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Abstract

This thesis examines a framework for solving optimization problems involving structural

similarity index measure Mean.

Image fusion involves combining multiple images to preserve their most desirable char-

acteristics. The objective is to create a single enhanced image that can be utilized for

various applications, including human visual perception, object detection, and target

recognition. A general framework is introduced for the formulation of image fusion,

which incorporates the SSIM, one of the most effective measures of visual proximity that

is consistent with the human visual system.

The concept of image fusion is revisited, its importance is emphasized, and an overview

of methods commonly used for image fusion is provided. An alternative expression of

SSIM using Mean values and vector norms is proposed, along with the calculation of its

derivative. Next, the SSIM Mean is used to formulate image fusion as data fidelity of an

optimization problem. Gradient-based methods are applied to solve it.

A comparison is conducted between the proposed method and the method presented by

Brunet in his Ph.D. thesis at UWaterloo. The experiment use test images in MATLAB.

The evaluation metrics MSE, PSNR, and SSIM show expected results in assessing the

experimental outcomes. The significant advantage of the proposed formulation is its

flexibility in accommodating different degradation operators and regularization terms.

Keywords: Structural Similarity Index Measure, Fusion Image, Mathematical Imaging,

Numerical Optimization.
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Chapter 1

Introduction

1.1 Overview

Due to hardware device and optical imaging limitations, images captured by a single sen-

sor or using a single shooting setting cannot fully depict the imaging scene. For instance,

reflected lighting with limited brightness range and predefined depth of field represents

incomplete information. Naturally, the fusion of images is able to combine meaningful

information in different images to create a single, enhanced image that contains richer

information and can be used in future applications [86]. The aim of image fusion is to

extract information from input images and combine information to create a fused image

that provides a better description of the scene for both human and machine perception

compared to each individual input image. [39].

Image fusion is vital for image-based applications such as computer vision, robotics, re-

mote sensing, and biomedical imaging. [52,64,76]. In photography, cameras are not able

to capture an image with all focused objects due to limited depth of field. Objects that

lie in the depth-of-field range are typically sharp in a camera-captured image, while the

remaining objects tend to be blurred. In order to address this issue, multi-focus image

fusion algorithms are proposed, which combine additional information from multiple im-

1



Chapter 1. Introduction 2

ages of a scene in order to create a fused image with an extended depth of field [29].

Medical image fusion involves a wide array of techniques that encompass both image

fusion and general information fusion. These techniques are utilized to tackle medi-

cal issues determined by images of the human body, organs, and cells. As a result of

the development of imaging technology, there has been an increasing interest in the

application of these technologies in medical diagnostics, analyses, and historical docu-

mentation. Computer-aided imaging techniques facilitate the quantitative evaluation of

images, thereby enhancing the effectiveness of medical practitioners in making unbiased

and objective decisions within a short time frame. Furthermore, the use of multi-sensor

and multi-source image fusion techniques expands the range of features used in medical

analysis applications. This often results in robust information processing that is able to

unveil hidden information that may not be visible to the human eye. The additional

information derived from the fused images can be effectively utilized to enhance the pre-

cision of abnormality localization [31].

Visible images typically exhibit finer details compared to their corresponding infrared

images. Infrared images often depict objects with higher contrast and intensity values,

particularly when those objects have higher temperatures than their surroundings (ther-

mal information captured in infrared images tends to manifest as coarser structures or

features). Furthermore, infrared and visible images of the same scene can exhibit vary-

ing brightness responses and contrast values, resulting in substantial visual disparities.

These disparities pose challenges for the observation and tracking of focal targets across

both image types. However, infrared-visible image fusion technology offers a promising

algorithmic approach to alleviate or compensate for this limitation. The fused image

contains both infrared and visible information [85]. These applications emphasize the

importance of image fusion techniques.

Methods of combining images can be divided into three categories: pixel-level, feature-

level, and decision-level. Pixel-level image fusion involves combining the information
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directly from the source images or from their multi-resolution transforms in order to pro-

duce a more informative final image. A feature-level fusion attempts to extract salient

characteristics from the source images, such as shape, length, edges, segments, and di-

rections. Feature extraction from input images is combined to create more meaningful

features that provide a more comprehensive and descriptive image. A decision-level fu-

sion represents a high level of fusion that provides an indication of the actual target. An

ultimate fusion decision is produced by joining the results from several algorithms [70].

In this thesis, the focus is on pixel-level fusion techniques.

1.2 Problem Definition and Challenges

Most images have unilateral or limited information content. For example, a single sensor

alone is often unable to provide a good-quality image in real-world applications where

multiple optical sensors are used to acquire images. The same condition holds true in

many modern technology fields, such as medicine. The term “good quality” itself refers to

a wide range of aspects of an image scene, including illumination, sharpness, noise, and

contrast [58]. There are also different types of multimodal images that convey different

types of information. For instance, a variety of sensor tools are available, including op-

tical cameras, millimeter wave cameras, infrared (IR) and near-infrared (NIR), X-rays,

radar, and magnetic resonance imaging (MRI), all of which tend to emphasize a dif-

ferent aspect of a captured image. Besides sensor modalities, many other factors can

also affect an image such as the occlusion of objects of interest due to smoke, fog, and

other unwanted objects, changing illumination in scenery for photography applications

(e.g., daylight exposure at different times of day), and adjustable parameters within the

sensors themselves, such as focal length [58]. Notwithstanding the above, the use of mul-

tiple sensors is becoming increasingly popular for improving the capabilities of intelligent

machines and systems. This has led to an intense focus of research and development on
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multisensor fusion in recent years [42,44,48,63,75,87].

The term multisensor fusion refers to the synergistic combination of different sources of

sensory information into one representational format. The information to be combined

may come from multiple sensory devices monitored over a specified time period, or from

a single sensory device monitored over a longer period of time [49].

Using complementary information from disparate sensors with different modalities can

enhance the performance of visualization, detection, and classification systems. Data

from multiple sensors often provide complementary information about a scene or object,

and thus image fusion is an effective method for comparing and analyzing these data.

Multisensor image fusion offers several benefits, including wider spatial and temporal

coverage, an extended range of operations, decreased uncertainty, increased reliability,

and improved robustness [10].

Image fusion has gained significant popularity and found extensive applications in di-

verse fields, including medical diagnosis, surveillance, and photography. However, there

are still various issues and challenges associated with image fusion in these domains [43].

The medical image fusion field presents several significant challenges. The first challenge

is the absence of clinical problem-oriented fusion methods. The primary goal of medical

image fusion is to enhance clinical outcomes. However, developing methods that specif-

ically address a particular clinical problem remains a complex and difficult task, as it

requires a combination of medical domain expertise and algorithmic insights. Another

major challenge in medical image fusion is determining how to objectively assess fusion

performance. The surveillance image fusion field encounters several major challenges,

including computing efficiency and imperfect environmental conditions. In surveillance

applications, effective image fusion algorithms should efficiently combine information

from the original images to create a clear fused image. Moreover, surveillance scenarios

often require continuous real-time monitoring. Therefore, an important aspect of surveil-

lance applications is enhancing the speed of image fusion algorithms. Another significant
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problem in the surveillance image fusion field is the presence of imperfect environmental

conditions during image acquisition. For example, the source images may suffer from

severe noise, underexposure caused by adverse weather conditions, or insufficient illumi-

nation. Developing image fusion methods that are robust to such imperfect conditions

constitutes a crucial research area in this field. In the field of photography, image fu-

sion faces significant challenges, particularly concerning the influence of moving targets

and applications in consumer electronics. In photography applications, multi-focus and

multi-exposure images are typically captured at different times. As a result, moving ob-

jects may appear at varying locations during the image capturing process. This presents

a challenge for image fusion since moving objects can create ghost artifacts in the fused

image. Moreover, in the realm of photography, the imaging process often involves cap-

turing multiple shots with different camera settings, which can be time-consuming.

Image fusion is sometimes an introduction to another task. In this case, the effectiveness

of fusion algorithms can be measured by the improvement in the following tasks. As an

example, the number of correct classifications is the common measure of the evaluation of

classification systems. For the purpose of this system evaluation, it is necessary to know

the "true" correct classifications. However, the ground-truth data might not be available

in experimental situations. It is crucial for a robust fusion algorithm to be guided by

rigorous principles that ensure its capability to preserve the right amount of information

from all images. Also, the human perception of the combined image is critical to many

applications, which is why many fusion results are evaluated subjectively [10].

The Structural Similarity Index Measure (SSIM), originally proposed by Wang et al.

[77, 88] can be considered a suitable model for the Human Visual System (HVS). The

SSIM index assumes that the HVS has evolved to perceive visual distortions as changes

in structural information. In practice, the SSIM is calculated locally. An 8 × 8 window

moves, a single pixel at a time, across an image. A local SSIM score is calculated at

each step. According to [81] the Mean SSIM (MSSIM) is the arithmetic average of all
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local SSIM scores for an entire image. The SSIM has been widely accepted as one of the

suitable measures of visual quality and, perceptual proximity between images based on

subjective quality assessments involving large databases. With regard to the exceptional

characteristics of the SSIM mentioned above, this thesis proposes using it to formulate

image fusion as an inverse problem. The SSIM Mean definition, provided by Brunet

in his thesis [5], is used as the data fidelity term in the inverse problem formulation.

Gradient-based methods are used to solve this inverse problem numerically. However,

it is crucial to acknowledge that this study may possess certain limitations. The selec-

tion of the starting point and parameters for the gradient-based methods significantly

influence the numerical solution process. Additionally, a primary challenge in this re-

search refers to calculating the derivative of the SSIM Mean, as the problem is solved

using gradient-based methods. It should be noted that Mean SSIM and SSIM Mean are

distinct measures. Mean SSIM refers to the averaging of SSIM values calculated over a

bunch of local windows or patches. On the other hand, SSIM Mean introduces a novel

approach to averaging by using SSIM.

In this thesis, SSIM’s potential is demonstrated as a perceptual quality measure that will

be used to optimize primary image fusion algorithms. A framework for combining images

is presented based on optimizing an objective quality measure formed using the SSIM.

1.3 Contribution

A general mathematical and computational framework is provided for image fusion, uti-

lizing SSIM Mean as the “data fitting” term in the objective function of the inverse

problem.

It is common to formulate the recovery of images as an inverse problem with a linear

combination of data consistency error and regularization penalty as a criterion. The

regularization function penalizes images that do not exhibit desired properties (such as
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piecewise smoothness and sparsity). Here the basic idea is that replacing the widely used

Euclidean distance, which is known as a poor measure of visual quality [59, 60, 77, 88],

with the SSIM, which is considered to be one of the best measures of visual proximity

would improve the quality of visual experience. To the best of our knowledge, none of

the previous works have attempted to solve it in this form [60].

The structural similarity index measure is defined as a function of mean, variance, and

covariance. Another expression of SSIM is subsequently introduced, which employs the

mean and vector norm function instead of mean, variance, and covariance. This alterna-

tive expression offers easier mathematical calculations and is applied to the SSIM Mean

definition provided by Brunet in his work [5]. However, it should be noted that our

approach is different from the appraoch in [5]. SSIM Mean is a weighted average scheme

that aims to find an ideal image/vector that maximizes the sum of the SSIM values of

a set of input images/vectors. The SSIM Mean would be the suitable choice for fusion

images due to SSIM’s characteristics since fusion image methods are intended to create

a fused image that combines information from multiple input images, resulting in an

improved representation of the scene compared to any of the individual images alone.

The following problem is intended to be solved: Given {y1,y2, . . . ,yn} a set of n vectors

with the size of n×1 and {p1,p2, . . . ,pn} a set of associated weights, {H1,H2, . . . ,Hn} a

set of degradation operators with the size of n×m , g(x) is a regularization term, and λ is

its corresponding regularization parameter, find x with the size of m×1 which maximizes
n∑

i=1

pi SSIM(Hix,yi) + λg(x). (1.1)

The above problem is solved numerically and in an iterative manner in this thesis. As

gradient-based methods are employed to solve this problem, the derivative of SSIM-Mean

is computed. It should be noted that this approach differs from Brunet’s approach.

While he calculates only the SSIM Mean for a set of vectors and obtains a closed-form

solution without flexibility for incorporating regularization, the major advantage of the

formulation 1.1 is its flexibility, i.e. the incorporation of additional terms as well as the
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use of different types of regularization terms. Furthermore, the equation 1.1 provides

a formulation that can be used to solve a wide range of inverse problems due to its

flexibility to apply any arbitrary linear degradation operators Hi, although note that

Brunet’s formulation only considers identity matrix as Hi.

SSIM Mean derivatives are mostly theoretical and complementary to Brunet’s approach.

It is shown that the SIMM Mean for a set of points and vectors can be computed using

numerical methods and obtain the same result as Brunet’s.

The piecewise method is also discussed, which involves the use of MSSIM instead of

SSIM. The statistics of images vary widely across their spatial domain and it leads to

the MSSIM, which is an averaging of local SSIM measurements, being used to compute

the similarity between two images [61,88].

Assuming the same variable and parameter definitions as equation 1.1, the problem is to

find x which maximizes
n∑

i==1

pi MSSIM(Hix,yi) + λg(x). (1.2)

To solve it numerically using a gradient-based method, the derivative of MSSIM, as

provided in [59], is applied in the numerical method.

According to our knowledge, all of the previous works for solving 1.2 are performed by

assumption Hi = I, where I is the identity matrix.

1.4 Thesis Outline

This thesis seeks to provide a framework for fused images based on optimization methods

by incorporating a perceptual criterion, SSIM index. In order to improve image processing

algorithms, the perceptual criterion must be taken into consideration. Indeed, algorithms

have to be optimized according to a perceptually relevant model in order to obtain better

image quality.

In this thesis, the chapters are divided as follows.
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• Chapter 2 introduces the necessary definitions and concepts related to inverse prob-

lems, regularization methods, image quality, and the notion of SSIM. As part of

this Chapter, As part of this chapter, SSIM is presented as a function of mean and

vector norm.

• Chapter 3 presents existing approaches for visualization and understanding of image

fusion approaches.

• In Chapter 4, The proposed formulation is presented for image fusion as an inverse

problem, utilizing SSIM Mean as the data fidelity term. The problem is solved

numerically by the gradient-based method.

• Chapter 5 presents the results of the proposed framework, including a comparison

of the SSIM Mean between the proposed method and Brunet’s work [5]. The results

of the proposed method on images are examined quantitatively and qualitatively

using a comprehensive set of examples.

• In Chapter 6, The main contributions of the thesis research are discussed, along

with some limitations. Furthermore, suggestions for interesting future directions of

the thesis research are provided.

1.5 Software & Source Code

Matlab and Python are used to implement the proposed models. Python is initially used

for implementing the proposed model. However, since Brunet’s code provided in his thesis

is written in Matlab, it is used for later experiments in this study. Python programming

language is an interpreted, general-purpose, high-level language. Its design philosophy

emphasizes code readability with the use of significant indentation. It is designed to be

an easy-to-read language. The following Python packages were used for this thesis.
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• NumPy is a Python package created for the purpose of scientific computing in

Python. The program is capable of handling large, multi-dimensional arrays and

matrices, along with several mathematical operations and functions that can be

applied to these arrays. https://numpy.org/

• Scikit-image, or skimage, is an open source Python package designed for image

preprocessing, and computer vision. https://scikit-image.org/

The MATLAB language is a high-performance language used for technical comput-

ing. This program integrates computation, visualization, and programming in a familiar

mathematical notation that makes it easy for users to understand.

Source Code

You can access the Matlab and Python implementations of our models, evaluation met-

rics, and visualization of the explanations at the following link.

https://github.com/fatemehhirbodvash/SSIM-Mean-.git

https://github.com/fatemehhirbodvash/SSIM-Mean-.git


Chapter 2

Background

2.1 Imaging and Inverse Problems

2.1.1 General Model of an Inverse Problem

The features of most interest in the field of applied sciences cannot be observed directly,

but have to be inferred from other observable quantities. In the simplest case, which is

valid in a wide range of situations, there is a linear relationship between the features of

interest and the derived quantities. Assuming that the object is modeled by a function

x and the observed quantities or images by another function h, we can formulate the

problem of inferring x from h as an inverse problem, which consists of solving an equation,

H(x) = h, (2.1)

where H is a (typically linear) operator.

In the real world, the observations or data we model with u are not exactly equal to the

image H(x) = h, but rather to a distortion of h. The distortion is commonly modeled

using an additive noise or error term n, i.e.

u = h+ n = H(x) + n. (2.2)

11
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Figure 2.1: Inverse problem [16].

Finally, the inverse problem can be summarized in the following statement: Using the

observations u, find an approximation of the object x denoted by x̃ (see Figure 2.1) [16].

2.1.2 Ill-Posed Problems

From the point of view of modern mathematics, all problems can be classified as being

either well-posed or ill-posed. Consider the operator equation

H(x) + n = u, x ∈ X , u ∈ U (2.3)

where X and U are metric spaces [16]. According to Jacques Hadamard [25], the problem

2.3 is said to be well-posed if the following two conditions hold [72],

1. For each u ∈ U the equation 2.3 has a unique solution;

2. The solution of 2.3 is stable under perturbation of the righthand side of this equa-

tion, i.e. the operator H−1 is defined on all of U and is continuous.

Many image processing problems are ill-posed in the sense of Hadamard, such as denois-

ing, deblurring, inpainting, and so on [21].
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2.2 Noise Model

Noise is a random signal. It destroys most of the image information. Digital images can

be distorted by different types of noise including Gaussian noise, Poisson noise, Speckle

noise, Salt and Pepper noise, and many other types of noise. These noises may be

derived from a noise source present in the vicinity of image capturing devices, faulty

memory location, or may be introduced due to imperfection or inaccuracy in image

capturing devices such as cameras, misaligned lenses, weak focal length, scattering, and

other adverse conditions present in the atmosphere [4].

2.3 Probability Functions for Discrete Random Vari-

ables

The various noises considered here are random in nature. Their exact values are random

variables whose values are best described using probabilistic notions. Since their exact

values are random variables, probabilistic notions are the best means of describing their

exact values.

Let Z denote a random variable with values z and range R where is a real number. A

probability function, p(z), lists (literally or functionally) the probabilities of all possible

values of z, and satisfies the following conditions

1)p(z) ≥ 0, for all z ∈ R

2)
∑
z∈Z

p(z) = 1
(2.4)

where p(z) means P(Z = z). P(Z = z) is the probability that random variable Z has the

specific value z from R which is real number [22]. In the case of continuous random

variables, P(Z = z) is known as a Probability Density Function (PDF). In the context of

discrete quantities that approximate continuous quantities (for example, image intensity),
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we typically use the term PDF to emphasize that the underlying random variables are

continuous [22].

2.3.1 Gaussian Noise

Many natural sources of Gaussian noise exist, such as the thermal vibrations of atoms in

an antenna [13]. Additive Gaussian noise models are widely used in practice due to their

mathematical tractability in both the spatial and frequency domains.

The probability density function (PDF) of a Gaussian random variable, z defines as

p(z) =
1√
2πσ

e−
(z−z̄)2

2σ2 (2.5)

where z represents intensity, z̄ is the mean (average) value of z, σ is its standard deviation,

and e is exponential function [22].

2.3.2 White Noise

This is noise with a constant power spectrum, i.e. its spectral density, commonly known

as the Noise Power Spectrum (NPS), is constant with frequency. Theoretically, the spec-

trum would extend to infinite frequency and therefore the total noise power would be

infinite; in practice, the spectrum of any naturally occurring white noise falls off at suffi-

ciently high frequencies. The term derives from the analogy of white light, which contains

nearly all the frequencies in the visible spectrum equally [13,22].

White noise is completely uncorrelated, i.e. the value of each pixel is independent of its

neighboring pixels. Thus, its autocorrelation function is zero. However, being uncor-

related does not limit the range of possible values that a signal can take; it is possible

for the signal to have any distribution of values. For example, a binary signal that can

only take on the values of 1 or 0 is considered “white” when the sequences of ones and

zeros are statistically uncorrelated. There is also the possibility of white noise having a

continuous distribution, such as a normal distribution [13].
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2.3.3 Salt and Pepper Noise

Another common form of noise is data drop-out noise, commonly referred to as salt-and-

pepper noise or impulse noise. Data transmission errors cause this noise. The images

are distorted by corrupted pixels, which are either set to zero or to the maximum value.

These results produce a “salt and pepper” appearance to the images. Unaffected pixels

remain unchanged. The noise is usually quantified by the percentage of pixels which are

corrupted [13].

A more detailed description of the types of noises can be found in the standard text-

book on “Digital Image Processing” [22]. The next section introduces zooming as a

degradation model that would be used later on in this thesis.

2.4 Zooming

We consider the following problem of image zooming. Given the observed image data y,

where

y = Dz(x) + n, (2.6)

in which Dz(x) is the downsampling by a factor of z, find an approximation of x.

Note that we defined the local averaging operator of length z, Az : RM×N 7−→ RM×N

where and M × N is the size of the image and R is real number (i.e. RM×N is a set

of all vectors which their size is M ×N with real-valued elements.) for any (i, j) ∈

[1, · · · ,M ]× [1, · · · , N ],

Azx(i, j) =
1

z2

∑
0≤i′<z,0≤j′<z

x(i+ i′, j + j′). (2.7)

Also, the downsampling operator Sz : RM×N 7−→ RM×N is defined for any image x ∈

RM×N such that for any (i, j) ∈ [1, · · · ,M ]× [1, · · · , N ],

Szx(i, j) = x((i− 1)z + 1, (j − 1)z + 1). (2.8)
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Note that Dz = Sz ◦ Az.

2.4.1 Regularization-based Method

In order to solve ill-posed problems, one must overcome the instability estimating algo-

rithms of their solutions. To mitigate this instability, theoretical strategies and numerical

tools have been developed, and regularization theory has become mainstream. In reg-

ularization, the ill-posed problem pointing to an unstable solution is replaced with a

well-posed problem pointing to an approximate solution based continuously on the given

data [20]. The purpose of the regularization is to prevent over-fitting by introducing prior

information about problems to penalize the model. The prior information is usually a

penalty for complexity, such as restrictions for smoothness in total variational regulariza-

tion [65] and bounds on the norm of the space vector in Tikhonov regularization [71,73].

This term is usually known as a penalty term.

The general regularization model can be formulated as

f(x) + λg(x), (2.9)

where f(x) is known as fidelity term and here is the function defined in the equation 2.2,

g(x) is regularization term or penalty term, and λ is regularization parameter.

The regularization parameters are introduced naturally as a way to adjust the dominator

between the loss and penalty term in order to achieve a better compromise [20]. As the

regularization parameter approaches zero, the functions of the family tend to converge

to the exact solution of the problem for noise-free data. In the case of noisy data, With

a non-zero regularization parameter, an optimal approximation of the exact solution can

be achieved [50].
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2.4.2 Image Quality Assessment (IQA)

The use of digital images as a means of presenting and communicating information has

grown rapidly in the early 21st century [82]. According to the Domo https://www.domo.

com/blog/data-never-sleeps-hits-double-digits/ data Never Sleeps in 2022 turns

over ten years. Based on an analysis of infographics during these years, it has become

apparent that the largest increases are associated with content sharing via images and

videos. There is no doubt that this makes sense with the growing spread of smartphones

with better cameras, WiFi coverage, and cell data plans, which facilitate data transmis-

sion. However, digital images go through a series of processing steps that can introduce

various distortions and lowering perceptual quality before reaching the end user. It is,

therefore, crucial to have a reliable tool for assessing, controlling, and ensuring qual-

ity [14], i.e. image acquisition, management, communication, and processing systems

should be able to identify and quantify image quality degradations in order to maintain,

control, and enhance the quality of images. In order to achieve this objective, it is essen-

tial to develop effective automated systems for assessing image quality [82].

The measurement of image quality is an integral part of the vast majority of image pro-

cessing and fusion applications. For example, measuring the quality of images produced

by medical devices when designers want to determine which devices produce the best

results [18]. It is possible to use quality assessment metrics as testing criteria or as opti-

mization goals for visual communication systems. Methods for assessing quality can be

categorized into subjective and objective approaches.

2.4.2.1 Subjective Image Quality Assessment

In most visual communication systems, the human visual system is the ultimate receiver

of visual signals. Therefore, subjective assessment is generally considered the most ac-

curate and reliable method. In this method, a group of people is asked to give their

opinion about the quality of each image in a given data set. Here are a few standardized

https://www.domo.com/blog/data-never-sleeps-hits-double-digits/
https://www.domo.com/blog/data-never-sleeps-hits-double-digits/
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subjective IQA methods that will be briefly introduced in the following [56].

• Single Stimulus Categorical Rating

In this approach, test images are displayed on a screen for a predetermined duration.

Subsequently, the images disappear from the screen, and observers are requested to

evaluate their quality using an abstract scale consisting of the categories: excellent,

good, fair, poor, or bad. The display of test images is randomized. There are some

methods that use continuous scales rather than categorical scales in order to avoid

quantization artifacts.

• Double Stimulus Categorical Rating

This method is similar to the single stimulus method. This method, however,

displays both the reference and test images for a fixed duration. As soon as the

images have disappeared from the screen, observers are asked to rate the quality of

the test image using the abstract scale described earlier.

• Ordering By Force-choice Pair-wise Comparison

Two images of the same scene are displayed to observers in this type of subjective

assessment. Then, they are asked to select the image that has the highest quality.

Even if there is no difference between the two images, observers are required to

select one image. Observers may make their decision at any time.

• Pair-wise Similarity Judgments

It has already been mentioned, in force-choice comparisons, observers are required

to select one image regardless of whether they perceive any difference between the

two images. In pair-wise similarity judgments, observers must not only choose the

image with higher quality but also indicate the level of difference between them.

Using raw rating results such as excellent, good, fair, and so on as quality scores might

seem tempting. However, these ratings are unreliable. One of the reasons is that ob-

servers tend to assign different quality scales to each scene and even different types of



Chapter 2. Background 19

distortions. Two scoring methods, Difference Mean Opinion Score (DMOS) and Z-score

are commonly employed in subjective IQA. Modern IQA metrics use differences in qual-

ity between images instead of directly applying rating results. DMOS is measured by the

difference between the raw quality score of the reference and test images. To facilitate the

comparison of individual observers’ opinions on image quality, a linear transformation

is applied that makes the mean and variance equal for all observers. The result of this

transformation is referred to as the Z-score [56].

Subjective evaluation of image quality can be an accurate and reliable way to measure

image quality. However, the subjective test is time-consuming and expensive, and cannot

be directly embedded into a practical system as the optimization metric [14, 79]. Fur-

thermore, subjective experiments face challenges due to various factors including view-

ing distance, display device, lighting conditions, subjects’ visual abilities, and subjects’

moods. Therefore, the design of mathematical models capable of accurately predicting

the quality assessment of an average human observer becomes essential [56].

2.4.2.2 Objective Image Quality Assessment

To overcome the limitations of subjective image quality assessment, objective image qual-

ity assessment aims to construct computational models that predict the perceived quality

of visual images, i.e. the objective quality metrics are mathematical models that calcu-

late the image quality. Objective image quality metrics are generally classified based on

their dependence on the availability of an original reference image. Distorted images are

compared to a complete reference image in the full-reference method. If partial informa-

tion about the reference image is required, it is referred to as a reduced reference method,

while no-reference (or blind) methods are limited to the distorted image [36].
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2.5 Applications of IQA

In general, image quality metrics have three main applications [88].

1. It can be set up as a quality control system to monitor image quality. For example,

an image and video acquisition system can automatically adjust itself based on the

quality metric to obtain the best image and video data.

2. It can be used to measure the performance of image processing systems and algo-

rithms. Suppose it is necessary to choose one of several image processing systems

for a specific task. In that case, a quality metric can help to determine which one

produces the highest-quality images.

3. It can be integrated into an image processing system to optimize the algorithms

and parameter settings. For example, a quality metric in a visual communication

system enables to help with optimal design of the prefiltering and bit assignment

algorithms at the encoder and the postprocessing algorithms at the decoder.

Image denoising [22], deblurring [22,24], and inpainting [23,30] are only a few exam-

ples of standard image-processing tasks which are traditionally solved through numerical

optimization. In most cases, the objective function associated with such problems is

expressed as the sum of a data fidelity term f and a regularization term g (or a number

thereof). In particular, considering the desired image estimate x to be a (column) vector

in Rn, both f and g are usually defined as non-negative functionals on Rn, in which case

the standard form of an optimization-based imaging task is given by

min
x

f(x) + λg(x) (2.10)

Here λ ≥ 0 is a regularization constant that balances the effects of empirical and prior

information on the optimal solution [5].
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2.6 Mean Square Error (MSE)

A signal fidelity measurement compares two signals by giving a numerical score describing

the degree of similarity/fidelity or, conversely, the level of error or distortion between

them. It is usually assumed that one of the signals is an original signal while the other

is distorted or contaminated with errors [78]. One of the most widely used methods for

measuring image fidelity is MSE.

The MSE between two images y1 and y2 is

MSE(y1, y2) =
1

L1L2

L1∑
i1=1

L2∑
i2=1

(y1(i1, i2)− y2(i1, i2))
2, (2.11)

where L1 and L2 correspond to the length and width of the images, respectively. Since

MSE is computed based on the error signal, e = y1 − y2, between the reference image,

y1, and its distorted version, y2. It is common to convert MSE into peak signal-to-noise

ratio(PSNR) using the following expression in image processing

PSNR(y1, y2) = 10 log10
R2

MSE(y1, y2)
, (2.12)

where R is the dynamic range of image pixel intensities e.g. for an 8-bit/pixel gray-scale

image, R = 28 − 1 = 255. In terms of perceptual quality, PSNR provides an advantage

over MSE in that it can handle images with different dynamic ranges. MSE has been

widely used in the literature as a signal fidelity measure and its use as an image/video

quality assessment metric has become a convention.

The poor performance of MSE as a method for assessing image/video quality is over-

looked in favor of its attractive features, such as simple operation, low computational

costs, and memorylessness [82]. Due to the following reasons, MSE is well suited for

solving optimization and design problems: it is a valid distance metric in Rn; After any

orthogonal (or unitary) linear transformation, energy is preserved (Parseval’s theorem;

This theorem states that the sum of the absolute squares of a function defined at dis-

crete, equally spaced points is equal to the sum of the absolute squares of its Fourier
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(a) (b) (c)

(d) (e) (f)

Figure 2.2: Comparison of distorted images with the same MSE. (a) Original image

(MSE=0;SSIM=1); (b) Shift (to the left) (MSE=400;SSIM=0.97); (c) Rotation (clock-

wise) (MSE=430.24;SSIM=0.67); (d) Blurring (MSE=402;SSIM=0.62); (e) Gaussian

noise (MSE=400;SSIM=0.34); (f) Salt and pepper noise (MSE=402;SSIM=0.57);

coefficients [41].); it is convex and differentiable; Closed-form or iterative numerical solu-

tions are often available for optimization problems; it is additive for independent sources

of distortions. Although MSE has solid mathematical properties, it should not be used

unquestioned as a perceptual quality measure in image and video processing.

Figure 2.2 illustrates and rationalizes why it is not reasonable to rely on MSE’s judg-

ment of perceptual quality. A reference image is shown in Figure 2.2 (a). The rest of

the images are generated using the reference image by introducing the same level of dis-

tortion in terms of MSE to the reference image. It is easily seen that the perceptual
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quality of the distorted images differs significantly, despite MSE incorrectly predicting a

similar quality. In Figures 2.2 (b) to (f), the MSE indicates that the distortion levels are

approximately similar. In contrast, the image in Figures 2.2(b) shows the least distortion

perceptually, according to the HVS. Several psychological and physiological features of

the HVS are not accounted for by the MSE [82].

The reason why MSE is unable to provide accurate perceived quality predictions lies in

a number of questionable assumptions when used as an image/video quality measure.

1) As far as perceptual quality is concerned, the spatial relationships between pixels are

irrelevant; therefore, distortion in each pixel can be determined individually; 2) In any

reference image, the error signal, e, introduces the same level of distortion; 3) The sign

of e does not affect the evaluation of perceptual quality ; 4) All the pixels of an image

are equally important for perceptual image quality. All of these implicit assumptions are

extremely strong since they impose significant limitations on the signal samples, their

interactions with each other, and their interactions with errors. In terms of measuring

visual perception of image fidelity, none of them hold (even roughly) [78].

2.7 Structural Similarity

It is the classical approach for IQA to attempt to model every single component of

the HVS. This technique is referred to as the bottom-up approach. It means that we

start with simple features of the HVS and combine them until we obtain a model of

image quality perception [5]. As an alternative to the bottom-up approach, Wang et

al [88] proposed the structural similarity measure index. The SSIM provides a measure

of visual closeness between an image and a distorted or corrupted version of it. Due to the

assumption that a distortionless image is always available, the SSIM can be considered

as a full-reference measure of image quality assessment [88].

This definition is based on two assumptions: (i) images are highly structured, i.e. pixels
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Figure 2.3: Diagram of the structural similarity (SSIM) measurement system [88].

tend to be correlated, especially if they are spatially close, and (ii) the HVS is capable

of extracting structural information. This is why SSIM quantifies changes in perceived

structural information to measure similarity. The system diagram of the proposed quality

assessment system is shown in Figure 2.3.

By comparing the luminance, contrast, and structure of two images, this measurement

can be performed. In order to quantify changes in luminance between two images, we

quantify relative changes in their means given two images x ∈ Rn×m and y ∈ Rn×m (i.e.

x and y are n × m dimensional image.) [61]. In order to do this, we use the following

formula

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

. (2.13)

The maximum value of this factor is one when µx = µy [28]. In this case, it is important

to emphasize that l(x, y) is sensitive to the relative changes in luminance, not to its

absolute change. Accordingly, this is in accordance with Weber’s law, which is a model

for light adaptation of the HVS [88]. According to Weber’s law, the magnitude of a

just-noticeable luminance change ∆I is approximately proportional to the background

luminance I for a wide range of luminance values. In other words, the HVS is sensitive
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to the relative rather than the absolute luminance change [80].

For the contrast, the relative variance is used to measure the comparison

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

. (2.14)

In order to avoid division by zero, C2 > 0 is added. A contrast is maximal and equal to

one if x equals y.

Calculating the correlation coefficient between images x and y compares the two struc-

tures simply

s(x, y) =
σxy + C3

σxσy + C3

. (2.15)

For stability, the positive constant C3 is again used. The final step is to combine these

three components using the function f(x1, x2, x3) = xα1x
β
2x

γ
3 ,

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ. (2.16)

The relative influence of the three comparisons is controlled by positive parameters α, β

, and γ. The authors simplify 2.16 by setting α = β = γ = 1 and C3 = C2/2 in [88].

SSIM(x, y) = (
2µxµy + C1

µ2
x + µ2

y + C1

)(
2σxσy + C2

σ2
x + σ2

y + C2

)(
2σxy + C2

2σxσy + C2

,

= (
2µxµy + C1

µ2
x + µ2

y + C1

)(
2σxy + C2

σ2
x + σ2

y + C2

).

(2.17)

Setting,

SSIM(x, y) = S1(x, y)S2(x, y), (2.18)

where

S1(x, y) = (
2µxµy + C1

µ2
x + µ2

y + C1

), (2.19)

S2(x, y) = (
2σxy + C2

σ2
x + σ2

y + C2

). (2.20)

The authors in the original paper of SSIM chose [88] C1 = (K1L)
2 and C2 = (K2L)

2

where L is the dynamic range of the pixel values (255 for 8-bit grayscale images), and

K1 ≤ 1 andK2 ≤ 1 are a small constants. This definition of SSIM will be used throughout
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the remainder of this thesis. A positive SSIM index value is in the range [0,1]. A value

of 0 means no correlation between images, and 1 means that x = y.

Figure 2.2 illustrates SSIM’s ability to distinguish structural distortion from nonstruc-

tural distortion. It has been shown that shift (to the left) (b) causes nonstructural

distortions to the reference image (Figure 2.2(a)) and is, therefore, less penalized by

the SSIM index compared with structural distortions such as rotation(clock-wise) (Fig-

ure 2.2(c)) blurring (Figure 2.2(d)), Gaussian noise (Figure 2.2(e)), and salt and pepper

noise (Figure 2.2(f)).

2.8 MSSIM

Local SSIM methods are used rather than global SSIM methods, using a sliding Gaussian

window of fixed size to determine the SSIM for each point of an image. The result of

this analysis is a map that indicates how image quality varies spatially. Calculating the

average of SSIMs can yield a global SSIM. It is in this case that mean SSIM is introduced,

MSSIM(x, y) =
1

N

N∑
i=1

SSIM(xi, yi). (2.21)

The number of local windows in the image is N , and xi and yi represent the ith sample

sliding square windows, also known as patches in images x and y.

2.9 Another Expression for SSIM

In the definitions of SSIM and MSSIM that have been presented until now, the assumption

is that x, y are images. There is no doubt that this definition is satisfied for signals

(vectors). A new expression of the SSIM formula is presented in this section in terms of

the mean of vectors x ∈ Rn, and y ∈ Rn and the use of norms instead of variance and

covariance. As a result of this alternative expression, SSIM derivatives can be taken in a

practical way.
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By considering, µx = x̄, µy = ȳ, and C1 = ε1 the luminance function 2.13 can be written

as

S1(x,y) =
2µx̄µȳ + C1

µ2
x̄ + µ2

ȳ + C1

=
2x̄ȳ + ε1

x̄2 + ȳ2 + ε1
= S1(x̄, ȳ). (2.22)

The properties of mean, variance, and covariance indicate that σx−x̄ = σx, σy−ȳ = σy,

and σ(x−x̄)(y−ȳ) = σxy. Thus, we can represent 2.17 as follows

S2(x,y) =
2σxy + C2

σ2
x + σ2

y + C2

=
2σ(x−x̄)(y−ȳ) + C2

σ2
x−x̄ + σ2

y−ȳ + C2

= S2(x− x̄,y − ȳ). (2.23)

As a result of defining mean, variance, and covariance, we have µx−x̄ = µx−x̄ = x̄−x̄ = 0

and similarly, µy−ȳ = 0,then,

σ2
x−x̄ =

1

n− 1

n∑
i=1

((x− x̄)− 0)2 =
1

n− 1

n∑
i=1

(x− x̄)2 =
∥x− x̄∥22
n− 1

, (2.24)

σ(x−x̄)(y−ȳ) =
1

n− 1

n∑
i=1

((x− x̄)− 0)((y − ȳ)− 0)

=
1

n− 1

n∑
i=1

(x− x̄)(y − ȳ)

=
(x− x̄)T (y − ȳ)

n− 1
.

(2.25)

By substituting 2.24 and 2.25 in 2.23, it can be written

S2(x− x̄,y − ȳ) =
2σ(x−x̄)(y−ȳ) + C2

σ2
x−x̄ + σ2

y−ȳ + C2

=

2(x−x̄)T (y−ȳ)
n−1

+ C2

∥x−x̄∥22
n−1

+
∥y−ȳ∥22
n−1

+ C2

,

(2.26)

and ε2 = (n− 1)C2,

S2(x− x̄,y − ȳ) =
2(x− x̄)T (y − ȳ) + ε2

∥x− x̄∥22 + ∥y − ȳ∥22 + ε2

=
∥x− x̄+ y − ȳ∥22 − ∥x− x̄∥22 − ∥y − ȳ∥22 + ε2

∥x− x̄∥22 + ∥y − ȳ∥22 + ε2
.

(2.27)

Therefor the SSIM formula 2.17 can be rewritten as,

SSIM(x,y) = S1(x̄, ȳ)S2(x− x̄,y − ȳ), (2.28)

SSIM(x,y) =
( 2x̄ȳ + ε1
x̄2 + ȳ2 + ε1

)(∥x− x̄+ y − ȳ∥22 − ∥x− x̄∥22 − ∥y − ȳ∥22 + ε2

∥x− x̄∥22 + ∥y − ȳ∥22 + ε2

)
. (2.29)
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Literature Review

Recent research has focused on developing objective quality assessment measures that

can measure perceived distortions in visual content. Some of the more prominent are the

structural similarity index [88] and derivatives [59,83], the VVisual Information Fidelity

(VIF) [68], the Visual Signal-to-Noise Ratio (VSNR) [9], and the Most Apparent Distor-

tion (MAD) [40]. Compared with other methods, SSIM is often preferred because of its

good trade-off between accuracy, simplicity, and efficiency [78]. Here are some examples

of SSIM-based imaging tasks that can be found in the literature. For instance, in [1]

the authors use SSIM to measure quality, particularly for sparse representation, whereas

previous studies used MSE. To solve a global optimization problem in maximum SSIM,

gradient descent is used. In this work, they were focusing on the improvement of image

restoration algorithms with regard to visual quality, which takes sparsity prior on the

solution based on a dictionary. Brunet developed some necessary tools for the design

of SSIM-optimal algorithms in his thesis [5]. In this work, theoretical developments are

combined with experimental research and practical algorithms. The mathematical prop-

erties of the SSIM index are described. It is demonstrated how SSIM indexes can indeed

be transformed into distance metrics. There are also proofs of local convexity, quasi-

convexity, symmetries, and invariance properties. A number of analytical techniques are

28
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then developed for different kinds of SSIM-based optimizations. As an example, orthog-

onal and redundant basis sets are described in terms of the best approximation based on

the SSIM. For the SSIM-Mean, a special case is calculated. Otero, et al. in [11], replace

the standard norm-based fidelity measures with SSIM in the optimization problems for

image restoration. In their work, the signals (images) are considered to be zero mean.

The authors introduce a framework for utilizing the SSIM as a fidelity measure in a wide

range of imaging applications. Additionally, they discuss a number of novel numerical

strategies that can be employed to solve some standard and original imaging tasks based

on the framework. In [35], the authors propose a multi-exposure image fusion algorithm

that optimizes a new objective quality measure, known as the color MEF structural sim-

ilarity (MEF-SSIMc). Rather than predefining a systematic computation structure for

MEF, they search for the image that optimizes MEF-SSIMc directly in the space of all

images.

The general procedure, Various techniques, and categorizations of image fusion are re-

viewed below.

3.1 Image Fusion Techniques

In image fusion, the objective is to attain a more representative and detailed output

image. An image fusion procedure generally involves several steps that assist in achieving

this goal [17]. Several image fusion techniques will be reviewed in the following.

3.1.1 Spatial Based Techniques

Image fusion (IF) can be classified into three groups: spatial, frequency domain, and

deep learning methods. In the spatial technique, the pixel values of the input images

are manipulated in order to achieve the desired result [7]. Image fusion techniques based

on discrete transforms are considerably more prevalent than pyramid-based fusion tech-
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Figure 3.1: Image Fusion Techniques [34].

niques. Figure 3.1 illustrates the different types of IF techniques [54].

There are several spatial based fusion methods, including Max-Min, Minimum, Maxi-

mum, Simple Average and Simple Block Replace [32,33].

3.1.1.1 Simple Average

In this method, images are combined by averaging the pixels. The technique applies to

all regions of the image, and it works well if the images are taken from the same type of

sensor. Good results can be achieved if the images have high brightness and contrast [34].

3.1.1.2 Minimum Technique

This method selects the pixels with the lowest intensity value and produces a fused

image [32]. It is used for darker images [3].
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3.1.1.3 Maximum Technique

A fused image is created by selecting the pixels with high intensity from images [7].

3.1.1.4 Max–Min Technique

The resultant combined image was generated by averaging the smallest and largest pixels

from the entire source images.

3.1.1.5 Simple Block Replace Technique

All images of pixel values are added together and the block average is calculated. The

algorithm is based on pixel neighboring block images.

3.1.1.6 Weighted Averaging Technique

The weights were assigned to every pixel in the source images. A weighted sum of each

pixel value in the source images produces the resultant image [69]. By using this method,

the output image will be more reliable in terms of detection.

3.1.1.7 Hue Intensity Saturation (HIS)

Based on this technique, the Red-Green-Blue image is converted into HIS components,

and then intensity levels are divided using a panchromatic image. Intensity information

is contained in spatial and hue and saturation information is contained in spectral. It

performs in the bands and has three multispectral bands Red–Green–Blue (RGB) of low

resolution. As a final step, the HIS space is converted to RGB space in order to yield

the fused image [7]. Combining the features of the images is a very straightforward

process, and the result is an image with very high spatial quality. It is the most effective

method in remote sensing images, but its major disadvantage is that it only involves

three bands [57].
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3.1.1.8 Principal Component Analysis (PCA)

It is a statistical method based on orthogonal transformation to convert a set of ob-

servations of a possibly correlated variable into principal components which are linearly

uncorrelated variables. Spectral degradation and color distortion are two of the principal

drawbacks of PCA [2].

3.1.1.9 Guided Filtering

The operator works similarly to the admired bilateral filter in the sense that it smoothes

and preserves boundaries. The performance near the boundaries has been enhanced. It

is related to a Laplacian matrix in a hypothetical way. It is a fast and non-estimated

linear time algorithm, whose density is independent of the mask size. In graphics and

computer vision applications, this filter is more efficient and effective due to its ability

to join upsampling, eliminate haze, smooth details and reduce noise [27].

3.1.2 Frequency Domain

By applying these techniques, multiscale coefficients from input images can be decom-

posed [84]. The frequency method can be used to handle spatial distortion.

3.1.2.1 Laplacian Pyramid Fusion Technique

For multi-resolution image fusion, it uses the interpolation sequence and Gaussian pyra-

mid. An improved IF technique was presented by Saleem et al. in which a contrast

pyramid transform was employed on multi-source images [12]. The disadvantage of this

method is that it does not have sufficient extraction ability, but this can be overcome by

decomposing multi-scales. Further, Li et.al. developed a gradient pyramid multi-source

IF method that achieves a high band coefficient through the use of gradient direction

operators [2].
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3.1.2.2 Discrete Transform Fusion Method

Composite images are taken discrete transforms based fusion. As a first step, colored

images are separated into RGB (Red-Green-Blue) components. A discrete transformation

on the images is applied, and then the average of multiple images is computed [32].

3.1.2.3 Discrete Cosine Transform (DCT)

There are various types of DCT in image fusion, such as DCTma (DCT magnitude),

DCTcm (DCT contrast measure), DCTch (DCT contrast highest), DCTe (DCT energy),

and DCTav (DCT average) [74]. There is no improvement with this technique when the

block size is less than 8×8. A straightforward and basic method of fusing images in the

DCT domain is DCTav. DCTe and DCTma methods perform well in image fusion. It is a

straightforward technique that can be used in applications that require factual time [34].

3.1.2.4 Discrete Wavelet Transform (DWT) Method

As a result of the DWT method, the two or more images are decompdsed into several

high and lo wfrequency bands [8]. By producing a high signal-to-noise ratio with lower

spatial resolution, this method minimally distorted the spectral distortion in the resultant

fused images as compared to the pixel-based method. A fusion method based on wavelets

performed better than a fusion method based on spatial domains for minimizing color

distortions [33].

3.1.2.5 Kekre’s Wavelet Transform (KWT) Method

The Kekre Wavelet Transform method derives from Kekre’s transforms [38]. This method

can be used for multiple images and the fused image is superior to other methods [34].
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3.1.2.6 Kekre’s Hybrid Wavelet Transform (KHWT) Method

A KHWT method has been developed based on hybrid wavelet transforms. A number of

authors have suggested that the Kekre-Hadamard wavelet method provides more bright-

ness. A hybrid kekre-DCT wavelet method produces good results in terms of results [34].

3.1.2.7 Stationary Wavelet Transform (SWT) Method

Stationary Wavelet Transform overcomes the disadvantage of translation invariance of

the DWT method [37]. The SWT method is derived from the DWT method. The method

is a new type of wavelet transform that is translation invariant. Enhanced analysis of

image facts is provided by this method [34].

3.1.2.8 Curvelet Transform Method

In terms of time and frequency, SWT has a better characteristic.This can lead to a good

result when devising in a smooth manner. Second-generation Curvelet is a new multi-

scale transform that overcomes the problems associated with wavelet methods when

representing directions of boundaries in the images [6, 15,53,62].

3.1.3 Deep Learning

Deep Learning is another technique that is widely used for image fusion in many domains.

Several deep learning-based image fusion methods have been presented, showing a variety

of advantages, including multi-focus image fusion, multi-exposure image fusion, multi-

modal image fusion, Multi-Spectral (MS) image fusion, and Hypers-Pectral (HS) image

fusion. There are several recent advances related to deep learning-based images discussed

in [46]. To enhance the results of segmentation, deep learning techniques, and case-

based reasoning are used with image fusion. Due to the ability of deep learning-based

models to extract the most important features automatically from data without human

intervention, deep learning methods are becoming increasingly popular for image fusion.
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Fusion Techniques Advantages Disadvantages

CNN Able to extract features and repre-

sentation can learn most elective fea-

tures from training data without any

human intervention

High computational cost

CSR Compute sparse representation of an

entire image shift-invariant represen-

tation approach elective in details

preservation less sensitive to mis-

registration

Need a lot of training data

SAE Two phase-based training mecha-

nisms have a high potential when the

scale of labeled data for supervised

learning is limited

If you don’t have a good GPU they

are quite slow to train (for complex

tasks)

Table 3.1: Shows deep learning-based image fusion methods [34]

The models are also able to characterize a variety of complex relationships between input

and targeting data. The three deep learning models most commonly used in image fusion

are the Convolutional Neural Network (CNN), the Convolutional Sparse Representation

(CSR), and the Stacked Autoencoder (SAE). Table 3.1 summarizes the advantages and

disadvantages of various deep learning-based image fusion algorithms.

3.1.4 Image Fusion Categorization

It refers to a process that combines the source image and the reference image into one

image. In order to achieve the required goal of the fusion objective, different authors

anticipated diverse techniques. In order to achieve the required fusion objective, different

authors anticipated a variety of techniques. We discuss major classes of such methods

below, which include a single sensor, multi-sensor, multimodal, multiview, multi-focus,

and multi-temporal [34].
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3.1.5 Single Sensor

In order to create an image with the best possible information, a number of images are

combined. For example, human operators are not able to perceive desired objects in

different lighting conditions and noisy environments, which can be highlighted in the

final fused image. This type of system is inadequate as a result of the use of imaging

sensors in many sensing areas. The resolution of images is limited by the sensors and

the conditions in which the system is operated in its dynamic range. In general, visible

band sensors (digital cameras) are suitable for illuminated scenes in daylight but are not

suitable for poorly illuminated scenes at night or in fog or rain, which are unfavorable

conditions [67].

3.1.6 Multi Sensors

The multi-sensor image fusion is able to overcome the limitations of the one-sensor image

fusion since it combines images from multiple sensors in order to produce a compound

image. In order to obtain the final image from individual images, a digital camera

is accompanied by an infrared (IR) camera. Infrared cameras are suitable for use in

inadequately illuminated environments, and digital cameras are suitable for day-light

views. It is used in machine vision, medical imaging, robotics, and object detection. It

is mainly used to resolve the combined information of multiple images [67].

3.1.7 Multi-View Fusion

There are diverse views at a similar time in multi-view images. Alternatively, it is called

mono-modal fusion [67]. It was not always possible to achieve acceptable performances

with existing methods, particularly when one of the estimates is poor quality; In this

case, they cannot discard it in this case [45,51,66].
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3.1.8 Multi-Modal Fusion

It refers to combining images from one or more imaging modalities in order to improve

image quality. There are several types of models, such as multispectral, panchromatic,

infrared, remote sensing, and visible [34].

3.1.9 Multi-Focus Fusion

This method is effective for combining information from a number of images with similar

insight features into one wide-ranging image. A compound image is more informative

than a single image [47]. A better visual quality is achieved [34]

3.1.10 Multi-Temporal Fusion

The multitemporal fusion process captures the same scene at different times. For the

estimation of the occurrence of changes on the ground, long- and short-term observations

are required. For a given area, remote sensing images are obtained at diverse times

because of revisit observation satellites. Detecting land surface variations across a wide

geographic area requires multitemporal images [34].
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Methodology

In this section, A general formulation of the SSIM Mean and its derivative is presented.

The SSIM Mean formula is considered a formula for the fusion of images. To combine

images, we use the SSIM Mean formula as a fidelity term in the optimization problem.

The framework for solving the problem numerically is presented.

To maximize SSIM, we aim to minimize

T(x,y) = 1− SSIM(x,y). (4.1)

Note that, in contrast to the SSIM, T(x,y) may be considered a measure of structural

dissimilarity between x and y. The maximization of SSIM(x,y) corresponds to the

minimization of T(x,y) in 4.1 (T(x,y) = 0 when x = y).

4.1 Introduction

As described in [28] a measurement image y = H(x) + n is typically inferred using a

degradation operator H and an additive noise term n, where x ∈ Rm, y ∈ Rn, and

H ∈ Rn×m. Here it is assumed that x and y are vectorized versions, by row stacking, of

original 2-D original and distorted images x and y, respectively.

It is generally assumed that the operator H is known or can be approximated. By

38
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solving the following minimization problem, an approximation of the ideal image x can

be obtained. Given a series of images yi, the problem in general is

argmin
x

n∑
i=1

pi T(Hix,yi) + λg(x), (4.2)

where pi is associated weights, H ∈ Rn×m is the degradation operator, x ∈ Rm and y ∈ Rn

are vectorized versions of images x and y, g : Rn → R is a regularization functional, which

is often defined to be convex, and λ > 0 is its corresponding regularization parameter.

Notice in the above inverse problem as motivated by [28], data fidelity is represented

by SSIM(Hx,y) instead of the typical sum of squared differences of Hx and y. Gener-

ally, when λ is strictly greater than zero, the regularization term is employed to force

the optimal solution to reside within a predefined “target” space, allowing for a priori

information regarding the solution to be used. Regularization can be particularly useful

in the scenario where HTH is weakly conditioned or rank-deficient, in which case it can

contribute to well-defined and stably computable solutions. In any case, because the

first term in 4.2 is not convex, the whole cost function is not either convex or concave.

Therefore, there is no guarantee that a unique global minimizer exists for 4.2. However,

it remains possible to develop efficient numerical methods capable of convergent to either

a locally or globally optimal solution, as it is demonstrated in the [60].

4.2 SSIM Mean

The problem that we are interested to solve consists of approximating a weighted set

of points either on a line or in multidimensional space with a single number or vector.

When it comes to statistical inference, the weights represent probabilities and the result

is referred to as a point estimator. In image processing, points are interpreted as image

patches, which are aggregated into an average image by the estimator. Perceptually

relevant averages are desirable, this would mean that the averaged image represents best

the content of the set of patches visually. As a result, SSIM, which estimates maximum



Chapter 4. Methodology 40

structural similarity estimators, is of interest here.

4.2.1 Derivative of SSIM

In this section, the SSIM Mean in terms of alternative expression of SSIM is discussed

in chapter2. To solve the fusion image formulated by the SSIM using a gradient-based

method, the derivative of the new expression which is based on the mean of vectors

and the vector norm function, needs to be computed. A comprehensive explanation is

provided on how to formulate SSIM Mean using the expression presented in Chapter 2

and how to calculate its derivatives, as outlined in Appendix 6.2.

The following problem is solved. Given {y1,y2, . . . ,yn} a set of n vectors which their

size is n× 1 and {p1,p2, . . . ,pn} a set of weights, {H1,H2, . . . ,Hn} a set of degradation

operators which its size is n× m, find x which size is m× 1 such that maximizing

n∑
i=1

pi SSIM(Hix,yi). (4.3)

By substituting the new expression of SSIM (Equation 2.29), the equation 4.3 can be

represented as follows,

n∑
i=1

pi

( 2 Hix yi + ε1

Hix
2
+ yi

2 + ε1

)
(∥∥Hix− 1THix+ yi − 1Tyi

∥∥2
2
−
∥∥Hix− 1THix

∥∥2
2
−
∥∥yi − 1Tyi

∥∥2
2
+ ε2∥∥Hix− 1THix

∥∥2
2
+
∥∥yi − 1Tyi

∥∥2
2
+ ε2

)
.

(4.4)

Note that Hix and y are scalar terms. They are considered as column vectors,and set

Hix = 1THix and y = 1Ty where 1 =

[
1 · · · 1

]
is a 1×m vector. The cost function from

which we take the derivative is

P =
n∑

i=1

piS1S2, (4.5)

where,

S1 =
2 Hix yi + ε1

Hix
2
+ yi

2 + ε1
, (4.6)
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S2 =

∥∥Hix− 1THix+ yi − 1Tyi

∥∥2
2
−
∥∥Hix− 1THix

∥∥2
2
−
∥∥yi − 1Tyi

∥∥2
2
+ ε2∥∥Hix− 1THix

∥∥2
2
+
∥∥yi − 1Tyi

∥∥2
2
+ ε2

. (4.7)

By using the quotient rule, we have

∂p

∂x
=

n∑
i=1

pi

[∂S1

∂x
S2 +

∂S2

∂x
S1

]
, (4.8)

where
∂S1

∂x
=

2
n
Hi

T1T (yi −HixS1)

(yi
2 +Hix

2
+ ε1)

, (4.9)

∂S2

∂x
=

2Hi
T (I− 1

n
Jn×n)

[
(yi − 1T yi)− (I− 1

n
Jn×n)HixS2

]
(
∥∥yi − 1T yi

∥∥2
2
+
∥∥Hix− 1T Hix

∥∥2
2
+ ε2)

, (4.10)

such that,

1T1 =


1

...

1


[
1 · · · 1

]
=


1 · · · 1

...
...

...

1 · · · 1

 = Jn×n.

and I is the identity matrix whose size is n× n.

4.3 Gradient-Descent Method for SSIM-based Opti-

mization

This section provides the solution to the optimization the problem in 4.2. An optimal

solution to the optimization problem in equation 4.2 is the image that compromises be-

tween the distorted images and the one obtained using the numerical methods in the

maximal SSIM sense. The solution of equation 4.2 is achieved by utilizing one of the

optimization algorithms.

A gradient-based method is used here to solve this problem. In unrestricted optimization

problems, Gradient Descent (GD) optimization algorithms are frequently used as black

box optimizers. A gradient-based algorithm uses the gradient’s objective function in-

formation to determine the minimizer/maximizer cost function with each iteration. GD
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is an iterative optimization algorithm of the first order. According to the theory, the

steepest descent direction should be taken with repeated steps along the opposite side

of the gradient at the current stage (or an approximate gradient) of the function. In

contrast, stepping in the direction of the gradient will result in a local maximum of that

feature. In this case, the method is known as gradient descent [26]. During the gradient

descent algorithm, the magnitude of parameter updates is scaled based on the learning

rate. The following algorithm for solving the problem 4.2 is proposed. Furthermore,

scipy.optimize.minimize package is used to solve the problem. Further discussion on this

topic will be provided below.

It is important to note that the problem under consideration is solved using numeri-

cal methods. Consequently, the selection of the starting point and parameters presents

limitations in the proposed method. Empirical observations suggest that the arithmetic

mean is a suitable choice for the starting point. Additionally, starting from one of the

input images can be considered. However, it is crucial to acknowledge the possibility of

getting trapped in local minima due to the non-convex nature of the SSIM function. The

parameter of the gradient-based algorithm is chosen manually.

Algorithm 1 Gradient Descent Method For SSIM-based Optimization
Initialize x = x0;

take α: Learning rate (α > 0); L:number of the iteration

for 1 to L do

Compute Gradient of the cost function Q(x) =
∑n

i=1 pi T(Hix,yi) + λg(x),;

repeat x = x− α Q
′
(x)

until stopping criterion is satisfied;

end for

return x



Chapter 4. Methodology 43

Algorithm 2 Line Search Method Method For SSIM-based Optimization
Initialize x = x0;

take t: Learning rate ( t > 0) ; L: the number of iteration; α ∈ (0, 0.5); β ∈ (0, 1)

for 1 to L do

while Q(x0 − t Q
′
(x)) > Q(x0) + αtQT (x)(−Q′

(x))

t = βt

repeat x = x− tQ
′

until stopping criterion is satisfied;

end for

return x

4.4 Checking Derivatives

In optimization, an erroneous derivative is one of the many traps. An easy way to check

the implementation of a derivative is to use the following test. To this end, let f be a

multivariate function f : Rn −→ R and let v ∈ Rn be an arbitrary vector in the Taylor

expansion

f(x+ hv) = f(x) + hdf(x)v +O(h2). (4.11)

The Matrix A is the derivative of f if and only if the difference between ||f(x + hv) −

f(x) − hAv|| is quadratic in h. That difference is calculated by the function check

derivative (see, e.g., [55]). The result of applying the check-Derivative function to the

SSIM derivative is shown in 4.1. In this case, the result is consistent since the difference

is quadratic with respect to h.
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Figure 4.1: CheckDerivative result for implementation of SSIM derivatives: linear decay

(solid line) for ||f(x+ hv)− f(x)|| and quadratic decay (dashed line) for ||f(x+ hv)−

f(x)− hdf(x)v|| up to machine precision is shown on a logarithmic scale.



Chapter 5

Experiments and Results

In this Chapter, we report and discuss the experimental results of the proposed method.

To compare our results with Brunet’s, we present a few examples where we’ve found

SSIM-Mean using both Brunt’s and our approaches. In the following section, we will

discuss the design of the experiment for the fusion of images. Afterward, numerical and

visual results will be presented in order to evaluate the performance of the proposed

methods.

5.1 One Dimensional Case

In [5], Brunet addresses the problem of maximizing SSIM Mean for a set of points and

presented a solution. To evaluate the proposed method, an example mentioned by Brunet

on page 97 of his thesis, considering one-dimensional data, is replicated. Furthermore,

an additional one-dimensional example is presented.

Brunet discusses the problem of finding the maximum SSIM Mean between two given

vectors y1 and y2 in his thesis [5], i.e. the problem is finding x such that

argmax
x

SSIM(x,y1) + SSIM(x,y2). (5.1)

45
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The objective is to determine the maximum value of the following function, which is

obtained by substituting the given values and parameters into the formula of SSIM.

f(x) =
2 x (y1) + ε1
x2 + y1

2 + ε1
+

2 x (y2) + ε1
x2 + y2

2 + ε1
. (5.2)

Note that the mean of a scalar is itself (if x is scalar then x̄ = x).

As previously discussed, the objective of maximizing SSIM between two given vectors

y1 and y2 as used by Brunet is equivalent to finding the minimum value of T(x,y) =

1− SSIM(x,y) which is used in the proposed calculations.

The problem involves finding the minimum value of SSIM Mean between two given vectors

y1 and y2 by solving equation 4.2. The regularization term in equation 4.2 is disregarded

as the focus here is on finding the local maximum of SSIM Mean. To accomplish this

objective, it is assumed that pi = 1 and Hi = I, where I represents the identity matrix.

Hence,

argmin
x

T(x,y1) + T(x,y2). (5.3)

The problem is solved numerically using scipy.optimize, which offers various optimization

methods. The L-BFGS-B method in Scipy-optimization is used when ϵ1 = 0 in this case.

Figures 5.1 and 5.2 provide a visual presentation of the function x for two cases, i) for

y1 = 0.1 and y2 = 0.4 and ii) for y1 = 0.05 and y2 = 0.8 when ϵ1 = 0. In the first case, a

local maximum of 0.2 is achieved, which is consistent with Brunet’s result. In the second

case, a maximum value of 0.69 is obtained when starting from 0.8, and a maximum value

of 0.057 is obtained when starting from 0.05. These results are in accordance with the

findings reported in Brunet’s thesis. Figures 5.1 and 5.2 are identical to those presented

in Brunet’s thesis. Note that the Matlab code of Brunet’s work is provided in his thesis
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Figure 5.1: Virtual presentation of function f(x) = SSIM(x, 0.1)+SSIM(x, 0.4). The blue

point represents the local maximum obtained by the L-BFGS-B method in the Scipy-

optimization package when the start point is 0.1.

Figure 5.2: Virsual presentation of function f(x) = SSIM(x, 0.05) + SSIM(x, 0.8). The

blue and green points represent the local maximum obtained by the L-BFGS-B method

in the Scipy-optimization package when the starting point is 0.05 and 0.8 respectively.

In the second experiment, the local maximum of SSIM Mean is found for four points,

y1 = 0.07, y2 = 0.6, y3 = 28, y4 = 65, i.e. the local maximum of h(x) is determined
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Figure 5.3: Virtual presentation of function h(x) = 2x(0.07)
x2+0.072

+ 2x(0.6)
x2+0.62

+ 2x(28)
x2+282

+ 2x(65)
x2+652

.

The blue point represents the local maximum obtained by the L-BFGS-B method in the

Scipy-optimization package when the start point is 0.6.

where,

h(x) =
2x(0.07)

x2 + 0.072
+

2x(0.6)

x2 + 0.62
+

2x(28)

x2 + 282
+

2x(65)

x2 + 652
. (5.4)

Note that ϵ1 is set to zero, similar to the previous example.

Both the proposed method and Brunet’s method can be used to solve the problem. By

using the Matlab code provided in Brunet’s thesis, a local maximum of 0.47 for h(x) is

obtained. Similarly, by using the L-BFGS-B method in the Scipy-optimization package

with a starting point of 0.6, the same result is achieved. Figure 5.3 illustrates the graphical

representation of the function h(x).

In the subsequent sections, the experimental design will be presented, followed by the

application of images to the experiments. To demonstrate the flexibility of the proposed

method, examples will be provided under two different assumptions: (1) assuming H = I,

where I is the identity matrix, and (2) assuming H = Dz, which represents a local

averaging followed by a downsampling factor of z transformation. It is important to note

that any degradation operator can be applied to the proposed method. In Equation 4.2,

total variation, which is commonly used as a regularization term in image processing, is
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applied as a regularization term. However, it is possible to substitute other regularization

functions instead. Moreover, if necessary, additional terms can be incorporated into

Equation 4.2.

When images are used as inputs in the problem, local SSIM (MSSIM) instead of SSIM

is applied in Equation 4.2. Consequently, the algorithms 1 and 2 require the use of

the derivative of MSSIM instead of SSIM. To address this, the derivative of MSSIM as

presented in [59] is used for solving the problem.

5.2 SSIM-Total Variation Regularization

Naturally, different sets of constraints and regularization terms yield different SSIM-based

imaging problems. As anticipated, by choosing different types of regularization terms and

degradation operators, a wide variety of SSIM-based imaging tasks can be performed.

Total Variation(TV) is selected as regularization in this section for the whole of the

experiments. TV regularization tends to preserve edges in general, and in certain cases

does indeed preserve edges exactly. It should be noted that maximizing the similarity

between two images (vectors) is equivalent to minimizing dissimilarity between them. Let

y1, y2, . . . , yn be a set of n degraded images which their size is m×p and {p1,p2, . . . ,pn} a

set of associated weights across patches, {H1,H2, . . . ,Hn} a set of degradation operators

which its size is n× m, find x which size is n× p such that

argmin
x

n∑
i=1

pi TM(Hix, yi) + λ∥∇x∥TV , (5.5)

where ∥∇x∥TV =
∑

x

√
∥∇x(x)∥22 is isotropic total variation regularization image x and

TM(Hix, yi) = 1− MSSIM(Hix, yi). To use the gradient-based algorithm described in 1

and 2, we must calculate the derivative of TV regularization as

Grad (∥∇x∥TV ) = −∇ ·
(∇x
∥x∥

)
= −

xxxx
2
y − 2xxxyxxy + xyyx

2
x

(x2x + x2y)
3/2

. (5.6)
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Considering the finite difference is taken by assuming Neumann boundary conditions.

Then, evolve the PDE (with a small nonzero factor added to the fraction term’s de-

nominator, a which is called “fudge parameter” in this case, to prevent the term from

becoming singular)

Grad (∥∇x∥TV ) = −∇ ·
(∇x
∥x∥

)
= −

xxxx
2
y − 2xxxyxxy + xyyx

2
x

a+ (x2x + x2y)
3/2

. (5.7)

It should be noted that in the proposed method, the scaling of pi can be adjusted

based on the confidence level of each measurement. Additionally, Hi can be a different

degradation operator for each measurement. However, for the sake of simplicity and to

evaluate the method’s performance, Hi is considered H and pi is considered 1 in this

case. In future studies, different values for pi and alternative degradation operators

can be considered. Additionally, all parameters are manually chosen in a range that is

suitable for the experiment.

5.3 Fusion of Degraded Images In The Case that H = I

5.3.1 Denoising Experiment

5.3.1.1 Cameraman Test Image

This experiment aims to perform denoising by applying a set of noisy images and ob-

taining a denoised image that combines these noisy images.

The optimization problem 5.5 is solved using the proposed gradient-descent algorithm

2. In this case, the denoising task is applied to four images of the test image "Cam-

eraman" corrupted with additive white Gaussian noise (AWGN). Additional information

regarding various types of noise can be found in the standard textbook "Digital Image

Processing" [22].

By adding AWGN with a mean of zero and variance of 0.005 four times to the Camera-

man image, four noisy images of it are obtained, where each image corresponds to one of
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y1, y2, y3, and y4 in equation 5.5. In Figure 5.7, the first row displays one of our inputs,

which corresponds to the noisy images.

Since equation 5.5 is numerically solved using algorithm 2, it requires a starting point to

initiate the algorithm. In the following, the results obtained from two different starting

points are compared and discussed.

1. The starting point is the arithmetic mean of noisy Cameraman images.

The starting point in this case is the arithmetic mean of these four images (the

third image in the first row in Figure 5.7). It corresponds to x in the equation 5.5

and is used in the first step of the algorithm. The values chosen for the parameters

of the line search algorithm are 0.4 and 0.01, while the learning rate is set to 0.01.

Additionally, the fudge factor in the derivative of the regularization is assigned a

value of 0.001. Table 5.1 shows the PSNR values of the noisy images, which are

approximately 23, and their corresponding SSIM values, which are around 0.44..

When λ = 0, only the SSIM-Mean term applies in equation 5.5, resulting in an im-

age that closely resembles the arithmetic mean image, which is the starting point.

The optimal answer is obtained by gradually increasing the value of λ until the

ideal balance between the fidelity term and the regularization term is found. It

should be noted that selecting excessively large values for λ leads to a disregard for

the fidelity term in equation 5.5. However, in gradient-based methods, there are

other factors that influence and control the results, such as the learning rate, the

number of iterations, and the fudge parameter.

The results presented in both Table 5.1 and Figure 5.7 demonstrate that, as ex-

pected, using SSIM leads to obtaining a denoised image that visually is superior.

In Table 5.1, it is observed that the PSNR value of the arithmetic image used as

the starting point is 29.30, with an SSIM value of 0.68. The best result in terms of

PSNR and MSE corresponds to the λ = 3 which its PSNR and MSE are 31.93 and
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41.68 respectively. The graph of MSE and PSNR with respect to λ in the selected

range is observed in Figures 5.4 and 5.5. In terms of the SSIM, the best result in

the chosen range of λ is obtained around λ = 3.5 based on Figure 5.6. The SSIM

value which is associated with λ = 3.5 is 3.5. As expected, the optimal image is

obtained, characterized by a lower MSE value, a higher PSNR value, and a higher

SSIM value compared to the individual input images and the starting point. As

shown in Figure 5.7, the denoised image is obtained by the combination of a set

of noisy images that is superior visually to each of our noisy images and starting

point individually.

MSE PSNR SSIM

Noisy image 1 297.94 23.38 0.44

Noisy image 2 303.69 23.30 0.44

Noisy image 3 302.92 23.31 0.44

Noisy image 4 305.88 23.27 0.43

Arithmetic of noisy images 76.37 29.30 0.68

Denoising image-λ = 0 76.37 29.30 0.68

Denoising image-λ = 2.5 42.13 31.88 0.83

Denoising image-λ = 3 41.68 31.93 0.84

Denoising image-λ = 3.5 43.33 31.76 0.85

Table 5.1: Numerical results for denoising the fusion of noisy Cameraman images. (The

starting point is the arithmetic mean of noisy Cameraman images).
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Figure 5.4: Change of MSE value with respect to λ. (The starting point is the arithmetic

mean of noisy Cameraman images).

Figure 5.5: Change of PSNR value with respect to λ. (The starting point is the arithmetic

mean of noisy Cameraman images).
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Figure 5.6: Change of SSIM value with respect to λ. (The starting point is the arithmetic

mean of noisy Cameraman images).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.7: Visual results for the denoising of the test image Cameraman. (a) Original

image. (b) One of the noisy images. (c) Arithmetic mean. (d) Denoised image (λ = 0).

(e) Denoised image (λ = 0.1). (f) Denoised image (λ = 1). (g) Denoised image (λ = 2.5).

(h) Denoised image (λ = 3). (i) Denoised image (λ = 3.5) (The starting point is the

arithmetic mean of noisy Cameraman images).
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MSE PSNR SSIM

Noisy image 1 305.04 23.28 0.43

Noisy image 2 300.29 23.35 0.44

Noisy image 3 303.72 23.30 0.43

Noisy image 4 302.06 23.32 0.44

Denoising image-λ = 0 304.98 23.28 0.43

Denoising image-λ = 6 94.55 28.37 0.77

Denoising image-λ = 10 102.16 28.03 0.82

Table 5.2: Numerical results for denoising a set of noisy images. (The starting point is

one of the noisy Cameraman images).

2. The starting point is one of the noisy images

Here, one of the noisy images is selected as the starting point, and the algorithm

1 is applied. A learning rate of 0.01 and a fudge parameter of 0.001 are used.

The values of MSE and PSNR of the starting point are approximately 300 and

23, respectively. As the previous one, when λ = 0, only the SSIM-Mean term is

considered in the equation 5.5. In order to achieve a balance between fidelity and

regulation terms, λ is increased. The results show that the optimal results in terms

of MSE and PSNR is achieved when λ = 6, whereas the superior result in terms

of SSIM is obtained when λ = 10. These findings are presented in Table 5.2 and

illustrated in the plots of Figure 5.8, 5.9, and 5.10. The visual representation of

the denoised image can be observed in Figure 5.11.

The obtained results align with the initial expectation, which aimed to achieve a

denoised image with higher PSNR and SSIM values and a lower MSE by combining

multiple noisy images. Also, it is seen that the results are biased toward the starting

point which is selected for the algorithm 2.
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Figure 5.8: Change of MSE value with respect to λ. (The starting point is one of the

noisy Cameraman images).

Figure 5.9: Change of PSNR value with respect to λ.(The starting point is one of the

noisy Cameraman images).
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Figure 5.10: Change of SSIM value with respect to λ. (The starting point is one of the

noisy Cameraman images).
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(a) (b) (c)

(d) (e) (f)

Figure 5.11: Visual results for the denoising of the test image Cameraman. (a) Original

image. (b) Noisy image 1. (c) Noisy image 3 . (d) Denoised image (λ = 6). (e) Denoised

(λ = 8). (f) Denoised image (λ = 10). (The starting point is one of the noisy Cameraman

images).

5.3.1.2 Mandrill Test Image

Illustrations of the results for the "Mandrill test image" are included in all sections of

the experiments, demonstrating that the proposed method can be applied to any image..

In this experiment, four Gaussian noisy images are created in the same manner as for

the Cameraman test image. Denoised images are obtained by fusing noisy images using

equation 5.5. The equation is solved using algorithm 1. The learning rate and fudge

parameter of regularization here, are 0.01 and 0.001 respectively. The starting point is
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the arithmetic mean of four noisy images.

As observed and anticipated, the applicability of the proposed method extends to various

images, including the Mandrill test image. The plots of MSE, PSNR, and SSIM as func-

tions of λ (refer to Figures 5.12, 5.13, and 5.14) within the chosen range of λ, along with

the corresponding numerical results presented in Table 5.3, demonstrate that the optimal

results in terms of MSE, PSNR, and SSIM within the specified range are achieved when

λ = 1. The visual result is shown in Figure 5.15.

Although Mandrill’s image has more details, the denoised image which is superior virtu-

ally compare to our input noisy images individually and the starting point is obtained.

MSE PSNR SSIM

Noisy image 1 323.15 23.03 0.65

Noisy image 2 324.94 23.01 0.65

Noisy image 3 323.99 23.02 0.65

Noisy image 4 324.58 23.01 0.65

Arithmetic of noisy images 81.11 29.03 0.85

Denoising image-λ = 0.01 81.05 29.04 0.86

Denoising image-λ = 0.1 77.36 29.24 0.86

Denoising image-λ = 1 67.01 29.86 0.88

Denoising image-λ = 2 80.12 29.09 0.87

Denoising image-λ = 2.5 89.49 28.61 0.86

Table 5.3: Numerical results for denoising a set of noisy Mandrill images. (The starting

point is the arithmetic mean of noisy Mandrill images).
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Figure 5.12: Change of MSE value with respect to λ. (The starting point is the arithmetic

mean of noisy Mandrill images).

Figure 5.13: Change of PSNR value with respect to λ. (The starting point is the arith-

metic mean of noisy Mandrill images).
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Figure 5.14: Change of SSIM value with respect to λ. (The starting point is the arithmetic

mean of noisy Mandrill images).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.15: Visual results for the denoising of the test image Mandrill. (a) Original

image. (b) One of the noisy images. (c) Arithmetic mean. (d) Denoised image (λ = 0).

(e) Denoised image (λ = 0.01). (f) Denoised image (λ = 0.1). (g) Denoised image

(λ = 1). (h) Denoised image (λ = 2). (i) Denoised image (λ = 2.5). (The starting point

is the arithmetic mean of noisy Mandrill images).
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5.3.2 Fusion of Different Types of Image Distortion

5.3.2.1 Cameraman Test Image

In order to demonstrate the performance of the proposed method for fusing different

types of degradation, in this experiment the image of the Cameraman is degraded as

follows

• Mean contrast stretched (Multiplying the original image by 1.2),

• Mean shift (Adding 10 to the original image),

• Blurring (Applying a 10-by-10 filter),

• Salt and pepper noise,

• Gaussian noise.

Note that Gaussian noise with a mean of zero and variance of 0.005 is added to the mean

contrast stretched and mean shift images.

Each degraded image corresponds to one of y1, y2, y3, y4, and y5 in equation 5.5. The

distorted images can be seen in Figure . We use algorithm 1. The learning rate and

fudge parameter are considered 0.01 and 0.001 respectively .

Two different starting points are considered and the result is described for each of them.

1. The starting point is the Gaussian noisy image

The Gaussian noisy image is considered as the start point of the algorithm 1. The

SSIM term (fidelity term) is the only term in the equation 5.5 when λ = 0. It is

expected that the optimal solution to equation 5.5 would result in a fused image

from these five distortion images with the highest value of PSNR and SSIM and

the lowest MSE values.

MSE, PSNR, and SSIM values for our degraded images and some fused images can

be seen in Table 5.4. The plots of MSE, PSNR, and SSIM changes as a function
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of λ are shown in Figures 5.16, 5.17, and 5.16. According to the table and plots,

the superior fused image in the selected range of λ in terms of MSE and PSNR

corresponds to λ = 7 and for SSIM it corresponds to λ = 10.

The visual result of this experiment can be seen in Figure 5.19. This Figure shows

that, as expected, the fused image for λ = 10 is superior to each of the degraded

images.

MSE PSNR SSIM

Gaussian noisy mean contrast stretched 1005.62 18.10 0.44

Gaussian noisy mean-shifted 419.92 21.89 0.42

Blurring 705.04 19.64 0.56

Gaussian noise 301.62 23.33 0.44

Salt and pepper 1027.86 18.01 0.38

Fusion image-λ = 0 301.50 23.33 0.44

Fusion image-λ = 0.1 281.10 23.64 0.45

Fusion image-λ = 1 184.38 25.47 0.53

Fused image-λ = 5 94.49 28.37 0.75

Fused image-λ = 7 92.74 28.45 0.80

Fused image-λ = 10 101.91 28.04 0.82

Table 5.4: Numerical results for the fusion of a set of distortion images. (The starting

point is the Gaussian noisy image).
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Figure 5.16: Change of MSE value with respect to λ. (The starting point is the Gaussian

noisy image).

Figure 5.17: Change of PSNR value with respect to λ. (The starting point is the Gaussian

noisy image).
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Figure 5.18: Change of SSIM value with respect to λ. (The starting point is the Gaussian

noisy image).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.19: Visual results for the fusion of a set of distortion versions of the test image

Cameraman. (a) Original image. (b) Gaussian noisy mean contrast Stretched. (c)

Gaussian noisy mean shifted. (d) Blurring. (e) Gaussian noise. (f) Salt and pepper

noise. (g) Fused image (λ = 5). (h) Fused image (λ = 7). (i) Fused image (λ = 10).

(The starting point is the Gaussian noisy image).
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2. The starting point is salt and pepper noisy image

In this case, the values of the parameters are the same as in the previous case.

The MSE, PSNR and SSIM values of the salt and pepper noisy image are 1027.86,

18.01, and 0.38, respectively. By combing these degraded images, it is aimed to

obtain a fused image that is superior to each of them individually.

It is attempted to make a balance between fidelity and regulation terms by increas-

ing λ in the optimization problem 5.5. The numerical results in Table 5.5 shows

that in the selected range of λ the superior fused image obtains when λ = 14 in

terms of MSE, PSNR, and SSIM, i.e. it is clearly seen that the values of PSNR

and SSIM are higher than each of our degraded images individually and MSE is

lower than each of them individually for λ = 14 as expected. The visual results are

provided in Figure 5.23. The plot of MSE, PSNR and SSIM with respect to λ can

be seen in Figures 5.20, 5.21, and5.22, respectively.

MSE PSNR SSIM

Gaussian noisy mean contrast stretched 1005.62 18.10 0.44

Gaussian noisy mean-shifted 419.92 21.89 0.42

Blurring 705.04 19.64 0.56

Gaussian noise 301.62 23.33 0.44

Salt and pepper 1027.86 18.01 0.38

Fusied image-λ = 3.5 227.06 24.56 0.77

Fused image-λ = 7 173.54 25.73 0.78

Fused image-λ = 14 150.79 26.34 0.79

Table 5.5: Numerical results for the fusion of a set of distortion images. (The starting

point is the salt and pepper noisy image).
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Figure 5.20: Change of MSE value with respect to λ. (The starting point is the salt and

pepper noisy image).

Figure 5.21: Change of PSNR value with respect to λ. (The starting point is the salt

and pepper noisy image).
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Figure 5.22: Change of SSIM value with respect to λ. (The starting point is the salt and

pepper noisy image).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.23: Visual results for the fusion of a set of distortion versions of the test image

Cameraman. (a) Original image. (b) Gaussian noisy mean contrast Stretched. (c)

Gaussian noisy mean shifted. (d) Blurring. (e) Gaussian noise. (f) Salt and pepper

noise. (g) Fused image (λ = 3.5). (h) Fused image (λ = 7). (i) Fused image (λ = 14).

(The starting point is the salt and pepper noisy image).
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5.3.2.2 Mandrill Test Image

As mentioned previously, the Mandrill test image is applied in the same experiment

described above, i.e. the Mandrill image is degraded by five different types of distortion,

and the goal is to find a fused image that is superior to each of the degradation images

individually.

The learning rate and fudge parameter of regularization are respectively 0.01 and 0.001.

In this case, the starting point is the Gaussian noisy image. Numerical results, plots of

MSE, PSNR, and SSIM against λ, as well as the visual result are presented in the Tables

5.6, and Figures 5.24, 5.25, 5.26 and 5.27, respectively.

MSE PSNR SSIM

Gaussian noisy mean contrast stretched 1045.5 17.93 0.66

Gaussian noisy mean-shifted 423.08 21.86 0.65

Blurring 683.49 19.78 0.300

Gaussian noise 324.31 23.02 0.65

Salt and pepper 910.08 18.54 0.54

Fusion image-λ = 0.01 323.53 23.03 0.65

Fusion image-λ = 2 193.44 25.26 0.74

Fused image-λ = 2.5 186.51 25.42 0.75

Fused image-λ = 3.5 182.81 25.51 0.76

Table 5.6: Numerical results for the fusion of a set of distortion images. (The starting

point is the Gaussian noisy image of Mandril).
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Figure 5.24: Change of MSE value with respect to λ. (The starting point is the Gaussian

noisy image of Mandril).

Figure 5.25: Change of PSNR value with respect to λ. (The starting point is the Gaussian

noisy image of Mandril).
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Figure 5.26: Change of SSIM value with respect to λ.(The starting point is the Gaussian

noisy image of Mandril).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.27: Visual results for the fusion of a set of distortion versions of the test image

Mandrill. (a) Original image. (b) Gaussian noisy mean contrast Stretched. (c) Gaussian

noisy mean shifted. (d) Blurring. (e) Gaussian noise. (f) Salt and pepper noise. (g)

Fused image (λ = 2.5). (h) Fused image (λ = 3.5). (i) Fused image (λ = 5). (The

starting point is the Gaussian noisy image of Mandril).
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5.4 Fusion Degraded Images In The Case That H = Dz

Dz in the equation5.5 is local averaging followed by downsampling factor of z . Following

are some experiments in which degradation transformation operators other than identity

operators are applied. In these cases, the goal is to demonstrate how flexible our methods

are with respect to applying any type of degradation operator.

5.4.1 Zooming a Set of Noisy Images

5.4.1.1 Cameraman Test Image

In this experiment, the following conditions and assumptions are considered.

• Test image “Cameraman” is used as a reference image, which has a size of 256×256.

• local averaging followed by a downsampling factor transformation factor of two is

taken into account as H in the equation 5.5.

• distortion happened in the following manner:

First, local averaging followed by a downsampling transformation factor of two is

applied to the original image of the Cameraman, resulting in an image with a size

of 128× 128Four degraded images are obtained with a size of 128× 128 by adding

Gaussian noise, whose mean value is zero and variance is 0.005, four times to the

downsampled image of Cameraman. These four degraded images are considered as

y1, y2, y3, y4 in the equation 5.5.

• Fudge parameters for the regularization term and the learning rate of the gradient

descent algorithm (1) are 0.001 and 0.1.

• In order to start the algorithm we need an initial point. The arithmetic mean of

y1, y2, y3, and y4 is selected as the starting point. Note that, this is an arithmetic

mean of resized input images using interpolation. The following two results are
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(a) (b)

Figure 5.28: Visual results of one of the noisy images and resized version of it. a) The

Cameraman’s image is degraded by local averaging followed by a downsampling factor of

two and Gaussian noise. (b) The resized version of the distorted image (a) by applying

bicubic interpolation.

presented for both bicubic interpolation and nearest interpolation of y1, y2, y3, and

y4.

• Since downsampling occurs in these examples, it is not expected to obtain optimal

images whose PSNR and SSIM are significantly higher than the starting point, and

each of the distortion images individually. Although there is a small increase in

these values. As can be seen from the virtual result, denoising does take place.

1. Result obtained by using bicubic interpolation to resize the images

Figure 5.28 shows one of the noisy images as well as the resized version of it. The

arithmetic mean of resized versions of images is used as the starting point of the

algorithm 1. The learning rate is 0.01 and the fudge parameter for the regularization

is 0.001. With increased λ in 5.5, the denoised images is obtained with higher values

of PSNR, SSIM, and lower values of MSE compare to each resized version of y1, y2,

y3, and y4. It can be seen that the lowest MSE and highest PSNR is obtained when
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MSE PSNR SSIM

Resize of noisy image 1 348.61 22.70 0.44

Resize of noisy image 2 346.68 22.73 0.44

Resize of noisy image 3 346.09 22.76 0.44

Resized of noisy image 4 351.93 22.66 0.44

Arithmetic mean of 4 Resize of noisy images 197.52 25.17 0.65

Fused image-λ = 0 197.53 25.17 0.65

Fusion image-λ = 1 182.59 25.51 0.75

Fusion image-λ = 1.5 182 25.53 0.77

Fusion image-λ = 2.5 186.59 25.42 0.79

Table 5.7: Numerical results for the fusion of a set of distortion images. (In the case of

bicubic interpolation used to resize the noisy Cameraman images).

λ = 1.5, and the highest SSIM corresponds to λ = 2.5 (The numerical result has

been compiled in the Table 5.7). The plots of MSE, PSNR, SSIM against λ, and the

visual result, are presented in Figures 5.29, 5.30, and 5.31 and 5.32, respectively.

Figure 5.29: Change of MSE value with respect to λ. (In the case of bicubic interpolation

used to resize the noisy Cameraman images).
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Figure 5.30: Change of PSNR value with respect to λ. (In the case of bicubic interpolation

used to resize the noisy Cameraman images).

Figure 5.31: Change of SSIM value with respect to λ. (In the case of bicubic interpolation

used to resize the noisy Cameraman images).
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(a) (b) (c)

(d) (e) (f)

Figure 5.32: Visual results for the fusion of a set of distortion of the test image Camera-

man. (a) Original image. (b) One of the resized versions of the Gaussian noisy image.

(c) The arithmetic mean of four resized versions of the noisy image. (d) Fused image

(λ = 0). (e) Fused image (λ = 1.5). (f) Fused image (λ = 2.5) (In the case of bicubic

interpolation used to resize the noisy Cameraman images).

2. Result obtained by using nearest interpolation to resize the images

Here, the parameters and starting point are the same as those used in examples

that used bicubic interpolation for resizing images. The goal is to combine these

distorted images and obtain a fused image that is superior to each distorted image

by solving the optimization problem 5.5. This means that it is aimed to obtain a

fused image that has both higher PSNR and SSIM and lower MSE as compared to

the individual distorted images. The highest PSNR and SSIM values are obtained
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when λ = 3.8, as shown in the plots of 5.33, 5.34, and 5.35 over the selected range

of λ. Additionally, the corresponding MSE value is the lowest at λ = 3.8. Figures

5.8, 5.33, 5.34, 5.35 and 5.36 provide numerical results, plots of MSE, PSNR, SSIM,

and visual results, respectively.

MSE PSNR SSIM

Resized version of noisy image 1 490.40 21.22 0.36

Resized version of noisy image 2 488.77 21.23 0.36

Resized version noisy image 3 490.05 21.22 0.37

Resized version of noisy image 4 491.13 21.21 0.36

Arithmetic mean of 4 resized version of noisy images 261.40 23.95 0.58

Fused image-λ = 0 261.40 23.95 0.58

Fusion image-λ = 0.01 261.4 23.95 0.58

Fused image-λ = 1 219.27 24.72 0.69

Fused image-λ = 2.5 195.07 25.22 0.77

Fused image-λ = 3.8 191.48 25.30 0.79

Fused image-λ = 4.5 192.49 25.28 0.78

Table 5.8: Numerical results for the fusion of a set of distortion images. (In the case of

nearest interpolation used to resize the noisy Cameraman images).
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Figure 5.33: Change of MSE value with respect to λ. (In the case of nearest interpolation

used to resize the noisy Cameraman images).

Figure 5.34: Change of PSNR value with respect to λ. (In the case of nearest interpolation

used to resize the noisy Cameraman images).
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Figure 5.35: Change of SSIM value with respect to λ. (In the case of nearest interpolation

used to resize the noisy Cameraman images).
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(a) (b) (c)

(d) (e) (f)

Figure 5.36: Visual results for the fusion of a set of distortion versions of the test image

Cameraman. (a) Original image. (b) One of the resize of Gaussian noisy image. (c) The

arithmetic mean of four resizes the noisy image. (d) Fused image (λ = 1). (e) Fusedimage

(λ = 2.5). (f) Fused image (λ = 3.8) (In the case of nearest interpolation used to resize

the noisy Cameraman images).

5.4.1.2 Mandrill Test Image

The previous example is redone by applying the Mandrill test image with the same

assumptions, except that in this case, the degradation operator H in equation 5.5 is set

as local averaging followed by a downsampling factor of 4. Figures 5.9, 5.37, 5.38, 5.39

and 5.40 provide numerical results, plots of MSE, PSNR, SSIM with respect to λ in the

selected range, and visual results.
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MSE PSNR SSIM

Resize of noisy image 1 855.47 18.80 0.27

Resize of noisy image 2 853.90 18.81 0.27

Resize of noisy image 3 856.87 18.80 0.27

Resize of noisy image 4 870.21 18.73 0.27

Arithmetic mean of 4 resize of noisy images 614.78 20.24 0.37

Fusion image-λ = 0 614.78 20.24 0.37

Fusion image-λ = 1 599.15 20.35 0.38

Fusion image-λ = 2.5 583.73 20.46 0.39

Fusion image-λ = 4.5 577.70 20.51 0.38

Table 5.9: Numerical results for the fusion of a set of distortion images. (In the case of

nearest interpolation used to resize the noisy Mandrill images).

Figure 5.37: Change of MSE value with respect to λ. (In the case of nearest interpolation

used to resize the noisy Mandrill images).
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Figure 5.38: Change of PSNR value with respect to λ. (In the case of nearest interpolation

used to resize the noisy Mandrill images).

Figure 5.39: Change of SSIM value with respect to λ. (In the case of nearest interpolation

used to resize the noisy Mandrill images).
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(a) (b) (c)

(d) (e) (f)

Figure 5.40: Visual results for the fusion of a set of distortion of the test image Mandrill.

(a) Original image. (b) One of the resize of Gaussian noisy image. (c) The arithmetic

mean of four resizes the noisy image. (d) Fused image (λ = 1). (e) Fused image (λ = 2.5).

(f) Fused image (λ = 3.8). (In the case of nearest interpolation used to resize the noisy

Mandrill images).

5.4.2 Fusion of Different Types of Image Distortion

5.4.2.1 Cameraman Image

1. Result obtained by using bicubic interpolation to resize the images

In this experiment, the local averaging followed by a downsampling transformation

factor of 2 which is associated with H in the equation 5.5 is applied on the test

image “Cameraman” and then it is degraded by five different distortions similar
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to experiment 5.3.2 (except for blurring, a 5-by-5 filter is applied). Each degraded

image corresponds to one of y1, y2, y3, y4, and y5 in equation 5.5. Images are resized

using bicubic interpolation. Both degraded images and resized versions of them are

shown in Figure 5.41.

All the other values for the parameters are the same as the experiment 3. A resized

version of the mean shift image is used as a starting point for the algorithm 1. The

numerical results in Table 5.10 illustrate that the superior image has higher PSNR,

and SSIM and lower MSE values in comparison to any of the degraded images

individually. The plots of MSE, PSNR, and SSIM with respect to λ are shown in

Figures 5.42, 5.43, and 5.44. The visual result is presented in Figure 5.45.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.41: Visual results of resizing a set of distortion of the test image Cameraman

by bicubic interpolation. (a) Mean contrast stretched. (b) Mean shift. (c) Blurring.

(d) Salt and pepper noise. (e) Gaussian noise. (f) The resized version of mean contrast

stretched. (g) The resized version of mean shift (h)The resized version of blurring. (i)

The resized version of salt and pepper. (j) The resized version of Gaussian noise.



Chapter 5. Experiments and Results 90

MSE PSNR SSIM

Resized version of mean contrast stretched image 1043.53 17.94 0.45

Resized version of mean shift image 459.57 21.50 0.42

Resized version of Blurred image 695.54 19.70 0.56

Resized version of salt and pepper noisy image 745.85 19.40 0.55

Resized version of Gaussian noisy image 348.40 22.70 0.44

Fused image-λ = 0 459.57 21.50 0.42

Fused image-λ = 4.5 341.61 22.79 0.69

Fused image-λ = 5.5 343.93 22.76 0.71

Fused image-λ = 7 352.43 22.60 0.72

Table 5.10: Numerical results for the fusion of a set of distortion images. (In the case of

bicubic interpolation used to resize the Cameraman images).

Figure 5.42: Change of MSE value with respect to λ. (In the case of bicubic interpolation

used to resize the Cameraman images).
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Figure 5.43: Change of PSNR value with respect to λ. (In the case of bicubic interpolation

used to resize the Cameraman images).

Figure 5.44: Change of SSIM value with respect to λ. (In the case of bicubic interpolation

used to resize the Cameraman images).
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(a) (b) (c)

(d) (e) (f)

Figure 5.45: Visual results for the fusion of a set of distortion of the test image Cam-

eraman. (a) Original image. (b) The resized version of noisy mean shift (starting point)

(c) Fused image (λ = 0) (d) Fused image (λ = 4.5). (e) Fused image (λ = 5.5). (f)

Fused image (λ = 7). (In the case of bicubic interpolation used to resize the Cameraman

images).

2. Result obtained by using nearest interpolation to resize the images

The nearest interpolation is used instead of bicubic interpolation in this experiment.

The assumptions and values remain the same as those in the previous example.

Table 5.11 and Figures 5.46, 5.47, 5.48, and 5.49, and 5.50 show the result both

numerically and visually. It can be seen that in the Table and Figures the superior

fused image was obtained when λ = 9 in terms of PSNR and SSIM in the selected

range of λ.



Chapter 5. Experiments and Results 93

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.46: Visual results of resizing a set of distortion types of the test image Camera-

man by nearest interpolation. (a) Mean contrast stretched. (b) Mean shift. (c) Blurring.

(d) Salt and pepper noise. (e) Gaussian noise. (f) The resized version of mean contrast

stretched. (g) The resized version of mean shift (h)The resized version of blurring. (i)

The resized version of salt and pepper. (j) The resized version of Gaussian noise.
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MSE PSNR SSIM

Resized version of mean contrast stretched image 1201.25 17.33 0.37

Resized version of mean shift image 607.20 20.29 0.35

Resized version of Blurred image 707.48 19.63 0.56

Resized version of salt and pepper noisy image 1142.06 17.55 0.51

Resize of Gaussian noisy image 485.02 21.27 0.37

Fused image-λ = 0 607.20 20.97 0.35

Fused image-λ = 1 508.55 21.06 0.41

Fused image-λ = 7.5 337.33 22.85 0.72

Fused image-λ = 9 340.79 22.86 0.73

Table 5.11: Numerical results for the fusion of a set of distortion images. (In the case of

nearest interpolation used to resize the Cameraman images).

Figure 5.47: Change of MSE value with respect to λ. (In the case of nearest interpolation

used to resize the Cameraman images).
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Figure 5.48: Change of PSNR value with respect to λ. (In the case of nearest interpolation

used to resize the Cameraman images).

Figure 5.49: Change of SSIM value with respect to λ. (In the case of nearest interpolation

used to resize the Cameraman images).
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(a) (b) (c)

(d) (e) (f)

Figure 5.50: Visual results for the fusion of a set of distortion of the test image Camera-

man. (a) Original image. (b) The resized version of noisy mean shifted (starting point).

(c) Fused image (λ = 0). d) Fused image (λ = 5.5). (e) Fused image (λ = 7.5). (f)

Fused image (λ = 9.5)(In the case of nearest interpolation used to resize the Cameraman

images).

5.4.2.2 Mandrill Test Image

In order to demonstrate that the method is flexible and can be applied to a wide variety

of degradation operators and images, here Mandrill image which has been degraded by

local averaging followed by a downsampling factor of 4 transformation is applied. The

type of degradation is the same as in the previous example. The input images need to

be resized before applying the algorithm 1, as indicated in the previous example. The



Chapter 5. Experiments and Results 97

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.51: Visual results of resizing of a set of distortion of the test Mandrill image.

(a) Mean contrast stretched. (b) Mean shift. (c) Blurring. (d) Salt and pepper noise.

(e) Gaussian noise. (f) The resized version of mean contrast stretched. (g) The resized

version of mean shift (h)The resized version of blurring. (i) The resized version of salt

and pepper. (j) The resized version of Gaussian noise.

nearest interpolation is used to resize our input images ( Figure 5.51). The parameters

and assumptions are the same as in the previous example that the nearest interpolation

is used to resize the Cameraman’s images. The resized version of the Gaussian noisy

image is used as the starting point. By increasing lambda, it is expected to obtain a

superior fused image both virtually and numerically in terms of MSE, PSNR, and SSIM

within the range of lambda selected. In Table 5.12, it is shown that a superior fused

image is obtained when λ = 12.5 in the range of λ selected. Figures 5.51, 5.52, 5.53, and

5.54, and 5.55 show the result visually.
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MSE PSNR SSIM

Resize of mean contrast stretched image 1573.76 16.16 0.29

Resize of mean shift image 954.89 18.33 0.27

Resize of Blurred image 861.82 18.77 0.24

Resize of salt and pepper noisy image 1397.31 16.67 0.35

Resize of Gaussian noisy image 859.29 18.78 0.27

Fusion image-λ = 1 829.41 18.94 0.28

Fusion image-λ = 5.5 719.60 19.55 0.32

Fusion image-λ = 9 670.73 19.80 0.33

Fusion image-λ = 12.5 668.80 19.87 0.32

Table 5.12: Numerical results for the fusion of a set of distorted images. (In the case of

nearest interpolation used to resize the Mandrill image).

Figure 5.52: Change of MSE value with respect to λ. (In the case of nearest interpolation

used to resize the Mandrill image).
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Figure 5.53: Change of PSNR value with respect to λ. (In the case of nearest interpolation

used to resize the Mandrill image).

Figure 5.54: Change of SSIM value with respect to λ. (In the case of nearest interpolation

used to resize the Mandrill image).
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(a) (b) (c)

(d) (e) (f)

Figure 5.55: Visual results for the fusion of a set of distortion of the test image Mandrill.

(a) Original image. (b) The resized version of noisy mean shift (starting point). (c)

Fused image (λ = 0). d) Fused image (λ = 5.5). (e) Fused image (λ = 9). (f) Fused

image (λ = 12). (In the case of nearest interpolation used to resize the Mandrill image).



Chapter 6

Conclusion and Future Work

Image fusion is primarily focused on combining information from multiple images of a

scene to create a single image that conveys enhanced information. Recent years have

witnessed significant advancements in image fusion methods, highlighting their progress.

This thesis aims to enhance the quality of fused images through the using of the struc-

tural similarity index measure, which is widely accepted as an image quality measure

consistent with the Human Visual System.

A general mathematical and computational framework for image fusion is provided, where

the data fidelity term of the objective function in the inverse problem is based on SSIM-

Mean. The incorporation of SSIM-Mean as a fidelity term is facilitated through the

framework, allowing its application across a diverse range of applications.

To numerically solve the problem using the gradient descent method, it is necessary to

compute the derivative of the SSIM, which poses a primary challenge in this context.

Given the difficulty in directly differentiating the SSIM expression, an alternative ex-

pression of the SSIM in terms of mean and vector norm is introduced. This alternative

formulation enables the computation of the SSIM’s derivative. Subsequently, algorithms

are proposed to address various SSIM-based imaging tasks, providing practical solutions

for their implementation.

101
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The obtained results demonstrate consistency with the expected results both qualita-

tively and quantitatively. Through the implementation of experiments, it is observed

that the fused image exhibits superior performance in terms of metrics such as MSE,

PSNR, SSIM, and, most importantly, visual quality when compared to the degraded in-

put images.

A comparison between the proposed method and Brunet’s methods can be made specif-

ically for calculating SSIM Mean without considering regularization. This is due to the

lack of flexibility in Brunet’s method for incorporating regularization. It is observed that

the numerical solution obtained from the proposed methods matches exactly with the

solution obtained from Brunet’s method in one dimensional case.

6.1 Thesis Contribution Highlights

The main contribution of this thesis can be summarized as follows:

• New expression of SSIM and its derivative

Applying the SSIM as the data fidelity of the objective function in inverse problems

poses challenges due to the inclusion of mean, variance, and covariance terms in

its definition. In numerical algorithms, particularly those based on gradients, it

is necessary to compute these statistical quantities and their derivatives at each

iteration. In order to simplify the calculation of SSIM and its derivatives, new

expressions are introduced in the background chapter, formulated in terms of mean

and norm. These expressions greatly facilitate the calculation of SSIM and its

derivatives, simplifying the overall process in numerical algorithms. By using this

new expression, SSIM can be applied as data fidelity in the formulation of inverse

problems without any additional assumptions. Previous studies, such as [61] and

[60], have simplified the SSIM formula for zero-mean images and applied it to
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optimization problems.

• General formulation of SSIM-Mean optimization problems

The SSIM Mean optimization problems are formulated as follows:

n∑
i=1

pi SSIM(Hix,yi) + λg(x),

where {y1,y2, . . . ,yn} is a set of n vectors which their size is n×1 and {p1,p2, . . . ,pn}

is a set of associated weights across patches, {H1,H2, . . . ,Hn} is a set of degrada-

tion operators which its size is n × m , g(x) is a regularization term, and λ is its

corresponding regularization parameter.

As indicated above, Hi is considered in a generalized form, i.e. it can be regarded

as any degradation operator. Based on our knowledge all previous works consider

H = I where I is the identity matrix. The proposed formulation offers flexibility

for incorporating additional terms into the criteria and applying various types of

regularization.

6.2 Future Work

The proposed methods in this thesis open several new directions for future work.

• Other types of distortions can be considered in the future as a result of this general

formulation. For instance, nighttime images pose a challenge in terms of compre-

hensibility due to the lack of background context caused by poor illumination. For

instance, when observing an image captured by a traffic camera on the web or dis-

played on TV, it becomes challenging to determine the specific location within the

town, the number of lanes on the highway, or nearby buildings. The screen merely

displays moving headlights. To address this issue, our solution is based on a simple

observation. The fact that the scene can be observed by the traffic camera all day
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long and a high-quality background can be created is exploited. Subsequently, the

context of the low-quality image can be enhanced by fusing the appropriate pixels.

• The formulation of the fusion image allows for the application of other degradation

operators and regularization methods. In terms of changing the degradation oper-

ator, one example can be applying a local averaging operator. The result will be

affected by changing the degradation operator, as gradient-based methods are used

and consequently the derivative also includes the degradation operator. In terms of

regularization, changing the regularization term would have an impact on the final

result as it is a part of the derivative of the objective function. Total variation reg-

ularization is used here and it perceives the edges, but an alternative choice could

be L2 regularization, which is differentiable and can cause considerable smoothing

of the solution [19].

• The application of this method extends to various image processing domains, in-

cluding medical imaging. Medical imaging techniques, including Computed Tomog-

raphy (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography

(PET), and Single-Photon Emission Computed Tomography (SPECT), provide

clinicians with valuable insights into the structural characteristics and soft tissue

of the human body. Each imaging method exhibits distinct characteristics, and

different sensors capture unique information about the same anatomical area. The

objective of image fusion is to enhance contrast, fusion quality, and the overall

perceptual experience. The fused image should meet to the following criteria: (a)

it should faithfully preserve all information from the source images, (b) it should

avoid introducing any artificial information such as artifacts, and (c) undesirable

states such as noise should be minimized or eliminated. The proposed methods

have the potential to be applied in the field of medicine to obtain superior fused

images.



Appendix A

Calculation of SSIM Derivative

A.1 Matrix Calculus

This section defines some functions and calculates their derivatives to use them for our

purpose function’s derivative.

1. Let

Θ(x) = cTx, (A.1)

where c is a constant vector and x = [x1, . . . , xn] is a vector. Θ(x) can be expressed

as

Θ(x) =
n∑

j=1

cjxj. (A.2)

Derivative of the equation A.2 is

∂Θ(x)

∂xk
=

n∑
j=1

cj
∂xj
∂xk

=
n∑

j=1

xjδjk = xk. (A.3)

∇Θ(x) = c. (A.4)

2. ψ(x) is defined as follows,

ψ(x) = xTBx =
n∑

i=1

n∑
j=1

xibijxj. (A.5)
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The derivative of ψ(x) is

∂ψ(x)

∂xk
=

n∑
i=1

n∑
j=1

bij
∂(xixj)

∂xk

=
n∑

i=1

n∑
j=1

bij(δikxj + xiδjk)

=
n∑

j=1

bkjxj +
n∑

i=1

bikxi

= (Bx)k +
n∑

i=1

(BT )kixi

= (Bx)k + (BTx)k.

(A.6)

As a result, it can be written as,

∇ψ(x) = (B + BT )x. (A.7)

3. The derivative of ∥ϕx− x∥22 is aimed to calculated.

Using

∥x∥2 =
√
xTx (A.8)

It can be obtained using the transpose operator’s properties,

∥ϕx− y∥22 = (ϕx− y)T (ϕx− y)

= ((ϕx)T − yT )(ϕx− y) = (xTϕT − yT )(ϕx− y)

= xTϕTϕx− (ϕx)Ty − yTϕx+ yTy

= xTϕTϕx− 2yTϕx+ yTy

= xTϕTϕx− 2(ϕTy)Tx+ yTy

(A.9)

The formulas A.1, A.4, A.5, and A.7, can be used

∇(∥ϕx− y∥22) = −2ϕTy + (ϕTϕ+ (ϕTϕ)T )x, (A.10)

,

∇(∥ϕx− y∥22) = −2ϕTy + 2ϕTϕx = 2(ϕTϕx− ϕTy). (A.11)

Note,

(ϕTϕ)T = (ϕ)T (ϕT )T = ϕTϕ. (A.12)
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A.2 Derivatives of Matrices and Vectors

Let y be a column vector m× 1 and H be a n× m matrix. In this case, Hy is a vector of

size n× 1.

Hx is assumed to be the mean of Hx (it is scalar) and its size is 1× 1.

Hy is defined as

Hx =
1

n

[
1 · · · 1

]
() =

1

n
1Hx, (A.13)

where 1 =

[
1 · · · 1

]
is a 1× n vector and Hy is n× 1. The derivative of equation A.13 is

∂Hy

∂y
=

1

n
1H. (A.14)

It can be written as follows,

∂Hy

∂y
=

1

n
(1H)T =

1

n
HT1T . (A.15)

Due to the fact that Hy is a scalar, the following can be concluded

(Hy)T = Hy ⇒ ∂(Hy)T

∂y
=
∂Hy

∂y
=

1

n
1H, (A.16)

and,

(Hy)T = Hy ⇒ ∂(Hy)T

∂y
=
∂Hy

∂y
=

1

n
HT1T . (A.17)∥∥Hy − 1THy + x

∥∥2
2
is calculated. The Size of 1T , Hy and x is n×1.

∥∥Hy − 1THy + x
∥∥2
2

is calculated as follows,∥∥Hy − 1THy + x
∥∥2
2
= (Hy − 1THy + x)T (Hy − 1THy + x)

= ((Hy)T − (1THy)T + xT )(Hy − 1THy + x)

= (yTHT − (Hy)T1 + xT )(Hy − 1THy + x)

= (yTHT − (Hy)1 + xT )(Hy − 1THy + x)

= yTHTHy − yTHT1THy + yTHTx− (Hy)1Hy + (Hy)11T (Hy)

− (Hy)1x+ xTHy − xT1T (Hy) + xTx.

(A.18)
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Hy is a vector, and so is 1THy. So when we multiply one by another, it doesn’t matter

what the order is (as long as the dimensions work out). Also this is correct for yTHTx,

xTyH, (Hy)1x, and xT1T (Hy).

As shown in the following,11T = n and 1T1 = Jn×n

11T =

[
1 · · · 1

]
1

...

1

 = 1 + · · ·+ 1 = n. (A.19)

1T1 =


1

...

1


[
1 · · · 1

]
=


1 · · · 1

...
...

...

1 · · · 1

 = Jn×n. (A.20)

The equation A.18 is simplified by substituting equation A.13.

∥∥Hy − 1THy + x
∥∥2
2
= yTHTHy − 2(Hy)1Hy + 2xTHy − 2(Hy)1x+ n(Hy)2 + xTx

= yTHTHy − 2(
1

n
1Hy)1Hy + 2xTHy − 2(

1

n
1Hy)1x+ n(

1

n
1Hy)2 + xTx

= yTHTHy − 2

n
(1Hy)2 + 2xTHy − 2

n
(1Hy)1x+

n

n2
(1Hy)2 + xTx

= yTHTHy − 1

n
(1Hy)2 + 2xTHy − 2

n
(1Hy)1x+ xTx.

(A.21)

In terms of the size of each term of the A.21,

yT : 1× m HT : m× n H : n× m y : m× 1 −→ yTHTHy : 1× 1,

1 : 1× n Hy : n× 1 −→ (1Hy)2 : 1× 1,

xT : 1× n Hy : n× 1 −→ xTHy : 1× 1,

1 : 1× n Hy : n× 1 1 : 1× n x : n× 1 −→ (1Hy)1x : 1× 1,

xT : 1× n x : n× 1 −→ xTx : 1× 1.

(A.22)

Note that xTHy is just the dot product between Hy and x regarded as a column vector,

and respectively for other ones.
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Using formulas A.13 and A.20, the equation A.21 can be rewritten

∥∥Hy − 1THy + x
∥∥2
2
=

∥∥∥∥Hy − 1T 1

n
1Hy + x

∥∥∥∥2
2

=

∥∥∥∥IHy − 1

n
1T1Hy + x

∥∥∥∥2
2

=

∥∥∥∥IHy − 1

n
Jn×nHy + x

∥∥∥∥2
2

=

∥∥∥∥IHy − 1

n
Jn×nHy + x

∥∥∥∥2
2

=

∥∥∥∥(I− 1

n
Jn×n)Hy + x

∥∥∥∥2
2

,

(A.23)

where I is the identity matrix and its size is n× n.

Regarding the size of the terms of A.23

I : n× n J : n× n ⇒ (I− 1

n
Jn×n) : n× n,

(I− 1

n
Jn×n) : n× n H : n× m y : m× 1 ⇒ (I− 1

n
Jn×n)Hy : n× 1,

x : n× 1.

(A.24)

A derivative of A.23 can be taken by using A.11.

∇(
∥∥Hy − 1THy + x

∥∥2
2
) = ∇(

∥∥∥∥(I− 1

n
Jn×n)Hy + x

∥∥∥∥2
2

)

= 2

(((
(I− 1

n
Jn×n)H

)T (
(I− 1

n
Jn×n)H

))
y + ((I− 1

n
Jn×n)H)Tx

)

= 2

(((
HT (IT − 1

n
JT
n×n)

)(
(I− 1

n
Jn×n)H

))
y + (HT (IT − 1

n
JT
n×n))x

)

= 2

(((
HT (I− 1

n
Jn×n)

)(
(I− 1

n
Jn×n)H

))
y + (HT (I− 1

n
Jn×n))x

)

= 2

(((
HT (I− 1

n
Jn×n)

2H
))

y + (HT (I− 1

n
Jn×n))x

)
(A.25)
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The size of each term in equation A.25 is as follows

HT : m× n (I− 1

n
Jn×n) : n× n H;nn× m ⇒

((
HT (I− 1

n
Jn×n)

2H
))

: m× m((
HT (I− 1

n
Jn×n)

2H
))

: m× m y : m× 1 ⇒
((

HT (I− 1

n
Jn×n)

2H
))

y : m× 1

HT : m× n (I− 1

n
Jn×n) : n× n ⇒

((
HT (I − 1

n
Jn×n)

2
))

: m× n((
HT (I− 1

n
Jn×n)

2
))

: m× n x : n× 1 ⇒ (HT (I− 1

n
Jn×n))x : m× 1

(A.26)

A.3 Derivative of SSIM Mean

Let {y1,y2, . . . ,yn} is a set of n vectors, {p1,p2, . . . ,pn} is a set of associated weights ,

and {H1,H2, . . . ,Hn} a set of matrix operators. The derivative of the following formula

is taken,

n∑
i=1

pi

( 2 Hix yi + ε1

Hix
2
+ yi

2 + ε1

)
(∥∥Hix− 1THix+ yi − 1Tyi

∥∥2
2
−
∥∥Hix− 1THix

∥∥2
2
−
∥∥yi − 1Tyi

∥∥2
2
+ ε2∥∥Hix− 1THix

∥∥2
2
+
∥∥yi − 1Tyi

∥∥2
2
+ ε2

)
.

(A.27)

Note that x̄ is scalar and the column vector, hence setting x̄ = 1Tx. The cost function

is

P =
n∑

i=1

piS1S2, (A.28)

where,

S1 =
2 Hix yi + ε1

Hix
2
+ yi

2 + ε1
, (A.29)

S2 =

∥∥Hix− 1THix+ yi − 1Tyi

∥∥2
2
−
∥∥Hix− 1THix

∥∥2
2
−
∥∥yi − 1Tyi

∥∥2
2
+ ε2∥∥Hix− 1THix

∥∥2
2
+
∥∥yi − 1Tyi

∥∥2
2
+ ε2

. (A.30)

Hence by using the product rule,

∂p

∂x
=

n∑
i=1

pi

[∂S1

∂x
S2 +

∂S2

∂x
S1

]
(A.31)



Appendix A. Calculation of SSIM Derivative 111

According the equation A.14 and A.15,

∂S1

∂x
=

2yi
1
n
Hi

T1T (yi
2 +Hix

2
+ ε1)− 2Hix

1
n
Hi

T1T (2yi Hix+ ε1)

(yi
2 +Hix

2
+ ε1)2

=
2yi

1
n
HHi

T1T (yi
2 +Hix

2
+ ε1)− 2Hix

1
n
Hi

T1T (2yi Hix+ ε1)

(yi
2 +Hix

2
+ ε1)(yi

2 +Hix
2
+ ε1)

=
2yi

1
n
Hi

T1T (yi
2 +Hix

2
+ ε1)

(yi
2 +Hix

2
+ ε1)(yi

2 +Hix
2
+ ε1)

−
2Hix

1
n
Hi

T1T (2yi Hix+ ε1)

(yi
2 +Hix

2
+ ε1)(yi

2 +Hix
2
+ ε1)

=
2yi

1
n
Hi

T1T

(yi
2 +Hix

2
+ ε1)

−
2Hix

1
n
Hi

T1TS1

(yi
2 +Hix

2
+ ε1)

=
2yi

1
n
Hi

T1T − 2Hix
1
n
Hi

T1TS1

(yi
2 +Hix

2
+ ε1)

=
2
n
Hi

T1T (yi −HixS1)

(yi
2 +Hix

2
+ ε1)

(A.32)

In regards to the size of each term in A.32

Hi
T : m× n 1T : n× 1 yi : 1× 1 Hix : 1× 1 S1 : 1× 1 −→ Hi

T1T (yi −HixS1) : m× 1

yi
2 : 1× 1 Hix

2
: 1× 1 ε1 : 1× 1

(A.33)
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By considering the equation A.25

∂S2

∂x
=

[
2

(((
Hi

T (I− 1
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(A.34)

In terms of the size of each term in A.34,
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