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Abstract 

This work examines the stability of low inertia micro-grids (MGs). The lack of inertia 

in such power electronics dominated grid is a pressing matter that directly impacts its 

operation and stability. The investigated MG is formed by power electronics-based DC-AC 

converters; each of them is controlled by a virtual inertia controller to emulate certain 

characteristics of the existing synchronous generators-based grid. Two methods to study 

the stability of the given MG are discussed. The first one is a systematic construction of 

Lyapunov’s energy function using Popov’s criterion. This function is used to construct a 

region of attraction (ROA) that defines the stability boundary of the multi-VSG MG. A 

systematic calculation of the Critical Clearing Time is also introduced here to provide a 

quantitative measure of MG stability to complete the study. 

The second method to study the MG stability is a proposed convex hull-based trajectory 

reversing method. The proposed method estimates and enlarges the ROA of grid connected 

VSGs MG, regardless of complexity of its model or control scheme. A family of trajectories 

initiated close to the VSG equilibrium point is generated and evaluated at successive time 

steps Δ𝑡. Then, convex hull algorithm finds the minimum region that contains all these 

points. Moreover, this work proposed a new technique to define the set of initial points 

needed by the algorithm. Compared to Lyapunov’s method, the proposed method does not 

rely on finding a specific Lyapunov function or satisfying certain conditions. A case study 

is conducted to validate the algorithm performance and its estimated ROA by both methods.  

Finally, this work also proposes a new nonlinear controller that enhances system 

response and increases stability. The proposed enhanced virtual inertia controller (EVIC) 

changes VSG inertia as a function of the disturbance introduced to the system. It relies on 

a simple tunable nonlinear equation without any extra sensors, complex algorithms, or prior 

knowledge of MG configuration or parameters. The results show the validity of the 

proposed EVIC to reduce oscillations in grid frequency and output power, as well as 

increase the area of attraction, and hence, MG overall stability and robustness. 
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1. Introduction and literature review 

1. 1. Introduction 

AC power system was first introduced to the United States in 1885 and in 1886 the first 

1-phase, 13-mile-long transmission line was installed to carry electricity generated by 

waterpower; this power was used only for lighting. A 2-phase system was later introduced 

by Tesla in 1888, and more importantly, he introduced the 3-phase system which started 

the transition to a poly-phase system. AC-based power systems benefit from cheaply 

available AC transformers which, without controls, enabled transmitting power at much 

higher voltages than generation voltages, which in return resulted in highly-efficient 

transmission lines [1], [2]. Generation voltages range from 13.8 kV to 24 kV, and they can 

be stepped up using transformers to higher voltages (HV) i.e., up to 230 kV, extra high 

voltage (EHV) up to 765 kV, or ultra high voltage (UHV) up to 1500 kV. In return, the 

capacity of the transmission line is significantly increased roughly by the square of the 

voltage (assuming that the thermal limit is maintained).   

The search for more energy sources has continued, powered by the need to match the 

increasing demand in electricity. With oil, gas, coal facing political and environmental 

headwinds and increased awareness of their long-term impacts on global warming, 

renewable energy sources (RESs) become more attractive as they inherently provide an 

“endless” supply of energy with much less damage to the environment.  The raw data as 

well as the ongoing transformation to RES in pioneering countries, such as Denmark, shows 

that 100% RES based generation is possible [3]. However, hybrid generation using small 

safe and efficient nuclear reactors powering steam turbines and synchronous generators 

(SGs), and RESs may be seen to be the future suppliers of electricity. 

However, bringing in RESs to an already established AC power system raises many 

challenges mainly due to their intermittent and distributed nature. Many other technologies 

have merged to offer solutions for such challenges. Power electronic converters, in 

conjunction with proper control and energy storage systems (ESSs), were able to convert 

RESs to constant, dispatchable, and reliable generators which are compatible with current 

AC grid standards.  Due to their distributed nature, transmission lines are needed to transfer 
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RESs from remote areas such as off-shore wind farms to the closest grid connection point. 

With the location limit, AC transmission lines are not suitable as they require transformers 

stations every 250 km or so. High voltage dc (HVDC) solves this issue by offering much 

higher efficiency and transmission voltages than what AC transmission lines provide [4].  

 Moreover, instead of remote large power generation stations that transfer all the 

generated power to remote consumers, a more integrated power generation / consumption 

approach is considered. In this, RES power is generated and consumed locally, forming a 

new structure concept in power systems, known as a micro-grid (MG). These MGs are to 

be interconnected to each other and to the main utility grid. Such integration, while it is 

economically and environmentally plausible, produces challenges to the overall grid 

stability and reliability.   

Fundamentally, two basic metrics that define the operational behavior of the AC grid 

are its constant voltage and constant frequency (within a few percent of a nominal range). 

In a typical AC power system, the grid frequency reflects the balance between grid total 

power generation and its total power consumption. Hence, based on its deviation from its 

standard value (60 Hz in North America, and 50 Hz in Europe and other parts of the world), 

the generated power is to be reduced (if the frequency is higher) or increased (if the 

frequency is lower). Moreover, such deviations can be easily detected by power generation 

units and are used to enable equal or proportional load sharing among them. The rate of 

change of frequency (RoCoF) is an important criterion to study AC system stability at large 

[5]. It is also worth mentioning that this is not limited to large-scale utility grids or 

microgrids. Small-scale power systems also exist in ships, trains, and aircrafts. They 

operate on a wider range of frequencies from 16.7 Hz to 400 Hz, based on a trade-off 

between weight and efficiency [6].  

What has been established so far is that by controlling grid frequency we can, in fact, 

guarantee system stability by matching the generated power to the consumed power. Also, 

based on its deviation from the nominal frequency, power sharing among multiple 

generating units can be achieved. Hence, the aim here is to reserve these characteristics 

while enabling more renewable energy integration and merging technology. 
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1. 2. Literature review 

Over the years, the legacy electric grid has been successful to supply its customers with 

electricity at constant voltage and constant frequency during both steady-state and transient 

operations. This has been achieved by continuously balancing the input mechanical power 

with the output electrical power of each generating unit while maintaining the grid 

frequency substantially constant. During steady-state, to keep the load sharing between the 

connected generators (mostly SG) at the desired levels, the controller of each generator 

monitors the grid frequency and adjusts the amount of input power accordingly. During 

transient conditions, the system kinetic energy is stored in the rotating mass of each 

generator (collectively known as the grid inertia) and it allows a gradual change in the grid 

frequency in proportion to the amount of the load transient. This allows the other generators 

to gradually adjust their input power as well. Hence, the grid stability is preserved [1].  

The energy stored in the inertia constant 𝑀 of a SG is the maximum amount of kinetic 

energy a SG can release to supply its connected load (i.e. power reference) before losing 

its reference frequency and voltage [7]. By contrast, a power electronic converter does not 

possess any such kinetic energy buffers, hence, it has no “inertia” associated with it. This 

imposes a serious constraint to the power system stability as more renewable energy 

sources are continuously being added to the grid which rely on power electronics-based 

converters [8]. A lower grid inertia implies that the grid is more susceptible to fast dynamics 

which may result in poor regulation, cascaded failures, or even load shedding [9]. 

Different approaches are being taken to mitigate these issues from the grid-side and as 

well as the converter-side. From grid-side, instead of running fewer SGs when power 

electronics-based generation is increased (i.e. high penetration level), multiple SGs are run 

at partial loading to keep the grid inertia as high as possible [1]. The advantages of such a 

solution are a) There is no major modification of the up and running utility grid; b) It is an 

easy fix to deploy; c) It requires no modifications from power electronics-based generation; 

and d) It requires no energy storage to be added. The short comings of such a solution are 

that; a) It is a temporary fix, and it has an upper limit; b) SGs will be running at low 

efficiency which ultimately negate the original intention of reducing carbon emissions 

while increasing the overall production; and c) MGs are based on distributed generations 
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that localize power production and consumption which are by-and-large interfaced with 

power electronic converters. Thus, presence of SGs is limited if any.  

A more practical solution, from the converters-side, is to take advantage of their fast 

response (in the range of hundreds of microseconds to a couple of milliseconds) to track a 

desired reference. That is, by solving the SG mathematical model online, a slower reference 

signal is generated that holds all characteristics of SGs and, more importantly, their inertial 

behavior. This solution was introduced in [10], [11] and was referred to as a virtual 

synchronous generator (VSG) or virtual synchronous machine (VISMA) [12], [13]. A 

similar concept was introduced in [14] as a synchronverter. This idea attracted much 

interest from different research groups such as the VSYNC project [10], [12], [15]–[21],  

Institute of Electrical Power Engineering at Clausthal University of Technology in 

Germany [22], Kawasaki Heavy Industries (KHI) [23], and ISE laboratory in Osaka 

University [24]–[28]. These virtual machines have proven to be effective in mimicking the 

desired SG characteristics and maintain MG stability at high penetration levels (ratio of 

RES based generation to conventional generation).  

However, in the literature, mainly small-signal analysis is provided despite the fact that 

MGs are more likely to experience large-signal disturbances [29]–[32]. Moreover, large-

signal modelling and stability are performed considering only one or two VSG MG 

references [33]–[35]. In these references, the VSG model is mostly based on an ideal 

machine model which is not suitable for power electronics converters [14], [34]. While 

many studies have been introduced in the literature that focus on estimating the region of 

attraction (stability) of SG and VSG, they either only based on deriving a Lyapunov or 

Lyapunov-like function for a MG with only one or two-VSGs [34], [35], or they lacked a 

systematic methodology to construct it for a MG with n-VSGs, as the focus is on enlarging 

the estimated region of attraction [36], [37]. By contrast, this work provides a large-signal 

stability study of a MG with n-VSGs through a systematic approach to model such a MG 

and estimate its region of attraction. The estimation method adopted here gives slightly 

more conservative results than the ideal estimation. However, it has considerably higher 

accuracy when compared with the reduced models introduced in [33]. It is therefore, 
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considered to be sufficient considering other operating limitations and assumed to-be-

installed protection equipment. It is also preferred for its systematic construction.  

Finally, many virtual inertia controllers are proposed in [35], [38] to enhance VSG 

performance and stability. However, in [24], [38] inertia controller discontinuously varies 

the inertia coefficient using a piecewise function, in which, the inertia coefficient has only 

two values (maximum and minimum) which are assigned based on the sign of the rate of 

variation of the power angle and rate of variation of the frequency (positive or negative). 

Thus, for any given small variation in either quantity, the inertia coefficient varies by a very 

large magnitude. Moreover, in the presence of measurement noise, there is no way to know 

the value of inertia assigned to a given VSG in the MG. This adds more ambiguity to the 

VSG parameters at any given operating point (even at steady state) and adds complexity to 

any MG stability analysis.  

In [39], VSG inertia  coefficient is varied between two levels based on a complex 

algorithm where a fuzzy-logic based AI algorithm is designed and trained to adjust the 

value of the inertia coefficient of a given VSG based on the rate of variation of its power 

angle and rate of variation of the frequency, instead of using a discontinuous piecewise 

function as in [24], [38]. While it provides a good adaptive behavior to the VSG, it adds to 

the system complexity and degrades the reliability. In this work, an enhanced virtual inertia 

controller using a simple analytical function is proposed which gives adaptive 

characteristics to the VSG controller. Variation of the inertia coefficient is proportional to 

the amount of variation of VSG’s power angle and frequency instead of the sign of their 

product as in [24], [38], or a complex algorithm as in [39].  It also, has the advantage of 

being able to bring the VSG to a steady state more quickly by changing the inertia 

coefficient in a computable predictable manner.   
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1. 3. Problem statement 

Compared to a legacy-type large-scale electric grid, power generation within new 

emerging micro-grids (MGs) is mostly dominated by renewable energy sources (RESs) or 

energy storage units fed by power electronic converters. Such converters do not have any 

rotating mass (inertia) or have very minimal inertia at best. Therefore, such a MG is referred 

to as a low-inertia MG.  To overcome such issues, these converters are controlled in such 

a way to mimic similarly power rated synchronous generators (SGs). Hence, they are 

referred to as virtual synchronous generators (VSGs).  

Determining the stability of a low-inertia MG becomes a challenge for two reasons:  

1. First, due to their relatively small size (in terms of power ratings), they are more 

prone to be affected by large amplitude disturbances, such as loss of one of the 

VSGs, large load switching or faults. By comparison, the conventional grid has 

many interconnected SGs and many integrated transmission and distribution 

networks which makes it much more resilient to such disturbances. Studying 

small MGs, using linear techniques, does not provide an accurate estimation of 

stability, as in the presence of large amplitude disturbances, the non-linear terms 

(typically ignored in linear techniques) become dominant and can not be ignored. 

Nonetheless, non-linear techniques developed to study non-linear systems rely 

on finding proper bounding functions for the system using a set of predefined 

constraints. In other words, non-linear techniques do not have a systemic 

approach to study stability, unlike their linear techniques which have approaches 

such as Nyquist criterion, root locus etc., for studying them.  

2. The second reason is that low-inertia MGs often contain many feeds from power 

electronics converters. This is due to: 

a) Low-power capability of power electronic switches, which limits their ability 

to manufacture high power converters (typically, above several megawatts 

each), 

b) The locations of different types of RESs which may not necessarily be in 

proximity of each other, hence, the term distributed generation; and  
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c) Structure and safety constraints, such as those for utility-scale battery banks 

which require specific construction with proper ventilation, safety, and 

access.  

All these reasons make it more likely to have several power electronic converters within 

a MG. Therefore, a given MG can not be reduced satisfactorily to a single generating unit 

(single VSG) and single load bus, as is done by most of the previous work in the literature. 

Studying non-linear stability of such a high number of interconnected VSGs adds more 

complexity to the analysis in systematically constructing a proper Lyapunov function. Such 

a function is crucial in analysing the non-linear dynamics of a given MG under large-signal 

disturbances and estimate its dynamic behavior.  

The problems in analysing low-inertia micro-grids can be summarized as follows: 

• Due to their size and low-inertia, their stability can not be easily determined using 

linear techniques which necessitates conducting non-linear stability analysis. 

• Power electronic-based MGs are mainly formed by many interconnected VSGs. 

Hence, approximating a given MG to a single power generating unit and load bus is 

not strictly accurate. 

• Non-linear techniques, in general, do not have a systematic approach to analyse 

stability and demand different treatment of each system separately.    

• Unlike SGs, both inertia and damping coefficients of such VSGs are configurable 

parameters even when the VSG is online. However, designing a reliable and robust 

virtual inertia-based controller is still a challenge.  

The above statements summarize the challenges faced for analysing future power 

electronics-dominated and interconnected MGs. The aim of this work is then to develop a 

systematic approach to determine stability of a given MG, propose new ways to improve 

its margins, and tune its virtual inertia controllers. 
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2. Modelling and control of VSG based microgrid. 

2. 1. Large-signal model 

The stability in a MG is generally defined by the ability of the distributed generators 

(DGs) to maintain synchronism similar to a multi-machine power system [40]. 

Synchronism is defined as the relative motions between synchronized machines with 

respect to a reference angle. Such a reference angle can be set as the angle of the largest 

DG (i.e., DG with the highest installed Wh capacity and the highest sinking/sourcing 

capability). This is common practice in large-scale power system analysis where the 

reference angle is the angle of the generator with the highest inertia [1].  

On the other hand, in a DG, a more suitable approach is to define the reference angle as 

the center of angle (COA) which is proportional to the inertia-weighted angles of all DGs. 

Such a concept is analogous to the definition of center of mass in mechanical systems [41]. 

The large-signal model defined here can be based on either definition and will be used to 

construct the Lyapunov function and compute the regions of attraction. And hence, 

facilitating the study of system stability in the presence of large disturbances. It is worth 

mentioning that the model introduced here does not assume the existence of an infinite bus 

in the power electronics-based MG, unlike other models introduced in the literature. Thus, 

this model is valid in both grid-connected and islanding operational modes by simply 

including the grid with high inertia and constant voltage. More importantly, future power 

system will be based on inter-connected MGs (through a high voltage direct current 

(HVDC) transmission line), and hence, infinite bus-based models will not describe properly 

the system.  

In large-scale power system, from a physical and operational point of view, a system is 

stable if all connected synchronous generators can keep their synchronism after faults (large 

disturbances). In general, faults of interest can be line faults, disconnection of large 

generating unit or a large load transient. The latter two are more common in MGs, and 

hence, are a focus in this study [8]. Large disturbances create an unbalance between 

generation and load demand. Thus, a momentary input-output power unbalance occurs at 

each generating unit. In electro-mechanical based generation, this means a mismatch 
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between input mechanical power and output electrical power. Hence, based on power 

capacity and load sharing, some units will have accelerating power while others will have 

decelerating power.  

The same definition is valid in MGs with power electronics-based DGs, where, each 

power converter is controlled in a way to mimic the behavior of a synchronous generator 

[25]. In other words, a virtual-inertia control block is added to their control loop, which 

converts them to virtual synchronous generators (VSGs). Nonetheless, assuming that such 

behavior is maintained despite the source of generation, the rate of change of frequency 

(RoCoF) is a function of the difference between the input (mechanical or virtual prime 

mover) and output power as is defined by the swing equation. Therefore, the swing equation 

provides a sufficient means to describe system dynamics and its energy transfer, which has 

been already used in a large-scale power system stability analysis [2].  

Thus, in this work, assuming DGs in a MG display similar dynamic behavior under 

virtual inertia, the large-signal model of a MG is to be derived before applying the 

Lyapunov stability criteria. At this point, all DGs in the MG are synchronous generators, 

or virtual synchronous generators VSGs. Moreover, within this manuscript ‘generator’ or 

‘VSG converter’ is a reference to all “synchronous-like” generation units, while ‘machine’ 

is strictly referred to as “actual synchronous generators”. This is done for clearer 

representation and notation. Hence, mechanical input power, rotor kinetic energy, … etc., 

are equivalent to virtual mechanical input power, virtual kinetic energy … etc., 

respectively.  

 

2. 1. 1. State space model of multi-VSG converter  

In steady-state operation, for energy balance input mechanical power 𝑃! is equal to the 

output electrical power 𝑃" (assuming no losses), as follows [42] [43]: 

𝑃! = 𝑃"                                                     (2.1) 

Conventionally, 𝑃! refers to the input mechanical power (generator’s prime mover). 

However, in power electronics-based MG, it refers to the virtually calculated mechanical 
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power as will be explained later, and  𝑃" refers to machine / VSG converter electrical output 

power. Following a disturbance, a mismatch occurs between input and output power which 

appears as a change in the kinetic energy and absorbed damping power for the 𝑖)* machine 

as follows: 

𝑑
𝑑𝑡 	𝐾𝐸# + 𝑃$,# = 𝑃!,# − 𝑃",# 																																											(2.2) 

Where,  

𝐾𝐸# is the kinetic energy of the machine rotor in Mega Joules 

𝑃$,# is the damping power in MW 

𝑃!,# is the input mechanical power in MW 

𝑃",# is the output electrical power in MW 

and 𝑖 = 1, 2, 3, …𝑛 , where 𝑛 is the total number of synchronous generators connected 

to the MG.  

 

For a synchronous machine, the kinetic energy 𝐾𝐸#  is proportional to the square of the 

rotational frequency 𝑓# (rad/s). Thus, the change in the kinetic energy 𝐾𝐸# with respect to 

the kinetic energy at the synchronous frequency (𝑓,) 𝐾𝐸#, can be expressed as follows: 

𝐾𝐸#=	𝐾𝐸#, 	e
-!
-"
f
.
                 (2.3) 

If the deviation ∆𝑓# from the synchronous frequency 𝑓, is small enough, equation (2.3) 

can be written as: 

𝐾𝐸#=	𝐾𝐸#, 	e
∆-!0-"
-"

f
.
    (2.4) 

𝐾𝐸#=	𝐾𝐸#, 	e1 +
.∆-!
-"
f    (2.5) 

If the rotor angle with respect to a fixed reference is 𝛼# of the 𝑖)* VSG converter, and 𝛿# 

is its angle with respect to a rotating synchronous reference 𝑤,𝑡, hence: 



11 
 

𝛿# = 𝛼# −	𝑤,𝑡       (2.6) 

Where, 𝑤, is the synchronous frequency in radians/s 

Therefore, the change in the relative rotating angle 𝛿# is: 

$1!
$)
=	 $2!

$)
−𝑤,    (2.7) 

$1!
$)
= 2	𝜋	(𝑓# − 𝑓,) = 2	𝜋	Δ𝑓# ≅ 𝑤#   (2.8) 

Thus, 𝑤# is the deviation (Δ) in frequency from the synchronous frequency under 

disturbed condition. It is important to note, where 𝑤# is conventionally denoted the 

frequency in radians/sec, here it is denoted the deviation in frequency of each 𝑖)* VSG 

converter. That is, the frequency deviation is the quantity more related to this study, and 

for proper mathematical notation as using the notation Δ𝑤# might be confusing with 𝑑𝑤# 

later. 

For the first half of the left side of equation (2.2), the change in the kinetic energy can 

be expressed as follows: 

𝑑
𝑑𝑡 	𝐾𝐸# =

𝐾𝐸#
𝜋𝑓,

𝑑.𝛿
𝑑𝑡. 																																																				(2.9) 

For the second half, the damping power 𝑃$,# has two components. The first one is directly 

proportional to the deviation from the synchronous frequency 𝑤#. The second one is the 

resultant of the asynchronous torque between all connected machines / VSG converters.  

The total expression is the summation of the two components as follows: 

𝑃$,# = 𝐷#𝑤# +l𝐷#% 	(
𝑑𝛿#
𝑑𝑡 −	

𝑑𝛿%
𝑑𝑡 )

3

%45

																																			(2.10) 

In [1], [41], [42], the asynchronous torque is set to zero which significantly simplifies 

the equation and the modeling. Also, there is no need to emulate such behavior by VGS. 

The same approach is followed here as well. 

Hence, equation (2.2) can be rewritten using equations (2.9) and (2.10) as follows: 
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𝐻#
𝜋𝑓,

𝑑.𝛿#
𝑑𝑡. +	𝐷#

𝑑𝛿#
𝑑𝑡 = 𝑃!,# − 𝑃"6,# 																																					(2.11) 

 Where, 𝐻# =
78!

9:;"	=>?	
 and all quantities (𝐷# , 𝑃!,# , 𝑃"6,#) are expressed in 𝑏𝑎𝑠𝑒	𝑀𝑉𝐴.  

Moreover, inertia coefficient @!
A-"

 can be expressed as 𝑀# as in [44]. Both are known as 

inertia coefficients but in different units. Equation (2.11) then represents the basic form of 

the swing equation of a synchronous DG (machine or VSG).  

It is important to note that, while both the inertia coefficient 𝑀# and the damping factor 

𝐷# are measured and defined once the synchronous generator is built, this is not the case in 

VSG converters (which essentially mimic and emulate the behavior of such generators). 

Therefore, defining the appropriate boundaries to select coefficients with respect to the 

available maximum power of the connected sources such as batteries or photovoltaic 

panels, and their maximum power sourcing / sinking capabilities form one of the main 

objectives of this study.  As will be shown later, design criteria of 𝑀# (and based upon the 

design of 𝐷#) is based on dc-link inertia as it is more suitable for power electronics-based 

DGs [7]. 

Up to this point, the left-half side of the swing equation is defined and the problem 

statement of finding its coefficients is mentioned. Although, the right-half side of the 

equation seems simple and direct as it is a subtraction of the output power 𝑃",# from the 

input power 𝑃!,#. Calculating 𝑃",# in terms of 𝛿# for a synchronous machine is complex. 

Fortunately, because the dynamics of the SG itself isn’t the focus, rather than the dynamics 

of the VSG in a given MG, the following assumptions can be made without affecting the 

fidelity of the model [35], [43]:  

a) The time constant of the network is negligible compared to the time constant of 

power-frequency control loop (which mimics the SG). In a VSG, this also implies 

that the converter time constant (and all its associated control loops which are 

defined by the overall system bandwidth), is negligible as well.  
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b) The VSG converter is defined by a constant voltage source equal to the steady state 

value prior to the fault (pre-fault). In a VSG, this voltage source is connected in 

series with a reactance which represents the output filter reactance. 

c) The phase angle of the voltage source, correlated to the rotor angle or virtual angle, 

is 𝛿#. 

d) The loads are represented as constant impedances. This is important to simplify the 

study of the MG stability in terms of inertia and damping constants, and converter’s 

minimum output filter. However, constant power loads (CPLs) can be considered 

as well, which will change the reduced admittance matrix.  

e) The input power is assumed to be constant before and after the faulty condition and 

during the clearing time 𝑡BC. Input power 𝑃!,# is virtual mechanical power generated 

for example from power-frequency droop control unit.  

These conditions enable the derivation of the expression of the active output power of 

𝑃",# as follows: 

 𝑃",# = 𝑅𝑒(𝐸# 	𝐼#) = 𝑅𝑒(𝐸# 	∑ 𝑌#% 	𝐸%3
%45 )   (2.12) 

Where, 𝑖 = 1, 2, 3, …𝑛  and     𝑗 = 1, 2, 3…𝑛 

The admittance 𝑌#% represents the admittance connected between the 𝑖)* and jth 

generators. It is calculated from the reduced admittance matrix that describes the internal 

bus configuration of 𝑛)* multi-machine system [2]. In which the buses without generators 

are eliminated to simplify the model, despite masking the topological aspects of the MG at 

large (i.e., the way loads are connected to their respected buses and the way buses are 

connected to each other). 

Now, let 

                                                     𝐸# = |𝐸#|∠𝛿# 

                                                    𝑌#% = 𝐺#% + 𝑗𝐵#% = |𝑌#%|∠𝜙#% 

                                                    𝐺#% = w𝑌#%w𝑐𝑜𝑠𝜙#% and 𝐵#% = w𝑌#%w𝑠𝑖𝑛𝜙#% 
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Hence, the active output power 𝑃",# becomes: 

𝑃",# =	 |𝐸#|.𝐺## +	∑ 	w𝐸%w	w𝐸%w	|𝑌#%| 	cos[𝜙#% − (𝛿# − 𝛿%)]3
%45	D#  (2.13) 

The trigonometric function cos[𝜙#% − (𝛿# − 𝛿%)]	can be decomposed as follows: 

cos[𝜙#% − (𝛿# − 𝛿%)] = cos𝜙#% cos(𝛿# − 𝛿%) +	sin𝜙#% sin(𝛿# − 𝛿%) 

Then, 

    𝑃"6,# =	 |𝐸#|.𝐺## +	 

∑ 	w𝐸%w	w𝐸%w	|𝑌#%| 	{cos𝜙#% cos(𝛿# − 𝛿%) +	sin𝜙#% sin(𝛿# − 𝛿%)}3
%45	D#  (2.14) 

For better representation, let: 

𝐷#% = w𝐸%w	w𝐸%w	w𝑌#%w cos𝜙#% =	 w𝐸%w	w𝐸%w	𝐺#% 

and  

𝐶#% = w𝐸%w	w𝐸%w	w𝑌#%w sin𝜙#% =	 w𝐸%w	w𝐸%w	𝐵#% 

 

Thus, equation (2.14) can be written as follows: 

𝑃"6,# =	 |𝐸#|.𝐺## +	∑ 		DEF cos(𝛿# − 𝛿%) +	CEF	sin(𝛿# − 𝛿%)3
%45	D#      (2.15) 

 

The aim from manipulating equation (2.14) to become (2.15) is to mask out the power 

consumed by the impedance between the generators using the two constants 𝐷#% and 𝐶#%. 

Such power is assumed constant and does not provide any dynamics. This is valid under 

the assumptions stated above (from (a) to (e)), where, the voltages of all generators are 

constant, and no line switching occurs during fault / transient condition. Nevertheless, in 

power electronics-based MG, a change in bus voltage can occur due to the limit rate of 

change of dc supply side, e.g., battery storage unit, or short circuit protection. Therefore, 

the proposed model for multi-VSG MG at the end of this section will include such 

limitations. 
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This concludes the derivation of the right-hand side of the swing equation (2.2) and 

(2.11), as the generated output power 𝑃",# is expressed in terms of 𝛿#. 

Therefore, the swing equation becomes: 

𝑀#
𝑑.𝛿#
𝑑𝑡. +	𝐷#

𝑑𝛿#
𝑑𝑡 = 𝑃## − 𝑃#% 																																						(2.16) 

Where,  

𝑃## = 𝑃!,# − |𝐸#|.𝐺##  

𝑃#% = l 		DEF cos(𝛿# − 𝛿%) +	CEF	sin(𝛿# − 𝛿%)
3

%45	D#

 

  

Hence, by adding the term 𝑃#%, equation (2.16) now describes the dynamics of the 𝑖)* 

synchronous generator with respect to the 𝑗)* machine. This is appreciated in studying, for 

example, the stability of MG with centralized batteries feeding VSG, while the rest of the 

converters act as current source converters (i.e., Photovoltaic inverters in grid connection 

mode). Therefore, the system stability will define the optimal battery size versus the 

maximum penetration level.  

Finally, based on the afore mentioned discussion, the state space model of 𝑛 generators 

are formulated as: 

𝛿Ġ = 𝑤#    𝑖 = 1,2,3, …𝑛 

𝑤Ġ = −
𝐷#
𝑀#
𝑤# +

𝑃## − 𝑃#%
𝑀#

						𝑖 = 1,2,3, …𝑛																										(2.17)	 

Moreover, the state space model in case 𝑛)* machine / VSG converter is taken as a 

reference: 

𝛿Ġ − 𝛿3̇ = 𝑤# −𝑤3  𝑖 = 1,2,3, …𝑛 − 1 

𝑤Ġ = − �
𝐷#
𝑀#
𝑤# −

𝐷3
𝑀3

𝑤3� +
𝑃## − 𝑃#%
𝑀#

−	
𝑃33 − 𝑃3%

𝑀3
																				(2.18) 
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2. 1. 2. State space model of multi-VSG converters with stable equilibrium point 

(SEP) transferred to the origin. 

To enable a systematic approach in constructing Lyapunov functions, it is important to 

have the system stable equilibrium point (SEP) at the origin. Therefore, the state space 

model of multi converters / machines is to be reformulated to transfer its post-fault SEP at 

the origin. This is done to construct the region of stability around the post-fault SEP [45].  

The equilibrium point of the post-fault can be calculated from equation (2.17), as 

follows: 

𝛿Ġ = 𝑤# = 0     (2.19) 

𝑃## = 𝑃#%                                                      (2.20) 

Where,    

𝑃## = 𝑃!,# − |𝐸#|.𝐺##  

𝑃#% = ∑ 		DEF cos(𝛿# − 𝛿%) +	CEF	sin(𝛿# − 𝛿%)3
%45	D#   

 

In fact, equation (2.20) contains 𝑛 equations each in 𝑛 − 1 variables (𝛿#%). Hence, only 

𝑛 − 1 equations are needed to solve the system (as it is in 𝑛 − 1 variables). The remaining 

equation is then reserved as a constraining condition. It will help in preserving the solution 

formulated in equation (2.20) and satisfy the following summation: 

l 𝑃## − 𝑃#%
3

#45
= 0																																																					(2.21) 

In other words, the power of center of angle (𝑃HI?) (or center of mass) becomes zero. 

This implies that the system regains its steady-state angle and frequency as per the pre-fault 

condition. Also, it means that:  

l 𝑃##
3

#45
= 0 

and  
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l 𝑃!,# − |𝐸#|.𝐺##
3

#45
= 0 

 

Thus, for post-fault the SEP is at 𝛿# = 𝛿#;; where, 𝛿#; is the relative stable angle (virtual 

rotor relative angle or in better term relative power angle) that is commonly corresponding 

to the slack bus angle (the VSG converter / machine with the highest power).  

The solution of (2.20) at steady-state can be written as follows: 

𝑃!,# − |𝐸#|.𝐺## =	∑ 		DEF cos(𝛿# − 𝛿%;) +	CEF	sin(𝛿# − 𝛿%;)3
%45	D# =		𝑃#%(𝛿;) (2.22) 

Hence, the swing equation is obtained with SEP at the origin, as follows: 

𝑀#
𝑑.𝛿#
𝑑𝑡. +	𝐷#

𝑑𝛿#
𝑑𝑡 = 𝑃#%(𝛿;) − 𝑃#%(𝛿)																																				(2.23) 

 As an example, to construct the detailed state space model with SEP at the origin 

for a MG with four generators, the model is constructed as follows:  

Based on equations (2.22) and (2.23), the state variables for four generators (𝑛 = 4) with 

the 4)* one taken as reference [42], [43] are listed as follows: 

𝑥 = [𝑤5, 𝑤., 𝑤J, 𝑤K,			(𝛿5K − 𝛿5K; ), (𝛿.K − 𝛿.K; ), (𝛿JK − 𝛿JK; )]L        (2.24) 

Where  

𝛿#K = 𝛿# − 𝛿K  for  (𝑖 = 1,2,3)  

 

For better notation, a shorthand 𝜎# variable is introduced as follows: 

𝜎5 = 𝛿5K − 𝛿5K;  ; 𝜎. = 𝛿.K − 𝛿.K;  ;	𝜎J = 𝛿JK − 𝛿JK;  

Hence, the state variables become: 

𝑥 = [𝑤5, 𝑤., 𝑤J, 𝑤K, 𝜎5, 𝜎., 𝜎J]L 

It is worth mentioning that the state variable 𝑥 is of the minimal order to represent the 

four generators system. Adding more states will be redundant and will not contribute to a 
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better system description. Moreover, it is clear from equation (2.22) from the summation 

side, that the effect of the relative angles is already included. Hence, these angles can be 

expressed as follows: 

𝜎M = 𝛿!3 − 𝛿!3;    for  𝑚 = 1, 2, 3, …   and  𝑛 = 𝑚 − 1 (2.25) 

Then,  

𝜎K = 𝛿5. − 𝛿5.;  ;	𝜎N = 𝛿5J − 𝛿5J;  ;	𝜎O = 𝛿.J − 𝛿.J;  

Finally, the state space model can be arranged as follows [41]: 

�̇� = 𝐴𝑥 − 𝐵5𝑓(𝜎) − 𝐵.𝑔(𝜎)																																												

𝜎 = 𝐶𝑥																																																																																				

𝑥 = [𝑤5, 𝑤., 𝑤J, 𝑤K, 𝜎5, 𝜎., 𝜎J]L 																																								

𝜎 = [𝜎5, 𝜎., 𝜎J, 𝜎K, 𝜎N, 𝜎O]L 																																																		

𝑓(𝜎) = [𝑓5(𝜎5), 𝑓.(𝜎.), 𝑓J(𝜎J), 𝑓K(𝜎K), 𝑓N(𝜎N), 𝑓O(𝜎O)]L 											

𝑔(𝜎) = [𝑔5(𝜎5), 𝑔.(𝜎.), 𝑔J(𝜎J), 𝑔K(𝜎K), 𝑔N(𝜎N), 𝑔O(𝜎O)]L 					⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 (2.26) 

Where, 

𝐴 = 							

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐷5
𝑀5

0 0 0 0 0 0

0
𝐷.
𝑀.

0 0 0 0 0

0 0
𝐷J
𝑀J

0 0 0 0

0 0 0
𝐷K
𝑀K

0 0 0

1 0 0 −1 0 0 0
0 1 0 −1 0 0 0
0 0 1 −1 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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𝐶 = 							

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 1 0 0 −1
0 0 0 0 0 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵5 =					

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
𝑀5

0 0
1
𝑀5

1
𝑀5

0

0
1
𝑀5

0
−1
𝑀.

0
−1
𝑀.

0 0
1
𝑀J

0
−1
𝑀J

−1
𝑀J

−1
𝑀K

−1
𝑀K

−1
𝑀K

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵. =					

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
𝑀5

0 0
1
𝑀5

1
𝑀5

0

0
1
𝑀.

0
1
𝑀.

0
1
𝑀.

0 0
1
𝑀J

0
1
𝑀J

1
𝑀J

1
𝑀K

1
𝑀K

1
𝑀K

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑓(𝜎) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
|𝐸5||𝐸K|	𝐵5K	(sin(𝜎5 + 𝛿5K; ) − sin 𝛿5K; )
|𝐸.||𝐸K|	𝐵.K	(sin(𝜎. + 𝛿.K; ) − sin 𝛿.K; )
|𝐸J||𝐸K|	𝐵JK	(sin(𝜎J + 𝛿JK; ) − sin 𝛿JK; )
|𝐸5||𝐸.|	𝐵5.	(sin(𝜎K + 𝛿5.; ) − sin 𝛿5.; )
|𝐸5||𝐸J|	𝐵5J	(sin(𝜎N + 𝛿5J; ) − sin 𝛿5J; )
|𝐸.||𝐸J|	𝐵.J	(sin(𝜎O + 𝛿.J; ) − sin 𝛿.J; )⎦

⎥
⎥
⎥
⎥
⎥
⎤
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𝑔(𝜎) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
|𝐸5||𝐸K|	𝐺5K	(cos(𝜎5 + 𝛿5K; ) − cos 𝛿5K; )
|𝐸.||𝐸K|	𝐺.K	(cos(𝜎. + 𝛿.K; ) − cos 𝛿.K; )
|𝐸J||𝐸K|	𝐺JK	(cos(𝜎J + 𝛿JK; ) − cos 𝛿JK; )
|𝐸5||𝐸.|	𝐺5.	(cos(𝜎K + 𝛿5.; ) − cos 𝛿5.; )
|𝐸5||𝐸J|	𝐺5J	(cos(𝜎N + 𝛿5J; ) − cos 𝛿5J; )
|𝐸.||𝐸J|	𝐺.J	(cos(𝜎O + 𝛿.J; ) − cos 𝛿.J; )⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Note: 𝐵#% and 𝐺#% are defined by equation (2.14) parameters. 

Finally, in this study, the model is extended to include the following parameters: a) effect 

of dc-link inertia; b) effect of droop control unit with high bandwidth low-pass filter; c) 

effect of reduction in converter’s output voltage due to added short-circuit protection.  

a) Effect of dc-link inertia 

In VSGs, virtual inertia is supplied by releasing a portion of energy stored within the 

converter’s dc-link capacitor. Analogous to kinetic energy stored in SG’s rotor (𝐻# =
78!

9:;"	=>?	
), capacitor energy can be express as follows: 

𝐻B# =
𝐶$B 	𝐸#.

𝑚𝑖.	𝑀𝑉𝐴																																																								(2.27) 

Where,  

𝐻B# is dc-link inertia constant, 

𝐸# is VSG output voltage (Vrms), 

𝑚𝑖 is VSG modulation index, 

𝑀𝑉𝐴 is VSG rated power in MVA. 

 

However, it is not possible to drain all the energy stored in the dc-link capacitor as it 

will result in severe reduction in dc-link voltage, increase of converter’s output harmonics 

and poor dynamics. Therefore, only a portion of this power is to be utilized based on 

maximum allowable voltage variation with respect to maximum allowable frequency 

deviation as follows: 
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𝐻B# =
Δ𝐸#!:P	𝐶$B# 	𝐸#

.

𝜔!:P	𝑚𝑖.	𝑀𝑉𝐴	
																																																							(2.28) 

Where, Δ𝐸#!:P is maximum per unit change in VSG output voltage, 𝜔!:P is maximum 

per unit frequency deviation, and 𝐶$B#is the capacitance of dc-link capacitor. 

 

b) Effect of droop control unit with high bandwidth low-pass filter 

In the literature, a low-pass filter is added to the 𝜔 − 𝑃 droop control loop of VSG to its 

virtual governor unit [46]. Such a low-pass filter is required to filter out measurement noise 

superimposed on the frequency or power measurement. Hence, these filters are either set 

with relatively high cut-off frequency or completely ignored. While filtration function is 

indeed required, such a low-pass filter also provides delay and slow change in droop control 

operating point with respect to grid disturbances. In other words, the low-pass filter ensures 

that virtual mechanical input power of VSG remains constant during grid disturbance which 

is a fundamental assumption in power system analysis as mentioned earlier. Nonetheless, 

if low-pass filter with high bandwidth (and hence, short delay) is used or completely 

removed, the model provided in (2.26) is no longer valid. In such a case, the swing equation 

is first updated as follows: 

For droop control equation, 

−
1
𝑘&!

𝑑𝛿#
𝑑𝑡 + 𝑃C"-,# = 𝑃!,# 																																																						(2.29) 

VSG swing equation become: 

𝑀#
𝑑.𝛿#
𝑑𝑡. =	𝑃C"-,# − 𝑃"6,# − �𝐷# +

1
𝑘&!
�
𝑑𝛿#
𝑑𝑡 																																(2.30) 

Where,  

𝑃C"-,# is VSG setpoint at nominal frequency in p.u. 

𝑘&! is VSG droop coefficient (between 3 - 5%). 
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Remark: In (2.30) the reciprocal of 𝑘&! becomes dominant over per unit quantities such as 

𝐷# ,	𝑃C"-,# and 𝑃"6,#. This will completely change the dynamic behavior of VSG from what 

is expected. Hence, an investigation of such effects will be provided in later stages of this 

study.  

 

c) Effect of reduction in converter’s output voltage due to added short-circuit protection 

As mentioned earlier, unlike a SG, over-load capabilities of a VSG are very limited due 

to the inherent limitation of its semiconductor switches. Thus, a current limiter block is 

added to the converter’s internal control loop. This can result in changing the converter’s 

mode of operation from being a voltage source to a current source if the applied disturbance 

is large enough. This translates into a reduction of the converter’s output voltage in favor 

of supplying is maximum allowable current. Such an effect can be formulated similar to 

machine flux decay model [1] as follows: 

𝑑𝐸#
𝑑𝑡 = 	−𝑙Q5	�𝐸# − 𝐸3,!,#� − 𝑙Q. 	l𝐵#% 	𝐸% 	(cos 	𝛿#%;

3

%45

− cos 	𝛿#%)											(2.31) 

Where,  

$8!
$)

 is variation in VSG output voltage in p.u. 

𝐸3,!,# is VSG nominal output voltage in p.u. 

𝑙Q5 and 𝑙Q. are arbitrary constants defined by the maximum and minimum current limits. 

 

Finally, based on the effect of the afore mentioned parameters, the model introduced in this 

study is as follows: 
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�̇� = 𝐴𝑥 − 𝐵5𝑓(𝜎) − 𝐵.𝑔(𝜎)																																												

𝜎 = 𝐶𝑥																																																																																				

𝑥 = [𝑤5, 𝑤., 𝑤J, 𝑤K, 𝜎5, 𝜎., 𝜎J]L 																																								

𝜎 = [𝜎5, 𝜎., 𝜎J, 𝜎K, 𝜎N, 𝜎O]L 																																																		

𝑓(𝜎) = [𝑓5(𝜎5), 𝑓.(𝜎.), 𝑓J(𝜎J), 𝑓K(𝜎K), 𝑓N(𝜎N), 𝑓O(𝜎O)]L 											

𝑔(𝜎) = [𝑔5(𝜎5), 𝑔.(𝜎.), 𝑔J(𝜎J), 𝑔K(𝜎K), 𝑔N(𝜎N), 𝑔O(𝜎O)]L 					⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 (2.32) 

Where, 

𝐴 =		 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜔!"#,%	𝑚𝑖%&(𝐷% +

1
𝑘'!

)

Δ𝐸%!"#	𝐶()! 	𝐸%
& 0 0 0 0 0 0

0
𝜔!"#,&	𝑚𝑖&&(𝐷& +

1
𝑘'"

)

Δ𝐸&!"#	𝐶()" 	𝐸&
& 0 0 0 0 0

0 0
𝜔!"#,*	𝑚𝑖*&(𝐷* +

1
𝑘'#

)

Δ𝐸*!"#	𝐶()# 	𝐸*
& 0 0 0 0

0 0 0
𝜔!"#,+	𝑚𝑖+&(𝐷+ +

1
𝑘'$

)

Δ𝐸+!"#	𝐶()$ 	𝐸+
& 0 0 0

1 0 0 −1 0 0 0

0 1 0 −1 0 0 0

0 0 1 −1 0 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐶 = 							

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 1 0 0 −1
0 0 0 0 0 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎤
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𝐵5

=					

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜔𝑚𝑎𝑥,1	𝑚𝑖1
2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

0 0
𝜔𝑚𝑎𝑥,1	𝑚𝑖1

2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

𝜔𝑚𝑎𝑥,1	𝑚𝑖1
2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

0

0
𝜔𝑚𝑎𝑥,1	𝑚𝑖1

2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

0
−𝜔𝑚𝑎𝑥,2	𝑚𝑖2

2

Δ𝐸2𝑚𝑎𝑥	𝐶𝑑𝑐2 	𝐸2
2

0
−𝜔𝑚𝑎𝑥,2	𝑚𝑖2

2

Δ𝐸2𝑚𝑎𝑥	𝐶𝑑𝑐2 	𝐸2
2

0 0
𝜔𝑚𝑎𝑥,3	𝑚𝑖3

2

Δ𝐸3𝑚𝑎𝑥	𝐶𝑑𝑐3 	𝐸3
2

0
−𝜔𝑚𝑎𝑥,3	𝑚𝑖3

2

Δ𝐸3𝑚𝑎𝑥	𝐶𝑑𝑐3 	𝐸3
2

−𝜔𝑚𝑎𝑥,3	𝑚𝑖3
2

Δ𝐸3𝑚𝑎𝑥	𝐶𝑑𝑐3 	𝐸3
2

−𝜔𝑚𝑎𝑥,4	𝑚𝑖4
2

Δ𝐸4𝑚𝑎𝑥	𝐶𝑑𝑐4 	𝐸4
2

−𝜔𝑚𝑎𝑥,4	𝑚𝑖4
2

Δ𝐸4𝑚𝑎𝑥	𝐶𝑑𝑐4 	𝐸4
2

−𝜔𝑚𝑎𝑥,4	𝑚𝑖4
2

Δ𝐸4𝑚𝑎𝑥	𝐶𝑑𝑐4 	𝐸4
2

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜔𝑚𝑎𝑥,1	𝑚𝑖1
2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

0 0
𝜔𝑚𝑎𝑥,1	𝑚𝑖1

2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

𝜔𝑚𝑎𝑥,1	𝑚𝑖1
2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

0

0
𝜔𝑚𝑎𝑥,1	𝑚𝑖1

2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

0
𝜔𝑚𝑎𝑥,1	𝑚𝑖1

2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

0
𝜔𝑚𝑎𝑥,1	𝑚𝑖1

2

Δ𝐸1𝑚𝑎𝑥	𝐶𝑑𝑐1 	𝐸1
2

0 0
𝜔𝑚𝑎𝑥,3	𝑚𝑖3

2

Δ𝐸3𝑚𝑎𝑥	𝐶𝑑𝑐3 	𝐸3
2

0
𝜔𝑚𝑎𝑥,3	𝑚𝑖3

2

Δ𝐸3𝑚𝑎𝑥	𝐶𝑑𝑐3 	𝐸3
2

𝜔𝑚𝑎𝑥,3	𝑚𝑖3
2

Δ𝐸3𝑚𝑎𝑥	𝐶𝑑𝑐3 	𝐸3
2

𝜔𝑚𝑎𝑥,4	𝑚𝑖4
2

Δ𝐸4𝑚𝑎𝑥	𝐶𝑑𝑐4 	𝐸4
2

𝜔𝑚𝑎𝑥,4	𝑚𝑖4
2

Δ𝐸4𝑚𝑎𝑥	𝐶𝑑𝑐4 	𝐸4
2

𝜔𝑚𝑎𝑥,4	𝑚𝑖4
2

Δ𝐸4𝑚𝑎𝑥	𝐶𝑑𝑐4 	𝐸4
2

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑓(𝜎) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
|𝐸5||𝐸K|	𝐵5K	(sin(𝜎5 + 𝛿5K; ) − sin 𝛿5K; )
|𝐸.||𝐸K|	𝐵.K	(sin(𝜎. + 𝛿.K; ) − sin 𝛿.K; )
|𝐸J||𝐸K|	𝐵JK	(sin(𝜎J + 𝛿JK; ) − sin 𝛿JK; )
|𝐸5||𝐸.|	𝐵5.	(sin(𝜎K + 𝛿5.; ) − sin 𝛿5.; )
|𝐸5||𝐸J|	𝐵5J	(sin(𝜎N + 𝛿5J; ) − sin 𝛿5J; )
|𝐸.||𝐸J|	𝐵.J	(sin(𝜎O + 𝛿.J; ) − sin 𝛿.J; )⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝑔(𝜎) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
|𝐸5||𝐸K|	𝐺5K	(cos(𝜎5 + 𝛿5K; ) − cos 𝛿5K; )
|𝐸.||𝐸K|	𝐺.K	(cos(𝜎. + 𝛿.K; ) − cos 𝛿.K; )
|𝐸J||𝐸K|	𝐺JK	(cos(𝜎J + 𝛿JK; ) − cos 𝛿JK; )
|𝐸5||𝐸.|	𝐺5.	(cos(𝜎K + 𝛿5.; ) − cos 𝛿5.; )
|𝐸5||𝐸J|	𝐺5J	(cos(𝜎N + 𝛿5J; ) − cos 𝛿5J; )
|𝐸.||𝐸J|	𝐺.J	(cos(𝜎O + 𝛿.J; ) − cos 𝛿.J; )⎦

⎥
⎥
⎥
⎥
⎥
⎤
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And  

𝐸Ġ = 	−𝑙Q5	�𝐸# − 𝐸3,!,#� − 𝑙Q. 	l𝐵#% 	𝐸% 	(cos 	𝛿#%;
3

%45

− cos 	𝛿#%) 

The stability study conducted in the coming chapters will be based on this model. Unlike 

models introduced in the literature which are limited to two VSGs, this model provides a 

structure to model 𝑛 VSGs. It also models unique properties of power electronics converters 

that are different from classical SGs. Next, the small-signal model is presented and used to 

design VSG control loops. This design is later used to validate stability margins and 

analysis using simulation and practical real-time systems. 

 

2. 1. 3. Effect of Low-Pass Filter in Governor 

Many efforts have been dedicated to properly select VSG control parameters, such as 

damping coefficient 𝑀 and damping ratio 𝐷, and to study their effect on the system [38], 

[39].  However, the low-pass filters (LPFs) added to their virtual prime mover control 

blocks are mostly overlooked and neglected in large signal stability analysis [34].  

A main reason for this is that, adding LPFs model to VSGs model transforms it to a non-

autonomous system which requires a different treatment [47], [48]. This paper highlights 

the impact of such LPFs on VSG large-signal dynamics using a nonlinear model and 

geometrical approach. This is done by considering different time delays (that impact LPF 

bandwidth) to show how they affect VSG dynamics during its inertial action following a 

large system disturbance.  
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Fig. 2.1. VSG control loop block diagram 

 

In steady-state operation, for energy balance, input mechanical power 𝑃! equals to the 

output electrical power 𝑃" (assuming no losses) 𝑃! = 𝑃" [42] [43]. In SG, 𝑃! refers to the 

input mechanical power (generator’s prime mover). However, in VSG, it refers to the 

virtually calculated mechanical power using virtual inertia control loops as shown in Fig. 

2.1. Following a disturbance, a mismatch occurs between input and output powers which 

appears as a deviation from the steady-state frequency and non-zero rate of change as 

follows: 

𝐻
𝜋𝑓,

𝑑.𝛿
𝑑𝑡. + 	𝐷

𝑑𝛿
𝑑𝑡 = 𝑃! − 𝑃" sin(𝛿)																																							(2.33) 

Where, H = 78
9:;"	=>?	

 , 𝐾𝐸 is the kinetic energy of the machine rotor in Mega Joules, 𝛿 

is the power angle of the VSG with respect to the grid aggregated model, D is the damping 

coefficient, 𝑓, is nominal frequency in Hz, 𝑃! is the virtual mechanical input power, E is 

the grid side voltage, V is VSG side voltage, and 𝑥( is impedance between VSG and grid 

side. All quantities are expressed in 𝑏𝑎𝑠𝑒	𝑀𝑉𝐴.  

In the block diagram in Fig. 2.2, mechanical input power is supplied virtually by a 

governor model. It consists of (𝜔 − 𝑃) droop control and low-pass filter. VSG output 

frequency 𝜔 is fed back to the (𝜔 − 𝑃) droop control which computes the corresponding 
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adjustment to the virtual mechanical input power 𝑃! based on its droop coefficient 𝑘& , as 

shown in the Fig. 2.3 [1].   

As mentioned before, the LPF in the governor model in VSG application is a means to 

reduce noise and line frequency ripple superimposed on the feedback measurements. 

Hence, these filters are either set with a relatively high cut-off frequency or completely 

ignored. While a filtration function is indeed required, such a low-pass filter also causes a 

delay and slow change in droop control operating point with respect to grid disturbances.  

In other words, the low-pass filter ensures that virtual mechanical input power of VSG 

remains constant during a grid disturbance which is a fundamental assumption in power 

system analysis. Wherein, to achieve stable operation, generator’s mechanical power 

reference which is set by the droop control outer loop (in SG or VSG), must slowly change 

to give time to the inertia controller (inner loop) to follow such a reference. Otherwise, if 

the mechanical power reference changes faster than the inertia controller, it will lead to 

unstable operation, even though VSG seems stable within a range. This issue is well studied 

in input-output stability in nonlinear systems [49]. Therefore, if LPF with high bandwidth 

(and hence, short delay) is used or completely removed, the assumption that mechanical 

power reference slowly changes is no longer valid, and hence, the model provided in (2.33) 

is not valid as well.  

 

Fig. 2.2. Typical virtual inertia control block diagram 

 
Fig. 2.3. Virtual governor model block diagram       
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To account for LPF effect, the time domain model of VSG control loop including 

governor model LPF is derived as follows: 

LPF time domain model 𝑞RST(𝑡) is: 

𝑞RST(𝑡) = �1 −	𝑒U
)
L$�																																																				(2.34) 

The mechanical power 𝑃! of governor model, shown in the block diagram in Fig. 2.2., 

is as follows: 

𝑃! = 𝑃!_678 + 8−
Δ𝜔
𝑘'
9 𝑞9:;(𝑡) = 	𝑃!_678 + 8−

Δ𝜔
𝑘'
9 <1 −	𝑒<

=
>(>																																(2.35) 

 

Where, 𝑇𝑑 is low-pass filter time delay (reciprocal of its cut off frequency), and 𝑃!_C"- 

is nominal power reference of given VSG. By combining equations (2.34) and (2.35), and 

considering 𝑀 = 2𝐻 as inertia coefficient in per unit system, the overall model in (2.33) is 

rewritten as follows: 

𝑀
𝑑&𝛿
𝑑𝑡& = 𝑃!_678 + 8−

1
𝑘'
𝑑𝛿
𝑑𝑡9<1 −	𝑒

< =
>(> −

𝐸	𝑉
3	𝑥?

sin(𝛿) − 	𝐷
𝑑𝛿
𝑑𝑡 																																																			(2.36) 

 

Unlike the typical swing equation (2.33), equation (2.36) is a non-autonomous 

differential equation as adding LPF model explicitly expresses time 𝑡 as system variable. 

This imposes a challenge in representing and analyzing large-signal stability as stability 

techniques deals in most cases with autonomous time invariant systems.  

Here, the study of the impact of LPF is done using a geometrical approach to highlight 

the effect of its time delay 𝑇𝑑 , and consequently its bandwidth, on the converter’s dynamic 

behavior. This is done by fixing LPF’s 𝑇𝑑 and plotting the converter’s vector field at 

successive time steps. 

For the VSG design parameters listed in Table I, three time-constants for 𝑇𝑑 are 

considered to represent high, medium, and low bandwidth LPFs:  
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Table 2.1. VSG parameters 

Parameter Value 

Virtual input power 𝑃! 0.4	𝑝. 𝑢. 

Base power 𝑃" 3.125	𝑀𝑉𝐴 

Grid power angle 𝛿( 0	𝑟𝑎𝑑 

Line impedance 𝑥( 0.41	𝑝. 𝑢. 

Bus line voltage 𝐸 2.4	𝑘𝑉 

Active power droop coefficient 𝑘& 0.03 

Reactive power droop coefficient 𝑘' 0.03 

Damping constant 𝐷 1	𝑝. 𝑢. 

Inertial Constant 𝐻 10	𝑠 

 

High bandwidth LPF 

In the high bandwidth case, 𝑇𝑑 is set to 0.001s. After 0.01 second, the exponential term 

becomes very small which makes the droop term �− 5
M$

$1
$)
�	dominant as 5

M$
≈33 (based on 

parameters in Table 2.1) compared to other per unit terms (𝑃!_C"-, 8	>
J	P%

, and 𝐷). Hence, the 

system effectively becomes a linear system with a very fast decaying dynamic either 

towards stable point (highlighted in green in Fig. 2.4) or unstable point (highlighted in red 

in Fig. 2.4). This means, the converter will not exercise any inertial dynamics during large-

signal transients, which does not allow proper time for other connected VSGs to adjust their 

operating point, as shown in Fig. 2.4. This would result in oscillation in grid power and 

frequency, especially in the case of a temporary fault. That is, the converter frequency and 

power angle trajectory will travel faster towards the unstable region and can cross it before 

the fault is cleared.  

It is worth mentioning that, based on the stability definition revised in [40] that addresses 

power system stability under high renewable energy penetration, the transient time of 

inertia action should be between 5 to 10 s. This behavior is consistent with time progression 

between 𝑡 = 1	𝑠 and 5	𝑠. 
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Fig. 2.4. VSG large signal dynamics at 𝑇𝑑 = 0.001𝑠 at 𝑡 = 0.01𝑠 

 

Fig. 2.5. shows the change in the VSG frequency Δ𝜔 and power angle 𝛿 with respect to 

each other and more importantly with respect to the time 𝑡. The system inertial effect only 

lasts less than 0.01s before the droop control term in equation (2.36) becomes too dominant 

and overrides the inertia controller.  

 

Fig. 2.5. Parametric 3D plot of VSG frequency Δ𝜔 and power angle 𝛿 as function of 
time 𝑡 for high bandwidth LPF 
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Medium bandwidth LPF 

In medium bandwidth case, 𝑇𝑑 is set to 0.1s, the exponential term becomes less dominant 

after 𝑡 = 0.01𝑠, which allows some inertial transient to show up in VSG dynamics, as 

shown in Fig. 2.6 (a). However, the decaying time is fast after 𝑡 = 1𝑠,  as the droop control 

dominates the dynamics, as shown in Fig. 2.6 (b). The change in frequency Δ𝜔 and power 

angle 𝛿 with respect to each other as a function of time 𝑡 is shown in Fig. 2.7. VSG inertial 

action lasts that 0.1s before the droop control term in equation (2.36) becomes too dominant 

and overrides the inertia controller. 

              

(a)         (b) 

Fig. 2.6. VSG large signal dynamics at 𝑇𝑑 = 0.1𝑠 at (a) 𝑡 = 0.01𝑠; (b) 𝑡 = 1𝑠 

 

Fig. 2.7. Parametric 3D plot of VSG frequency Δ𝜔 and power angle 𝛿 as function of 
time 𝑡 for medium bandwidth LPF 
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Low bandwidth LPF 

In low bandwidth case, 𝑇𝑑 is set to 5s, the VSG now experiences full inertia dynamics 

like synchronous generators, as shown in Fig. 2.8 (a) at 𝑡 = 0.01𝑠. In Fig. 2.8 (b), after 5s, 

converter slowly regulates its frequency and power angle based on its droop control unit as 

planned and in comply with [40]. This is shown clearly in Fig. 2.9, where the inertia 

controller dominated the system dynamics after high disturbance before the droop control 

takes over and slowly regulates system towards its stable operation.  

       
(a)       (b) 

Fig. 2.8. VSG large signal dynamics at 𝑇𝑑 = 5𝑠 at (a) 𝑡 = 0.01𝑠; (b)  𝑡 = 5𝑠 

 

Fig. 2.9. Parametric 3D plot of VSG frequency Δ𝜔 and power angle 𝛿 as function of 
time 𝑡 for low bandwidth LPF 
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The low-pass filter provides a proper delay that keeps the virtual mechanical input power 

constant during virtual inertial action. Then it slowly adjusts VSG operating point to 

regulate grid frequency and power. This emulates the delay provided by the mechanical 

transient of the prime movers of synchronous generators. This is particularly important to 

keep the grid stable during and after temporary faults in power electronic dominated power 

systems. Whether such an inertial action, that is accompanied with large long oscillations, 

is beneficial to the microgrid or not is still an open topic [14]. However, damping of grid 

frequency oscillation should be done using proper tuning of inertia controller parameters 

namely inertia 𝑀 and damping 𝐷, rather than forcing it by the droop control unit. 

2. 1. 4. Simulation Results 

The performance of a VSG using different LPFs is simulated using a Matlab / Simulink 

model. A VSG is connected to a single ac bus by a short ac transmission line 𝑥L5 where the 

load 𝐿𝐷5 is connected.  VSG output filter 𝑥- is considered to be part of the transmission line 

inductance to keep high inductive transmission line 𝑥(. The simulation parameters are listed 

in Table I and its block diagram is shown in Fig. 2.1. 

First, VSG with high bandwidth LPF in the governor model is simulated. The bandwidth 

of the LPF is set to 1 kHz which supplies a delay of 𝑇𝑑 = 1	𝑚𝑠. The power reference 𝑃!_C"- 

is stepped from 0 to 0.4 p.u. to be large amplitude disturbances at 𝑡 = 0𝑠. Then, small signal 

disturbance is applied at 𝑡 = 2𝑠 by stepping the  𝑃!_C"- again from 0.4 to 0.45 p.u., as shown 

in Fig. 2.10 (a). Under large disturbances, Fig. 2.10 (b) shows sharp transient in VSG 

frequency towards its steady-state value. This confirms the analysis provided in this study 

that the droop control unit in the governor model becomes dominant and overtakes the 

dynamics. Meaning, the VSG didn’t experience any inertia reaction and it can be considered 

as pure droop control unit. Similar behavior is shown during VSG response to small 

disturbances, as shown in Fig. 2.10 (c). Furthermore, converter frequency-angle trajectory 

shows how it moves directly towards steady-state point (approaches the stable equilibrium 

point) very quickly without proper inertial reaction normally dictated by swing equation in 

(2.33), as shown in Fig. 2.10 (d).     
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(a) 

 
(b)          (c) 

 
(d) 

Fig. 2.10. High bandwidth LPF case (Td=1 ms) (a) VSG frequency in rad /s; (b) 
zoomed view at VSG response to large disturbance at 𝑡 = 0𝑠; (c) zoomed view at VSG 

response to small disturbance at 𝑡 = 2𝑠; (d) VSG frequency-angle trajectory during both 
step responses. 

Although in some cases it seems that such a response is desirable as the VSG exhibits 

well damped transient, regardless of the amplitude of the applied disturbance. The issue 

becomes clearer by seeing converters reference power 𝑃!_C"- and its output power 𝑃,. 

Ideally, for stable operation, the reference signal that is generated by the outer control loop 

Time (s) 
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must remain constant to allow the inner control loop to follow it. However, the power 

transient of VSG using LPF with high bandwidth, shown in Fig. 2.11 (a), doesn’t agree with 

this fundamental rule.  

Instead, Fig. 2.11 (b) and (c) show that the converter’s virtual mechanical reference 

varies simultaneously with the actual electrical output power. Meaning that the reference 

power does not remain constant for long enough time for the inertia controller to perform 

its action and follow it. This can easily lead to unstable operation despite the apparent 

damping. It is worth mentioning that better damping of grid frequency should be pursued 

by adjusting and tuning the inertia control loop parameters, either online or offline, but not 

with allowing unstable control loops.  

 
 

 (a) 

                   
     (b)                                               (c) 

Fig. 2.11. High bandwidth LPF case (Td=1 ms) (a) VSG output power in p.u.; (b) 
zoomed view at VSG response to large disturbance 𝑃!_C"- from 0 to 0.4 p.u. at 𝑡 = 0𝑠; 

(c) zoomed view at VSG response to small disturbance 𝑃!_C"- from 0.4 to 0.45 p.u. at 𝑡 =
2𝑠;  
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In the second case, the same VSG is simulated using the same parameters in Table 2.1 

but with medium bandwidth LPF in the governor model instead. The bandwidth of the LPF 

is set to 100 Hz which supplies a delay of 𝑇𝑑 = 10	𝑚𝑠. Identical step changes to the first 

case are applied to the VSG. The power reference 𝑃!_C"- is stepped from 0 to 0.4 p.u. to 

apply a large amplitude disturbance at 𝑡 = 0𝑠. This is followed by a small signal disturbance  

applied at 𝑡 = 2𝑠 by stepping the  𝑃!_C"- again from 0.4 to 0.45 p.u., as shown in Fig. 2.12 

(a). Under large disturbances, Fig. 2.12 (b) shows better transients in VSG frequency 

compared with the first case where the delay introduced by the LPF in this case allows the 

inertia control loop (inner loop) to adjust VSG frequency and power angle and follow its 

reference power 𝑃!_C"-. In this case, the VSG experiences better inertial reaction. However, 

since the delay provided by the LPF in this case wasn’t long enough, this causes the droop 

control loop to interfere with the transient. Similar behavior is shown during VSG response 

to small disturbances as shown in Fig. 2.12 (c). Moreover, the frequency-angle trajectory, 

shown in Fig. 2.12 (d), shows how the VSG has better dynamics compared with the first 

case (high bandwidth LPF).    

The transient of the VSG output power due to the applied step change in its reference 

power is shown in Fig. 2.13 (a). Fig. 2.13 (b) and (c) show that, although the converter’s 

virtual mechanical reference varies simultaneously with the actual electrical output power, 

it varies with much smaller amplitude as compared with the first case. Meaning that the 

reference power has less impact on the converter inertial reaction and its control loop 

stability.  
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(a) 

      

(b)                                                                  (c)  

 

(d) 

Fig. 2.12. Medium bandwidth LPF case (Td=10 ms) (a) VSG frequency in rad /s; (b) 
zoomed view at VSG response to large disturbance at 𝑡 = 0𝑠; (c) zoomed view at VSG 

response to small disturbance at 𝑡 = 2𝑠; (d) VSG frequency-angle trajectory during both 
step responses. 
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 (a) 

                 

 (b)                                                                     (c) 

Fig. 2.13. Medium bandwidth LPF case (Td=10 ms) (a) VSG output power in p.u.; (b) 
zoomed view at VSG response to large disturbance 𝑃!_C"- from 0 to 0.4 p.u. at 𝑡 = 0𝑠; 

(c) zoomed view at VSG response to small disturbance 𝑃!_C"- from 0.4 to 0.45 p.u. at 𝑡 =
2𝑠; 

 

Finally, in the third case, the VSG is simulated using low bandwidth LPF in the governor 

model. The bandwidth of the LPF is set to 1 Hz which supplies a delay of 𝑇𝑑 = 1	𝑠. Identical 

step changes to the first and second cases are applied to the VSG. The power reference 

𝑃!_C"- is stepped from 0 to 0.4 p.u. at 𝑡 = 0𝑠, and at 𝑡 = 2𝑠 by stepping the  𝑃!_C"- again 

from 0.4 to 0.45 p.u., as shown in Fig. 2.14 (a).  

During both step changes, better transients are seen in VSG frequency as they are in 

complete agreement with the swing equation in (2.33) and the dynamical behavior shown in 

converter’s vector field in Fig. 2.8 (a). Where, the delay introduced by the LPF in this case, 

allows the inertia control loop (inner loop) to adjust VSG frequency and power angle and 

Time (s) 

Time (s) Time (s) 
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follow its reference power 𝑃!_C"-, as shown in Fig. 2.14 (b) and (c). In this case, the VSG 

reference power remains constant during the transient which enables stable operation in both 

control loops (namely droop control loop and inertia control loop). Moreover, the frequency-

angle trajectory, shown in Fig. 2.14 (d), shows how the VSG has full inertial dynamics 

compared with the first case (high and medium bandwidth LPF). The converter has high 

oscillatory transient which isn’t ideal. However, as mentioned, reducing the oscillation 

should not be at the expense of an unstable inner control loop. Furthermore, the only 

difference in all simulated cases is the bandwidth of the low-pass filter itself. The parameters 

of the VSG always remain constant as well as the testing conditions. This proves the study 

conclusion, that the LPF in VSG control loop has a significant impact on the converter’s 

dynamics if it is not properly selected.  

Finally, the transient of the VSG output power due to the applied step change in its 

reference power is shown in Fig. 2.15 (a). Fig. 2.15 (b) and (c) show that the proper LPF 

keeps the converter’s virtual mechanical reference constant during the transient which gives 

time to the inertia control loop to adjust converter’s frequency and angle to match its 

reference. The droop control unit later regulates the frequency and power sharing within 

the MG. This complies with the definition of power system stability criterion provided in 

[40]. 
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 (a) 

       

 (b)                                                  (c)  

 

(d) 

Fig. 2.14. Low bandwidth LPF case (Td=1s) (a) VSG frequency in rad /s; (b) zoomed 
view at VSG response to large disturbance at 𝑡 = 0𝑠; (c) zoomed view at VSG response 

to small disturbance at 𝑡 = 2𝑠; (d) VSG frequency-angle trajectory during both step 
responses. 
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(a) 

 

                  
 (b)                                                                    (c)  

Fig. 2.15. Medium bandwidth LPF case (Td=1s) (a) VSG output power in p.u.; (b) 
zoomed view at VSG response to large disturbance 𝑃!_C"- from 0 to 0.4 p.u. at 𝑡 = 0𝑠; 

(c) zoomed view at VSG response to small disturbance 𝑃!_C"- from 0.4 to 0.45 p.u. at 𝑡 =
2𝑠; 

 

  

Time (s) 

Time (s) Time (s) 
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2. 2. Small-signal model 

A small-signal model can be directly evaluated from the large-signal model by taking 

its Jacobian at an equilibrium point. This can be effectively done by linearizing the system 

within the vicinity of the operating point (i.e., 𝑆𝐸𝑃 + 𝜀). At this point, only linear terms are 

considered as they become more dominant closer to the equilibrium point. Such an 

approach might result in rather complex mathematical manipulations in a multi-VSG MG 

[50].  

Therefore, first the small-signal model is derived based on the small perturbation 

concept around the operating point of one generator (VSG). The model is then extended 

for a multi generator system in the MG. This is based on the work introduced in [35], [46]. 

It is important to note that the aim of developing this model is to study the stability of the 

MG which is largely dominated by power converters with added virtual inertia.  Thus, a 

detailed dynamic description of the synchronous machines is not necessary. Only the 

dynamics and characteristics related to the generated output power fall within the scope of 

this work and offer the proper approximation in the model.  

2. 2. 1. Small-signal model of single VSG converter  

As mentioned earlier, the swing equation of a synchronous generator defines the relation 

between the mismatch between the input mechanical power and output electrical power, 

and the change in output frequency weighted by the inertia and damping constants. Fig. 

2.16 shows a single VSG converter connected to a one load bus. Its model can be expressed 

as follows: 

𝑃#3(𝑡) − 𝑃,W)(𝑡) = 𝑀	𝜔
𝑑𝜔
𝑑𝑡 + 𝐷(𝜔 − 𝜔9)																									(2.37) 

Where,  

𝑃#3(𝑡) is the input mechanical power,  

𝑃,W)(𝑡) is the output electrical active power, 

𝑀 is the inertia coefficient, 
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D is the damping coefficient, 

𝜔 is the generator frequency, 

𝜔9 is the load bus frequency at load side. 

 

 

Fig. 2.16. Single VSG converter connected to single load bus. 

In [26], both inertia and damping coefficients are defined as follows: 

𝐷 = 𝐷′
𝑃9:;"
𝜔,

																																																				(2.38) 

Where,   

𝐷X is damping constant, 

𝑃9:;" is power rating of the generator,  

𝜔, is the nominal frequency. 

𝑀 = 2	𝐻
𝑆,
𝜔,.
																																																						(2.39) 

Where,  

𝑆, is the nominal apparent output power at nominal frequency, 

𝐻 is the time during which the generator can supply nominal load using solely its kinetic 

energy. Typically, it ranges between 2s to 10s [44]. 

Virtual mechanical input power can also be expressed in terms of generator base power 

𝑃9:;", nominal power 𝑃, and droop coefficient 𝐾& using  𝜔 − 𝑃 droop control relationship 

as follows [24], [51]: 

=

~
VSG

Ld1

Xf XT
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𝑃#3 = 𝑃, − 𝐾&𝑃9:;"
𝜔 − 𝜔Y
𝜔,

																																						(2.40) 

As 𝑃9:;", 𝐾& and 𝜔, are all constants, they can be combined into the droop constant as 

follows: 

𝑃#3 = 𝑃, − 𝐾&	(𝜔 − 𝜔Y) 

Hence, by substituting equation (2.36) in equation (2.33), the swing equation becomes: 

𝑃, − 𝐾&	(𝜔 − 𝜔Y) − 𝑃,W)(𝑡) = 𝑀	𝜔
𝑑𝜔
𝑑𝑡 + 𝐷

(𝜔 − 𝜔9)																	(2.41) 

Assuming a small perturbation (Δ) that will affect each variable causing it to move 

within the vicinity of the original operating point, the resultant small-signal model can be 

evaluated as follows: 

 −𝐾&	Δ𝜔 − Δ𝑃,W) = 𝑀	(𝜔	𝑆Δ𝜔 + 𝑆Δ𝜔.) + 𝐷(Δ𝜔 − Δ𝜔9)															(2.42) 

Where, Δ𝜔 is the deviation from the nominal frequency 𝜔,. 

If the second order perturbation term Δ𝜔. is neglected, and for a small frequency 

deviation  𝜔 ≈ 𝜔,, then,  

−𝐾&	Δ𝜔 − Δ𝑃,W) = 𝑀	𝜔,	𝑆Δ𝜔 + 𝐷(Δ𝜔 − Δ𝜔9)																							(2.43) 

To have an explicit transfer function between Δ𝜔/Δ𝑃, anther equation is needed to 

eliminate (Δ𝜔 − Δ𝜔9). 

For the system shown in Fig. 2.16, the change in generator output power can also be 

expressed as follows: 

Δ𝑃,W) =
𝐸9 𝐸cos 𝛿
𝑋6#3"

	Δ𝛿																																																		(2.44) 

This is valid for small values of  Δ𝛿, highly inductive transmission lines, small change 

in the output / load power, and load bus the reference voltage 𝐸9∠0°. 

For simplification, 𝐾; is appointed as the synchronization coefficient and is equal to: 
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𝐾; =
𝐸9𝐸	cos 𝛿
𝑋6#3"

																																																									(2.45) 

Moreover, Δ𝛿 can be expresses as (Δ𝜔 − Δ𝜔9)/𝑠, which leads to:  

Δ𝑃,W) = 𝐾;
Δ𝜔 − Δ𝜔9

𝑠  

By applying Laplace differential operator 𝑆, 

S	Δ𝑃,W) = 𝐾;	(Δ𝜔 − Δ𝜔9)																																										(2.46) 

Finally, by substituting equation (2.42) into equation (2.37): 

−𝐾&	Δ𝜔 − Δ𝑃,W) = 𝑀	𝜔,	𝑆Δ𝜔 + 𝐷
𝑆Δ𝑃,W)
𝐾;

																												(2.47) 

The transfer function is obtained:  

Δ𝜔
	Δ𝑃,W)

= −
1 + e𝐷𝐾;

f 	𝑆

𝐾& +𝑀𝜔Y	𝑆
																																																(2.48) 

Equation (2.48) then describes the frequency change corresponding to a small load 

change in a system consisting of a single generator connected to a single load bus. Despite 

the simplicity of the topology itself, it can be extended to a system of 𝑛	generators.  

Moreover, it facilitates the study of power converters under virtual inertia control and 

conventional droop control as well. By setting both inertia and damping coefficients to 

zero, equation (2.48) turns into droop control transfer function e− 5
M&
f. Furthermore, it 

enables the study of MG stability (subject of this work) in terms of the other parameters 

such as line impedance, amount of virtual damping in VSG, effect of virtual governor 

model (virtual prime mover). Although equation (2.48) is a compact form, it contains all 

needed performance parameters. 

A step response is then applied to MG’s small-signal model, where a small change in 

the connected loads is created by increasing the load by 1.8%. The system performance is 

evaluated under different parameters. The corresponding change in the output frequency 

Δ𝜔 with respect to time is depicted in Fig. 2.17. under different inertia coefficients by 
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reducing the inertia coefficient 𝑀 from its selected nominal value 𝑀, = 2 (from 1.0 to 

0.75, to 0.5 then 0.25) while keeping all other parameters constant. The rate of changing of  

Δ𝜔 becomes higher (faster) which is expected and consistent. Furthermore, the steady-state 

value of  Δ𝜔 is decided by the droop coefficient 𝐾&which aligned with the expectations 

from a droop-controlled unit (equation (2.40)). 

 

Fig. 2.17. Change in the output frequency Δ𝜔 after 1.8% load step change at different 

inertias. 

On the other hand, changing the damping coefficient 𝐷 does not have any effect on the 

Δ𝜔 as shown in Fig. 2.18. (a) and Fig. 2.18. (b), where the damping coefficient 𝐷 is reduced 

from its selected nominal value 𝐷, (from 1.0 to 0.75 to 0.5 then 0.25) while keeping all 

other parameters constant. However, it has been reported in [7], [46], [51] that the damping 

coefficient 𝐷 might cause power oscillations and affects active power sharing. Hence, it 

will not be neglected throughout this study. 

Time (s) 
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 (a) 

 

 (b) 

Fig. 2.18. (a) Change in the output frequency Δ𝜔 after 1.8% load step change at 

different damping ratio; (b) zoomed version to show identify the overlapped signals. 

 

Finally, system step response under different values of 𝑀 and 𝐷 is compared against 

conventional droop-controlled case; the results are depicted in Fig. 2.19. Based on the 

above discussion, reducing the amount of inertia 𝑀 results in reducing the rate of change 

of Δ𝜔, while the damping coefficient 𝐷 has a minimal effect so far. However, by 

comparison, in the droop-controlled case, where the frequency of the system has an almost 

instantaneous frequency transient, this is particularly an undesirable behaviour from a 

Time (s) 

Time (s) 
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power system point of view, where a slower rate of change in frequency allows other 

connected generators to detect the occurrence of a load transient (by detecting the change 

in the frequency) and adjusting their powers accordingly. 

A noteworthy remark here is that the small delay in the droop-controlled case is caused 

by inserting a delay (low-pass filter) to the droop-control unit. This is a common practice 

in power system control [1] to provide a means to increase system stability. However, it 

does not solve the stability issue in low inertial MG as the delay is fixed despite the amount 

of load transition which results in poor load sharing.  

 

Fig. 2.19. Change in the output frequency Δ𝜔 after 1.8% load step change at different 

inertia (100% and 50%) and compared to droop-controlled case. 

 

2. 2. 2. Small-signal model of multi-VSG  

The small-signal model is extended to two machines configuration, as shown in Fig. 

2.20 [51]. 

Time (s) 
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Fig. 2.20. Two VSG converters connected to single-load bus 

 

The load (𝐿𝑑5) total power 𝑃6,:$ is the sum of the powers of the two generators, 𝑃,W),5 

and 𝑃,W),.. Therefore, the perturbation of the load power (Δ) can be expressed as follows: 

Δ𝑃,W) = Δ𝑃,W),5 + Δ𝑃,W),.                               (2.49) 

The variation in the load frequency Δ𝜔9 with respect to the variation in its power Δ𝑃,W) is: 

Δ𝑃6,:$
Δ𝜔9

=
ΔP,W),5
Δ𝜔9

+
Δ𝑃,W),.
Δ𝜔9

																																											(2.50) 

Letting,  

𝐴 =
Δ𝑃,W),5
Δ𝜔9

																			𝑎𝑛𝑑																		𝐵 =
Δ𝑃,W),.
Δ𝜔9

 

Then,      

Δ𝑃6,:$
Δ𝜔9

= 𝐴 + 𝐵																																																						(2.51) 

Equation (2.46) holds as well for the second generator as follows: 

S	Δ𝑃,W),. = 𝐾;,.	(Δ𝜔. − Δ𝜔9)																																						(2.52) 

Equation (2.50) can also be rewritten in terms of Δ𝑃,W),., 𝐴, and 𝐵: 

Δ𝑃6,:$ = �1 +
𝐴
𝐵�Δ𝑃,W),.																																								(2.53) 

=

~
VSG1

Ld1

Xf1 XT1

=

~
VSG2

Xf2 XT2
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By eliminating Δ𝑃,W),. from equation (2.53) using equation (2.52): 

Δ𝑃6,:$ = �1 +
𝐴
𝐵� �

𝐾;,.
𝑠 �	(Δ𝜔. − Δ𝜔9)																								(2.54) 

However, as the intention is to find a relationship between Δ𝜔. of second generator and 

Δ𝑃6,:$. Then,  Δ𝜔9 must be eliminated.  

Knowing that, 

Δ𝑃6,:$
Δ𝜔9

= 𝐵 + 𝐴	 

Δ𝜔9 =
Δ𝑃6,:$
𝐵 + 𝐴																																																								(2.55) 

Hence, equation (2.54) becomes, 

Δ𝑃6,:$ = �1 +
𝐴
𝐵� �

𝐾;,.
𝑠 �	(Δ𝜔. −

Δ𝑃6,:$
𝐵 + 𝐴	) 

Δ𝑃6,:$ �1 + �
𝐾;,.
𝐵	𝑠�� = �1 +

𝐴
𝐵� �

𝐾;,.
𝑠 � 	Δ𝜔. 

Δ𝜔.
Δ𝑃6,:$

=
𝐾;,. + 𝐵𝑠
𝐾;,.(𝐴 + 𝐵)

																																																	(2.56) 

Equation (2.56) then stands for the transfer function that links the change in the second 

generator output frequency Δ𝜔. with respect to the load variation Δ𝑃6,:$. A similar 

relationship can be found for the first generator; the only difference is the synchronous 

constant 𝐾;,. will now become  𝐾;,5.  

Moreover, the transfer function that relates the change in the generator output power 

(𝑃,W),5 or 𝑃,W),.) to the change in the bus frequency Δ𝜔9 can also be derived similar to the 

single generator case by solving for Δ𝜔9 instead of Δ𝜔5. Consequently,  

𝐴 =
Δ𝑃,W),5
Δ𝜔9

=
𝐾&,5 +𝑀5𝜔,𝑠

1 +
𝐾&,5 + 𝐷5
𝐾;,5

+𝑀5𝜔,
𝐾;,5

	𝑠.
																															(2.57) 
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𝐵 =
Δ𝑃,W),.
Δ𝜔9

=
𝐾&,. +𝑀.𝜔,𝑠

1 +
𝐾&,. + 𝐷.
𝐾;,.

+𝑀.𝜔,
𝐾;,.

	𝑠.
																															(2.58) 

The step response of the case of two generators is performed under different inertias 

(𝑀. = 𝑀,, 𝑀. = 0.5𝑀,, and 𝑀. = 0) for the second generator (equation (2.56)). This is 

being done while keeping the droop constant 𝐾& of both generators like the one generator 

case. 

 Fig. 2.21 shows that the system acts as a typical over-damped, second-order system 

and getting closer to the first-order system response as 𝑀. approaches zero. Furthermore, 

the trend in the change in the generator frequency Δ𝜔. with respect to the change in the 

load power 𝑃6,:$ is consistent with the single generator case studied earlier. Nonetheless, 

at 𝑀. = 0 an abrupt change in the output frequency has not occurred as the other generator 

still contributes to the overall system inertia.     

 

Fig. 2.21. Step response of the case of two generators under different inertias (𝑀. =

𝑀,, 𝑀. = 0.5𝑀,, and 𝑀. = 0) 

 

Finally, the small-signal state space model of the system is expressed as follows, based 

on [46]: 

�̇� = 𝐴𝑥 + 𝐵𝑢
�̇� = 𝐶𝑥 + 𝐷𝑢�																																																					(2.59) 

Time (s) 
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𝑥 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡Δ𝜔. +

𝐷.
𝑀.𝜔,�𝐾;,. + 𝐾;,5�

Δ𝑃6,:$

Δ𝜔5 +
𝐷5

𝑀5𝜔,�𝐾;,. + 𝐾;,5�
Δ𝑃6,:$

Δ𝛿. −
1

�𝐾;,. + 𝐾;,5�
Δ𝑃6,:$

Δ𝑃#3,.
Δ𝑃#3,5 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑢 = [Δ𝑃6,:$] 

𝑦 =  

Δ𝜔.
Δ𝜔5
Δ𝑃,W),.
Δ𝑃,W),.

¡ 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐾;,5	𝐷.
𝑀.𝜔,�𝐾;,. + 𝐾;,5�

𝐾;,5	𝐷.
𝑀.𝜔,�𝐾;,. + 𝐾;,5�

−
𝐾;,.	
𝑀.𝜔,

1
𝑀.𝜔,

0

𝐾;,.	𝐷5
𝑀5𝜔,�𝐾;,. + 𝐾;,5�

−
𝐾;,.	𝐷5

𝑀5𝜔,�𝐾;,. + 𝐾;,5�
𝐾;,.	
𝑀5𝜔,

0
1

𝑀5𝜔,
𝐾;,5	

�𝐾;,. + 𝐾;,5�
−

𝐾;,5	
�𝐾;,. + 𝐾;,5�

0 0 0

−
𝐾&,.
𝑇$,.

0 0 −
1
𝑇$,.

0

0 −
𝐾&,5
𝑇$,5

0 0 −
1
𝑇$,5⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

𝐾;,.	
𝑀.𝜔,�𝐾;,. + 𝐾;,5�

−
𝐾;,5	𝐷.𝐷5

𝑀5𝑀.𝜔,.�𝐾;,. + 𝐾;,5�
. +

𝐾;,5	𝐷..

𝑀.
.𝜔,.�𝐾;,. + 𝐾;,5�

.

−
1

𝑀5𝜔Y
+

𝐾;,.	
𝑀5𝜔,�𝐾;,. + 𝐾;,5�

−
𝐾;,.	𝐷.𝐷5

𝑀5𝑀.𝜔,.�𝐾;,. + 𝐾;,5�
. +

𝐾;,.	𝐷5.

𝑀5
.𝜔,.�𝐾;,. + 𝐾;,5�

.

−
𝐾;,5	𝐷.

𝑀.𝜔,�𝐾;,. + 𝐾;,5�
. +

𝐾;,5	𝐷5
𝑀5𝜔,�𝐾;,. + 𝐾;,5�

.

1
𝑇$,.

𝐾&,.	𝐷.
𝑀.𝜔,�𝐾;,. + 𝐾;,5�

1
𝑇$,5

𝐾&,5	𝐷5
𝑀5𝜔,�𝐾;,. + 𝐾;,5� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝐷.
𝑀.𝜔,�𝐾;,. + 𝐾;,5�

𝐷5
𝑀5𝜔,�𝐾;,. + 𝐾;,5�

𝐾;,.
�𝐾;,. + 𝐾;,5�

𝐾;,5
�𝐾;,. + 𝐾;,5� ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐶 =  

1 0 0 0 0
0 1 0 0 0
0 0 𝐾;,. 0 0
0 0 −𝐾;,. 0 0

¡ 

2. 3. Control architecture of virtual synchronous generators (VSGs) 

Regulation in a power system relies on the multi-level control architecture to regulate 

its voltage, frequency, generated power, load sharing, perfect resources utilization, 

protection, and general asset management. Management and coordination between the 

generation units is done within the upper (supervisory or master) control layer with the help 

of communication links for data exchange. The power regulation and protection, on the 

other hand, are localized and done in the first (local) control layer. Although, advanced 

communication mediums can be used within this layer, it is not preferable from a reliability 

point of view. Therefore, such core functions are performed in an autonomous manner, 

while accepting further enhancements offered by communications and data exchange. 

Droop control is widely adopted in power systems as it offers a simple yet reliable 

regulation technique [52]. Fundamentally, droop control linearly links the variation in the 

frequency to the power change needed to restore it to its nominal value. The coefficient 

(slope) of this linear function is known as droop constant 𝑘 and is shown in Fig. 2.22. It is 

designed based on the generator nominal power, and hence, it enables proportional load 

sharing among the grid forming generators.  
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Fig. 2.22. Droop control relation for 𝜔 − 𝑃 islanding regulation 

 

However, in power electronics dominated MG, the converters’ frequency is fixed 

despite their output power or grid transient. A solution was to insert a droop control block 

within the converter’s control loops as shown in Fig. 2.23. It changes the modulating signal 

frequency 𝜔! in proportion to the load power. Typical block diagram of such 𝜔 − 𝑃 droop 

control is shown in Fig. 2.24. Nonetheless, the frequency rate of change is fixed (despite 

the amount of the load transient) and depends only on the time delay of the droop control 

(which is present because of its filter time delay 𝑇$). This would significantly affect the 

grid stability, or at best, result in very poor load sharing in the presence of large 

disturbances. 
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Fig. 2.23. Control loops of droop-controlled grid connected dc-ac power converter 

 

Fig. 2.24. Block diagram of 𝜔 − 𝑃 droop control in grid connecting 

 

To provide better steady-state and transient responses, emulation of swing equation of 

synchronous machine is implemented within a converter’s control loop. That is, the 

frequency of the converter’s modulating signal is varied based on the mismatch between 

the electrical output power and a virtual input mechanical power, as explained in section 

2.1. Thus, the rate of change in a converter’s frequency and its output power is largely 

dependent on the virtual inertia constant (𝑀), where the steady-state depends on the 
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reciprocal of the droop constant (− 5
M&

). The block diagram of the control loop with virtual 

inertia is shown in Fig. 2.25, and for the sake of completion, the swing equation (equation 

(2.37)) is stated as follows in p.u.: 

 𝑃#3(𝑡) − 𝑃,W)(𝑡) = 𝑀 $Z
$)
+ 𝐷(𝜔 − 𝜔9)																												(2.60) 

 

Fig. 2.25. The block diagram of the control loop with virtual inertia in islanding mode. 

It is clear that equation (2.60) is a nonlinear differential equation which does not have a 

closed-form solution [45], [50] to find 𝜔. Solving such equations can be done by applying 

numerical methods. A family of solvers, based on the Runge-Kutta algorithm, offers a 

direct one-step method to obtain the solution by implementing a fixed number of sub-steps 

spaced by properly selected (Δ𝑡) [53]. The chart to calculate the proper frequency is shown 

in Fig. 3.5. Such a flow chart provides a simplified way to experimentally implement virtual 

inertia using current digital controllers. However, in simulation (which generally uses 

Runge-Kutta based solvers) a more convenient way is to implement a virtual inertia based 

on the block diagram shown in Fig. 2.26. 
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Fig. 2.26. Runge-Kutta flow chart to solve SG swing equation for 𝜔 [51] 

 

Fig. 2.27. Block diagram of virtual inertia controller 

The calculated frequency is, then, fed back to the 𝜔 − 𝑃 droop control (in islanding 

mode) which computes the corresponding adjustment to the virtual mechanical input power 

𝑃#3 (using droop control). Because of the dependency of the change in the power on the 

small change in the frequency, a low-pass filter is used with time constant (𝑇$) to reduce 

noise effects. The control block diagram of the governor model is shown in Fig. 2.28. (a). 
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Finally, the grid voltage is typically regulated to (𝐸,) by (𝑣 − 𝑄) droop control, as shown 

in Fig. 2.28. (b).  

 

(a) 

 

(b) 

Fig. 2.28. Active and reactive power control loops in islanding mode (a) 𝜔 − 𝑃 droop 

control; (b) 𝑉 − 𝑄 reactive power control loop. 
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2. 4. Simulation results 

The performance of the afore mentioned control loops is validated using a Matlab / 

Simulink model. A VSG is connected to a single ac bus by a short ac transmission line 𝑋L5 

where the load 𝐿𝐷5 is connected. VSG output filter 𝑋- is part of the transmission line 

inductance to keep high inductance transmission line assumption valid. Simulation 

parameters are listed in Table 2.2 and its block diagram is shown in Fig. 2.29. Fig. 2.30 

shows change in VSG’s virtual input power 𝑃#3 with respect to its electrical output power 

𝑃,W) at different levels of load disturbances Δ𝑃. Fig. 2.31 depicts the variation in load bus 

frequency 𝜔9 with respect to VSG virtual mechanical power frequency 𝜔!. 

 

Fig. 2.29. Block diagram of simulated control loop with virtual inertia in islanding 

mode. 
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Table 2.2. VSG parameters 

Parameter Value 

Virtual input power 𝑃! 4.3	kW 

Power electrical power 𝑃" 5.1	kW 

VSG output filter 𝑋- 2.5	mH 

Line impedance 𝑋L5 250	uH 

Load bus voltage 𝑣9 110	V 

Active power droop coefficient 𝑘& 0.03 

Reactive power droop coefficient 𝑘'                0.03 

Damping constant 𝐷 17	p. u. 

Inertial Constant 𝑀 normalized 2	𝑠 

 

When the VSG starts from rest, mechanical input power 𝑃#3 slowly increases from its 

initial setpoint 𝑃#3 = 4.3	𝑘𝑊	till it matches its electrical output power 𝑃,W) = 5.1	𝑘𝑊 at 

𝑡 = 1𝑠. This slow damped behavior is due to the virtual delay implemented in the governor 

model (shown in Fig. 2.24). In a SG machine, such a delay comes from the time constant 

of mechanical system itself. The corresponding frequency deviation (shown in Fig. 2.21) 

is slowing down because of the increased output power with respect to initial mechanical 

input power. The damped transient behavior and delay is caused by a virtual inertia 

controller, as explained earlier, and is mainly dependent on inertia constant 𝑀. The steady-

state value of bus frequency Δ𝜔9 is determined by the droop control coefficient −1/𝑘& 

and, in the absence of frequency regulation block or infinite bus (grid), load bus frequency 

does not come back to its setpoint. This is acceptable here as the aim is to verify the virtual 

inertia controller design and observe its transient behavior. A final remark, the delay 

introduced in the governor model is very important from a system stability analysis point 

of view as mentioned earlier; that is, mechanical input power is assumed to be constant 

during any load disturbances or fault conditions. Hence, prime mover delay is introduced 

in the model. 
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Fig. 2.30. VSG input mechanical power with respect to input mechanical power 

Finally, two load step changes are applied to further examine the controller dynamics. 

First one is applied at 𝑡 = 1𝑠 for Δ𝑃 = 600	𝑊 and second one is applied at 2.5𝑠 for Δ𝑃 =

100	𝑊. It can be seen in Fig. 2.30 and Fig. 2.31 that the virtual inertia controller is able to 

supply the desired frequency transient and frequency deviation proportional to the 

amplitude of the applied disturbances as per the design. Both load (and VSG) output 

voltages and currents at each step change are shown in Fig. 2.32 (a) and (b). Selected 

parameters (inertia 𝑀 and damping 𝐷) have not caused any oscillation in output voltage / 

current and hence output electrical power.  

This confirms the controller design and linear analysis and provides proof of its ability 

to mimic the SG behavior under the afore mentioned assumptions.  The stability analysis, 

simulation, and later experimental work, based on this controller is discussed next.  

 

Fig. 2.31. VSG calculated virtual mechanical frequency 𝜔! versus load frequency 𝜔9 
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 (a) 

 

 (b) 

Fig. 2.32. Load voltage and current at step change; (a) at 𝑡 = 1𝑠 and Δ𝑃 = 600	𝑊; (b) 
at 𝑡 = 1𝑠 and Δ𝑃 = 100	𝑊. 
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3. Lyapunov Based Stability Analysis 

3. 1. Introduction 

A physical system is described as stable if it returns to its original equilibrium point (or 

one nearby) after a disturbance is applied. It is also stable if its states are bounded within 

some region, rather than going back to a certain point. It is unstable if its states grow 

continuously and cannot be bounded as 𝑡 → ∞. Such a generic definition of stability applies 

to both linear and nonlinear systems considering that in linear systems the bounded region 

of stability is shrunk to a single point which satisfies the linearization conditions.  

A power system is considered stable if its forming VSGs keep their synchronism in the 

presence of disturbances at constant power angles, frequency, and voltage. If the 

disturbances are small i.e., they cause small changes in the system’s states; therefore, a 

linearized microgrid model around its equilibrium point is sufficient to analyze its stability. 

In such a case, this analysis is referred to as small-signal stability analysis. In this regard, 

many techniques are available (such as Nyquist and Routh-Hurwitz) which provide a 

systematic approach to define system stability and its margins [54].  

In case of disturbances of large magnitudes, the nonlinearities in a microgrid model 

become dominant and the linearized model is no longer valid. Examples of large 

disturbances are loss of a large load or occurrence of faults. In the literature, this type of 

stability study is often referred to as a transient stability [6], [35], [35], [55]. There are, in 

general, limited theories or criterions that provide a systematic approach to investigate the 

stability of such nonlinear systems [45], [48], [49]. The challenge is to accurately determine 

the bounds within which the microgrid’s VSG will maintain their synchronism. The general 

intention is to track the amount of energy a system would gain and its rate of change. If 

such energy can be bounded in such a way that the system will lose it and go back to its 

equilibrium state, the system is then considered stable, and this bounded area is its stability 

margin. Otherwise, the system is unstable. The preceding general definitions of a nonlinear 

system and its stability are stated in technical terms in the following section [49].  
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3. 2. Stability of nonlinear systems 

Stability of large dynamical system originally started with efforts to study the stability 

of the solar system, which is generalized and formulated as “the N-body problem”. The aim 

was to understand the gravitational forces between N planets in the solar system that allows 

every planet’s position to be fixed (be an equilibrium point) and to follow its own orbit 

without collision. It was found later by Laplace and Lagrange that in conservative systems, 

the state corresponding to zero kinetic energy and minimum potential energy is a stable 

equilibrium point. Later, it was shown that in dissipative systems at equilibrium, the total 

energy is decreasing along all trajectories. The formal definition and characterisation of 

stability was later done by Lyapunov in 1892 [45].  

Lyapunov based his theory upon tracking the rate of change of energy of the overall 

system. If the rate of change 𝑑𝐸/𝑑𝑡 of the overall system energy 𝐸(𝑋) is negative for every 

system state 𝑋 = [𝑥#], except at the equilibrium state, such energy will decrease until it 

reaches its minimum value at the equilibrium state. In microgrid systems, finding 𝐸(𝑋) of 

a system that contains system states 𝑋 is not guaranteed, especially in complex high order 

systems (as in the case of multiple VSGs).  

In Lyapunov’s approach, 𝐸(𝑋) is expressed by a scalar function 𝑣(𝑋)  such that, the 

energy of each subsystem (VSG in a microgrid) can be aggregated by addition (𝑣(𝑋) =

𝑣5(𝑥5) + 𝑣.(𝑥.) + 𝑣J(𝑥J)…𝑣#(𝑥#)). In order to be a Lyapunov candidate function, 𝑣(𝑋) 

must satisfy two conditions [49],  

1) It must be positive definite for all states 𝑋 within the area of interest (range of 

operation), and  

2) Its derivative 𝑑𝑣/𝑑𝑡 must be negative everywhere for all 𝑡 > 0	(not necessarily 

negative definite). This is true except at the equilibrium state 𝑋; where 𝑣(𝑋;) must 

approach its minimum value and its derivative 𝑑𝑣/𝑑𝑡 = 0 at 𝑡 → ∞.  

In other words, in each microgrid transient (e.g., load transient), the difference between 

output power and input virtual power appears as exciting energy Δ𝐸 which is expressed by 

𝑣(𝑋). Such energy will continually dissipate or be absorbed by a priori knowledge of 

system dynamics. Thus, the condition, 𝑑𝑣/𝑑𝑡 < 0 is satisfied. Eventually it will either 
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approach zero when the balance between input virtual power and output power is restored 

(𝑣(𝑥) = 0), or reach a minimum value 𝑣(𝑥) = 𝑣!#3	, for example in case of sustained 

oscillation. In either case, the exciting energy is constant, and hence, its derivative is zero. 

A more formal definition of stability is discussed next. 

3. 2. 1. Local stability: 

An equilibrium point is stable (specifically at the origin in Lyapunov’s definition) if for 

every 𝜀	𝜖	ℝ and 𝜀 > 0 there exists 𝛿	𝜖	ℝ and 𝛿 > 0 which depends on 𝜀. Such that, for 

every initial condition 𝑋, at 𝑡 = 𝑡,  the following inequality is satisfied:  

w|𝑋,|w < 𝛿 

Hence, if for all 𝑡 > 𝑡, , the following inequality is satisfied, the system is said to be 

stable: 

w|𝑋(𝑡)|w < 𝜀 

In other words, the system is said to be stable, if when it starts from some initial 

condition 𝑋, (close to the equilibrium point) with upper limit 𝛿, it can go beyond that limit. 

However, it will not exceed another limit 𝜀 at all times. This means, the system experiences 

some sort of local stability, even though it doesn’t necessarily go back to its equilibrium 

point, as illustrated in Fig. 3.1. Although, this is mathematically sufficient, it doesn’t suffice 

in electrical systems, where it is desired that the system goes back to its reference 

equilibrium point once the transient ends.  

 
Fig. 3.1. Illustrative trajectory of local stable system 
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3. 2. 2. Local asymptotic stability: 

The system is said to be asymptotically stable, if for every 𝜀	𝜖	ℝ and 𝜀 > 0 there exists 

𝛿	𝜖	ℝ and 𝛿 > 0 which depends on 𝜀, such that for every initial condition 𝑋, at 𝑡 = 𝑡,  the 

following inequality is satisfied:  

w|𝑋,|w < 𝛿 

The system will converge back and asymptotically approach the equilibrium point 𝑋": 

lim
)→\

||𝑋(𝑡)|| = 𝑋" 	 =0 

This form of stability is the desired one in electrical systems. It states that if the system 

i.e., microgrid is excited due to a short fault, for example, it will go back to its exact 

operating point once the fault is cleared. Typical illustrative trajectory of such a system is 

shown in Fig. 3.2. As mentioned in the pervious section, microgrid linearized model has 

only one equilibrium point (due to linearization around that one point), thus asymptotic 

stability is guaranteed. The microgrid is nonlinear, and it has multiple equilibrium points.  

 

Fig. 3.2. Illustrative trajectory of local asymptotic stable system 

 

Two remarks are worth mentioning. First, the areas defined by 𝜀 and 𝛿 are not 

necessarily circles and can be of any irregular shape and dimensions. Second, earlier 

definitions describe stability locally. A global definition of stability is possible by setting 
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𝜀 → ∞ and 𝛿 → ∞, as shown in Fig. 3.3. Such definitions are not common in electrical 

systems and specially in microgrids, and it is not within the scope of this study. 

 

Fig. 3.3. Illustrative trajectories of global asymptotic stable system 

3. 2. 3. Region of attraction: 

In a nonlinear stability study, the challenge is to find the region 𝜀 which surrounds the 

equilibrium point and gives the boundaries of stability [56]. Such that, if a VSG trajectory 

in a microgrid stays within it will go back to stability (after a fault, for example), or becomes 

unstable if the trajectory crosses it to the next undesirable equilibrium point. This region is 

known as the region of attraction or the area of attraction in two dimensional systems [49].  

The time a microgrid takes to reach its boundary is known as the maximum clearing time 

𝑡BC [41].  This time is tied to the smallest amount of energy defined by the Lyapunov energy 

function 𝑣(𝑋) that enables the system to reach the boundary of the stability region 𝜀. This 

concept forms the basis of this stability study. Therefore, stability conditions of a microgrid 

can be determined by performing the following steps sequentially: 

1- Construct a proper Lyapunov energy function 𝑣(𝑋) that describes the 𝑛)* VSG 

within a microgrid. 

2- Determine the lower limit 𝑣!#3(𝑋) of the energy mismatch the microgrid can gain 

to enter the unstable region (i.e., go beyond the area of attraction).  

3- Determine 𝑡BC using a numerical integration method.   
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From a mathematical point of view, finding a Lyapunov energy function can be done by 

linearly summing the energy of each sub-system (individual VSGs in a microgrid). 

However, finding a representative energy function of inter-connected 𝑛 number of VGSs 

is not direct and it will need to be redone every time something changes in the microgrid 

topology (e.g., changing loads or VSGs locations).  

Fortunately, many methods are available which offer a systematic way of constructing 

suitable Lyapunov energy functions such as Zupov’s and Popov’s methods [57]. They may 

even supply a direct estimate of the area of attraction as is the case in Zupov’s method for 

a single power source connected to an infinite bus (large electric grid). The method adopted 

in this study is based on Popov’s multivariable criterion, which is suitable for a microgrid 

with 𝑛 connected VSGs. A brief illustration of Popov’s method, and its extension to 

multivariable version, is provided  next.  

3. 3. Systematic construction of Lyapunov function using Popov’s 

method 

3. 3. 1. Popov’s method for single VSG 

Lyapunov theory gives sufficient conditions for local and global stability. It doesn’t, 

however, provide a systematic approach to construct a suitable energy function (Lyapunov 

function 𝑣(𝑋)), or estimate the region of attraction around the equilibrium point. It is 

particularly difficult in systems without restrictions on their nonlinearities. When it can be 

restrained, Popov’s method offers a systematic approach to construct the Lyapunov 

function for a system with its nonlinearity found in the first and third quadrants of 2-

dimensional Cartesian coordinates. This method can be extended for multi-input multi-

output systems, which makes it suitable for microgrids with 𝑛 VSGs.  

There are two conditions a system must satisfy before applying Popov’s method. First, 

the system can be deconstructed and represented as two sub-systems in feedback 

architecture, as shown in Fig. 3.4. The linear part is to be placed in the forward path while 

the nonlinearity is placed in the feedback. Secondly, such a nonlinearity must be limited to 

the first and third quadrants, which is referred to as the quadrant condition.  
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Fig. 3. 4. System block diagram with affined nonlinearity limited to the first and third 
quadrants 

 

The notion behind Popov’s criteria and its conditions can be explained considering the 

passivity theorem applied to power systems. Suppose that a one-port circuit has an input 

𝑣(𝑡) that excites an output current 𝑖(𝑡), like the one shown in Fig. 3.5 (a). If the product of 

the input and output is always non-negative i.e., 𝑣(𝑡)	𝑖(𝑡) ≥ 0 for all 𝑣(𝑡) and 𝑖(𝑡) and all 

times 𝑡 > 0, the circuit is called passive. This means that the circuit has only passive 

components, ideally resistors which do not generate power, only consume it. The relation 

between the input and output can be written as 𝑣(𝑡) ≥ 𝐺	𝑖(𝑡), where 𝐺 is the constant which 

represents circuit impedance. The plot between input and output 𝑣 − 𝑖 in this relation is a 

line with a slope 𝐺 which is limited to the first and third quadrants, as shown in Fig. 3.5 

(b). The quadrant condition shown in Fig. 3.5 (b) is generalized in Fig. 3.5. (c). An example 

of a non-passive system characteristic is shown in Fig. 3.5 (d).  

This explains the necessity of the quadrant condition in Popov’s criteria. That is, if a 

system is passive (by complying to the quadrant condition) and it gains a certain amount of 

energy 𝑣(𝑋), it can only dissipate this energy without always generating any (�̇�(𝑡) < 0). 

Thus, the system is asymptotically stable [49], [58]. The generalized definition for multi-

port systems is for inputs vector 𝑉 and output vector 𝐼, the system is passive if 𝐼L𝑉 =

Σ𝑣#(𝑡)	𝑖#(𝑡) ≥ 	0 for all 𝑡 > 0. 
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(a)                                                                              (b) 

                                         

(c)                                                                                  (d) 

Fig. 3. 5. (a) one-port circuit; (b) characteristic curve of passive one-port circuit 
(resistor); (c) generalized quadrant condition; (d) example of non-passive system that 

doesn’t comply to quadrant condition. 

 

For a system that satisfies the afore mentioned conditions, Popov’s criteria gives a 

stability definition like Nyquist’s criteria in the frequency domain, and it is described as 

follows: 

For a system with a transfer function defined in the complex domain 𝐺(𝑗𝜔), 

𝐺(𝑗𝜔) = 𝑥(𝜔) + 𝑗	𝑦(𝜔)																																																						(3.1) 

Where,  𝑗 = √−1 and 𝜔 is the angular frequency.  

Then, there exist real numbers 𝑞 and 𝑘 such that: 

1
𝑘 + 	𝑅𝑒

{(1 + 𝑗𝜔𝑞)𝐺(𝑗𝜔)} > 0																																														(3.2) 
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Then  

1
𝑘 + 	𝑅𝑒°	

(1 + 𝑗𝜔𝑞)				�𝑥(𝜔) + 𝑗	𝑦(𝜔)�	± > 0																																				(3.3) 

1
𝑘 + 	𝑥

(𝜔) − 𝜔𝑞	𝑦(𝜔) > 0																																																			(3.4) 

The inequality can be rearranged as follows: 

𝑥(𝜔) > 𝜔𝑞	𝑦(𝜔) −
1
𝑘																																																							(3.5) 

This means, to apply Popov’s criteria for the system 𝐺(𝑗𝜔), there must exist a line with 

a slope 𝑞 which passes through the point e− 5
M
	 , 0f, known as Popov’s line, as shown in 

Fig. 3.6. This line forms the upper left bound of the system response i.e., the curve 𝑥(𝜔) −

	𝑗	𝜔𝑦(𝜔) lies completely beneath it, which ensures satisfaction of the quadrant condition 

(at 𝑘 = ∞). This is analogous to the Nyquist criteria in a linear system, where the point -1 

is expanded to be a circle (or a ball in multi-dimension) and Popov’s line is its tangent.  

 

Fig. 3. 6. Typical Popov’s line bounding nonlinear system 

 

A VSG model also satisfies the first condition as its nonlinearity is decomposed and 

added to the linear part, which can be seen as follows: 
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�̇� = 𝐴𝑋 + 𝐵𝛾																																																																								 

𝛾 = −𝑓(𝜎)																																																																(3.6) 

𝜎 = 𝐶𝑋																																																																														 

Where 𝐴𝑋 is the linear part, and 𝐵𝛾 is the nonlinear part.  

The nonlinearity in the VSG model comes from the sinusoidal relation between the 

output power and power angle and is formulated by the swing equation. It satisfies the 

quadrant condition, as shown in Fig. 3.7. 

 

Fig. 3. 7. Swing equation of VSG satisfies the quadrant condition of Popov’s criterion 

 

Thus, the generic construction of Lyapunov’s function for a single VSG can be based 

on the Kalman-Yakubovich-Popov lemma [59] as follows: 

𝑣(𝑋) = 𝑋L𝑃𝑋 + 𝑞³ 𝑓(𝜎)	𝑑𝜎
]

Y
																																								(3.7) 

For a single VSG, the state space model is as follows: 

�̇� = 𝐴𝑋 + 𝐵𝑓(𝜎) 

𝜎 = 𝐶𝑋																																																																(3.8) 

Where,  

Pe sin (σ) 

σ
σs
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𝐴 = ´
0 1
0 U^

=
µ, 𝐵 = ´

0
− 5
=
µ, 𝐶 = ¶10· 

𝑓(𝜎) = 𝑃"(sin(𝜎 + 𝜎;) − sin(𝜎;))  

The transfer function of the linear sub-system is obtained by dividing the output matrix 

by the input matrix at the stable operating point, as follows: 

𝐺(𝑠) = 𝐶L(𝑆𝐼 − 𝐴)U5𝐵																																																				(3.9) 

𝐺(𝑠) =
1

𝑠 e𝑠 + 𝐷
𝑀f

																																																					(3.10) 

The nonlinear sub-system in plotted in Fig. 3.7 where the nonlinearity is confined to the 

first and third quadrants of 𝜎 → 𝑓(𝜎) axis, as per Popov’s criteria. By applying Popov’s 

inequality at 𝑘 = ∞, Popov’s line will pass through (0,0), as shown in Fig. 3.8. 

Hence, the inequality becomes: 

𝑅𝑒 ¸	(1 + 𝑗𝜔𝑞)				
1

𝑠 e𝑠 + 𝐷
𝑀f

		¹ ≥ 0																																				(3.11) 

 

Then,  

𝑞 𝐷𝑀 − 1
𝐷.
𝑀. + 𝜔.

≥ 0																																																						(3.12) 

And  

𝑞
𝐷
𝑀 ≥ 1																																																															(3.13) 

Thus, 𝑞 can be defined from the inequality as 𝑞 = =
^
𝑛, where 𝑛 ≥ 1. 

Lyapunov’s function is constructed as follows: 
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𝑣(𝑋) =
1
2 	𝑀 �

𝐷
𝑀	𝑥5 + 𝑥.�

.

+ 𝑞³ 𝑓(𝜎)	𝑑𝜎
]

Y
																												(3.14) 

 

Fig. 3. 8. Typical Popov’s line bounding nonlinear system at 𝑘 = ∞ 

 

Based on this function, the area of asymptotic stability can be defined, which determines 

the maximum energy a single VSG can experience due to a load transient or fault without 

going out of stability. This is also under the assumption that no line switching has occurred. 

This also is used to determine the maximum clearing time 𝑡BC of a VSG with respect to its 

parameters due to the occurrence of faults, which is introduced in a later section.   

3. 3. 2. Popov’s method for a multi-VSG MG 

Popov’s criterion is extended for multi-input multi-output systems by Moore-Anderson 

theorem [45], which allows the preceding methodology to be applicable to a microgrid with 

multiple VSGs. The system matrices 𝐴, 𝐵, and 𝐶 are configured by blocks that represents 

one of the VSGs, while the model construction is reserved. The structure of 𝑛 VSGs’ 

simplified model (by ignoring for now modified model derived in chapter 2) is based on 

[41], [43], and can be written for four VSGs (𝑛 = 4) as follows: 

�̇� = 𝐴𝑋 + 𝐵𝑓(𝜎) 

f (σ)

σ

(-1/k , 0)

Slope = q
Popov line
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𝜎 = 𝐶𝑋																																																															(3.15) 

Where: 

𝑥 = [𝜔5, 𝜔., 𝜔J, 𝜔K, 𝜎5, 𝜎., 𝜎J]L ; 𝜎 = [𝜎5, 𝜎., 𝜎J, 𝜎K, 𝜎N, 𝜎O]L ;  

𝜎M = 𝛿!3 − 𝛿!3;    for  𝑚 = 1, 2, 3, …   and  𝑛 = 𝑚 − 1 

𝑓(𝜎) = [𝑓5(𝜎5), 𝑓.(𝜎.), 𝑓J(𝜎J), 𝑓K(𝜎K), 𝑓N(𝜎N), 𝑓O(𝜎O)]L  

And  

𝐴 = 							

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐷5
𝑀5

0 0 0 0 0 0

0
𝐷.
𝑀.

0 0 0 0 0

0 0
𝐷J
𝑀J

0 0 0 0

0 0 0
𝐷K
𝑀K

0 0 0

1 0 0 −1 0 0 0
0 1 0 −1 0 0 0
0 0 1 −1 0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵 = 	−				

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
𝑀5

0 0
1
𝑀5

1
𝑀5

0

0
1
𝑀5

0
−1
𝑀.

0
−1
𝑀.

0 0
1
𝑀J

0
−1
𝑀J

−1
𝑀J

−1
𝑀K

−1
𝑀K

−1
𝑀K

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐶 = 							

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 1 0 0 −1
0 0 0 0 0 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎤
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𝑓(𝜎) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
|𝐸5||𝐸K|	𝐵5K	(sin(𝜎5 + 𝛿5K; ) − sin 𝛿5K; )
|𝐸.||𝐸K|	𝐵.K	(sin(𝜎. + 𝛿.K; ) − sin 𝛿.K; )
|𝐸J||𝐸K|	𝐵JK	(sin(𝜎J + 𝛿JK; ) − sin 𝛿JK; )
|𝐸5||𝐸.|	𝐵5.	(sin(𝜎K + 𝛿5.; ) − sin 𝛿5.; )
|𝐸5||𝐸J|	𝐵5J	(sin(𝜎N + 𝛿5J; ) − sin 𝛿5J; )
|𝐸.||𝐸J|	𝐵.J	(sin(𝜎O + 𝛿.J; ) − sin 𝛿.J; )⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Popov’s inequality is essentially the same by considering the coefficient 𝑞	in Popov’s 

line slope 5
'
  (at 𝑘 = ∞) as a diagonal matrix 𝑄 = 𝑞𝐼 (𝐼 is the identity matrix) and 𝑛 = 1, 

as follows:  

𝑅𝑒{(1 + 𝑗𝜔𝑄)	𝐺3(𝑗𝜔)} > 0																																										(3.16) 

Where, 𝐺3(𝑗𝜔) is the transfer function of 𝑛 VSG.  

The inequality is satisfied at 𝑞# ≥
=!
^!

 for the 𝑖)* VSG as concluded in single VSG case, 

and the elements of the diagonal matrix 𝑄 are  𝑞# ≥
=!
^!

 , 𝑖 = 1, 2, … , 𝑛. 

There are many ways to construct a Lyapunov function in a microgrid with n VSGs 

based on: a) the preceding inequality and b) the freedom of choosing different 𝑞’s among 

other parameters. That is, if: 

1) The inequality is satisfied,  

2) The resultant function is positive definite,  

3) And Popov’s line properly bounds the nonlinearity in the system.  

The selection of 𝑞# in this work is based on Pai and Murthy [60] for a large-scale power 

system as follows: 

𝑞 =l𝑞#

3

#45

=l
𝑀#

𝐷#

3

#45

																																																							(3.17) 

Thus, Lyapunov function is regarded as follows: 

𝑣(𝑋) =
1
2ll

𝑀%
𝐷%
𝑀#𝜔#. +

1
2𝐷L

l𝑀#
.𝜔#.

3

#45

3

%45
%D#

3

#45
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+	
1
2𝐷L

	l l 𝐷#𝐷% 	�𝛿# − 𝛿#; + 𝛿%; − 𝛿% +
𝑀#

𝐷#
𝜔# −

𝑀%
𝐷%
𝜔%�

.3

%4#05

												(3.18)		
3U5

#45

 

+l
𝑀#

𝐷#

3

#45

	l³ 𝑓#(𝜎#)
]

Y
𝑑𝜎# 	

!

#45

 

  

3. 4. Estimation of region of asymptotic stability (region of attraction) 

Every VSG in a stable microgrid supplies its power share at a fixed power angle 𝛿#, and 

fixed frequency with respect to a reference VSG. The rate of change of frequency (RoCoF) 

of each individual VSG and in the microgrid frequency in total under such conditions is 

zero. Then, every VSG resides at its own stable equilibrium (fixed) operating point.  

Upon a large transient, disturbance, or fault mismatch in the virtual energy within each 

VSG causes change in their power angle and non-zero rate of change in frequency. The 

trajectory that describes the behavior of each VSG travels away from the stable equilibrium 

point to another point, until the disturbance is cleared. The VSGs ability to return to their 

equilibrium points is mandated by certain energy threshold 𝑣(𝑋). The area around the 

stable point which the trajectory can branch out without loosing the ability to come back to 

that point is the area of attraction or area of asymptotic stability of the VSG(s). The aim 

here is to find the lower upper bound of such area, which defines the maximum energy and 

time the trajectory of each VSG can have without entering the unstable areas around it.  

Although qualitative estimation of such an area is possible by seeing the vector field of 

a single VSG microgrid. An analytical approach is desirable to enable clear and precise 

judgement. More importantly, microgrid formed by multiple VSGs (with 𝑛 VSGs) is an 

interconnected and coupled system, which is harder to visualize and to extract its qualitative 

properties. Hence, analytical approach (despite how conservative it is) is more suitable. 
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3. 4. 1. Single VSG microgrid 

In a single VSG microgrid, the grid becomes unstable if the disturbed VSG reaches one 

of its unstable equilibrium points (𝜋 − 2𝛿#;,			0), or (𝜋 + 2𝛿#;,			0). This condition sets the 

lower upper limit of its area of attraction. The amount of energy the VSG needs to gain/lose 

to reach such a boundary can be calculated based on the afore mentioned Lyapunov 

function for single VSG 𝑣(𝑋W) evaluated at these unstable points. The point that gives the 

lower value of the Lyapunov function 𝑣!#3(𝑋) forms the boundary of the area of attraction 

and used to calculate system’s critical time 𝑡BC [41].  

𝑣!#3(𝑋) =
1
2 	𝑀 �

𝐷
𝑀	𝑥5 + 𝑥.�

.

+ 𝑞³ 𝑓(𝜎)	𝑑𝜎
]

Y
																											(3.19) 

It is worth mentioning that the quadratic term of the Lyapunov function when evaluated 

at the unstable equilibrium points (𝑥5 = 𝜎 = 𝜋 ± 2𝛿#; and 𝑥. = 0) is much smaller than 

the integral term and can be neglected.  

Hence,  

𝑣!#3(𝑋) = 𝑞³ 𝑓(𝜎)	𝑑𝜎
]4A±.1!

'

Y
																																									(3.20) 

Once 𝑣!#3(𝑋) is obtained, the nonlinear model of a single VSG microgrid can be 

numerically integrated with the corresponding unstable point as its initial value, and then 

solved for 𝑡BC.  

The introduced method is used to find the stability margin of a microgrid configured by 

single VSG. The single line diagram of the microgrid is shown in Fig. 3. 9 which shows a 

single VSG connected to a load 𝐿𝑑5 and to utility grid 𝑣(. The utility grid is represented by 

a slack bus that has a fixed voltage 𝑣( = 𝐸 = 1	∠0°	𝑝. 𝑢., power angle and frequency 𝜔(. 

Thus, it is taken as the microgrid’s power angle 𝛿( = 0° and frequency references 𝜔( = 1. 

It is also assumed that the effect on the utility’s voltage, and frequency is minimal and can 

be neglected in this scenario. The rest of the parameters are listed in Table 3. 1. 
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Before proceeding with the stability analysis, the key properties of the introduced 

methodology can be further demonstrated. The VSG is modeled using equation (3.6) and 

it is simplified by considering an undamped condition i.e., the damping factor is set to zero. 

This helps wrapping up the area of attraction more tightly as seen here. The relationship 

between its power angle 𝑥5 = 𝛿	𝑟𝑎𝑑 and deviation in frequency 𝑥. = 𝜔	𝑟𝑎𝑑/𝑠 is described 

by its vector field, as shown in Fig. 3.10. All trajectories initiated within proximity of the 

stable point (labelled by a green dot) do not approach this steady state point exponentially 

but take a very slow decay towards it. This is translated into a very slow decaying 

oscillation in VSG power angle and frequency what matches the behaviour expectancy in 

such a case (undamped system).  

 

Fig. 3. 9. Simplified single line diagram of single VSG microgrid 

 

Fig. 3.10. Vector field of undamped single VSG. 

Vg

=

~
VSG

Ld1

Xf XT
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It can also be seen that not all trajectories will approach the steady-state point despite 

their initial point. Rather, there exists a finite region around the equilibrium point (indicated 

by the green dot in the figure) if the trajectory starts within such a region, it will always fall 

back to that point (area of attraction). Otherwise, it will approach another unstable point. 

Such areas can be intuitively observed in the upper and lower third regions of Fig. 3.10.  

The boundary of the area of attraction surrounds the stable equilibrium point and is 

constructed using the introduced method. First, Lyapunov function 𝑣(𝑋) is constructed 

using equation (3.19) for the undamped VSG model. Second, it is evaluated at the two 

unstable points next to the desired stable one 𝑣(𝑋W5) and 𝑣	(𝑋W.) and the results were as 

follows: 

𝑣5(𝜋 + 𝛿W5) = 5.8295   and   𝑣.(𝜋 − 𝛿W.) = 6.1951 

The contour corresponding to 𝑣5 and 𝑣. is plotted using equation (3.21) and (3.22) over 

the vector field of the VSG in Fig. 3.11. The area of attraction defined by 𝑣5 is plotted in 

red contour while the one defined by 𝑣. is plotted in blue contour. The red contour 

accurately defines the stable area around the stable equilibrium point while the blue contour 

is more conservative especially close to the unstable point. In the introduced method, the 

conservative case is considered to ensure safe stable operation. Also, as will be seen later, 

the conservative value is better approximate the area of attraction within the range of 

operation in a sense that it cuts off some stable regions as opposed to the non-conservative 

estimation 𝑣. that would include them in addition to some unstable regions. This matches 

the introduced method where the conservative estimation is corresponding to the minimum 

value of 𝑣!#3 = 𝑣5 = 5.8295 (the blue contour).  

𝑣5 =
5
.
	𝑀 e^

=
	𝑥5 + 𝑥.f

.
+ 𝑞 ∫ 𝑓(𝜎)	𝑑𝜎]

Y   −−−→	 𝑣5 = 5.8295  (3.21) 

𝑣. =
5
.
	𝑀 e^

=
	𝑥5 + 𝑥.f

.
+ 𝑞 ∫ 𝑓(𝜎)	𝑑𝜎]

Y   −−−→	 𝑣. = 6.1951  (3.22) 

Note that, the damping coefficient 𝐷 is set to very small value 0.001	𝑝. 𝑢. to prevent 

dividing by zero in 𝑞 = 𝑀/𝐷. 
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In other words, Lyapunov function describes VSG exciting energy levels and can be 

visualized as a hyper-plane in 3D which is shown in Fig. 3.12. Every contour is an 

intersection between it and another plane that represents a certain energy level (e.g., 𝑣5 or 

𝑣.). The projection of the curve that is the result of the intersection of these planes on the 

vector field plot encircles part of the system dynamics. The aim is to find a plane (i.e., 

energy level) that only defines a stable region around the stable equilibrium point.  

 

Fig. 3.11. Area of attraction of single VSG microgrid at zero damping; 𝑣5 in blue 

contour and 𝑣. in red contour. 
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Fig. 3.12. 𝑣(𝑋) of single VSG microgrid 

 

The general case is considered next. The stability of a damped VSG in a single VSG 

microgrid (Fig. 3.9) is studied considering the following scenario. The dynamics of the 

damped VSG is shown in Fig. 3.13 which has 1	𝑝. 𝑢.	damping coefficient. Its stable 

equilibrium operating point is identified by the green dot while its unstable one is shown 

as a red dot. A three phase to ground fault is applied at its output as shown in Fig. 3.14. The 

VSG controller is disconnected from it for a certain period 𝑡. The aim is to find the largest 

period it can be disconnected before being unable to restore synchronism with the utility 

grid and return to the same equilibrium point.  

To facilitate the study, the following assumptions are considered.  

- System configuration before the fault is the same after the fault is cleared. 

Hence, Fig. 3.13 describes system behavior in pre-fault and post-fault 

conditions.  

- System virtual mechanical input changes very slowly and can be considered 

constant.  

 

  

V(
X)
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Table 3.1. Single VSG microgrid parameters 

Parameter Value 

Virtual input power 𝑃! 0.5	𝑝. 𝑢. 

Power electrical power 𝑃" 0.5	𝑝. 𝑢. 

Power angle at steady state 𝛿 0.203	𝑟𝑎𝑑 

Grid power angle 𝛿( 0	𝑟𝑎𝑑 

Line impedance 𝑥( 0.43	𝑝. 𝑢. 

Grid line voltage 𝑣( 1	𝑝. 𝑢. 

Active power droop coefficient 𝐾& 0.03 

Reactive power droop coefficient 𝐾'                0.03 

Damping constant 𝐷 1	𝑝. 𝑢. 

Inertial Constant 𝑀 normalized 2	𝑠 

Simulation step time 10 us 
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Fig. 3. 13. The dynamics of the damped VSG with 1	𝑝. 𝑢. damping 

 

 

Fig. 3. 14. Faulted system 

 

Based on the parameters in Table 3.1, a compact VSG model in pre- and post-fault 

conditions can be written as follows: 

𝑥5̇ = 𝑥. 

𝑥.̇ = −
1
2 (𝑥5 + 0.5 − 𝑃"sin	(𝑥5 − 𝛿

;))																																(3.23) 

And its model during the afore mentioned fault is as follows: 

Vg

=

~
VSG

Ld1

Xf XT
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𝑥5̇ = 𝑥. 

𝑥.̇ = −
1
2 (𝑥5 + 0.5)																																																			(3.24) 

As the upper bound limit of its Lyapunov function 𝑣!#3(𝑋) calculated in equation (3.19) 

is redone here to consider the damping coefficient 𝐷. Same formula and procedure 

described earlier is used here. At the two neighborhood unstable equilibrium points (𝜋 +

𝛿W5) and (−𝜋 + 𝛿W.), the values of 𝑣5(𝑋W5) and 𝑣.(𝑋W.) are as follows: 

𝑣5(𝜋 + 𝛿W5) =7.6266  and   𝑣.(−𝜋 + 𝛿W.) = 12.5525 

The two contours are plotted as earlier, but for non-zero damping which are shown in 

Fig. 3. 15. It can be seen that, both estimations do not define exactly the area of attraction 

around the desired equilibrium point. However, by following the introduced method, the 

conservative value 𝑣5 (in blue contour) is chosen to be the VSG upper bound of its area of 

attraction 𝑣!#3 = 𝑣5 as 𝑣5 < 𝑣.. By observing the plots in Fig. 3. 15, one can see that all 

integral solutions (arrows) found inside the area defined by energy level 𝑣5 go 

exponentially towards the stable equilibrium point (within the range of operation 

(−𝜋	𝑡𝑜	𝜋). On the other hand, not all the ones inside the area defined by 𝑣. (the red 

contour) follow the same behavior as can be observed within its upper section.  

 

Fig. 3. 15. Area of attraction of single VSG microgrid at zero damping 𝑣5 in blue and 
𝑣. in red. 
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The last step is it to integrate the faulted model (equation (3.24)) and substitute in 𝑣(𝑋) 

at every time interval Δ𝑡. When 𝑣(𝑋) approaches 𝑣!#3(𝑥) the VSG reaches its stable 

boundaries and will go unstable for the upcoming time intervals. The time at which 𝑣(𝑋) =

𝑣!#3(𝑥) is the maximum it can pass before the VSG losses its ability to reconnect again to 

the microgrid 𝑡BC.  

More precisely, the faulted trajectory reaches the point (𝑥5 = 2.65	𝑟𝑎𝑑, 𝑥. =

0.44	𝑟𝑎𝑑/𝑠) at 𝑡 = 6.85	𝑠 as shown in the faulted trajectory in Fig. 3. 16. At such a point, 

VSG’s Lyapunov function 𝑣(𝑋) is equal to its lower upper limit 𝑣!#3(𝑋) calculated before. 

Its power angle 𝑥5 and frequency deviation 𝑥. are depicted in Fig. 3.17 (a) and (b) 

respectively, which matches the analytical values.  

After the fault is cleared, VSG restores its dynamics (depicted in Fig. 3.13) and starts to 

approach its pre-fault equilibrium point, as shown in Fig. 3.18 in the black curve. The Fig. 

3.19 shows VSG power angle and frequency dynamics starting from the faulted position 

and ending at the stable equilibrium point. Therefore, the time 𝑡 = 6.85	𝑠 is the VSG 

clearing time 𝑡BC.  

A last remark, if the VSG is not connected before 𝑡 = 𝑡BC, it will not go back to its initial 

point equilibrium point and a resynchronization procedure is needed. This case is shown in 

Fig. 3.20 which represents trajectory crossing the area of attraction.  
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Fig. 3. 16. Vector filed of faulted VSG in single VSG microgrid 

 

 

(a)                                                           (b) 

Fig. 3. 17.  Faulted system power angle and frequency (a) power angle 𝑥5 of the 

faulted VSG; (b) frequency deviation 𝑥. of the faulted VSG. 
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Fig. 3. 18. Vector filed of post-fault VSG in single VSG microgrid 

 

 

 

(a)                                                                       (b) 

Fig. 3. 19. (a) power angle 𝑥5 of the post-faulted VSG; (b) frequency deviation 𝑥. of 

the post-fault VSG. 
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Fig. 3. 20. VSG trajectory at reconnection at 𝑡 > 𝑡BC 

 

In summary, the introduced method provides a systematic direct construction of 

Lyapunov function for VGS in a microgrid, and an estimate of its area of attraction. The 

conservation in the estimation is within an acceptable range for microgrid application 

where the complexity of the system is lower when compared with a conventional electric 

grid. Furthermore, microgrids are typically spread over a limited geographic area with short 

transmission lines, which reduces the effect of the location of the disturbance on the 

estimated area of attraction. The effect of the location of the disturbance is more 

pronounced in large-scale power system, which necessitate some adjustments in evaluation 

methods and points [60]. 

3. 4. 2. Multiple VSGs microgrid 

Construction of Lyapunov function for microgrid consisting of 𝑛-VSGs is done 

systematically using Popov multivariable method. It can be used to evaluate the microgrid 

total transient energy at any operating point. However, evaluating the region of attraction 
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is a challenging task as it is not confined in a two-dimensional plane as in a single VSG 

microgrid, which was bounded by two unstable points.  

Instead, such a region is found between hyper-planes in n-dimensions. Each hyper-plane 

is formed by one of the independent unstable equilibrium points of each machine. An 

example of such a representation is shown in Fig. 3. 21 for a 4-VSG microgrid where the 

4th VSG is the reference. This poses a minimization problem that aims at minimizing such 

a region defined by 𝑣(𝑋) and ideally makes it tangential to each hyper-plane [60].  

A correct solution to such a problem involves topological theories and convex 

optimization which are beyond the scope of this study. Sufficient solution for microgrid 

application is possible through proper approximation based on its physical properties. That 

is, a microgrid becomes unstable if one VSG at a time loses synchronism, or all of them 

lose synchronism by reaching their unstable equilibrium points.  

 

Fig. 3. 21. Hyper-planes represent the unstable equilibrium points in 4-VSG microgrid; 

Green point is the stable desired operating point in the middle 

Therefore, the multivariable Lyapunov function is evaluated under these unstable 

conditions, and its minimum value sets the upper bound of the region of stability. These 

points can be summarized as follows [1]: 

σ14
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a) At the unstable points of each VSG alone (0, … , 𝜋 ± 2𝛿#3; , … ,0) where, (𝑖 = 1,

2, 3…𝑛 − 1) is the 𝑖)* VSG and 𝑛 is the reference 𝑛)* VSG. 

b) At the unstable points where VSGs become unstable (𝜋 ± 2𝛿53; , 𝜋 ± 2𝛿.3; , 𝜋 ±

2𝛿J3; … , 𝜋 ± 2𝛿3U5→3; ) where, (𝑖 = 1, 2, 3…𝑛 − 1) is the 𝑖)* VSG and 𝑛 is the 

reference 𝑛)* VSG. 

3. 4. 3. Case study of multiple VSG microgrid 

A case study is carried on using modified 9-bus power system, which is also known as 

WSCC 3 machine system. It is originally formed by 3 SG machines connected to bus 1, 2, 

and 3. They are connected to the rest of the rest of the network by 3 two-winding 

transformers which connect bus 1 to bus-4, bus-2 to bus-7, and bus three to bus-9. The 

transmission network is modeled using 6 constant impedance transmission lines. The loads 

are connected to bus-5, 6 and 8 and are modeled as PV loads. Bus-1 is the swing bus of the 

system. The single line diagram of the network is shown in Fig.3.22 and its parameters are 

listed in Table 3.2 to 3.5 on base power 100 MV. Here, the network is modified by replacing 

the SGs by VSGs with output impedance equal to the transient impedance of the original 

SGs. Their parameters are listed in Table 3.5 on base power of 100 MVA. The load flow 

calculation results are shown in Fig. 3.25., and the network single line diagram is shown in 

Fig. 3.24. The rest of the system is remained unchanged. 
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Fig. 3.22. 9-Bus IEEE system (WSCC) 

 

Fig. 3.24. Modified 9-Bus IEEE system (WSCC) 
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Fig. 3.25. Load flow of the modified 9-Bus IEEE system (WSCC) 

 

Table. 3.2. Transformers parameters 

 T1 T2 T3 

Nominal primary voltage (kV) RMS L-L 24 18 15.5 

Nominal secondary voltage (kV) RMS L-L 230 230 230 

R1 p.u. 1.00E-10 1.00E-10 1.00E-10 

L1 p.u. 2.88E-02 3.13E-02 2.93E-02 

R2 p.u. 1.00E-10 1.00E-10 1.00E-10 

L2 p.u. 2.88E-02 3.13E-02 2.93E-02 

Rm p.u. 5.00E+03 5.00E+03 5.00E+03 

Lm p.u. 5.00E+03 5.00E+03 5.00E+03 
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Table. 3.3. Transmission limes parameters 

Line 
R (p.u./m) X (p.u./m) B (p.u./m) From Bus To Bus 

4 5 0.0100 0.0680 0.1760 

4 6 0.0170 0.0920 0.1580 
5 7 0.0320 0.1610 0.3060 

6 9 0.0390 0.1738 0.3580 

7 8 0.0085 0.0576 0.1490 

8 9 0.0119 0.1008 0.2090 

 

Table. 3.4. Load parameters 

Bus P (p.u.) Q (p.u.) 

5 1.25 0.50 

6 0.90 0.30 
8 1.00 0.35 

 

 

Table. 3.5. VSG parameters 

VSG 1 2 3 

Rated (MVA) 247.5 192.0 128.0 

Output Voltage (kV) 16.5 18.0 13.8 

Base Power (MVA) 100 100 100 

Output Impedance 0.1460 0.8958 1.3125 

Stored Energy (MW’s) 2364 640 301 

Inertia Coefficient H (s) 23.64 6.4 3.01 
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The network model is formulated as follows: 
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⎥
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																		(3.26) 

where, 

𝐸5∠𝛿5Y = 1.0566	∠2.27° 

𝐸.∠𝛿.Y = 1.0502	∠19.73° 

𝐸J∠𝛿JY = 1.0170	∠13.18° 

Table. 3.6. Reduced admittance matrix 𝑌#% 

Condition Node 1 2 3 

Pre-fault  

1 0.846 − i2.988 0.287 + i1.513 0.210 + i1.226 

2 0.287 + i1.513 0.420 − i2.724 0.213 + i1.088 

3 0.210 + i1.226 0.213 + i1.088 0.277 − i2.368 

Fault  

1 0.657 − i3.816 0.000 + i0.000 0.070 + i0.631 

2 0.000 + i0.000 0.000 − i5.486 0.000 + i0.000 

3 0.07 + i0.631 0.000 + i0.000 0.174 − i2.796 
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Lyapunov function is regarded as follows: 

𝑣(𝑋) =
1
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Lyapunov function is calculated based on the criteria provided in section 3.4.2. to produce 

the critical energy levels. Each one of them is enough to cause one or more of the VSG to 

go output of synchronism. As discussed, the minimum energy level 8.06545 p.u. will be 

considered in determining the network 𝑡BC, which is corresponding to energy level required 

to cause the second VSG2 to go out of stability.  

A 3-phase to ground fault is applied at the transmission line 5-7 close to bus-7. The reduced 

admittance matrix is listed in Table 3.6. The relative power angles of VSG2 𝛿.(𝑡) and 

VSG3 𝛿J(𝑡)with respect to VSG1𝛿5(𝑡) are shown in Fig. 3.27 (a) and the frequency 

deviations 𝜔5(𝑡), 𝜔.(𝑡), and 𝜔J(𝑡) in Fig. 327 (b). These power angles along with the 

frequency deviation are fed into the Lyapunov energy function 𝑣(𝑥). It has been found that 

the system reaches its determined critical energy level after 0.28𝑠. If the fault is removed, 

the system exhibits damped oscillation and goes back to its steady state stable equilibrium 

point as shown in Fig. 3.28 (a) and (b). The amount of energy the system gains and 

gradually releases during the transient is tracked using Lyapunov function and shown in 

Fig. 3.28 (c). It shows that the system eventually dissipates all its transient energy and 

eventually restores the balance between its input power and output power. In other words, 

the system goes back to its initial stable equilibrium point. 
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Fig. 3.26. Fault applied at bus 7 in modified 9-Bus IEEE system (WSCC) 
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(a) 

 

(b) 

Fig. 3.27. Faulted system at bus-7; (a) VSG’s power angle relative to VSG1; (b) 
VSG’s frequency deviation. 
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(a) 

 

(b) 

                          

(c) 

Fig. 3.28. Post fault, fault is cleared at 𝑡BC = 0.28𝑠 (system is stable); (a) VSG’s power 
angle relative to VSG1; (b) VSG’s frequency deviation; (c) Network energy represented 

by Lyapunov function. 
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On the other hand, when the fault is present for more than 0.28𝑠 for example 0.29𝑠 the 

energy the system gains during the fault exceeds the predetermined energy level 𝑣(𝑥) and 

exhibits oscillatory behaviour with increasing amplitude. In other words, All VSGs lose 

synchromism and system become unstable, as shown in Fig. 3.29 (a) and (b). The amount 

of energy the increasing system gains during the transient is tracked using Lyapunov 

function and shown in Fig. 3.29 (c).  

 
(a)       (b) 

 

 
(c) 

Fig. 3.29. Post fault, fault is cleared at 𝑡BC = 0.29𝑠 (system unstable); (a) VSG’s 
power angle relative to VSG1; (b) VSG’s frequency deviation; (c) Network energy 

represented by Lyapunov function. 
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4. Trajectory Reversing Based Stability Analysis 

4. 1. Introduction 

It is a straightforward procedure to determine the fixed points of any given nonlinear 

system to determine its stability using, for example, Lyapunov indirect method. The 

challenge comes in answering the question regarding the range of dynamics a system can 

exhibit starting around its stable point before spiraling out and becoming unstable. Such 

point(s) are known as points of asymptotic stability and such a region around them is known 

as the region of asymptotic stability or region of attaction (ROA). Many techniques have 

been introduced in the literature that rely on finding a proper Lyapunov function. Although 

it is a simple concept in abstract, it is often hard to achieve and lacks the appeal of a 

systematic construction in engineering applications [49] [48].  

One of the approaches to such a problem is based on the Zupov’s function. It provides 

the necessary and sufficient conditions for a given region around a fixed stable point, by 

formulating partial differential equations in each Lyapunov function. Although the resultant 

function perfectly defines ROA, most of the times a closed-form solution does not exist. A 

work around this is to use an approximation method to generate an adequate subset of the 

original ROA. Such approximating techniques are presented in [49]. A series expansion 

technique-based approximation is presented in [61], [62] and a numerical approximation is 

presented in [63]. Moreover, an approximate solution of the Zupov’s function using the Lie 

series is introduced in [64], [8], [9], and a Lagrange-Charpit based approximation is 

available in [65].  

Another approach to estimate ROA is based on La Salle’s theory [66]. It gives some 

conditions to the time derivative of the Lyapunov function for certain regions to be included 

in the estimated ROA. However, it is found to give a more limited estimation as compared 

with Zupov’s method.  Generally, these methods can be split into two main categories: 

1. The first one is applied to well defined nonlinear systems. Initially, the Lyapunov 

function is constructed for low-order systems using any of the classical procedures e.g., 

quadratic or Lure’s LF’s, Igwerson, variable gradient, Krasovskii, which satisfy La 

Salle’s theory. Then, an optimization algorithm is applied to maximize the ROA subset 
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as much as possible [67]. In [68], for example, a quadratic Lyapunov function 

maximizing the subset ROA with respect to its coefficient is implemented. First, it uses 

a numerical algorithm to define a norm Lyapunov function and then enlarges it. A 

similar approach is introduced in [69]. It is based on a frequency criteria and topological 

considerations to predict the existence of limit cycles. It is worth mentioning that these 

types of methods are well established and used in power system stability analysis [60]. 

2. The second category of methods is based on frequency domain Popov’s criterion which 

generally considers Lyapunov function and holds for nonlinear systems that comply 

with the sector conditions (first and third quadrants) based on Aizerman’s definition. 

This concept is extended to higher dimension nonlinear systems in [41] (as in a multi-

machine power system). These methods, especially the latter two, are specifically 

developed for power system stability studies where it is easy to prove its compliance to 

passivity theorem and sector conditions.  

 

This work proposes the utilization of a convex hull-based trajectory reversing method to 

estimate and enlarge the ROA of a grid connected VSG. That is, a family of trajectories 

initiated close to the VSG equilibrium point is generated and evaluated at successive time 

steps. After each evaluation, the resultant points are passed to the convex hull algorithm that 

finds the minimum region that contains all these points. Such a region is a subset of the 

VSG’s ROA. Repeating these steps leads to enlarging the VSG’s estimated ROA. 

Nonetheless, finding an exact estimation of the VSG’s ROA requires significantly high 

number of trajectories (with their initial points) and high number of time steps which will 

have negative impact on the algorithm computational time. This work proposes a new 

technique to define the set of initial points needed by the algorithm. The proposed technique 

provides an easily tuneable method that balances the computational time with the number 

of initial points and their corresponding trajectories. It ensures a uniform distribution of the 

initial points over the ROA regardless of how many points are needed. Hence, the number 

of initial points can be reduced without compromising the process. The proposed technique 

is more beneficial in a system with higher dimension’s i.e., with 𝑛 number of VSGs, where 

finding uniformly distributed initial points around the equilibrium point of each machine is 

a challenge.  
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4. 2. Trajectory reversing method  

For a nonlinear system:  

�̇� = 𝐹(𝑥)																																																																												(4.1) 

where,  

𝑥 = 𝑥(𝑡) ∈ ℝ3 and 𝐹(𝑥) satisfies the existence and uniqueness conditions for all 

solutions 𝑥(𝑡, 𝑡,) which have initial conditions 𝑥(0) = 𝑥,, and its origin is such that: 

𝐹(0) = 0																																																																													(4.2) 

and it is an asymptotically stable isolated fixed point (equilibrium point).  

Nonetheless, such a system can have other fixed points such that:  

𝐹(𝑥) = 0																																																																												(4.3) 

The region of asymptotic stability ROA around the fixed point at the origin is defined as 

the set Ω	of all initial condition points 𝑥, which are functions of the time 𝑡 and initial time 

𝑡,such that 

Ω = lim
)→	\

𝑥(𝑡, 𝑡,) = 0																																																																		(4.4) 

It is worth mentioning that Ω is an invariant set with 𝑑Ω as is its boundary. That is, if the 

system started with initial conditions (e.g., Δ𝜔, and 𝜃,) it must follow the corresponding 

trajectory and end up at the origin. The backward integration of such a system is equivalent 

to: 

�̇� = −𝐹(𝑥)																																																																								(4.5) 

The magnitudes of the derivatives are equivalent to the original system, but in the 

opposite direction. This can be observed in system’s phase portrait where the arrows 

direction is reversed. Hence, the origin 𝐹(0) = 0 becomes unstable and has repulsive 

trajectories. After sufficient time 𝑡, such trajectories will form the boundary set 𝑑Ωbcd 

which is less than or equivalent to the original boundaries 𝑑Ω. 

This technique is more efficient in low order systems. It can provide almost an exact 

ROA in second order systems. It has been reported in [70] that such a technique is not 
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computationally efficient in third and higher order systems. Therefore, convex hull 

algorithm is introduced in [56] to extend it to higher dimensions. 

 

4. 3. Estimation of ROA using Convex Hull Algorithm  

4. 3. 1. Background  

Reverse trajectory states that it is possible to estimate a system’s ROA from enough 

initial points. Nonetheless, the work first introduced in [70] admits that it is a rather complex 

process to extend this work beyond 3D e.g., more than one VSG. Here, an algorithm to 

obtain an estimation and enlargement of the converter’s ROA based on convex hull is 

discussed. It relies on determining whether a given set of points lie within a given convex 

hull [70], [56]. 

The objective of finding the convex hull is to define the smallest convex set (region) such 

that contains all points in 𝑠 = {𝑥5, 𝑥., 𝑥J, … 𝑥3} in ℝ3 [71]. Such a convex set is described 

by a finite number of inequalities and equations. In the 2-D plane, it can be represented by 

line segments that are defined by their equations while their perspective length is defined by 

inequalities. In cases of higher dimensions, convex hull is defined by hyperplanes and 

inequalities.  

The convex hull is constructed using Mathematica’s embedded function 

ConvexHullMesh for theoretical calculations, and a similar Matlab function quick hull exists 

in the simulation.  

The algorithm introduced in [56] is utilized here to serve this purpose. It uses the Matlab 

function inhull to perform this check-up. Mathematica’s RegionMember function also 

provides a robust and easy way to do the same task. These functions first, select random 

points 𝑥# on each simplex e.g., hyperplanes that define the convex hull. Then, a testing point 

𝑥) is located inside the convex hull, if and only if, the inner product of it is inward facing 

normal 𝑛# and the distance between the testing point and the randomly selected points is 

positive. 
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For, 

𝑄# = 𝑥) − 𝑥# 																																																															(4.6) 

And 𝑖 = 1, 2, 3, … 

The point 𝑥) is inside the convex hull if and only if,  

𝑛# 	. 𝑄# 	> 		0																																																																(4.7) 

for every 𝑖)* point on convex hull hyperplane. 

Furthermore, the algorithm also requires that all the vertices of the constructed convex 

hull form a single cluster around the origin. In other words, it means it is density reachable 

]72[  for any arbitrary distance 𝜀. 

In some applications, a subset of the convex hull is sufficient to describe the ROA of 

interest. For example, in a power system where periodic repeated stable points are existing, 

only the ROA bounded by the power angle of each machine / VSG from −2𝜋 to 2𝜋 is 

acceptable. Further constrains can be imposed based on the desired characteristics inside the 

ROA. The Matlab function intersectionhull [12] can be used to slice the convex hull to 

satisfy the constraints on the enlarged ROA.   

4. 3. 2. Convex representation of ROA using the trajectory reversing method 

Estimation of the enlarged region of asymptotic stability (ROA) in a power system can 

be done as follows:  

1. The VSG / machine’s stable equilibrium points are determined. This is done by 

dropping the derivative terms and equating the grid model (swing equation) to zero and 

calculating 𝛿#Y;  and 𝜔#Y; . In a single VSG connected to an infinite bus network, 𝛿#Y;  and 

𝜔#Y;  become 𝛿Y; and 𝜔Y;. Due to the periodic nature of the grid model and prior 

knowledge of the application and operation requirement, only positive power angle 𝛿#Y;  

may be considered.   

2. Select a discrete number of initial points 𝑛 sufficiently distanced from the given 

equilibrium point (𝛿Y; , 𝜔Y;) such that:  
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𝑋, = {𝑥5, 𝑥., 𝑥J, … . . 𝑥3}																																																(4.8) 

where,  

𝑥3 = �𝛿,3, 𝜔,3� and 𝑛 ∈ ℕ	 is the number of the initial points. 

These points must be located inside of the initial conservative estimation of the ROA. 

In other words, it must be within the asymptotic region as discussed in the previous 

section. A systematic and robust method to select the proper initial points is proposed 

in the next section. This process must be repeated for each equilibrium point of each 

VSG / machine. 

3. Starting from each initial point 𝑥3 = (𝛿,3, 𝜔,3) , the model is numerically integrated in 

reversed time starting from 𝑡 = [0, 𝑡,]. The integration is repeated, and the time-period 

is increased with every repetition, such that 𝑡 = [0, 𝑡, + 𝑘Δ𝑡]. The resultant 

integrations are evaluated at 𝑡 = 𝑘Δ𝑡 and the following set formed: 

𝑋Me) = °𝑥5Me) , 𝑥.()* , 𝑥J()* , … . . 𝑥3()*±																																				(4.9) 

 

The values of 𝑛 and Δ𝑡 should be selected to balance the estimation accuracy and 

computation time. In a power system, it is sufficient to set Δ𝑡 = 1/𝑓 where 𝑓 is the grid 

nominal frequency in Hertz (typically 60 Hz). Selection of 𝑛	is discussed in detail in the 

following section. 

 

4. The convex hull is constructed for the evaluated set 𝑋Me) for every 𝑘 ∈ ℕ using Matlab 

convhull function (or Mathematica).  

5. Step (3) is repeated. The resultant points in the set 𝑋Me) are checked to determine their 

location inside / outside the convex hull constructed in step (4) using Matlab’s inhull 

function / Mathematica’s RegionMember function. Convex hull represents the enlarged 

ROA if all the points in 𝑋Me) lie within the constructed convex hull. Otherwise, step (4) 

is repeated, and a new convex hull is constructed using the new 𝑋Me).  

Steps (3) and (4) are repeated as many times as needed to achieve a precise estimation of 

the ROA. The algorithm is summarized in the flow chart shown in Fig. 4.1. The general idea 
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is to define initial points, integrate the model in reverse time, use the end points of each 

integral curve, construct a convex hull, and then repeat the integration for a longer time. If 

all the end points of the curves in longer time are within the convex hull, the enlarged ROA 

is found. Otherwise, the new end points are used to construct a new convex hull, and the 

steps are repeated.  

 

 

Fig. 4.1. Algorithm’s flow chart 

4. 3. 3. Solving initial condition problem 

Single VSG system 

The algorithm introduced in [56] is effective in enlarging the estimated ROA of a given 

system. However, it did not define how these initial points are chosen. This can be 

problematic in power electronics and power system applications, where an arbitrary 

selection of initial points can result in inadequate estimation of the ROA. A small 

perturbation around the stable equilibrium point is possible in a two-dimensional system 

e.g., VSG converter connected to a utility grid. Nonetheless, in power electronics and power 

system applications, if these points aren’t uniformly distributed around the stable 

equilibrium point and concentrated in one side more than the other, a poor estimation of the 

ROA will occur, and an enlargement of the ROA will not be possible. Moreover, it is not as 
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clear in complex higher dimension systems e.g., with 9 VSG converters connected into a 

microgrid.  

Here, a direct systematic method is proposed for choosing such initial points. This 

method ensures the following:  

- Direct systematic way to select the initial points used in the backward integration to 

generate the reversed trajectories.  

- Uniform distribution of these points around the stable equilibrium point(s). Hence, 

enables enlargement of the estimated ROA.  

- Enables a trade-off between better enlargement of the estimated ROA and the 

computation time required. Fewer points (hence, trajectories) can be considered without 

loss of the uniform distribution to reduce the required computational time.  

For a grid-connected VSG converter (i.e., two-dimension system), with stable 

equilibrium point 𝑥; = (𝛿;, 𝜔;). The proposed method for choosing the initial points (𝛿,,#, 

𝜔,,M) defines them according to the following equation: 

𝛿,,M = 𝛿; + 𝜀1 	𝐶𝑜𝑠	 �
2	𝑘	𝜋
𝑛 �																																												(4.10) 

𝜔,,M = 𝜔; + 𝜀Z	𝑆𝑖𝑛	 �
2	𝑘	𝜋
𝑛 �																																												(4.11) 

where, 

(𝛿,,#, 𝜔,,M) is the 𝑘th initial point,  

(𝛿;, 𝜔;) is the stable equilibrium point, 

𝑘 = 1, 2, …𝑛  

and 𝑛 is the number of initial points. It can be selected to be between 10 to 20 points. It 

can be higher for more accurate results or lower for computational efficiency.  
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𝜀1 and 𝜀Z = 𝜀 is the small perturbation around the stable equilibrium point. It can be 

selected arbitrarily small, e.g.,  0.001. Its maximum value is limited by the length of the 

vector that starts from this equilibrium point to the nearest unstable equilibrium point. In a 

grid connected VSG converter 𝜀1+,- <	𝛿
W − 𝛿; and  𝜀Z+,- <	𝜔

W − 𝜔;. 

Fig.4.2 (a) and (b) show the cases where 10 and 20 initial points are chosen around the 

equilibrium point 𝛿; = 0.848. 𝜀Z is set to 50 and 𝜀1 is set to 1 to generate an exaggerated 

plot of these initial points to help better demonstrate the idea.  

The trajectory reversing process can be followed now using these initial points, where 

the VSG model is backwardly numerically integrated (in reverse time) starting from the 

proposed initial points. The resultant reverse trajectories are shown in Fig. 4.3. 

    
       (a)                                                    (b) 

Fig. 4.2. Initial points distribution (a) 10 points (b) 20 points. 
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Fig. 4.3. Family of trajectories initiated from the proposed initial points. 

Multi-VSG system 

In MG, where many VSG converters are connected at different locations, choosing 

trajectory reversing initial points becomes a cumbersome process. The notion of doing a 

small perturbation 𝜀 around the stable equilibrium points covers partially the state space of 

the MG dynamics in the form of plane or hyper-plane. For example, the dimension of the 

state space of an MG with only 4 VSG converters is 8, which makes assigning uniformly 

distributed initial points a challenging task, unlike the case of 2-dimensional or 3-

dimensional space. Furthermore, as this study and stability investigation targets the area of 

power electronics and power system applications and aims at systematically enlarging the 

ROA to better calculate MG critical clearing time for different types of faults. It is important 

to be able to change systematically the number of initial points to balance the results 

accuracy versus the computational time without sacrificing the uniformity of the 

distribution of the initial points. The proposed method comes to address these challenges, 

by assigning the initial points on a surface of a multi-dimensional sphere centered around 

each equilibrium point. The equations and process are first introduced for a generic 3-

dimensional system to provide visual intuition. Later the generalized equations and process 

are introduced.  

(δs ,ωs )

Reverse Trajectory

Initial Point

-1 0 1 2 3
-150

-100

-50

0

50

100

δ (rad)

Δ
ω

(ra
d/
s)



111 
 

For 3-dimensional system with state variable 𝑥5, 𝑥., and 𝑥J and equilibrium point at the 

origin. The 3D unit sphere shown in Fig. 4.4 can be constructed around the origin using the 

polar parametrization as follows: 

𝑥5 = 𝑆𝑖𝑛	(𝜃)𝑆𝑖𝑛(𝜙) 

𝑥. = 𝐶𝑜𝑠	(𝜃)𝑆𝑖𝑛(𝜙) 

𝑥J = 𝐶𝑜𝑠(𝜙)																																																															(4.12) 

 

Where, 𝜃 and 𝜙 are two arbitrary angles in [0	, 2𝜋]. 

 

Fig. 4.4. 3D unit sphere 

The set Ωf that contains the initial points equally distributed on its surface can be defined 

as follows: 

	

𝑥5 = 𝑆𝑖𝑛	 �
2	𝜋	𝑘5
𝑛 � 𝑆𝑖𝑛 �𝜙

2	𝜋	𝑘.
𝑛 � 
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𝑥. = 𝐶𝑜𝑠	 �
2	𝜋	𝑘5
𝑛 � 𝑆𝑖𝑛 �

2	𝜋	𝑘.
𝑛 � 

𝑥J = 𝐶𝑜𝑠 �
2	𝜋	𝑘.
𝑛 �																																																			(4.13) 

Where, 

𝑘5𝑎𝑛𝑑	𝑘. = 0, 1, 2, …𝑛 and 𝑛 is a variable that controls the desired number of initial points.  

Fig. 4.5 shows an example of the resultant points on the sphere.  

 

Fig. 4.5. Example of uniformly distributed points on a 3D unit sphere 

It is worth mentioning that higher degree of uniformity in the point distribution is 

achieved when n is set to be an even number. Fig. 4.6. (a) and (b) shows an example of the 

resultant points on the unit sphere for 𝑛 = 	5 and 𝑛 = 6, respectively. Moreover, it is 

considering a good practice to check the generated points to remove any duplication which 

can be a result of the oscillatory nature of the trigonometry equations. The number of 

generated points from equation 4.13 equals to 𝑛.. However, when the duplicated points are 

removed the final number of points become much lower. Fig. 4.7. shows a comparison 

between the original number of generate points ( 𝑛.) and their number without duplications. 

The approximate number of reduced points (unique points) can be expressed as follows: 

X1 (
p.u

.) 

X3 (p.u.) 

X2 (p.u.) 
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𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑜𝑖𝑛𝑡𝑠	 = 	0.5𝑛. − 𝑛 + 2																															(4.14) 

      

(a)                                                               (b)    

Fig. 4.6. Example of the resultant points on the unit sphere; (a) 𝑛 = 5; (b) 𝑛 = 6 

 

Fig. 4.7. Plot of the original number of generate points ( 𝑛.) and the reduced one. 

 

The generalization of the above approach for MG with n-VSG is formulated in equation 

4.15 as follows: 
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𝜔5,,,M = 𝜀 sin �
2	𝜋	𝑘5
𝑛 �	cos �

2	𝜋	𝑘.
𝑛 � 

𝛿.,,,M = 𝜀 sin �
2	𝜋	𝑘5
𝑛 �	sin �

2	𝜋	𝑘.
𝑛 �	cos �

2	𝜋	𝑘J
𝑛 � 

….. 

𝛿g,,,M

= 𝜀 sin �
2	𝜋	𝑘5
𝑛 �	sin �

2	𝜋	𝑘.
𝑛 �	cos �

2	𝜋	𝑘J
𝑛 �…	sin �

2	𝜋	𝑘gU.
𝑛 �	cos �

2	𝜋	𝑘gU5
𝑛 �																			 

𝜔g,,,M

= 𝜀 sin �
2	𝜋	𝑘5
𝑛 �	sin �

2	𝜋	𝑘.
𝑛 �	cos �

2	𝜋	𝑘J
𝑛 �…	sin �

2	𝜋	𝑘gU.
𝑛 �	sin �

2	𝜋	𝑘gU5
𝑛 �							(4.15) 

where,  

(𝛿#,,,M, 𝜔#,,,M , …., 𝛿g,,,M, 𝜔g,,,M) is the kth initial point of the 𝑁 VSG in the MG, and 𝜀 

is the small perturbation around the stable equilibrium point (the origin).  

𝑘5 to 𝑘g are arbitrary even numbers = 	2, 4, 6, 8, … , 𝑛, while  𝑛 is a variable that controls 

the desired number of initial points. 

 

4. 3. 4. Case study 

The following is a case study of a grid connected VSG. Consider the network shown in 

Fig. 4.8. A VSG is connected to an infinite bus by a step-up transformer and double circuit 

transmission line. System parameters are listed in Table 4.1.  
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Fig. 4.8. Block diagram of VSG connected to infinite bus. 

 

Table 4.1. VSG parameters 

Parameter Value 

Virtual input reference power Ph 0.8	p. u. 

Base power S 100	MVA 

Grid line voltage vi 13.8	𝑘𝑉 

Power angle at steady state δ 0.4070rad 

Grid power angle δi 0	rad 

Total Line impedance j0.5	p. u. 

Infinite bus voltage vi 1	p. u. 

VSG voltage vi 1.05	p. u. 

Damping constant D 0.1 

Inertial Constant M 5	s 

Simulation step time 10 us 

 

The system model can be formulated as follows: 

�̇� = 𝜔 
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�̇� =
1
𝑀
(0.8 − 2.10 sin(𝛿 + 𝛿;) − D	ω)																																			(4.16) 

Its stable equilibrium point is: 

𝑥; = (𝛿;, 𝜔;) = (0.4070, 0)																																								(4.17) 

The trajectory reversing initial points are calculated according to the proposed method, 

as follows: 

 

(𝛿,,M 		, 𝜔,,M) 

For,  𝑛 = 100  𝑘 = 1, 2, 3, … 	𝑛   𝜀1 = 2	𝑟𝑎𝑑   𝜀Z = 5	𝑟𝑎𝑑	/𝑠 

Then, the members of the set of the initial points Ω, is defined as follows: 

𝛿,,M = 0.4070 + 2	𝐶𝑜𝑠	 �
2	𝑘	𝜋
100 �																																								(4.18) 

𝜔,,M = 0 + 4	𝑆𝑖𝑛	 �
2	𝑘	𝜋
100 �																																									(4.19) 

For 𝑘 = 1,2,3, …𝑛 

These points are plotted in Fig. 4.9. 

The solution points of the backward integration using the numerical integration algorithm 

e.g., Runge-Kutta at time steps Δ𝑡 is shown in Fig. 10. These initial points are sufficient to 

cover and enlarge the estimated ROA. Finally, the convex hull algorithm can be used to 

compile a mathematical expression of the enlarged ROA using the solution points generated, 

as shown in Fig. 4.11 and Fig. 4.12. 
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Fig. 4.9.  Initial points of the VSG generated by the proposed method. 

Convex hull algorithm is applied as explained to the resultant points at each successive 

time step Δ𝑡. The process is halted once the points are no longer outside the convex hull or 

it is outside the range of interest, i.e., it is corresponding to Δ𝜔 > 50	𝑟𝑎𝑑/𝑠 which is not 

acceptable practically. The resultant enlarged ROA is shown in Fig. 4.10 and Fig. 4.11. 

 

Fig. 4.10. VSG reverse trajectories at each successive time step Δ𝑡. 
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Fig. 4.11. Convex hull set that contains the reversed trajectoies. 

 

 

Fig. 4.12. Reversed trajectories and convex hull plotted against system vector field. 

 

Now, the convex hull set can be used to determine the critical clearing 𝑡BC. The core idea 

is to check the VSG 𝛿 − 𝜔 trajectory at successive time steps ∑ 𝑘Δ𝑡3
M45  with respect to the 

convex hull set using the inhull function. The VSG is expected to come back to its pre-fault 
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stable equilibrium point 𝑥; = (𝛿;, 𝜔;) = (0.4070, 0) if its trajectory is contained within 

the convex hull set. Otherwise, the converter will become unstable post-fault and 

resynchronization process to the infinite bus must be initiated. The maximum time 𝑛Δ𝑡 a 

given fault trajectory takes to reach one edge of the convex hull set (enlarged ROA) is the 

VSG’s critical clearing time.  

For the system shown in Fig. 4.8, an open circuit fault is applied in the VSG output. The 

faulted system model is formulated as follows: 

 

�̇� = 𝜔 

�̇� =
1
𝑀
(0.8 − D	ω)																																																					(4.20) 

 

The faulted system model is first numerically integrated and evaluated at different 

successive time steps Δ𝑡. At each time step, the evaluated trajectory location is checked 

using the 𝑖𝑛ℎ𝑢𝑙𝑙 function. The resultant trajectory is shown in Fig. 4.13. The algorithm 

predicts that the faulted trajectory will reach the edge of the enlarged ROA after 𝑡 = 0.43𝑠 

which sets system critical clearing time 𝑡BC. If VSG is not reconnected to the infinite bus for 

𝑡 > 𝑡BC , the VSG will not be able to get back to its pre-fault operating point and the system 

will become unstable.  

The network is simulated using Matlab / Simulink environment using the parameters 

listed in Table 4.1. An open circuit fault is applied at the VSG output at simulation time 𝑡 =

4.	When the fault lasts 0.43 s and is then cleared, the VSG went back to its original steady 

state operating point, i.e. power angle 𝛿, = 0.4070° and 𝜔 = 0	𝑟𝑎𝑑/𝑠 as shown by the blue 

curves in Fig. 4.14 (a) and (b) respectively. The corresponding output power is also shown 

in Fig. 4.14 (c). The VSG 𝛿 − 𝜔 trajectory is also shown in Fig. 4.14 (d) which shows the 

system going back to its pre-fault equilibrium point and matches the algorithm predictions.  

Moreover, the VSG was not able to return to its pre-fault equilibrium point when the fault 

is cleared after 0.44s which is longer than the predicted 𝑡BC by 0.01s. After the fault is 
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cleared, the VSG power angle and frequency deviated from their pre-fault value as shown 

in by the orange curves in Fig. 4.14 (a) and (b). The VSG instability can also be observed in 

the continuous oscillation in its output power depicted in Fig. 4.14 (c). Finally, the VSG 𝛿 −

𝜔 trajectory shows the system heading towards instability after the fault is cleared. This 

proves the validity of the algorithm in accurately predicting the network critical clearing 

time without relying on finding a specific Lyapunov function that must satisfy certain 

conditions e.g., passivity theorem and Popov’s criterion. This can be challenging 

considering the increasing complexity of the nowadays power system networks and their 

components.  

 

 

Fig. 4.13. Faulted trajectory (in red) against ROA estimated by convex hull-based 
algorithm. 
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(d) 

Fig. 4.14. Simulation results of the open circuit fault applied at VSG output at 𝑡 = 4	𝑠; 
blue, fault cleared after 0.43 (stable); red, fault cleared after 0.44  (a) power angle; (b) 
frequency deviation; (c) VSG output power; (d) 𝛿 − 𝜔 trajectory; fault period is shaded 

gray. 

 

4. 3. 5. Proposed systematic and computationally efficient modification. 

For the system shown in Fig 4.15 and the parameters listed in Table. 4.2, deriving from the 

definition of stability stated in chapter 1, the boundary of stability is the infimum of the 

unstable region. Hence, instead of starting from arbitrary small region close to the stable 

equilibrium point. The proposed modified algorithm starts from an arbitrary small region 

close to the unstable equilibrium point. However, this will result in a family of trajectories 

where most of them are branching in the unstable region and only a selective few contain 

the stable region. To overcome this, only the trajectories that are originated from points on 

the stable vectors are selected. The procedure of doing so is explained step-by-step shortly. 

This ensures that only the trajectories that bound the stable region are selected and they 

represent its supremum set. A convex hull can then be used to generate such a set which 

can be used to check system stability and calculate its critical clearing time. The major 

advantage of the proposed modification is significantly reducing the number of trajectories 

needed to stablish and enlarge the region of asymptotic stability, while producing 

0 1 2 3 4 5
 (rad)

-10

-5

0

5

10

15

20

d
 (r

ad
 / 

s)

Fault 0.43 s
Fault 0.44 s



123 
 

essentially the exact same result. This saves on the required computations and increases the 

speed by a large margin. For example, for the system shown in Fig.4.15 and Table 4.2 only 

two trajectories are needed to make a precise estimation of the ROA as opposed to 

minimum of 8 trajectories in original algorithms introduced in [56].  

 

Fig. 4.15. The block diagram of the control loop with virtual inertia in islanding mode. 
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Table 4.2. Single VSG microgrid parameters 

Parameter Value 

Virtual input reference power Ph 0.8	p. u. 

Base power S 100	MVA 

Grid line voltage vi 13.8	𝑘𝑉 

Power angle at steady state δ 0.4070rad 

Grid power angle δi 0	rad 

Total Line impedance j0.5	p. u. 

Infinite bus voltage vi 1	p. u. 

VSG voltage vi 1.05	p. u. 

Damping constant D 0.1 

Inertial Constant M 5	s 

 

The proposed modified algorithm first starts by calculating the VSG fixed points. This is 

done by equating its state space model in equation with zero as follows: 

For grid connected VSG converter: 

�̇� = 𝜔 

�̇� =
1
𝑀	
(𝑃! − 𝑃"𝑆𝑖𝑛(𝛿) − 𝐷𝜔)																																							(4.21) 

The fixed equilibrium points are calculated as follow: 

0 = 𝜔 

0 =
1
𝑀	
(𝑃! − 𝑃"𝑆𝑖𝑛(𝛿) − 𝐷𝜔)																																							(4.22) 

Then,  
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ω = 0									 

𝛿 = 𝑆𝑖𝑛U5(
𝑃!
𝑃"
)																																																												(4.23) 

Because of the periodic solution of the equation (5.3), only the following three fixed 

points are considered:  

𝑎 = 	 �𝑆𝑖𝑛U5 �
𝑃!
𝑃"
�	, 0�	 , 𝑏 = �𝑆𝑖𝑛U5 �

𝑃!
𝑃"
� + 	π	, 0� , 𝑐 = 	 �𝑆𝑖𝑛U5 �

𝑃!
𝑃"
� − 	π	, 0� 

Out of which, only the following is of importance to the grid connected system where 

only the positive power is considered: 

𝑎 = 	�𝑆𝑖𝑛U5 �
𝑃!
𝑃"
�	, 0�	 

Point (a) is the stable fixed point. Conventional algorithms start the trajectory reversing 

process from this point and branching out. The algorithm proposed in [56] uses sufficiently 

large number of points around this and uses convex haul to build n-dimensional matrix that 

contains the end points of all of these trajectories.  

In the proposed modified algorithm, only two points around each one of the unstable fixed 

points i.e., points (b) and (c) are needed. Although points (b) and (c) are unstable fixed 

points of the grid connected converter, they are still classified as saddle points even in 

higher dimensions systems. In a two-dimensional system such as a grid connected 

converter, each saddle point has one stable eigenvector and unstable one, as shown in Fig. 

4.16. In reverse time, the stable one become unstable and vice versa. Hence, if a trajectory 

starts on the unstable eigenvector (in reverse time) it will create a separating line that 

precisely divide the vector field of the system dynamics into stable and unstable regions. 

In fact, two trajectories are needed to cover the positive and negative directions of the 

unstable vector in reverse time starting from each staddle point, namely points (b) and (c).  
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Fig. 4.16. Saddle equilibrium point 

The procedure is explained for one of the saddle points which can be repeated for other 

one(s).  

First, the grid connected VSG model is linearized around the unstable fixed point e.g., point 

(b). This is done by taking the Jacobian as follows: 

𝐴 =  

𝜕𝑓5(𝛿, 𝜔)
𝜕𝛿

𝜕𝑓5(𝛿, 𝜔)
𝜕𝜔

𝜕𝑓.(𝛿, 𝜔)
𝜕𝛿

𝜕𝑓.(𝛿, 𝜔)
𝜕𝜔

¡ , 𝑎𝑡	(𝛿, 𝜔) = �𝑆𝑖𝑛U5 �
𝑃!
𝑃"
� + 	π	, 0�									(4.24) 

The eigenvalues of matrix A are Λ = [𝜆5	, 𝜆.] and the corresponding eigenvectors are 

𝑉 = [𝑣5	, 𝑣.]. The solution of the linearized system is as follows:  

Ì𝛿
(𝑡)

𝜔(𝑡)Í = ¶
𝑣55
𝑣5.·	𝑒

j#) + ¶
𝑣.5
𝑣..· 	𝑒

j.) + ¶
𝑐5
𝑐.·																								(4.25)	 

For the negative direction: 

Ì𝛿
(𝑡)
𝜔(𝑡)Í = − ¶

𝑣55
𝑣5.·	𝑒

j#) − ¶
𝑣.5
𝑣..·	𝑒

j.) + ¶
𝑐5
𝑐.·																				(4.26) 
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Here we assume that 𝜆5 and the corresponding 𝑣5are the stable eigenvalue and stable 

eigenvector respectively in forward time.  

By setting the unstable eigenvector in forward time to zero, the resultant is a system of 

equations that describes the stable one at time reverse is as follows: 

Ì𝛿
(𝑡)
𝜔(𝑡)Í = ±	¶

𝑣55
𝑣5.·	𝑒

Uj#) + ¶
𝑐5
𝑐.·																																							(4.26) 

The constant vector 𝐶 = [𝑐5	, 𝑐.] can by calculated by substituting for the staddle point (b) 

at 𝑡 = 0. While the negative sign is set enable to allow for reverse time calculations. 

The parametric plot of these equations represents the solution vector in both negative and 

positive direction at 𝑡 = [0, 𝑡5]. Hence, two points can be calculated around the fixed saddle 

point (b) at arbitrary small time 𝑡 = 𝑡k which are located on the stable eigenvector in 

forward time. These two points �𝛿(𝑡k0), 𝜔(𝑡k0)� and �𝛿(𝑡kU), 𝜔(𝑡kU)� will be the starting 

points of the two reversed trajectories that will be used to estimate the system’s ROA. It is 

worth to mention that the same idea is applicable in systems with higher dimensions by 

calculating the planes instead of the trajectory lines.  

The next step is to compute the points set that is used by convex hull algorithm to build an 

estimation of the system’s ROA. This is done by numerically integrating the system model 

descripted in equation (4.16) twice at fixed time step Δ𝑡 starting from each one of the points 

calculated in the previous steps �𝛿(𝑡k0), 𝜔(𝑡k0)� and �𝛿(𝑡kU), 𝜔(𝑡kU)�. The resultant is a 

highly accurate estimation of the system’s ROA, thanks to the location of these points on 

the two trajectories that are located on the borderline between the stable and unstable region 

of the system’s phase plane.  

Numerical example 

For the system shown in Fig. and its parameters in Table 4.2: 

Step one: Calculating system fixed points. 



128 
 

This is done by setting the derivatives to zero.  

Hence,  

ω = 0									 

𝛿 = 𝑆𝑖𝑛U5 �
𝑃!
𝑃"
� = 𝑆𝑖𝑛U5 �

0.8
2.1�																																										(4.27) 

The resultant stable fixed points are indicated in Fig. 4.17 where point (a) is (0.4070	, 0), 

the unstable saddle points (b) and (c) are (2.7345	, 0) and (−3.5486	, 0), respectively.  

In the next step, only the unstable points are considered. The procedure is explained for 

point (b) which can be easily repeated for point (c). 

 

Fig. 4.17. System’s fixed points 

Step two: Linearizing system model. 

This is done by calculating the system Jacobian as follows: 

Ì𝛿�̇�
̇
Í =  

𝜕𝑓5(𝛿, 𝜔)
𝜕𝛿

𝜕𝑓5(𝛿, 𝜔)
𝜕𝜔

𝜕𝑓.(𝛿, 𝜔)
𝜕𝛿

𝜕𝑓.(𝛿, 𝜔)
𝜕𝜔

¡ Ì𝛿
(𝑡)
𝜔(𝑡)Í																																			(4.28) 
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A is the linearized matrix at the unstable point (b) 

𝐴 =  

𝜕𝑓5(𝛿, 𝜔)
𝜕𝛿

𝜕𝑓5(𝛿, 𝜔)
𝜕𝜔

𝜕𝑓.(𝛿, 𝜔)
𝜕𝛿

𝜕𝑓.(𝛿, 𝜔)
𝜕𝜔

¡ ,						𝑎𝑡	(𝛿, 𝜔) = (2.7345	, 0)																						(4.29) 

Then, 

𝐴 = Î
0 1

−	𝑃"
𝐶𝑜𝑠(𝛿)
𝑀

−𝐷
𝑀
Ï ,						𝑎𝑡	(𝛿, 𝜔) = (2.7345	, 0)																									(4.30) 

 

𝐴 = ¶ 0 1
69.95 −3.77·																																												(4.31) 

The linearized model is as follows: 

Ì𝛿�̇�
̇
Í = ¶ 0 1

69.95 −3.77· Ì
𝛿(𝑡)
𝜔(𝑡)Í																															(4.32) 

Step three: Calculating initial points of reversed trajectories. 

This step starts by determining the eigenvalues of the system Λ = [λ5	, λ.] and their 

corresponding eigenvectors 𝑉 = [𝑣5	, 𝑣.].  

For the matrix A: 

Λ = [λ5	, λ.] = [−10.46	, 6.67]																																	(4.33) 

And  

𝑉 = [𝑣5, 𝑣.] = ¶−0.095 0.99
0.15 0.99·																										(4.34) 

λ5 and 𝑣5 are the stable eigenvalue and eigenvectors of matrix A in forward time. Hence, 

they will be the ones used to calculate the initial points of the reverse trajectories.  

The solution of the linearized differential equation is as follows: 
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Ì𝛿
(𝑡)

𝜔(𝑡)Í = ¶ 1.067−11.16·	𝑒
U(U5Y.KO)) + ¶ 1.6711.16·	𝑒

U(O.On))															(4.35)	 

By eliminating the unstable vector in forward time and solve for the constants, the 

equation of the positive and negative vectors of interest becomes: 

Ì𝛿
(𝑡)

𝜔(𝑡)Í = ± ¶ 1.067−11.16·	𝑒
U(U5Y.KN)) +	¶ 1.6711.16·																												(4.36) 

Two points can be calculated one on both positive and negative direction of the solution 

vector at arbitrary small time 𝑡k = 0.01𝑠, and are indicated in Fig. 4.18. Those points are 

the two initial points from which the reverse trajectories start, as shown in Fig. 4.19: 

𝑥,5 = �𝛿(𝑡k0), 𝜔(𝑡k0)� = (2.54	, 2.1)			 

𝑥,. = �𝛿(𝑡kU), 𝜔(𝑡kU)� = (2.99	, −2.59)																																	(4.37) 

 

 

Fig. 4.18. trajectories’ initial points on the unstable vector in reverse time. 
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(a)                                                (b) 

Fig. 4.19. reversed trajectories; (a) is the reversed trajectories started at the unstable 
fixed points; (b) is a zoom in view of the initial points of the trajectories. 

Step four: Using reverse trajectories to generate a set of points on the border line of the 

ROA. 

This step starts by backward numerical integration of the VSG model in equation (4.38). 

This is done be multiplying it by negative one such that: 

For the VSG model  

�̇� = 𝜔 

�̇� =
1
𝑀	
(𝑃! − 𝑃"𝑆𝑖𝑛(𝛿) − 𝐷𝜔)																																							(4.38) 

The backward model is: 

�̇� = −𝜔																																			 

�̇� = − Ì
1
𝑀	
(𝑃! − 𝑃"𝑆𝑖𝑛(𝛿) − 𝐷𝜔)Í																																						(4.39) 

Hence, reversed vector field and reversed trajectories can be obtained by integrating the 

equations in 4.39, which is known as backward integration.  
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The backward integration is performed twice, each time using one of the initial points 

calculated in step three at fixed time intervals Δ𝑡. The resultant trajectories are depicted in 

Fig. 4.20. 

 

Fig. 4.20. Reversed trajectories using backward integration using the proposed 
method. 

These time intervals can be as small as possible to guarantee smooth solution without 

increasing computation time beyond reasonable limit. The result is a set of points Ω that 

are located on the border line between the stable and unstable regions. They are the 

supremum set of the ROA of the grid connected VSG. The set Ω is shown in Fig. 4.21 and 

is defined as follows: 

Ω = {𝑥:	𝑥	𝜖	𝑋(𝛿, 𝜔, 𝑥,5, 𝑡)|𝑋(𝛿, 𝜔, 𝑥,., 𝑡)}																															(4.40) 

Where 𝑋(𝛿, 𝜔, 𝑥,5, 𝑡) and 𝑋(𝛿, 𝜔, 𝑥,5, 𝑡) are solution trajectories using backward 

integration starting from the two initial points 𝑥,5 and 𝑥,. calculated in step two.  
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Fig. 4.21. The result is a set of point Ω that are located on the border line between the 
stable and unstable region. 

 

Step five: Using Convex hull to build ROA expression. 

Steps one to four are repeated for the other saddle point (point (c)). Then, a convex hull 

algorithm can be used to create a mathematical representation of the smallest region that 

includes all other points in the set Ω by a set of equations and inequalities. Hence, 

effectively produces a mathematical representation of the VSG ROA. The Quick Hull 

Algorithm [72] in Matlab can be used to compute the convex hull of the set Ω efficiently. 

The resultant convex hull is plotted against system vector filed in Fig. 4.22. 
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Fig. 4.22. Resultant convex hull.  

 

Step six: Using In-hull algorithm to build ROA expression.  

Once the convex hull set is created. The model of the faulted system i.e., grid connected 

VSG is numerically integrated using fixed time steps Δ𝑡. At each time step, In-hull 

algorithm [72] is used to check whether the solution trajectory still inside the convex hull 

set or not. If the trajectory of the faulted system is still contained inside of the convex hull 

set, the system will return to stability once the fault is removed, and no resynchronization 

is required. Once it is detected output of this region, the system becomes unstable and the 

accumulation of time steps it took to reach this state is the system critical clearing time 

𝑡BC = 	Σ	Δ𝑡.  
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5. Proposed Enhanced Virtual Inertia Controller (EVIC) 

5. 1. Introduction 

The stability of a conventional power system is largely considered around the 

fundamental characteristics of a synchronous generator (SG). By analysing its output 

voltage, power and frequency, a distinction can be made between, for instance, various 

levels of load transients or faults. Similarly, a VGS is introduced to observe such relations 

and characteristics while enabling the integration of a variety of renewable energy sources 

and energy storage systems [35].  

From power – frequency point of view, SG and VSG responses to various kinds of 

disturbances are proportional to their inertia coefficients based on their swing equations. 

That is, if the inertia coefficient is relatively low, the rate of change of frequency (RoCoF) 

within a given microgrid is higher. On the positive side, it results in a faster response and 

shorter settling time. Nonetheless, it leads to high frequency and power oscillation as well 

as a reduction in stability margins. A higher inertia coefficient results in a sluggish response 

with affects the power sharing among different SGs and hurts the stability as well. It, 

however, reduces the power and frequency oscillations to a minimum [6].  

Fortunately, unlike SGs, the VSGs’ inertia is not fixed once it is manufactured and only 

has an upper limit defined by its energy storage components such as the dc-link capacitor, 

ultra capacitors, batteries, super inductors … etc. This gives flexibility to the controller to 

adjust the inertia coefficient in real-time to improve system response and is only bounded 

by its upper limit. This method of control was first introduced in [24] and is referred to as 

alternative inertia, variable inertia, or synthetic inertia and its generic block diagram is 

shown in Fig. 5.2.  
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Fig. 5.1. Generic block diagram of virtual inertia controller. 

 

 

Fig. 5.2. Block diagram of discontinuous alternating virtual inertia controller. 

 

5. 2. Concept of alternating inertia 

The value of the virtual inertia in each VSG is varied based on the rate of change of its 

power angle 𝑑𝛿/𝑑𝑡 and its acceleration 𝑑.𝛿/𝑑𝑡.. That is, if they are going in the same 

direction, i.e., if they have the same signs, the VSG is going in the right direction and its 

inertia is switched to a higher value to prevent oscillation. On the other hand, if their signs 

are different, then the VSG is going in the wrong direction (away from steady-state point) 

and hence, the inertia is switched to a lower value to shorten such overshoot / undershoot 

periods.  
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This concept is further explained as follows. Suppose a VSG in a single VSG microgrid 

operates at the steady state power angle 𝛿;5 , as shown in Fig. 5.3. Suppose that the load 

power increases. The steady-state power angle moves from 𝛿;5to 𝛿;. to satisfy the load 

demand. The transient from 𝛿;5to 𝛿;. is oscillatory due to the existence of complex 

eigenvalues. On the power curve, this means that the operating point moves from point a 

to point b which results in a positive rate of change of frequency (RoCoF)  $
.1
$).

 or in other 

words acceleration, while rate of change in power angle is positive as well $1
$)

. Once it 

passes point b towards point c, the rate of change in frequency (RoCoF) becomes negative 

while the rate of change in power angle is still positive, which means deceleration. On the 

other hand, the rate of change in power angle is still positive.  

 

Fig. 5.3. VSG power-angle transient oscillation 

 

Same behavior is repeated in the opposite direction. That is, the system accelerates once 

it starts to move back from point c to point b, and decelerates after crossing point b towards 

point a. This cycle is repeated until the VSG settles on the new operating point b of the new 

power angle 𝛿;.. Such an oscillation is reflected mainly in the output power as the input 

power here is virtual. It also greatly impacts on the stability of microgrids, specially the 

ones with multiple VSGs, as such oscillations can be amplified and result in loss of 

synchronism [2]. 
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It can be seen from the typical swing equation (equation 5.1) for the preceding scenario, 

the acceleration direction is the desirable one, as it means that the inverter is moving 

towards the steady-state point. While in deceleration, it moves away from it. Therefore, it 

is desirable to shorten the deceleration periods and magnitudes as much as possible in favor 

of the acceleration ones.  

𝑀
𝑑.𝛿
𝑑𝑡. + 𝐷

𝑑𝛿
𝑑𝑡 = �𝑃! − 𝑃"	𝑆𝑖𝑛(

𝑑𝛿
𝑑𝑡)�																																																			(5.1) 

To achieve such an objective, the inertia coefficient 𝑀 is altered as a function of the rate 

of change in frequency and power angle. That is, during acceleration periods, the inertia is 

set to its normal (maximum) value which gives time to the microgrid to detect the rate of 

change in frequency (RoCoF) and adjust its parameters (e.g., secondary, and tertiary control 

parameters, protection relays … etc). During the deceleration periods, the inertia 𝑀 is set 

to a lower value which reduces the size and the time constant of the VSG. It is worth 

mentioning that this is only possible in VSG controlled inverters as their inertia is just a 

virtual quantity 𝑀 with only an upper limit tied to a physical quantity 𝑀!:P. 

In the literature, the inertia coefficient 𝑀 is alternated discontinuously between two 

values: 𝑀!:P during acceleration and 𝑀!#3 during the deceleration. Equation (5.2) 

formulizes this technique as follows [24], [38], [73]–[75]: 

𝑀 =

⎩
⎨

⎧𝑀!:P 																					
𝑑𝛿
𝑑𝑡 ∗

𝑑.𝛿
𝑑𝑡. > 0												(𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

𝑀!#3 																						
𝑑𝛿
𝑑𝑡
∗
𝑑.𝛿
𝑑𝑡.

< 0								(𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛)
																						(5.2) 

Although this technique has proven to be effective, it suffers from some drawbacks due 

to its discontinuous nature. The VSG inertia changes abruptly during a transition between 

the two levels no matter how small the disturbance is, which does not guarantee system 

stability. In other words, for small disturbances, such as a small load change, VSG inertia 

alternates between the highest and lowest values (defined in equation (5.2)) which is the 

exact same response in the case of large disturbances. Moreover, during steady-state 

operation, inertia chattering is noticed because of negligible variations in the frequency and 

power angle, or measurement noises. For example, 0.1% change in power angle and 
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frequency will result in 100% change in VSG inertia coefficient up to its maximum or 

minimum limits, as it only relies on the product of sign of change (positive / negative), even 

though such a variation comes only from measurement noise not actual load variation. This 

can lead to long term instability, especially when multiple VSGs that use this technique are 

interconnected. 

From a stability point of view, it is difficult to study or prove the stability of a microgrid 

under alternative virtual inertia control, as measurement noise or very small load variations 

can result in a continuous variation of inertia coefficient value. Hence, the limits in the 

accuracy in defining the MG model and initial conditions. It is not possible using linear 

analysis tools such as Nyquist or root-locus, as they require linearization around one 

operating point i.e., one value of the inertia. Regardless, studying the system under the two 

values of inertia only shows the stability range between these two values without providing 

any qualitative or quantitative insights on system performance. More importantly, due to 

linearization, such linear analysis does not guarantee an exact stability estimate under large 

disturbances i.e., far from the linearized segment. Finally, such a study, assuming it is 

satisfactory, cannot be extended to a microgrid formed with multiple VSGs as there is no 

way to instantaneously correlate the inertia coefficient of each VSG with respect to the 

others or to the applied disturbance.  

Although nonlinear analysis overcomes the limitations imposed by linearization, 

studying a system with switching behavior such as jumping discontinuously between two 

different states, requires a special treatment and theories which can not be easily 

generalized or extended. It is worth mentioning here that, Lyapunov and Lyapunov-like 

stability analysis tools are limited to smooth and continuously differentiable systems [49].  

It can be seen from the preceding discussion that a new control technique is needed to 

overcome the drawback of conventional alternating inertia technique, without 

compromising its appreciated merits.  
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5. 3. Proposed enhanced virtual inertia controller (EVIC) 

The proposed enhanced virtual inertia controller (EVIC) is based on an alternating 

inertia technique which is shown in Fig. 5.2 and formulated in equation (5.2). That is, the 

inertia coefficient alters between two levels in response to a grid transient. The key 

difference is that the proposed EVIC causes a smooth transition in inertia coefficient while 

an alternating inertia controller causes a discontinuous jump in it.  

In the proposed controller, inertia equation (5.2) is replaced by the proposed equation 

(5.3) as follows: 

𝑀	(Δ𝑃,𝜔) = Mofh +
Δ𝑀
2 tanh(𝑎	𝛥𝑃	𝜔)																																		(5.3) 

Where, 

𝑀3,! is the inertia nominal value at the steady-state, 

Δ𝑀 is the difference between the minimum and maximum allowable variation in 𝑀, i.e. 

Δ𝑀 = 𝑀!:P −𝑀!#3 

𝑎 is the slope of inertia variation in the linear region,  

Δ𝑃 is the difference between virtual input mechanical power and output electrical power 

of a VSG.  

𝜔 is VSG frequency variation which equals to the rate of variation of VSG power angle 

𝑑𝛿/𝑑𝑡 with respect to the reference frame. 

An understanding of the properties of the hyperbolic function tanh	(. ) is needed to 

understand the origin and behavior of the proposed controller. Typical tanh	(𝑥) curves are 

plotted in Fig. 5.4. At small values of |𝑥|,  tanh	(𝑥) is almost a linear unity gain over the 

domain |𝑥| < 1. Beyond that, tanh	(𝑥) acts as an ideal saturation function with a peak 

range of one |tanh(𝑥)| = 1	∀|𝑥| ≥ 1. It is obvious then that tanh(𝑥) provides a smooth 

transition between its linear region and saturation, and conveniently between its upper and 

lower saturation limits. Moreover, the linear gain region can be adjusted with the coefficient 

𝑎 [tanh(𝑎	𝑥)] to be sharper or more relaxed as shown in (5.4). Saturation levels can also 
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be scaled with the coefficient 𝑏 [	b	tanh(𝑎	𝑥) ]. Finally, a bias level 𝑐 can be added to 

maintain the variation within the positive domain. Thus, based on these parameters, the 

function is rewritten as follows: 

𝑧	(𝑥) = 𝑐 + b	tanh(𝑎	𝑥)																																															(5.4) 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.4. Plot of different 𝑡𝑎𝑛ℎ(𝑥) based functions; (a)	tanh	(𝑎𝑥) at 𝑎 = 0.5, 1, 𝑎𝑛𝑑	2 
(b) 𝑏	tanh(𝑥) at 𝑏 = 	1, 𝑎𝑛𝑑	2  (c) 𝑐 + tanh(𝑥) at 𝑐 = 0, 𝑎𝑛𝑑	2 
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The proposed EVIC receives help from these properties in controlling the inertia 

coefficient in a VSG. In fact, equation (5.4) is identical to the controller equation (5.3). 

Where:  

I) 𝑧(𝑥) = 𝑀	(Δ𝑃,𝜔), the bias level is inertia nominal value 𝑐 = Mofh.  

II) The saturation levels are the minimum and maximum variations in inertia and 

are expressed as 𝑏 = e=
.

= (𝑀!:P −𝑀!#3)/2.  

III) The slope of the inertia varies in the linear region 𝑎 which is set based on the 

design preference.  

IV) Finally, 𝑥 is the product of the power mismatch and frequency deviation 𝑥 =

Δ𝑃	𝜔. 

The proposed EVIC controller is shown in Fig. 5.5 and is explained as follows. In 

steady-state, both virtual input power and electrical output power are equal, hence, Δ𝑃 =

0	𝑝. 𝑢. Also, VSG is expected to follow its reference frequency with an appropriate constant 

power angle 𝛿, hence 𝜔 = 0	𝑝. 𝑢. Therefore, EVIC equation (5.3) becomes (5.5) and 

converter’s inertia equals to its nominal value Mofh as follows: 

𝑀	(Δ𝑃,𝜔) = Mofh +
Δ𝑀
2 tanh(0)																																																								 

𝑀	(Δ𝑃,𝜔) = Mofh																																																									(5.5) 

 

Fig. 5.5. Proposed controller EVIC block diagram 
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During a transient state, for example in the case of a load transient, a mismatch between 

the virtual mechanical input power and the output electrical power occurs which causes a 

positive (acceleration) or negative (deceleration) rate of change in the frequency (RoCoF) 

(	$
.1
$).

	𝛼	Δ𝑃	), and a deviation from the reference frequency 𝜔. Therefore, the inputs of the 

hyperbola function tanh	(∙) are no longer zero, and hence, the converter’s inertia varies as 

well, based on equation (5.3). However, unlike alternating inertia controller, the variation 

in inertia does not pulsate between two saturation levels 𝑀!:P and 𝑀!#3 despite the 

magnitude of the transient or disturbance.  

The variation in inertia caused by the proposed EVIC is proportional to the magnitude 

of applied disturbance (e.g., load transient) and how far the VSG converter is from its 

equilibrium point (operating point at steady-state). That is, for a given slope 𝑎 in equation 

(5.3), for a small load transient the product of Δ𝑃 and 𝜔 is small, and hence, the change in 

VSG inertia 𝑀	(Δ𝑃,𝜔) is minimal and can be negligible 𝑀	(Δ𝑃,𝜔) ≅ Mofh. This is 

especially useful in a linear study and analysis, where the variation in the converter’s states 

must be practically small. In other words, under linearization, the proposed EVIC can be 

treated essentially as a constant inertia without any practical mismatch between the actual 

implementation and linearized model. Such an assumption would not be true in a 

conventional alternating inertia controller. Moreover, for higher disturbance magnitudes, 

the proposed EVIC linearly changes converter’s inertia by virtue of its linear region, as 

explained earlier and shown in Fig. 5.6.  

 

Fig. 5.6. Example of inertia variation using proposed EVIC nominal 4	𝑝. 𝑢., minimum 

1	𝑝. 𝑢., and maximum 7	𝑝. 𝑢. 
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During the disturbance, such as a load transient, VSG controller is slowly adjusted till 

its virtual mechanical input power matches its electrical output power. based on its droop 

gain 𝑘&. This results in a gradual reduction in Δ𝑃 and 𝜔. In response, EVIC gradually varies 

VSG inertia in the same manner towards its nominal value the closer the converter is to its 

steady-state.  

Thus, the proposed EVIC guarantees adaptive behaviors as follows:  

• For low disturbances (small Δ𝑃 and 𝜔) the controller’s gain is very small and 

can be negligible, which eases the linear treatment of VSG and the microgrid it 

is connected to.  

• For higher disturbances, the controller’s gain increases linearly with slope 𝑎 

which varies VSG inertia smoothly around its nominal value between a lower 

value and a high value (not the maximum and minimum), which quickly damps 

out the oscillation in power and frequency caused by the disturbance.  

• For large disturbances (large signal transient), EVIC oscillates the inertia 

between its saturation values (𝑀!:P and 𝑀!#3) causing the converter to quickly 

return to its steady-state operating point with minimum oscillation in its power 

and frequency. Moreover, as will be shown next, the closer the converter is to its 

steady-state operating point, the lower the magnitude of the oscillation in its 

inertia.  

5. 4. Large signal dynamics of EVIC 

A qualitative study of the performance and stability margin of the proposed controller is 

done using large-signal model (nonlinear model) of VSG connected to a microgrid, as 

shown in Fig. 5.7. As opposed to a small-signal model (linearized model), the large-signal 

model provides a complete description of converter’s behavior under large disturbances 

which is the area of interest of the proposed controller. It also contains the small-signal 

dynamics (linear dynamic) within the vicinity of the equilibrium (steady-state) point. Thus, 
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by studying large-signal dynamics, a complete description of proposed controller dynamics 

is conveyed to prove its validity and adaptability.  

 

Fig. 5.7. VSG connected to microgrid. 

The large-signal model (without EVIC) of a microgrid is shown in Fig 5.4: 

�̇� = 𝜔 

�̇� =
1
𝑀	
(𝑃! − 𝑃"𝑆𝑖𝑛(𝛿) − 𝐷𝜔)																																							(5.6) 

 Where,  

𝛿 is VSG’s power angle in rad with respect to grid power angle, 

𝜔 is VSG’s frequency deviation from grid power angle 𝜔(, 

𝑃! is VSG’s virtual mechanical input power, 

𝑃" is VSG’s rated electrical output power, 

𝐷 is VSG’s damping coefficient, and 

𝑀 is VSG’s inertia coefficient.  

 

Based on equation (5.3), EVIC controlled VSG large-signal model is as follows: 

�̇� = 𝜔 

�̇� =
1

Mofh +
Δ𝑀
2 tanh(𝑎	𝛥𝑃	𝜔)

	(𝑃! − 𝑃"𝑆𝑖𝑛(𝛿) − 𝐷𝜔)																(5.7) 

Vg

=

~
VSG

Ld1

Xf XT
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Large-signal dynamics of both models formulated in equations (5.6) and (5.7) are 

visualized by plotting their �̇�-�̇� vector field in Fig. 5.8 using the parameters in Table 5.1. 

Several integral solutions are plotted starting from different initial points by following the 

succession vectors field in positive time (𝑡 > 0). Each curve in (5.8) shows how power 

angle and frequency of VSG change with respect to each other and move either towards the 

stable equilibrium point or away from it.  

The black curves in Fig. 5.8 are corresponding to a VSG with conventional virtual inertia 

controller while orange ones are for it with the proposed EVIC. It is worth mentioning that 

conventional alternating inertia control, represented by equation (5.2), is not easy to 

represent due to its discontinuous nature. Hence, this shows the advantage of the proposed 

controller in terms of ease of applying all nonlinear analysis tools with no special treatment, 

compared with conventional alternating inertia.  

Table 5.1.  VSG parameters 

Parameter Value 

Virtual input power 𝑃! 0.6	𝑝. 𝑢. 

Base power 𝑆 3.125	𝑀𝑉𝐴 

Power angle at steady state 𝛿 0.203	𝑟𝑎𝑑 

Grid power angle 𝛿( 0	𝑟𝑎𝑑 

Line impedance 𝑥( 0.43	𝑝. 𝑢. 

Grid line voltage 𝑣( 2.4	𝑘𝑉 

Active power droop coefficient 𝐾& 0.03 

Reactive power droop coefficient 𝐾' 0.03 

Damping constant 𝐷 1	𝑝. 𝑢. 

Inertial Constant Mofh normalized 10	𝑠 

Inertial Constant MhEo normalized 5	𝑠 

Inertial Constant Mhpq normalized 15	𝑠 

Simulation step time  10 us 
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Fig. 5.8. Vector field and integral solution of VSG converter. Black curves are for 

conventional inertia controller, and the orange ones are for proposed EVIC. 

 

To demonstrate the advantages of the proposed EVIC over a conventional inertia 

controller, the converter’s behaviour starting from three different initial conditions is 

discussed. It is assumed that the VSG converter is subjected to a disturbance that causes it 

to move away from its equilibrium point to one of these initial conditions. Thus, the 

following discussion is related to the converter’s recovery from each one of those initial 

conditions back to its equilibrium point.  

1- In this case study, the converter starts from an initial point far away from its 

equilibrium point, but it is eventually led to it using both types of controllers. An 

example of such a case is the initial point (𝛿 = 1	𝑟𝑎𝑑, 𝜔 = 50	𝑟𝑎𝑑/𝑠). The 

converter’s trajectories using the proposed EVIC (in red), and conventional inertia 

controller (in blue) are shown in Fig. 5.9.  
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Starting from the same point, the trajectory of a conventional inertia controller (blue in 

Fig. 5.9) takes a longer path to reach the VSG’s equilibrium point, which means it has a 

longer settling time. Moreover, it has more spiral rotations before reaching the equilibrium 

point which is translated into more oscillations in the converter’s frequency deviation and 

power angle, and thus, more power oscillations and increase in the losses. On the other 

hand, the proposed EVIC takes a much shorter path towards the equilibrium point with 

fewer spiral rotations and hence, much fewer oscillations. This proves the advantage of the 

proposed EVIC in bringing the converter very quickly to steady-state after being subjected 

to a large disturbance or load transient, with minimal oscillation and losses. This is due to 

its property of smoothly alternating its inertia, based on the profile shown in Fig. 5.6, 

between its saturation levels away from the equilibrium point and linearly when its closer 

to it.  

 

Fig. 5.9. VSG trajectories and dynamics in first case. Initial point is (𝛿 = 1	𝑟𝑎𝑑, 𝜔 =

50	𝑟𝑎𝑑/𝑠). Conventional inertia controller in blue and proposed EVIC in red. 
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Fig. 5.10. Alternating inertia profile of proposed EVIC in first case 

 

The resultant variation in inertia is shown in Fig. 5.10. for the same afore mentioned test 

conditions. It clearly shows the expected behavior of the proposed controller. As at the 

start, the VSG converter was far from its equilibrium point, thus, EVIC started with the 

minimum value of the inertia in Table 5.1 to quickly bring the converter back to its 

equilibrium point (acceleration). The closer the converter is to its equilibrium point (shown 

by its trajectory), the higher its inertia becomes (decelerations) till it reaches its maximum 

value stated in Table 5.1. if needed. This is done for a few cycles and depends on the 

severity of the applied disturbances. However, it is still much better than using a 

conventional inertia controller. At steady-state, the transient amplitude decayed to very low 

values close to the equilibrium point. Thus, the proposed controller changes the inertia to 

be almost equal to its nominal value or equal to it at steady-state. Another advantage is that, 

at any time instant, converter inertia is known and can be easily calculated and simulated. 

Unlike the conventional alternating inertia methods where there is uncertainty and 

ambiguity in its exact value due to constant variation of virtual inertia even at steady-state. 

Same qualitative results can be observed by choosing any initial point far away from the 

equilibrium point and following the system’s vector field or the set of integral solutions 

shown in Fig. 5.9. 

2-  VSG converter starts from an initial point within the unstable region of conventional 

inertia controller (𝛿 = 1.4	𝑟𝑎𝑑, 𝜔 = 60	𝑟𝑎𝑑/𝑠). As expected, its trajectory in Fig. 
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5.11 (shown in blue) does not return to its designated equilibrium point. It follows 

the vector field and closest integral solutions and moves away from the stable region 

affected by the unstable eigen vector of the saddle point. In other words, the 

converter’s power angle moves to the unstable quadrant of the swing equation curve. 

By contrast, the proposed EVIC can bring the trajectory back to the designated 

equilibrium point as shown in Fig. 5.8 (shown in red). EVIC inertia profile, shown 

in Fig. 5.12, is like the one discussed in the first case above.  

 

Fig. 5.11. VSG trajectories and dynamics in second case. Initial point is (𝛿 = 1.4	𝑟𝑎𝑑, 

𝜔 = 60	𝑟𝑎𝑑/𝑠). Conventional inertia controller in blue and proposed EVIC in red. 

 

As the initial conditions in this case are closer to the first case and the system exhibits 

similar dynamics as observed by integral solutions (shown in orange lines). The only 

difference is a slight increase in the upper transient inertia value, which is within the 

controller design. This test shows that, the proposed EVIC does not only help in reducing 

oscillation, power loss and settling time. It also increases converter’s stability region (area 
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of attraction) beyond conventional inertia controllers, while maintaining the desired inertial 

characteristics. 

 

Fig. 5.12. Alternating inertia profile of proposed EVIC in second case 

 

3- the initial point is chosen to be close to the equilibrium point (𝛿 = 0.84	𝑟𝑎𝑑, 𝜔 =

1	𝑟𝑎𝑑/𝑠).  As can be seen from the corresponding trajectories (Fig. 5.13) that within 

the vicinity of the equilibrium point, both the proposed EVIC and the conventional 

inertia controller act almost identically. This proves the advantage of the proposed 

controller (EVIC) as it does not affect the converter’s linear behavior (i.e., 

eigenvalues and eigenvectors). This is better shown with the help of Fig. 5.14, which 

shows a small variation around the nominal inertia coefficient value 𝑀3,! (stated in 

Table 5.1), hence, it can be assumed constant in linearization. This means that, all 

linearized models, analysis, and results are valid under the proposed controller, this 

saves time and effort that would have to be used to build other linear models and 

study their stability boundaries and so on.  

Such behavior shown in these three cases combined (and summarized in Fig. 5.15) is 

unique to the proposed controller (EVIC) compared with other types of inertial controllers 

such as conventional inertia, alternative discontinuous inertia, and droop control-based 

inertia emulator. Moreover, the proposed controller does not require any additional 

measurements, sensors, or complicated adaptive algorithms or artificial intelligence ones 
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[39]. On the contrary, it is easy to be implemented, does not add any complexity in linear 

analysis and control, while adding more robustness to VSG converters and widen their 

regions of stability.  

 

Fig. 5.13. VSG trajectories and dynamics in third case. Initial point is (𝛿 = 0.84	𝑟𝑎𝑑, 

𝜔 = 1	𝑟𝑎𝑑/𝑠). Conventional inertia controller in blue and proposed EVIC in red. 

 

Fig. 5.14. Alternating inertia profile of proposed EVIC in third case 
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Fig. 5. 15. Summary of VSG dynamics at all cases  

 
VSG trajectories and dynamics in first case. Initial point is 

(𝛿 = 1	𝑟𝑎𝑑, 𝜔 = 50	𝑟𝑎𝑑/𝑠). Conventional inertia controller in 
blue and proposed EVIC in red. 

 

 
Alternating inertia profile of proposed EVIC in case (1) 

showing reduced oscillation. 
 

 
VSG trajectories and dynamics in second case. Initial point is 

(𝛿 = 1.4	𝑟𝑎𝑑, 𝜔 = 60	𝑟𝑎𝑑/𝑠). Conventional inertia controller in 
blue and proposed EVIC in red. 

 

 
Alternating inertia profile of proposed EVIC in case (2) 

showed increase region of asymptotic stability 
 

 
VSG trajectories and dynamics in third case. Initial point is 

(𝛿 = 0.84	𝑟𝑎𝑑, 𝜔 = 1	𝑟𝑎𝑑/𝑠). Conventional inertia controller in 
blue and proposed EVIC in red. 

 

 
Alternating inertia profile of proposed EVIC in case (3) 

showing response to small disturbances 
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5. 5. Simulation results 

Simulation of the proposed controller is done to verify its performance. A VSG is 

connected to an infinite bus using a transformer and a double circuit transmission line, as 

shown in Fig. 5.16. The per unit voltage of the infinite bus is set to be 1 p.u. while the 

terminal per unit voltage of the VSG is set to 1.05	p. u. The per unit reactance of the 

converter’s output filter is j0.2	p. u., the transformer reactance is	j0.1 p.u.  and the reactance 

of each transmission line is	j0.4	p. u. The VSG inertia coefficient is M	 = 5Y
Jnn

. VSG 

reference power is 0.8 p.u. The base voltage is 13.8 kV, and the base power is 100 MVA. 

The single line diagram of the system is shown in Fig. 5.17. and the parameters are listed 

in Table 5.2.  

 

The system model under conventional virtual inertia controller is given by: 

 

�̇� = 𝜔																				 

�̇� =
377
10 	

(0.8 − 2.10	𝑆𝑖𝑛(𝛿) − 0.1𝜔)																																						(5.8) 

 

Also, the system model under EVIC and system model is given by: 

 

�̇� = 𝜔																																								 

�̇� =
377

10 + 5 tanh(100	Δ𝑃	𝜔)
(0.8 − 2.10	𝑆𝑖𝑛(𝛿) − 0.1𝜔)																						(5.9) 
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Fig. 5.16. System of VSG connect to infinite bus 

 

 
 

Fig. 5.17. System single line diagram 

 

The adaptive performance of the proposed controller is evaluated here using the three 

cases mentioned in the previous section. In every case, the exact network is simulated twice, 

once with the conventional inertia controller and the other with the proposed EVIC 

controller, while keeping all other parameters unchanged.  

In the first case, the converter is connected to the infinite bus and its reference power 

is set to 0.8 p.u. the initial power angle 𝛿, = 0	𝑟𝑎𝑑 and the frequency deviation from 

infinite bus frequency 𝜔, = 10	𝑟𝑎𝑑	/𝑠. This demonstrates the case where the VSG is 

subjected to a large load disturbance. The results shown in Fig. 5.18 prove the validity and 

superiority of the proposed controller. Compared with the conventional controller, the 
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overshoot/undershoot of the power angle is reduced by 30% while the oscillation and 

transient time is reduced by more than 50% from 2.5 s using conventional controller to 1 s 

using the proposed EVIC, as shown in Fig. 5.18 (a). Similarly, both oscillation and transient 

time in frequency deviation of the VSG are reduced by 50%, as shown in Fig. 5.18 (b). This 

is translated as reduction in the oscillation of the VSG output power as shown in Fig. 5.18 

(c). The proposed controller was not only effective in quickly damping the oscillation and 

shorting the transient time of the VSG, but also was able to do so with significant reduction 

in the amplitude of the overshoot/undershoot of the it output power. In other words, the 

proposed controller was able to combine the merits of the low inertia systems which have 

short transient time, and the high inertia systems have lower oscillation amplitude. The 

frequency – power angle trajectories and as well as the resultant variation in the VSG inertia 

coefficient are shown in Fig. 5.18 (d) and (e) respectively which agree with the theoretical 

and mathematical model derived in the previous sections.  

 

Table 5.2.  VSG simulation parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value 

Virtual input reference power Ph 0.8	p. u. 

Base power S 100	MVA 

Grid line voltage vi 13.8	𝑘𝑉 

Power angle at steady state δ 0.3908	rad 

Grid power angle δi 0	rad 

Total Line impedance j0.5	p. u. 

Infinite bus voltage vi 1	p. u. 

VSG voltage vi 1.05	p. u. 

Damping constant D 0.1 

Inertial Constant Mofh normalized 5	s 

Inertial Constant MhEo normalized 2.5	𝑠 

Inertial Constant Mhpq normalized 7.5	𝑠 

Simulation time step   10 us 
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(a)         (b)  

 

 
(c) 

 
(d)                                     

 
 (e) 

Fig. 5.18. VSG converter performance under large disturbance, case I (orange is 
conventional inertia controller and blue is EVIC); (a) VSG power angle vs. time; (b) VSG 

frequency deviation vs. time; (c) VSG output power; (d) VSG power angle – frequency 
trajectory; (e) VSG inertia coefficient.  
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The second case is considered to demonstrate the advantage of the proposed controller 

in increasing the VSG stability range, in comparison with the conventional controllers.  In 

this case, the initial power angle is set to 𝛿, = 0	𝑟𝑎𝑑 and the frequency deviation from the 

infinite bus frequency is set to  𝜔, = 15	𝑟𝑎𝑑	/𝑠. The results are shown in Fig. 5.19. The 

conventional inertia controller was not able to bring the VSG back to stability as clearly 

shown in its power angle and frequency, Fig. 5.19 (a) and (b) respectively. On the other 

hand, the proposed controller under the same conditions was able to bring the VSG back to 

it steady state operating point 𝛿, without compromising neither power oscillation nor the 

transient time. The resultant output power in both cases is shown in Fig. 5.19 (c). The 

frequency – power angle trajectories and as well as the resultant variation in the VSG inertia 

coefficient are shown in Fig. 5.19 (d) and (e) respectively. It is worth mentioning that for 

the proposed EVIC controller to maintain system stability, it had to aggressively change 

the inertial coefficient for longer time between its maximum and minimum values before 

entering its linear region, as shown in Fig. 5.519 (e). 
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(a)          (b) 

 
(c) 

 
(d)                                           

 
 (e) 

Fig. 5.19. VSG converter performance under large disturbance, case II (orange is 
conventional inertia controller and blue is EVIC); (a) VSG power angle vs. time; (b) VSG 

frequency deviation vs. time; (c) VSG output power; (d) VSG power angle – frequency 
trajectory; € VSG inertia coefficient.  
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Finally, the third case is when the VSG is subjected to small load disturbance. Here the 

power reference is increased by 1% from its original value 0.8 p.u. the initial power angle 

𝛿, = 0.3908	𝑟𝑎𝑑 and the frequency deviation from infinite bus frequency 𝜔, = 0	𝑟𝑎𝑑	/𝑠. 

The results shown in Fig. 5.20 (a) to (e) show that both conventional inertia controller and 

the proposed controller perform identically when being subjected to small amplitude 

disturbances. As discussed, this is an advantage of the proposed controller. That is, from 

small-signal point of view, the proposed controller has as well-defined inertia as opposed 

to other alternating inertia controller. Fig. 5.20 (e) shows a very small variation around the 

nominal inertia coefficient value which is identical to its value in the conventional 

controller. Hence, it can be assumed constant in linearization. This means that all linearized 

models, analysis, and results are valid under the proposed controller, which saves time and 

effort that would have to be used to build other linear models and study their stability 

boundaries and so on.   
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(a)       (b) 

 
(c) 

 
(d)                                     

 
 (e) 

Fig. 5.20. VSG converter performance under small disturbance, case III (orange is 
conventional inertia controller and blue is EVIC); (a) VSG power angle vs. time; (b) VSG 

frequency deviation vs. time; (c) VSG output power; (d) VSG power angle – frequency 
trajectory; (e) VSG inertia coefficient.  
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6. Conclusion and Future Work 

6. 1. Conclusion 

The legacy power system is steadily transforming into one having more power 

electronics converters fed from RESs. In this new system, the conventional large-scale 

utility grid has been broken down into smaller interconnected MGs which are more suitable 

for taking advantage of the distributed nature of RES. However, PE converters, fed from 

RESs in these MGs, do not show the same inertia as SG did in the legacy power system. 

Therefore, PE converters need to be controlled using virtual inertia techniques and become 

VSGs. This is done to maintain the operational behavior of the legacy power system. This 

means maintaining the concept of the infinite (slack) bus that was used in power system 

stability analysis.  

A MG system is modeled here without assuming the existence of an infinite bus or 

limiting it to only two parallel VSGs; the concept can be extended to n number of VSGs. 

This new concept models the characteristics that are unique to VSGs such as the 

implementation of a dc-link based inertia.  

Due to the relatively small size of MGs, they are more vulnerable to large amplitude 

disturbances imposed by the loss of one of the DGs (VSGs), a significant load transient, or 

line fault. Due to the large number of connected VSGs, a stability study of such MGs using 

linear techniques becomes inaccurate and leads to more conservative boundaries at best.  

The nonlinear stability study of a multi-VSG MG is provided in this work. The stability 

boundary of a given MG is quantitatively measured by calculating its maximum clearing 

time 𝑡BC under a given fault. Two methods are introduced in this work:  
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1. First, is a Lyapunov based method, in which, a systematic approach to construct 

system energy function in the sense of Lyapunov is introduced. It eases the 

calculations required when n number of DGs are considered. The implementation 

of this method involves two steps; First, the MG model is used to derive the 

Lyapunov energy function for multiple interconnected VSGs based on Popov’s 

criterion (KYP criterion). Second, different energy levels are calculated based on 

nearby unstable operating points of all VSGs. The resultant minimum energy level 

then dictates the maximum frequency deviation 𝚫𝝎 and power angle difference 𝜹 

with respect to rotating frame before the MG under investigation becomes unstable. 

This energy level defines the area of attraction within which the MG is stable. The 

critical clearing time 𝒕𝒄𝒓 is then calculated by integrating the derived Lyapunov 

function at that energy level. The validity of the introduced model and approach is 

discussed in detail and proven for a single VSG and then extended for multiple 

VSGs. 

2. The second method is a proposed convex hull-based trajectory reversing. It is used 

to estimate and enlarge the ROA of grid connected VSG. The algorithm and the 

flow chart of the proposed method is developed and discussed in detail. It starts by 

generating a family of reversed trajectories that are initiated close to the VSG(s) 

equilibrium points. Then, convex hull algorithm finds the minimum region that 

contains all these trajectories. Finally, at progressive time steps, the algorithm 

checks if the faulted trajectory is still within the convex region. The time the faulted 

trajectory takes to reach any of the region edges is the system’s 𝒕𝒄𝒓. Moreover, this 

work proposed a new technique to define the set of initial points needed by the 

algorithm. The proposed technique provides an easy and direct method that 

balances the computational time with the number of initial points and their 

corresponding trajectories. It ensures uniform distribution of the initial points 

despite the ROA over their targeted number.  

A case study is conducted to validate the algorithm performance and its estimated ROA. 

The algorithm was able to provide accurate prediction of the network 𝑡BC under the given 

fault. It proves the validity of the algorithm without relying on finding a specific Lyapunov 
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function which can be challenging, especially with the increasing complexity of modern 

power system networks and their components. 

Finally, to increase the MG stability and its area of attraction, a modified virtual inertia 

controlled EVIC is proposed. It adopts the alternating inertia control technique which 

changes the converter’s inertia between two levels to quickly damp frequency and power 

oscillations. The proposed EVIC improves on that concept by adding three different modes 

of inertia alternation.  

• The first mode is equal to converter nominal inertia defined by desired system 

response to small disturbances.  

• The second mode varies the inertia coefficient of a given VSG linearly in 

proportion to the amount of applied large disturbances.  

• The third mode provides a hard switching between two levels of inertia to 

quickly bring the system closer to its stability point when VSG is subjected to 

very large disturbances.  

Moreover, the proposed control is implemented using smooth continuous equation 

unlike other techniques which uses discontinuous functions or complicated artificial 

intelligence algorithms. This is of importance when system nonlinear stability study is 

performed. The results show the validity of the proposed controller in not only improving 

system dynamic responses but also increasing the MG overall area of attraction and hence 

its stability boundaries.  

The main contributions of this work can be summarized as follows: 

• Providing a large-signal stability study of power electronics dominated MG 

based on Popov’s multivariable criterion which systematically constructs the 

Lyapunov function. Then estimation of the MG region of attraction (stability 

margins) is done based on the nearest unstable point. This is used to calculate 

the critical time of an MG in the presence of faults.  

• Proposing an alternative method to study the large signal stability of power 

electronic dominated MGs. The proposed method and algorithm can be applied 

to any MGs regardless of its construction or model. moreover, the proposed 



165 
 

method defines a fast and systematic way to solve its initial points problem and 

to reduce them to increase computational efficiency. 

• Proposing a new enhanced virtual inertia controller EVIC which can further 

improve the MG stability margins and reduced power oscillations. The 

proposed controller provides adaptive alternating inertial dynamics in 

proportion to the applied disturbances. 

6. 2.  Future work 

This work focused on finding direct systematic techniques to quantify the large signal 

stability of any given MG. Lyapunov function, once it is derived, can be directly used to 

determine the limits on the MG dynamics before spiralling out of its stable region.  

Trajectory reversing method does the same but without imposing any constrains on MG’s 

model or dimensions i.e., number of interconnected VSGs. A future extension of this work 

is to use convex hull-based trajectory reversing method and Taguchi method to study the 

stability of MG with higher VSGs. For such high number of interconnected VSGs, the 

number of possible faults increases rapidly, making studying the MG stability a time 

consuming and cumbersome process.  

While trajectory reversing technique can be applied to any number of VSGs with 

advanced and complex control schemes. Taguchi method can be applied to significantly 

reduce the number of faults scenarios by only considering the ones that will have the highest 

impact on the stability.  

This method is originally developed for quality control process as it can define the 

manufacturing variables that have the highest impact the product quality. It is found later 

to be effective in many other applications. It is considered here as a natural progression to 

this work as it is a numerical based method that can be implemented in conjunction with 

the reverse trajectory method to form a software stability engine, that can quickly; 1) define 

the stability region, 2) define the most vulnerable points in the MG and 3) generate stability 

report in computationally efficient way. 

Moreover, the future extension of this work would include investigating the 

effectiveness of the proposed EVIC controller against IEEE 1547, LVRT especially when 
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it comes to its voltage ride through capability. Another area of reach is to extend the 

stability study to consider constant power loads effect on the MG dynamics and stability 

instead of the constant impedance loads utilized in this study.  
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