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ABSTRACT 

This thesis addresses the pressing issue of sustainable development and climate 

change by examining the life cycle (degradation) of electrochemical energy storage 

devices. Specifically, it investigates a green synthesis technique for high-performance 

pseudocapacitor electrodes and uses machine learning algorithms to predict and prevent 

degradation mechanisms in lithium-ion batteries. The research demonstrates the 

effectiveness of the laser irradiation technique, called ultra-short laser pulses for in situ 

nanostructure generation (ULPING) for fabricating a metal oxide layer on a titanium sheet 

under ambient conditions, as well as the potential of machine learning algorithms as a tool 

for constructing mathematical models to forecast the electrochemical behavior of 

pseudocapacitors. The thesis also highlights the importance of utilizing data-driven 

approaches in electrode design procedures and promoting sustainable habits in all aspects 

of life. In addition, the study provides insight into the modeling and prediction of the 

electrochemical behavior performance of pseudocapacitors, which could facilitate the 

development of optimal electrodes. Moreover, the research examines one of the most 

detrimental degradation mechanisms that occur during the fast-charging process, known as 

the deposition of metallic lithium or lithium plating, in lithium-ion batteries. The proposed 

machine learning approach based on ensemble selection accurately predicts the anode 

potential under various charging conditions and achieves high accuracy in preventing 

lithium plating. Overall, this research offers promising methods for employing ultra-short 

laser pulses for in situ nanostructure generation to fabricate nanostructures on transition 

metals that have the potential to be used in pseudocapacitor electrodes and highlights the 
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importance of utilizing machine learning techniques in predicting and preventing 

degradation mechanisms in electrochemical energy storage devices. 

 

Keywords: Lithium-ion batteries; Machine Learning; Simulated Annealing; 

Nanotechnology; Supercapacitor  
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Figure 2-20: (a) The curve of specific capacitance of PANi-g-rGO/AgCl, PANi-g-rGO, 

and PANi NFs at different current densities. (b) Cyclic performance of the PANi-g-

rGO/AgCl, PANi-g-rGO, and PANi NFs. Reprinted with permission from [178]. ......... 58 

Figure 2-21: (a) The fabrication of WO3 nanotubes and the PEDOT: PSS layer is depicted 

schematically. The electrospun WO3 nanotube is coated with a thin layer of PEDOT: PSS 

before being drop-coated onto an Ag nanowire-embedded PDMS substrate. (b) CV test of 

all (transparent stretchable electrochromic supercapacitor (TSES) electrodes at a scan rate 

of 1 mV s-1. The curve clearly shows that, with the addition of WO3 nanotubes and the 

PEDOT: PSS, the capacity increases dramatically. Reprinted with permission from [182].

........................................................................................................................................... 59 

Figure 2-22: Lithium Plating Phenomena at Different Research Levels. ......................... 64 

Figure 2-23: Schematic of a Battery Cell During Charging Process and Lithium Plating 

Behavior under Different Operational Conditions. (A) In the intercalation/de-intercalation 

process, Li-ions intercalate into or de-intercalate from the active material between the two 

electrodes in a reversible manner. (B) Schematic of lithium plating-stripping on the 

graphite anode electrode. The primary SEI layer (yellow color) is formed at the anode 

surface during the first charge of the cell to protect the electrode against corrosion. Because 

the primary SEI layer prevents electrons from making direct contact with the electrolyte, 

metallic lithium (red color) is deposited between the primary SEI layer and graphite 

particles. Mossy and dendritic deposition are two well-known morphologies of deposited 

lithium. When deposited lithium reacts with electrolyte solutions, the secondary SEI layer 

(green color) forms. (C) Under ideal conditions, the charge-transfer process consists of 

three steps: 1. de-solvation of solvated Li + ions, 2. Li + shuttle through the SEI, and 3. 

solid-state lithium diffusion into graphite particles. (D) At low temperature, Li + ions move 

slowly in graphite due to the low diffusivities of lithium ions and the sluggish charge 

transfer kinetics which leading to lithium plating. (E) At high charging C-rate, Li + ions 

move fast and a large amount of Li + accumulate at the electrode interface because the 

lithium solid diffusion is lower Li + diffusion in the electrolyte, then saturate concentration 
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happens on the lithium ions, and lithium plating happens. (F)  Under the high SOC 

condition, Li + ions move slowly in graphite under high SOC conditions. ..................... 68 

Figure 2-24: Degradation Modes, Ageing Mechanisms, and the Affected Components in 

Lithium-ion Batteries. There are many different ageing mechanisms, and they are generally 

divided into three different degradation modes (DMs): loss of lithium inventory (LLI), loss 

of active material (LAM) and loss of electrolyte. There is a general relationship between 

battery working conditions and the affected components with the corresponding ageing 

mechanisms. Charging at a high C-rate, a high state of charge (SOC), or at a low 

temperature are all critical operating conditions that accelerate battery degradation [220].

........................................................................................................................................... 70 

Figure 2-25: One-set Lithium Plating C-rates/ Temperature Summary. (A) Analyzing the 

existing literature on lithium plating based on two common testing conditions: temperature 

and C-rate. Larger dots represent a greater number of publications that used that C-rate at 

that temperature. (B) Cells from the literature that had been evaluated for lithium plating 

were compared. The data sources are listed in the supplementary file. ............................ 71 

Figure 2-26: Overview of Post-Mortem Analysis for Lithium-Ion Cells. A) Cell is required 

to be deep discharged before any further steps. B) Cell is moved to the safe or controlled 

environment for the opening procedure, where the controlled environment is chosen based 

on the study goals. Cell casing is removed. C) Cell components are separated and washed, 

and they are ready to be sent to the testing facilities. D) Cell components are subjected to 

further analysis to investigate lithium plating. .................................................................. 85 

Figure 2-27: In-situ Cell Design and Results of Optical Microscopy and Ex-situ SEM for 

Lithium Plating Morphology Characterization. (A) Schematic of the custom-made optical 

in-situ cell with a quartz glass window. (B) In-situ optical microscopy at a current density 

of 1 mA/cm2 (t = 0 s - t = 600 s), the gap between lithium metal and separator helps in the 

observation of the dendrite growth until it reaches the separator. (C) In-situ optical 

microscopy at a current density of 1 mA/cm2 (t = 0 s - t = 795 s), there is no gap between 

the separator and the lithium electrode, penetration started at (t = 595 s) and quickly 

changed to the bush like structure (Reprinted from Liu et al. [282] with permission of 
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American Chemical Society Publications). (D) The color of graphite is affected by the 

concentration of lithium X in  Li𝑥C6 (data adapted from Ref.[450], the random occupation 

of all superlattices defined as 'liquid-like' or L stage). (E) Side-view schematic of a custom-

made coin-type half-cell for in-situ optical microscopy (Reprinted from Thomas-Alyea et 

al. [286] with permission of Electrochemical Society). (F) The MCMB electrode surface 

inside an in-situ optical half-cell, three different graphite colors (stages) were observed 

over 3 hours. Lithium Plating on an MCMB electrode was observed when a voltage (+2 

mV) is applied to the current collector, although according to bulk thermodynamics, 

lithium metal plating should not occur unless the voltage becomes negative. The image (G) 

is taken 8 h before (H) (Reprinted from Harris et al. [229] with permission of Elsevier). (I) 

and (J) Ex-situ SEM images show the morphology of an anode surface with mossy lithium 

plating. The anode is charged with a high current of 10 C and then instantly dismantled in 

less than 5 minutes to interrupt the relaxation phase, scale bars: 20 μm and 2 μm (Reprinted 

from Uhlmann et al. [285] with permission of Elsevier). ................................................. 92 

Figure 2-28: Different Physical Characterization Approaches for Lithium Plating 

investigation. (A) Schematic of the in-situ SEM EC-liquid cell setup for direct observation 

of lithium plating, Li/Cu electrode during lithium plating for a)200 s, b)250 s, c)350 s, and 

d)50 s, e)270 s, f)600 s for stripping under 0.15 𝑚𝐴 𝑐𝑚 − 2. Scale bars: 20 𝜇𝑚, (Reprinted 

from Rong et al. [294]with permission of Advanced Materials). (B) Schematic of Li-metal 

nucleation on the uncoated graphite surface and coated graphite surface during high current 

charging, the nucleation is significantly decreased due to increased overpotential for Li-

metal deposition, which was obtained by the nanoscale coating of Cu and Ni, backscatter 

SEM images of the deposited lithium metal on the uncoated graphite and coated graphite 

with Cu and Ni. Scale bar: 20 𝜇𝑚 (Reprinted from Tallman et al. [295]with permission of 

American Chemical Society). (C) Schematic of in-situ TEM liquid cell for nanoscale 

observation of electrode-liquid electrolyte interfaces using lithium dendrite growth. Scale 

bars: 800 nm, (Reprinted from Zeng et al. [301]with permission of Nano Letters). (D) The 

stacked in-situ NMR spectroscopy for different cells at -5 °C. These spectra were measured 

at the fully charged state in the latest cycle. Pulse current mode: cells were cycled with 

pulse current (PC) mode pattern, and no lithium plating was detected. Continuous current 
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mode: cells were cycled with continuous current (CC) mode pattern and lithium plating 

observed at 265 ppm (Reprinted from Arai et al. [306] with permission of Electrochemical 

Society). ............................................................................................................................ 97 

Figure 2-29: Electrochemical Methods. (A) Differential voltage over time (dV/dt) for the 

two discharge cases and the 5C charge relaxation event, as well as a schematic diagram of 

the anode's interna characteristics at the start of relaxation. During relaxation Li + ions that 

are not consumable at the separator travel and diffuse through the electric field (migration) 

and concentration gradient (diffusion) towards the foil, where they are intercalated into 

graphite (Reprinted from Yang et al. [23)4] with permission of Elsevier). (B) Differential 

voltage over capacity (dV/dQ) in the discharge phase because of discharge capability and 

a schematic diagram of the anode's internal characteristics at the start of discharge. During 

discharge, Li + ions formed by Li stripping near the separator have three destinations: they 

are intercalated into graphite, they travel to the cathode to deliver output current, and they 

move under an electrical field (migration) and a concentration gradient (diffusion) towards 

the foil and are intercalated along the path into graphite (Reprinted from Yang et al. [234] 

with permission of Elsevier). (C) Cycling data versus time extracted by a high-precision 

charger. A two-stage charge process is applied on pouch cells at different rates from (C/50 

to 5C) at 30 °C ((a) Capacity, (b) Coulombic efficiency, (c) Coulombic inefficiency per 

hour) (Reprinted from Burns et al.[356]  with permission of Electrochemical Society). (D) 

Resistance values 𝑅cc + 𝑅SEI as a function of time for various electrolyte solutions 

(Reprinted from Schweikert et al. [307] with permission of Elsevier). .......................... 110 

Figure 2-30: Non-Destructive Approaches for Detecting Lithium Plating. ................... 111 

CHAPTER 3 

Figure 3-1: Schematic diagram of the experimental setup for the formation of a TiO layer 

with ULPING approach. (A). Laser parameters can be adjusted using computer-aided 

software (Marking Mate 2.7). (B) An example of TiO properties and specimen components 

derived using a combination of several characterization instruments (SEM and EDS) and 

specified software (ImageJ). ........................................................................................... 122 

Figure 3-2: ULPING method worktable. (A) Top view. (B) Front view. ...................... 124 
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Figure 3-3: TiO electrode preparation. (A) Cleaned Ti sheet. (B) Oxide forming (TiO after 

irradiation via ULPING method. (C) The irradiation samples were punched into 6 mm 

circle discs using a round disc cutter. (D). TiO electrode is prepared. ........................... 126 

Figure 3-4: Coin cell electrochemical analysis setup. .................................................... 128 

Figure 3-5: 31 fabricated electrodes via ULPING. ......................................................... 129 

Figure 3-6: Dataset generation and preparation steps. Stage 1: data were collected from the 

experimental setup, including laser fabrication parameters and results of electrochemical 

and microscopy analysis. Stage 2: the data was pre-processed, which involved cleaning 

and transformation to ensure the dataset was ready for use in the ML algorithm. Stage 3: 

feature selection was used to finalize the dataset and select the most important features for 

use in the ML algorithm. Stage 4: the ML algorithms were trained on the dataset to predict 

the electrochemical behavior of the pseudocapacitors. ................................................... 131 

Figure 3-7: Data generation steps from the experimental setup. A one-of-a-kind mix-and-

match testing matrix is introduced where each of the 31 prepared electrodes is individually 

tested against itself and the other electrodes. .................................................................. 133 

Figure 3-8: Heatmap of a correlation matrix. The threshold is set to 0.7 and the feature 

above the threshold is eliminated from the dataset. ........................................................ 137 

Figure 3-9: Multi-Layer Perceptron with one hidden layer. ........................................... 142 

Figure 3-10: The modeling and optimization process consist of four stages. Stage 1: 

involves the generation of a comprehensive dataset from the experimental setup, which 

includes information on laser fabrication parameters and results of electrochemical and 

microscopy analysis. Stage 2: the generated dataset is structured and prepared for the next 

stage. Stage 3: ANN is built and trained on the dataset to forecast electrochemical 

performance measures, such as impedance and specific areal capacitance, of 

pseudocapacitors. Stage 4: the trained ANN is employed in a meta-heuristic optimization 

algorithm to identify the optimal laser fabrication parameters. ...................................... 146 

Figure 3-11: (a) Schematic of lithium plating on the graphite anode electrode. The primary 

SEI layer (yellow color) is formed at the anode surface during the first charge of the cell to 
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protect the electrode. Because the primary SEI layer prevents electrons from making direct 

contact with the electrolyte, metallic lithium (red color) is deposited between the primary 

SEI layer and graphite particles. (b) Charge curve of graphite anode potential, X-axis shows 

the state of lithiation, and the Y-axis shows the anode potential [375]. ......................... 152 

Figure 3-12: Experiment setup and data generation steps based on a physics-based model. 

Stage 1: data acquisition from experimental setup (CCCV charging protocol was used). 

Stage 2: physics-based-model parameterization (CC phase was extracted and used as input 

for the model). Stage 3: final dataset for use in data-driven approaches. ....................... 159 

Figure 3-13: Flowchart for anode potential prediction through physics-based model 
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Figure 3-14: Disassembly of an 18650 cell and internal measurements. ....................... 161 

Figure 3-15: (A) Voltage comparison between model prediction and experimental data. (B) 

Surface temperature comparison between model prediction and experimental data. ..... 162 

Figure 3-16: A Model-based Approach for Lithium Plating Detection. ......................... 164 

Figure 3-17: Anode Potential Dataset Preparation for Machine Learning Algorithms 

(lithium plating mitigation). ............................................................................................ 166 

Figure 3-18: Illustration of pairwise relationships for the dataset features, and the diagonal 

plots show the distribution of features in the dataset. ..................................................... 170 

Figure 3-19: Training and Test Data Splitting. ............................................................... 171 

CHAPTER 4 

Figure 4-1: Morphological characterization using SEM images with EDX element mapping 

(weight %) of 12 selected samples. The EDX analysis demonstrated the presence of Ti and 

O species in the samples. The samples analyzed were as follows: (A-C) S1, S2, and S3 at 

x500 magnification (100 µm); (D-F) F2, F4, and F5 at x500 magnification (100 µm); 187 

Figure 4-2: CV curves at a scan rate of 50 mVs-1. (A) S1 exhibits superior redox and 

capacitive capabilities compared to the other samples due to its faster oxidizing rate and 
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magnification (10 µm) (i and j, respectively). The EDX results are presented in images (k-

o). Images (b, d, f, h, and j) were taken at x3000 magnification (10 µm) to provide a closer 
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Chapter 1 : Introduction 

Our environment and human society are both complex systems that interact in a variety 

of ways [1]. These interactions might be mild at times and robust at others, resulting in 

unforeseen effects. Regrettably, industrial society has wreaked havoc on the environment and 

ecosystems that sustain us, with some of the consequences lasting more than a century [1]. 

Though we have made steps to address some of these challenges, new ones are arising, such as 

the impact of human activity on the climate, which might be disastrous if we do not respond. 

These problems come from how we use energy and materials, and understanding the genesis, 

design, scale, and consequences of our present usage patterns is crucial if we are to manage 

them appropriately [1]. 

In this thesis I go beyond the conventional environmental conversation by investigating 

the material life cycle chain. It aims to cut through the material life cycle chain and separate 

the manufacturing and product/use window from material and disposal window (see Figure 1). 

It explains how we can improve the design, manufacturing, and usage of resources by 

introducing methods for controlling product operation modes. At a broader level, the goal is to 

achieve sustainable development by bridging renewable energies and addressing climate 

change while minimizing environmental impact. Sustainable development entails meeting 

present needs without jeopardizing future generations' ability to meet their own. Renewable 

energies play a crucial role in sustainable development since they can provide energy without 

depleting finite resources or damaging the environment. Their use can help to reduce 

greenhouse gas emissions and mitigate the impacts of climate change.  

Renewable energy sources, such as wind, solar, hydro, geothermal, and biomass, are 

increasingly being utilized worldwide as they have the potential to play a significant role in 

mitigating climate change. However, in ideal condition where the clean energy can be 
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produced, storing the energy generated from these sources remains a significant challenge due 

to their intermittent and location-dependent nature. Electrochemical energy storage devices 

(EESDs) is one of the common approaches used to store energy from renewable energy 

sources. EESDs include several types such as lithium-ion batteries (LiB), supercapacitors (SC), 

fuel cells, and redox flow batteries. Each type has its specific energy and power density, with 

lithium-ion batteries having high energy density and supercapacitors having high power 

density. Fuel cells are efficient and have a high energy density, while redox flow batteries have 

a high energy density and are used in grid-scale energy storage and renewable energy systems. 

It's worth noting that the specific energy and power density of each type of electrochemical 

energy storage device can vary widely depending on the specific application and design. 

Although EESDs operate on different principles, they share a similar configuration, where two 

electrodes transfer charge through the electrolyte via ion kinetics in response to an applied 

potential. Electrochemical processes primarily occur at the electrode, making the development 

of advanced electrode materials a pressing task for the advancement of these electrochemical 

solutions. 

Figure 1-1:The relation between material life cycle and sustainable development [1]. 
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1.1 Problem statement and Motivations 

The development path for improved electrode materials has begun in the production of EESDs 

such as lithium-ion batteries and supercapacitors and centers around extending lifespan. The 

concept of a lifespan has its origins in biological sciences. Living organisms are born, develop, 

mature, age (degradation), and eventually die. EESDs, like humankind, have a finite life; we 

design, develop, and utilize them until they degrade and become disposal. The main distinction 

here is that we may design, use, or operate EESDs in a way that reduces or controls degradation 

and improves overall lifespan. 

Indeed, degradation in EESDs can be defined as the gradual deterioration in performance over 

time. The degradation can be caused by various factors such as the breakdown of the 

electrolyte, degradation of electrode materials or damage to the device structure. The 

degradation mechanisms are related to the electrochemical reactions that occur during charge 

and discharge cycles. As the device is cycled, the reactions can lead to changes in the electrode 

or electrolyte materials which can result in reduced device performance such as decreased 

capacity, lower power output, and shorter lifespan. 

Degradation management is a critical concern for EESDs since it can have a considerable 

impact on the device's performance and overall cost-effectiveness. When we look at the 

degradation issue from different perspectives, we can see several ways to mitigate degradation:  

• Optimizing device design (particularly electrode),  

• Using high-quality materials (transition metals (TM)),  

• Improving electrolyte stability, 

• Implementing effective cycling protocols,  

• Monitoring and controlling degradation based on data-driven approaches.  

By addressing these factors, it is possible to extend the lifespan and improve the performance 

of electrochemical energy storage devices.  
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As a result, the major motivations in this thesis can be split into two categories. 

1. The primary motivation is to provide a new avenue for understanding and managing 

degradation in the two most common EESDs, lithium-ion batteries and supercapacitors 

(pseudocapacitors). 

2. Another motivation for this thesis is to track the degradation of lithium-ion batteries 

from an operational standpoint, as well as pseudocapacitors from a manufacturing 

standpoint (optimal electrode design), with data-driven approaches serving as the 

primary tool. 

1.2 Scope of Research  

The degradation mechanisms in electrochemical energy storage devices can be intricate and 

interconnected, which poses challenges in accurately quantifying or forecasting the impact of 

degradation on device performance. Nevertheless, a comprehensive comprehension of these 

mechanisms is crucial for devising efficient approaches to alleviate degradation and prolong 

the lifespan of EESDs. The present research is primarily segmented into two significant parts, 

namely the manufacturing section and the operational section. The manufacturing section 

focuses on comprehending the degradation mechanism in supercapacitors, specifically 

pseudocapacitors, followed by the fabrication of pseudocapacitor electrodes through the ultra-

short laser pulses for in-situ nanostructure generation (ULPING) technique. Subsequently, 

different machine learning (ML) algorithms are employed to examine the relation between 

laser fabrication parameters and the performance of the pseudocapacitor electrode. Finally, an 

optimization algorithm, simulated annealing (SA), is implemented to design an optimal 

pseudocapacitor electrode with improved performance and minimal degradation. 

In the operational section, this research concentrates on comprehending the degradation 

mechanisms in lithium-ion batteries, specifically one of the most intricate degradation 
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mechanism, lithium plating. Subsequently, ML algorithms are implemented to forecast and 

manage the occurrence of lithium plating during the charging procedures. In summary, this 

research seeks to address the following questions for both sections, 

1. How will other TMs behave as pseudocapacitor electrodes when fabricated 

using the ULPING method? 

2. What is the impact of input laser parameters or fabrication parameters on the 

electrochemical behavior of the produced samples? 

3. How might data-driven methodologies, notably machine learning (ML), provide 

insight into the relationship between fabrication parameters (structural features) 

and pseudocapacitor electrochemical behaviour or performance metrics? 

4. How does the use of an optimization algorithm result in optimal electrode 

design and consequently an improvement in the electrochemical performance 

of the pseudocapacitor? 

5. How can a data-driven anode potential estimation algorithm predict and regulate 

degradation (lithium plating)? Furthermore, how can it be computationally 

efficient and accurate enough to be suitable for online implementation? 

The answers to the above questions are of utmost importance, as advanced lithium-ion batteries 

and supercapacitors (pseudocapacitors) are critical tools in the pursuit of sustainable 

development and the fight against climate change at this point in time. Therefore, 

understanding the behavior of transition metals as pseudocapacitor electrodes, the impact of 

fabrication parameters on electrochemical behavior, and the use of data-driven approaches to 

optimize electrode design and predict degradation are essential for developing more efficient 

and durable energy storage devices. Achieving these goals will facilitate the transition towards 

a more sustainable and environmentally conscious future.  
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1.3 Objectives 

This research aims to achieve the following objectives: 

• To understand degradation mechanisms for both lithium-ions and 

supercapacitors (pseudocapacitors) at electrode level.  

• To generate an immense dataset for ML algorithms by fabricating numerous 

pseudocapacitor electrodes on Titanium sheet using ULPING. 

• To theoretically bridge between the fabricated pseudocapacitors (input laser 

parameters) and their electrochemical performance through machine learning 

algorithms. 

• To predict electrochemical behavior of fabricated pseudocapacitors electrode 

via ML.  

• To design and implement an optimization algorithm to aid in identifying the 

optimal laser parameters for the most efficient electrode fabrication.  

• To design and develop a ML algorithm based on an ensemble selection to 

accurately predicts the anode potential and mitigate lithium plating under 

various charging conditions. 

1.4 Work Novelties 

The research contribution for this thesis is divided into two phases, manufacturing 

phase and operating phase.  

1.4.1 Manufacturing phase 

•  This thesis presents a single-step, environmentally friendly in-situ procedure 

for generating titanium oxide by irradiating a titanium sheet with an ultra-short 

pulses laser, which can be used as pseudocapacitor electrodes. 
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• A scalable and straightforward data generation strategy is proposed to generate 

a large dataset that is suitable for machine learning approaches. 

• Machine learning algorithms are constructed, compared, and optimized to 

predict the electrochemical properties of pseudocapacitors, including 

impedance and specific capacitance. To the best of the authors' knowledge, this 

is the first time an ML approach for predicting electrochemical behavior 

performance has been developed and comprehensively evaluated using three 

distinct regression learning algorithms. 

• A simulated annealing optimization algorithm is presented to maximize the 

objective function, which, in our case, was the specific capacitance value, and 

determine the most optimal laser fabrication parameters. 

1.4.2 Operational Phase 

• The use of an ensemble selection approach has been introduced to develop a 

data-driven solution for real-time anode potential estimation, with the aim of 

preventing lithium plating. This approach is the first of its kind to be developed 

for anode potential prediction.  

• The proposed method relies solely on sensors to monitor battery signals such as 

voltage, current, and temperature, eliminating the need for an additional filter 

in the data generation steps. The data generation strategy is straightforward and 

can generate large-scale instances covering both stationary charging scenarios 

and EV driving profiles. 

• The experimental results validate the proposed data-driven anode potential 

estimate model's adaptability and generalization capacity, proving its suitability 

for online applications with significantly improved computational efficiency. 



8 

 

The algorithms and methodologies developed in this thesis can be universally used 

for studying degradation at electrode level in lithium-ion batteries and 

supercapacitors (pseudocapacitors). 

1.5 Thesis Outline 

This thesis is structured into several chapters. Chapter 2 is divided into two sections, where the 

current literature about degradation in lithium-ion batteries and supercapacitors is reviewed. In 

chapter 3, the fabrication of pseudocapacitor electrodes using the ULPING approach is 

explained, followed by the use of ML algorithms to predict their electrochemical behavior 

performance. An optimization algorithm is then utilized to improve the performance of the 

pseudocapacitor electrodes while reducing degradation. The second part of chapter 3 focuses 

on the generation of a large dataset for predicting anode potential in LiB to mitigate lithium 

plating. An optimized ensemble selection method is also presented to enhance the prediction 

of anode potential. In chapter 4, the fabricated pseudocapacitor electrodes are analyzed and 

compared based on various factors such as morphological structures and electrochemical 

behavior performance. Chapter 5 compares the developed ensemble selection method with 

different ML algorithms to evaluate their performance and applicability in online applications. 

Finally, the last chapter provides conclusions and suggestions for future research. 
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Chapter 2 : Literature Reviews  

2.1 Manufacturing Phase: Unwanted Degradation in Pseudocapacitors  

2.1.1 Introduction 

5For more than a century, fossil fuels — namely coal, oil, and natural gas — have been the 

primary source of energy, accounting for more than 80% of global energy demand [2]. 

However, global fossil fuel reserves are expected to become nearly inaccessible by 2050, and 

virtually inaccessible by the end of the twenty-first century [3]. The combustion of fossil fuels 

releases carbon and other greenhouse gases into the atmosphere, causing significant climate 

change, which is expected to continue with increased fossil fuel consumption. Nonetheless, as 

energy technologies advance, cleaner alternatives, such as renewable energy combined with 

EEDSs, offer a zero-carbon energy solution. As a result of their promising energy storage 

capabilities, the development of EEDSs such as batteries, electrochemical capacitors, and fuel 

cells has been the subject of extensive research. The primary research focus is to create the 

most efficient EEDSs technology capable of storing and rapidly delivering large amounts of 

energy. Although lithium-ion batteries have high energy densities (200 Wh Kg-1), due to 

diffusion-limited redox reactions, they are insufficient for applications that require rapid charge 

and discharge within a few seconds, rather than hours. Supercapacitors are a type of 

electrochemical capacitor that can supplement batteries' energy storage capabilities. However, 

supercapacitive materials rely on the formation of electrical double layers whereby, at the 

material's interface with an electrolyte, an electrical double-layer capacitive material can store 

electrical charge in an electric double layer. This material is frequently used in energy storage 

 

5 This section is based on a previously published article:  

S. M, Kavian Khosravinia, and A. Kiani. "Unwanted Degradation in Pseudocapacitors: 

Challenges and Opportunities", (2023), Journal of The Energy Storage. The material is 

reproduced here with permission from the publisher, [Elsevier]. 
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devices such as capacitors and supercapacitors. Supercapacitors (5-30 Wh Kg-1) can store much 

less energy than lithium-ion batteries but charge and discharge quickly (within seconds). This 

begs the question of whether energy storage materials exist that can achieve both high energy 

density and high power density, both of which are required for practical applications. 

Pseudocapacitors, which provide high energy density and high power density, are a promising 

solution to this problem. The primary distinction between pseudocapacitors and lithium-ion 

batteries is that pseudocapacitive materials have charging and discharging times that range 

from seconds to minutes. 

Pseudocapacitors have exceptional electrochemical performance, with high energy and power 

densities and exceptional cycle stability. The degradation of electrode materials, on the other 

hand, is a significant barrier to their widespread acceptance in the supercapacitor market. 

Several factors, including applied voltages and temperatures, initiate this degradation process, 

causing the electrode materials to degrade after a certain number of cycles. To address this 

problem, it is critical to investigate the root causes of degradation and identify practical 

solutions in both manufacturing and operational procedures. One promising area of study is the 

development of nanostructured materials with improved surface morphologies and electrode–

electrolyte interactions, which can significantly improve ion-transfer kinetics and, as a result, 

the device's electrochemical performance and storage capacity. 

2.1.2 Background 

Supercapacitors are a type of electrochemical capacitor that offer high energy output while 

fulfilling the need for high energy and power density. There are three primary types of 

supercapacitors: electrostatic capacitors, pseudocapacitors, and hybrid capacitors. Electrostatic 

double-layer capacitors (EDLCs) rely on the interfaces between the electrodes and electrolytes 

to store charge electrostatically [4]. In contrast, pseudocapacitors store charge 
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electrochemically through the Faradaic charge mechanism, making them a potentially effective 

solution for energy storage with excellent performance. Pseudocapacitors bridge the gap 

between electrostatic capacitors, which have less energy density, and batteries, which have less 

power capacity and delivery. Although EDLCs lack high energy density, batteries face 

challenges with performance and cost, including limited lifetime, long charging times, and low 

charging rates [5], [6]. Pseudocapacitors offer a solution to both problems. Pseudocapacitor 

materials have a higher energy density than EDLCs because they have a higher capacitance 

due to their charge storage via surface and Faradaic mechanisms (reversible redox reactions). 

Faradaic processes have relatively slow kinetics and pseudocapacitive materials may have 

lower power density than EDLCs, but they outperform EDLCs in terms of energy storage 

capacity and performance. Pseudocapacitors are a promising compromise between batteries' 

high energy density and supercapacitors' high power density (Figure 2-1 (a)). Figure 2-1 (b) 

depicts a general overview of a pseudocapacitor and its operation. A pseudocapacitor is made 

up of two redox-active electrode materials that are separated by an electrolyte. Electron transfer 

between the electrode and electrolyte via redox reactions, ion adsorption (underpotential), and 

intercalation processes store the charge, which is referred to as pseudocapacitance. 

Pseudocapacitors are devices that utilize electrochemical active materials such as conducting 

polymers and transition metal oxides to store electrical energy. The transfer of electrons in 

these materials occurs through Faradaic reactions [6]. Pseudocapacitance, which is the transfer 

of ions between the electrode and the electrolyte, is the principle underlying the operation of 

pseudocapacitors. The adsorption of ions and the Faradaic reactions contribute to 

pseudocapacitance [7]. The electrochemical combination of these factors helps to store energy, 

as the molecules formed on the electrode surface due to electrochemically induced 

pseudocapacitance have potential. Since the capacitance is not constant, it is referred to as 
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pseudocapacitance [8]. Pseudocapacitors store electrical energy by the Faradaic charge-transfer 

reaction of specifically adsorbed and de-solvated ions, which results from electro-sorption, 

redox reactions, and intercalation occurring on the electrode surface. Although there is some 

contribution from static electric double-layer capacitance, it is insignificant [4], [5]. 

In pseudocapacitors, the Faradaic reactions are rapid and reversible, and they are accompanied 

by reactions with Li+ or Na+ ions, which compensate for the lack of formation or breaking of 

chemical bonds during the reaction [9]. Table 2-1 shows the three main factors of the working 

principle of the pseudocapacitor: Faradaic charge, electrode surface area, and potential change 

(electrochemical potential window). The rate of ion kinetics and accessibility over a suitable 

range of potential is determined by these three factors. Faradaic charge pertains to the transfer 

of charge that transpires during a redox reaction. Such charge transfer is required for the 

electrochemical reaction to occur. The rate of charge transfer is influenced by several factors, 

including electrolyte concentration, electrode surface area, and applied potential. A larger 

surface area provides more sites for electrochemical reactions, increasing the rate of charge 
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transfer and improving overall system performance. Furthermore, potential change, or the 

difference in electrochemical potential between the electrode and the electrolyte, is important 

in determining the rate of electrochemical reactions. Changes in potential can affect the rate of 

charge transfer and define the potential window, which is the range of potential within which 

the electrochemical reaction can occur without causing unwanted side reactions. 

These factors can be optimized to achieve high performance and stability in the electrochemical 

systems, which slow down the rate of degradation. Pseudocapacitors are classified into three 

types: underpotential deposition, redox, and intercalation. The adsorption of ions, specifically 

cations, on the surface of a metal electrode with a higher redox potential generates the 

pseudocapacitance of an underpotential deposition pseudocapacitor [10]. This process involves 

a partial charge transfer between the ions and the electrode, which is known as "electrosorption 

valency" in principle. Metal monolayers such as copper and gold, as well as metal oxides such 

as ruthenium oxide (RuO2) [11], [12] and iridium oxide (IrO2) [13], are examples of typical 

underpotential pseudocapacitive materials. To achieve advanced adsorption 

pseudocapacitance, two factors are critical: a high electrolyte anion surface area, which 

provides more active adsorption sites, and a high electrosorption valence, which leads to a 

greater charge transfer between the electrolyte anion and the electrode [14], [15]  

In the case of a redox pseudocapacitor, the pseudocapacitance occurs near the electrode surface, 

where the cations and anions are adsorbed/desorbed to store energy [16]. A large proportion of 

pseudocapacitance is caused by surface redox reactions, in which only a thin layer of the 

electrode surface participates in Faradaic processes. Faradaic redox pseudocapacitance occurs 

only at the material's surface, and the electrolyte ions never enter the bulk of the electrode.  
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Table 2-1. The relation of the three main factors of a pseudocapacitor. 

 

Rapid and reversible redox reactions between the electro-active species on the electrode surface 

and the electrolyte characterize these pseudocapacitive phenomena. For example, during the 

process of potential cycling, redox reactions involving the 2p, 3p, and 4p oxidation states in 

RuO2 were observed [11], [12], [17], [18]. These reactions, combined with proton transfer, give 

rise to pseudocapacitance. Among the most used active materials in these electrode systems 

are RuO2 [12], manganese oxide (MnO2) [19], electrically conducting polymers such as 

polyaniline (PANi) [20], and oxygen- and nitrogen-containing surface functional groups [21].  

In intercalation pseudocapacitors, the intercalation pseudocapacitance arises when electrolyte 

cations such as Na+, Li+, and H+ are intercalated or deintercalated into or from the layers, 

tunnels, or channels of the electrode materials. This process is accompanied by Faradaic charge 

transfer without any significant crystallographic or phase change [22]. For intercalation 

pseudocapacitance to occur, a crystal structure that can provide a two-dimensional (2D) ion 

diffusion channel that is both fast and stable must be present. This is required to avoid structural 

phase transitions during the ion intercalation process. Ions occupy tunnels or vacancy positions 

within the bulk of materials during intercalation [23], [24].  

Factors Relation Reasons 

Faradaic 

charge 

Directly If the amount of charge transferred is high between the 

electrode and electrolyte; it benefits the Faradaic charge transfer 

mechanism. 

Electrode 

surface area 

Directly The larger the area of the electrode, the more ions can access it. 

Potential 

change 

Inversely The less potential applied enhances the pseudocapacitance. 
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This process is extremely fast and more closely resembles the electrode reaction of a 

supercapacitor than that of a battery. RuO2 [12], MnO2 [19], titanium dioxide (B-TiO2), and 

niobium oxide (Nb2O5) [25] are some of the most well-known intercalation pseudocapacitive 

electrode materials. Figure 2-2 illustrates the three types of pseudocapacitors and their 

respective principles. Further information on recent advances in the types of pseudocapacitors 

can be found in comprehensive reviews [26]–[29]. 

In an electrochemical capacitor, the pseudocapacitor is a crucial component that combines with 

the EDLC to form a supercapacitor. However, pseudocapacitive materials have a significant 

drawback in that they exhibit high resistance to ion/electron transfer, which results in low 

cyclability, low capacity, and, consequently, low power density. This is primarily due to their 

low conductivity and structural degradation during cycling [30]–[32]. The low conductivity of 

many pseudocapacitive materials increases the resistance of the electrode material and reduces 

the rate of charge/discharge processes, which can limit the power density of pseudocapacitor 

devices. Another limitation is their energy density, when compared with batteries. The 

relatively narrow operating voltage window of most pseudocapacitive materials limits the 

device’s energy density. As a result, the degradation of the pseudocapacitor is the main reason 

for its limited applications in various sectors. Unlike other supercapacitors, the degradation of 

pseudocapacitors is primarily caused by chemical reactions that occur under operating 

conditions [33]. During cycling, irreversible components accumulate, leading to the 

development of cracks in the structure and the formation of an unstable solid electrolyte 

interphase (SEI) layer.  
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Figure 2-2: Pseudocapacitor working principles.  (a) Underpotential pseudocapacitor where lead (Pb) 

is deposited on the gold (Au) electrode, forming an adsorbed monolayer. The working principle is 

electrosorption, which is potentially induced adsorption on the surface of the active electrode material 

[35], [36].  (b) Redox pseudocapacitor where ions from the electrolyte are electrochemically adsorbed 

onto the surface or near the surface of RuO2 accompanied by Faradaic charge transfer. The principle is 

a redox transfer mechanism in which a chemical reaction takes place between an oxidizing 

substance/substrate and a reducing substance/substrate. (c) Intercalation pseudocapacitance where ions 

like lithium are intercalated or inserted into the layers of the electrode material. The working principle 

is the intercalation of ions of molecules into layers of a material or a substrate [37], [38]. 

The SEI layer is typically composed of a thin film of various organic and inorganic compounds 

formed due to electrochemical reactions that occur at the electrode surface during device 

charging and discharging. Overall degradation is attributed to the degradation of the electrolyte 

via electrolyte parasitic processes and the degradation of the electrode due to precipitate 

formation. Table 2-2 shows the common advantages and disadvantages of pseudocapacitors 

(including all three types) which helps in deciding the factors to be focused on for its 

applications [34]. The table concludes that improving the kinetics of redox reactions as well as 

optimizing the morphology and composition of pseudocapacitive materials may lead to the 

development of high-performance pseudocapacitive materials with high energy and power 

density values. 
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Table 2-2. Common advantages and disadvantages of all types of pseudocapacitors. 

Advantages Disadvantages 

No crystallographic change (Intercalation) Electrode materials might suffer from high 

resistance to ion/electron transfer 

Dependence on particle size and morphology 

(redox and intercalation) 

Specific crystalline materials with specific 

structures are needed for fast ion transport 

pathway 

Ions occupy vacancy positions inside the bulk 

of the materials (intercalation) 

Ideal electrolytes are required (e.g., 

potassium hydroxide [KOH]) 

Potentially more stable than supercapacitors 

and batteries 

Irreversible electrode reaction leads to 

pseudocapacitor degradation 

High-rate capability (redox and intercalation) Transport pathways may get blocked due to 

degradation 

High specific capacitance (underpotential and 

redox) 

Low cyclic stability 

High energy density (Intercalation) Inferior power density 

   

2.1.3 Degradation mechanisms of pseudocapacitors 

The fundamental downside of using pseudocapacitors in real life is degradation in all forms of 

pseudocapacitors, including intercalation, redox, and underpotential pseudocapacitors. The 

ability of a capacitor to store and release energy determines its worth in industrial applications. 

The better they have ease of production, low cost, and slow degradation rates, the better they 

can perform for real-life appliances for an extended period of life. Figure 2-3 outlines all the 

primary factors for the degradation mechanism in a pseudocapacitor at all levels 

(microstructure, electrode, cell, and application), as well as the various types of degradation 

mechanisms that are observed or caused as a result. At the microstructural level, the irregular 

morphology of the microstructures and the presence of cracks makes the structure unstable. 

Furthermore, blocked pores result in a less effective Faradaic transfer mechanism, which may 

result in the decomposition of the ions present in the active electrode. Moving on to the 

electrode level, chemical products are formed on the surface of the electrode material due to 

cracks and pore blockage. A weak SEI layer results from further ion decomposition in the 

electrolyte and electrode degradation. The significance of SEI film in diffusion kinetics is 
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highly important as it acts as a protective passivation layer of high ionic conductivity and low 

electrical conductivity. A weak SEI layer leads to low cyclic stability as it affects the rate of 

intercalation of ions through it. As a direct consequence of the weak SEI layer and slow ion-

transfer kinetics, at the cell level, the pseudocapacitor has limited rate capability with 

compromised energy density [39]–[43]. Furthermore, novel materials for the electrode are 

limited, which makes the manufacturing cost quite high. At the application level, aerospace (in 

airplanes or satellites), electronics (semiconductors and electronic devices), renewable energy 

devices (e.g., solar cells, wind power, thermal energy), and research and development are areas 

where pseudocapacitors have the potential to revolutionize. Figure 2-4 depicts a step-by-step 

breakdown of degradation mechanisms and effects, beginning with the microstructure and 

progressing to application-specific scenarios. Degradation is important in pseudocapacitors, 

and different factors of the degradation mechanisms (such as underpotential factors, redox 

factors, and intercalation factors) are showcased in the same figure. Figure 2-4  also showcases 

how Pseudocapacitors deteriorate via a variety of reaction pathway, including phase 

transformation (microstructure), surface oxidation, electrolyte decomposition, structural 

degradation of the electrode material, and irreversible chemical reactions. These pathways can 

lead to a decrease in active surface area, an increase in resistance, and a decrease in capacitance 

over time, resulting in decreased performance and failure of the pseudocapacitor. We have 

divided the degradation mechanism into three major categories in the following subsections: 

the electrode level (3.1), the microstructural level (3.2), and the operating conditions (3.3), with 

detailed subsections in between. 
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2.1.3.1 Degradation mechanism in pseudocapacitor at the electrode level 

The degradation of the pseudocapacitor happens as a result of several events that take place 

during cycling (gravimetric charging/discharging) [44]. Degradation relates to the 

electrochemical performance of the device and electrochemical performance depends on the 

type of electrolyte and the physical and chemical properties of the electrode material. 

Generally, metal oxide electrodes are used as redox, intercalation, or hybrid-type materials (a 

battery-type electrode and a double-layer capacitor-type electrode are used in hybrid 

electrochemical supercapacitors) for pseudocapacitors [45]. These electrodes usually have low 

conductivity and a slow ion diffusion process, which leads to the deterioration in the rate 

capability and cycle stability and, thereby, degradation of the material and the device [34]. 

  

Figure 2-3: Main findings or observations for degradation mechanisms at several levels ranging from 

microstructure to electrode, the electrode to the device, and device to applications in various 

sectors/industries. 
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2.1.3.2 Electrode material degradation 

The manufacturing process of the electrode material is the first and most important factor that 

decides the rate of degradation [46]. For instance, in the case of intercalation pseudocapacitive 

materials, having a small interlayer spacing and strong interlayer interaction in the electrode 

decreases the ion diffusion process. As a result, the charge/discharge rate is slower, and the 

capacitance value is lower. This is because the narrow interlayer spacing creates a higher 

energy barrier for ion diffusion, while the strong interlayer interaction prevents ion movement. 

In the case of redox pseudocapacitive materials, having a large distance for the transfer of 

ions/electrons through the tunnels/layer results in a decrease in the active area. The decrease in 

 Figure 2-4: Degradation occurs due to many factors that take place in the electrolyte and electrode, and 

to external factors such as kinetics, potential, and temperature. All of these factors lead to different 

degradation mechanisms through which we can identify the deterioration of the device happening in 

real time during the experiment. 
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the active area is due to the increase in the resistance of charge kinetics [34]. In redox electrode 

materials, ion diffusion is primarily determined by the size and morphology of the electrode 

particles; interlayer spacing, or interaction have no significant effect on the diffusion process. 

Finally, in the case of adsorption-based materials, such as activated carbon or monolayer 

metals, the charge is stored via reversible ion adsorption on the electrode material's surface. 

The pore structure and surface area of the electrode material have a large influence on the ion 

diffusion process. To understand electrode degradation, Wang X and colleagues identified two 

primary factors contributing to the breakdown of nickel oxide (NiO) electrodes, namely self-

discharge, which resulted in partial dissolution of NiO, and the impact of oxygen bubbles [47]. 

The degradation of the pseudocapacitive performance of the Ni (II)/Ni (III) couple was found 

to occur gradually due to the NiO/Ni(OH)2 Faradaic process. During cycling, oxygen evolution 

took place, leading to the formation of oxygen bubbles that struck the electrode film and further 

accelerated the rate of electrode degradation. Figure 2-5 (a) depicts the degradation process in 

a NiO film electrode [47]. Aside from the manufacturing process, material selection is an 

important factor in ion-transfer kinetics. Non-crystalline and amorphous materials, for 

example, do not easily support the ion transport process [48]. Because the properties of the 

electrode's active materials are important for the charge storage mechanism in 

pseudocapacitors, improving and enhancing the electrode surfaces or the current collector is 

required for future considerations. Binder-free electrodes and novel current collectors have 

recently been investigated for their effects on slowing the degradation process [34]. Another 

important factor could be buffer layer formation on the electrode as it helps to control the 

volume expansion and shrinkage of active materials during gravimetric charging and 

discharging, respectively [49]. Acknowledging that it may provide adequate interspace 

between layers of electrode active materials, the nanostructural design of the electrode surface 
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with strong buffer-layer compatibility may necessitate further research. As a result, the active 

area and ion accessibility of these surfaces increase, which improves the charge storage 

mechanism. 

2.1.3.3 Electrolyte degradation 

During cycling, over a range of potentials applied over a specific or varying temperature, it was 

found that the electrolyte volume shrinks and leads to the decomposition of the ions, which 

slows down the process of adsorption of ions from the electrolyte on the electrode surface [50]–

[52]. It was previously assumed that the irreversible reduction caused by the chemical reactions 

was not a problem, but more recently, with the aid of sophisticated microstructural analysis 

techniques (characterization tools), it has been observed that the structure changes quite 

gradually and that many chemical products are formed [53]–[55]. Therefore, these 

factors/mechanisms lead to further deterioration of the electrode–electrolyte interphase and 

reduces the electrochemical performance of the cell. To gain a better understanding of 

electrolyte degradation, Hashem and colleagues investigated the electrochemical performance 

of nanorod-like particles composed of Sn-doped α-MnO2 [56].  

Figure 2-5 (b) shows the specific discharge capacities by cycle number for P-MnO2 and Sn-

MnO2 electrodes. The specific capacity for the Sn-doped MnO2 is 80 mAh g-1 at the 40th cycle, 

compared with 65 mAh g-1 at the 40th cycle for a pristine MnO2 electrode. One of the main 

reasons for the electrochemical degradation of MnO2 is the generation of Mn3+ during the 

redox process and the reduction of Mn2+ ions, which dissolve in the electrolyte and lead to 

electrolytic decomposition [56]–[58].   
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2.1.3.4 Separator 

Although significant progress has been made in improving the performance of pseudocapacitor 

electrodes, research into developing properly engineered separators has been limited. Poorly 

designed separators can cause additional resistance within the pseudocapacitor, which can 

potentially lead to short circuits. The separator must be non-porous. Less capacity retention 

may also lead to slow ion diffusion between the electrolyte and the electrolyte. Non-

conductivity, electrolyte ion permeability with minimal ionic resistance, chemical and 

mechanical resistance, and ease of wetting by electrolytes should all be considered when 

selecting appropriate separators for pseudocapacitors. In pseudocapacitor development, 

separators made of highly porous films or membranes — such as cellulose, polymer 

membranes, and glass fibers — are commonly used [4], [59]. The materials used in separators 

are determined by the type of electrode, working temperature, and pseudocapacitor voltage. 

Although cellulose separators work well in organic solvents, they may degrade in a sulfuric 

acid (H2SO4) electrolyte [59], [60]. The ionic conductivity of the electrolyte in the separator 

Figure 2-5: (a) Degradation mechanism of the NiO film, which is used as a redox pseudocapacitive 

electrode. Reprinted with permission from [47]. (b) P-MnO2 and Sn-doped MnO2 discharge capacity 

vs. cycle number at C/15 rate in the voltage range 1.5-4.0 V vs. Li+/Li0. The electrolyte used for this 

pseudocapacitor is 1 mol L-1 LiPF6 in ethylene carbonate-dimethyl carbonate (1:2), which is an organic 

electrolyte.  Reprinted with permission from [56]. 



24 

 

can also influence pseudocapacitor performance by changing the internal resistance (equivalent 

series resistance [ESR]), especially when viscous electrolytes (e.g., ionic liquids) are used [59], 

[61]. 

2.1.4 Degradation mechanism in pseudocapacitors at the microstructure level  

The chemical or side reactions during cycling in a pseudocapacitor lower the energy efficiency 

or may lead to an increase in the self-discharge rate [62]. An unstable electrolyte–electrode 

surface interaction results in microscopic cracks, chemical products on the grain boundaries, 

and pore blockage due to side reactions. This is mostly caused by various structures that were 

created because of various compositions at the microstructural level. This unstable interaction 

causes the electrode to degrade and results in an overall irreversible decrease (no discernible 

cyclic voltammogram). Therefore, to estimate the performance and cycle stability of the 

pseudocapacitor, the degradation mechanism at the microstructural level should be considered. 

2.1.4.1 Electrode–interface degradation 

Non-uniform morphology in the structure of the electrode material — such as dissimilar 

spacing and random spacing between layers — may lead to an overall cracking structure when 

cations from the electrolyte intercalate into the layers of the material of the electrode [51], [55], 

[63]. The cycling of the electrode toward cathodic potential, combined with proton diffusion 

toward the cathode, leads to the accumulation of chemical products on the electrode surface 

[64], [65]. This occurs because of chemical reactions occurring in real time during the process, 

and as a result, phase transformation occurs with microstructural changes when the sample is 

examined post-experiment [66], [67]. 
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The electrode surface is covered with insulating materials, and this further prevents close 

contact between the electrode surface and the electrolyte. Even though ion intercalation is an 

effective method, it will not be able to progress due to blocked pathways and pore blockage in 

the microstructure of the electrode material [68]–[70]. Figure 2-6 shows the blockage of pores 

accompanied by blocked pathways, the formation of chemical products on or near the electrode 

surface, and the formation of cracks, leading to unstable SEI. This phenomenon causes the 

degradation rate in the pseudocapacitor to increase much faster. 

Dubat and colleagues synthesized copper oxide (CuO) nanosheets using 

hexamethyltetrammine (HMT) as a complexing agent, and the resulting Cu:HMT electrode 

was examined by scanning (SEM) and transmission (TEM) electron microscopy [71], [72]. 

Figure 2-7 shows the SEM and TEM images of the Cu:HMT electrode after cycling. The SEM 

Figure 2-6: Cracks in the microstructure because of irreversible reduction and chemical products 

formed during cycling. Low ion-transfer kinetics are caused by dissimilar interlayer spacing and non-

uniform morphology. No intercalation or redox transfer occurs because of the formation of pore 

blockages and obstruction of the ion/electron transfer pathway (post-precipitation). 



26 

 

image (see Figure 2-7 (a)) revealed that the CuO thin films were uniformly distributed but had 

cracks due to the varying sizes of micro-woolens, which are related to the thickness of the 

Cu:HMT films. The nanosheets aggregated to form hierarchical, multilayer nanosheet clusters 

with a well-developed porous structure, resulting in a uniform morphology, as shown by the 

TEM image (see Figure 2-7 (b)). 

The porous nanosheets were discovered to have a surface area of 81 m2 g-1 and a pore volume 

of 0.20 cm3 g-1 [71]. This morphology, with large pore channels (micro- and meso-pores), 

allowed for faster electrolyte transport and more active sites (increased surface area) for 

chemical reactions [71]–[76]. The interlayer and intralayer structures were found to be crucial 

for the porosity of the nanosheets, emphasizing the importance of the microstructure in 

preventing electrode deterioration and influencing th electrochemical properties of the CuO 

electrode [71], [77], [78]. 

 

Figure 2-7: Morphology of the CuO electrodes synthesized from a Cu:HMT complexing agent after 

5000 cycles in 1 M Na2SO4 electrolyte. (a) SEM image of the electrode, showing cracks. (b) TEM 

image of the electrode, showing uniform morphology with good porosity. Reprinted with permission 

from [71]. 
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2.1.4.2 Electrolyte degradation and its consequences on the resulting microstructure of 

SEI 

The degradation of electrolytes through volume shrinkage and precipitation formation on the 

electrode causes an unstable SEI layer. This causes the electrolytic ions to get into layers with 

water, and a tremendous number of gaseous products evolve during cycling as the internal 

pressure in the layers is increased due to the evolution of gas, which blocks the layers/tunnels 

for further intercalation/de-intercalation [79], [80]. 

Further volumetric deformation of pseudocapacitive electrode materials results in small 

internal stresses and cracking of the protective layer. Although volumetric deformation 

(swelling/expansion) is a relatively insignificant process if no energy is lost or wasted, this 

could result in the aggregation of such structures during long-term cycling, resulting in a large 

structure that annihilates the overall microstructural integrity of the active material [81]. 

The importance of electrolyte structure in pseudocapacitive energy storage devices was 

investigated by Dubal and colleagues [71]. They employed a CuO electrode with Cu:HMT in 

a 1 M neutral, aqueous sodium sulphate (Na2SO4) electrolyte. The electrode was created with 

interspaces between nanosheets and woolen-shaped nanostructures to let the electrolyte volume 

expand. The ionic resistance was reduced and electrolyte entry into the electrode matrix was 

facilitated by porous channels, excellent porosity, and a large ion accessible area [71], [73], 

[74], [76]. 

A high specific capacitance of 346 Fg-1 and increased overall stability of the supercapacitor 

were made possible by the ions' stability in the electrolytic microstructure. Only a small number 

of gaseous compounds were produced while cycling process but these were not significant to 

cause degradation over a large number of cycles [72]. Two mechanisms of using aqueous 

electrolytes can be used to explain the reduced degradation: (1) the intercalation and de-
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intercalation of smaller H+ or alkali metal cations like Na+ in the electrode material’s matrix 

during the redox reaction, and (2) the adsorption of H+ and Na+ ions on the electrode surface, 

as opposed to the electrode material's interior bulk. The reaction is shown as: 

 2CuO + 2A+ + 2e- ⇌ Cu2OOA  (2-1) 

 (2CuO) surface + 2A+ + 2e- ⇌ (Cu2OOA) surface     (2-2) 

where A is either H+ or Na+ ions [71], [72], [82].  

Overall, this study emphasizes the importance of electrolyte structure in pseudocapacitive 

energy storage systems and offers suggestions for enhancing their functionality and stability.  

2.1.4.3 Separator 

The influence of separator performance in ion kinetics in pseudocapacitors can be attributed to 

their low cost and high porosity (>80%) [4], [62]. Furthermore, the separator's chemical 

composition, thickness, pore size distribution, and surface morphology have a significant 

impact on performance indicators such as polarizability limits, ESR, specific capacitance, 

specific energy, and power densities [83]. For example, having a thick separator produces high 

internal resistance and stresses, and increases the manufacturing cost. Recently, polymer 

separators have been used extensively as they have good flexibility and high porosity, and are 

low cost to produce. Based on their microstructure, polymer separators are classified into two 

types: fibrous networks and monolithic networks with defined pores [4]. Figure 2-8 shows the 

types if the polymer separators. Graphene oxide (GO) films are also promising separators, as 

demonstrated in a study by Shulga and colleagues [4], [59], [84]. After being penetrated with 

an H2SO4 electrolyte, the separator exhibits proton conductivity.   
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Figure 2-8: SEM images of (a) A fibrous Millipore JVWP separator. (b) a monolithic/defined 

GE Osmotics K50CP01300 separator. Reprinted with permission from [85]. 

2.1.5 Degradation mechanism through electrochemical and kinetic analysis 

Capacity retention is the amount of ability of a battery or a capacitor to retain the stored energy 

during an extended open-circuit rest time, and depends on rest time, the temperature of the cell 

during the rest period/time, and the preceding history of the cell. This demonstrates how crucial 

capacity retention is in predicting cell electrochemical performance, and having an electrode 

material that works optimally is defined by the end life of the pseudocapacitor when capacity 

retention is less than 80% and/or the internal resistance of the cell is doubled [86]. Another 

aspect of this factor is Coulombic efficiency, which is the ratio of the discharge capacity and 

the charge capacity after a full charge over a cycle; it is also known as Faradaic efficiency, the 

efficiency with which the electrons (charge) are transferred in capacitors/batteries [87] A 

Coulombic efficiency ratio of the cathodic and anodic capacity of 100% is expected for no loss 

of electrons due to electrolyte parasitic reactions [50]. Pseudocapacitors have kinetic 
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limitations, as well as a limited potential range, depending on the type of electrode material 

used [88]. 

An increased electrochemical potential window and current density with a large number of 

cycles lead to a smaller number of oxygen vacancies in the active material. The number of 

oxygen vacancies also plays an important role in the performance of storing and releasing 

charges [89]. When the potential on which the device is operated exceeds the potential optimal 

of the electrolyte itself, the evolution of gas takes place in the form of oxygen and hydrogen 

gas. The gas molecules evolve on the electrode surface and get into the interlayers, blocking 

the further redox reaction and by doing so, degrading the electrode surface by delamination of 

active materials from the substrate. Delamination leads to more interspace between the layers 

of the active material layers and, hence, creates a pinning effect, which indicates more internal 

resistance. As a result, corrosion of the current collector and the electrode surface takes place 

[81], [90], [91] and storage capacity is limited.  

2.1.5.1  Potential range or potential window 

The voltage range or operating charge/discharge rate specified for cycling is an important factor 

that decides the mechanism of gas evolution in the form of H2 or O2 gas molecules. The 

potential range within a high potential scan rate range enhances the specific capacitance, but at 

the same time, impacts the reversibility of the reaction. Excess gas evolution that occurs when 

the potential window is increased results in a rapid degradation rate during cycling [7], [92]–

[94]. As the potential window is expanded, the reversible charge and discharge rate of 

pseudocapacitors decreases, resulting in a decrease in capacity retention and Coulombic 

efficiency. This implies that the potential window must be carefully considered in the design 

and optimization of pseudocapacitors for various applications, as an increase in potential 
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window can compromise their overall performance [57], [95]. Furthermore, high temperature 

and kinetic constraints have a direct effect on irreversible pseudocapacitive behavior. 

2.1.5.2 Current density 

An increase in current density can result in a decrease in both specific capacitance and 

Coulombic efficiency of Pseudocapacitors [57]. This can result in a variety of changes or 

variations in Coulombic efficiency and specific capacitance, ultimately resulting in a decrease 

in storage capacity and stability of the pseudocapacitors. As a result, when designing and 

optimising pseudocapacitors for specific applications, it is critical to carefully consider the 

impact of current density. 

 

2.1.5.3  Number of cycles (charge/discharge rate) 

When the number of cycles is increased with increased current density, capacity retention 

decreases significantly lower. This shortens the charge and discharge times of the electrolytes 

Operating 
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Irreversibility  of 
reaction

Gas evolution

Current 
density

Number  of 
cycles

Electrolyte 
decomposition

Chemical
reactions

Capacity 
retention

Coulombic 
efficiency

High 
Temperature

Current collector 
corrosion

Reduced Pore 
Sized

Degradation

Figure 2-9: Flow chart for operating conditions that influence the rate of degradation or deterioration 

of the device, including potential range or potential window, current density, number of cycles (charge 

and discharge cycles). 
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[66]. With a high number of cycles, the pore size is decreased due to precipitates formed by 

side reactions. This reduced pore size distribution may lead to less capacitance and, hence, 

capacitive deterioration. The ions from the electrolyte play an active role in the irreversible 

reduction process over a large number of cycles, causing the atomic ratio (cathodic to anodic) 

and the number of oxygen vacancies to decrease. This reduces electrolyte concentration, 

resulting in electrolyte decomposition. Figure 2-9 shows the significance of the operating 

conditions and how they are associated with each other to collectively increase the rate of 

degradation.  

2.1.6 Degradation characterization approaches 

In the previous section, we discussed the various types of degradation mechanisms at various 

levels. However, in this section, the emphasis is on detecting the degradation mechanism using 

various existing methods and techniques in the current literature. Characterization aids in 

determining the structures and properties of the materials used in the fabrication of 

pseudocapacitors. Characterization entails a variety of techniques and processes for further 

analyzing the material's properties in terms of mechanical, microscopic, and operational 

factors. The composition of the materials and their structural analysis are currently being 

studied using a variety of qualitative and quantitative techniques that are emerging or already 

in use. 

2.1.6.1  Materials characterization 

Pseudocapacitors have a high capacitance and a high output power due to reactions occurring 

at the surface of the electrode surface. Furthermore, the characterization of structures and 

electrode surface area is critical for a thorough understanding of the degradation mechanism. 

Materials characterization is useful when it comes to understanding certain parameters such as 

the surface morphology of the electrode and the electrolyte, their compositions, and various 
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external factors such as doping and element additions at a microscopic and nanoscopic level. 

All microscopic techniques are thoroughly explained in Table 2-3 along with specific examples 

and materials utilized. It highlights the significance of microstructural changes and how they 

affect the surface morphology of the microstructures and their functionality throughout cycling. 

2.1.6.1.1 Surface analysis  

The nanoparticle characterization of the pseudocapacitors at the microscopic level is done 

using various imaging techniques such as TEM, SEM, atomic force microcopy (AFM), and in-

situ Raman spectroscopy. These techniques have advanced technology to detect and determine 

the materials at an atomic or microscopic scale [96]. They have different principles through 

which they operate to produce a highly magnified and high-resolution image of the sample.  

a) Transmission electron microscopy 

This technique is used to analyze crystal structure and has the advantage of imaging and 

diffractometry, which helps in providing the crystal lattice structure of the electrode material 

with higher resolution than SEM [97]. It determines the surface topography of the active 

electrode and focuses on the crystallinity of the surface. 

b) Scanning electron microscopy 

This method is used to determine the morphology of the microstructures of the electrode active 

material in the pseudocapacitor (surface morphology) [98]. SEM, accompanied by element 

analysis, helps to determine the existence of element and weight (mass) percentage [99], [100].  

c) Atomic force microscopy 

This technique is widely used to determine the thickness of the nanoparticles in a 

pseudocapacitor. It also detects if there is any folding or corrugation in the layer of the active 

electrode material [101]. 
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d) In-situ Raman spectroscopy 

Like SEM, this technique is also used to analyze the quality of the amorphous layer on the 

electrode material. In-situ Raman uses femtosecond laser pulses and is excellent for rapid 

prototyping and custom-scale manufacturing for nanofabrication of pseudocapacitors. It is also 

used to study and determine the crystal properties of the electrode during Faradaic charge 

transfer at a microstructural level through the laser irradiation technique. Although SEM is 

more advanced, in-situ Raman is extensively used to study the chemical composition of the 

electrode active material and the electrolyte in a pseudocapacitor [102]. 

2.1.6.1.2 Mass loss (surface/microstructure characterization) 

Mass loss characterization can provide information on how much material is lost from an 

electrode over time because of repeated cycling, which can be indicative of degradation 

mechanisms in a pseudocapacitor. Researchers can determine the rate of degradation and the 

specific factors that contribute to degradation by measuring mass loss [103]. Identifying 

materials or manufacturing processes that reduce degradation can be used to improve the design 

and performance of the pseudocapacitor. Table 2-4 discusses different mass loss 

characterization techniques for pseudocapacitive materials and how they relate to degradation 

mechanisms or the rate at which the pseudocapacitor degrades. 

a) X-ray photoelectron spectroscopy)  

From the above sections, it is clear that, for a pseudocapacitor, the surface Faradaic reaction is 

very important and is its working principle. X-ray photoelectron spectroscopy (XPS) helps to 

detect different valence states of the atoms on the electrode surface [104]. For instance, 

Belanger observed the changes in the oxidation state of Mn for the reduced and oxidized forms 

of thin-film electrodes during cycling [105]. XPS detects the presence of any functional group 

present on the surface with the level or amount of doping of any homogeneous heteroatom. 

The biggest drawback of XPS is its sampling depth (50 Ao) and is highly sensitive technique 
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to retrieve the rate of the Faradaic mechanism. As a result, it cannot be used to detect functional 

groups for the bulk of the surface layers [106]. 

 

b) Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is used to detect and analyze the formation of 

the surface layer of the electrode with doping, the presence of heteroatoms, and so on. It 

helps to show the differences between the reference spectrum and the spectra of the oxidized, 

or between the oxidized, and the reduced sample [104]. This method is an alternative to XPS. 

c) x-ray powder diffraction 

X-ray powder diffraction (XRD) is commonly used to identify and determine the nanoparticle 

morphology of the resultant products formed during cycling [98], [107]. For example, having 

a broad peak in the XRD spectrum indicates an amorphous nature [108]. It confirms any mixed 

phases present in the nanocomposites of the electrode material. For example, the mixed phase 

of cuprous oxide (Cu2O) and copper hydroxide (Cu(OH)2) was found in the XRD pattern of 

reduced GO (rGO)/ polypyrrole (PPy)/ Cu2O/ Cu(OH)2 [109], [110]. XRD is used to determine 

the formation of these different crystalline phases of the nanoparticles with the help of the 

crystalline planes [100]. It is an efficient method when it comes to estimating and calculating 

the spacing between the adjacent layers of the electrode material [101].  

d) In-situ nuclear magnetic resonance spectroscopy 

This method uses element selectivity to detect individual ionic species to study the charge 

storage mechanism of the pseudocapacitor. The method is used to investigate the variations at 

the SEI during the cycling process [111]. Grey applied in-situ nuclear magnetic resonance 

(NMR) spectroscopy to quantify the number of anions and cations in a pseudocapacitor and 

used microporous carbon as the electrode material [112]. Figure 2-10 (a) depicts the 1H NMR 

spectrum of quinoxaline-based amine compound (dpqa). Aromatic protons are found between 

7.1 and 7.9 ppm, while amine protons are found at 4.23 ppm. Figure 2-10 (b) depicts the peaks 
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at 5.49 ppm and 4.75 ppm in the 1H NMR spectrum of quinoxaline-based benzoxazine (BA-

dpqa) correspond to the O-CH2-N- and Ar-CH2-N- groups of the oxazine ring of BA-dpqa. 

Furthermore, the aliphatic protons appear at 1.63 ppm. Aromatic protons are found in 

concentrations ranging from 6.6 to 8.1 ppm [113]. Therefore, the NMR spectra reveal 

information about the materials' chemical compositions, including the presence of specific 

functional groups such as aromatic protons, amine protons, and aliphatic protons. If the NMR 

spectra show a shift or broadening of the peaks corresponding to the aromatic protons, this 

could indicate the formation of oxidation products or the degradation of the polymer backbone 

due to repeated cycling. Likewise, changes in the chemical shifts or intensities of the amine or 

aliphatic protons could indicate polymer structure degradation or the formation of degradation 

products. 

 

 

 

Figure 2-10: 1H NMR spectrum of (a) The quinoxaline-based amine compound (dpqa). (b) 

quinoxaline-based benzoxazine (BA–dpqa). Reprinted from [113]. 
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Table 2-3. Individual techniques (with examples) for the characterization of the materials used in 

pseudocapacitors. 

Technique Description Image 

SEM (a) and (b) display the SEM measurements 

of the amorphous Ni (OH)2 sample that is 

synthesized on the graphite electrodes. SEM 

image at 1 μm. The amorphous nanospheres 

are wrinkle-like with this smaller 

magnification. Reprinted with permission 

from [114].  

           

 

SEM image at 100 nm.                                                  

The well-defined nanospheres are ravine-like 

surfaces. Reprinted with permission from 

[114].   

 

Both (a) and (b) illustrate how the 

morphology is not uniform and could 

potentially lead to micro-cracks in the 

electrode material.                                                         

(a)  
 

 

 

 

 

 

 

 

 

(b)  

TEM (c) reveals the microscopy measurement of 

the amorphous Ni (OH)2 sample. TEM image 

at 20 nm. The microstructure indicates 

wrinkled surfaces and is quite dense. The 

nanospheres are highly irregular and could 

also contribute to degradation mechanisms 

by generating stress and strain within the 

material during cycling. Reprinted with 

permission from [114]. 

 (c)  

AFM AFM image of an exfoliated individual β-

Ni(OH)2/graphene hybrid nanoflake is 

shown in (d). It is observed from the graph 

that the thickness is approximately 10 nm. 

The graph indicates folding and corrugation, 

which is important for the nanofabrication of 

pseudocapacitors and its flexibility in 

applications. (e) represents the AFM 

measurements of the thickness of the 

nanoflakes before and after cycling, which 

can provide insight into the extent of 

degradation, such as changes in morphology 

and material loss. Reprinted with 

permission from [101]. 

 

 (d)  

(

e) 
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Raman 

spectroscopy 

In-situ Raman spectra of e-PPy and c-PPy 

during cycling stages (f). There is no peak for 

c-PPy post-cycle, indicating the deterioration 

of the electrode material and, hence, the 

device. Reprinted with permission from 

[81]. 

 

 

Table 2-4. Mass loss surface characterization techniques with examples of the materials used in 

pseudocapacitor. 

Technique Description Image 

XPS In a study conducted by Khot and Kiani 

[[115], XPS was used to look for the 

presence of Ni species in different 

samples. It was observed that the Ni3+ -

O bonding signal increased after the 

discharge cycle, which is believed to be 

due to the presence of NiOOH on the 

surface, as the oxidation state of NiOOH 

is 3+. (a) and (b) showcase the O 1 s 

peaks pre-cycle and after 7000 cycles, 

respectively. A sharp decrease in the 

NiO peak is seen, which can be 

attributed to material degradation.   

Reprinted from [115]. 

 

 

 

  

 

FTIR (c) shows the vibration bands of an 

undoped, chemically synthesized 

polyaniline by the FTIR spectrum. 

There are prominent vibration bands in 

the spectrum at 1588, 1495, 1322, 1164, 

848, and 622 cm-1. The vibration bands 

at these different wavelengths are 

explained in detail in [116]–[120]. 

Changes in the intensities or positions of 

the vibrational bands associated with the 

C=C and C-N bonds, as mentioned in 

the paper, can indicate polyaniline 

    (c)  

(

b) 

(

f) 

(

a) 
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electrode material degradation [116], 

[117]. This spectrum can be used to 

study the changes in the chemical 

structure and vibrational modes of the 

material as it degrades in a 

pseudocapacitor. Reprinted with 

permission from [116]. 

XRD Using an XRD spectroscopy system, the 

composition, and crystallographic 

structures of different electrodes 

(untreated Ti as control sample [S1], Ti 

sheet treated with one-time laser 

irradiation [S2], and Ti sheets treated 

with two-time laser processing [S3]) has 

been studied by [121]. (d) shows the 

XRD results and confirms the presence 

of micro and nano web-like titanium 

oxide structures in both the S2 and S3 

samples. The control sample, on the 

other hand, showed no oxide peaks (S1). 

So, increasing the number of laser 

treatments from one to double resulted 

in an increase in oxide intensity in XRD 

results. This increase in oxide intensity 

suggests that electrode degradation may 

be linked to titanium oxide formation 

during laser treatment. Reprinted with 

permission from [121]. 

 (d) 

   

 

2.1.6.2 Electrochemical profile evaluation (analysis) 

Capacitance and energy/power density, measured at a specific current density, are commonly 

used to assess the electrochemical performance of a pseudocapacitor's electrode material. Table 

2-5 shows the electrochemical characteristics through different types of analysis such as cyclic 

voltammetry (CV), galvanostatic charge/discharge test (GCD), and electrochemical impedance 

spectroscopy (EIS), and how they are related to operational parameters such as rate capability, 

structural stability, power capacity, and capacity retention. 
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2.1.6.2.1 Cyclic voltammetry 

CV is used to measure average capacitance for the pseudocapacitive behavior with a 

rectangular CV curve [110], [122], [123]. The capacitance of electrode material is estimated 

from the rectangular CV curves: 

 C= 
𝑖

𝑣
              (2-3) 

where C is the capacitance (Fg-1), i is the current density at the mean voltage (Ag-1), and v is 

the scan rate (Vs-1) [104]. The capacitance of an electrode layer can also be estimated with the 

following formula: 

 Ci = |
𝑄

𝐸2−𝐸1
|       (2-4) 

where Q is the total charge accumulated throughout the electrode layer and Ci is the 

capacitance; the area under the CV in both directions in the potential window from E1 to E2 

can be used to quantify Q [122]. The main drawback of the CV method is it cannot be used to 

evaluate the average capacitances in the case of intercalation pseudocapacitors due to the 

presence of redox peaks in the CV curves.  

2.1.6.2.2 Galvanostatic charge/discharge test 

GCD is another efficient method to measure the capacitance of pseudocapacitors and can be 

estimated using the following formula: 

 C = 
𝑖×∆𝑡

𝑚×∆𝑉
 (2-5) 

where C is the capacitance (F g-1), i is the current density (A g-1), ∆t is the charging/discharging 

time (s), m is the mass of the active electrode material (g) and ∆V is the working/operating 

potential window of the electrode [100], [104]. The method is considered efficient because it 

can determine the electrochemical properties of the electrode materials used in the 

pseudocapacitor under certain controlled current situations [124]. In this test, the 

pseudocapacitive behavior depends on the specified potential window (Eq 5). Through general 
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trends, it is observed that the specific capacitance is decreased when the current density is 

increased. This is because of insufficient response time for the ions in the electrolyte to 

reach/diffuse to/onto the electrode surface at a significant current rate [125]. 

Furthermore, GCD can be used to predict the rate of degradation of a pseudocapacitor through 

the charge/discharge curves. The more symmetrical the curves are, the more the 

charge/discharge process is reversible, indicating the high Coulombic efficiency of the 

electrode. The presence of slight plateaus in the curve also confirms the presence of a 

pseudocapacitor [98].  

 

2.1.6.2.3 Electrochemical impedance spectroscopy 

EIS is a technique for collecting and analyzing pseudocapacitor impedance data at the open-

circuit potential with a small amplitude of interruptive potential (alternate) of ±5 or ±10 mV 

across a wide frequency range of 0.01 Hz to 100 kHz. The EIS measurement is expressed 

through Nyquist plots and is plotted as the imaginary part of the impedance Z(f)’’ versus the 

real part of the impedance Z(f)’. The plot is composed of three regions. The pseudocapacitive 

mechanism lies in the middle region and represents the internal resistance through a high-to-

medium frequency (i.e., 10 kHz to 1 Hz) [104], [110], [122], [126]–[128]. The intersection of 

the curve in the Nyquist plot represents the ESR, which is the sum of the intrinsic resistance of 

the electrode material, the electrolyte resistance, and the contact resistance at the interface 

between the current collector and the electrode material [116], [129], [130]. Through the EIS 

measurements, the relationship between the imaginary part of the impedance and the frequency 

is easily determined. The capacitance is calculated through the following equation: 

 C = 
1

2𝜋𝑓|𝑍|
 (2-6) 

where the capacitance is known through the Bode plot (linear part of log|Z| vs. log(f) curve). 

The plot trend displays the decrease of capacitance with increasing frequency. The plot further 
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explains how supercapacitors perform as a pure resistance at the high-frequency region and 

thereby indicating the failure of ions in the electrolyte to penetrate the microstructural pores 

under considerable frequencies [104], [110], [122]. Therefore, EIS shows how a 

pseudocapacitor is an ideal mechanism in the middle region for ion kinetics transfer. The value 

of ion transfer resistance is determined from EIS measurements and depends on the dielectric 

and the insulating features at the SEI [100]. To conclude, EIS is used to study the response time 

of the pseudocapacitors [108]. 

Table 2-5. Different electrochemical analysis techniques were used to predict their operational 

properties. 

Example Characteristics Graph 

CV (a) CV curves for graphene-carbon 

nanofiber/MnO2 nanocomposite paper 

(GMP) at different scan rates. At low 

scan rates (10 mV s-1), the curve is 

more rectangular and symmetric, 

indicating much faster reversible 

Faradaic redox reactions compared 

with slow diffusion at high scan rates, 

where the shape deviates significantly 

from the rectangular-like curve [109]. 

 

 

(b) CV curves for MnO2, MnO2/rGO, 

GMP, PPy were used in 1M Na2SO4 at 

a specific scan rate of 50 mV s-1. It is 

observed that GMP has the highest 

area under the curve, which indicates 

higher capacitance than other 

electrodes used. Reprinted with 

permission from [109], [131]. 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 
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GCD (c) GCD curves for different 

composites/aqueous electrodes (a) CSA 

(sulfonated carbon), (b) Aq- PANi-SA 

(polyaniline-sulfate salt by aqueous 

polymerization pathway), (c) Int-

PANi-SA•CSA (polyaniline-sulfonated 

carbon hybrid by emulsion 

polymerization pathway), (d) Eml-

PANi-SA•CSA (polyaniline-sulfonated 

carbon hybrid by interfacial 

polymerization pathway) and (e) Aq-

PANi-SA•CSA (polyaniline-sulfonated 

carbon hybrid by aqueous 

polymerization pathway)  respectively 

with a current density of 0.35 A g-1. 

Through measurements, it is observed 

that the aqueous polymerized 

electrode (Aq-PANi-SA•CSA) shows 

the best electrochemical performance 

due to high conductivity, yield, and 

fast ion transport process. 

 

(d) GCD curves for (Polyaniline) Aq-

PANi-SA•CSA at different current 

densities (a) 0.35, (b) 0.7, (c) 1, (d) 1.7, 

and (e) 3.5 A g-1 respectively. The 

graph has an inset plot known as the 

Ragone plot showing the relationship 

between the energy storage and the 

power capabilities of the 

pseudocapacitor. Through this plot, it 

is concluded that the electrode has a 

high rate capability meaning good 

specific capacitance with high-

capacity retention Reprinted with 

permission from [108], [131]. 

 

 

 

 

 

 

c

) 

d

) 
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EIS (e) exhibits a Nquist plot for the 

OLC/MnO2 (onion-like 

carbon/manganese oxide) symmetric 

pseudocapacitor before and after 50-

hour voltage holding experiments 

[132]. The low-frequency region is 

represented by the straight line. The 

inset is the expanded portion of the 

high frequency region, and the 

semicircle corresponds to the charge 

transfer resistance. Extrapolating the 

vertical portion of the plot to the real 

axis, considering both the ESR and the 

ionic resistance within the porous 

structure, yielded the equivalent 

distributed resistance for the 

OLC/MnO2 nanohybrid material and 

OLC alone (RC semicircle). The 

OLC/MnO2 nanohybrid material 

demonstrated an increase in ionic 

resistance within the porous structure, 

as evidenced by a slightly larger RC 

semicircle (1.8 Ω cm2) when 

compared with the OLC alone (1.2 Ω 

cm2). Therefore, EIS helps to 

determine the rate of charge and 

discharge and the power capability of 

the material, which is crucial to 

degradation rate. Reprinted from 

[132]. 

 

(e)  

 

 

2.1.7 Optimizing and controlling the rate of degradation 

To increase the efficiency of the pseudocapacitor, it is crucial to reduce the rate of degradation 

or optimize the factors affecting it. All the mechanisms mentioned in Section 2.1.3 have their 

consequences on the deterioration of the device and slow down the efficiency of the 

pseudocapacitors. It is therefore important to address this mechanism and enhance or modify 

the parts used in the pseudocapacitor for their prolonged lifetime with an increase in efficiency. 

Furthermore, we refer the reader to the supplementary information, which includes a comma-

separated values file, for an exhaustive account of the various electrode and electrolyte variants 
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implemented in a pseudocapacitive device. This file contains information on 40 different 

electrode and electrolyte combinations, providing a comprehensive look at the materials used 

in pseudocapacitive devices. This data set's inclusion aims to facilitate further investigation and 

analysis of pseudocapacitive devices, contributing to the scientific community's understanding 

of these promising energy storage systems. 

2.1.7.1 Enhancing the electrode material used at (the fabrication or structure level) 

This subsection focuses on the electrode material and how different manufacturing techniques 

for different electrodes have been carried out to modify the structure of the electrode. In doing 

so, various operational parameters — such as potential window, current density, and the 

number of cycles — can be improved, leading to excellent electrochemical performance of the 

pseudocapacitor device. Changing the properties of the electrode by varying different 

parameters during manufacturing has enabled many desired outcomes, such as good capacity 

retention, cyclic stability, and rate capability. As shown in the following subsections, we have 

briefly explained various types of pseudocapacitive materials used in pseudocapacitors. 

2.1.7.1.1 Metallic oxides  

Huarong Peng conducted research on molybdenum disulfide (MoS2)-coated vanadium trioxide 

(V2O3) composite nanosheet tubes [133]. The MoS2 and V2O3@MoS2 composite tubes were 

created using a one-step hydrothermal reaction, as shown in Figure 2-11, and electrochemical 

measurements showed that the hollow tubular V2O3@MoS2 composite exhibited typical 

pseudocapacitive behaviors, including a wide operational window, high specific capacitance, 

and excellent cycling stability.  
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Figures 2-12 (a) and (b) show the CV curves of symmetric pseudocapacitors 

(V2O3@MoS2/V2O3@MoS2) and asymmetric pseudocapacitors (V2O3@MoS2/AC) at a scan 

rate of 20-100 mV s-1. The CV curves show a quasi-rectangular shape with minimal distortion. 

Interfacial modification in the composite, such as atomic layer deposition and molecular layer 

deposition, has proven to be very effective in suppressing electrochemical degradation 

behavior. Atomic layer deposition is a technique whereby the deposition of the thin film 

develops rapidly due to unique properties, including excellent uniformity, atom-scale 

stoichiometric deposition, and operation at low-growth temperatures [133]. The main 

drawbacks — such as restacking propensity and self-aggregation tendency caused by the 

reduction in surface energy — are avoided by either changing the structure to 3D to minimize 

restacking propensity or combining it with other materials to build Van der Waals 

heterostructures [134], [135]. This separates the layers of MoS2 and prevents aggregation. 

Doing this also increases the potential window for the pseudocapacitor and allows it to function 

Figure 2-11: The schematic detailed diagram for the fabrication process of the MoS2 nanosheets and 

the tubular (hollow) V2O3@MoS2 composites. Reprinted with permission from [133]. 
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as a cathode as well as the anode. MoS2 has higher intrinsic ionic conductivity than metal 

oxides and higher theoretical specific capacity (670 mA hg-1) than graphite [136], [137]. Owing 

to the multivalence of both Mo and V, the potential window of the composite can straddle 

between negative and positive potentials and offers opportunities to achieve high energy 

density [138], [139]. An asymmetric device made of V2O3@MoS2 and activated carbon (AC) 

demonstrated a high energy density of 31.8Wh kg-1 at the power density of 0.37kWkg-1, as well 

as an ultra-high cycling stability, with approximately 100% capacity retention after 35000 

cycles [133]. In his review paper, Chunyu Du concluded that Ti-based oxides (TiO2) are useful 

for structural stability in pseudocapacitors/hybrid Pseudocapacitors [140]. Because it is used 

to control the thickness of 2D materials, atomic layer deposition has proven to be a powerful 

tool for electrode fabrication in hybrid pseudocapacitors applications [141]–[143]. Figures 2-

12 (c) and (d) showcase the TiO2 nanotubes manufactured by the electrospinning process, a 

process that achieves high surface area and high electron-enhanced mobility [140]. Ti-based 

oxides have a high operating voltage in comparison to alkali metal deposition such as Li, Na, 

and so on, and this ensures complete safety by preventing the formation of lithium and sodium 

dendrites. High working potential, on the other hand, prevents electrolyte decomposition, 

resulting in excellent rate capability via the unique pseudocapacitive kinetics [51]. The intrinsic 

poor electrical conductivity and slow ion-transfer kinetics limit its use in pseudocapacitors, but 

recent advances in morphological control and bulk-phase doping have demonstrated its 

potential for future research. When amorphous TiO2@CNT/CFP (carbon nanotubes/carbon 

fiber papers) is used as an anode, structural stability and excellent rate capability is achieved. 
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It has a high reversible capacity of 272 mAh g-1 at 0.1 Ag-1 and excellent cycling performance, 

retaining 93% of its capacity after 10,000 cycles at 20 Ag-1 [51], [144]. 

MnO2 is an excellent material for use in pseudocapacitors due to its high rate and capacity 

performance; however, due to electrochemical instability in the aqueous electrolyte, it cannot 

be used at a low electrochemical potential. Yu-Ting Weng's experiment demonstrates the 

possibility of stabilizing the MnO2 electrode using a silicon dioxide (SiO2)-confined 

nanostructure [145]. Surprisingly, this approach achieved an exceptionally good 

electrochemical stability under large negative polarization in aqueous (Li2SO4) electrolyte 

between -1 V and +1 V with no Mn dissolution, which is normally unattainable for MnO2-

based electrodes. Even more intriguing, this MnO2-SiO2 nanostructure composite exhibits 

distinct mixed pseudocapacitance-battery behavior involving consecutive reversible charge 

transfer from Mn(IV) to Mn(II), allowing for simultaneous high-capacity and high-rate 

characteristics via different charge-transfer kinetic mechanisms [145]–[148]. Figure 2-12 (e) 

shows the cycling stability of the MSO (Mn-Si-O) electrode. It is CV scanned at 20 mV s-1.  

Figure 2-12: (a) CV curve for the symmetric pseudocapacitor V2O3@MoS2/ V2O3@MoS2. (b) CV 

curve for the asymmetric pseudocapacitor V2O3@MoS2/AC. (c) & (d) TiO2 nanosheets (hollow 

nanofibers) manufactured by electrospinning method. (e) Graph for capacity retention against the 

number of cycles for the MSO and MnO2 electrodes. The inset in the graph shows the solution after 

cycling tests. Reprinted with permission from [51], [133], [145]. 
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 In < 500 cycles, the MnO2 lost > 90% of its capacity and formed a brown precipitate in the 

electrolyte, indicating Mn2+ dissolution. After 5000 cycles in MSO, the electrode retained 68% 

of its capacity and no precipitate was formed in the electrolyte. As a result, when utilized at 

low potentials, the MSO electrode prevented electrode corrosion [145]. 

Through the manufacturing process of electrodeposition and hydrothermal method, NiCoO2 

nanowires (NCO NWs) and NiCoO2 nanoflakes (NCO NFs) covered with CoS2 (CS) were in-

situ formed on gold-coated nickel foam (NFA). The NFA/NCO/CS electrode's manufacturing 

procedure is shown in Figure 2-13. The formed layered structure facilitates the rapid 

transmission of electrolytes and improves the mechanical stability of the electrodes [149]–

[151]. 

 

  

Figure 2-13: Synthesis route of NFA/NCO/CS. Reprinted with permission from [151]. 
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Meanwhile, adding a gold layer improves conductivity and electron/ion transmission. Zhicheng 

Chi and his colleagues discovered experimentally that an electrode based on NiCoO2 

nanowires/CoS2 (NFA/NCO NWs/CS) nanocomposite has an ultrahigh specific capacitance of 

3.28 Fcm-2 (2186.7 Fg-1) at 2 mA cm-2 and retains 90.4% of the initial capacitance after 4000 

cycles [52], [151], [152].  In addition, Figures 2-14 (a) and (b) show that, at a scan rate of 10 

mV s-1, the response current of each NFA/NCO/CS electrode is extremely strong, 

demonstrating the CS layer's contribution to the pseudocapacitance and showing that the 

pseudocapacitance is primarily caused by the second stage of the charging process [150]–[153].  

 

 

2.1.7.1.2 Carbon-based materials 

In a study led by Yun-Guang-Zhu, NiO nanoflakes/graphene (NiO/G) nanocomposites were 

prepared using a hydrothermal method, followed by heat treatment with nitrogen (N2) gas 

[154]. In this composite, NiO nanoflakes (30–80 nm in diameter) are uniformly anchored on 

graphene sheets layer by layer, effectively preventing aggregation and providing 2D diffusion 

channels for electron and ion transport. The NiO/G composite electrode outperforms bare NiO 

nanoflakes in terms of electrochemical properties. The specific capacitances of the NiO/G 

Figure 2-14: (a) CV curve for composite electrode for pseudocapacitors, using NFA/NCO NWs/CS or 

NFA/NCO NFsCS at a scan rate of 10 mV s-1. (b) GCD curve of the NFA/NCO NWs/CS composite 

electrode at different current densities. Reprinted with permission from [151]. 



51 

 

electrode are 240 Fg-1 at 5 Ag-1 and 220 Fg-1 at 10 Ag-1, which are significantly greater than 

the specific capacitances of the NiO electrode, which are 100 Fg-1 at 5 Ag-1 and 90 Fg-1 at 10 

Ag-1. NiO/G offers better channels for quick ion-transfer kinetics and aids in customizing the 

surface area, porosity, and pore distribution of the electrode because NiO has poor ionic 

conductivity and poor long-term stability due to crack formation in the electrodes. The addition 

of graphene boosts the ionic conductivity, as well as the energy and power density [154]–[158]. 

Furthermore, graphene prevents NiO nanoflakes from aggregating, and NiO nanoflakes can 

also impede graphene aggregation. The cycling stability of the NiO/G supercapacitor is quite 

high due to this hybrid structure, which exhibits a superior cycling stability of 100%–120% 

retention of specific capacitance after 1500 cycles at a current density of 5 Ag-1 between 0–0.5 

V (Figure 2-16 (a)), compared with 66.7% for NiO [154]. The EIS plot of NiO and NiO/G is 

shown in Figure 2-16 (b). The spectra of NiO/G are very close to 90o, which is much larger 

than that of NiO, and the spike begins around the mid-high frequency. Therefore, this indicates 

that NiO/G is a much better composite than NiO, and that it can be used as an electrode material 

for a low-leakage supercapacitor [154], [159]. 

Xinjie Liu conducted an experiment whereby he used a composite structure of ZIF-67@Co-

NTC that was synthesized by using ZIF-67 as a sacrificial template/precursor and rigid 1,4,5,8-

naphthalene tetracarboxylic acid (NTC) as a linking ligand [160]. The composite structure was 

then partially vulcanized to form layer-like Co3S4 nanosheets to synthesize a composite 

heterostructure of Co- NTC@Co3S4. Figure 2-15 depicts the Co-NTC@Co3S4 manufacturing 

process. During the charge and discharge processes, the layered structure can improve the 

electron transport efficiency via small diffusion electrolyte channels, while also preventing 

nanosheet accumulation/aggregation [160]–[162]. Also, the layered structure helps in the large 

specific surface areas, and it helps in the penetration of ions into the electrolyte, which 

improves the ion-transfer kinetics during the cycling of the electrode [160], [163]–[165].  
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Based on these advantages, Co-NTC@Co3S4 exhibits excellent electrochemical properties. It 

can achieve up to 3117.3 Fg-1 at 1 Ag-1, and the magnification capacity is about 80% at 10 Ag-

1; after 1000 cycles, the retention rate can reach up to 87% at the same current density. A hybrid 

supercapacitor (asymmetric pseudocapacitor) composed of Co-NTC@Co3S4 and AC exhibits 

ideal performance (i.e., the cyclic capability is up to 110% after 5000 cycles at a current density 

of 10 Ag-1). This can be further seen in Figures 2-16 (c) and (d). In a 6 M KOH electrolyte, Co-

NTC@Co3S4 is the positive electrode and AC is the negative electrode. In the mid-potential 

Figure 2-15: Schematic diagram of the processing of hierarchical Co-NTC@Co3S4. Reprinted with 

permission from [160]. 
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range (i.e., the range of potentials where the electrode's pseudocapacitive behavior is most 

observable, typically within the potential range with the highest current density and the most 

rectangular CV curve), the CV curve is rectangular and exhibits pseudocapacitive behavior 

[160], [163].  

 

Hao Xie described a simple hydrothermal synthesis of an advanced nanocomposite made of 

novel three-dimensional (3D) nitrogen-doped graphene (NG) networks and hexagonal cobalt 

hydroxide (Co (OH)2) nanoplates that are optimized for use as electrochemical pseudocapacitor 

materials [166]. To achieve high porosity and capacity, parameters such as GO precursor 

concentration and Co (OH)2 content are independently optimized. Inside the conductive [166], 

Figure 2-16: (a) Specific capacitance vs. the number of cycles of NiO and NiO/G. The cycling 

performance is carried out at a current density of 5 Ag-1. (b) Nyquist plots of the NiO and NiO/G 

electrodes. (c) CV curve of Co-NTC@Co3S4 and AC at a scan rate of 10 mV s-1. (d) Cycling 

performance/stability of Co-NTC@Co3S4/AC at a current density of 10 Ag-1. Reprinted with 

permission from [154], [160]. 
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[167]. The homogeneous distribution prevents the stacking of the nanoplates and the 

interconnected NG networks, single-crystalline Co(OH)2 plates are distributed uniformly NG. 

Figure 2-17 (a) shows the SEM image of the NG/Co(OH)2. The 3D network is still the same 

approximately with no significant changes. The composite has a porous structure, with the 

interconnected NG. From the inset of Figure 2-17 (a), it is observed that there is no stacking, 

and the hexagonal morphology is retained. In this research, it was observed that the 71% 

Co(OH)2 weight content achieves a capacitance of 952 Fg-1 at 1.0 Ag-1, more than triple that 

of the pure NG and nearly four times that of Co(OH)2 plates [168]–[170]. Furthermore, this 

value exceeds the recently reported values for 2D graphene/Co(OH)2 composites. Capacity 

retention over 2000 cycles is 95%, as seen in Figure 17 (b) [166]. The improvements are 

primarily due to Co(OH)2 particles standing randomly in 3D networks rather than lying on NG 

nanosheets. The specific surface area is increased as a result. Furthermore, the regular 

morphology of Co (OH)2 and the 3D porosity, which prevents the stacking of the Co (OH)2 

plates effectively in the composite, as well as the continuously connected pores and highly 

conductive NG networks, which facilitate electron and ion transport, are all beneficial [166], 

[168], [171], [172]. 

2.1.7.1.3 Conducting polymers 

Conducting polymers, particularly PPy and PANi have a high potential for use as 

pseudocapacitive electrodes due to their ease of fabrication and low cost. However, the 

structural instability caused by volumetric swelling and shrinking (electrolyte) during the 

charge/discharge process is a significant barrier to their broader applications. As a result, 

Tianyu Liu and his colleagues' incredible work demonstrated a simple and general strategy for 

significantly improving the cycling stability of conductive polymer electrodes by deposition of 

a thin carbonaceous shell onto their surface [173]–[175]. 
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Figure 2-17: (a) SEM image of the NG/Co (OH)2 composite electrode. (b) Capacity retention 

vs. cycles for the NG/Co (OH)2 composite electrode material at a current density of 1 Ag-1 over 

2000 cycles. Reprinted with permission from [166]. 

 

Figures 2-18 (a) and (b) show that there are no detrimental changes in the structure after 10,000 

cycles, indicating that the presence of the carbonaceous shell in the PPy and PANi has no effect 

[174], [176]. Furthermore, carbonaceous shell-coated PPy and PAN-electrodes achieved 

remarkable capacity retentions of ∼85% and ∼95% after 10,000 cycles, respectively, compared 

with 25 % and 20 % as bare electrodes. This is demonstrated in Figures 2-18 (c) and (d). 

The presence of a 5-nm thick carbonaceous shell can effectively prevent the structural 

breakdown of polymer electrodes during the charge/discharge process, according to electron 

microscopy studies. Furthermore, polymer electrodes with a 5-nm thick carbonaceous shell 

demonstrated comparable specific capacitance and pseudocapacitive behavior to bare polymer 

electrodes. Moreover, the same process can be used to stabilize other similar polymer 

electrodes, and the ability to design and fabricate these types of electrodes has the potential to 

be a breakthrough in the pseudocapacitor industry [174]. 
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Sungjim Im et al. showed how to improve the supercapacitive performance of a 2D nanosheet-

based composite electrode. They created a hybridized electrostatic double-layer capacitor-

electrochemical pseudocapacitor (EDLC-PC) electrode out of rGO-PANi nanofibers (rGO-

PANi NFs). Figure 2-19 (a) showcases the fabrication of the nanocomposite supercapacitor 

electrode via the solution process [177], [178]. For the enhanced supercapacitive performances, 

insulator silver chloride nanoparticles (AgCl NPs) were intercalated into the interlayer gap of 

rGO. The AgCl NP intercalation exfoliated rGO layers and prevented the rGO self-restacking 

(which occurs through typical fabrication by the solution process) that makes it difficult to 

utilize the high surface-to-volume ratio of ideal mono- (or few) atomic-thick rGO layers [179]. 

Figure 2-19 (b) displays the SEM images with the surface morphologies of (i) GO, (ii) rGO/Ag 

Figure 2-18: (a) & (b) SEM images before and after cycling test of 10,000 cycles for PANi@C-2h and 

PPy@C-2h respectively. (c) & (d) Capacity retention vs. the number of cycles for PANi and PANi@C 

electrodes, and for PPy and PPy@C electrodes. The cycling performance is analyzed at a scan rate of 

100 mV s-1. Reprinted with permission from [174]. 
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NPs, (iii) rGO/AgCl NPs, and (iv) PANi NFs-g-rGO/AgCl NPs nanocomposites, which can be 

used as a pseudocapacitor electrode.  

 

As a result of this synthetic route, the specific capacitance increased by the increased specific 

surface area of rGO. Furthermore, the well-developed rGO edges formed by the AgCl 

intercalation enabled the formation of more bonds between PANi and rGO via selective 

grafting of PANi to the rGO edges. As a result, as conducting paths, the PANi-rGO bonds 

significantly reduced total electrical resistance. Increased specific capacitance, ion diffusion 

efficiency, and reduced electrical resistance were used to demonstrate the bi-functional roles 

of AgCl NP insertion in high-performance hybridized EDLC-PC electrodes [177]–[181]. 

Figure 2-20 (a) shows the graph of specific capacitance versus current density, the specific 

capacitance of ternary PANi-g-rGO/AgCl is observed to be 1.1-1.4 times higher than that of 

binary PANi-g-rGO at different current densities (1-50 Ag-1). This is because the large 

Figure 2-19: (a) Schematic diagram of the manufacturing of the PANi-g-rGO/AgCl ternary 

nanocomposites. (b) SEM images of (i) GO, (ii) rGO/Ag, (iii) rGO/AgCl, and (iv) PANi-g-rGO/AgCl 

ternary nanocomposites used in the electrodes of the supercapacitor. Reprinted with permission from 

[178]. 
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accessible surface area of rGO opened by NP intercalation makes diffusion efficient. 

Furthermore, Figure 2-20 (b) demonstrates that the ternary nanocomposite has higher cyclic 

stability (80% after 1000 cycles) than the binary composite and homogeneous PANi NFs 

electrodes, which have a cyclic stability of 65% and 58%, respectively [178], [181].  

 

Tae Guang Yun proposed an ultra-stable, stretchable electrochromic supercapacitor device 

made up of Au/Ag core-shell nanowire-embedded polydimethylsiloxane (PDMS), bi-stacked 

WO3 nanotube/PEDOT:PSS (poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate)), and 

a hydrogel electrolyte based on polyacrylamide (PAAm) [182]. The supercapacitor is 

transparent. The supercapacitor is fabricated by electrospinning the WO3 nanotube, which is 

then coated with a PEDOT:PSS thin layer and drop-coated onto the Ag nanowire-embedded 

PDMS substrate. Figure 2-21 (a) depicts the fabrication process in detail [182]. When 

combined with a PAAm-based hydrogel electrolyte, PDMS with an embedded Au/Ag 

core/shell nanowire prevents the oxidation and dehydration of silver while maintaining ionic 

and electrical conductivity at high voltage, even when exposed to ambient conditions. The 

flexible electrochemical supercapacitor is used in place of conventional supercapacitors 

Figure 2-20: (a) The curve of specific capacitance of PANi-g-rGO/AgCl, PANi-g-rGO, and PANi NFs 

at different current densities. (b) Cyclic performance of the PANi-g-rGO/AgCl, PANi-g-rGO, and PANi 

NFs. Reprinted with permission from [178]. 
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because it degrades less when exposed to the atmosphere and does not deform easily under 

tensile or compressive stress. Conventional supercapacitors degrade during cycling due to the 

decomposition/corrosion of the electrode and decomposition of the electrolyte [182]–[186]. 

Figure 2-21 (b) shows the CV curve for the different types of supercapacitors; the area under 

the curve is highest for WO3NT+PL (Tungsten Trioxide Nanotubes Photoelectrochemical 

electrode) as the capacity increases with the incorporation of the WO3 nanotube and the 

PEDOT:PSS overlayer. The achieved specific capacitance is 470 Fg-1, with a capacity retention 

of 92.9% after 50,000 charge/discharge cycles. As a result of the dual coloration and 

pseudocapacitor properties of the WO3 nanotube and PEDOT:PSS thin layer, a high coloration 

efficiency of 83.9 cm2C-1 is observed [182]. The electrolyte choice is also critical, as PAAm 

has high ionic conductivity and increases the stretchability of the electrochromic 

pseudocapacitor by 80%. Table 2-6 shows the main factors and reasoning behind the improved 

electrochemical performance of the different types of pseudocapacitors. 

Table 2-7 showcases all the operational results such as capacity retention and the specific 

capacitance for all the electrodes used in all the cases mentioned in subsections of Section 

2.1.7.1. 

Figure 2-21: (a) The fabrication of WO3 nanotubes and the PEDOT: PSS layer is depicted 

schematically. The electrospun WO3 nanotube is coated with a thin layer of PEDOT: PSS before being 

drop-coated onto an Ag nanowire-embedded PDMS substrate. (b) CV test of all (transparent stretchable 

electrochromic supercapacitor (TSES) electrodes at a scan rate of 1 mV s-1. The curve clearly shows 

that, with the addition of WO3 nanotubes and the PEDOT: PSS, the capacity increases dramatically. 

Reprinted with permission from [182]. 
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Table 2-6. Summary of different electrodes used for minimizing the rate of degradation in pseudocapacitors. 

References Electrode Factors  Mechanism Operational results 

[133] V2O3@MoS2 Atomic layer deposition, 

molecular layer deposition 

Short ion diffusion path length, increased surface area, mass transfer, volumetric 

expansion 

Ultra-high cycling stability 

[51] Ti-based oxides High working potential, 

high operating voltage 

Increased surface area, increased ion-transfer kinetics, no decomposition of the 

electrolyte 

High voltage window, 

high-rate capability, 

good structural capability 

[145] MnO2-SiO2 Oxidation state, negative 

polarization in aqueous 

electrolyte 

No precipitate in the electrolyte (no dissolution) High-rate capacity 

[151] NiCoO2/CoS2 Layered structure due to the 

selection of nickel foam 

Rapid transmission of the electrolyte, fast electron/ion transport Mechanical stability of the 

electrodes (device) 

[174] Conducting 

polymers 

Thin film/layer deposition No significant microstructural changes during cycling Good cycling stability 

[154] NiO/G 2D layer and diffusion 

channels, hybrid structure 

High surface area and tailored pore distribution and porosity. Superior cycling stability, high 

energy, and high power density 

[160] Co-NTC@Co3S4 

and asymmetric 

pseudocapacitor 

(Co-

NTC@Co3S4//A

C) 

Layered nanosheets, 

conductive NG 

interconnected network, 

composite heterostructure, 

small diffusion electrolyte 

channel 

Increased surface area, electron transport efficiency Good rate capability 

[166] Co (OH)2/NG Doping, regular 

morphology, 3D porosity, 

the high diffusion rate 

Large surface area, high porosity High capacity, good structural 

capability, and stability 

[178] rGO@PANi Intercalation into layers of 

rGO, 2D diffusion channels, 

conductive bonds of PANi-

rGO 

Enlarged specific surface area, low electrical resistance, ion-diffusion efficiency High specific capacitance, good 

specific stability 

[182] WO3 

nanotube/PEDO

T: PSS 

Thin layer nanostructures, 

less significant oxidation 

and dehydration of 

electrode, flexible electrode, 

incorporation of polymeric 

(PMMa) electrolyte 

High ionic and electrical conductivity at high voltage applied, negligible deformation 

under high tensile stress 

High specific capacitance, 

stretchability up to 80% 
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Table 2-7. Electrodes, electrolyte, preparation method, and their operational results. 

Ref. Electrode Electrolyte Preparation method Specific capacitance (Fg-1) Capacitance retention (cycles) 

[133] V2O3@MoS2 1 M Na2SO4 One-step hydrothermal reaction 655 (3 Ag-1) 100% after 35,000 cycles  

[51] Ti-based oxides 1 M NaClO4, 1 

M NaPF6 

Electrospinning, electrodeposition  93% after 10,000 cycles at 20 Ag-1 

[145] MnO2-SiO2 Li2SO4 Hydrothermal, electrodeposition 181 68% after 5000 cycles 

[151] NiCoO2/CoS2 1 M KOH In-situ, hydrothermal, 

electrodeposition 

2186.7 (2 Ag-1) 90.4% after 4000 cycles 

[174] Conducting polymers 1 M H2SO4 Electrodeposition 500-3500 85% (PPy) and 95% (PANi) after 

10,000 cycles 

[154] NiO/G 6 M KOH Hydrothermal method 

accompanied by thermal treatment. 

For graphene, by Hummer’s method 

220 (10 Ag-1), 240 (5 Ag-1) 100%-120% after 1500 cycles at 5 

Ag-1 

[160] Co-NTC@Co3S4 and 

asymmetric 

pseudocapacitor (Co-

NTC@Co3S4//AC) 

1 M KOH, 

6 M KOH 

(asymmetric) 

Hydrothermal (sacrificial 

template/precursor), vulcanization, 

and Hummer’s method  

3117.3 (1 Ag-1) 87% after 1000 cycles at 10 Ag-1, 

110% after 5000 cycles at 10 Ag-1 

(for asymmetric) 

[166] Co (OH)2/NG 6 M KOH Hydrothermal, Hummer’s method 952 (1 Ag-1) 95% after 2000 cycles at 10Ag-1 

[178] rGO@PANi 0.1 M HCl Solution process 105 80% after 1000 cycles 

[182] WO3 nanotube/PEDOT: 

PSS 

PAAm-based 

hydrogel 

Electrospinning, coating treatment 471 (1 Ag-1) 92.9% after 50,000 cycles 
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2.1.8 Manufacturing Phase Summary 

2.1.8.1 Summary 

With the rapid development of energy storage devices such as solar cells, batteries, electric 

vehicles, and transportation systems, the pseudocapacitor has received a great deal of 

attention in the last decade due to its high energy density and high power density. The most 

advantageous aspect of the pseudocapacitor is its ability to function at high operating 

conditions — such as high operating voltages, high current densities, and a large number 

of cycles —at the same time with high energy output, while keeping safety parameters as 

a priority. Many challenges limit its applications in many sectors of the world due to the 

degradation mechanism, unclear energy storage mechanism, significant gas evolution, 

corrosion of the device, and so on. The degradation mechanism has been addressed and 

classified at various levels in this review, with the goal of finding potential solutions and 

reducing the rate of degradation for overall improved electrochemical performance of the 

device. Different solutions for enhancing the properties of a pseudocapacitor have been 

discussed in this review, with further potential improvements that could be researched or 

carried out for much broader applications in various industries for energy storage. The 

advanced nanotechnologies being researched enable pseudocapacitors to achieve high 

energy and power density, while also having a long cycle life. The development of long-

cyclable pseudocapacitors with good rate performance and high capacity retention during 

the charge/discharge process has resulted from improvements to the electrode and the 

electrode–electrolyte interphase (surface area) or SEI. As a result of these advancements, 
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the rate of degradation in pseudocapacitors has been reduced, which could lead to large-

scale applications in electric vehicles, energy storage, and research purposes. 

2.2 Operational Phase: Unwanted Degradation in Lithium-ion Batteries   

2.2.1 Introduction  

6The transportation sector is one of the largest contributors to global greenhouse gas (GHG) 

emissions[187]–[189].  The negative effect of GHG on human life and the environment 

provides a strong driving force for reducing GHG emissions [190]. Transportation 

electrification is a promising solution to alleviate the growing concern about GHG 

emissions. More and more electric vehicles (EVs), hybrid electric vehicles (HEVs), and 

plug-in hybrid electric vehicles (PHEVs) have been developed and deployed as alternatives 

to traditional internal combustion engine (ICE) vehicles [190]–[192]. The success of 

transportation electrification depends largely on energy storage systems. As one of the most 

promising energy storage systems, lithium-ion batteries (LiBs) have many important 

properties to meet the wide range of requirements of electric mobility [193], [194]. The 

challenging requirements for further development of the LiB system are longer life, fast 

charging, low temperature charging, self-recovery capability, and safety performance. In 

fact, according to the literature, these requirements are related to the aging mechanisms of 

lithium plating and anode kinetics. Clear diagnosis, prognosis and understanding of the 

mechanisms and effects of lithium plating on the performance of cells and battery packs 

 

6 This section is based on a previously published article:  

X. Lin, Kavian Khosravinia, X. Hu, Ju. Li, and W. Lu. "Lithium Plating Mechanism, 

Detection, and Mitigation in Lithium-Ion Batteries", Progress in Energy and Combustion 

Science. The material is reproduced here with permission from the publisher, [Elsevier]. 
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are critical to the safe and durable design of LiB systems. However, understanding the 

aging mechanisms is complex due to the intricate, nonlinear, and path-dependent nature of 

battery degradation [195], [196]. As a result, as shown in Figure 2-22, lithium plating has 

been the subject of several levels of research, ranging from understanding the mechanism 

of lithium plating to demonstrate why, where, when, and under what conditions this 

phenomenon occurs, to determining the most effective method to detect, predict, and 

prevent it. Therefore, the purpose of this article is to review the existing work in literature 

and identify some of the fundamental knowledge gaps at each of these levels. 

 

Figure 2-22: Lithium Plating Phenomena at Different Research Levels. 

A typical lithium-ion battery cell, as shown in Figure 2-23 (A), comprises a composite 

negative electrode, separator, electrolyte, composite positive electrode, and current 

collectors [197], [198]. The composite negative electrode has a layered and planner crystal 
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structure that is placed on the copper foil, which functions as a current collector. There are 

three types of carbonaceous materials: graphite, graphitizable carbon, and non-

graphitizable carbon (hard carbon) [199]. Graphite is frequently used as a negative 

electrode because of its excellent performance, low cost, and non-toxicity [200]. The 

composite positive electrode (cathode) is a metal-oxide with a tunneled or layered structure 

that is coated with aluminum foil [201]. Aluminum acts as a current collector. The 

Electrolyte plays a critical role in the lithium-ion diffusion process. The electrolyte allows 

lithium ions to move between electrodes [202]. The separator is a piece of thin microporous 

polymer film (10 to 30 μm) soaked in the electrolyte and sandwiched between the anode 

and cathode electrodes to prevent shorting of the two electrodes [197]. 

During the normal charging process, electrons are extracted from the cathode and moved 

to the anode through the external circuit by the charger. Meanwhile, Li+ ions are de-

intercalated from the cathode and moved to the anode through electrolyte [200]. During 

discharge, the entire procedure is reversed. The lithium-ion intercalation process (during 

charging) has three major steps [203]: (i) the Li+ diffuse out of the cathode (ion movement 

through the solid electrode), (ii) the diffusion of solvated Li+ions in the electrolyte, (iii) de-

solvation Li+ ions passing through the SEI and embed into the interlayer of graphite [204]–

[206]. Step (iii), generally known as the charge-transfer process, is broken into three 

subprocesses [207], [208]: 1) de-solvation of solvated Li+ ions (strip off their solvation 

shell), 2) naked Li+  passing through the SEI, and 3) solid-state lithium diffusion into 

graphite (Li+ reaching the anode and receiving an electron, which could occur at the anode-

SEI interface or the anode-electronic conductor-SEI interface [204]) (Figure 2-23 (C)). 
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These steps would be favored in an ideal battery working condition. Nonetheless, in real-

world applications, LiBs are subjected to a variety of severe circumstances, which have a 

substantial impact on battery performance and longevity. Battery degradation is a 

complicated issue involving numerous physical and chemical processes. Degradation is 

dependent on a number of complex mechanisms caused by a variety of factors (e.g., 

intrinsic and extrinsic) [209], [210]. Intrinsic factors are classified into two categories: 

material properties and manufacturing procedures [211]. Extrinsic factors derive from the 

LiB operating conditions, such as charging at a high C-rate, high state of charge (SOC), or 

low temperature [209], [210]. As shown in Figure 2-24, the aging mechanisms affect not 

only the anode and cathode electrodes, but also other LiB components such as electrolyte, 

separator, binder, and current collector [211]–[213]. The most detrimental aging 

mechanisms impacting graphite anode electrodes are solid electrolyte interphase (SEI) film 

growth, binder decomposition, and lithium plating [214]–[216]. According to the literature, 

aging mechanisms can be divided into three main degradation modes (DMs): loss of 

lithium inventory (LLI), loss of active materials (LAM) [217], and loss of electrolyte [211], 

[218]. In LLI, lithium ions are consumed by side reactions, such as SEI film formation and 

decomposition, electrolyte decomposition, and irreversible plating [219]. Since these 

lithium ions are no longer cyclable for the intercalation process, the cell capacity is reduced 

(capacity fade) [220], [221]. LAM, on the other hand, is usually related with structural 

changes and material loss [209]. The active mass on the anode is diminished due to graphite 

exfoliation, binder decomposition, electrode particle cracking, or dead lithium blocking the 

active site pathway. Furthermore, the active mass of the cathode is reduced due to transition 

metal dissolution, structural disordering, and electrode particle cracking [213], [220], 
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[222], [223]. The other significant cause of degradation is electrolyte loss; the deposited 

lithium on the anode interface reacts with the electrolyte, consuming the electrolyte [202], 

[218]. The significant reduction in electrolyte content may result in capacity and power 

fading at the end of the battery's life. 

Among the several aging mechanisms in LiBs, one of the most detrimental is the deposition 

of metallic lithium or lithium plating on the graphite anode surface. This is due to the fact 

that lithium plating may not only promote further degradation, but it may also have a 

negative impact on the safety of LiBs [224]. During charging, lithium-ions are deposited 

on the surface of the graphite anode rather than being intercalated into the interstitial space 

between the graphite anode's atomic layers [225]. In general, the deposited lithium can be 

reversible or irreversible. The irreversible portion can react with the electrolyte to form a 

secondary SEI layer, or it can form a high-impedance “dead” lithium film that is electrically 

isolated from the graphite anode and remains irreversible, increasing internal resistance 

and decreasing energy density [215], [226]. The irreversible portion causes capacity fade 

to be accelerated. In severe circumstances, the accumulated lithium might also form a 

dendrite. Dendrites can develop and pierce the separator [227]. The reversible 

portion describes the deposited lithium with a durable electrical contact on the anode 

interface, which can undergo charge transfer reaction into the electrolyte and subsequently 

re-intercalate into the anode, this process is known as lithium stripping. The stripping 

process occurs throughout the rest or discharge process following lithium plating; 

completely reversible lithium has no capacity retention [228], [229]. One of the major 
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limiting reasons for fast charging is lithium plating. As a result, one major difficulty for 

fast charging technologies is the reduction of lithium plating during the charging process.  

Figure 2-23: Schematic of a Battery Cell During Charging Process and Lithium Plating Behavior 

under Different Operational Conditions. (A) In the intercalation/de-intercalation process, Li-ions 

intercalate into or de-intercalate from the active material between the two electrodes in a reversible 

manner. (B) Schematic of lithium plating-stripping on the graphite anode electrode. The primary 

SEI layer (yellow color) is formed at the anode surface during the first charge of the cell to protect 

the electrode against corrosion. Because the primary SEI layer prevents electrons from making 

direct contact with the electrolyte, metallic lithium (red color) is deposited between the primary 

SEI layer and graphite particles. Mossy and dendritic deposition are two well-known morphologies 

of deposited lithium. When deposited lithium reacts with electrolyte solutions, the secondary SEI 

layer (green color) forms. (C) Under ideal conditions, the charge-transfer process consists of three 

steps: 1. de-solvation of solvated Li+ ions, 2. Li+ shuttle through the SEI, and 3. solid-state lithium 

diffusion into graphite particles. (D) At low temperature, Li+ ions move slowly in graphite due to 

the low diffusivities of lithium ions and the sluggish charge transfer kinetics which leading to 

lithium plating. (E) At high charging C-rate, Li+ ions move fast and a large amount of Li+ 

accumulate at the electrode interface because the lithium solid diffusion is lower Li+ diffusion in 
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the electrolyte, then saturate concentration happens on the lithium ions, and lithium plating 

happens. (F)  Under the high SOC condition, Li+ ions move slowly in graphite under high SOC 

conditions. 

Several studies have been done, including investigations into lithium plating mechanisms 

at various charging conditions, the development of effective detection techniques, and the 

development of strategies for mitigating lithium plating. Figure 2-25 (A) and (B) outline 

the various charging currents (C-rates), testing temperatures, and commercial cell types 

used in the literature to explore one-set lithium plating. The C-rate is known as the current 

value that discharges a battery within 1 h from a fully charged state to a fully discharged 

state [230]. It is generally known in battery testing as a current value equal to a cell's rated 

capacity (Ah), which may not always be valid. The test temperature is the temperature at 

which the cell is saturated, where a climate chamber is often used to maintain a steady 

temperature throughout the test. The temperature of the test varies from study to study and 

might range from -60 ºC to 80 ºC. According to our findings, the majority of the research 

groups tested the cells at room temperature (25 ºC) at 1 C. Higher C-rates and lower 

temperatures also have been employed to study one-set lithium plating. Several studies, 

however, investigated lithium plating at lower charging rates (0.3 and 0.5 C-rate) and 

temperature ranges from (-20 ºC to 40 ºC). However, further research on lithium plating at 

lower temperatures and greater C-rates is still necessary. Furthermore, five various types 

of commercial cells were employed in the literature for the research of lithium plating, 

ranging from 18650 and 26650 types (1.5 Ah to 3.4 Ah) to large scale pouch types (9.5 Ah 

to 16 Ah). The most utilized cells in the literature for investigating lithium plating are cells 

with graphite as the anode, such as lithium nickel cobalt manganese oxide (NMC 111 

(40%)), lithium iron phosphate (LFP (18%)), and lithium cobalt oxide (LCO (12%)). These 
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cells are particularly significant since they have been investigated by various research 

organizations and, as a result, with numerous complementary approaches. 

 

  

 
Figure 2-24: Degradation Modes, Ageing Mechanisms, and the Affected Components in Lithium-ion 

Batteries. There are many different ageing mechanisms, and they are generally divided into three 

different degradation modes (DMs): loss of lithium inventory (LLI), loss of active material (LAM) and 

loss of electrolyte. There is a general relationship between battery working conditions and the affected 

components with the corresponding ageing mechanisms. Charging at a high C-rate, a high state of charge 

(SOC), or at a low temperature are all critical operating conditions that accelerate battery degradation 

[220]. 
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Figure 2-25: One-set Lithium Plating C-rates/ Temperature Summary. (A) Analyzing the existing 

literature on lithium plating based on two common testing conditions: temperature and C-rate. Larger 

dots represent a greater number of publications that used that C-rate at that temperature. (B) Cells 

from the literature that had been evaluated for lithium plating were compared. The data sources are 

listed in the supplementary file. 
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2.2.2 Lithium Plating Reactions  

Lithium plating is a parasitic process that goes along with the lithium intercalation process. 

Equation (1) shows the complete insertion of Li+ ions into the graphite anode electrode. 

Intercalation is a diffusion-limited process, meaning that a certain amount of Li+ ions can 

be embedded into the interlayer of graphite per unit time at a given temperature [223]. The 

potential range for Li+ ions insertion inside the graphite is 65-200 mV vs. Li+/Li0 and no 

lithium plating occurs at this level [215]. Equation (2) shows partial or full deposition of 

lithium on the anode surface. The charging current is divided into two parts: (i) 

intercalation current and (ii) lithium plating current [224]. Ideally, the charging current 

affects the pace at which Li+ ions reach the anode surface. However, there is a competition 

between the intercalation current and the lithium plating current. As the charging process 

continues, the vacancy spots in the graphite layer will decrease, and therefore the 

intercalation current is decreased while the lithium plating current is increased [205]. When 

the anode potential drops below 0V, lithium plating is thermodynamically permitted 

because the rates of lithium deposition exceed the rates of intercalation. The main 

contributors to the graphite electrode overpotential are i) charge transfer, ii) electrolyte 

concentration (mass transfer), and iii) lithium solid-phase in the negative electrode [225]. 

These are the kinetics cause for lithium plating. When the local potential at the negative 

electrode falls below 0V (vs. Li / Li+) due to high SOC, high charging C-rate, and low 

temperatures, all of which polarize the electrode, lithium plating can occur 

thermodynamically [193], [231]. However, because the reaction enthalpy is more positive, 

lithium plating is not as favorable as intercalation from a thermodynamic standpoint. 

Kinetic arguments alone are insufficient to address lithium plating. It must be remembered 
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that LiB charging is a dynamic process that is not in equilibrium, especially at high C-rates. 

In thermodynamic equilibrium, the cell voltage can be determined by the Nernst equation 

[226], [227]. The equilibrium potential difference can be used as an indicator of the 

thermodynamic driving force of plating vs. intercalation, as plating and intercalation 

compete for electrons and lithium-ions [228]. It is well-known that a redox response's 

equilibrium electrode potential shifts with temperature, for both lithium plating and 

graphite intercalation, this temperature variability leads to a heterogeneous distribution of 

the equilibrium potential on the anode [227]. The improvement of the Li0/Li+ equilibrium 

electrode potential enhances the thermodynamic onset for metallic lithium plating [228]. It 

should be noted that the plated lithium will consume more electrolytes than normal 

conditions and lithium plating can happen locally, due to inhomogeneity over the graphite 

electrode [229].  

 𝑥Li+ + Li𝛿C6 + 𝑥e−  →  Li𝑥+𝛿C6 (2-7) 

 (1 − 𝑋)Li+  + (1 − 𝑋)e−  → (1 − 𝑋)Li0 (2-8) 

Lithium plating has three different outcomes, which are dead lithium, reversible lithium, 

and secondary SEI film, as shown in Figure 2-23 (B) [232]. A portion of deposited lithium 

that has detached and lost electrical contact with the graphite is referred to as dead lithium 

[206]. Dead lithium may create a tortuous pathway for lithium-ion transport, reducing the 

active area for intercalation [232]. The secondary SEI film is the result of a reduction of 

solvent electrolyte (R) by the deposited lithium (Equation (4)). Both dead lithium and SEI 

film are irreversible [233] and lead to removing lithium from the system and capacity loss 

over time [203]. Reversible lithium is reinserted into the graphite in the lithium stripping 

process (Equation (5)) during relaxation or resting time (Equation (3)) [234]. During 
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relaxation, the reinsertion continues until all the reversible lithium is inserted into the 

anode. The lithium stripping process is a more facile reaction than lithium deintercalation 

(Equation (3)). However, the reversible lithium in the lithium stripping process during 

discharge has two destinations, the intercalation into the graphite and transfer to the 

cathode to deliver output current [234].   

 εLi0 + Liδ+X
C6 →  Liδ+X+ε

C6 (2-9) 

 R + Li0  → R − Li                                     (2-10) 

 Li → Li+ + e−                                           (2-11) 

Based on the working and charging conditions, the morphology of deposited lithium can 

be classified into three types, including mossy, granular (particle-like), and dendritic 

(needle-like deposits) [193], [233]. Morphology is determined by the current rate. Mossy 

and granular lithium form at low current rates, whereas dendrites form at high current rates 

[235]. Dendritic growth can be particularly destructive to the cell because it can penetrate 

the separator and reach the cathode electrode, causing an internal short-circuit and rapid 

heating of the cell. The generated heat may first melt dendrite and disconnect the short, and 

later it may trigger other aging mechanisms, such as SEI formation and electrolyte 

decomposition [236]. In terms of safety, the dendritic structure is considerably less safe 

than the mossy and granular lithium forms. Internal short circuits are classified into two 

types, soft shorts and hard shorts. Soft shorts normally disappear after discharge and do not 

cause cells to fail catastrophically. A soft short may reduce the cell's current and voltage 

while simultaneously raising the local temperature [237], [238]. The heat generated by the 

soft short can cause an exothermic reaction with the electrolyte, causing the separator to 

melt. Hard shorts are characterized by slightly larger short circuit currents between the 
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anode and the cathode due to their low resistance [237], [238]. Due to a higher increase in 

local temperature, hard shorts are also more likely to contribute to thermal runaway. It 

should be noted that lithium plating is a result of the actual operating conditions, poorly 

balanced cell, material properties, electrode design, and cell design [231].   

2.2.3 Main Factors Affecting Lithium Plating     

Many research efforts have been undertaken to understand how, where and why lithium 

plating occurs during both normal and fast charging conditions. However, the mechanisms 

of lithium plating have not been fully elucidated due to its complex nature [239]. According 

to numerous previous researches, lithium plating occurs as a result of three major factors, 

which include but are not limited to: (i) hazardous operating conditions, (ii) cell 

constructive defects, and (iii) conventional aging of the cell (Table 2-8) [240]. 

2.2.3.1 Hazardous Operating Conditions  

Lithium plating occurs when batteries are subjected to harsh conditions, such as charging 

at high C-rates, charging at a high state of charge (SOC), and charging at low 

temperatures[241]–[245]. These harsh conditions can limit the charge transfer kinetics in 

the electrolyte and solid-state diffusion, causing anode potential to drop below the potential 

of lithium metal, causing lithium plating to occur [246], [247]. Because hazardous 

operating conditions are one of the most important factors affecting lithium plating, we 

will provide a comprehensive review of the main parameters that accelerate lithium plating 

under the aforementioned conditions in this section.  
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2.2.3.1.1 Low-Temperature Effects   

Low temperature is generally acknowledged to be one of the critical barriers to fast 

charging. Charging with high charge currents frequently results in a severe capacity fade. 

Charging a 7.5 Ah cell at 1 C-rate at 0 ºC, for example, would result in a considerable 

capacity loss (3.6%) [245]. Generally, the power and energy densities of LiBs are reduced 

at low temperatures, particularly during the charging process, due to three major factors; 

decreased ionic conductivity in the electrolyte, poor solid diffusivity of lithium-ion in the 

electrode, and charge-transfer rate[248]–[250]. According to the Arrhenius equation, at low 

temperatures, the cell internal resistance increases due to decreasing ionic conductivity in 

the electrolyte; however, decreased ionic conductivity is not the primary barrier in low 

temperature charging. Studies show that the poor Li+ diffusivity within the electrodes may 

be one of the primary cause for lithium plating at low temperature, where lithium ions 

accumulate at the interface between carbon particles and electrolyte [232], [233], [245]. 

Indeed, lithium plating occurs when the surface concentration of lithium ions in carbon 

particles reaches a maximum that the particles' active ingredient can retain. The other major 

obstacle in low temperature charging is sluggish charge transfer kinetics. As soon as the 

current is applied, a large overpotential is produced, resulting in a rise in anode resistance. 

As anode polarization increases, the anode potential falls below 0V (vs. Li / Li+), resulting 

in lithium plating, where Li+ ions accumulate at the anode interface rather than 

intercalation, as shown in Figure 2-23 (D) [235], [239]. In addition, the potential drop of 

the interface between the composite anode and the separator is larger than that at other 

areas on the anode, indicating that the lithium plating begins on the separator side [232], 

[251], [252]. As a result, charging currents at low temperatures should be strictly 
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controlled. The lithium deposition at low temperatures may be suppressed by applying a 

pre-heating strategy prior to charging the cell or by charging the cell at low rates. Recently, 

Yang and coworkers developed a controllable cell structure consisting of thin nickel (Ni) 

foils embedded within the cell. The Ni foil acts as an internal heating material, generating 

immense and uniform heating in less than 10 seconds. The structured cell can be charged 

to 80 % SOC without lithium plating in 15 minutes with high charging currents (3.5 C-

rate) at temperatures as low as -50 ºC [253]. The same group recently developed an 

asymmetric temperature modulation (ATM) method that charging a cell by elevating the 

cell temperature to 60 °C during charging.  They showed that lithium plating may be 

eliminated with a short exposure time to 60 °C (10 minutes per cycle) [254]. It should be 

noted that, from an EV standpoint, most modern EVs have an effective thermal 

management system that prevents extreme operating temperatures. In addition, at low 

temperatures, electricity from the grid is often used to preheat the cells. 

2.2.3.1.2 High-Charging C-rate  

Fast charging is becoming increasingly important for EVs and other types of applications. 

Fast charging, which is based on a high charging current (C-rate), has a significant impact 

on the battery's performance and cyclic life due to accelerated aging. The charging rate is 

more likely to exceed the intercalation rate during fast charging; with a higher C-rate, the 

amount of  Li+ ions moved from the cathode to the anode in the charge-transfer process per 

unit time increases. Increased charging rates are often associated with higher polarization 

due to transport and kinetic overpotentials, making lithium plating favorable [255], [256]. 

For example, to recharge a cell in 10 mins, a charge rate of 6 C is required. At this charge 

rate Li+ ions start to accumulate at the anode surface (Figure 2-23 (E)), since the  
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Li+ diffusivity within the electrode is substantially lower than the Li+ diffusivity within the 

electrolyte.  As the high-rate charging continues, the accumulated Li+ ions result in a high 

concentration gradient of Li+ ions on the graphite surface; if the concentration at the anode 

surface is saturated, lithium plating occurs. Furthermore, because fast charging uses a 

higher charge current, more heat is generated due to the quadratic dependence of the 

amount of irreversible heat generation rate on the current. In fact, lithium plating and 

temperature rise are known as major side reactions during the fast charging process [257]. 

2.2.3.1.3 High SOC    

Each cell has an upper cutoff voltage predefined by the manufacturer. The failure of a 

battery management system (BMS) to stop charging beyond its upper cutoff voltage during 

the charging process is the main cause for overcharging (high SOC) of the cell. By 

definition, high SOC is a condition in which the capacity of the LiB is already full, but the 

electricity flow is still forced through the LiB [258]. At higher SOCs, as the charging 

continues, it is much easier for the concentration of Li+ ions on the anode surface to exceed 

the maximum allowable level and become saturated (Figure 2-23 (F)). Lithium ions start 

to deposit on the anode surface once the anode is saturated [205], [235]. Juarez-robles et 

al. [259] studied the effect of high SOC on graphite/LCO 5 Ah pouch cells at the various 

cut off voltages ranging from 4.2 V to 4.8 V. Cells were charged beyond 4.5 V, indicating 

high-rate capacity fade, lithium plating, electrolyte decomposition, and significant volume 

expansion. Dendrite structures are observed in cells that charged at 4.6 V, 4.7 V, and 4.8 

V [259]. The dendrite structures were penetrated to the porous separator, resulting in a 

micro-internal short-circuit. Moreover, at the high SOCs, side reactions are not only limited 
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to the anode electrode but also the decomposition of electrolyte occurs at the cathode 

electrode. 

2.2.3.2 Cell Constructive Defects  

The importance and effect of the cell manufacturing process and cell properties on lithium 

plating have been proved many times in the literature, where for example, Liu and 

coworkers showed that a cell with a negative to positive (N/P) ratio of 1.19 compared to a 

cell with an N/P ratio of 1.06 results in a lower aging rates and impedance rise [260]. The 

local cell defects can have an impact on lithium plating. For example, separator 

deformation (pore closure) which might occur during the cell manufacturing process or 

operation as a result of internal mechanical stress accumulation during charging or aging, 

would lead to lithium plating [261]. Furthermore, the kinetics on the material level can be 

characterized by the activation energy barrier, where the kinetics of interfacial Li+ ion 

transfer in the material is one of the important factors in the charge transfer [208], [235], 

[262]. There is a correlation between the intercalation kinetics and the lithium plating 

behavior [263]. Xu et al. [207]  reported that desolvation is the most energy-consuming 

(50 kJ mol−1) step in the charge-transfer process while the overall activation energy barrier 

of the graphite/electrolyte is about (60 − 70 kJ mol−1) [264]. In another study, Yao et al. 

[265] found that due to the difference of the energy barrier for lithium de-solvation on the 

edge plane and the basal plane of graphite, the intercalation process prefers to occur at the 

edge plane of the graphite instead of the basal plane. We would like to note that during 

lithium plating, lithium-ions tend to continue deposition on the surface where lithium has 

been previously deposited.  
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2.2.3.3 Ageing of the Cell  

When the cell operating conditions are safe and the defects of the cell structure are 

eliminated, lithium plating is still caused by the conventional aging of the cell. As stated 

earlier, the most common mode of degradation in the literature is LLI and LAM, where the 

LAM can be further divided into four types based on the affected electrode and the degree 

of lithiation: loss of active material on delithiated negative electrode (LAMdeNE), loss of 

active material on delithiated positive electrode (LAMdePE), loss of active material on 

lithiated negative electrode (LAMliNE), and loss of active material on lithiated positive 

electrode (LAMliPE)[217].  During cycling, lithium deposits accumulate continuously. The 

side reaction between the plated lithium and the electrolyte generates new SEI, resulting in 

capacity fading and increased impedance. Trends in these aging mechanisms can be used 

to study lithium plating. The analysis of capacity fade curve shapes will provide insight 

into the mechanism of aging and link their effects to the incidence of lithium plating. These 

curve shapes were classified into three types, linear capacity fade, decelerated capacity 

fade, and accelerated capacity fade, all of which can be a function of the number of cycles 

involving lithium plating. It has been proved that in the testing of commercial cells, 

batteries can have a two-stage capacity fade trend. The capacity fading is fairly constant in 

the first stage, with a degradation mode related to LLI [217]. An accelerated capacity fading 

is found in the second stage of degradation, usually after 500 cycles. The second stage is 

frequently expected to originate from LAMdeNE. Ansean et al. [240] showed that LAMdeNE, 

occurs at a pace four times faster than LLI, resulting in cell imbalance and over-lithiation 

of the negative electrode, which leads to lithium plating. They found that at the turning 

point of sudden capacity loss (curve shape), lithium deposition becomes irreversible. The 
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second stage does not usually occur due to changes in cell use, but it could be the product 

of underlying silent degradation mechanisms from the beginning of life [266]. The type of 

silent degradation will be influenced by the cell's chemistry as well as its form factor (pouch 

and cylindrical cells). These silent degradations have an incubation duration during which, 

at the full-cell stage, they do not cause any capacity loss. The loss of negative electrodes is 

often the culprit in graphite-based cells [266]. Therefore, it is important to observe in detail 

the modes of degradation, particularly those that may lead to lithium plating. Aside from 

the ratio of LAMNE to the LLI, the plating threshold (LAMNE,PT) was postulated as a 

plausible predictor of an accelerated degradation stage [267]. Cell characteristics (loading 

ratio and starting offset), capacity loss, and the two degradation modes (LLI and LAMPE), 

all affect this value, with values beyond this threshold resulting in lithium plating [267]. In 

another study, Schuster et al. [268] found a significant decrease in capacity at moderate 

temperatures and charging rates, where lithium plating was associated. They showed that 

the lithium plating was happened due to significantly decreased ionic kinetics of the 

graphite because of SEI growth and graphite active material loss.  It should also be noted 

that in literature, the capacity curve is often plotted against temperature (Arrhenius plot), 

which is obtained from cycling experiments under various temperatures. Lithium plating 

leads to quicker aging at lower temperatures, although without lithium plating, it typically 

ages faster at rising temperatures [269]. 
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Table 2-8. Factors causing lithium plating. 

Factors Influencing Lithium Plating  Causes and Conditions  

Hazardous Operating Conditions (a) Low temperatures 

(b) High charging C-rates 

(c) High SOCs 

Cell Constructive Defects  (a) Cell properties and poor balancing (negative to 

the positive ratio of electrodes, geometric misfits, 

and poor electrolyte components)  

Conventional Ageing of the Cell  (a) Leading to cell unbalance  

(b) Kinetic degradation (Capacity fade, energy fade, 

CE decrease, energy efficiency fade and resistance 

increase) 

2.2.4 Lithium Plating Detection Approaches  

Detecting lithium plating in its early stages is often challenging. To understand the 

formation and growth of lithium plating, extensive efforts have been made in the past to 

characterize and observe the anode lithium plating morphology [270]. Many approaches 

(in-situ, ex-situ, non-destructive, and recently in-operando methods) have been presented 

by researchers to investigate lithium plating mechanisms in LiBs. These detection methods 

are classified into three main categories: (i) physical characterization of surface 

morphologies, (ii) physical characterization of surface chemistry, and (iii) electrochemical 

methods. The first and second categories are based on physical properties of the 

electroplated lithium films, such as morphology, chemical composition, and surface 

chemistry, whereas the third technique is based on electrochemical reactions between the 

electrolyte and metal lithium [205]. These techniques enable ex-situ and in-situ 

investigations. To study lithium plating using ex-situ methods, post-mortem analysis is 

required, in which the cell is disassembled and opened with special tools, and then the 

desired specimen is transferred to microscopes or spectrometers for further investigation. 

In-situ approaches, on the other hand, necessitate a complex and time-consuming 
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spectroelectrochemical cell design [271]. In the following subsections, we have 

systematically classified the existing lithium plating detection approaches to highlight the 

technological status of this ever-evolving research field and current research gaps. 

Furthermore, we have classified each electrochemical approach based on its ability to be 

used on-board in real-time automotive applications. We briefly review the post-mortem 

analysis steps, including cell disassembly, specimen processing, and specimen analysis, as 

this is the basic procedure for most of the ex-situ approaches. 

 

2.2.4.1 Post-Mortem Analysis for Lithium Plating Study 

In literature, methodologies or procedures for post-mortem analysis of lithium plating have 

not been clearly explained. Research groups mainly carried out the procedures based on 

their own expertise and experiences [272], [273]. Therefore, we provide a snapshot of the 

detailed steps for the disassembly process and post-mortem analysis (Figure 2-26). The 

first stage, as illustrated in Figure 2-26 (A), is to deep-discharge the cell (end of the 

discharge voltage 0 V) to reduce the potential risk of the short circuit during the cell 

opening process [274]–[276]. Following that, since the electrode sample surfaces are 

reactive to the atmospheric gases (H2O and O2), the cell should be transferred to the 

controlled environment to decrease the risk of surface contamination during the 

disassembly process. In general, two types of controlled environments are specified for this 

procedure: argon-filled glove boxes and fume hoods (Figure 2-26 (B)). The choice of either 

option is dependent on the cell design and the goal of the investigation [273]. Choosing an 

appropriately controlled environment is not only vital for safety, but it can also have an 

impact on the experimental outcomes [273] . The entire disassembling procedure takes 
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place in a controlled environment. To avoid sample contamination, the H2O and O2 levels 

in the argon-filled glove box should be between 0.1 ppm and 10 ppm [277], [278]. If the 

samples do not need to be protected from atmospheric gases, the disassembly procedure 

can be carried out in a fume hood. To avoid inhaling dangerous gases, the fume hood should 

evacuate the air at a rate of 60-100 feet per minute [273]. The final step of the disassembly 

process is cell opening. Non-conductive tools are recommended to prevent any short-

circuiting between the cell terminals. The cell configuration will determine which cutting 

tool should be used in the disassembly process. Rotary tools, such as Dremel, are typically 

used for cylindrical cells; the isolated plier is used for prismatic cells; and the knife, along 

with a pair of scissors, can be used for pouch cells [272], [273], [279]. No heat or smoke 

will be produced if the disassembly procedure is successful. During the post-mortem 

analysis, the jelly cell is unrolled, and the cell components are separated from one another 

to be studied individually. The separated components are then transferred to dimethyl 

carbonate (DMC) solvent for washing [279]. The appropriate components are floated in 

the DMC liquid during the washing process to dissolve the electrolyte salt residues on the 

sample surface (Figure 2-26 (C)). Some authors, however, suggested two washing steps, 

one minute each, to remove all electrolyte salt residues [272]. It should be noted that the 

post-mortem analysis takes place in a controlled environment. Following that, the samples 

are retained in the glove box to dry and are prepared for further investigation. The cell 

components are now ready to be moved to the testing facility for physical characterization, 

and the samples must be transferred from the glove box to the testing facility in a vacuum- 

sealed container due to the possibility of air contamination of the cell component (Figure2-

30 (D)) [273], [280]. 
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2.2.4.2 Physical Characterization of Surface Morphologies 

Several efforts have been made in recent years to study the morphology of deposited 

lithium using physical characterization approaches to acquire a better understanding of the 

lithium plating-stripping mechanism. Physical characterization approaches are commonly 

employed to study the structure of the deposited lithium and growth processes of the 

lithium dendrites on the anode surface at the laboratory scale [270]. The most prominent 

Figure 2-26: Overview of Post-Mortem Analysis for Lithium-Ion Cells. A) Cell is required to be 

deep discharged before any further steps. B) Cell is moved to the safe or controlled environment 

for the opening procedure, where the controlled environment is chosen based on the study goals. 

Cell casing is removed. C) Cell components are separated and washed, and they are ready to be 

sent to the testing facilities. D) Cell components are subjected to further analysis to investigate 

lithium plating. 
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approaches that use physical characterization to study lithium plating are explained. In 

addition, Table 2-9 summarizes the advantages and disadvantages of each approach to 

highlight their effectiveness. 

2.2.4.2.1 Optical Microscopy  

High-resolution optical microscopy can be used both in-situ and ex-situ to observe lithium 

plating-stripping processes during cell operation [281]. In-situ optical microscopy can be 

used to directly observe the plating morphology. A custom-made optical in-situ cell is 

designed (Figure 2-27 (A)) to study the penetration of lithium dendrite through the 

separator in order to find strategies to stop them (Figure 2-27 (B) and (C)) [282]. The in-

situ techniques can also be used to find the position and direction of the deposited lithium 

on the electrode surface[283]. In Ref. [264], in-situ optical microscopy is used to study the 

morphology of deposited lithium. At 10 ºC, mushroom-like dendrites were seen, whereas 

needle-like and wound-ball morphologies were observed at 5 ºC and 20 ºC, respectively. 

During the lithium stripping process, dead lithium is observed, where it grows at the tips 

of the lithium and eventually loses electrical contact and separates from the graphite [283]. 

Lithium ions are extracted from the cathode compound and intercalate into the lattice of 

the graphite structure; the color of the graphite changes depending on the stage of 

intercalation. Each stage has been associated with recognizable color, ranging from black 

to red to gold (as a function of lithium concentration x in  Li𝑥C6 (Figure 2-27 (D)) [284], 

[285]. As a result, the in-situ optical microscopy method based on color change can be 

useful for observing lithium plating. Thomas-Alyea et al. [286] designed a coin-type half-

cell for in-situ optical microscopy to analyze color change at the graphite particles (Figure 

2-27 (E)). Using in-situ optical microscopy, Harris et al. [229] and colleagues observed 



87 

 

three stages on the meso-carbon microbeads (MCMB) electrode. At first, the electrode was 

entirely in the blue stage (4L). The red-blue and gold-red boundaries then began at the edge 

of the electrode and sparsely departed from there until the voltage dropped to +2 mV 

(Figure 2-27 (F)). Furthermore, they observed lithium plating on the (MCMB) electrode. 

The MCMB electrodes became golden (stage 1) after a voltage (+2 mV) was applied to the 

current collector, as shown in Figure 2-27 (G) and (H). The edge of the electrode was free 

of lithium plating, whereas the rest of the electrode remained (stage 2) red graphite particles 

for many hours [229]. Moreover, they observed that lithium plating occurred when the 

anode potential was +0.002 V against Li/Li+. However, thermodynamically lithium plating 

should occur when the anode potential drops below 0 V against Li/Li+ [229]. The change 

in the color associated with lithium concentration is dependent on the ambient lighting 

condition; thus, this technique is characterized as semi-quantitative.  

2.2.4.2.2 Scanning Electron Microscopy (SEM)  

Since 1988, SEM has been used to investigate the surface morphology of the lithium 

electrode, and it has a higher resolution than optical microscopy [287]. Many studies have 

employed both in-situ and ex-situ SEM to investigate the lithium plating-stripping process 

[288], [289]. Yoshimatsu et al. [290] used ex-situ SEM observation to characterize the 

lithium electrode surface morphologies during an extensive cycling test on a lithium coin 

cell for the first time. They identified two types of lithium deposits: particulate and 

dendritic. During discharge, the particulate lithium structure is reinserted into the anode 

graphite layer. The dendritic structure, on the other hand, remained on the anode surface. 

Rauhala et al.  [275] investigated the lithium plating on the cell that was cycled at low 
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temperatures using ex-situ SEM. A considerable amount of lithium plating was observed 

on the anode surface when the cell was cycled at -18 ºC. Surface contamination is always 

a risk during ex-situ SEM investigations, especially for highly sensitive surfaces like 

graphite anode electrodes [270], [283]. Using in-situ SEM to study lithium plating-

stripping, on the other hand, necessitates unique cell and equipment designs. Many research 

groups have developed ultrahigh vacuum types of equipment to decrease the possible risk 

of lithium specimen contamination during the transfer process [287], [289], [291]. 

However, because ultra-high vacuum equipment is used in the examination process, in-situ 

SEM is only applicable to batteries that use solid polymer electrolytes and ionic liquids 

[289], [292], [293]. Uhlmann et al. [285] and coworkers applied a high charging current of 

up to 10 C to three different half-cells to study lithium plating. They used SEM to observe 

changes in the surface morphology of the deposited lithium during both the charging and 

relaxation phases. Figure 2-27 (I) and (J) show the surface structure of the anode sample 

with mossy grown lithium that is charged with a high charging current of 10 C. To avoid 

the relaxation period, this sample was disassembled in less than 5 minutes after charging. 

Another interesting approach was taken by Rong et al. [294] who developed an in-situ 

electrochemical scanning electron microscopy (EC-SEM) technique to observe the lithium 

plating-stripping process on Li/Cu electrode using liquid electrolyte LiTFSI/DOL/DME. 

They showed the significance and advantages of LiN3and Li2s8 as additives on lithium 

dendrite detention.  

Figure 2-28 (A) shows the emergence of lithium dendrites with a length of 18 𝜇m after 350 

seconds. During the stripping process, however, the majority of the lithium dendrites begin 
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to dissolve into the electrolyte after 600 seconds, while the remainder tends to become dead 

lithium. Tallman et al. [295] and co-workers reduced the amount of the deposited lithium 

up to 50 % by increasing the deposited overpotential through surface treatment. They 

deposited ultrathin (10 nm) Cu and Ni film on the graphite electrode surface. Ex-situ SEM 

results reveal that the deposited lithium was significantly decreased on the coated graphite 

with Cu and Ni compared to the uncoated graphite Figure 2-28 (B). 

2.2.4.2.3 Transmission Electron Microscopy (TEM) 

One of the most promising observation methods for studying lithium dendrite growth at 

the nanoscale is transmission electron microscopy (TEM) [270]. In literature, in-situ TEM 

setup is divided into two major types: a liquid cell system and an open-cell system [296], 

[297]. In Ref. [298], a nanoscale LiB was built inside a TEM to investigate lithium plating 

in-operando using an ionic liquid as the electrolyte. They demonstrated how lithium ions 

nucleate at the anode-electrolyte interface and ultimately form fibres. The fundamental 

disadvantage of this approach is that volatile organic compounds (ionic liquids or solid-

state electrolytes) are incompatible with the high-vacuum environment of TEM, hence it 

cannot be used to analyze lithium plating [299]. Mehdi et al. [300] and coworkers recently 

used an in-situ liquid ec-TEM cell to study the dynamic volumetric changes that happen at 

the electrolyte silicon nanowires interface during the charging and discharging process. 

They measured the thickness of the SEI layer of the anode electrode which was immersed 

in LiClO4 with (EC: DMC) as electrolytes during lithium plating-stripping. They confirmed 

that the SEI formation kinetics is greatly reduced by electron transport. Lithium plating-

stripping in a LiPF6-ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte was 

studied by Zeng et al. [301] to investigate the formation of dead lithium during cycling 
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Figure 2-28 (C). Overall, in-situ TEM requires further development, particularly for liquid 

cell constructions due to electron scattering in the liquid layer [270]. The key issue is 

finding a suitable electrolyte for the TEM column because the common electrolytes used 

in LiBs have a high vapor pressure that can be used in the TEM column [288].  

2.2.4.2.4 Nuclear Magnetic Resonance Spectroscopy (NMR)  

The key advantages of this technique over other approaches are its non-destructive nature 

and applicability to both crystalline and amorphous materials [302], [303]. Ex-situ NMR 

can distinguish between different chemical states of lithium in the active material of the 

graphite electrode. Ge et al. [243]  used an ex-situ NMR to measure the quantity of plated 

lithium while the cell was charged from 0 % to 60 % SOC at (-25 ºC), 80 % SOC (-25 ºC), 

and 80 % SOC (-20 ºC) with high currents (1.5 C). They found that the activation energy 

of lithium intercalation is higher than lithium plating even at low SOCs, resulting in lithium 

plating [243]. However, the use of the ex-situ method, like the ex-situ procedures discussed 

above, necessitates certain additional steps before beginning the experiments, which may 

influence the experimental outcomes [304].   

Several research groups have employed in-situ NMR to study carbon graphite electrodes, 

lithium metal oxide, and metal electrodes [304]–[307]. The hard carbon electrode as a 

negative electrode can consume more lithium during relaxation compared to the graphite 

electrode, Gotoh et al. [308] and co-workers constructed full LiB cells with different 

materials including LiCoO2, LiNixCoyAlz, and LiMn2O4 as the positive electrode, along 

with graphite and hard carbon as the negative electrodes to study relaxation effects in LiBs. 

They measured lithium spectra of cells at various SOCs, particularly after overcharging (2 

C and 3 C) at 170 % SOC. They showed that the phenomenon of the "relaxation effect" 
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occurs after overcharging based on the lithium metal signal measurement [308]. The 

lithium metal signal reduces with time as lithium atoms begin to reinsert into the graphite 

layer. Ota et al. [309] employed NMR spectroscopy to investigate the surface chemistry 

(surface film). They found that lithium cycling efficiency influences not only the 

morphology of deposited lithium but also the chemical components of the surface film.  

Arai et al. [306] studied lithium metal deposition with in-situ solid-state Li NMR on a full 

cell consisting of  LiCoO2 (positive electrode), graphite (negative electrode), 

polypropylene (separator), and an organic liquid such as electrolyte (1 M LiPF6, ethyl 

methyl carbonate 30:70 vol.%) during both continuous currents (CC) and pulses current 

(PC) mode operation. As shown in Figure 2-28 (D), the deposited lithium metal became 

visible at approximately 265 ppm at -5 °C temperature for different cell cycles with a CC 

mode pattern. Simultaneously, no lithium metal deposition was detected -5 °C with PC 

mode pattern [306]. They also computed the lithium deposition rate (k) using the slopes of 

the plots. The lithium deposition rate at -5 °C is approximately 12.4 (103 mg mAh−1). 

Wandt et al. [310] employed electron paramagnetic resonance (EPR) spectroscopy to 

identify the time-resolved and quantitative beginning of lithium plating in a graphite 

electrode under realistic cell conditions. EPR is more sensitive than NMR, making it 

excellent for analyzing lithium materials in-operando [311], [312]. EPR spectroscopy, in 

addition to NMR, uses low-energy radiation that does not affect the chemical 

characteristics or morphology of the investigated species [311], [313].  

 



92 

 

   

2.2.4.2.5 Atomic Force Microscopy (AFM) 

AFM is one of the most effective tools for analyzing the surface morphology of electrodes 

at the nanoscale scale [314], [315]. AFM scans the surface of a sample with a cantilever 

and a sharp probe. In comparison to SEM or optical microscopy, it can also provide 

Figure 2-27: In-situ Cell Design and Results of Optical Microscopy and Ex-situ SEM for Lithium 

Plating Morphology Characterization. (A) Schematic of the custom-made optical in-situ cell with a 

quartz glass window. (B) In-situ optical microscopy at a current density of 1 mA/cm2 (t = 0 s - t = 

600 s), the gap between lithium metal and separator helps in the observation of the dendrite growth 

until it reaches the separator. (C) In-situ optical microscopy at a current density of 1 mA/cm2 (t = 0 

s - t = 795 s), there is no gap between the separator and the lithium electrode, penetration started at 

(t = 595 s) and quickly changed to the bush like structure (Reprinted from Liu et al. [282] with 

permission of American Chemical Society Publications). (D) The color of graphite is affected by the 

concentration of lithium X in  Li𝑥C6 (data adapted from Ref.[450], the random occupation of all 

superlattices defined as 'liquid-like' or L stage). (E) Side-view schematic of a custom-made coin-type 

half-cell for in-situ optical microscopy (Reprinted from Thomas-Alyea et al. [286] with permission 

of Electrochemical Society). (F) The MCMB electrode surface inside an in-situ optical half-cell, three 

different graphite colors (stages) were observed over 3 hours. Lithium Plating on an MCMB electrode 

was observed when a voltage (+2 mV) is applied to the current collector, although according to bulk 

thermodynamics, lithium metal plating should not occur unless the voltage becomes negative. The 

image (G) is taken 8 h before (H) (Reprinted from Harris et al. [229] with permission of Elsevier). 

(I) and (J) Ex-situ SEM images show the morphology of an anode surface with mossy lithium plating. 

The anode is charged with a high current of 10 C and then instantly dismantled in less than 5 minutes 

to interrupt the relaxation phase, scale bars: 20 μm and 2 μm (Reprinted from Uhlmann et al. [285] 

with permission of Elsevier). 



93 

 

significantly higher morphological resolution in three-dimensional (3D) format [270]. In-

situ AFM was utilized by Mogi et al. [316] to investigate the surface morphology of 

deposited lithium on the Nickel substrate at elevated temperatures. At 40 °C, they 

discovered inhomogeneous and massive deposits of lithium underneath the substrate's 

surface film, whereas, at 60 °C and 80 °C, they discovered a homogenous and thick surface 

film. The results, however, were inaccurate since the AFM observation was done in contact 

mode. During the investigation, the AFM probe (tip) scrapes the sample's surface in contact 

mode [316]. The image resolution is low in non-contact mode due to the large distance 

between the probe and the sample. The structure of the lithium surface, as shown by in-situ 

AFM in Ref. [316], includes grain boundaries, ridge-lines, and flat areas. These lines were 

found to be critical in controlling the morphology of the deposited lithium. Aurbach et al. 

[317] and co-workers studied lithium deposition on the copper electrode in a nonaqueous 

electrolyte system by using in-situ AFM measurements. They found that although lithium 

metal is soft, utilizing AFM as a detection tool does not modify the surface morphology. 

In another approach, Shen et al. [318], used in-situ electrochemical atomic force 

microscopy (EC-AFM) to study lithium dendrite growth on a graphite electrode cycled in 

1 M LiPF6-EC-DMC and 1 M LiPF6-FEC-DMC electrolytes. They confirmed the 

importance and advantages of FEC-based electrolytes on lithium dendrite detention, as the 

formed SEI are harder and denser compared to the SEI formed in the EC-based electrolyte. 

Overall, AFM is an accurate and powerful technique to study the morphology and 

topography changes of the real-time mechanical properties in LiBs [319]. However, it is 

not recommended to use AFM for inspection of the dendrite formation as it has some 

limitations in the tip dimension and the usual vertical scanning range of instruments [320]. 
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2.2.4.3 Physical Characterization of Surface Chemistry 

One of the most common approaches in the field of LiBs is to analyze the chemical 

composition of the surface films on electrodes in non-aqueous solutions. The chemical 

composition of deposited lithium as well as the oxidation states of the elements can be 

examined using surface chemistry analysis techniques [321], [322]. In the following part, 

the methodologies used to characterize the surface chemistry of the deposited lithium on 

the anode surface will be introduced. In addition, for a more in-depth understanding of the 

existing techniques, the advantages and disadvantages of each are listed in Table 2-10. 

2.2.4.3.1 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy has been widely used for surface chemistry analysis 

(element analysis and oxidation state of elements) of lithium electrodes due to the relative 

simplicity in use and data interpretation [323]. Castro et al. [322] used XPS to investigate 

the aging mechanism of a LiFePO4/graphite cell after 200 cycles at ambient temperature. 

They found that cyclable lithium can be consumed at each cycle due to the deposited 

lithium on the anode surface and the instability of the SEI (LAM). XPS may be a 

destructive method due to the usage of an argon ion sputter gun and an X-ray beam on the 

sample during the investigation. However, Aurbach et al. [323] found that by functioning 

at low emission and balancing the quality of the spectra based on the shorter measurement 

duration, it is possible to collect reliable and reproducible findings with minimum damage 

to the material when using the XPS technique. The XPS method, like most other 

spectroscopic methods, requires a vacuum system and there is always the potential of 

surface contamination in highly sensitive electrodes. As a result, a special transfer 

arrangement is required [324], [325]. X-ray tomography can provide a better understanding 
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of the structure and material composition of the electrodes, as well as morphological 

changes [326]–[329]. X-ray beams with energy ranging from 10-100 keV may easily 

penetrate the plastic and metallic cell casing and directly visualize the inner LiB 

components in 3D [326], [330]. Eastwood et al. [331] applied a synchrotron-based X-ray 

phase-contrast tomography technique to investigate the microstructures of the 

electrodeposited lithium, which is necessary for understanding the dendrite formation. 

Harry et al. [332]  used synchrotron hard X-ray microtomography to investigate the lithium 

dendrite in a lithium/polymer/lithium cell. They discovered that the subsurface structure of 

the electrode is critical in facilitating dendritic formation in the polymer electrolyte.     

2.2.4.3.2  Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR is a non-destructive method for analyzing the chemistry of the lithium surface [271]. 

Many researchers have used FTIR to investigate the surface chemistry of lithium in organic 

electrolytes [333]–[335]. To quantitatively describe liquid electrolyte solutions, Ellis et al. 

[336] coupled FTIR spectra with machine learning (ML) techniques. The electrolyte 

concentration was reported to be reduced by 10–20% (Vol) in cells after 200 cycles at 55 

°C. This is a significant amount of salt loss, and it is most certainly a contributing factor to 

cell failure. Morigaki [334] analyzed the impact of  EC+ dimethyl carbonate (DMC) 

solution on lithium surface based on the locations and strengths of the peaks in DMFTIR 

spectra. They found a new reduction product of the solvent on lithium after 1 and 15 hours 

immersion with DMFTIR. In another approach, FTIR was used by  Kramer et al. [335], 

who studied lithium plating in pristine cells of two different forms (cylindrical and pouch). 

The impacts of electrolyte solvent such as propylene carbonate (PC), ethylene carbonate 

(EC), dimethyl carbonate (DMC), and a set of salts (LiAsF6, LiBF4, LiPF6) on the lithium 
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surface were investigated with FTIR in [323]. The in-situ FTIR technique uses attenuated 

total reflectance (ATR) for examining the lithium sample in the nonaqueous system [337]. 

Therefore, using ATR crystal for each experiment would be prohibitively expensive due to 

damage to the crystal surface during the investigation. 

2.2.4.1 Electrochemical Methods 

Electrochemical in-situ, ex-situ, and in-operando are the most effective methods for 

monitoring unsafe battery behavior, such as lithium plating. Voltage plateau after charging, 

anode potential, electrochemical impedance spectroscopy (EIS), differential voltage (DV), 

and incremental capacity (IC) can be used in in-situ or in-operando electrochemical 

methods [230]. These methods are based on electrochemical signals, which are available 

in any LiB. Using electrochemical techniques is convenient because they are simple to 

implement into BMS [205]. The most common electrochemical approaches for detecting 

lithium plating in the context of possible BMS deployment are described briefly. Table 2-

11 summarizes the benefits and drawbacks of each strategy for a more thorough 

comparison. 
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Figure 2-28: Different Physical Characterization Approaches for Lithium Plating investigation. (A) 

Schematic of the in-situ SEM EC-liquid cell setup for direct observation of lithium plating, Li/Cu 

electrode during lithium plating for a)200 s, b)250 s, c)350 s, and d)50 s, e)270 s, f)600 s for 

stripping under 0.15 𝑚𝐴 𝑐𝑚−2. Scale bars: 20 𝜇𝑚, (Reprinted from Rong et al. [294]with 

permission of Advanced Materials). (B) Schematic of Li-metal nucleation on the uncoated graphite 

surface and coated graphite surface during high current charging, the nucleation is significantly 

decreased due to increased overpotential for Li-metal deposition, which was obtained by the 

nanoscale coating of Cu and Ni, backscatter SEM images of the deposited lithium metal on the 

uncoated graphite and coated graphite with Cu and Ni. Scale bar: 20 𝜇𝑚 (Reprinted from Tallman 

et al. [295]with permission of American Chemical Society). (C) Schematic of in-situ TEM liquid 

cell for nanoscale observation of electrode-liquid electrolyte interfaces using lithium dendrite 

growth. Scale bars: 800 nm, (Reprinted from Zeng et al. [301]with permission of Nano Letters). 

(D) The stacked in-situ NMR spectroscopy for different cells at -5 °C. These spectra were measured 

at the fully charged state in the latest cycle. Pulse current mode: cells were cycled with pulse current 

(PC) mode pattern, and no lithium plating was detected. Continuous current mode: cells were 

cycled with continuous current (CC) mode pattern and lithium plating observed at 265 ppm 

(Reprinted from Arai et al. [306] with permission of Electrochemical Society). 
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2.2.4.1.1 Voltage Plateau After Charging 

Voltage plateau is a non-destructive and indirect method that has the potential to be used 

as an online tool for lithium plating detection in automotive applications [234]. Reversible 

lithium is reinserted into the graphite during the relaxation or discharge time. This process 

affects the voltage plateau signal due to variations in the overall potential of the anode 

electrode during relaxation and discharging after a charging step [234], [245], [338]. 

Therefore, the presence and changes in the voltage plateau could provide evidence of 

lithium plating [339], [340]. Zinth et al. [341] mixed the voltage plateau method with in 

situ neutron diffraction measurements to study lithium plating at -20 °C, where the degree 

of graphite lithiation can be used to estimate the amount of lithium plating. A quantitative 

detection method for lithium plating based on plotting the derivative of voltage over 

capacity (dV/dQ plot) was presented by Petzl et al.[339], who found that the voltage plateau 

appeared at the beginning of discharge. They proposed that the discharge capacity at the 

dV/dQ peak contributes to the total reversible part of the deposited lithium during charging. 

Recently, it has been reported by Campbell et al. [245] that the cell self-heating and 

concentration gradients during fast charging can increase the voltage plateau curve, which 

could be wrongly detected as lithium plating. Also, they showed that the unavailability of 

stripping plateau does not confirm that no lithium plating has taken place in the cell. 

However, a recent study showed that the relaxation process is much faster at a higher 

temperature and the voltage plateau is less visible as the temperature is increased [342]. 

Therefore, the voltage plateau detection technique works better at lower temperatures (-20 

°C) since the relaxation process is slower at subzero temperatures [343]. In another 

approach, Uhlmann et al. [285] detected a kink in the voltage curve during relaxation after 
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the charging process rather than during discharging. They found that for the detection of 

lithium plating, flattening the voltage curve can be used. This technique was later expanded 

by plotting the derivative voltage over time (dV/dt), where the same dV/dt peak curve for 

lithium stripping is seen [340]. Yang et al. [234] studied the voltage plateau during 

relaxation and during discharge to find out the parameters affecting the voltage curves 

during lithium stripping. In this study, they used a 9.5 Ah pouch cell for a plug-in hybrid 

EV application. The dV/dt curve is plotted and shown in Figure 2-29 (A), where it is shown 

that the dV/dt peaks appear sooner with a higher discharge rate compared to the dV/dQ 

analysis. They showed that the rate of lithium stripping is limited by the rate capability of 

intercalating Li+ ions into graphite, and that the duration of the voltage plateau is highly 

dependent on the rate of lithium stripping. Intercalation kinetics, graphite solid-state 

diffusivity, and cell temperature can all have an effect on the voltage curves. Another 

interesting finding is represented in the schematic above Figure 2-29 (A). Near the 

separator, lithium metal is deposited. The high degree of graphite lithiation limits the rate 

of Li+ ions insertion. Since the Li+ ions can not be inserted into the anode near the 

separator, they begin moving to the other part of the anode near the foil and are intercalated 

into the graphite along the path [234].  At the beginning of discharge, a dV/dQ peak occurs, 

which corresponds with the findings in the literature. Nevertheless, in the case of C/3 

discharge, the dV/dQ peak seems earlier than that of 1 C Figure 2-29 (B). Li+ ions 

intercalation still takes place in the anode in the discharge phase after charging, as long as 

the Li stripping reaction can support the discharge current. As such, the discharge capacity 

would underestimate the actual amount of plated Li at the dV/dQ.  
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2.2.4.1.2 Third Lithium Reference Electrode (RE) 

As previously stated, lithium plating takes place when the anode potential drops below 0 

V (vs. Li/Li+ ). To directly measure the anode potential, a third reference electrode (RE) 

must be used as a measurement tool [235]. Nonetheless, because commercial cells lack a 

third reference electrode, measuring the anode potential directly is not currently 

practicable. Anode potential may, however, be measured in the laboratory using a specific 

setup in which the RE is inserted into the cell (machinery). The RE materials (e.g., metallic 

Li, FePO4/LiFePO4, Li-Sn, Li-Al) and cell configurations are important factors in the 

insertion process. The location of the RE is chosen based on these factors [235], [344], 

[345]. Several studies have been conducted to demonstrate how to develop and implement 

the RE into LiBs, as well as where the ideal position for the RE is to reduce the ohmic drop 

while maximizing measurement accuracy [346]–[349]. An interesting approach was taken 

by Waldmann et al. [235], who positioned the RE near the current collecting tab of the 

anode as this area has a higher current density. Due to the low diffusivity of lithium-ions 

in graphite at low temperatures and high SOC, they discovered that lithium-ions begin to 

accumulate at the anode interface. Rangarajan et al. [256] used a lithium titanate (LTO) 

electrode as a reference electrode in a pouch cell with a stable voltage over a range of SOC 

to detect and quantify lithium plating. To quantify the amount of lithium plating at each 

rate, the plating period, plating power, and plating energy were defined. They dubbed 

lithium plating a non-linear process since it does not increase monotonically under varied 

working conditions. Low cost and reliable RE insertion methods have been introduced in 

Ref. [349], which require less equipment than existing procedures for commercial 18650 

cells. Non-polarizability, reliability, and reproducibility are the key characteristics in the 
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RE material selection process [350]. Lithium metal is the most common material for RE, 

but it cannot provide all these characteristics due to unstable potential (reliability) [351]. 

The potential of RE may vary due to mechanical treatment, the nature of the electrolyte, 

and the formation of the SEI layer [205], [350]. Moreover, lithium metal is not a proper 

choice for high-temperature applications due to its low melting point (i.e. 180 °C). The 

accuracy of the RE method with alternative materials such as Li4Ti5O12 and LiFePO4 has 

been studied by Mantia et al. [350]. They showed that these materials may be the most 

promising materials for RE since they exhibit a constant potential for Li4Ti5O12 (1.567 ± 

0.0025 V) and LiFePO4 (3.428 ± 0.0005 V) vs. Li/Li+. These materials can also provide 

low polarizability under high current rates during the two-phase reactions. Overall, RE 

insertion may cause surface film modification and degradation by interfering with the 

battery's electrochemical process. Furthermore, due to safety concerns, RE has yet to be 

deployed in any commercial cells or real-time LiB applications for measuring 

electrochemical characteristics. 

2.2.4.1.3 Incremental Capacity (IC) and Differential Voltage (DV) 

IC-DV techniques are based on the rate of changes in the electrochemical equilibrium 

phase (EEP) [352]. The EEP changes are determined by the intercalation and de-

intercalation processes that occur between the anode and cathode materials. The IC-DV 

curves are obtained by a constant battery charge curve, and the IC curve is mathematically 

estimated as the gradient of Q with respect to V (dQ/dV = f(V)) [352]. The DV curve is 

obtained by inversely computing the IC curve (dV/dQ = f(Q)). The researchers use 

prognostic/mechanistic models to directly clarify the aging mechanism by identifying 

model parameters [217], [352], [353]. Indeed, the mechanistic model is a backward-
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looking modeling approach in which the degradation is the input and the output is the cell's 

voltage and capacity. Thus, when a cell is in equilibrium, the IC-DV approach can quantify 

its electrochemical properties as well as its various degradation modes (LLI, LAM) [217]. 

The IC and DV curves can be used to study the degradation mechanism both qualitatively 

and quantitatively [230]. Tanim et al. [255] recently investigated the lithiation voltage 

profile and demonstrated that reversible lithium stripping is dependent on the level of over-

lithiation in the graphite electrode. Capacity fading was observed using IC analysis on 13 

cells cycled at a low temperature (-10 °C) under diverse conditions such as varying charge 

current rates, charge cut-off voltages, and charge cut-off current [210].  

2.2.4.1.4 Coulombic Efficiency (CE) 

Coulombic efficiency (CE) is defined as the ratio of energy (𝑄d) a LiB outputs during 

discharge to the energy (𝑄c) a LiB takes in during charge [354].  

 CE = 
𝑄d

𝑄c
 (2-12) 

When lithium plating occurs on the anode surface during the charging cycles, the CE 

decreases. As a result, CE can be recognized as a method for detecting lithium plating. 

Smith et al. [355] advised four important aspects to correctly measure the CE: (i) accuracy 

of the set current, (ii) precision of the voltage measurement, (iii) duration between voltage 

measurements, and (iv) precisely controlled cell temperature. Burns et al. [356]  

investigated lithium plating by plotting CE versus charging current rates. As shown in 

Figure 8 (B), there is a considerable variation in the capacity loss rates of cells charged at 

temperatures above 2 C. Furthermore, with a charging rate of 1C at 12 °C, they found a 

considerable amount of lithium plating. The CE versus charging rate at various 
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temperatures was recorded (Figure 2-29 (C)), with a minor drop in CE occurring as the 

deposited lithium began to consume the active lithium. They also proved the presence of 

lithium plating on graphite electrodes for cells cycled at charging current rates of 2 C for 

50 °C and 0.5 C for 12 °C [356].  

Table 2-9. Advantages and disadvantages physical characterization of surface morphologies for lithium 

plating detection 

Techniques In-situ Ex-

situ 

Advantages Disadvantages 

Scanning Electron 

Microscope (SEM) 

 

 

 

✓ 

 

 

✓ 

 

(a) Suitable for large morphology change 

(b) Applicable to all types of cells 

(c) More effective to monitor the 

detrimental formation of dendrites 

directly 

(a) Only applicable on batteries using 

solid polymer or inorganic SSE in in-

situ condition 

(b) Risks of surface contamination were 

always present 

(c) Not applicable for quantitative 

studies in dynamic condition 

(d) The requirement of an extra high 

vacuum 

Optical Microscopy 

 

✓ 

 

✓ 

 

(a) Instantly distinguish the surface 

change 

(b) Able to monitor lithium 

stripping/plating during operation 

(a) Resolution not as high as of SEM 

(b) Not applicable for quantitative 

studies in dynamic condition 

(c) Resolution is too low for most of the 

nanoscale materials 

(d) Required to design an optical cell 

for in-situ investigation 

Atomic Force 

Microscopy (AFM) 

 

✓ 

 

 (a) Imaging at the atomic level 

(b) Three-dimensional (3D) image 

(c) Visibility of Li surface including 

boundaries, ridgelines, flat areas 

(a) Not suitable for inspection of 

dendrite formation 

(b) Not applicable for quantitative 

studies in dynamic condition 

(c) Destructive method (surface 

scratching needed in the contact mode) 

(d) Risks of surface contamination were 

always present 

 

Transmission 

Electron 

Microscope (TEM) 

 

✓ 

 

✓ 

 

(a) Suitable for large morphology change 

(b) Dynamic evolution of interfaces at 

high tempo-spatial resolutions 

(c) Observation of SEI mechanisms and 

structures at the nanoscale 

(d) Observing microstructures in real-

time (using open cell) 

(a) The requirement of an extra high 

vacuum 

(b) Require solid-state electrolyte and 

ionic liquid (volatile organic 

electrolytes are incompatible with the 

high-vacuum environment) 

(c) Surface damage due to the beam 

effect (80/300keV) 

(d) Low spatial/energy resolution due to 

the presence of various stimuli along 

the beam path 
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Table 2-10. Advantages and disadvantages physical characterization of surface chemistry 

for lithium plating. 

 

Liu et al. [357] measured the CE of four silicon-based electrode materials during cycling 

(condition: voltage cut off 1.5-0.02 V), and the resulting CE ranged from 95 % to 98 %. 

The measurement equipment used in this procedure must be highly precise to detect any 

variations in voltage and current. However, Tanim et al. [255] recently demonstrated that 

the CE approach could not be precise and dependable for detecting lithium plating in a full 

cell over extended cycling. When only small amounts of lithium are deposited, high 

precision coulombmeters are required. Otherwise, if the amount of deposited lithium is 

Nuclear Magnetic 

Resonance 

Spectroscopy 

(NMR) 

 

✓ 

 

✓ 

 

(a) Quantitative method 

(b) Provide a non-equilibrium state 

during charging/discharging 

(c) Processes in a non-invasive manner 

(d) Observe the change in intensity 

proportional to the lithium content of 

each stage 

(a) Risks of surface contamination were 

always present on Ex-situ condition 

 

 

 

Techniques In-situ Ex-

situ 

Advantages Disadvantages 

Fourier Transform 

Infrared (FTIR) 

✓ 

 

✓ 

 

(a) Non-destructive method 

(b) High surface sensitivity at 

the molecular level 

(c) Qualitative/quantitative 

analysis 

(a) Only suitable for 

detecting the organic 

components 

(b) Low reflectance 

intensity and broad 

(c) Expensive material for 

in-situ experiments 

(d) Damages the electrode 

surface (in contact mode) 

X-ray Photoelectron 

Spectroscopy (XPS) 

 

✓ 

 

✓ 

 

(a) Provide the 3D structure 

of surface films 

(b)  Analysis of inorganic 

components 

(c) Study surface species 

(which are not too active in 

IR) 

(a) Damages the electrode 

surface 

(b) Modify the oxidation 

states of elements 

(c) Requires a vacuum 

system 
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significant, conventional testers or measurement devices can be used [255] [356], [358]. 

Furthermore, the rest period has a considerable impact on the CE method, as it cannot 

distinguish stripping from the plating process [359].  

 

2.2.4.1.5 Electrochemical Impedance Spectroscopy (EIS)   

EIS is a quantitative approach for analyzing battery behavior and determining 

electrochemical kinetics throughout the lithium insertion-extraction process [351]. Lithium 

deposition has been studied in Li/Li4Ti5O12 battery cells based on ionic liquid electrolytes 

during several charging/discharging cycles by EIS [307]. In another study by the same 

author, a correlation between the surface area of the electrolyte and lithium metal 

(formation of lithium dendrites) with 𝑅cc + 𝑅SEI  was introduced. They showed that a 

decrease in the 𝑅cc + 𝑅SEI value corresponds to an increase in the interfacial area between 

the electrolyte and lithium metal electrode [360]. As shown in Figure 2-29 (D), using a 

conventional electrolyte ( LiPF6 in EC/DMC) resulted in the formation of lithium dendrites 

[307]. The 𝑅cc + 𝑅SEI values of LiPF6 in EMIM-TFSA/EC and LiPF6 in EMIM-TFSA/PC 

do not show any decrease. However, there could be additional factors causing a drop-in 

𝑅cc + 𝑅SEI values. EIS measurements are often conducted using laboratory equipment. 

Nevertheless, Nazer et al.[361]  proposed an online EIS technique for implementation in 

the BMS of HEVs and EVs. They measured electrochemical impedance using broadband 

excitation signals (pseudo-random binary sequences (PRBSs), random white noise, swept 

sine, swept square, and a square wave). The proposed system, however, was noisy and 

could result in an impedance error value at high frequencies [361].    
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2.2.5 Recent Non-Destructive Approaches for Detecting Lithium Plating   

In addition to these electrochemical and physical detection methods, simpler techniques 

for studying lithium plating have been proposed. According to the literature, when 

transitioning from a completely unlithiated condition to lithiated LiC6 (intercalation of 

lithium), the total volume of the graphite anodes might rise by 10% [229], [362]. The extra 

volume changes can also be caused by the deposited lithium on the graphite. As a result, 

detecting changes in cell thickness can be a beneficial strategy for detecting lithium plating 

[363], [364]. There is a correlation between the volume change and lithium plating, which 

determines the expected extent of volume gain due to deposited lithium Figure 2-34 (A) 

[362]. In Ref. [362], a customized setup was provided to measure the thickness of a 20Ah 

pouch cell during cycling with varied currents and temperatures, as illustrated in Figure 2-

30 (B). Due to the reversibility of lithium plating, it was shown that the cell thickness 

increases rapidly during the lithium plating condition and reduces during the rest time 

(Figure 2-30 (C)). This method is straightforward and valid, but it necessitates the use of 

an accurate device to measure cell thickness. Furthermore, this approach is only applicable 

to pouch cells. It should be also noted that it is not possible to differentiate volume changes 

due to gassing reactions with lithium plating [365]. 

Ultrasonic acoustic approaches have recently been used to study LiB behavior [366]–[368].  

The propagation and reflection of soundwaves is the fundamental principle of the 

ultrasonic method. For the first time, Hsieh et al. [369] and colleagues used this approach 

to measure SOC and SOH in a pouch cell. The ultrasonic investigation can be divided into 

two modes [370]: (i) pulse-echo mode, which uses a transducer that can either be glued or 

pressed onto the cell casing. In this case, a voltage pulse is sent out towards the object (cell) 
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and the pulse is reflected back to the transducers. (ii) Through-transmission mode, which 

employs two separate transducers, one of which serves as a transmitter and the other as a 

receiver; a voltage pulse is transmitted from the transceiver and travels through the object 

material (cell), arriving at the receiver, which is installed on the opposite side of the object. 

Gold et al. [368] proposed a linear model with ultrasonic pulse frequencies ranging from 

200 kHz to 2.25 MHz, which is lower than the one used in prior studies to measure SOC 

in one cycle. Bommier et al. [366] recently employed the electrochemical acoustic (EA) 

technique to study SEI formation in NMC/SiGr pouch cells. Due to gassing reactions that 

occurred during the first SEI formation/lithiation of the silicon particles, the acoustic signal 

was lost during the first 40 hours of charging. They demonstrated that the acoustic signal 

is significantly attenuated in the presence of a gaseous environment. Moreover, they found 

a correlation between the passivation of the silicon particles and the acoustic time-of-flight 

(TOF) shift.  

For the first time, Bommier et al. [371] used the ultrasonic approach to detect lithium 

plating in a pouch cell. Commercial 210-mAh lithium-ion cells were ultrasonically tested 

in through-transmission mode. Figure 2-30 (D) shows a schematic of the ultrasonic setup. 

In their attempt, they established a connection between the acoustic signal and lithium 

plating. When the cell was charged with 1C and discharged with C/10, the acoustic signal 

was quickly attenuated at the second cycle (t=20 h) and reappeared at the 18th cycle (t=195 

h), as shown in Figure 2-30 (E) [371]. Meanwhile, the cell capacity was reduced from 0.210 

Ah to 0.195 Ah, and they suspected that the loss of acoustic signal was due to lithium 

plating. However, the loss of the acoustic signal, according to the literature, is a strong sign 

of a gassing reaction in the cell, and because distinguishing between lithium plating and 
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gas reaction is difficult, it cannot be utilized as an indication for lithium plating. As a result, 

they discovered that employing an acoustic signal alone is ineffective. In the second 

attempt, they decided to measure the shifts (time-of-light) in the full acoustic waveforms 

[371]. Cells were cycled twice at C/15 for both charge and discharge and then a CC charge 

with a fixed capacity of 0.210 Ah (no voltage cutoff) was applied to trigger lithium plating. 

As shown in Figure 2-30 (F), they found a significant difference at the endpoints of the 

TOF shifts of the cells that were cycled with fixed-capacity charge (1 C) than the cells that 

were cycled with a C/15 charge. It was shown that there is a correlation between TOF 

endpoints differences and lithium plating. They proved the efficiency of this strategy using 

various ex-situ characterization methods, such as ex-situ SEM, as shown in Figure 2-30 

(G) [371]. 
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Table 2-11. Advantages and disadvantages of on-line electrochemical lithium plating detection 

techniques. 

 

 

Techniques BMS Advantages Disadvantages 

Measurement of 

Columbic Efficiency 

- (a) Applicable to all types of cells 

(b) Suitable for identification of side 

reactions in early stages 

(a) Inaccurate results if another parasitic 

reaction happens (Oxidation, loss of active 

materials) 

(b) Expensive equipment 

Voltage Plateau after 

charging 

✓ (a) Non-destructive method 

(b) Suitable for on-board implementation 

(c) No requirement for special and 

expensive equipment   

 

(a) Needs slow discharge rate 

(b) Availability of abnormal exothermic 

peaks 

(c) The importance of the lithium deposited 

areas 

(d) Highly depends on internal cell 

characteristics  

Third Lithium 

Reference Electrode 

- (a) Quantitative evaluation of different 

electrochemical aspects 

(b) Reliable method 

 

(a) Safety (Short circuit) 

(b) Not applicable in Commercial cells 

(c) Require modifying cell design and 

fabrication (complicated implementation) 

Electrochemical 

impedance spectroscopy 

(EIS) 

✓ (a) Suitable for study LiB characteristics 

(b) Non-destructive method 

Suitable for on-board implementation 

(c) Fast analyzing period (25/min/cell) 

 

(a) Reduction in cell performance after RE 

insertion 

(b) Require complicated computation 

(c) The cell must be in the equilibrium state 

Incremental Capacity 

(IC) 

Differential Voltage 

(DV) 

✓ (a) Non-destructive method 

(b) Suitable for on-board implementation 

(c) Ideal for identification and quantification 

of DM 

(a) Required small currents for discharge 

curves 

(b) Slow analyzing period (10 h/cell) 
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Figure 2-29: Electrochemical Methods. (A) Differential voltage over time (dV/dt) for the two 

discharge cases and the 5C charge relaxation event, as well as a schematic diagram of the anode's 

interna characteristics at the start of relaxation. During relaxation Li+ ions that are not consumable 

at the separator travel and diffuse through the electric field (migration) and concentration gradient 

(diffusion) towards the foil, where they are intercalated into graphite (Reprinted from Yang et al. 

[23)4] with permission of Elsevier). (B) Differential voltage over capacity (dV/dQ) in the discharge 

phase because of discharge capability and a schematic diagram of the anode's internal 

characteristics at the start of discharge. During discharge, Li+ ions formed by Li stripping near the 

separator have three destinations: they are intercalated into graphite, they travel to the cathode to 

deliver output current, and they move under an electrical field (migration) and a concentration 

gradient (diffusion) towards the foil and are intercalated along the path into graphite (Reprinted 

from Yang et al. [234] with permission of Elsevier). (C) Cycling data versus time extracted by a 

high-precision charger. A two-stage charge process is applied on pouch cells at different rates from 

(C/50 to 5C) at 30 °C ((a) Capacity, (b) Coulombic efficiency, (c) Coulombic inefficiency per hour) 

(Reprinted from Burns et al.[356]  with permission of Electrochemical Society). (D) Resistance 

values 𝑅cc + 𝑅SEI as a function of time for various electrolyte solutions (Reprinted from Schweikert 

et al. [307] with permission of Elsevier). 
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2.2.6 Model-Based Investigation of Lithium Plating 

In order to optimize the battery design and develop more practical charging protocols, 

modeling would be an appropriate solution [221], [372]. There are several different 

approaches to model LiBs: electrochemical models, equivalent-circuit battery models 

(ECM), thermal models, electrical models, mechanical models, and molecular models 

[373]. Modeling can provide us with the exact time of lithium plating and the location of 

Figure 2-30: Non-Destructive Approaches for Detecting Lithium Plating. 

(A) Theoretical relation between volume gain and lithium plating. (B) Schematic of the setup for in-operando 

measurements of pouch cell thickness during the lithium plating (resolution 1 µm). (C) Significant changes 

in the cell thickness at the charge current of 7 A due to lithium plating (Reprinted from Bitzer et al.[362] with 

permission of Elsevier). (D) Schematic of the in-operando acoustic detection setup for studying lithium 

plating. (E) Acoustic plots consist of three distinct panels, which are, from top to bottom, a heatmap of 

acoustic time of flight (s), total amplitude of waveforms in random components, and a voltage versus time 

curve corresponding to the adjoined waveforms. (F)  The difference in acoustic TOF shifts during the C/15 

charge and the fixed-capacity charge of 0.210 Ah at different temperatures was measured when the cell was 

cycled at 10 °C with a fixed capacity charge of 1 C. The cell was cycled with a fixed capacity charge of 1 C 

at 0 °C (G) Ex-situ SEM measurement: electrodes were washed in (DMC) and dried in an argon-filled box 

for 2 hours at 40 °C. Scale bars: 5 μm (Reprinted from Bommier et al. [371] with permission of Cell Reports). 
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the deposited lithium on the electrode surface. Newman [374]  and co-workers introduced 

the first battery performance model.  

2.2.6.1 Electrochemical Models of Lithium Plating  

Electrochemical models based on the porous electrode theory and lithium concentration 

solution have been widely used to study lithium plating in LiBs. The electrochemical 

models cover both particle level and cell level dynamics. At the particle level, the mass 

conservation and diffusion dynamics at both electrodes are explained based on Fick's law 

[375]. At the cell level, it needs to describe the flow of lithium-ion into the electrolyte, the 

diffusion of lithium in the active material, and the electron charge transfer in the lithium-

ion intercalation process happening at the surface of the active material. All of them are 

based on the porous-electrode model. The cell level and particle level dynamics are coupled 

through the local reaction current based on charge conservation. The properties of materials 

can be estimated based on the electrical measurements of the full cell [376]. The lithium 

plating criteria can be divided into two different kinds: (i) A saturation concentration at the 

interface; lithium plating would happen when the concentration of lithium-ions at the 

electrode interface reaches the saturation level of 0.077 mol cm−3 [243]. (ii) The interfacial 

overpotential; when the overpotential (𝜂) is lower than 0 V against Li/Li+, lithium plating 

would occur [193], [243], [285]. These criteria are applied in the electrochemical models 

to predict or suppress lithium plating. Arora et al. [224] made the first attempt to develop 

a physics-based mathematical model for investigating lithium plating on the negative 

electrode (graphite and coke) during charge and overcharge. This macro-homogeneous 

model was based on the work of Doyle and Newman [374]. Kinetic and thermodynamic 

parameters (e.g. transfer coefficient (𝛼𝑎, 𝛼𝑐), exchange current density (𝑖0) ) were adopted 
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into the model to simulate the electrochemical reactions, mass transport, and other physical 

processes. 

They assumed lithium plating is partially reversible, meaning that all of the deposited 

lithium reacts with the electrolyte to produce a new SEI or dead lithium. They found that 

the particle size and electrode thickness can influence the lithium plating phenomena [224]. 

As long as the electrode is thinner and has a smaller particle size, lithium plating is less 

favorable compared to thicker electrodes with larger particles. However, many other 

features could be adopted to this model to study lithium deposition in an overcharge 

reaction. Moreover, this model cannot capture the edge effects of the cell, which have a 

specific impact on the accumulation of the lithium-ions on the anode electrode during the 

charging process [377].    

In another approach by Ge et al. [243] who used Newman’s electrochemical model, also 

known as a pseudo-two-dimensional (P2D) model, studied lithium plating at low 

temperatures. They divided the total electrochemical reaction current density into two 

parts: the lithium intercalation current 𝑗1 and the lithium deposition current 𝑗2: [243], 

                           j= 𝑗1 + 𝑗2                                                  (2-13) 

Both of them could be described by the Butler-Volmer equation:  

 𝑗1 = 𝑗0,1 [ exp (
∝a 𝐹

𝑅𝑇
η1) − exp (−

∝c 𝐹

𝑅𝑇
η1) ] (2-14) 

where 𝑗0,1 is the exchange intercalation current, ∝a and ∝c are the transfer coefficients 

which generally equal to 0.5, and η1 is the over-potential for intercalation reaction. 

 𝑗2 = min {0, 𝑗0,2[ exp (
∝a,2 𝐹

𝑅𝑇
η2) − exp (−

∝c,2 𝐹

𝑅𝑇
η2) ]} (2-15) 
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where 𝑗0,2 is the exchange plating current, ∝a,2 and ∝c,2 are the transfer coefficients which 

are generally taken to be 0.3 and 0.7, respectively, and η2 is the over-potential for lithium 

plating reaction. When the overpotential (η2) is lower than 0 V against Li/Li+, lithium 

plating would occur. They found that during low temperature charging when the 

overpotential (η2) is minimum, the lithium-ions start to accumulate at the anode-separator 

interface and then move into the anode electrode. This model also proposed a multi-step 

charging process that can charge the cell fast and safely without incurring lithium plating 

at low temperatures [243]. However, the model validation has been carried out with few 

data points.  

A P2D-modeling has been presented by Tang et al. [377] to study lithium plating during 

cell charging. They found that increasing the thickness of the negative electrode can hinder 

the deposition of lithium, specifically at the edge of the electrode. In another interesting 

approach by Tippmann et al.[376]  built a P2D electrochemical model combined with a 0D 

thermal model for operation at low temperatures to predict the aging effects over different 

temperatures (-25 °C to 40 °C) and currents (0.1 C to 6 C). They used COMSOL 

Multiphysics 4.2 for performing the simulation and compared the obtained results with EIS 

experiments. However, the implementation of this model into BMS is not highlighted due 

to the cost and time-consuming simulations while using the porous electrode theory.  

Computational cost is also one of the problematic challenges in lithium plating modeling 

due to a large number of governing equations (e.g. ten non-linear and multidimensional 

partial differential in spatial directions x, r, t) that are required to be solved at the same time 

with the highly non-linear algebraic expression for transport and kinetic parameters [378].  

Liu et al. [236] developed a model that couples lithium plating with SEI growth, allowing 
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simulating concurrent lithium dendrite growth, SEI growth, SEI penetration and regrowth. 

Their work highlights the effect of SEI in lithium plating. Boovaragavan et al. [378] 

proposed a reformulated physics-based model for real-time parameter estimation. Their 

model can simulate porous model equations in 15-45 ms with only 29-49 differential-

algebraic equations (DAEs) while using the rigorous model, it takes 90-120s with at least 

4800 DAEs. This model is suitable for predicting the capacity fade, but it has only been 

validated at the 2C rate of discharge [378].   A reduced-order model (ROM) was created 

by Perkins et al. [379], who defined five different assumptions, such as keeping the cell 

always in the quasi-equilibrium state for studying lithium plating during overcharge. This 

model is an optimized version of the Arora model to speed up the calculation of the 

governing equation in the ROM versus the physical-based model. They could decrease the 

calculation time to 1/5000 while utilizing ROM comparing to using the physical-based 

model. This ROM can only be implemented for short pulse lengths (less than 10s) due to 

the quasi-equilibrium. Thus, it can recognize the boundary between the time that lithium 

plating would occur or not in the charging-current process [379]. A physics-based model 

by Yang et al. [380] studied the aging behaviors attributed to lithium plating and SEI 

growth of a plug-in electric vehicle (PEV) battery over a normal charge/discharge current 

at the ambient temperature. This model considered the SEI growth and lithium plating rate 

to explain linear and nonlinear behavior during cycling. The linear aging stage is linked to 

SEI growth. The transition stage from linear to nonlinear aging is associated with lithium 

plating. Recently, Lin et al. [375]  proposed a data-driven strategy that uses long short-term 

memory (LSTM) to monitor anode electrode potential in real-time to prevent lithium 

plating. Because physics-based model implementation is complex, time-consuming, and 
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requires extensive manual tuning, real-time LSTM is far more precise and computationally 

efficient and can be easily integrated into the BMS. The LSTM model can complete the 

entire test in 87 seconds, whereas the physics-based model takes 7 hours and 44 minutes. 

2.2.7 Operational Phase Summary  

The topic of lithium plating phenomena has been widely investigated in many aspects over 

the last decade. However, some problems remain in terms of accurate and reliable detection 

methods, mechanisms, prediction, and prevention. In light of this, in this section, 

challenges and prospects are introduced from four aspects: mechanisms, detection 

methods, modeling, material components, and optimized charging protocols.   
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Chapter 3 : Methodologies  

3.1 Manufacturing Phase: Method Details  

3.1.1 Section Overview (Pseudocapacitors Electrode Fabrication via ULPING) 

7The development pathway for enhanced electrode materials has begun in the production 

of ESDs such as batteries and supercapacitors (SCs) [381] [382], [383]. Although carbon-

based supercapacitors have demonstrated success, their low capacitance and poor 

conductivity limit their use in fast-evolving technologies [384]. To address this, significant 

research has been conducted on various synthesis methods utilizing different transition 

metals (TMs) to manipulate the structure of electrode materials for supercapacitors [385]–

[387]. The synthesis of electrode materials with unique architecture, well-engineered 

diffusion channels/pathways, and uniform porous surface structures can be achieved 

through well-designed synthesis strategies [388], [389]. However, conventional synthesis 

methods such as chemical vapor deposition, solvothermal, physical vapor deposition, and 

hydrothermal techniques are time-consuming and require high thermal budgets, resulting 

in inadequate controllability and outcomes [390], [391]. For instance, the current 

manufacturing process takes around 24 to 48 hours to synthesize the active material needed 

for charge storage. 

Therefore, in this study, we propose a technique called ultra-short laser pulses for in-situ 

nanostructure generation (ULPING), which is a powerful tool for controlling electrode 

 

7 This section is based on a previously published article:  

Kavian Khosravinia, A. Kiani. "Unlocking pseudocapacitors prolonged electrode 

fabrication via ultrashort laser pulses and machine learning", iScience, Cell Press. The 

material is reproduced here with permission from the publisher, [Cell Press]. 
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morphology while maintaining a low thermal budget for supercapacitors [392], [393]. 

Table 3-1 summarizes the advantages of our proposed laser processing technique 

(ULPING) over conventional nano-synthesis methods for fabricating enhanced electrode 

materials. This technique is carried out under ambient conditions. Compared to 

conventional synthesis strategies, laser processing technology is considered a green 

nanofabrication technology because no surfactants or capping agents are required during 

the process [394]. Additionally, the ULPING process is environmentally friendly because 

no byproducts or hazardous reducing chemicals are required for the reaction, and the 

outcome is not a separate byproduct but rather a particular in-situ modification of the 

substrate [395]. The laser processing technique can be digitally controlled using a 

computer-aided design with various parameters, including power, pulse repetition rate, 

frequency, scan speed, and specific pattern formation.  

The benefits mentioned above have led to a rise in interest in researching the production of 

nanostructured surfaces with enlarged specific surface areas using laser techniques. One 

recent example of this development is the use of ULPING to fabricate electrode materials 

for pseudocapacitors, which are one of three types of supercapacitors, along with electric 

double-layer (EDL) capacitors and hybrid capacitors [396]. Pseudocapacitors are 

composed of electrochemically active electrode materials, such as conducting polymers 

(CPs) and transition metals (NiO, CuO, TiO, ZnO, MnO, RuO2) [397]. 
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Table 3-1. Comparison of conventional synthetic methods and ULPING. 

 

Pseudocapacitors store electrical energy by the Faradaic charge-transfer process of 

selectively adsorbed ions and de-solvated ions caused by electro-sorption, redox reactions, 

or intercalation on the electrode surface [398], [399]. 

Considering the use of TMs as an electrode for pseudocapacitors, the need for an oxide 

layer to swap the oxidation state for rapid redox of TMs specifies the pseudocapacitor’s 

functioning characteristic. Thus, using ULPING under ambient settings can accomplish the 

conditions as it can efficiently and sustainably generate a porous oxide layer. Recently, our 

group used ULPING on two different TM sheets, namely Ni and Ti, to form an oxide layer, 

namely NiO and TiO, in ambient conditions using different laser parameters [392], [400], 

[401]. In our previous work, we studied the effects of scan speed and pulse repetition rate 

or frequency on Ni substrate [392]. Although the frequency samples did not demonstrate 

many differences, we observed a progressive increase in performance as the scan speed 

Conditions Conventional Synthetic 

Methods 

ULPING 

Experimental setup Complicated (multi-step) Simple (single step in 

ambient condition) 

Technological 

route/Pattern of the 

electrodes 

Mostly separate products 

from the substrate/No 

Add modification directly 

on substrate material/Yes 

Target material All materials All solid 

materials/Polymers 

(transition metals) 

Collection after 

procedure 

Post-processing/binding Not needed 

Environmentally friendly Non-Environmentally 

friendly 

Green method 

Experimental cost and 

time 

High-cost and time-

consuming 

Low-cost and quick 
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was decreased. The scan speed of 10 mm s-1 demonstrated the best results, mainly due to 

the slower beam path travel allowing for better nanostructure generation and more phase 

transformation of Ni into NiO. An areal capacitance of 92.682 mF/cm2 was observed at a 

discharge current of 1 mA/cm2. In another study from our group, Gholami et. al [400] used 

laser pulses to grow Titania 3D nanonetworks (T3DN) on Ti-metal sheets under ambient 

conditions. They compared the number of laser treatments to a bare Ti control sheet and 

discovered that treating the same surface twice with high-intensity laser pulses produces 

an areal capacitance of 6.91 mF cm-2. Self-grown 3D nanostructures are formed as a result 

of a series of ultrafast events that take place as electromagnetic radiation pulses irradiate 

the surface of the substrate or target material. From both studies, the active surfaces were 

binder-less and were produced in a single step with no chemicals using the ULPING 

approach.  

The distinctiveness, novelty, simplicity, and effectiveness of the ULPING approach for 

producing efficient electrode materials for pseudocapacitors were validated in both studies. 

Nevertheless, there is still room for improvement in this research area due to the direct 

connection between the controlling input laser parameters and the material properties of 

the generated nanostructures on the substrate. This improvement room can be divided into 

two major levels: the material level and the control/data-driven level. Some of the most 

important research questions that are going to be answered here are: how the other TMs 

will behave electrochemically as pseudocapacitor electrodes when they are fabricated 

using the ULPING method? Furthermore, how will the input laser parameters or fabrication 

parameters actually impact the electrochemical behaviors of the produced samples? 

Finally, how can data-driven approaches, particularly machine learning (ML) techniques, 
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provide insights into the correlation between fabrication parameters (structural features) 

and pseudocapacitor electrochemical behavior or performance metrics? It is crucial to find 

out the answers to the above questions since we believe ULPING has great potential to use 

in the pseudocapacitor-related industry.  

In this account, we describe our group's progress in fabricating electrodes with ULPING 

on bare Ti sheets and using ML to accelerate electrode design in two different but related 

phases. Figure 3-1 illustrates the experimental setup of a typical ULPING technique. In the 

first phase, we fabricated 31 electrodes with various T3DN structural features by 

combining 31 different laser parameters (power (P), frequency (F), pulse duration (PD), 

and scanning speed (SS). From here on, the various samples presented would be referred 

to by their abbreviated names. Using the electrodes we fabricated, we then proceeded to 

prototype 496-coin cells, where all 31 electrodes were individually coupled with each 

other, following the mix-and-match matrix. Next, to assess the impact of laser parameter 

variation on the T3DN properties, we investigated all 496 prototyped coin cells using 

various characterization techniques. Scanning electron microscopy (SEM) and energy-

dispersive X-ray (EDX) spectroscopy were used to analyze the material properties, while 

electrochemical behavior was studied using a potentiostat with cyclic voltammetry (CV), 

galvanostatic charge-discharge (GCD) electrochemical impedance spectroscopy (EIS). 

In the second phase, studying this enormous number of samples allows us to delve one 

level deeper using ML algorithms to understand the relationship between fabrication 

parameters and pseudocapacitor performance metrics. To accomplish this, we conducted a 

large-scale empirical comparison of three commonly encountered supervised learning 
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algorithms in the energy field, namely Gaussian process regression (GPR), random forest 

(RF), and artificial neural network (ANN).  

 

Figure 3-1: Schematic diagram of the experimental setup for the formation of a TiO layer with 

ULPING approach. (A). Laser parameters can be adjusted using computer-aided software (Marking 

Mate 2.7). (B) An example of TiO properties and specimen components derived using a 

combination of several characterization instruments (SEM and EDS) and specified software 

(ImageJ). 

 

The purpose of this comparison was to evaluate their computing efficiency, accuracy, and 

applicability for predicting the electrochemical behavior performance of pseudocapacitors. 

Our findings revealed that this research can provide promising methods for employing 

ULPING to fabricate nanostructures on TMs that have the potential to be used in 

pseudocapacitor electrodes. 
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3.1.2 Experimental Phase 

One of the goals of this research is to use ML algorithms to predict the electrochemical 

behavior of pseudocapacitors fabricated using the ULPING approach. The methodology 

for achieving this objective is divided into two major phases: experimental and 

computational. The experimental phase describes the fabrication of electrodes via 

UPLING, the assembly of pseudocapacitor coin cells, the material, and the electrochemical 

characterization. The computational phase demonstrates how a large dataset can be 

generated from the experimental phase and how it can aid in ML-based model development 

for predicting various electrochemical performance parameters. This information is also 

included in the key resources table. 

3.1.2.1 Preparation of Pseudocapacitors Electrode 

In the experiment, a commercial Ti (CAS: 7440-32-6) with a thickness of 0.2 mm (Grade 

4) was used as a sample. Ti sheets were polished and cleaned with acetone before being 

rinsed with DI water. As shown in Figure 3-1, the sample is exposed to the ambient 

atmosphere with no elaborate shielding (chamber requirement). The pulse ionization was 

carried out using a 150-picosecond laser pulse system (IPG Laser Model: YLPP-1-150 V-

30) at a constant wavelength of 1060 nm (see Figure 3-2). The 7.6 mm laser diameter was 

lowered to 6 mm using an iris diaphragm before being focused on an XY galvanometer 

scanner (JD2208 by Sino-Galvo). This scanner provided a theoretical laser spot diameter 

of 20 µm by using an F-theta lens with a focal length of 63.5 mm, an input aperture of 14 

mm, and a beam displacement of 18.7 mm. The pulse laser beam is directed to a platform 

carrying the Ti sheet. The imprinted profile was designed using Marking Mate 2.7 as CAD 
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software, which allows the laser patterning parameters such as scanning speed and pitch to 

be specified. Figure 3-1 (A) indicates the laser parameters used in the experiment.  

A total of 31 distinct samples were prepared using parameters such as power ranging from 

5 to 20 W, frequency ranging from 30 to 1200 kHz, pulse duration ranging from 150 ps to 

5 ns, scan speed ranging from 5 to 500 mm s-1, and a constant pitch pattern (arrow 

sequence). The center distance between two consecutive lines pulsed by a laser beam is 

called pitch.  The irradiated samples were punched into 6 mm circle discs containing TiO 

as active material, with an area of 27.2 mm2 (see Figure 3-3). To the best of the authors' 

knowledge, this is the largest sample preparation for pseudocapacitor electrodes through 

ULPING that has ever been conducted. The laser parameters for each sample are listed 

below (see Table 3-2). 

Figure 3-2: ULPING method worktable. (A) Top view. (B) Front view. 
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Table 3-2. Laser variables for different samples 

 

3.1.2.2 Material Characterization  

The next stage in this experimental setup is to use various techniques to analyze the surface 

characterization of the prepared electrodes. Images of the surface topography and 

composition of the materials were obtained using scanning electron microscopy (SEM-

Hitachi High-Tech Global- FlexSEM 1000). The Energy Dispersive X-Ray (EDX-Hitachi 

High-Tech Global- FlexSEM 1000) spectroscopy equipment was utilized for element 

Laser Variables  Samples  Power 

(W) 

Frequency(kHz) Pulse 

Duration 

(ns) 

Scan 

Speed 

(mm s-1) 

 

 

 

Power/Scan Speed 

P1 5 1200 0.15 10 

P2 8 1200 0.15 10 

PN1-1 10 1200 0.15 10 

PN2-2 12 1200 0.15 10 

P3 15 1200 0.15 100 

P3-1 15 1200 0.15 200 

P3-2 15 1200 0.15 500 

P4 20 1200 0.15 100 

P4-1 20 1200 0.15 200 

P4-2 20 1200 0.15 500 

Frequency/Pulse 

Duration 

F1 10 600 0.15 10 

F2 10 750 0.15 10 

F4 10 900 0.15 10 

F5 10 1050 0.15 10 

PD1 10 100 1 10 

PD2 10 400 1 10 

PD3 10 800 1 10 

PD4 10 1200 1 10 

PD5 10 60 2 10 

PD5-1 10 100 2 10 

PD5-2 10 400 2 10 

PD5-3 10 800 2 10 

PD5-4 10 1200 2 10 

PD6 10 60 5 10 

PD6-1 10 100 5 10 

PD6-2 10 400 5 10 

PD6-3 10 800 5 10 

PD6-4 10 1200 5 10 

Scan Speed S1 10 1200 0.15 40 

S2 10 1200 0.15 50 

S3 10 1200 0.15 60 



126 

 

analysis or chemical characterization of the materials, where the presence of oxidized 

material can be determined, as illustrated in Figure 3-1(B).  

  

Figure 3-3: TiO electrode preparation. (A) Cleaned Ti sheet. (B) Oxide forming (TiO after irradiation 

via ULPING method. (C) The irradiation samples were punched into 6 mm circle discs using a round 

disc cutter. (D). TiO electrode is prepared. 
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3.1.2.3 Electrochemical Analysis  

The final stretch is to investigate the electrochemical performance of the electrodes that 

have been fabricated. A two-electrode configuration (coin cell) was carried out, as shown 

in Figure 3-4, in which two symmetric coin shapes were punched into a 6mm disc and 

separated by a 1M sodium sulfate (Na2SO4- CAS: 7757-82-6) electrolyte-soaked separator. 

This coin cell system was acquired from MTI Corp (NO. 2GXA21012) and is simple to 

assemble. All experiments were carried out in an ambient condition. To understand and 

analyze the electrochemical analyses of the prepared coin cells, an SP-150 Biologic 

Potentiostat was used (this information is also included in the key resources table). All the 

coin cell configurations were subjected to CV, GCD, and EIS. CV tests were carried out at 

scan rates of 500 mV/s (stable potential of -1V to 1V), 50 mV/s (stable potential of -0.8V 

to 0.8V), and EIS testing at a perturbation voltage of 50 mV/s at frequencies ranging from 

100 mHz to 100 kHz. GCD experiments were carried out at potentials ranging from -0.8V 

to 0.8V and current densities ranging from 0.25 mA/cm2. These tests aid in determining 

the efficacy of the fabrication scope through laser assistance in the creation of the oxide 

layer due to irradiation and ablation. As previously stated, we generated 31 electrodes with 

diverse T3DN structural properties by combining 31 different laser parameters to better 

understand the relationship between laser parameters and sample electrochemical 

performance (see Figure 3-5).  
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3.1.2.3.1 Specific Areal Capacitance, Energy Density, Power Density 

Calculation 

The specific areal capacitance of each sample can be calculated from the GCD curve based 

on the following equation,  

 
𝐶𝐴 = 

𝐽 × ∆𝑡

∆𝑉
  , where J = 

𝑖

𝐴
 

(3-1) 

Where J is the areal current density (0.25 mA cm-2), ∆𝑡 is the discharge time from fully 

charged (0.8V) to fully discharged (-0.8V), and ∆𝑉 is the stable potential window [392], 

[402]. Appendix A contains the MATLAB code for specific areal capacitance calculation. 

Figure 3-4: Coin cell electrochemical analysis setup. 
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To evaluate the practical strength of the fabricated electrodes two important parameters, 

energy density (𝐸𝑆) and power density (𝑃𝑆) can be determined based on their specific areal 

capacitance using equations (2) and (3) [399], [403].  

 

Figure 3-5: 31 fabricated electrodes via ULPING. 
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𝐸𝑆 =

1

2𝐶𝐴∆𝑉2
 

(3-2) 

 𝑃𝑆 = 3600𝐸𝑆/∆𝑡 (3-3) 

Where 𝐶𝐴 is the specific areal capacitance calculated from GCD, ∆𝑉is the potential window 

and ∆𝑡 is the discharge time [404].  

3.1.2.4 Porosity Estimation  

The porosity of each sample was estimated by adjusting the threshold of the 100-micron 

SEM pictures of all the samples until the software completely emphasized the porous 

structure. For geometrical measures, ImageJ assumes a 5% margin of error (Wayne 

Rasband at the National Institutes of Health, USA) [405]. 

3.1.3 Computational Phase  

It is important to emphasize that one of the main objectives of this research was to employ 

ML algorithms to forecast the electrochemical behavior of the pseudocapacitors fabricated 

through laser treatment. However, the accuracy and performance of ML algorithms depend 

largely on the quality and quantity of data. An unbalanced dataset can lead to overfitting 

and under-fitting issues, which is why it is essential to generate a large and accurate dataset 

for training the ML algorithm. The dataset generation/preparation and model development 

procedure are divided into four stages, as shown in Figure 3-6. The first stage describes 

how to build a large dataset from the experimental setup. The resulting dataset must then 

be structured and prepared for use in various ML methods. The most beneficial features 

from the dataset are selected using statistical approaches. Finally, three distinct ML 
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algorithms are constructed and trained on the dataset to predict the electrochemical 

performance of the pseudocapacitors, including impedance and specific areal capacitance. 

3.1.3.1 Data Acquisition from Experimental Setup   

As employing laser treatment for pseudocapacitor electrode fabrication is a new research 

method, no specific dataset is publicly or privately available. By dataset, we refer to the 

information acquired from various pseudocapacitors by microscopy and electrochemical 

analysis, including electrode morphology and structural parameters, as well as other 

operational conditions values like discharge rate, electrode impedance, specific areal 

capacitance, and voltage window. To address this limitation, we prepared 31 electrodes, 

which allowed us to expand our experiments while also providing a large dataset for ML 

algorithms. To produce a large dataset, we introduced a unique mix-and-match testing 

Figure 3-6: Dataset generation and preparation steps. Stage 1: data were collected from the 

experimental setup, including laser fabrication parameters and results of electrochemical and 

microscopy analysis. Stage 2: the data was pre-processed, which involved cleaning and 

transformation to ensure the dataset was ready for use in the ML algorithm. Stage 3: feature 

selection was used to finalize the dataset and select the most important features for use in the ML 

algorithm. Stage 4: the ML algorithms were trained on the dataset to predict the electrochemical 

behavior of the pseudocapacitors. 
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matrix. Using this matrix, we tested each of the 31 prepared electrodes individually against 

itself and the other electrodes, with all the necessary information gathered from the 

electrochemical analysis. The principle of the matrix is very simple and straightforward, as 

shown in Figure 3-7. For the first coin cell setup, for example, we used 1M salt as the 

electrolyte solution, and electrode P1 (the base electrode) was positioned in the lower cover 

of the MTI coin cell setup, with the same P1 electrode located on top of it. This procedure 

was repeated 31 times, with the P1 electrode serving as the base and the other top electrode 

serving as the changing electrode. The P2 electrode was likewise tested 30 times with itself 

and other electrodes, except for P1, which was tested in the previous column (shown with 

the red circle). This testing technique was continued until S4, which was tested only once 

with itself. Based on this matrix, we assembled all 496 sets of electrodes together. All 496-

coin cell configurations were subjected to CV, GCD, and EIS, with the same setup 

configurations specified in the previous section. 

3.1.3.2 Dataset for Machine Learning Algorithms  

Including laser fabrication parameters in the experimental data will provide additional 

information about their relationship with the electrochemical behavior of the 

pseudocapacitors. According to Figure 3-6, several quantitative values were recorded, and 

they can be classified into two groups: laser fabrication parameters, microscopy, and 

electrochemical analysis (numeric results). These parameters influence the physical and 

chemical properties of the pseudocapacitor electrode, including its surface area, porosity, 

and crystal structure, which in turn impact the electrochemical performance.  
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Figure 3-7: Data generation steps from the experimental setup. A one-of-a-kind mix-and-match 

testing matrix is introduced where each of the 31 prepared electrodes is individually tested against 

itself and the other electrodes. 

Additionally, including microscopy and electrochemical analysis results will provide more 

comprehensive information about the electrode's structural and electrochemical 

characteristics. Overall, combining these different types of data will allow for a more 

thorough analysis of the relationship between laser fabrication parameters and 

pseudocapacitor performance. The following laser fabrication parameters were recorded: 

power (W), frequency (kHz), pulse duration (ps-ns), and scan speed (mm s-1) for both 

electrodes (base and changing electrodes). The electrochemical analysis yielded multiple 
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variables, including discharge time (S), specific areal capacitance (mF/cm2), and capacity 

(mA.h). Additionally, the impedance (Ohm), phase angle (|Z|-degree°), and real impedance 

(ohm) are recorded at lower and higher frequencies. Several numerical parameters such as 

oxidation (%), Ti/oxidation ratio (%), and porosity (%) are obtained from the microscopy 

analysis for both electrodes. The recorded data is considered the final raw dataset from the 

experimental setup.  

3.1.3.3 Dataset Pre-processing for Machine Learning Algorithms  

The experimental data are used as input for the data-driven models. Since we are engaging 

with a regression problem in this study, input features are critical to the accuracy and 

robustness of the results [406], [407]. Therefore, employing a suitable data pre-processing 

strategy may be advantageous in boosting the prediction accuracy of a supervised ML 

system. Figure 3-6 depicts the data pre-processing approach applied, which contains data 

cleaning and transformation (removing outliers, filling in missing values, and 

normalizing). The proposed data pre-processing generates a complete and clean dataset 

free of extraneous information for predicting the electrochemical behavior performance of 

the fabricated electrodes. 

The first step is data cleaning, which involves removing erroneous, incomplete, or 

duplicate data from a dataset. This process includes removing outliers and filling in missing 

values, among other techniques. Outliers can cause issues with certain models and 

removing them may improve model performance. The simplest nonparametric technique 

for detecting outliers in a one-dimensional feature space is numeric outlier detection. The 

interquartile range (IQR) is used to identify outliers. In a box-and-whisker plot, the IQR is 
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represented by the width of the box. The first and third quartiles (𝑄1and 𝑄3), for example, 

are calculated. An outlier is then defined as a data point 𝑋𝑖 that falls outside of the 

interquartile range [408]. Outliers that fall outside of the typical data range or have a very 

low likelihood of occurring are deleted from the raw dataset. 

In the next step, we detect missing values. Missing values resulting from sampling system 

errors are an unavoidable challenge in the experimental procedure. Depending on the 

dataset, various statistical methodologies can be used to fill in missing values. For example, 

we used the statistical mean method to fill in the missing values in the raw dataset [406]. 

Finally, we apply normalization to the data. This process scales the magnitudes of the 

values to significantly lower values. Normalization can help improve the convergence rate 

and reduce negative effects. In this investigation, we normalized the input dataset to the 

range of [-1, 1] using the following equation: 

 𝑥′ = 
(𝑥 − 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (3-4) 

 

where 𝑥𝑚𝑎𝑥 is the maximum value, and 𝑥𝑚𝑖𝑛 is the minimum value of input vector x. 

Appendix A contains the Python code for data pre-processing. 

3.1.3.4 Feature Selection with Correlation Analysis  

To achieve a compacted dataset, a data dimensionality reduction approach must be applied. 

One of the common methods to detect and remove redundant and irrelevant features is the 

feature selection approach based on correlation analysis [409]. To evaluate the relationship 

between two variables, we employed a common statistical approach known as Pearson's 

correlation coefficient analysis. The Pearson correlation coefficient (r) expresses the 
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strength of the linear relationship between variables. It exhibits correlations with a 

moderate-to-high positive or negative correlation (close to -1 or 1), whereas those with a 

low correlation are presented (value close to 0). In general, the higher the correlation 

between input features and output of a data-driven model, the better the model's accuracy. 

Its formula is as follows [410],  

 𝑟 =  
Σi=1
N (𝑥𝑖 − 𝑥̅ )(𝑦𝑖 − 𝑦̅ )

(𝑁 − 1)𝜎𝑋 𝜎𝑌
 (3- 5) 

where 𝑥𝑖 is the feature sequence, y is the target output, 𝑥̅ and 𝑦̅ are their average values, 

and the variable 𝜎 is the standard deviation [410],  

 𝜎 =  √
Σi=1
n (𝑥 − 𝑥̅ )2

(𝑁 − 1)
 (3-6) 

The calculation's usage of mean and standard deviation implies that the two data samples 

must have a Gaussian or Gaussian-like distribution. We used correlation analysis for 

removing the less important predictor variables. In our case, since we're dealing with a 

regression task when two or more independently correlated features are presented in a 

dataset, the model can use either of these correlated features as a predictor without 

explicitly selecting one over the others. However, once one of them is used, the importance 

of the others reduces significantly because the first characteristic effectively removes the 

impurity that they can remove. As a result, we performed Pearson correlation analysis to 

identify and delete strongly associated elements. For this experiment, we set the threshold 

at 0.7. Considering the correlation analysis, the scan speed (base electrode) is eliminated 

from the laser fabrication parameters. The oxidation and Ti/oxidation ratio for the base 

electrode are eliminated based on the microcopy numerical results. Furthermore, the 

impedance at higher frequencies, as well as the real impedance at lower and higher 
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frequencies, are eliminated from electrochemical analysis. A low-dimensional training 

dataset 𝐷𝜖ℝ𝑛𝑥𝑚, consisting of the remaining variables is constructed, where m represents 

the number of features and n represents the number of samples. The remaining features are 

shown in Figure 3-8. 

 

Figure 3-8: Heatmap of a correlation matrix. The threshold is set to 0.7 and the 

feature above the threshold is eliminated from the dataset. 
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3.1.3.5 Electrochemical Behavior Prediction Using Regression Machine Learning 

Algorithms 

We present a large-scale empirical comparison of three typical learning algorithms 

available in the literature, particularly in the supercapacitor community, to evaluate their 

computing efficiency, accuracy, and applicability for design techniques in this section. 

Indeed, we make every effort to investigate the space parameters and common variations 

of each learning method as fully as computationally possible. The three learning algorithms 

used to predict the electrochemical behavior of the fabricated pseudocapacitor electrodes 

are RF, GPR, and ANN. Each learning method is developed in Python and executed on a 

laptop with a 2.59 GHz Intel Core i7-5600U CPU and 8 GB of RAM. This information is 

also included in the key resources table.   

3.1.3.5.1 Gaussian Process Regression for Electrochemical Behavior Prediction  

GPR is an efficient solution for estimating nonlinear functions when specifying parametric 

forms for unknown processes is problematic due to nonparametric modelling and 

probabilistic predictions [411]. The GP is generated by extending multivariate Gaussian 

distributions to infinite dimensions, which can be thought of as a distribution over functions 

and is used to characterize continuous functions. The Gaussian distribution is reflected in 

the appropriate probability distribution over function f(x) for any finite inputs as follows 

[411]:  

 𝑓(𝑥)~ 𝐺𝑃(𝑚(𝑥), 𝑘𝑓 (𝑥𝑖, 𝑥𝑗) (3-7) 

where the mean and covariance functions are represented by 𝑚(𝑥), and 

𝑘𝑓 (𝑥𝑖, 𝑥𝑗) respectively, and are expressed by, 

 𝑚(𝑥) = 𝐸(𝑓(𝑥)) (3-8) 
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 𝑘𝑓(𝑥𝑖, 𝑥𝑗) = 𝐸[(𝑓(𝑥𝑖) − 𝑚 (𝑥𝑖)) (𝑓(𝑥𝑗) − 𝑚 (𝑥𝑗))] (3- 9) 

Where E() is the expectation value, 𝑚(𝑥) is considered zero for the sake of simplicity,  and  

𝐾𝑓(𝑥𝑖, 𝑥𝑗) = 𝛿𝑓
2exp(

−(𝑥𝑖−𝑥𝑗)
2

2𝑙2
) is the radial basic kernel function (RBF) [412]. 𝛿𝑓 is the 

kernel function's amplitude, and l is the distance measure's length scale. The prior 

distribution of outputs z in our regression problem is as follows [411], 

 z ~ N (0, k(x, x′) + σn
2𝑙𝑛) (3-10) 

where N is the normal distribution, σn is the noise parameter, x,  and x′ are considered 

training and test set respectively. Thus,  y′ 𝑡ℎ𝑒 predicted output would mirror the joint prior 

distribution with the training output y [411], 

 [
𝑦

𝑦′] ~𝑁 (0, [
 k(x, x) + σn

2ln k(x, x′)

k(x, x′)𝑇 k(x′, x′)
] (3- 11) 

The covariance matrices between the training and testing sets are given in the preceding 

equation. Furthermore, the n points in the training phase are required to maximize the 

hyperparameters (𝜃) in the covariance function. An efficient optimization solution is to 

minimize the negative log marginal probability 𝐿(𝜃) [411]; 

 {
𝐿(𝜃) =

1

2
log[𝑑𝑒𝑡𝜆(𝜃)] +

1

2
𝑦𝑇𝜆−1(𝜃)𝑦 +

𝑛

2
log (2𝜋)

𝜆(𝜃) = 𝑘(𝜃) + 𝜎𝑛
2𝐼𝑛 

 (3- 12) 

Then the predicted  y′ is determined for x′ based on the corresponding conditional 

distribution as; 

 
𝑝(𝑦′|𝑥′, 𝑥, 𝑦)~𝑁(𝑦′|𝑦−′, 𝑐𝑜𝑣(𝑦′) 

 
(3- 13) 

Where,   

 {
𝑦−′ = 𝑘(𝑥, 𝑥′)𝑇[𝑘(𝑥, 𝑥) + 𝜎𝑛

2𝑙𝑛]
−1𝑦

𝑐𝑜𝑣(𝑦′) = 𝑘(𝑥′, 𝑥′) − 𝑘(𝑥, 𝑥′)𝑇[𝑘(𝑥, 𝑥) + 𝜎𝑛
2𝑙𝑛]

−1𝑘(𝑥, 𝑥′)
 (3- 14) 
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where 𝑦−′represents the associated forecast mean values, and 𝑐𝑜𝑣(𝑦′) is a variance matrix 

that represents the uncertainty range of these predictions [411]. 

3.1.3.5.2 Random Forest Regression for Electrochemical Behavior Prediction 

Random forest generates hundreds of distinct decision trees, each with its own regression 

function. The average of all decision tree outputs is the RF regression forecast from all 

trees. Classification and regression trees (CART) are a statistical model that can be used to 

address classification or regression predictive modeling problems [413]. Every decision 

tree has decision nodes and leaf nodes that evaluate each fed-in sample with a test function 

and route it to different branches based on the features. Assume the training dataset 𝑇𝐷 =

{(𝑋1, 𝑦1, … , (𝑋𝑛, 𝑦𝑛)}, for this regression problem, where n is the number of instances. The 

procedure for constructing the RF regression model is as follows, 

To execute RF regression, just two parameters must be changed: the number of trees and 

the number of random features for each split in the forest to build. Appendix A contains 

the Python code for random forest regression model building. 

3.1.3.5.3 Artificial Neural Network for Electrochemical Behavior Estimation  

An ANN regression model is developed in Python using a multilayer perceptron (MLP) 

with MLP Regressor from the Sci-kit learn library [412]. MLP, as shown in Figure 3-9, is 

Construction of Random Forest Regression [414]  

Step 1: The bootstrap approach is used to randomly select N samples from the entire 

dataset (TD), and N regression trees are formed; the out-of-bag (OOB) data that are not 

selected can be utilized as the testing set (which in our case did not happen) [415] .   

Step 2: Replace the sample obtained from Step1 (𝑧𝑛
𝑖 = 1,… , 𝐵). 

Step 3: Fit a tree based on the B, the results for each train i would be 𝑦𝑖
′ = 𝐺𝑖(𝑋, 𝑍𝑛

𝑖 ). 

Step 4: The outputs of all trees are then averaged to perform the aggregate. As a result, 

the output estimation 𝑦𝑖
′ can be determined by; 𝑦𝑖

′ =
1

𝐵
∑ 𝐺𝑖(𝑋, 𝑍𝑛

𝑖 )𝐵
𝑖=1 . 
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the most basic type of feed-forward network. The units are stacked in a series of layers, 

with each layer containing a number of identical units. MLP has fully connected neurons 

in each layer, each with its own weight. The first layer is the input layer, and its units take 

the input features' values. The final layer is the output layer, which contains one unit for 

each value that the network outputs. All of the layers in between are referred to as hidden 

layers. In our work, for example, the input layer has 12 features, 1 hidden layer, 64 neurons, 

and one output layer with one unit. The mean square error (MSE) is used to determine the 

loss function during training, as illustrated in the following equation [416];  

 
𝑀𝑆𝐸 =  

1

𝐾
  ∑(𝑦(𝑖) − 𝑦̂(𝑖))

2
𝐾

𝑖=1

 
(3-15) 

Where 𝑦(𝑖) present the experimental value, 𝑦̂(𝑖) is the estimated value and K is the number 

of data points. Due to its fast convergence and validation accuracy with big datasets, the 

Adam optimization algorithm is used for updating weights, and a constant learning rate of 

0.001 is used. The model is run over 400 epochs with a batch size of 16.  The following 

equation describes the hidden layer's output activation:  

 𝑣𝑗
𝑙 = 𝑓(∑(𝑤𝑗𝑖

𝑙 𝛼𝑖))

𝑗−1

𝑖=1

 (3-16) 

Where l is the hidden layer index, j is the number of neurons in the  lth hidden layer such 

that    𝑗 ∈ 𝑍+,  j-1 is the number of neurons in the (l-1)th hidden layer, and 𝛼 is the number 

of features for the layers. The activation function is denoted by f(.). We used the rectifier 

linear unit (ReLU) as the activation functions [417]. Also, the weight (𝑤𝑗𝑖
𝑙 ) between layers 
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are being randomly initialized. MPL modelling takes into account several phases, which 

are represented in seven steps: 

Appendix A contains the Python code for MLP model construction. 

 

Figure 3-9: Multi-Layer Perceptron with one hidden layer. 

3.1.3.6 Training and Test Sets  

 In general, we divided the dataset into training and testing sets. We utilize the training set 

to train the model and the testing set to validate the model. The dataset is randomly mixed 

and divided into 80% training and 20% test data (370 cycles for training and the remaining 

for validating). The training splits from each pseudocapacitor dataset are polled into a 

single dataset. The model's accuracy is then determined by evaluating its performance 

Construction of Multi-Layer Perceptron 

Step 1: Feeding normalized experimental data 

Step 2: Building the network 

Step 3: Configuring the network 

Step 4: Initializing the weights and biases 

Step 5: Training the network 

Step 6: Validating the network 

Step 7: Using the network 
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using an error metric. This approach, however, is not particularly accurate because our 

dataset is not very large, and it can be improved. As a result, we used K-fold CV by 

separating the data into folds and ensuring that each fold is used as a testing set at some 

time. In other words, the training data is divided into K equal-length segments, with each 

fold serving as a testing set at some point. Consider 10-fold cross-validation (K=10) as an 

example. The data set is divided into ten folds in this case. The model is trained 10 times 

in the first iteration, with one of the segments serving as the test set (validation set) and the 

rest as the training set. This procedure is repeated until each of the ten folds has served as 

the testing set. The resulting root mean squares error (RMSE) is then averaged, and the 

RMSE is determined as a result. 

3.1.3.7 Model Performance Metrics 

To evaluate the performance of the proposed models, we use the following criteria: root 

mean square error (RMSE) and coefficient of determination (R2). We use RMSE as a 

standard error-index and calculate it for both the expected and actual values. The RMSE's 

mathematical equation is as follows: 

 

𝑅𝑀𝑆𝐸 =  √ 
1

𝐾
  ∑(𝑦(𝑖) − 𝑦̂(𝑖))

2
𝐾

𝑖=1

 

(3- 17) 

   

Where 𝑦(𝑖) present the experimental value, 𝑦̂(𝑖) is the estimated value and K is the 

number of data points. R2 expresses the quality of fitting a regression model and ranges 
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from 0 to 1, the higher the R2, the better the model fits the dataset. R2 is close to 1 is 

better and close to 0 is worse  [416]. The following formula represented R2,  

 𝑅2 = 1 − 
∑ (𝑦̂(𝑖) − ȳ(𝑖)𝐾
𝑖=1

∑ 𝑦(𝑖) −𝐾
𝑖=1  ȳ(𝑖)

 (3- 18) 

Where 𝑦(𝑖) present the experimental value, 𝑦̂(𝑖) is the estimated value, ȳ(𝑖) is the mean 

value of all the data points, and K is the number of data points. 
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3.1.4 Optimization of Pseudocapacitors Electrode Fabrication Strategy  

8The aim of this section is to accomplish three objectives. The first objective is to generate 

a dataset from the experimental setup. The second objective involves utilizing the 

generated dataset to train an artificial neural network (ANN) model for forecasting the 

electrochemical behavior of pseudocapacitors fabricated through laser treatment. The final 

objective is to incorporate a meta-heuristic optimization algorithm, utilizing the trained 

ANN model, to determine the most optimal laser fabrication parameters. The dataset 

generation and preparation, the development of the model, and the optimization process 

are separated into four stages, as depicted in Figure 3-10. 

One of the objectives of this work was to theoretically predict the electrochemical 

performance of a pseudocapacitor fabricated using the ULPING method. To achieve this, 

an ANN model was constructed and optimized to predict the impedance (|Z|) and specific 

capacitance of the pseudocapacitor. The developed models provide new insights into the 

modeling and theoretical prediction of such pseudocapacitors. The MLP model was found 

to be effective in forecasting |Z| and specific capacitance, as demonstrated by the low error 

values (RMSE) obtained for this model.  

 

 

 

8 This section is based on a previously published article:  

Kavian Khosravinia, A. Kiani. “Optimizing the Operation Strategy of the ULPING 

Technique for Enhancing Capacitance of Supercapacitor Electrodes, using ANN and SA 

Algorithms", ACS Omega. The material is reproduced here with permission from the 

publisher, [American Chemical Society]. 
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3.1.4.1  Optimization Algorithm Selection   

In our approach, we use simulated annealing (SA) as an optimization algorithm to 

maximize the objective function of a trained MLP model. The MLP model is treated as a 

black box, and we aim to find the most optimal laser fabrication parameters by maximizing 

a specific capacitance value. In this section, we first discuss the rationale behind using the 

SA algorithm and then explain how we formulate the optimization problem using SA. 

 

 

 

                             

            

                      

               

                

     

   

   

    

     

   

    

    

                                    
                      

                
          

                                            

                    

                    

       
                        

   
                    

       

 

        

                     
                   

            
          
          

  

             

                        

                 
         

 
 
 
  
  
  
  
 
 

                           

        

 
 
 
 
 

   
 
 
 
 
  

 
 
   
  
 
  
 
 
 

 
  
 
  
 
 
 
 

              

 

Figure 3-10: The modeling and optimization process consist of four stages. Stage 1: involves 

the generation of a comprehensive dataset from the experimental setup, which includes 

information on laser fabrication parameters and results of electrochemical and microscopy 

analysis. Stage 2: the generated dataset is structured and prepared for the next stage. Stage 

3: ANN is built and trained on the dataset to forecast electrochemical performance 

measures, such as impedance and specific areal capacitance, of pseudocapacitors. Stage 4: 

the trained ANN is employed in a meta-heuristic optimization algorithm to identify the 

optimal laser fabrication parameters. 
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3.1.4.1.1 Simulated Annealing  

SA is a heuristic optimization algorithm that is based on the Monte Carlo search method 

and resembles the cooling process used for molten metals during annealing. SA typically 

starts with a random initialization, and the current state is then stochastically perturbed to 

reach a new state [418], [419]. In the case of molten metals, the internal energy (E) tends 

to decrease spontaneously, but higher internal energy levels can also be accepted with a 

certain probability. For optimization purposes, the internal energy can be regarded as the 

fitness function, and the mechanism for accepting the new solution is based on the 

Metropolis algorithm. The Metropolis algorithm dictates that the probability of accepting 

a new solution is related to the annealing temperature, which is given by equation (3-19). 

This equation shows that the probability of acceptance increases at higher temperatures, 

while at lower temperatures, the solution tends to remain unchanged [420], [421]. 

 

𝑃𝑖𝑗 = {

1                                     , 𝐸𝑗 < 𝐸𝑖

𝑒𝑥𝑝 (−
𝐸𝑗 − 𝐸𝑖

𝑇
)          , 𝐸𝑗 ≥ 𝐸𝑖

 

 

(3-19) 

The probability of accepting the current solution (𝑃𝑖𝑗) is determined by the Metropolis 

algorithm, where "i" represents the previous iteration, and "j" refers to the current iteration. 

The optimizing function is the internal energy (E), and the annealing temperature (T) 

determines the probability of accepting the new solution. The process involves several 

iterations to search for the optimal solution, and the temperature is gradually reduced at an 

extremely slow rate to ensure the precision of the solution. At the end of each iteration, 
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annealing takes place, and the annealing temperature is reduced using equation (3-20) 

[421], [422],  

 
𝑇𝐾+1 = 𝑇𝐾 ∗ 𝐾 

(3-20) 

where "K" represents the annealing rate. This is because slower annealing tends to provide 

better precision. The global search for a feasible solution depends on the number of 

iterations, which can be increased by using a higher annealing temperature and a slower 

cooling scheme. This approach can lead to better performance by allowing the algorithm 

to explore a wider range of solutions. Additionally, the independent initialization of the 

algorithm allows for a more comprehensive search for the optimal solution. 

3.1.4.1.2 Simulated Annealing Implementation for Laser Parameter Fabrication  

The SA method is implemented based on the laser fabrication parameters and the trained 

MLP model. In algorithm 1, the first step is to call the trained MLP function using a vector 

𝑥𝑛, which includes all eight laser fabrication parameters for asymmetric optimal design, 

and four laser fabrication parameters for symmetric optimal design. The SA algorithm 

recommends two sets of four laser parameters for asymmetric optimal design, which 

fabricate two different electrodes, and one set of laser fabrication parameters for symmetric 

optimal design, which fabricate both electrodes. 

Various parameters need to be initialized, including the initial temperature, the lower 

temperature limit, cooling schedule rate, the number of iterations, the objective function, 

and the initial solution (see Table 3-3). The cooling schedule rate should be moderate, as a 

too high rate can cause the algorithm to converge to a local optimal solution, while a too 

slow rate can result in a longer search time [423], [424]. After initializing the parameters, 



149 

 

the initial solution is evaluated using the objective function, which aims to maximize the 

specific areal capacitance (max 𝑓(𝑥𝑛)).  The difference between the current solution value 

and the previous accepted solution value is calculated, and if the difference is less than 

zero, the solution corresponding to the current function value is updated to the solution 

after the loop is solved [425]. If not, the solution corresponding to the current function 

value is updated to the solution after the loop with a certain probability [425]. This process 

will be repeated N times where N is the number of iterations in each temperature. The 

current temperature is updated using the cooling schedule rate after each cycle until the 

end of the cycle, and the optimal solution is obtained at the end of the cycle. Lastly, the SA 

algorithm recommended eight different laser fabrication parameters for asymmetric 

optimal design and four different laser fabrication parameters for symmetric optimal 

design, which can be found in Table 3-4. 

 

Table 3-3. SA parameters for optimal electrode design. 

Parameters Description Value 

𝑇𝑚𝑎𝑥  initial temperature 1000 

𝑇𝑚𝑖𝑛  lower temperature limit 0.001 

𝐾 Cooling schedule 0.9 

𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 Iterations per temperature 1000 
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Table 3-4. SA optimal laser fabrication parameters for electrode design. 

Optimal 

Solutions 

Base Electrode Changing Electrode 

Power 

(W) 

Frequency 

(KHz) 

Pulse 

Duration 

(ns) 

Scan 

Speed 

(mm/s) 

Power 

(W) 

Frequency 

(KHz) 

Pulse 

Duration 

(ns) 

Scan 

Speed 

(mm/s) 

Asymmetric 

(OPT-ASY) 

13 100 2 5 17 600 1 290 

Symmetric 

(OPT-

SYM) 

20 600 1 10 20 600 1 10 

  

Algorithm 1: SA for Optimal Electrode Design 

1: 𝑓(𝑥𝑛);  𝑥𝑛 = {𝑥1, 𝑥2, 𝑥3𝑥4𝑥5𝑥6𝑥7,𝑥8} Call the MLP function based on the 

input laser parameters (power, 

frequency, pulse duration, and scan 

speed). 

2: 𝑇 =  𝑇𝑚𝑎𝑥 ; 
𝐾 = 0.9; 
N =1000; 

set the initialization of all parameters, 

including temperature T, iteration N, 

cooling rate K.  

3: 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑟𝑎𝑛𝑑 (𝑥𝑛); Random initial solution. 

4: 𝑓(𝑥𝑛)  → 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑟𝑒𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒   
 𝑓(𝑥𝑛) 

The initial solution is evaluated using 

the objective function. 

5: While 𝑇 >  𝑇𝑚𝑎𝑥  Verify the temperature of the outer 

loop. 

6: N = 1:1000  
    𝑥𝑛,𝑛𝑒𝑤 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 (𝑥𝑛) 

 

Change one parameter in 𝑥𝑛 in the 

constraint range (Range of parameters 

when have limits based on other 

parameters)   

7: Evaluate: 

𝑓(𝑥𝑛,𝑛𝑒𝑤) 

if  𝑓(𝑥𝑛,𝑛𝑒𝑤) >  𝑓(𝑥𝑛) accept  

 

Calculate change of energy level.  

Integrating the solution for 

improvement. 

else {
𝑥𝑟𝑒𝑗

𝒊𝒇  𝑒−{𝑓(𝑥𝑛)−  𝑓(𝑥𝑛,𝑛𝑒𝑤)   < 𝑟𝑎𝑛𝑑 (0,1)
 

end 

 

Acceptance with probability function. 

𝑇 = 𝑇 ∗ 𝐾 Reduce the temperature 

if     T < Tmin  

end 

End of optimization 
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3.2 Operational Phase: Method Details 

3.2.1 Section Overview (Anode Potential Prediction for Lithium Plating Mitigation) 

9 One of the primary limitations of EVs today is the lengthy recharging time of  LiBs, 

which can take several hours compared to the 3-7 minute refueling time of the gas-fueled 

car [426]. Therefore, the US Department of Energy's current goal is to increase charging 

speed by offering extreme fast charging (XFC), which allows an electric vehicle to 

recharge to 80 percent of full capacity in less than 15 minutes [427]. A minimum of 300 

kW charging power is necessary to achieve the 15-minute recharge time for a big battery 

pack size (for example, >90 kWh) [428]. 

However, reaching extreme fast charging is often failed due to the increased formation of 

anodic lithium deposits or lithium plating in the LiB community [429]. During ideal 

charging conditions, the potential of lithium intercalation into graphite is in the range of 

65-200 mV vs. Li+/Li0 potential and no lithium plating occurs at this level as shown in 

Figure 3-11 (b) [429]. During harsh charging conditions, however, charge transfer kinetics 

in the electrolyte and solid-state diffusion are hindered, causing anode potential to fall 

below the potential of lithium metal and causing lithium plating to occur (Figure 3-11 (a)) 

[429]. While some of the plated lithium can be stripped reversibly, the remainder 

(irreversible portion) can react with the electrolyte to form a secondary solid electrolyte 

 

9 This section is based on a previously published article:  

Kavian Khosravinia, X. Lin. "Toward Enhanced Anode Potential Prediction of Lithium-

ion Batteries: Using Optimized Ensemble Selection Approach for Lithium Plating 

Mitigation", Journal of The Electrochemical Society. The material is reproduced here with 

permission from the publisher, [IOPSCIENCE]. 



152 

 

interphase (SEI) layer [227]. It can also form a high-impedance "dead" lithium film that is 

electrically isolated from the graphite anode and remains irreversible, increasing the 

internal resistance and also decreasing the energy density [295].  The irreversible portion 

contributes to capacity fading through the loss of lithium inventory (LLI), whereas the fully 

reversible portion does not contribute to capacity fading [217], [218]. In severe 

circumstances, the accumulated lithium might also form dendrites, which can develop and 

permeate the separator.  

 

Figure 3-11: (a) Schematic of lithium plating on the graphite anode electrode. The primary SEI 

layer (yellow color) is formed at the anode surface during the first charge of the cell to protect the 

electrode. Because the primary SEI layer prevents electrons from making direct contact with the 

electrolyte, metallic lithium (red color) is deposited between the primary SEI layer and graphite 

particles. (b) Charge curve of graphite anode potential, X-axis shows the state of lithiation, and the 

Y-axis shows the anode potential [375].   

Detection of lithium plating is not straightforward, and often only indirect proof is given 

through the aging behavior, the discharged cell voltage, or post-mortem analysis. On the 

other hand, there are several methods for directly detecting lithium plating, such as physical 

characterization approaches for both surface morphologies and chemistry, which are 

extensively employed in fundamental studies. They can provide a detailed understanding 

of the lithium plating process in the laboratory, but not a mechanistic understanding, and 

they are not practical in actual engineering applications (EV applications) [342]. As 
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mentioned earlier, lithium plating occurs when the anode potential drops below 0 V (vs. 

Li+/Li0), and measuring/estimating the anode potential, Eanode, (vs.  Li+/Li0) could give 

direct proof of the lithium plating. The lower the anode potential, the higher the lithium 

plating rate. Therefore, real-time prediction of anode potential is the first step to preventing 

lithium plating. The anode potential must be accurately monitored in real-time during fast 

charging to prevent lithium plating. 

Therefore, the measurement/estimation of the anode potential as an effective and direct 

evidence approach to detecting lithium plating has garnered a lot of interest in the literature. 

Anode potential measurement/estimation of LiBs is commonly predicted using three 

methods, namely, direct measurement, electrochemical models (physics-based model) 

estimation, and data-driven methods.  

The first of these methods often make use of a third reference electrode (RE) as a measuring 

device to directly measure the anode potential [430]. The anode potential can be measured 

by inserting the RE into the cell using a certain setup (machinery). It is impossible to 

overestimate the importance of RE materials and cell designs in the insertion process. 

Several studies have been carried out to demonstrate how to construct and incorporate the 

RE into LiBs, as well as where the best position for the RE is to reduce ohmic drop while 

improving measurement accuracy [431], [432]. Waldmann et al. [235] used a novel 

technique by positioning the RE near the anode's current collecting tab, which has a higher 

current density. Due to the limited diffusivity of lithium-ions in graphite at low 

temperatures and high SOC, they discovered that lithium-ions begin to accumulate near the 
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anode interface. Nonetheless, due to safety concerns, RE has yet to be used in any 

commercial cells or real-time LiB applications for measuring electrochemical properties.  

Electrochemical models offer another method for estimating the anode potential, as they 

can cover both the particle and cell levels of a lithium-ion cell and simulate the anode 

potential. Ge et al. [243] investigated lithium plating at low temperatures using Newman's 

electrochemical model, also known as a pseudo-two-dimensional (P2D) model. They split 

the overall electrochemical reaction current density into two parts: lithium intercalation 

current and lithium deposition current, which could both be described by the Butler-Volmer 

equation. They discovered that during low-temperature charging, when the overpotential 

is minimal, lithium ions begin to collect at the anode-separator interface and eventually 

move inside the anode electrode [243]. However, the model validation was done with only 

a few data points. Tang et al. [377] also presented a P2D model to investigate lithium 

plating during cell charging. They discovered that increasing the thickness of the negative 

electrode can hinder lithium deposition, particularly around the electrode's edge. Another 

interesting approach by Tipmann et al. [376] also built a P2D electrochemical model 

combined with a 0D thermal model for operation at low temperatures in order to anticipate 

the aging effects throughout a range of temperatures (-25 °C to 40 °C) and currents (0.1 C 

to 6 C). They used COMSOL to run the simulation and compared the obtained results to 

EIS experiments.  

However, in all the previous investigations, both practical and theoretical concerns make 

developing a proper model for LiB anode potential estimation challenging. From a practical 

point of view, the model-based anode potential estimation model requires extensive study, 
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laborious experiments, and a lengthy timeframe. On the theoretical side, model-based 

anode potential estimation approaches rely on an extensive understanding of battery 

chemistry, physics, and chemical reactions, which is made up of many complex 

mathematical equations, complicating the battery model development and parameter 

estimation. As a result, due to both practical and theoretical considerations, the integration 

of these models into battery management systems (BMS) is not advised, making it 

impractical for use in real-time control tasks. 

Recently, to overcome the drawbacks of the above approaches, data-driven methods have 

been gaining remarkable attention as machine learning techniques rapidly advance. The 

machine learning-based anode potential estimation algorithms make use of a mass of data 

and powerful models to estimate the anode potential with little prior knowledge of battery 

internal characteristics and chemical reactions. Hence it can be the ideal solution to address 

the complex and nonlinear characteristics of LiBs. In a recent paper, we proposed a data-

driven approach that utilizes the long short-term memory (LSTM) architecture to estimate 

the anode potential in real-time for lithium plating prevention [375]. The LSTM model can 

complete the entire test within 87 s whilst it takes the physics-based model about 7.44 h 

[375]. Another data-driven method based on a common machine learning technique was 

proposed in [433], where the authors used linear regression and random forest techniques 

to develop a prediction model. They used a P2D model as a benchmark to validate their 

findings (the random forests model reduces the root mean square error to 2.6 mV). 

However, they did not consider driving charging profiles in their study which may decrease 

their model accuracy.  
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Based on these two studies, we can conclude that data-driven approaches can predict the 

fundamental characteristics of battery aging without requiring knowledge of the 

electrochemical principles of the battery, and thus are easier to implement, computationally 

inexpensive, and less complex than model-based methods. Nevertheless, the accuracy and 

performance of data-driven techniques are heavily reliant on the quality and quantity of 

data, as an unbalanced dataset leads to overfitting and underfitting problems. Furthermore, 

selecting hyperparameters for machine technique algorithms through ineffective trial and 

error increases computing complexity, such as poor training speed and data fitting 

difficulty, resulting in inadequate anode potential results. On the other hand, the data-

driven anode potential estimation has not been investigated thoroughly to examine and 

introduce a proper regression algorithm for anode potential estimation where it could be 

computationally efficient and accurate enough to be suitable for online implementation. 

Therefore, a large-scale empirical evaluation of four supervised learning methods and their 

optimal combination not only resolves the computational burden of machine technique 

algorithms but also produces great results in LiBs anode potential estimation.  

In this section, I present a new method for accurate anode potential estimation using an 

optimized ensemble selection approach. The goal of this approach is to combine several 

models in order to improve the prediction accuracy in regression applications. The results 

reveal that the developed approach is accurate and resilient since it can estimate anode 

potential under a variety of operating conditions.  
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3.2.2 Experimental Setup for Anode Potential Prediction  

The anode potential is a key signal in this study due to its direct relationship to lithium 

plating. As previously stated, obtaining anode potential from a lithium-ion cell is not as 

simple as determining other measurable cell parameters such as voltage, current, and 

temperature. This section explains how a physics-based model with thermal dynamics can 

determine the anode potential by mimicking the cell behavior. As shown in Figure 3-12, 

the dataset generation procedure is divided into three stages, which are detailed in the 

following subsections.  

3.2.2.1  Data Acquisition from Experimental Setup  

A commercial cylindrical cell LG INR18650F1L (high-energy-density) cell is used in this 

study. This battery has a minimum capacity of 3.35 Ah, a voltage range of 3.6 V – 4.2 V, 

and a maximum specified charging rate of 0.5C. The anode and cathode of this cell are 

made of graphite and Lithium Nickel Manganese Cobalt Oxide (NMC), respectively. The 

LG INR18650F1L is connected to a Neware battery test device (Neware CT-22), and an 

infrared thermometer MLX90614 is mounted to the battery holder and is used to monitor 

the surface temperature of the test battery cell.  Multiple experiments, including 0.1C, 0.5C, 

1C, and 2C charging cycles, were conducted using the constant current-constant voltage 

(CC-CV) charging protocol.  

According to the literature, however, in the constant voltage phase, the anode potential 

does not decrease [434]. As a result, the constant voltage phase was ignored in this study. 

The experimental data, which included current, voltage, and surface temperature 

measurements, were recorded every second and stored in the host computer. 
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3.2.2.2  Physics-Based Model Parameterization for Anode Potential Prediction 

In the second stage, a physics-based model with electrochemical and thermal dynamics is 

used to mimic cell behavior and to provide the dataset needed for further processing. The 

anode potential is calculated using a high-fidelity model that was developed in our prior 

work [221] but tuned for the current cell chemistry. For the sake of simplicity, the anode 

potential computation process using a physics-based model (COMSOL) is shown in Figure 

3-13. The first step is to safely open the battery to be modeled after a full discharge and 

perform internal cell measurements (see Figure 3-14). Cell parameters that could not be 

measured directly were found in the literature. Meanwhile, cell identification data such as 

voltage, current, and temperature are recorded at various C-rates (data captured in stage 1). 

The data is then compared to the model's simulation results to validate its performance. 

The predicted voltage and surface temperature responses are compared to experimental 

data (data captured in stage 1) in Figure 3-15 (A and B). The Root Mean Square Error 

(RMSE) of the voltage and the temperature are, respectively, 19.8 mV and 0.38°C. The 

tunable parameters were manually modified (a selection is shown in Table 3-5) until a user-

defined RMSE was reached on all C-rates. After the model validation was finished, 

recorded current profiles from experiments at various C-rates (0.1C, 0.5C, 1C, 2C) and EV 

driving current profiles (UDDS, HWFET, US06, US06-HWY, MANHATTAN, NYCC, 

WVUSUB, and EUDC) with different initial SOCs (0.35-0.90) are used as inputs. Note 

that the EV driving current profiles are generated from an electric vehicle with a mass of 

1254 kg driving through multiple driving cycles. The EV driving current profiles have been 

scaled to match the LG INR18650 F1L battery. Finally, the anode potential was determined 

using the physics-based model at various C-rates.   
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Table 3-5. Battery model parameters. 

 

Parameter Name Anode 

Electrode 

Separator Cathode 

Electrode 

Electrode Thickness (m) 68.3 × 10−6  13.1 × 10−6 34.7 × 10−6 
Particle radius ((m) 5.15 × 10−6  1.8 × 10−6 

Active Material Volumetric Fraction 𝜀1 0.8876  0.9714 
Max. solid-phase Concentration 

𝑐𝑖,𝑚𝑎𝑥 (𝑚𝑜𝑙 𝑚
−3) 

30000  50000 

Charge transfer Coefficient 𝛼𝑎 , 𝛼𝑐 0.5  0.5 

Figure 3-12: Experiment setup and data generation steps based on a physics-based model. Stage 1: 

data acquisition from experimental setup (CCCV charging protocol was used). Stage 2: physics-

based-model parameterization (CC phase was extracted and used as input for the model). 

Stage 3: final dataset for use in data-driven approaches.      
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Figure 3-13: Flowchart for anode potential prediction through physics-based model 

(COMSOL). 
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Figure 3-14: Disassembly of an 18650 cell and internal measurements. 
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Figure 3-15: (A) Voltage comparison between model prediction and experimental data. (B) Surface 

temperature comparison between model prediction and experimental data. 
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3.2.2.2.1 Physics-Based Battery and Thermal Model Theories  

This study's battery model is comprised of an electrochemical model and a two-state 

thermal model (Figure 3-12). In this study, a commercial cylindrical cell LG INR18650 

F1L is used. One of the elements described by the model is the charge-transfer-kinetic 

(Butler-Volmer equation) of the cell shown in Figure 3-16 (Eqn. (10)). The expression 

considers the influence of the overpotential 𝜂 (see the relationship with anode potential in 

Eqn. (12)) on the cell's local reaction current 𝑗𝑙𝑜𝑐, as well as other constants such as the 

charge transfer coefficients for the anode and cathode materials 𝑎𝑎, 𝑎𝑐. 𝑎𝑠 is the active 

surface area per unit volume, 𝑖0 is the exchange current density, 𝑅𝑆𝐸𝐼is the resistance due 

to the SEI layer and 𝐹 is Faraday's constant.  The anode potential vs.  Li+/Li0, abbreviated 

as the anode potential (𝜙), is calculated by comparing the solid phase potential of the anode 

(Φ1) to the solution phase potential of the surrounding electrolyte (Φ2) as measured by an 

inserted lithium metal. The anode potential and overpotential relationship is shown in Eqn. 

12 in Figure 3-16, where  𝑈1 is the anode's open circuit potential and 𝜙 =  Φ1 −Φ2. We 

attempted to simplify the model description by summarizing all the mathematical equations 

and their relationships in Figure 3-16. More information, however, can be found in our 

previous publications and these references [372], [375], [435].  
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3.2.2.3 Anode Potential Dataset for Machine Learning Algorithms 

The experimentally validated physics-based model was used to generate a large amount of 

data at various C-rates and EV driving current profiles. The following variables were 

recorded: voltage 𝑉(𝑡), surface temperature 𝑇𝑠(𝑡), current 𝐼(𝑡), anode electrode potential 

Figure 3-16: A Model-based Approach for Lithium Plating Detection. 
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𝜙(𝑡), state of charge 𝑆𝑂𝐶(𝑡), time (𝑡), and generated heat 𝑄(t). The recorded data is the 

final raw dataset from the experimentally validated physics-based model and is ready for 

further processing for usage in the data-driven approach.  

3.2.3 Anode Potential Dataset Preparation for Machine Learning Algorithms 

Input features are crucial to the accuracy and robustness of all ML algorithms. Hence, 

applying an appropriate data pre-processing strategy is beneficial to the prediction accuracy 

of a supervised ML algorithms [406], [407]. The data pre-processing strategy used is 

represented in Figure 3-17, which includes anode potential dataset (input dataset), data 

cleaning/transformation (removing outliers, filling missing values, time-domain 

synchronization, and normalizing), correlation analysis, and feature subset selection. The 

developed data pre-processing strategy generated a complete and clean dataset that was 

free of irrelevant features for estimating anode potential.  

The variables generated from the experimentally validated physics-based model are used 

as inputs for the data-driven models. The raw dataset, however, must be cleaned and 

structured before it can be used to develop and train machine learning models. The dataset 

preparation for data-driven techniques is described in the following section (see Figure 3-

17). 

3.2.3.1 Data Cleaning and Transformation 

The process of correcting or removing inaccurate, incomplete, or duplicate data within a 

dataset is referred to as data cleaning. This procedure primarily consists of but is not limited 

to, removing outliers, filling missing values, and time-domain synchronization.  
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Outliers can cause issues with certain types of models due to large values throwing up the 

outputted prediction and removing them generally improves the model’s performance. 

Outliers that fall outside of the normal data range or have extremely low probability are 

removed from the raw dataset.  

The missing values due to the error of the sampling system is an unavoidable problem in 

the experimental process. The missing values can be filled using many statistical 

approaches depending on the dataset, where we used the statistical mean method to fill the 

missing values in the raw dataset. The time-based interpolation approach is used to 

synchronize all of the data based on the timestamp of each dataset (Figure 3-17) [406]. 

There is frequently a considerable gap between the maximum and minimum values inside 

a feature.  

When normalization is conducted, the magnitudes of the values are scaled to significantly 

low values. Data normalization can improve the pace of convergence and reduce the 

Figure 3-17: Anode Potential Dataset Preparation for Machine Learning Algorithms (lithium 

plating mitigation). 
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negative effect of data redundancy (Figure 3-17). The input dataset in this investigation 

was normalized to the range [-1, 1], as represented in the following equation, 

 𝑥′ = 
(𝑥 − 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (3-21) 

where 𝑥𝑚𝑎𝑥 is the maximum value, and 𝑥𝑚𝑖𝑛 is the minimum value of input vector x. 

3.2.3.2 Correlation Analysis  

We used the common statistical approach known as Pearson's correlation coefficient 

analysis to calculate the correlation between the input and the output variables. Pearson’s 

correlation coefficient (r) summarizes the strength of the linear link between two data 

samples. It can express the correlation between each attribute and the output variable 

(anode potential) and choose only those characteristics with a moderate-to-high positive or 

negative correlation (near -1 or 1) while discarding those with a low correlation (value 

close to 0). Generally, the higher the correlation between the input features and the output 

of a data-driven model, the better the model's accuracy. Pearson’s correlation coefficient’s 

formula is as follows [410],  

 𝑟 =  
Σi=1
N (𝑥𝑖 − 𝑥̅ )(𝑦𝑖 − 𝑦̅ )

(𝑁 − 1)𝜎𝑋 𝜎𝑌
 (3-22) 

Where 𝑁 is the number of samples, i is the index within the sample set, 𝑥̅ and 𝑦̅ are their 

average values, and 𝜎 is the standard deviation defined by [433],  

  𝜎 =  √
Σi=1
𝑁 (𝑥𝑖 − 𝑥̅ )2

(𝑁 − 1)
  (3-23) 

The mean and standard deviation implies that the two data samples must have a Gaussian 

or Gaussian-like distribution. The correlation coefficient, which is the result of the 

calculation, can be analyzed to better understand the relationship (Table 3-6). Based on the 
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last column of the Table 2, the variables with the highest correlation to the anode potential 

are: current (𝑟 = -0.98), voltage (𝑟 = -0.87), generated heat (𝑟 = 0.54), surface temperature 

(𝑟 = -0.15), and SOC (𝑟 = -014). A few trends can be seen by plotting the variables from 

the dataset against the anode potential (see Figure 3-18), such as a quadratic relationship 

between the generated heat to the anode potential. 

 

Table 3-6. Pearson correlation coefficient between the input variables vs output variables. 

 Voltage SOC Generated 

Heat 

Surface 

Temperature 

Current Anode 

Potential 

Voltage 1.00000 0.605207 -0.452091 0.058226 0.799753 -0.872705 

SOC 0.605207 1.00000 -0.016814 -0.119350 0.014133 -0.147484 

Generated 

Heat 

-0.452091 -0.016814 1.00000 -0.086703 -0.572239 0.541186 

Surface 

Temperature 

0.058226 -0.119350 -0.086703 1.00000 0.164145 -0.158255 

Current 0.799753 0.014133 -0.572239 0.164145 1.00000 -0.987867 

Anode 

Potential 

-0.872705 -0.147484 0.541186 -0.158255 -0.987867 1.00000 

 

3.2.3.3 Feature Subset Selection  

To achieve a compacted dataset, a data dimensionality reduction approach must be applied. 

One of the common methods to detect and remove redundant and irrelevant features is the 

feature subset selection approach [409]. The feature subset selection can be divided into 

two types, wrapper-based, which was used in this study, and filter-based [436]. This 

technique employs a learning algorithm as a base learner and evaluates the algorithm's 

performance on a dataset with various subsets of attributes selected. In our example, we 

used the most common regression algorithms, which include linear regression, support 

vector regression (SVR), random forests regression (RF), and gaussian process regression 

(GPR), all of which may consider both linear and non-linear variables. The wrapper 
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method, as illustrated in Figure 3-17, is based on a simple concept in which the learning 

algorithm is regarded as a black box. The feature subset selection method searches for a 

good subset by including the learning algorithm in the evaluation function. The wrapper 

method searches the space of possible parameters. A state space, an initial state, a 

termination condition, and a search technique are all required for a search. Since hill-

climbing and best-first search are common search strategies, we employed hill-climbing in 

this paper. The accuracy estimation algorithm (RMSE) is used to estimate the accuracy of 

the learning algorithm. The learning algorithm is applied to the dataset, which is often 

partitioned into internal training and holdout sets with different sets of features removed. 

The feature subset with the highest evaluation is chosen as the final set on which to conduct 

the learning algorithm. Considering the feature subset selection method and correlation 

analysis and based on the findings that the random forest algorithm performs the best, a 

low-dimensional training dataset  𝐷𝜖ℝ𝑁𝑥𝑚, consisting of four variables, namely, the 

voltage, the surface temperature, the current, and the SOC can be obtained, where m 

represents the number of features and N represents the number of samples. 
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3.2.3.4 Training and Testing Dataset  

As illustrated in Figure 3-19, the dataset is separated into two subsets: training and testing. 

The prepared data from four different driving cycles, namely, US06, US06-HWY, 

HWFET, and UDDS (with varied sets of initial SOCs ranging from 0.4 to 0.90), and 

constant charging profiles are concatenated to generate the training data stream. This 

procedure generates a large amount of data, which will cover the battery conditions under 

various operating circumstances and assist in providing a more accurate model. The test 

Figure 3-18: Illustration of pairwise relationships for the dataset features, and the diagonal plots 

show the distribution of features in the dataset. 
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data stream is formed by four separate driving cycles: EUDC, NYCC, MANHATTAN, 

and WVUSUB, each with a different set of initial SOCs ranging from 0.35 to 0.85. Unlike 

the training data which concatenates all the data from different current profiles to form a 

long training data stream, the test data for each driving profile remains separate.   

3.2.4 Machine Learning for Anode Potential Prediction   

3.2.4.1 Anode Potential Estimation Based on Regression Machine Learning 

Algorithms  

In this section, we present a large-scale empirical comparison of four common supervised 

learning algorithms found in the literature, particularly in the battery community, to 

evaluate their computational efficiency, accuracy, and suitability for online 

implementation. Indeed, we attempt to explore the space parameters and common 

variations for each learning algorithm as thoroughly as is computationally feasible. All of 

the four learning algorithms (linear regression, RF, SVR, and GPR) were fit on the training 

dataset and tested with four different driving cycles. Each learning algorithm is 

Figure 3-19: Training and Test Data Splitting. 
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implemented using Python and WEKA data mining tools on a laptop with a 2.59 GHz Intel 

Core i7-5600U CPU and 8 GB of internal memory.  

3.2.4.1.1 Linear Regression Model for Anode Potential Estimation:  

The concept behind the linear regression is to represent the class (anode potential (𝜙)) as 

a linear combination of properties with predefined weights [417]: 

 𝑦 = 𝑤0 + 𝑤1𝑑1 + 𝑤2𝑑2 +⋯+𝑤𝑘𝑑𝑘   (3-24) 

where 𝑦 is the class, 𝑑1, . . 𝑑𝑘 are the attribute values (current, voltage, and SOC) and 

𝑤0, …𝑤𝑘 are weights. Therefore, the predicted value (estimated anode potential) for the 

first instance's class can be expressed as,  

 𝑤0𝑑0
(1)

+𝑤1𝑑1
(1)

+ 𝑤2𝑑2
(1)

+⋯+𝑤𝑘𝑑𝑘
(1) = ∑𝑤𝑗𝑑𝑗

1

𝑘

𝑗=0

 (3-24) 

Where the superscript (1) denotes that it is the first instance. The least-squares linear 

regression method involves selecting the coefficients 𝑤𝑗 in order to minimize the sum of 

the squares of these differences throughout all training datasets. Assume there are 𝑛 

training instances: use a superscript to indicate the 𝑖𝑡ℎ one (𝑖). The difference is thus the 

sum of the squares of the differences [417];  

 
∑(𝑦𝑖
𝑛

𝑖=1

−∑𝑤𝑗𝑑𝑗
𝑖)2

𝑘

𝑗=0

 

 

(3-25) 

where the expression inside the parentheses represents the difference between the actual 

class of the 𝑖𝑡ℎ instance and its predicted class. We should minimize this sum of squares 

by choosing optimal coefficients. Overfitting occurs when a model learns the details and 

noise of the training data too accurately to the point where it negatively impacts the 
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performance of the model on new data. In order to reduce the overfitting in the linear 

regression model, a regularization term is added,  

 ∑(𝑦𝑖
𝑛

𝑖=1

−∑𝑤𝑗𝑑𝑗
𝑖)2 +  𝜆 ∑ (𝑤𝑗𝑑𝑗

𝑖)2
𝑛

𝑖,𝑗=1

𝑘

𝑗=0

 (3-26) 

Where 𝜆 is the regularization coefficient, which indeed controls the degree of 

regularization[417]. This stops the model from putting too much weight on specific training 

instances by assigning them big coefficients unless this results in a proportionally large 

drop in error. The final equation has the following regression coefficient fits; 

 
𝜙 = −0.2404 × 𝑉 + 0.102 × 𝑆𝑂𝐶 + (−0.005 × 𝑇𝑠) + (−0.0048 × 𝐼)

+ 0.9946 
(3-27) 

3.2.4.1.2 Support Vector Regression for Anode Potential Estimation:  

SVR is first applied to linear regression issues and can also deal with nonlinear regression 

problems after introducing the kernel trick. 𝜀-SVR is a common SVR model in the 

literature that uses limited training set D= {(𝑥𝑖, 𝑦𝑖)}| 𝑖 = 1, 2, … . 𝑙}, (𝑥𝑖𝜖𝑅
𝑛 is an n-

dimensional sample input and 𝑦𝑖𝜖𝑅 is a sample output). In the event of nonlinearity in the 

training sample, SVR transforms space nonlinear problems to linear problems in a high-

dimensional space using a nonlinear mapping and substitutes the inner product of the 

sample vector with kernel function 𝐾(𝑥𝑖, 𝑥𝑗). As a result, the specific implementation of 

the method of the SVR is as follows [437], 

 𝑓(𝑥) = (𝑤 × 𝑓(𝑥)) + 𝑏. 𝐹 (3-28) 

Where 𝑓(𝑥) is the prediction function (anode potential (𝜙)), 𝑤 is the weight, and b is the 

deviation value. It should be noted that the sample points are distributed independently and 

identically [437].  
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Outside of the training sample collection, optimal solutions 𝑤 and b for an unknown value 

x could be identified, resulting in |𝑓(𝑥) − (𝑤 .  𝑥) − 𝑏| ≤ 𝜀. The problem is similar to 

attempting to solve the following optimization problem, 

 min
𝑤,𝑏

∅  (𝑥) =  
1

2
||𝑤||

2
=
1

2
(𝑤.𝑤) (3-29) 

 

 Subject to {
𝑦𝑖 − ((𝑤. 𝑥) + 𝑏) ≤ 𝜀

((𝑤. 𝑥) + 𝑏 − 𝑦𝑖 ≤ 𝜀
  i=1, 2,...l (3-30) 

 

Where 𝜀 > 0 is the insensitive loss function. If the sample data problem's 𝑓(𝑥) cannot be 

computed with confidence 𝜀 while importing slack variables 𝜉 and 𝜉 ̂, the problem can be 

converted into [437], 

 min
𝑤,𝑏,𝜉,𝜉

∅  (𝑥) =  
1

2
||𝑤||

2
+ 𝐶∑(𝜉 + 𝜉 ̂)

𝑙

𝑖=1

 (3-31) 

 Subject to {

𝑦𝑖 − ((𝑤. 𝑥𝑖) + 𝑏) ≤ 𝜀 + 𝜉𝑖

((𝑤. 𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
̂         𝑖 = 1, 2, . . . 𝑙

𝜉𝑖, 𝜉𝑖
̂ ≥ 0

 (3-32) 

Where C> 0 is the punishment quantity, and the severity of the penalty varies with the 

degree of 𝜀. To convert the minimization problem into a dual problem, the Lagrangian 

function is used [437],  

 

𝑚𝑎𝑥𝑄(𝑎𝑖 − 𝑎̂𝑖) = −
1

2
 ∑ (𝑎𝑖 − 𝑎̂𝑖)

𝑙

𝑖,𝑗=1

(𝑎𝑖 − 𝑎̂𝑖)(𝑥𝑖 .  𝑥𝑗) −  

𝜀 ∑(𝑎𝑖 + 𝑎̂𝑖) +∑𝑥𝑖(𝑎𝑖 − 𝑎̂𝑖)

𝑙

𝑖=1

𝑙

𝑖=1

 

 

(3-33) 
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 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
∑(𝑎𝑖 − 𝑎̂𝑖) = 0

𝑙

𝑖=1

𝑎𝑖 , 𝑎̂𝑖 𝜖 [0, 𝐶],      𝑖 = 1,2, … 𝑙

 (3-34) 

 

Therefore, the SVR model for nonlinear regression is as follows,  

 𝑓(𝑥) =∑(𝑎𝑖 − 𝑎̂𝑖)𝐾(𝑥𝑖

𝑙

𝑖=1

, 𝑥) + 𝑏 (3-35) 

Where 𝑓(𝑥) is the predicted anode potential (𝜙),  𝐾(𝑥𝑖 − 𝑥 ) = exp(−
||𝑥𝑖−𝑥||

2

𝛿2
) is the radial 

basic kernel function (RBF), and  𝛿 is the width of the function parameters[437]. The SVR 

model has three hyper-parameters (C, 𝜀, 𝛿 ) based on the above equations. The WEKA 

tool's grid search approach is used to identify the values of these hyper-parameters. 

Three evaluation criteria are used to assess the performance of the proposed models: root 

mean square error (RMSE), anode potential prediction error, and model training time. We 

adopted the RMSE as a representative error index, where it was calculated for the predicted 

values against simulation values using four different test-driving cycles. Each test dataset 

contains a different set of initial SOCs; in our case, we consider 35% SOC to be the lowest 

value, 65% SOC to be the average value, and 85% to be the maximum value, in order to 

cover most battery operation circumstances. The mathematical equation of the RMSE is 

expressed as follows:  

 𝑅𝑀𝑆𝐸 =  √ 
1

𝑁
  ∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑁

𝑖=1

 (3-36) 
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Where 𝑦𝑖 present the simulated anode potential, 𝑦𝑖̂ is the estimated value and N is the 

number of samples and i is the measurement index.  

The anode potential prediction error is used to evaluate the prediction accuracy,  

 𝐴𝑛𝑜𝑑𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑒𝑟𝑟𝑜𝑟 = 𝐴𝑛𝑜𝑑𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝐴𝑛𝑜𝑑𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑟𝑒𝑎𝑙 (3-37) 

 

𝑇𝑖𝑚𝑒𝑡𝑟 is the model training time and is used to evaluate modeling efficiency.  

3.2.5  Optimized Ensemble Selection for Anode Potential Prediction  

This section describes how to develop an optimized ensemble selection model for anode 

potential estimation. The objective of this research was to examine a variety of regression 

algorithms in the context of fast charging and use them to create the ensemble model. 

Linear regression, RF, SVR, and GPR are the studying learning algorithms. We chose these 

for two main reasons: they are widely used in the battery field to estimate battery 

parameters such as the SOC, the capacity, and the remaining useful life, and they have been 

thoroughly explored in the previous sections, providing us with the opportunity to illustrate 

the superiority of using ensemble selection rather than a single learning algorithm. 

3.2.5.1 Creation of the Optimized Ensemble 

We investigated four different learning algorithms for anode potential prediction, but no 

one approach is superior because their performance is entirely dependent on the properties 

of the dataset. Intuitively, the purpose of ensemble selection is to detect and combine the 

strengths of these distinct algorithms to produce a sum greater than the parts [438]. This is 

accomplished by developing a library that is designed to be as broad as feasible to capitalize 

on a wide range of distinct learning algorithms.  
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The operating principle of ensemble selection is divided into two primary phases. The first 

phase, known as ensemble overproduction (composition of the model library (ML)), 

involves the generation of a huge number of models. The second phase, or choice phase 

(ensemble construction), involves selecting a subset of models from the models generated 

in the first phase. 

In the first stage, we constructed an ML using the WEKA data mining tool to create the 

ML and the ensemble selection. All the learners and their settings were changed based on 

the learner settings provided by the software. In practice, the ML creation step is as follows:  

Composition of Model Library (ML)  

Step 1: Choose a variety of learning algorithms to serve as parent regression algorithms. 

In our example, as shown in Table 3-8, four regression algorithms were chosen as parent 

regression algorithms: linear regression, RF, SVR, and GPR. 

Step 2: Select a wide range of learning algorithm settings (changing the parameter) for 

each parent regression algorithm. 

Step 3: Build the ML, which is a collection of 533 models that are derived from the four-

parent regression algorithm (see Table 3-8 for details).  

The models are combined in an ML in the second phase of ensemble selection to attain 

optimal accuracy. The basic ensemble selection process is as follows: 

1) Begin with an empty ensemble.  

2) Then include in the ensemble the model from the library that maximizes the 

ensemble's performance on a hill-climb (validation) set in terms of error metric 

(RMSE).  

3) Afterward, repeat Step 2 for a certain number of iterations or until all the models 

are used.  

4) Finally, return the ensemble with the best performance on the hill-climb 

(validation) set from the nested collection of ensembles [439].  
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Thus, the technique used is a forward selection procedure that chooses models from a pool 

and repeatedly adds them to the ensemble based on a predefined criterion. The forward 

ensemble selection algorithm is shown in Table 3-7 (pseudocode). The current subset, 𝑆, 

is initialized to the empty set in the forward selection, and the procedure appends to 𝑆 at 

each step the regressor ℎ 𝜖 𝐻\𝑆 that optimizes an evaluation function 𝑓𝐹𝑆(𝑆, ℎ, 𝐷). Based 

on the data, 𝐷, this function evaluates the addition of ℎ to 𝑆. It may, for example, return 

the RMSE of the sub ensemble 𝑆 ∪ {ℎ} on the data set 𝐷 by simply averaging the 

regressors' decisions. 𝐻 = {ℎ𝑡, 𝑡 = 1,2, …𝑁} denotes the set of base regressors that create 

the ensemble. 

Table 3-7. The pseudocode of the forward selection method. 

As a result, ES begins the ensemble building process by selecting a model at random from 

the ML. A subset of models is formed by adding models one at a time. If the ensemble's 

evaluation criterion is higher than the previous step's evaluation criterion (RMSE in our 

case), then more models are added to the existing ensemble. When the ensemble of size k 

+1 model shows a score lower than the ensemble of size k, the iterative procedure ends. 

Require: Ensemble of regressor H, the evaluation function 𝑓𝐹𝑆 and set D 

1: 𝑆 =  ∅ 

2: While 𝑆 ≠ 𝐻 

3: ℎ𝑡 = argmax 𝑓𝐹𝑆(𝑆, ℎ, 𝐷)  

4: 𝑆 = 𝑆 ∪ {ℎ𝑡} 

5: end While  
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3.2.5.2 Evaluation Measure  

The forward selection strategy employed in ensemble selection typically causes over-

fitting. To check for over-fitting, we use the hill-climbing technique to test the ensemble 

model with training sets of varying sizes. At each stage, ensemble selection adds a model 

from the library to the ensemble that maximizes the ensemble's performance on the saved 

hill-climbing data. In addition, we use ensemble selection with 5-fold cross-validation. For 

each iteration of ES, five models are picked at random during the ensemble generation 

process. During the ensemble construction process, candidate ensembles must be rated 

against a validation dataset. The RMSE is used as the scoring metric here to identify the 

model that best optimizes the performance of the ensemble formed by adding, or removing, 

a model from the existing ensemble. In forward selection, the RMSE is determined for a 

model h about the present sub ensemble S and the set of instances D as follows: 

 𝑅𝑀𝑆𝐸𝐹𝑆(𝑆, ℎ, 𝐷) = √
1

𝑁|𝑆|
 ∑∑(ℎ𝑖(𝑥𝑗) − 𝑦𝑗)

2
+
1

𝑁
∑(ℎ(𝑥𝑗) − 𝑦𝑗)

2
𝑆

𝑗=1

𝑆

𝑗=1

𝑆

𝑖=1

 (3-38) 

The RMSE computation is based on the ensemble decision in all cases of the pruning 

dataset. The complexity of these measurements is thus 𝑂(|𝑆|𝑁). However, if the 

predictions of the current ensemble are updated gradually each time a learner is inserted or 

withdrawn from it, the complexity can be reduced to 𝑂(𝑁).  

3.2.5.3  Stopping Criteria  

As previously stated, ensemble selection continues with the current iteration until there is 

no model in the library that, when added to the ensemble of size k +1 model, shows a lower 

score than the ensemble of size k.  
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3.2.5.4 Combination of Models 

When the stopping criteria is met, the model selection is completed, and an ensemble 

selection (𝜍 ) from the library is chosen. The selected models in 𝜀 are then tested 

individually over the test dataset (𝐷) according to the mechanics of the base learner, 

yielding the matrix of uncombined raw model outputs 𝑍 ( 𝑍 =  𝜍 (𝑌)). When the 

uncombined final output 𝑍 is combined, it is denoted by 𝑃 and is a composite function of 

the raw output of each constituent learner. The model combination is the process of getting 

to 𝑃 from 𝑍, and can be as simple as a weighted average of each model's raw outputs over 

the test points. We aggregate the estimates using a simple linear function. For instance, 𝑥, 

the ensemble output is ℎ𝑠(𝑥) =
𝑖

|𝑆|
 ∑ ℎ𝑖(𝑥)

|𝑆|
𝑖=1 . The final sub-ensemble chosen has the 

lowest RMSE on the evaluation set (we use a linear function for model combination). In 

conclusion, each ensemble is a weighted average of models, and the average of a group of 

ensembles is a simple weighted average of the base learners. 
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Table 3-8. Summary of model configurations used in this study. 

The following settings were used to train the algorithms (the rest of the parameters were 

left at their default values): Linear regressions: We have changed the Ridge parameter (G) 

ranging from {0.05 to 0.000000001} in increments of 0.001.  SVRs: In SVR, we use most 

kernels that are linear, polynomial degree 2 and 3, and 8 radial kernels (gamma ∈ {0.001, 

0.005, 0.01, 0.05, 0.1, 0.5, 1, 2} and change the regularization parameter C by factors of 

ten from 10−7 to 103. We use Platt's technique to transform SVR outputs into probabilities 

by fitting them to a sigmoid to make the SVR predictions consistent with other models. 

RFs: We used 2 values for the confidence factor {0.25, 0.5}, and 2 values for Laplace 

smoothing ({true, false}). Each tree is bagged in 25 segments. Each tree trained on a 

bootstrap sample, as well as the final bagged ensemble averaging all of these trees, is added 

to the library. GPR: In GPR, we use most kernels that are RBF, and polynomial degree 2 

and 3, and 8 radial kernels (gamma ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}). 

 

 

 

 

 

  

Algorithm # 

Models 

in 

Library 

Parameter Values 

Linear 

Regressions 

153 Regularization Ridge 

Parameter (Ridge-G) 

{0.05 to 0.000000001} in increments 

of 0.001. 

Support 

Vector 

Regression 

110 Kernel  

Gamma Parameter  

Regularization parameter 

(C) 

Polynomial Degree 

Polynomial, linear 

{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 

2} 

10−7, 10−6, … . 10−1, … 103 

2, 3 

Random 

Forests 

Regression 

160 Number of trees  10, 25, 50, 100  

Gaussian 

Process 

Regression 

110 Kernel  

RBF Gamma Parameter  

Polynomial Degree  

RBF, Polynomial  

{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} 

2, 3, 8 
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Chapter 4 : Results and Discussion (Manufacturing Phase)  

4.1  Results of Fabricated Pseudocapacitor Electrodes via ULPING  

4.1.1 Morphology and Structural Properties of Selected Electrodes  

10After the completion of sample preparation, 12 samples were chosen to be analyzed and 

observed for structural and morphological alterations. The basic concept of laser-induced 

porous structures is that a higher surface area and more porosity on the electrode surface 

can lead to better capacitance behaviors by enabling more ions to be adsorbed during the 

charge and discharge process. Moreover, a higher oxidized surface area means more 

available redox-active sites. To illustrate these changes more clearly, the samples were 

divided into four groups, with one of the laser parameters varied while keeping the others 

constant. In the scan speed group, for example, the laser parameters power (10 W), 

frequency (1200 kHz), and pulse duration (0.15 ns) remain constant while the scan speed 

changes from 40 (mm s-1) in S1 to 50 (mm s-1) and 60 (mm s-1) in S2 and S3, respectively. 

The frequency is varied in the frequency group, the power is changed in the power group, 

and the pulse duration is varied in the pulse duration group, while the rest of the laser 

parameters remain constant in each group. It appears that the laser ablation parameters have 

a significant impact on the surface morphology of the treated samples. The SEM images 

and EDX results in Figure 4-1 demonstrate that the surface properties of the ablated 

samples vary depending on the laser parameters used. The scan speed group shows some 

 

10 This section is based on a previously published article:  

Kavian Khosravinia, A. Kiani. "Unlocking pseudocapacitors prolonged electrode 

fabrication via ultrashort laser pulses and machine learning", iScience, Cell Press. The 

material is reproduced here with permission from the publisher, [Cell Press]. 
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of the most significant differences, with sample S3 displaying only minor modifications to 

the pretreatment Ti surface, while sample S2 shows a slightly better surface but still lacks 

the desired porous structure for increased surface area (see Figures 4-1 (A, B, and C)). 

These differences may be attributed to the amount of time allotted for the laser beam to 

traverse and ablate the surface, which affects the resulting surface morphology. The slower 

scan speed used for S1 allowed for more energy to be transferred or induced onto the Ti 

substrate's surface, resulting in more extensive surface oxidation and the growth of a self-

standing 3D nanostructured oxide layer. This is why S1 showed the "broccoli-like" 

macroporous structure and a white and black oxide layer, indicating increased surface area 

and redox active sites. The constant pulse duration used for S1 and S2 ensured that the 

ablation process was consistent, while the varied scan speeds allowed for more or less 

ablation to occur, resulting in different surface properties. Another distinction among 

samples is the degree of oxidation that happened during the laser irradiation procedure, 

which is shown in EDX results. This indicates that the slower scan speeds allow for more 

time for the laser to interact with the titanium substrate, leading to increased oxidation and 

a higher percentage of oxygen detected in the EDX map spectrum. On the other hand, 

higher scan speeds result in less interaction time and, therefore, lower oxidation and a 

higher percentage of titanium detected. The EDX map spectrum indicates the existing 

elements for each sample as a percentage. S1 has the highest percentage of oxygen 

detection (45%) and the lowest percentage in Ti traces (55%). As the scan speed increases, 

the oxygen percentage declines; S2 shows reduced oxygen detection percentage traces 

(23.4%) and an increase in Ti traces (76.6%). S3 with the highest scan speed had the highest 

Ti percentage (82.9%) and the lowest oxygen traces (17. 1%).   
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It's worth noting that although it was not easy to differentiate the oxide layer by visual 

inspection in the frequency group, the SEM images and EDX results still provide valuable 

insights into the effects of frequency on the fabricated samples. The differences in the 

distribution of the porous structure between F4 and F5 could suggest that there is an optimal 

frequency for achieving a more evenly distributed porous structure. F2, on the other hand, 

had equally dispersed porous pores that resembled the structure of a porous sponge. The 

EDX data shows a higher oxidation percentage (44.6%) and a lower Ti percentage (55.4%) 

at the lower frequency of 750 kHz. This is because the maximum surface temperature of 

the irradiated zone becomes higher at this frequency as each pulse has more energy. The 

oxidation percentage decreased from 42.1% to 39.2% as the frequency increased to 900 

kHz in F4 and 1050 kHz in F5 (see Figures 4-1 (D, E, and F)). The laser plasma plume is 

more stable at 1050 kHz, resulting in better agglomeration of ionized atoms and evaporated 

nanoparticles to form thicker nanofibrous structures. Additionally, the decrease in 

oxidation percentage and increase in Ti percentage with increasing frequency could 

indicate that there is a threshold frequency beyond which further increases in frequency do 

not have a significant impact on the oxidation and surface morphology.  

The samples are easily distinguishable by visual inspection of the power group samples. 

P2, with the lowest power of 8W, kept its shiny black surface. The PN1-1 and PN2-2 at 

different powers, revealing an extensive black and white surface oxidation layer. Based on 

the SEM images, P2 showed minimal changes, with a uniform surface structure but the 

least fiber structure. This is because less power is transferred to the surface. The PN1-1 

SEM images show a slightly improved surface, but it is still far from the desired porous 
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structure required for increased surface area. When the power was increased to 12 W in 

PN2-2, a spongy porous microstructure was obtained because more energy or power was 

transferred or induced onto the surface of the Ti substrate to cause a successful phase 

change (see Figures 4-1 (G, H, and I)). At the same time, the EDX results confirm that as 

the power increased, so did the oxidation traces in the substrate. P2 with the lowest power 

has the lowest percentage of oxidation (37.7%). As the power increases, so does the 

oxidation percentage rate, with the PN1-1 with a power of 10 showing an oxidation 

percentage of 38.2% and the PN2-2 showing an oxidation rate of 39.6%. The effect of 

power changes has previously been validated in our work [440], [441]. It's interesting to 

see how the power level of the laser affects the surface properties of the Ti substrate, 

especially in terms of the degree of oxidation and the resulting microstructure. It seems 

that the higher the power, the more energy is transferred to the surface, resulting in a more 

significant phase change and increased oxidation traces. This, in turn, leads to a more 

porous microstructure, which is desirable for increased surface area and superior 

capacitance behavior. It can also be seen in the pulse duration group that changing the laser 

pulse duration from 1 to 5 ns changes the topology of the electrode surface (see Figures 4-

1 (J, K, and L)). The pulse duration is the time measured across a pulse; as the pulse 

duration increases, the time needed to transfer the laser pulse decreases. The sample PD6-

4 with the longest pulse duration has a uniformly distributed structure with visible holes 

and groves. Although there has been some improvement in PD5-4 as the pulse duration has 

decreased, there are still many holes and cracked structures. The hair-like or "broccoli-like" 

macroporous structure can be seen with PD4. These improved surface characteristics are 

due to the laser's longer pulse duration beam, which allows for a more ablated surface. The 
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pulse duration group's EDX results follow the same pattern as the scan speed group's. The 

sample with the shortest pulse duration (PD4) has the highest oxidation percentage (40%). 

The oxidation rates nbmbmn decreased to 38.2% and 30.9%, respectively, as the pulse 

duration increased from 2 to 5 ns (longer pulse duration) in PD5-4 and PD6-4. Ultimately, 

the S3 sample with the slower scan speed yielded the best and most improved structure for 

surface-dependent reactions in the fabrication of pseudocapacitance electrodes [440], 

[442], [443]. In comparison to other samples, S3 exhibited a greater maximum area and 

oxidation at a given surface area. The primary objective of this section, however, was not 

to identify the best sample, but rather to highlight the effect of altering laser parameters in 

response to changes in the oxidation pattern. 

4.1.2 Electrochemical Performance of Selected Electrodes 

To validate the findings from microscopy and characterization analysis regarding the 

impact of laser parameters on surface characterization improvement, an electrochemical 

analysis was conducted. The electrochemical analysis consisted of CV, GCD, and EIS to 

assess the coherence with structural modifications. 

4.1.2.1 Cyclic Voltammetry 

CV is a powerful and widely used electrochemical technique for studying the reduction 

and oxidation processes of molecular species as well as the capacitive behavior of 

electrochemical devices. Figure 4-2 illustrates the CV curves of all selected electrodes (S1, 

S2, S3, F2, F4, F5, P2, PN1-1, PN2-2, PD4, PD5-4, and PD6-4) in 1M sodium sulfate 

(Na2SO4) electrolyte with a potential range of -0.8 - 0.8V and a scan rate of 50 mVs-1. 
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Figure 4-1: Morphological characterization using SEM images with EDX element mapping 

(weight %) of 12 selected samples. The EDX analysis demonstrated the presence of Ti and 

O species in the samples. The samples analyzed were as follows: (A-C) S1, S2, and S3 at 

x500 magnification (100 µm); (D-F) F2, F4, and F5 at x500 magnification (100 µm); 

(G-I) P2, PN1-1, and PN2-2 at x500 magnification (100 µm); and (J-L) PD-4, PD5-4, and 

PD6-4 at x500 magnification (100 µm). 
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The electrochemical performance of the samples may be affected by the electrolyte 

composition, which we did not consider because it was consistent across all setups. The 

redox peaks demonstrate excellent reversibility and rapid kinetics taking place at the oxide 

surface. The capacitive nature of the samples is apparent in the range of -0.8V to 0.8V. The 

rapid, reversible redox behavior and capacitive characteristics of the samples confirm the 

presence of pseudocapacitance, thus verifying the device as a pseudocapacitor. 

Compared to the other groups, the scan speed group exhibited the best capacitive 

performance. S3, which had the fastest scan speed, had the lowest current density of 0.028 

mA at 0.8 V due to its low oxidation and surface area (Figure 4-2 (A)). Meanwhile, S2's 

current density at 0.8 V (0.05048 mA) improved slightly as the scan speed decreased, 

which can be attributed to its increased surface area and oxidation rate. When the scan 

speed in S1 is reduced to 40 mm s-1, an approximately rectangular-shaped CV curve with 

the maximum rechargeable current density is observed, indicating the best enhancement in 

super-capacitive performance as expected from an ideal capacitor. The super-capacitive 

performance of both S1 and S2 samples is improved, with current densities of 0.07525 mA 

and 0.05048 mA, respectively, at 0.8 V. The CV curve obtained for S1 is several orders of 

magnitude larger than the CV curves obtained for other samples in all groups, indicating 

significantly greater performance. S1's superior performance can be attributed mainly to 

its faster oxidizing rate and the presence of 3D nanoporous structures, which lead to the 

best performance among all samples in the CV findings. As previously mentioned, the 

improved pattern resulting from changing the laser parameters is evident in the CV curves 

of all other sample groups as well. Among the frequency, power, and pulse duration groups, 

F2 with the lowest frequency, PN2-2 with the highest power, and P4 with the shortest pulse 
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duration exhibit the best supercapacitive performance (see Figures 4-2(B, C, and D)). 

Based on the SEM images and EDX data, it is possible to deduce that both surface area 

and oxidation rate play major roles in the electrodes' electrochemical behavior.  

Figure 4-2: CV curves at a scan rate of 50 mVs-1. (A) S1 exhibits superior redox and capacitive 

capabilities compared to the other samples due to its faster oxidizing rate and the presence of 3D 

nanoporous structures. (B) Among the samples with different frequencies, F2 shows better charge 

storage capacity compared to the other samples. (C) Increasing the power in PN-2-2 leads to an 

improvement in the capacitive behavior of the sample. (D) PD4 with the shorter pulse duration 

shows better electrochemical performance compared to the other samples. 

4.1.2.2 Galvanostatic Charge-Discharge  

GCD was employed to characterize the fabricated samples, as it has a relatively direct 

physical relationship with the capacitive charge. During the GCD test, the discharge and 
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charge curves were analyzed for all cell setups, which used a constant current density of 

0.25 mA cm-2 for charging and discharging in the stable potential range of -0.8 V to 0.8 V. 

Figure 4-3 depicts the GCD plot of all sample groups, which, like the CV and microscopy 

results, confirms the existence of an improvement pattern in all cell setups as a result of 

the laser parameter change. S1 shows superior performance not only within the scan speed 

samples but also across other sample groups. S1 depleted stored charges in 8.18 seconds, 

while S2 and S3 depleted in 3.8 and 1.4 seconds, respectively (see Figure 4-3(A)). 

Reduction in the redox event primarily causes the charge depletion. Furthermore, the 

improved specific surface area significantly contributes to S1's excellent performance. The 

slower scan speed of the laser beam in S1 and S2 allows for a larger area to be irradiated 

per second compared to S3. Figure 4-3 (B) depicts the discharge curve for the frequency 

samples group. The discharge time for F2 with the lowest frequency was 0.894 seconds, 

which was consistent with the microscopy analysis, which revealed that F2 has an equally 

dispersed porous pores structure. The depletion stored charge decreased from 0.30 seconds 

to 0.25 seconds as the frequency increased in F4 and F5. The improvement pattern can also 

be seen in the power and pulse duration sample groups. The PN2-2 with the highest power 

has the best performance in the power samples group, taking 0.35 seconds to fully 

discharge from 0.8V to -0.8V. While P2 and PN1-1 take 0.26 and 0.15 seconds, 

respectively, to deplete the stored charge. Improved surface morphology contributes to 

improved electrochemical behavior (Figure 4-3 (C)). The pulse duration group's best 

performance is displayed by PD4, which discharges in 0.5 seconds and has a macroporous 

structure resembling fiber or broccoli, according to the microscopy analysis. The longer 

pulse duration beam of the laser allows for a more ablated surface, which results in superior 
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surface properties. The discharge time decreased as the pulse duration increased, with PD5-

4 discharged in 0.30. While PD6-4 discharged the stored charge in 0.25 seconds despite 

having the largest pulse length and a non-uniformly distributed structure (Figure 4-3(D)). 

 

Figure 4-3: GCD Curves were generated at a constant current density of 0.25 mA cm-2. (A) 

S1 exhibits a larger charge depletion compared to S2 and S3.  (B) F2 has the longest 

discharge duration in the frequency samples.  (C) PN2-2 shows a longer charge depletion 

compared to other samples. (D) The discharge time of the PD4 with the shortest pulse 

duration is the longest. 

  

4.1.2.3 Electrochemical Impedance Spectroscopy  

Another electrochemical technique that is commonly used in conjunction with CV is 

electrochemical impedance spectroscopy (EIS). EIS is based on a low-amplitude 

alternating current (AC) signal with a continuous DC bias. To analyze the samples, EIS 

measurements were performed on all sample groups over a range of frequencies from 100 

mHz to 100 kHz, and their Nyquist and Bode plots are presented in Figure 4-4. The 
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improvement pattern was also evident in the EIS results, which further confirmed the 

relationship between increased electrode surface area and improved electrochemical 

behavior. Specifically, the impedance data for each sample group were represented as a 

sum of their real and imaginary portions, as shown in Figures 4-4 (A, D, G, and J). The 

summation of real and imaginary components can be as high as 80000 Ohm.cm2 in P2 and 

as low as 2700 Ohm.cm2 in S1. Electrode conductivity is a crucial parameter that can be 

extracted from EIS measurements. Figures 4-4 (B, E, H, and K) show the electrode 

impedance plotted against frequency for each sample group. Among all the samples, S1, 

which had the best surface area for interfacial charge storage, exhibited the lowest electrode 

resistivity (2678 Ohm.cm2). Additionally, the samples with the highest performance in 

microscopy, CV, and GCD also demonstrated lower electrode resistivity. F2, the top-

performing sample in the frequency group, had a resistivity of 17681 Ohm. cm2, while 

PN2-2 has a value of 19442 Ohm. cm2 and PD4 have a value of 34241 Ohm. cm2. The 

Bode plot was used to analyze the capacitance behavior and diffusion properties of the 

samples, as shown in Figures 4-4 (C, F, I, and L). Generally, the Bode plot displays the 

phase angle versus frequency, with the ideal capacitance phase angle being -90°. Both the 

Nyquist and Bode analyses reveal a clear trend: the best samples of each group show the 

least impedance with the least phase angle near -90° in the lower frequency. For instance, 

in the scan speed group, the S1 phase angle value is extremely close to -80°, the F2 value 

is close to -70°, and the PN2-2 and PD4 values are also close to -80° and -70°, respectively. 

These results demonstrate that samples with superior surface areas exhibit improved charge 

transfer, better electrochemical behavior (lower impedance), and phase angle values that 

approach the ideal capacitance phase angle. It is worth noting that the electrolyte used in 
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this study was a simple salt solution with a lower conductivity than strong acidic or basic 

water solutions. 

Figure 4-4: EIS Analysis. (A, D, G, J) The Nyquist plot for all the selected samples. (B, E, H, K) For each 

sample, a basic impedance vs frequency curve was plotted. (C, F, I, L) The Bode plot (phase angle vs 

frequency) was plotted for all the samples. The Nyquist and impedance versus frequency plots were used to 

evaluate the electrode conductivity, while the Bode plot was used to investigate the capacitance behavior 

and diffusion properties of the samples.   
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Furthermore, the electrochemical performance of the selected samples was studied based 

on specific areal capacitance, energy density, and power density. Interestingly, the 

outstanding specific areal capacitance of 2.8833 mF/cm2 was achieved at 0.25 mA/cm2 with 

maximum energy density and power density output of 0.003690624 Wh/cm2 and 

1.62622355 W/cm2 respectively, as shown in the Ragone plot depicted in Figure 4-5. For 

additional morphological analysis, the software ImageJ was used to estimate topological 

features associated with the ablated surface by examining SEM pictures. The specific areal 

capacitance, energy density, power density, and porosity of all the samples are shown in 

Table 4-1. The improving trend can also be seen here; as the surface area expanded, so did 

the specific areal capacitance and porosity.  

 

Figure 4-5: Ragone Plot. The energy density and power density of the selected samples is 

determined based on the calculated specific areal capacitance at a current density of 0.25 

mA/cm2. 
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Table 4-1. Summary of the specific areal capacitance, porosity, energy density, and 

power density of the selected samples. 

Sample Specific Areal Capacitance(mF/cm2) 

@ Current density (0.25 mA/cm2) 

Porosity 

(%) 

Energy 

Density 

(Wh/cm2) 

Power 

Density 

(W/cm2) 

S1 2.8833 45.92 0.003690624 1.62622355 

S2 1.3500 15.34 0.001728 1.628481675 

S3 0.4743 5.4 0.000607104 1.631025672 

F2 0.3155 40.14 0.00040384 1.624565873 

F4 0.1029 34.47 0.000131712 1.625516627 

F5 0.0723 32.17 0.000092544 1.624370551 

P2 0.0554 27.41 0.000070912 1.622906548 

PN1-1 0.0939 33.64 0.000120192 1.624826136 

PN2-2 0.1163 37.76 0.000148864 1.624463171 

PD4 0.1762 36.65 0.000225536 1.623859241 

PD5-4 0.1054 32.28 0.000134912 1.623815446 

PD6-4 0.0997 30.02 0.000127616 1.620520635 

 

4.1.3 Electrochemical Performance of All 496 Coin Cells 

The electrochemical behavior of all 496 prototyped coin cells was evaluated based on three 

distinct characteristics: specific areal capacitance, discharge duration with a constant 

current density of 0.25 mA/cm2, and maximum impedance |Z| value at the lowest frequency 

(see STAR Methods for details). Figures 4-6 (A and B) show that the electrochemical 

behavior of samples with varied manufacturing parameters can be greatly improved or 

unimproved when tested together. For example, the sample set P1-PD2, where the P1 

electrode is the base electrode and the PD2 electrode is the changing electrode, shows high 

specific areal capacitance and discharge time of 5.7 mF/cm2 and 16.1 S, respectively, while 

demonstrating low impedance of 2493.2 Ohm.cm2 (Figure 4-6 (C)). In contrast, the PD1-

P3-2 sample set shows the poorest performance among the other samples, with low 

discharge time and specific areal capacitance of 3.1 seconds and 1.1 mF/cm2, respectively, 
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and a high impedance of 32946 Ohm.cm2. These results demonstrate that the 

electrochemical behavior of pseudocapacitors is highly dependent on the manufacturing 

parameters and the combination of electrodes used in a single-cell setup. This is yet another 

proof that the enhanced surface area has an impact on the electrochemical behavior of the 

fabricated electrode.  

Figure 4-6: The Electrochemical Analysis for All 496 Coin cell Setups. (A) a pie chart is 

presented, showing the discharge time of all tested samples with a constant current density 

of 0.25 mA cm-2. The sample set P1-PD2 displayed the longest discharge time among all 

tested samples, suggesting excellent electrochemical performance. (B) a pie chart 

showing the specific areal capacitance for all tested samples. Once again, the sample set 

P1-PD2 exhibited the highest specific areal capacitance of 5.7 mF/cm2. (C) a bar chart 

indicating the impedance |Z| (maximum value at the lowest frequency) for all coin cell 

setups. The sample set P1-PD2 displayed a low impedance of 2493.2 Ohm.cm2, indicating 

a better-conducting material compared to other tested samples. 
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4.2 Electrochemical Behavior Prediction of Pseudocapacitor Electrodes via Machine 

Learning Algorithms 

4.2.1 Specific Capacitance and Impedance Prediction Based on Test Dataset 

To predict the electrochemical behavior of the fabricated pseudocapacitors, we utilized 

three machine learning algorithms: RF, GPR, and ANN. To evaluate the efficacy of each 

training model in predicting electrochemical behavior metrics, we loaded the trained model 

with the test dataset. The dataset is split between 80% training data and 20% test data. 

Figure 4-7 displays the parity plots of the test sets for each of the ML models trained on 

the dataset. In Figures 4-7 (A, C, and E), the actual specific capacitance values are plotted 

against predicted values for all models. The RMSE score can be as low as 0.1107 while the 

R2 score can be as high as 0.8338, demonstrating the importance of the bootstrap approach 

in RF for learning the non-linear electrochemical behavior of pseudocapacitors. There is a 

significant increase in RMSE scores 0.4900 and 0.4791, as well as a fall in R2 scores 0.7691 

and 0.7638 for MLP and GPR, respectively. It reveals that MLP and GPR have lower 

robustness than RF but can still achieve acceptable predictive accuracy.  RF outperformed 

in predicting specific capacitance. The actual |Z| values are plotted against the predicted 

values for all the models in Figures 4-7 (B, D, and F). MLP achieves an RMSE of 0.0512 

and an R2 score of 0.9975 for predicting impedance |z|, which is a much lower RMSE and 

higher R2 value than the other models in this study. GPR, on the other hand, performs worse 

than RF because it has the highest RMSE value of 0.5080 and the lowest R2 score of 0.7594. 

The GPR model's high RMSE values and low R2 scores highlight the nonlinear nature of 

pseudocapacitors. As also indicated in Table 4-2, RF outperforms GPR in all cases, with 
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only minor differences in RMSE and R2 scores. It is evident that GPR is not a suitable 

model for forecasting the non-linear electrochemical behavior of a pseudocapacitor (|Z|).  

Figure 4-7: Comparison between experimental values for |Z| and specific areal 

capacitance values and predictions made using the test set. (A-B) MLP. (C-D) RF. 

(E-F) GPR. 
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4.2.2 Specific Capacitance and Impedance Prediction Based on Cross Validation 

Additionally, to verify regression accuracy, we used cross-validation (CV) to evaluate all 

ML models on a limited data sample. We compared the RMSE scores of all three developed 

learning algorithms (see Table 4-3). As expected, the MLP approach outperformed the RF 

and GPR approaches, with the lowest RMSE score of 0.0393 for predicting the |Z| value. 

The RF and GPR models had the highest RMSE scores, with values of 0.5125 and 0.5033, 

respectively. Moreover, RF had the lowest RMSE score for forecasting specific 

capacitance, as it did in the dataset-splitting technique, whereas the RMSE score increased 

dramatically in the MLP and GPR models. 

Table 4-2. Performance comparison of ML algorithms on the test dataset. 

 

 

Table 4-3. Performance comparison of ML algorithms based on cross-validation. 

 

 

 

 

 

Learning Algorithms MLP RF GPR 

Performance Metrics RMSE R2 RMSE R2 RMSE R2 

Impedance |Z| [Ohm] 0.0512 0.9975 0.4479 0.7807 0.5080 0.7594 

Specific Capacitance [mF/cm2] 0.4900 0.7691 0.1107 0.8338 0.4791 0.7638 

Learning Algorithms MLP RF GPR 

Performance Metrics RMSE RMSE RMSE 

Impedance |Z| [Ohm] 0.0393 0.5125 0.5033 

Specific Capacitance 

[mF/cm2] 

0.4401 0.1182 0.4797 
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4.3 Discussion and Summary 

The changes in linearity graphs achieved by individual models are due to differences in 

their mathematical construction. The MLP model is better suited for predicting |Z|, whereas 

the RF model is better suited for predicting specific capacitance. For example, the R2 value 

indicates that the MLP model provides the best fit for |Z| (R2 = 0.9975). When an RF model 

is used for |Z| (R2 = 0.7807), the fit is the least accurate when compared to the GPR and 

MLP. Similarly, for the specific capacitance, the RF model provides the best fit (R2 = 

0.8338). When using a GPR model for specific capacitance (R2 = 0.7638), the fit is the least 

accurate when compared to the MLP.  

In summary, we aimed to build a theoretical bridge between the fabricated 

pseudocapacitors (experimental data) and their electrochemical performance via data-

driven ML approaches. Therefore, we divided this research into two major phases. The 

first section describes a single, simple, and environmentally friendly in-situ procedure for 

generating TiO by irradiating a Ti sheet with an ultra-short, pulses laser for a 

pseudocapacitor electrode. Whereas the results show that the tuning laser parameters have 

an effect on the electrochemical performance of the fabricated pseudocapacitors. With a 

single and rapid electrode fabrication method, a specific areal capacitance of 2.8333 

mF/cm2 at a current density of 0.25 mA/cm2 was achieved for an S1 sample with the lowest 

scan speed. In the second section, we tried to shed new light on the modeling and prediction 

of the electrochemical behavior performance of fabricated pseudocapacitors. Several data-

driven ML algorithms were used in this study to simulate the electrochemical behavior of 

pseudocapacitors, such as impedance and specific capacitance. These models use 

numerous mathematical constructs to predict behavior as accurately as possible. The MLP 
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and RF models were determined to be the most effective for forecasting |Z|, and the specific 

capacitance of its effectiveness can be described in terms of the lowest error values (RMSE) 

obtained for this model compared to other tested models. Based on our findings, the 

ranking of accuracy for the constructed ML models in predicting the impedance (|Z|) value 

is as follows: GPR, RF, and MLP. The findings reveal that MLP has the highest accuracy 

for predicting impedance (|Z|) value with an RMSE of 0.0512. Additionally, the 

constructed ML models' accuracy in predicting specific capacitance values can be ranked 

in descending order as follows: first, the MLP model, followed by the GPR model, and 

finally, the RF model. RF has the best performance for specific capacitance with an RMSE 

of 0.1107. However, we believed that the RF model could predict the electrochemical 

behavior performance metrics fairly well since it ranked the best for predicting impedance 

(|Z|) value and the second for specific capacitance. This study presents the importance and 

efficacy of the in-situ laser irradiation technique for creating a metal oxide layer on a Ti 

sheet under ambient conditions. Moreover, it underscores the potential of ML algorithms 

as a tool for constructing mathematical models to forecast the electrochemical behavior of 

pseudocapacitors, thereby facilitating the development of optimal electrodes. We have high 

confidence that the results of this study will yield potential solutions for the economical 

and ecologically sound production of pseudocapacitor electrodes. 
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4.4 Optimization for Enhancing Electrochemical Behavior of Pseudocapacitors 

Electrode    

4.4.1 Morphology and Structural Properties of Optimized Electrodes 

11Following the optimization of sample preparation, six samples were selected for analysis 

of structural and morphological changes. Laser-induced porous structures offer increased 

surface area and porosity, which enhances the electrode's capacitance behavior by enabling 

more ions to adsorb during charge and discharge processes. Additionally, increased 

oxidized surface area offers more available redox-active sites. We compared the non-

optimized and optimized sample sets to illustrate these changes more clearly. In the non-

optimized sample group, S2 and S4 were selected, where the laser parameters remained 

constant with power set to 10 W, frequency set to 900 kHz, and pulse duration of 0.15 ns, 

while the scan speed set at 10 (mm s-1). For S4, all the parameters remained the same as 

S2, except the frequency was increased  to 1200 kHz. In the optimized samples we selected 

OPT-SYM and OPT-ASY (see Table 3-4). Results indicate that laser ablation parameters 

significantly impact the surface morphology of treated samples. Figure 4-8 depicts SEM 

images and EDX results showing that surface properties of ablated samples vary depending 

on the laser parameters used. 

SEM images were taken of all samples under both x500 (100 μm) and x3,000 (10 μm) 

magnification, as depicted in Figure 4-8. The OPT-SYM and OPT-ASY methods exhibit 

 

11 This section is based on a previously published article:  

Kavian Khosravinia, A. Kiani. “Optimizing the Operation Strategy of the ULPING 

Technique for Enhancing Capacitance of Supercapacitor Electrodes, using ANN and SA 

Algorithms", ACS Omega. The material is reproduced here with permission from the 

publisher, [American Chemical Society]. 
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some significant differences. Samples S4 and S4 display only minor modifications to the 

pretreatment Ti surface, whereas sample S2 shows a slightly better surface but still lacks 

the desired porous structure to increase surface area (refer to Figures 4-8 (A-D)). The 

differences in the distribution of the porous structure between S2 and S4 suggest that there 

might be an optimal frequency for achieving a more evenly distributed porous structure. 

EDX data indicates a higher oxidation percentage (28.2%) and a lower Ti percentage 

(71.8%) at the lower frequency of 900 kHz, as the maximum surface temperature of the 

irradiated zone becomes higher at this frequency with each pulse having more energy. The 

oxidation percentage decreases to 23.3% as the frequency increases to 1200 kHz. The 

decrease in oxidation percentage and increase in Ti percentage with increasing frequency 

could indicate a threshold frequency beyond which further increases in frequency do not 

have a significant impact on the oxidation and surface morphology. 

On the other hand, the surface morphology of the optimized samples is distinct. The slower 

scan speed and lower frequency used for OPT-ASY (1) allowed for more energy to be 

transferred or induced onto the Ti substrate's surface, resulting in more extensive surface 

oxidation and the growth of a self-standing 3D nanostructured oxide layer. This is why 

OPT-ASY (1) shows the "broccoli-like" macroporous structure and a white and black oxide 

layer, indicating increased surface area and redox active sites (see Figure 4-8 (I and J). 

OPT-ASY (2), on the other hand, with higher scan speed (290 mm s-1) and frequency and 

lower pulse duration shows a uniformly distributed structure with visible holes and grooves 

without any 3D nanostructured oxide layer (Figure 4-8 (G and H)). When the power was 

increased to 20 W in OPT-SYM with a scan speed of 10 (mm s-1), a spongy porous 
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microstructure was obtained because more energy or power was transferred or induced 

onto the surface of the Ti substrate, causing a successful phase change Figure 4-8 (E). At 

x3,000 magnification, the SEM image of OPT-SYM shows millions of micro granules that 

have grown and agglomerated on top of the standing structures, which closely resembles 

the top view of a broccoli (see Figure 4-8 (F)). The formation of these standing structures 

is consistent throughout the entire surface. These differences may also be attributed to the 

amount of time allotted for the laser beam to traverse and ablate the surface, affecting the 

resulting surface morphology. Another distinction among samples is the degree of 

oxidation that occurred during the laser irradiation procedure, which is shown in the EDX 

results. This indicates that slower scan speeds on OPT-ASY (1) and OPT-SYM allow for 

more time for the laser to interact with the titanium substrate, leading to increased oxidation 

and a higher percentage of oxygen detected in the EDX map spectrum. In contrast, higher 

scan speeds in OPT-ASY (2) result in less interaction time and, therefore, lower oxidation 

and a higher percentage of titanium detected. Despite the frequency increase, morphology 

still exhibits a fibrous and porous microstructure, highlighting the importance of power and 

scan speed. It is interesting to see how the power level and scan speed of the laser affect 

the surface properties of the Ti substrate, especially in terms of the degree of oxidation and 

the resulting microstructure. It appears that the higher the power and the lower the scan 

speed, the more energy is transferred to the surface, resulting in a more significant phase 

change and increased oxidation traces. This, in turn, leads to a more porous microstructure, 

which is desirable for increased surface area and superior capacitance behavior. 
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Figure 4-8: Morphological characterization was conducted using SEM images with EDX 

element mapping (weight %). The EDX data demonstrates elemental composition and 

presence of oxygen caused during laser irradiation. The samples analyzed were: S4 at x500 

magnification (100 µm) and x3000 magnification (10 µm) (a and b, respectively); S2 at 

x500 magnification (100 µm) and x3000 magnification (10 µm) (c and d, respectively); 

OPT-SYM at x500 magnification (100 µm) and x3000 magnification (10 µm) (e and f, 

respectively); OPT-ASY (2) at x500 magnification (100 µm) and x3000 magnification (10 

µm) (g and h, respectively); OPT-ASY(1) at x500 magnification (100 µm) and x3000 

magnification (10 µm) (i and j, respectively). The EDX results are presented in images (k-

o). Images (b, d, f, h, and j) were taken at x3000 magnification (10 µm) to provide a closer 

view of the samples. 



206 

 

The X-ray diffraction (XRD) analysis was employed to confirm the presence of micro and 

nano web-like structures of titanium oxide in one electrode. The XRD patterns revealed 

the formation of a crystalline structure consisting of rutile and anatase phases, as shown in 

Figure 4-9. The dominant phase was found to be rutile, as evidenced by the major peaks 

observed at 26.8°, 35.6°, 40.5°, 53.6°, 63.4°, 68.6°, and 69.4°, which correspond to (1 1 0), 

(1 0 1), (1 1 1), (2 1 1), (3 1 0), (3 0 1), and (1 1 2), respectively (according to JCPDS card 

No. 88–1175) [444], [445]. The anatase phase was also present, with peaks observed at 

38.4°, 55.9°, and 62.3° corresponding to (0 0 4), (2 0 0), and (2 0 4), respectively (according 

to JCPDS card No. 21–1272) [400], [445], [446]. The anatase phase is known for its higher 

surface area and narrow band, which make it more suitable for energy conversion 

applications. However, it is also known to have more surface defects. On the other hand, 

the rutile phase is generally known for its tetragonal crystal structure, higher density, and 

thermal stability, making it more durable and suitable for higher power applications. The 

presence of a mixed state allows for a combination of both phases on the surface, which 

may provide a desirable combination of properties for various applications. XPS was 

conducted on all the samples to analyze the surface chemical bonding and cation oxidation 

states of the laser-assisted fabrication. The XPS survey spectrum for one of the samples 

(Figure 4-10 (A)) confirms that the film mainly consists of titanium and oxygen, with some 

additional carbon. A similar composition is observed in the survey spectra for the OPT-

ASY (1) sample. The high-resolution XPS spectrum of the Ti 2p region shown in Figure 

4-10 (B) is deconvoluted into two peaks, Ti 2p3/2 and Ti 2p1/2, which are located at 458.91 

and 464.58 eV, respectively [447], [448]. This is a typical signature for stoichiometric TiO. 

The O 1s core-level spectra for OPT-ASY (1) are shown in Figure 4-9 (C), and the 
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decomposition is performed using two contributions denoted as OI (530.38 eV) and OII 

(531.84 eV) [449]. The low-energy peak OI is assigned to the Ti-O bond, while the peak at 

higher binding energies, OII, corresponds to C-O bonds [449]. 

 

  

Figure 4-9: XRD analysis of electrode fabricated using the 

ULPING technique. 
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Figure 4-10: (a) A survey scan of the XPS spectrum demonstrates Ti and O species. (b) Ti 

2p peak (c) O 1s core levels with deconvoluted two peaks.   
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4.4.2 Electrochemical Properties of Optimized electrodes 

The purpose of the electrochemical analysis was to confirm the results obtained from the 

microscopy and characterization analysis with respect to the effect of laser parameters on 

surface characterization improvement. The electrochemical analysis included cyclic 

voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance 

spectroscopy (EIS) to determine whether the observed structural modifications had an 

impact on the electrochemical properties of the samples. The results of the electrochemical 

analysis were then compared to the findings from the microscopy and characterization 

analysis to establish a correlation between the two. This allowed for a more complete 

understanding of the impact of the laser parameters on both the physical and 

electrochemical properties of the samples.   

The electrode's electrochemical redox and capacitive behavior was analyzed using a CV 

curve. As shown in Figure 4-11 (a-b), the CV curve indicates a typical Faradaic dominant 

reaction. Figure 4-11 (a-b) illustrates the CV curves of the chosen electrodes in a 1M 

sodium sulfate (Na2SO4) electrolyte, with a potential range of -0.8V to 0.8V and a scan rate 

of 50 mVs-1, as well as a potential range of -1V to 1V with a scan rate of 500 mVs-1. The 

electrolyte composition, which remained consistent across all setups, may affect the 

electrochemical performance of the samples, although it was not considered in this study. 

The redox peaks exhibited excellent reversibility and rapid kinetics occurring at the oxide 

surface, while the capacitive nature of the samples was evident in the -0.8V to 0.8V range. 

The samples' rapid, reversible redox behavior and capacitive characteristics confirm the 
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presence of pseudocapacitance, thereby confirming the device as a pseudocapacitor from 

a scientific perspective. 

Among the analyzed samples, OPT-ASY demonstrated the best capacitive performance. 

S2-S4, on the other hand, showed the lowest current density of 0.021 mA at 0.8 V due to 

their low oxidation and surface area. OPT-SYM's current density at 0.8 V (0.038 mA) 

improved slightly due to its increased surface area and oxidation rate. At a scan rate of 500 

mVs-1, OPT-SYM exhibits a symmetric CV shape, further confirming that the symmetric 

fabrication parameters recommended by the optimization algorithm result in excellent 

performance. OPT-ASY, a combination of different laser parameters, showed an 

approximately rectangular-shaped CV curve with the maximum rechargeable current 

density, indicating the best enhancement in super-capacitive performance as expected from 

an ideal capacitor. The CV curve for OPT-ASY was several orders of magnitude larger 

than that of other samples in all groups, indicating significantly greater performance. OPT-

ASY's superior performance was mainly due to its faster oxidizing rate and the presence 

of 3D nanoporous structures, leading to the best performance among all samples in the CV 

findings. The SEM images and EDX data suggest that both surface area and oxidation rate 

play major roles in the electrodes' electrochemical behavior. Additionally, the improved 

pattern resulting from changing the laser parameters is evident in the CV curves of all other 

sample groups as well.  

GCD test was used to evaluate the capacitive charge of the fabricated samples. The test 

involved analyzing the discharge and charge curves for all cell setups using a constant 

current density of 0.25 mA cm-2 within the stable potential range of -0.8 V to 0.8 V. 
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As shown in Figure 4-11 (c), the GCD plot of all sample groups confirmed the 

improvement pattern resulting from changing the laser parameters, consistent with the CV 

and microscopy results. OPT-ASY exhibited the best performance, not only within the 

optimized samples but also across other sample groups, depleting stored charges in 3.1498 

seconds. In comparison, OPT-SYM and S2-S4 depleted charges in 2.9091 and 1.015 
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Figure 4-11: (a) The CV profile of all samples at 50 mV s-1 scan speed. (b) The CV curve of 

all samples at 500 mV s-1 scan rates. (c) GCD Curves were generated at a constant current 

density of 0.25 mA cm-2, OPT-ASY exhibits a larger charge depletion compared to OPT-

SYM and S2-S4. (d) Nyquist Impedance analysis of all the samples. (e) OPT-ASY 

demonstrates the least impedance. (f) Bode plot of sample to achieve near 80° phase angle 

for capacitive characteristics. These results suggest that OPT-ASY is the most promising 

sample with superior electrochemical behavior, demonstrated by its lower impedance and 

larger charge depletion in GCD. The CV and GCD curves also indicate that samples with 

increased surface area perform better. The Nyquist and Bode plots further support this 

observation, with OPT-ASY showing the least impedance and closest phase angle to the 

ideal capacitance phase angle. Overall, these findings suggest that optimizing surface area 

can lead to improved electrochemical performance in the tested samples.   
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seconds, respectively. Reduction in the redox event was primarily responsible for charge 

depletion, and the improved specific surface area significantly contributed to OPT-ASY's 

and OPT-SYM's excellent performance. Once again, the microscopy analysis revealed an 

improvement pattern from non-optimized samples to optimized samples, demonstrating 

the crucial role of improved surface morphology in enhancing the electrochemical behavior 

of the samples. 

EIS is frequently used in conjunction with CV. EIS is based on a continuous DC bias and 

a low amplitude alternating current (AC) signal. EIS measurements were performed on all 

sample groups spanning a frequency range of 100 mHz to 100 kHz to examine the samples, 

and their Nyquist and Bode graphs are shown in Figure 4-11 (d-f). The pattern of 

improvement was also visible in the EIS measurements, confirming the link between 

increased electrode surface area and enhanced electrochemical performance. Figure 4-11 

(d) shows how the impedance data for each sample were represented as a sum of their real 

and imaginary sections. The summation of real and imaginary components can be as high 

as 20000 Ohm.cm2 in S2-S4 and as low as 3500 Ohm.cm2 in OPT-ASY. Electrode 

conductivity is a crucial parameter that can be extracted from EIS measurements. Figure 

4-11 (e) shows the electrode impedance plotted against frequency for each sample group. 

Among all the samples, the optimized sample, OPT-ASY, which had the best surface area 

for interfacial charge storage, exhibited the lowest electrode resistivity (3554 Ohm.cm2). 

Indeed, both optimized samples with the highest performance in microscopy, CV, and 

GCD also demonstrated lower electrode resistivity. The Bode plot was utilized to analyze 

the capacitance behavior and diffusion properties of the samples, as shown in Figure 4-11 
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(f). Generally, the Bode plot displays the phase angle versus frequency, with the ideal 

capacitance phase angle being -90°. Both the Nyquist and Bode analyses reveal a clear 

trend: the best samples of each group show the least impedance with the least phase angle 

near -90° in the lower frequency. For instance, in the optimized group, the OPT-ASY phase 

angle value is extremely close to -70°, the OPT-SYM value is close to -75°, and in the non-

optimized sample, S2-S4 values are also close to -60°. These results demonstrate that 

samples with superior surface areas exhibit improved charge transfer, better 

electrochemical behavior (lower impedance), and phase angle values that approach the 

ideal capacitance phase angle. It is worth noting that the electrolyte used in this study was 

a simple salt solution with lower conductivity than strong acidic or basic water solutions.  

As we mentioned earlier the specific areal capacitance of each sample can be calculated 

from the GCD curve based on the equations (3-2) and (3-3). Interestingly, the outstanding 

specific areal capacitance of 0.9999 mF/cm2 was achieved at 0.25 mA/cm2 with maximum 

energy density and power density output of 0.001279872 Wh/cm2 and 1.46283734 W/cm2 

respectively. For additional morphological analysis, the software ImageJ was used to 

estimate topological features associated with the ablated surface by examining SEM 

pictures. The porosity of each sample was estimated by adjusting the threshold of the 100-

micron SEM pictures of all the samples until the software completely emphasized the 

porous structure. For geometrical measures, ImageJ assumes a 5% margin of error. The 

specific areal capacitance, energy density, power density, and porosity of all the samples 

are shown in Table 4-4. The improving trend can also be seen here; as the surface area 

expanded, so did the specific areal capacitance and porosity.  
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Table 4-4. Summary of the specific areal capacitance, porosity, energy density, and 

power density of the selected samples. 

Sample Specific Areal Capacitance(mF/cm2) 

@ Current density (0.25 mA/cm2) 

Porosity 

(%) 

Energy 

Density 

(Wh/cm2) 

Power 

Density 

(W/cm2) 

OPT-ASY 0.9999 42.35 0.001279872 1.46283734 

OPT-SYM 0.8575 33.35 0.0010976 1.3217019 

S2-S4 0.3579 23.8/22.6 0.000458112 1.623886805 

 

4.5 Discussion and Summary  

In this study, our first aim was to establish the relationship between the laser 

parameters used in the fabrication of pseudocapacitor electrodes and their electrochemical 

performance through data-driven ML approaches. Subsequently, we investigated how an 

optimization algorithm, simulated annealing, could be used to find the most optimal laser 

parameters for achieving the most efficient electrochemical performance of the fabricated 

electrodes. To accomplish this, we generated a large dataset that included laser parameters 

selected experimentally and electrochemical behavior performance metrics obtained from 

different microscopy and electrochemistry analyses. We then used artificial neural 

networks to highlight the relationship between laser parameters and electrochemical 

performance metrics such as specific areal capacitance and impedance. Finally, we 

employed a simulated annealing optimization algorithm to maximize the objective 

function, which, in our case, was the specific capacitance value, and determine the most 

optimal laser fabrication parameters. Our results showed that the specific areal capacitance 

increased from 0.3579 mF cm-2 in non-optimized electrodes to 0.9999 mF cm-2 at a 

current density of 0.25 mA cm-2 in optimized electrodes 
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Chapter 5 : Results and Discussion (Operational Phase) 

5.1 Evaluation Performance of Machine Learning Algorithms for Anode Potential 

Prediction  

12First, we evaluate each training model’s ability to predict the anode potential using the 

training data set. The predictions are based on four driving cycles and four constant charge 

profiles, as indicated in Table 5-1. As expected, the RMSE value is low in most of the 

conditions because the models are trained on training data. The maximum RMSE occurs 

during the MANHATTAN driving cycle when the initial SOC is 70% and the GPR 

algorithm is used. The EUDC and NYCC have the lowest RMSE for driving cycles with 

an initial SOC of 70% when employing the RF algorithm. The 2.4 mV RMSE is obtained 

for constant charging profiles ranging from 0.1C to 2C, which is less than the driving 

profiles.  

To evaluate the efficacy of each training model (linear regression, RF, SVR, GPR) in 

predicting the anode potential, the trained model is loaded with the test dataset, which is 

compiled from a variety of driving cycles and initial SOCs. Figure 5-1 compares the 

predicted anode potential from different learning algorithms to the estimated anode 

potential from the physics-based model. The MANHATTAN driving cycle, with an initial 

SOC of 65%, was selected as an example for this comparison (for full comparison, see 

 

12 This section is based on a previously published article:  

Kavian Khosravinia, X. Lin. "Toward Enhanced Anode Potential Prediction of Lithium-

ion Batteries: Using Optimized Ensemble Selection Approach for Lithium Plating 

Mitigation", Journal of The Electrochemical Society. The material is reproduced here with 

permission from the publisher, [IOPSCIENCE]. 
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Figure 5-4). Based on the comparison (see Table 5-2), it is found that the RMSE for the 

RF algorithm on the EUDC driving cycle can be as low as 2.5 mV, which is satisfactory. 

The maximum RMSE occurs during the MANHATTAN driving cycle when the GPR 

algorithm is used (42.6 mV). Furthermore, we discovered that the linear and RF algorithms 

have the lowest RMSE in all driving cycles with an initial SOC of 65%, whereas the SVR 

and GPR algorithms have the lowest RMSE in drive cycles with an initial SOC of 35%. In 

order to evaluate the prediction accuracy, the anode potential prediction error is applied. 

Figure 5-2 presents the error of each algorithm by displaying the difference between an 

estimated and an actual value. In particular, GPR has the highest error rate in all time-

varying driving cycles when compared to the other methods, whereas SVR and RF have 

the lowest error rate. Table 5-2 summarizes the anode potential estimation error, which 

shows that the RF performs significantly better on most of the time-varying drive cycles 

when compared with the other methodologies. It should be noted that the high performance 

of the RF has also been proven in the literature for anode potential prediction [433].  

Table 5-1. Performance comparison of different learning algorithms on the training 

dataset. 
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5.2 valuation Performance of Optimized Ensemble Selection for Anode Potential 

Prediction   

Predictions on the test dataset are made to evaluate the adaptability of the developed 

ensembles selection algorithm.  We compared the RMSE value of the ensemble selection 

to the other four developed learning algorithms and the physics-based model as the study's 

benchmark (see Table 5-2). Figure 5-3 compares the predicted anode potential from the 

ensemble selection with the physics-based model on the four different driving cycles with 

the initial SOC of 65% as an example for this comparison (full comparison is provided in 

Appendix-III). As expected, the ensemble selection approach performs well. The 

Figure 5-1: Comparison of the anode potential predictions on the test data (EV driving 

current profile -Manhattan) with the initial SOCs of 65% between the physics-based model 

and linear regression, gaussian process regression, support vector regression and random 

forests regression.    



218 

 

maximum RMSE for the WVUSUB driving cycle with an initial SOC of 65 % is 6.3 mV, 

while the minimum is 2.1 mV for the MANHATTAN driving cycle with an initial SOC of 

65 %. As a result, the ensemble selection algorithm is well trained, and the above data 

indicate the ensemble selection algorithm's efficacy in forecasting the anode potential at 

different operating conditions. Figure 5-4 depicts the error of the ensemble selection 

algorithm vs RF by showing the difference between an estimated and an actual value. In 

the MANHATTAN, NYCC, and WVUSUB driving cycles, RF has the highest error rate, 

whereas in the EUDC with an initial SOC of 35 % RF has the lowest error rate.  

  

Figure 5-2: Anode Potential Estimation Error on the Test Data with the initial SOC of 35%, 

65%, and 85% (linear regression-blue curve, GPR-orange curve, RF-green curve, SVR-purple 

curve). 



219 

 

Table 5-2. Performance comparison of different learning algorithms and the developed 

ES model on the test dataset. 

 

5.3 Discussion and Summary 

The average training time and testing time are significant factors when considering a 

method from a practical standpoint. The offline fitting time of the models and the estimated 

online prediction time are compared. Table 5-3 compares the average time required to train 

and test each model individually. COMSOL Multiphysics is used to solve the physics-

based model, which is based on partial differential equations. To make this comparison, all 

of the developed models, as well as the full-order physics-based model, are run through the 

whole test data set on the Intel i7-5600 CPU. There are 3628 degrees of freedom in the 

full-order physics-based PDE model, taking about 8.14h to complete the computation 

required. It is clear that the offline training and prediction time increases linearly, the 

offline training time for a linear regression model is about 0.03s while for the ensemble 

selection is 2218.39s.  However, the prediction time for the linear regression, SVR, GPR, 

RF, and the ensemble selection is less than 1s which is very low compared to the physics-

based model.  The concern here is determining how much the average training and testing 

time restricts the proposed model's applicability. The answer is highly dependent on the 
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goal of the proposed method; if the goal is to develop an optimized fast charging protocol 

that is highly sensitive to the accuracy of the predicted anode potential, then this cost can 

be ignored because the proposed ensemble selection achieves the highest accuracy for the 

majority of battery operating conditions. Even though, in practice, online implementation 

is highly important. 

Generally, at that stage, the trained model is uploaded to a GPU for example, and the 

average time can be reduced further. Since previously employing a GPU reduced the 

computing time of an LSTM network from 87s to 14s in our previous work [375].  

 

 

Figure 5-3: Comparison of Anode Potential Predictions on the Test Data (EV Driving Current Profiles) 

with the Initial SOCs of 65% between Physics-Based Model and Ensemble Selection. 
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Table 5-3. Average training and testing time of the proposed method and different 

learning algorithms. 

  

Model Avg. Training Time [s] Avg. Prediction Time [s] 
Linear regression 0.03s 0.001s 

SVR 0.30s 0.01s 

RF regression (100 Trees) 2.08s 0.06s 

GPR 16.8s 0.5s 

Ensemble Selection 2218.39s (0.62h) 0.8s 

Physics-based model 29304s (8.14h) 29304s (8.14h) 

Figure 5-4: Anode Potential Estimation Error for Ensemble Selection Model and RF.   
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The complex, non-linear, and path-dependent nature of battery degradation, particularly 

lithium plating, poses some difficulty in developing an explicit model to detect or 

accurately capture the lithium plating. Given that data-driven approaches are superior to 

model-based approaches in terms of enhanced learning capability, high accuracy, and low 

computational complexity, they are ideal for addressing the complex and nonlinear 

characteristics of lithium-ion batteries. To take advantage of the data-driven features and 

avoid lithium plating, an ensemble selection approach is proposed to obtain an accurate 

estimation of the anode electrode potential.  It should be noted that the data-driven method's 

prediction accuracy is greatly dependent on the input features. A data pre-processing 

method and correlation analysis are used to extract features that have high correlations with 

the anode potential. The feature subset selection method is used to remove redundancy in 

a high-dimensional data set and to generate a set with compacted data. This compacted 

dataset includes the most frequently measured signals in the battery management system, 

such as charging/discharging current, cell voltage, SOC, and battery surface temperature. 

The compacted dataset was first analyzed using four common regression algorithms, 

including linear regression, random forests, support vector regression, and gaussian 

process regression. Then, an ensemble selection model is built, which is trained using as 

many learning methods and control parameters as possible for the issue. The trained 

ensemble selection model can reliably estimate the anode electrode potential under various 

operating conditions. The results show that the ensemble selection model is effective at 

predicting the anode potential of lithium-ion batteries. For driving cycles, the lowest 

estimation RMSE is only 2.1 mV.  
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Figure 5-5: Anode Potential Predictions on the Test Data with the Initial SOCs of 35%, 65%, 

and 85% Using 4 Common Regression Algorithms. REF (red curve-Physics-based model), 

Linear regression (green curve), Gaussian process regression (blue curve), Random forests 

(pink curve), and Support vector regression (yellow curve).   
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Figure 5-6: Anode Potential Predictions on the Test Data with the Initial SOCs of 35%, 65%, 

and 85% Using Ensemble Selection Algorithm and Physics-Based Model (REF). 
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Chapter 6 : Conclusions  

The current status of sustainable development and climate change is extremely concerning. 

The globe is facing tremendous problems as a result of the effects of climate change on the 

environment, society, and the economy. As humans, we must take steps to limit our carbon 

footprint and alleviate the effects of climate change. This includes switching to renewable 

energy sources, minimizing waste and consumption, and promoting sustainable habits in 

all aspects of life. 

In this thesis, we aim to examine this concern from a different perspective by delving 

deeper into the material life cycle chain. We focus on the life cycle (degradation) of 

electrochemical energy storage devices during both the manufacturing and operational 

phases. 

In the manufacturing section, we demonstrate how an efficient electrochemical energy 

storage device (pseudocapacitor) can be built using a simple, single-step ultra-short laser 

pulses for in-situ nanostructure generation (ULPING) method. Our results reveal that this 

method is a green synthesis technique that can fabricate a pseudocapacitor electrode in less 

than 10 minutes, which can be used as an effective energy storage device. The fabricated 

pseudocapacitor can be electrically charged in less than 5 seconds at a constant current 

density of 0.25 mA/cm² and can hold the charge between 1 to 8 seconds in some of the 

electrodes. 

In the second section, we aimed to provide new insights into the modeling and prediction 

of the electrochemical behavior performance of the fabricated pseudocapacitors. Several 

data-driven machine learning (ML) algorithms were utilized in this study to simulate the 
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electrochemical behavior of pseudocapacitors, such as impedance and specific capacitance. 

These models employ numerous mathematical constructs to predict behavior as accurately 

as possible. The Multilayer Perceptron (MLP) and Random Forest (RF) models were found 

to be the most effective for forecasting |Z|, and the specific capacitance. Their effectiveness 

can be described in terms of the lowest error values (RMSE) obtained for these models 

compared to other tested models. 

This thesis highlights the significance and effectiveness of the in-situ laser irradiation 

technique for creating a metal oxide layer on a Ti sheet under ambient conditions. 

Furthermore, it emphasizes the potential of ML algorithms as a tool for constructing 

mathematical models to forecast the electrochemical behavior of pseudocapacitors, thereby 

facilitating the development of optimal electrodes. 

The laser fabrication parameters were experimentally selected to achieve high-

performance pseudocapacitors. Thus, we used an optimization algorithm to assess whether 

we could improve the electrochemical behavior performance of the pseudocapacitors. One 

of the primary objectives of this section was to determine the optimal laser fabrication 

parameters to attain the highest specific areal capacitance. We employed a simulated 

annealing (SA) optimization algorithm to evaluate the trained MLP model as a black box 

and maximize the objective function, which, in our case, is a specific capacitance value, to 

identify the most optimal laser fabrication parameters. Using SA, we found the optimal 

laser fabrication parameters that increased the specific areal capacitance to 0.9999 mF cm⁻² 

at a current density of 0.25 mA cm⁻². Our findings reveal that this research offers promising 

methods for employing ULPING to fabricate nanostructures on transition metals (TMs) 
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that have the potential to be used in pseudocapacitor electrodes. Moreover, it highlights the 

importance of utilizing data-driven approaches in electrode design procedures. 

In the operational phase, we studied one of the most detrimental degradation mechanisms 

that occur during the fast-charging process, known as the deposition of metallic lithium or 

lithium plating, in another EESD, lithium-ion batteries. Lithium plating occurs when the 

anode potential drops below 0V (vs. Li+/Li0), and the lower the anode potential, the higher 

the lithium plating rate. Thus, predicting the anode potential in real-time is an ideal way to 

prevent lithium plating. 

We propose a machine learning approach based on an ensemble selection that accurately 

predicts the anode potential under various charging conditions. To achieve a large input 

dataset with high correlation with anode potential, we applied data pre-processing, 

correlation analysis, and feature subset selection. The ensemble selection model is built 

using the compacted dataset, and the predictions achieve high accuracy, with only a 

maximum Root Mean Square Error of 2.1 mV on the driving cycles. 

According to the experimental results, the proposed ensemble selection model achieves 

adequate results for anode potential predictions at driving cycle and constant charging 

profiles. Our study highlights the importance of utilizing machine learning techniques in 

predicting and preventing degradation mechanisms in electrochemical energy storage 

devices such as lithium-ion batteries. 

6.1 Limitations of study 

This thesis used the ULPING fabrication technique on a Ti sheet to generate an oxide layer 

for use as pseudocapacitor electrodes. While the obtained results were satisfactory, with a 
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specific areal capacitance of 2.8333 mF cm-2 at a current density of 0.25 mA cm-2, the 

experimental selection of laser fabrication parameters may have limited the achievement 

of the optimal electrochemical performance. Therefore, one of the future directions of this 

study is to determine the optimal laser fabrication parameters to achieve the highest specific 

areal capacitance based on the other optimization algorithms. In addition, this study focuses 

on the most used ML algorithms applicable to predicting electrochemical behavior. 

However, other advanced ML algorithms may also perform well for this prediction task, 

and their potential use in future research should be explored. Furthermore, as the 

performance of ML models is highly problem-dependent, the application of the proposed 

models to other electrode properties requires additional validation. 

In the operational phase, the proposed method achieves good anode potential estimation 

results for a fresh LiB, but there are still certain difficulties under certain conditions, such 

as the battery’s performance degradation over time. The formation and growth of different 

aging mechanisms will affect the charging habit of the battery as it ages.   As a result, the 

proposed method's accuracy and robustness must be examined under different aging cycles, 

and the state of health as an input parameter would also aid in capturing any variance 

generated by an aging cell. 
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Appendix A 

The MATLAB and Python code produced for a portion of this thesis is shared in this 

section.  

 

  

Specific Areal Capacitance and Discharge Time Calculation MATLAB Code based on GCD 

Curve. 
>clc, clear all, close all, warning off 
%%Specific Capacitance Calculation 
>disp('Dchg/Chg_Time'); 
>disp('Dchg/Chg_Time'); 
 
% % Load cycle file 
>cycle = readmatrix('test1.xlsx', 'Sheet','test1'); 
>cycle1 = readtable('test1.xlsx', 'Sheet','test1'); 
>TCyc = cycle(:, 1); 
>vCyc = cycle(:, 2); 
>stepNum = cycle(:, 3); 
>xArr_Dch = []; 
>xArr_Chag = []; 
>numStep = max(stepNum); 
 

for i = 1 : numStep 
    >disp(['Cycle number is ', num2str(i)]); 
    >indices = find(stepNum == i); 
    >startIndex0 = min(indices); 
    >endIndex0 = max(indices); 
    >tAll = cycle1(:, 1); 
    >t0 = tAll{startIndex0, :}; 
    >t1 = tAll{endIndex0, :}; 
    >T_chg_dch=t1-t0; 
    >disp(['T_chg_dch=', num2str(T_chg_dch)]); 
 
    >if   i ==4   
        >xArr_Dch = [xArr_Dch; [T_chg_dch]]; 
        >dch_time=(xArr_Dch); 
        >v1=0.8; 
        >v2=-0.8; 
        >S_Cap= (4*0.000141)/((v2-v1)/dch_time); %% Equation 1  
        >S_Cap=S_Cap*(-1000); %% Unit Conversion (mF/cm2) 
    End 
 
    if   i ==3 
    >xArr_Chag = [xArr_Chag; [T_chg_dch]]; 
    end 
  
>plot (vCyc, 'r'); hold on;  
end 

# The End. Run & Enjoy.  
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MLP Construction Python-Code for Impedance and Specific Capacitance Prediction.  

 
# Data Wrangling 
import pandas as pd 
import numpy as np 
from google.colab import drive 
import sys 
# Preprocessing 
from sklearn.preprocessing import StandardScaler, PowerTransformer 
# VIF 
from statsmodels.stats.outliers_influence import variance_inflation_factor 
from statsmodels.tools.tools import add_constant 
# Data Visualization 
import matplotlib.pyplot as plt 
from matplotlib import rcParams 
import seaborn as sns 
# SKLEARN 
from sklearn.model_selection import train_test_split 
from sklearn import metrics 
from sklearn.model_selection import RepeatedKFold 
# TENSORFLOW 
import os 
import logging 
from keras.models import Sequential 
from keras.layers import Dense 
from keras.layers import Dropout 
from tensorflow.keras.optimizers import Adam 
from keras.metrics import MeanSquaredError, RootMeanSquaredError 
import tensorflow 
import tensorflow_addons as tfa 
# Set TensorFlow logging level to error 
tensorflow.get_logger().setLevel(logging.ERROR) 
# Set random seeds for reproducibility 
RANDOM_SEED = 35 
np.random.seed(RANDOM_SEED) 
tensorflow.random.set_seed(RANDOM_SEED) 
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' 
# Mount Google Drive 
drive.mount('/content/gdrive', force_remount=True) 
sys.path.append("/content/gdrive/My Drive") 
ROOT = "/content/gdrive/My Drive" 
# Data Loading and Preprocessing 
# Get data 
def get_data(path='Test1.xlsx'): 
data_path = os.path.join(ROOT, path) 
data = pd.read_excel(data_path, index_col=None, dtype={'Name': str, 'Value': float}) 

    return data  
# Find numerical columns 
def get_numeric_cols(data): 
num_types = ['int64', 'float64'] 

    return list(data.select_dtypes(include=num_types)) 
# Targets: |Z|max, Dch_Time 
TARGET = 'Dch_Time' 
# Drop extra columns 
drop_it(data, ['Start-Freq', 'End_Frequenc', 'Chg_Time', 'Spe_Capa']) 
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# Find upper and lower boundaries for outlier removal 
col = TARGET 
upper_boundary, lower_boundary = find_boundaries(data, col, 1.5) 
upper_boundary, lower_boundary 
# Identify and remove outliers 
outliers = np.where(data[col] > upper_boundary, True, 

               np.where(data[col] < lower_boundary, True, False)) 
outliers_df = data.loc[outliers, col] 
data = data.loc[~outliers, :] 
# Power Transformation 
data = power_transform(data) 
# Standardize 
cols = data.columns 
st = StandardScaler() 
data = st.fit_transform(data) 
data = pd.DataFrame(data, columns=cols) 
 
# Multilayer Perceptron (MLP) 
parameters = { 
   'optimizer__learning_rate': 0.001, 
   'model__neurons': 64, 
   'model__dropout_rate': 0.5, 
   'model__activation': 'tanh', 
   'epochs': 400, 
   'batch_size': 16 

} 
X, y = separate_it(data, TARGET) 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=35) 
optimizer1 = Adam(learning_rate=parameters['optimizer__learning_rate']) 
n_inputs = X_train.shape[1] 
model = Sequential() 
model.add(Dense(parameters['model__neurons'], input_dim=n_inputs, 
activation=parameters['model__activation'])) 
model.add(Dropout(parameters['model__dropout_rate'])) 
model.add(Dense(1, activation='linear')) 
model.compile(optimizer=optimizer1, loss='mse', metrics=[MeanSquaredError()]) 
history = model.fit(X_train, y_train, 

                    validation_data=(X_test, y_test), 
                    epochs=parameters['epochs'], 
                    batch_size=parameters['batch_size'], 
                    verbose=0) 

 
y_pred = model.predict(X_test) 

  
 
# The End. Run & Enjoy.  
 



287 

 

 

  Random Forest Regression Construction Python-Code for Impedance and Specific 

Capacitance Prediction. 
 
%Data Wrangling and Preprocessing 
%Import necessary libraries 
 
import pandas as pd 
import numpy as np 
from google.colab import drive 
import sys 
from sklearn.preprocessing import StandardScaler 
from statsmodels.stats.outliers_influence import variance_inflation_factor 
from statsmodels.tools.tools import add_constant 
import matplotlib.pyplot as plt 
from matplotlib import rcParams 
import seaborn as sns 
from sklearn.model_selection import train_test_split 
from sklearn.model_selection import KFold 
from sklearn.model_selection import cross_val_score 
from sklearn import metrics 
from sklearn.model_selection import RandomizedSearchCV 
from sklearn.ensemble import RandomForestRegressor 
  
% Set up environment 
 
%matplotlib inline 
plt.style.use("seaborn") 
rcParams['figure.figsize'] = (24, 12) 
drive.mount('/content/gdrive', force_remount=True) 
sys.path.append("/content/gdrive/My Drive") 
ROOT = "/content/gdrive/My Drive" 
  
% Load and preprocess data 
def get_data(path='FINAL_DATASE888.xlsx'): 
    data_path = os.path.join(ROOT, path) 
    data = pd.read_excel(data_path, index_col=None, dtype={'Name': str, 
'Value': float}) 
    return data 
  
def get_numeric_cols(data): 
    num_types = ['int64', 'float64'] 
    return list(data.select_dtypes(include=num_types)) 
  
def drop_it(data, indexs, axis=1, inplace=True): 
    data.drop(indexs, axis=axis, inplace=True) 
    print(f'{indexs} dropped!') 
  

Continued>>>>>>>  
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  % ... (more functions for data manipulation) 
  
TARGET = 'Dch_Time' 
data = get_data() 
cols = get_numeric_cols(data) 
data = data[cols] 
drop_it(data, ['Start-Freq', 'End_Frequenc', 'Chg_Time', 'Spe_Capa']) 
cols = data.columns 
st = StandardScaler() 
data = st.fit_transform(data) 
data = pd.DataFrame(data, columns=cols) 
col = TARGET 
upper_boundary, lower_boundary = find_boundaries(data, col, 1.5) 
outliers = np.where(data[col] > upper_boundary, True, np.where(data[col] < 
lower_boundary, True, False)) 
data = data.loc[~outliers, :] 
col = TARGET 
distance_factor = 1.5 
upper_boundary, lower_boundary = find_boundaries(data, col, distance_factor) 
outliers = np.where(data[col] > upper_boundary, True, np.where(data[col] < 
lower_boundary, True, False)) 
outliers_df = data.loc[outliers, col] 
outlier_rate = len(outliers_df) / len(data) 
indp_vars = get_indp_vars(data, [TARGET]) 
cols, vif = get_vif(indp_vars, 5) 
drop_it(data, ['Scan_Speed_Base_Elec', 'Scan_Speed_Change_Elec', 
'Oxidation_Base', 'Ti/Ox_Base', 'Re(Z)MAX', 'LM(ZMAX)', 'Re(Z)MIN', 
'LM(ZMIN)', '|Z|Min']) 
 
 % Model Building and Evalution 
X, y = separate_it(data, TARGET) 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, 
random_state=35) 
reg_random_forest = RandomForestRegressor(**parameters, random_state=35) 
reg_random_forest.fit(X_train, y_train) 
y_pred = reg_random_forest.predict(X_test) 
score = metrics.mean_squared_error(y_test, y_pred) 
  
%Print model evaluation metrics 
print(f'R^2: {metrics.r2_score(y_test, y_pred)}') 
print(f'RMSE: {np.sqrt(metrics.mean_squared_error(y_test, y_pred))}') 
print(f'RMSE (absolute value): {np.sqrt(np.abs(score))}') 
%Save and visualize results 
df_res = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred.flatten()}) 
df_res.to_csv('result_RFR_DCH.csv', index=False) 
sns.lmplot(x='Actual', y='Predicted', data=df_res, fit_reg=False) 
d_line = np.arange(df_res.min().min(), df_res.max().max()) 
plt.plot(d_line, d_line, color='red', linestyle='--') 
plt.show() 
plot_pred_actl(y_pred, y_test, '', '') 
 
# The End. Run & Enjoy.  
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