)
for internal events is commonly estimated to be between 10−6 and 10−8 per year. Conse-
quently, safety-by-design measure decreases the risk of accidents and lessens their effects.
Resulting in simpler, safer, and more cost-effective designs [14]. Seven Class IV accidents
for the Integral Pressurized Water Reactor (iPWR) design are indicated in Table. 2.2.

Table 2.2: Safety advancements by applying the safety-by-design concepts [15]

Design Basid Accidents iPWR Safety-by-Design Result

Loss Of Coolant Accident Eliminated
Control Rod Ejection Eliminated
Reactor Coolant Pump Shaft Break Eliminated
Reactor Coolant Pump Seizure Downgraded
Steam Generator Tube Rupture Downgraded
Steam System Piping Failure Downgraded
Feed-water System Pipe Break Downgraded
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Safety-by-Design aims to minimize potential hazards and ensure the safe operation of
SMRs by implementing reliable safety systems, risk-informed decision-making, and contin-
uous design improvement. Effective Safety-by-Design requires a systematic and integrated
approach to hazard identification, assessment, and control to enhance the overall safety
performance of SMRs.

2.1.5 Challenges with SMRs

Even though substantial breakthroughs have been discussed in earlier sections, several
technological challenges persist in multi-module concepts of SMRs, including:

• Control room staffing:

Small modular reactors’ innovative design requires control rooms’ crew responsibili-
ties, composition, and size changes. The safety and reliability of SMRs rely on having
the proper control room operators, and optimal control room staff composition will
vary from the current operating fleet of LNPP (due to adding passive features and
design simplicity) [16].

• Human Factor Engineering (HFE):

Operating procedures must be established (between supervisors) to avoid human er-
ror leading to isolating equipment in the faulty module or to ensure that substantial
modifications to operation in one module do not compromise the safe functioning
of others. To counteract this shortcoming, plant designers are investigating alter-
native operating strategies, such as a single operator monitoring multiple modules
or reactors controlling remotely. Small modular reactors require a systematic HFE
evaluation to establish the minimal staff complement based on operational tactics,
essential staff engagements, and competency (not only qualification) [17].

• Neutron leakage1:

Small modular reactors will have more neutron leakage than Large Nuclear Power
plants (LNPP) (SMRs produce nine times as much neutron-activated steel) due to
their diminutive size, leading to increasing leakage impacts on their waste streams’
quantity and structure [18].

• Developing new codes, standards and licensing:

The unique design characteristic of SMRs creates additional barriers when applying
codes and standards. For instance, gravity-driven injection and passive cooling sys-
tems, which are innovatively connected to LNPP, operate using natural circulation;
therefore, safety assessments for regulators and licensees are very demanding because
of the naval design elements and lack of new design coverage in current codes and
standards. On the other hand, the Operating Experience (OPEX) scarcity for each
innovative feature raises uncertainty, each of which is subsequently taken into account
in safety evaluations and influences final results.

1Neutron leakage is the issue that results from certain neutrons that escape from the core when a chain
reaction occurs there.
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• Determining Emergency Planning Zone (EPZ):

The emergency planning zone for SMRs may be scaled based on the findings of the
risk evaluations, the innovation, unique attributes, and specific design requirements.
The size of the EPZ may vary based on the legislation, security plan, dosage limits,
policy considerations, and social acceptability when the same SMR design is applied
in various countries.

As mentioned, the design and operation of SMRs present several challenges, including
issues with control room staffing, human factors engineering, neutron leakage, difficulties
in applying codes and standards, and determining the emergency planning zone. A reliable
passive safety system is essential to guarantee the safe operation of SMRs, which have
limited redundancy due to their small size. A comprehensive reliability assessment must
account for the technology, interdependence of different modules, and external factors such
as natural disasters, human errors, and cyber-attacks. Therefore, the importance of reliable
passive safety systems in SMRs emphasizes the need for ongoing research and development
in the reliability assessment of SMRs.

2.2 Reliability Analysis Methods

The increasing incidents of Nuclear Power plants (NPP) accidents, such as the Chernobyl
disaster, the Fukushima Daiichi nuclear disaster, and the Three Mile Island accident, have
heightened public concern regarding the safety and reliability of nuclear power generation.
To mitigate these concerns, the discipline of reliability engineering has been established.
This nascent field of engineering examines the fundamental reasons for system and compo-
nent failures during the preliminary and final design phases and provides plant engineers
with data that can be utilized to avoid such failures proactively [19].

Reliability, as defined in [20], is the ability of a system or component to perform its in-
tended mission over specified circumstances for a specified period. The essential elements
of reliability are capability, functionality, conditions, and time, which estimate the mis-
sion time. The mathematical definition of reliability is the probability that the time of
unexpected failure (T ) is greater than or equal to the mission time (t), as expressed in the
following equation:

R(t) = P (T ≥ t) (2.1)

Reliability is evaluated using measures such as failure rate and failure interval, although
it should be noted that reliability provides a relative, rather than absolute, assessment
of system performance. For example, reliability assessment is used to improve the Safe
Operating Envelope (SOE)2concept when defining the constraints and requirements for
NPP to ensure compliance with safety analysis [21].

.
2“Based on [21], the Safe Operating Envelope refers to the set of limits and conditions within which the

station must be operated to ensure conformance with the safety analysis upon which reactor operation is
licensed and which can be monitored by or on behalf of the operator”
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Failures, even in highly-technical systems, are inevitable. These failures can result in dis-
comfort, expenses, human harm, lost revenue, ecological damage, and fatalities. Reliability
and safety engineering provides a numerical measure of efficiency, identifies contributing
factors, and offers valuable insights for enhancing system productivity, such as reducing
failures and adverse effects [22]. Analyzing, describing, measuring, and evaluating failures
is an important aspect of reliability. Based on the examination of failures, there are two
main ways in which NPPs can encounter difficulties:

• Equipment Failure ; The assessment of equipment failure probability and unavail-
ability is based on reliability modelling. This framework predicts the likelihood of
element failure to perform its desired function and depends on the system’s stage of
operation (standby and operating components).

• Human Error ; Human error can contribute to initiating accident scenarios. Most
human actions that occur during the conceptual design and final stages are included
in this study, as they can impact the organization and outcome of the model. The
consideration of human performance in terms of reliability is a continually evolving
field due to the complexity of human behaviour and the scarcity of critical information
[23]. A method for understanding the human reliability analysis (HRA) and using
current HRA approaches in SMRs was proposed in [24], where human intervention
is minimal due to innovative design concepts, such as PSSs.

Predictable outcomes are essential for the design of NPPs, where SSCs are managed and
maintained (and are not vulnerable to human error) to meet all safety criteria, reliability
assumptions, and environmental release requirements for the entire plant lifetime. Various
techniques, including safety design concepts, are proposed to enhance system reliability:
redundancy (having alternative SSCs), diversity, independence, fail-safe design, and equip-
ment qualification. Passive safety systems improve the reliability of NPPs by automatically
activating during emergencies without human intervention or external power. These sys-
tems, such as passive cooling, prevent fuel damage and reduce the release of radioactive
materials, mitigating the consequences of accidents. By enhancing plant reliability, PSSs
increase public confidence and address concerns about nuclear power generation.

2.2.1 Reliability Assessments of Passive Safety Systems

Passive safety systems in NPPs rely on physical processes, such as gravity, natural convec-
tion, and conduction, rather than human intervention or activators. As a result, they are
considered to be more reliable than active systems. However, it is essential to note that
passive systems may be subject to structural failure, physical degradation, and clogging.
To ensure the ongoing reliability of these systems, it is imperative to conduct continuous
evaluations, especially for novel designs with limited operational experience [25]. The reli-
ability of PSSs is impacted by various factors, including operating conditions, the physics
of the associated phenomena, and the reliability of individual components, which can be
influenced by factors such as design, materials, manufacturing, and testing. The challenges
of evaluating the reliability of PSSs are depicted in Fig. 2.1.
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Figure 2.1: Factors Affecting the Reliability of Passive Safety Systems

Reliability assessment methods for PSSs are essential because they help ensure critical
systems’ safe and reliable operation. Engineers can identify and evaluate potential failure
modes and determine their impact on system performance by conducting reliability assess-
ments. This information can then be used to make design improvements or implement
mitigation strategies, reducing the risk of system failure and ensuring public safety.

2.2.2 Reliability Assessment Methods for PSSs

The reliability of PSS in NNP is crucial for ensuring safe and efficient operation in emer-
gency scenarios. Reliability assessment of PSSs involves evaluating key factors such as
operating conditions, physics of phenomena, and the reliability of single components. This
assessment is vital for established and novel designs to guarantee performance in real-world
scenarios.

In reviewing the methods commonly used for conducting reliability assessments of pas-
sive safety systems for NPPs, five stand out: Reliability Evaluation of Passive Systems
(REPAS), Reliability Methods for Passive Safety Functions (RMPS), and Assessment of
Passive System Reliability (APSR), Probabilistic Safety Assessment (PSA) and Failure
Mode and Effects Analysis (FMEA). The choice of a reliability assessment method for
PSSs depends on the evaluation’s objectives and specific requirements. Each method has
its unique emphasis and advantages, making it essential to consider its suitability for
the desired assessment outcomes. Hence, a comprehensive understanding of the available
methods and their strengths is crucial for determining the most appropriate method.

The Reliability Evaluation of Passive Systems method is utilized to assess the reliability of
PSSs. This method boasts several advantages, including a systematic approach, provision
of quantitative results, consideration of both design and operational factors, integration
with other reliability assessment methods, and user-friendliness. The Reliability Evaluation
of Passive Systems method adopts a systematic approach in its evaluation, ensuring the
accuracy and completeness of the assessment process. The method provides quantitative
results, allowing for a detailed analysis of PSS reliability and its components. Furthermore,
REPAS can be integrated with other methods, such as fault tree analysis, to provide a
more comprehensive reliability assessment. The user-friendly nature of REPAS, with its
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clear guidelines and procedures, makes it a valuable tool for evaluating the reliability of
PSSs. Jafari et al., in their publication [26], have investigated the reliability of Nuclear
Cooling (NC) systems. The proposed methodology for the study was the REPAS approach,
which aimed to optimize the information for a single-phase NC loop and to manage the
propagation of uncertainty through the Thermal-Hydraulic-Reliability (TH-R) model. The
result of the study indicated that the proposed TH-R approach was more reliable than other
TH-R approaches, such as that proposed by Bianchi et al. [27], when comparing the single-
phase NC system to a two-phase system. The numerical values obtained from the study
could be employed in more complex safety assessment studies, such as PSA studies, to
optimize passive systems.

The Reliability Methods for Passive Safety Functions (RMPS) is a widely recognized tech-
nique utilized to evaluate the reliability of PSSs. The Reliability Method for Passive Safety
Functions method aims to assess the dependability of passive safety functions, which are
crucial in ensuring the system’s secure operation. This method examines the reliability
of components that make up the PSS, including design, materials, manufacturing pro-
cesses, and operational conditions. The Reliability methods for passive safety functions
approach considers numerous factors, such as failure probabilities, system redundancy, and
performance, to establish the overall reliability of the PSS. The outcomes of the RMPS
assessment can be employed to identify potential areas for improvement, optimize the de-
sign and operation of passive safety systems, and augment the overall safety of SMRs.
Marquès et al. [28] proposed the RMPS method, which aims to evaluate the reliability
and sensitivity analyses of passive systems, specifically the Residual Passive Heat Removal
system on the Primary circuit (RP2), during a Total Loss of Power Supplies (TLPS) ac-
cident scenario. This method has been successfully applied to several passive systems,
including the In-Containment Refueling Water Storage Tanks (IRWSTs) of Boiling Water
Reactors (BWRs) and the Hydro-Accumulators of the Pressurized Water Reactors (PWRs)
[29]. The passive system is modelled using the CATHARE code. The numerical results
are fed into the PSA to define TLPS as an initiating event for the event tree analysis in
estimating the frequency of occurrence and the accident sequences leading to core damage.
The proposed technique addresses the issues of identifying uncertainty contributors, the
uncertainty of Thermal-Hydraulic (T-H) models, and incorporating the unreliability of the
passive system into the accident sequence analysis.

Assessment of Passive System Reliability (APSR) aims to identify the potential failure
modes and causes and assess the reliability of PSSs. The results of the APSR assessment
can provide valuable insights for improvement, optimization of the design and operation of
passive safety systems, and enhancement of the system’s overall safety. Nayak et al. [30]
conducted a study evaluating the reliability of PSSs using the APSRA method. The study
focused on the boiling natural circulation system in the central heat transport system of
the Indian Advanced Heavy Water Reactor (AHWR) concept. The authors developed a
failure surface by considering the deviation of all critical elements that affect the system’s
efficiency. Root cause analysis was then performed to determine the sources of deviation,
which were linked to mechanical component failures such as pumps and valves. Finally,
traditional PSA was applied to calculate the probability of component failure.

The distinction between the Reliability Methods for Passive Safety Functions (RMPS),
the Reliability Evaluation of Passive Systems (REPAS), and the APSR methodologies are
rooted in their respective principles and techniques for the reliability assessment of PSSs.
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The selection of an appropriate method would depend on the particular objectives and
demands of the reliability assessment and the unique characteristics of the PSS under
examination.

The Reliability Methods for Passive Safety Functions approach was employed to provide
a quantifiable method for evaluating the reliability of Category B passive systems. The
primary objective of RMPS was to establish a mechanism for quantifying the reliability of
thermal-hydraulic passive systems. The study using RMPS evaluated three passive safety
systems: the Injection Cooling System (ICS), the Pressure Relief System (PR), and the
Hydro-Accumulator of a VVER.

In the RMPS study, there was a need for a transparent agreement on integrating the
reliability of PSSs with the PSA; however, some contributors only provided theoretical
ideas. The reliability Methods for Passive Safety Functions method does not explicitly
incorporate active components and only analyzes the reliability of passive systems based
on mechanical component failures. In a realistic PSA, the interaction between passive and
active components must be considered, as a failure of an active system may fail the passive
system. Figure 2.2 presents a simple fault tree to demonstrate how both types of failures
may contribute to the breakdown of the complete passive system [31].

Figure 2.2: Combination of active components failure and physical process failure to
describe passive system failure

Probabilistic safety assessment is a comprehensive and systematic approach that can be
utilized in conjunction with REPAS, Reliability, RMPS, and APSR methods for evaluating
the reliability of PSSs. This quantitative method employs probabilistic models to assess
different events’ probabilities and consequences. The results from REPAS, RMPS, and
APSR can be utilized to inform the PSA model, and conversely, the outcomes from the
PSA can be used to refine the other three methodologies.

2.3 Probabilistic Safety Assessment

Probabilistic safety assessment is a well-established methodology for evaluating the safety
of complex technological systems, including NPPs. The primary objective of PSA is to
provide a quantifiable evaluation of the likelihood and consequences of potential accidents
to support informed decision-making during the design and operation of these systems.
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Using PSA in the context of PSS allows for a comprehensive evaluation of the safety per-
formance, provides valuable insights into the safety margins and vulnerabilities, considers
a range of potential scenarios and uncertainties and can help identify potential areas for
improvement. The results of a PSA can be used to inform the development of design and
operating criteria and support risk-informed decision-making and regulatory oversight.

Before the 1975 Reactor Safety Study (WASH-1400) publication, licensing nuclear power
reactors relied solely on deterministic methodologies. These methodologies were limited
by insufficient plant modelling and uncertainties from conservative design and operation
practices; Probabilistic safety assessment provides a more comprehensive assessment of the
safety of a system by considering both deterministic and probabilistic approaches. WASH-
1400 introduced PSA to the US nuclear power sector, presenting a comprehensive risk
analysis of a Pressurized Water Reactor (PWR) and a Boiling Water Reactor (BWR) [32].
The integration of PSSs into PSA offers a systematic approach to evaluating the safety
and reliability of nuclear power plants.

Integrating PSSs into PSA is crucial for evaluating the safety and reliability of SMRs,
where utilizing PSSs provides safe operation and meets high safety standards. Here is a
summary of some research on PSA for passive safety systems in Table 2.3:

Table 2.3: PSA implementation for PSSs

References Proposed approaches

Johnson, T. A. and et al. [2015] The authors performed a probabilistic safety assessment on
SMRs to evaluate their safety margins and the reliability of
their PSSs.

Zhang, Y. and et al. [2019] This work carried out a safety assessment of PSSs in SMRs to
understand their behaviour in case of a design-basis accident
or a beyond-design basis accident.

Kim, Y. W. and et al. [2020] The authors conducted a probabilistic safety assessment of
the PSSs in SMRs to identify the potential failure modes and
evaluate the performance of these systems under different
scenarios.

Kim, J. and et al. [2017] Integrated various safety analyses and carried out a proba-
bilistic safety assessment of the PSSs in SMRs to assess the
overall safety margins of these systems.

Ma, X. and et al. [2016] Performed a probabilistic safety analysis on PSSs in SMRs
to understand the potential risk levels and the uncertainties
associated with these systems.

Lee, H. and et al. [2018] The authors conducted a probabilistic safety assessment of
the passive cooling systems in SMRs to evaluate the relia-
bility and the performance of these systems under different
scenarios.

Chen, L. and et al. [2020] Performed a probabilistic safety assessment of the passive
residual heat removal systems in SMRs to evaluate their per-
formance and to identify the potential failure modes.

The main components of PSA are the FT and ET, which analyze the progression of events
leading to potential accidents in a system. Fault trees are graphical representations of the
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logical relationships between the failures of system components that can lead to an unde-
sired event. However, ETs represent the progression of events following the initiation of an
undesired event by illustrating the different paths the event can take and the consequences
of each path. Both FTs and ETs play an essential role in PSA by providing a structured
and systematic approach to analyze the events leading to an accident and to evaluate the
overall risk associated with the system. Integrating FT and event tree analysis into the
PSA process makes it possible to produce a comprehensive and systematic risk evaluation
that supports effective risk management and decision-making.

Fault Tree Analysis (FTA)

Fault trees are diagrams that depict the combinations of faults that may result in a system
failure, as shown in Fig. 2.3. They are constructed in a logical, deductive, and top-down
manner and are used to identify the causes of a system’s failure and develop strategies to
mitigate it. The diagrams are created using Boolean operators3, such as AND and OR
gates, to represent the relationships between system faults and the events that cause the
failure.

Table 2.4: “OR” and “AND” gates probabilities equations

Gate Inputs Probability

OR 2 P (A) + P (B)− P (A)P (B)

OR 3 (P (A) + P (B) + P (C))− (P (AB) + P (AC) + P (BC) + P (ABC))

OR 4 (P(A)+P(B)+P(C)+P(D))-(P(AB)+P(AC)+P(AD)+P(BC)+P(BD)+P(CD))+
(P(ABC)+P(ABD)+P(BCD)+P(ACD)+P(ABCD))

AND 2 P (A)P (B)

AND 3 P (A)P (B)P (C)

The critical component of an FT is the Top Event (TE), which represents an unfavourable
outcome, such as an Incomplete System Failure, depicted in Fig. 2.3. The top event results
from a combination of BEs identified as contributing causes. OR and AND logic gates are
utilized to establish a logical relationship between the TE and its BEs. The probability of
failure PrC(t) is calculated as follows:

Failure probability = Failure Rate×Demand (2.2)

PrC(t) = 1− exp−λt (2.3)

In the expression, λ and t represent the failure rate and mission time, respectively. The
Fault Tree (FT) logic gates, AND and OR, are fundamental components of Boolean logic.

3AND gate, the output event occurs if all input events occur.
3OR gate, the output event occurs if at least one of the input events occurs.
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An AND gate produces an output if all inputs occur, and an OR gate produces an output
if at least one of its inputs occurs (Equations 2.4 and 2.5 show the equations for AND and
OR, respectively [40]). The equations for the logic gates are based on the contents of Table
2.4; the probabilities of intermediate events and the TE are estimated by considering the
Table’s contents [41].

P =
m∏
i=1

Pi (2.4)

P =
m∏
i=1

(1− Pi) (2.5)

The failure of the Isolation Condenser System (ICS), as shown in Fig. 2.3, is recognized
as a critical factor that contributes to the failure of other components and systems. For
example, a combination of natural circulation failure, ICS failure, and pipe rupture is
a significant cause of ICS failure. Qualitative analysis is paramount in determining the
root cause of ICS failure, such as failure of the Heat Exchangers (HXs) and condensation
valves. Furthermore, multiple pipe ruptures and plugging can also lead to HX failure. This
interplay of system and component failures ultimately fails the ICS [42].

Figure 2.3: Fault tree for ICS failure

Event Tree Analysis (ETA)

Event tree is a diagram that illustrates the progression of events, beginning with an ini-
tiating event, which is an unfavourable state that endangers the efficient operation of the
facility and culminates in a final stage. The event tree diagram is constructed using in-
ductive reasoning and presented in a left-to-right format, depicting the event sequence’s
qualitative and time-dependent mitigation function.
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Figure 2.4: Fault tree and related event tree for ICS failure

The event tree for the ICS is constructed to demonstrate the sequences of potential acci-
dents and their probabilities, as assessed through FTA. Suppose a Station Blackout (SBO),
the ICS and the Automatic Depressurization System (ADS) are considered mitigating sys-
tems. The event tree of the ICS is initiated with the SBO event, and the failure of both
the ICS and the ADS is treated as distinct events. As shown in Figure 2.4, the event tree
displays various alternative scenarios and their associated probabilities [42].

The outcomes of PSA (by conducting the FT and ET) reflect its various levels (three
levels); These levels provide increasing detail and accuracy in assessing risk, from a broad
overview to a detailed and comprehensive analysis. The choice of level depends on the
specific objectives and requirements of the PSA study.

1. Core damage frequency (Level 1): Figure 2.5 illustrates that Level 1 of PSA
covers the stage referred to as “Accident Frequency Analysis”; This stage evaluates
the various plant conditions that could lead to core damage.

2. Release frequencies (Level 2): Level 2 of a PSA encompasses two parts: “Accident
Progression Analysis” and “Source Term Analysis”; The former predicts the timing
and mechanism of containment failure, while the latter evaluates the magnitude of a
radioactive release in various transients, as per Fig. 2.5.

3. Radiological consequences (Level 3): Level 3 analysis, as depicted in Figure
2.5, encompasses the “Consequences Analysis” section. Its objective is to evaluate
the off-site effects resulting from the outcomes of Level 2.
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Figure 2.5: 3-Level PSA

The outcomes of these levels provide increasing detail and accuracy in assessing risk, from
a broad overview to a detailed and comprehensive analysis.

The standard methodology for PSA, as delineated in NUREG-11504, has several inherent
limitations that may result in an unreliable evaluation of risk in complex, dynamic systems
[43, 32].

1. Traditional PSA is static and cannot model dynamic risk assessment;

2. The standard PSA does not encompass the evaluation of partial component failures.
The conventional approach assumes that partially functioning equipment is entirely
defective. Furthermore, it does not account for sequence-dependent functioning, in
which the failure of certain components may occur prior to others (e.g. valve 1
fails before valve 2). Implementing redundancy and diversity measures for enhancing
safety results in varying failure rates for different components, which is a crucial
consideration for dynamic risk analysis.

3. Ignoring system interactions and interdependencies since all BEs are seen as inde-
pendent;

4. The knowledge and judgment of experts may be insufficient or flawed. In such cases,
the fuzzy logic approach proposed using expert judgment as a basis for aggregating
subjective quantitative data from experts to produce absolute quantitative data, thus
facilitating consensus among all basic events. [44, 45, 46].

5. The evaluation of a sophisticated system through conventional PSA presents a signif-
icant challenge due to the multitude of basic events, intermediate events, logic gates,
and failure paths involved.

Various approaches have been proposed to address classical PSA limitations, including
using advanced modelling and simulation techniques, incorporating new data sources, and
integrating multiple analysis methods to evaluate risk comprehensively.

4NUREG-1150 is a report produced by the U.S. Nuclear Regulatory Commission (NRC) that provides
guidance and standards for conducting PSA studies in the nuclear power industry
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2.4 Failure Mode and Effects Analysis (FMEA)

Failure Mode and Effects Analysis (FMEA) is a bottom-up methodology performed at
the system level. This technique evaluates each failure mode to identify the causes and
strategies for mitigating the impact and to prioritize the consequences of potential acci-
dent scenarios. By identifying potential operational issues and minimizing the likelihood of
cascading failures, FMEA can lead to cost and time savings, primarily when implemented
during the preliminary and conceptual design phases. However, conducting a comprehen-
sive FMEA requires significant time, resources, and budget. To ensure that the FMEA is
accurate, it is essential to have a precisely outlined process and criteria. Specifying stan-
dards can provide an appropriate approach and structure but only guarantee an adequate
FMEA. Various reference standards and guidance documents are available (most common
[47, 48, 49]) and guidance documents, for instance, IMCA M166, Guidelines for FMEA
applied to a specific system and IMCA M178, FMEA management that can assist with
conducting a satisfactory FMEA [50].

Whenever an FMEA is required for a design, it serves as a verifying report to ensure
that the design under evaluation satisfies the established standards and design principles.
For example, a fundamental design concept for categorization is that a single failure must
not result in an unfavourable outcome or a dangerous scenario with potential personal,
component, or environmental harm. Avoidable outcomes encompass the loss of system
functionality (or degradation) or loss of control beyond an acceptable level. To mitigate
these risks, specific design modifications can be made, such as implementing redundancy
and diversity concepts, safe and controlled shutdown procedures, and minimizing the prob-
ability of failure through risk management strategies [51].

Human error and component failure are two scenarios that can lead to NPP accidents.
To minimize system vulnerabilities, risk assessment and evaluation methods using either
top-down or bottom-up techniques can be used to evaluate the Structures, Systems, and
Components (SSCs) and the influence of human factors.

Several hazard evaluation methods have been proposed to design out vulnerabilities, reduce
the likelihood of failure, and increase the ability to detect and address issues before they
cause adverse effects. For instance, the FMEA described by [52] compares the components
of Large Advanced Pressurized Water Reactors (mPower, Nuscale design), such as Steam
Generators, Control Rod Drives, Reactor Internals, and Vessel Components, to identify
the importance of FMEA in enhancing the ability of the industry to assess and prioritize
any degradation that may occur. [53] combined FMEA with fuzzy logic methodologies
to address the challenges posed by the absence of operating experience (OPEX) data and
the availability of dependability data for the High-Temperature Gas Reactor (HTGR). [54]
used FMEA to perform safety assessments for the helium-cooled solid breeder (HCSB),
conducting a comprehensive examination of the various factors that could trigger unit
failures or interrupt operations. [55] integrated FMEA as an informational resource into
the MFM-SC approach to increase the efficiency of operation analysis under uncertainties
for the PSSs of SMRs, thus generating essential data for decision-making.

[56] proposed a PSA for nuclear-powered icebreaker operations in ice-covered waters by
using FMEA as a qualitative hazard identification method and feeding the results into a
functional resonance analysis method (FRAM) to obtain critical accident scenarios. [57]
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implemented a new FMEA-based Gradual Screening Approach for the Electrical failure
(unplanned outages) in the High-Temperature Engineering Test Reactor (HTTR). The
objective was to determine the frequency of system failures and the most critical fail-
ure modes. [58] developed GO-FLOW assessment methods to evaluate the reliability of
the AP1000 passive core cooling system (PXS) and passive containment cooling system
(PCCS), using FMEA to identify possible failure modes and characteristics deemed crucial
for the functioning of the PSSs. [59] combined FMEA with Fault Tree Analysis (FTA)
methods to evaluate the LOCA in the Brazilian TRIGA IPR-R1 reactor. The FMEA
framework was used to identify failure modes and prioritize risk management based on the
Risk Priority Number (RPN). In contrast, FTA was used to develop the logical connections
between failure modes and identify the minimum cut sets. FMEA is an effective strategy
for identifying, evaluating, and managing risks in nuclear power plants. However, the input
variables in this method are defined based on experts’ judgment, which can be challenging
in the presence of uncertainties due to a lack of OPEX data and information.

The outcome of an FMEA is the Risk Priority Number (RPN). The risk priority number
is a numerical value calculated based on the information provided regarding the Severity
(S) of the effect, the Occurrence (O) probability, and the Detectability (D) of the failure
modes. Severity reflects the potential for damage in a given scenario, Occurrence represents
the probability of failure, and Detectability illustrates the extent to which the failure can
be detected [60]. By multiplying these three factors (S, O, and D), as specified in Eq. 2.6,
it becomes evident that a higher RPN score indicates a failure mode with high risk

RPN = Severity (S)× Occurrence (O)× Detectability (D) (2.6)

Gargama et al. [2011] outlined various disadvantages of the conventional FMEA, which
for practical purposes, make evaluating S, O and D complicated, as follows:

1. The risk priority number is generated from various combinations of risk variables, as
shown in Eq. 2.6; however, it should be noted that while the RPN number may be
the same, the associated risk consequences can vary greatly.

2. The risk priority number parameters (S, O, D) are often assumed to have equal
weight, leading to an invalid risk analysis [62]. A technique for combining FMEA
with FTA was developed by Shafiee et al. [2019] for the risk assessment of the Blowout
Preventer (BOP) system. This approach assigns weights to RPN numbers determined
using FTA, which are then used to modify RPNs obtained through traditional FMEA
methods.

3. The risk priority number primarily focuses on only three safety-related factors. Other
factors, such as economic considerations, should be taken into account. In [63], a com-
prehensive FMEA is proposed that utilizes fuzzy logic to consider additional RPN
variables. The methodology includes a pre-assessment using fuzzy logic systems to
analyze incoming factors affecting the severity, occurrence, and detectability vari-
ables. Instead of a single severity rating, the consequences on assets, people, the
environment, and reputation are considered. Additionally, detectability comprises
three components: process management, manual or automated judgments, and data-
driven decision-making.
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4. The mathematical method used to determine the RPN has been criticized for lacking
a solid scientific foundation.

One limitation of the traditional FMEA method is the lack of consideration for each inde-
pendent variable’s relative significance, and the scale’s qualitative importance, as noted in
[64]. The computation of RPN in FMEA assumes a linear interaction between the param-
eters (Severity, Occurrence, and Detectability), meaning these factors are calculated using
the same scale without considering their relative significance. This approach needs to con-
sider the relative importance of each independent variable, resulting in a lack of nuanced
analysis. For example, a high severity score indicates a high risk due to the severe conse-
quences to operators or equipment. However, if there is a threat to human life, the other
variables should not be allowed to lower the overall RPN value. To address these limita-
tions and improve the accuracy of risk assessment, there is a need for a more comprehensive
analysis that considers the relative significance of each independent variable.

2.5 Conclusion of Chapter 2

The reliability of passive safety systems in SMRs is essential for a safe operation of the
plant, and reliability evaluation of PSSs is a complex process that involves several factors.
Firstly, SMRs are smaller and have lower power levels, meaning they have less redundancy.
This challenges traditional safety analysis and makes it even more critical to have reli-
able passive safety systems and accurate assessments. Secondly, using new technologies in
SMRs can make it challenging to understand their behaviour and performance during rou-
tine operations and emergency situations, affecting the accuracy of reliability assessments.
Thirdly, the modular design of SMRs means that different modules with different reliability
characteristics must be integrated, making it challenging to predict overall system relia-
bility. Fourthly, external factors such as natural disasters, human error, and cyber-attacks
must also be considered when evaluating the reliability of passive safety systems in SMRs.

Given these challenges, there is a need for further research and development in the field of
reliability and safety assessment for PSSs in SMRs. This can involve advanced techniques
like ANN and fuzzy logic to support decision-making by providing more accurate and com-
prehensive risk assessments. In conclusion, incorporating innovative techniques is needed
to address the limitations of classical PSA, and a more integrated and comprehensive
approach to risk assessment is needed. This will be discussed in the next chapter.
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Chapter 3

Literature Survey on Fuzzy Logic and
Artificial Neural Network in Safety
Assessment

Reliability analysis is crucial to the safety systems’ design and development process. It
identifies potential threats and assesses the system’s ability to perform its intended function
confidently, thereby protecting people and the environment during normal and abnormal
operations. Classical methods such as PSA and FMEA have traditionally been used for the
reliability analysis of safety systems. However, these methods have several limitations, as
highlighted in literature [65, 66]. One limitation is their dependence on expert knowledge
and assumptions about the system, which may only sometimes be accurate or compre-
hensive, particularly in cases where consensus among multiple experts is difficult or in
the investigation of innovative systems. This can lead to oversimplification and incorrect
results, especially in complex systems with hundreds of subsystems. Probabilistic safety
assessment and FMEA also do not effectively incorporate uncertainty into reliability analy-
sis, leading to a limited understanding of the system’s behaviour under different conditions,
resulting in a lack of confidence in the results and limiting their utility in the design and
development process. Additionally, PSA and FMEA are primarily static methods, making
it challenging to model the system dynamic and predict its behaviour over time. Fur-
thermore, they can be time- and resource-intensive, requiring significant data collection,
modelling, and analysis, making them impractical in fast-paced or resource-constrained
environments.

The following sections examine ANNs and fuzzy logic as alternative techniques to address
the limitations mentioned by conventional methods (PSA and FMEA) in the reliability
analysis of passive safety systems. The objective is to investigate the potential benefits
of these novel methods in incorporating uncertainty into the analysis, modelling the be-
haviour of dynamic systems, and enhancing efficiency in terms of time and resources. A
comprehensive review of the existing literature and practical applications is performed to
demonstrate the improvement in accuracy and confidence that can be achieved through
the implementation of ANNs and fuzzy logic in reliability analysis, thereby contributing
to the advancement of the design and development of safety systems.
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3.1 Fuzzy Logic

Fuzzy logic is an annex of Boolean Logic and first appeared in 1965 with the publication of a
work titled “Fuzzy sets” by Berkeley professor Lotfi A. Zadeh. Fuzzy logic is a mathematical
approach that deals with uncertainty and imprecision. It represents and manipulates vague,
ambiguous, or uncertain information that cannot be easily expressed in numerical terms.
Fuzzy logic is a mathematical framework for modelling complex, uncertain systems that
operate on degrees of membership rather than binary truth values. It offers advantages in
the reliability analysis of safety systems by incorporating uncertainty, modelling dynamic
behaviour, and being more time and resource-efficient. Resulting in enhanced accuracy
and confidence in reliability analysis [67]. Probability distributions are the most popular
method for expressing uncertainty about numerical values, whether epistemic or aleatory.
In Interval analysis based on fuzzy representation, the variable’s uncertainty is specified
as an interval integer. The interval should indicate the uncertain parameters’ maximum,
minimum, and best estimates. The suggested method can predict probable ranges on model
outcomes by employing boundaries (intervals) to express uncertainty about model inputs
and variables [68]. Almost every real-world situation has an element of uncertainty either in
inputs, process, or output data. In essence, measurement is inseparable from uncertainty
and comes from integrating the instrument’s measurement limitations and unavoidable
measurement errors [69]. There are two basic categories of uncertainty to distinguish:

1. Aleatory uncertainty 1; Is attributed to the real, stochastic nature of some phys-
ically quantifiable parameter, such as temperature fluctuations, component failure
changing during the test, and failure and repair times of components [70, 71].

2. Epistemic uncertainty 2; Is a lack of clarity, natural stochasticity or accuracy
in an assessment or quality statement. This feature necessitates PSA analysts to
assign probability distributions using Expert Judgment (EJ) as their primary source
of information [70].

Therefore, uncertainty is a major concern that can significantly impact the accuracy of
the results. Fuzzy logic addresses uncertainty in the risk analysis process by representing
uncertainty through fuzzy set theory.

3.1.1 Fuzzy Sets and Operations

The standard set identifies with a crisp boundary, meaning that a member either belongs or
does not belong to the set. The transition from a member in the universe of discourse to a
specific set in classical sets is fast-changing and crystal clear. In contrast, this change might
be continuous in fuzzy sets without crisp boundaries. This transition amongst degrees of
membership might be interpreted as complying that the boundaries of the fuzzy sets are
vague and ambiguous [72]. The definition of fuzzy sets based on partial membership is that

1“Aleatory uncertainty also known as Randomness, variability, stochastic uncertainty, objective uncer-
tainty, dissonance, or irreducible uncertainty”

2“Epistemic uncertainty also known as Incertitude, ignorance, subjective uncertainty, non-specificity, or
reducible uncertainty”
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each element belongs partially or gradually to the specified fuzzy sets. The boundaries of
each fuzzy set (Fig. 3.1) are not “sharp” but rather gradual; therefore, in contrast to a
conventional set, fuzzy sets permit elements to have a soft edge. According to Fig. 3.1, x
belongs neither to set A nor set B, y belongs totally to set A, z totally belongs to set B,
but t partly belongs to set B.

Figure 3.1: Comparison of Conventional Set A and Fuzzy Set B, showing the sharp
boundaries of Set A and the gradual boundaries of Set B.

The degree of belonging of an element to a set (A, B) is used to represent the uncertainty
and vagueness in real-world systems. This degree of belonging is determined by the Mem-
bership Function (MF), which maps the elements of a universe of discourse to a degree of
membership within a fuzzy set.

Membership Function

In fuzzy logic, a membership function is used to quantify an element’s membership degree
in a fuzzy set. This function assigns a value between 0 and 1 to each element in the set,
where 0 indicates that the element is not a member of the set, and 1 indicates that the
element is a fully-fledged member. The membership function outlines the limits of the
fuzzy set and establishes the element’s membership level in the set. A fuzzy set allows
elements to have partial membership, with values ranging between 0 and 1. For example,
consider a fuzzy set A in the universe X, represented by a membership function µA(x):

µA(x) : X → [0, 1] (3.1)

Where µA(x) accounts for the membership degree of x in a set A. Therefore, each fuzzy
set has a unique MF graphically representing its fuzzy boundary and characteristics.

Denition 1.
Let X be a set. A membership function characterizes a fuzzy subset A of X. fa: X
→ [0; 1]. (In theory, it is possible that the output is greater than 1, but in practice,
it is rarely used.)
Note: This membership function is equivalent to the identity function of a classical
set.
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(a) Classical Set (b) Fuzzy Set

Figure 3.2: Comparison of classical and Fuzzy Sets; the boundary of the classical set
(3.2a) is sharp and clearly defines the speed boundaries, while the boundary of speed in
the fuzzy set (3.2b) is smooth and gradual.

According to Fig. 3.2, classical set 3.2a has a crisp and sharp boundary compared with a
smooth one in fuzzy set 3.2b. In other words, a fuzzy set utilizes MF’s degree to allow a
member to partially belong to a set in the context of fuzzy logic. For instance, the vehicle
speed ranges are shown in Fig. 3.2. For the classical set, illustrated in Fig. 3.2a, the
speed is separated into three varieties: LOW (0 ∼ 40 km/h), MEDIUM (40 ∼ 80 km/h),
and HIGH (80 ∼ 120 km/h); from the perspective of the classical set, the speed range is
obviously defined, but in the fuzzy set, the border is fuzzy and devoid of any distinct edges,
meaning that one speed in the fuzzy concept belongs simultaneously to two or more subsets.
For instance, a speed of 50 km/h can be deemed LOW to a specific degree of around 0.5
degrees and MEDIUM to a great extent of around 0.7. Therefore, as the quantity of A(x)
increases, so does the membership degree of x in A.

Different MF shapes are used to model different system characteristics being analyzed,
such as uncertainty, imprecision, or non-linearity. Some of the commonly used shapes of
MF (Fig. 3.3) based on application and purpose are Triangular, Trapezoidal, Piecewise
linear, Gaussian, and Singleton.
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Figure 3.3: Various shapes of MF are employed in modelling different system characteris-
tics. Some MF shapes, including Triangular, Trapezoidal, Piecewise linear, Gaussian, and
Singleton, are frequently used in various applications and purposes.

Following Fig. 3.3, several fuzzy MFs are defined, each with a unique identifier and set of
attributes. Triangular Fuzzy Number (TFN) and Trapezoidal Fuzzy Number (TZFN) are
two valuable forms of these numbers, particularly for engineering and assessment operations
which will introduce in the following sections [73].

Trapezoidal Fuzzy Number

Trapezoidal fuzzy number is a mathematical representation of a fuzzy set that utilizes a
trapezoidal MF. This type of fuzzy number is described by Eq. 3.2, and the MF µÃ(x) :
R → [0, 1] maps a real number to a value between 0 and 1, representing the degree of
membership of the element in the fuzzy set.

µTZFN
Ã

(x) =



µL
Ã
(x) ≡ (x− a)

(b− a)
, a≤ x ≤ b

1, b≤ x ≤ c

µR
Ã
(x) ≡ (c− x)

(c− b)
, c≤ x ≤ d

0, otherwise

(3.2)

The membership degrees of TZFN are defined by four parameters, denoted as Ã = (a, b, c, d)
as depicted in Fig. 3.4. The lower and upper bounds of the MF are represented by the
values of a and d, respectively, while the best estimate value falls within the tolerance in
terval of b to c. The characteristics of the MF have displayed in Fig. 3.4 for the fuzzy set
Ã as listed in Table 3.1.
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Table 3.1: Features of membership functions

Features MF range Description

Core µÃ(x) = 1 An area of the universe that contains the
entire membership in the set.

Support µÃ(x) > 0 The portion of the universe whose mem-
bership in the set is greater than zero.

Boundary 1 > µÃ(x) > 0 The segment of the universe whose mem-
bership in the set is nonzero but incom-
plete.

Alpha-cut (α− cut) Ãα = {X | µÃ(x) ≥ 0} It is the collection of all x where µÃ(x)
surpasses α.

Figure 3.4: Representation of trapezoidal fuzzy number shape, depicts the membership
degrees of a TZFN, defined by three parameters, Ã = (a, b, c, d).

Triangular Fuzzy Number

Trapezoidal fuzzy number (= [a, b, c, d], with c = b) can be transformed into a Triangular
Fuzzy Number, mathematically represented as = [a, b, c]. The triangular fuzzy number is
defined by its MF, which is a triangular shape and defines as Eq. 3.3:

µTFN
Ã

(x) =



(x− a)

(b− a)
, a≤ x ≤ b

(c− x)

(c− b)
, b≤ x ≤ c

0, otherwise

(3.3)
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Figure 3.5: Representation of Fuzzy triangular number shape; depicts the membership
degrees of a TFN, defined by four parameters, Ã = (a, b, c).

These two forms of MF can be used in fuzzy set operations such as union, intersection,
and complement to create new fuzzy sets and obtain new information. These operations
are essential in many applications, such as decision-making, control systems, and pattern
recognition. Due to their simple mathematical representations and flexible shapes, the tri-
angular and trapezoidal fuzzy numbers provide a convenient and effective way to represent
uncertainty in fuzzy set operations.

Fuzzy set operations apply to linguistic variables, which are variables that take on values
described in natural language terms, such as “hot”, “cold”, or “warm”. The uncertainty and
imprecision in these natural language terms can be mathematically represented using fuzzy
set operations. Triangular and trapezoidal fuzzy numbers are common ways to represent
linguistic variables in fuzzy set theory.

Linguistic Variables

According to Zadeh [74], in complex systems, it is natural to utilize linguistic variables,
meaning variables whose values are not numbers but words or sentences in a natural or
artificial language. The use of linguistic variables, as opposed to numerical ones, is driven
by the observation that linguistic characterizations are generally less specific than numerical
ones. Linguistic variables are natural language expressions that introduce uncertainty to
specific features. For example, if we consider the concept of “speed” as a linguistic variable,
then the set Γ(speed) should be:

Γ = {very slow, reasonably slow, slow, medium, fast, reasonably fast, very fast} (3.4)

Where there is a fuzzy set for each member of Γ set in a universe of discourse, for instance,
Θ = [0, 150] km/h; in defined Θ set, “fast” is interpreted as a speed exceeding 120 km/h.
these terms can be indicated in Fig. 3.6 with certain MF of fuzzy set1.

1The MFs’ patterns and degrees of overlap are entirely arbitrary.
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Figure 3.6: The Linguistic variable and its associated MFs are visualized, demonstrating
the pattern of the fuzzy set’s degree of membership for a given linguistic term.

Standard linguistic variables values, such as “fast”, and “medium”, are basic definitions
that are combined with hedge or quantifier terms, such as “very”, “less”, and “reasonable” in
order to convey a distribution of possibility, rather than a crisp value. Using these linguistic
variables and hedge terms allows for a more nuanced representation of uncertainty instead
of a purely numerical representation [75].

Fuzzy logic systems are composed of linguistic rules expressed in a natural language format
and employed to model relationships between input and output variables. The processing
of these rules is accomplished by applying fuzzy inference algorithms, which result in the
generation of a fuzzy set. The fuzzy set represents the degree of truth of the proposition
being analyzed and can be transformed into a single, precise output value through a process
known as defuzzification. The defuzzified output can be utilized for various purposes,
including controlling dynamic systems, making decisions based on incomplete information,
and facilitating human-like communication in natural language processing applications.

3.1.2 Fuzzy Logic Systems

Fuzzy logic systems are an integral sub-discipline within the field of computational intel-
ligence. As suggested by studies in ANNs, the representation of knowledge concerning
intricate or ambiguous processes through the use of natural language expressions is a
widely employed technique for conveying human knowledge. This approach uses fuzzy
logic to emulate human decision-making processes by incorporating human reasoning into
the computational framework [76]. In classical logic, reasoning has the following form:

Classical logic reasoning =⇒

{
If A then B
If A true then B true
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The IF-THEN “rule-based” approach is a standard method used in fuzzy logic systems,
comprising a series of linguistic rules that express the relationships between inputs and
outputs. However, this approach may not represent more complex object structure and
behaviour knowledge. In such cases, more profound forms of knowledge, such as object-
oriented knowledge, may be more appropriate for capturing the relationships and informa-
tion needed to make accurate decisions. This is because object-oriented knowledge consid-
ers the underlying structure of the objects being modelled and their behaviour, providing
a more comprehensive representation of the modelled system [77].

IF premise (hypothesis, antecedent) → THEN conclusion (consequent) (3.5)

The fuzzy inference system frequently uses this IF-THEN rule (antecedent-consequent lin-
guistic rules), as shown in Expression 3.5, to compute the degree to which the incoming
information fulfills the criteria of a rule. Therefore, based on the deductive form of proce-
dure, there is the given fact as a conclusion for the given antecedent 3.5. This antecedent-
consequent linguistic rule, first developed by Mamdani (1976) to control the control steam
engine and boiler combination, is often referred to as a Mamdani-type rule, and it is ac-
quired by applying the aforementioned prior knowledge to build the frame rule base list as
following [78]:

• Scientific principles (physical laws);

• System and controller data;

• Expert knowledge and judgments.

Like classical expert systems, fuzzy logic systems rely on a knowledge base derived from
human expertise. However, there are essential differences between the two approaches
regarding their features and knowledge-processing capabilities, as summarized in Table
3.2. For example, classical expert systems typically represent knowledge with crisp logic
and binary values (true or false). In contrast, fuzzy logic systems use a graded membership
representation, where the degree of truth of a proposition is expressed as a value between
0 and 1. Additionally, classical expert systems often use forward chaining to process
knowledge, while fuzzy logic systems use fuzzy inference algorithms. These differences in
features and knowledge processing capabilities result in fuzzy logic systems better suited
for modelling complex, uncertain, and vague systems. In contrast, classical expert systems
are better suited for modelling systems with well-defined rules and relationships. In either
case, it is essential to carefully consider the strengths and limitations of each approach
when selecting the best method for a particular problem.

Table 3.2: Fuzzy rule base and conventional rule base [79]

Classical Set Fuzzy set

Classes of objects with sharp boundaries Classes of objects with vague boundaries
Boolean processing Gradual processing
Sequential rules processing Parallel rules processing
No interpolation, no contradiction Interpolation between rules
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The Mamdani-style fuzzy inference process is a commonly used method in fuzzy logic
systems and is composed of three major steps: fuzzification, inference, and defuzzification.
These steps are illustrated in Fig. 3.7. In the fuzzification step, crisp input values are
transformed into fuzzy set values, representing the degree of truth of the proposition being
evaluated. In the inference step, the system uses a set of fuzzy rules to define the degree
of truth of the conclusion based on the fuzzy input values. Finally, in the defuzzification
step, the fuzzy output is transformed into a single output that can be used to control a
system or make a decision. These three steps work together to provide a flexible and robust
method for modelling complex and uncertain systems.

Figure 3.7: Depiction of the three major steps in the Mamdani-style fuzzy inference
process - Fuzzification, Inference, and Defuzzification.

The following section will delve into the three critical components of fuzzy logic systems:
fuzzification, inference, and defuzzification. These components collectively form the back-
bone of fuzzy logic systems, and understanding their role and functioning is crucial for a
comprehensive understanding of these systems.

Fuzzification

The fuzzification step is an integral part of the fuzzy inference process, as it helps to convert
crisp input values into fuzzy variables. Crisp inputs are only sometimes deterministic
and often contain significant uncertainty, which could be due to inaccuracy, confusion, or
ambiguity. By representing these uncertain values as fuzzy variables, the system can better
capture the inherent uncertainty in the inputs using an MF.

Figure 3.8: Conversion of crisp inputs (x1 and y1) to fuzzy variables in the fuzzification
step
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In the first stage, as shown in Fig. 3.8, x1 and y1 are plugged in as crisp inputs, and their
belongingness degree to suitable fuzzy sets (A and B)2 is ascertained. Therefore, for a
given x1 and y1 as inputs the degree of MFs are,

Degree of MFs =



µx=A1 = 0.8;

µx=A2 = 0.3;

µx=A3 = 0.0;

µy=B1 = 0.1;

µy=B2 = 0.7.

(3.6)

This flexible and robust representation of uncertain inputs is one of the critical strengths
of fuzzy logic systems, as it allows them to handle complex and uncertain systems effec-
tively. By considering the inherent uncertainty in the inputs, fuzzy logic systems can better
represent the modelled system and make more informed decisions.

Inference

The inference is reasoning and making conclusions based on data, information, or evidence.
In the context of fuzzy logic systems, inference refers to the process of using the knowledge
base and rules of the system to make decisions or draw conclusions based on the input data.
The inference process in a fuzzy logic system typically consists of several steps, including
mapping the input data into a fuzzy set, making logical inferences based on the knowledge
base and rules, and aggregating the results of the inferences to form a single output. In the
subsequent section on fuzzy FMEA, a more in-depth discussion of the inference process
will be provided.

Defuzzification

The fuzzy set output is established as the final inference stage but cannot be utilized to
give the operation accurate information or a control command. For instance, a variable
cannot be commanded to open partially or entirely; accordingly, the input order must be
modified to a specific quantity; hence, defuzzification is required. A defuzzifier generates
unambiguous output from a system employing fuzzy logic [80]. A variety of defuzzification
techniques were established. Even though the “Center of Gravity” and “Weighted Mean of
Maximum” methods are extensively employed, no one approach is optimal for all situations
(the best defuzzification techniques are discussed in [81]). The computation of the “center
of gravity” of the fuzzy set is the most frequent.

The greyed area in Fig. 3.9 represents the region where the fuzzy numbers Ã = (a, b, c, d)
are defuzzified into a crisp value using the Area Defuzzification Technique (ADT). The
ADT is a popular defuzzification method that utilizes the centroid point of the MFs on
the vertical axis and its intersection with the left and right MFs. The centroid point of the
MFs is calculated as the weighted average of the MFs, with the weights being proportional
to the area under the MFs. By taking into account the shape and spread of the MFs, the

2A and B could be any set of hedge or quantifier
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ADT provides a more accurate representation of the degree of truth of the proposition
being evaluated. The output of the defuzzification step is a crisp value that can be used to
control a system or make a decision. This crisp output value is a numerical representation
of the degree of truth of the proposition, which can be easily interpreted and used by other
systems or processes.

Figure 3.9: Illustration of the area defuzzification technique for determining crisp output
from fuzzy number Ã, with intersection projection on the horizontal axis (x1 and x2) [44].

ADS = d(µA(x)) = x1y0 +

∫ d

x2

µR
A(x)dx (3.7)

Where y0, represent the central point between 0 and fuzzy number Ã, x1 and x2 are
projection of intersection y0 on µL

A(x) and µR
A(x) on horizontal axis, respectively. To

estimated the y0, x1, and x2:

y0 =

∫ w

0
y · µR

A(y)dy −
∫ w

0
y · µL

A(y)dy∫ w

0
µR
A(y)dy −

∫ w

0
µL
A(y)dy

(3.8)

x1 = µL
A(y0), and x2 = µR

A(y0) (3.9)

For TFN where b = c, Ã = (a, b = c, d), the ADT is rewrite as:

ADT =
1

18
(4a+ b+ d) (3.10)

The area defuzzification technique was validated as the optimal method for decoding mem-
bership functions into the relevant failure probability, which is then utilized to generate
failure likelihoods of BEs in the FT.
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Fuzzy logic can be applied in PSA to support the decision-making process. The uncertainty
and vagueness inherent in the probabilistic analysis results can be represented and handled
effectively by fuzzy logic. The main idea behind integrating fuzzy logic in PSA is to
incorporate subjective judgment, dealing with input uncertainty and expert knowledge
into the analysis process to enhance the accuracy and robustness of the results. This is
achieved through fuzzy sets, MFs, and fuzzy inference systems.

3.2 Fuzzy Probabilistic Safety Assessment (FPSA)

The fuzzy PSA proposed in this thesis is a hybrid approach encompassing fuzzy logic and
PSA principles. This methodology provides a framework for evaluating the reliability of
complex systems, considering the inherent uncertainty and imprecision associated with the
data and parameters used in the analysis. Unlike traditional PSA, fuzzy PSA allows for
the modelling and analysis of vague and uncertain information using MFs and fuzzy sets.
This approach offers a more comprehensive representation of the system’s behaviour, which
results in a more realistic evaluation of the system’s risk and safety.

The following sections will propose the fuzzy Fault Tree (FFT) and Fuzzy Event Tree (FET)
as two computational intelligence techniques for analyzing PSSs in an iPWR reactor. The
conventional FTA and ETA methods assume that component failure rates remain constant
during quantitative analysis. However, this assumption may only sometimes be valid,
particularly in cases with limited knowledge, insufficient statistical data, or vagueness in
the performance of components. In such situations, fuzzy logic can provide a promising
solution to these challenges. Using an FFT and FET allows for incorporating uncertainty
and imprecision in the analysis, providing a more comprehensive evaluation of the system’s
reliability and safety.

3.2.1 Fuzzy Fault Tree Analysis (FFTA)

Fuzzy fault tree is a computational intelligence technique that is commonly utilized in
the field of risk analysis and safety assessment. Fuzzy fault tree has been introduced as a
promising alternative to classical FTA to overcome its limitations related to the availability
of statistical data and information uncertainty. The main objective of FFT is to provide a
more precise evaluation of the failure probabilities and risk assessments of complex systems
by incorporating the uncertainty and vagueness of the data into the analysis. In the
FFT methodology, the uncertain data is represented by fuzzy numbers and membership
functions, which provide a flexible and intuitive way of expressing imprecise information.
Several studies have explored the applications of FFT in various domains, including the
reliability analysis of electrical power systems [82], the assessment of system safety in
chemical processes [83], and the evaluation of fire risk in underground mines [84]. The
literature has also highlighted the advantages of FFT, including its ability to incorporate
subjective knowledge and to handle uncertainty in system performance [85]. Tanaka et
al. [1983] initially employed FFT theory for evaluating the likelihood of the undesirable
top event failure. Several authors recently established various FFT approaches for system
safety and reliability assessments. Additional scientists have used similar approaches in
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many technology domains, like NPP and the process industries. Table 3.3 outlines several
studies on the risk analysis method employing a combination of fuzzy logic and FT.

Table 3.3: Risk Analyses methods based on fuzzy fault tree

References Proposed approaches

In [87] Failure probabilities of the Combustion Engineering Reactor Protection
System (CERPS) and the ECCS were transformed from discrete values
to fuzzy numbers to assess system failure probability with the greatest
precision (lower and upper bound).

In [88] Integrating FFTA with Bayesian networks, a unique technique is pro-
vided for obtaining modified probabilities of BEs and the TE of the leak
in the submarine pipeline fault tree facing upgraded new failure rates.

In [89] The work employed an FFTA to acquire statistical data regarding the
impact and recognition of human factors in maritime shipping accidents.

In [90] To compare response time between two reactors, a FIS was implemented
to CDF, recovery and sensor time data about accident scenarios in AP-
1000 and VVER-1200 nuclear reactors.

In [91] A FFTA is utilized to conduct a systematic risk analysis on ship mooring
operations based on the expert rankings of the BEs. The FFTA is
capable of managing of uncertainty to have a better output.

In [92] Utilizing FFTA, analyze the risk of a leak from Permanently Abandoned
oil and natural gas wells in the drilling sector. The study benefited both
ethically and practically to marine safety and natural preservation.

In [93] Integrating expertise judgments and FFTA with temporal analytical
gates enables examination of the reliability of a ship’s fault-tolerant fuel
distribution system with ambiguous failure probability information.

In [94] Passive decay heat removal system PDHRS (NC) reliability evaluation
adopting the integrating RELAP and FFT method to analyze the CFD.

In [44, 45, 95] A fuzzy reliability of the BEs of FT is based on qualitative information
analytics that converts expert opinions and language factors into fuzzy
numbers.

In [96] Combining FFTA and expert judgment to determine the likelihood of
equipment breakdown (lack of previous data) owing to natural and tech-
nological accidents.

In [97] Combination of fuzzy FT and ET to determine the chance that danger
may arise while building a bridge. Then comparing and confirming the
outcome using Monte Carlo simulation

In [98] Probabilities are substituted for probabilistic examination of basic
events, resulting in FFTA. Because systems could be subjected to
varying operational situations during the development and evaluation
phases, triangular and trapezoidal fuzzy numbers show the failure prob-
ability of basic events comparison; this study will assist in selecting the
optimal fuzzy number.

In an FTA context, gates represent the logical relationships between a system’s different
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events or components. In a traditional FTA, gates are typically binary and modelled as
either AND or OR gates. However, in an FFT, gates can be modelled as fuzzy operators
that can handle uncertainty in the event probabilities. Fuzzy operators in FFTs introduced
in the following section.

3.2.2 Fuzzy Operators for the Fault Tree Gates

The fuzzy fault tree can provide a more comprehensive and realistic representation of
system reliability and risk by using fuzzy operators, where time and occurrence sequence is
considered. After acquiring the fuzzy failure probabilities of all the BEs as a fuzzy set, the
results characterize the top event failure probabilities. Nonetheless, specifying the fuzzy
operators for each FFT gate is essential in the area of dynamic FFT. Notably, all fuzzy
operators are defined for exponential failure rate distribution and continuous time domain.

AND gate fuzzy operator

The AND gate is a central FTA component that models the logical relationship between
events. It represents the simultaneous occurrence of multiple events that lead to a top event.
The output of an AND gate is considered to be true if all of its inputs are true. An AND
gate’s output probability with N inputs is calculated as the product of the probabilities of
each of its N inputs. When the inputs are statistically independent events at time t, the
probability of the output is [99]:

P

{
BE1 ∧BE2 ∧BE3 ∧ · · · ∧BEn−1 ∧BEn

}
(t) =

N∏
i=1

P{BEi}(t) (3.11)

Where P{BEi}(t) is BEi failure probability at time t.

If the MF of the fuzzy number is considered triangular, defined in 3.1.1, we have fuzzy pos-
sibility rather than the fuzzy probability for each BE. Therefore, AND fuzzy gate operator
is as follows for a triangle illustration of the failure possibilities Pi(t) = {ai(t), bi(t), ci(t)}:

P
ANDF 3(t) = ANDF

{
P1(t), P2(t), . . . , PN(t)

}
=

{
N∏
i=1

ai(t),
N∏
i=1

bi(t),
N∏
i=1

ci(t)

}
(i = 1, 2, . . . , N)

(3.12)

OR gate fuzzy operator

The output of an OR gate is true if at least one of its inputs is true. The probability
of an OR gate output with N inputs may be calculated as the sum of the probability of
each input occurring. Suppose there are N statistically independent input events at time
t in an OR gate. In that case, the probability of the output is given by the union of
the probabilities of each event occurring. In fuzzy fault tree analysis, the OR gate fuzzy
operator is used to model the occurrence of alternative events that can cause a TE.

P

{
BE1 ∨BE2 ∨BE3 ∨ · · · ∨BEn−1 ∨BEn

}
(t) = 1−

N∏
i=1

(1− P{BEi}(t)) (3.13)

3ANDF means Fuzzy AND
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In the unavailability of the failure probability, if the failure probability of BEi is provided as
a TFN, then the likelihood of failure can be approximated. Therefore, OR fuzzy gate opera-
tor as follows for a triangle illustration of the failure possibilities Pi(t) = {ai(t), bi(t), ci(t)}:

P
ORF 4(t) = ORF

{
P1(t), P2(t), . . . , PN(t)

}
= 1−

N∏
i=1

(1− Pi(t))

=

{
1−

N∏
i=1

(1− ai(t)), 1−
N∏
i=1

(1− bi(t)), 1−
N∏
i=1

(1− ci(t))

}
(i = 1, 2, . . . , N)

(3.14)

If the MF is considered trapezoidal, one element adds to Eqs 4.3 and 4.4.

The traditional fuzzy AND and OR gates, which transfer crisp values into fuzzy numbers,
do not adequately capture the uncertainty in system inputs. This is because they do not
account for influential factors such as the sequence of events and the exponential increase
in failure rate over time. This results in less precise modelling of system behaviour. To
address this limitation, fuzzy fault tree analysis introduced Priority-AND (P-OR) and
Priority-OR (P-OR) gates. The main difference between the traditional fuzzy AND and
OR gates and the P-AND and P-OR gates is the incorporation of the occurrence sequence
of the basic events and their effect over time.

Pandora Temporal Fault Tree Analysis

Priority-AND and Priority-OR gates are commonly used in FTA to model the interdepen-
dency of events in complex systems. Priority-AND and Priority-OR gates are extensions
of the traditional AND and OR gates, respectively, that can handle uncertainty in event
occurrence. Pandora enhances FT with new temporal gates and laws to enable qualitative
estimation, consequently addressing the constraints of FTA in representing a sequence-
dependent function. This method estimates the failure likelihood for the TE. Pandora
implies that the occurrence of the events is immediate; for instance, they transition from
“non-fail” to “fail” without latency, and permanent, say, they stay in a ’true’ state forever
after they have occurred. Consequently, there are three potential temporal relationships
among X and Y [100]:

• Before −→ X occurs before Y;

• After −→ X occurs after Y, or equivalently, Y occurs before X;

• Simultaneous−→ X and Y occur simultaneously.

Based on the logic gates proposed by Edifor et al. [2012] and Edifor et al. [2013], Pandora
offers three temporal gates:

4ORF means Fuzzy OR
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Priority-AND gate (PAND)

• Symbol: <, means (X PAND Y) where
X and Y are both failure events, the
fault tree symbol of the PAND gate is
shown in Fig. 3.10

• Sequence Value: S(A < B) = S(B)

• Meaning5: A occurs before B occurs.
Both A and B must occur

Figure 3.10: Priority-AND (PAND)
Priority-OR gate (POR)

• Symbol: |, means (X POR Y) and the
fault tree symbol of the POR gate is
shown in Fig. 3.11

• Sequence Value: S(A | B) = S(A)

• Meaning: A occurs before B occurs.
Both A and B must occur

Figure 3.11: Priority-OR (POR)

Simultaneous-AND (SAND)

• Symbol: &, is used to represent the
SAND gate in logical expressions and
the fault tree symbol of the SAND gate
is shown in Fig. 3.12

• Sequence Value: S(A&B) = S(B)

• Meaning: B occurs at the same time as
A occurs. Both A and B must occur.

Figure 3.12: Simultaneous-AND (SAND)

Employing P-AND and P-OR gates in fuzzy fault tree analysis enhances the accuracy of
modelling system behaviour, enabling more precise assessments of the system’s reliability.

Mathematical Formulation of Pandora Gates

The mathematical formulation of Pandora gates, specifically the P-AND and P-OR gates,
involves the utilization of mathematical expressions and equations to describe the operation
and behaviour of these gates in the context of FFTA. This formulation aims to provide
a more precise and accurate representation of the relationships between the events within

5By “nesting” method, the above definitions may be expanded to accommodate any quantity of BE.
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the FT, considering factors such as occurrence sequence and an exponential increase in
failure rate over time.

According to the literature [99, 103, 104], the mathematical formulation of a Fuzzy Tem-
poral gate can be defined as follows: Given N statistically independent basic events, each
with a triangular fuzzy number λi = (ai, bi, ci), an algebraic model representing a P-AND
gate with the notation ◁ can be calculated as follows:

P

{
BE1 ◁BE2 ◁BE3 ◁ · · ·◁BEn−1 ◁BEn

}
(t) =

N∏
i=1

λi

N∑
k=0

 eukt∏N
j=0
j ̸=k

(uk − uj)

 (3.15)

Where the λi(t) = (ai(t), bi(t), ci(t)) represents the triangular fuzzy number representing
the failure rate of the ith component, and t denotes the mission time. Additionally, certain

criteria must be met, including
{

u0 = 0

um = −
∑m(m>0)

j=1 λi
.

Similar to the PAND gate, for N statistically independent BEs with a TFN λi(t) =
(ai(t), bi(t), ci(t)), the algebraic model representing a POR gate with the notation ≀ can
be calculated as follows:

P

{
BE1 ≀BE2 ≀BE3 ≀ · · · ≀BEn−1 ≀BEn

}
(t) = λ1 ·

[
1− e−(

∑N
i=1 λit)∑N

i=1 λi

]
(3.16)

Where λ1 represents the failure rate of BE1, it is crucial to note that, in contrast to the
conventional gates utilized in FTA, the use of priority gates (POR and PAND) requires
consideration of the sequence of component or system failures, to accurately incorporate
their failure rates based on their order of occurrence.

In conclusion, the quantitative analysis of a temporal fault tree is a method for determining
the probability of a top event based on the failure rates of basic events. All the basic
events’ failure rates are represented as fuzzy numbers to reduce inaccuracies resulting from
ambiguity or uncertainty in the data. Various risk analysis approaches aim to reduce the
likelihood of failure and improve the ability to identify and address issues before they cause
harmful effects. Using P-AND and P-OR gates in FFT analysis is crucial to consider the
sequence of component or system failures and properly incorporate their failure rates based
on their order of occurrence.

The results of an FFT analysis can be used to inform the development of a FET. The fuzzy
fault tree provides information about the component failures contributing to a particular
risk scenario. At the same time, the FET focuses on modelling the sequences of events that
contribute to the risk. Combining these two perspectives can provide a more comprehensive
and accurate representation of the risk scenario.
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3.2.3 Fuzzy Event Tree Analysis (FETA)

Fuzzy event trees have been applied across various domains, including engineering, medicine,
and finance. For instance, in engineering, FETs have been used to evaluate the risk of sys-
tem failures and the probability of specific failure scenarios. In medicine, they have been
employed to estimate the risk of medical errors and assess the effectiveness of treatments.
In finance, they have been used to analyze investment risks and assess the likelihood of
various financial scenarios. Recently, the field of FETs has seen considerable progress, fo-
cusing on developing new methods for constructing and analyzing FETs and incorporating
additional sources of uncertainty into the analysis. These advancements have led to a more
accurate and comprehensive understanding of the risks associated with various systems and
scenarios. A comprehensive review of the literature on the FET Approach underscores its
value as a tool for managing uncertainty in risk assessments. Its wide range of applications
and ongoing developments demonstrate its relevance and importance in risk analysis [105].

As the failure possibility of the system is acquired via an FFT, the TE possibility is then
entered into the FET of the given system (Fig. 3.13) as the initiating event for the (for
example, SBO accident scenario.

Figure 3.13: Event tree of ICS under SBO accident

The branch possibility shown in Fig. 3.13 denotes the likelihood of a particular sequence of
events occurring based on the results of an FFTA. The figure shows the different branches of
the ET, each representing a different scenario. Each branch illustrates a sequence of events
that leads to a particular outcome. The branch possibility is calculated by multiplying the
individual event failure possibilities obtained from the FFTA. This provides an estimate
of the overall likelihood of the scenario in different paths. The collection of associated
mitigating systems (MSi) is indicated as follows:

Mitigating Systems (MSi) =
{
MSi

∣∣∣ i = 1, 2, · · · , n
}

(3.17)

Where MSi represents the ith mitigating system and n is the total number of mitigating
systems engaged in the scenario. The fuzzy possibility of each MSi can be estimated
through FFTA, which uses fuzzy numbers to express the uncertainty of the likelihood of
a safety system failure. The resulting fuzzy possibilities can then be incorporated into the
FETA to estimate the overall risk of each accident scenario path.

To incorporate the results of an FFTA into the FETA, the success or failure branches in the
event tree are used to represent the success or failure of consecutive mitigation systems. In
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this stage, two sets of fuzzy probabilities are generated based on the probabilities associated
with each mitigating system for each pathway. The first set, labelled Mitigating System
Failure (F ), comprises probabilities that indicate the likelihood of the mitigating systems
failing to operate. The second set, labelled Mitigating System Success (S ), comprises
probabilities that indicate the likelihood of the mitigating systems being effective. The
fuzzy possibility failure rates obtained from an FFT of the mitigating systems can be
determined by F . Failure and success probabilities for the different mitigating system is
formalized in Eqs. 4.1.

Failure Probability ⇐⇒ P̄F (x) =
{
p̄Fi

(x)
∣∣∣ i = 1, 2, · · · , n

}

Success Probability ⇐⇒ P̄S (x) =
{
p̄Si

(x)
∣∣∣ i = 1, 2, · · · , n

} (3.18)

Where subscript f and s represent the failure and success of the mitigating system in the
fuzzy event tree. p̄Si

(x) in the Eq. 4.1 indicate the success probability of ith mitigating
system and quantified as:

p̄Si
= 1− p̄Fi

(x) (3.19)

The α-cut is a concept in fuzzy set theory that is used to convert a fuzzy set into a crisp set
(3.1). Given a triangular fuzzy set A = (a, b, c), the α-cut for a value of α, where α ∈ [0, 1];
the α− cut for a triangular fuzzy set A = (a,b, c) is as follows:

Aα =
[
α
(α)
1 , α

(α)
2

]
= [(b− a) · α + a, c− (c− b) · α] (3.20)

The probability of each path consequence is estimated by converting the TFN into the
α− cut set. each mitigating system probability fuzzy number mapping into the α− cut set
based on Eq. 3.20 and executing mathematical calculations such as α − cut adding and
multiplying on fuzzy numbers, Aα =

[
α
(α)
1 , α

(α)
2

]
and Bα =

[
β
(α)
1 , β

(α)
2

]
, is as follow:

Aα +Bα =
[
α
(α)
1 + β

(α)
1 , α

(α)
2 + β

(α)
2

]
(3.21)

Aα ·Bα =
[
α
(α)
1 · β(α)

1 , α
(α)
2 · β(α)

2

]
(3.22)

The probability of each pathway consequence can be estimated by converting the triangular
fuzzy numbers into the α−cut set and performing mathematical operations such as adding
and multiplying. This approach allows for a more realistic representation of uncertainty in
probability analysis and provides a more robust decision-making process for ensuring the
safety of NPPs.

In conclusion, this study presented a fuzzy probabilistic safety assessment method using
fuzzy numbers, FTs, and ETs. The proposed method provides a flexible approach to es-
timating accident probabilities considering the uncertainties associated with the system’s
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success and failure rates. TFN was used to represent the system’s success and failure rates,
and the α − cut set was utilized to convert the TFN into a crisp value. In this way, the
FFTs and FETs were constructed to evaluate the system’s safety in a probabilistic manner,
considering all possible consequences and the associated probabilities of each path. More-
over, the proposed method allows the incorporation of multiple Pandora gates (PAND
and POR) in the analysis, enhancing the assessment’s accuracy. To summarize, the pro-
posed method provides a comprehensive approach to the probabilistic safety assessment of
complex systems, incorporating uncertainties and addressing the limitations of traditional
methods.

In the following section, we will delve into the topic of fuzzy FMEA and explore its ap-
plication in the assessment of risk. We will examine the use of fuzzy logic in combination
with the traditional FMEA methodology to provide a more comprehensive and nuanced
approach to risk analysis. Additionally, we will discuss calculating the risk priority num-
ber, which is an important aspect of FMEA and provides a measure of the relative risk of
different failures. This discussion will provide insight into the application of fuzzy FMEA
in practical settings and demonstrate its effectiveness in managing risk in complex systems.

3.3 Fuzzy Failure Modes and Effects Analysis

Fuzzy failure modes and effects analysis is an approach to risk analysis and management
that incorporates fuzzy logic into the traditional FMEA method. Fuzzy failure modes and
effects analysis is a widely used technique for identifying and evaluating the potential failure
modes of a system or process and the consequences of these failures. The traditional FMEA
method uses crisp (deterministic) values to assess the risk of each potential failure mode.
However, in many real-world applications, the values used in the risk assessment often
need to be more precise and precise. Fuzzy failure modes and effects analysis overcome
this limitation by using fuzzy logic to represent the uncertainty and imprecision in the data
used for the risk assessment. In fuzzy FMEA, fuzzy numbers represent the uncertainty in
the risk parameters, such as the probability of occurrence, the severity of consequences,
and the detection capability. This enables the analyst to capture the inherent uncertainty
and imprecision in the data, leading to a more accurate and comprehensive risk assessment.

The following table presents a compilation of various studies that have explored the appli-
cation of fuzzy logic in the realm of FMEA. These studies provide insights into utilizing
fuzzy techniques to improve the accuracy and reliability of FMEA results. The informa-
tion presented in this table sheds light on the current state of research in the field of fuzzy
FMEA and highlights the potential of fuzzy techniques in enhancing the risk assessment
process. This literature review serves as a comprehensive overview of the various applica-
tions of fuzzy FMEA and the outcomes that have been reported in the relevant research
literature.
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Table 3.4: Risk Analyses methods based on FMEA

References Proposed approaches

Guimaraes et al. [2004] Fuzzy inference system (FIS) modeling (IF-THEN rules) is applied
to investigate the impacts of ageing on a PWR’s CVCS. Traditional
FMEA RPN is compared to fuzzy RPN (FRPN).

Alizadeh et al. [2022] Incorporating the expert judgments in the fuzzy FMEA via MAT-
LAB software to prioritize and analyze risks related to the physical
operations of the Sahand municipal wastewater treatment facility.

Panchal et al. [2022] In the coal-fired power systems, an upgraded FMEA was designed
where RPN factors have been evaluated as fuzzy variables, and then
fuzzy RPN values are subsequently calculated to determine the most
critical component.

Reda et al. [2022] Employing Fuzzy QFD and FMEA, the decision-making process for
the choice of lean devices prioritizes the essential sources relevant to
the specified wastes and determines the risk associated with failure
mode.

Ding et al. [2021] The FMEA, fault tree analysis, and fuzzy Bayesian network ap-
proaches were employed to develop a unique way for assessing the
dependability of the RHRS for the Hualong Pressurized Reactor
1000. (HPR1000)

Mutlu et al. [2019] An FMEA and FTA-based strategy is provided to examine the ring
spinning yarn manufacturing operation in textile business, showing
that decision-makers may readily reduce threats.

Rafie et al. [2015] Estimating the threat of ground subsidence due to drilling under-
ground employing a FIS and an ANN in FMEA.

Naamnh et al. [2021] Integrating MATLAB, FIS, and ANN to create more accurate risk
analysis methods to overstep the conventional approach boundaries
in Busbars Production.

Abdelgawad et al. [2012] Incorporating fuzzy ETA and proposing a complete structure re-
lying on a combination of fuzzy-FMEA, FT, and ET, this paper
provides a realistic and comprehensive way for evaluating the level
of criticality of risk events in the construction industry.

Balaraju et al. [2019] RPN was computed using the MATLAB fuzzy logic toolbox for sev-
eral potentially failing components of a Load-Haul-Dumper (LHD)
machine. If two or more failure modes have a similar rating, the
fuzzy-FMEA approach is used to prioritize the failure modes appro-
priately.
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The above research is in Table. 3.4 on fuzzy FMEA highlights several benefits of this
approach compared to traditional FMEA, including improved accuracy and consistency
in the assessment, reduced subjectivity, and better handling of uncertainty. Several stud-
ies have applied fuzzy FMEA in various industries, including the aerospace, automotive,
electrical, and nuclear power industries, demonstrating its effectiveness in identifying and
mitigating risks.

Fuzzy Inference System

The Fuzzy inference system in Matlab® is a tool for building fuzzy models, allowing the
modelling of uncertainty and subjectivity in a given problem (as shown in Fig. 3.14). Fuzzy
inference system in Matlab® includes a comprehensive set of functions and graphical
interfaces for building, managing, and analyzing fuzzy models. Building a FIS in Matlab®

involves specifying the fuzzy input and output variables, defining the fuzzy rules that
connect the inputs to the outputs, and specifying the MFs for each fuzzy set in the system.
The fuzzy inference engine in Matlab® uses these rules and MFs to predict based on the
inputs.

Figure 3.14: Fuzzy inference system showing the MF for the linguistic variable (occur-
rence, sensitivity and detectability) as crisp inputs, are plugged into the model to estimate
fuzzy PRN.

The initial step in creating a FIS is determining the system’s inputs and outputs and
identifying the linguistic variables associated with each input and output. This involves
defining the range of values for each variable and dividing the range into a set of fuzzy
sets, representing the linguistic terms used to describe the input and output variables. The
next phase is to design a fuzzy rule set that captures the expert knowledge or relevant data
and the relationship between the inputs and outputs. These rules are then implemented
in the FIS, and the system is tested using appropriate input values to ensure the results
are consistent with the intended behaviour.
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In the following sections, we will systematically proceed through each step in creating a
FIS, ensuring a thorough understanding and application of the concepts and procedures
involved.

Fuzzification Using Matlab®

The conversion of linguistic variables such as “Low” and “High” into numerical values for
severity, occurrence, and detectability in a fuzzy FMEA evaluation process is achieved
through the fuzzification process. This step involves mapping the linguistic terms into
MFs, which are represented by fuzzy numbers that quantify the degree of truth for each
term. The membership functions are then used to calculate the degree of possibility for
each attribute, leading to the determination of the fuzzy RPN. Employing a 1 to 10 scale for
severity, occurrence, and detectability (as shown in Table. 3.5) in fuzzy RPN evaluations
is a common practice in risk assessment. This scale provides a quantitative representation
of the subjective judgments made by experts regarding the potential impact of a failure
mode on the system under consideration.

Table 3.5: Linguistic terms and TFN for the input variables’ severity, occurrence and
detectability [115].

Triangular fuzzy numbers

Linguistic terms Severity (S) Occurrence (O) Detectability (D)

Very low (VL) (1.00, 1.00, 3.25) (1.00, 1.00, 3.25) (1.00, 1.00, 3.25)

Low (L) (1.00, 3.25, 5.50) (1.00, 3.25, 5.50) (1.00, 3.25, 5.50)

Moderate (M) (3.25, 5.50, 7.75) (3.25, 5.50, 7.75) (3.25, 5.50, 7.75)

High (H) (5.50, 7.75, 10.00) (5.50, 7.75, 10.00) (5.50, 7.75, 10.00)

Very high (VH) (7.75, 10.00, 10.00) (7.75, 10.00, 10.00) (7.75, 10.00, 10.00)

Estimating the fuzzy RPN requires multiplying the crisp values for severity, occurrence,
and detectability. The membership functions for each linguistic variable are depicted in
Fig. 3.15. These MF are used to convert the linguistic phrases into fuzzy numbers, which
are then employed for computation purposes in the fuzzy inference system implemented in
Matlab®.
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(a) Input Variable Severity Membership Function Plot

(b) Input Variable Occurrence Membership Function Plot

(c) Input Variable Detectability Membership Function Plot

Figure 3.15: Membership function plots of Input variable (Occurrence, Severity, and
Detectability) in FIS using Matlab®

Inference

According to section 3.1.2, the fuzzy inference structure is based on the IF-THEN “rule-
based” approach. It usually comprises a series of actions that begin with if a fact is met
and end with a conclusion based on professional experience. However, shallow knowledge
has a disadvantage because it does not reflect the more profound forms of information often
connected with object structure and behaviour [77]. The fuzzy inference system frequently
uses this IF-THEN rule (antecedent-consequent linguistic rules), as shown in Expression
3.5, to compute the degree to which the incoming information fulfils the criteria of a rule.
Therefore, based on the deductive form of procedure, there is the given fact as a conclusion
for the given antecedent 3.5.
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Figure 3.16: Implementation of the FIS for calculating the fuzzy RPN, a total of 125
rules were established to minimize the complexity of the fuzzy rule base, facilitated through
the use of Matlab®.

All possible combinations of linguistic terms and the results are demonstrated in Fig. 3.16
for calculating the fuzzy risk priority RPN. These rules serve as a basis for the computation
of the RPN, considering the uncertainty and subjectivity involved in assessing risk in a
practical setting. After establishing the rules for calculating the fuzzy RPN, the next step
would be using FIS in MATLAB to perform defuzzification.

Defuzzification

The defuzzification process in a FIS involves converting the fuzzy output obtained from
the inference process into a crisp value that can be interpreted and understood easily. This
process is critical in making the system usable in real-world applications. In Matlab®,
the process of defuzzification is often achieved using various methods such as the centroid
method, bisector method, and others. The centroid method calculates the center of mass
of the MF, while the bisector method finds the point that divides the MF into two equal
areas. Both methods require the computation of definite integrals and can be efficiently
performed using Matlab®’s built-in functions and symbolic computation capabilities.
The defuzzification process is an important step in FISs that converts the fuzzy output
into a crisp value, allowing for a better understanding and utilization of the system in
real-world applications. Using Matlab® makes this process easy and efficient.
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Once defuzzification is complete, the next step in calculating the fuzzy RPN in a fuzzy
FMEA would involve aggregating and interpreting the results obtained from the previ-
ous step. This can involve mathematical operations such as calculating weighted sums,
applying decision-making algorithms, or developing a mathematical model to predict the
outcome based on the input data. This step aims to quantify the risk level associated with
each potential failure mode and prioritize the corrective actions based on the level of risk.
This step requires a clear understanding of the problem and the goals of the analysis and
a comprehensive evaluation of the data obtained from the previous step to ensure accurate
and meaningful results.

In conclusion, the proposed fuzzy FMEA evaluation process is a viable solution to evaluate
and prioritize risks. The process comprises three key phases, fuzzification, inference and
defuzzification, that convert the crisp failure probability into a single value representing
the RPN. The fuzzy inference system was implemented in Matlab®, and it utilized a
rule-based approach to computing the degree to which incoming information fulfils the
criteria of a rule. The fuzzy inference structure rules for computing the fuzzy RPN were
generated using software Matlab®, with a total of 125 rules produced. The proposed
process provides a more robust and reliable risk evaluation and prioritization method than
traditional FMEA methods.

Due to the limitations of traditional FT outlined in reference 5, the utilization of ANNs has
been proposed to improve the performance of FT analysis. Artificial neural networks are
inspired by the functioning of the human brain, allowing for algorithm learning through
processing information and identifying correlations between inputs and outputs. This
approach facilitates estimating and refining the input-output relationship rules through
continual learning.
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3.4 Artificial Neural Networks Methods in Reliability
Assessment

Operating and controlling an NPP are challenging due to the complex and nonlinear dy-
namics of its Structures, Systems, and Components (SSCs). To ensure proper functioning
under normal and abnormal conditions, the SSCs must be continuously monitored, which
generates a significant amount of data to be processed. This challenge is further com-
pounded in the case of SMRs, where innovative design and lack of operating experience
add to the complexity. Conventional risk assessment techniques, such as FT and ET, face
difficulties handling this large amount of information and cannot efficiently process the
data related to component failure rates and accident scenarios. This limitation can be
addressed by incorporating ANNs into the risk assessment process. Artificial neural net-
works, inspired by the function of the human brain, can operate information to determine
correlations between the independent and dependent variables and, as a result, enable
the estimation and updating of the rules governing the input-output relationship. Using
ANNs in NPP risk assessment allows quicker and more accurate behaviour forecasting and
enhances decision-making based on actual operational information. Data-Driven Models
(DDMs) also utilize ANNs to autonomously learn from data trends, providing an alterna-
tive to physics-based simulations that often require extensive computational resources and
may not accurately reflect the actual operating conditions of an NPP [116]. In conclusion,
integrating ANNs into NPP risk assessment is a promising approach that offers improved
performance and accuracy compared to traditional methods.

3.4.1 Introduction

Definition 3.4.1 (neural network) “is a computing system comprising several
simple, highly interconnected nodes or processing elements, which process informa-
tion by its dynamic state response to external inputs”.

Artificial neural networks are used to address complex and ill-defined problems because of
their unique approach to problem-solving. This approach is inspired by the functioning
of the human brain, allowing for the development of algorithms that can learn from in-
formation and establish correlations between dependent and independent variables. The
versatility and capacity of ANNs are demonstrated through various applications, includ-
ing but not limited to facial and speech recognition and classification, function modelling
and fitting, image restoration, and language translation. These applications showcase the
potential of ANNs in solving complex problems that are challenging to articulate algorith-
mically.

Artificial neural networks rely on the principle of learning to imitate the behaviour of
complex dynamic systems. Unlike conventional programming, where a model is provided
with information and rules to produce desired outputs based on computational laws, ANNs
work by discovering a relationship between inputs and outputs based on given input-output
pairs. This flip in the traditional programming process highlights the unique and innovative
approach of ANNs in solving complex problems.
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Figure 3.17: Illustrates the conventional approach to programming, where the model
is supplied with information and rules to generate outputs, compared with ANN, where
the inverse relationship between inputs and outputs can also be studied by reversing this
process.

The conventional programming approach is shown in Fig. 3.17, where the model is given
rules and data in order to generate the desired outputs in accordance with those rules and
guidelines. It is known as an ANN, a model that reveals the association between inputs
and outputs if the process depicted in the figure is reversed to uncover the relationship
between inputs and outputs6.

Artificial Neurons

Artificial neurons, also known as artificial nodes, are the basic processing units of artifi-
cial neural networks. They are modelled after the biological neurons in the human brain
and are responsible for receiving, processing, and transmitting information within the net-
work. Artificial neurons are connected through pathways called synapses and are activated
based on a weighted sum of their inputs, then transformed through an activation function.
This operation allows artificial neurons to make predictions and decisions and learn from
patterns in the data fed into the network.

An Artificial neural network is a network of artificial neurons separated into various layers.
Perceptrons and Sigmoid neurons represent two fundamental kinds of neurons. Perceptrons
are used for binary classification tasks, while Sigmoid neurons are used for multiclass
classification and regression tasks. These neurons receive inputs, process them, and produce
an output signal, representing the neural network’s output. Combining multiple neurons in
an artificial neural network enables it to perform complex computations, such as learning
and pattern recognition, making it a powerful tool for various real-world applications.
Sigmoid neurons, on the other hand, receive continuous inputs and produce outputs that
are continuous values between 0 and 1. In this case, the sigmoid function is used to estimate
the output, with the weights serving as multiplicative factors determining the strength of
each input’s effect on the neuron’s output. This allows sigmoid neurons to model non-
linear relationships between inputs and outputs, making them a crucial component of deep
learning algorithms.

Figure 3.18 depicts the detailed structure of a perceptron, which, similar to human neurons,
receives multiple inputs (x1, x2, . . . , xn) that correspond to the outputs of other neurons.
The strength of each input’s effect on the perceptron’s output is determined by the cor-
responding weight wi, which acts as a multiplicative factor for the input. The weighted

6The outcome (output) is often referred to as the dependent variable or response variable, and the
input is the independent variable.
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inputs are then transmitted to an activation function to determine the final input value
for the neuron, also referred to as a perceptron, unit, or node.

Figure 3.18: Detailed structure of a perceptron that works similarly to human neurons
by receiving multiple inputs corresponding to the outputs of other neurons.

The transfer function (z) is a crucial component of the perceptron model, where the inputs
are transformed into the neuron’s output. The inputs (x1, x2, . . . , xn) are multiplied by their
respective weights wi, which correspond to the strength of each input’s effect on the output.
This is a linear combination of the inputs, where each input impacts the output differently
based on its weight. The transfer function then computes this linear function to produce
the final output of the neuron. This output can be considered the neuron’s activation and
serves as the input to other neurons in the network. The activation function transforms
the weighted inputs into a value to determine the neuron’s output. It is important to
note that the transfer function is a simple mathematical operation that can be performed
efficiently, enabling fast processing of the inputs and production of the output. The transfer
function provides the mechanism for the output computation, and the weights provide the
mechanism for learning, which is the key aspect of ANNs.

z =
n∑

i=1

wi · xi + bi (3.23)

Equation represents the weighted sum of the inputs and is used as the input for the
activation function, which computes the output of the artificial neuron.

Inputs (x1, x2, . . . , xn) receive numeric values and may represent unprocessed signals or the
outputs of other neurons. The significance of each input is controlled by numerical weights
(w1, w2, . . . , wn), which indicate that important inputs have a higher value. The numerical
value of the Bias (bi) serves to prevent the transfer function (TF) of each perceptron from
being zero.
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The result, or perceptron’s activation, is specified by whether the value of the weighted
sum

∑n xi · wi is more remarkable than some Threshold value or not. This clause ex-
plicitly shows as:

Output =


0 if

Weighted sum︷ ︸︸ ︷
n∑

i=1

xiwi ≤ Threshold

1 if
n∑

i=1

xiwi > Threshold

(3.24)

Where i represents iterate over input x weight w pairings. To make the notation less
cumbersome, let x and w be the vectors of inputs and their related weights, respectively
and illustrate a bi value bi = −Threshold.; Then:

Output =



0 if
∑
i=1

w · x+ bi ≤ 0

1 if
∑
i=1

w · x+ bi > 0

⇓

0 if
∑
i=1

w · x+ (−Ti) ≤ 0

1 if
∑
i=1

w · x+ (−Ti) > 0

(3.25)

The activation of a perceptron is determined by the comparison of the weighted sum of
inputs (

∑n
i=1 xi ·wi) and a threshold value. This threshold value can be incorporated into

the equation as a bias term (bi), where bi = −Threshold. The AF calculates the weighted
sum of inputs and the bias, effectively determining whether the neuron will fire. If the
value of the AF surpasses the Threshold of 0, the neuron outputs a value of 1 (bi ≃ 1),
indicating activation. Conversely, if the AF is less than the Threshold, the neuron outputs
a value of 0 (bi ≃ −1), indicating inactivity. The activation function, in essence, acts as a
decision-making mechanism for the perceptron. An activation function can be written as
[117, 118, 119]:

AF = f(TF ) (3.26)

The activation function determines the NN’s ability to learn complex functions. It acts
as a constraint on the output of a neuron, preventing it from growing arbitrarily large or
small. By limiting the outputs to a specific range, the activation function helps control the
flow of information through the NN and prevents overfitting. Thus, the choice of activation
function is a trade-off between ensuring that the NN can model complex interactions in the
data and controlling the model’s complexity to prevent overfitting. Different NN models
have proposed and implemented various activation functions, including step functions, sig-
moid, hyperbolic tangent, rectified linear unit (ReLU), and others. The choice of activation
function depends on the specific problem and the requirements of the NN model. The step
function is used in perceptrons and simple linear classifiers, while sigmoid is commonly
used for logistic regression models. Hyperbolic tangent is used for deep learning models,
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and ReLU is widely used for computer vision problems and other image-based tasks. As
previously noted, the functionality of the perceptron is contingent upon the input weights
and the activation function. Sigmoidal functions are widely utilized as activation functions
within multi-layer static neural networks. Prominent examples of activation functions used
in neural networks are depicted in Fig. 3.19.

Figure 3.19: Shapes of four commonly used activation functions in a ANN: Sigmoid,
Hyperbolic Tangent (Tanh), Rectified Linear Unit (ReLU), and Threshold Function.; each
activation function has a unique characteristic.

Single-layer perceptrons, also known as single-layer neural networks, have several limita-
tions, including their inability to solve complex non-linear problems and their tendency
to over-fit the data. As a result, single-layer perceptrons are not appropriate for solving
many practical machine learning problems. In response to these limitations, alternatives
have been proposed, such as multi-layer perceptrons (MLP), Convolutional Neural Net-
works (CNN), Recurrent Neural Networks (RNN), and many others, which have been
shown to effectively solve complex, non-linear problems in various domains such as image
classification, speech recognition, and natural language processing. These models intro-
duce additional layers and sophisticated architectures, enabling them to capture complex,
non-linear interactions in the data effectively.

Multi-layer perceptron (MLP)

A multi-layer perceptron, also known as a feed-forward neural network or an ANN, is a
type of artificial intelligence model comprised of multiple layers of interconnected nodes or
artificial neurons. The layers are organized sequentially, with the output of one layer serv-
ing as input to the next. This allows the network to learn complex relationships between
inputs and outputs and perform nonlinear computations. The activation function is a crit-
ical network component that introduces nonlinearity into the computations. Without an
activation function, the network would only be able to reflect linear relationships between
inputs and outputs, limiting its overall effectiveness.
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Figure 3.20: Diagram of structure and flow of information through MLP with two layers
of weights, illustrating the organization of the neurons and the connections between the
input layer, hidden layer, and output layer.

The network diagram of an MLP with two layers of weights can be visualized as follows:

• The input layer is the first layer of the network, which receives the inputs or features
of the data. It plays a crucial role in the multi-layer perceptron as it provides the
initial input features for the network to process and generate predictions;

• The hidden layer(s) is(are) the intermediate layer(s) of the network, which perform
complex computations using the input data. The number of hidden layers and the
number of neurons in each layer can be varied to adjust the network’s complexity.

• The output layer is the final layer of the network, which provides the output or
predictions of the network.

Each neuron in a hidden layer or output layer is connected to all the neurons in the previous
layer through weights. The activation function is applied to the weighted sum of inputs
to produce the neuron’s output. The weights are updated during training. The network
diagram of an MLP can be represented graphically (3.20) as a series of nodes connected by
weighted edges, where the values of the weights determine the strength of the connections
between the nodes.

The first layer represents a collection of M , d-dimensional inputs, which are then processed
by a combination of weights wij to produce a M dimensional output vector (activation for
current layer) aj. This first layer is commonly referred to as the input layer; the weights of
the input layer w(1)

ij can be interpreted as the importance or significance of each feature in
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the input vector and can be trained using optimization algorithms to minimize the error
between the predicted and actual outputs.

aj =

n
M∑
j=0
i=1

w
(1)
ij · xi + bi, i = 0, 1, · · · , n; j = 1, 2, · · · ,M. (3.27)

Where x0 = 1, and superscript “(1)” represent the first layer. If the activation function
considers being sigmoid, Each of the activations is equal to:

zj = h (aj) =
1

1 + e−aj
(3.28)

In Eq. 3.28, zj denotes the outputs of the hidden layer, and its values do not correspond
to the inputs or outputs of the networks; it is employed to transmit values for subsequent
layers. The function h(aj) is the activation function, in this case, the sigmoid function,
which maps the weighted sum of inputs aj to a value between 0 and 1. The sigmoid
activation function is commonly used in multi-layer perceptrons because it produces a
smooth transition from 0 to 1, allowing the network to model non-linear relationships in
the input data.

Therefore, for the second layer, the outputs of the first layer are allocated as inputs, and
they are linearly combined to produce the activations shown below:

ak =

K
M∑
j=0
k=1

w
(2)
kj · zj + bj, k = 1, 2, · · · , K; j = 1, 2, · · · ,M. (3.29)

Where z0 = 1, and w
(1)
kj , ak, and zj represent the weights, activations and inputs respec-

tively. and The superscript “(2)” represent the second layer. If the activation function is
considered to be Sigmund, each activation is equal to:

yk = g (ak) =
1

1 + e−ak
(3.30)

Combining Eqs. 3.27 and 3.29 provide the final solution that defines the feed-forward
propagation show, transferring the input vectors into the output vector given the weight
matrices as shown in Fig. 3.20.

yk = g

(
M∑
j=0

w
(2)
kj zjh ·

(
n∑

j=0

w
(1)
ji xi

))
(3.31)

To conclude, single-layer and multi-layer perceptrons are fundamental concepts in the
field of artificial neural networks and play a crucial role in deep learning and machine
learning. Understanding these concepts provides a solid foundation for exploring more
complex neural network architectures.
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Artificial intelligence, machine learning, and deep learning are interrelated fields that work
together to enable computers to perform tasks that typically require human intelligence.
Deep learning is a specific subset of machine learning, a subset of AI (Fig. 3.21). The key
difference between deep learning and traditional machine learning is that deep learning
algorithms are designed to self-learn and improve their performance over time, much like
the human brain. This ability to self-learn and adapt has made deep learning particularly
useful for tasks such as object classification, pattern recognition, and predictive analysis,
among others [120].

The selection of deep learning as a method for artificial intelligence is due to its ability to
mimic the structure and function of the human brain. Compared to traditional machine
learning techniques, this improves performance in object classification, pattern recognition,
and predictive analysis tasks. Additionally, deep learning algorithms can self-learn, further
enhancing their potential for creating human-like artificial intelligence.

Figure 3.21: Artificial Intelligence subsets

Deep learning development flow

Deep learning focuses on machine learning through the use of neural networks. The deep
learning development flow typically involves several key steps, including [121]:

(i) Selection of a framework for development and Gathering data:

Data collection is reliant on the kind of presented issue desired; in the event of a
real-time data project, it is recommended to employ various sensor information. The
data set may be gathered from various inputs, including documents, databases, and
devices. Nevertheless, since there may be a lot of missing data, enormous quantities,
disorganized text data, or noisy data, the acquired data can be utilized immediately
for executing the data analysis. As a result, Data Preparation is required to overcome
this issue.

(ii) Data pre-processing

In the field of deep learning, data pre-processing is a crucial step in the develop-
ment flow. This step aims to convert raw and unstructured information into a clean
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and organized dataset that can be effectively utilized for training the deep learning
model. This process is crucial for obtaining accurate results from the deep learning
algorithm, as the presence of missing data, noisy data, and inconsistent data can neg-
atively impact the model’s performance. Data pre-processing helps overcome these
challenges and ensures that the data used for training is high quality [122].

Table 3.6: Data pre-processing challenges and solutions

Problems Solving Methods
Missing Data Ignore the tuple

Fill in the missing value manually or automatically
Noisy Data Binning

Regression
Clustering
Combined computer and human inspection

Inconsistent Data Remove duplicate or irrelevant observations

(iii) Exploring the suitable algorithm for data format:

In the training phase of deep learning, the objective is to develop the optimal model
using the pre-processed data described in the previous stage. Selecting the appro-
priate algorithm for the task requires a thorough understanding of the problem’s
nature. The primary techniques used for addressing different problems in deep learn-
ing are Supervised Learning, Classification, Regression, Unsupervised Learning, and
Clustering.

(iv) Model’s training and testing:

During the training phase, the objective is to determine the optimal network pa-
rameters that can consistently address the problem. For this purpose, the model is
divided into three sets: training, validation, and testing data. The classifier is trained
using the training data set, the validation set is used to tune the parameters, and
the accuracy is verified using the test data set. It is important to note that only the
training and/or validation sets are accessible during classifier training, while the test
set should not be used for training. The test set is only available during the final
testing phase of the classifier.

Figure 3.22: Splitting and balancing the data-set between the training, validation, and
testing

The process of dividing and balancing the data-set, as illustrated in Fig. 3.22, plays a
crucial role in the deep learning flow 4.13. It is essential to emphasize that the training
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data must never be utilized for testing the algorithm. This approach ensures that
the results obtained during testing are unbiased and accurate, providing a robust
evaluation of the algorithm’s performance.

STrain ∩ STest ≡ ∅ (3.32)

Evaluating the model’s performance on the validation set during the training phase
is crucial in avoiding overfitting. The provision of a validation set enables automatic
assessment of the model’s effectiveness by utilizing tools such as Keras. The model’s
performance on the validation set indicates its ability to generalize and handle novel,
unseen data [123, 124].

(v) Inference and Evaluation:

Applying a trained deep learning model to new data to generate predictions or infer-
ences is called deep learning inference. The evaluation of the performance of a neural
network (NN) on this new data set is crucial in determining the model’s validity. A
standard method for evaluating the accuracy of the predictions generated by a NN
is the calculation of Root Mean Squared Error (RMSE) and Mean Squared Error
(MSE) values.

Due to the data preparation challenges outlined in Table 3.6 (such as missing data
and noisy data), assessing the model’s performance is essential. Mean squared error
is a commonly used metric for measuring predicted and actual values. It calculates
the average of the squares of the differences between the predicted and actual values
and represents the difference between the estimated and actual values. The value of
MSE indicates the prediction’s accuracy, reflecting any deviation from the expected
outcome.

MSE =
1

n

n∑
i=1︸ ︷︷ ︸

test set

(yi − xi)
2 (3.33)

Where yi and xi are anticipated (Actual) value predicted value, respectively, MSE
values are not associated with a specific unit [125]. As an example, a line graph in Fig.
3.23 depicts the mean squared error loss for the train (Red), and test (Dashed Blue)
sets across the training epochs7. Undoubtedly, the algorithm merged very rapidly,
and the efficiency of the train and the test stayed equal. The model’s effectiveness and
convergent behaviour indicate that Mean Square Error (MSE) is a suitable metric
for a NN learning this task.

7The overall quantity of training data iterations in a single loop for training the algorithm

60

https://keras.io/


Figure 3.23: Mean squared error loss

The Root Mean Square Error (RMSE) is equal to the square root of MSE [125];

RMSE =

√√√√ 1

n

n∑
i=1

(Predictedi − Actuali
σi

)2
(3.34)

Deep learning is a rapidly growing area of artificial intelligence that has become increasingly
relevant in recent years. It involves using neural networks to analyze data and make
predictions based on the learned relationships. The process of deep learning involves several
key steps, including data collection, pre-processing, training, and inference. During the
training phase, the model is evaluated using techniques such as mean squared error to assess
its accuracy. Overall, deep learning has the potential to revolutionize many industries by
providing innovative solutions to complex problems.

3.4.2 Application of ANN in Risk Assessment

In risk assessment, ANNs are used to model the relationship between different variables
that impact risk and to predict the potential for hazards and risk levels. ANNs can be
trained on large data sets and learn and adapt to new data, making them useful for real-
time risk analysis. The use of ANNs in risk assessment can provide many benefits. For
example, ANNs can handle non-linear relationships between variables, identify patterns
and relationships in large and complex data sets, make predictions, and perform extrap-
olations beyond the data used in training. Despite these benefits, applying ANNs in risk
assessment also poses some challenges. One of these challenges is the need for accurate and
comprehensive data to train the model. Another challenge is the need for effective model
validation and testing to ensure the model’s predictions are reliable and trustworthy. As
listed in Table. 3.7 ANNs can play an increasingly important role in enhancing safety in
various engineering fields, and industries [126].
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Table 3.7: Risk Analyses methods based on Fuzzy Fault Tree

References Proposed approaches

In [127] Employing the FMEA and FTA integrated with the Ann, a generic model
is developed to determine the ship’s mechanical system’s most vital mod-
ules and elements. ANN employs physical characteristics (temperature,
pressure) of essential elements of the FTA as input in NN for time series
analysis and possible trend prediction.

In [128] Combining PRA and ANN was employed to detect potentially risky situ-
ations in a polymer storage facility for bulk styrene. The Ann algorithm
forecasts BEs probabilities. Accordingly, a sensitivity analysis of the im-
plicated basic events was conducted to determine their influence on the
accident’s cause and effect.

In [129] ANN is trained using the vertical jet fire forms of propane. A Bayesian
neural network was utilised as the three-layer backpropagation training
with the sigmoid transfer function. Furthermore, to predict the outcome
variables of jet flame lengths and jet flame diameters, it was contrasted
with a Radial based functions method based on a single hidden layer.

In [130] A system breakdown risk analysis is conducted using ANN in the Tesoro
Anacortes Refinery disaster and is supported by a technique for projecting
FT into ANN. The outcomes demonstrate the utility of the ANN frame-
work translated from the fault tree as a method for risk evaluation.

In [131] Coupling ANN and FTA applied to estimate the frequency of coal and
gas outburst occurrences. This pairing provides a solid option prediction
technique.

In [132] They established a neural network algorithm to signify the hazard of CO2

leakage in Texas oil fields. This proposal improves the storage procedures’
implementation by identifying the possibility of CO2 leakage.

In [133] To develop an effective ANN model, it is required to modify algorithms
such as identifying the number of hidden layer neurons, choosing the right
transfer function of neurons, and the training process.

In [134] ANNs are independent in understanding the link between input and out-
put variables; hence, reliance on expert opinion is less about system struc-
ture and complicated connection patterns among system elements.

Fault tree analysis is a comprehensive information base for developing an ANN model. Us-
ing FTA provides valuable insights into the interactions between system components and
the relationships between the various events that can lead to a system failure. This infor-
mation can be used to train the ANN to make predictions about the likelihood of a failure
event, as well as the impact of the event on the system. By incorporating the knowledge
obtained from FTA into the ANN model, the accuracy and reliability of the predictions can
be improved. Additionally, using ANNs provides a more flexible and adaptable approach to
modelling complex systems compared to traditional FTA, addressing some limitations, such
as limitations of probabilistic analysis and incomplete data. Combining FTA and ANN
provides a powerful tool for predicting system failures and mitigating their consequences.
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3.4.3 Fault tree Mapping into Deep Neural Network

The aim behind mapping an FT into deep learning is to utilize the capabilities of ANNs
to address traditional FT analysis’s limitations and provide a more effective tool for fault
prediction and consequence analysis. These challenges include:

• Complexity and Time-consuming Nature: The complexity and comprehensibility of
traditional FTA are often challenging when dealing with large-scale systems, particu-
larly Nuclear NPPs, which consist of hundreds of components that operate indepen-
dently or interdependently. This complexity can result in significant inaccuracies and
inconsistencies in the analysis due to the difficulty in comprehending the numerous
BEs and intermediate events involved.

• Limitations of Probabilistic Analysis: Fault tree analysis relies on probabilistic anal-
ysis, which is limited in its ability to capture complex interactions between BEs and
intermediate events to estimate the failure probability of the top event.

• Incomplete and Missing Data: The scarcity of complete data presents a challenge in
conventional FTA as it can hinder the estimation of event probabilities with accuracy.
This absence or incompleteness of data can result in significant inaccuracies and
inconsistencies within the analysis.

Rigidity: Probabilistic analysis can be limited in its ability to adapt to changing
conditions or new data, as it is based on fixed assumptions and models.

The fault tree will be utilized as an informational basis for creating a DL model. The
proposed methods for mapping the FT into the ANN are shown in Fig. 3.24.

Figure 3.24: Depicts the mapping of fault tree components into an ANN, the BEs serve
as inputs, intermediate events are mapped to hidden layers, logical gates are transformed
into transfer functions (weights), and the top event is represented as the output of the
ANN.
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Mapping the components of an FT into the parts of an ANN is an important step in
incorporating FT analysis into the framework of ANNs. The main components of an
FT are BEs, intermediate events, TE, and logical gates, which are used to model the
relationship between the BEs and the TE, representing the system’s failure. According to
the diagram (Fig. 3.24), each element of FT is converted into a deep learning algorithm.
Based on the proposed model, the mapping methods are:

• Basic Events serve as Inputs; the inputs to the ANN are the states of the BEs,
which can be binary (e.g. active or inactive) or continuous. The hidden layer neurons
then process the inputs, which capture the complex interactions between the BEs and
the TE. Finally, the outputs from the hidden layer are used to estimate the probability
of the TE.

• Intermediate Events serve as Hidden layers; the intermediate events in the FT
can be transformed into hidden layer neurons in the ANN, which will capture the
complex relationships between the BEs and the TE. The hidden layer neurons in the
ANN are crucial in providing a more comprehensive representation of the FT, which
can be used to predict potential faults and their consequences. The hidden layer
neurons in the ANN can also be trained to improve their representations of the FT,
allowing for better predictions over time.

• Logic Gates (OR and AND) are mapped into a Weights and transfer func-
tion; the logic gates present in an FTA are mapped into an ANN by implementing
the transfer function and assigning weights to the neurons in the network. The trans-
fer function, which defines the activation or output of a neuron in the ANN, can be
utilized to model the operations of the logic gates. For instance, the AND gate in
an FT can be represented by a transfer function that only activates and outputs a
value of 1 if all inputs to the neuron are active. On the other hand, an OR gate is
represented by a transfer function that activates and outputs a value of 1 if any of
its inputs are active. It is worth noting that the specific form of the transfer function
will vary based on the chosen implementation of the ANN.

• Top Event (TE) is transformed into the Output; the top event in an FT can be
mapped into the output layer of the ANN. This output layer can be depicted by
a single neuron representing the probability of the top event (e.g., system failure)
occurring. The activation of this output neuron is determined by the activations
of the neurons in the hidden layer, which represents the intermediate events in the
FT. The activations of these intermediate events are influenced by the weights of
the connections between the neurons, which represent the relationships between the
events in the FT.

After mapping the components of FT into the ANN, the next step is to train the ANN
using historical data. This involves providing the ANN with input data and adjusting
the weights of the connections between the neurons to minimize the difference between the
actual output and the expected output. Once the ANN is trained, it can be used to predict
the likelihood of the top event occurring, given the status of the BEs. The accuracy of
these predictions can be evaluated, and the ANN can be further refined as necessary to
improve performance.
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Configuration of NN Elements

A deep learning algorithm is an ANN subset for complex pattern recognition and prediction
tasks. It is based on a regression algorithm, a technique used to determine the relationship
between inputs and outputs. The purpose of this relationship is to make predictions about
new data based on previously observed patterns. By mapping the components of an FT,
such as BEs and logic gates, into the weights and transfer functions of an ANN, the deep
learning algorithm can be used to make accurate predictions about the likelihood of the
TE in the FT. The specific configuration of the deep learning algorithm will depend on
the problem’s requirements and the desired accuracy level. The objective is to identify
hidden layers density, the transfer function of each layer, and the learning procedure to
avoid the over-fitting8 and under-fitting9 problems. In order to address the over-fitting
and under-fitting, the following rules are considered:

1. The hidden layers’ neuron number should amount to less than those in the input and
output layers combined.

2. Two-thirds of the input and the output layer neurons should make up the number of
hidden neurons.

3. In the FT, the amount of the first hidden layer neuron and intermediate events
connected to the BEs might be equal.

Approximating certain boundaries with absolute precision utilizing linear and non-linear
transfer functions in a neural network with two hidden layers is possible. It can provide
a close approximation of any smooth projection. Due to high network complexity and
lengthy overall training time, ANNs with three or more hidden layers are rarely deployed
[135]. Furthermore, the last layer correlates to the output of deep learning, also known as
the TE.

In the next chapter, we will utilize the earlier mapping to convert FT into an ANN to obtain
the failure probability of TE (PRHRS) in CAREM-25. This will involve assigning weights
and transfer functions to the neurons in the ANN to accurately capture the interactions and
relationships between the BEs and the TE in the FT. This process aims to use the ANN
to simulate the behaviour of the passive safety system and estimate its failure probability,
thereby providing valuable information for risk analysis and design optimization.

9Network over-fitting denotes a network’s well performance on training data and poor performance on
testing data due to learning many details and noises in training data.

9Under-fitting, while, meaning that the model performs poorly on both datasets
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3.5 Conclusion of Chapter 3

In conclusion, fuzzy logic and ANN integration have been widely explored to support risk
assessment processes in various engineering fields. Using fuzzy logic allows for the rep-
resentation of uncertainty in risk analysis, while ANN can be employed for complex and
non-linear risk analysis. Meanwhile, the integration of fuzzy PSA and fuzzy FMEA lever-
ages the advantages of both fuzzy logic and conventional risk analysis methods, resulting
in improved efficiency and accuracy of the risk analysis process.

In the subsequent chapter, we will examine the application of these techniques to a specific
passive safety system in a small modular reactor. By combining the strengths of fuzzy
logic, ANN, fuzzy PSA, and fuzzy FMEA, we aim to provide a comprehensive and robust
risk assessment framework to ensure the safe and reliable operation of the small modular
reactor. The mapping of ANN into the FTA further enhances the risk analysis process
by enabling the efficient and accurate identification and evaluation of potential hazards in
complex systems.
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Chapter 4

Fuzzy risk analysis methods and
ANN-based safety Analysis

The previous chapters have conducted a comprehensive analysis and discussed the limi-
tations of conventional safety analysis methods, specifically PSA and FMEA. It has been
established that these methods have constraints regarding their ability to handle uncer-
tainty in input data and imprecise information. The fuzzy logic and ANNs approach was
proposed and implemented to address these limitations. The isolation condenser system
in a CAREM-25 small modular reactor has been selected as the benchmark system for
the present analysis due to its simplified design, which primarily aims to remove decay
heat from the RPV. The simplicity of the ICS design provides an ideal environment for
evaluating the performance of fuzzy and ANN-based methods in the analysis of ICS.

This chapter comprises three primary sections: fuzzy PSA, fuzzy-FMEA, and ANN-based
FTA. Each section discusses a distinct analytical approach to evaluating the safety of
ICS systems. The first approach proposes a fuzzy PSA method for evaluating the failure
probability of the PRHRS during severe beyond design basis (SBO) accident scenarios. The
fuzzy fault tree analysis approach is adopted to model the system behaviour and quantify
the failure probability of the PRHRS components. A Simulink/Matlab-based model is
developed to replace Pandora and fuzzy operators with classical Boolean gates. This
captures the interactions between various BEs and intermediate events, considers the time
and event order sequence, and calculates the failure probability of TE. The Fuzzy Fault
Tree Analysis (FFTA) results are then incorporated into the Fuzzy Event Tree Analysis
(FETA) to estimate the consequence and its probability of core damage frequency under
SBO.

The next step proposes a fuzzy-FMEA for the PRHRS under consideration. This analysis
aims to integrate the results obtained from the FFTA into the fuzzy-FMEA framework
by incorporating dynamic failure occurrence. This requires the identification of the poten-
tial failure modes within the PRHRS, evaluating their associated effects, and multiplying
occurrence, severity, and detectability to calculate the fuzzy RPN.

In the final step of this study, the FTA will be mapped into an ANN to perform an ANN-
based FTA. This mapping process aims to convert the FT components (BEs, logic gates,
intermediate events, and TE) into the ANN ones. The ANN-based FT analysis results
will then be compared to those obtained from the traditional FTA to evaluate the ANN’s
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performance accurately representing the system’s FT. Comparing the two methods will
provide valuable insights into the ability of ANNs to perform PSA and highlight each
approach’s strengths and limitations.

4.1 CAREM-25’s PRHRS

CAREM-25, being an SMR project, places a significant emphasis on PSSs to ensure the
plant’s safe operation and minimize the consequences of an accident. One critical PSSs in
CAREM-25 is the Passive Residual Heat Removal System (PRHRS), designed to extract
decay heat from the core during a heat sink failure. The Passive residual heat removal
system is responsible for removing the residual heat generated by the reactor in the event
of an accident scenario, such as a LOCA or a Small Break Loss of Coolant Accident
(SBLOCA). The isolation condenser system is designed to remove decay heat and provide
secondary depressurization for the Reactor Pressure Vessel (RPV) in emergency scenarios.
The system consists of two HXs immersed in a cooling pool connected to the RPV. The
isolation condenser system uses natural circulation to transfer heat from the RPV to the
pool, where the high-temperature steam is condensed and pumped back into the RPV.

The heat exchangers are responsible for absorbing heat from one fluid stream, and they
are submerged in an Isolation Condenser (IC) pool, which helps to dissipate the heat
absorbed by the HXs into the surrounding environment. The pipelines connecting the
HXs to the RPV serve as the medium through which the fluid streams flow in and out of
the HXs. These pipelines ensure that the fluid streams are adequately transported to and
from the HXs and that the heat transfer process is efficient. The pressure vessel serves
as the containment for the fluid streams in the system. It is designed to withstand the
fluid streams’ internal pressure and prevent any leakage or release of the fluids into the
surrounding environment. Overall, the passive system with the layout described in Fig.
4.1 is designed to efficiently transfer heat between the two fluid streams using the HXs,
while ensuring the safe containment of the fluids within the RPV.
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Figure 4.1: PRHRS and ADS in CAREM-25

According to Fig. 4.1, PRHRS is operated by releasing specific valves that are designed to
fail to open in the event of a power failure or a signal failure, allowing vapour to reach the
submerged HXs and be condensed (removing heat (Q) into the cooling tank) through heat
transfer. The isolation condenser system comprises a cooling pool and two immersed HXs.
It is placed above the RPV, and HXs condense the arriving steam with high temperature
(Thigh) in the pool, and after taking the heat, the low-temperature flow (Tlow) pumps into
the reactor vessel.

In CAREM-25, the PRHRS uses NC to transfer heat from the RPV to the cooling system.
Two shared headers link two submerged HXs to the RPV. The upper (hot leg) and lower
(cold leg) headers lead to the RPV’s steam dome, and the lower head is tied below the
reactor water level. The inlet valve on the steam line is generally open, and two redundant
condensation valves on the outlet line are usually closed. The heat exchanger tubes are
thus filled with condensate (cold water). The condensation valves regulate the Counter-
Current Flow (CCF) to enable water to drain into the RPV without recirculating to the
ICS through the cold leg. The condensation valves are coupled to two vent valves that
evacuate the non-condensable gas during condensation. Two redundant makeup valves are
installed in the IC pool to regulate the condensate level. The isolation condenser system
is triggered when the high reactor pressure, MSIV closure, or RPV water level signal is
detected. Steam enters the HXs from the RPV via the hot leg isolation valves and is
cooled on the cold shell of the tubes, transmitting heat to the IC pool. The cold leg is
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then carried to the lower head of the reactor pressure vessel, inducing a natural circulation
loop caused by the variation in water density. Heat is extracted, created steam travels
to the IC, then steam condenses on the HXs tube side and returns to the core; heat is
transferred to the pool on the shell side of the IC; after pool water vaporizes, heat is
vented out to the atmosphere above the IC pool. The heat source and sink guarantee the
NC’s faultless operation. Nevertheless, the ICS fails if the IC or the NC fails. Therefore,
when the pressure reaches the predetermined target, the ADS depresses the containment
vessel. In the near term, the activation of ADS results in the loss of water inventory but
simultaneously eliminates decay heat. The loss of inventory due to long-term cooling is
eventually detrimental. In addition, the ADS valves are often requested after they have
been activated, resulting in pressure oscillations. Meanwhile, the ADS valves are more
prone to break as their use increases. In this case, ICS is also used to reduce the activation
of ADS [42].

Conducting a fuzzy PSA for PRHRS described above involves incorporating uncertainty
and imprecision into the assessment process by using fuzzy sets to represent probabilities of
failure or consequences. The steps involved defining the scope of the assessment, developing
an FFT and assigning fuzzy MFs, estimating the TE failure probability, then developing a
FETA based on data obtained from FFTA.

4.2 Fuzzy PSA model for PRHRS failure

The primary objective of the proposed fuzzy PSA is to evaluate the reliability of PRHRS in
the CAREM-25. To accomplish this objective, a combination of FFTA and FETA method-
ologies is suggested to identify potential weaknesses in the system, assess its operational
efficiency, and determine the overall risk to the reactor core in the event of ICS failure. The
concept of fuzzy PSA has been introduced and explained in detail in the previous chapter
(sections 3.2). In this work, conducting a fuzzy PSA for the PRHRS involves the following
two main steps:

• Fuzzy Fault Tree:

1. Define the scope of the assessment: Clearly define the system and component
boundaries of the PRHRS that will be included in the assessment. This should
include the heat exchangers, pumps, and piping.

2. Develop FFT: Constructing an FT diagram for ICS failure based on BEs, inter-
mediate events and undesired TE.

3. Assign fuzzy MFs and implement Pandora gates: In this stage, assign fuzzy MFs
to the FT components based on triangular failure probabilities and connect BEs
to intermediate events using Pandora gates and fuzzy operators.

• Fuzzy Event Tree:

1. Develop the FET: In a FET, each mitigating system’s probability of failure or
success is represented by TFN.

2. Conduct the FETA: Using Simulink/Matlab, the FETA is conducted to estimate
the path consequence probabilities.
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Following FFTA and FETA, the fuzzy PSA results are interpreted by analyzing the top
event’s probabilities and the events’ consequences. This information can inform decisions
about the safety of the PRHRS and identify areas for improvement.

4.2.1 Fuzzy Fault Tree Analysis for ICS and ADS

Understanding the potential failure modes and their underlying causes is crucial for en-
suring a reliable passive means of removing residual heat in case of an accident. These
potential failure modes illustrate in Fig. 4.2, where three main contributors to the failure
of PRHRS are outlined. It is important to note that these failures are not isolated incidents
but result from a composite of three distinct events. Firstly, NC failure occurs when the
system’s flow is disrupted and no longer functions as intended. Secondly, failure of the ICS
refers to a breakdown or malfunction of specific parts within the system (HXs and valves).
Finally, pipe rupture can occur in the inlet or outlet pipelines, resulting in a breach in the
flow, losing heat sink and potentially causing system failure.

Figure 4.2: Different failure modes of the ICS, including NC, pipe rupture, and IC failure.

The natural circulation failure in the ICS can be attributed to several underlying causes,
including envelope failure, cracking, thermal stratification, and components failure. The
probability of NC failure can be assessed through FFTA, as demonstrated in Fig. 4.3. This
analysis highlights possible failures, including insufficient heat transfer to external sources
and a high concentration of non-condensable (resulting from a failure of the vent valve to
purge uncondensables), which contribute to NC failure.
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Figure 4.3: Causes of NC failure, including insufficient heat transfer and high non-
condensable concentration and their BEs

In the ICS’s FT (as shown in Fig. 4.4), the failure of the two main components, the HXs
and the condensation valves are the leading causes of ICS failure. Each component has
its failure modes; for example, the HXs could fail if there is a multiple pipe rupture or
multiple pipes plugging during operation.
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Figure 4.4: The ICS failure contributions, HXs and condensation valves, each component
has its causes of failure.
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Figure 4.5 depicts the FT for the ADS system, which reveals that the system will fail if
either the safety relief valve or the bypass valve fails to operate. The combination of these
two failures is modelled using AND gates, which require all input events (BEs) to occur
for the output event to be positive. From a system reliability perspective, it is essential
that both valves operate correctly for the ADS system to function properly.

Figure 4.5: Fault tree of ADS

In Table. 4.1 listed failure rates (for all BEs, intermediate events) adopted from [42,
136]. There are 18 BEs and 11 intermediate events contributing to the failure of the ICS,
including component failures and failure of natural processes that serve as PSSs.
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Table 4.1: List of events with probability from the fault tree [42, 136]

Failure
Number

Event Failure Rate

1 PRHRS failure 1.95× 10−06

2 Natural circulation failure 2.17× 10−07

3 System failure 6.42× 10−06

4 Pipe rupture 2.4× 10−06

5 Insufficient heat transfer to external source 3.35× 10−09

6 High concentration of non-condense (Vent valve fails to
purge uncondensables)

2.13× 10−07

7 Heat exchanger failure 4.32× 10−09

8 Condensation valves failure 2.12× 10−09

9 Insufficient water in the IC pool (makeup valve fails to
operate)

1.19× 10−09

10 Degraded heat transfer (excessive pipe fouling) 2.19× 10−09

11 Vent valves failure 4.62× 10−04

12 Bypass Vent valves failure 4.62× 10−04

13 Multiple pipe rupture 2.16× 10−09

14 Multiple pipe plugging 2.16× 10−09

15 Condensation valve failure 4.59× 10−05

16 Bypass condensation valve failure 4.59× 10−05

17 Makeup valve fails to operate 3.45× 10−05

18 Bypass makeup valve fails to operate 4.20× 10−05

19 Vent valve fails to operate 4.20× 10−04

20 Vent valve fails to operate CCF 4.20× 10−05

21 Bypass vent valve fails to operate 4.20× 10−04

22 Bypass vent valve fails to operate CCF 4.20× 10−05

23 Condensation valve fails to open 3.45× 10−05

24 Condensation valve fails to open CCF 3.45× 10−06

25 Condensation valve fails to remain open 7.20× 10−06

26 Condensation valve fails to remain open CCF 7.20× 10−07

27 Bypass condensation valve fails to open 3.45× 10−05

28 Bypass condensation valve fails to open CCF 3.45× 10−06

29 Bypass condensation valve fails to remain open 7.20× 10−06

30 Bypass condensation valve fails to remain open CCF 7.20× 10−07

To implement FFTA, first, the failure rates in Table 4.1 are converted from crisp values to
TFN to reflect the uncertainty in the data. Each crisp failure rate is represented by ξ, and
the lower and upper boundaries of the fuzzy number can be calculated using a range of
uncertainty (ϱ) and a specified percentage of the lower and upper bounds (e.g. 15%). This
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approach provides a more accurate representation of the uncertainty in the failure rates
and allows for a more comprehensive analysis.

The TFN method’s use for converting crisp values into fuzzy numbers has been discussed
in the preceding chapter 3.2. This method is based on the mathematical expression:

Ã = (ξ − ϱ× ξ, ξ, ξ + ϱ× ξ)

Lower bound ⇐⇒ ξ − ϱ× ξ

Upper bound ⇐⇒ ξ + ϱ× ξ

(4.1)

In this work, the uncertainty around failure rates is considered ϱ = 15%, encompassing
both aleatory and epistemic uncertainty. For example, if the crisp failure rate of a pipe
rupture is reported as ξ = 2.4 × 10−06, this value can be plugged into equation (4.1) to
convert it into a fuzzy number, taking into account the uncertainty ϱ:

Ã = (2.4× 10−06 − 15× 2.4× 10−06, 2.4× 10−06, 2.4× 10−06 + 15× 2.4× 10−06)

= (2.0× 10−06; 2.4× 10−06; 2.8× 10−06)
(4.2)

The TFN representation of the pipe rupture failure rate can be denoted by Ã, and the
corresponding shape of this fuzzy number is illustrated in Fig. 4.6. The TFN method
converts crisp failure rates for all basic events listed in Table 4.1 into fuzzy numbers,
enabling uncertainty incorporation in the failure rates.

Figure 4.6: The TFN for pipe rupture, including lower bound, best estimate, and upper
bound

Converting failure rates into fuzzy numbers using the TFN method allows for a more com-
prehensive system safety analysis by capturing the uncertainty and imprecision associated
with failure rate estimates. Table 4.2 and 4.15 show the fuzzy numbers generated by
applying the TFN method to the failure rates of other BEs. As the intermediate event
probabilities are generated using FFTA, they are not required in this work.
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Table 4.2: Triangular fuzzy number for BEs in ICS

# Basic Events Triangular Fuzzy number

4 Pipe rupture Ã1=(2.0×10−06; 2.4× 10−06; 2.8× 10−06)

10 Degraded heat transfer Ã1=(2.5×10−11; 3.0× 10−11; 3.4× 10−11)

15 Condensation valve failure Ã1=(2.9×10−05; 3.4× 10−05; 3.9× 10−05)

13 Multiple pipe rupture Ã1=(1.8×10−09; 2.1× 10−09; 2.9× 10−09)

24 Condensation valve failure to open (CCF) Ã1=(2.5×10−06; 3.4× 10−06; 3.9× 10−06)

14 Multiple pipe plugging Ã1=(1.8×10−09; 2.1× 10−09; 2.9× 10−09)

25 Condensation valve fails to remain open Ã1=(6.1×10−06; 7.2× 10−06; 8.2× 10−06)

17 Makeup valve failure Ã1=(2.9×10−05; 3.4× 10−05; 3.9× 10−05)

26 Condensation valve fails to remain open CCF Ã1=(6.1×10−07; 7.2× 10−07; 8.2× 10−07)

18 Bypass makeup valve failure Ã1=(2.9×10−05; 3.4× 10−05; 3.9× 10−05)

27 Bypass condensation valve fails to open Ã1=(2.9×10−05; 3.4× 10−05; 3.9× 10−05)

11 Vent valve failure to operate Ã1=(3.6×10−04; 4.2× 10−04; 4.8× 10−04)

28 Bypass condensation valve fails to open CCF Ã1=(2.5×10−06; 3.4× 10−06; 3.9× 10−06)

20 Vent valve failure to operate (CCF) Ã1=(3.6×10−05; 4.2× 10−05; 4.8× 10−05)

29 Bypass condensation valve fails to remain open Ã1=(6.1×10−06; 7.2× 10−06; 8.2× 10−06)

21 Bypass vent valve failure to operate Ã1=(3.6×10−04; 4.2× 10−04; 4.8× 10−04)

30 Bypass condensation valve fails to remain open CCF Ã1=(6.1×10−07; 7.2× 10−07; 8.2× 10−07)

Note∗: The number behind the BEs indicates the positions in FT diagrams in 4.2 - 4.4
CCF Stands for Counter-Current Flow.

Table 4.3: Triangular fuzzy number for BEs in ADS

Basic Events Failure Probability
[42]

Fuzzy Failure Possibility

Valve Fail to Operate 1.0× 10−06 Ã1=(0.8×10−06; 1.0× 10−06; 1.2× 10−06)

Bypass Valve Fail 1.0× 10−06 Ã1=(0.8×10−06; 1.0× 10−06; 1.2× 10−06)

Implementing fuzzy operators and Pandora gates in an FT involves the incorporation of
the corresponding logic gates to represent complex dependencies and interactions between
events. Specifically, the Pandora gate can combine several BEs that lead to a particular
consequence or failure. This incorporation represents a shift from classical gates to dynam-
ics and is predicated on the priority of failure, which asserts that components with higher
failure rates will fail sooner. In this thesis, based on the relationship between different BEs
and intermediate events, the fuzzy operator and Pandora gate can be expressed as follows:

The failure possibilities Pi(t) = (ai(t), bi(t), ci(t)) associated with the input events of a
dynamic fuzzy operator AND gate at time t can be represented as:
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PANDF (t) = ANDF

{
P1(t), P2(t), . . . , PN(t)

}
=

{
N∏
i=1

ai(t),
N∏
i=1

bi(t),
N∏
i=1

ci(t)

}
(i = 1, 2, . . . , N)

(4.3)

Considering there is triangular fuzzy failure rates λi = (ai, bi, ci)

Suppose the failure possibilities of the event BEi are provided as a fuzzy triangular number
λi and let Pi(t) = (ai(t), bi(t), ci(t)) represent a triangular illustration of the failure possi-
bilities associated with an OR gate’s input events at time t. Then, the fuzzy OR operator
can be applied to λi and Pi(t) to determine the output fuzzy number associated with the
OR gate’s failure possibilities.

PORF (t) = ORF

{
P1(t), P2(t), . . . , PN(t)

}
= 1−

N∏
i=1

(1− Pi(t))

=

{
1−

N∏
i=1

(1− ai(t)), 1−
N∏
i=1

(1− bi(t)), 1−
N∏
i=1

(1− ci(t))

}
(i = 1, 2, . . . , N)

(4.4)

When the MF is modelled as trapezoidal, an element must be added to Eqs. 4.3 and 4.4
to incorporate this shape into calculating failure possibilities associated with PAND and
POR gates.

Specifically, for a set of N statistically independent BEs, each characterized by a triangular
fuzzy number λi = (ai, bi, ci), the failure possibilities associated with a PAND gate can be
represented via an algebraic model denoted by the symbol ◁, which can be calculated as
follows:

P

{
BE1 ◁BE2 ◁BE3 ◁ · · ·◁BEn−1 ◁BEn

}
(t) =

N∏
i=1

λi

N∑
k=0

 eukt∏N
j=0
j ̸=k

(uk − uj)

 (4.5)

Where the λi(t) = (ai(t), bi(t), ci(t)) = (1− e−λi1t, 1− e−λi2t, 1− e−λi3t) and t represent the
fuzzy failure rate for ith component and mission time, respectively. N is the total number
of BEs, λi(t) is the fuzzy failure rate of the ith basic event λi1, λi2, and λi3 are the elements

of that fuzzy failure rate. There are some criteria
{

u0 = 0

um = −
∑m(m>0)

j=1 λi
.

P PAND(t) =

 N∏
i=1

ai

N∑
k=0

 eukt∏N
j=0
j ̸=k

(uk − uj)

 ,
N∏
i=1

bi

N∑
k=0

 eukt∏N
j=0
j ̸=k

(uk − uj)

 ,

N∏
i=1

ci

N∑
k=0

 eukt∏N
j=0
j ̸=k

(uk − uj)


(4.6)
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As FT proposed (Fig. 4.2-4.4), the ICS has some intermediate events with 2, 3, and 4
facets BEs as inputs (with failure rate λi(t) = (ai(t), bi(t))) in the PAND gate, Eq. 4.5
rewriting as:

PAND for 2 BEs Input:

P PAND
N=2 (t) =

λ2

(λ1 + λ2)
− e(−λ1t) +

λ1

(λ1 + λ2)
e[−(λ1+λ2)t] (4.7)

For 3 BEs Input:

P PAND
N=3 (t) =

λ2 · λ3

(λ1 + λ2) · (λ1 + λ2 + λ3)
− λ3

(λ2 + λ3)
e(−λ1)t

+
λ1

(λ1 + λ2)
e−(λ1+λ2)t − λ1 · λ2

(λ2 + λ3) · (λ1 + λ2 + λ3)
e−(λ1+λ2+λ3)t

(4.8)

For 4 BEs Input:

P PAND
N=4 (t) =

λ2 · λ3 · λ4

(λ1 + λ2) · (λ1 + λ2 + λ3) · (λ1 + λ2 + λ3 + λ4)

− λ3 · λ4

(λ2 + λ3) · (λ2 + λ3 + λ4)
e−(λ1)t +

λ1 · λ4

(λ1 + λ2) · (λ3 + λ4)
e−(λ1+λ2)t

− λ1 · λ2

(λ2 + λ3) · (λ1 + λ2 + λ3)
e−(λ1+λ2+λ3)t

+
λ1 · λ2 · λ3

(λ1 + λ2 + λ3 + λ4) · (λ2 + λ3 + λ4) · (λ3 + λ4)
e−(λ1+λ2+λ3+λ4)t

(4.9)

Similar to PAND gate, for N statistically independent BEs with a TFN λi(t) = (ai(t), bi(t), ci(t)),
an algebraic model represent a POR gate with the notation ≀, can be calculated as follows:

P

{
BE1 ≀BE2 ≀BE3 ≀ · · · ≀BEn−1 ≀BEn

}
(t) = λ1 ·

[
1− e−(

∑N
i=1 λit)∑N

i=1 λi

]
(4.10)

Where λ1 represents the failure rate of BE1, meaning that, despite the conventional gates
utilized in Fault Tree Analysis (FTA) in POR and PAND, it is crucial to consider which
components or systems fail first, then plug in their failure rates depending on occurrence
order. The probabilities of being in states 2, 3 and 4 are similarly given as:

POR for 2 BEs Input:
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P POR
N=2 (t) =

λ1

(λ1 + λ2)
· [1− e−(λ1+λ2)t] (4.11)

For 3 BEs Input:

P POR
N=3 (t) =

λ1

(λ1 + λ2 + λ3)
· [1− e−(λ1+λ2+λ3)t] (4.12)

For 4 BEs Input:

P POR
N=4 (t) =

λ1

(λ1 + λ2 + λ3 + λ4)
· [1− e−(λ1+λ2+λ3+λ4)t] (4.13)

The quantitative analysis of Pandora and fuzzy operators provide a means of estimating
the probability of a TE occurring based on the failure rates of a system’s BEs and inter-
mediate events. To quantify TE accurately, it is necessary to quantify the gates within the
FT. The analytical solutions for the fuzzy and Pandora gates equations are obtained by
implementing Simulink blocks, which connect different BEs into intermediate events and
TE.

For instance, Fig. 4.15 indicates that vent valve failure is caused by the sequential failure
of the vent valve and the bypass vent valve CCF. By incorporating POR gate, mission time
and order of events can be considered, allowing for prioritization, meaning that the valve
with the higher failure rate is more likely to fail first. The probability of that POR gate
for vent and bypass valves can be evaluated as:

P POR
N=2 (t) =

λ1

(λ1 + λ2)
· [1− e−(λ1+λ2)t] (4.14)

The fuzzy failure rates for the vent valve and bypass vent valve are represented by λ1 =
(3.6 × 10−04; 4.2 × 10−04; 4.8 × 10−04) and λ2 = (3.6 × 10−05; 4.2 × 10−05; 4.8 × 10−05),
respectively. In Pandora gates, the occurrence sequence of events is crucial, with the
failure of the vent valve first, followed by the failure of the bypass valve. This sequence
order is considered in the FFT’s calculation, as shown in 4.14. The POR gate for vent and
bypass valves is implemented in the Simulink environment, with the code presented in the
corresponding block of the model as follows:

Matlab®-Simulink Code For Priority-OR

1 f unc t i on [ y1 , y2 , y3 ] = fcn ( l1 ,m1, n1 , l2 ,m2, n2 , t )
2 %POR
3 y1= ( l 1 ∗(1−exp(−( l 1+l 2 ) ∗ t ) ) ) /( l 1+l 2 ) ;
4 y2= (m1∗(1−exp(−(m1+m2) ∗ t ) ) ) /(m1+m2) ;
5 y3= (n1∗(1−exp(−(n1+n2 ) ∗ t ) ) ) /( n1+n2 ) ;
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Figure 4.7: Priority-OR gate for vent valve failure in Simulink

During the running model, The intermediate events and the top event’s failure possibilities
are expressed as TFN upon incorporating the fuzzy operators and Pandora gates in the
FFT. Then, defuzzification techniques must be applied to convert these fuzzy values into
failure probability. Top event failure possibility (ICS failure) is estimated during mission
time 100 hours under SBO scenario. The fuzzy failure possibility using fuzzy operators and
Pandora gates is estimated using the defuzzification technique (see Eq. 4.15) to convert
the failure possibilities into the failure probability.

ADT =
1

18
(4a+ b+ d) (4.15)

For comparison purposes, FFTA results can be contrasted against those from various es-
tablished approaches using statistical failure data. The fuzzy fault tree is validated by
determining the failure probability of intermediate events for the specified BEs. This ap-
proach is similar to traditional statistical FT analysis but considers priority gates and
fuzzy operators. The timing and sequence of BEs are embedded in FFT model, making
it more comprehensive and dynamic than traditional FT. The results obtained from the
FFTA (listed in Table. 4.15) are compared to those reported in previous studies ([42]) to
validate this model’s effectiveness in analyzing the ICS’s reliability.
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Table 4.4: Comparison between classical and fuzzy intermediate events’ failure rates

Intermediate Events Failure Probability Fuzzy Failure Probability

Insufficient heat transfer to external source 3.35× 10−09 1.11× 10−10

Heat exchanger failure 4.32× 10−09 1.53× 10−09

Condensation valve failure 2.12× 10−09 1.69× 10−10

Insufficient water in the IC pool 1.19× 10−09 1.70× 10−10

Vent valves failure 4.62× 10−04 1.29× 10−04

Bypass Vent valves failure 1.32× 10−04 4.62× 10−04

High concentration of non-condense 2.13× 10−07 9.20× 10−08

Natural circulation failure 2.17× 10−07 1.11× 10−7

System Failure 4.42× 10−06 8.2× 10−07

Condensation valve failure 3.45× 10−05 1.05× 10−05

Bypass condensation valve failure 4.59× 10−05 1.05× 10−05

According to Table 4.4, the results obtained from calculating intermediate events in both
the FFTA and conventional FT showed a good fit, indicating the model’s efficacy and
precision. This demonstration validates the FFT approach proposed for assessing the
reliability of ICS.

The present study aims to apply FFTA to evaluate the reliability of ICS in CAREM-25
small modular reactor. To this end, the failure possibility of BEs is represented using
TFN. Given the inherent uncertainty of failure rate data for BEs, the study employs TFN
to quantify their failure possibilities. The analysis considers a mission time of 100 hours,
and the resulting output includes the fuzzy possibility and overall probability of ICS failure
at the end of this time frame. The results indicated a successful implementation of the
FFTA model. The results showed that the intermediate events’ failure probabilities were
accurately calculated for the specified basic events. The comparison between the FFT and
the conventional FT demonstrated a good fit. The implementation of the PAND(POR)
and fuzzy operators, derived from the equations outlined in 4.7 to 4.13, has demonstrated
an exponential increase in the failure probability. This highlights the importance of con-
sidering mission time, ageing, multiple demands, physical changes, and other variables in
conducting thorough system reliability evaluations, particularly in PSSs dependent on nat-
ural laws, such as gravity and convection. Figures 4.8 present the failure probabilities for
various components and systems contributing to the NC failure.
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a) Insufficient water in the IC pool b) Insufficient heat transfer to external source

c) High concentration of non-condense d) Vent valve fails to operate

f) Natural circulation failure

Figure 4.8: The probability of various failure modes that contribute to NC failure over
the mission time (t = 100h).

The failure probabilities of various components and systems that contribute to the overall
failure of the NC system are depicted in Fig. 4.8, which displays a line graph of the failure
probabilities for each contributing factor over a mission time of 100 hours.

As shown in graph 4.8a, the insufficient heat transfer’s failure probability was initially
recorded at (3.35×10−9), and it remained constant until 20 hours before gradually increas-
ing to reach (5.59 × 10−4) at the end of the mission. Conversely, the failure probability
of insufficient water in the IC pool started at (1.19 × 10−9) before experiencing a sudden
drop to reach (5.9 × 10−6). In graph 4.8f, the failure probability of NC remained stable
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until 10 hours, after which it began to increase, reaching 1 at approximately 50 hours into
the mission, meaning that the NC would fail with certainty.

The trend of increasing failure probability was observed in all failure modes over the mission
time and is likely to continue. These results demonstrate the importance of monitoring
and mitigating the contributing factors to the failure of the NC system.

a) Condensation valves failure b) Heat exchanger failure

c) System failure

Figure 4.9: Failure probability evaluation for the ICS, condensation valves and HXs.

The diagram in 4.9 illustrates the evolution of failure probabilities for the IC system,
condensation valves, and HXs over a 100, h mission time under the SBO accident scenario.
In particular, from 4.9a, it can be observed that the failure probability of the condensation
valves remained stable during the first 30, h of the mission before gradually increasing to
almost 0.043 at the end of the given time. Conversely, the HXs failure probability began
to increase rapidly without any delay after the start of the accident. The system failure
probability started at a low level of (6.42 × 10−6) and remained relatively stable until
30, h before undergoing a sharp increase, eventually reaching nearly 0.33 by the end of the
mission time.
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Figure 4.10: PRHRS failure probability

The graph in 4.10 displays the failure probability of the TE, which is the passive ICS in the
fault tree diagrammed in 4.2, under the SBO scenario. Figures 4.9 and 4.8 demonstrate
that the failure probability of various systems and components increases at different rates
and trends during the postulated accident scenario. The top event failure probability
remains constant in the first 10, h and then sharply rises to reach a plateau of almost 0.33

During the accident scenario, if the isolating condenser system fails to operate, the ADS will
take responsibility for reducing the pressure of the RPV in order to activate the emergency
cooling injection.

Figure 4.11: ADS Failure Probability

The 4.11 graph shows changes in the failure probability for ASD when the ICS is unavailable
to eliminate the residual decay heat. the failure probability rising from about 1.0× 10−12

at begin of time to almost 1.0× 10−9 in 100h.
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4.2.2 Fuzzy Event Tree Analysis

Fuzzy fault trees and fuzzy event trees are useful for assessing the risk of core damage
during SBO-initiating events and evaluating the effectiveness of mitigating systems. In
this context, fuzzy fault tree analysis can estimate the fuzzy failure probabilities of the
primary and backup mitigating systems, such as the ICS and ADS. As illustrated in Figure
4.12, the ICS serves as the first line of defence against core damage by removing residual
heat from the core via NC. If the ICS fails, the ADS is designed to depressurize the RPV’s
excess steam by transferring it to the pressure suppression pool.

On the other hand, FETA can estimate the probability of CDF, considering the possible
failure probability of both the ICS and the ADS. The combination of ICS and ADS failure
and success probabilities can be incorporated into FETA to assess the CDF.

Figure 4.12: Fuzzy event tree of ICS and ADS under SBO initiating event

The branch possibility (failure and success) shown in Fig. 4.12 is calculated from each
event failure possibility obtained from FFTA. The collection of associated MS is indicated
as follows:

Mitigating Systems =
{
ICS,ADS

}
(4.16)

The fuzzy event tree is constructed, and the probabilities are assigned to each ICS and
ADS; the overall probability of success or failure for the system can be estimated by:

p̄ICSSucsess
= 1− p̄ICSFail

(4.17)

p̄ADSSucsess
= 1− p̄ADSFail

(4.18)

For instance, if the failure possibility of the ICS at t = 1 is p̄ICSFail
= (1.86× 10−6, 3.09×

10−6, 4.12× 10−6); the triangular fuzzy number for success possibility is:
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p̄ICSSucsess
= 1− (1.86× 10−6, 3.09× 10−6, 4.12× 10−6)

= (1− 1.86× 10−6, 1− 3.09× 10−6, 1− 4.12× 10−6)

(4.19)

After obtaining all failures and successes of ICS and ADS, the possibility of each path
(PathA, PathB) is estimated using Eq. 3.22 to multiply each element of the TFN to
gather.

Figure 4.13: The α− cut of normal TFN for ICS failure

To transform the TFN representing the failure and success probabilities of ICS and ADS
into their corresponding α− cut sets (as detailed in Table 3.1 and Fig. 4.13), the following
methodology is employed; for p̄ICSFial

= (1.86×10−6, 3.09×10−6, 4.12×10−6) and p̄ADSFial
=

(1.24× 10−13, 1.12× 10−12, 3.12× 10−12) we have:

p̄ICSFial
=
[
α
(α)
1 , α

(α)
2

]
=
[
(3.09× 10−6 − 1.86× 10−6) · α

+1.86× 10−6, 4.12× 10−6 − (4.12× 10−6 − 3.09× 10−6) · α

(4.20)

p̄ADSFial
=
[
β
(α)
1 , β

(α)
2

]
=
[
(1.2× 10−12 − 1.24× 10−13) · α

+1.24× 10−13, 3.12× 10−12 − (3.12× 10−12 − 1.12× 10−12) · α

(4.21)

Using an α− cut method for performing arithmetic operations on fuzzy numbers, such as
an α− cut addition and a multiplication to calculate the α in 4.29:
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a = α
(α)
1 (α = 0) (4.22)

b = α
(α)
1 (α = 1) or b = α

(α)
2 (α = 1) (4.23)

c = α
(α)
2 (α = 0) (4.24)

Where a, b, c represent TFN’s lower bound, best estimate, and upper bound. If α = 0 in
4.22 and 4.24, the line of the α − cut is in y = 0 of the Cartesian coordinate system as
shown in Fig. 4.13. On the other hand, α = 1 in 4.23 means that the line of the α − cut
is in y = 0 of the Cartesian coordinate system.

p̄ICSFial
=
[
(2.01× 10−6) · α + 1.86× 10−6, 4.12× 10−6 − (1.04× 10−6) · α

]
(4.25)

p̄ICSFial
=
[
(1.076× 10−12) · α + 1.24× 10−13, 3.12× 10−12 − (2.00× 10−12) · α

]
(4.26)

After obtaining the α − cut set for ICS and ADS failure possibility, the equations 4.22,
4.23, and 4.24 is applied to calculate following:

Aα ·Bα =
[
α
(α)
1 · β(α)

1 , α
(α)
2 · β(α)

2

]
= p̄ICSFial

· p̄ADSFial
(4.27)

To obtain the α-cut sets for ICS and ADS failure probabilities, each element of the TFN
representing ICS failure is multiplied by the corresponding element in the TFN representing
ADS failure. Subsequently, equations 4.22, 4.23, and 4.24 are utilized to assign a value
to the α variable, thereby enabling us to establish the α-cut sets for both ICS and ADS
failure probabilities (all mathematical calculation is don in Simulink block).

The triangular fuzzy numbers were converted into the α− cut set to estimate the CDF in
the event all mitigating systems fail in the FET. The failure fuzzy numbers for the ICS
and ADS were obtained using the methods described in the previous section, while the
success possibility was estimated to identify the various paths in the FET. The α− cut set
was then used to calculate the fuzzy set and defuzzify the failure possibility into the failure
probability. The resulting CDF in the event of failure of all mitigating systems under SBO
was estimated as CDF = (2.3× 10−19, 3.48× 10−18, 1.2× 10−18).

CDF (Path B) =
1

18
(4a+ b+ d) =

1

18
((4× (1.86× 10−6, 3.09× 10−6, 4.12× 10−6)))

=3.02× 10−6

(4.28)
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CDF (Path A) =
1

18
(4a+ b+ d) =

1

18
((4× (2.3× 10−19), 3.48× 10−18, 1.2× 10−18))

=9.96× 10−18

(4.29)

The core damage frequency was estimated by applying the ADT method to the fuzzy
numbers obtained from the FFTA. The Fuzzy Event Tree was used to determine the
different paths (PathA and PathB) leading to CDF. Success and failure probabilities were
calculated for each path, and the resulting CDF for PathA and PathB were found to be
3.02× 10−6 and 9.96× 10−18, respectively. These results demonstrate that activating the
ADS system reduces the probability of core damage and the release of radioactive material.

The event tree, including ICS and ADS as mitigating systems triggered by an initiating
event of station blackout, is constructed by considering the failure of ICS and ADS as an
event (Table 4.5). The branch probability is calculated for each event failure, estimated
through fuzzy FFT, and the classical CDF consequences are obtained from the simulation
results presented in [42]. The PAND and POR gates in the simulation model enable us
to consider the time-dependent evaluation of failure probabilities during the modelling
process. The table below shows the failure and success frequency of ICS and ADS at
different times after SBO accident.

Table 4.5: Fuzzy event tree with ICS and ADS failure

Path Time1 Time40 Time80 Time100

ICS Success 1.00 1.00 1.00 1.00

ICS fail −→ ADSSuccess 3.09× 10−6 3.27× 10−1 3.33× 10−1 1.00

ICS fail −→ ADSFail 2.23× 10−18 4.19× 10−10 1.67× 10−9 1.4× 10−8

Table. 4.5 shows the FFTA results with ICS and ADS failures under the initiating station
blackout event for different time points. The ICS is successful in mitigating the CDF.
The values in this path are equal to 1, indicating that the core damage frequency is fully
mitigated and no damage is expected.

The table’s PathA represents the case where the ICS system fails, but the ADS system
successfully mitigates the CDF. The values in this path show the fuzzy probabilities of CDF,
ranging from 3.09 × 10−6 at Time 1 to 1.00 at Time 100, which means that considering
the mission times and time evaluation of failure rates are essential in the system analysis.
These probabilities indicate the likelihood of CDF, given the ICS system’s failure and
the ADS system’s success. The PathB represents the case where both the ICS and ADS
systems fail. The values in this path also show the fuzzy probabilities of CDF, ranging
from 2.23 × 10−18 at Time 1 to 1.4 × 10−8 at Time 100. These probabilities indicate the
likelihood of CDF, given the failure of both the ICS and ADS systems.

The use of fuzzy set theory and related techniques has played a critical role in this re-
search, particularly in assessing the ICS failure and risk of CDF under SBO. Fuzzy fault
tree analysis was used to model the ICS and ADS failure with uncertain or vague failure
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data, while the use of fuzzy operators and Pandora gates in the FFTA allowed for the
consideration of time-dependent failure probabilities and even order sequence, leading to
more accurate failure probabilities for using in the FETA. Fuzzy event tree analysis was
used to model complex event sequences with uncertain or vague probabilities, allowing for
the modelling of uncertainty and vagueness in estimating event probabilities, which led to
a more accurate and realistic estimation of the CDF. Integrating FFTA and FETA has
provided a comprehensive methodology for assessing the ICS failure and CDF, with a more
accurate and realistic estimation of failure probabilities and consequences.

The next section proposes fuzzy-FMEA to evaluate the different failure modes and effects
for ICS systems and components. Using Fuzzy Logic in FMEA allows for considering uncer-
tainty and vagueness in the analysis, which can lead to a more accurate and comprehensive
risk assessment.

4.3 Coupling Fuzzy Fault tree and Fuzzy-FMEA

Fuzzy FMEA is a technique that employs fuzzy if-then rules and expert judgments to pri-
oritize risks associated with failure modes. The core concept of fuzzy FMEA is to utilize
linguistic variables to represent the parameters of severity, occurrence, and detectability
and rank them using fuzzy numbers, such as TFN, rather than crisp numerical values. This
approach is designed to accommodate the imprecision and uncertainty in the assessments
and evaluations made by experts and data, thereby improving the quality of risk prioriti-
zation. The application of fuzzy FMEA has been shown to enhance the accuracy of risk
assessments and facilitate better decision-making.

As discussed in the previous section, the combination of fuzzy logic and PSA provides
a more reliable model for evaluating the failure of the ICS. Integrating FFTA and fuzzy
FMEA offers a more comprehensive approach to analyzing risks associated with complex
systems’ failures. In this thesis, FFTA is an informative tool for obtaining the occurrence
of events, which can then be multiplied by the severity and detectability of different failure
modes to calculate the fuzzy RPN. The fuzzy risk priority number provides a more com-
prehensive and accurate measure of the failure mode’s risk by considering the uncertainties
and imprecision’s associated with the ICS system’s parameters. Through integrating the
results from both FFTA and FMEA, the critical failure modes can be identified, and mit-
igation actions can be prioritized more effectively, ultimately leading to optimal resource
allocation and mitigation measures.
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Figure 4.14: Proposed fuzzy-FMEA model

The diagram in Figure 4.14 outlines the proposed method for fuzzy FMEA. Data for
severity, occurrence, and detectability is gathered in the first stage. The fuzzy fault tree,
described in the previous section, is then used as an informative tool to provide the fuzzy
FMEA occurrence for each BEs, which are the components and events that can lead to
different failure modes of the PRHRS. In cases where there is no data available for severity
and detectability, expert judgment should be considered. However, this thesis uses data
from different references and papers to feed the model. A TFN is applied for severity and
detectability to address the uncertainty around the data.

Figure 4.15: Proposed method for calculating fuzzy PRN, the occurrence, sensitivity and
detectability as crisp inputs, are plugged into the model to estimate fuzzy PRN.

The proposed fuzzy FMEA evaluation process is visualized in Fig. 4.15. This process
consists of three crucial phases: Fuzzification, Inference, and Defuzzification, which can be
implemented in FIS in Matlab®. The crisp inputs (S, O, D) are transformed into the
fuzzy number in the fuzzification phase. Then, the inference phase involves the application
of IF-Then Rules. Finally, the defuzzification phase converts the fuzzy numbers into a
single value using the ADS method. The fuzzy inference structure used in Matlab® is
illustrated in Fig. 3.14.
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The first step in conducting a fuzzy-FMEA is to comprehensively understand the system
under examination, in this case, the PRHRS. Understanding the different failure modes
and their causes can be achieved through the FT diagrams presented in Figs. 4.2, 4.3, and
4.4. The next step is identifying system components and attributing failure modes to each
component or subsystem (Table 4.6 is an example of organizing this information). This
step is crucial in identifying potential points of failure and assessing their impact on the
overall system.

Table 4.6: Systems and Components related Failure Modes

Failure Mode Cause

Insufficient heat transfer to external source Degraded heat transfer (excessive pipe fouling)

Heat exchanger failure Multiple pipe rupture
Multiple pipe plugging

Insufficient water in the IC pool Makeup valve fails to operate
Bypass makeup valve fails to operate

Vent valves failure Vent valve fails to operate
Vent valve fails to operate CCF

Bypass vent valves failure Bypass vent valve fails to operate
Bypass vent valve fails to operate CCF

Condensation valve failure Condensation valve fails to open
Condensation valve fails to open CCF
Condensation valve fails to remain open
Condensation valve fails to remain open CCF

Bypass condensation valve failure Bypass condensation valve fails to open
Bypass condensation valve fails to open CCF
Bypass condensation valve fails to remain open
Bypass condensation valve fails to remain open CCF

The table shows the different systems and components related to failure modes identified
during the fuzzy-FMEA analysis of PRHRS. BEs related to the failure modes have also
been listed.

The Table. 4.7 shows the severity of BEs, categorized into five levels of severity from very
low to very high, and the corresponding frequency of events per year for each severity level.
For example, the range for very low is 10−6/y, which means that the event associated with
this rank is expected to occur at a frequency of once in a million years.
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Table 4.7: Severity ranking of different BEs, with corresponding annual frequencies in
units of events per year.
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Pipe rupture ✓

Degraded heat transfer (excessive pipe fouling) ✓

Multiple pipe rupture ✓

Multiple pipe plugging ✓

Makeup valve fails to operate ✓

Bypass makeup valve fails to operate ✓

Vent valve fails to operate ✓

Vent valve fails to operate CCF ✓

Bypass vent valve fails to operate ✓

Bypass vent valve fails to operate CCF ✓

Condensation valve fails to open ✓

Condensation valve fails to open CCF ✓

Condensation valve fails to remain open ✓

Condensation valve fails to remain open CCF ✓

Bypass condensation valve fails to open ✓

Bypass condensation valve fails to open CCF ✓

Bypass condensation valve fails to remain open ✓

Bypass condensation valve fails to remain open CCF ✓

The purpose of associating linguistic variables with these reported frequencies ranges in
Table. 4.8 and 4.9 is to represent the event’s severity, occurrence and detectability and
RPN level more intuitively and understandably. The uncertainty around data is considered
by assigning linguistic values such as very low or high to these frequency ranges. Triangular
fuzzy numbers convert the crisp values into linguistic values. For example, the range of
very low (10−6/y) can be represented as a TFN with a peak at 10−6/y and slopes that
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decrease to zero as the frequency moves away from this value.

Table 4.8: Linguistic terms and TFN for the input variables’ severity, occurrence and
detectability

Triangular fuzzy numbers

Linguistic terms Severity (S) Occurrence(O) Detectability (D)

Very low (VL) (1.00, 1.00, 3.25) (1.00, 1.00, 3.25) (1.00, 1.00, 3.25)

Low (L) (1.00, 3.25, 5.50) (1.00, 3.25, 5.50) (1.00, 3.25, 5.50)

Moderate (M) (3.25, 5.50, 7.75) (3.25, 5.50, 7.75) (3.25, 5.50, 7.75)

High (H) (5.50, 7.75, 10.00) (5.50, 7.75, 10.00) (5.50, 7.75, 10.00)

Very high (VH) (7.75, 10.00, 10.00) (7.75, 10.00, 10.00) (7.75, 10.00, 10.00)

Table 4.9: Linguistic terms and TFN for the output variable fuzzy RPN.

Linguistic terms Triangular fuzzy numbers

Very low (VL) (1.00, 1.00, 167.5)

Low (L) (1.00, 167.5, 334.0)

Nearly low (NL) (167.5, 334.0, 500.5)

Moderate (M) (334.0, 500.5, 667.0)

Nearly high (NH) (500.5, 667.0, 833.5)

High (H) (667.0, 833.5, 1000)

Very high (VH) (833.5, 1000, 1000)

The next step is to implement the fuzzy FMEA into MATLAB software. MATLAB has
a built-in fuzzy logic toolbox that provides functions and tools for implementing fuzzy
inference systems. This thesis uses the toolbox to define membership functions, define
fuzzy rules, and perform fuzzy inference. The membership function shape and ranges are
shown in Fig. 4.16 for severity, occurrence, and detectability.
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(a) Membership function plot for severity

(b) Membership function plot for Occurrence

(c) Membership function plot for Detectability

(d) Membership Function Plot for RPN

Figure 4.16: Four MF plots for S, O, D, and RPN from FIS in Matlab®.

After defining MF plots in FIS, the next step is to define the rules of the fuzzy inference
system using "if-then" statements, as shown in Fig. 4.17. These rules establish the rela-
tionship between the input and output variables and the system’s response to the inputs.
Each rule consists of conditions (antecedents) and a resulting action (consequent). The
antecedents comprise one or more fuzzy propositions that use the input variables, while
the consequent is a fuzzy proposition that describes the output variable.
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Figure 4.17: Fuzzy inference structure rules in Matlab®

Some of these rules can be merged to reduce the number of rules in the fuzzy rule base.
Nevertheless, 125 rules in all are produced. Software Matlab® was used to generate the
rules, for instance:
Rule Number 1: if (severity is VL) and (occurrence is VL) and (detectability is VL) then
(RPN is VL)

...

Rule Number 90: if (severity is M) and (occurrence is H) and (detectability is M) then
(RPN is NH)

...

Rule Number 125: if (severity is VH) and (occurrence is VH) and (detectability is VH) then
(RPN is VH)

After defining the FIS and creating the rules in MATLAB, the next step is implementing
the system in Simulink. This involves using Simulink’s Fuzzy Logic Controller block to
link the system’s inputs and outputs and simulate the system’s behaviour. Once the block
is added to the Simulink model, as shown in Fig. 4.18, the input signals are connected to
the block’s input ports, and the block’s output is connected to the desired output of the
system.
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Figure 4.18: Matlab®/Simulink block, including FIS, demonstrates linking FFT and
fuzzy FMEA to calculate the Fuzzy RPN.

The block diagram in Simulink for the Fuzzy-FMEA process, shown in Fig. 4.18, involves
several blocks and connections. The failure rates of the FFT serve as input for the occur-
rence variable. The occurrence variable is then converted into linguistic variables multiplied
by the severity and detectability variables to calculate the fuzzy RPN. The Simulink model
utilizes a FIS block, where the occurrence, severity, and detectability variables serve as in-
puts and the fuzzy RPN as the output. The block diagram also includes additional blocks
for calculating conventional RPN to compare the result with fuzzy RPN. in addition, cal-
culating the vesely–Fussell Importance Measure (V–FIM) to rank the BEs based on their
importance on TE.

In this study, a risk assessment of the ICS was performed using FFT and fuzzy-FMEA
approach. The resulting Table. 4.10 and 4.11 present the failure modes of the IC system,
their causes and effects, severity, occurrence, detection, classical RPN, and fuzzy RPN
values. The classical RPN values were calculated by multiplying the severity, occurrence,
and detection values, and the fuzzy RPN values were calculated by applying fuzzy logic to
the RPN values. The results show that the pipe rupture and degraded heat transfer failure
modes pose the highest risk, with fuzzy RPN values of 576.4 and 581.0, respectively, while
the multiple pipe rupture and vent valve and bypass vent valve failure modes have the
lowest risk with fuzzy RPN values of 241.5 and 513.0, respectively. These findings can help
improve the safety and reliability of the IC system and inform decision-making related to
risk management.
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Table 4.10: Risk assessment of isolation condenser system using linking fuzzy-fault tree
and fuzzy-FMEA

Risk Estimation

Failure Mode Cause and Effect Severity Occurrence Detection RPN Fuzzy-RPN

Pipe Rupture Causes: Material defects,
abnormal operation Effects:
LOCA, Loss of NC, Loss of
heat removal capacity

10 5.5 2.00 110.1 576.4

Degraded heat
transfer

Causes: Thermal insulation,
Inaccurate material assem-
bly Effects: Heat convection
Limitation, NC impairment

8.00 3.95 6.00 185.1 581.0

Multiple pipe
plugging

Causes: curd detachment
from destructive pressure ad
vibration Effects: NC Stop

6.00 3.85 3.00 69.3 360.1

Multiple pipe
rupture

Causes: deterioration
caused by corrosion, stress,
and pressure fluctuations
Effects: Decreased capacity
to dissipate heat, Primary
coolant discharge to the pool,
Loss of coolant inventory NC
impairment

2.00 3.85 3.00 23.1 241.5

Makeup valve
fails to operate

Causes: Valve malfunction,
Effects: Insufficient water in
the IC pool

6.00 6.163 4.00 147.9 556.6

Bypass Makeup
valve fails to op-
erate

Causes: Valve malfunction,
Effects: Insufficient water in
the IC pool

6.00 6.163 4.00 147.9 556.6

Vent valve fails
to operate

Causes: Valve malfunction,
Effects: Increasing pressure
and temperature in RPV,
Loss of heat removal system

6.00 7.00 4.00 166.5 562.0

Vent valve fails
to operate CCF

Causes: Valve malfunction,
Effects: Increasing pressure
and temperature in RPV,
Loss of heat removal system

5.00 6.19 4.00 124.0 513.0

Bypass Vent
valve fails to
operate

Causes: Valve malfunction,
Effects: Increasing pressure
and temperature in RPV,
Loss of heat removal system

6.00 7.00 4.00 166.5 562.0

Bypass Vent
valve fails to
operate CCF

Causes: Valve malfunction,
Effects: Increasing pressure
and temperature in RPV,
Loss of heat removal system

5.00 6.19 4.00 124.0 513.0
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Table 4.11: CONTINUE. Risk assessment of isolation condenser system using linking
fuzzy-fault tree and fuzzy-FMEA

Risk Estimation

Failure Mode Cause and Effect Severity Occurrence Detection RPN Fuzzy-RPN

Condensation
valve fails to
open

Causes: Valve malfunction,
Control circuit failure Effects:
Non-triggering of IC if bypass
valve does not operate, Loss of
heat removal capability, Reac-
tor pressure and temperature in-
crease

6.00 6.16 5.00 184.9 555.5

Condensation
valve fails to
open CCF

Causes: Valve malfunction,
Control circuit failure Effects:
Non-triggering of IC, Loss of
heat removal capability, Reac-
tor pressure and temperature in-
crease

2.00 5.54 5.00 55.45 363.5

Condensation
valve fails to
remain open

Causes: Valve malfunction,
Control circuit failure Effects:
Natural circulation stop in case
bypass valve does not operate

4.00 5.69 5.00 114 475.5

Condensation
valve fails to
remain open
CCF

Causes: Valve malfunction,
Control circuit failure Effects:
Non-triggering of IC, Loss of
heat removal capability, Reac-
tor pressure and temperature in-
crease

2.00 5.53 5.00 55.35 363.5

Bypass conden-
sation valve fails
to open

Causes: Valve malfunction,
Control circuit failure Effects:
Natural circulation stop in case
bypass valve does not operate

2.00 5.54 5.00 55.45 363.5

Bypass conden-
sation valve fails
to open CCF

Causes: Valve malfunction,
Control circuit failure Effects:
Natural circulation stop in case
bypass valve does not operate

2.00 5.53 5.00 55.35 363.5

Bypass conden-
sation valve fails
to remain open

Causes: Valve malfunction,
Control circuit failure Effects:
Natural circulation stop in case
bypass valve does not operate

4.00 5.69 5.00 114 475.5

Bypass conden-
sation valve fails
to remain open
CCF

Causes: Valve malfunction,
Control circuit failure Effects:
Natural circulation stop, High
pressure and Temperature in
core

2.00 5.53 5.00 55.35 363.5
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As reported in Table. 4.10, 4.11 and bar chart in 4.19, the Fuzzy-RPN is expected to
be higher than the traditional RPN value; this was because the classical method assumes
that the values assigned to the severity, occurrence, and detection scales are precise and
accurate, which is not always the case. On the other hand, the fuzzy method considers
the imprecision and uncertainty (applying linguistic variables) in these values, resulting in
a more realistic and accurate risk estimate. However, in some cases, the Fuzzy-RPN value
may be lower than the RPN value due to how the fuzzy logic is applied to the RPN calcu-
lation. This could happen if the membership functions used in the fuzzy logic calculation
result in a lower overall score than the traditional RPN calculation. Additionally, it’s also
possible that the RPN and Fuzzy-RPN values have been calculated using different scales,
which also explains the difference in the values.
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Figure 4.19: RPN values for classical and fuzzy method

The Surface Viewer Simulink block in MATLAB is used to visualize the output of a FIS
in Simulink. The block provides a 3D view of the FIS output surface, which helps to
understand how the FIS behaves in response to changes in the input variables. The block
can identify and diagnose FIS problems and optimize its performance.
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Figure 4.20: Surface viewer in Matlab®/Simulink Blocks

Figure 4.20 depicts the Surface Viewer Simulink block in MATLAB, which is a three-
dimensional graphic that maps two inputs (occurrence, severity, or detection) to one output
(fuzzy RPN). The surface viewer can illustrate the correlation between O, S, and D and
the fuzzy RPN. The surface viewer allows visualization of the outcome’s (fuzzy RPN)
dependence on inputs (S, O). In the case of the fuzzy logic approach versus the classical
RPN technique, it is evident that the fuzzy logic methodology gives a broader spectrum of
risk evaluation and narrower intervals between various degrees of risk, allowing for greater
precision.

This section introduces a fuzzy FMEA technique and a fuzzy FMEA analysis of PRHRS
failure modes to demonstrate the model. The study outlines that the fuzzy interference sys-
tem offers several advantages, including representing failure information in FMEA as TFN,
resulting in a more realistic and flexible reflection of situations. Additionally, the proba-
bility of occurrence is directly taken from the FFTA, connecting the two models. Finally,
using a fuzzy RPN is more effective in situations where input uncertainty is considered in
the severity and detectability fuzzy variables.

Mapping fault trees into ANNs is a promising approach to improving fault diagnosis and
prediction. By converting the logical structure of a fault tree into a neural network archi-
tecture, the network can be trained to predict the likelihood of different failure modes and
their consequences. In the following section, we will discuss the methodology of mapping
fault trees into ANNs in more detail.

4.4 ANN-based Fault tree

Mapping an FT into an ANN involves translating the logical relationships between events
and failures into a network of nodes and connections in the ANN. This allows the ANN
to predict system reliability and failure probability based on input variables, which can be
useful for system design and optimization. Mapping FT into an ANN involves identifying
the BEs, intermediate events, and TE in the FT and then assigning corresponding input,
hidden, and output layers in the ANN. The connections and weights between the ANN
nodes represent the logical relationships between events and failures (see section 3.4.3).
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Figure 4.21: Diagrams for mapping FT into ANN

Mapping FT into ANNs has several advantages over traditional FTA methods, particu-
larly for dealing with complex systems, time-consuming analysis, and incomplete or missing
data. Artificial neural networks can handle large datasets and extract patterns, making
them suitable for modelling and predicting system behaviour. Through training the ANN
model on relevant data, it can learn the relationships between the system components and
their failure modes, allowing for more accurate predictions of system behaviour and im-
proved risk assessment. Furthermore, ANNs can be used to identify critical components
of a system and potential failure modes, aiding in the development of targeted mainte-
nance and safety strategies. Applying ANNs in FTA provides a promising alternative to
traditional FTA approaches and can offer valuable insights for decision-making in complex
systems.

Figure 4.22: Mapping FT into the ANN. (1) obtaining the probabilities of the BEs, (2)
constructing the FT gates, (3) training ANN.

Figure 4.22 depicts the proposed model for mapping the fFT into the ANN. The model
consists of three main stages. In the first stage, the probabilities of basic and intermediate
events are obtained from different references. In the second stage, the FT gates and

101



components are transformed into Simulink blocks, where the gate analytical equations are
applied to calculate the outputs of the logic gates. In the final stage, inputs for the ANN
models are generated, and the ANN models are trained based on these inputs to predict
the model outputs.

This study proposes an innovative approach for creating an ICS failure FT using Simulink
as a first step toward mapping the FT to the NN. A fault tree is constructed in Simulink
with enough inputs for the NN algorithm, based on the accident scenarios (SBO) Simulink
model, which is provided with BEs probabilities from Table 4.1. The probability of the
TE is then calculated using probability equations and AND/OR gate linkages. Simulink’s
ability to depict a system’s topology is highly valuable in modelling technical processes.

The failure probabilities for the intermediate events and the TE are based on the proposed
FT framework, which utilizes the Boolean logic gates AND and OR gates. The AND gate
outputs a signal only when all inputs are active, while the OR gate outputs a signal when
at least one input is active. The AND and OR gates equations are shown in Eq. 4.30 and
Eq. 4.31, respectively. The probability values for the intermediate events and the TE are
obtained using the information in Table 4.12. [41].

PAND =


m∏
i=1

Pi, 0 ≤ Pi ≤ 1

P (Impossibleevent) = P (ϕ) = 0,

P (Certainevent) = P (ς) = 1,

(4.30)

POR =
m∏
i=1

(1− Pi) (4.31)

Table 4.12: “OR” and “AND” gates probabilities equations

Gate Inputs Probability

OR 2 P (A) + P (B)− P (A)P (B)

OR 3 (P (A) + P (B) + P (C))− (P (AB) + P (AC) + P (BC) + P (ABC))

OR 4 (P(A)+P(B)+P(C)+P(D))-(P(AB)+P(AC)+P(AD)+P(BC)+P(BD)+P(CD))+
(P(ABC)+P(ABD)+P(BCD)+P(ACD)+P(ABCD))

AND 2 P (A).P (B) = P (A)P (B)

AND 3 P (A).P (B).P (C) = P (A)P (B)P (C)

It is important to consider the FTA’s assumptions to obtain accurate results. In this
section, we describe several key assumptions typically made when using FTA to analyze
the reliability of a system. For appropriate outcomes, the essential factors must be taken
into account:

0AND gate, the output event occurs if all input events occur.
0OR gate, the output event occurs if at least one of the input events occurs.
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• The failure rates follow an exponential distribution: This is an assumption often made
in reliability analyses. The exponential distribution is commonly used to model ran-
dom events that occur independently over time, with a constant failure rate. While
this assumption simplifies the analysis, it may not be appropriate for all systems,
and more complex distributions may be necessary in some cases.

• The simultaneous occurrence of multiple faults is prohibited, and Common Cause
Failures (CCFs) are disregarded: In some situations, multiple faults can occur si-
multaneously, or the occurrence of one fault can increase the probability of another
fault occurring. This common cause of failure is an important consideration in some
systems. However, for this analysis, common-cause failures are assumed to be absent.

• Unrepairable component: Some components in a system may be unrepairable, mean-
ing they cannot be fixed or replaced once they fail. This is an important consideration
when analyzing the reliability of a system, as it may significantly impact the system’s
availability.

• The model does not include dynamic aspects such as operational dependence, element
prioritization, and the utilization of spares: While the fault tree analysis provides a
useful framework for analyzing the reliability of a system, it has some limitations. For
example, the analysis is typically static and does not consider the effects of changes
in the system state or the impact of maintenance or repair activities. Additionally,
the analysis does not typically consider the impact of spare components or backup
systems that can be used to mitigate the effects of failures.

Considering these factors, the FTA results can be more accurate and reliable. After con-
sidering the assumptions mentioned above, probability equations for the logic gates were
derived and incorporated into Simulink blocks to construct the FT structure and connec-
tion gates. The resulting Simulink model for the ICS’s FT is shown in Fig. 4.23.

Figure 4.23: Simulink model for the ICS’s FT structure and logic gates.
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The Simulink FT framework shown in Fig. 4.23 obtains the probabilities of intermediate
events and TE failure, the ICS failure for the SBO accident scenario. To validate the
proposed Simulink-based FTA, the probabilities of BEs are fed into the model, and the
probabilities of intermediate events are estimated using results from [42] where the prob-
abilities of intermediate events are obtained using Computer Aided Fault Tree Analysis
System (CAFTA).

Table 4.13: Comparison between the CAFTA and Simulink results for various interme-
diate events

Intermediate Event CAFTA Results Simulink Results

Insufficient water in the IC pool 1.19× 10−9 1.16× 10−9

Vent valves failure 4.62× 10−4 4.02× 10−4

Bypass vent valves failure 4.62× 10−4 4.62× 10−4

Heat exchanger failure 4.32× 10−8 3.12× 10−8

Condensation valve failure 4.59× 10−5 5.66× 10−5

Bypass condensation valve failure 4.59× 10−5 4.59× 10−5

The comparison table (Table 4.13) presents the results obtained using two methods, CAFTA
and Simulink, for various intermediate events. The probabilities for all events are similar
between the two methods, with the probabilities for insufficient water in the IC pool and
bypass vent valve failure being identical. However, the failure probabilities for PRHRS
differ between the two methods, with CAFTA predicting a higher failure probability than
Simulink. This difference could be due to each method’s different assumptions and sim-
plifications. These results suggest that the modelling approach employed in Simulink is
accurate and valid in predicting the probabilities of the considered events. Moreover, the
Simulink model can serve as a basis for feeding the NN algorithm, indicating that the
model is a suitable input for further analysis and prediction.

In Section 3.4.3, a detailed description of the proposed methods for mapping FT into ANN
is provided. The subsequent sections will delve into the configuration of the ANN, the
model algorithm, and the data acquisition methods used. Once these steps are covered,
the results of this mapping will be presented.

This work uses a deep neural network to map the FT into the ANN. A fundamental
aspect of deep learning algorithms is their configuration, which is critical for achieving
high accuracy in predicting new data. This involves determining the appropriate density
of hidden layers, the transfer function for each layer, and learning procedures to mitigate
potential over-fitting and under-fitting issues. To address the over-fitting and under-fitting,
the following rules are considered:

1. The hidden layers’ neuron number should amount to less than those in the input and
output layers combined.
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2. Two-thirds of the input and the output layer neurons should make up the number of
hidden neurons.

3. In a fault tree, the amount of the first hidden layer neuron and intermediate events
connected to the basic events might be equal.

A neural network with two hidden layers can accurately approximate certain boundaries
using linear and non-linear transfer functions, providing a close approximation of any
smooth projection. However, due to the high complexity and lengthy training time, neural
networks with three or more hidden layers are rarely used. Instead, this work proposes a
mapping technique using several FT layers between the BEs and the TE. In Figs. 4.2, 4.3,
and 4.4, there are 18 BEs in the input level, and the intermediate event is connected to
the first input BEs and successive layers of intermediate events.

Figure 4.24: Mapping FT into ANN, the network has one input layer (BEs), three hidden
layers (Intermediate events), and one output layer (TE).

As depicted in Fig. 4.24, each layer’s hidden nodes equals the intermediate events (6,
3, and 2 in the first, second, and third hidden layers, respectively). In this work, the
number of hidden layers is set to match the number of intermediate event layers in the FT
structure, resulting in three hidden layers in the proposed model. Notably, the last layer
of the proposed model corresponds to the output of the deep learning algorithm, which is
the top event in the FT analysis.

The present description outlines a modelling procedure to evaluate the likelihood of failure
of ICS in CAREM-25 under SBO accident scenario. Specifically, the process generates 500
randomized failure probabilities for each of the 18 BEs, resulting in 9,000 probabilities.
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Following this, the failure probabilities of both TE and intermediate events are calculated
for each of the 18 BEs. However, it is essential to emphasize that the accuracy of these
calculations depends on the quality of the underlying data that informed the generation of
the failure probabilities and the assumptions made in the modelling process. As such, the
results of this type of analysis should be interpreted with caution, and further validation
against empirical data is necessary once such data become available.

Table 4.14: The random probability of BEs and their corresponding TE

BE1 BE2 BE3 · · · BE499 BE500 TE

1 7.23× 10−07 2.38× 10−09 3.79× 10−05 · · · 6.69× 10−06 7.79× 10−07 1.011× 10−3

2 7.95× 10−07 2.02× 10−09 3.18× 10−05 · · · 6.88× 10−06 7.23× 10−07 1.57× 10−4

3 2.25× 10−07 2.86× 10−09 3.13× 10−05 · · · 7.19× 10−06 7.13× 10−07 1.51× 10−4

... · · · · · · · · · · · · · · · · · · · · ·

499 1.63× 10−06 2.66× 10−09 3.23× 10−05 · · · 7.18× 10−06 7.22× 10−07 1.48× 10−4

500 2.03× 10−07 2.03× 10−09 3.43× 10−05 · · · 7.93× 10−06 7.88× 10−07 1.15× 10−4

After selecting the appropriate training and testing data for the deep learning algorithm
and collecting data from the Simulink FT, the next step is to train the deep neural network
model to predict the TE based on the BEs. This involves dividing the failure dataset into
three parts: training, validation, and test

• Training 80%; is used to train the DL model

• Validation 10%; to evaluate the model’s performance during training and to tune the
hyperparameters

• Test 10%. Assessing the final performance of the trained model

This partitioning of the dataset is a common approach in deep learning modelling and is
necessary to prevent overfitting and to ensure that the trained model can generalize well
to new data.

After constructing and programming a deep learning model using Python 3.4, it must be
trained to establish the mathematical relationship between the input variables (BEs) and
the output variable (TE). This is achieved by training the model with a large dataset
comprising several hundred data sets for each of the 18 BEs datasets in this instance.
The training process involves adjusting the model’s parameters until it can accurately
predict the output variable for a given set of input variables. This training process enables
the model to memorize the mathematical connection between the independent variables
(BEs) and the dependent variable (TE). This is accomplished by optimizing the model’s
parameters to minimize the difference between the predicted and actual output values.
Subsequently, once the model has undergone training, it can be evaluated to assess its
performance on new and previously unseen data. Before deploying the model in real-world
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scenarios or utilizing it for scientific investigations, this step is critical. The model’s efficacy
can be determined by analyzing its predictive accuracy and other relevant performance
metrics, essential in evaluating its suitability for specific applications.

The Mean Square Error (MSE) is a widely adopted evaluation metric in the context of
machine learning models. The mean square error measures the average error between the
predicted and actual values. It is calculated as the sum of squared discrepancies between
the predicted value yi and the corresponding actual value xi. It is important to note
that the MSE values are dimensionless and, thus, not associated with any specific unit of
measurement. In the analysis of Fig. 4.25, it can be observed that the MSE of a model
decreased from an initial value of 0.2 to nearly 9.2×10−9 after 1532 epochs. This reduction
in MSE indicates an improvement in the model’s performance, suggesting that the model’s
predictions have become more accurate. Low MSE values are preferred, as they imply
the better performance of the machine learning model. The MSE is a valuable metric for
evaluating the accuracy of models in various contexts, especially in regression problems,
where the objective is to predict continuous target variables.

MSE =
1

n

n∑
i=1︸ ︷︷ ︸

test set

(Predictedi − Actuali)
2 (4.32)

Figure 4.25: Evolution of mean square error during model training

The Root Mean Square Error (RMSE) is a commonly used performance metric in machine
learning models, calculated as the square root of the MSE. The root mean square error
measures the average magnitude of the errors between the predicted and actual values,
expressed in the same units as the target variable. In the analysis of Fig. 4.26, it can be
observed that the RMSE error is plotted against the number of epochs, and it gradually
decreases as the model is trained. A low RMSE value is typically preferred, indicating that
the model’s predictions are more accurate.

RMSE =

√√√√ 1

n

n∑
i=1

(Predictedi − Actuali
σi

)2
(4.33)
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Figure 4.26: Evolution of root mean square error during model training

The loss function is an important component of machine learning models and is used to
determine the accuracy of the model’s predictions. The loss is calculated for both the
training (80%) and validation sets (10%), and its interpretation is dependent on how well
the model performs in each of these sets (Fig. 4.27). The loss can be viewed as the total
of the mistakes produced by the model for each example in the training or validation sets.
During the optimization process, each iteration results in a loss value that reflects how well
or poorly the model performs. Optimization aims to minimize the loss function, leading
to better performance and greater model accuracy.

Figure 4.27: Loss function

The loss function plot in Fig. 4.27 offers valuable insights into the model’s performance
over time. It shows the loss function’s evolution for the training and validation datasets
over 1532 epochs. The plot demonstrates that the model’s performance is almost identical
on both datasets, with the training and validation loss decreasing at a comparable rate.
This suggests the model is not overfitting the training data and can generalize well to new
data. However, if the fitted plots of the training and validation losses begin to diverge
regularly, it could indicate that the model is overfitting the training data. In such cases,
it may be necessary to halt the model’s training at an earlier epoch to prevent it from
becoming too specialized to the training data, which can cause it to lose its ability to
generalize to new data.
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Figure 4.28: Expected values and predicted values

Figure 4.28 provides a visual representation of the comparison between the series of ex-
pected values and the predicted values generated by the model. The plot shows that the
forecast is a good fit based on the given data, with the model demonstrating the skill to
make sensible predictions around the expected values. While some fluctuations are ob-
served in the plot, the chosen deep-learning algorithm is a suitable model for the given
data. The model accurately depicts trends and fluctuations, despite failing to capture
some of the individual data points.

Table 4.15: Comparison between results of ANN-based FT and conventional FT

Fault Tree Results [42] Deep learning Results

BEs Data-Set 1 0.00010 0.000734

BEs Data-Set 16 0.00009 0.0007342

BEs Data-Set 422 0.00010 0.0007341

A comparative analysis of the results obtained from both the deep learning and fault tree
models was conducted, and the findings are presented in Table 4.15. The results indicate
that the two models produced output values near one another regarding accuracy and
precision. The negligible disparity between the top events obtained from the BEs and the
values of the top events acquired from the BEs further highlights the similarity between
the models.

The table shown in 4.15 compares the results obtained using conventional FTA and those
obtained using a deep neural network approach for three different data sets (BEs Data-
Set 1, BEs Data-Set 16, and BEs Data-Set 422). The table shows that the deep learning
approach produces slightly higher results for each of the three data sets, with an average
value of 0.000734 compared to the conventional FT approach, which has an average value
of 0.000096. It is important to note that the results presented in the table are only for the
specific data sets used in the study and may not necessarily represent the performance of the
deep learning approach or the conventional FT approach in other contexts or with different
data sets. Additionally, the table provides only limited information on the methods used to
generate the results or the specific assumptions and limitations of the approaches. Further
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analysis and discussion of the results and methods used would be necessary for a more
complete understanding of the comparison between the two approaches.

4.5 Conclusion of Chapter 4

In this chapter, fuzzy logic and ANN have been employed to improve traditional risk
assessment methods. Fuzzy PSA and fuzzy FMEA have been developed and utilized to
evaluate the safety of ICS in the CAREM-25 type concept. Unavailability and inaccuracy
in failure rates are modelled using fuzzy logic; to do this, upper-bound and lower-bound are
considered to model uncertainty around each failure rate in the shape of TFN. The fuzzy
fault tree analysis was conducted to calculate the fuzzy failure probability of an ICS during
an SBO after 100 hours. Then FFT was constructed using fuzzy failure rates, dynamic
fuzzy operators and Priority-AND and Priority-OR gates in Simulink. The top event failure
probability at time=0 was found to be consistent with other research results, indicating
that the model is valid. However, the results at other times during SBO accidents showed
that dynamic gates are essential for modelling the degradation and aging effects of systems
and components over time. This suggests dynamic gates and implementing fuzzy failure
rates in the fuzzy fault tree can provide more accurate results.

The results obtained from FFTA were then used to develop fuzzy FMEA and FETA. A
fuzzy event tree analysis was conducted under an SBO-initiating event. The fuzzy failure
and success probability of mitigating systems, namely the ICS and ADS, were evaluated
for two paths of accident scenarios to estimate the CDF of the system’s performance.
The results showed that the probability of CDF under SBO scenarios increased as time
passed if layers of safety systems failed to mitigate the accident. This indicates that the
longer the SBO event lasts, the greater the likelihood of a failure occurring in the ICS and
ADS systems. The proposed FETA is feasible and applicable for quantifying CDF based
on fuzzy probability obtained from FFTA to complement the one based on probability
distributions.

A fuzzy FMEA is linked to the FFTA to analyze ICS failure modes and estimate the fuzzy
RPN for each component using the FIS toolbox in MATLAB. The probability of occurrence
is directly obtained from the FFTA, which connects the two models to calculate fuzzy RPN
based on the fuzzy representation of occurrence, severity, and detectability. Fuzzy RPN
is compared with conventional RPN, showing that the Fuzzy RPN value may be lower
than the RPN value due to how the fuzzy logic is applied to the RPN calculation. This
could happen if the membership functions used in the fuzzy logic calculation result in
a lower overall score than the traditional RPN calculation. The proposed fuzzy FMEA
technique provides a more accurate and realistic representation of PRHRS failures where
uncertainties and input variability are prevalent.

Alternatively, by mapping FT into ANNs, the proposed approach overcomes the limitations
of traditional FT analysis. Specifically, the study maps the FT into a deep neural network
with three hidden layers to predict the probabilities of TEs associated with the failure of
the PRHRS. The proposed technique addresses traditional FT analysis’s complexity and
time-consuming nature, especially when dealing with incomplete or missing data. Using
500 sets of BEs as inputs, the model can effectively predict and recognize the relationship
between inputs and outputs, regardless of the number of BEs, logical gates, or system
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complexity. The results demonstrate that the proposed approach is accurate and fast
enough to meet the needs of practical applications.

Despite their advantages, challenges still need to be addressed in these approaches, includ-
ing improving the methods for incorporating expert judgment, handling imprecise data,
and addressing uncertainties in the overall risk assessment process. Future research should
address these challenges to improve the effectiveness and accuracy of risk assessments for
safety-critical systems.
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Chapter 5

Conclusions

5.1 Conclusions

In recent years, the development of SMRs has gained significant attention due to their po-
tential benefits, such as flexibility, cost-effectiveness, and enhanced safety features. How-
ever, the unique design and new technologies of SMRs present challenges for traditional risk
and safety analysis methods. This thesis aims to evaluate various risk analysis methods,
including PSA and FMEA, and compare them with innovative approaches, such as fuzzy
logic and ANN, in the context of SMRs, more specifically, the passive safety system of the
CAREM-25 reactor. The interactions between different systems and components in SMRs
may be more complex and harder to model than in traditional NPPs due to their smaller
size of them. Therefore, advanced modelling and simulation techniques may be required
to evaluate the safety of SMRs effectively.

Moreover, the limited OPEX with SMRs can be seen as a source of challenges in terms of
accurately estimating the likelihood of different accident scenarios, lack of operating data
and failure rates of systems and components. This uncertainty in input data can lead to
high variability in the results of traditional PSA and FMEA. Thus, there is a need for
innovative methods that can handle uncertainty and improve the accuracy of risk analysis
for SMRs. This thesis explores using fuzzy logic and ANN concepts in innovative risk and
safety analysis methods, such as fuzzy PSA and ANN-based fault trees, to address the
limitations of traditional risk analysis methods. Fuzzy logic provides a flexible framework
for dealing with uncertainties in input data and can be used to model complex relationships
between input and output parameters. ANN, on the other hand, can be trained to recognize
patterns in data and make accurate predictions.

Probabilistic safety assessment is a widely used methodology for evaluating the safety of
nuclear power plants. However, traditional PSA is limited by the assumption of crisp
values for the failure rates of components and systems. In reality, the failure rates are
associated with uncertainties and imprecisions due to manufacturing defects, aging, and
human error. These Uncertainties in failure rates can significantly affect the accuracy
of traditional PSA results and cause the rates not to remain constant over time. To
overcome these limitations, we proposed a fuzzy Probabilistic Safety Assessment (Fuzzy
PSA) technique that considers fuzzy numbers instead of crisp values for failure rates. The
proposed technique combines fuzzy set theory and probability theory to represent and
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propagate uncertainties and imprecisions in the failure rates of components and systems.
Using triangular fuzzy numbers in FPSA enables a more accurate representation of the
uncertainties and imprecisions associated with failure rates.

We conducted a case study of the proposed technique on the PRHRS of the CAREM-25
type reactor. The case study results demonstrated that using fuzzy numbers in PSA im-
proved the accuracy of the analysis by providing a more nuanced understanding of the
system’s overall failure risk. The results also showed that FPSA captures uncertainties
and imprecisions in failure rates more effectively than traditional PSA. To further elabo-
rate, using FFTA in combination with FETA is a novel risk analysis approach that can
significantly consider the uncertainty and vagueness in input data to improve the accuracy
of safety assessments. The fuzzy fault tree analysis methodology is designed to consider
the inherent fuzziness in failure rates of both BEs and intermediate events in ICS failure.
These BEs and intermediate events fuzzy failure rates are connected to calculate the ICS
failure as TE using fuzzy operators and Pandora gates (priority-AND and priority-OR
gates). This allows for a more nuanced understanding of the overall fuzzy failure risk of
the system, as it enables the estimation of the TE failure probability with greater accuracy
than traditional methods.

The coupling of FFTA with FETA requires the propagation of uncertainties modelled
in FTA into the quantification of CDF under an SBO accident scenario. The primary
motivation behind this coupling is to account for uncertainties that arise in FTA when
considering the lines of mitigating systems such as the ICS and the ADS. Fuzzy event
tree analysis is developed to address this issue, and fuzzy CDF is calculated based on
the failure or success of the ICS and ADS for different paths. This approach enables a
more comprehensive assessment of the risks associated with an SBO accident scenario and
provides a more accurate understanding of the overall failure risk of the system.

In order to identify the weaknesses of the PRHRS system and different failure modes and
effects of ICS failure, The linkage between an FFTA and a fuzzy-logic-based FMEA is
proposed in this work. In a fuzzy FMEA, the imprecise or uncertain information about
severity, occurrence, and detectability is represented using fuzzy sets, which are then used
to calculate the fuzzy RPN for each failure mode. In this thesis, the fuzzy probability
of occurrence is taken from the FTA into the fuzzy FMEA; instead of using crisp values
for severity and detectability, we convert the crisp values into linguistic values to consider
uncertainty around certain numbers. Using fuzzy severity, occurrence, and detectability
in analyzing ICS’ failure risks offers several benefits. Firstly, ICS systems’ behaviour and
failure modes are inherently uncertain and imprecise, making obtaining precise estimates
of failure probabilities and severity challenging. By using fuzzy numbers, the level of
uncertainty and imprecision associated with the system can be captured more accurately,
leading to a more realistic and accurate representation of the potential failure modes.

In addition to the fuzzy probabilistic safety assessment approach, this thesis also proposes
mapping fault trees into a deep learning framework to overcome the limitations of tradi-
tional FT analysis. Traditional FT analysis is time-consuming and complex; dealing with
incomplete or missing data can be challenging. By leveraging the capabilities of ANNs, this
mapping technique can provide a more effective tool for fault prediction and consequence
analysis. Isolation condenser system failure is constructed in FT and then mapped into
the deep neural network of each FT component. The results indicate that the two models
produced output values near one another regarding accuracy and precision. The negligible
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disparity between the top events obtained from the BEs and the values of the top events
acquired from the BEs further highlights the similarity between the models.

In summary, In this thesis, the main contributions consist of proposing a fuzzy PSA ap-
proach (based on the fuzzy logic, fuzzy operators and Pandora gates) that can improve the
accuracy of traditional PSA by considering fuzzy numbers instead of crisp values for failure
rates, replacing static Boolean gates with dynamics Prority-AND and Prority-OR gates
and dynamic fuzzy operators. We demonstrate the applicability of this approach in a case
study of CAREM-25’s PRHRS using FFTA, FETA, and fuzzy FMEA. The results show
that the proposed FPSA approach provides a more accurate understanding of the overall
failure risk of ICS, especially under uncertainty and imprecision. Moreover, we propose
a mapping technique to adopt FT into a deep learning framework to overcome the limi-
tations of traditional FT analysis, such as the complexity and time-consuming nature of
the analysis and the challenge of dealing with incomplete or missing data. Although these
approaches have several advantages, some challenges still need to be addressed, including
improving the methods for incorporating expert judgment, handling imprecise data, and
addressing uncertainties in the overall risk assessment process.

Our research provides new insights into how fuzzy set theory and probability theory can
be combined to improve safety-critical system risk assessment. Future research should
address the challenges to enhance these approaches’ effectiveness and accuracy. Despite this
approach’s advantages, challenges still need to be addressed, such as improving methods
for incorporating expert judgment, handling imprecise data, and addressing uncertainties
in the overall risk assessment process. However, by addressing these challenges, future
research could significantly improve the effectiveness and accuracy of risk assessments for
safety-critical systems.
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5.2 Future Work

In future research, with respect to fuzzy PSA, incorporating expert opinion in calculat-
ing failure rates for SMRs could be a promising approach, given the comparatively lower
operational expenditure of SMRs. This would enable the utilization of specialized data
pertinent to specific SMR designs. Such an approach could significantly enhance the ac-
curacy and reliability of the PSA outcomes. In addition, Neuro-fuzzy systems, as a future
work possibility, combine fuzzy logic with neural networks. Neuro-fuzzy systems use neural
networks to learn the relationships between inputs and outputs in a fuzzy logic system and
to optimize the fuzzy logic rules for a given task. This makes neuro-fuzzy systems more
flexible and adaptable than traditional fuzzy logic systems. PSA often uses them for data
analysis, uncertainty modelling, decision-making, and fault diagnosis.

The current work utilized standard triangular fuzzy numbers to express the imprecise
likelihood of different risk events occurring and their impact. Further research could explore
the use of alternative membership function shapes to evaluate the outcomes relative to
those obtained in this study. In addition, collecting data on the root causes of critical risk
events could create a smart system that automatically generates fault trees.

In FMEA, the risk priority number is typically determined by multiplying the assigned
scores for the probability of occurrence, severity, and detectability. By incorporating fuzzy
logic into the FMEA framework, it becomes possible to enhance understanding of the com-
plex interplay between these variables by assigning more nuanced features to the severity,
occurrence, and detectability assessments. For example, rather than simply assigning a
single numerical value to the severity assessment, a fuzzy FMEA approach allows for con-
sidering distinct severities associated with different elements, such as assets, people, and
the environment. These severities can then be combined to provide a more comprehensive
measure of overall severity within the model.

In order to improve the accuracy and efficacy of mapping FT into the ANN, further research
could explore the integration of real-time RELAP and MELCOR simulations to generate
relevant accident scenarios and extract data for training the ANN model. This would enable
the model to more effectively identify and analyze potential system failures, ultimately
improving safety and reliability in SMRs.
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