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Abstract

Passwords play a major role in the field of network security and play as a first line of de-

fense against attackers who gain unauthorized access to the profiles. However, passwords

are vulnerable to various types of attacks making it essential to ensure that they are strong,

unique, and confidential. One of the major techniques that evolved over time to enhance

password security is the use of honeywords that are decoy passwords designed to alert the

administrator when a data breach has happened. The main goal of this project is to ad-

dresses one of the limitations of a honeyword generation technique, called Chunk-GPT3,

by performing better password segmentation through a re-engineered chunking algorithm

that maps digits into characters, and which would seem to lead to better honeywords. We

justify our re-engineering method and generate honeywords that we compare to those gen-

erated by Chunk-GPT3. Nonetheless, after evaluating honeywords using the HWSimilarity

metric, the results suggest that improved chunking does not necessarily lead to better hon-

eywords in all cases.

Keywords: authentication, intrusion detection, honeywords, passwords, language models.
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Chapter 1

Introduction

Passwords are one of the main fundamental components of network security and they are

used to authenticate the user’s identity to grant access to a particular resource or infor-

mation. However, passwords are considered as a weak authentication mechanism because

they are vulnerable to various attacks, such as dictionary attacks, brute force, and many

more [8]. So, it is very crucial that passwords have to be strong, unique, and super confi-

dential. A strong password means using unique words every time creating a new one and

it has to fall between 8–12-character length by combing lowercase, uppercase, some spe-

cial symbols, and digits [13]. Passwords are typically stored in file systems or databases

to facilitate user authentication. However, storing passwords in plain text format poses a

significant security risk. Therefore, it is common practice to store passwords in hashed

form. A password hash is created by subjecting the password to a one-way mathematical

procedure that transforms it into a unique string of characters. This ensures that even if the

password database is compromised, the original passwords cannot be easily derived from

the stored hash values. Even though taking all these measures, there are so many deter-

mined attackers that may employ various techniques to crack hashed passwords. Password

cracking involves attempting to recover passwords by unconventional and often unethi-
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cal means from stored or transmitted data within a computer system. Attackers may use

powerful hardware, software, or precomputed databases of password hashes to accelerate

the cracking process. To strengthen the security of password storage and detect potential

breaches, the concept of honeywords can be employed. Honeywords are essentially decoy

passwords that are associated with each user’s account [13] [8] [16]. Alongside the actual

password, multiple honeywords are created and stored in the password database. These

honeywords are indistinguishable from the real password in terms of their hashed values.

If an attacker manages to compromise the hashed passwords’ database and success-

fully reverses the hash function, they will encounter multiple password options, including

the honeywords. Since honeywords are not legitimate passwords, their presence indicates

unauthorized access attempts. When a user tries to log in and enters a honeyword, a ``silent

alarm" is triggered, alerting the system administrators to the potential breach [8]. This

allows for early detection and response to password cracking attempts. To implement hon-

eywords effectively, a honeychecker is employed as an auxiliary server. The honeychecker

is responsible for distinguishing between genuine passwords and honeywords during the

login process. It verifies whether the entered password matches the actual password or is

one of the honeywords. If a honeyword is detected, the honeychecker triggers an alarm to

notify the appropriate personnel about the potential security breach [13] [8] [16].

There are many HGT’s that generate honeywords normally in the database which can be

compromised if the attacker knows personally identifiable information (PII) [16], and there

are some HGT’s that aim to create honeywords that are very similar to the original pass-

words and difficult to distinguish even when the attacker knows PII [14].Figure 1.1 pro-

vides a clear and easy visual representation of how the honeywords authentication mecha-

nism works. It explains the operation of an authentication system with honeywords, which

aims to enhance security in user logins. During registration, the system generates multiple

honeywords alongside the user’s chosen password and combines them in a random order
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Figure 1.1: Honeywords authentication mechanism [12]

to form a set called (Wi). Each element in (Wi) is then hashed using a hash algorithm (H())

and stored, along with the user’s ID (ui), as a tuple (ui, H(Wi)), by the identity authentica-

tion server [12]. Additionally, the server sends the user ID and the index (ci) of the actual

password within (Wi) to the Honey-checker server for storage. During login attempts, the

identity authentication server hashes the entered password (pi) and checks if the resulting

hash (H(p_i)) matches any of the stored hashes in H(Wi). If a match is found, it suggests

the user might have entered either the correct password or a honeyword. To verify further,

the Honey-checker server compares the index (c_i) of H(p_i) in H(Wi) with the stored in-

dex (ci). If they match, the user is considered authenticated and can log in successfully.

However, if the indices do not match, indicating the use of a honeyword, the system raises

an alarm to detect potential unauthorized access [12].

One of the most successful HGT that generates honeywords by using a language model

is Chunk GPT3 [16]. This is the first generative language model that is robust to targeted
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attacks. This report mainly focuses on how the quality of Honeywords changes if we made

some changes to the password segmentation module

1.1 Our Contribution

We are the first to address the limitations in the Chunk-GPT3 method and re-engineer the

chunking algorithm. We propose two different modules for the algorithm named ``Mapping

Digits to Alphabets” and ``Removal of Digits” for better chunking. The primary purpose of

the ``Mapping Digits to Alphabets" module is to identify any digits present within a given

password. Once identified, these digits are replaced with corresponding letters, resulting

in a new password referred to as the ``mapped password." This mapping ensures that the

resulting password remains secure while obfuscating the presence of any numerical char-

acters. In parallel, the ``Removal of Digits" module focuses on detecting the presence of

digits within a password. Instead of replacing them with letters, this module generates

an alternative version of the password called the ``text password" by simply removing the

digits.

Figure 1.2: Honeywords generated using our re-engineered method

These modules are executed only when the original password contains exactly two dig-

its or fewer, because sometimes one or two digits doesn’t make a meaningful chunk. In

cases where this condition is not met, the normal chunking process is applied. By em-

ploying these modules, we create chunks from the modified passwords and combine them
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to generate ``honey words." The figure 1.2 clearly shows the process of the re-engineered

module. We evaluated the honeywords’ similarities with their original password by using

the HWSimilarity metric proposed in [16]. We also evaluated the HWSimilarity of the

Chunk-GPT3 with our model for a better understanding of the results and how the changes

in the chunking algorithm performed.

1.2 Project Organization

The rest of the paper is organized as follows: Section 3 represents the methodology by

showing how we made changes to the algorithm.Section 4provide the minimum system

configurations required for successfully running the project. Section 5outlines the results of

the model and comparison between the Chunk-GPT3. Section 6 discusses some limitations

of our work and suggests some future work. Finally, Section 7 concludes our research.
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Chapter 2

Background

In the field of security, there exist advanced techniques for generating honeywords that

resemble genuine passwords. These honeywords are combined with authentic passwords

to create sweet words, thereby improving the security of password-based authentication

systems [13]. While exploring multiple papers, researchers have developed various Hon-

eyword Generation Techniques (HGTs) by considering multiple factors. Some of the im-

portant HGTs are:

2.1 Honeywords Generated by Chaffing

Chaffing is a technique used in computer security where a large amount of false data is

added to the system that consists of original data in order to confuse the attacker. Here we

add a large number of decoy passwords to the original one. Three main types are:

2.1.1 Chaffing-by-tweaking:

In this method, we are making slight modifications to the original password. These mod-

ifications can include adding or changing a letter, digit, or symbol, or adding a prefix or
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suffix to the password [13] [8].Mainly chaffing-by-tweaking is achieved by two methods:

2.1.1.1 Chaffing-by-tail-tweaking

In this method, the tail (the last few characters) of the original password is modified at

specific locations. Let’s consider an example where the user’s password is ``TU-9g73".

We choose a value for ``t" (the number of tail characters to be modified) and ``k" (the

number of honeywords to generate) [13]. For instance, if we set ``t" as 4 and ``k" as 5, the

list of honeywords (Wi) generated through tail tweaking could be:

TU-2f45, TU-6h23 , TU-0b12 , TU-8j60 , TU-5l63

In each honeyword, the tail characters of the original password have been modified while

keeping the initial part unchanged. This technique adds confusion for potential attackers

who might try to guess the password by observing patterns in the tail.

2.1.1.2 Chaffing-by-tweaking-digits

In this method, the focus is on modifying the digits present in the original password. If

the password has fewer than ``t" digits, non-digit places can be used as needed [13]. Let’s

consider an example where the original password is ``762@jupiter". We set ``t" as 3,

indicating that we want to modify the last three digits of the password. Here are some

honeywords generated using chaffing-by-tweaking-digits:

934@jupiter , 815@jupiter , 256@jupiter , 157@jupiter , 658@jupiter

In these examples, the last digits of the original password have been tweaked to create dif-

ferent honeywords. This technique leverages the fact that many users incorporate numbers

in their passwords and aims to confuse attackers by introducing variations in the digits.
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2.1.2 Chaffing-with-a-password-model

In this technique, a statistical model of the passwords used by the system’s users is created,

based on factors such as password length, character types, and frequency of use [13] [8].

2.1.2.1 Simple model

In this approach, a probabilistic model of actual passwords is used to generate honeywords.

The model can be based on a published list of passwords (such as L, which contains hun-

dreds or thousands of passwords) and may consider other factors as well. For example,

let’s assume we have the following published password list: ``iloveyou", ``monkey", ``sun-

shine". Using this list as the basis for the password model, honeywords can be generated

and they are :

iloveyou123 , monkey456 , sunshine789

In this example, the honeywords are created by using the simple password model and

adding numeric values (e.g., 123, 456, 789) to the base passwords from the published

list. This technique leverages the patterns and characteristics observed in real passwords to

generate plausible honeywords.

2.1.2.2 Modeling syntax

In this technique, honeywords are created based on the same syntax as passwords. The

original password is divided into tokens, where each token represents a separate syntactic

component such as a letter, digit, or collection of symbols. For example, consider the

original password ``super90man". It can be divided into tokens as follows: W5 (word of

length 5) | D2 (digit of length 2) | W3 (word of length 3). The generated honeywords by

this model are :
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moons64hat , cats12car , jump87fox

In this example, honeywords are formed by substituting each token with randomly selected

values corresponding to the token type. This technique maintains the syntax and structure

of passwords while creating variations that still adhere to the expected format. By using

a simple model or modeling syntax, honeywords can be generated based on the character-

istics and patterns observed in real-world passwords. This adds complexity and confusion

for attackers attempting to guess or crack the passwords.

2.1.3 Chaffing-by-fasttext

In this technique, it generates honeywords by converting passwords to vectors using the

fasttext and allocating the closest k-1 nearest neighbors based on the cosine similarity cal-

culator. So here fasttext is trained on the real-world dataset of passwords for better seman-

tics [14] [4] [16]. Suppose we have the following original password: ``SecurePass123".

Training fastText: We train a fastText model on a real-world dataset of passwords to

learn vector representations that capture the semantics and patterns of password usage.

Converting password to vectors: We convert the original password ``SecurePass123"

to a vector representation using the trained fastText model. This vector captures the seman-

tic meaning of the password.

Finding nearest neighbors: Using cosine similarity, we identify the k-1 nearest neigh-

bors to the vector representation of the original password. These neighbors are selected

based on their similarity to the semantic vector of the original password.

Generating honeywords: Finally, we generate honeywords by replacing the original

password with the identified nearest neighbors. These honeywords will have similar se-

mantic characteristics to the original password but differ slightly in their specific values

when we compare it to the original password.
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Original Password: ``SecurePass123"

Trained fastText model: Captures semantics of passwords

Generated Honeywords (k = 4):

SecurePassword321 , SecurePassABC , SecurePassXYZ , SecurePass789

In this example, the original password ``SecurePass123" is converted into a semantic vector

using the trained fastText model. Then, based on cosine similarity, the nearest neighbors

to the original password are identified. These nearest neighbors are used to generate hon-

eywords. The honeywords maintain the semantic meaning of the original password but

provide slight variations, such as different endings, replacements, or alterations. This tech-

nique increases the complexity for potential attackers and makes it more challenging to

determine the actual password.

2.2 HGT By Juels and Rivest

This is the first Honeyword generation Technique [13] [8] that ever created and goes by

the name Honeychecker [8]. So, a honeychecker is an approach where it creates a database

of honeywords by generating so many fake passwords that look like original passwords but

are distinct enough to make an attacker confused. The honeywords are then scattered at

random in the password file with the true password. The system verifies the login attempt’s

validity by comparing the input password to the corresponding honeyword in the password

file. If the password submitted matches a honeyword, the system flags the attempt and

alerts the user [8].

In honeychecker the honeywords are generated depending on two prospects one is the

Legacy-UI procedure and the second one is Modified UI procedures [13] [8]. In the legacy-

Ui procedure, it doesn’t give any information to the user about honeywords, and it involves

two types of chaffing techniques, Chaffing-by-Tweaking and Chaffing-by-password-model
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[13] [8]. In this, it tries to modify the password by characters and digits to generate hon-

eywords. In the modified-Ui procedure, it informs the user about honeywords that they

are used to increase password security. It influences the user to choose the password. It is

similar to the chaffing-by-Tweaking technique, where it influences the user to add a tail to

the chosen password to make it more difficult to guess. Another method is also there where

it enters 3 random digits into the password and informs the user about it. All these methods

are evaluated by flatness curve and DoS resistance. Of all these methods the one which

saved users by showing great resistance to attack and flatness is the Take a Tail suggestion

method which informs the user to add some digits or make some suggestions to him to his

password [8].

2.3 HGT using a discrete Salp Swarm Algorithm (DSSA)

The DSSA is a population-based optimization algorithm that stimulates the behavior of

salps, a type of marine animal that navigates by changing its shape and swimming direc-

tion [1]. It generates a set of honeywords by perturbing the original password based on the

movement of the salps in the algorithm. The salps are divided into groups known as leaders

and followers where leaders are the original passwords, and the followers are the honey-

words in descending order based on their strengths. The model is tested for various attacks

to measure its effectiveness like brute force and dictionary attacks. The model succeeded

in defending against these attacks and also improving the security of passwords [1].

2.4 HoneyGAN

HoneyGan is an HGT used to generate honeywords based on the GNPassGAN’s generator

[14]. It tries to generate fake passwords that look like original passwords. Here we will see
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how to generate honeywords with GNPassGAN, a generative adversarial network (GAN)

model. The initial stage, step-1 is to train GNPassGAN on a password corpus for 200,000

iterations in order to comprehend the password pattern in the training dataset. In step-2,

The GNPassGAN generator is then used to generate a file named F containing 50,000 bogus

passwords as honeyword candidates, which are then kept away from the authentication

system in a safe area. Step-3 compares each user’s genuine password to each of the fake

passwords in F and computes text similarity scores. This is accomplished by employing the

bag-of-words (BoW) approach to transform each password into a vector and determining

the cosine similarity between two passwords [14].

Finally, in step 4, honeywords for a genuine password are assigned to the k-1 most sim-

ilar fake passwords in F. After successful full generation the HoneyGan HGT is compared

to some of the HGT, they are Chaffing-by-tweaking and chaffing-by-fasttext [14] [16]. It’s

evaluated by using ASR and average internal similarity. The ASR (Attack Success Rate)

for honey words generated by HoneyGan has around 60% success rate and 68% and 90%

when the honey words are generated by fasttext and tweaking and given 20 attempts for

the user are allocated. HoneyGan’s average internal similarity is very high (81.9%) when it

is compared to fasttext (26.2%) and tweaking (62.7%). Here HoneyGan outraged both of

them with better scores and also generated honeywords that almost look like the original

passwords. The measurement principles are the average internal similarity and the attack

success rate which it shows how good they are in defending against the attacks. Although

the success rate is high there are some limitations like the inappropriate password setting

where the semantics [10] are not discussed properly.
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2.5 Chunk-GPT3

Chunk GPT3 is a Honeyword generation technique that generates honeywords by using

the GPT model. The biggest challenge of creating an HGT is to generate honeywords that

are resistant to targeted attacks [15] [16]. Targeted attacks are a significant cybersecurity

concern as attackers often leverage users’ personally identifiable information (PII) to guess

their passwords, thereby increasing the risk of unauthorized access to user accounts. The

problem is compounded because of the ongoing data breaches which make a large amount

of PII and passwords easily accessible to attackers. If the honeywords that are generated by

HGT are not considering PII and if the attacker knows the PII and possibility of identifying

the password is very high. So, Chunk GPT3 is HGT which generates the honeywords that

are resistant to the targeted attacks [1] [16]. Initially, the password strength is calculated

by using the zxcvbn library [11]. Then the passwords are sorted according to the zxcvbn

strength [16] and then divided into 2 datasets of strong and weak passwords. The data sets

are gone through the Pwd segment chunking algorithm to generate password chunks for

the honeywords generation. The main advantage of this chunking algorithm is it generates

chunks that consist of original password segments only. GPT3 is used to generate honey-

words that are completely robust to targeted attacks, so we need to generate the honeywords

by giving prompts to it [16]. The three main factors for generating good honeywords are

the prompt, the temperature, and the examples we give to the model (chunks generated).

The temperature is a numeric value that may be 0 or 1 and that effectively regulates the

model’s degree of confidence in generating a good prediction, it’s highly recommended to

always keep the temperature to 1 for good results [16]. So, the password is segmented

into chunks, and they are given to the model as input like “Please derive three passwords

that are similar to “Elena1986@327” and contain “Elena”, “1986” and “327” [16]. The

figure 2.1 demonstrates the honeywords generated by the model when the above prompt is
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Figure 2.1: Honeywords generated by GPT3 [16].

given:

The evaluation of this was done by using flatness and success-number-graphs [16].

The comparison of Chunk-GPT3 with other HGT’s chaffing-by-tweaking and chaffing-

by-fasttext. The Chunk-GPT3 outplayed both of them by showing tremendous results by

having an 85% of honeywords similarity score [16]. The main limitation of this model is

the importance of having correct chunks in passwords. If the password is not segmented

correctly, the attacker can easily get access to the password easily.

14



Chapter 3

Methodology

In ChunkGPT3 model the chunks are created from the password with the help of a com-

mon technique named as PwdSegment. PwdSegment is an algorithm that uses Byte-Pair-

Encoding (BPE) to create chunk vocabularies from plain-text passwords. BPE is a widely

used technique in NLP for sub word segmentation. PwdSegment enhances BPE by incor-

porating the configurable parameter of average length (avg len) to control the segmentation

granularity. It counts character pairs and stops merging when the resulting chunk vocabu-

lary meets or exceeds the specified threshold length. The algorithm iteratively merges the

most common pair of tokens until the average length of the chunk vocabulary reaches the

threshold. PwdSegment provides a flexible approach to generating chunk vocabularies for

password analysis. But the PwdSegment doesn’t consider some methods to provide bet-

ter quality chunks. Suppose if we consider an example h2omega-tania, it only generates

``h2o",`` mega",``-", ``tania" as chunks. But there is possibility of generating ``omega",

``home". Due to its limitation, it not generating them which will limit the model to those

particular chunks. So, we developed a model where it helps the PwdSegment algorithm

to generate better chunks for increasing the quality. This code update aims to enhance

the existing Password Chunking code used for analyzing password fragments. The up-
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graded system introduces several new capabilities, including digit-to-alphabet mapping,

digit deletion, and analysis of plain text passwords. These modifications expand the code’s

functionality beyond its initial focus on analyzing strong and weak passwords. The effects

of these code changes will be detailed in the following report.

3.1 Mapping Digits to Alphabets

Introducing a new functionality called Digit-to-Alphabet Mapping allows for the analysis

of passwords that employ such mappings. This feature aims to associate individual digits

in passwords with their corresponding alphabetic characters. The mapping follows these

rules:

Digit Letter
1 i
2 z
3 e
4 a
5 s
6 g
7 t
8 b
9 g
0 o

Table 3.1: Digit-Letter mapping

The main objective is to map one or two consecutive digits to their corresponding alpha-

betic characters within a password, while passwords containing three or more consecutive

numbers remain unchanged. These transformed passwords are referred to as mapped pass-

words. To test the mapping operation, we can consider three scenarios from the following

Table 3.2 . In the first scenario, passwords like ``h0mega-tania" have only one digit, which

is mapped to its corresponding alphabetic character. In the second scenario, passwords

such as ``h20mega-tania" contain two consecutive digits, which are mapped accordingly.
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In both these cases, the passwords undergo the mapping process. However, in the third

scenario, passwords like ``h123mega-tania" have three consecutive digits, and they remain

unchanged. This is because numbers in passwords with at least one number of three or

more digits, such as ``h123mega-tania," are retained in their original form as they may

potentially contain personally identifiable information (PII). Similarly, if a password, like

``h123mega-98tania," contains three consecutive digits in one position and two consecutive

digits in another, it remains unchanged. By considering these scenarios, we can observe

how the mapping operation applies to passwords with varying numbers of consecutive dig-

its.

Original Password Mapped Password
h0mega-tania homega-tania
h20mega-tania hzomega-tania
h123mega-tania h123mega-tania

Table 3.2: Password mapping

3.2 Removal of Digit:

In addition to mapping single digits to their corresponding characters, as explained earlier,

we have also implemented a modification to passwords by removing single digits. This

modification allows us to eliminate individual numerical characters, resulting in plain text

passwords that are devoid of any numeric components. By removing the single digit, we

can analyze passwords independently, without considering the presence or significance of

the numeric element. The resulting password, after removing the single digit, is referred to

as a Text Password. This approach provides the advantage of evaluating and examining

the password’s security without accounting for the presence of a single numerical digit. For

example, let’s consider the original password ``h2mega-tania". By applying this method,

the password is transformed into the corresponding text password ``hmega-tania" (in addi-
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tion to the Digit-to-Alphabet Mapping described earlier). This transformation allows us to

assess the password’s security while disregarding the single numerical digit. By incorpo-

rating this modification into our analysis, we gain a more comprehensive understanding of

password security and can effectively evaluate the strength of passwords by focusing solely

on the textual components.

3.3 Password Chunk Analysis

Our re-engineered code performs chunk analysis on three different types of passwords, they

are original passwords, mapped passwords, and text passwords. The following steps were

taken for each type:

3.3.1 Original Passwords

The process of extracting password chunks and enhancing the analysis of password strength

involves the following steps. First, the original passwords are retrieved from two CSV files:

``strong_pw_1000.csv" containing 1000 zxcvbn-strong passwords and ``weak_pw_1000.csv"

containing 1000 zxcvbn-weak passwords.To facilitate a more accurate assessment of pass-

word strength, a new column called ``pw_chunks" is added to these CSV files. This column

is populated with password chunks extracted using the Password Strength Meter (PSM) li-

brary [7] [9]. By breaking down the passwords into smaller chunks, we gain a deeper

understanding of their composition and complexity.

In addition to the ``pw_chunks" column, another column called ``num_pwchunks" is

added to count the number of password chunks present in each password. This provides

valuable information for evaluating the complexity and structure of the passwords. Utiliz-

ing the ``pw_chunks" and ``num_pwchunks" columns, new CSV files are created, namely

``strong_pw_chunks_1000.csv" and ``weak_pw_chunks_1000.csv". These files contain
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the original passwords along with their corresponding password chunks, as well as the

number of chunks in each password . By following this process, we enhance the analysis

of password strength by incorporating the extracted password chunks and their associated

information. This approach ensures that even if the original CSV files were compromised,

the actual passwords remain secure. Furthermore, the availability of the ``pw_chunks" col-

umn enables a more detailed examination of password complexity and aids in developing

stronger security measures.

3.3.2 Mapped Password

Our re-engineered method introduces the concept of transformed passwords by applying

the Digit-to-Alphabet mapping to the original passwords. This mapping replaces digits

in the passwords with their corresponding alphabetic characters, following a predefined

mapping scheme. The resulting mapped passwords are stored in a new column called

``mpw". To analyze the strength and composition of these mapped passwords, we per-

form password segmentation analysis, similar to what we do for the original passwords.

This analysis involves breaking down the passwords into smaller segments and identify-

ing patterns or common substrings within them. In order to capture this information, two

additional columns, ``mpw_chunks" and ``num_mpchunks", are added to the data frame.

The ``mpw_chunks" column stores sets of segments extracted from the mapped passwords,

while the ``num_mpchunks" column records the count of these segments for each password

[6]. By conducting password segmentation analysis on the mapped passwords, our code

aims to gain insights into their composition and potential vulnerabilities. This additional

analysis provides a deeper understanding of the password strength and aids in identifying

common patterns or weaknesses in the transformed password dataset. By incorporating

these new columns and conducting password segmentation analysis, our code provides a

comprehensive assessment of both the original passwords and the mapped passwords. This
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allows for a thorough evaluation of the password strength and assists in identifying areas

for improvement in terms of security and composition.

3.3.3 Text Password

In our re-engineered approach, we have introduced a new approach to handle plain text

passwords by utilizing the Removal of Digits method described above. This method in-

volves processing the original passwords and removing any single digit present in them.

This transformation generates plain text representations of the passwords, which are then

stored in a newly created column called ``tpw" within the data frame. Similar to the analysis

performed on the original passwords and mapped passwords, our code conducts password

chunk analysis on the plain text passwords. This analysis entails dividing the plain text

passwords into smaller chunks and examining patterns or common substrings within them.

To facilitate this analysis, we have added two additional columns, namely ``tpw_chunks"

and ``num_tpchunks", to the data frame. The ``tpw_chunks" column contains sets of

chunks extracted from the plain text passwords, while the ``num_tpchunks" column keeps

track of the count of these chunks for each password. These additions enable the identifica-

tion of common patterns or substrings within the plain text passwords, providing valuable

insights into password composition and potential vulnerabilities [2]. By incorporating this

new approach and conducting password chunk analysis on the plain text passwords, our

code offers a comprehensive evaluation of the original passwords, mapped passwords, and

plain text passwords. This comprehensive analysis aids in identifying common patterns,

weaknesses, and areas for improvement in terms of password security.
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3.4 Appending Chunks

In our re-engineered method, all the password chunks obtained from the original pass-

words, mapped passwords, and plain text passwords are consolidated. Duplicate chunks

are removed to ensure a comprehensive analysis of the combined chunk sets. The code in-

corporates the ``chunks" column, which combines the chunk sets from different password

representations, allowing for comparison and analysis. Additionally, the code includes a

function called ``get_set_length" to calculate the length of each chunk set. This function

converts the chunk sets from string representations to actual sets, calculates their lengths

using the ``len" function, and stores the results in the ``num_chunks" column. These data

provides important insights into the complexity and diversity of passwords in the dataset.

By counting the chunks in each password chunk set, we can better understand the password

strength. We have divided the data into two figures, Figure 3.1 and Figure 3.2, for clarity.

These additions allow easy comparison and analysis of password representations, enabling

a comprehensive evaluation of password strength.

Figure 3.1: First half data frame of the columns related to original, mapped, and text pass-
word chunks of strong passwords.
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Figure 3.2: Second half data frame of the columns related to original, mapped, and text
password chunks of strong passwords.

3.5 Honeywords Generation Using Modified PwdSegment

Chunks

In our approach, we leverage the GPT3 model to generate honeywords using the re-engineered

password chunks. To generate the honeywords, we employ the same prompts as described

in [16]. These prompts consist of the original password, its corresponding chunks, and a

length limit. By utilizing the GPT3 model, we aim to generate honeywords that are highly

resilient against targeted attacks. We achieve this by incorporating semantic chunks into

the generation process. The prompts provided to the GPT3 model guide it in producing

honeywords that closely resemble the original passwords while adhering to the specified

length limit. The quality and effectiveness of the honeywords generated depend on how

well we train the GPT3 model to produce honeywords that exhibit similar characteristics

to the original passwords. This training process ensures that the generated honeywords

possess the desired attributes, making them effective decoys against potential attackers. By

employing the GPT3 model and utilizing the re-engineered chunks, we aim to generate

22



honeywords that enhance the security of user passwords and mitigate the risks associated

with targeted attacks.
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Chapter 4

System Configuration

4.1 Operating System

The experiments were conducted on a stable and familiar Windows 10 operating system,

providing a user-friendly environment for the researcher. Hardware Configurations:

4.2 Hardware Configurations

The system was equipped with 8 GB of RAM, which is sufficient for most natural lan-

guage processing tasks and moderate-sized datasets, ensuring smooth performance during

experiments. The thesis project utilized a 256 GB solid-state drive (SSD) for faster data

access and overall improved system performance. The SSD’s fast read and write speeds

contributed to quicker processing of large NLP datasets.

4.3 Software and Libraries

All the experiments were performed using Google Collaboratory, a cloud-based Jupyter

notebook environment. Google Collaboratory provides access to GPU and TPU resources,
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making it suitable for training deep learning models, including language models. It allowed

the researcher to leverage powerful hardware resources without the need for expensive local

hardware. Google Collaboratory mostly comes with pre-installed with commonly used

Python libraries.The versions of the libraries that are required for this project and some of

the installed libraries versions are

Library Version
Python 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0]
torch 2.0.1+cu118
openai 0.27.8
fasttext 0.9.2
matplotlib 3.7.1
wordcloud 1.8.2.2
numpy 1.22.4
pandas 1.5.3
seaborn 0.12.2
zxcvbn-python 4.4.24
sentence_transformers 2.2.2
ckl_psm 1.2

Table 4.1: Libraries and versions

4.4 Web Browser

Google Collaboratory is accessible through web browsers, and for optimal performance,

the researcher used the latest version of Google Chrome. This ensured compatibility and

maximized the efficiency of the Collaboratory environment.

4.5 Processor

The system was equipped with an Intel i5 5th generation processor. While it may not be the

latest generation, this processor is capable of efficiently handling most NLP tasks, ensuring
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smooth execution of experiments, because most of the working part is done in Google

Collaboratory which works completely virtual.

4.6 API Subscription

The experiments utilized the OpenAI API Subscription to generate words using the In-

structGPT - Davinci language model. The specific version of the model used in the experi-

ments is not known. The OpenAI API provides access to cutting-edge language models for

natural language understanding and generation.
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Chapter 5

Results and Evaluation

To evaluate the quality of our re-engineered honeywords, we utilize the HWSimilarity met-

ric proposed in [16]. This metric leverages the power of MPNet, a pre-trained language

model, to transform honeywords and passwords into vector representations. By calculating

the cosine similarity between each honeyword vector and its corresponding real password

vector, we obtain a comprehensive assessment of the semantic similarity between honey-

words and genuine passwords. We compare the performance of our modified Chunk-GPT3

approach with the original Chunk-GPT3 by examining examples of generated honeywords

and analyzing the overall similarity scores for both weak and strong password datasets.

Table 5.1 presents a comparison of honeywords generated by Chunk-GPT3 and modified

Chunk-GPT3, while Table 5.2 displays the corresponding HWSimilarity scores.

Original Password Chunk-GPT3 Modified Chunk GPT3
h2omega-tania tania-home123 mega-h20-tania

Tania@home5 h20-tania-omega
home!tania12 omega-hz-tania

0000_mila_0000 1111_mila_0000 000-MILA-0000
0000MILA0000 0000-Mila-0000

0000@Mila@0000 1111-Mila-1100

Table 5.1: Honeyword generation techniques
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The findings reveal that our modified Chunk-GPT3 approach outperforms Chunk-GPT3

specifically for zxcvbn-weak passwords. This suggests that our re-engineered chunking

technique offers greater benefits in terms of generating honeywords that closely resemble

weak passwords.By evaluating the honeywords using the HWSimilarity metric, we gain in-

sights into their semantic similarity to genuine passwords. The comparison of honeywords

generated by different approaches allows us to measure their effectiveness in capturing per-

sonally identifiable information (PII). Notably, the honeywords generated by our modified

Chunk-GPT3 approach exhibit a high degree of similarity to the original passwords, mak-

ing it challenging to distinguish between them. However, it is important to note that strong

passwords, which exhibit higher randomness, tend to yield lower similarity scores com-

pared to weak passwords. The accuracy of chunk generation plays a more significant role

in the case of weak passwords, as our modified approach produces more precise chunks

compared to the regular PwdSegment technique.

Re-engineered Chunk GPT3 Chunk-GPT3
Zxcvbn-strong 0.8409 0.8525
Zxcvbn-weak 0.9048 0.8367

Table 5.2: Comparison of re-engineered chunk GPT3 and Chunk-GPT3

Through this evaluation, we gain valuable insights into the quality and effectiveness of

our re-engineered honeywords. The superiority of our modified Chunk-GPT3 approach,

particularly for weak passwords, demonstrates its potential in enhancing the security of

password systems.
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Chapter 6

Future Work

When analyzing passwords, it is vital to be attentive to patterns and information that may

be present, such as dates of birth (DOB) or random numbers. These patterns can provide

valuable insights into potential vulnerabilities or risks associated with the passwords. Let’s

delve into the process of identifying and handling passwords that contain DOB information

or random numbers.

Passwords that incorporate DOB information, such as ``12tania1995," necessitate care-

ful scrutiny to identify and mitigate any potential connections to birth dates and years. In

the given example, ``12" represents the birth date, while ``1995" signifies the birth year. To

detect such passwords, one can search for four-digit numbers within the range of 1900 to

2100 to identify potential birth years. Additionally, when considering dates, a range of 1

to 31 can be utilized. It is worth noting that single-digit dates, like ``2," may also be ex-

pressed as ``02." By employing these techniques, it becomes possible to identify passwords

that may contain DOB information and evaluate their potential risks [10].

However, passwords like ``12tania95" pose a challenge when the birth year is men-

tioned in a two-digit format. Mapping the digits into alphabetic characters to create pass-

word chunks becomes complex in such cases. Consequently, the analysis of passwords
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with two-digit birth years may require more sophisticated approaches to ensure accurate

identification and handling of potential vulnerabilities.

Passwords that feature random numbers, such as ``Tania4682," should generally not

be modified or transformed. Random numbers within passwords often relate to personal

information, such as the last four digits of a phone number, house number, or car number.

Altering these random numbers may inadvertently remove critical information or com-

promise the security of the passwords. Therefore, exercising caution when dealing with

passwords containing random numbers is crucial, as these numbers can hold significant

meaning for the individuals using them [3].

In certain instances, passwords like ``07tania" might raise concerns due to the presence

of ``07," which could be interpreted as the birth date or birth month. Modifying or map-

ping such passwords carries inherent risks, as the numeric component may be personally

significant or indicate sensitive information. Consequently, extra consideration should be

given to the potential implications of altering passwords in these particular scenarios.

In summary, when examining passwords, it is of utmost importance to be mindful of

patterns associated with dates of birth and random numbers. Identifying and handling

passwords that contain DOB information necessitates careful analysis of birth years and

dates. Passwords containing random numbers should be treated with caution, recognizing

the potential associations with personal information [5] [9] [10]. Moreover, passwords with

ambiguous numeric components, such as birth dates or birth months, should be approached

with extra caution, considering the potential risks involved in modifying them.
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Chapter 7

Conclusion

Passwords play a critical role in security, but safeguarding them requires resilient measures

against targeted attacks. Deep learning and natural language processing have introduced

new possibilities for generating honeywords that closely mimic the original passwords,

even when attackers possess users’ Personally Identifiable Information (PII). Chunk-GPT3,

a technique for generating honeywords, shows promise but has a limitation in password

segmentation [16], which could be exploited by attackers. However, modifications to the

PwdSegment technique have proven effective for weak password datasets, though their im-

pact on stronger datasets may be limited. Despite imperfections in the original chunking

algorithm, honeywords maintain their quality and serve as decoy passwords that confuse

attackers and alert administrators to unauthorized access attempts. Despite potential im-

perfections, honeywords remain distinct from real passwords, maintain chunk order, and

avoid adding digits at the end. Enhancements like case variations and number changes

improve diversity and complexity. The integration of advanced technologies, including

deep learning and natural language processing, along with improved Honeyword Generat-

ing Techniques (HGT), has gained significant attention in the network security field. These

advancements offer the potential for stronger authentication mechanisms and bolster over-
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all defenses against unauthorized access, contributing to a more secure environment for

protecting sensitive information. In conclusion, generating honeywords that closely resem-

ble original passwords is crucial for password protection. While Chunk-GPT3 and modi-

fied PwdSegment techniques show promise, considerations must be made regarding their

limitations and effectiveness across different password datasets. Despite imperfections,

honeywords serve as effective decoys by confusing attackers and alerting administrators,

thanks to advancements in deep learning and natural language processing. These technolo-

gies continue to shape network security and offer opportunities to enhance authentication

mechanisms, ultimately fortifying defenses against unauthorized access.
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