
Subgraph Classification through
Neighborhood Pooling

by

Shweta Ann Jacob

A thesis submitted to the School of
Graduate and Postdoctoral Studies in

partial fulfillment of the requirements for
the degree of

Master of Science in Computer Science

Faculty of Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

June 2023

Copyright © Shweta Ann Jacob, 2023

Thesis Examination Information

Submitted by: Shweta Ann Jacob

Master of Science in Computer Science

Thesis title: Subgraph Classification through Neighborhood Pooling

An oral defense of this thesis took place on June 6, 2023 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Shahram S. Heydari

Research Supervisor Dr. Amirali Salehi-Abari

Examining Committee Member Dr. Julie Thorpe

Thesis Examiner Dr. Ying Zhu

The above committee determined that the thesis is in acceptable form and content

and that a satisfactory knowledge of the field covered by the thesis was demonstrated

by the candidate during an oral examination. A signed copy of the Certificate of

Approval is available from the School of Graduate and Postdoctoral Studies.

i

Abstract

Subgraph classification is an emerging field in graph representation learning where

the task is to classify a group of nodes (i.e., a subgraph) within a graph. Graph neural

networks (GNNs) are the de facto solution for node, link, and graph-level tasks but

fail to perform well on subgraph classification tasks. Even GNNs tailored for graph

classification are not directly transferable to subgraph classification as they ignore

the external topology of the subgraph, thus failing to capture how the subgraph is

located within the larger graph. Existing models for subgraph classification address

this shortcoming through labeling tricks or multiple message-passing channels, both

of which impose a computation burden and are not scalable to large graphs. To

address the scalability issue while maintaining generalization, we propose Stochastic

Subgraph Neighborhood Pooling (SSNP), which jointly aggregates the subgraph and

its neighborhood (i.e., external topology) information without any computationally

expensive operations such as labeling tricks. To improve scalability and generalization

further, we also propose a simple data augmentation pre-processing step for SSNP

that creates multiple sparse views of the subgraph neighborhood. We show that our

model is more expressive than plain GNNs, without using any labeling tricks. Our

extensive experiments demonstrate that our models outperform current state-of-the-

art methods (with a margin of up to 2%) while being up to 3× faster in training.

ii

Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech Uni-

versity) to lend this thesis to other institutions or individuals for the purpose of

scholarly research. I further authorize University of Ontario Institute of Technol-

ogy (Ontario Tech University) to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research. I understand that my thesis will be made electronically

available to the public.

Shweta Ann Jacob

iii

Statement of Contributions

I hereby certify that I have been the primary contributor of this thesis by developing

the algorithms, implementing them, and designing the experiments. I have also writ-

ten most content of this thesis. However, some texts of this thesis are borrowed from

a currently-under-review preprint [38] that is coauthored by my thesis supervisor Dr.

Amirali Salehi-Abari, a collaborator, and me.

iv

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Amirali Salehi-Abari

for his guidance and critical insights that have helped in shaping my research. I

would like to especially thank my parents, Appa and Amma, for their support and

words of encouragement throughout this journey. I am incredibly grateful for their

unconditional love. I would also like to thank my sister, Shilpa, for always being

my confidante. I would also like to thank Paul for always being there for me and

supporting me every step of the way wholeheartedly. Lastly, I would like to thank

everyone who has supported me from near and far.

v

Contents

Abstract ii

Author’s Declaration iii

Statement of Contributions iv

Acknowledgments v

Contents vi

List of Figures ix

List of Tables xi

List of Abbreviations xii

List of Notations xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Thesis Organization . 5

1.4 Summary and Impact . 6

vi

2 Background 8

2.1 Graph Representation Learning . 8

2.1.1 Node Classification . 9

2.1.2 Link Prediction . 10

2.1.3 Graph Classification . 12

2.1.4 Subgraph Classification . 12

2.2 Shallow Encoders . 13

2.3 Message Passing Graph Neural Networks 14

2.3.1 Graph Convolutional Networks 15

2.3.2 GraphSAGE . 16

2.3.3 Subgraph Classification by MPGNN 17

2.4 SubGNN . 17

2.5 GLASS . 20

2.6 Data Augmentation in Graphs . 23

2.7 Graph Contrastive Learning . 24

3 Related Work 25

3.1 Shallow Embedding Methods . 25

3.2 Message Passing Graph Neural Networks 26

3.3 Subgraph Representation Learning 28

3.4 Subgraph Classification . 30

3.5 Scalability of SGRLs . 31

3.6 Scalability by Sampling . 33

4 Approach 36

4.1 Preliminaries . 36

4.2 Problem Statement . 37

vii

4.3 Stochastic Subgraph Neighborhood Pooling

(SSNP) . 37

4.3.1 Transformation Layer . 39

4.3.2 Subgraph Neighborhood Pooling and Variants 41

4.4 Expressiveness of Subgraph Neighborhood Pooling 43

4.4.1 Subgraph Neighborhood Sampling Strategies 47

5 Experiments 49

5.1 Datasets . 49

5.2 Evaluation Metric . 50

5.3 Baselines . 51

5.4 Experimental Setup . 51

5.5 Results: F1 Score and Runtime . 53

5.6 Multi-view Hyperparameter Analyses 56

5.7 Results: Stochastic Pooling Strategies 60

5.8 Summary . 61

6 Conclusions 63

6.1 Thesis Summary . 63

6.2 Future Directions . 64

6.2.1 Reusing Random Walks . 64

6.2.2 Efficient Subgraph Neighborhood Selection 64

6.2.3 Graph Contrastive Learning 65

Bibliography 66

viii

List of Figures

2.1 Node Classification Example. 10

2.2 Link Prediction Example. 11

2.3 Graph Classification Example. 12

2.4 Subgraph Classification Example. 14

2.5 SubGNN architecture. 19

2.6 GLASS framework. 22

3.1 An example of SGRL framework SEAL. 29

3.2 An example of scalable SGRL framework ScaLed. 33

3.3 Different sampling techniques. 35

4.1 Architecture of our model. 38

4.2 h-hop subgraph neighborhood. 41

4.3 1-WL coloring in a plain-GNN such as GCN. 44

4.4 Comparison of subgraph pooling vs subgraph neighborhood pooling

expressiveness. 46

4.5 POV Sampling Strategy. 47

5.1 Confusion Matrix. 51

5.2 Effect of number of views in PV. 58

ix

5.3 Effect of number of views per epoch on ppi-bp. 58

5.4 Effect of number of views per epoch on hpo-metab. 59

5.5 Effect of number of views per epoch on hpo-neuro. 59

5.6 Effect of number of views per epoch on em-user. 59

5.7 Effect of sampling strategies on pre-processing time and training time

per epoch. 61

x

List of Tables

5.1 Statistics of all real-world datasets. 50

5.2 Mean micro-F1 scores with standard error for all models. 53

5.3 Our model vs GLASS: dataset preparation time, training time per

epoch, inference time per epoch in seconds and average runtime. . . . 54

5.4 F1-score for various sampling strategies 60

xi

List of Abbreviations

BFS . Breadth-First Search

DE . Distance Encoding

DFS . Depth-First Search

DRNL .Double-Radius Node Labeling

FN . False Negative

FP . False Positive

GIC . Graph InfoClust

GCL .Graph Contrastive Learning

GCN . Graph Convolutional Network

GNN . Graph Neural Network

MLP .Multilayer Perceptron

MPGNN .Message Passing Graph Neural Network

OV . Online Views

xii

POV . Pre-processed Online Views

PV . Pre-processed Views

RPE .Relative Position Encoding

S2N .Subgraph-To-Node

SGRL .Subgraph Representation Learning

SSNP . Stochastic Subgraph Neighborhood Pooling

TP . True Positive

WL .Weisfeiler-Lehman

xiii

List of Notations

h .Length of random walk

k . Number of random walks

σ .Activation function

h .Hidden representation of node

qs . Output representation of subgraph S

W . Learnable weight matrix

⊕ . Concatenation operator

G . Base graph

V . Set of vertices

E .Set of edges

S . Subgraph

VS . Set of subgraph vertices

ES .Set of subgraph edges

xiv

VS .Set of subgraph neighborhood vertices

X . Initial node feature matrix

Sm . Set of subgraphs in mini-batch m

A .Adjacency matrix

L .Number of convolution layers

Lm .Max zero-one labels of nodes in the mini-batch m

l . l-th convolution layer

R . Set of real numbers

Z .Learnt node embedding matrix

N(u) . Neighborhood node set of node u

Nk(u) . Sampled neighborhood node set of node u

p . In-out hyperparameter of node2vec

q . Return hyperparameter of node2vec

A . Set of anchor patches

d . Initial node feature dimensionality

xv

Chapter 1

Introduction

In this chapter, we discuss the importance of the subgraph classification task, short-

coming of current solutions and the need for scalable models to address these short-

comings. We also highlight the contributions of the thesis followed by its organization,

summary, and impact.

1.1 Motivation

Graph-structured data is prevalent in many domains such as social networks, bio-

logical networks (e.g., protein-interaction networks), or technological networks (e.g.,

information networks or computer networks). Structural properties of graph data

have been exploited for drug repurposing/discovery [39, 55], recommender systems

[65,77,86], group decision making [64,66], medical diagnosis [6], peer assessment [56],

anomaly detection [4,35] and many more. Graph representation learning [30] has con-

tinuously progressed in recent years with the advent of more expressive graph neural

networks (GNNs) [31, 42, 73, 79, 82], focusing on various downstream tasks such as

node classification [17,21,26,100], link prediction [11,27,32,52,68,91,94], and graph

1

classification [7, 23, 45,61,87,95].

Subgraph classification is an emerging problem in graph representation learning

where one intends to predict the properties associated with a group of nodes (i.e.,

a subgraph) of the larger observed base graph [5, 75]. Subgraph classification finds

application in various domains such as finding toxic (or violence-inciting) communities

in social networks, drug discovery, group recommendation, diagnosis of rare diseases,

and many others. As subgraphs may contain any number of nodes ranging from one

node to all nodes of the base graph, typical downstream tasks (e.g., node classification,

link prediction, or graph classification) can be considered as specific instances of

subgraph classification.

Subgraph classification, as a more general problem, requires solutions that can

learn, combine, and contrast topological properties and the connectivity between the

nodes within and outside the subgraph. Learning these complex intra-connectivity

and inter-connectivity patterns of the subgraph and the base graph renders this prob-

lem challenging. As a result, existing GNN models that perform well on node classi-

fication, link prediction, and graph classification does not perform well on subgraph

classification [75]. Also, learning solely on segregated subgraphs that ignore the topol-

ogy of the base graph is shown to be ineffective [75], thus underpinning the importance

of the global topology of the base graphs for the subgraph classification task. Recent

state-of-the-art work (e.g., GLASS [75] and SubGNN [5]) alleviates this shortcoming

of the lack of global topology information through the use of labeling tricks [75] or

artificially-crafted message passing channels [5].

While GLASS [75] and SubGNN [5] enhance the expressiveness of subgraph em-

beddings, their deployed approaches of labeling tricks and additional artificially-

crafted message passing channels are computationally intensive, especially when deal-

ing with larger (sub)graphs. In some cases, these computational bottlenecks have

2

made these approaches require some careful hyperparameter tuning. For example,

the performance of the max-zero-one labeling trick in GLASS is sensitive to the batch

size and therefore, requires extensive and careful hyperparameter tuning of the batch

size. To overcome the computational overhead of GLASS and SubGNN, it is essential

to devise a model that can learn the interactions between subgraph nodes and the

external nodes without any computationally-costly subgraph-level operations.

1.2 Contribution

This thesis introduces a simpler computationally efficient model for subgraph classi-

fication that does not use any labeling trick or artificially fabricated computationally

expensive message-passing channels. Operating on the original graph, our model does

not require any subgraph extractions. We first utilize transformation layers on the

node features of all nodes in the base graph for dimensionality reduction and node fea-

ture smoothing/refinement. The transformation layers can be message-passing layers

such as GCN [42], GraphSAGE [31], GIN [82], or a simple graph structure-agnostic

model such as MLP. Then, for each subgraph, we aggregate the node features of

the subgraph and its neighborhood through our proposed Stochastic Subgraph Neigh-

borhood Pooling (SSNP) to generate the subgraph embedding, and consequently the

subgraph classification output. The addition of subgraph neighborhood information

in our pooling function enhances the expressiveness of subgraph embeddings by cap-

turing their external topology within a base graph. We show that our model is more

expressive than a plain GNN (i.e., a graph neural network such as GCN [42] without

any labeling tricks). To prevent neighborhood explosion for large graphs and keep

computation under control, our SSNP uses random walks to sample the neighbor-

hood of each subgraph. As a data augmentation strategy, our neighborhood sampling

3

method can be conducted multiple times in a pre-processing stage to create multiple

sparse views of the subgraph neighborhood. We conduct comprehensive experiments

on real-world datasets to show the performance and scalability of our model against

various baselines including the current state-of-the-art GLASS [75]. In all datasets

(except one), our model outperforms others with a gain of up to 2% while having a

speedup of up to 3× compared to GLASS. Experimental results on real-world datasets

demonstrate our model is effective, yet simpler than existing models and computa-

tionally efficient. Moreover, the utilization of subgraph neighborhoods in the pooling

layer enhances the power of the subgraph representations without the requirement

for any labeling trick.

In summary, the main contributions of our thesis are:

• We propose a simpler model for subgraph classification that uses subgraphs and

its neighborhood in our Stochastic Subgraph Neighborhood Pooling (SSNP) to

generate the final subgraph embedding used for subgraph classification.

• We show that our model with SSNP is more expressive than a plain GNN in

distinguishing non-isomorphic subgraphs.

• We propose a data augmentation strategy that creates multiple views of sub-

graph neighborhoods.

• Through extensive experiments on real-world datasets, we show that SSNP is

scalable and outperforms baselines on 3 out of the 4 datasets. Our multi-view

hyperparameter sensitivity analyses and experiments on different stochastic

pooling strategies further show that our POV variant is effective in general-

ization with even a small number of views.

4

1.3 Thesis Organization

The rest of the Thesis is organized as follows. Chapter 2 provides background on

graph representation learning, its impact, and its applications. We then discuss var-

ious downstream tasks in graph representation learning such as node classification,

link prediction and graph classification followed by subgraph classification. In the

later section, we draw focus to shallow encoders and other prominent works in Graph

Neural Networks such as GCN and GraphSAGE. We also discuss how GCNs can

be adapted for subgraph classification. We review state-of-the-art works in subgraph

classification such as SubGNN and GLASS. We conclude the chapter with discussions

on data augmentations in graphs and graph contrastive learning. In Chapter 3, we

review shallow encoders and MPGNNs. We later on discuss subgraph representation

learning approaches followed by previous subgraph classification works. We then dis-

cuss scalable SGRLs followed by scalability through sampling. Chapter 4 discusses

the subgraph classification problem statement and our Stochastic Subgraph Neigh-

borhood Pooling model. We provide examples of transformation layers in our model

and discuss about the expressive power of our model. In the later section, we discuss

various multi-view sampling strategies for subgraph neighborhoods. In Chapter 5, we

perform various experiments to show the advantage of using our Stochastic Subgraph

Neighborhood Pooling model and its computational advantage. We also provide some

hyperparameter sensitivity analysis. In Chapter 6, we conclude our work with a brief

summary of our model and its empirical results followed by possible future research

directions.

5

1.4 Summary and Impact

Subgraph Classification is a new vertical in graph representation learning that focuses

on learning the properties of a group of nodes given a large graph. Existing solutions

for node, link, or graph-level tasks are not suited for subgraph classification due to the

distinctive nature of subgraphs. Subgraphs have internal as well as external topology

which is crucial for its classification. To learn this complex topology, previous work

in subgraph classification such as SubGNN [5] and GLASS [75] uses subgraph specific

message-passing channels or labeling tricks which are computationally costly.

We propose a model that uses subgraph neighborhood information during pooling

along with subgraph information. The addition of subgraph neighborhood informa-

tion is simple and low-cost while increasing the expressiveness power of the under-

lying graph neural network. We term our pooling function that uses subgraph and

its neighborhood as Stochastic Subgraph Neighborhood Pooling (SSNP). To allow for

faster computation and avoid noise, we use random-walk sampled subgraph neigh-

borhoods. As random walks create some stochasticity in the model, we use a data

augmentation strategy to create multiple views of the random-walk sampled sub-

graph neighborhoods. We propose three sampling strategies such as Online Views,

Preprocessed Views and Pre-processed Online Views.

We conduct experiments on four real-world datasets using our pooling function

SSNP combined with various transformation layers such as MLP, GCN [42], and

Nested Network [69]. We compare our model against various baselines including pre-

vious state-of-the-art SubGNN [5] and GLASS [75]. On 3 out of the 4 datasets, our

model outperforms all the baselines whereas on the other one, our model performance

is comparable to the baselines. We perform another set of experiments to evaluate the

scalability of our model in comparison to GLASS. On all the datasets, our model is

6

much faster than GLASS while being better or comparable in terms of performance.

We further conduct hyperparameter sensitivity experiments to understand the ef-

fect of the random walk and multi-view parameters introduced in our model. With

small random walk length and number of views, our model is able to perform well

without being computationally demanding. The experiments show that our POV

sampling variant provides the best performance while being computationally-light.

The stochasticity introduced by the number of views per epoch parameter allows for

generalization of the model without overfitting.

In conclusion, our novel SSNP with simple transformation layer along with sub-

graph neighborhood pooling performs well on subgraph classification task while being

scalable (due to node-level operations irrespective of target subgraph) and thereby

overcoming the shortcomings of previous works (which require target subgraph spe-

cific operations). Additionally, our data augmentation technique allows the model to

generalize well without impacting the computation dramatically. It is the position of

this thesis that SSNP can be adapted to other downstream tasks and can work with

large-scale graphs.

7

Chapter 2

Background

This chapter reviews some essential topics that this thesis is built upon. We first re-

view graph representation learning and its applications. Next, we review the various

downstream tasks on graphs. We also discuss two prominent works in graph neural

networks, GCN [42] and GraphSAGE [31] and their message aggregation and up-

date formulations. We then review two previous subgraph classification approaches,

SubGNN [5] and GLASS [75]. We conclude the chapter with discussions on data

augmentations in graphs and graph contrastive learning.

2.1 Graph Representation Learning

Many domains use graph-structured data and therefore, the applications of graph rep-

resentation learning are widespread. Over the years, the field of graph representation

learning has advanced through the use of various graph neural network architectures

that focus on various aspects such as performance and scalability. Graph learning

has applications in numerous domains and industries ranging from polypharmacy to

social networks. In social networks, graph learning can be used for making friend

8

recommendations [16], community detection, predicting the type of interaction [46],

etc. Graph learning also finds applications in natural language processing [18], drug

design, software mining [44], modeling polypharmacy side effects, molecular prop-

erty prediction, anomaly detection [53], etc. Graphs are defined as a set of nodes

and edges. As a result, we can operate on graphs at the node-level, link-level, or

graph-level.

In the coming subsections, we discuss the three prominent downstream tasks in

graph representation learning: node classification, link prediction and graph classi-

fication and various graph neural network architectures that target specific tasks or

all tasks in general. We then shift our focus to a new task in graph representation

learning called subgraph classification and discuss how it is related to other tasks.

2.1.1 Node Classification

In node classification, we wish to predict specific labels (that indicate certain prop-

erties) of the nodes. For example, if we consider a social network where the nodes

represent users and links represent friendships, the node classification task is to clas-

sify each user as a member of a specific political party. Graph Neural Networks such

as GCN [42], GraphSAGE [31] learns node representations that can be used for node

classification. DropEdge [62] prevents oversmoothing and overfitting in graph neu-

ral networks by randomly removing some edges from the graph. DropEdge can be

considered a data augmentation technique where edge perturbation happens at each

training epoch. Additionally, DropEdge allows for faster aggregations and creates

robust representations for node classification. An example for node classification is

given in Figure 2.1. Each node is given a label (indicated by its color) and the task

is to predict the labels of the unlabeled nodes.

9

?

?
?

Figure 2.1: Node Classification Example.

2.1.2 Link Prediction

Link prediction also known as relation prediction involves the prediction of absence/ex-

istence of a link between two nodes. Node classification works maybe extended to work

for downstream tasks such as link prediction. However, link prediction requires mod-

eling interactions between pairs of nodes which is a shortcoming of node-level GNNs.

Link prediction is also used for graph completion tasks. For example, in a citation

network where nodes represent scientists and links represent co-authorships between

two scientists, the link prediction task may be to predict if two scientists may collab-

orate in the future. Recent works such as PinSage [86] and Decagon [102] are used

for making recommendations and predicting drug side effects which are specific cases

of link prediction. Other SGRL methods such as SEAL [94] and DE-GNN [48] use

enclosing subgraphs along with labeling tricks for link prediction. Labeling trick [97]

refers to any labeling function such as double-radius node labeling (where distance of

10

each node to the target pair of nodes is captured) or zero-one labeling (where target

nodes are assigned a label of 1 and all other nodes are assigned a label of 0) that helps

the underlying graph neural network to understand the structure of the nodes in the

graph. Labeling tricks primarily satisfy two conditions: identifying the target nodes

within a node set and permutation equivariance (i.e., the labeling function should as-

sign similar labels to a set of nodes irrespective of their order in the set). DEAL [32]

uses two separate encoders: one for attribute and one for structure and aligns the

two encoded embeddings using alignment losses for link prediction. An example for

link prediction is given in Figure 2.2. The blue-colored nodes are the target nodes

and the task is to predict if the two nodes will interact in the future.

?

Figure 2.2: Link Prediction Example.

11

2.1.3 Graph Classification

Graph classification involves predictions for a group of nodes. The task may be to

classify a group of proteins as enzymes or non-enzymes or predicting properties of

a molecule (which is represented using a graph). GCN [42] and GraphSAGE [31]

can be extended to graph classification by adding a graph pooling layer to transform

the node-level outputs to a graph-level representation. Works such as [28, 80] focus

on graph classification tasks. Other graph neural networks focus on creating better

pooling layers to convert node-level outputs to a graph-level output. SAGPool [45]

and ASAP [61] uses attention based pooling layer to create graph representations.

DiffPool [87] and MinCutPool [7] are clustering based pooling approaches used in

graph classification. DGCNN [95] is another prominent work in graph classification.

An example for graph classification is given in Figure 2.3. Each graph has a label

(indicated by the color of its nodes) and the task is to predict the label of the unseen

graph.

?

Figure 2.3: Graph Classification Example.

2.1.4 Subgraph Classification

Subgraph Classification is a new downstream task in graph representation learning. In

general, all the downstream tasks vary in the number of nodes used in the prediction

12

task. As a result, nodes, links and graphs can be considered as specific instances of

subgraphs with a single node, pair of nodes, isolated group of nodes, respectively.

Therefore, subgraphs can be considered as an abstract data type for nodes, links

and graphs and subgraph classification can be considered a more general problem.

Existing works on node classification, link prediction and graph classification cannot

be directly extended to subgraph classification as subgraphs have both internal as well

as external topology. Subgraph classification solutions however can be generalized to

work for other downstream tasks. Few works such as GLASS [75] and SubGNN [5]

has focused on the subgraph classification task. Such works use labeling tricks or

subgraph specific channels to model the properties important to subgraphs. However,

the use of additional labels and message-passing channels creates an overhead and

simple models are necessary to enable learning on large-scale graphs. An example for

subgraph classification is given in Figure 2.4. Each target subgraph in the graph has

a label (shown by blue and green color) and the task is to predict the label of the

unlabeled subgraph.

2.2 Shallow Encoders

One of the earliest works to create node embeddings were through the use of shallow

encoders such as DeepWalk [60] and node2vec [29]. DeepWalk [60] learns latent node

representations through the use of random walk sequences. DeepWalk uses the ran-

dom walk sequences to construct the node embeddings similar to using words to con-

struct sentences in natural language processing. The random walk sequences allows

the model to learn the local structure around a node. To obtain node embeddings,

node2vec [29], an extension of DeepWalk, uses random walk sequences controlled by

two different hyperparameters. The two hyperparameters p and q provides a trade-off

13

?

Figure 2.4: Subgraph Classification Example.

between local (i.e., breadth-first) and global (i.e., depth-first) neighborhood explo-

ration. More specifically, p and q controls the return probability and inward-outward

exploration, respectively. Due to the reliance of node2vec on structure, it is predom-

inantly used as a pretraining method for graphs without any features. However, the

lack of use of features makes it inapplicable to inductive settings.

2.3 Message Passing Graph Neural Networks

Message Passing Graph Neural Networks (MPGNNs) converts hidden representations

of nodes to learnt embeddings through the use of multiple message-passing iterations.

Each message-passing iteration is specified using two functions: AGGREGATE and

UPDATE. The AGGREGATE function aggregates the neighborhood information of

each node whereas the UPDATE function updates the representation of each node

14

by combining its previous hidden representation and the aggregated neighborhood

information. Each round of message-passing allows the nodes to contain information

from nodes that are 1-hop away. After h rounds of message-passing, each node has

information from nodes that are upto h-hops away. The final representation after h

rounds of message-passing can then be used in any downstream task.

In the coming subsections, we discuss two prominent message-passing graph neu-

ral network architectures, GCN and GraphSAGE followed by a discussion on how

MPGNNs can be applied to the subgraph classification task.

2.3.1 Graph Convolutional Networks

Graph Convolutional Network (GCN) [42] is one of the first message-passing graph

neural network (MPGNN) that uses messages from neighboring nodes to update each

node’s representation. The message aggregation and update step in GCN can be

summarized as:

h(l)
u = σ

W(l)
∑

v∈N+(u)

h(l−1)
v

 , (2.1)

where h
(l)
u is the hidden representation of node u at layer l, W(l) is a learnable

weight matrix, and N+(u) contains the neighbors of u and itself. σ represents an

activation function such as ReLU. In GCN, the AGGREGATE and UPDATE function

is combined to a single step. Node representations are obtained through summation

over the messages from the neighboring nodes and the node itself. By stacking h layers

of convolution, we can learn the h-hop neighborhood of each node. Since GCNs use the

entire neighborhood to make node feature updates (i.e., aggregation), it can become

costly especially when dealing with nodes with large neighborhoods. In addition to

15

this, GCN cannot be applied to inductive settings thereby, limiting its application.

However, GCN can be used in transductive settings for various downstream tasks

such as node classification and link prediction.

2.3.2 GraphSAGE

To allow for inductive inference and computation speedup, GraphSAGE [31] sam-

ples the neighborhood of each node when making feature updates. The formulation

of GraphSAGE differs from GCN in three ways. The UPDATE function in Graph-

SAGE is concatenation of the node and its neighborhood representations rather than

combining it to one representation. GraphSAGE allows for different AGGREGATE

function for the neighboring node messages such as mean or LSTM. Furthermore, the

neighborhood of each node is sampled. The message aggregation and update step in

GraphSAGE can therefore be summarized as:

h
(l)

Nk(u)
= AGGREGATE({h(l−1)

v , v ∈ Nk(u)}), (2.2)

h(l)
u = σ

(
W(l).CONCAT (h(l−1)

u ,h
(l)

Nk(u)
)
)
, (2.3)

where h
(l)

Nk(u)
is the messages from the sampled neighborhood Nk(u) of node u at layer

l, k is the number of nodes sampled from the neighborhood at each layer, h
(l)
u is the

hidden representation of node u at layer l and W(l) is a learnable weight matrix. The

AGGREGATE function of GraphSAGE, given by Equation 2.2, aggregates the sam-

pled neighborhood of each node through simple mean aggregation or using an LSTM.

The UPDATE function of GraphSAGE given by Equation 2.3 concatenates the rep-

resentation of each node with its aggregated neighborhood. Using sampled neighbor-

16

hood in AGGREGATE reduces the computational overhead, especially when dealing

with nodes that have large neighborhoods. Furthermore, GraphSAGE addresses the

shortcoming of GCN by allowing inference on unseen nodes or graphs. As a result,

GraphSAGE finds application in large-scale graphs and inductive settings.

2.3.3 Subgraph Classification by MPGNN

An l-layered GNN can be adapted for the subgraph classification task by applying

a subgraph pooling function on the node representations. If X represents the initial

node features of the graph G, then the output of the l-layer GNN can be represented

as:

Z = fGNN(G,X) (2.4)

The subgraph representation for S denoted by qs can then be obtained using:

qs = pool(Z, G, S) (2.5)

where pool is a permutation invariant function such as sum pooling, max pooling or

mean pooling. The final subgraph class can be obtained by passing qs to a classifier.

2.4 SubGNN

SubGNN [5] is one of the first works in subgraph classification. SubGNN is a graph

neural network model that takes into account the subgraph-level properties with

respect to neighborhood, structure, and position when creating node level represen-

tations which is missing in traditional GNNs. For this purpose, separate message

17

passing channels are used for modeling the different structural properties that are

key to subgraphs. SubGNN uses property-specific anchor patches to achieve the

same. Figure 2.5 shows the SubGNN architecture.

Anchor patches are subgraphs sampled from the base graph that help in under-

standing how each target subgraph is located within the base graph. Each anchor

patch is created to account for the properties of a subgraph such as position, neighbor-

hood and structure within the subgraph and between the subgraph and the external

nodes, respectively. For internal and border position, a node from the subgraph and

a group of nodes from the base graph are used as anchor patches. For internal and

border neighborhood, nodes from the subgraph and nodes from the h-hop subgraph

neighborhood are used as anchor patches. For internal and border structure, trian-

gular random walks are used to sample anchor patches.

The property-specific anchor patches A are then used to propagate messages to

each of the component in the subgraph as shown in Equation 2.6.

ZP = AGGM(G,X,A, S) (2.6)

The messages are propagated through a similarity function based on shortest path

distance between anchor patches and the subgraph components. Once the property-

aware subgraph component embeddings are available, a channel aggregation function

AGGC is used to obtain component representations for position, structure and neigh-

borhood as shown in Equation 2.7.

ZC = AGGC(ZP , S) (2.7)

Another aggregation function AGGS is used to combine the subgraph component

18

(a) Original Graph. (b) Anchor Patch Sampling.

pool qs=

(c) Message Passing followed by Pooling.

Figure 2.5: SubGNN architecture. (a) The task is to learn a representation for a
subgraph (shaded in yellow) in the original graph. (b) SubGNN samples property-
specific anchor patches (shaded in grey) from the base graph. (c) SubGNN propagates
messages from the anchor patches to the subgraph components followed by multiple
aggregations to obtain the subgraph component representations. pool combines the
different component representations to obtain the subgraph representation qs.

representations as shown in Equation 2.8.

ZS = AGGS(ZC , S) (2.8)

Similarly, an aggregation function AGGL is used to aggregate the outputs from dif-

ferent layers. Finally, a pool function is used to obtain the subgraph embedding qs

as shown below.

qs = pool(ZS). (2.9)

19

The final representation is then fed into a classifier. The use of specific anchor patches

and message passing channels ensure that the subgraph embeddings contain the nec-

essary topological information.

However, the separate message passing channels (up to six) and the sampling of

anchor patches creates a computation overhead which can increase as the (sub)graph

size increases. Moreover, as the graph size increases, there might be a need to increase

the anchor patch sizes in order to capture the topology of the graph.

2.5 GLASS

Plain-GNNs fail to work on subgraph classification tasks due to their inability to

distinguish internal and external nodes of a subgraph during message passing which

is crucial to learn different subgraph properties. To address this, GLASS [75], cur-

rent state-of-the-art model for subgraph classification, differentiate nodes within and

outside the subgraph with the use of labeling tricks. GLASS extends SEAL [94]

and overcomes its computational bottleneck by applying labeling to the entire graph

without the need for subgraph extractions. GLASS uses a simple zero-one labeling

trick [97] on nodes with a full GNN. Zero-one labeling trick [97] assigns all the target

nodes a label 1 and the remaining nodes in the sub(graph) a label 0.

The zero-one labeling trick allows GLASS to encode the six topological proper-

ties of a subgraph such as internal position, border position, internal neighborhood,

border neighborhood, internal structure and border structure. Furthermore, GLASS

uses a node-level message passing framework in comparison to SubGNN which uses

subgraph-level message passing to learn these properties.

To enable mini-batching of multiple subgraphs, the labels of the different sub-

graphs in the mini-batch are combined to create a new label. To avoid labeling

20

inconsistencies when different subgraphs are in a mini-batch, a novel max zero-one

labeling scheme is introduced. The max zero-one labeling takes the maximum of the

different labels created for each node by all the subgraphs in the mini-batch. The

max zero-one labeling is an approximation of the zero-one labeling trick. However,

max zero-one is as effective as zero-one labeling if the subgraphs in the mini-batch are

located far away from each other. If the subgraphs are located in different parts of

the base graph, it reduces the interference of labels from multiple subgraphs. Further-

more, if the subgraphs in the mini-batches have significant overlap, GLASS reduces

to a plain GNN. Using this simple but powerful max zero-one labeling enhances the

performance of any graph neural network and also beats the previous state-of-the-art

SubGNN [5] both in terms of accuracy and speed. Although previous works using

zero-one and other labeling tricks [97] exist, they focus on learning subgraph rep-

resentations for the downstream task of link prediction [47, 94]. As such, a direct

application of labeling tricks to subgraph classification did not exist before the intro-

duction of GLASS. While max zero-one labeling trick removes the need for subgraph

extractions, the labeling is dependent on the number of subgraphs in each mini-batch

and the graph needs to be relabeled whenever a mini-batch is created.

The architecture of GLASS is summarized in Figure 2.6. The task is to learn a

representation for a subgraph (shaded in yellow) in the original graph (see Figure

2.6a). GLASS labels the nodes within the subgraph with the label 1 (indicated

by blue nodes in Figure 2.6b) and all other nodes with the label 0. The labeled

graph then undergoes message passing followed by pooling of subgraph nodes using

a permutation invariant function (i.e., pool) (as seen in Figure 2.6c) to obtain the

subgraph representation qs. The final subgraph representation is then passed through

a classifier to get the class probabilities.

GLASS follows a Network in Network architecture [69] for message passing. The

21

(a) Original Graph. (b) Node Labeling.

pool qs=

(c) Message Passing followed by Pooling.

Figure 2.6: GLASS framework.

node labels for each mini-batch is created using a labeling function given by:

Lm = fL(G,Sm) (2.10)

where fL denotes the max zero-one labeling function, G denotes the original graph,

Sm denotes the set of subgraphs in the mini-batch m and Lm denotes the final node

labels of the mini-batch m. GLASS uses the labels Lm during the message passing

as shown in Equation 2.11 to learn the node representations for nodes with labels 0

and 1 in the mini-batch using separate layers.

Zm = fT (G,X, Lm) (2.11)

22

where fT is a transformation function with message passing layers and Zm is the

learnt representation of all nodes in the mini-batch m. The outputs of these layers

are then mixed to obtain the final node embeddings. The usage of separate layers

enable the model to learn different parameters for nodes with different labels without

the need to explicitly augment the labels to the node features. Furthermore, such

an approach using two separate functions and mixing works better in preventing

the smoothing of labels in the graph. Additionally, GLASS uses normalization layers

such as GraphNorm [12] for generalization and faster convergence. The final subgraph

representation qs for S ∈ Sm is given by:

qs = pool(Zm, S). (2.12)

2.6 Data Augmentation in Graphs

Data augmentation increases the number of labeled samples in the training data by

creating multiple copies of the existing samples/data. Data augmentation is particu-

larly helpful when there is only limited data available to train a model. Data augmen-

tation techniques can also increase the generalizability of the model and avoid over-

fitting by allowing the model to learn more data points. Data augmentation in graph

data [98] is achieved by using techniques such as node dropping and edge perturba-

tion. Similar techniques can be used to create augmented subgraphs. GraphCL [90]

analyses the impact of different data augmentation techniques in various domains.

GAUG [99] proposes new data augmentation technique of adding missing edges and

removing noisy edges from the graph for better performance on node classification.

Other works [101] focus on node and edge-level data augmentation strategies that

adapt to the underlying graph structure. While data augmentation can increase the

23

number of training instances for more effective training, finding a suitable data aug-

mentation approach can be challenging and requires careful analysis of the underlying

dataset.

2.7 Graph Contrastive Learning

Graph Contrastive Learning is a self-supervised learning technique that jointly learns

on multiple data points. Graph contrastive learning (GCL) uses specific loss func-

tions that allow similar samples to be closer in the representation space and dis-

similar samples to be far away in the representation space. GCL often uses data

augmentation techniques to create positive pairs for the contrastive learning process.

GraphCL [90], GAUG [99], JOAO [89], AD-GCL [71], InfoGCL [81] are recent graph

contrastive learning frameworks that uses augmented samples to create positive and

negative pairs for contrastive learning. Each of the contrastive learning method dif-

fers in the underlying data augmentation strategy used and the contrastive loss term

formulation.

24

Chapter 3

Related Work

In this chapter, we discuss related work relevant to our line of research. We first review

recent work on GNNs that have been successful in other downstream tasks, and then

discuss prominent works in subgraph classification. We then discuss scalability of

SGRLs followed by scalability through various sampling techniques. In each of the

section, we provide explanation as to how each of these works are used in our model.

3.1 Shallow Embedding Methods

The early work in graph representation learning was shallow encoders such as Deep-

Walk [60] and node2vec [29]. DeepWalk uses random walks to understand the neigh-

borhood around each node and encodes the sequence of random walks as node repre-

sentations. An extension of Deepwalk, node2vec [29] introduced two hyperparameters

to control the trade-off between breadth-first and depth-first exploration for random

walks. The two hyperparameters offers flexibility to the model in learning each node’s

neighborhood thereby allowing the model to learn more expressive representations.

However, as shallow embedding approaches focus on the relative positioning of the

25

nodes, they do not use any node features (e.g., user characteristics in a social net-

work).

Relation to This Thesis. Our proposed SSNP can use shallow embedding methods

such as DeepWalk and node2vec to create node embeddings used in the pooling

function. Furthermore, the hyperparameters such as number of random walks and

random walk length used to create random-walk induced subgraph neighborhoods can

be considered similar to node2vec parameters, p and q that offers trade-off between

local and global structure.

3.2 Message Passing Graph Neural Networks

Due to the inapplicability of shallow embedding methods in inductive settings and

their negligence of nodal features, message-passing graph neural networks (MPGNNs)

[10,22] were introduced and popularized. GCN [42], one of the most popular MPGNN

models, iteratively updates nodal representations by aggregating messages (through

summation) from its neighbors. However, GCN suffers from the exploding neigh-

borhood problem with a high number of node feature updates. Moreover, GCN

is inherently transductive. To overcome this, GraphSAGE [31] used a neighborhood

sampling method during message passing that allowed for the model to be inductive as

well as scalable. Furthermore, GraphSAGE allows for different aggregation functions

for its neighbors such as mean and LSTM. Additionally, the updated node represen-

tation is a concatenation of the node and its neighborhood representation. GAT [73]

is another MPGNN that improves the message passing scheme by computing differ-

ent weights or attention for node feature aggregation in a neighborhood. GIN [82]

enhances the expressiveness of graph neural networks by applying a multi-layer per-

ceptron to the nodes after message passing. JK-net [83] enhances the representation

26

power of GNNs by concatenating the intermediate layer representations with the final

output representation.

Recently, Graph Neural Networks that uses the concept of anchor distances [47,

57,88] have been proposed to make the underlying model position-aware. The use of

anchor distances helps in understanding how the nodes are positioned with respect

to each other and their structure in the base graph. P-GNN [88] randomly selects

anchor node sets from the base graph and uses distances from each node to the anchor

sets for weighted aggregation of the messages. DLGNN [47] uses a GNN architecture

to get the representation of a pair of nodes through concatenation of their individual

representations along with a distance information vector that contains distances to

sampled anchor nodes from the graph.

Graph InfoClust (GIC) [54] improves the quality of node representations created

by a graph neural network using mutual information maximization of the node rep-

resentation and graph-level as well as cluster-level summaries. This allows the node

representations to be similar with nodes that belong to the same cluster and thereby

getting better representations. N-GCN [1] uses a network of GCN modules where

each module uses a different power of the adjacency matrix, thereby learning differ-

ent statistics from the varying graph scales. MixHop [2] extends N-GCN by allowing

for neighborhood mixing at each layer and learning differences in features with dif-

ferent graph scales.

Relation to This Thesis. Our model can use any of the MPGNNs as a transfor-

mation layer to generate the node embeddings used for generating the subgraph and

its neighborhood embeddings. By using SSNP , the expressive power of the subgraph

representations created by the underlying MPGNN can be improved.

27

3.3 Subgraph Representation Learning

Despite their success on the node and graph classification tasks, MPGNNs fail to

uniquely capture pairwise nodal interactions [13, 74]. To circumvent this, SEAL [94]

converts link prediction to a graph classification problem (see Figure 3.1) by extract-

ing enclosing subgraphs around each pair of target nodes, which are then used to

predict the existence/absence of the link. Using enclosing subgraphs in SEAL allows

the model to learn/approximate various heuristics in the network. To understand

the structure of the enclosing subgraph, SEAL injects distance information as nodal

features of the subgraph nodes using double-radius node labeling (based on distances

of nodes in a subgraph to the target nodes). Labeling tricks (e.g., double-radius)

are shown to allow the underlying model to learn the dependency between the tar-

get nodes in their neighborhood subgraphs [97]. Subgraph representation learning

approaches (SGRLs), by using the enclosing subgraphs around the target pair and

labeling tricks, have enhanced the expressive power of MPGNNs for link predic-

tion [11,48,58,94]. Such methods works at a subgraph-level (i.e., operates on groups

of nodes) rather than at a node-level as seen in plain GNNs. DE-GNN is an ex-

tension of SEAL [94] and uses Distance Encoding (DE) as additional node features

in the learning paradigm. Distance Encoding helps GNN to understand the overall

structure of the graph as well as the position of nodes. DE-GNN can be applied

to a variety of tasks such as node classification, link prediction and triangle predic-

tion. Shortest path distance and landing probabilities are used as distance encoding

methods. mLink [11] extends SEAL [94] by transforming each enclosing subgraph to

multiple scales and using each of this subgraph for link prediction. WalkPool [58]

uses walk profiles as additional information for each node in the enclosing subgraph.

The random-walk profiles capture the reachability of different nodes in the subgraph

28

and allow for encoding of higher order structural properties. The success of SGRLS

even has extended to other downstream tasks. For example, shaDow-GNN [92] ex-

tract K-hop subgraphs around each node and operate on them for node classification.

Similarly, NGNN [96] aggregates the node features in the K-hop rooted subgraphs

around each node to increase the expressiveness of representations for graph clas-

sification. Recently, I2-GNNs [37] extended NGNN by using both labeling tricks

and subgraph-level information to improve graph classification and cycle counting in

graphs. I2-GNNs does this by labeling the root node and one of its neighbors in theK-

hop subgraph before message passing, thereby increasing the nodal representational

power of MPGNNs.

?

Figure 3.1: An example of SGRL framework SEAL. An enclosing subgraph is ex-
tracted for each pair of nodes, thereby converting the problem to graph classification
from link prediction.

Relation to This Thesis SSNP builds upon the idea that enclosing subgraphs

around a pair of nodes can provide more information and result in better representa-

tions. By including the subgraph neighborhood information at the pooling layer, we

can increase the expressiveness of the underlying model without being computation-

ally expensive.

29

3.4 Subgraph Classification

Subgraph classification [5, 75] is an emerging problem, which extends subgraph rep-

resentation learning. SubGNN [5] samples anchor patches from the base graph and

propagates messages between anchors to the subgraph in multiple channels to learn

the internal and external topologies of subgraphs. The anchor patches are sampled

to encode properties such as neighborhood, position, and structure of a subgraph

in the base graph. While SubGNN learns the different topological properties of the

subgraphs, sampling of channel-specific anchor patches followed by propagation is

computationally expensive. The state-of-the-art GLASS [75] uses the zero-one label-

ing trick [97] to differentiate between the internal and external nodes of a subgraph

and thereby encode various topological properties of the subgraph. GLASS further

modifies zero-one labeling to max zero-one labeling to enable mini-batch training.

Sub2Vec [3], as a subgraph embedding model, is deployed for community detection

and graph classification; however, it can be adapted for the subgraph classification

task. Sub2Vec samples random walks from a node within each subgraph to learn its

structure and neighborhood. This information is then fed into Paragraph2Vec [43] to

create the final subgraph embeddings. Some recent work on subgraph classification

includes PADEL [49] and Subgraph-To-Node (S2N) [40]. PADEL uses data augmen-

tation and contrastive learning techniques along with position encodings of nodes

during message passing. The position encodings are obtained using cosine phase po-

sition encoding. These position encodings are then used in the pooling function along

with node features to learn the structure. Subgraph-To-Node (S2N) [40] framework

removes the complexity and overhead associated with extracting different subgraph

properties in SubGNN [5] by using a subgraph-to-node translation. S2N translates

the subgraphs to nodes to coarsen the base graph, and casts the subgraph classifica-

30

tion task to a node classification task. S2N has the advantage of using plain GNNs

to perform subgraph classification compared to SubGNN. Furthermore, the transla-

tion functions used in the framework are also flexible. Other works use a multi-view

augmentation framework [67] that can be beneficial for subgraph tasks. By using the

original subgraph and multiple augmented views, different subgraph representation

vectors can be created for the same original subgraph. Multiple views of the origi-

nal subgraph are created using strategies such as node dropping and edge dropping.

Each view including the original subgraph is then passed to a subgraph specific model

to get their embeddings. The individual embeddings of each view of the subgraphs

are then pooled to get one final subgraph embedding. The authors use GLASS [75]

for the subgraph embedding task and feeds the final subgraph embedding to a MLP

to perform subgraph classification. [63] adds invariant linear layers between GLASS

layers to improve their performance.

Relation to This Thesis. We include majority of these works as our baselines

to measure the performance and scalability of our model. We consider GLASS [75]

as our best baseline in terms of performance. We do not include PADEL [49] and

S2N [40] as our baselines as these methods do not have results on all the datasets

available.

3.5 Scalability of SGRLs

SGRLs are computationally demanding due to the extraction of subgraphs around

target nodes, applying labeling tricks, and running GNNs on each subgraph. To ad-

dress this computational bottleneck, a recent line of research has emerged in scalable

SGRLs. SaGNN [76] enhances the expressiveness of a graph neural network by ag-

gregating node representations in the rooted subgraph around each node in the base

31

graph to make the model subgraph-aware. SaGNN does not use the subgraphs for

message passing but only at the aggregation step. ScaLed [50] extends SEAL by

sparsifying the enclosing subgraphs around the target nodes (see Figure 3.2) to re-

duce the computational overhead associated with large subgraph sizes. The random-

walk-induced subgraphs approximate the enclosing subgraphs without substantial

performance compromises. Two hyperparameters are used to control the number and

length of random walks to create the induced subgraph. By setting the random-walk

hyperparameters to an appropriate value allows for comparable performance with

substantial computational gains. SUREL [85], similar to ScaLed, uses pre-computed

random walks around each pair of nodes to approximate the subgraph, however, does

not use MPGNNs. Furthermore, SUREL does not use random-walk induced sub-

graphs rather only the random walk sequences. Additionally, relative positions of the

nodes that occur in the random walks are recorded using vectors called relative po-

sition encoding (RPE). To provide maximum overlap and reusability between query

nodes in the training set, query nodes are sampled using BFS to create mini-batches.

ELPH/BUDDY [13] uses computationally-light algorithms such as MinHashing [9]

and HyperLogLog [25, 34] to derive subgraph sketches for approximating the neigh-

borhood overlap and unions around target nodes for faster message-passing without

explicit subgraph extractions. S3GRL [51] models speed up the training and in-

ference of SGRL methods by simplifying the underlying GNN message-passing and

aggregation steps. S3GRL does this by removing the non-linearity in-between graph

convolutions, thus allowing precomputation of the subgraph-level message passing,

and consequently faster training and inference. Additionally, S3GRL uses multiple

subgraph operators in conjunction to learn the different properties of the enclosed

subgraphs.

Relation to This Thesis. We use the findings of works such as SaGNN [76],

32

?

Figure 3.2: An example of scalable SGRL framework ScaLed. ScaLed samples the
enclosing subgraphs using multiple random walks (specified by two hyperparameters)
starting from the target pair of nodes.

ScaLed [50] and SUREL [85] to use random-walk induced subgraph neighborhoods

in our poolSSNP. Additionally, our model with SSNP is an alternative to expensive

SGRL based methods while being more expressive than a plain GNN and subgraph-

aware.

3.6 Scalability by Sampling

A number of graph neural network methods cannot be applied to large-scale graphs

due to huge resource requirements (due to neighborhood explosion problem). As

a result, many GNNs were proposed over the years that provide scalability through

various sampling strategies such as node-wise sampling [15,31], graph sampling [19,93]

and layer-wise sampling [14,36,103]. Such sampling techniques (shown in Figure 3.3)

provide scalability through the reduced memory requirements as well as faster training

times.

In node-wise sampling, the nodes in the base graph are sampled. GraphSAGE [31]

33

provides scalability by sampling nodes during the neighborhood aggregation process

allowing for faster training time while being inductive. VR-GCN [15] performs sam-

pling of neighborhood nodes with the goal of reducing variance during sampling.

VR-GCN uses the historical node embeddings to compute the control variate and

decide the nodes to be sampled.

To further alleviate the neighborhood explosion problem, layer-wise sampling is

used. In layer-wise sampling, the nodes are sampled for each convolution layer in the

graph neural network. FastGCN [14] is an extension of the traditional graph convo-

lution network where layer wise sampling of the vertices in the graph is performed to

allow for inductive learning and reduced computation complexity. While GraphSAGE

performs neighbor sampling at each layer, FastGCN performs layer independent sam-

pling of the nodes itself, which reduces the total complexity of the model considerably.

An importance sampling is used to decide the training nodes. However, since it is

a layer independent sampling there exists the issue of having disconnected nodes in

the training graph. LADIES [103] overcomes the problem of disconnected nodes be-

tween layers by proposing a layer-dependent node sampling technique. ASGCN [36]

is another layer-wise sampling technique where the node sampling in each layer is

dependent on the next layers.

In graph sampling, subgraphs from the base graph are sampled for model learning

and inference. Cluster-GCN [19] proposes an efficient training algorithm that can

work with deeper GCNs without higher memory requirements. Since each node is

most influenced by its neighbors within the same cluster, it is important to preserve

the links within a cluster more than the links between different clusters. Cluster-

GCN uses this idea to create mini batches. Ensuring that all nodes in a cluster

belong to the same mini-batch improves the memory consumption. Different clusters

are used in each mini-batch to ensure a better learning for the model. In addition

34

to this, the clusters in mini-batches vary in each epoch to allow for generalization.

GraphSAINT [93] is another graph-wise sampling technique that samples subgraphs

from the original graph for training. GraphSAINT proposes three different subgraph

sampling strategies: node, edge and random walk sampling.

(a) Node-wise sampling. (b) Graph-wise sampling.

Layer 1
Layer 2

(c) Layer-wise sampling.

Figure 3.3: Different sampling techniques used in Graph Neural Networks for scala-
bility. The sampled node set is shown in blue.

Relation to This Thesis. Our random-walk induced subgraph can be considered a

node sampling technique that allows for faster training and filters noisy neighborhood

nodes. In addition to this, SSNP can work with graph neural networks that use any

of the above mentioned sampling techniques for further scalability.

35

Chapter 4

Approach

In this chapter, we discuss the required preliminaries followed by the problem state-

ment for subgraph classification. We then introduce Stochastic Subgraph Neighbor-

hood Pooling and its various components such as transformation layers, subgraph

neighborhood pooling and subgraph neighborhood sampling strategies.

4.1 Preliminaries

Let G = (V,E) represent a simple, undirected graph where V = {1, . . . , n} is the set

of nodes (e.g., users, scientists, articles, proteins, etc.), and E ⊆ V ×V represents the

edge set (e.g., friendships, collaborations, citations, interactions, etc.). We sometimes

represent G by the adjacency matrix A ∈ Rn×n where aij = 1 if an edge exists

between nodes i and j, and 0 otherwise. We also assume each node i ∈ V possesses

a d-dimensional feature xi ∈ Rd (e.g., user information, research profile, keywords,

protein characteristics). We sometimes stack all nodal features, row-by-row in the

feature matrix X whose i-th row contains xi. We consider a subgraph S = (VS, ES)

in base graph G where VS ⊆ V and ES ⊆ (VS × VS) ∩ E.

36

4.2 Problem Statement

The goal is to learn a mapping function f(G,X, S) which takes the base graph G,

its node feature matrix X, and a subgraph S as an input, and outputs the subgraph

class label y ∈ {1, . . . , C}, where C is the number of classes. The class labels of the

subgraph could represent the toxic friendship communities, cellular functions (e.g.,

metabolism, development, etc), or metabolic/neurological disorders.

4.3 Stochastic Subgraph Neighborhood Pooling

(SSNP)

We first discuss the various components of our proposed solution for subgraph classi-

fication. We then detail an important part of this solution, our proposed Stochastic

Subgraph Neighborhood Pooling (SSNP).

Our proposed solution for subgraph classification is depicted in Figure 4.1. The

initial node features X are transformed to learned embeddings Z through the use of

a transformation function fT :

Z = fT (G,X) (4.1)

The transformation function fT can be multi-layers of graph convolutions (with mes-

sage passing) for feature smoothing or a simple multi-layer perceptron (without any

explicit message passing) for dimensionality reduction. We have considered three dif-

ferent types of transformation layers: Nested Network convolution [69], GCN convolu-

tion [42], and Multi-Layer Perceptron (MLP). Nested Network convolution and GCN

convolution are message-passing layers whereas MLP is a graph-agnostic transforma-

tion method (see more details in Section 4.3.1). After obtaining node embeddings Z,

our proposed poolSSNP function is used to aggregate the target subgraph’s internal

37

a

b

c

d

e

f

g

h

j

i

a

b

c

d

e

f

g

h

j

i

ClassProbabilities

M L P

a

b

c

d

e

f

g

h

j

p
oo
l s

p
oo
l n

S
to
ch
a
st
ic

S
u
b
g
ra
p
h
N
ei
g
h
b
o
rh
o
o
d
P
o
o
li
n
g

q
s

Transform

i

F
ig
u
re

4.
1:

A
rc
h
it
ec
tu
re

of
ou

r
m
o
d
el
.
S
u
b
gr
ap

h
n
o
d
es

ar
e
sh
ad

ed
in

p
u
rp
le
.
T
h
e
in
it
ia
l
n
o
d
e
fe
at
u
re
s
ar
e
tr
an

sf
or
m
ed

u
si
n
g
tr
an

sf
or
m
at
io
n
la
ye
rs

su
ch

as
N
es
te
d
N
et
w
or
k
co
n
vo
lu
ti
on

s,
G
C
N

co
n
vo
lu
ti
on

s,
or

M
L
P
.
T
h
e
st
o
ch
as
ti
c
su
b
gr
ap

h
n
ei
gh

b
or
h
o
o
d
p
o
ol
in
g
p
o
ol

S
S
N
P
is

ap
p
li
ed

in
m
u
lt
ip
le

st
ep
s.

T
h
e
su
b
gr
ap

h
n
ei
gh

b
or
h
o
o
d
n
o
d
es

(s
h
ad

ed
in

b
ro
w
n
)
ar
e

sa
m
p
le
d
b
y
ro
ot
ed

ra
n
d
om

w
al
k
s
(r
ed

d
as
h
ed

ar
ro
w
s)
.
T
h
e
su
b
gr
ap

h
an

d
it
s
sa
m
p
le
d
n
ei
gh

b
or
h
o
o
d
ar
e
se
p
ar
at
el
y
p
o
ol
ed

b
y
po
ol

s
an

d
po
ol

n
,
w
h
ic
h
ar
e
si
m
p
le
gr
ap

h
p
o
ol
in
g
op

er
at
or
s
(e
.g
.,
m
ea
n
,
su
m
,
et
c.
).

T
h
e
p
o
ol
in
g
ou

tp
u
ts

ar
e
co
n
ca
te
n
at
ed

to
fo
rm

th
e
su
b
gr
ap

h
re
p
re
se
n
ta
ti
on

q
s
,
w
h
ic
h
is
p
as
se
d
to

an
M
L
P
fo
r
ge
n
er
at
in
g
cl
as
s
p
ro
b
ab

il
it
ie
s.

38

and external topological properties into a latent subgraph representation:

qs = poolSSNP(Z, G, S) (4.2)

This subgraph representation qs is fed to an MLP to output class probabilities for

the subgraph classification task. The MLP, in addition to giving the class probabil-

ities, learns how to mix the pooled subgraph and its neighborhood representations.

Our proposed solution does not require computationally-expensive labeling tricks (as

opposed to GLASS [75]), or artificially-crafted message passing channels (as opposed

to SubGNN [5]). This computational reduction is achieved by applying transforma-

tion on the base graph (rather than on subgraphs) and our proposed SSNP function.

Detailed information on transformation layers and our proposed poolSSNP function

follows.

4.3.1 Transformation Layer

In addition to deploying MLP as a transformation function, we have considered two

graph convolution layers. We discuss their formulations in this section.

Nested Network Convolution. Our Nested Network (NN) convolution follows a

Network in Network architecture [69] as a way of deepening a GNN model by adding

multiple non-linear layers within a convolution layer to increase model capacity while

preventing overfitting and oversmoothing. The first step of the NN convolution layer

is to transform the current layer’s node embeddings h
(l−1)
u using one linear layer with

an activation function σ:

ĥ(1)
u = σ

(
W

(l)
1 h(l−1)

u

)
(4.3)

39

Following this, we perform simple message passing with summation aggregation fol-

lowed by graph normalization and dropout:

ĥ(2)
u = fGD

 ∑
v∈N+(u)

ĥ(1)
v

 (4.4)

where N+(u) contains the neighbors of u and the node u itself and fGD is a sequential

function of graph normalization followed by dropout. The recently updated represen-

tation ĥ
(2)
u is then concatenated with the original layer’s input representation h

(l−1)
u

(similar to residual connections [33, 84]) to be linearly transformed to the output

representation of the layer:

h(l)
u = W

(l)
2

(
ĥ(2)
u ⊕ h(l−1)

u

)
(4.5)

Equations 4.3, 4.4 and 4.5 constitute a single layer of convolution in our NN model

with two learnable weight matrices W
(l)
1 and W

(l)
2 .

GCN Convolution: Our implemented GCN convolution layers exactly follows GCN

[42]. Neighborhood features are aggregated through message-passing by

h(l)
u = σ

W(l)
∑

v∈N+(u)

h(l−1)
v

 , (4.6)

where W(l) is a learnable weight matrix, and N+(u) contains the neighbors of u and

itself.

40

4.3.2 Subgraph Neighborhood Pooling and Variants

Our proposed pooling is built based on the idea that the representations of subgraphs

and their neighborhoods are both important for capturing the internal and external

topology of subgraphs. We first define the h-hop subgraph neighborhood as:

Definition 1 (h-hop Subgraph Neighborhood) Given the base graph G = (V,E)

and its subgraph S = (VS, ES), the h-hop subgraph neighborhood N
(h)
S is the induced

subgraph created from the node set {j ∈ VN |mini∈Sd(i, j) ≤ h}, where d(i, j) is the

geodesic distance between node i and j, and VN = V \ VS are nodes of G that do not

belong to S.

a

b

c

d

e

f

g

h

j

i

Subgraph

2-hop

1-hop

Figure 4.2: h-hop subgraph neighborhood.

In simple words, the h-hop subgraph neighborhood is the subgraph of G whose

nodes do not belong to S and are within a distance of h to at least one of the nodes

of S. An example of 1-hop and 2-hop subgraph neighborhood is shown in Figure 4.2.

Our h-hop subgraph neighborhood can be viewed as an extension (or generalization)

of the enclosing subgraphs for pair of nodes [94] but with two distinctions: (i) the

h-hop neighborhood is defined for any subgraph size (rather than just a pair of nodes)

41

and (ii) the subgraph S is excluded from its neighborhood subgraph. Given this h-hop

subgraph neighborhood definition, we first consider a simple subgraph neighborhood

pooling :

poolSNP(Z, G, S, h) = pools(ZS, S)⊕ pooln

(
ZN , N

(h)
S

)
, (4.7)

where ZS and ZN denote the matrix node embeddings of the subgraph S and its

neighborhood N
(h)
S . Here, ⊕ is the concatenation operator, and pools and pooln can

be any order invariant graph pooling function (e.g., sum, mean, max, size, or Sort-

Pooling [95]). The main idea here is simple: treat the subgraph and its neighborhood

as two separate graphs, then pool their information, and then concatenate their rep-

resentations to capture both the internal and external topology of the subgraph.

Current subgraph representation learning models (e.g., GLASS, SubGNN) only use

pools, while ignoring the rich information of the neighborhood subgraph.

However, consuming the complete subgraph neighborhoods is computationally

problematic as the subgraph neighborhoods can become extremely large and dense

with many uninformative and noisy nodes, thus hindering the model’s learning ca-

pability and slowing down the running time. To overcome this limitation, we define

h-hop sparsified subgraph neighborhood:

Definition 2 (h-hop Sparsified Subgraph Neighborhood) Given the base graph

G = (V,E) and subgraph S = (VS, ES), we define the h-hop sparsified subgraph neigh-

borhood N̂
(h,k)
S , as the subgraph induced from the nodes in V̂

(h,k)
S ∈ {W (h,k)

S \ VS},

where W
(h,k)
S is the set of nodes visited by k many h-length random-walk(s) from the

nodes in VS.

Compared to the exact subgraph neighborhood which can get extremely large, the

size of the sparse subgraph neighborhoods is bounded by hk, which is the product of

the length and number of random walks. The rooted random walks allow sampling

42

“important” external nodes to a subgraph (similar to rooted PageRank [8]), which en-

capsulates information on the border structure and neighborhood. The randomness in

the neighborhood subgraph also adds some regularization effect to the training of the

model (similar to what was observed in ScaLed [50]). Our h-hop sparsified subgraph

neighborhood has a resemblance with random-walk sampled enclosing subgraphs [50],

but differs in two ways: the neighborhood does not include the original subgraph,

and the neighborhood is defined over arbitrary-sized subgraphs (rather than pair of

nodes). Given the computational and learning advantages of specified neighborhood

subgraphs, we introduce stochastic subgraph neighborhood pooling (SSNP) by a slight

modification of Eq. 4.7:

poolSSNP(Z, G, S, h, k) = pools(ZS, S)⊕ pooln

(
ZN , N̂

(h,k)
S

)
, (4.8)

where ZS and ZN denote the matrix node embeddings of the subgraph S and its

sparsified neighborhood N̂
(h,k)
S by k-many h-length random walks.

4.4 Expressiveness of Subgraph Neighborhood Pool-

ing

Weisfeiler-Lehman (WL) algorithm [78] has been used for graph isomorphism testing

(i.e., to test whether two graphs are isomorphic) and thereby, evaluate the expressive

power of various models. In the WL algorithm, each node in the graph is given an

initial color. In each iteration of coloring, a node and its neighboring nodes’ colors are

aggregated to form a multi-set. This multi-set is updated to a new color using a hash

function. After multiple rounds of coloring, if two graphs have different node colors,

then the two graphs are non-isomorphic. Graph Neural Networks such as GCN [42]

43

and GraphSAGE [31] use a similar neighborhood aggregation mechanism to obtain

node embeddings (which is equivalent to node colors) and therefore, are as powerful

as 1-WL algorithms (that aggregate neighborhood node colors within 1-hop of each

node). An example of 1-WL coloring in GCN is shown in Figure 4.3.

(a) 1-WL color initialization and neighborhood multi-sets.

(b) Node colors after 1 iteration

Figure 4.3: 1-WL coloring in a plain-GNN such as GCN.

A plain GNN (which only pools subgraph embeddings without its neighbors) is

also as powerful as 1-WL algorithm. However, our model with poolSSNP is more

expressive than a plain GNN in the absence of distinguishing node features. Figure

4.4 shows an example of two subgraphs that are distinguishable under our model, but

not under the plain GNN. After one iteration of 1-WL coloring/MPGNN followed by

subgraph pooling (shown by pink shaded area) in Figure 4.4a, S1 and S2 has the same

representation (the nodes involved in the pooling step are in dotted boxes). However,

after one iteration of 1-WL followed by subgraph neighborhood pooling including both

subgraph pooling and neighborhood pooling shown by pink and blue shaded area,

respectively in Figure 4.4b, S1 and S2 have different representations. As shown in

44

Figure 4.4c, after two 1-WL iterations followed by subgraph pooling, S1 and S2 still are

not distinguishable. Similar to Figure 4.4b, in Figure 4.4d, after two 1-WL iterations

followed by subgraph neighborhood pooling, S1 and S2 have different representations.

This additional expressiveness is just an outcome of simple low-cost neighborhood

pooling. Our model with SSNP as a result is more powerful in distinguishing non-

isomorphic subgraphs with unique neighborhoods in comparison to plain GNNs. In

the worst case (i.e., in the absence of unique subgraph neighborhoods), our model

ignores the subgraph neighborhood information and degrades to a plain GNN and is

thereby at least as powerful as 1-WL algorithm.

45

S1 S2

Pooled nodes

(a) Subgraph Pooling, Iter. 1

neighborhood

S1 S2

Pooled nodes

S1 neighborhoodS2

(b) Subgraph Neighborhood Pooling, Iter. 1

S1 S2

(c) Subgraph Pooling, Iter. 2

neighborhood

S1 S2

S1 neighborhoodS2

(d) Subgraph Neighborhood Pooling, Iter. 2

Figure 4.4: Comparison of subgraph pooling vs subgraph neighborhood pooling for
MPGNNs on distinguishing two non-isomorphic subgraphs S1 and S2 without any
distinguishing node features.

46

4.4.1 Subgraph Neighborhood Sampling Strategies

Random walks are effective in approximating and sparsifying subgraphs around a

node [50,85]. However, the sampling of the sparsified subgraph neighborhood in each

training epoch might introduce undesirable instability and stochasticity in gradient

computations and optimization procedures. To account for this instability as well as

manage the sampling overhead, we introduce and distinguish three different stochastic

subgraph neighborhood sampling strategies.

a

b

c

d

e

f

g

h

j

i

S1

Training Epochs

Stochastic Sampling

a

b

c

d

e

f

g

h

j

i

a

b

c

d

e

f

g

h

j

i

a

b

c

d

e

f

g

h

j

i

b

c

g

h

j

i

c

f

g

h

i

b

c

f

g

h

j

V
ie
w

1
V
ie
w

2
V
ie
w

3

Figure 4.5: An example of POV when nv=3 and nve=2.

Online Stochastic Views (OV): The h-hop sparsified subgraph neighborhood is

sampled in each epoch. This stochasticity over training intends to add implicit regu-

larization to the model but might have undesirable outcomes of gradient instability.

Also, the epoch-level sampling adds computational overhead to the training. This

computational overhead is due to sampling potentially redundant sparsified subgraph

neighborhoods as many times as the total number of epochs.

Pre-processed Stochastic Views (PV): To overcome the additional overhead cre-

47

ated by sampling during training, we propose pre-processed stochastic views (PV) for

which a fixed number nv of sparsified subgraph neighborhood is sampled for each

subgraph before training (i.e., during preprocessing). These sampled neighborhood

subgraphs can be viewed as data augmentation that provides nv views of the sub-

graph neighborhood. Similar to other data augmentation strategies, PV improves

the generalization of our model and makes it more robust to noise and overfitting.1.

However, the dataset size and training time grows linearly with the number of views

nv.

Pre-processed Online Stochastic Views (POV): To reduce the training time on

the augmented datasets, we propose pre-processed online stochastic views (POV) that

leverages both the pre-processed and online subgraph neighborhood sampling method.

In the pre-processing stage similar to PV, POV creates nv multiple sparsified subgraph

neighborhoods (i.e., multiple views) for each subgraph. But, during each epoch of

training, for each subgraph only nve of the precomputed views are randomly sampled

for training. POV allows data augmentation with multiple views while keeping the

number of training instances per epoch independent of the number of views nv. To

do so, we have introduced the number of views per epoch nve.
2 Figure 4.5 shows an

example of POV when there is a total of 3 views for each neighborhood and each

epoch uses 2 views for training.

1The impact of multi-view augmentations on subgraphs has also been studied recently [49, 67].
However, our augmentation techniques create multiple views of the subgraph neighborhoods rather
than subgraphs.

2Unlike contrastive learning methods, our model does not jointly learn from the different subgraph
neighborhood views. As a result, our model is much faster than contrastive learning models.

48

Chapter 5

Experiments

We compare our model with SSNP and its variants against different subgraph clas-

sification baselines on four real-world datasets to evaluate our model in terms of

performance and scalability. Our experiments are created to answer the following

questions: (Q1) How does our SSNP model compare in terms of F1-score with re-

spect to the baselines ? (Q2) How does our SSNP model compare to GLASS in terms

of running time ? (Q3) How does the different hyperparameters in SSNP such as h

(length of random walk), nv (number of views) and nve (number of views per epoch)

impact the model ? (Q4) How does the different variants of stochastic sampling

strategies affect our model ?

5.1 Datasets

We perform experiments on four publicly-available real-world datasets that have been

the main subject of study in other subgraph classification works [5, 75]. The dataset

statistics are available in Table 5.1. In the ppi-bp dataset, the goal is to predict

the cellular function of a group of genes, whereas, in hpo-metab we wish to predict

49

ppi-bp hpo-metab hpo-neuro em-user

Number of nodes 17080 14587 14587 57333
Number of edges 316951 3238174 3238174 4573417
Number of subgraphs 1591 2400 4000 324
Number of classes 6 6 10 2
Multi-label No No Yes No
Avg. number of nodes in subgraphs 10.2 14.4 14.8 155.4
Avg. density of subgraphs 0.216 0.757 0.767 0.010

Table 5.1: Statistics of all real-world datasets.

the metabolic disease corresponding to a group of phenotypes. The classification

task in hpo-neuro is to predict the neurological disease corresponding to a group of

phenotypes. In em-user, we wish to predict the gender of the user given the workout

history subgraph. We follow the same dataset split as GLASS [75]: 80/10/10 for

train, validation, and test splits.

5.2 Evaluation Metric

We use F1-score as the measure of efficacy of all models, where F1-score is measured

as:

F1-score =
2× (precision× recall)

(precision+ recall)
. (5.1)

Precision is defined as

Precision =
TP

TP + FP
. (5.2)

Recall is defined as

Recall =
TP

TP + FN
. (5.3)

Figure 5.1 shows the confusion matrix of predicted vs true labels. True Positive

(TP) indicates the number of samples correctly predicted as positive. False Positive

(FP) indicates the number of samples falsely predicted as positive. False Negative

50

TP FP

FN TNP
re
d
ic
te
d
L
ab

el

True Label
Positive Negative

P
os
it
iv
e

N
eg
at
iv
e

Figure 5.1: Confusion Matrix.

(FN) indicates the number of samples falsely predicted as negative.

5.3 Baselines

We consider the GLASS model [75] as our state-of-the-art baseline. Other baselines

include SubGNN [5], graph-agnostic MLP, and GBDT (gradient-boosted decision

trees), GNN-plain, Sub2Vec [3], and GNN-seg (learning on segregated subgraphs) [75].

All the baseline results, except for GLASS, are taken from [75]. The GLASS model

is rerun by us to capture the timing values and verify that our setup is identical to

the setup of reported results.1

5.4 Experimental Setup

For GLASS, we use the best-performing reported hyperparameters to reproduce their

results. GLASS uses the Network in Network Architecture [69] to obtain the sub-

graph embeddings. For our model, we set the transformation layers/functions to

either MLP, Nested Network (NN) [69], or Graph Convolution Network (GCN) [42],

and the corresponding models are called SSNP -MLP, SSNP -NN and SSNP -GCN,

1We rerun GLASS using the code available at https://github.com/Xi-yuanWang/GLASS

51

https://github.com/Xi-yuanWang/GLASS

respectively. We use the ELU activation [20] for all transformation layers. We always

set the number of walks per node k = 1, and let the pooling method for the subgraph

and neighborhood be the same (i.e., pools = pooln). Unless noted otherwise, we

use the POV for creating subgraph neighborhood views, where we set the number of

views nv = 20 and the number of views per epoch nve = 5. The other hyperparam-

eters are searched over validation datasets to maximize micro-F1 scores. The search

spaces are pools ∈ {sum, size}, length of walks h ∈ {1, 5}, and the number of trans-

formation layers ∈ {1, 2, 3}. Similar to GLASS, we set the learning rate for ppi-bp to

0.0005 and hpo-neuro to 0.002 whereas, for both hpo-metab and em-user, we set it to

0.001. Our model, similar to GLASS and SubGNN, uses pre-trained 64-dimensional

nodal features as the initial features for all datasets. We use Adam optimizer [41]

paired with ReduceLROnPlateau learning rate scheduler, which reduces the learning

rate on plateauing validation dataset loss values. We set dropout [70] to 0.5 for all

models. We use a single-layer MLP to output the class probabilities and always use

the cross-entropy loss in our model. Our models with NN and GCN transformation

layers are trained for a maximum of 300 epochs in each run with a warm-up of 50

epochs for ppi-bp, hpo-metab and hpo-neuro and warm-up of 10 epochs for em-user.

We set patience to 50 epochs for hpo-metab and hpo-neuro and 20 for em-user. Our

models with the MLP transformation layer are run for 100 epochs. Our model is

implemented in PyTorch Geometric [24] and PyTorch [59].2 Our results are reported

with an average F1-score over 10 runs with different random seeds.

52

Model ppi-bp hpo-metab hpo-neuro em-user

MLP 0.445±0.003 0.386±0.011 0.404±0.006 0.524±0.019
GBDT 0.446±0.000 0.404±0.000 0.513±0.000 0.694±0.000
GNN-plain 0.613±0.009 0.597±0.012 0.668±0.007 0.847±0.021
Sub2Vec 0.388±0.001 0.472±0.010 0.618±0.003 0.779±0.013
GNN-seg 0.361±0.008 0.542±0.009 0.647±0.001 0.725±0.003
SubGNN 0.599±0.008 0.537±0.008 0.644±0.006 0.816±0.013
GLASS 0.618±0.006 0.598±0.014 0.675±0.007 0.884±0.008

SSNP -MLP 0.591±0.006 0.571±0.006 0.669±0.004 0.853±0.012
SSNP -GCN 0.607±0.005 0.553±0.011 0.667±0.003 0.843±0.014
SSNP -NN 0.636±0.007 0.587±0.010 0.682±0.004 0.888±0.005

Table 5.2: The mean micro-F1 scores (average of 10 runs) with standard error for all
models. The top 3 models are indicated by First, Second, and Third.

5.5 Results: F1 Score and Runtime

To answerQ1, we perform experiments on all baselines and compare our SSNP model

with different transformation layers. To answer Q2, we compare SSNP with GLASS

in terms of pre-processing, training, inference and runtimes.

Table 5.2 shows the mean micro-F1 results for all datasets. On ppi-bp, hpo-

neuro, and em-user, our SSNP -NN model outperforms all others with a gain of 0.018,

0.011, and 0.004, respectively. For hpo-metab, SSNP -NN ranks third with a small

margin of 0.011 compared to GLASS ranked first. This relatively low performance

could be attributed to the fact that subgraphs in hpo-metab are dense and there-

fore, do not need external topological information or the neighborhood information

adds noise to the model. This is also supported by the good results for GNN-seg

on hpo-metab, which only uses target subgraphs for message passing. Moreover,

on dense subgraph datasets such as hpo-metab and hpo-neuro, GNN-plain does not

have considerable boost in their performance in comparison to GNN-seg. Although,

2Our code is available at https://github.com/shweta-jacob/SSNP. We run our experiments on
servers with 50 CPUs, 377GB RAM, and 11GB GPUs.

53

https://github.com/shweta-jacob/SSNP

ppi-bp

Model Preproc. Training Inference Runtime

SSNP -NN 8.94±0.54 0.38±0.02 0.02±0.00 129.35±3.27
SSNP -GCN 8.89±0.71 0.42±0.02 0.03±0.00 142.38±3.85
SSNP -MLP 8.79±0.63 0.06±0.02 0.00±0.00 16.00±0.94
GLASS 3.93±0.10 0.78±0.02 0.05±0.00 207.99±24.76

Speedup 0.44/0.45 1.86/13 1.67/25 1.46/13

hpo-metab

Model Preproc. Training Inference Runtime

SSNP -NN 25.20±0.84 0.73±0.02 0.05±0.001 159.56±18.86
SSNP -GCN 26.13±1.53 0.94±0.03 0.06±0.00 209.20±43.15
SSNP -MLP 24.81±0.75 0.10±0.02 0.00±0.00 35.00±1.72
GLASS 15.99±0.88 2.15±0.03 0.13±0.00 239.48±33.22

Speedup 0.61/0.64 2.29/21.5 2.17/43.33 1.14/6.84

hpo-neuro

Model Preproc. Training Inference Runtime

SSNP -NN 29.67±1.54 1.27±0.03 0.05±0.00 202.28±26.01
SSNP -GCN 28.14±0.81 1.58±0.05 0.06±0.00 344.14±44.14
SSNP -MLP 28.37±1.13 0.21±0.01 0.01±0.00 50.00±1.05
GLASS 16.56±0.84 4.20±0.04 0.25±0.00 511.54±94.40

Speedup 0.56/0.59 2.66/20 4.17/25 1.49/10.23

em-user

Model Preproc. Training Inference Runtime

SSNP -NN 27.93±1.41 3.00±0.04 0.08±0.00 156.81±32.10
SSNP -GCN 27.62±0.91 1.61±0.04 0.08±0.00 108.30±18.62
SSNP -MLP 27.52±1.54 0.16±0.01 0.00±0.00 44.00±1.71
GLASS 25.11±1.61 4.93±0.04 0.56±0.00 212.28±23.51

Speedup 0.90/0.91 1.64/30.81 7/140 1.35/4.82

Table 5.3: Our model vs GLASS: dataset preparation time, training time per epoch,
inference time per epoch in seconds and average runtime (mean over 10 runs). The
min/max speedup is the ratio of time taken by GLASS to the time of the slowest-
/fastest SSNP model (in italics/bold). The runtimes are rounded to two decimal
places; but, the speedups are computed from actual runtimes.

54

SSNP -NN performs better than other baselines on hpo-neuro which has dense sub-

graphs similar to hpo-metab, the task in hpo-neuro (i.e., multi-label classification)

is inherently different from the task in hpo-metab (i.e., multi-class classification).

Moreover, hpo-neuro contains around twice the subgraphs as hpo-metab which could

attribute to the better performance of our model on hpo-neuro. Surprisingly, both

SSNP -NN and SSNP -GCN outperform SubGNN across all the datasets. Even, our

simplest model SSNP -MLP (even without message passing) outperforms SubGNN in

all datasets except for ppi-bp for which it has a comparable result. SSNP -MLP also

appears to be relatively competitive by being ranked third in hpo-neuro and em-user.

All these results indicate that our models with simple transformation layers but the

expressive pooling function of SSNP can easily outperform more complicated and

computationally intensive models.

Our results in Table 5.2 also provide strong evidence in demonstrating how effec-

tive neighborhood pooling (and information) is for subgraph classification. The key

difference between GNN-plain and SSNP -NN is the pooling of neighborhood sub-

graphs in SSNP -NN as both use NN architecture. Similarly, SSNP -MLP surpasses

MLP by a significant margin too.

The average of dataset preparation time, training time per epoch, inference time

per epoch, and total runtime are captured in Table 5.3. Our models for all datasets

require at most twice the preprocessing times of GLASS due to the sampling of

multiple views of the neighborhood subgraphs.3 However, in return, the training and

inference times are 1.5-137× faster depending on the model variations and datasets.

Our best-performing SSNP -NN has a training speedup of 1.5-3.3× (min. for em-user

and max. for hpo-neuro) and an inference speedup of 2.5-7× (min. for ppi-bp and

3One can easily reduce the preparation time by tweaking the total number of views created for
each subgraph.

55

max. for em-user). Notably, our SSNP -MLP is the fastest with maximum training

and inference (resp.) speedups of 30× and 140× (resp.) in em-user. Cross-examining

Tables 5.2 and 5.3, we can observe that SSNP -MLP vs. GLASS has a speedup of

13-140× (for both training and inference) with a small negative gain of 0.006–0.031

in F1-score. Similarly, we see a runtime speedup of 4.8-13× (min. for em-user and

max. for ppi-bp) with SSNP -MLP. These results suggest that our simple models

outperform all baselines or were comparable while being multiple magnitudes faster

than the current state-of-the-art baselines.

5.6 Multi-view Hyperparameter Analyses

To answer Q3, we conduct a sensitivity analysis on the four datasets using the SSNP -

NN model by varying the length of random walk h, total number of views nv and

number of views per epoch nve.

We first study the effect of the number of views nv in the PV variant of our SSNP -

NN model. For this analysis, we fix k = 1 and h ∈ {1, 2, 3, 4, 5} for all datasets, while

changing nv ∈ {1, 3, 5, 10, 15, 20}. As shown in Figure 5.2, the F1 score for all datasets

sharply increases from 1 to 3 for all values of h and then stabilizes. For hpo-metab,

we observe a slight downgrade for a relatively large number of views (e.g., 15 or 20)

when h is between 3 and 5 whereas the F1 score of em-user achieves its highest score

on 20 views with h=5. For hpo-neuro, as the number of views increases from 10 to

15, for all values of h, we observe a decrease in the F1-score. These results suggest

that the number of views should be a few (e.g., nv = 3 or nv = 5), but not so high

(e.g, nv = 20) to perform consistently over all the datasets.

We further our analyses by studying the effect of the number of views per epoch

nve in the POV variant for a fixed number of views nv = 10. For this analysis, we fix

56

k = 1 and h ∈ {1, 2, 3, 4, 5} for all datasets. We change nve ∈ {1, 2, 4, 6, 8, 10} Figures

5.3a, 5.4a, 5.5a and 5.6a shows that the F1 score increases with nve, but it has a

diminishing return pattern. However, an increase in nve directly increases the time

taken for training (see Figure 5.3b, 5.4b, 5.5b, 5.6b) and thereby increases the total

runtime. As it can be seen from Subplot 5.3a, when the number of views is 10 and

h=1, 2, we get the largest F1 score. Moreover, setting h to 2 and 10 gives the best

performance on ppi-bp. However, this combination does not give the best results for

other datasets. In em-user, setting h to 3 and nve to 10 offers the best performance

but incurs additional training overhead (see Figure 5.6b). In hpo-metab and hpo-

neuro, setting h to 1 gives good results and setting h to 5 gives comparable or worse

performance (see Figure 5.4a, 5.5a). Surprisingly, nve = 4 offers almost the same F1

score as what nve = 10 can offer, while requiring considerably less computation time.

We believe this performance is primarily due to accessing large enough augmented

training data and the regularization offered through the stochasticity of sampled views

per epoch. In almost all the datasets, setting h to 1 gives better or comparable results.

Cross-examination of the micro-F1 scores and training times suggest that setting nve

to 2 or 4 with a small h value offers a good F1-score with manageable computational

overhead.

In summary, SSNP with small random walk length and number of views per epoch

can provide comparable or better results while maintaining a light computational load

and allowing for faster training and inference.

57

1 3 5 10 15 20
Number of Views nv

0.45

0.50

0.55

0.60

0.65

M
icr

o-
F1

 sc
or

e

h=1
h=2
h=3

h=4
h=5

(a) ppi-bp

1 3 5 10 15 20
Number of Views nv

0.40

0.45

0.50

0.55

M
icr

o-
F1

 sc
or

e

h=1
h=2
h=3

h=4
h=5

(b) hpo-metab

1 3 5 10 15 20
Number of Views nv

0.62

0.64

0.66

0.68

M
icr

o-
F1

 sc
or

e

h=1
h=2
h=3

h=4
h=5

(c) hpo-neuro

1 3 5 10 15 20
Number of Views nv

0.775

0.800

0.825

0.850

0.875

0.900

M
icr

o-
F1

 sc
or

e
h=1
h=2
h=3

h=4
h=5

(d) em-user

Figure 5.2: The effect of number of views in our Preprocessed View variant of SSNP -
NN.

1 2 4 6 8 10
Number of Views per Epoch nve

0.50

0.55

0.60

0.65

M
icr

o-
F1

 sc
or

e

h=1
h=2
h=3

h=4
h=5

(a)

1 2 4 6 8 10
Number of Views per Epoch nve

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 T
im

e
(s

)

h=1
h=2
h=3

h=4
h=5

(b)

Figure 5.3: The effect of number of views per epoch on our Preprocessed Online View
variant of SSNP -NN on ppi-bp.

58

1 2 4 6 8 10
Number of Views per Epoch nve

0.52

0.54

0.56

0.58

M
icr

o-
F1

 sc
or

e

h=1
h=2
h=3

h=4
h=5

(a)

1 2 4 6 8 10
Number of Views per Epoch nve

0.25

0.50

0.75

1.00

1.25

1.50

Tr
ai

ni
ng

 T
im

e
(s

)

h=1
h=2
h=3

h=4
h=5

(b)

Figure 5.4: The effect of number of views per epoch for our Preprocessed Online View
variant of SSNP -NN on hpo-metab.

1 2 4 6 8 10
Number of Views per Epoch nve

0.60

0.62

0.64

0.66

0.68

M
icr

o-
F1

 sc
or

e

h=1
h=2
h=3

h=4
h=5

(a)

1 2 4 6 8 10
Number of Views per Epoch nve

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 T
im

e
(s

)

h=1
h=2
h=3

h=4
h=5

(b)

Figure 5.5: The effect of number of views per epoch for our Preprocessed Online View
variant of SSNP -NN on hpo-neuro.

1 2 4 6 8 10
Number of Views per Epoch nve

0.80

0.82

0.84

0.86

0.88

0.90

M
icr

o-
F1

 sc
or

e

h=1
h=2
h=3

h=4
h=5

(a)

1 2 4 6 8 10
Number of Views per Epoch nve

1

2

3

4

5

6

Tr
ai

ni
ng

 T
im

e
(s

)

h=1
h=2
h=3

h=4
h=5

(b)

Figure 5.6: The effect of number of views per epoch for our Preprocessed Online View
variant of SSNP -NN on em-user.

59

5.7 Results: Stochastic Pooling Strategies

To answer Q4, we intend to study the effect of various stochastic sampling strategies

on our SSNP -NN model. We fix all hyperparameters as was reported above except

those related to our pooling strategies. We set the number of views per epoch nv

to 1 for online views (OV), to 5 or 20 for pre-processed views (PV), and to 20 for

pre-processed online views (POV). For POV, we also set the number of views per

epoch nve to 5.

The micro-F1 scores are captured in Table 5.4. The effect of the sampling on

the pre-processing and training times are captured in Figure 5.7. For all datasets

(except em-user), POV provides the best F1-scores (see Table 5.4). For em-user, OV

suppresses POV with a small margin of 0.004. In Figure 5.7, we can see that the

average training time for OV in ppi-bp, hpo-metab and hpo-neuro is higher than

PV with 5 views and POV. However, pre-processing of OV is faster than all other

sampling strategies. For PVs and POV, the pre-processing times are comparable;

however, POV offers much faster training time and a higher F1-score (see Table 5.4).

In hpo-metab and hpo-neuro, the F1 score of PV with 5 views is higher than that

of PV with 20 views, implying that a higher number of views does not necessarily

improve performance for PV. However, POV, with 5 views per epoch and a total of

20 views, has the highest F1 score. This means that the stochasticity in the views

across epochs allows a better generalization for our model.

Sampling Strategy ppi-bp hpo-metab hpo-neuro em-user

OV 0.527±0.008 0.443±0.055 0.681±0.002 0.906±0.009
PV (5 views) 0.628±0.007 0.569±0.015 0.680±0.003 0.878±0.015
PV (20 views) 0.635±0.003 0.553±0.013 0.671±0.003 0.902±0.007
POV 0.638±0.008 0.577±0.017 0.686±0.004 0.902±0.007

Table 5.4: F1-score (avg. over 5 runs) for various sampling strategies, SSNP -NN.

60

ppi-bp hpo-metab hpo-neuro em-user0

5

10

15

20

25

30

35

40

Pr
ep

ro
ce

ss
in

g
Ti

m
e

(s
)

OV
PV (5 views)

PV (20 views)
POV

ppi-bp hpo-metab hpo-neuro em-user0

2

4

6

8

10

12

14

Tr
ai

ni
ng

 T
im

e
(s

)

OV
PV (5 views)

PV (20 views)
POV

Figure 5.7: The effect of sampling strategies on pre-processing time (left) and training
time per epoch (right) in SSNP -NN.

5.8 Summary

In this chapter, we showed the empirical results of SSNP in comparison to other

baselines. Our experiments using SSNP with different transformation layers revealed

that using simple transformation layer combined with subgraph neighborhood pool-

ing gives good performance while being computationally light. Our SSNP with MLP

outperforms SubGNN on all datasets, while being multiple magnitudes faster. Addi-

tionally, SSNP -MLP outperforms simple MLP which indicates that subgraph neigh-

borhood information combined with our data augmentation technique is helpful for

learning subgraphs. Furthermore, our multi-view hyperparameter sensitivity analysis

on random walk length h, number of views nv, number of views per epoch nve reveals

that using small random walk length (1 or 2) combined with decent number of views

per epoch (i.e, around 4) gives good results. Our ablation studies on various stochas-

tic pooling strategies reveals that POV variant is superior to others. SSNP combined

with POV beats SSNP with OV and PV on 3 out of the datasets. Furthermore, POV

has similar pre-processing times to PV, while being much faster in training without

61

much loss in F1-scores. The simple data augmentation technique of POV allows for

generalization of the model without incurring additional computational costs.

62

Chapter 6

Conclusions

In this chapter, we conclude our thesis with a brief summary of contributions. Then,

we discuss a few limitations of our model and possible future research directions that

can address these shortcomings.

6.1 Thesis Summary

The state-of-the-art subgraph classification solutions are not scalable due to the use

of labeling tricks or artificial message-passing channels for subgraphs. In this thesis,

we propose a simple yet powerful model that has our proposed stochastic subgraph

neighborhood pooling (SSNP) in its core. Leveraging SSNP , our model learns the

internal connectivity and border neighborhood of subgraphs. We also present sim-

ple data augmentation techniques such as OV, PV and POV that help to improve

the generalization of our model. Our model combined with our data augmentation

techniques outperforms current state-of-the-art subgraph classification models on 3

out of 4 datasets with a speedup of 1.5-3×. Our model with simple transformation

layers such as MLP beats majority of the subgraph classification baselines while re-

63

quiring only node-level operations and being computationally efficient. Experiments

on multi-view hyperparameter sensitivity analyses and stochastic pooling strategies

reveal that using a small number of views combined with our subgraph neighborhood

pooling strategy can improve the performance of the underlying model.

6.2 Future Directions

While SSNP can work with any transformation layer and is scalable, there are possible

improvements to make the model more robust and scalable. Therefore, we present the

current limitations of our model and ways to address them in the next subsections.

6.2.1 Reusing Random Walks

Our model currently performs random walks for each node multiple times even if it

occurs in multiple subgraphs. This might introduce additional overhead, especially

when the overlaps between subgraphs is large. Therefore, pre-processing random

walks for all nodes, similar to SUREL [85], that are part of subgraphs might be

essential to bring down the computation cost. The random-walk sequences of all nodes

in each subgraph can then be combined to create the induced subgraph neighborhood.

6.2.2 Efficient Subgraph Neighborhood Selection

Random walks are efficient in approximating subgraph neighborhoods. However, the

hyperparameters of random walk such as number of walks and length of walks might

be dataset or even subgraph dependant. For future work, we plan to explore alterna-

tive ways to approximate neighborhood subgraphs using subgraph-aware neighbor-

hood selection operators, as seen in other recent works [72].

64

6.2.3 Graph Contrastive Learning

The multiple views of subgraph neighborhoods created in our model are used to

increase the training data. Another promising direction might be to perform con-

trastive learning on the different stochastic views of neighborhood subgraphs to allow

for maximization of mutual information. However, while contrastive learning tech-

niques can benefit performance, it will create additional overhead in creating positive

and negative pairs of data.

65

Bibliography

[1] Abu-El-Haija, S., Kapoor, A., Perozzi, B., and Lee, J. N-gcn: Multi-

scale graph convolution for semi-supervised node classification. In uncertainty

in artificial intelligence (2020), PMLR, pp. 841–851.

[2] Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N., Ler-

man, K., Harutyunyan, H., Ver Steeg, G., and Galstyan, A. Mixhop:

Higher-order graph convolutional architectures via sparsified neighborhood mix-

ing. In international conference on machine learning (2019), PMLR, pp. 21–29.

[3] Adhikari, B., Zhang, Y., Ramakrishnan, N., and Prakash, B. A.

Sub2vec: Feature learning for subgraphs. In Advances in Knowledge Discovery

and Data Mining: 22nd Pacific-Asia Conference (2018), Springer, pp. 170–182.

[4] Akoglu, L., Tong, H., and Koutra, D. Graph based anomaly detection

and description: a survey. Data mining and knowledge discovery 29 (2015),

626–688.

[5] Alsentzer, E., Finlayson, S., Li, M., and Zitnik, M. Subgraph neural

networks. Advances in Neural Information Processing Systems (2020), 8017–

8029.

66

[6] Alsentzer, E., Li, M. M., Kobren, S. N., Network, U. D., Kohane,

I. S., and Zitnik, M. Deep learning for diagnosing patients with rare genetic

diseases. medRxiv (2022), 2022–12.

[7] Bianchi, F. M., Grattarola, D., and Alippi, C. Spectral clustering

with graph neural networks for graph pooling. In International conference on

machine learning (2020), PMLR, pp. 874–883.

[8] Brin, S., and Page, L. Reprint of: The anatomy of a large-scale hypertextual

web search engine. Computer Networks (2012), 3825–3833.

[9] Broder, A. On the resemblance and containment of documents. In

Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.

No.97TB100171) (1997), pp. 21–29.

[10] Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral networks

and locally connected networks on graphs. arXiv preprint arXiv:1312.6203

(2013).

[11] Cai, L., and Ji, S. A multi-scale approach for graph link prediction. In

Proceedings of the AAAI conference on artificial intelligence (2020), vol. 34,

pp. 3308–3315.

[12] Cai, T., Luo, S., Xu, K., He, D., Liu, T.-y., and Wang, L. Graph-

norm: A principled approach to accelerating graph neural network training. In

International Conference on Machine Learning (2021), PMLR, pp. 1204–1215.

[13] Chamberlain, B. P., Shirobokov, S., Rossi, E., Frasca, F.,

Markovich, T., Hammerla, N., Bronstein, M. M., and Hansmire,

M. Graph neural networks for link prediction with subgraph sketching. In

International Conference on Learning Representations (2023).

67

[14] Chen, J., Ma, T., and Xiao, C. FastGCN: Fast learning with graph con-

volutional networks via importance sampling. In International Conference on

Learning Representations (2018).

[15] Chen, J., Zhu, J., and Song, L. Stochastic training of graph convolutional

networks with variance reduction. arXiv preprint arXiv:1710.10568 (2017).

[16] Chen, L., Xie, Y., Zheng, Z., Zheng, H., and Xie, J. Friend recom-

mendation based on multi-social graph convolutional network. IEEE Access 8

(2020), 43618–43629.

[17] Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple and deep

graph convolutional networks. In International conference on machine learning

(2020), PMLR, pp. 1725–1735.

[18] Chen, Y., Wu, L., and Zaki, M. J. Reinforcement learning based

graph-to-sequence model for natural question generation. arXiv preprint

arXiv:1908.04942 (2019).

[19] Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-

J. Cluster-gcn: An efficient algorithm for training deep and large graph con-

volutional networks. In Proceedings of the 25th ACM SIGKDD international

conference on knowledge discovery & data mining (2019), pp. 257–266.

[20] Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast and accu-

rate deep network learning by exponential linear units (elus). arXiv preprint

arXiv:1511.07289 (2015).

[21] Dabhi, S., and Parmar, M. Nodenet: A graph regularised neural network

for node classification. arXiv preprint arXiv:2006.09022 (2020).

68

[22] Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in

Neural Information Processing Systems (2016).

[23] Du, J., Wang, S., Miao, H., and Zhang, J. Multi-channel pooling graph

neural networks. In IJCAI (2021), pp. 1442–1448.

[24] Fey, M., and Lenssen, J. E. Fast graph representation learning with Py-

Torch Geometric. In ICLR Workshop on Representation Learning on Graphs

and Manifolds (2019).

[25] Flajolet, P., Fusy, E., Gandouet, O., and Meunier, F. Hyperloglog:

The analysis of a near-optimal cardinality estimation algorithm. Discrete Math-

ematics Theoretical Computer Science DMTCS Proceedings vol. AH,... (03

2012).

[26] Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bronstein, M.,

and Monti, F. Sign: Scalable inception graph neural networks. In ICML

2020 Workshop on Graph Representation Learning and Beyond (2020).

[27] Galkin, M., Denis, E., Wu, J., and Hamilton, W. L. Nodepiece: Com-

positional and parameter-efficient representations of large knowledge graphs.

arXiv preprint arXiv:2106.12144 (2021).

[28] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl,

G. E. Neural message passing for quantum chemistry. In International confer-

ence on machine learning (2017), PMLR, pp. 1263–1272.

[29] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference

on Knowledge discovery and data mining (2016), pp. 855–864.

69

[30] Hamilton, W. L. Graph representation learning. Synthesis Lectures on Ar-

tificial Intelligence and Machine Learning 14, 3, 1–159.

[31] Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation

learning on large graphs. In Proceedings of the 31st International Conference

on Neural Information Processing Systems (2017), p. 1025–1035.

[32] Hao, Y., Cao, X., Fang, Y., Xie, X., and Wang, S. Inductive link

prediction for nodes having only attribute information. In Proceedings of the

Twenty-Ninth International Joint Conference on Artificial Intelligence (2021),

IJCAI’20.

[33] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for

image recognition. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2016), pp. 770–778.

[34] Heule, S., Nunkesser, M., and Hall, A. Hyperloglog in practice: Algo-

rithmic engineering of a state of the art cardinality estimation algorithm. In

Proceedings of the 16th International Conference on Extending Database Tech-

nology (New York, NY, USA, 2013), EDBT ’13, Association for Computing

Machinery, p. 683–692.

[35] Hu, R., Aggarwal, C. C., Ma, S., and Huai, J. An embedding approach

to anomaly detection. In 2016 IEEE 32nd International Conference on Data

Engineering (ICDE) (2016), IEEE, pp. 385–396.

[36] Huang, W., Zhang, T., Rong, Y., and Huang, J. Adaptive sampling

towards fast graph representation learning. Advances in neural information

processing systems 31 (2018).

70

[37] Huang, Y., Peng, X., Ma, J., and Zhang, M. Boosting the cycle counting

power of graph neural networks with I2-gnns. In The Eleventh International

Conference on Learning Representations (2023).

[38] Jacob, S. A., Louis, P., and Salehi-Abari, A. Stochastic subgraph

neighborhood pooling for subgraph classification, 2023.

[39] Jiang, D., Wu, Z., Hsieh, C.-Y., Chen, G., Liao, B., Wang, Z., Shen,

C., Cao, D., Wu, J., and Hou, T. Could graph neural networks learn better

molecular representation for drug discovery? a comparison study of descriptor-

based and graph-based models. Journal of cheminformatics (2021), 1–23.

[40] Kim, D., and Oh, A. Efficient representation learning of subgraphs by

subgraph-to-node translation. In ICLR 2022 Workshop on Geometrical and

Topological Representation Learning (2022).

[41] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization.

In International Conference on Learning Representations (2015).

[42] Kipf, T. N., and Welling, M. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representa-

tions (2017).

[43] Le, Q., and Mikolov, T. Distributed representations of sentences and docu-

ments. In International conference on machine learning (2014), pp. 1188–1196.

[44] LeClair, A., Haque, S., Wu, L., and McMillan, C. Improved code sum-

marization via a graph neural network. In Proceedings of the 28th international

conference on program comprehension (2020), pp. 184–195.

71

[45] Lee, J., Lee, I., and Kang, J. Self-attention graph pooling. In International

Conference on Machine Learning (2019), PMLR, pp. 3734–3743.

[46] Leskovec, J., Huttenlocher, D., and Kleinberg, J. Predicting pos-

itive and negative links in online social networks. In Proceedings of the 19th

international conference on World wide web (2010), pp. 641–650.

[47] Li, B., Xia, Y., Xie, S., Wu, L., and Qin, T. Distance-enhanced graph

neural network for link prediction. In ICML 2021 Workshop on Computational

Biology (2021).

[48] Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance encoding: De-

sign provably more powerful neural networks for graph representation learning.

Advances in Neural Information Processing Systems (2020), 4465–4478.

[49] Liu, C., Yang, Y., Xie, Z., Lu, H., and Ding, Y. Position-aware sub-

graph neural networks with data-efficient learning. In Proceedings of the Six-

teenth ACM International Conference on Web Search and Data Mining (2023),

pp. 643–651.

[50] Louis, P., Jacob, S. A., and Salehi-Abari, A. Sampling enclosing sub-

graphs for link prediction. In Proceedings of the 31st ACM International Con-

ference on Information & Knowledge Management (2022), pp. 4269–4273.

[51] Louis, P., Jacob, S. A., and Salehi-Abari, A. Simplifying sub-

graph representation learning for scalable link prediction. arXiv preprint

arXiv:2301.12562 (2023).

[52] Lü, L., and Zhou, T. Link prediction in complex networks: A survey. Physica

A: statistical mechanics and its applications 390, 6 (2011), 1150–1170.

72

[53] Markovitz, A., Sharir, G., Friedman, I., Zelnik-Manor, L., and

Avidan, S. Graph embedded pose clustering for anomaly detection. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (2020), pp. 10539–10547.

[54] Mavromatis, C., and Karypis, G. Graph infoclust: Maximizing coarse-

grain mutual information in graphs. In PAKDD (2021).

[55] Morselli Gysi, D., Do Valle, Í., Zitnik, M., Ameli, A., Gan, X.,

Varol, O., Ghiassian, S. D., Patten, J., Davey, R. A., Loscalzo, J.,

et al. Network medicine framework for identifying drug-repurposing opportu-

nities for covid-19. Proceedings of the National Academy of Sciences (2021).

[56] Namanloo, A. A., Thorpe, J., and Salehi-Abari, A. Improving peer

assessment with graph neural networks. International Educational Data Mining

Society (2022).

[57] Nishad, S., Agarwal, S., Bhattacharya, A., and Ranu, S. Graphreach:

Position-aware graph neural network using reachability estimations. arXiv

preprint arXiv:2008.09657 (2020).

[58] Pan, L., Shi, C., and Dokmanić, I. Neural link prediction with walk

pooling. In International Conference on Learning Representations (2022).

[59] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,

G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,

A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-

amkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Py-

torch: An imperative style, high-performance deep learning library. In Advances

in Neural Information Processing Systems (2019).

73

[60] Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning of

social representations. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining (2014), pp. 701–710.

[61] Ranjan, E., Sanyal, S., and Talukdar, P. Asap: Adaptive structure

aware pooling for learning hierarchical graph representations. In Proceedings of

the AAAI Conference on Artificial Intelligence (2020), vol. 34, pp. 5470–5477.

[62] Rong, Y., Huang, W., Xu, T., and Huang, J. Dropedge: Towards

deep graph convolutional networks on node classification. arXiv preprint

arXiv:1907.10903 (2019).

[63] Rybin, D., Sun, R., and Luo, Z.-Q. Invariant layers for graphs with nodes

of different types, 2023.

[64] Salehi-Abari, A., and Boutilier, C. Empathetic social choice on social

networks. In AAMAS (2014), pp. 693–700.

[65] Salehi-Abari, A., and Boutilier, C. Preference-oriented social networks:

Group recommendation and inference. In Proceedings of the 9th ACM Confer-

ence on Recommender Systems (2015), pp. 35–42.

[66] Salehi-Abari, A., Boutilier, C., and Larson, K. Empathetic decision

making in social networks. Artificial intelligence 275 (2019), 174–203.

[67] Shen, Y., Yan, J., Ju, C.-W., Yi, J., Lin, Z., and Guan, H. Improving

subgraph representation learning via multi-view augmentation. In ICML 2022

2nd AI for Science Workshop (2022).

74

[68] Singh, A., Huang, Q., Huang, S. L., Bhalerao, O., He, H., Lim, S.-

N., and Benson, A. R. Edge proposal sets for link prediction. arXiv preprint

arXiv:2106.15810 (2021).

[69] Song, X., Ma, R., Li, J., Zhang, M., and Wipf, D. P. Network in graph

neural network. arXiv preprint arXiv:2111.11638 (2021).

[70] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and

Salakhutdinov, R. Dropout: a simple way to prevent neural networks from

overfitting. The journal of machine learning research (2014), 1929–1958.

[71] Suresh, S., Li, P., Hao, C., and Neville, J. Adversarial graph augmen-

tation to improve graph contrastive learning. Advances in Neural Information

Processing Systems 34 (2021), 15920–15933.

[72] Tan, Q., Zhang, X., Liu, N., Zha, D., Li, L., Chen, R., Choi, S.-H.,

and Hu, X. Bring your own view: Graph neural networks for link prediction

with personalized subgraph selection. In Proceedings of the Sixteenth ACM

International Conference on Web Search and Data Mining (2023), pp. 625–

633.

[73] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P.,

and Bengio, Y. Graph attention networks. In International Conference on

Learning Representations (2018).

[74] Wang, X., Yang, H., and Zhang, M. Neural common neighbor with com-

pletion for link prediction. arXiv preprint arXiv:2302.00890 (2023).

[75] Wang, X., and Zhang, M. Glass: Gnn with labeling tricks for subgraph rep-

resentation learning. In International Conference on Learning Representations

(2021).

75

[76] Wang, Z., Cao, Q., Shen, H., Bingbing, X., Zhang, M., and Cheng,

X. Towards efficient and expressive gnns for graph classification via subgraph-

aware weisfeiler-lehman. In Proceedings of the First Learning on Graphs Con-

ference (2022), pp. 17:1–17:18.

[77] Wang, Z., Liao, J., Cao, Q., Qi, H., and Wang, Z. Friendbook: a

semantic-based friend recommendation system for social networks. IEEE trans-

actions on mobile computing (2014), 538–551.

[78] Weisfeiler, B., and Leman, A. The reduction of a graph to canonical form

and the algebra which appears therein. nti, Series 2, 9 (1968), 12–16.

[79] Wu, L., Cui, P., Pei, J., and Zhao, L. Graph Neural Networks: Founda-

tions, Frontiers, and Applications. Springer Singapore, Singapore, 2022.

[80] Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C.,

Pappu, A. S., Leswing, K., and Pande, V. Moleculenet: a benchmark for

molecular machine learning. Chemical science 9, 2 (2018), 513–530.

[81] Xu, D., Cheng, W., Luo, D., Chen, H., and Zhang, X. Infogcl:

Information-aware graph contrastive learning. Advances in Neural Information

Processing Systems 34 (2021), 30414–30425.

[82] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph

neural networks? In International Conference on Learning Representations

(2019).

[83] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and

Jegelka, S. Representation learning on graphs with jumping knowledge

networks. In International Conference on Machine Learning (2018), PMLR,

pp. 5453–5462.

76

[84] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and

Jegelka, S. Representation learning on graphs with jumping knowledge net-

works. In Proceedings of the 35th International Conference on Machine Learning

(2018), pp. 5453–5462.

[85] Yin, H., Zhang, M., Wang, Y., Wang, J., and Li, P. Algorithm and sys-

tem co-design for efficient subgraph-based graph representation learning. arXiv

preprint arXiv:2202.13538 (2022).

[86] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and

Leskovec, J. Graph convolutional neural networks for web-scale recommender

systems. In Proceedings of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining (2018), p. 974–983.

[87] Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec,

J. Hierarchical graph representation learning with differentiable pooling. Ad-

vances in neural information processing systems 31 (2018).

[88] You, J., Ying, R., and Leskovec, J. Position-aware graph neural networks.

In International Conference on Machine Learning (2019), PMLR, pp. 7134–

7143.

[89] You, Y., Chen, T., Shen, Y., and Wang, Z. Graph contrastive learning

automated. In International Conference on Machine Learning (2021), PMLR,

pp. 12121–12132.

[90] You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y. Graph

contrastive learning with augmentations. Advances in neural information pro-

cessing systems 33 (2020), 5812–5823.

77

[91] Yun, S., Kim, S., Lee, J., Kang, J., and Kim, H. J. Neo-gnns: Neigh-

borhood overlap-aware graph neural networks for link prediction. Advances in

Neural Information Processing Systems (2021), 13683–13694.

[92] Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A., Kannan,

R., Prasanna, V., Jin, L., and Chen, R. Decoupling the depth and scope

of graph neural networks. Advances in Neural Information Processing Systems

(2021), 19665–19679.

[93] Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V.

GraphSAINT: Graph sampling based inductive learning method. In Interna-

tional Conference on Learning Representations (2020).

[94] Zhang, M., and Chen, Y. Link prediction based on graph neural networks.

In Proceedings of the 32nd International Conference on Neural Information

Processing Systems (2018), p. 5171–5181.

[95] Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-end deep

learning architecture for graph classification. Proceedings of the AAAI Confer-

ence on Artificial Intelligence (2018).

[96] Zhang, M., and Li, P. Nested graph neural networks. In Advances in Neural

Information Processing Systems (2021), pp. 15734–15747.

[97] Zhang, M., Li, P., Xia, Y., Wang, K., and Jin, L. Labeling trick: A

theory of using graph neural networks for multi-node representation learning.

In Advances in Neural Information Processing Systems (2021), pp. 9061–9073.

[98] Zhao, T., Liu, G., Günnemann, S., and Jiang, M. Graph data augmen-

tation for graph machine learning: A survey. arXiv preprint arXiv:2202.08871

(2022).

78

[99] Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., and Shah,

N. Data augmentation for graph neural networks. In Proceedings of the aaai

conference on artificial intelligence (2021), pp. 11015–11023.

[100] Zhu, S., Yu, K., Chi, Y., and Gong, Y. Combining content and link for

classification using matrix factorization. In Proceedings of the 30th annual inter-

national ACM SIGIR conference on Research and development in information

retrieval (2007), pp. 487–494.

[101] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., and Wang, L. Graph con-

trastive learning with adaptive augmentation. In Proceedings of the Web Con-

ference 2021 (2021), pp. 2069–2080.

[102] Zitnik, M., Agrawal, M., and Leskovec, J. Modeling polypharmacy

side effects with graph convolutional networks. Bioinformatics 34, 13 (2018),

i457–i466.

[103] Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q. Layer-

dependent importance sampling for training deep and large graph convolutional

networks. Advances in Neural Information Processing Systems 32 (2019).

79

	Abstract
	Author's Declaration
	Statement of Contributions
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Notations
	Introduction
	Motivation
	Contribution
	Thesis Organization
	Summary and Impact

	Background
	Graph Representation Learning
	Node Classification
	Link Prediction
	Graph Classification
	Subgraph Classification

	Shallow Encoders
	Message Passing Graph Neural Networks
	Graph Convolutional Networks
	GraphSAGE
	Subgraph Classification by MPGNN

	SubGNN
	GLASS
	Data Augmentation in Graphs
	Graph Contrastive Learning

	Related Work
	Shallow Embedding Methods
	Message Passing Graph Neural Networks
	Subgraph Representation Learning
	Subgraph Classification
	Scalability of SGRLs
	Scalability by Sampling

	Approach
	Preliminaries
	Problem Statement
	Stochastic Subgraph Neighborhood Pooling (SSNP)
	Transformation Layer
	Subgraph Neighborhood Pooling and Variants

	Expressiveness of Subgraph Neighborhood Pooling
	Subgraph Neighborhood Sampling Strategies

	Experiments
	Datasets
	Evaluation Metric
	Baselines
	Experimental Setup
	Results: F1 Score and Runtime
	Multi-view Hyperparameter Analyses
	Results: Stochastic Pooling Strategies
	Summary

	Conclusions
	Thesis Summary
	Future Directions
	Reusing Random Walks
	Efficient Subgraph Neighborhood Selection
	Graph Contrastive Learning

	Bibliography

