
Scalable Subgraph Representation
Learning through Simplification

by

Paul Louis

A thesis submitted to the School of
Graduate and Postdoctoral Studies in

partial fulfillment of the requirements for
the degree of

Master of Science in Computer Science

Faculty of Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

June 2023

Copyright © Paul Louis, 2023

Thesis Examination Information

Submitted by: Paul Louis

Master of Science in Computer Science

Thesis title: Scalable Subgraph Representation Learning through Simplification

An oral defense of this thesis took place on June 5, 2023 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Pooria Madani

Research Supervisor Dr. Amirali Salehi-Abari

Examining Committee Member Dr. Ken Pu

Thesis Examiner Dr. Faisal Qureshi

The above committee determined that the thesis is in acceptable form and content

and that a satisfactory knowledge of the field covered by the thesis was demonstrated

by the candidate during an oral examination. A signed copy of the Certificate of

Approval is available from the School of Graduate and Postdoctoral Studies.

i

Abstract

Link prediction on graphs is a fundamental problem. Subgraph representation learn-

ing approaches (SGRLs), by transforming link prediction to graph classification on

the subgraphs around the links, have achieved state-of-the-art performance in link

prediction. However, SGRLs are computationally expensive, and not scalable to

large-scale graphs due to expensive subgraph-level operations. To unlock the scala-

bility of SGRLs, we propose a new class of SGRLs, that we call Scalable Simplified

SGRL (S3GRL). Aimed at faster training and inference, S3GRL simplifies the message

passing and aggregation operations in each link’s subgraph. S3GRL, as a scalability

framework, accommodates various subgraph sampling strategies and diffusion oper-

ators to emulate computationally-expensive SGRLs. We propose multiple instances

of S3GRL and empirically study them on small to large-scale graphs. Our extensive

experiments demonstrate that the proposed S3GRL models scale up SGRLs with-

out significant performance compromise (even with considerable gains in some cases),

while offering substantially lower computational footprints (e.g., multi-fold inference

and training speedup).

Keywords: Graph Neural Networks, Link Predictions, Subgraph Representation

Learning.

ii

Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech Uni-

versity) to lend this thesis to other institutions or individuals for the purpose of

scholarly research. I further authorize University of Ontario Institute of Technol-

ogy (Ontario Tech University) to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research. I understand that my thesis will be made electronically

available to the public

Paul Louis

iii

Statement of Contributions

I hereby certify that I have been the primary contributor to this thesis by developing

the algorithms, implementing them, and designing & executing all experiments. I

have also written most content of this thesis. However, some texts of this thesis are

borrowed from the papers [57, 58], coauthored by my thesis supervisor, a labmate, and

me, in which I was the primary author undertaking the above-listed responsibilities.

iv

Acknowledgments

I would like to express my sincere, eternal gratitude and love for my parents, Appa

and Ammi, who have been a constant source of support and encouragement from the

beginning. This thesis would not be if it were not for them. I also want to express my

love for my pets, Tuttu and Lily, for their love (and barks) are endless and missed. I

wish to reunite with everyone soon and hope that they are proud of what my time

away has accomplished.

I also wish to express my gratitude to Shweta, who has been a constant source

of support, motivation and strength throughout this journey. I also want to thank

Dr. Faisal Qureshi for providing pointers on how to improve this thesis and present

it better. Finally, I would like to thank my supervisor, Dr. Amirali Salehi-Abari,

for all the constructive criticisms, reviews and research directions provided since the

inception of this work.

v

Contents

Abstract ii

Author’s Declaration iii

Statement of Contributions iv

Acknowledgments v

Contents vi

List of Figures ix

List of Tables x

List of Abbreviations xi

List of Notations xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 5
1.3 Thesis Organization . 7
1.4 Summary and Impact . 7

2 Background 9
2.1 Learning on Graphs . 9

2.1.1 What is a Graph? . 10
2.1.2 Early Work in Graph Representation Learning 11
2.1.3 Message Passing Graph Neural Networks 12

2.2 Downstream Tasks . 13
2.2.1 Node Classification . 13
2.2.2 Graph Classification . 15
2.2.3 Link Prediction . 16
2.2.4 Subgraph Graph Neural Networks 22

vi

3 Related Work 27
3.1 Shallow Embedding Methods . 27
3.2 Message Passing Graph Neural Networks 31
3.3 Subgraph Graph Neural Networks . 34
3.4 Scalability in Graph Neural Networks 37

3.4.1 Scalability by Simplification 39
3.4.2 Scalability of SGRLs . 40

4 Approach 44
4.1 Preliminaries . 44
4.2 Problem Statement . 44
4.3 Scalability by Simplification . 45
4.4 Proposed S3GRL Framework . 46

4.4.1 Disentanglement of Data and Model. 50
4.4.2 Multi-View Representation. 50

4.5 Our Proposed Instances . 50
4.5.1 Powers of Subgraphs (PoS) 50
4.5.2 Subgraphs of Powers (SoP) 52
4.5.3 Comparing our S3GRL instances: PoS vs. SoP. 52
4.5.4 Subgraph Pooling . 53
4.5.5 Inference Time Complexity. 54

5 Experiments 56
5.1 Datasets . 56
5.2 Experimental Setup . 57

5.2.1 Evaluation Metrics . 58
5.2.2 Baselines . 58
5.2.3 Hyperparameter Settings . 59
5.2.4 Reproducibility . 61

5.3 Results and Discussions . 61
5.3.1 Results on Attributed and Non-Attributed Datasets 62
5.3.2 Results on Large Scale Datasets 64
5.3.3 S3GRL as a scalability framework. 70

5.4 Summary . 71

6 Conclusions 72
6.1 Thesis Summary . 72
6.2 Future Directions . 73

6.2.1 Hybrid PoS . 73
6.2.2 Operator Creation Parallelization 73
6.2.3 Recommendation with Implicit Data 74
6.2.4 Training S3GRL on Dynamic Graphs 74

vii

Bibliography 76

viii

List of Figures

1.1 An example of modeling data as graphs. 8

2.1 The three primary downstream tasks typically solved using GNNs. . . 14
2.2 The link prediction problem visualized. 17
2.3 When GNNs fail in distinguishing links. 20
2.4 How SGRLs capture richer link representations compared to plain GNNs. 22
2.5 How SGRLs solve the link prediction problem. 24
2.6 A visualization of the computational bottleneck associated with sub-

graph extractions in SGRLs. 26

3.1 How ScaLed sparsifies dense enclosing subgraphs 43

4.1 Architecture of our S3GRL framework. 48
4.2 Example PoS operators. 51

ix

List of Tables

5.1 The statistics of the non-attributed, attributed, and OGB datasets. . 57
5.2 The Average AUC figures for experiments on the non-attributed datasets. 64
5.3 The Average AUC figures for experiments on the attributed datasets. 65
5.4 A comparison of the computation time of SGRLs vs. our S3GRLmodel

on the non-attributed datasets. 66
5.5 A comparison of the computation time of SGRLs vs. our S3GRLmodel

on the attributed datasets. 67
5.6 A comparison of the dataset sizes of SEAL vs. our S3GRL models on

the non-attributed datasets. 68
5.7 A comparison of the dataset sizes of SEAL vs. our S3GRL models on

the attributed datasets. 69
5.8 Results for PoS+ in comparison to the methodology set in BUDDY [12] 70
5.9 Results for S3GRL used in combination with ScaLed. 71

x

List of Abbreviations

AA . Adamic Adar

roc-auc . Area under the ROC Curve

AUC . Area under the ROC Curve

BFS . Breadth-first Search

CNN . Convolutional Neural Network

DFS . Depth-first Search

DE-GNN . Distance Encoding Graph Neural Network

DRNL .Double Radius Node Labeling

GB . Gigabytes

GAT . Graph Attention Networks

GCN . Graph Convolutional Networks

GIN . Graph Isomorphism Network

GNNs . Graph Neural Networks

xi

GRL . Graph Representation Learning

HR .Hit Rate

i.i.d . Independent and Identically Distributed

MRR . Mean Reciprocal Rank

MB . Megabytes

MPGNN . Message Passing Graph Neural Networks

MLP .Multilayer Perceptron

NLP .Natural Language Processing

PoS . Powers of Subgraphs

PA .Preferential Attachment

RNN . Recurrent Neural Network

RA . Resource Allocation

S3GRL . Scalable Simplified Subgraph Representation Learning

SGD .Stochastic Gradient Descent

SGRL .Subgraph Representation Learning

SGRLs . Subgraph Representation Learning approaches

xii

SoP . Subgraphs of Powers

WL-Test .Weisfeiler-Lehman Isomorphism Test

xiii

List of Notations

G . used to represent graph structured data

V . set containing a graph’s vertices/nodes

E . set containing a graph’s edges

X . matrix containing initial node features

(u, v) . target nodes in a link

T . target node set

A . adjacency matrix

L . number of convolution layers

l . l-th convolution layer

W . trainable weight matrix

H . matrix containing intermediate learnt node embeddings

σ . activation function

I . identity matrix

xiv

Ã .normalized adjacency matrix summed with identity matrix

Â .normalized adjacency matrix

Z .final output embedding matrix of a GNN

D . diagonal degree matrix

D̃ . diagonal degree matrix associated with Ã

y . label vector associated with nodes

yu . label associated with node u

ξ . softmax operation

N(u) . neighborhood node set of node u

p(u, v) . link formation probability for nodes (u, v)

zu . learnt representation of node u in Z

Ω . learnable non-linear function

quv . joint link representation for nodes (u, v)

dx,y . geodesic distance between nodes x and y.

h . number of hops of the enclosing subgraph.

Gh
uv . the h-hop enclosing subgraph around link (u, v).

xv

Guv . the enclosing subgraph around link (u, v).

V h
uv the set of nodes in the enclosing h-hop subgraph around link (u, v).

Xuv the matrix containing the initial node features for the subgraph Guv.

d .dimensionality of initial node feature matrix X.

d′ . dimensionality of the learnt nodal feature matrix Z.

⊕
. concatenation operator.

Y . the matrix containing node class probabilities.

Muv . linear diffusion operator matrix for the subgraph Guv.

r .number of operators in S3GRL.

Ψ . subgraph sampling strategy in S3GRL.

Φ . diffusion operator in S3GRL.

S . sampling operator set in S3GRL.

Zuv . joint nodal-representation matrix for the subgraph Guv.

p . in-out hyperparameter of node2vec.

q . return hyperparameter of node2vec.

k . number of random walks in ScaLed.

xvi

Chapter 1

Introduction

This chapter introduces the reader to graph neural networks and its application on

learning graph structured data. We detail the multiple downstream tasks which

are tackled using graph structured data with an emphasis on the link prediction

downstream task. We then highlight the current limitations of graph neural network

models on link prediction. Following that, we highlight the thesis contributions to

the area, that is aimed at overcoming the computational limitations of current works.

1.1 Motivation

Graphs are ubiquitous in representing relationships between interacting entities in a

variety of contexts, ranging from social networks [15] to polypharmacy [113]. Graphs

can be used to model entities (as nodes) and can be used to uniquely capture inter-

actions amongst the entities (as edges). Due to their versatility in modeling different

kinds of data, they have a variety of applications not limited to: classifying users in a

social network, capturing relationships between users in a social network, capturing

interaction between groups of proteins, etc. A toy example of how graph structured

1

data finds application in modeling social interactions is presented using the Karate

network graph [99] in Figure 1.1.

Three tasks stand out as the predominant downstream tasks which primarily rely

on graph structured. They are node classification, graph classification and link predic-

tion. Among these three, node classification is one of the most popular downstream

tasks. The goal in node classification is to tag or classify each node in the graph with

one or more pre-defined labels [50]. Some examples of node classification include;

classifying proteins based on their interactions in human tissue [114], predicting what

community a post was published in [102, 34], classifying documents based on their

citations to other documents and bag-of-words representations [93], predicting evalu-

ations using peer assessments [65] etc.

Another focused task on graphs is graph classification. The goal is to classify

groups of nodes (i.e., graphs) to one or more pre-defined labels. Graph classification

distinguishes itself from node classification as the task is to classify groups of nodes

as opposed to classifying individual nodes. An example of graph classification is

predicting molecular properties of a group of atoms given their chemical bonds as

edges [64, 41, 40].

Among the multiple use cases of modeling data as graphs, one of the main tasks

(other than node and graph classification) on graphs is link prediction [56]. Link

prediction involves predicting future or missing relationships between pairs of entities,

given the graph structure. Link prediction plays a fundamental role in impactful areas,

including molecular interaction predictions [42], recommender systems [96, 4], and

protein-protein interaction predictions [111]. The early solutions to link prediction

relied on hand-crafted, parameter-free heuristics based on the proximity of the source-

target nodes. These heuristics can be classified based on their distance (or number

of hops) to the source and target nodes that form a link. For example, common

2

neighbors score the likelihood of formation of a link based on the number of common

neighbors. As such, these heuristics and others (e.g., preferential attachment [5] and

Jaccard index), which rely on the first hop connecting nodes of source and target

nodes can be considered as first-order based heuristics. Second-order heuristics, such

as Resource Allocation [112] and Adamic Adar [2] rely on nodes that are up to two

hops away from the links. Finally, higher-order heuristics such as PageRank [68],

SimRank [45], Katz Index [47] etc. rely on nodes multiple hops away from the source

and target node pairs. However, these hop-based heuristic methods require extensive

domain knowledge for effective implementation. For example, having high number

of common neighbors in a protein-protein interaction network implies that links are

less likely to form [52], meaning a trivial application of neighborhood overlap based

heuristics would fail. Moreover, these heuristics did not account for any features that

were associated with nodes. As a result, using such pre-defined heuristics may fail to

adequately summarize how links form in complex networks.

Recently, the success of graph neural networks (GNNs) in learning latent repre-

sentations of nodes [50] has led to their application in link prediction. This is done

by aggregating the source-target nodes’ representations to construct link representa-

tions [49, 70]. However, as vanilla message passing GNN architectures (e.g., GCN

[50]) learn a pair of nodes’ representations independent of their relative positions to

each other, aggregating independent node representations results in poor link rep-

resentations [107]. To circumvent this, the state-of-the-art subgraph representation

learning approaches (SGRLs) [104] learn the enclosing subgraphs of pairs of source-

target nodes, while augmenting node features with structural features. SGRLs cast

the link prediction problem as a binary classification problem of the subgraph en-

closing the target link. Effectively, SGRLs convert link prediction into binary graph

classification, where the task is to determine if the subgraph enclosing a target link

3

(e.g., the h-hop enclosing subgraph [104]) is closed (link is likely to form) or open

(link is unlikely to form). The enclosing subgraph based learning coupled with the

injection of distance information or labels into nodes relative of the source and target,

effectively allow GNNs to learn a bag-of-heuristics. For example, the first-hop sub-

graph extraction with distance labels calculated for nodes allows an underlying GNN

to generalize first-order based heuristics [104]. In theory, SGRLs can approximate any

higher-order heuristic by utilizing a h-hop enclosing subgraph [104]. Where, a higher

h value allows for better generalization. As such, SGRLs allow one to break-free from

pick and choosing network heuristics and have shown to be successful on multiple

link prediction datasets [69, 104, 54, 103].

The core issue hampering the deployment of GNNs and SGRLs is their high

computational demands on large-scale graphs (e.g., OGB datasets [41, 40]). This

high computational demand primarily stems from the enclosing subgraph extractions

pertaining to each individual links and the labeling associated with the nodes in

the enclosing subgraphs. For example, a popular link prediction dataset, ogbl-ddi

[86, 40], has an average degree of 500 nodes. As such the 1-hop enclosing subgraphs

on average contain 500 nodes, leading to largely overlapping subgraphs. Moreover,

SGRLs utilize GNNs as the underlying neural model utilized to learn on the enclosing

subgraphs. The underlying GNNs in SGRLs make use of multiple nested layers of

convolutions, with weights associated to each layer. This learning mechanism is to be

done per epoch, over each individual training subgraph, leading to increasing training

and inference costs. Generally, subgraph extraction over a fixed hop might lead to

neighborhood explosion, where subgraphs sometimes become as large as the original

graphs. This computational overhead is further exaggerated by the need to label

each node in each enclosing subgraph as well. As such, many approaches have been

proposed for GNNs to relieve this bottleneck, ranging from sampling [13, 102] to

4

simplification [87] techniques. However, these techniques fail to be applied directly

in SGRL models. Although recent work has focused on tackling SGRL scalability by

sampling [95, 57] or sketching [12] approaches, little attention is given to simplification

techniques [87]. We focus on improving the scalability in SGRLs, by simplifying the

underlying training mechanism.

1.2 Contribution

Inspired by the simplification techniques in GNNs such as SGCN [87] and SIGN [26],

we propose Scalable Simplified SGRL (S3GRL) framework, which extends the simplifi-

cation techniques to SGRLs. Our S3GRL learning framework is flexible in emulating

many SGRLs (such as SEAL [104], DE-GNN [54]) by offering choices of subgraph

sampling and diffusion operators, producing different-sized convolutional filters for

each link’s subgraph. Our S3GRL benefits from precomputing the subgraph diffu-

sion operators, leading to an overall reduction in runtimes while offering a multi-fold

scale-up over existing SGRLs in training/inference times. Our S3GRL achieves this

speed-up by having precomputed convolutional filters calculated once before com-

mencing the training/inference phase. In comparison, existing SGRLs need to run

multi-layer convolution filters per epoch, which leads to a slow down in comparison to

our framework which utilizes the precomputed operators and has only a single learn-

able weight matrix.1 We propose and empirically study multiple instances of our

S3GRL framework. Our extensive experiments show substantial speedups in S3GRL

models over state-of-the-art SGRLs while maintaining and sometimes surpassing their

efficacies.

We can summarize our contribution as follows,

1For added expressivity, the single learnable weight matrix is replaced with an MLP for experi-
ments involving a small subset of graph datasets.

5

1. We extend simplification methods introduced in graph neural networks to the

context of subgraph representation learning with the introduction of our novel

S3GRL. Our S3GRL is the first time simplifications methods have been studied

in the context of subgraph representation learning and applied to link prediction

tasks.

2. We offer multiple instantiations of our S3GRL to showcase the flexibility and

robustness of the learning framework.

3. We study and evaluate the performance of the instantiations of S3GRL on small

to large-scale graph datasets under various evaluation criteria.

4. Our empirical study and analyses of the S3GRL framework cover over 14 base-

lines utilized in link prediction studies on 14 graph datasets, ranging from small

to large-scale graphs.

5. Our results showcase the efficacy improvements showcased by our S3GRL while

offering multi-fold speed-up in training and inference.

6. Our results also showcase a multi-fold reduction in storage requirements: our

S3GRL models’ prepared dataset sizes in comparison to dataset sizes in SGRLs

like SEAL are magnitudes lesser and more feasible.

7. We share our findings and framework as an open-source framework,2 encourag-

ing other researchers to come up with their own instantiations of the S3GRL

framework, thereby helping advance link prediction research.

2https://github.com/venomouscyanide/S3GRL OGB

6

https://github.com/venomouscyanide/S3GRL_OGB

1.3 Thesis Organization

We first introduce the reader to the problem being tackled by introducing graphs

and graph neural networks in Chapter 1. Following that, in Chapter 2, we provide

a detailed background into graph representation learning and subsequently subgraph

representation learning. Upon describing the background materials, we then focus

on doing a thorough literature review of works most related to our contributions in

Chapter 3, and introduce our novel learning framework in Chapter 4. We conclude

with experiments and discussions involving our learning framework in Chapter 5, and

with conclusions and future works planned in Chapter 6.

1.4 Summary and Impact

We introduce a novel subgraph representation learning framework, S3GRL, aimed at

faster training and inference for link representation learning on graph-structured data.

We achieve this by overcoming the limitations of current slower SGRLs by emulat-

ing expensive message passing operations through efficient precomputations. These

efficient precomputations only need to be run once and offer a substantial decrease

in model training and inference times. This decrease in training and inference times

comes from the fact that S3GRL does not have multi-layers of convolution filters (and

weights), and relies on the once precomputed filters and a single linear weight matrix

for training and inference. Our S3GRL model is empirically shown to scale to graphs

with millions of nodes and edges, all the while retaining the expressivity of more

computationally demanding SGRLs. We propose S3GRL as a computational lighter

SGRL method that can be used in place of more demanding learning methodologies

such as SEAL [104] or any other SGRL method [69, 55].

7

0

1 2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29
30 31 32

33

Figure 1.1: An example of modeling data as a graph. Here we have the famous
Zachary’s Karate Club [99] as an example of modeling social interaction data as a
graph. Zachary studied the interaction of 34 members of a Karate club based on their
interactions outside of the club. The club later on split into two; lead by nodes 0 and
33. Zachary, using the captured graph and the nodes interactions (edges), was able
to successfully predict which nodes will decide to go to which split.

8

Chapter 2

Background

In this chapter we provide an introduction to graph structured data and a detailed

background about graph neural networks and its impact and applications on key

downstream tasks. We place our focus on providing the reader with the necessary

background knowledge to understand the current limitations of graph neural networks

on learning link representations. Following that, we introduce them to subgraph rep-

resentation learning approaches that better learn link representations and highlight

the computational bottlenecks of subgraph representations methods. We close discus-

sions motivating the need for computational lighter subgraph representation learning

models in practice.

2.1 Learning on Graphs

Graph structured data has much prevalence in our society. Observed data such as user

interaction, collaborations between authors, protein-protein interaction, drug-drug in-

teraction etc. can be modeled as graphs. This has lead to the rise and prevalence

of graph neural networks methods, which are currently the de-facto method in learn-

9

ing graph data. We provide an example of modeling data as a graph in Figure 1.1.

Graph Neural Networks have emerged as the widely accepted solution for learning

rich dense latent representations of graph data due to its ability to model graph data

and interactions between the entities very well. Graph Neural Networks have had

immense success in the task of: (1) node classification, (2) link prediction, and (3)

graph classification downstream tasks as well. One of the most interesting and rapidly

developing domain in this field is link prediction. By modeling the interactions be-

tween nodes in a graph as a link prediction problem, graph neural networks can learn

the representation of a pair of nodes (i.e., a link) and treat this as a classification

problem. Link prediction has found applications in many fields ranging from pre-

dicting drug side effects, drug-repurposing [31], understanding molecule interactions

[42], building recommender system [51, 96, 4], knowledge graph completion [74] and

predicting friendship between a pair of users [15].

2.1.1 What is a Graph?

Before we dive deep into the history and background of graph representation learning,

we formally define a graph and briefly talk about the different types of graphs. A

graph is represented byG = (V,E,X), where V = {1, 2, .., , n} is the set of nodes, E ⊆

V ×V represents the set of edges and X ∈ Rn×d represents the d-dimensional features

associated with the node, if any. Furthermore, we use an adjacency matrix A ∈ V ×V

to represent the connectivity of the graph, where Au,v = 1 implies the existence of an

edge (u, v) ∈ E. Typically, we deal with graphs which are undirected, implying if an

edge (u, v) exists, i.e, Au,v = 1, it also means that Av,u = 1. In the case of directed

graphs, the reverse link (existence of (v, u) given (u, v)) is not always guaranteed.

Graphs can also be weighted, where the adjacency matrix contains weights associated

with the edges in place of binary values, i.e., Au,v ̸= 0 if (u, v) ∈ E. For example,

10

weights in a citation graph can be the year in which the citation occurred. In case the

graph contains nodes and edges of different types, we call this graph a multi-relational

graph. Examples of multi-relational graphs include knowledge graphs where edges are

represented as tuples of (u, r, v), where r represents the type of relationship that exists

between the nodes (u, v). For e.g., in a biomedical knowledge graph, one can represent

medicines used to treat diseases as follows: a medicine (node u) used to treat a disease

(node v) forms an edge, where r is the relationship between (u, v) representing the

‘treatment’. In this work we primarily focus on homogeneous graphs, where nodes

and edges are of the same type.

2.1.2 Early Work in Graph Representation Learning

One of the earliest work in graph representation learning focused on learning rich

latent representations of nodes based on random walks centered around the nodes

in the networks.1 This line of work include DeepWalk [72], LINE [79] and node2vec

[29], and is broadly referred to as shallow embedding approaches. DeepWalk was the

pioneer model in this category of shallow embedding approaches. In DeepWalk, the

authors extend the idea of Skip-Gram [62] and negative-sampling [63] to the context

of networks. However, these shallow embeddings methods had several drawbacks that

limited them from the context of being applied to real-world tasks. These disadvan-

tages include inability to consume the initial nodal features associated with the node,

X, and their inability to be applied in an inductive learning setting. Specifically, we

refer to inductive learning setting as one where nodes in testing phase are never seen

during training.

Another line of early research in graph representation learning is the matrix fac-

torization methods, where a condensed latent matrix is learnt that approximates

1In this thesis we interchangeably refer to graph structured data as both networks and graphs.

11

some similarity measure between the nodes in the graph [51, 80]. Leading works,

categorized under matrix factorization, include GraRep [11], and HOPE [67].

2.1.3 Message Passing Graph Neural Networks

The drawbacks faced by shallow embedding methods lead to the growing interest in

Message Passing Graph Neural Networks (MPGNNs)2 [8, 19] such as Graph Convolu-

tional Networks (GCN) [50]. In MPGNNs, node feature representations are iteratively

updated by first aggregating neighborhood features and then updating them through

non-linear transformations. MPGNNs differ in formulations of the respective aggre-

gation and update functions [32]. Essentially, MPGGNs extend convolutions applied

to structured data (such as images) to non-euclidean data (graphs). We dedicate this

subsection to focus on the update and aggregation formulations that make the core

of all modern MPGNNs.

Graph Neural Networks (GNNs) typically take as input the adjacency matrix

A and initial nodal features X, apply L layers of convolution-like operations, and

output Z ∈ Rn×d′ , containing d′-dimensional representation for each node as a row.

For example, the lth-layer output of Graph Convolution Network (GCN) [50] is given

by

H(l) = σ
(
ÂH(l−1)W(l−1)

)
, (2.1)

where, the normalized adjacency matrix Â is defined as,

Â = D̃− 1
2 ÃD̃− 1

2 (2.2)

2We use MPGNNs and GNNs interchangeably even though GNNs represent the broader class in
GRL.

12

where Ã = A+I, D̃ is the diagonal matrix with D̃ii =
∑

j Ãij, and σ is a non-linearity

function (e.g., ReLU). Here, H(0) = X and W(l) is the lth layer’s learnable weight

matrix. After L stacked layers of Eq. 2.1, GCN outputs nodal-representation matrix

Z = H(L). In the event that initial nodal features, X, are absent, one can initialize

it to an identity matrix or even run the shallow embedding methods explained above

and use its output as the initial node features to be input to a GNN.

Multiple GNN architectures have been introduced since the inception of GCN.

Some popular and pivotal models introduced include GraphSAGE [33], GIN [89] and

GAT [82] models. Each of these methods differ in their formulation of the aggregate

and update method in Eq. 2.1.

2.2 Downstream Tasks

The primary application of GNNs is in node related tasks. Examples of such tasks

include node classification (e.g., classifying user in a social network), link prediction

(e.g., predicting if two nodes are likely form a link) and graph classification (e.g., clas-

sifying groups of proteins). We summarize and capture all three primary downstream

tasks performed using Graph Neural Networks in Figure 2.1.

2.2.1 Node Classification

Among the downstream tasks associated with graph structured data, node classifica-

tion stands out as the most popular task. The objective in node classification is to

label each node from a set of predefined labels. For example, for a node u, we wish to

identify the label yu associated with it. An example of this would be identifying if a

user (node) in a social network is a bot or not. We can apply both shallow-embedding

based and GNN based models for this task by computing the softmax over the out-

13

(a) Node Classification
(b) Link Prediction

(c) Graph Classification

Figure 2.1: This figure is best viewed in color. The three primary downstream tasks
solved using Graph Neural Networks. Subfigure 2.1a gives an example of node classi-
fication, where the task is to predict the class to which a node belongs to. Subfigure
2.2 capture the link prediction task, where the goal is to predict the likelihood that
two nodes form a link. Finally, Subfigure 2.1c capture the graph classification prob-
lem, where the goal is to classify the class a graph belongs to.

14

put embeddings Z output by any of these models. I.e., one can calculate the labels

associated with all the nodes in the network with

y = ξ(Z), (2.3)

where ξ is the softmax operation over the learnt nodal embeddings Z to output class

probabilities associated with each node. The difficulty in learning nodal embeddings

stems from the fact that nodal data in a graph is not independently and identically

distributed (i.i.d). This is primarily due to each node’s links to other nodes in the

graph. This relationship/linkage makes each node’s embedding reliant on those of its

neighboring nodes, its neighbors’ neighboring nodes, and so on.

2.2.2 Graph Classification

Graph classification is similar to node classification. However, the distinction comes

from the fact that in graph classification, we intend to classify groups of nodes rather

than individual nodes. An example of graph classification is classifying posts into

communities, given the interaction graph of the users engaged in the post [91]. Ap-

plication of shallow-embeddings methods and GNNs to graph classification can be

achieved by pooling the nodes for which we wish to predict the class and then apply-

ing softmax similar to node classification. For instance,

y = ξ(pool(Z, G)), (2.4)

where pool is any permutation invariant pooling operation such as, max, min or

mean pooling of the target graph G’s learnt nodal embeddings Z and ξ is the softmax

operation. Eq. 2.4 is similar to Eq. 2.3 except that we need to pool the target graph’s

nodes before calculating the label. We also note that in graph classification, since

15

the objective is to make independent predictions related to each graph, the input

graphs follow an i.i.d. As a result, one can consider graph classification to be easier

in comparison to the node classification problem.

It is also worth pointing out that both node and graph classification can belong to

either of the two categories; multi-label and multi-class classification. In multi-class

classification, we are tasked with tagging an entity (node or graph) with one label.

Whereas, in multi-label classification we are tasked with tagging an entity with one

or more labels. In both cases, during training, only a subset of the nodes or graphs

will be exposed. An independent set of unseen nodes or graphs are then used to make

the prediction using the learnt (frozen) weights of GNNs.

2.2.3 Link Prediction

Another important application of graph neural networks is in link prediction. Link

prediction forms the primary focus of this thesis. Many solutions to link prediction

problem [56, 59, 60, 83, 53] has been proposed ranging from simple heuristics (e.g.,

common neighbors, Adamic-Adar [2], Katz [47]) to graph neural networks (GNNs)

[49, 104, 69, 34, 9, 10]. The link prediction problem with an example is highlighted

in Figure 2.2.

16

e

v

u

b

m

a

d

f

c

g

i

j

l

Figure 2.2: This figure is best viewed in color. An example of the link prediction
problem. The task in link prediction is to predict the likelihood that two nodes form
a link. In this example, the task is to predict the likelihood that u and v form a link
given the graph structure enclosing both nodes.

As mentioned earlier, link prediction heuristics can be classified into different

categories based on their distances (or number of hops) to the target links. For

example, first-order heuristics include common neighbor and preferential attachment.

Second-order heuristics include resource allocation and Adamic Adar. We dedicate

the next few sections to formulate some of the most popular first-order and second-

order link prediction heuristics.

The first-order heuristic, common neighbors score (CN), can be formulated as,

CN(u, v) = |N(u) ∩N(v)| (2.5)

where, N(u) denotes the neighborhood set of node u. Similarly, one can formulate

preferential attachment score (PA) as,

17

PA(u, v) = |N(u)| ∗ |N(v)|, (2.6)

where ∗ denotes multiplication.

As seen in the above formulations, both CN and PA estimate the first-order com-

mon neighborhood overlap to determine the likelihood that two nodes u and v form a

link. Second-order heuristics simply extend this neighborhood overlap calculation to

include second-order nodes as well. For example, the Adamic Adar score (AA) can

be formulated as

AA(u, v) = Σk∈N(u)∩N(v)
1

log(|N(k)|)
(2.7)

Similarly, another popular second-order heuristic, resource allocation (RA) can be

formulated as,

RA(u, v) = Σk∈N(u)∩N(v)
1

|N(k)|
(2.8)

As seen in the formulation of RA and AA, the scoring is dependent on the neigh-

borhood overlap calculation involving nodes that are up to 2 hops away from the

target pairs. Higher-order heuristics such as PageRank [68] and SimRank [45] per-

form their formulations involving nodes that are multiple hops away from the target

link.

Even though link prediction heuristics preform well on some datasets, they do

not perform well across all datasets. For example, on datasets where heterophily

is exhibited, link prediction heuristics such as Adamic Adar and common neighbor,

which score links based on neighborhood overlap are seen to fail. Moreover, such

heuristics also are parameter-free, meaning they cannot be trained to generalize over

any given dataset. Finally, it is also worth nothing that most heuristics do not

18

consume nodal features in their calculations.

To overcome the above listed limitations of heuristic based methods, shallow em-

bedding methods and GNNs were suggested for use in solving link prediction tasks.

To apply GNN or latent feature based methods for solving the link prediction objec-

tive, one can consume the learnt latent representation matrix Z, and, for any target

nodes T = {u, v}, compute its joint link representation:

quv = pool (zu, zv) , (2.9)

where, zu, zv are u’s and v’s learned representations in Z, and pool is a pooling/read-

out operation (e.g., Hadamard product or concatenation) to aggregate the pairs’

representations. Then, the link probability p(u, v) for the target is given by

p(u, v) = Ω(quv), (2.10)

where Ω is a learnable non-linear function (e.g., MLP) transforming the target em-

bedding quv into a link probability.

Why GNNs fail on capturing rich link representations

Even though GNNs show highly competitive performance for node and graph classifi-

cation tasks, it falls short in link prediction tasks. This shortcoming of GNNs on link

prediction task is due to the inability of GNNs in capturing node representations that

can distinguish the different roles played by nodes in forming individual links [107].

We illustrate this shortcoming further with the example plotted in Figure 2.3. In the

figure, a GNN, in the absence of node features, will give the same representation to

the nodes V 1, V 3 and V 4. This arises from the fact that every node in the input

graph has the same neighboring node set (each node has two neighbors each). As the

19

neighboring node set of each node in the graph is the same, each node ends up with

the same vector embedding when calculated by a L-layer MPGNN. This problem has

been referred to as the automorphic node problem [12]. As a result, the link represen-

tations , calculated by any permutation invariant operation, for both (V 1, V 3) and

(V 1, V 4) will be the same. However, one can argue that it is more likely that the

link (V 1, V 3) will have a greater chance of forming a link due to the presence of a

common neighbor when compared to the link (V 1, V 4).

V1

V3

V1

V4

Figure 2.3: An example of when GNNs for link prediction can fail. In this example
GNNs, in the absence of nodal features, will give score the chance of linkage of
(V 1, V 3) the same as (V 1, V 4). However, it is more likely that (V 1, V 3) forms a link
compared to (V 1, V 4), as (V 1, V 3) share a common neighbor.

As shown above, the class of MPGNN solutions for link prediction falls short

in capturing graph automorphism and different structural roles of nodes in forming

links [107]. Subgraph representation learning approaches (SGRLs) [104] successfully

overcome this limitation by casting the link prediction problem as a binary graph

classification on the enclosing subgraph about a link, and adding structural labels to

node features. We capture how SGRLs overcome the automorphic node problem in

GNNs in Figure 2.4. As seen in the figure, SGRLs first extract the h-hop enclosing

subgraph (with h = 1 in the example), about the target links (V 1, V 3) and (V 1, V 4).

Following this, each extracted subgraph is fed into a GNN to learn if the target link

will be formed or not. By doing so, the learnt vector representations for the target

20

link (V 1, V 3) is different from (V 1, V 4). This is primarily owing to the the fact the

the extracted subgraphs around both target links are unique (see Figure 2.4).

The above discovery led to the emergence of subgraph representation learning ap-

proaches (SGRLs) [104, 55], which offer state-of-the-art results on the link prediction

task. However, a common theme impeding the practicality and deployment of SGRLs

is the lack of its scalability to large-scale graphs. We dedicate the following sections

to elaborate more on SGRLs with a focus on showcasing its strengths (capturing

outstanding link representations) and weaknesses (scalability issues).

21

V1

V3

V1

V4

V1

V3

V1

V4

?

?

Figure 2.4: This figure is best viewed in color. How SGRLs overcome the problem
posed in Figure 2.3. On the left we capture the original graphs with pairs of nodes
(V 1, V 3) and (V 1, V 4) highlighted, for which we wish to see if links would be formed.
SGRLs effectively extract the subgraph involving the target nodes (shown on the
right column), and run GNNs on this extracted subgraph. In this example, we ex-
tract the 1-hop subgraphs around (V 1, V 3) and (V 1, V 4). Through this process, the
learnt representations for (V 1, V 3) is different from (V 1, V 4), due to the fact that the
enclosing subgraphs capture V 1’s role in forming links with V 3 and V 4 uniquely.

2.2.4 Subgraph Graph Neural Networks

Subgraph representation learning approaches (SGRLs) [103, 104, 107, 95, 57, 78]

treat link prediction as a binary graph classification problem on enclosing subgraph

Guv = (Vuv ⊆ V,Euv ⊆ E) around a target {u, v}. We can define the subgraph

enclosing target pair of nodes {u, v} as follows,

Definition 1 (Enclosing Subgraph [104]) Given a graph G, the h-hop enclosing

22

subgraph around target nodes (u,v) is the subgraph Gh
uv induced from G with the set

of nodes {j∥d(j, x) ≤ h or d(j, y) ≤ h}, where d(i, j) is the geodesic distance between

node i and j.

SGRLs aim to classify if the enclosing subgraph Gh
uv is closed or open (i.e., the

link exists or not).3 We capture how SGRLs use the enclosing subgraphs around

target nodes for link prediction in Figure 2.5. For each Gh
uv, SGRLs produce its

nodal-representation matrix Zuv using the stack of convolution-like operators (see

Eq. 2.1). Then, similar to Eq. 2.9, the nodal representations would be converted

to link probabilities, with the distinction that the pooling function is graph pooling

(e.g., SortPooling [105]), operating over all node’s representations (not just those of

targets) to produce the fixed-size representation of the subgraph. To improve the

expressiveness of GNNs on subgraphs, SGRLs augment initial node features with

some structural features determined by the targets’ positions in the subgraph. These

augmented features are known as node labels [107]. Node labeling techniques fall into

zero-one or geodesic distance-based schemes [43]. One of the most popular labeling

scheme is the double-radius node labeling scheme,

DRNL(x,Gh
uv) = 1 +min (dxu, dxv) + ⌊d′/2⌋⌈d′/2− 1⌉, (2.11)

where, x represents the nodes in the subgraph Gh
uv, dxu is the geodesic distance of x

to u in Gh
uv when node v is removed, and d′ = dxu+dxv. Note that the distance of x to

each target node u is calculated in isolation by removing the other target node v from

the subgraph. The target nodes are labeled as 1 and a node with ∞ distance to at

least one of the target nodes is given the label 0. Each node label is then represented

3We interchangeably use notations Gh
uv and Guv in an effort to refer to the enclosing subgraph

surrounding the target nodes (u, v). The superscript, h, which denotes the size of the enclosing
subgraphs is sometimes dropped for brevity.

23

e

v

u

b

m

a

d

f

c

g

i

(a) Enclosing Subgraph

e

v

u

b

m

a

d

f

c

g

i

(b) Closed

e

v

u

b

m

a

d

f

c

g

i

(c) Open

Figure 2.5: This figure is best viewed in color. As a solution to the link prediction
problem, SGRLs extract the enclosing subgraph surrounding the target pairs of nodes
and pass it to a GNN, which learns to decide if the enclosing subgraph is closed (i.e.,
link forms) or open (i.e., link does not form). In this example, Subfigure 2.5a shows
the original graph with the target nodes (u, v) for which we want to predict if a link
will be formed or not. SGRLs extract the enclosing subgraph surrounding the nodes
(u, v) and then treats it as a binary classification problem, i.e., whether the enclosing
subgraph of (u, v) will be closed (like Subfigure 2.5b) or open (like Subfigure 2.5c).

24

by its one-hot encoding, and expands the initial node features, if any.

We refer to Xuv as the matrix containing both the initial node features and labels

generated by a valid labeling scheme [107]. SGRLs then use Xuv for the learning

process pertaining to each link. The expressiveness power of SGRLs comes with high

computational costs due to subgraph extractions, node labeling, and independent

operations on overlapping large subgraphs. Note that the subgraph size grows ex-

ponentially with the hop size h, and large-degree nodes (e.g., celebrities in a social

network) possess very large enclosing subgraphs even for a small h. This compu-

tational overhead is exaggerated in denser graphs and deeper subgraphs due to the

exponential growth of subgraph sizes. We visualize this bottleneck in Figure 2.6. We

focus on addressing this scalability issue of SGRLs in this thesis.

25

v
u

Figure 2.6: This figure is best viewed in color. An example of where extracting
the enclosing subgraph surrounding links can be computationally demanding. In this
example, the 2-hop enclosing subgraph of (u, v) contains a large number of nodes. One
can also visualize how much the subgraph grows when 2-hop subgraphs (highlighted
by the yellow nodes) are extracted vs. just one hop subgraphs (highlighted by the
red nodes). This is sometimes referred to as the neighborhood explosion problem.

26

Chapter 3

Related Work

In this chapter we familiarize the reader with the related works in graph representa-

tion learning and its applications on the link prediction objective through a thorough

literature review. We then focus our discussions on subgraph representation learning

methods, the current state-of-the-art class of models for link prediction. We close dis-

cussions discussing scalability bottlenecks faced by GNNs and in particular, SGRLs.

3.1 Shallow Embedding Methods

Graph representation learning (GRL) [32] has numerous applications in drug discov-

ery [88], knowledge graph completion [109], and recommender systems [96]. The key

downstream tasks in GRL are node classification [33], link prediction [104] and graph

classification [105]. The early work in GRL, shallow encoders [72, 29], learn dense

latent node representations by taking multiple random walks rooted at each node.

The earliest work in this category of shallow encoders or shallow embedding methods

is DeepWalk [72]. DeepWalk extended concepts and models established in NLP (nat-

ural language processing) at the time to the context of networks. DeepWalk proposed

27

talking multiple random walks from each node in the graph and then utilizing a Skip-

Gram [62] model to encode the nodes encountered in the random walk. DeepWalk

treats the nodes encountered in each random walk as a “language” for which a latent

representation is calculated using the Skip-Gram model. The leaning process is seen

as increasing the likelihood of nodes in a random walk to occur together. DeepWalk

can be summarized as an unsupervised deep learning approach for capturing rich low

dimensional representations of nodes which can be applied to a plethora of indepen-

dent downstream tasks. The optimization process in DeepWalk utilizes Stochastic

Gradient Decent (SGD) [7] with negative sampling [63].

node2vec [29] is an extension to the DeepWalk model aimed at improving the

random walk generation at each node. DeepWalk [72] assigns equal importance to

both breadth first (BFS) and depth first traversals (DFS) from a node through the

use of unbiased uniform random walks. However, there are graph datasets which fol-

low homophily principles [24, 92], where a DFS style of traversals could be preferred

over BFS (i.e., a “zoomed-out” macro level view of the neighborhood of the nodes

is essential for calculating community structure). The authors of node2vec formulate

this balance between preferring DFS and BFS biased random walks with the intro-

duction of the in-out hyperparameter (q) to control the shift of importance between

homophily principles (DFS) and structural equivalence (BFS) [37]. node2vec also

introduces another notable hyperparameter p in addition to the return parameter q,

which captures the importance of revisiting a node already visited. The node2vec

model is equivalent to DeepWalk when p = q = 1.

Other flavors of random walk style shallow embedding models also exist. Few

of the prominent models other than Deepwalk and node2vec are metapath2vec [20]

and struc2vec [75]. metapath2vec is a meta bath biased random walk method that is

aimed at modeling heterogeneous graphs. This was an improvement over node2vec

28

and DeepWalk, both of which were designed to only work with homogeneous graphs.

One obvious disadvantage of metapath2vec is in the addition of the metapath hy-

perparameter to influence the random walks by, which needs to be fine tuned for

each graph dataset. struc2vec on the other hand is yet another random walk method

that is designed to be applicable in niche areas where the focus of the embeddings

should be on capturing the structural similarity over other features such as homophily.

struc2vec is not proposed as an improvement over other models, but is made to target

graphs that require structural information to be captured with more importance over

other properties.

Another approach that does not fall under the domain of random walk based

models, but one that is used to capture node embeddings is the LINE (Large-scale

Information Network Embedding) model [79]. The LINE model captures node em-

beddings through the use of two embedding objective functions, O1 and O2. O1 has

the goal of capturing the node’s direct connection information and O2 has the goal

of capturing the node’s structural information on a global level using the 2-hop adja-

cency matrix A2. Here, A2 refers to the resulting matrix from the multiplication of

the input graph’s adjacency matrix with itself. It is also to be note that A2 contains

the number of 2-length paths between the nodes in the original graph. LINE, despite

being conceptually similar to both DeepWalk and node2vec, does not explicitly use

random walks for the learning process.

The aforementioned models all fall in the category of shallow node embedding

approaches. This is due to the fact that the embeddings produced by these models

are equivalent to a lookup in an embedding table. The embeddings for a node either

exist or they don’t. However, for real world networks, nodes keep getting added to

the graph on an ad-hoc basis and more powerful models to capture node embeddings

in an inductive manner is essential.

29

We can summarize the shortcomings of the shallow embeddings approaches as

follows,

1. Shallow embedding approaches do not consume the initial nodal features, X,

that are part of the graph. This is a significant drawback on datasets such as

the Cora, CiteSeer and PubMed datasets [93], where the graphs are presented

with rich feature information that can aid in the downstream prediction task.

2. Shallow embedding approaches are inherently transductive in nature [33]. Under

the transductive learning setting, all the nodes for which we seek to learn the

latent representation for needs to be exposed during the training phase. As

such, shallow embedding models will not be feasible in an ‘online’ setting, where

nodes are introduced on the fly. This is because for each new node introduced,

the whole input graph has to undergo training and the model has to perform

optimizations.

These shortcomings led to growing interest in Message Passing Graph Neural

Networks (MPGNNs)1 [8, 19] such as Graph Convolutional Networks (GCN) [50]. In

MPGNNs, node feature representations are iteratively updated by first aggregating

neighborhood features and then updating them through non-linear transformations.

MPGNNs differ in formulations of aggregation and update functions [32]. We dedicate

the next section to discuss in detail about MPGNNs.

How Shallow Embedding Models are Related to This Thesis

Shallow embedding approaches like DeepWalk and node2vec are well established un-

supervised learning methods. As such, in our work, we use it to create the initial

1We use MPGNNs and GNNs interchangeably even though GNNs represent the broader class in
GRL.

30

nodal features for datasets which come with no nodal features. Our S3GRL requires

initial nodal features in its learning process, and as such, for non-attributed datasets,

we first run shallow embedding methods to generate the initial nodal features as a

preprocessing step.

3.2 Message Passing Graph Neural Networks

One of the first works that introduced deep neural networks for graphs is the PATCHY-

SAN model introduced by Neipert et al. in [66]. PATCHY-SAN was the first of its

kind model that extended convolutions to non-Euclidean graph structured data. How-

ever, it used a breadth-first style traversal for capturing the receptive field of each

node and as the degree of nodes increases, the traversal becomes more computa-

tionally demanding. Moreover, PATCHY-SAN processes nodes according to a fixed

ranking of the nodes. To overcome the disadvantages posed by PATCHY-SAN, the

Graph Convolutional Neural network (GCN) [50] architecture was proposed.

GCN is the primary deep learning architecture that laid the foundation for the

class for message passing graph neural network architectures (MPGNNs). Most mes-

sage passing graph neural network architectures can be formalized with the use of two

functions; the aggregate function and the update function [32]. The aggregate func-

tion is used to formulate the method of aggregating messages from a node’s neighbors

and the update function is used to define how the update of a node’s vector embedding

using the aggregated message information takes place. Multiple flavors of message

passing neural networks exist that is based on these two functions. All such flavors of

MPGNNs including GCN can be derived by modifying these two fundamental func-

tions. Some examples of such architectures include GraphSAGE, Graph Attention

Networks (GAT) [82], Graph Isomorphism Network (GIN) [89] etc.

31

Even though GCN is the pioneer message passing graph neural network model,

it lacked in its ability to be applicable in an inductive learning setting. GraphSAGE

[33] was the first MPGNN architecture formulated to work in the inductive learning

setting. Moreover, the GraphSAGE model also places emphasis on scaling up of

graph neural networks by sampling a subset of the nodes’ neighbors at each hop,

or, pruning the computational graph originating from each node. One additional

contribution from the authors of GraphSAGE is in the flexibility of the aggregation

operator’s formulation. The flexible definition of GraphSAGE aggregation allows for

both permutation invariant aggregation operators like average or sum to be used as

well as permutation variant operators like Long Short-Term Memory (LSTM) [36]

models to be used.

Both GCN and GraphSAGE are isotropic models in the sense that while calcu-

lating node embeddings, equal importance is given to the every node in the node’s

neighborhood. Graph Attention Networks [82] was the first model to introduce and

extend the concept of attention [81] to graph structure data. GAT falls into the

category of anisotropic graph neural networks. GAT utilizes either single-headed at-

tention or multi-headed attention in the aggregation step to weight the messages of a

node’s neighbors differently. As shown in the experimental results of GAT, weighing

a nodes’ neighbors messages based on attention is seen to improve GAT’s results on

downstream tasks compared to GraphSAGE and GCN.

GCN, GraphSAGE and GAT models additionally can be categorized as graph

neural networks are at most as powerful as the 1-Weisfeiler-Lehman (WL) graph

isomorphism test [85]. The 1-WL test is a powerful, iterative graph coloring algorithm

used to help determine if two graphs are isomorphic or not. This limitation led to

the creation of the graph isomorphism network(GIN) [89], which is a GNN that is

as powerful as the 1-WL test. GIN utilizes an MLP in the MPGNN update and

32

aggregate functions to emulate an injective function that maps unique aggregated

representations of a node’s neighborhood to non-overlapping (unique) representations.

GIN is able to push the expressivity of MPGNNs to be as powerful as the 1-WL test

owing to the universal approximation theory of MLPs [39, 38].

Another interesting development in MPGNNs is focusing on creating more ex-

pressive GNN architectures. One of the first models in this line of work include the

introduction of Identity Aware graph neural networks [97] that extends graph neural

networks’ ability to be expressive beyond the 1-WL test. ID-GNN uses a hetero-

geneous message aggregation function; one update function for the focus node and

another update function for the other nodes. Additionally, the focus node being pro-

cessed is colored differently in order to make the distinction in the update functions.

IDGNN paved way to a plethora of other works that can be classified under Subgraph

GNNs [43, 106, 6, 110]. Authors in [25] were the first to show that Subgraph GNNs

are more powerful than the 1-WL test but bounded by the 3-WL test. This line of

work in deriving more expressive GNNs are orthogonal to this thesis.

Even with the advancement of node representation learning through more pow-

erful GNNs being devised, MPGNNs performance on link prediction tasks remained

subpar. We dedicate the next section to talk about SGRLs, which advanced the

representation capability of GNNs on link prediction tasks.

How MPGNNs are Related to This Thesis

MPGNNs have been extensively used in link prediction tasks. However, as mentioned

earlier, they have their drawbacks when it comes to learning link representations.

We use MPGNNs as a baseline to empirically showcase the weaknesses of different

MPGNN architectures compared to SGRLs, including our S3GRL model instances.

33

3.3 Subgraph Graph Neural Networks

Link prediction is a fundamental problem on graphs, where the objective is to com-

pute the likelihood of the presence of a link between a pair of nodes (e.g., users in

a social network) [56]. Network heuristics such as common neighbors or Katz Index

[47] were the first solutions for link prediction. However, these predefined heuris-

tics fail to generalize well on different graphs. To address this, MPGNNs have been

used to learn representations of node pairs independently, then aggregate the rep-

resentations for link probability prediction [49, 61]. However, as stated earlier, this

class of MPGNN solutions falls short in capturing graph automorphism and captur-

ing the different structural roles played by the nodes in forming links [107]. SEAL

[104] successfully overcomes this drawback by treating the link prediction problem

as a binary classification problem on the subgraph enclosing a link, and through the

use of labeling tricks [107] for augmenting the node features. SEAL led to the emer-

gence of subgraph representation learning approaches (SGRLs) [104, 55], which offer

state-of-the-art results on the link prediction task. SGRLs [103, 104, 107, 95, 57]

treat link prediction as a binary graph classification problem on enclosing subgraph

Guv = (Vuv ⊆ V,Euv ⊆ E) around a target {u, v}. SGRLs aim to classify if the

enclosing subgraph Guv is closed or open (i.e., the link exists or not). However, as

stated in earlier sections, the expressiveness of SGRLs come at the cost of expensive

preprocessing involving subgraph extractions and labeling.

SEAL (Learning from Subgraphs, Embeddings, Attributes for Link prediction)

[104] is a foundational paper in link prediction for graphs. The authors are motivated

by two flaws in existing link prediction models. The first one being that specific

heuristic driven approaches are not a universal nor feasible solution for varying graph

datasets. Secondly, higher order heuristics, such as PageRank, can be very compute

34

heavy while running on medium to large sized graphs. To this end, the authors

propose a γ− decaying heuristic. The authors show that any higher order heuristics

(such as PageRank) can be approximated with just a localized subgraph view around

the nodes. The larger the induced subgraphs around nodes, exponentially less the

errors will be in calculating the heuristics. This lead the authors to the conclusion

that localized induced subgraphs around a pair of nodes with a small hop distance

is sufficient in learning about their chances of forming links. Moreover, a localized

view of the nodes reduces the infiltration of influence from far away nodes as well. In

practice, SEAL implements this γ − decaying heuristic framework with the help of

GNNs (e.g., DGCNN [105]). SEAL does this by first extracting the subgraph around

links and then feeding into a GNN that is aimed at learning the heuristics associated

with the subgraphs.

Since SEAL, multiple works have since been introduced that either improve SEAL

or complement it. One of the earliest works in this category is Distance Encoding

GNN (DE-GNN) [55]. The idea proposed by authors in (DE-GNN) is to inject dis-

tance encoding information along with the node attributes to help GNNs in learning

to distinguish otherwise indistinguishable nodes according to the 1-WL test. To this

end, the authors propose two versions of DE-GNN, the vanilla version and a more

advanced DEA-GNN which uses the distance encoding information inside the aggre-

gation step as a controller. The vanilla version, DE-GNN, injects distance information

as one-hot vectors alongside (concatenates) the existing node attribute information

of the nodes. The distance information injected can be the shortest path to the other

nodes or even the PageRank scores calculated. DEA-GNN on the other hand, utilizes

the distance encoding information during the aggregation step. For example, while

aggregating node representations for each layer, node representations up to shortest

path distance of n can be considered (as opposed to just aggregating for one hop per

35

layer in GCN) [21]. The DEA-GNN version is at least as powerful as the DEGNN,

but, is not guaranteed to always be better as seen in the experiments. Moreover, the

two versions can be used together (have distance encoding as feature and also use

distance encoding during aggregation step).

Following that, both distance encoding and the DRNL labeling schemes were uni-

fied under the labeling scheme framework in [107]. Zhang et.al, studied the different

labeling schemes utilized in subgraph representation learning works and identified and

established the labeling scheme framework. Labeling scheme framework introduced

rules, which if satisfied, could help classify any labeling used to augment initial nodal

features as a labeling trick. Other than distance encoding and DRNL, some other la-

beling tricks that has found success include, the zero-one labeling trick. The zero-one

labeling trick is a simple, but powerful labeling trick where 1 is added to nodes that

form a link (i.e., the nodes in T), and 0 otherwise. Zero-one labeling trick has been

proven to be very powerful in works such as GLASS [84] which focus on subgraph

classification [3].

Multiple other subgraph representation learning models also exists. For example,

DEAL was proposed as an extension of SEAL to be applicable in an inductive learning

setting [34]. On the other hand, Line Graph Neural Networks (LGLP) convert the

subgraphs into line graphs before feeding into GNNs to get rid of the graph pooling

step in SEAL [10]. Whereas, mLink creates a multi-scale view of the subgraphs using

labeling tricks [9]. More recently, WalkPool was introduced which is proposed as a

pooling layer that is added to subgraph representation learning frameworks aimed

at improving the lack of higher order topological information that is missing during

learning in models like SEAL [104]. The authors of WalkPool argue that DRNL

labeling scheme is a substitute for adding first order topological information but

cannot fully capture higher order information such as motifs. To this end, the authors

36

create a new pooling layer called WalkPool. WalkPool pooling consumes the latent

(sub)graphs that is output from GNNs such as SEAL, VGAE [49] in the SGRL

framework. It can easily be seen as a substitute for max, min, mean or SortPooling

[105] layers currently utilized in SGRL frameworks.

All of these works discussed above can be grouped together under the general

framework of subgraph representation learning approaches (SGRLs), aimed at in-

creasing the expressive power of GNNs for link prediction. In the next sections, we

discuss about scalability of GNNs followed by our main focus, scalability of SGRLs.

How SGRLs are Related to This Thesis

SGRLs are the current state-of-the-art class of neural models for the link prediction

task. However, SGRLs come with high computational costs. In this thesis, we propose

S3GRL, which is aimed at relieving the computational overheads that are plaguing

SGRLs. As such, we use multiple SGRLs, like SEAL, DE-GNN and WalkPool, as a

baseline for comparison in experiments against S3GRL. This comparison is done to

empirically showcase S3GRL’s scalability vs. other state-of-the-art SGRL models.

3.4 Scalability in Graph Neural Networks

Recently, a new research direction has emerged in GNNs on scalable training and

inference techniques, which mainly focuses on node classification tasks. A common

practice is to use different sampling techniques. Sampling based GNN scalability

works can be categorized into node based sampling and graph sampling methods.

One of the earliest works that can be classified under the node sampling category is

GraphSAGE [33]. The authors proposed pruning the computational graph related to

each node by setting an upper limit in the number of neighbors that will be sampled

37

per hop for a node. Even though GraphSAGE is able to reduce the computational cost

associated with training graph neural networks, there still exists the neighborhood-

explosion problem in GraphSAGE as the number of nodes increases exponentially as

the layers increase. To overcome the lack of theoretical guarantees of convergence

in GraphSAGE and to overcome the neighborhood explosion problem, Chen et al.

proposed a novel importance sampling based on the degree of nodes in the graph (as

opposed to the neighbors of a node) to sample nodes per convolution layer [13] inde-

pendent of the connections between them.2 To overcome the limitations of FastGCN,

Zou et al. [115] proposed a layer-dependent sampling of nodes called LADIES.3 Fol-

lowing node sampling based techniques, Chiang et al. [16] proposed a graph clustering

based mechanism, called ClusterGCN, for mini-batch training of nodes in graph neu-

ral networks. Cluster-GCN falls into the category of graph sampling methods. The

authors in Cluster-GCN proposed to apply a graph clustering algorithm to construct

mini-batches of nodes to speed-up the training process. To improve ClusterGCN,

Zeng et al. proposed GraphSAINT [102] which introduced two regularization param-

eters in the training phase aimed at reducing the variance and bias across clusters.

Apart from that, GraphSAINT also introduced an edge-sampling algorithm, random

walk based algorithm and a uniform node sampling algorithm to construct induced

subgraphs for forming clusters/mini-batches. However, all the sampling based models

focus on the task of node classification and not link prediction.

Apart from node and graph sampling based approaches, there also exists works like

VR-GCN [14] and GNNAutoScale [23] which focus on utilizing historical embeddings

of nodes to improve the training speeds. Another interesting line of work is in using

2It can be argued that FastGCN is a layer sampling technique as opposed to a node sampling
technique. This is because n nodes are sampled per layer agnostic of their connections to the previous
and following layers.

3LADIES, similar to FastGCN can be argued to be a layer sampling technique as well.

38

techniques from knowledge distillation [35] to train a student MLP to accelerate the

inference speedup [108]. This line of research is orthogonal to the models and methods

researched so far with respect to scaling up GNNs and falls under the category of

inference acceleration methods. Regardless of the scalability models discussed so far,

and others [46, 98, 100, 101] that exist, the primary focus of these works are on node

classification and not on the link prediction objective.

3.4.1 Scalability by Simplification

Other scalability efforts in GNNs utilize simplification techniques, such as removing

intermediate non-linearities [87, 26], to speed up the training and inference. S-GCN

[87] and SIGN [26] fall under this category of models. S-GCN was the pioneering

model under the simplification of GNN category. The authors in S-GCN were moti-

vated by questioning why GNNs started out with complicated approaches, involving

multiple nested convolutions, in place of simpler linear learning components. To this

end, the authors study the impact of the non-linearity function in the GCN formula-

tion (σ in Eq. 2.1), and propose completely dropping it. What results in dropping the

non-linearity in Eq. 2.1 is a collapse of the multiple nested convolutions, and layer-

wise weight multiplications. However, as there is no longer the non-linearity function

in between each layer’s weight update, the authors proposed replacing the individual

weights with a single weight matrix instead. This is the S-GCN model. The S-GCN

model demonstrated to be very scalable and easier for training and inference owing

to its singular linear weight. More interestingly, the updated formulation also allowed

for easy precomputation, which involved simple matrix multiplications which could

be performed even before training, leading to even more overall speed-up.

An extension of S-GCN is SIGN [26]. In SIGN, the authors proposed using mul-

tiple operators in place of the singular diffusion operator utilized in S-GCN. The

39

authors are motivated by the inception module in CNNs [77], and proposed using

multiple operators which, similar to S-GCN, can be easily pre-computed and lead to

better generalization on graph data, all the while boosting scalability. Essentially,

SIGN becomes S-GCN when a single adjacency operator operator is utilized in its

framework. We mathematically detail both S-GCN and SIGN models in Chapter 4.

Scalability by simplification approaches have been shown to speed up the training

of MPGNNs (at the global level) for node and graph classification tasks, and even for

link prediction [73]; however, they are not directly applicable to SGRLs which exhibit

superior performance for link prediction. In this work, we take the scalability-by-

simplification approach for SGRLs (rather than for MPGNNs) by introducing Scalable

Simplified SGRL (S3GRL). Allowing diverse definitions of subgraphs and subgraph-

level diffusion operators for SGRLs, S3GRL emulates SGRLs in generalization while

speeding them up.

3.4.2 Scalability of SGRLs

There is a growing interest in the scalability of SGRLs [95, 57, 12], with a main

emphasis on the sampling approaches. SUREL [95, 94], by deploying random walks

with restart, approximates subgraph structures; however, it does not place its focus

on using GNNs for link prediction. In SUREL, the subgraph extraction is replaced

by M -many m-length random walk sequences from the nodes given. Replacing sub-

graph extraction with random walks helps reduce the preprocessing time required for

training. To account for the loss of information, the authors also propose Relational

Positional Encoding (RPE) for the nodes in the walks. The walk sequence along with

the RPE vectors of the query nodes form the sequence that is provided to a neural

network for learning. The neural network can be an RNN, CNN, transformer or a

GNN. To further improve the SUREL model, the authors also propose methods for

40

the fast storage and access of the random walk sequences and the RPE vectors. The

authors also come up with a fast approach for combining the walk data of multiple

nodes in the query nodes. Finally, the authors also propose a way to train mini-

batches of queries using a breadth first search originating from a subset of the query

nodes.

ScaLed [57] uses similar sampling techniques of SUREL, but to sparsify subgraphs

in SGRLs for better scalability. ScaLed accomplishes this by taking multiple random

walks with restarts from the target links. We capture how ScaLed’s random walk

based enclosing subgraph helps create sparsified enclosing subgraphs in comparison

to SEAL in Figure 3.1. Moreover, the ScaLed model can use any labeling trick (e.g.,

DRNL, zero-one labeling, etc.) [107] to encode the distances between target nodes

and other nodes in the sampled subgraphs. Similar to SEAL, the distance labels

along with the nodal features (if any) of the nodes in the sampled subgraph are

fed into a graph neural network with graph pooling operation (e.g., DGCNN with

SortPooling operation [105]) for the classification task. The ScaLed model offers

easy plug-and-play modularity into most graph neural networks (e.g., GCN [50], GIN

[89], GraphSAGE [33], DGCNN [105], etc.), and can also be used alongside any

regularization technique or loss function.

Another notable work in this category is ELPH/BUDDY [12]. ELPH/BUDDY

uses subgraph sketches as messages in MPGNNs but does not learn link representa-

tions explicitly at a subgraph level. Our work complements this body of research.

Our framework can be combined with (or host) these methods for better scalabil-

ity (see our experiments for an example). Finally, another notable mention is the

SSNP [44] model. The SSNP model uses subgraph neighborhood in the pooling layer

to enhance the expressiveness of the representations used for subgraph classification.

SSNP operates on the base graph and thus does not require any subgraph extractions.

41

However, SSNP is aimed at the subgraph classification task and not link prediction.

How Scalability of SGRLs are Related to This Thesis

Multiple scalability efforts have been made for GNNs. However, the bulk of these

efforts have been targeted towards node and graph classification tasks. SGRLs are

the premier class of models in link prediction. Although SGRLs offer state-of-the-art

results in link prediction, little work has been done in scalability of SGRLs. Our

S3GRL framework is aimed at overcoming the computational bottlenecks faced by

SGRLs while offering limited to no loss of link representation learning expressivity.

42

v
u

(a) The original dense subgraph enclosing (u, v).

v
u

(b) The sparsified subgraph enclosing (u, v) found upon applying the ScaLed
model.

Figure 3.1: This figure is best viewed in color. An example of how the ScaLed
model sparsifies dense enclosing subgraphs. In this example, Subfigure 3.1a captures
the dense enclosing subgraph around the target nodes (u, v). ScaLed, by taking the
subgraph induced by the random walks originating from (u, v) (2 random walks of
length 2 in this example), is able to sparsify the subgraph resulting in faster training
and inference times for SGRLs.

43

Chapter 4

Approach

4.1 Preliminaries

Consider a graph G = (V,E), where V = {1, . . . , n} is the set of nodes (e.g., in-

dividuals, proteins), E ⊆ V × V represents their relationships (e.g., friendship or

protein-to-protein interactions). We also let A ∈ Rn×n represent the adjacency ma-

trix of G, where Auv ̸= 0 if and only if (u, v) ∈ E. Additionally, the graph G can be

directed or undirected. If G is directed, Auv ̸= 0 does not imply Avu ̸= 0. On the

other hand, if G is undirected Auv = Avu. We further assume each node possesses a

d-dimensional feature vector (e.g., user’s profile, features of proteins, etc.) stored as

a row in feature matrix X ∈ Rn×d.

4.2 Problem Statement

Link Prediction. The goal in link prediction is to infer the presence or absence of

an edge between target nodes T = {u, v} given the (partially) observed matrices A

and X. The learning problem is to find a likelihood function f such that it assigns a

44

higher likelihood to those target nodes with a missing link. The likelihood function

can be formulated by various neural network architectures (e.g., MLP [30] or GNNs

[18]).

4.3 Scalability by Simplification

To improve the scalability of GNNs for node classification tasks, several attempts

are made to simplify GNNs by removing their intermediate nonlinearities, thus mak-

ing them shallower, easier to train, and scalable. Simplified GCN (SGCN) [87] has

removed all but the last non-linearities in L-layer GCNs, to predict class label prob-

abilities Y for all nodes by

Y = ξ(ÂLXW), (4.1)

where, ξ is softmax or logistic function, and W is the only learnable weight ma-

trix. The term ÂLX can be precomputed once before training. Benefiting from this

precomputation and a shallower architecture, SGCN improves scalability. SIGN has

extended SGCN to be more expressive yet scalable for node classification tasks. Its

crux is to deploy a set of linear diffusion matrices M(1), . . . ,M(r) that can be applied

to node-feature matrix X. The class probabilities Y are computed by,

Y = ξ(ZW′) (4.2)

where,

Z = σ

(
r⊕

i=0

M(i)XWi

)
. (4.3)

Here, ξ and σ are non-linearities, Wi is the learnable weight matrix for diffusion oper-

45

ator M(i),
⊕

is a concatenation operation, and W′ is the learnable weight matrix for

transforming node representations to class probabilities. Letting I be the identity ma-

trix, M(0) = I in Eq. 4.3 allows the node features to contribute directly (independent

of graph structure) into the node representation and consequently to the class prob-

abilities. The M(i) operator matrices help capture different heuristics in the graph.

For example, the powers of the adjacency matrix as operators capture the number of

walks between nodes. As with SGCN, the terms M(i)X in SIGN can be once precom-

puted before training. These precomputations and the shallow architecture of SIGN

lead to substantial speedup during training and inference with limited compromise

on node classification efficacy. Motivated by these efficiencies, our S3GRL framework

extends SIGN for link prediction on subgraphs while addressing the computational

bottleneck of SGRLs.

4.4 Proposed S3GRL Framework

We propose Scalable Simplified SGRL (S3GRL), which benefits from the expressive-

ness power of SGRLs while offering the simplicity and scalability of SIGN and SGCN

for link prediction. Our framework leads to a multi-fold speedup in both training

and inference of SGRL methods while maintaining or boosting their state-of-the-art

performance (see experiments below).

Our S3GRL framework consists of two key components: (i) Subgraph sampling

strategy Ψ(G, T) takes as an input the graph G and target pairs T = {u, v} and

outputs the adjacency matrix Auv of the enclosing subgraphs Guv around the targets.

The subgraph sampling strategy Ψ can capture various subgraph definitions such

as h-hop enclosing subgraphs [104]), random-walk-sampled subgraphs [95, 57], and

heuristic-based subgraphs [100]; (ii) Diffusion operator Φ(Auv) takes the subgraph

46

adjacency matrix Auv and outputs its diffusion matrix Muv. A different class of dif-

fusion operators are available: adjacency/Laplacian operators to capture connectivity,

triangle/motif-based operators [28] to capture inherent community structure, person-

alized pagerank-based (PPR) operators [27] to identify important connections. Each

of these operators and their powers can constitute the different diffusion operators in

S3GRL.

In our S3GRL framework, each model is characterized by the sampling-operator

set S = {(Ψi,Φi)}ri=0, where Ψi and Φi are the ith subgraph sampling strategy and

diffusion operator, respectively. For a graph G, target pair T = {u, v}, and sampling-

operator pair (Ψi,Φi), one can find T ’s sampled subgraph A
(i)
uv = Ψi(G, T) and its

corresponding diffusion matrix M
(i)
uv = Φi(A

(i)
uv). For instance, one can define Ψi

to sample the random-walk-induced subgraph A
(i)
uv rooted at {u, v} in G. Then, Φi

can compute the l-th power of A
(i)
uv, to count the number of l-length walks on the

subgraph. S3GRL computes the operator-level node representations of the selected

subgraph A
(i)
uv by

Z(i)
uv = M(i)

uvX
(i)
uv. (4.4)

Here, X
(i)
uv is the node feature matrix for nodes in the selected subgraph A

(i)
uv for the

sampling-operator pair (Ψi,Φi). Eq. 4.4 can be viewed as feature smoothing where

the diffusion matrixM
(i)
uv is applied over node featuresX

(i)
uv. S3GRL then concatenates

the operator-level nodal-representation matrix Z
(i)
uv of all sampling-operator pairs to

form the joint nodal-representation matrix :

Zuv =
r⊕

i=0

Z(i)
uv (4.5)

The concatenation between nodal-representation matrices with dimensionality mis-

match should be done with care: the corresponding rows (belonging to the same

47

A X

u

v

d

u

v

d a

c

u

v

d a
b

c

u

v

d

u

v

d a

c

u

v

d a

c

b

u

S
u
b
g
ra
p
h
A

u
v

D
iff
u
si
o
n

A
u
v

A
2 u
v

A
3 u
v

× × ×

d

v

a
b

c

q
u
v

P
u
v

u v a b c d

u v d u v a c d u v a b c d

u
v

d

J
o
in
t
Z
u
v

u v d u v a c d u v a b c d

P
R
E
P
R
O
C
E
S
S
IN

G
P
H
A
S
E

L
E
A
R
N
IN

G
P
H
A
S
E

u
v

d

= = =

Dimension
Reduction

Z
(i
)

u
v

u v d u v d u v d

R
A
W

D
A
T
A

p
o
o
l

p
o
o
l

MLP

X
u
v

F
ig
u
re

4.
1:

T
h
is

fi
gu

re
is

b
es
t
v
ie
w
ed

in
co
lo
r.

O
u
r
S
3G

R
L

fr
am

ew
or
k
:
In

th
e
p
re
p
ro
ce
ss
in
g
p
h
as
e
(s
h
ow

n
b
y
th
e

sh
ad

ed
b
lu
e
ar
ro
w
),

fi
rs
t
m
u
lt
ip
le

su
b
gr
ap

h
s
ar
e
ex
tr
ac
te
d
ar
ou

n
d
th
e
ta
rg
et

n
o
d
es

u
an

d
v
(s
h
ad

ed
in

b
lu
e)

b
y
va
ri
ou

s
sa
m
p
li
n
g
st
ra
te
gi
es
.

D
iff
u
si
on

m
at
ri
ce
s
ar
e
th
en

cr
ea
te
d

fr
om

ex
tr
ac
te
d

su
b
gr
ap

h
ad

ja
ce
n
cy

m
at
ri
ce
s
b
y

p
re
d
efi
n
ed

d
iff
u
si
on

op
er
at
or
s
(e
.g
.,

p
ow

er
s
of

su
b
gr
ap

h
s
in

th
is

fi
gu

re
).

E
ac
h

d
iff
u
si
on

p
ro
ce
ss

in
vo
lv
es

th
e
ap

p
li
ca
ti
on

of
th
e

su
b
gr
ap

h
d
iff
u
si
on

m
at
ri
x
on

it
s
n
o
d
al

fe
at
u
re
s
to

cr
ea
te

th
e
m
at
ri
x
Z

(i
)

u
v
.

T
h
e
op

er
at
or
-l
ev
el

n
o
d
e
re
p
re
se
n
ta
ti
on

s
of

se
le
ct
ed

n
o
d
es

(w
it
h
a
re
d
b
or
d
er

in
ra
w

d
at
a)

ar
e
th
en

ag
gr
eg
at
ed

fo
r
al
l
su
b
gr
ap

h
s
to

fo
rm

th
e
jo
in
t
Z

u
v
m
at
ri
x
.
T
h
e

se
le
ct
ed

n
o
d
es

in
th
is

ex
am

p
le

ar
e
th
e
ta
rg
et

n
o
d
es

{u
,v
},

an
d
th
ei
r
co
m
m
on

n
ei
gh

b
or

d
.

In
th
e
le
ar
n
in
g
p
h
as
e
(a
s

sh
ow

n
b
y
th
e
sh
ad

ed
re
d
ar
ro
w
),
th
e
jo
in
t
m
at
ri
x
Z

u
v
u
n
d
er
go

es
d
im

en
si
on

al
it
y
re
d
u
ct
io
n
fo
ll
ow

ed
b
y
p
o
ol
in
g
u
si
n
g
ce
n
te
r

p
o
ol
in
g
(h
ig
h
li
gh

te
d
b
y
b
lu
e-
b
or
d
er

b
ox
)
an

d
co
m
m
on

n
ei
gh

b
or

p
o
ol
in
g
(h
ig
h
li
gh

te
d
b
y
p
u
rp
le
-b
or
d
er

b
ox
).

F
in
al
ly
,
th
e

ta
rg
et

re
p
re
se
n
ta
ti
on

q
u
v
is
tr
an

sf
or
m
ed

b
y
an

M
L
P
to

a
li
n
k
p
ro
b
ab

il
it
y
P
u
v
.

48

node) should be inline, where missing rows are filled with zeros (analogous to zero-

padding for graph pooling). The joint nodal-representation matrix Zuv goes through

a non-linear feature transformation (for dimensionality reduction) by learnable weight

matrix W and non-linearity σ. This transformed matrix is then further downsampled

by the graph pooling pool to form the target’s representation:

quv = pool (σ (ZuvW)) , (4.6)

from which the link probability is computed by

Puv = Ω(quv), (4.7)

with Ω being a learnable non-linear function (e.g., MLP) to convert the target repre-

sentation quv into a link probability.

Our S3GRL exhibits substantial speedup in inference and training through pre-

computing Zuv (using the target links provided in the input dataset) in comparison

to more computationally-intensive SGRLs [55, 69], designed based on multi-layered

GCN or DGCNN [105] (see our experiments for details). Existing SGRLs utilize a

GCN or GCN-like architecture (e.g., DGCNN, GAT [82] etc.) during the training and

inference phase. This results in multiple layers of convolutions and weights associated

with each convolution layer, for each extracted subgraph around the target link, per

epoch of training (see. Eq. 2.1). In contrast, our S3GRL utilizes the precomputed

Zuv and a single linear weight matrix W during training and inference. Note that

only Equations 4.6 and 4.7 are utilized in training and inference in S3GRL (see also

Figure 4.1). Apart from this computational speedup, S3GRL offers other advantages

analogous to other prominent GNNs. We dedicate the following subsections to details

these advantages.

49

4.4.1 Disentanglement of Data and Model.

The composition of subgraph sampling strategy Ψ and diffusion operator Φ facilitates

the disentanglement (or decoupling) of data (i.e., subgraph) and model (i.e., diffusion

operator). This disentanglement resembles shaDow-GNN [100], in which the depth of

GNNs (i.e., its number of layers) is decoupled from the depth of enclosing subgraphs.

Similarly, in S3GRL, one can explore high-order diffusion operators (e.g., adjacency

matrix to a high power) in constrained enclosing subgraphs (e.g., the ego network

consisting of the target link and its h-hop neighborhood). This combination simu-

lates multiple message-passing updates between the nodes in the local subgraph, thus

achieving local oversmoothing [100] and ensuring the final subgraph representation

possesses information from all the nodes in the local subgraph.

4.4.2 Multi-View Representation.

Our S3GRL framework via the sampling-operator pairs provides multiple views of

the enclosing neighborhood of each target pair. This capability allows hosting models

analogous to multi-view [1, 9] models.

4.5 Our Proposed Instances

In this section, we introduce two instances of our S3GRL framework, differentiating

in the choice of sampling-operator pairs.

4.5.1 Powers of Subgraphs (PoS)

This instance intends to mimic a group of SGRLs with various model depths on

a fixed-sized enclosing subgraph while boosting scalability and generalization (e.g.,

50

V1

V3

V1

V3

V1

V3

V1

V3

Figure 4.2: Example of PoS operators created with h = 2, r = 3. The left-most sub-
graph shows the original enclosing subgraph for the target nodes (V 1, V 3). Towards
its right, we capture the r = 3 PoS operators, which help capture the different con-
nectivity around (V 1, V 3), without involving explicit subgraph extractions. For the
creation of the PoS operators, first, the 1-hop enclosing subgraph around the target
link (V 1, V 2) is extracted. Following this, the powers of the extracted subgraph are
calculated, which then forms the PoS operators.

SEAL [104]). The sampling-operator set S = {(Ψi,Φi)}ri=0 is defined as follows:

(i) the sampling strategy Ψi(G, T) for any i is constant and returns the adjacency

matrix Auv of the h-hop enclosing subgraph Gh
uv about target T = {u, v}. The

subgraph Gh
uv is a node-induced subgraph of G with the node set V h

uv = {j|d(j, u) ≤

h or d(j, v) ≤ h}, including the nodes with the geodesic distance of at most h from

either of the target pairs [104]; (ii) the i-th diffusion operator Φi(A) = Ai is the

i-th power of adjacency matrix A. This operator facilitates information diffusion

among nodes i-length paths apart. Putting (i) and (ii) together, one can derive

M
(i)
uv = Ai

uv for Eq. 4.4. Note that M
(0)
uv = I allows the node features to contribute

directly (independent of graph structure) to subgraph representation. PoS possesses

two hyperparameters r and h, controlling the number of diffusion operators and the

number of hops in enclosing subgraphs, respectively. We capture an example of the

operators created by PoS with h = 2, r = 3 in Figure 4.2.

One can intuitively view PoS as equivalent to SEAL that uses a GNN model of

depth r with “skip-connections” [90] on the h-hop enclosing subgraphs. The skip-

connections property allows consuming all the intermediate learned representations

51

of each layer to construct the final link representation. Similarly, PoS uses varying

i-th power diffusion operators combined with the concatenation operator in Eq. 4.6

to generate the representation quv. In this light, the two hyperparameters of r and

h (resp.) in PoS control the (virtual) depth of the model and the number of hops in

enclosing subgraphs (resp.).

4.5.2 Subgraphs of Powers (SoP)

This instance of S3GRL, by transforming the global input graph G, brings long-

range interactions into the local enclosing subgraphs. Let ΨH(G, T, h) be h-hop

sampling strategy, returning the enclosing h-hop subgraph about the target pair

T = {u, v}. The SoP model defines S = {(Ψi,Φi)}ri=0 with Ψi(G, T) = ΨH(G
i, T, h)

and Φi(Auv) = Auv. Here, G
i is the i-th power of the input graph (computed by Ai),

in which two nodes are adjacent when their geodesic distance in G is at most i. In

this sense, the power of graphs brings long-range interactions to local neighborhoods

at the cost of neighborhood densification. However, as the diffusion operator is an

identity function, SoP prevents overarching to the further-away information of indi-

rect neighbors. SoP consists of two hyperparameters r and h that control the number

of diffusion operators and hops in local subgraphs, respectively.

4.5.3 Comparing our S3GRL instances: PoS vs. SoP.

PoS and SoP are similar in capturing information diffusion among nodes (at most)

r-hop apart. But, their key distinction is whether long-range diffusion occurs in the

global level of the input graph (for SoP) or the local level of the subgraph (for PoS).

SoP is not a “typical” SGRL, however, it still uses subgraphs around the target

pair on the power of graphs. We also refer the reader to the experiments section

52

to help compare and contrast the efficacy and computational requirements of our

PoS vs. SoP. The experiments are designed to help guide any user in selecting the

appropriate S3GRL instance, keeping in mind the efficacy-compute trade-offs for a

target dataset.

4.5.4 Subgraph Pooling

Our proposed instances of S3GRL are completed by defining the graph pooling func-

tion in Eq. 4.6. We specifically consider computationally-light pooling functions,

which focus on pooling the targets’ or their direct neighbors’ learned representations.1

We consider simple center pooling,

poolC(Z) = zu ⊙ zv, (4.8)

where ⊙ is the Hadamard product, and zu, zv are u’s and v’s learned representations

in nodal-representation matrix Z (i.e., the two rows of the target pairs in Z). We also

introduce common-neighbor pooling,

poolN(Z) = AGG({zi|i ∈ Nu ∩Nv}), (4.9)

where AGG is any invariant graph readout function (e.g., mean, max, or sum), and

Nu and Nv are the direct neighborhood of targets u, v in the original input graph.

We also define center-common-neighbor pooling,

poolCCN = poolC ⊕ poolN (4.10)

1Our focus is backed up by recent empirical findings [12] showing the effectiveness of the target
node’s embeddings and the decline in the informativeness of node embeddings as the nodes get
farther away from targets.

53

In addition to their efficacy, these pooling functions allow one to further optimize

the data storage and computations. As the locations of pooled nodes (e.g., target

pairs and/or their direct neighbors) for these pooling functions are specified in the

original graph, one could just conduct necessary (pre)computations and store those

data affecting the learned representation of pooled nodes, while avoiding unnecessary

computations and data storage. Figure 4.1 shows this optimization through red-

bordered boxes of rows for each Z
(i)
uv. This information is the only required node

representations in Z
(i)
uv utilized in the downstream pool operation. This pruning of Z

(i)
uv

to just include the target link nodes and the common neighbors results in magnitudes

less storage requirements when compared to a traditional SGRL which stores all

nodes for each extracted subgraph. We capture this reduction in dataset sizes and

the memory storage requirements of our S3GRL achieved through our optimizations

empirically in our experiments below. We consider center pooling as the default

pooling for PoS and SoP, and we refer to them as PoS+ and SoP+ when center-

common-neighbor pooling is deployed. We study both center and center-common-

neighbor pooling for PoS. However, due to the explosion of h-hop subgraph sizes in

SoP+, owing to the global reach of nodes, we limit our experiments on SoP to only

center pooling.

4.5.5 Inference Time Complexity.

Let p be the number of pooled nodes (e.g., p = 2 for center pooling), d be the

dimension of initial input features, r be the number of operators, and d′ be the

reduced dimensionality in Eq. 4.6. The inference time complexity for any of PoS,

SoP, and their variants is O(rpdd′ + d′2). Consider the dimensionality reduction of

the joint matrix Zuv by the weight matrix W in Eq. 4.6. As Zuv is rp by d and W

is d by d′, their multiplication is in O(rpdd′) time. The pooling for any proposed

54

variants is O(pd′). Assuming Ω in Eq. 4.7 being an MLP with one d′-dimensional

hidden layer, its computation is in O(d′2) time.

55

Chapter 5

Experiments

We carefully design an extensive set of experiments to assess the extent to which our

model scales up SGRLs while maintaining their state-of-the-art performance. Our

experiments intend to address these questions: (Q1) How effective is the S3GRL

framework compared with the state-of-the-art SGRLs for link prediction methods?

(Q2) What is the computational gain achieved through S3GRL in comparison to

SGRLs? (Q3) How well does our best-performing model, PoS+, perform on the Open

Graph Benchmark datasets for link prediction, graphs with millions of nodes and

edges [41, 40]? (Q4) How complementary can S3GRL be in combination with other

scalable SGRLs (e.g., ScaLed [57]) to further boost scalability and generalization?

5.1 Datasets

For our experiments, we use directed and undirected, weighted and unweighted, at-

tributed and non-attributed datasets that are publicly available and commonly used

in other link prediction studies [104, 105, 55, 69, 57, 12]. Table 5.1 shows the statis-

tics of our datasets. We divide our datasets into three categories; non-attributed

56

Dataset # Nodes # Edges Avg. Deg. # Feat.

N
o
n
-a
tt
r.

NS 1,461 2,742 3.75 NA
Power 4,941 6,594 2.67 NA
Yeast 2,375 11,693 9.85 NA
PB 1,222 16,714 27.36 NA

A
tt
ri
b
u
te
d

Cora 2,708 4,488 3.31 1,433
CiteSeer 3,327 3,870 2.33 3,703
PubMed 19,717 37,676 3.82 500
Texas 183 143 1.56 1,703
Wisconsin 251 197 1.57 1,703

O
G
B

Collab 235,868 1,285,465 8.2 128
DDI 4,267 1,334,889 500.5 NA
Vessel 3,538,495 5,345,897 2.4 3
PPA 576,289 30,326,273 73.7 58
Citation2 2,927,963 30,561,187 20.7 128

Table 5.1: The statistics of the non-attributed, attributed, and OGB datasets.

datasets, attributed datasets and the OGB datasets. The edges in the attributed and

non-attributed dataset categories are randomly split into 85% training, 5% valida-

tion, and 10% testing sets, except for Cora, CiteSeer and PubMed datasets chosen

for comparison in Table 5.8, where we follow the experimental setup in [12] with a

random split of 70% training, 10% validation, and 20% testing sets. We note that

there are two datasets splits considered for Cora, PubMed and CiteSeer. This is done

to ensure a fair comparison against the baselines considered in Table 5.3 and the base-

lines considered in Table 5.8, and showcase how well our S3GRL models fare against

varying dataset splits. For the OGB datasets, we follow the dataset split provided by

the OGB team [40].

5.2 Experimental Setup

In this section we discuss in detail about the experimental setup for our models and

the baselines considered for comparison. We also present key experimental results

57

and analysis of the data.

5.2.1 Evaluation Metrics

For all models, on the attributed and non-attributed datasets, we report the average

of the area under the curve (AUC) of the testing data over 10 runs with different

fixed random seeds.1 Similarly, for the experiments against BUDDY on OGB and

Planetoid datasets, we report the average of 10 runs (with different fixed random

seeds) on the efficacy measures consistent with [12].

In each run, we test a model on the testing data with those parameters with the

highest efficacy measure on the validation data. Our code is implemented in PyTorch

Geometric [22] and PyTorch [71].2 To compare the computational efficiency, we report

the average training and inference time (over 50 epochs) and the total preprocessing

and runtime for a fixed run on the attributed and non-attributed datasets. Finally, to

compare the storage requirements and dataset sizes of our models vs. SGRL baselines,

we capture the sizes of the prepared datasets of SEAL vs. our S3GRL models on the

attributed and non-attributed datasets.3

5.2.2 Baselines

For attributed and non-attributed datasets, we compare our S3GRL models (PoS,

PoS+, and SoP) with 15 baselines belonging to five different categories of link pre-

diction models. Our heuristic benchmarks include common neighbors (CN), Adamic

Adar (AA) [2], and personalized pagerank (PPR). Formessage-passing GNNs (MPGNNs),

1We exclude Average Precision (AP) results due to their known strong correlations with AUC
results [69].

2Our codes are available at https://github.com/venomouscyanide/S3GRL OGB. All experiments
are run on servers with 50 CPU cores, 377 GB RAM, and 11 GB GTX 1080 Ti GPUs.

3We consider SEAL to be a representative model to showcase the dataset size requirements of a
typical SGRL. Other SGRLs like DE-GNN, WalkPool etc. can be expected to have similar dataset
storage requirements to SEAL.

58

https://github.com/venomouscyanide/S3GRL_OGB

we select GCN [50], GraphSAGE [33] and GAT [81]. Our latent factor (LF) bench-

marks are node2vec [29] and Matrix Factorization [51]. The autoencoder (AE) meth-

ods include GAE & VGAE [49], adversarially regularized variational graph autoen-

coder (ARVGA) [70] and Graph InfoClust (GIC) [61]. Finally, our examined SGRLs

include SEAL [104], GCN+DE (distance encoding [55]), and WalkPool [69]. For OGB

datasets, we compare against BUDDY [12] and its baselines which include a subset

of our baselines outlined above and GraphSAGE [33].

5.2.3 Hyperparameter Settings

All hyperparameters of baselines are optimally selected based on their original papers

or the shared public implementations. When possible, we also select the S3GRL

hyperparameters to match the benchmarks’ hyperparameters for a fair comparison.

We dedicate the following paragraphs to discuss important hyperparameters related

to our work and the baselines used in detail.

For SGRL and S3GRL methods, we set the number of hops h = 2 for the non-

attributed datasets (except WalkPool on the Power dataset with h = 3), h = 3 on

attributed datasets (except for WalkPool with h = 2 based on [69]), and h = 1 for

OGB datasets. In S3GRLmodels we set the number of operators r = 3 for all datasets

except ogbl-collab, ogbl-citation2 and ogbl-ppa with r = 1. Across all models, we use

a zero-one labeling scheme, except for ogbl-citation2 and ogbl-ppa, where DRNL is

used instead. The AGG graph readout function in center-common-neighbor pooling

is set to a simple mean aggregation, except for ogbl-vessel, ogbl-citation2 and ogbl-

ppa where sum is used instead. In S3GRL models, across the attributed and non-

attributed datasets, we set the hidden dimension in Eq. 4.6 to 256, and also implement

Ω in Eq. 4.7 as an MLP with one 256-dimensional hidden layer. For all models, we

set the dropout to 0.5 and train them for 50 epochs with Adam [48] and a batch size

59

of 32 (except for MPGNNs with full-batch training on the input graph).

For the comparison against BUDDY on OGB and Planetoid datasets [93], the

results are taken from [12], except for ogbl-vessel dataset, where the baseline figures

are taken from the publicly-shared leaderboards.4

For PPR, we set α = 0.85. All methods (except heuristics, SGRL, and S3GRL

methods) use a Hadamard product to create the link representation from the target

pair’s representations. All autoencoder-based models use a GCN encoder to produce

node embeddings and an inner product of the learned node embedding matrix to

reconstruct the original adjacency matrix. The hidden dimensionality (i.e., dimen-

sions of embeddings) for all baselines taken for comparison on the attributed and

non-attributed datasets is set to 32 except for the autoencoder models, SEAL, and

GCN+DE. Autoencoder models use varying-sized hidden dimensionalities, ranging

from 32 to 64, for their encoders whereas SEAL and GCN+DE have 256 hidden

dimensions for the attributed datasets.

We normalize the adjacency matrix of the selected subgraphs in PoS and PoS+

and the input graph adjacency matrix in SoP. Our graph normalization is symmetric

degree normalization without additional self-loops (except for the datasets in Table

5.8, where re-normalization trick is used [50]). For S3GRL models trained on the

non-attributed datasets, we use 16-dimensional node2vec pretrained embeddings [29]

as the initial node features. In S3GRL models, we augment each subgraph’s initial

feature matrix with the zero-one labeling scheme, except for ogbl-citation2 and ogbl-

ppa datasets where DRNL labeling scheme is used instead. Additionally, S3GRL

models are implemented with a weight decay of 0.0001 and the ELU [17] activation

function as the non-linearity function, except for experiments involving the Planetoid

4https://ogb.stanford.edu/docs/leader linkprop hosts the ogbl-vessel leaderboard from which we
report the baseline results as of April 2, 2023, except for BUDDY, run by adding support from
https://github.com/melifluos/subgraph-sketching.

60

https://ogb.stanford.edu/docs/leader_linkprop
https://github.com/melifluos/subgraph-sketching

datasets and ogbl-vessel, ogbl-ddi and ogbl-collab datasets in Table 5.8, where ReLU

is used instead.

To fit the datasets into memory, we train SEAL and GCN+DE on Pubmed in a

dynamic train mode (i.e., subgraphs are extracted on the fly during training), and we

set the maximum number of nodes per hop to 100 for WalkPool on Ecoli, PB, and

PubMed datasets. For SEAL andWalkPool, we augment the initial node features with

DRNL labeling whereas GCN+DE deploys a distance-encoding labeling scheme. For

our baselines, the initial node features for non-attributed datasets are set to identity,

except in WalkPool with a 16-dimensional vector of ones, and SEAL and GCN+DE

with no node features. Finally, Walkpool, SEAL, and GCN+DE use a 32-dimensional

embedding table for learning the node labels.

5.2.4 Reproducibility

All our experiments are performed over fixed random seeds ensuring reproducibility

if repeated multiple times on the same hardware. However, it is to be noted that

random numbers generated on different hardware could slightly vary our results. But,

rerunning experiments on the same hardware ensures reproducibility on the same

machine. Moreover, we share publicly all steps and scripts required to reproduce the

experimental results showcased in this thesis.

5.3 Results and Discussions

In this section, we discuss in detail about the results for all experiments conducted.

We compare and contrast the results of our S3GRL instances vs. the chosen baselines

with a focus on discussing the efficacies and time taken.

61

5.3.1 Results on Attributed and Non-Attributed Datasets

On the attributed datasets, the S3GRL models, particularly PoS+ and PoS, consis-

tently outperform others (see Table 5.3). Their gain/improvement, compared to the

best baseline, can reach 2.93 (for Wisconsin) and 2.77 (for CiteSeer). This state-of-

the-art performance of PoS+ and PoS suggests that our simplification techniques do

not weaken SGRLs’ efficacy and even improve their generalizability. Most impor-

tantly, this AUC gain is achieved by multiple times less computation: The S3GRL

models benefit 2.3–13.9x speedup in training time for citation network datasets of

Cora, CiteSeer, and PubMed (see Table 5.5). Similarly, inference time witnesses 3.1–

51.2x speedup, where the maximum speedup is achieved on the largest attributed

dataset PubMed. Our S3GRL models exhibit higher dataset preprocessing times

compared to SGRLs (see Table 5.5). However, this is easily negated by our models’

faster accumulative training and inference times that lead to 1.4–11.9x overall run-

time speedup across all attributed datasets (min. for Texas and max. for PubMed).

Moreover, we notice a significant reduction of dataset sizes, leading up to a 99% re-

duction (see Table 5.6 rows corresponding to PB and Yeast datasets) over typical

SGRL datasets which consume all nodes related to each enclosing subgraph. This

further showcases the feasibility of storage requirements offered by our S3GRL models

in comparison to SGRLs like SEAL, DE-GNN, WalkPool etc. This reduction in sizes

is due to the optimizations realized through our novel pooling operation coupled with

the efficient precomputations.

We observe comparatively lower AUC values for SoP, which can be attributed

to longer-range information being of less value on these datasets. Regardless, SoP

still shows comparable AUC to the other SGRLs while offering substantially higher

speedups. We also note that due to the preprocessed Zuv matrices corresponding

to PoS and SoP having similar matrix sizes, both utilize the same storage space on

62

disk. However, as stated earlier, SoP continues to be a faster dataset preparation

mechanism due to the lack of explicit subgraph extractions, unlike its counterpart

PoS.

Despite only consuming the source-target information, PoS achieves first or second

place in the citation networks indicating the power of the center pooling. Moreover,

the higher efficacy of PoS+ compared to PoS across a few datasets indicate added

expressiveness provided by center-common-neighbor pooling. Finally, the autoen-

coder methods outperform SGRLs on citation networks. However, S3GRL instances

outperform them and have enhanced the learning capability of SGRLs.

For the non-attributed datasets, although WalkPool outperforms others, we see

strong performance from our S3GRL instances. Our instances appear second or third

(e.g., Yeast or Power) or have a small margin to the best model (e.g., NS or PB).

The maximum loss in our models is bounded to 2.43% (see Power’s gain in Table

5.2). Regardless of the small loss of efficacy, our S3GRL models demonstrate multi-

fold speedup in training and inference times: training with 1.4–18.9x speedup and

inference with 1.4–40.2x (the maximum training and inference speedup on Yeast).

We see a similar pattern of higher preprocessing times for our models; however, it

gets negated by faster training and inference times leading to an overall speedup in

runtimes with the maximum of 15.8x for Yeast. SoP shows a relatively lower AUC

in the non-attributed dataset except for PB and Yeast, possibly indicating that long-

range information is more crucial for them. We again see substantially less storage

requirements for our S3GRL models in comparison to SGRLs. For example, we get

up to a 99% reduction in PubMed (See Table 5.7), a dataset in which SEAL requires

280 Gigabytes (GB) of memory to simply store the training dataset, in comparison

to only a 2 GB requirement for all our instances.

For all datasets, we usually observe higher AUC for PoS+ than its PoS variant

63

suggesting the expressiveness power of center-common-neighbor pooling over simple

center pooling. Of course, these slight AUC improvements come with slightly higher

computational costs (see Tables 5.5 and 5.4).

Model
Non-attributed

NS Power PB Yeast
H
eu
ri
st
ic AA 92.14±0.77 58.09±0.55 91.76±0.56 88.80±0.55

CN 92.12±0.79 58.09±0.55 91.44±0.59 88.73±0.56

PPR 92.50±1.06 62.88±2.18 86.85±0.48 91.71±0.74

M
P
G
N
N GCN 91.75±1.68 69.41±0.90 90.80±0.43 91.29±1.11

GraphSAGE 91.39±1.73 64.94±2.10 88.47±2.56 87.41±1.64

GIN 83.26±3.81 58.28±2.61 88.42±2.09 84.00±1.94

L
F node2vec 91.44±0.81 73.02±1.32 85.08±0.74 90.60±0.57

MF 82.56±5.90 53.83±1.76 91.56±0.56 87.57±1.64

A
E

GAE 92.50±1.71 68.17±1.64 91.52±0.35 93.13±0.79

VGAE 91.83±1.49 66.23±0.94 91.19±0.85 90.19±1.38

ARVGA 92.16±1.05 66.26±1.59 90.98±0.92 90.25±1.06

GIC 90.88±1.85 62.01±1.25 73.65±1.36 88.78±0.63

S
G
R
L SEAL 98.63±0.67 85.28±0.91 95.07±0.35 97.56±0.32

GCN+DE 98.66±0.66 80.65±1.40 95.14±0.35 96.75±0.41

WalkPool 98.92±0.52 90.25±0.64 95.50±0.26 98.16±0.20

S
3G

R
L PoS (ours) 97.23±1.38 86.67±0.98 94.83±0.41 95.47±0.54

PoS+ (ours) 98.37±1.26 87.82±0.96 95.04±0.27 96.77±0.39

SoP (ours) 90.61±1.94 75.64±1.33 94.34±0.30 92.98±0.58

Gain -0.55 -2.43 -0.46 -1.39

Table 5.2: Average AUC for non-attributed datasets (over 10 runs). The top 3 models
are indicated by First, Second, and Third. Green is best model among our S3GRL
variants. Yellow is the best baseline. Gain is AUC difference of Green and Yellow .

5.3.2 Results on Large Scale Datasets

As shown in Table 5.8, our PoS+ model can easily scale to graph datasets with millions

of nodes and edges. Under the experimental setup in BUDDY, our PoS+ still outper-

64

Model
Attributed

Cora CiteSeer PubMed Texas Wisconsin

H
eu
ri
st
ic AA 71.48±0.69 65.86±0.80 64.26±0.40 54.69±3.68 55.60±3.14

CN 71.40±0.69 65.84±0.81 64.26±0.40 54.36±3.65 55.08±3.08

PPR 82.87±1.01 74.35±1.51 75.80±0.35 53.81±7.53 62.86±8.13

M
P
G
N
N GCN 89.14±1.20 87.89±1.48 92.72±0.64 67.42±9.39 72.77±6.96

GraphSAGE 85.96±2.04 84.05±1.72 81.60±1.22 53.59±9.37 61.81±9.66

GIN 68.74±2.74 69.63±2.77 82.49±2.89 63.46±8.87 70.82±8.25

L
F node2vec 78.32±0.74 75.36±1.22 79.98±0.35 52.81±5.31 59.57±5.69

MF 62.25±2.21 61.65±3.80 68.56±12.13 60.35±5.62 53.75±9.00

A
E

GAE 90.21±0.98 88.42±1.13 94.53±0.69 68.67±6.95 75.10±8.69

VGAE 92.17±0.72 90.24±1.10 92.14±0.19 74.61±8.61 74.39±8.39

ARVGA 92.26±0.74 90.29±1.01 92.10±0.38 73.55±9.01 72.65±7.02

GIC 91.42±1.24 92.99±1.14 91.04±0.61 65.16±7.87 75.24±8.45

S
G
R
L SEAL 90.29±1.89 88.12±0.85 97.82±0.28 71.68±6.85 77.96±10.37

GCN+DE 91.51±1.10 88.88±1.53 98.15±0.11 76.60±6.40 74.65±9.56

WalkPool 92.24±0.65 89.97±1.01 98.36±0.11 78.44±9.83 79.57±11.02

S
3G

R
L PoS (ours) 94.65±0.67 95.76±0.59 98.97±0.08 73.75±8.20 82.50±5.83

PoS+ (ours) 94.77±0.68 95.72±0.56 99.00±0.08 78.44±9.83 79.17±10.87

SoP (ours) 91.24±0.80 88.23±0.73 95.91±0.29 69.49±7.12 72.29±14.42

Gain +2.51 +2.77 +0.64 0 +2.93

Table 5.3: Average AUC for attributed datasets (over 10 runs). The top 3 models are
indicated by First, Second, and Third. Green is best model among our S3GRL
variants. Yellow is the best baseline. Gain is AUC difference of Green and Yellow .

forms all the baselines (including BUDDY) for all Planetoid datasets, confirming the

versatility of our model to different dataset splits and evaluation criteria. Our PoS+

outperforms others on ogbl-collab, ogbl-vessel and ogbl-citation2 datasets as well.

For ogbl-ppa, we come in third place. For ogbl-ddi, PoS+ performs significantly lower

than SEAL and BUDDY; but we still perform better than the heuristic baselines.

This performance on ogbl-ddi might be a limitation of our PoS+, possibly because

the common-neighbor information is noisy in denser ogbl-ddi, with the performance

degradation exaggerated by the lack of node feature information. However, this set

65

Model Training Inference Preproc. Runtime

NS (non-attributed)

SEAL 4.91 ± 0.23 0.14 ± 0.01 17.86 275.28

GCN+DE 3.58 ± 0.12 0.10 ± 0.01 11.73 198.98

WalkPool 7.66 ± 0.09 0.41 ± 0.02 12.18 427.03

PoS 2.24 ± 0.15 0.06 ± 0.01 34.86 152.23

PoS+ 2.54 ± 0.06 0.07 ± 0.00 41.43 173.78

SoP 2.26 ± 0.11 0.06 ± 0.00 24.67 142.45

Speedup 3.42(1.41) 6.83(1.43) 0.72(0.28) 3(1.14)

Power (non-attributed)

SEAL 11.73 ± 0.02 0.33 ± 0.01 44.48 658.14

GCN+DE 8.62 ± 0.27 0.25 ± 0.01 28.59 479.4

WalkPool 18.46 ± 0.76 0.87 ± 0.06 33.51 1024.55

PoS 5.58 ± 0.48 0.14 ± 0.01 97.71 388.97

PoS+ 6.12 ± 0.24 0.16 ± 0.01 107.77 426.53

SoP 5.41 ± 0.23 0.14 ± 0.01 65.65 347.62

Speedup 3.41(1.41) 6.21(1.56) 0.68(0.27) 2.95(1.12)

Yeast (non-attributed)

SEAL 24.03 ± 0.40 0.54 ± 0.05 115.02 1362.85

GCN+DE 18.41 ± 0.71 0.46 ± 0.06 82.19 1040.72

WalkPool 174.80 ± 1.06 8.05 ± 0.11 90.75 9443.17

PoS 9.95 ± 1.45 0.20 ± 0.06 259.96 775.58

PoS+ 10.49 ± 0.61 0.20 ± 0.04 206.52 749.87

SoP 9.24 ± 0.74 0.22 ± 0.04 117.23 597.29

Speedup 18.92(1.76) 40.25(2.09) 0.98(0.32) 15.81(1.34)

PB (non-attributed)

SEAL 64.62 ± 5.59 2.32 ± 0.10 531.79 3947.45

GCN+DE 55.82 ± 1.59 2.01 ± 0.09 398.81 3346.80

WalkPool 133.30 ± 0.52 6.48 ± 0.15 136.29 7291.50

PoS 13.42 ± 0.77 0.33 ± 0.04 1754.88 2452.39

PoS+ 15.56 ± 1.28 0.29 ± 0.05 2527.23 3331.56

SoP 13.32 ± 0.72 0.25 ± 0.06 333.58 1022.90

Speedup 10.01(3.59) 25.92(6.09) 1.59(0.05) 7.13(1.00)

Table 5.4: Computation time of SGRLs vs. our S3GRL models on non-attributed
datasets: average training time (over 50 epochs), average inference time, prepro-
cessing time, and total runtime (preprocessing, training, and inference time) for 50
epochs. Green is the fastest and Red is slowest for each group of SGRLs and
S3GRL. Max(min) speedup corresponds to the ratio of time taken by the slowest
(fastest) SGRLs to our fastest (slowest) model.

66

Model Training Inference Preproc. Runtime

Cora (attributed)

SEAL 18.37 ± 1.49 0.73 ± 0.12 113.32 1090.94

GCN+DE 14.85 ± 0.53 0.62 ± 0.08 80.48 872.68

WalkPool 18.53 ± 0.91 1.00 ± 0.15 27.43 1034.33

PoS 5.44 ± 0.52 0.15 ± 0.02 106.45 394.12

PoS+ 5.87 ± 0.17 0.17 ± 0.01 93.69 401.05

SoP 5.04 ± 0.17 0.15 ± 0.03 35.65 300.10

Speedup 3.68(2.53) 6.67(3.65) 3.18(0.26) 3.64(2.18)

CiteSeer (attributed)

SEAL 12.54 ± 0.69 0.58 ± 0.10 93.52 768.72

GCN+DE 11.43 ± 0.71 0.52 ± 0.07 71.97 685.98

WalkPool 15.32 ± 0.54 0.87 ± 0.05 22.82 859.27

PoS 4.82 ± 0.22 0.15 ± 0.01 78.62 335.37

PoS+ 4.91 ± 0.39 0.17 ± 0.02 72.02 331.55

SoP 4.96 ± 0.14 0.17 ± 0.01 31.57 293.96

Speedup 3.18(2.3) 5.8(3.06) 2.96(0.29) 2.92(2.05)

PubMed (attributed)

SEAL 533.18 ± 4.64 38.46 ± 1.08 141.76 30150.31

GCN+DE 423.73 ± 2.67 34.44 ± 1.21 106.00 24311.00

WalkPool 150.27 ± 6.22 8.10 ± 1.06 341.12 8474.72

PoS 38.90 ± 2.89 0.79 ± 0.10 2986.74 5017.78

PoS+ 45.32 ± 2.21 0.92 ± 0.11 2976.80 5335.86

SoP 38.38 ± 2.90 0.75 ± 0.15 526.62 2526.22

Speedup 13.89(3.32) 51.28(8.80) 0.65(0.04) 11.93(1.59)

Texas (attributed)

SEAL 0.32 ± 0.01 0.01 ± 0.00 2.55 20.46

GCN+DE 0.31 ± 0.01 0.01 ± 0.00 1.87 18.55

WalkPool 0.55 ± 0.08 0.03 ± 0.01 0.92 32.54

PoS 0.16 ± 0.01 0.01 ± 0.00 1.87 12.71

PoS+ 0.18 ± 0.01 0.01 ± 0.00 2.26 11.96

SoP 0.15 ± 0.01 0.01 ± 0.00 1.34 9.61

Speedup 2.62(1.72) 3(1) 1.9(0.41) 3.39(1.46)

Wisconsin (attributed)

SEAL 0.47 ± 0.01 0.02 ± 0.00 3.29 29.27

GCN+DE 0.43 ± 0.01 0.02 ± 0.00 2.63 26.19

WalkPool 0.85 ± 0.04 0.06 ± 0.00 1.08 49.38

PoS 0.21 ± 0.02 0.01 ± 0.00 2.65 15.86

PoS+ 0.24 ± 0.02 0.01 ± 0.00 2.91 16.07

SoP 0.22 ± 0.01 0.01 ± 0.00 1.87 13.75

Speedup 4.05(1.79) 6(2) 1.76(0.37) 3.59(1.63)

Table 5.5: Computation time of SGRLs vs. our S3GRLmodels on attributed datasets:
average training time (over 50 epochs), average inference time, preprocessing time,
and total runtime (preprocessing, training, and inference time) for 50 epochs. Green
is the fastest and Red is slowest for each group of SGRLs and S3GRL. Max(min)
speedup corresponds to the ratio of time taken by the slowest (fastest) SGRLs to our
fastest (slowest) model.

67

Dataset Model Train Size Validation Size Test Size

NS

PoS 5.27 0.16 0.31
PoS+ 8.83 0.27 0.53
SoP 5.27 0.16 0.31
SEAL 21.26 0.64 1.22

Reduction % 75.21 75 74.59

Power

PoS 12.66 0.37 0.75
PoS+ 13.27 0.39 0.79
SoP 12.66 0.37 0.75
SEAL 24.88 0.72 1.49

Reduction % 49.11 48.61 49.66

PB

PoS 32.09 0.95 1.89
PoS+ 137.19 4.04 7.99
SoP 32.09 0.95 1.89
SEAL 27814.36 816.16 1631.41

Reduction % 99.88 99.88 99.88

Yeast

PoS 22.45 0.66 1.32
PoS+ 80.65 2.37 4.75
SoP 22.45 0.66 1.32
SEAL 2321.44 65.63 135.84

Reduction % 99.03 98.99 99.02

Table 5.6: Precomputed dataset sizes in Megabytes (MB) of SEAL vs. our S3GRL
models on the non-attributed datasets. Green is the most storage efficient (smallest
sized dataset) and Red is the least storage efficient (largest sized dataset). Reduction
% corresponds to the maximum reduction in storage requirements for preparing the
dataset, i.e., (Red - Green) / Red × 100.

68

Dataset Model Train Size Validation Size Test Size

Cora

PoS 786.44 23.05 46.18
PoS+ 920.93 26.81 53.83
SoP 786.44 23.05 46.18
SEAL 19521.52 620.09 1172.68

Reduction % 95.97 96.28 96.06

CiteSeer

PoS 1750.53 51.34 102.91
PoS+ 1996.66 57.90 117.38
SoP 1750.53 51.34 102.91
SEAL 18716.19 500.03 1083.71

Reduction % 90.64 89.73 90.50

PubMed

PoS 2311.06 67.97 135.93
PoS+ 2665.93 78.58 156.21
SoP 2311.06 67.97 135.93
SEAL 287324.77 8500.97 16670.80

Reduction % 99.19 99.20 99.18

Texas

PoS 29.77 0.84 1.67
PoS+ 32.17 0.86 1.90
SoP 29.77 0.84 1.67
SEAL 295.89 7.04 15.53

Reduction % 89.93 88.06 89.24

Wisconsin

PoS 41.02 1.15 2.40
PoS+ 44.27 1.23 2.50
SoP 41.02 1.15 2.40
SEAL 349.59 9.99 20.04

Reduction % 88.26 88.48 88.02

Table 5.7: Precomputed dataset sizes in Megabytes (MB) of SEAL vs. our S3GRL
models on the attributed datasets. Green is the most storage efficient (smallest sized
dataset) and Red is the least storage efficient (largest sized dataset). Reduction %
corresponds to the maximum reduction in storage requirements for preparing the
dataset, i.e., (Red - Green) / Red × 100.

69

Model Cora CiteSeer PubMed Collab DDI Vessel Citation2 PPA
HR@100 HR@100 HR@100 HR@50 HR@20 roc-auc MRR HR@100

CN 33.92±0.46 29.79±0.90 23.13±0.15 56.44±0.00 17.73±0.00 48.49±0.00 51.47±0.00 27.65±0.00

AA 39.85±1.34 35.19±1.33 27.38±0.11 64.35±0.00 18.61±0.00 48.49±0.00 51.89±0.00 32.45±0.00

GCN 66.79±1.65 67.08±2.94 53.02±1.39 44.75±1.07 37.07±5.07 43.53±9.61 84.74±0.21 18.67±1.32

SAGE 55.02±4.03 57.01±3.74 39.66±0.72 48.10±0.81 53.90±4.74 49.89±6.78 82.60±0.36 16.55±2.40

SEAL 81.71±1.30 83.89±2.15 75.54±1.32 64.74±0.43 30.56±3.86 80.50±0.21 87.67±0.32 48.80±3.16

BUDDY 88.00±0.44 92.93±0.27 74.10±0.78 65.94±0.58 78.51±1.36 55.14±0.11 87.56±0.11 49.85±0.20

PoS+ (ours) 91.55±1.16 94.79±0.58 79.40±1.53 66.83±0.30 22.24±3.36 80.56±0.06 88.14±0.08 42.42±1.80

Table 5.8: Results for PoS+ in comparison to the datasets and baselines chosen in
BUDDY [12]. The top three performing models are First, Second, and Third.

of experiments confirms the competitive performance of PoS+ on the OGB datasets

with large-scale graphs under different types of efficacy measurements.

5.3.3 S3GRL as a scalability framework.

To demonstrate the flexibility of S3GRL as a scalability framework, we explore how

easily it can host other scalable SGRLs. Specifically, we exchange the subgraph sam-

pling strategy of PoS (and PoS+) with the random-walk induced subgraph sampling

technique in ScaLed. Through this process, we reduce our operator sizes and benefit

from added regularization offered through stochasticity in random walks. We fixed

its hyperparameters, the random walk length h = 3, and the number of random walks

k = 20. Table 5.9 shows the average computational time and AUC (over 10 runs).

The subgraph sampling of ScaLed offers further speedup in PoS and PoS+ in train-

ing, dataset preprocessing, and overall runtimes. For PoS+ variants, we even witness

AUC gains on Cora and no AUC losses on CiteSeer. The AUC gains of PoS+ could

be attributed to the regularization offered through sparser enclosing subgraphs. This

demonstration suggests that S3GRL can provide a foundation for hosting various

SGRLs to further boost their scalability.

70

Model Training Preproc. Runtime AUC

C
or
a

PoS 4.82±0.25 83.28±3.16 336.70±2.47 94.65±0.67

PoS + ScaLed 4.73±0.22 60.32±3.50 308.73±4.27 94.35±0.52

PoS+ 5.59±0.31 94.33±7.36 387.95±7.81 94.77±0.65

PoS+ + ScaLed 5.49±0.28 69.95±5.12 358.40±7.08 94.80±0.58

C
it
eS
ee
r PoS 4.66±0.20 61.86±0.64 308.20±2.86 95.76±0.59

PoS + ScaLed 4.65±0.21 56.65±2.59 302.45±3.95 95.52±0.65

PoS+ 4.72±0.35 79.14±5.34 330.29±5.61 95.60±0.52

PoS+ + ScaLed 4.66±0.27 65.56±5.13 313.38±6.25 95.60±0.53

Table 5.9: Results for S3GRL as a scalability framework: ScaLed’s subgraph sampling
combined with PoS and PoS+.

5.4 Summary

We showcase the generalizability of our S3GRL instances, PoS and SoP on a variety

of small to large-scale data with varying types of efficacy measurements. S3GRL

proves to be a faster way of reaching the performance of SGRLs with efficient pre-

computations offered through operator diffusion.

71

Chapter 6

Conclusions

We dedicate this chapter to conclude our work and discuss in detail a plethora of future

directions aimed at further improving S3GRL. We wish to showcase the strength of

our S3GRL as a foundational SGRL scalability framework and how it can be used in

constructing future SGRLs.

6.1 Thesis Summary

Subgraph representation learning methods (SGRLs), albeit comprising state-of-the-

art models for link prediction, suffer from large computational overheads. This thesis

proposes a novel SGRL framework S3GRL, aimed at faster inference and training

times while offering flexibility to emulate many other SGRLs. We achieve this speedup

through easily precomputable subgraph-level diffusion operators in place of expensive

message-passing schemes. S3GRL supports multiple subgraph selection choices for

the creation of the operators, allowing for a multi-scale view around the target links.

Our experiments on multiple instances of our S3GRL framework show significant

computational speedup over existing SGRLs, while offering matching (or higher) link

72

prediction efficacies.

6.2 Future Directions

We dedicate this section to detail the planned future works involving our S3GRL

frameworks and its instances. Each future work is explained in more detail in the

following subsections.

6.2.1 Hybrid PoS

One of current limitations of our S3GRL framework is the existence of the h, r hy-

perparameter choices. h controls the depth of the subgraphs, whereas, r controls

the number of operators created. However, as an end-user, it might be difficult to

fine-tune the h value to the dataset at hand. To this end, one might consider a hybrid

version of PoS. Hybrid PoS is an extension to PoS’s style of operator creation with

a few modifications: Ψr is modified to create the 1-hop, 2-hop, ..., until the h hop

subgraph for each link, while Φr calculates up to the r-th power of each enclosing sub-

graph. Hybrid is aimed at making our W learn to assign different “importance” to

each i-th hop subgraph and its corresponding views. We present hybrid as a cheaper

way to adaptively learn h values from the underlying data.

6.2.2 Operator Creation Parallelization

Another interesting research direction is to parallelize the initial subgraph extraction

and operator creation methods. Currently, the operator creation phase of S3GRL

is performed sequentially for each link in the dataset. However, there is scope for

faster processing by having multiple processes or threads performing a subset of the

operator creation in parallel. This parallelization of the operator creation in S3GRL

73

could substantially speed up the preprocessing and lead to a overall faster runtimes,

especially in servers with multiple CPU cores available.

6.2.3 Recommendation with Implicit Data

One of the potential applications of our S3GRL framework is in recommender systems

with implicit feedback [4, 76]. The link prediction objective in S3GRL can easily

be extended to recommendation settings. One can view user-item or group-item

interactions as a bipartite graph where the goal is to predict an interaction (or a link)

between users (or groups) and items. With the abundance of implicit data available

(e.g., amount of time spent on a post, amount of times a media was replayed, etc.),

S3GRL can be used for recommender systems driven by implicit feedback. Moreover,

this can also help bring in more scalability to recommender systems owing to the

scalability components and techniques introduced in S3GRL.

6.2.4 Training S3GRL on Dynamic Graphs

In this work we present S3GRL, a novel end-to-end SGRL framework for learning on

static graphs. Static graphs are graphs who’s edges and nodes do not change over

time. However, there also exists scenarios where graphs are likely to lose or gain

nodes and links as time passes. These graphs are referred to as dynamic graphs.

Examples of systems that employ dynamic graphs include recommender systems and

financial transaction systems. One future work is to study the effect of training

S3GRL instances on dynamic graphs. One can easily extend the precomputations

and operator creation to involve the new nodes and links that are added on an ad-

hoc basis. However, the effect of the addition of new nodes and links on the already

trained data might result in stale learnt weights. In the future, we wish to come up

74

with efficient ways to correctly identify such stale data points and re-train the model

on the new nodes/links that get added.

75

Bibliography

[1] Abu-El-Haija, S., Kapoor, A., Perozzi, B., and Lee, J. N-gcn: Multi-

scale graph convolution for semi-supervised node classification. In Uncertainty

in Artificial Intelligence (2020).

[2] Adamic, L. A., and Adar, E. Friends and neighbors on the web. Social

Networks 25, 3 (2003), 211–230.

[3] Alsentzer, E., Finlayson, S., Li, M., and Zitnik, M. Subgraph neural

networks. Advances in Neural Information Processing Systems 33 (2020), 8017–

8029.

[4] Askari, B., Szlichta, J., and Salehi-Abari, A. Variational autoencoders

for top-k recommendation with implicit feedback. In Proceedings of the 44th

international ACM SIGIR conference on research and development in informa-

tion retrieval (2021), pp. 2061–2065.

[5] Barabási, A.-L., and Albert, R. Emergence of scaling in random networks.

Science 286, 5439 (1999), 509–512.

[6] Bevilacqua, B., Frasca, F., Lim, D., Srinivasan, B., Cai, C., Bala-

murugan, G., Bronstein, M. M., and Maron, H. Equivariant subgraph

76

aggregation networks. In International Conference on Learning Representations

(2022).

[7] Bottou, L., et al. Stochastic gradient learning in neural networks. Proceed-

ings of Neuro-Nımes 91, 8 (1991), 12.

[8] Bruna, J., Zaremba, W., Szlam, A., and Lecun, Y. Spectral networks

and locally connected networks on graphs. In International Conference on

Learning Representations (2014).

[9] Cai, L., and Ji, S. A multi-scale approach for graph link prediction. In

Proceedings of the AAAI Conference on Artificial Intelligence (2020), vol. 34,

pp. 3308–3315.

[10] Cai, L., Li, J., Wang, J., and Ji, S. Line graph neural networks for link

prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence

(2021).

[11] Cao, S., Lu, W., and Xu, Q. Grarep: Learning graph representations with

global structural information. In Proceedings of the 24th ACM International

on Conference on Information and Knowledge Management (New York, NY,

USA, 2015), CIKM ’15, Association for Computing Machinery, p. 891–900.

[12] Chamberlain, B. P., Shirobokov, S., Rossi, E., Frasca, F.,

Markovich, T., Hammerla, N., Bronstein, M. M., and Hansmire,

M. Graph neural networks for link prediction with subgraph sketching. In

International Conference on Learning Representations (2023).

[13] Chen, J., Ma, T., and Xiao, C. FastGCN: Fast learning with graph con-

volutional networks via importance sampling. In International Conference on

Learning Representations (2018).

77

[14] Chen, J., Zhu, J., and Song, L. Stochastic training of graph convolutional

networks with variance reduction. In International Conference on Machine

Learning (2018), pp. 942–950.

[15] Chen, L., Xie, Y., Zheng, Z., Zheng, H., and Xie, J. Friend recom-

mendation based on multi-social graph convolutional network. IEEE Access 8

(2020), 43618–43629.

[16] Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J.

Cluster-gcn: An efficient algorithm for training deep and large graph convo-

lutional networks. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (2019), pp. 257–266.

[17] Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast and accu-

rate deep network learning by exponential linear units (elus). arXiv preprint

arXiv:1511.07289 (2015).

[18] Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tomczak,

J. M. Hyperspherical variational auto-encoders. In Uncertainty in Artificial

Intelligence (2018).

[19] Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in

Neural Information Processing Systems (2016).

[20] Dong, Y., Chawla, N. V., and Swami, A. Metapath2vec: Scalable repre-

sentation learning for heterogeneous networks. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(New York, NY, USA, 2017), KDD ’17, Association for Computing Machinery,

p. 135–144.

78

[21] Du, J., Zhang, S., Wu, G., Moura, J. M., and Kar, S. Topology adap-

tive graph convolutional networks. arXiv preprint arXiv:1710.10370 (2017).

[22] Fey, M., and Lenssen, J. E. Fast graph representation learning with Py-

Torch Geometric. In ICLR Workshop on Representation Learning on Graphs

and Manifolds (2019).

[23] Fey, M., Lenssen, J. E., Weichert, F., and Leskovec, J. Gnnautoscale:

Scalable and expressive graph neural networks via historical embeddings. In

International Conference on Machine Learning (2021), PMLR, pp. 3294–3304.

[24] Fortunato, S. Community detection in graphs. Physics Reports 486, 3 (2010),

75–174.

[25] Frasca, F., Bevilacqua, B., Bronstein, M., and Maron, H. Under-

standing and extending subgraph gnns by rethinking their symmetries. Ad-

vances in Neural Information Processing Systems 35 (2022), 31376–31390.

[26] Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bronstein, M.,

and Monti, F. Sign: Scalable inception graph neural networks. In ICML

2020 Workshop on Graph Representation Learning and Beyond (2020).

[27] Gasteiger, J., Weißenberger, S., and Günnemann, S. Diffusion im-

proves graph learning. In Advances in Neural Information Processing Systems

(2019).

[28] Granovetter, M. The strength of weak ties: A network theory revisited.

Sociological theory (1983), 201–233.

79

[29] Grover, A., and Leskovec, J. node2vec: Scalable feature learning for net-

works. In International Conference on Knowledge Discovery and Data mining

(2016).

[30] Guo, Z., Shiao, W., Zhang, S., Liu, Y., Chawla, N., Shah, N., and

Zhao, T. Linkless link prediction via relational distillation. arXiv preprint

arXiv:2210.05801 (2022).

[31] Gysi, D. M., Do Valle, Í., Zitnik, M., Ameli, A., Gan, X., Varol,

O., Ghiassian, S. D., Patten, J., Davey, R. A., Loscalzo, J., et al.

Network medicine framework for identifying drug-repurposing opportunities for

covid-19. Proceedings of the National Academy of Sciences 118, 19 (2021).

[32] Hamilton, W. L. Graph representation learning. Synthesis Lectures on Ar-

tifical Intelligence and Machine Learning 14, 3 (2020), 1–159.

[33] Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation

learning on large graphs. In Proceedings of the 31st International Conference on

Neural Information Processing Systems (Red Hook, NY, USA, 2017), NIPS’17,

Curran Associates Inc., p. 1025–1035.

[34] Hao, Y., Cao, X., Fang, Y., Xie, X., and Wang, S. Inductive link

prediction for nodes having only attribute information. In Proceedings of the

Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-

20 (7 2020), pp. 1209–1215. Main track.

[35] Hinton, G., Vinyals, O., Dean, J., et al. Distilling the knowledge in a

neural network. arXiv preprint arXiv:1503.02531 2, 7 (2015).

[36] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural

Comput. 9, 8 (nov 1997), 1735–1780.

80

[37] Hoff, P. D., Raftery, A. E., and Handcock, M. S. Latent space

approaches to social network analysis. Journal of the American Statistical As-

sociation 97, 460 (2002), 1090–1098.

[38] Hornik, K. Approximation capabilities of multilayer feedforward networks.

Neural Networks 4, 2 (1991), 251–257.

[39] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward

networks are universal approximators. Neural Networks 2, 5 (1989), 359–366.

[40] Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y., and Leskovec, J.

Ogb-lsc: A large-scale challenge for machine learning on graphs. arXiv preprint

arXiv:2103.09430 (2021).

[41] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta,

M., and Leskovec, J. Open graph benchmark: Datasets for machine learning

on graphs. arXiv preprint arXiv:2005.00687 (2020).

[42] Huang, K., Xiao, C., Glass, L. M., Zitnik, M., and Sun, J. Skipgnn:

predicting molecular interactions with skip-graph networks. Scientific reports

10, 1 (2020), 1–16.

[43] Huang, Y., Peng, X., Ma, J., and Zhang, M. Boosting the cycle counting

power of graph neural networks with I2-gnns. arXiv preprint arXiv:2210.13978

(2022).

[44] Jacob, S. A., Louis, P., and Salehi-Abari, A. Stochastic subgraph

neighborhood pooling for subgraph classification, 2023.

[45] Jeh, G., and Widom, J. Simrank: A measure of structural-context similar-

ity. In Proceedings of the Eighth ACM SIGKDD International Conference on

81

Knowledge Discovery and Data Mining (New York, NY, USA, 2002), KDD ’02,

Association for Computing Machinery, p. 538–543.

[46] Jia, Z., Lin, S., Ying, R., You, J., Leskovec, J., and Aiken, A.

Redundancy-free computation for graph neural networks. In Proceedings of

the 26th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining (2020), pp. 997–1005.

[47] Katz, L. A new status index derived from sociometric analysis. Psychometrika

18, 1 (1953), 39–43.

[48] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization.

In International Conference on Learning Representations (2015).

[49] Kipf, T. N., and Welling, M. Variational graph auto-encoders. arXiv

preprint arXiv:1611.07308 (2016).

[50] Kipf, T. N., and Welling, M. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representa-

tions (2017).

[51] Koren, Y., Bell, R., and Volinsky, C. Matrix factorization techniques

for recommender systems. Computer 42, 8 (2009), 30–37.

[52] Kovács, I. A., Luck, K., Spirohn, K., Wang, Y., Pollis, C.,

Schlabach, S., Bian, W., Kim, D.-K., Kishore, N., Hao, T., et al.

Network-based prediction of protein interactions. Nature communications 10,

1 (2019), 1240.

82

[53] Kumar, A., Singh, S. S., Singh, K., and Biswas, B. Link prediction

techniques, applications, and performance: A survey. Physica A: Statistical

Mechanics and its Applications 553 (2020), 124289.

[54] Li, B., Xia, Y., Xie, S., Wu, L., and Qin, T. Distance-enhanced graph

neural network for link prediction.

[55] Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance encoding: De-

sign provably more powerful neural networks for graph representation learning.

Advances in Neural Information Processing Systems 33 (2020), 4465–4478.

[56] Liben-Nowell, D., and Kleinberg, J. The link prediction problem for

social networks. In International Conference on Information and Knowledge

Management (2003).

[57] Louis, P., Jacob, S. A., and Salehi-Abari, A. Sampling enclosing

subgraphs for link prediction. In International Conference on Information &

Knowledge Management (2022).

[58] Louis, P., Jacob, S. A., and Salehi-Abari, A. Simplifying subgraph

representation learning for scalable link prediction, 2023.

[59] Lü, L., and Zhou, T. Link prediction in complex networks: A survey. Physica

A: statistical mechanics and its applications 390, 6 (2011), 1150–1170.

[60] Mart́ınez, V., Berzal, F., and Cubero, J.-C. A survey of link prediction

in complex networks. ACM Computing Surveys (CSUR) 49, 4 (2016), 1–33.

[61] Mavromatis, C., and Karypis, G. Graph infoclust: Maximizing coarse-

grain mutual information in graphs. In PAKDD (2021).

83

[62] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

[63] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean,

J. Distributed representations of words and phrases and their compositionality.

Advances in neural information processing systems 26 (2013).

[64] Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P., and

Neumann, M. Tudataset: A collection of benchmark datasets for learning with

graphs. arXiv preprint arXiv:2007.08663 (2020).

[65] Namanloo, A. A., Thorpe, J., and Salehi-Abari, A. Improving peer

assessment with graph neural networks. International Educational Data Mining

Society (2022).

[66] Niepert, M., Ahmed, M., and Kutzkov, K. Learning convolutional neural

networks for graphs. In International conference on machine learning (2016),

PMLR, pp. 2014–2023.

[67] Ou, M., Cui, P., Pei, J., Zhang, Z., and Zhu, W. Asymmetric transitivity

preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD inter-

national conference on Knowledge discovery and data mining (2016), pp. 1105–

1114.

[68] Page, L., Brin, S., Motwani, R., and Winograd, T. The pagerank

citation ranking: Bringing order to the web. Tech. rep., Stanford InfoLab,

1999.

[69] Pan, L., Shi, C., and Dokmanić, I. Neural link prediction with walk

pooling. In International Conference on Learning Representations (2022).

84

[70] Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., and Zhang, C. Adver-

sarially regularized graph autoencoder for graph embedding. In International

Joint Conference on Artificial Intelligence (2018).

[71] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,

G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,

A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-

amkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Py-

torch: An imperative style, high-performance deep learning library. In Advances

in Neural Information Processing Systems (2019).

[72] Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online learning

of social representations. In International Conference on Knowledge Discovery

and Data mining (2014).

[73] Pho, P., and Mantzaris, A. V. Link prediction with simple graph convo-

lution and regularized simple graph convolution. In International Conference

on Information System and Data Mining (2022).

[74] Ren, H., Dai, H., Dai, B., Chen, X., Zhou, D., Leskovec, J., and

Schuurmans, D. Smore: Knowledge graph completion and multi-hop reason-

ing in massive knowledge graphs. In Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (2022), pp. 1472–1482.

[75] Ribeiro, L. F., Saverese, P. H., and Figueiredo, D. R. struc2vec:

Learning node representations from structural identity. In Proceedings of the

23rd ACM SIGKDD international conference on knowledge discovery and data

mining (2017), pp. 385–394.

85

[76] Sajjadi Ghaemmaghami, S., and Salehi-Abari, A. Deepgroup: Group

recommendation with implicit feedback. In Proceedings of the 30th ACM

International Conference on Information & Knowledge Management (New

York, NY, USA, 2021), CIKM ’21, Association for Computing Machinery,

p. 3408–3412.

[77] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov,

D., Erhan, D., Vanhoucke, V., and Rabinovich, A. Going deeper

with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2015), pp. 1–9.

[78] Tan, Q., Zhang, X., Liu, N., Zha, D., Li, L., Chen, R., Choi, S.-H.,

and Hu, X. Bring your own view: Graph neural networks for link prediction

with personalized subgraph selection. In Proceedings of the Sixteenth ACM

International Conference on Web Search and Data Mining (New York, NY,

USA, 2023), WSDM ’23, Association for Computing Machinery, p. 625–633.

[79] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. Line:

Large-scale information network embedding. In Proceedings of the 24th inter-

national conference on world wide web (2015), pp. 1067–1077.

[80] Tang, L., and Liu, H. Leveraging social media networks for classification.

Data Mining and Knowledge Discovery 23 (2011), 447–478.

[81] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention is all you need.

In Advances in Neural Information Processing Systems (2017).

86

[82] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P.,

and Bengio, Y. Graph attention networks. arXiv preprint arXiv:1710.10903

(2017).

[83] Wang, P., Xu, B., Wu, Y., and Zhou, X. Link prediction in social net-

works: the state-of-the-art. Science China Information Sciences 58, 1 (2015),

1–38.

[84] Wang, X., and Zhang, M. Glass: Gnn with labeling tricks for subgraph rep-

resentation learning. In International Conference on Learning Representations

(2021).

[85] Weisfeiler, B., and Leman, A. The reduction of a graph to canonical form

and the algebra which appears therein. NTI, Series 2, 9 (1968), 12–16.

[86] Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A.,

Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assem-

pour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson,

A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., and Wilson,

M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic

Acids Research 46, D1 (11 2017), D1074–D1082.

[87] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Weinberger,

K. Simplifying graph convolutional networks. In International Conference on

Machine Learning (2019).

[88] Xiong, Z., Wang, D., Liu, X., Zhong, F., Wan, X., Li, X., Li, Z.,

Luo, X., Chen, K., Jiang, H., et al. Pushing the boundaries of molecular

representation for drug discovery with the graph attention mechanism. Journal

of medicinal chemistry 63, 16 (2019), 8749–8760.

87

[89] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph

neural networks? In International Conference on Learning Representations

(2019).

[90] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and

Jegelka, S. Representation learning on graphs with jumping knowledge net-

works. In International Conference on Machine Learning (2018).

[91] Yanardag, P., and Vishwanathan, S. Deep graph kernels. In Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining (New York, NY, USA, 2015), KDD ’15, Association for Com-

puting Machinery, p. 1365–1374.

[92] Yang, J., and Leskovec, J. Overlapping communities explain

core–periphery organization of networks. Proceedings of the IEEE 102 (12

2014), 1892–1902.

[93] Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting semi-supervised

learning with graph embeddings. In International conference on machine learn-

ing (2016), PMLR, pp. 40–48.

[94] Yin, H., Zhang, M., Wang, J., and Li, P. Surel+: Moving from walks to

sets for scalable subgraph-based graph representation learning. arXiv preprint

arXiv:2303.03379 (2023).

[95] Yin, H., Zhang, M., Wang, Y., Wang, J., and Li, P. Algorithm and sys-

tem co-design for efficient subgraph-based graph representation learning. Pro-

ceedings of the VLDB Endowment 15, 11 (2022), 2788–2796.

[96] Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and

Leskovec, J. Graph convolutional neural networks for web-scale recommender

88

systems. In International Conference on Knowledge Discovery and Data mining

(2018).

[97] You, J., Gomes-Selman, J., Ying, R., and Leskovec, J. Identity-aware

graph neural networks. arXiv preprint arXiv:2101.10320 (2021).

[98] You, J., Xiao, G., Ying, R., and Leskovec, J. Hybridgnn: Scaling deep

gnns on large graphs.

[99] Zachary, W. W. An information flow model for conflict and fission in small

groups. Journal of anthropological research 33, 4 (1977), 452–473.

[100] Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A., Kannan,

R., Prasanna, V., Jin, L., and Chen, R. Decoupling the depth and

scope of graph neural networks. In Advances in Neural Information Processing

Systems (2021).

[101] Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna,

V. Accurate, efficient and scalable graph embedding. In 2019 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS) (2019), IEEE,

pp. 462–471.

[102] Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V.

GraphSAINT: Graph sampling based inductive learning method. In Interna-

tional Conference on Learning Representations (2020).

[103] Zhang, M., and Chen, Y. Weisfeiler-lehman neural machine for link pre-

diction. In International Conference on Knowledge Discovery and Data Mining

(2017).

89

[104] Zhang, M., and Chen, Y. Link prediction based on graph neural networks.

In Advances in Neural Information Processing Systems (2018).

[105] Zhang, M., Cui, Z., Neumann, M., and Chen, Y. An end-to-end deep

learning architecture for graph classification. In AAAI Conference on Artificial

Intelligence (2018).

[106] Zhang, M., and Li, P. Nested graph neural networks. In Advances in

Neural Information Processing Systems (2021), M. Ranzato, A. Beygelzimer,

Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34, Curran Associates,

Inc., pp. 15734–15747.

[107] Zhang, M., Li, P., Xia, Y., Wang, K., and Jin, L. Labeling trick: A

theory of using graph neural networks for multi-node representation learning.

In Advances in Neural Information Processing Systems (2021), vol. 34.

[108] Zhang, S., Liu, Y., Sun, Y., and Shah, N. Graph-less neural networks:

Teaching old mlps new tricks via distillation. arXiv preprint arXiv:2110.08727

(2021).

[109] Zhang, Z., Zhuang, F., Zhu, H., Shi, Z., Xiong, H., and He, Q.

Relational graph neural network with hierarchical attention for knowledge graph

completion. In AAAI Conference on Artificial Intelligence (2020).

[110] Zhao, L., Jin, W., Akoglu, L., and Shah, N. From stars to subgraphs:

Uplifting any GNN with local structure awareness. In International Conference

on Learning Representations (2022).

[111] Zhong, W., He, C., Xiao, C., Liu, Y., Qin, X., and Yu, Z. Long-

distance dependency combined multi-hop graph neural networks for protein–

protein interactions prediction. BMC bioinformatics 23, 1 (2022), 1–21.

90

[112] Zhou, T., Lü, L., and Zhang, Y.-C. Predicting missing links via local

information. The European Physical Journal B 71 (2009), 623–630.

[113] Zitnik, M., Agrawal, M., and Leskovec, J. Modeling polypharmacy

side effects with graph convolutional networks. Bioinformatics 34, 13 (2018),

i457–i466.

[114] Zitnik, M., and Leskovec, J. Predicting multicellular function through

multi-layer tissue networks. Bioinformatics 33, 14 (07 2017), i190–i198.

[115] Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q. Layer-

dependent importance sampling for training deep and large graph convolutional

networks. In Advances in Neural Information Processing Systems (2019).

91

	Abstract
	Author's Declaration
	Statement of Contributions
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Notations
	Introduction
	Motivation
	Contribution
	Thesis Organization
	Summary and Impact

	Background
	Learning on Graphs
	What is a Graph?
	Early Work in Graph Representation Learning
	Message Passing Graph Neural Networks

	Downstream Tasks
	Node Classification
	Graph Classification
	Link Prediction
	Subgraph Graph Neural Networks

	Related Work
	Shallow Embedding Methods
	Message Passing Graph Neural Networks
	Subgraph Graph Neural Networks
	Scalability in Graph Neural Networks
	Scalability by Simplification
	Scalability of SGRLs

	Approach
	Preliminaries
	Problem Statement
	Scalability by Simplification
	Proposed S3GRL Framework
	Disentanglement of Data and Model.
	Multi-View Representation.

	Our Proposed Instances
	Powers of Subgraphs (PoS)
	Subgraphs of Powers (SoP)
	Comparing our S3GRL instances: PoS vs. SoP.
	Subgraph Pooling
	Inference Time Complexity.

	Experiments
	Datasets
	Experimental Setup
	Evaluation Metrics
	Baselines
	Hyperparameter Settings
	Reproducibility

	Results and Discussions
	Results on Attributed and Non-Attributed Datasets
	Results on Large Scale Datasets
	S3GRL as a scalability framework.

	Summary

	Conclusions
	Thesis Summary
	Future Directions
	Hybrid PoS
	Operator Creation Parallelization
	Recommendation with Implicit Data
	Training S3GRL on Dynamic Graphs

	Bibliography

