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Abstract

Assisted and automated driving vehicles have received massive attention over
the past few years from the research community to make our roads safer. In
this thesis, we introduce a framework for predicting the intention of pedestrians
in clear and challenging weather conditions. The framework consists of five
deep-learning models, of which two are designed and trained from scratch
and three were used pretrained. The framework takes video frames from the
dashcam and inputs them to an enhancement pipeline to determine the quality
of the images and enhance them if necessary. Then, the framework utilizes pre-
trained models (MoveNet, Deep-sort, and Deep-Labv3) for feature extraction.
Lastly, all the features are fed into a Transformer-based Intention Prediction
Model (TIPM) for pedestrian intention prediction. Results show that TIPM
outperforms state-of-the-art models yielding an accuracy of 69% on the JAAD
behavior dataset, 82% on the JAAD all dataset.

Keywords: Deep-learning; Image-enhancment; Transformers; Vision trans-
former; Intention prediction; Assisted and automated driving vehicles.
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Chapter 1

Introduction
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1.1 Introduction

Ensuring the safety of vulnerable road users (VRUs), such as pedestrians and

cyclists, is a critical aspect of intelligent transportation systems. Accurately

predicting VRU’s crossing intentions can significantly contribute to the preven-

tion of accidents and the optimization of traffic flow. However, the reliability

of such predictions can be compromised under adverse weather conditions,

where reduced visibility and altered environmental factors pose significant

challenges. In this context, the utilization of image enhancement techniques

becomes paramount in maintaining the prediction accuracy of VRU’s crossing

intentions during inclement weather.

Extensive research was done on VRU intention prediction. Kotseruba et

al. [17] provided the most recent benchmark for pedestrian intention prediction

in which the Pedestrian Crossing Prediction with Attention (PCPA) model

achieved state-of-the-art performance. After that different approaches and ar-

chitectures were proposed to enhance the performance of PCPA [29, 39, 42].

The proposed work either used non-visual features only for intention predic-

tion [29, 42] or a combination of visual and non-visual features [17, 39]. How-

ever, apart from Zhang et al. [42] who used graph neural networks, all of these

models used CNN and RNN for visual and non-visual feature extraction re-

spectively. Despite the utilization of various image enhancement techniques to

rectify defects in input frames, previous research endeavors have not put forth

any approach to uphold prediction accuracy in adverse weather conditions.

This challenge poses a substantial concern for two principal reasons: timing

limitations and the occurrence of multiple weather conditions concurrently.

Presently, not a single model exists that can effectively address the diverse
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range of defects that may manifest within a single video frame (i.e., image).

In this thesis, we target the use of vision transformers and self-attention

mechanisms to design a pedestrian intention prediction model and utilize the

use of CNNs and classical image processing to build an efficient and robust

pipeline that can improve or at least maintain prediction accuracy with mini-

mal computational and latency overhead.

1.2 Motivation

Accurate prediction of the crossing intention of VRUs is of utmost importance

in the context of assisted and automated driving vehicles. Understanding VRU

crossing intentions enables these vehicles to proactively respond to potential

hazards, ensuring the safety of both the VRUs and the vehicle occupants. By

predicting whether a pedestrian, cyclist, or other VRU intends to cross the

road, assisted and automated driving systems can adjust their speed, trajec-

tory, and braking in advance, allowing for timely and appropriate actions. This

capability significantly reduces the risk of collisions and enhances the overall

safety of road users. However, adverse weather conditions can adversely affect

the accuracy of VRU crossing intention predictions, leading to potential safety

hazards. In this regard, image enhancement techniques play a crucial role in

improving the accuracy of prediction models.

Extensive research was done on the task of predicting the crossing inten-

tion of VRU’s, the two main approaches for predicting the crossing intention

of VRU’s are trajectory-based approaches and classification-based approaches.

Trajectory-based approach [25,26,37,44] uses RNN’s and deep neural networks

to predict the future trajectory of the pedestrians and use these trajectories to

3



estimate the crossing intention. This approach treats the intention prediction

task as a regression problem where the future trajectories are represented as

a series of future bounding boxes for the pedestrian. In general regression

tasks are more difficult than classification tasks which makes the prediction

accuracy for regression models lower than their classification counterparts.

Classification-based intention prediction [5, 16, 17, 22, 28, 39] uses visual cues

extracted from the scene to predict whether the pedestrian is crossing or not.

In our framework, we chose to use the classification-based approach for our

prediction model as classification models showed better performance than tra-

jectory prediction models.

1.3 Problem Statement

According to the World Health Organization’s 2018 Global Status Report

on Road Safety, it was highlighted that there is a continuous increase in the

number of road traffic fatalities every year. It was reported that approximately

1.35 million deaths occur annually worldwide as a result of traffic accidents

[43]. Deep learning techniques have shown promising results in predicting

the crossing intention of pedestrians by extracting various cues from input

frames captured by a dashcam, including pedestrian bounding boxes, pose

key points, ego vehicle speed, local context, and semantic segmentation of

the scene. However, several challenges must be addressed to achieve accurate

predictions, including the hard real-time constraint and maintaining prediction

accuracy during bad weather conditions using image enhancement techniques.

One of the key challenges in pedestrian crossing intention prediction is

obtaining accurate and reliable inputs from the input frames. Extracting
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pedestrian bounding boxes and pose key points requires overcoming occlu-

sions, variations in lighting conditions, and background clutter. Additionally,

effectively incorporating ego vehicle (i.e. the vehicle that contains the sensors

that perceive the environment around the vehicle ) speed, local context, and

semantic segmentation into the prediction model requires a robust fusion of

diverse information sources and contextual cues. Another significant challenge

is the hard real-time constraint imposed on the prediction model to allow for

action-taking. The model needs to achieve accurate predictions while satis-

fying the stringent time constraints to ensure the practical viability of the

system.

Furthermore, adverse weather conditions pose a considerable challenge to

maintaining prediction accuracy. Factors such as poor visibility, rain, snow, or

fog can significantly degrade the quality of input frames, making it difficult for

the prediction model to accurately extract relevant features and make reliable

predictions. Image noise, weather-related artifacts, and low contrast further

complicate the task, impacting the accuracy and robustness of the model.

State-of-the-art approaches, as seen in [17, 39], employ RNNs and CNNs

to process visual cues extracted from input frames, enabling the prediction

of a target pedestrian’s crossing intention. However, the use of RNNs for

handling temporal features presents several challenges. Firstly, RNNs struggle

with long-term dependencies in input sequences, as discussed in [4]. Moreover,

training RNNs requires substantial time, and their inference is comparatively

slower than self-attention-based models. Additionally, RNNs and CNNs en-

counter domain adaptation issues due to their sequential and local nature,

which introduces bias. In contrast, global self-attention models process the

entire sequence in one step. Furthermore, current state-of-the-art models do
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not address challenges arising from adverse weather conditions. Overcoming

these challenges involves employing image enhancement techniques, which play

a crucial role in maintaining accurate predictions during bad weather. These

techniques aim to improve input frame quality and clarity, reducing noise,

enhancing contrast, and preserving important features related to pedestrian

detection and localization. Lastly, our study stands out by considering real-

time testing of proposed models, an aspect overlooked in previous literature.

Therefore, the primary problem addressed in this study is fast and accurate

pedestrian crossing intention prediction using deep learning techniques. The

study aims to tackle the challenges of providing an accurate prediction model

that can generalize to different testing scenarios, maintain its prediction accu-

racy during severe weather conditions and meet the hard real-time constraint

by having a low inference time and low end-to-end prediction time taking into

consideration the processing time needed to extract different inputs needed for

the model to make a prediction.

1.4 Thesis Contribution

This thesis makes the following main contributions:

1. We propose a novel pedestrian prediction framework based on the trans-

former architecture. The framework utilizes both vision transformers

and self-attention mechanisms to produce an accurate prediction with

low latency achieving state-of-the-art performance on JAAD dataset [27]

against several models while maintaining a low inference time.

2. Provide a fully annotated dataset to train a multilabel classifier to detect

root problems in input frames. The dataset contains 75 dashcam videos
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collected from over 4 hours of footage. The dataset contains footage

with both severe weather and clear conditions in a balanced manner to

remove bias during training.

3. Provide a solution for maintaining prediction accuracy during unfavor-

able weather conditions by employing an image enhancement pipeline to

detect and rectify underlying issues in input frames.

4. Provide a novel feature fusion method (total fusion) in the prediction

model that provides better performance in terms of accuracy and infer-

ence time.

1.5 Thesis Organization

The organization of this thesis is as follows: In Chapter One, we describe the

problem of prediction of VRU intentions and the utilization of image enhance-

ment techniques to maintain prediction accuracy. We discuss the existing gaps

and challenges in computer vision-based approaches, outline our approach to

addressing these challenges, and highlight our contributions to the field.

Chapter Two is dedicated to the examination of various image enhancement

methods, wherein we assess the advantages and disadvantages of employing

deep learning or classical image processing for this particular task. We take

into consideration the stringent timing constraint that arises from the inherent

nature of the problem we aim to address. Furthermore, we provide an extensive

background study on different intention prediction models and the techniques

employed in each model, emphasizing the pros and cons of each technique.

In Chapter Three, we introduce our framework and its components. We
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delve into a detailed discussion of the techniques and tools employed in con-

structing our framework, the main components of our framework which are the

image enhancement pipeline and the intention prediction model are described

thoroughly, and the reason behind choosing their inner components includ-

ing the transformer encoder, the vision transformer, the image enhancement

modules and the image multilabel classifier is discussed in detail.

Chapter Four presents the comprehensive results obtained from testing the

entire framework on the JAAD dataset, as well as the individual components,

and thoroughly examines and interprets the results. We also provide the results

of testing the framework on a deployment environment against state-of-the-art

models. Our model shows improvement over state-of-the-art models in terms

of accuracy achieving 82% on JAAD all datasets and 20 ms for the inference

time.

Lastly, in Chapter Five, we conclude by providing valuable insights into our

methodology, discussing its effectiveness, potential limitations, and suggesting

potential directions for future research and expansion of our work.
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Chapter 2

Background and Related Work
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2.1 Introduction

In this chapter, we review the literature surrounding the prediction of pedes-

trian crossing intention and different image enhancement techniques used to

overcome various defects in video sequences. We start by investigating dif-

ferent enhancement techniques that use classical image processing and then

compare these methods with their deep-learning counterparts. After that, an

extensive review of state-of-the-art deep learning methods utilized for pedes-

trian crossing intention prediction is provided and research gaps are outlined.

Lastly, we give an introduction to transformers, self-attention mechanisms,

and vision transformers which are the main building blocks for our prediction

model.

2.2 Image Enhancement For unfavorable Weather

Conditions

In recent years, computer vision techniques have received enormous atten-

tion in traffic domain applications. The prime beneficiary of this technol-

ogy is autonomous vehicles, although improvements are being made every

day to achieve a fully self-driving vehicle, there are still many challenges re-

lated to object detection in unfavorable conditions and real-time performance.

Low-visibility weather conditions, such as rain, fog, and snow, are some of

these challenges. The stringent requirements for real-time performance in au-

tonomous vehicles also pose a significant challenge for any perception model

that could be implemented in these vehicles.

In 2018, an unprecedented accident happened in the United States during
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an Uber self-driving vehicle test. Although the driver was distracted by his

mobile phone, the car detected a pedestrian holding a bicycle and crossing

the road at a very late stage resulting in the pedestrian’s death. Figure 2.1

shows the first frame in which a pedestrian is detected from the Uber accident

recording using the YOLOv4 detector. According to the reports, it is clear

that it was a system design error, due to multiple reasons: (1) The system was

not trained on detecting a human holding a bicycle, (2) It was nighttime and

visibility was poor, (3) The system did not take any actions even though the

object was detected six seconds before the collision [32].

Image enhancement techniques can be divided into two main categories:

(1) classical methods such as traditional filters, classical image processing

techniques, and classical machine learning techniques, (2) deep learning-based

models. Histogram equalization is one of the most popular classical methods

used for low-resolution images [11]. It enhances the brightness and color con-

trast in an image. This method was tested on a dataset with foggy images and

showed a significant improvement in object detection. However, as mentioned

earlier, in real-life situations, an image could contain more than one defect.

Using only one classical image enhancement method would not fix all the is-

sues in an image. In fact, it is even worse to pass an image through the wrong

filter which is commonly known as a destructive or catastrophic enhancement.

CNN-based methods can achieve better outputs and have the potential to fix

multiple defects in a given frame with the proper training dataset. However,

most CNN-based architectures that are used in image enhancement require a

long inference time to achieve good results.

The recent advancements of deep learning and neural networks enabled

researchers to develop many new methods for image enhancement. These
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Figure 2.1: Uber accident recording passed to YOLOv4

methods improve the performance of image processing in many applications

including the self-driving vehicles. However, time constraints and image qual-

ity (especially if an image may suffer from multiple quality issues simultane-

ously) are the two major challenges that need to be addressed to meet the

real-time requirement of autonomous vehicles.

In this Chapter, we highlight the work done for image enhancement using

both classical and deep-learning approaches while discussing the limitations

of each technique. Then we provide a simple study that shows the effect of

adverse weather conditions on the accuracy of the detection modules.

2.2.1 Classical image enhancement algorithms

Classical methods rely mainly on performing mathematical operations locally

on the image pixels to fix a particular issue in the image, which could be low

light, poor image contrast, or any other issues that could affect image quality.

12



Mathematical operations carried out in the frequency domain could involve

transforming the image using Fourier transform, process the image by applying

filters for example, then re-generate the image again. Although this process

is fast and does not require any training datasets, it is not scalable and can

not be used to fix more than one issue at a time. In our framework, we tackle

three concurrent types of image defects that could happen simultaneously in

challenging weather [24].

• Low light, which is captured mainly during the night in streets without

proper lighting or on extremely foggy days

• Low-resolution, which mainly occurs when the images are captured with

an unclear lens (e.g., fog, snow falling, or heavy rain falling)

• Blurriness, which could be caused by rain, fog, or a combination of these

weather conditions

There are many classical image enhancement techniques that were devel-

oped to overcome each one of the above defects, but not all of them at once.

Therefore the first step in the proposed pipeline is to detect what issues are

present in the video frames passed to use the proper sequence of classical

methods to enhance the images.

Low light was the main cause for the Uber accident that killed a pedestrian

and it remains a significant challenge for AVs until today. It gets even more

challenging when an image is taken during a foggy or rainy night, which further

escalates the effects of low light on the image quality. Although deep learning

algorithms have achieved great results in this area like MIRnet model [41],

LLNet [19], the main downside for these models is the high computational time

needed which makes it difficult to run in real-time applications. Thus, simple
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(a) Original image before enhancement

(b) Enhanced image using Sepia filter

Figure 2.2: Enhancing low light conditions using Sepia kernel

filters like sepia kernels can be used to enhance the brightness and improve

the image quality with a very fast response time as shown in Figure 2.2 (b).

However, the downside of using these kernels is the limited performance they
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can offer which may not be acceptable in severe dark conditions.

In regards to the low-resolution problem, the histogram equalization method

has been used by many researchers, where the image is first transformed to

gray-scale [13], as the technique relies on stretching the gray levels in an im-

age and enhancing the contrast. Therefore, this technique is mainly used in

applications that do not require colorful bright images [12]. A workaround for

this limitation is to first change the RGB image representation into a YCbCr

representation where the Y matrix carries the luminance of the image and

the Cb and Cr matrices carry the chrominance of the image. The histogram

equalization is then carried on the luminance part of the image (Y) and then

the image is transformed back to RGB representation. Multiple variations

of this method have been proposed to overcome some challenges in the base

model [13]: local histogram equalization, local histogram stretching, and non-

linear mapping methods. Generally, all histogram equalization variations aim

to compute a function for each pixel in relation to the neighboring pixels.

Figure 2.3 shows the result of applying the AHE method on a low-resolution

frame and then passing the frame to YOLOv4 for object detection.

The Adaptive Histogram Equalization (AHE) [24] was proposed for images

that have darker parts in certain pixels than others. AHE’s approach is to

locally identify the gray-scale mapping of a pixel on an image according to

its neighboring pixels to be able to effectively enhance the image’s important

details [11]. In this paper, the AHE method is used mainly on low-resolution

images as it showed an improvement in regards to the detection frame of a

pedestrian using an object detection module in foggy situations.

Lastly, the third image defect considered is a blur which is caused by various

weather conditions like rain, snow, fog, or any combination of these. There
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Figure 2.3: Using AHE method and YOLOv4

are multiple types of blur: Average blur, Gaussian blur, and Motion blur The

blurry or defective image (d) with a blur could be described using the following

equation [1].

d = b ∗ I + x (2.1)

where I represents the original image, b is the blur factor, x is the noise

and ∗ is the convolution process [1].

Image de-blurring techniques are essential for many fields, such as enhanc-

ing traffic images captured in rainy weather conditions. The research done by

Palumbo et.al [23] shows how various techniques like Bias Field Correction,

Intensity Standardization, and Noise filtering are used to de-blurring images.

It is also important in military applications, traffic surveillance, and photogra-

phy; therefore intensive research has been already made in this area and var-

ious techniques have been developed. Popular methods for image de-blurring

include Iterative Van Cittert Algorithm, Iterative Landweber Algorithm, It-
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erative Richardson-Lucy Algorithm, Iterative Poisson Map Algorithm, and

Laplacian Sharpening Filters [1].

2.2.2 Deep-learning image enhancement algorithms

In the last decade, deep learning models have made great progress with their

ability to learn generalized features from big datasets. The main two categories

that exist are: (1) Convolution Neural Networks and encoder-decoder models,

(2) high-resolution feature processing, both of which have some advantages

and disadvantages. For example, the first approach faces a challenge in the

reconstruction process of the original image resolution. Although a generalized

number of spatial features is learned by this resolution reduction. The second

approach tackles this issue by avoiding any down-sampling on the input image.

However, the trade-off comes at the cost of encoding the image details [41].

MIRnet is one of the popular models used for image enhancement mainly to

solve poor lighting conditions. MIRnet is introduced in [41] as a new multi-

scale approach, which maintains the original image resolution and features

by using parallel convolution streams. Similar to MIRnet, there are several

modes that follow the same approach such as Scale-recurrent network (SRN-

DeblurNet), Single guided network (SGN), and Deep multi-scale convolutional

neural network [21]. However, MIRnet differs in the ability to process data

across all the network levels, unlike the above models.

In regard to the low-resolution problem, many deep-learning image res-

olution enhancement algorithms have been developed by researchers. These

algorithms are categorized as follows: Prediction models, Edge-Based meth-

ods, Image statistical methods, and Patch-based models. Chih-Yuan Yang

et.al [38] developed a benchmark for all these methods and showed that the
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Patch-based models achieve state-of-art performance. Generally, the super-

resolution convolutional neural network (SRCNN) performs image enhance-

ment in three steps: (1) Patch extraction and representation, (2) Non-linear

mapping, and (3) Image reconstruction. SRCNN first extracts features and

patches from the defect image to generate a representation in PCA, Haar, etc.

Then, a feature map is created by mapping high-dimensional vectors during

the second step of non-linear mapping. Lastly, the reconstruction of the image

process starts from the high-resolution feature maps created in the previous

step [14].

For the blurring defect in images, Syed Waqas Zamir et.al [40] propose a

restoration transformer (Restormer) model for image deblurring. Restormer

is a deep learning model for image restoration based on transformers in its

architecture. This reliance on transformers instead of normal neural networks

aims to enhance the overall performance of the model in terms of inference

time and accuracy.

However, transformer architecture normally has a significant computa-

tional complexity especially with high-resolution images, making it hard to

use with high-resolution image restoration tasks [40]. But the developers of

the Restormer model have made changes in the normal transformer architec-

ture, making it the state-of-the-art model in:

• Single image motion deblurring.

• Defocus deblurring.

• Restoring images that are blurred because of raindrops.

• Image denoising.
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The main drawback of the Restormer model is the long inference time. It

takes about 40 seconds to perform image de-blurring on a single image.

From the previous sections, we conclude that classical image enhancement

algorithms have a very fast response time but lack in terms of high perfor-

mance and generalization to different image conditions. On the other hand,

deep-learning approaches have high performance in terms of image enhance-

ment but usually require a long time to produce results which makes them more

suitable for offline applications. In our framework, we chose to use classical

image enhancement modules in our pipeline as they are easier to implement

and can be replaced later by more sophisticated techniques depending on the

application. For instance, for applications that may apply the pipeline offline

(i.e., the image quality is more important than the inference time), then re-

placing the classical image enhancement modules with deep learning image

enhancement modules will be the ideal solution.

2.3 Deep Learning In Pedestrian Crossing In-

tention

The recent progress achieved in the field of computer vision has had a signifi-

cant impact on various applications, particularly autonomous vehicles (AVs).

The effectiveness of AVs’ perception models is heavily reliant on the process-

ing of a large volume of input frames at high speeds to acquire the necessary

information for crucial decision-making. While the performance of perception

models has seen a significant improvement in numerous tasks, there remain

obstacles that impede the widespread adoption of AVs in the market. One of

the key challenges is predicting the behavior of vulnerable road users (VRUs)
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such as pedestrians and cyclists. The accurate and expeditious anticipation of

VRUs’ movements would enhance the safety and reliability of driving experi-

ences.

The recent advancements in visual sensor resolution, combined with their

affordable price, have established them as the primary choice for autonomous

vehicles (AVs). Among the various sensors commonly used in AVs, front-facing

cameras are not only reliable but also cost-effective, taking this into consider-

ation developing a behavior prediction model that relies on visual inputs from

front-facing cameras will be the most practical option for deployment. Kot-

seruba et al. [17] provided the most recent benchmark for pedestrian intention

prediction in which the PCPA model achieved state-of-the-art performance.

After that, different approaches and architectures were proposed to enhance

the performance of PCPA [29, 39, 42]. The provided work either used non-

visual features only for intention prediction [29,42] or a combination of visual

and non-visual features [17, 39]. However, apart from Zhang et al. [42] who

used graph neural networks all of these models used CNN and RNN for vi-

sual and non-visual feature extraction respectively which may not be optimal

for this task. Also, the inference time of the model is not considered in the

previous work. In this section, we provide an extensive study of various deep-

learning approaches for pedestrian crossing intention prediction. Table 2.1

provides a summary of the selected DL models with respect to criteria and in-

put features that are used for predicting the crossing/non-crossing intentions

of pedestrians.
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Table 2.1: Summary of the selected DL models

DL Models Selection Criteria Input Type
Convolution-3D Spatio-Temporal-based Local context

Static-VGG16
Basic VGG16
Architecture

Local context

SFRNN Scene and Dynamics
Features Fusion

Local context, global
surround, pose,

bounding box,vehicle
speed

SingleRNN Trajectory-based
Local context, pose,
bounding box, vehicle

speed
Convolutional

LSTM
LSTM-based Local context

PCPA Attention-based
local box, bounding

box, pose

Two-streams RNNs Trajectory-Based

Local context, global
surround, pose,

bounding box, vehicle
speed

Position velocity
LSTM

Trajectory-based
Bounding box,

pedestrian velocity
vector

Mask PCPA 4 2D
Attention-based with

Features Fusion

Local context, global
surround, pose,

bounding box, vehicle
speed

2.3.1 Static-VGG16

Static-VGG16 [31] is one of the simplest deep learning models. The Static

model architecture is formed of a VGG16 backend and fully connected layers,

where action estimation and prediction are based on the final image in the

observation sequence. Even though the static-VGG16 model is considered the

simplest among other baseline models, it still outperformed other complicated

architectures such as conv-LSTM.
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2.3.2 SingleRNN

Kotseruba et al. [16] proposed a single RNN network. The network receives a

vector as input, which is a combination of various features including bounding

box coordinates, pedestrian pose key points, ego vehicle speed, and the local

context of the scene surrounding the target pedestrian. The input vector is

then passed through a RNN to capture temporal features, followed by the

transfer of these features to a FCL for the final prediction. Nonetheless, the

concatenation of all the extracted features into a single vector may potentially

cause confusion for the model. Additionally, the use of only one RNN to

capture all the temporal features may not be the most optimal approach.

2.3.3 SFRNN

Joe.NG et al. proposed an alternative approach in [22], which involved using

a stack of RNNs instead of a single RNN. In this approach, each RNN layer

takes the hidden states from the previous RNN layer as input. Furthermore,

the authors suggested the use of features extracted from optical flow instead

of raw frames.

In [28], Amir Rasouli et al. presented a modified version of the stacked

RNN network. In their approach, the features extracted from one input are

fed to a GRU cell. The output of the GRU cell is then concatenated with

the next features, resulting in a more refined representation of the temporal

characteristics. The authors also proposed the incorporation of the surround-

ing context as one of the inputs. The surrounding context is defined as the

features extracted from the input frame after masking the bounding box of the

target pedestrian. These extracted features play a vital role in teaching the
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model to distinguish the target pedestrian from its surrounding environment.

2.3.4 Two-streams RNNs

A. Bhattacharyya et al. [5] utilized a MultiRNN network that comprises of

two streams. The first stream is utilized to forecast the odometry of the ego

vehicle, which involves predicting its speed and steering angle. On the other

hand, the second stream utilizes the predicted odometry alongside the pedes-

trian bounding box coordinates to predict the trajectory of the pedestrian.

This trajectory prediction involves determining the coordinates of the next

bounding box. However, a limitation of this method is that the trajectory

prediction is reliant on the accuracy of the odometry prediction, which may

result in error propagation in the event of inaccurate odometry prediction.

2.3.5 Position velocity LSTM

Position velocity LSTM is a multi-task learning model first proposed by Smail

Ait Bouhsain et al. [7]. The model is based on concatenating data from previ-

ous pedestrian bounding boxes and velocity vectors to predict the pedestrian

intention as well as the pedestrian’s future trajectory. Bounding boxes are

extracted from the true labels provided by the dataset for a specific num-

ber of frames. The velocity vectors are calculated by subtracting consecutive

bounding boxes that belong to the same pedestrian. The model architecture

is described as an encoder-decoder model where there are two encoders one for

the position and the other for the velocity and then two decoders for future

trajectory and intentions respectively. Every encoder or decoder consists of a

LSTM block with 256 hidden units. The model takes N number of previous
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bounding boxes and velocity vectors and predicts the intentions and future

trajectories for the next M frames where N and M are arbitrary values that

can be set manually before training.

2.3.6 Convolutional LSTM

Convolutional LSTM (ConvLSTM) [30] is an extended version of a fully con-

nected LSTM deep learning model to address the spatiotemporal sequence pre-

diction problem. The introduction of convolution structures into the encoding-

prediction design (input-to-state and state-to-state transitions) provides an

end-to-end trainable solution. The output prediction depends on feeding the

extracted attributes to the convolutional LSTM which is considered an input

into a fully connected layer by the final hidden state.

2.3.7 Convolution-3D

Another approach for detecting pedestrian intentions involves using 3D convo-

lutional networks (3D-CNN) [9,33]. Du Tran et al. [33] proposed the usage of

3D-CNN for action classification tasks. The 3D-CNN is capable of extracting

both spatial and temporal features from the input frame sequence using 3D

convolutions and 3D pooling layers. However, this approach is limited to ex-

tracting only visual features. To use 3D-CNN for pedestrian intention predic-

tion, the input frame sequence must be cropped around the target pedestrian.

Otherwise, the same frame sequence will be fed to the network multiple times

if multiple pedestrians exist in the same scene. Additionally, neglecting pose

key points and global context as features can significantly affect the accuracy

of the model predictions.
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Joao Carreira and Andrew Zisserman [9] proposed a two-stream 3D-CNN

architecture that utilizes both the raw frame sequence and the cropping op-

tical flow frames. Each input is separately fed into a 3D-CNN for feature

extraction, and the resulting features are concatenated and used for the final

prediction. While the inclusion of optical flow frames improves the accuracy,

it also increases the processing time considerably.

2.3.8 PCPA

Kotseruba et al. [17] presented a recent benchmark for evaluating various in-

tention prediction models and introduced an attention-based approach that

employs 3D-CNNs and RNNs to extract spatial and temporal features from a

sequence of input frames. The proposed model takes four inputs, namely the

bounding box and pose key points of the target pedestrian, the speed of the

ego vehicle, and the local context of the scene. The model achieved state-of-

the-art performance on both JAAD and PIE datasets. However, this model

didn’t take the global context of the scene into account, moreover, the model

solely relied on a single approach for fusing the extracted features, known as

later fusion. Later fusion involves independently extracting features from the

inputs using convolutional neural networks (CNNs) and recurrent neural net-

works (RNNs). Subsequently, these features are concatenated to form the final

prediction.

2.3.9 Mask PCPA 4 2D

Yang et al. [39] filled the discussed gaps in the PCPA model [17] when they

proposed to use the semantic segmentation of the scene as one of the inputs
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and investigated several fusion methods where the hierarchical method proved

to be the most efficient.

2.3.10 Graph based models

Other methods have relied on using graph neural networks (GNNs) [18, 42].

These approaches use either pose key points [42] or bounding box [18] to

represent the pedestrian node in the graph. However, these methods may not

effectively capture visual inputs such as local and global context, which can

limit the performance of the models.

2.3.11 A comparative study on the discussed models

Lastly, the mentioned models were compared using the JAAD dataset, and

the results are shown in Table 2.2, results show that the attention-based mod-

els [17, 39] and 3D convolutional models [9, 33] perform better than the other

approaches. Despite the progress made in the aforementioned areas, there

remain several gaps that need to be addressed. Firstly, the inference time of

the model requires further attention to enhance its efficiency. Secondly, the

model’s performance in adverse weather conditions needs to be improved, as

these conditions can pose significant challenges to accurate prediction. Lastly,

the exploration and integration of newly proposed self-attention mechanisms

and transformer architectures offer potential avenues for advancing the pre-

diction capabilities and overall performance of the model.
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Table 2.2: Evaluation and Performance Metrics on JAAD Dataset

DL Models Accuracy AUC
F1

Score
Precision Recall

Mask-PCPA-4-
2D

84.49 70.65 53.11 58.54 48.59

C3D 84.03 77.30 59.45 53.46 66.95
Static VGG16 82.81 73.95 55.10 50.71 60.32
SFRNN 74.95 76.68 52.56 39.29 79.35
SingleRNN 76.64 76.30 53.15 40.93 75.78
Conv-LSTM 19.79 50.96 30.12 17.77 98.90
PCPA 78.43 80.16 57.31 43.82 82.83
Two-stream
RNNs

75.07 77.70 53.41 39.67 81.73

2.4 Transformer And Attention Based Algo-

rithms

Self-attention-based mechanisms and transformers have emerged as pivotal

components in various natural language processing (NLP) tasks, revolutioniz-

ing the field’s approach to capturing and modeling contextual dependencies.

Self-attention, also known as intra-attention, enables an input sequence to at-

tend to its own elements, facilitating the identification of important relation-

ships and capturing long-range dependencies. Transformers, a type of neural

network architecture built upon self-attention, have become particularly influ-

ential in NLP due to their ability to effectively process sequential data. By

employing self-attention mechanisms, transformers can simultaneously model

dependencies between all positions in a sequence, making them highly suit-

able for tasks such as machine translation, sentiment analysis, and question-

answering. The self-attention mechanism in transformers enables them to

efficiently encode and aggregate information from the entire input, resulting

in state-of-the-art performance in various NLP benchmarks. As a result, the
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integration of self-attention-based mechanisms and transformers has signifi-

cantly advanced the field of NLP, providing a robust foundation for capturing

complex contextual relationships in textual data. On the other hand, Vision

transformers have recently emerged as a groundbreaking approach for image

recognition and understanding tasks, challenging the traditional dominance of

convolutional neural networks (CNNs) in computer vision. Inspired by the

success of transformers in natural language processing, vision transformers

extend the application of self-attention mechanisms to visual data. By repre-

senting images as sequences of patches, vision transformers enable the model-

ing of global contextual relationships among image elements. This approach

eliminates the need for handcrafted hierarchical features and enables end-to-

end learning. Vision transformers have demonstrated impressive performance

across a range of computer vision benchmarks, including image classification,

object detection, and semantic segmentation. The self-attention mechanism in

vision transformers allows them to capture long-range dependencies and effec-

tively model the interactions between image patches, enabling the extraction

of fine-grained features and contextual information. Through their ability to

learn from both local and global image information, vision transformers have

established themselves as a powerful paradigm for visual recognition tasks,

pushing the boundaries of computer vision research. In this section, we give

an introduction to attention mechanism, self-attention, transformers, and vi-

sion transformers which are the main building blocks of our prediction model.
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2.4.1 Transformer and self attention mechanism

Attention mechanism

The introduction of the attention mechanism aimed to enhance the efficacy of

the encoder-decoder model used in machine translation. Its fundamental con-

cept was to enable the decoder to flexibly utilize the most pertinent segments

of the input sequence. This was achieved through a weighted combination of

all the encoded input vectors, wherein the highest weights were assigned to the

most relevant vectors. The attention mechanism was first introduced to guide

recurrent neural networks in order to produce hidden states that describe the

relationship between different parts of the input sequence in a better way. The

first attention mechanism was introduced by Bahdanau et al [2]. This atten-

tion mechanism relied on the step-by-step computation of alignment scores,

attention weights, and context vectors in the following manner:

• Alignment scores: The alignment scores et,i are computed by using

a linear transformation function a(.) (i.e a feed-forward layer) on the

encoded hidden state hj and the decoder hidden state of the previous

time step St−1. Equations 2.2,2.3 show the calculation of the alignment

scores where Va,Wa, Ua are the weight matrices of the feed-forward layer.

et,i = a(St−1, hj) (2.2)

a(St−1, hj) = vTa tanh(Wa.St−1 + Ua.hj) (2.3)

• Attention weights: The scores computed in the previous step signify

the relevance of the encoder’s hidden state to the decoder’s hidden state,

this score is normalized to ensure that all the attention weights are be-
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Figure 2.4: Illustration of Bahdanau et al attention mechanism in encoder-
decoder network

tween 0 and 1 which is done using a softmax layer. The output from the

softmax is the attention weights αt,i

αt,i = softmax(et,i) (2.4)

• Context vector: The encoder hidden states hi are weighted using the

attention weights αt,i and then summed as seen in equation 2.6 to form

the context vector which is used in guiding the decoder to produce the
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hidden state of the next time step St as shown in figure 2.4.

ct =
T∑
i=1

αt,i.hi (2.5)

In general, the attention mechanism uses three components: the query Q, key

K, and value V. In Bahdanau et al [2] the query is the decoder hidden state

St−1, key, and value are the encoder hidden state hj.

Transformers and self attention

Self-attention as a concept relies on relating different positions of a single

sequence in order to compute a representation of the sequence [34], so the key

difference between general attention and self-attention is that self-attention is

used on a single sequence to find the relation between different parts of this

sequence, where general attention estimates the relevance of one sequence to

another one. Transformers [34] introduced by Ashish Vaswani et al were the

first architecture that relied solely on self-attention and completely discarded

RNNs from the encoder-decoder architecture. The transformer model uses

self-attention in both encoder and decoder networks and uses general attention

when connecting the encoder and decoder parts as shown in figure 2.5.

The authors in [34] utilized the scaled dot product attention over the ad-

dition attention or feed-forward attention used in [2] the output from the

attention block is then given from equation 2.6

Attention(Q,K, V ) = Softmax(
Q.KT

√
dk

).V (2.6)

where dk is the dimension of the key or query vector. Instead of using one at-
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Figure 2.5: illustration for the transformer architecture, self-attention is used
in the encoder and decoder whereas general attention is used in connecting
the two components

tention head in the encoder or decoder the concept of multi-head attention is

also used in [34] where each head learns information about the input sequence

from different representation subspaces, this is done by applying different lin-

ear transformations on the Q,K, V matrices then apply self-attention to the

output matrices and then apply another transformation on the concatenated

outputs form the attention block. Equations 2.7,2.8 show the mechanism of

multi-head attention for (h) heads.

Multihead(Q,K, V ) = Concat(head1, head2, ..., headh).W
O (2.7)
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headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.8)

The use of multi-head attention enables the model to attend to multiple parts

of the input concurrently, further improving its capability to manage long-

term dependencies [39]. In other words, the prior attention functions boost

the memorization of sequential patterns by focusing on specific parts of the

input characteristics. Recently, transformer models based on self-attention

cells have become increasingly popular and have replaced RNNs in various

applications. The study in [20] demonstrated that transformers outperformed

RNN-based models in extracting temporal features in pedestrian trajectory

prediction.

2.4.2 Vision transformers

Transformers have been applied in computer vision applications, where they

have replaced state-of-the-art architectures that utilize CNNs [15]. In these

applications, the image is regarded as a word sequence in NLP applications by

dividing it into linear embeddings of multiple patches and providing them to

the transformer. It is worth mentioning that vision transformers (ViT) have

a large number of parameters, giving the model significant flexibility to fit

the training data. Consequently, ViT can surpass CNNs only when trained on

large and diverse datasets, ranging from 4 to 300 million images, to avoid over-

fitting [15]. These large datasets permit transformers that lack the essential

inductive bias of CNNs to exhibit excellent performance and generalization

abilities when applied to smaller tasks. The study in [15] demonstrates that

ViT achieves the best accuracies on datasets such as ImageNet and ImageNet-

Real when pre-trained on larger datasets such as ImageNet-21k.
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2.5 Summary

In this chapter, the focus is on the literature surrounding pedestrian crossing

intention prediction and image enhancement techniques in video sequences.

The chapter begins by exploring various enhancement techniques that rely on

classical image processing methods. These techniques aim to address different

defects present in video sequences, improving the overall quality and clarity

of the image. The chapter then delves into a comparison between these clas-

sical image-processing methods and their deep-learning counterparts. Deep

learning has gained significant attention in recent years due to its ability to

automatically learn complex patterns and features from data. The compari-

son helps to understand the advantages and limitations of each approach in

the context of pedestrian crossing intention prediction. Moving forward, the

chapter provides an extensive review of state-of-the-art deep learning methods

utilized specifically for pedestrian crossing intention prediction. This section

highlights the latest advancements in the field and discusses the effectiveness

of various deep learning architectures, algorithms, and models in accurately

predicting pedestrian crossing intentions.

Furthermore, the chapter identifies research gaps in the existing literature,

pointing out areas where further investigation and improvements are needed.

This analysis helps to identify opportunities for future research and develop-

ment in pedestrian crossing intention prediction. Lastly, the chapter intro-

duces transformers, self-attention mechanisms, and vision transformers as the

primary building blocks for the proposed prediction model. Transformers have

emerged as powerful tools in various domains, including computer vision, due

to their ability to capture long-range dependencies and contextual informa-
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tion. The chapter provides an overview of these concepts and establishes their

relevance to the prediction model.
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Chapter 3

Methodology
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3.1 Introduction

In this chapter, a thorough examination of the methodology pertaining to the

proposed framework is presented. Commencing with an intricate explication of

the problem definition, a comprehensive understanding of its nuances and fun-

damental elements is established. Subsequently, meticulous attention is paid

to the intricate design of the image enhancement pipeline, where the overar-

ching architecture is illustrated in great detail. Furthermore, a comprehensive

overview of each individual component within the pipeline is provided, accom-

panied by a comprehensive discussion of the dataset used for both training

and testing purposes.

Subsequent to the elucidation of the image enhancement pipeline, the fo-

cus is shifted toward an exhaustive exploration of the pedestrian intention

prediction model. Its intricate workings and underlying principles are thor-

oughly examined, ensuring a comprehensive understanding of its capabilities

and limitations.

3.2 Problem Formulation

Due to the visual nature of the problem we are trying to solve, we mostly

rely on visual sensors to extract our input frames. Taking this into consid-

eration we find that front dashboard cameras are the most practical option

due to their informative output about the scenes combined with their afford-

able price. For these reasons, front dashboard cameras were chosen to be the

main source of input in our framework. Other visual sensors such as lidar can

be used to provide further information about the scene such as the depth of

an object but they are extremely expensive which hinders them from being
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adopted for mass production. Our problem is defined as follows: Given a

sequential series of frames captured from the front dashboard camera of the

ego vehicle, our objective is to employ an image enhancement pipeline that

classifies these frames as either clean or defective. In the case of a frame being

classified as defective, the pipeline should further identify the specific under-

lying issue responsible for the defect and implement appropriate corrective

measures accordingly. Consequently, the pipeline produces clean or enhanced

frames, which are subsequently utilized for the purpose of pedestrian intention

detection while they traverse the roadway. The prediction model employed es-

timates the probability that a particular pedestrian, denoted as i within the

observed scene will either cross the road or not cross it, within n frames prior to

the occurrence of the crossing or non-crossing event (C/NC). It is worth noting

that n represents the number of frames elapsed from the last observed frame

up until the C/NC event [39]. Where the inputs are divided into non-visual

inputs and visual inputs.

In addition to the visual inputs, non-visual cues are incorporated into our

model to enhance its predictive capabilities. These non-visual inputs encom-

pass the vehicle speed (V), the bounding box surrounding the target pedestrian

(Bi), and the pose key points for the target pedestrian (Pi). On the visual as-

pect, we take into consideration both the local context (LC) and the global

context (GC). The local context refers to a cropped region surrounding the

target pedestrian within the input frame, effectively capturing the immedi-

ate surroundings. In contrast, the global context involves image segmentation

that encompasses the target pedestrian within the input frame, providing a

broader contextual understanding. However, to better comprehend the signifi-

cance of the global context in our model’s input, we conduct a detailed analysis
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in Chapter 4. In this chapter, we examine the implications of excluding the

global context, and we present our findings and insights regarding its impact

on the overall model performance. During both the training and testing phases

of the pedestrian intention prediction model, the pedestrian bounding box and

vehicle speed are extracted from the ground truth annotations available within

the dataset. The local context (LC) is acquired by cropping the frame around

the corresponding bounding box, thereby capturing the immediate surround-

ings of the pedestrian. To obtain the pose key points, a pre-trained openpose

model [8] is utilized, enabling the extraction of accurate pose information.

In addition, the global context (GC) is obtained through the utilization of

a pre-trained DeepLabv3 model [10]. This model effectively performs image

segmentation, encompassing the target pedestrian within the input frame. By

doing so, a broader contextual understanding is achieved, which aids in the

prediction process. However, when evaluating the end-to-end architecture, a

different extraction method is employed for the bounding box and pose key

points during testing. The objective of this approach is to reduce the pro-

cessing time, optimizing the overall efficiency of the system. Subsection 4.4

presents a comprehensive and detailed illustration of the specific setup utilized

for the end-to-end testing procedure. Following the input extraction phase,

the model inputs for a single frame within a sequence of m frames can be

represented by the following equations:

• The bounding box is given by the coordinates of the top left and the

bottom right corners.

Bi = {Xibr, Xitl, Yibr, Yitl} (3.1)
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• The pose key points are given by a 36D vector of 2D coordinates that

contain 18 pose joints.

Pi = {(xi1, yi1), (xi2, yi2), ..., (xi18, yi18)} (3.2)

• The vehicle speed is given by a single categorical value that corresponds

to one of five states (stop, moving slow, moving fast, decelerating, and

accelerating).

V = v1 Such that v1 ∈ [0− 4] (3.3)

• The local context is an RGB image taken around the pedestrian bound-

ing box. in the conducted experiments the local context size is fixed to

(224,224,3).

LC = lc1 Such that lc1 ∈ R224,224,3 (3.4)

• The Global context is an RGB image produced by superimposing the

segmentation mask of the frame on the raw frame. It has the same size

of the local context image.

GC = gc1 Such that gc1 ∈ R224,224,3 (3.5)
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3.3 Image Enhancement

Before diving into the pipeline and its details, we made some pre-analysis

experiments to justify our pipeline’s objectiveness.

3.3.1 The effect of noise on the object detection

The purpose of this study is to confirm that image quality plays a vital role

in detecting pedestrians using YOLOV4 [6]. We have chosen YOLOV4 as an

object detector for several reasons

1. It can be trained through different GPU capacities which are super effi-

cient for engineers to save time as their training is done much faster (it

allows the model to be trained on 1080Ti or higher which means more

CUDA resources to be used).

2. It allows the utilization of accuracy enhancement methods and hardware

optimization methods by setting flags in its training commands.

3. Enhancing the training mechanism to be able to train the data on a single

GPU and by making small changes to some of the batches’ normalization

techniques that can speed up the training process such as CBN (Cross

Iteration Batch Normalization).

We have also picked seven of the JAAD video dataset [27] that represent

different weather conditions (sunny, foggy, rainy) and at night time in order to

simulate all possible combinations for the real-time scenario. We extract the

frames from these videos at a rate of 30fps and pass them to YOLO to find

the first frame containing a pedestrian. Then, we pass the generated frames
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into a blurring filter with a kernel of size 20. This process is repeated until we

complete all frames.

Table 3.1 shows the results of our pre-analysis which proves that image

quality plays a vital role in detecting pedestrians in earlier frames. That

means camera quality and camera lens’ clarity contribute greatly to YOLO’s

detections and its performance and that motivated us to dive even further into

our approach for creating a multi-staged image enhancement pipeline.
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Table 3.1: Results from the analysis done on the JAAD dataset

Video
Number

Weather
condtions

Description

Detection
frame
before
blurring

Detection
frame
after

blurring
23 Rainy Night Driving at low speed on a

rainy night through a dark
street with little light on it
and a pedestrian crossing
road quickly at the end of
the footage

134 N/A

18
Sunny
Morning

Driving on a sunny morning
but get blocked by a cross-
ing car for a while before
going around the blocking
car and continuing on the
road

3 N/A

22
Snowy
Morning

Driving in a plaza’s park-
ing lot on a snowy morn-
ing with some people walk-
ing on the parking lot to get
to their cars

14 246

62
Sunny
Morning

Turning left on a small
cross-road with some peo-
ple crossing the street

1 372

279
Sunny
Morning

Driving through a neigh-
borhood with some people
crossing the road from the
right of the car and the
front of the car.

1 6

281
Snowy
Morning

Driving on a snowy road
slowly with a jay-walker
slowly crossing the street

10 98

5
Sunny
Morning

Driving in a plaza’s park-
ing lot at noon with people
walking in front of the car
with their groceries

1 11

3.3.2 The proposed pipeline

To maintain prediction accuracy during bad weather conditions we propose an

image enhancement pipeline that detects and corrects the root problems in a
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given frame. The pipeline consists of two phases: a detection phase and an

enhancement phase.

During the detection phase, a multi-label classifier is employed to identify

specific conditions that may impact the quality of the frame, including low

light, low resolution, and blurriness. Furthermore, the classifier is capable of

detecting frames that are already clean and require no further enhancement.

In such cases, the pipeline can skip the subsequent enhancement phase. The

architecture of the multi-label classifier is depicted in Figure 3.1, and it takes

two inputs: the raw image, which is resized to dimensions of 448 × 448 ×

3 pixels, and the image’s histogram. The histogram represents the frequency

distribution of pixel values across the three channels of the image and serves

as a valuable indicator of unique image characteristics. For our classifier, we

have utilized 100 bins for the histogram analysis. For example, Dark images

typically exhibit a high frequency of low pixel values in the histogram, while

low-resolution images often display clusters of pixels. On the other hand,

blurred images tend to demonstrate a Gaussian distribution pattern in the

histogram. Hence, there exists a direct correlation between the histogram

characteristics and the underlying image problems.

To process the inputs and generate the final prediction, our model incorpo-

rates CNNs and FCLs. These components analyze and extract features from

the inputs, and the resulting processed features are concatenated for the final

prediction. the output of the model is 3 × 1 array of binary values. The

structure of the output flags vector V is as follows, V = {b, r, l}, where b

indicates blurriness (0 is not blurry, 1 is blurry), r represents low-resolution, l

represents low light.

During the enhancement phase, we employ three distinct image enhance-
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Figure 3.1: Multi-label classifier architecture: The architecture is based on CNNs and
fully connected layers.

ment modules to address the three specific problems of interest. Each module

focuses on tackling one problem independently. The following modules are

utilized:

• De-blurring: We utilize a sharpening kernel with a kernel size of 3 to

effectively address the issue of blurriness in the input frame. This module

enhances the clarity and sharpness of the image, thereby reducing the

blurriness.

• Low-resolution enhancement: To overcome the problem of low resolution,

we apply the histogram equalization method. This technique enhances

45



the contrast and distribution of pixel values in the image, resulting in

an improved perception of details and overall image quality.

• Low-light enhancement: The sepia kernel with a kernel size of 3 is em-

ployed to enhance images with low-light conditions. This module opti-

mizes the color tone and brightness, leading to improved visibility and

enhanced details in low-light scenarios.

Algorithm 3.1 Pipeline process

Input: Input frame F
Output: Enhanced frame EF

1: procedure Pipeline(F )
2: Image problem←Multi− label(F )
3: X ← x
4: N ← n
5: if Image problem is Blurry then
6: F ← Deblur(F )
7: end if
8: if Image problem is LowResolution then
9: F ← EnhanceResolution(F )
10: end if
11: if Image problem is LowLight then
12: F ← EnhanceLight(F )
13: end if
14: EF ← F (no enhancement)
15: return EF
16: end procedure
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Figure 3.2: Pipeline procedure: The pipeline takes the raw image and the image histogram
as inputs and leverages CNNs to detect root problems in input frames then uses classical
image enhancement techniques to rectify these defects.
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These enhancement modules have been selected to provide effective im-

provements to the input frames without significantly increasing the processing

time of the overall framework. Figure 3.2 and algorithm 3.1 illustrate the over-

all pipeline procedure, showcasing the sequential execution of the enhancement

phase. Moreover, the independence of these modules allows for easy replace-

ment of any component in the pipeline, enabling flexibility and adaptability.

The order in which the enhancement modules are applied plays a crucial role

in the quality of the output frame. Experimentation with different permuta-

tions revealed that the order shown in Figure 3.2 provides the best results.

The experiments were done on multiple images where a deformed image is

introduced to different permutations of the enhancement components and the

UIQI [35] is computed between the output image and the ground truth image.

Table 3.2 shows the average UIQI score for each permutation over the test

images.

Table 3.2: Results of testing the image enhancement pipeline.

Permutation Universal image quality index score

Sepia-Sharpening-Histogram eq. 69%
Sepia-Histogram eq.-Sharpening 65%
Sharpening-Sepia-Histogram eq. 70%
Sharpening-Histogram eq.-Sepia 78%
Histogram eq.-Sharpening-Sepia 74%
Histogram eq.-Sepia-Sharpening 66%

3.3.3 Dataset

For the training of the image enhancement multi-label classifier, We collected

and processed our own dataset due to the lack of a good dataset that in-

cludes pedestrians in unfavorable conditions. We named it Difficult Detection
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Dataset (DDD)1. DDD contains 75 dashcam videos collected from over 4 hours

of footage in different challenging conditions, such as low visibility, foggy, and

rainy weather. Figure 3.3 displays different scenes extracted from our dataset,

showcasing the diverse and challenging scenarios encountered during data col-

lection. The primary objective of curating this dataset was to provide a diffi-

cult environment for the object detection process, which serves as the central

focus in demonstrating the effectiveness of our image enhancement pipeline.

Furthermore, the dataset incorporates clear footage to mitigate bias during

training and ensure a balanced distribution of weather conditions commonly

encountered during the winter season. The ratio between clear frames and

Foggy weather Rainy weather

Night time Clear weather

Figure 3.3: Sample frames from the DDD dataset showing different weather
conditions included in the dataset.

unclear frames within the DDD dataset is approximately 23.3% to 76.7% re-

spectively. All videos were recorded using a dashcam, capturing footage in 2K

1The dataset is available for download at https://drive.google.com/drive/folders/
1JRViqE5BpzIG2J4WzblsXAgToIWDrGCL?usp=sharing
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resolution at a frame rate of 30 frames per second, with a wide field of view of

170 degrees. The dataset encompasses a total of 32,250 frames, equivalent to

nearly 18 minutes of video footage.

3.4 Intention Prediction

Our pedestrian intention prediction model leverages the transformer architec-

ture [34] and specifically employs vision transformers [15] to process visual

features. For the processing of non-visual features, the model utilizes the en-

coder component of the transformer, as illustrated in Figure 3.6. The encoder

incorporates multi-head self-attention blocks and FCLs to handle sequential

inputs. In our task, the non-visual inputs are already in vector form, thereby

eliminating the need for an embedding layer in the encoder. We experimented

with different configurations for the number of attention heads, number of

fully connected networks, and number of hidden neurons in these networks,

and the results are presented in chapter 4. As for the visual inputs, our model

employs a pre-trained Vision Transformer (ViT) model for feature extraction.

The ViT model is fine-tuned using the ImageNet-1K dataset, and the clas-

sification layer is removed to utilize it solely as a feature extractor. During

the feature processing step, the extracted features are fused together. Various

fusion mechanisms were tested, including:

• Early fusion: all the non-visual features are concatenated before process-

ing them using the transformer encoder.

• Later fusion: all the non-visual features are concatenated after processing

them using the transformer encoder.

50



• Hierarchical fusion: where non-visual features are concatenated in a hi-

erarchical fashion as seen in Figure 3.4.

• Total fusion: we propose to fuse the non-visual features with visual fea-

tures before processing them using a vision transformer, this occurs by

applying the pose key points and the bounding box coordinates to the

extracted local context of the pedestrian, which reduces the inputs of the

system to three inputs only: the ego vehicle speed, the augmented local

context containing information about the bounding box and pose key

points and the global context of the scene. The resulting architecture

is shown in Figure 3.5. This fusion method is proposed to improve the

inference time of the model without affecting the prediction accuracy.
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Input Frames
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Bounding 
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Human 
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Global 
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Transformer
Encoder

Fully 
Connected 
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Fully 
Connected 

Layer

Vision
Transformer

Vision
Transformer

Transformer
Encoder

Transformer
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Figure 3.4: Proposed Framework: The framework utilizes transformers and
vision transformers to predict the pedestrian crossing intention and uses image
enhancement to maintain accuracy during adverse weather conditions.
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Figure 3.6: Transformer encoder model (T.E), the proposed architecture uses
this model for non-visual feature extraction without the input embedding layer,
the figure is edited form [34].

Following the processing of various inputs, the processed visual and non-

visual features are concatenated to form the final input for the prediction

step. A fully connected layer (FCL) with a sigmoid activation function is

employed for making predictions. During the training phase, binary cross-

entropy loss (L) (Eq.3.6) is utilized to calculate the error, and the Adam

optimizer is employed to update the model weights. The adoption of the

Adam optimizer is preferred in this context, as it has been shown to yield
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superior results compared to stochastic gradient descent for VRU intention

detection.

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (3.6)

where N represents the total number of samples, yi is the ground truth label

of the i-th sample, and ŷi is the predicted probability by the model for the

i-th sample.

3.4.1 Summary

This chapter presents a detailed examination of the methodology underlying

the proposed framework. It begins by providing an intricate explication of

the problem definition, aiming to establish a comprehensive understanding

of its nuances and fundamental elements. This sets the foundation for the

subsequent discussions and analyses.

The chapter then focuses on the intricate design of the image enhancement

pipeline. The overarching architecture of the pipeline is illustrated in great

detail, highlighting its structure and flow. Meticulous attention is given to

each individual component within the pipeline, providing a comprehensive

overview of their functionalities and roles. Additionally, the chapter discusses

the dataset used for both training and testing purposes, shedding light on its

composition, size, and relevance to the framework.

After elucidating the image enhancement pipeline, the chapter shifts its

focus to the pedestrian intention prediction model. A thorough exploration of

the model’s workings and underlying principles is conducted, ensuring a com-

prehensive comprehension of its capabilities and limitations. This examina-
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tion encompasses the algorithms, architectures, and methodologies employed

within the model, providing insights into how it predicts pedestrian intentions.
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Chapter 4

Performance Evaluation and

Discussions
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4.1 Introduction

This chapter provides an overview of the findings obtained from comprehen-

sive testing conducted on each constituent element of the framework. Initially,

the performance of the image enhancement pipeline is examined, and its effect

on reducing detection time with the implementation of the YOLOv4 detec-

tor is demonstrated. Subsequently, the outcomes of evaluating the intention

prediction model using both the JAAD behavior and JAAD all datasets are

presented. Lastly, an assessment of the overall framework’s effectiveness is

conducted by deploying it on a local server, where its accuracy and real-time

performance are thoroughly assessed.

4.2 Image Enhancement

The evaluation of the image enhancement pipeline consisted of two distinct

stages: the assessment of the multi-label classifier and the examination of

the complete pipeline. Initially, the classifier underwent training and testing

procedures using the locally acquired DDD dataset, resulting in a commend-

able testing accuracy of 80% and an inference time of 20 ms. Subsequently,

to evaluate the entire pipeline, a subset of 8 videos from the JAAD dataset

was employed, utilizing the YOLOv4 detection module [6]. These videos were

segregated into three categories: naturally flawed videos captured under chal-

lenging conditions such as nighttime or foggy weather, artificially flawed videos

created by applying blur filters and reducing image resolution, and clear videos.

It is important to note that the detection module was specifically calibrated

to identify pedestrians exclusively. During testing, the detection frame (DF)

along with the model confidence score (C) is recorded before and after en-
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hancement. Two metrics are employed to assess the impact of utilizing the

image enhancement pipeline: The average improvement in the detection frame,

which is calculated for each category of videos using equation 4.1

IDF =

∑m
n=1DFbe −DFae

m
(4.1)

where m is the number of videos in each category, DFbeis the detection frame

number before enhancement and DFae is the detection frame number after

enhancement. The other metric is the improvement in the confidence score

calculated using equation 4.2

IC =

∑m
n=1Cae − Cbe

m
(4.2)

where Cbe is the confidence score at the detection frame before enhancement

and Cae is the confidence score at the same frame after enhancement. Results

shown in table 4.1 indicate that the image enhancement pipeline improves

both the detection frame and the confidence score. On average, the pipeline

achieves a reduction of 3 frames in the detection process while simultaneously

improving the confidence score of the detection module. Notably, the pipeline

exhibits superior performance on artificially flawed videos, where the noise

follows a consistent pattern. Additionally, an important observation is that

the pipeline efficiently identifies clear videos, leading to time savings in the

processing stage.

Table 4.1: Results of testing the image enhancement pipeline.

Video Type Improvement in detection frame Improvement in confidence score

Naturally flawed 2.5 4%
Artificially flawed 3 12.5%

Clear 0 0%
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Table 4.2: Results after some videos feed into the image enhancement pipeline

Video
number

Description

Detection
frame in
original
video

(confidence
score)

Detection
frame in
enhanced

video
(confidence

score)

Multi-
label
classi-
fier

output

Videos
Type

124 Driving at low speed at
a cloudy afternoon with
pedestrians alongside the
road

1 (95%) 3 (75%) [1,0,0]
Naturally

contaminated

128 Driving on a snow road
on a cloudy afternoon with
pedestrians alongside the
road

14 (32%) 14 (32%) [0,0,0] Clear Video

26 Driving at night with
pedestrians crossing the
road

1 (93%) 1 (93%) [1,0,1]
Naturally

contaminated

281 Driving on a snow road
on a cloudy afternoon with
pedestrians alongside the
road

10 (38%) 1 (26%) [1,0,0]
Naturally

contaminated

34 Driving in traffic during
mid-day but stopped for a
while in traffic with pedes-
trians alongside the road

473 (27%) 473 (27%) [1,0,0]
Artificially

contaminated

346 Driving at dawn with
pedestrian crossing the
road

4 (31%) 1 (27%) [0,1,0]
Naturally

contaminated

51 Driving in a parking lot at
noon with people walking
by

21 (25%) 21 (38%) [0,0,0] Clear Video

58 Driving a car at noon with
other cars crossing in front
of the camera to go to
the store’s parking lot and
pedestrians walking on the
side walk

11 (36%) 5 (37%) [1,0,0]
Artificially

contaminated

From Table 4.2 we observe that the multi-label classifier performed well

with both artificially contaminated and naturally contaminated videos which

shows the robustness of the model.

Some videos such as 128, 34, 51 had no difference in the number of frames

58



it took the YOLO model to detect pedestrians. This happened because these

videos’ frames were clear so the YOLO model could detect a person walking

on the same number of frames. This result is also detected by the multi-label

classifier which produced an output of zeros for videos 51,128. Although the

multi-label classifier miss-labeled video 34. We can observe that the effect

of the blurring filter is non-destructive on the input frames which is also a

good feature in classical image enhancement algorithms. Furthermore, by

using classical image enhancement techniques, the reduced number of frames

was not huge, but, by enhancing those techniques, we can make the required

number of frames to detect pedestrians much less.
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4.3 Pedestrian Intention Prediction

The testing phase of our proposed model was conducted on a local server

equipped with an A6000 RTX GPU. Figures 4.1,A.16,4.3,4.4 show the confu-

sion matrices and the ROC curves for the proposed model on JAAD behavior

and JAAD all datasets. The confusion matrix gives a good indication of the

model’s performance in terms of accuracy. The ROC curve shows the relation

between the true positive rate and the false positive rate with different deci-

sion thresholds. This relation provides an insight into which threshold is the

best and the area under the ROC curve is the AUC metric which indicates

if a model generally tends to have a large true positive rate with different

thresholds or not. A model with this characteristic tends to perform better

on unseen data. The confusion matrices and ROC curves for other state-of-

the-art models are included in the appendix. Table 4.3 and Table 4.4 provide

a quantitative comparison between our model and several existing models,

namely Single RNN [16], SF-GRU [28], PCPA [17], and Mask PCPA [39].

We utilized default classification testing metrics to evaluate the perfor-

mance of the models. Additionally, we measured the testing time, which rep-

resents the total duration required by a model to complete the prediction of

all sequences in the testing set. It serves as an indicator of the inference

time needed by the model. Since our model was evaluated using both the

JAADbehavior dataset and the JAADall dataset, there are two testing sets and

two corresponding testing times. The results demonstrate that our proposed

model outperforms the other models in terms of accuracy, AUC, F1 score,

recall, and testing time on the JAADbehavior dataset. Moreover, our model

maintains high accuracy and recall on the JAADall dataset. One important
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Figure 4.1: Confisuion matrix of the proposed prediction model on JAAD
behavior

note is the comparison between precision and recall in this task. Precision

reflects the accuracy of capturing a crossing behavior which means that high

precision values reflect a low occurrence of false alarms. On the other hand,

recall reflects the accuracy of capturing all the crossing samples in our test-

ing sets. This means that a high recall value results in a low occurrence of

missing a crossing behavior. From this note, we can agree that high recall

values are crucial for the deployment of this framework in automated vehicles.

However, precision receives more attention when deploying this framework in

an advanced driver-assistance system as the driver can take over in a cross-

ing misclassification event. To optimize the performance of our model, we
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Figure 4.2: ROC curve of the proposed prediction model on JAAD behavior

Table 4.3: Performance comparison between the proposed model and previous
models on JAAD behavior.

Model Used Blocks Accuracy AUC F1 Preci Recall Time (s)
SingleRNN VGG + GRU 0.59 0.52 0.71 0.64 0.80 11.91
SF-GRU VGG + GRU 0.58 0.56 0.65 0.68 0.62 13.71
PCPA 3D CNN 0.53 0.53 0.59 0.66 0.53 15.2

Mask PCPA VGG + GRU 0.62 0.54 0.74 0.65 0.85 12.66
Ours(7) T.Encoder + ViT 0.67 0.60 0.77 0.68 0.90 11.62

conducted a study to tune different hyper-parameters such as the number of

attention heads and the number of hidden neurons in FCLs (ffhn). The results

are presented in Table 4.5. It’s observed that increasing the number of atten-

tion heads had minimal impact on the model’s accuracy and could even lead

to decreased performance. This can be attributed to the increased number of
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Figure 4.3: Confisuion matrix of the proposed prediction model on JAAD all

Table 4.4: Performance comparison between the proposed model and previous
models on Jaad all.

Model Used Blocks Accuracy AUC F1 Precision Recall Time (s)

SingleRNN VGG + GRU 0.79 0.76 0.54 0.44 0.71 30.11
SF-GRU VGG + GRU 0.76 0.77 0.53 0.4 0.79 31.6
PCPA 3D CNN 0.76 0.79 0.55 0.41 0.83 75.2

Mask PCPA VGG + GRU 0.83 0.82 0.63 0.51 0.81 38.56
Ours(7) T.Encoder + ViT 0.83 0.80 0.62 0.47 0.82 30

trainable parameters associated with additional attention heads, which may

cause the model to struggle in finding a local minimum due to limited training

data. For these reasons the usage of one attention head is preferred for our

prediction model. Similarly, increasing the number of epochs beyond a certain

point may result in overfitting. Increasing the number of hidden neurons in
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Figure 4.4: ROC curve of the proposed prediction model on JAAD all

the FCL of the transformer encoder leads to better accuracy but increases the

total number of floating point operations (FLOPS) needed to calculate the

prediction which increases the model testing time. Table 4.6 shows different

Table 4.5: Results of tuning different hyper-parameters of the proposed model.

num heads ffhn Accuracy AUC F1 Precision Recall Time (s) MFLOPS

1 2048 0.66 0.57 0.78 0.66 0.94 13.2 111
3 2048 0.66 0.57 0.77 0.66 0.91 13.97 112
5 2048 0.64 0.55 0.76 0.65 0.91 18.23 112
1 1024 0.64 0.55 0.76 0.65 0.91 12.99 56.1
1 4096 0.67 0.58 0.78 0.67 0.95 14.29 222

variations of the proposed architecture, in the first variation the FCLs in each

transformer encoder are removed and only one FCL is used after concatenat-
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Table 4.6: Results of different variations of the proposed intention prediction
model.

Model variation AccuracyAUC F1 PrecisionRecallTime (s)MFLOPS

(Ours) Hierarchical fusion 0.67 0.58 0.78 0.67 0.94 13.24 108
(Ours1) One Feedforward Layer 0.66 0.57 0.77 0.66 0.93 9.90 50.3
(Ours2) Transformers + VGG-19 0.68 0.58 0.78 0.68 0.93 22.18 151

(Ours3) Removing GC 0.70 0.68 0.77 0.74 0.89 10.34 66.5
(Ours4) Using local attention 0.68 0.61 0.77 0.69 0.87 17.76 117

(Ours5) Later fusion 0.67 0.57 0.78 0.66 0.95 13.068 107
(Ours6) Early fusion 0.66 0.55 0.78 0.66 0.89 12.86 105
(Ours7) Total fusion 0.67 0.60 0.77 0.68 0.90 11.62 101

ing all the non-visual features, this variation resulted in the best testing time

with a negligible loss in accuracy. This modification reduces the computational

complexity of the model while maintaining reasonable accuracy. Using VGG-

19 as a visual encoder instead of ViT improved the accuracy of the model but

significantly increased the testing time. This can be attributed to the fact that

ViT performs better than CNN-based architectures when trained on a large

amount of data. Removing the global context (GC) from the model inputs led

to improved testing time while maintaining high accuracy. The impact of the

global context becomes more prominent with a larger training dataset. In the

case of testing the same model on the JAADall dataset, where the amount of

training data is larger, the model achieved lower accuracy without the GC.

However, removing the GC still provides a quick and reasonably accurate de-

cision. Also, when replacing the global self-attention unit in the multi-head

attention of the transformer with a local self-attention unit the model accuracy

increases as local self-attention considers attention weights in a specific win-

dow of frames. This moving window is set to 4 frames in this study this means

that for the input sequence of frames, we calculate the attention weights using

the first 4 frames from the input and then calculate the weights for the next

4 frames and so on till the end of the input sequence then concatenate these

65



Observation

First frame Middle frame Last frame

Ground truth

...

…

…

…

… …

Prediction

PCPA: Not crossing

Ours: Crossing

Label: Crossing

PCPA: Crossing

Ours: Not Crossing

Label: Not Crossing

PCPA: Not crossing

Ours: Crossing

Label: Crossing

Figure 4.5: A qualitative comparison between our model and PCPA model:
The comparison highlights the robustness of our model and the ability to
predict the intention of pedestrians even in bad lighting conditions.

weights together. This method improves the accuracy when long-term depen-

dencies between the input sequence don’t exist. Moreover, the proposed total

fusion method provided decent accuracy and also a reasonable testing time.

Figure 4.5 shows a qualitative comparison between our model and PCPA [17].

4.4 End To End Deployment

The final step is to test the entire framework, to deploy the framework in real-

time we use MoveNet [3] model to fetch the pose key points and the pedestrian

bounding box, the advantage of using this model over openpose [8] is that

MoveNet is much faster and can provide the bounding box of the pedestrian

which removes the need to use a dedicated model for pedestrian detection. The

downside of this model is that it can only provide poses for up to 6 pedestrians
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in a single frame. DeepSort [36] is used to track the detected pedestrian, and

Deeplabv3 [10] is utilized to extract the segmentation mask of the scene. To

test the inference time of the prediction model and the end-to-end inference

time which includes the time taken by the other models to fetch the required

inputs a single video not included in the JAAD dataset with one pedestrian

crossing the street is used. This video resembles the first case of the Euro

NCAP pedestrian safety tests. The speed of the ego vehicle in the test video

is slow so the input of the vehicle speed is set to 1. Table 4.7 shows the inference

Table 4.7: Results of testing the proposed framework in real time environment.

Model name Inference time End-to-end time Prediction result

(Ours1) One Feedforward Layer 21 165 Correct
(Ours2) Transformers + VGG-19 22 182 Correct

(Ours3) Removing GC 18 72 Correct
SingleRNN 17 175 Incorrect

(Ours4) Using local attention 25 190 Correct
SF-GRU 18 178 Incorrect
PCPA 25 70 Incorrect

Mask PCPA 23 185 Correct
(Ours5) Later fusion 20 180 Correct
(Ours6) Early fusion 20 179 Correct
(Ours7) Total fusion 20 130 Correct

time of each prediction model and the total end-to-end time from the moment

of detection till the final prediction, the table also includes whether the model

was able to successfully classify the target pedestrian or not. Results show that

removing the GC improves the end-to-end time significantly while being able

to successfully identify the pedestrian intention. The low inference time and

end-to-end time achieved by our models indicate that a perception model that

utilizes our framework will most likely pass the Euro NCAP pedestrian safety

tests. In general, transformer-based models performed better than RNN and

CNN-based architecture in terms of identifying the intention of the pedestrian
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as transformers are less prone to domain adaptation problems and generalize

better than CNNs and RNNs. From the results, we recommend the usage of a

switching mechanism when deploying this model in a real-world vehicle, taking

into consideration the ego vehicle speed and estimating the distance between

the ego vehicle and the target pedestrian using a depth camera the perception

model can switch between using a fast variation of the proposed model such

as Ours3 and a slower but more accurate version such as Ours2 or Ours4.

4.4.1 Summary

This chapter presents an overview of the findings obtained from comprehen-

sive testing conducted on each constituent element of the framework. The

evaluation begins by examining the performance of the image enhancement

pipeline. The impact of the pipeline on reducing detection time is demon-

strated, specifically with the implementation of the YOLOv4 detector. The

chapter highlights the improvements achieved through the pipeline, emphasiz-

ing its contribution to efficient and effective detection.

Next, the outcomes of evaluating the intention prediction model are pre-

sented. Two datasets, namely the JAAD behavior dataset and the JAAD all

dataset, are utilized for this evaluation. The chapter discusses the results of

these evaluations, providing insights into the accuracy and performance of the

intention prediction model. This analysis helps to assess the model’s ability

to predict pedestrian intentions accurately and reliably.

Furthermore, the chapter conducts an assessment of the overall framework’s

effectiveness by deploying it on a local server. The accuracy and real-time

performance of the framework are thoroughly evaluated in this deployment

scenario. The chapter presents the findings of this assessment, discussing the
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strengths and limitations of the framework and providing a comprehensive

understanding of its practical viability.

All in all, this chapter focuses on the evaluation of the framework compo-

nents and its overall effectiveness. It begins by examining the performance of

the image enhancement pipeline, emphasizing its impact on reducing detection

time. The outcomes of evaluating the intention prediction model using differ-

ent datasets are presented, shedding light on its accuracy and performance.

Lastly, the chapter assesses the overall effectiveness of the framework by de-

ploying it on a local server, providing insights into its real-time performance

and practical viability.
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Chapter 5

Conclusions
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5.1 Summary and conclusions

In this study, we proposed a comprehensive framework for pedestrian crossing

intention prediction. The framework combines a prediction model utilizing

self-attention and vision transformer with an image enhancement pipeline in-

corporating CNNs and classical image enhancement techniques. The primary

objective of the framework is to maintain prediction accuracy, particularly

during adverse weather conditions, by enhancing input frames before the pre-

diction stage. Our framework was evaluated using a locally collected and an-

notated dataset, and it achieved a testing accuracy of 80% with the multilabel

classifier.

The prediction model, which employed self-attention and vision trans-

former, demonstrated state-of-the-art performance on the JAAD behavior

dataset. Through extensive examination and experimentation, several vari-

ants of the prediction model were developed, and an ablation study was con-

ducted to identify the most effective components. This rigorous evaluation

helped to refine the prediction model and understand the impact of different

architectural choices.

The image enhancement pipeline, consisting of CNNs and classical im-

age enhancement techniques, played a crucial role in improving the input

frames’ quality before the prediction stage. By leveraging these techniques,

the pipeline successfully enhanced the frames and mitigated the effects of bad

weather conditions, ensuring accurate and reliable pedestrian crossing inten-

tion prediction.

To assess the real-time performance of the entire framework, it was de-

ployed on a local server, and its inference time and end-to-end time were
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compared against various models. Remarkably, our framework outperformed

other models, achieving the best inference time and end-to-end time. This re-

sult highlights the efficiency and practical viability of our proposed framework

for real-time applications.

Overall, our framework offers a holistic solution for pedestrian crossing

intention prediction, addressing the challenges posed by adverse weather con-

ditions. By integrating a prediction model with self-attention and vision trans-

former and an image enhancement pipeline using CNNs and classical image

enhancement techniques, we achieved high prediction accuracy and real-time

performance. The extensive examination of the prediction model and the de-

ployment of the framework on a local server underscore the robustness and

effectiveness of our approach.

In conclusion, our framework showcases the potential of combining self-

attention, vision transformer, CNNs, and classical image enhancement tech-

niques to address the challenge of pedestrian crossing intention prediction un-

der adverse weather conditions. With its high accuracy, real-time performance,

and robustness, our framework lays the foundation for safer and more reliable

pedestrian crossing assistance systems in various real-world scenarios.
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5.2 Limitations and Future work

The limitations of our framework are mentioned as follows:

1. Our first limitation is the limited amount of data used to train our mul-

tilabel classifier which may affect the ability of our classifier to generalize

on different sources of data. Our multilabel classifier was trained and

tested on the DDD dataset which contains 75 dashcam videos, expanding

the dataset will enable us to improve the performance of our classifier.

2. Our image enhancement pipeline mainly relies on the usage of classical

image enhancement modules to perform the enhancement task, although

these modules offer an extremely fast processing time that reaches 5ms,

they are only capable of producing moderate performance in terms of

the quality of the output frame.

3. Finally, our framework was trained and tested on input frames extracted

from front dashboard cameras which restricts its usage to vehicles. Some

changes can be done to enable the usage of our framework in the traffic

infrastructure.

Our Future work can be summarized in these bullet points :

1. Expand the dataset: Consider augmenting and diversifying the dataset

used for training the multilabel classifier. This could involve collecting

additional data under various weather conditions, at different time of

day, and in different geographical locations. A larger and more diverse

dataset would provide more comprehensive training for the classifier and

improve its generalization capabilities.

73



2. Explore advanced image enhancement techniques: Investigate the use of

more advanced image enhancement techniques, including deep learning-

based methods. Techniques such as generative adversarial networks

(GANs) or attention mechanisms specifically designed for image en-

hancement could be explored to further improve the quality and clarity

of input frames, particularly in challenging weather conditions.

3. Fine-tune for overhead camera inputs: Adapt and fine-tune the predic-

tion model and the multilabel classifier to handle inputs from overhead

cameras instead of dashcam footage. Smart intersections often employ

overhead cameras for pedestrian monitoring and safety. Fine-tuning the

framework to work with such camera inputs would enable its deployment

in smart intersections, enhancing pedestrian safety in real-world settings.
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Appendix A

Appendix
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In this appendix, we present ROC curves and confusion matrices of differ-

ent intention prediction models for the purpose of comparison. ROC curves

demonstrate the relation between the true positive rate and the false positive

rate and the area under the ROC curve is the AUC metric which is commonly

used to evaluate classification models where high AUC represents a good model

that is not biased to a certain class.

The confusion matrix presents the number of true positives, true negatives,

false positives, and false negatives for a classification model on the test dataset,

these numbers give an indication of the model performance and can be used

to calculate popular metrics such as precision and recall. All of our testing

was done on both JAAD behaviour and JAAD all datasets so every model has

two ROC curves and two confusion matrices.
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Figure A.1: ROC curve of Mask PCPA model [39] on JAAD behavior

77



T
ru

e 
P

o
si

ti
v

e 
R

at
e

False Positive Rate

ROC Curve

1.0

0.8

0.6

0.4

0.2

0.0

1.0 0.8 0.6 0.4 0.2 0.0

Figure A.2: ROC curve of Mask PCPA model [39] on JAAD all
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Figure A.3: ROC curve of SF GRU model [22] on JAAD behavior
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Figure A.4: ROC curve of SF GRU model [22] on JAAD all
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Figure A.5: ROC curve of single RNN model [16] on JAAD behavior

81



T
ru

e 
P

o
si

ti
v

e 
R

at
e

False Positive Rate

ROC Curve

1.0

0.8

0.6

0.4

0.2

0.0

1.0 0.8 0.6 0.4 0.2 0.0

Figure A.6: ROC curve of single RNN model [16] on JAAD all
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Figure A.7: ROC curve of PCPA model [17] on JAAD behavior

83



T
ru

e 
P

o
si

ti
v

e 
R

at
e

False Positive Rate

ROC Curve

1.0

0.8

0.6

0.4

0.2

0.0

1.0 0.8 0.6 0.4 0.2 0.0

Figure A.8: ROC curve of PCPA model [17] on JAAD all
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Figure A.9: Confisuion matrix of Mask PCPA model [39] on JAAD behavior

85



A
ct
u
al

Predicted

Figure A.10: Confisuion matrix of Mask PCPA model [39] on JAAD all
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Figure A.11: Confisuion matrix of SF GRU model [22] on JAAD behavior
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Figure A.12: Confisuion matrix of SF GRU model [22] on JAAD all
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Figure A.13: Confisuion matrix of single RNN model [16] on JAAD behavior
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Figure A.14: Confisuion matrix of single RNN model [16] on JAAD all
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Figure A.15: Confisuion matrix of PCPA model [17] on JAAD behavior
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Figure A.16: Confisuion matrix of PCPA model [17] on JAAD all
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