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Abstract

This study explores the effects of aspect ratio, edge geometry and incidence angles
on the dynamic lift force, wake behaviors, and the susceptibility of such geometrical
aspects to self-excited acoustic resonance in rectangular cylinders inside a high-speed
wind tunnel. Experimental findings demonstrate a notable shift in both acoustic
pressure and dynamic lift force during resonance excitation for rods characterized by
an aspect ratio of l/h = 0.5. For cylinders with an aspect ratio of l/h = 2, there is
unexpected excitation of the third acoustic mode, imposing a considerable reduction
in the dynamic lift force and alteration in shear layer dynamics, which subsequently
impacts the shedding pattern. The study reveals that modifying the shape of the
upstream edges to be rounded can alter the shedding pattern and decrease dynamic
the loading, whereas alterations to the downstream edges amplify the sound pressure
level (SPL) during resonance. Particle image velocimetry (PIV) measurements further
accentuate the crucial role of incidence angles in modulating flow structures, vortex
generation, and wake dynamics. The combined effect of a small angle of incidence
and self-excited acoustic resonance was found to have an added streamwise length
effect. This research emphasizes the significant influence of incidence angles and
self-induced acoustic resonance on the ILEV/TEVS shedding pattern, underscoring
the importance of rod geometry and orientation in the mechanism of flow-sound
interaction.

Keywords: Flow-induced noise, rectangular cylinders, Flow-excited acoustic res-
onance, Hydrodynamic loading on bluff bodies, Shear layer instability, Particle image
velocimetry.

Note: Rectangular rod and cylinder are used interchangeably in this thesis.
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Chapter 1

Introduction

1.1 Problem overview

Fluid dynamics, an expansive field, delves into an array of processes, including the

examination of the aerodynamics associated with bluff bodies - a phenomenon most

of us inevitably engage with in our everyday lives, either indirectly or directly. The

comprehensive understanding of bluff body flows has far-reaching implications, no-

tably in the design process, aiding in the creation of efficient and effective structures,

such as buildings, heat exchangers, bridges, and various transport vehicles.

Research that employs simple geometric configurations, such as rectangular and

circular cylinders, is particularly valuable. These uncomplicated forms allow for an

in-depth exploration of intrinsic features of flows, including vortex formation regions

and separation bubbles. Such insights are invaluable for elucidating the intricate flow

phenomena associated with more complex geometrical forms.

Rectangular cylinders are prominent in a range of industrial applications due to

their unique characteristics and versatility. For example, these geometric forms are

integral to the construction of trashracks at hydraulic intakes in hydropower plants.
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Here, they serve a critical role as filters, preventing debris from entering and poten-

tially damaging the intricate hydraulic systems. Another industry where rectangular

cylinders play a pivotal role is its presence in gas turbine blades. These cylinders

are positioned within the turbine’s cooling channels where they function as vortex

generators. The resultant effect is an increase in the turbulence levels, which in

turn boosts the heat transfer process. This enhanced heat dissipation allows the tur-

bine blades to maintain a cooler operational temperature, thus mitigating the risk

of overheating and damage. This effective cooling mechanism not only preserves the

longevity of the turbine blades, but also elevates the overall efficiency of power gen-

eration. It underscores the transformative potential that simple geometric forms like

rectangular cylinders can have in complex industrial applications, ultimately driving

advancements in power production and resource optimization.

In recent decades, experimental investigations of flow over two-dimensional rect-

angular cylinders have paved the way for significant breakthroughs in our grasp of

several flow phenomena. Notably, it has enhanced our comprehension of turbulence’s

impact on the separating shear layer, the fundamental properties of the separated flow

region near the leading edge, and the influence of controlled flow perturbations on

vortex shedding and heat transfer. The furtherment of this understanding contributes

to ongoing advancements in the field of fluid dynamics and helps us furthermore un-

derstand the complex flow phenomenon that arise as a result of the interaction of a

moving fluid with a bluff body.

1.2 Motivation

Despite the substantial body of research focused on the mechanism of flow-sound

interaction for cylindrical structures subjected to cross-flow, surprisingly, the flow-
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acoustic coupling from rectangular rods in a similar setting has not been accorded the

same level of scrutiny. This is noteworthy given the prevalent use of these structures

in various industrial applications.

The processes of flow separation and reattachment occurring around rectangu-

lar rods subjected to cross-flow exhibit fundamental differences when compared to

those around circular cylinders. Such distinctions in flow behaviour can significantly

influence the resulting aeroacoustic phenomena and the dynamics of flow-acoustic

interactions.

Furthermore, the shape of the corners in rectangular rods, whether they are sharp,

chamfered, or rounded, can profoundly affect the flow separation mechanism. By

extension, these variations can also impact the coupling between the fluid flow and

an acoustic mode. Thus, understanding these intricacies and their implications for

flow-acoustic coupling in rectangular rods in cross-flow is critical, and the dearth of

research in this area suggests a substantial knowledge gap that this study aims to

address.

1.3 Objectives

The primary objective of this thesis is to undertake an exhaustive exploration of the

behavior of the shear layer and flow topology around rectangular cylinders under both

non-resonant and flow-excited acoustic resonance conditions, and for various config-

urations. This research endeavors to build upon the work of [114], who examined the

flow characteristics and aeroacoustic response of rectangular cylinders with varying

aspect ratios. Their research revealed the existence of a minimum rod length in the

flow direction that prompts an early excitation of higher acoustic modes. To delve

deeper into and expand upon these initial findings, this work will focus on several key
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areas.

Firstly, the effects of aspect ratio will be examined under both resonant and non-

resonant conditions, aiming to identify and understand any variations or anomalies.

Secondly, the investigation will delve into the hydrodynamic loading experienced by

rectangular cylinders of different aspect ratios, again under both resonant and non-

resonant conditions, to illuminate the influence of these states on the structures’

interaction with the flow. Thirdly, the study will select a particular aspect ratio and

investigate the impact of various edge roundings on the flow topology and the inter-

action between flow and sound. By doing so, it hopes to determine how these changes

may influence the aeroacoustic characteristics of the cylinder. Lastly, this thesis will

probe the role of the angle of incidence in magnifying different shedding modes un-

der non-resonant conditions or during self-excited acoustic resonance. By analyzing

these factors, this research aims to comprehensively understand how these variables

influence the complex interplay of flow dynamics and acoustics around rectangular

cylinders.

1.4 Thesis outline

This thesis is divided into 5 chapters and the chapters are divided as follows

1. Chapter 1: Gives an overview of the problem and the motivation and main

objectives of this study.

2. Chapter 2: The second chapter of this work presents a comprehensive literature

review, summarizing the vast research efforts undertaken to understand the dy-

namics of flow around rectangular and square cylinders. This body of work

is extensive and spans several decades, highlighting the scientific community’s
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interest and persistent efforts in understanding and predicting the intricate be-

havior of flow around these geometric structures.

Beginning with early empirical investigations, the literature review traces the

evolution of our understanding, moving through theoretical developments, ex-

perimental studies, and advancements in numerical modeling techniques. These

studies have progressively deepened our comprehension of the flow characteris-

tics around rectangular and square cylinders, including the fundamental mecha-

nisms of flow separation, vortex formation, wake behavior, and associated acous-

tic phenomena.

Considerable attention is given to the effects of aspect ratio and edge roundings,

and their influences on the cylinder’s aerodynamic and aeroacoustic responses.

A rich array of studies investigates how these geometric modifications alter the

flow separation points, vortex shedding frequencies, and the structure of the

wake region, among others.

The literature review also discusses the impact of external forcing conditions,

particularly the role of resonant and non-resonant conditions, on flow dynamics.

It elucidates the nature of flow-excited acoustic resonance and its influence on

the flow topology and hydrodynamic loading of the cylinders.

3. Chapter 3: First journal article published in the Journal of Fluids and Struc-

tures, which addresses the first objective provides a comprehensive exploration

of various aspects of the studied phenomena. This includes an in-depth analysis

of the aeroacoustic response of rectangular cylinders with different aspect ratios

and edge roundings. Through careful evaluation, it sheds light on the effects of

these variations on acoustic generation.

This chapter quantifies the hydrodynamic loading under resonant and non-
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resonant conditions. It meticulously assesses how these conditions influence the

forces acting on the cylinder due to the flow, offering insights into the changes

in loading patterns and their implications for design and performance.

Lastly, the chapter utilizes flow visualization techniques during both resonant

and non-resonant conditions to delve into the alterations in shear layer behav-

ior and wake topology under resonance. By investigating the changes in flow

behavior and structure, it further enhances our understanding of the complex

interplay between flow dynamics, structural characteristics, and acoustic reso-

nances.

This multi-pronged approach provides a comprehensive and detailed picture

of the effects of aspect ratio, edge rounding, and resonant conditions on the

aeroacoustic and hydrodynamic characteristics of rectangular cylinders in cross-

flow. The findings detailed in this chapter lay a strong foundation for subsequent

chapters.

4. Chapter 4: Second journal article submitted to Journal of Fluid Mechanics,

which delves into the complex interplay between acoustic resonance pertur-

bations and angle of incidence in affecting shear layer instability and vortex

shedding patterns within the wake of rectangular cylinders. This analysis fur-

nishes critical insights into the mechanisms underpinning these patterns and

how they are influenced by a range of operational and geometrical conditions,

thereby expanding our understanding of the flow dynamics around such bodies.

5. Chapter 5: The final chapter of this work synthesizes the findings from the

previous chapters and offers an executive conclusion, elucidating the significant

implications of the results. Moreover, it provides recommendations for future

studies, outlining potential avenues for further advancing the understanding of
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flow dynamics around rectangular cylinders.
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Chapter 2

Literature review

2.1 Bluff body aerodynamics

Fluid dynamics around bluff bodies are markedly different from those around stream-

lined structures. This divergence primarily arises from the prevalence of separated

and often reattaching flow regions in bluff bodies, the relatively high drag coefficient

(CD), and the manifestation of vortex shedding. These characteristics render bluff

bodies a frequent occurrence in engineering-related fluid movements. Investigations

into fluid behavior around basic shapes, such as circular cylinders, prisms of varying

cross-sections, and inclined aerofoils, have significantly bolstered our understanding

of many fundamental aspects of fluid dynamics related to bluff bodies over the past

half-century. This knowledge enrichment not only illuminates the complex dynamics

of fluid flow around these simpler shapes, but also paves the way for more advanced

studies involving intricate geometries and more complex flow scenarios.
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2.1.1 Vortex shedding

The phenomenon of vortex shedding typically appears for Reynolds number (Re)

values exceeding 50 when dealing with bluff bodies. This can lead to significant

structural vibrations, which in extreme cases can result in catastrophic structural

failure or more commonly, fatigue failure. Furthermore, vortex shedding can also

act as a source of undesired noise. Historically, Strouhal was the first to identify

the relationship between the frequency of the sound generated (known as the aeolian

tone), the velocity of the flow, and the diameter of the cylindrical wire that the flow

traverses [123]. He formulated this relationship as a non-dimensional constant, ex-

pressed as St = fsd/U∞, where ’fs’ represents the frequency of the sound, ’d’ is the

wire diameter, and ’U∞’ denotes the flow velocity. This constant, now widely recog-

nized as the Strouhal number, serves as a key metric in the study of fluid dynamics

and vortex shedding phenomena.

Subsequently, Bernard (1912) [10] further elucidated that the aeolian tone is ac-

tually a consequence of the vortex shedding phenomenon occurring in the wake of

bluff bodies. In the same year, Von Karman introduced a criterion for establishing

stable vortex shedding. He postulated that the ratio of the spacing between vortices

along the transverse direction (spanned by the two shear layers)(a) to the streamwise

distance between vortices emanating from the same shear layer (h) should maintain

a value of a/h = 0.28 [136]. A visual representation is shown in figure 2.1. The shed-

ding pattern that emerged from this configuration was then named by Von Karman

as ”Kármán vortex streets”. This pioneering work marked a significant step forward

in our understanding of fluid dynamics, setting a foundation for much of the modern

work in this field.

Roshko 1955 [102] identified a remarkable similarity among bluff body flows across

diverse geometries. His work centered on the investigation of the pressure recovery
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Figure 2.1: Visual representation of Von Kármán vorticies and the spatial spacing
between adjacent vorticies .

mechanism inherent in reattaching flows. Remarkably, he discovered that the pressure

distributions for all examined shapes coalesced onto a singular curve when the pres-

sure was normalized by the pressure at the point of separation, and the streamwise

displacement was normalized by the length of reattachment.

In a comprehensive investigation of flow over rectangular cylinders, Bearman

(1967) [7] made significant strides in our understanding of this complex phenomenon.

One of his main discoveries was the convergence of data when plotting the base

pressure parameter, represented as K = (1− Cpb)
0.5, against the universal Strouhal

number Stb, expressed as Sb = fb/Ub. Here, Ub stands for the velocity at the point

of separation, f denotes the frequency of the observed vortex shedding pattern, and

b refers to the streamwise distance between the shed vortices. Furthermore, his find-

ings emphasized on the accuracy of the von Kármán vortex street drag formula in

predicting the convective velocity of the vortices and the streamwise spatial distance

between adjacent vortices.

2.1.2 Flow instabilities

The study of fluid dynamics has revealed several types of naturally occurring flow

instabilities that are of critical relevance to engineering applications. These include
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instabilities in free shear layers, bluff body shear layers, impinging shear layers, vortex

street wakes, and boundary layers transitioning to turbulence. Lately, with advance-

ments in computational power and computational fluid dynamics turbulence models,

the field of linear stability analysis has garnered renewed attention, significantly con-

tributing to our understanding of the mechanisms that lead many flows to instability.

The primary objective of conducting a linear stability analysis is to assess the stability

of a given flow pattern, providing predictions about the onset of any flow instability.

However, it’s crucial to note that linear stability analysis offers predictions that pri-

marily apply to the early stages of instability. As the instability intensifies and the

flow pattern alters, it quickly transitions into the realm of non-linearity. Thus, while a

linear stability analysis provides valuable insights into a flow’s initial destabilization,

it cannot capture the full complexity of the evolution of flow instabilities.

Flow instabilities can be classified in different ways. Two of the key distinctions

are whether an instability is local or global, and whether it is absolute or convective.

Local instabilities pertain to disturbances that grow locally in space and are mainly

linked to properties of the flow at a particular location. In contrast, global instabilities

involve growth in disturbances that interact with the entire flow field, regardless of

their local origin, often leading to larger-scale modifications in the flow structure. A

classic example of local instability is the Kelvin-Helmholtz instability that manifests

at the boundary between two fluids or gas layers with different velocities [18]. This

often causes the formation of waves or vortices at the interface, for instance, the ripples

we see on the wind-blown water surface or the wavy structure of certain clouds. An

example of global instability can be seen in the transition to turbulence in pipe flow,

where a disturbance at one location can affect the entire flow, leading to globally

chaotic behavior [27]. Another instance is the transition to chaotic convection in a

fluid heated from below (Rayleigh-Bénard convection), where a small temperature
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fluctuation can trigger a global reorganization of the convective cells.

In terms of absolute and convective instabilities, they differ in terms of how dis-

turbances propagate through a system. Absolute instabilities are those in which

disturbances grow in place and amplify both upstream and downstream. This is

commonly observed in wake flows behind bluff bodies, where an absolute instabil-

ity can cause an upstream influence, leading to the oscillation of the wake and the

generation of vortex streets. On the other hand, convective instabilities are those in

which disturbances grow while being convected downstream. This is typical of shear

layers, such as the boundary layer on a flat plate, where perturbations can grow and

eventually lead to turbulence, but they do so while being transported downstream,

without having an effect on the upstream flow [47].

Figure 2.2 provides a graphic representation of how a system typically reacts to

an impulse disturbance. The left panel showcases an absolutely unstable system.

On the other hand, the right panel depicts a convectively unstable system. Briggs

(1964) [14] utilized plasma instabilities as a tangible mechanism to elucidate the dy-

namics of absolutely unstable systems. He demonstrated that when an impulse, or a

disturbance with a small amplitude acting within a finite time period, is applied to

such systems, it triggers an exponential growth of the disturbance at its source. This

exemplifies the fundamental characteristic of absolute instability, where perturbations

proliferate rapidly and impact the entire system. Conversely, for convectively unsta-

ble systems, the impulse disturbance is carried away from the disturbance source due

to the inherent convection properties of the system. Over time, this leads the system

to revert back to its original state, showcasing the temporary nature of disturbances

in convectively unstable systems. In the context of shear flows without downstream

impingement surfaces, Rockwell (1990) [99] suggested that a region of absolute insta-

bility is essential for the existence of global instabilities. An archetypal example of
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Figure 2.2: Schematic sketch that depicts an impulse response (a) absolutely unstable
flow; (b) convectively unstable flow [74]

a globally unstable flow is the wake behind a bluff body, attributed to the presence

of an absolute instability region within the wake itself. However, the dynamic shifts

when a downstream impingement body is introduced into a convectively unstable

shear flow. This additional element can generate a feedback loop, instigating global

instability. The process works through the provision of upstream feedback from the

downstream surface to the shear layer at the upstream separation edge [81].

The characteristics of convectively unstable flows have been deeply studied, and

such flows have been found to exhibit a high degree of sensitivity to external pertur-

bations that span a broad range of frequencies, thereby earning the label of ”noise

amplifiers.” For instance, Ho & Huerre 1984 [39] research sheds light on the mixing

layer as an exemplar of convectively unstable shear flows. His findings underline the

extreme susceptibility of the shear layer to externally applied disturbances. Similarly,

the research conducted by Parker & Welsh (1983) [94] on rectangular cylinders with

a long streamwise length showcases another instance of such behavior. Their study

identified that the instability of the separated shear layer can synchronously lock with

a transverse duct acoustic mode, demonstrating the effect of external perturbations on
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the flow characteristics. Building on these foundational insights, subsequent research

by Soria & Wu (1992) [119] further corroborated these findings. They demonstrated

that the process of shear layer separation from the trailing edge of rectangular cylin-

ders, followed by reattachment on the lateral face, is indeed indicative of convectively

unstable flow.

Merati & Adrian (1992) [66] conducted an exploration into the mechanism that

magnified inherent instabilities in a planar shear layer as it collided with a down-

stream object. They discerned that the positioning of a slender, planar piece in the

shear layer’s centerline, precisely within the area experiencing exponential growth,

generated cyclical disturbances that reverberated upstream to the initial destabiliza-

tion. The fluctuations in the shear layer’s magnitude—either intensifying or less-

ening—were contingent on the gap between the separation splitter plate and the

downstream plate. Optimal amplification transpired when the interval separating

the feedback edge from the separation splitter plate’s edge was commensurate with a

whole-number multiple of the initial instability frequency’s wavelengths.

Wake flows that are globally unstable owing to an absolute instability region in

the wake show self-induced oscillations and can be classified as oscillators [74]. Due to

the inherent self-induced instability, they typically show indifference to low-amplitude

disturbances. Only when perturbations are introduced with enough intensity to sub-

stantially modify the mean flow, can the flow be influenced by externally applied

disturbances.

A classic example of globally unstable flows is the Kármán vortex shedding street

seen in the wake of circular cylinders. In this scenario, the wake forms a region of

absolute instability, while the separated shear layers demonstrate convective insta-

bility. This phenomenon exemplifies the intricate interplay between these two types

of instabilities in governing the flow characteristics around bluff bodies. Karniadakis
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& Triantafyllou (1989) [55] conducted a numerical investigation into the impact of

external periodic forcing on flow instability. As depicted in Figure 2.3, the lock-

in boundary delineates the graph into two parameter regions, creating a parabolic

shape. When a perturbation of minimal amplitude is applied at a frequency resonat-

ing with the Kármán vortex shedding street, the vortex shedding remains unaffected.

However, if the amplitude of this perturbation exceeds a certain threshold, the wake

frequency synchronizes with the perturbation frequency, a phenomenon known as

lock-in. If the perturbation frequency is applied outside the receptive boundary, the

ensuing near frequency matches the vortex shedding frequency. Interestingly, when

the perturbation frequency falls within the range between the lock-in boundary and

the receptivity boundary, a quasi-periodic wake results. This quasi-periodic state

features both the perturbation frequency and the inherent shedding frequency within

the wake. For rectangular cylinders with aerodynamic leading edges and sharp trail-

ing edges, a similar behavior as of the circular cylinders is observed with a minimum

threshold of the perturbation amplitude to be able to intrinsically alter the vortex

shedding [120].

2.2 Flow around rectangular cylinders

Rectangular cylinders and geometries of similar nature are prevalent in various engi-

neering sectors. These can be seen in architectural constructions like skyscrapers and

the decking structures in bridges. In addition, they also find use in trash racks at the

inlet of hydraulic intakes to prevent the entrance of debris and solid wastes.

One defining characteristic that differentiates flows around rectangular prisms

from those around circular cylinders is the existence of a fixed separation point.

This point is typically situated at the sharp leading edge corners of the prism. In
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Figure 2.3: Stability map of state selection for laminar wakes [55]

contrast to rounded bodies like cylinders, where the flow separation point can shift

along the curved surface, rectangular bodies have rigid boundaries that direct the

flow in a specific manner. This factor significantly influences the behavior of the

flow around these shapes, thereby impacting the related engineering parameters such

as lift, drag, and vortex shedding patterns. Understanding these distinctive flow

dynamics around rectangular prisms can provide valuable insights for optimizing their

design and performance in the aforementioned applications.

The aerodynamics of rectangular cylinders are influenced by a variety of factors.

The aspect ratio of the cylinder, defined as the ratio of the stream-wise length to

the cross-stream length, significantly influences the behavior of the flow. It plays a

pivotal role in the generation of wake patterns and large-scale structures in the fluid

flow. Another critical factor is the Reynolds number, a dimensionless quantity that

measures the ratio of inertial forces to viscous forces. It characterizes the nature of the
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flow – whether it is laminar or turbulent – and heavily influences the vortex shedding

patterns observed in the wake of the cylinder. Higher Reynolds numbers typically

imply more turbulent flows, leading to complex shedding patterns and substantial

large-scale vortex structures. The turbulence level of the incoming flow also plays

a role. It impacts the dynamics of the shear layer, the region where the velocity of

the fluid changes significantly. Higher turbulence levels can induce more instabilities

in the shear layer, contributing to increased vortex formation and potential alter-

ations to the flow behavior. Lastly, any external disturbances or vibrations induced

in the cylinder can substantially modify the flow topology. For example, an oscil-

lating cylinder might cause the vortex shedding frequency to synchronize with the

cylinder’s vibration frequency, a phenomenon known as lock-in. This synchronization

can amplify the vibrations and cause substantial changes in the flow field.

2.2.1 Effect of the aspect ratio (AR) on the wake dynamics

and hydrodynamic loading

The study of hydrodynamic loading on rectangular cylinders traces back to the work

of Fage & Johansen (1927) [32]. They embarked on an investigation to measure the

drag force exerted on a thin rectangular cylinder (possessing a notably low aspect

ratio of AR = 0.028) at zero angle of incidence. Their results indicated that the

drag coefficient remained approximately constant around the value of 2.0. Subse-

quent research sought to evaluate the drag coefficient of rectangular cylinders, and

the prevailing assumption was that for square cylinders and those with moderate as-

pect ratios (specifically, 0.5 < AR < 2), the drag coefficient would hover around 2.

However, this assumption was later challenged by the findings of Nakaguchi et al. [75]

in 1968. They reported a considerably higher drag coefficient of 2.8 for cylinders with

17



an aspect ratio of AR = 0.62, thus contesting the commonly held view. Examina-

tion of figure 2.5 and 2.4 offers valuable insights into the relationship between the

Strouhal number and two critical parameters: the Reynolds number and the aspect

ratio. In the high Reynolds number regime (Red > 0.5x103), the Strouhal number

exhibits a rather insignificant dependency on the Reynolds number, indicating the in-

fluence of Reynolds number on the vortex shedding frequency is not very pronounced

within this range. In contrast, a substantial dependency on the aspect ratio is clearly

observed. As the aspect ratio increases, the Strouhal number follows a downward

trajectory until the aspect ratio reaches a value of approximately 2. At this point,

the curve experiences a noticeable inflection, with the Strouhal number suddenly es-

calating from 0.05 to 0.19. This abrupt change suggests a considerable alteration in

the wake shedding topology, likely instigated by the reattachment of the flow onto the

cylinder’s lateral face. The implications of this shift are considerable, as it signifies a

critical transition point in the flow dynamics around a rectangular cylinder. Further

examination of the data presented in Norberg (1993) [82] study (as shown in Figure

2.4), reveals a decreasing trend for the drag coefficient with increasing aspect ratio.

This trend persists until the aspect ratio reaches a value of 5, at which point the drag

coefficient stabilizes around 1. Hence, these findings highlight the dynamic nature of

the drag coefficient for rectangular cylinders, demonstrating its dependence on the

aspect ratio and challenging earlier assumptions about its consistency.

Bearman (1967) [7] introduced the concept that a reduction in base suction pres-

sure is a consequence of an extended vortex formation length, which subsequently

translates into diminished drag force exerted on the cylinder. Further elaborating on

this notion, Bearman & Trueman (1972) [9] provided an explanation for the remark-

able surge in the Cd value for an aspect ratio AR = 0.62. According to their research,

this spike is linked to a critical afterbody length, beyond which the afterbody be-
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Figure 2.4: The variation the drag coefficient Cd with different aspect ratios AR [82]

Figure 2.5: The variation of Strouhal number St with different aspect ratios AR [82]
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Figure 2.6: Flow around rectangular cylinder of different aspect ratio filmed using
dye filament in a water tunnel (Adapted from [9])

gins to interact with the vortex formation process. This can be seen in figure 2.6,

where for AR = 0.6 the vortex formation tends to occur very close to the base of the

cylinder, leaving behind a minimal area of flow separation. This means the region

where the flow detaches from the body of the cylinder, creating a zone of turbulence

and reduced pressure. For streamwise lengths falling below this threshold, the vortex

formation length remains constant and unaffected, being determined primarily by the

leading corners. However, when the aspect ratio reaches around AR = 0.6, a complex

interplay begins to emerge between the separated shear layer originating from the

cylinder’s leading edge and the trailing edges. As the aspect ratio further increases,

the vortex formation length no longer remains independent of the streamwise length

but instead, it becomes closely associated with the position of the trailing edge. This

intricate dynamics lead to a significantly enhanced base suction, which in turn con-

tributes to a downward trend in Cd, culminating in a value of approximately 1 when

the aspect ratio is around 5.
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2.2.2 Effect of Reynolds number on the separated shear layer

In case of elongated rectangular cylinders, the separated shear layer from the leading

edge always reattach to the cylinder lateral face. The prononced shedding pattern in

the wake is highly dependent on the Reynolds number in the low range (Re < 380).

Sasaki & Kiya (1991) [109] identified three ranges for the separated shear layer regime

based on the Reynolds number.

1. In the Reynolds number range of 80 < Reh < 320, the shear layer that separates

from the leading edge maintains its laminar characteristics until it reattaches.

Nonetheless, due to the prevalence of viscous forces, the shear layer is prevented

from rolling up to form a distinct vortex. In this range, the flow behavior is

mainly dictated by viscous effects, which suppress the instabilities necessary for

vortex generation, resulting in a flow pattern that lacks well-defined vortical

structures.

2. In the Reynolds number range of 320 < Reh < 380, the Kelvin-Helmholtz (K-H)

instability becomes prominent in the shear layer, enabling the creation of dis-

tinct inverted V-shaped vortices. These vortex structures are distributed evenly

across the span length of the cylinder, as illustrated in figure 2.7(a). Interest-

ingly, within this range, an inverse correlation is observed between the size of

the separation bubble and the Reynolds number. As the Reynolds number in-

creases, the size of the separation bubble tends to decrease, indicating a greater

influence of inertial forces over viscous forces within this regime. This shift in

dominant forces encourages the development of instabilities and, subsequently,

the formation of more complex flow structures.

3. In the Reynolds number range of Reh > 380, the vortical structure formed

impose a horseshoe topology resulted from the coalescence of vorticies. As
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Figure 2.7: Side view of the vorticies downstream (a) 320 < Reh < 380; (b) Reh >
380 (Adapted from [109])

shown in figure 2.7(b) the vorticies are spread on the cylinder lateral face in a

staggered arrangement.

At high Reynolds numbers (Reh > 380), the shear layer separating from the

leading edge takes on a more streamlined, thinner form and accelerates its roll-up into

the wake. Additionally, the process of vortex coalescence intensifies, proceeding more

rapidly. This stage can be identified as the transition from a laminar shear layer to a

turbulent one. As the Reynolds number continues to increase, the transition point, or

the location where the shear layer shifts from laminar to turbulent behavior, moves

closer to the leading edge. When Reh reaches approximately 2 × 104 [88], the shear

layer immediately becomes fully turbulent upon separating from the leading edge.

This progression towards turbulence implies increasing flow complexity, potentially
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influencing the aerodynamic forces acting on the rectangular cylinder.

Numerous studies have indicated that at high Reynolds numbers (3.4×104 < Re <

8×104) and under conditions of low incoming turbulence intensity, the behavior of the

separated shear layer exhibits independence from the Reynolds number [38, 94]. In

these conditions, the reattachment length of the shear layer (Sr) has been observed

to depend solely on the cross-stream dimension of the rectangular cylinder. More

specifically, it’s noted that Sr equates to approximately 4.9h, where h represents the

cross-stream length.

The development of the separation bubble length resulted from the shear layer is

said to be divided into two fragments. The first fragment, which resembles the first

60%, is analogous to plane mixing layer with a linear thickness growth. However,

the remaining 40% are affected by the shear layer impingement (reattachment) to the

cylinder surface. The vorticies reduced frequency (fc) is found to be function of the

free stream velocity (U∞) and the reattachment length of the shear layer (Sr) following

the relation (0.6U∞/Sr). Moreover, the spatial streamwise distance between adjacent

vorticies is estimated to be a fraction of the reattachment length approximated to

0.75Sr [38, 56].

In the literature, the phenomenon of ”shear layer flapping” has been frequently

reported. This activity, which happens downstream of the leading edge, involves the

shear layer undulating or ”flapping” at a relatively low frequency. This behaviour is

often linked to the formation of a large-scale, unsteady separation bubble in the flow.

The presence of this bubble can lead to markedly elevated suction pressures beneath

the bubble, which can significantly influence the dynamics of the flow and the forces

exerted on the bluff body [21,103].
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2.2.3 Approaching flow turbulence level effect

Free stream turbulence, or the turbulence level in the flow approaching a body, can

indeed have a significant influence on bluff body flows. The free stream turbulence

can modulate these flow features in several ways such as altering wake dynamics,

destabilizing the separated shear layer, and affecting the hydrodynamic loading on

the bluff body.

Vickery (1966) [135] comprehensive examination of square cylinders 1966 yielded a

notable finding concerning the connection between aerodynamic drag and free stream

turbulence. His research indicated an inverse relationship between the two: as the in-

tensity of free stream turbulence increased, aerodynamic drag on the square cylinder

was found to decrease. Contrasting Vickery’s findings, Bearman (1971) [9] study on

cylinders with aerodynamic leading edges and small cross-stream lengths uncovered a

distinctly different relationship. Instead of an inverse correlation, Bearman observed

that an increase in free stream turbulence intensity led to an augmentation in aerody-

namic drag on the studied cylinders. Gartshore (1973) [34] shed further light on this

debate, indicating that the relationship between aerodynamic drag and turbulence is

not solely dictated by the overall turbulence intensity. He discovered that the presence

of small-scale vortical structures also played a significant role in shaping the topol-

ogy of the separated shear layer. These structures imbued additional vorticity to the

flow, thereby amplifying turbulent mixing. Hence, the contrasting results found by

Vickery and Bearman in relation to the connection between turbulence intensity and

the drag coefficient can be attributed to the differing geometries of their respective

studies. While Vickery focused on square cylinders, Bearman utilized thin cylinders

in his research. This alter the radius of the shear layer curvature which in turn shifts

the reattachment point and, hence, the drag force.

Hillier & Cherry (1981) [38] investigated the relation between the turbulence in-
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Figure 2.8: Mean pressure variation at different approach turbulence intensities
(σu/u) (Adapted from [38])

tensity σu/u of the approaching free stream and the pressure distribution on elongated

rectangular cylinders. As shown in figure 2.8, there is a strong dependence on the

turbulence intensity.

Kiya & Sasaki (1983) [56] first an inverse relation between the turbulence intensity

and the reattachment length. This was confirmed later by Saathoff & Melbourne

(1997) [104] as they found an increase in the turbulence intensity can yield to a

significant decrease in the reattachment length. This can be seen in figure 2.9 which

reports an increase from zero to 6.5 % in the turbulence intensity can yield into

almost reducing the reattachment length to half its value. Moreover, they discovered

a relationship between turbulence intensity and the correlation of the vortices shed

in the wake, leading to an increase in pressure fluctuations. This can be attributed

to two key factors. The first is the amplification of vorticity coherence as the shear

layer rolls into the wake. The second factor is the extended time window available to

the shear layer due to the decreased frequency of the perturbation. This extra time
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Figure 2.9: Reattachment length (Sr) variation at different approach turbulence
intensities (σu/u) (Adapted from [104])

allows the shear layer to entrain more flow, thereby elevating the vorticity content.

2.2.4 Shedding patterns and flow instabilities for elongated

cylinders

Vortex shedding from rectangular cylinder with different aspect ratios

The vortex shedding process from free streams interaction with bluff bodies is dis-

tinguished by Kármán shedding. This shedding pattern is the direct outcome of the

mutual induction between the two detached shear layers. When considering vor-

tex shedding from rectangular cylinder at relatively high Reynolds numbers (i.e.,

Reh > 10, 000), Parker and Welsh (1983) [94] classified the process into four dis-

tinct regimes. This classification is contingent on the aspect ratio of the cylinder

(AR = l/h).
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1. Regime (I): For rectangular cylinders of AR < 3.2, typical vortex shedding

with the a separated shear layer from the leading edge rolling into the wake

with no observable interaction (reattachment) with the streamwise length of

the cylinder.

2. Regime (II): For rectangular cylinders of 3.2 < AR < 7.6, the separated shear

layer reattaches exactly at the trailing edge at a frequency equals to the global

shedding frequency. The separation bubble envelope starts at the trailing edge

with the vorticies shedding within the the vortex formation length.

3. Regime (III): For rectangular cylinders of 7.6 < AR < 16, the seprated shear

layer reattaches to the lateral face of the cylinder between the leading and

trailing edge. The location where the shear layer reattaches mainly depends on

the aspect ratio. A separation bubble is formed at the point of reattachment.

Vorticies spread out along the span of the cylidner within the boundary layer

in an unpredictable manner producing a random shedding street which can not

be designated as Kármán shedding.

4. Regime (IV): For rectangular cylinders of AR > 16, Same as Regime (III) in

terms of the shear layer separation and reattachment. However, the main dif-

ference is that the vorticies which forms within the boundary layer disseminate

before reaching the afterbody wake past the trailing edge.

Figure 2.10 illustrates the variance of the Strouhal number (Sth) with the cylinder

aspect ratio at high Reynolds numbers (Reh > 10, 000). The curve clearly delineates

discrete regions, corresponding to the different regimes identified later. From 0 to

AR = 1, the Strouhal number remains roughly constant at around 0.13. Following

that, the Strouhal number starts to decline, reaching a value of 0.065 at AR =

3.2. This point marks a significant leap in the Strouhal number to a value of 0.15,
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Figure 2.10: Strouhal number (Sth) VS the cylinder aspect ratio (l/h) (Adapted
from [94])

indicating the onset of regime (II). The Strouhal number then begins to decrease

again until it reaches a value of 0.07 at AR = 7.6. A discontinuity in the curve

follows, indicating regime (III), where no regular shedding street is observed. Beyond

AR = 16, the periodicity of the Strouhal number begins to reemerge, achieving a value

similar to those seen in aerodynamic leading edge airfoils with the same streamwise

length. This similarity underscores the idea that the shedding within this regime is

indeed trailing edge shedding.

In studies conducted at comparatively low Reynolds numbers, Nakamura et al.

(1991) [79] explored the Strouhal periodicity in the wake of rectangular cylinders

with varying aspect ratios at a Reynolds number (Rel) of 1000. A key finding of this

study was the stepwise progression of the Strouhal number. The Strouhal number,

when based on the streamwise length of the cylinder (Stl), was found to be an inte-

gral multiple of 0.6. In a subsequent investigation conducted at an elevated Reynolds

number (Rel = 50, 000), Nakamura and Nakashima (1986) [77] analyzed the wake

behavior of two distinct geometries, H-shaped and ⊢-shaped cylinders. These cylin-
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ders had aspect ratios ranging from 2 to 8. Once more, the study revealed a stepwise

evolution of the Strouhal number, reinforcing the previous findings at lower Reynolds

numbers. One way to interpret this stepwise increase in Stl is to consider that an

integer number (n) of vortices are always present along the streamwise length of the

cylinder. The streamwise length decides the number of discrete vorticies materialize

along the span of the cylinder. This pattern suggests that the plate length plays a

key role in determining the spatial distribution and quantity of vortices formed along

its side.

Figure 2.11 presents a vivid demonstration of the stepwise progression of the

Strouhal number in relation to the aspect ratio. This progression is marked by jumps

in the Strouhal number which occur in integer multiples of 0.6n, where ’n’ represents

the quantity of vortices that have been shed from the leading edge and traveled along

the length of the cylinder within a single global shedding cycle. Thus, the Strouhal

number does not simply scale linearly with the aspect ratio, but shows this distinctive,

quantized behavior, which suggests a close link between the geometry of the cylinder

and the dynamics of vortex shedding.

The impinging leading edge vortex instability (ILEV)

Nakamura & Nakashima’s (1986) [77] study pioneered the explanation for the pattern

of vortex shedding observed in longer rectangular cylinders with aspect ratios greater

than 3. They suggested that the shedding pattern is a manifestation of the instability

of the shear layer, separated from the leading edge of the cylinder, known as the

impinging shear layer instability. Naudascher & Rockwell (1994) [81] later refined this

concept in , introducing the term ”ILEV instability,” which stands for ”Impinging-

Leading-Edge-Vortices instability.” This terminology more accurately describes the

phenomenon as, for cylinders with an aspect ratio exceeding 7, the separated shear
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Figure 2.11: Strouhal number (Sth) VS the cylinder aspect ratio (l/h) at Rel = 1000
(Adapted from [79])

layer from the leading edge does not directly interact with the trailing edge of the

cylinder.

The concept of this shear layer instability is based on Rockwell & Naudascher

(1978) [100] work for sharp-edged cavities. The flow over cavities is known to be self-

sustained oscillation which can be divided into three categories outlined as follows:

1. Fluid dynamic oscillations: Hydrodynamic feedback mechanism materialize be-

tween the upstream and downstream corners.

2. Fluid resonant oscillations: Flow-acousitc coupling with an acoustic standing

wave having a wavelength close to the cavity depth.

3. Fluid-elastic oscillations: Analogous to synthetic jets, an oscillatory motion is

created without net mass flux, which is generated through the periodic inflow

and outflow of fluid in a cavity by the oscillation of one of the cavity’s walls
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imposing a feedback loop of control on the shear layer separation.

Rockwell & Naudascher (1978) [100] focused their work on cavity flows that involve

a feedback loop between the upstream and downstream edges via the separated shear

layer. Contrasting this, Ho & Nozir (1981) [40] explored the interactions of impinging

free jets on flat plates. They discovered that the shedding process is governed by two

principal parameters: the large-scale vortices emanating from the free jet and the

pressure waves generated as a result of these vortices impinging on the flat plate.

As illustrated in figure 2.12, a pressure wave propagates upstream from the point of

impingement. This pressure wave acts as a backpressure force on the free shear layer

separating from the jet opening, promoting the coalescence of small-scale vortices

into larger-scale vortical structures. This feedback mechanism helps maintain a phase

lock between the jet opening and the flat plate, thus establishing a unique shedding

process.

Figure 2.13 illustrates how the ILEV maintain a feedback loop. The seprated

shear layer from the leading edge generates leading edge vorticies (LE). These vor-

ticies are convected downstream. As it pass through the trailing edge it generates a

pressure pulse which travels upstream of the cylinder to the upstream. As this pulse

travels upstream this stimulate the leading edge to shed a new vortex closing the

feedback loop between the leading and trailing edge. As we look at the nature of this

mechanism, the vorticies wavelength is equal to the spanwise length of the cylinder.

However, this explains the Strouhal number lock with a range of aspect ratios and

then it jumps with an integar multiple. This jump resembles the materialization to

an extra vortex within the spanwise length of the cylinder. This suggests that there is

threhold values of the aspect ratios at which the shear layer impingement momentum

generates a pressure pulse strong enough to shed extra vortex within the one complete

shedding cycle.
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Figure 2.12: The process of coalescence of mixing layers small-scale vorticies into
large-scale vorticial structure (Adapted from [40])

Figure 2.13: ILEV mechanism for an rectangular cylinder with 6 < AR < 9 and
n = 2 (Adapted from [67])
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In order to delve deeper into the mechanisms underlying ILEV instability, Naka-

mura & Nakashima (1986) [77] conducted a study on H-section structures with an

aspect ratio of 5, at high Reynolds numbers (Reh > 50, 000). The primary goal of

this study was to determine whether this phenomenon was one or two-sided. To ac-

complish this, they compared wake frequencies in scenarios both with and without

a splitter plate. Their findings indicated that the frequencies remained consistent in

both cases, leading to the conclusion that ILEV instability is a one-sided phenomenon.

This stands in contrast to natural vortex shedding, which relies on the mutual induc-

tion of counter-rotating shear layers. Another notable discovery was the absence of

any distinct spectral peak in the Fast Fourier Transform (FFT) analysis of velocity

fluctuation data obtained from a hot wire anemometer, at aspect ratios larger than

8. This absence of a spectral peak implies that no organized vortex-shedding pattern

exists in the wake of these structures. These observations mirrored those reported

by Parker & Welsh (1983) [94] for regular-shaped rectangular cylinders with similar

aspect ratios.

One of the key discoveries made by Nakamura et al. (1991) [79] pertains to the

absence of vortex shedding for cylinders with aspect ratios greater than 6 at relatively

low Reynolds numbers (Reh > 2000). As discussed earlier in this section, at such low

Reynolds numbers, the shear layer transitions from a laminar state at the point of

separation to a turbulent state approximately one cylinder cross-stream length down-

stream from the leading edge. However, the shear layer becomes turbulent at high

Reynolds numbers immediately upon separation. This reduces the shear layer’s sensi-

tivity and susceptibility to both forced and natural perturbations. Furthermore, the

influence of three-dimensional flow effects becomes more pronounced at high Reynolds

numbers, which disrupts the feedback loop between the separated shear layer and the

point of impingement.
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Figure 2.14: Vortex shedding patterns from rectangular cylinders with progressively
increasing aspect ratio

Figure 2.14 outlines the three vortex shedding patterns than can materialize for

rectangular cylinders at different ranges of aspect ratio. Type I, also known as

Leading-Edge Vortex Shedding (LEVS), is characterized by the formation of a sep-

aration bubble at the leading edge of the body. Vortices form and shed from this

separation bubble. Type II, referred to as Impinging Leading-Edge Vortex (ILEV)

instability, involves the shedding of vortices from the separation bubble at the leading

edge, which then interact with vortices forming at the trailing edge of the body. The

dynamic interaction of these leading-edge and trailing-edge vortices forms a unique

and complex shedding pattern. Type III, or Trailing-Edge Vortex Shedding (TEVS),

involves the detachment of vortices directly from the trailing edges of the body. In

this type of shedding, the influence of leading edge separation is less pronounced, and

the primary dynamic feature of the flow is the shedding of vortices from the trailing

edge.

In a bid to delve deeper into the ILEV shedding mechanism, Ohya et al. (1992) [91]

carried out a 2-D CFD simulation on rectangular cylinders with aspect ratios ranging

from 3 to 9. Their results generally agreed with the findings from Nakamura et al.

(1991). However, discrepancies emerged for aspect ratios of 8 and 9. These differences

can be primarily attributed to the 2-D nature of the CFD simulations, which may

not fully capture the dynamics of the flow field at these Reynolds numbers where the

flow is anticipated to be three-dimensional. This limitation may alter the predicted
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Figure 2.15: Vorticity contour delineating the LE and TE vorticies shedding
(Adapted from [91])

wake frequencies and flow topology from their actual values and structures.

A novel characteristic of the flow, not identified in prior research, is the trailing

edge vortex shedding, or TE vortex. As depicted in figure 2.15, when a leading edge

vortex (LE vortex) nears the trailing edge, the reattached boundary layer detaches

anew, curling up to shed a T-vortex in the wake. This T-vortex interacts with the

oncoming LE vortex on the same lateral face of the cylinder, with both being subse-

quently shed as one vortex downstream. This interplay between LE and TE vortices

is observed alternately on the cylinder’s opposing sides at the top and bottom corners

of the trailing edge. It culminates in the creation of a regular pattern, akin to a vortex

street. Namely, ILEV/TEVS.

2.3 Flow around rectangular and square cylinders

at an angle of incidence

The angle of incidence in the flow has a substantial influence in modifying the flow

topology and shifting the characteristics of how the shear layer separates, impinges,

and rolls into the wake. In this section, we will explore in detail the flow topology

and characteristics around rectangular and square cylinders when placed at an angle

of incidence. This will help to further comprehend how the asymmetry, introduced
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by the incidence angle, influences the flow behavior in the vicinity of the rod.

2.3.1 Flow regimes classification and the critical angle of at-

tack

Igarashi (1984) [49] pioneered the investigation of the incidence angle’s influence on

the flow dynamics surrounding a square cylinder. He discerned four unique flow

patterns, each determined by a specific range of the angle of incidence (α). These

patterns are delineated as follows:

1. (0◦ < α < 5◦): Shear layer separation from the leading edge with no interaction

or impingement yielding a symmetric flow.

2. (5◦ < α < αcr) In this regime, the flow becomes asymmetric due to the angle of

incidence. The vortex shedding process is similar to the regular Karman vortex

street, with the vortices shedding alternately from the upper and lower edges

of the cylinder.

3. (αcr < α < 35◦): Shear layer reattach to the square lateral faces.

4. (35◦ < α < 45◦): Symmetric wedge flow.

Figure 2.16 delineates the fluctuating pressure coefficient (Cp′) plotted at the middle

of the leeward lateral face (C) and the leeward face (B) against the angle of incidence.

A closer look at this diagram reveals two distinct behaviors divided by a critical angle

of incidence, which corresponds to the lowest observed Cp′ value. Post this critical

point, Cp′ exhibits an increasing trend until it eventually reaches a plateau as it nears

the symmetric wedge angle.
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Figure 2.16: Fluctuating pressure coefficient Cp′ at different points on the faces of the
square cylinder at different angle of incidence. Rel = 27, 000 squares; Rel = 41, 000
circles (Adapted from [49])

Expanding on Igarashi’s (1984) [49] classifications of wake flow patterns at varying

incidence angles, Huang (2010) [46] made further comprehensive contributions. The

expanded categorization by Huang is as follows:

1. (0◦ < α < αcr): Named as subcritical flow which is characterised by a classical

stagnation as a result of the flow impingement on the windward faces forming

two separation points and typical vortex shedding street is present in the wake.

2. (αcr < α < 45◦): Named as supercritical flow which is characterised by the

formation of the separation bubble at the surface of the windward lateral face

and a significant flow reattachment is present at the critical angle of incidence.

3. (α = 45◦): Named as wedge flow which is characterised by the flow separation

at the adjacent edges on the cross-stream axis resulting in a symmetric flow
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downstream.

In the parlance of flow topology, a ”critical point” denotes a location within the

fluid flow where the trajectory of the streamlines is indeterminate; examples of such

locations include points known as saddles. On the other hand, a ”separatrix” is

characterized as a specific streamline that originates from or concludes at a saddle

point. These terminologies contribute significantly to understanding complex flow

behaviors by illustrating how streamlines diverge or converge at specific points within

the flow.

Figure 2.18(a) displays the line of stagnation, also known as the 3-way saddle point

line. This line delineates the impingement point of the free shear layer. As indicated

in the figure, the oil line, which signifies the stagnation point, progressively relocates

between points A and B with the increase in angle of incidence. Remarkably, this

shift in the location of the stagnation point does not seem to be influenced by changes

in the Reynolds number. This suggests that the impact of incidence angle on the flow

characteristics around the cylinder might be more profound than the effects induced

by Reynolds number changes at these conditions.

Figure 2.4(b) displays critical points on cylinder side B. In the subcritical region, a

dual-ring bubble appears behind the leading edge, its second oil strip’s location dimin-

ishing as the angle increases. This junction is a three-way saddle. In the supercritical

region, a single oil strip at the reattachment point becomes evident, shrinking and

disappearing as the angle nears 45 degrees. It’s notable that the complex recirculation

zone in the subcritical region varies with Reynolds number, while the reattachment

point’s position in the supercritical region is Reynolds number independent.

For studies on the effect of different flow and geometrical parameters on altering

the critical angle of incidence. In his insightful study, Tamura (1999) [126] explored

the relationship between the incoming flow turbulence intensity, the geometry of the
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Figure 2.17: Streamlines which outlines the different flow patterns at Rel = 5000
(Adapted from [46])
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Figure 2.18: Surface-oil measurements showing the position of the topological critical
point at different Reynolds number (Adapted from [46])

cylinder edges, and their collective influence on the critical angle of incidence. The

findings from his research highlight an inverse relationship between the turbulence

intensity and the angle of incidence, suggesting that a rise in turbulence intensity

corresponds with a decrease in the angle of incidence. Additionally, he discerned that

modifications to the cylinder edges, specifically rounding or chamfering, have sub-

stantial implications for the critical angle of incidence. His observations suggest that

such alterations can result in a substantial reduction of the critical angle, revealing

an important interplay between edge geometry and fluid dynamics. Chen (1999) [19]

delved into the effects of varying the Reynolds number, specifically within a lower

range of 2000 to 3300, on the critical angle of incidence. A noteworthy observation

from his research was the discovery of an inverse correlation between the Reynolds

number and the critical angle of incidence. This finding suggests that as the Reynolds

number decreases within the aforementioned range, the critical angle of incidence cor-
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respondingly increases, thereby revealing an intriguing dimension to the dynamics of

flow around a square cylinder.

2.3.2 Effect of angle of incidence on the hydrodynamic load-

ing

Figure 2.19 depicts the average lift and drag coefficients, computed indirectly via the

integration of pressure measurements at various points along the cylinder’s span. Su-

perimposed on the plot are results from Otsuki et al. (1978) [89], derived from direct

measurements of the hydrodynamic load on the cylinder. A notable feature in this

data is the inflection point of the curve at a critical angle of incidence αcr = 15◦. Here,

the drag coefficient is at a minimum and the slope’s sign flips. Discrepancies between

the coefficient values from the two sources become more prominent at high angles of

incidence. These disparities can be attributed to differences in the blockage ratios

between the two studies, which stem from their respective wind tunnel dimensions.

As the angle of incidence changes significantly, it correspondingly alters the blockage

ratio.

In an extensive study conducted by Tamura (1999) [126], the impact of approach-

ing flow turbulence intensity and edge geometry on the average lift and drag forces

were thoroughly examined, as represented in figure 2.20. Tamura discovered an in-

verse relationship between turbulence intensity and the drag coefficient Cd, which is

particularly evident at angles of incidence below the critical angle αcr. Conversely,

the lift coefficient Cl exhibited a direct correlation with the turbulence intensity, in-

creasing as turbulence decreased. Moreover, the least value of the lift coefficient was

observed to shift towards lower values of incidence with less turbulence. These find-

ings suggest that both the turbulence intensity of the incoming flow and the edge

41



Figure 2.19: Lift and Drag coefficients at a range of Reynolds numbers (Adapted
from [49])

geometry of the cylinder significantly affect the resultant aerodynamic forces.

Figure 2.21 encapsulates Tamura’s findings on the impact of edge geometry on

the mean lift and drag coefficients. The study encompassed various edge geometries,

including sharp, chamfered, and rounded edges. Interestingly, cylinders with sharp

edges manifested markedly elevated drag coefficients compared to their chamfered

and rounded counterparts. Furthermore, edge geometry significantly influenced the

critical angle of incidence, with the rounded edges recording the smallest value, fol-

lowed by chamfered edges and sharp edges respectively. The intriguing aspect of

these results, highlighted in figure 2.21(b), lies in the lift force coefficient’s fluctua-

tion. It appears that rounding the edges has a profound influence on suppressing the

fluctuating hydrodynamic loading on the cylinder.
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Figure 2.20: The effect of the approaching flow turbulence level on the drag and lift
coefficients at different angles of incidence (Adapted from [126])

Figure 2.21: Cylinder edge geometry effect on the mean lift and drag coefficients at
different angles of incidence (Adapted from [126])
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2.4 The effect of externally applied periodic dis-

turbance on the flow topology

The catastrophe that befell the Tacoma Narrows Bridge first highlighted the sig-

nificant impact of vortex-induced vibrations. A surge in wind speed prompted an

increase in the vortex shedding frequency, which, unfortunately, corresponded with

the bridge’s inherent mechanical resonant frequency. This unfortunate alignment

induced amplified oscillations, culminating in the bridge’s eventual downfall. This

phenomenon exemplifies a fluid-elastic oscillation mode, a concept that was first de-

lineated by Rockwell & Naudascher in 1979 [100]. Not only do such instances present

an intrinsic hurdle for researchers, but they also establish a substantial impetus for

investigations that enhance our comprehension of the dynamics between flow and

structures. Understanding the impact of periodic flow perturbations on the flow be-

havior around bluff bodies is of particular interest. Here are some representative

examples of potential flow perturbation:

1. Velocity perturbation applied to the mean free stream.

2. Forced cross-stream oscillation of the bluff body.

3. Centrifugal oscillations for circular-like bluff bodies.

4. Acoustic resonance standing wave oscillation in longitudinal or transverse di-

rection.

5. Flow-induced oscillations.
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2.4.1 Applied velocity perturbation

Blevins (1985) [13] endeavored to comprehend the acoustic feedback loop between

the vortex shedding process and the sound field surrounding circular cylinders. A key

revelation of his research was the synchronization of the vortex shedding frequency

with the applied velocity perturbation frequency. As the perturbation frequency es-

calated, the shedding frequency maintained a consistent pace with it. Alongside, he

noticed a remarkable augmentation in the spanwise correlation of the generated vor-

tices. Additionally, Blevins observed a direct proportionality between the amplitude

of the introduced sound and the lock-in range, further elucidating the connection

between acoustic stimuli and fluid dynamics.

In a study on rectangular cylinders, Knisely et al. (1986) [58] subjected the flow

around the cylinder to streamwise velocity perturbations. Their research uncovered

a marked decrease in base pressure when even minor velocity perturbations were

applied. Flow field visualizations pinpointed this drop in base pressure to a reduced

vortex formation length, resulting from an increase in curvature of the shear layer.

Wu et al. (1993) [142] took a novel approach to studying velocity perturbations

by inducing such perturbations in a water tunnel. Their method involved adjusting

the tunnel walls at a specifically tuned frequency and amplitude. They focused on

a rectangular cylinder with an aerodynamic leading edge, aiming to understand the

effect of velocity perturbations on vortex shedding. Their findings pointed to a crucial

threshold in the freestream’s perturbation percentage, which needed to be surpassed

for lock-in between the perturbation and vortex shedding to occur. If the applied

perturbation fell below this threshold, the coherence of the vortices was markedly

reduced, demonstrating the critical role that the intensity of perturbations plays in

modulating vortex behavior.

In an innovative experiment designed to mimic the conditions of transverse acous-
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tic duct mode excitation, Parker & Welsh (1983) [94] utilized diaphragm speakers

on both sides of a wind tunnel. These speakers facilitated precise control over the

frequency and amplitude of the applied perturbations. They discovered that leading-

edge vortices of rectangular cylinders with aspect ratios between 7.6 and 16 became

synchronized with the applied frequency. Concurrently, the separated bubble mir-

rored the exact oscillation frequency. A key insight from their study was the im-

portance of shear layer reattachment: the shear layer only responded to the applied

perturbation if reattachment occurred. For shorter rectangular cylinders with an as-

pect ratio less than 3, they observed that the applied sound failed to influence vortex

shedding, underscoring the influence of geometry and aspect ratio on flow dynamics.

2.4.2 Forced oscillations

There has been substantial research aimed at mitigating flow-induced vibrations as

a means to prevent oscillation or limit its effects, thereby circumventing structural

fatigue failures. The majority of these investigations have concentrated on bluff bodies

with a circular-like geometry. However, a relatively smaller number of studies have

explored the oscillations associated with elongated rectangular cylinders, highlighting

a potential area for further exploration and research.

In investigations focused on circular cylinders, Stansby (1976) [120] delved into

changes in base pressure during forced oscillations of the cylinder in the cross-stream

direction. Remarkably, when the cylinder oscillation frequency neared the natural

frequency of vortex shedding, both frequencies were found to synchronize or lock-in,

leading to in-phase oscillations. As depicted in Figure 2.22, a significant phase shift

between the cylinder oscillation and vortex shedding emerges as the oscillation fre-

quency approximates the vortex shedding frequency. Notably, these shifts accompany

substantial alterations to the base pressure coefficient.
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Figure 2.22: (a) Shedding phase wrt to the cylinder oscillation frequency, (b) Base
pressure coefficient Cp(b) vs. the oscillation frequency of the cylinder. (a) and (b) are
at the same amplitude ratio. (Adapted from [120])

Handful of investigations studied the flow around rectangular cylinder with forced

oscillations at different aspect ratios ( Bearman & Obasaju (1982) [9]; Nakamura &

Nakashima (1986) [77]; Deniz & Staubli (1997) [25]).

Nakamura & Hirata (1989) [76] investigated aspect ratio ranging from 0.2 to 1 for

forced oscillation rectangular cylinder. As observed before, the shedding frequency

seemed to lock with the cylinder oscillation frequency when the applied frequency is

close to the shedding frequency of non-oscillating cylinder. They observed a critical

aspect ratio around 0.6. Below this value, the applied oscillation reduced the base

pressure which is the result of the reduced length in the vortex formation length. On

the other hand, the cylinders with aspect ratios above 0.6 the oscillations seemed

to enhance the shedding process by increasing the shear layer curvature, hence the
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length of vortex formation.

Deniz & Staubli (1997) [25] further expanded the research to include rectangular

cylinders of higher aspect ratios (AR=2) and high Reynolds numbers, examining the

vortex shedding response to forced oscillations. Their study revealed a synchroniza-

tion and in-phase relationship between the cylinder oscillation and the downstream

vortex shedding. To probe the reaction of leading-edge vortices, they manipulated the

oscillation to resonate with the combined vortices at the leading and trailing edges

of the cylinder. Remarkably, their experiments revealed a phase shift between the

dynamic transverse loading (evident through lift force) and the cylinder’s oscillatory

motion.

Ongoren & Rockwell (1988) [87] observed one common feature observed for the

forced oscillation of different bluff bodies is the lock-in between the vortex shedding

frequency and the frequency of the applied oscillation when this frequency is close to

the natural shedding frequency of non-oscillating bluff body. Throughout this spec-

trum of frequencies, substantial alterations in the phase correlation between vortex

shedding and the bluff body oscillations are observable. However, it’s important to

note that the emergence and characteristics of this phase shift are intimately linked

to the specifics of the downstream-facing geometry (for example trailing edge in case

of rectangular cylinder). This implies that even slight modifications to the geom-

etry can significantly influence the interactions between vortex shedding and body

motion. For bluff bodies with short streamwise length, significant alterations in the

base pressure coefficient align with this phase change, provided there is no disruption

in vortex formation from the leading edge by the body’s downstream-facing geome-

try. However, for a bluff body with a substantial streamwise length, there is, in fact,

no discernible phase shift in the vortex shedding from the leading edge, even when

the body oscillation frequency varies. This finding illustrates how the structure’s
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geometry can significantly influence the flow dynamics around it.

2.5 Flow-sound interaction mechanism in rectan-

gular cylinders

2.5.1 Sound generation by periodic flow structures

Curle (1955) [23] posited that during the flow past standard bluff bodies, acoustical

energy or sound is produced in both cross and streamwise directions named aeolian

tone. This tone is attributed to a dipole source and originates from fluctuating

hydrodynamic forces acting on the bluff body, specifically the drag and lift forces.

The cross-stream component of the dipole is dominant, as the lift force is typically

around 90% greater than the drag force. A representation of the sound radiation from

a dipole source can be seen in Figure 2.23.

Figure 2.23: Dipole source sound radiation in the far field. (Adapted from [11])
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Uffinger et al. (2008) [132] conducted an exploration into the sound radiation from

rectangular cylinders with varying leading and trailing edge designs. The findings,

illustrated in figure 2.24, suggest that the rounding of the leading edge appears to

mitigate sound radiation. Conversely, a rounded trailing edge seems to intensify the

emitted sound. A similar finding is reported in our results during acoustic resonance

excitation which will be discussed in detail in a later chapter.

Figure 2.24: Different leading and trailing edge geometries with the SPL scale.
(Adapted from [132])

Fujita (1998) [33] examined the variations in the Sound Pressure Level (SPL)

produced by a square cylinder at differing angles of incidence. Prior to reaching the

critical angle, the SPL demonstrated a downward trend, bottoming out at the critical

angle of incidence. However, after surpassing the critical angle, the SPL witnessed

a swift rise, reaching an approximate value of 50 dB, and then remained relatively

constant thereafter.
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Figure 2.25: SPL at different angles of incidence for a square cylinder (Adapted
from [33])

2.5.2 Self-excited acoustic resonance

A bluff body within an enclosure has the potential to self-excite the enclosure’s acous-

tic modes. This process is contingent on the bluff body’s position and the shedding

patterns around it ( [5], [4], [6], [69]). For instance, in a rectangular or square duct

with the bluff body positioned centrally (refer to Figure 2.26), the odd-numbered

acoustic modes are most likely to be excited. However, adequate energy from the

flow field is required to excite an acoustic standing wave. This typically happens

when the shedding pattern frequency synchronizes with the duct acoustic mode fre-

quency under appropriate phasing [23]. As the flow velocity increases, the shedding

frequency locks onto the acoustic mode until a ”lock-out” point is reached, where the

shedding reverts back to the Strouhal periodicity. Further lock-in events may occur

at higher velocities.
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Figure 2.26: Rectangular cylinder positioned at the anti-node of odd-numbered trans-
verse acoustic modes within a duct along with the pressure distribution associated
with the first pair of these modes (This figure is not to scale).

2.5.3 Rectangular cylinders under acoustic resonant condi-

tions

Parker (1966) [92] investigated the mechanism of self-excited acoustic resonance for

rectangular cylinders placed in a staggered cascade arrangement (see figure 2.27)

at different flow velocities. He found that the excitation is a result of a frequency

coincidence between the duct transverse mode and the natural shedding frequency

with a wavelength multiple of the gap between the cylinders.
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Figure 2.27: Schematic of the arrangement of the plates in cross flow (Adapted
from [92])

Welsh & Gibson (1979) [140] offers significant insights into the interaction be-

tween fluid flow and acoustics for rectangular cylinders with an aspect ratio of 5,

placed within a high-speed wind tunnel. They observed two distinct mechanisms of

excitation. The first excitation occurred at the frequency where the progressing shed-

ding coincided with the acoustic transverse mode. Meanwhile, a second phenomenon,

referred to as ’excited vortex shedding’, occurred at an undetectable frequency but

resulted in a sudden and noticeable excitation (refer to Figure 2.28). However, the

specifics of this excited vortex shedding pattern, as well as the reasons behind its

occurrence, remained unexplained due to the limitations in the flow visualization

techniques available at the time. Later, Nakamura et al. [79] suggested that this

early excitation is a result of the excitation of the intrinsic shear layer instability.

This is further evident from Shabaan & Mohany (2022) [114] as we can see the early

and natural coincidence excitation for a rectangular cylinder of aspect ratio of 2 (see

figure 2.29).
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Figure 2.28: Vortex shedding frequency at different flow velocity with the natural
and excited modes coincidence with acoustic transverse modes (Parker′sβ −mode).
(Adapted from [140])

Figure 2.29: Vorticity field at the peak of acoustic resonance excitation of the same
transverse acoustic mode (Parker′sβ−mode) at two different flow velocities showing
the two shedding patterns for a rectangular cylidner with AR = 2 (Adapted from
[114])

In their compelling research, Welsh et al. (1984) [94] highlighted two primary
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findings relating to the excitation of resonance in sharp and rounded (semi-circular)

leading edges. They discovered that a sharp edge could stimulate resonance over two

frequency ranges due to the interaction between separation from the leading edge

and the feedback acoustic pressure signal from the trailing edge. Conversely, rounded

leading edges were found to generate resonances over only a single range, as shedding

occurred solely from the trailing edge. These findings are expanded upon in Section 3,

which offers an extensive analysis of how varying edge rounding impacts flow-acoustic

coupling.

Stoneman et al. (1988) [122] studied two rectangular cylinder in tandem arrange-

ment at different spacing ratios. They found that having a cylinder downstream can

lead to the suppression of the resonance excitation found for a single cylinder. How-

ever, excitation at new flow velocities was found to take place. Interestingly, they

found that the ratio between the the cross-stream length of the upstream cylinder

and the spacing between the cylinders directly affects the SPL at peak of acoustic

resonance with local minimums and maximums as this ratio increase which is clear

in figure 2.30
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Figure 2.30: SPL at peak of acoustic resonance excitation at different cross-stream
length to spacing ratio (Adapted from [122])

2.6 Summary and thesis scope

This in-depth literature review illuminates the progress made over the past decades

in understanding the mechanisms of flow-structure and flow-sound interactions for

rectangular cylinders with varying configurations. Despite these advances, a compre-

hensive study focused on the flow-sound interaction mechanism of moderately long

rectangular cylinders has not been given due attention.

This thesis, therefore, concentrates on rectangular cylinders with relatively small

aspect ratios, specifically choosing an aspect ratio of 2 for an extensive investigation

into the mechanisms of flow-sound interactions and flow behavior under non-resonant

conditions. This investigation includes variations in flow incidence angle and edge

geometry. To unravel these interactions, a series of detailed experiments has been

conducted involving acoustic measurements, flow visualization utilizing a Particle
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Image Velocimetry (PIV), and direct measurement of the hydrodynamic loading on

the cylinder with the aid of piezoelectric force transducers. The subsequent sections

will delineate the findings from our in-depth study, culminating in a conclusion that

summarizes the key insights gained from this research. The scope of this thesis thereby

contributes significantly to the understanding of fluid-structure-sound interactions,

specifically for rectangular cylinders with smaller aspect ratios at varying geometrical

configurations.
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Chapter 3

Characteristics of the flow-induced

noise from rectangular rods with

different aspect ratios and edge

geometry

Cited as: A. Shoukry and A. Mohany, Characteristics of the flow-induced noise from

rect- angular rods with different aspect ratios and edge geometry. Journal of Fluids

and Structures (2023) 103959,https://doi.org/10.1016/j.jfluidstructs.2023.103959

3.1 Introduction

Flow-acoustic coupling is found to be disastrous in different engineering applications

due to the generation of severe noise and intolerable vibration levels, which could

lead to fatigue failure of structures or irreversible damage. Some examples of such

applications that encounter flow-acoustic coupling are tube arrays in heat exchangers

58



( [139], [124], [30]), cavity flows ( [1], [80]), side branches in piping systems [146],

and control valves [145]. Self-Excited acoustic resonance is triggered by the flow

instabilities when their frequencies coincide with an acoustic mode in the system and

the flow energy is enough to overcome the acoustic damping. During this process,

energy exchange takes place between the acoustic and the flow fields organizing the

flow instability which in turn generates severe noise. The flow-sound interaction

mechanism for cylindrical structures in cross-flow has received considerable attention

in the literature. However, flow acoustic coupling from rectangular rods in cross-flow

didn’t receive much attention, even though they are widely used in different industrial

applications. The flow separation and reattachment around rectangular rods in cross-

flow is fundamentally different than that around circular cylinders. Additionally, the

shape of the corners in rectangular rods (i.e. sharp, chamfered, or round corners)

is bound to have an effect on the flow separation mechanism and its coupling with

an acoustic mode. Therefore, the main objective of this chapter is to investigate the

flow-excited acoustic resonance from rectangular rods with different aspect ratios and

edge geometry and its effect on the dynamic lift forces and wake structure.

For studies done outside of acoustic resonance excitation, Ohya (1994) [83] found

that the shear layer behaviour is dependent on the rod aspect ratio. Hence, signifi-

cant changes in the rod base pressure was observed when different aspect ratios were

tested. Van Oudheudsen et al. (2005) [134] reported that the wake topology, Strouhal

periodicity and aerodynamic forces are significantly dependent on the rod aspect ratio

and the flow incident angle. Nakamura et al. (1996) [78] studied the wake charac-

teristics of rectangular rods with different aspect ratios at low Reynolds numbers.

They found that for the investigated aspect ratios, at Reynolds number around 250,

the vortex shedding street switches from two shear layers separating from the leading

edges, namely Karman vortex street into a single separated shear layer street, namely
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impinging shear layer instability. Dobre (2004) [26] experimentally studied the wake

of square rods at high Reynolds number and reported that the wake flow structures

exhibit similarities with that observed downstream of circular cylinders and indent

flat plates. Gonc alves da Silva Pinto and Margnat (2020) [36] investigated the noise

generated for different geometries and reported that globally for all tested geome-

tries, increasing the aspect ratio (the length in the flow direction against the height

perpendicular to the flow direction) will always decrease the generated noise.

For studies performed on the effect of rounding the edges of rectangular rods,

Tamura & Miyagi (1999) [126] found that edge rounding have a favourable effect in

terms of reducing the fluctuating lift and drag forces due to substantial changes in

the flow topology and wake dynamics. Carassale et al. (2014) [16] experimentally

studied the effect of corners rounding in square rods. A substantial reduction in the

aerodynamic forces was observed. Also, the rounding yielded a lower critical angle

of incidence which is defined as the angle at which the flow reattaches on the lateral

faces. Several studies later confirmed these findings ( [133], [31], [24]). Esfeh et al.

(2021) [31] found that increasing the edge rounding of a square rod results in a higher

Strouhal number and lower drag and lift fluctuations. This was attributed to the

disruption of the organized vortex shedding due to delayed separation. However, all

of these investigations were performed on rectangular rods with sharp or rounded

corners in the absence of acoustic resonance excitation.

The flow structures in the wake of rectangular rods suggest that this bluff body

is susceptible to fluid-resonant mechanisms. Shaaban & Mohany (2022) [114] stud-

ied the flow characteristics and the aeroacoustic response of rectangular rods with

different aspect ratios. They found that there is a minimum rod length in the flow

direction that causes an early excitation of higher acoustic modes. So, the aspect

ratio of l/h = 2 was chosen in this study to be comprehensively investigated and
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compared with aspect ratios of l/h = 0.5 and 1 since the former case was reported

to early self-excite higher duct acoustic modes at frequencies far from the typical

vortex shedding frequency. Early here means that the excitation took place at a

frequency that does not coincide with the dominant shedding mode frequency but

rather it coincides with another undetectable instability frequency. Shaaban & Mo-

hany (2022) [114] suggested that the early excitation of the third acoustic duct mode

is due to the existence of a shear layer instability periodicity which requires a mini-

mum rod length in the direction of the flow to materialize. This instability was not

detectable in the acoustic pressure spectrum outside of resonance because the vortex

shedding was dominant and masked out the shear layer instability.

The work presented in this chapter is an extension of the work presented at the

FIV 2022 conference [116] to investigate the role of the shear layer instability from

rectangular rods on the early excitation of higher order acoustic modes. One of the

objectives of this study is to investigate the shear layer instability by modifying the rod

leading and trailing edges to understand the shear layer separation and impingement

mechanism and its coupling with resonant acoustic modes. Such knowledge will clarify

the source(s) that triggers the early excitation of higher acoustic modes, which, in

turn will improve our understanding of the flow-sound interaction mechanism for the

case of rectangular rods in cross-flow. Ultimately, this will provide a design safeguard

for applications employing rectangular rods subjected to high cross-flow velocities.

3.2 Experimental Setup

The experiments were conducted in an open-loop wind tunnel at the Fluid-Structure

Interaction and Noise Control Laboratory at Ontario Tech University, Oshawa, Canada.

The test section is 762 mm long with a diffuser section connected to an acrylic test
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section with a height of H = 254mm and a width of W = 127mm. The maximum

turbulence intensity was measured along the full range of velocities and was found to

be less than 0.8%.

Six different cases of rectangular rods were investigated. Table 3.1 shows the in-

vestigated cases with their dimensions. The aspect ratio is equal to A.R= l/h. Where

l is the rod length in the direction of the flow and h is the rod length perpendicular to

the flow direction. The tested cases are, all-sharp edges, the two-upstream rounded

edges, the two-downstream rounded edges, and all-rounded edges. All the rounds

have the same dimension of r/l = 1/8. This rounding ratio was chosen based on the

available information in the literature as this rounding ratio had an influence on the

separation point and caused a reduction of the hydrodynamic forces rounded2014.

Figure 3.1 shows a schematic of all the tested cases. To ensure flow uniformity in the

spanwise direction, pressure measurements were performed along the span of a rod

at 11 different points over a wide range of Reynolds numbers. The results showed

that the maximum spanwise variation in the mean base pressure coefficient is within

the experimental uncertainty of the measurements. All the tested cases were placed

at a distance of 381 mm from the parabolic bell mouth entrance. At that location,

hot-wire measurements revealed that the flow uniformity in the transverse direction

has a maximum deviation of 1% from the free stream-stream velocity. To eliminate

any vibration transmission to the test section from the blower, a flexible connection is

used to connect them. The experiments were carried out in a monitored environment

at a temperature of 25° and 50% humidity which is frequently monitored using an

indoor climate sensor.
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Table 3.1: The six investigated cases with the dimensions in inches

Case l h r/l
(a) Square 0.5 0.5 NA

(b) Bluff rectangle 0.5 1 NA
(c) all-sharp edges rectangle 1 0.5 1/8

(d) upstream-rounded edges rectangle 1 0.5 1/8
(e) downstream-rounded edges rectangle 1 0.5 1/8

(f) all-rounded edges rectangle 1 0.5 1/8

(a)

All-sharp
edges Rectangle

(b)

Two-upstream 
rounded edges

(c)

Two-downstream 
rounded edges

(d)

All-rounded
edges

l

h

r/l= 1/8

U∞

(e) (f)

Square Bluff
Rod

Figure 3.1: Schematic of the six investigated cases
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Figure 3.2: (a) Schematic of the particle image velocimetry setup. (b) Dynamic lift
force measurements setup
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3.2.1 Aeroacoustic measurements

Acoustic pressure was recorded for the full velocity sweep (20 m/s to 120 m/s with a

2.76 m/s step) for each case. The periodic flow structures in the wake of the rod pro-

duce pressure fluctuations normal to the rod axis. So, only transverse acoustic modes

with acoustic particle velocity antinodes at the rod can be excited (e.g. 1st, 3rd, 5th,

etc.). In the current study, the first and the third acoustic modes were excited by dif-

ferent shedding modes. Flush-mounted pressure microphone (6.35 mm) on the wind

tunnel top wall is used to record the pressure signal generated by the unsteady sep-

arated flow in the transverse direction. The microphone is placed exactly above the

centre of the rod. The pressure signal was recorded for 120 s at a sampling frequency

of 20 kHz. Welch’s modified periodogram method is used to analyze the pressure

signal to get the frequency spectrum (FFT) with a 50% overlap and resolution of

1 Hz. A band-pass filter is applied with a range of ±50 Hz around the dominant

frequency peak to extract the pressure value. The root means square value of the

filtered pressure signal (Prms) is obtained. The theoretical value of the first and the

third acoustic cross-mode is calculated using the following equation:

fa(1) =
c

2H
(3.1)

fa(3) =
3c

2H
(3.2)

3.2.2 Dynamic lift force measurements

Two piezoelectric force sensors (PCB Model No. 208C01) were utilized for the force

measurements one on each side of the cylinder mounted outside of the test section.

The force sensor’s nominal sensitivity is 112.4 mV/N. To prevent any vibration trans-

mission from the test section to the sensors, the sensors were mounted on a custom-
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made steel base which is isolated from the wind tunnel and rubber footing was used

to mitigate ground vibration transmission to the sensors. The rods pass through a

1.5 mm gap in the wind tunnel windows. A special sealing technique was developed

to prevent any air leakage and eliminate the gap effect inside the wind tunnel. From

inside the wind tunnel, the gap was covered by a 0.254 mm plastic ring with lubricant

between the ring and the tunnel wall to minimize any vibration translation. From

outside the wind tunnel, an ultra-thin sheet is used to cover the gap from outside and

was tapped into the rod and the tunnel wall. The center-to-center distance between

the two sensors was tuned to achieve the maximum mechanical resonant frequency

possible. Some cases resulted in high frequencies of the Strouhal periodicity which

were close to the mechanical resonance frequency of the force transducer setup. These

data were excluded from the measurements. A schematic of the force setup and the

PIV system is shown in figure 3.2. A sample of the force sensors time signal is shown

in figure 3.3 for the sharp corners case. The force-time signal for both sensors has

nearly the same phase and amplitude. The same trend was observed for all the in-

vestigated cases. A double peak is clear in the total signal which was observed in

previous studies performed on rectangular rods( [143], [15]). This comes from the

fact that the body is sufficiently long to allow vortex interaction between the leading

and the trailing edges. The first peak is due to the shear layer separation from the

leading edge generating a recirculating region near the rod walls that causes a nega-

tive pressure and increases the hydrodynamic loading on the rod. The second peak

is present due to the shear layer minor interaction with the trailing edge. The root

mean square of the lift force was calculated as follows:

C ′
l =

FL(RMS)

0.5ρU2A
(3.3)
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Figure 3.3: Raw signal measured from the force sensors for aspect ratio l/h = 2
all-sharp edges case at U = 31m/s.

Where FL(RMS) is the root mean square value of the dynamic lift force, C ′
l is the root

mean square value of the dynamic lift coefficient, ρ is the air density, U is the flow

velocity, and A is the projected area of the rod in the lift force direction.

3.2.3 Particle-image velocimetry (PIV) measurements

PIV measurements were conducted using LaVision PIV system. PIV measurements

were performed for 4 selected cases at selective flow velocities outside and during self-

excited acoustic resonance. The laser sheet is located at the x-y mid-plane. Double-

head 532 nm ND:YAG laser is used on a double pulse mode at 15 Hz with a peak power

output of 200 mJ. To seed the camera field of view atomized Di-Ethyl-Hexyl-Sebacat

is used. The maximum particle size is 2 µm. To minimize the optical shadow and

facilitate comprehensive visualization of the entire flow field, rectangular rods that are

precisely machined from optical-grade acrylic are used. This material ensures light

transmission and minimal distortion, thereby enhancing the clarity and accuracy of

the captured flow field. 12- bit camera is used on a double frame mode to acquire
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the images with a maximum resolution of 2752x2000 pixels. For measurements at

off-resonance conditions, the signal from the flush-mounted microphone was used as

the input signal for the laser trigger. Since the maximum trigger frequency is far

lower than the duct acoustic modes, the trigger captures the images on different

shedding cycles. Therefore, the shedding cycle is constructed using POD analysis

employing 1200 images. During self-excited acoustic resonance, the feedback cycle

and the energy transfer between the sound and the flow fields makes the shedding

mode more correlated and thus phase-locked PIV measurements are performed (

[113], [51], [2], [114], [3]). The camera and the laser are synchronized on a double

frame mode at which the camera captures pairs of images having the same phase on

the acoustic pressure cycle. The acoustic pressure cycle is divided into eight phases.

So, the camera captures 250 instantaneous pair of images every 45 degrees on the

acoustic pressure cycle. The maximum particle displacement is captured within ¼ of

the interrogation window used for vector calculation. This is achieved by tuning the

time between the pulses. During the post-processing, any shadows or reflections was

excluded from the field of view. For the first step, one pass was performed at an

initial interrogation window size of 64 × 64 pixels with a 50% overlap. For the 2nd

and final steps, four passes were performed at a final interrogation window size of 24

× 24 pixels with a 50% overlap.

3.3 Results and discussion

3.3.1 Aeroacoustic response

In this section, the aeroacoustic response of the six investigated cases is discussed to

define the different shedding modes interacting with the acoustic field. Figure 3.4

represents the aeroacoustic response of the six investigated cases as a waterfall plot
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to be able to visualize the progression of the different Strouhal periodicity and their

coupling with the different acoustic duct modes. Figure 3.4(a) corresponds to a rod

with an aspect ratio of l/h = 1, the progression of the vortex shedding is clear with

Stl ≈ 0.14. Lock-in starts to take place exciting the first acoustic mode of the duct at

U = 57 m/s. The acoustic pressure reaches a peak value of Prms = 396 Pa at U = 60

m/s. This pressure level is noticeably lower compared to the acoustic pressure gener-

ated during resonance excitation from a circular cylinder of an equivalent hydraulic

diameter mohnayforce. This considerable discrepancy may largely be due to a fun-

damental divergence between circular and rectangular cylinders, underscored by the

rectangular rod’s four distinct separation points situated at its edges, leading to pla-

nar wall surfaces between adjacent edges. As a result, the complexity of the wake flow

increases due to the emergence of two dominant separation regions within the shear

layer: leading edge (LE) separation and trailing edge (TE) separation. Figure 3.4(b)

corresponds to a rod with an aspect ratio of l/h = 0.5. Vortex shedding is progress-

ing with distinctive peaks at Stl ≈ 0.06. Only the first acoustic mode was excited at

the vortex shedding frequency coincidence with the first acoustic mode at U = 115

m/s generating acoustic pressure that reached a maximum value of Prms = 4209 Pa

at U = 128 m/s. Peaks appear at twice the frequency of the initial acoustic mode,

reflecting the harmonic of this mode. It can be observed that there is a direct relation

between the aspect ratio and the Strouhal number based on the rod length. This is

attributed to the change in the flow structures in terms of the shear layer separation

and roll-up in the wake and the recirculation zone topology around the rod which

substantially changes when the aspect ratio changes. The Strouhal values for these 3

cases are in good agreement with the values reported in the literature ( [57], [9], [94]).

For the cases with aspect ratio of l/h = 2, figure 3.4(c) corresponds to the case

with all-sharp edges. The progression of the vortex shedding is clear with Stl ≈ 0.18
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which is in good agreement with the values reported in the literature for the same

aspect ratio ( [143], [15], [53], [110]). At U∞ = 70 m/s, the third acoustic duct mode

was suddenly excited and lock-in took place. The Strouhal number which coincides

with the third mode excitation is Stl ≈ 0.54. Nevertheless, this Strouhal periodicity

was undetectable before the third mode excitation. The acoustic pressure reaches a

peak value of Prms = 2494 Pa at U∞ = 110 m/s. Figure 3.4(d) corresponds to the

case with the upstream-rounded edges. The shedding periodicity is far different from

the first case as this case exhibits Stl ≈ 0.5. Interestingly, this Strouhal periodicity

matches the Strouhal periodicity for the first case at which the third acoustic duct

mode was excited. The first acoustic duct mode was excited at the typical frequency

of coincidence reaching a peak pressure value Prms = 50 Pa at U∞ = 34 m/s. The

peak pressure for this excitation is relatively low since the Strouhal number is high

and the lock-in takes place at a low flow velocity. As a result, the flow doesn’t have

enough energy to couple with the sound field and generate high acoustic pressures. At

U∞ = 91 m/s lock-in to the third acoustic mode materialized. Reaching a maximum

acoustic pressure value of Prms = 882 Pa at U∞ = 102 m/s. Figure 3.4(e) corresponds

to the case with the downstream-rounded edges. The response of this case was quite

similar to the all-sharp edges case in terms of the excitation and Strouhal periodicity.

Clear vortex shedding progression is observed with Stl ≈ 0.16. Third acoustic duct

mode is excited reaching a maximum acoustic pressure value of Prms = 2094 Pa at

U∞ = 110 m/s. Figure 3.4(f) corresponds to the case with the all-rounded edges. The

response of this case has the same behaviour as the upstream-rounded edges case with

a Strouhal periodicity of Stl ≈ 0.52.The first acoustic duct mode was excited at the

frequency coincidence with the Strouhal periodicity of 0.52. Acoustic pressure reached

a peak pressure value of Prms = 125 Pa at U∞ = 34.5 m/s. Afterward, the shedding

mode locked-out of the first acoustic duct mode and progressed till it locked-in with
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the third acoustic duct mode reaching a maximum acoustic pressure of Prms = 2293

Pa at U∞ = 92.5 m/s.

Table 3.2 shows the normalized acoustic pressure at the peak of acoustic resonance

for all the tested cases for the two self-excited acoustic modes. The normalized peak

acoustic pressure indicates how strong the acoustic resonance is. The normalized

acoustic pressure is given as follows:

P ∗ =
2Prms

ρU2
(3.4)

Also, (UMax−UMin/UMax) is presented which is a normalized factor that demonstrates

the lock-in range for each case. These two factors give a more in-depth understanding

of the self-excitation strength and the intrinsic ability of the downstream flow struc-

tures to self-sustain acoustic resonance. For the first mode excitation, all the cases

recorded nearly the same P ∗ = 0.17 ≈ 0.19. However, the two-upstream rounded

edges cases reached a low value of 0.06. This is due to the relatively low flow velocity

at which lock-in take place. Also, the case C which is equivalent to AR= 0.5 reached

the highest value of 0.41. This relatively high value is suggested to be associated with

the more distant separation edges which creates larger recirculation region width in

the cross-stream direction. Such wake flow structure allows a larger vortex cores to

form which become more correlated and stronger during acoustic resonance excita-

tion. For the third mode excitation, only the cases of AR=2 with different edges

rounding excited the third mode either at the frequency of coincidence with the pe-

riodic flow structures or early excitation. Comparing all the cases to the sharp edges

case, the upstream rounded edges case showed a significantly greater reduction in

the P ∗ value compared to the downstream edges case. On the other hand, the case

which involved rounding of all edges recorded a higher P ∗ value. This means that

70



there is a combined effect for rounding the upstream and downstream edges which

have a positive effect on the flow-sound interaction mechanism. For AR=2, the two

cases which involved sharp edges and downstream edges rounding showed a relatively

wider lock-in range for the third acoustic mode compared to the other two cases of

the same AR. Such finding emphasizes on the fact that upstream edges rounding have

a limiting effect on the lock-in range.
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Table 3.2: The normalized acoustic pressure P ∗ and the lock-in range Ures/UMax for all the tested cases

Case P ∗(1stMode) ∆ Ures/UMax(1
stMode) P ∗(3rdMode) ∆ Ures/UMax(3

rdMode)
(a) Square 0.17 0.08 NA NA

(b) Bluff rectangle 0.41 1.12 NA NA
(c) all-sharp edges rectangle NA NA 0.33 0.47

(d) upstream-rounded edges rectangle 0.06 0.11 0.13 0.16
(e) downstream-rounded edges rectangle 0.19 0.06 0.26 0.43

(f) all-rounded edges rectangle 0.18 0.18 0.43 0.32
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The aeroacoustic response suggests that the early third mode excitation does

not materialize unless the rod length in the direction of the flow is above a certain

threshold. Also, the upstream rounding has a substantial effect on pronouncing a

completely different shedding mode in the wake with a Strouhal number similar to

that observed for the shear layer instability reported in the literature for flow over

cavities ( [80], [86]). Moreover, this case showed a considerable reduction in the

peak acoustic pressure during the third acoustic duct mode excitation compared with

all-sharp edges case. For the downstream edge rounding, no observable differences

were seen in terms of the peak acoustic pressure during resonance or the Strouhal

periodicity compared to the case with all-sharp edges.

3.3.2 Dynamic lift force measurements

To quantify the hydrodynamic loading on the rods outside and during self-excited

acoustic resonance, direct lift force measurements are conducted simultaneously with

the acoustic pressure measurements to further understand the effect of edge rounding

on the hydrodynamic loading and to study the effect of different shedding modes

coupling with the duct transverse acoustic modes and their effect on the forces in the

transverse direction. Also, measuring the hydrodynamic loading on the rod gives a

fruitful insight into any potential changes in the shedding modes and wake structure.

Figure 3.5 shows the r.m.s. of the lift force coefficient C ′
l with the dominant shedding

frequency superimposed on the secondary axis in order to identify the lock-in regions.

It is important to note that all the peaks of the lift coefficient coincided with the

acoustic pressure peak which set forth that there is a minimum acoustic energy losses

along the acoustic pressure cycle. Also, the discontinuity in some of the C ′
l figures is

because these points were close to the setup mechanical resonant frequency and thus,

they were eliminated.
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Figure 3.4: Acoustic pressure spectra for;(a) Square (b) Bluff rectangle (c) all-
sharp edges rectangle, (d) two-upstream rounded edges rectangle, (e) two-downstream
rounded edges rectangle, and (f) all-rounded edges rectangle.

Figure 3.5(a) corresponds to a rod with an aspect ratio of l/h = 1. The C ′
l starts

at around 0.62 and peaks to 0.75 and then drops again to 0.6. Such behavior was

reported by Carassale et al. (2014) rounded2014 for the same range of Reynolds

numbers referring to this behavior as a switch from subcritical to critical Reynolds

number range. During the excitation of the first acoustic mode, the C ′
l reached a

maximum value of 0.82. Such rise is not significant compared to the off-resonance

value. This is a result of the weak excitation in terms of the acoustic pressure. Figure

3.5(b) corresponds to a rod with an aspect ratio of l/h = 0.5. Before the onset of

74



resonance excitation, the C ′
l exhibited the same trend as that for the aspect ratio

of l/h = 1 peaking to a value of 1.7 and then dropping to a value of around 0.8.

During the onset of the first acoustic mode excitation, the fluctuating lift coefficient

reached a value of 3.2. Such value is 4 times higher than the value before the onset

of acoustic resonance. This behaviour matches the same escalation ratio observed

for a circular cylinder during acoustic resonance, as reported by Mohany & Ziada

(2009) mohnayforce. Figure 3.5(c) corresponds to the all-sharp edges case. The C ′
l

starts hovering around 0.8 and then peaks to value around 1.2. A sudden decrease

in the lift coefficient was observed as soon as early third-mode excitation took place

and started to increase again reaching a peak value of 0.61 at the point of peak

acoustic pressure. The main shedding mode was progressing before resonance at a

Strouhal number Stl ≈ 0.18 and the Strouhal number at which the third mode was

early excited is calculated and is equal to Stl ≈ 0.54. Figure 3.5(d) corresponds to

the upstream-rounded edges case. The C ′
l started with a value around 0.1. The first

acoustic duct mode was excited at the frequency of coincidence between the shedding

mode and the first acoustic mode frequency and the value of the C ′
l peaked to 0.3

which is three times the value before the onset of resonance. Afterward, the third

acoustic duct mode was excited at the frequency of coincidence between the shedding

mode and the third acoustic mode frequency, and the value of the C ′
l peaked to 0.17.

The main shedding mode was progressing before resonance at a Strouhal number

Stl ≈ 0.5. Figure 3.5(e) corresponds to the downstream-rounded edges case. The

C ′
l fluctuates around 0.6. A sudden decrease in the lift coefficient was observed as

soon as early third mode excitation took place similar to the sharp-edges case and

started to increase again reaching a peak value of 0.19. The main shedding mode

was progressing before resonance at a Strouhal number Stl ≈ 0.16 and the Strouhal

number at which third mode was early excited is calculated and is equal to Stl ≈ 0.51.
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Figure 3.5(f) corresponds to the all-rounded edges case. The C ′
l started with a value

around 0.1. The first acoustic duct mode was excited at the frequency of coincidence

between the shedding mode and the first acoustic mode frequency and the value of

the C ′
l peaked to 0.49. Afterward, the third acoustic duct mode was excited at the

frequency of coincidence between the shedding mode and the third acoustic mode

frequency and the value of the C ′
l peaked to 0.29. The main shedding mode was

progressing before resonance at a Strouhal number Stl ≈ 0.52. Same as what was

observed with the aeroacoustic response, cases (a) and (c) are similar and cases (b)

and (d) are similar. During early third-mode excitation, the hydrodynamic loading

is observed to have a substantially lower value compared to its value before the onset

of early excitation. On the other hand, the hydrodynamic loading seemed to increase

during first and third mode coincidence excitation compared to the values before

the onset of resonance. Table 3.3 delineates the ratio between the C ′
l at the peak

of the two acoustic modes which were excited either early excited or excited at the

coincidence and the average value outside of acoustic resonance. It is clear that for

early excitation cases the ratio is less than one which means less hydrodynamic loading

during resonance while for coincidence excitation cases the values are far more than

one which means much higher hydrodynamic loading on the rod. This indicates that

the early excitation of the 3rd acoustic mode shown in figure 3.5(c, e) causes a sudden

change in the wake structure around the rectangular rod.

3.3.3 Dynamic lift force decomposition

In order to self-excite acoustic resonance, the flow field shedding mode has to coincide

with a duct resonant mode frequency. Also, the fluid intrinsically has to possess

enough energy to excite this resonant mode since the self-excited acoustic resonance

materializes based on energy exchange between the acoustic and flow fields. The flow
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Figure 3.5: RMS of the the fluctuating lift coefficient (C ′
l) vs free stream velocity

(U∞) with the acoustic pressure dominant frequency superimposed on the secondary
axis : (a) Square (b) Bluff rectangle (c) all-sharp edges rectangle, (d) two-upstream
rounded edges rectangle, (e) two-downstream rounded edges rectangle, and (f) all-
rounded edges rectangle.
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Table 3.3: The ratio between the C ′
l at the peak of the two acoustic modes which

were excited either early or at the coincidence frequency and the average value outside
of acoustic resonance.(1C) denotes first acoustic mode excitation at coincidence fre-
quency; (3C) denotes third acoustic mode excitation at coincidence frequency; (3E)
denotes early third acoustic mode excitation.

Case C ′
l(Average)/C

′
l(1C) C ′

l(Average)/C
′
l(3C) C ′

l(Average)/C
′
l(3E)

(a) All edges sharp N/A N/A 0.75
(b) upstream rounded edges 2.63 1.7 N/A

(c) downstream rounded edges 1.91 N/A 0.33
(d) All edges rounded 4.45 2.63 N/A

field provides the energy needed to induce a dipole source vibrating in the transverse

direction producing a high sound pressure level. This sound generated acts as an

organizer to the flow field pronouncing more correlated and strong vortices. As shown

in Figure 3.5, during acoustic resonance excitation, the hydrodynamic loading on the

rod drastically changes which means that the sound field has a direct influence on the

hydrodynamic loading on the cylinder. So, it is instructive to decompose the lift force

to its out-of-phase and in-phase components to further understand the interaction

between the flow and sound fields.

Since there is a distinct peak in the pressure spectrum which resembles the main

shedding mode frequency fShedding, we can express the generated acoustic pressure as

follows

p(t) = Pmax sin (2πfSheddingt) (3.5)

From Figure3.3, we can assume that the dynamic lift force exerted on the rod is

sinusoidal at the dominant shedding frequency fShedding. So, the dynamic lift force

per unit length as a function of time is given as follows

FL(t) =
ρU2

∞
2

c′l sin (2πfSheddingt+ φ) (3.6)
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Where c′l is the dynamic lift force coefficient, and φ is the angle between the dynamic

lift force and the acoustic pressure. It is important to note that the phase angle is

extracted for the acoustic pressure and lift force signal at the peak frequency fShedding.

Lighthill(1952) [62] stated that the sound observed from an unbounded flow de-

pends on the stress fluctuations within the source region. The Navier-Stokes equation

was rearranged in analogy to the aeroacoustics in an ideal flow. The fluctuations in

the fluid density ρ is formulated as follows

∂2ρ

∂t2
− c20∇2ρ =

∂2

∂xi∂xi
(Tij) (3.7)

Where Tij is the stress tensor including the turbulent, compressive and viscous stresses.

c20 is the speed of sound in the medium based on the fluid properties. At relatively

low Mach numbers, the flow generates noise, this noise is modeled as a dipole source

which resembles the hydrodynamic fluctuating forces that act on the fluid by the

boundaries [23].

The difference between the fluid density ρo at the free stream and fluid density ρ

at a specific point which is away from the sound source by a distance y is as follows

ρ− ρ0 =
1

4πc20

yi
y2

∂

∂t
Fi(t) (3.8)

Where Fi(t) is the force acting on the fluid by the boundary in the time domain.

So, as per Eqs.(3.5) and (3.6) we can decompose the dynamic lift force coefficient

into in-phase orthognal and out-of-phase components:

cl(t) = [c′l cos(φ)] sin (2πfSheddingt) + [c′l sin(φ)] cos (2πfSheddingt)

= cmh sin (2πfSheddingt)− cdh cos (2πfSheddingt)

(3.9)
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Analogous to the flow-induced vibration, the acoustic particle velocity is equivalent

to the displacement of the rod [108]. So, the added negative sign in Eq.3.9 takes into

consideration the fact that the acoustic particle velocity vector which is responsible

for the energy transfer is out of phase with the acoustic pressure vector. The in-phase

cmh and out-of-phase cdh components are expressed as follows

cmh = c′l cos(φ) (3.10)

cdh = −c′l sin(φ) (3.11)

The in-phase component cmh is analogous to an added mass effect which resembles

the bulk motion of the acoustic field with the flow momentum. The increase in the

cmh value means that the resonant oscillation frequency is expected to be lower. On

the other hand, the out-of-phase component cdh is analogous to an added damping

effect in which a positive value means that the periodic shedding mode in the wake

as a result of the fluid interaction with the rod is not contributing to sustaining the

acoustic resonance, while if the value is negative this means the shedding instability

is becoming more organized, hence result in a more strong acoustic resonance which

is translated to higher sound pressure levels.

Figure 3.6 shows the in-phase cmh and out-of-phase cdh components of the dynamic

lift coefficient for all the studied cases. The first column shows the in-phase cmh

component. It is clear that for the case of all-edges are sharp and the case of the

two-downstream edges rounded that there is a severe dip in the in-phase component

during the early third mode excitation. However, the two downstream edges rounded

case showed a significant increase in the in-phase component during the first mode

excitation. Even though, there is a significant sudden dip at the onset of the third

mode, the in-phase component still showed a progressively increasing trend during the
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third mode excitation which means that the added mass effect is still present during

resonance. This is expected as from Figure 3.5 we can see a severe dip also in the

value of the dynamic lift force coefficient during the early third mode excitation while

it significantly peaks during the first mode excitation. Such behavior suggests that

the shedding mode which early excites the third mode is completely different than

the one which excites the first mode. For the two upstream rounded edges and the

all-edges rounded case, we can see a significant increase in the in-phase component

during the first and third acoustic mode excitation. This aligns with the excitation

frequency for both modes which is slightly lower than the duct mode theoretical

frequency which means that we have a positive added inertia effect during acoustic

resonance. It is important to note that the peak value of the in-phase component

for the two upstream edges rounded case is nearly half the peak value for all edges

rounded case which is the same reduction ratio observed for the peaks of the acoustic

pressure.

The second column shows the out-of-phase cdh component of the dynamic lift

force coefficient for all the studied cases. It is clear that for the case of all-edges sharp

and the case of the two-downstream edges rounded that the out-of-phase component

decrease to a negative value during early third mode excitation. This means that

the flow instability is becoming stronger to sustain the acoustic resonance pressure

cycle. Also, such observation suggests that the third acoustic mode acts as an external

forcing source which is continuously exchanging energy with the flow field targeting

the undetectable shear layer instability shedding mode and as soon as this shedding

mode frequency coincides with the third acoustic mode frequency, acoustic resonance

materialize. For the two upstream-edges rounded and the all-edges rounded cases,

the out-of-phase component either increased and became positive or hovered around

zero during the first and third mode excitation. Referring to figure 3.4, we can see
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that the lock-in range for these two cases compared to the other two is significantly

narrower. Similar behavior was observed for the upstream cylinder for two or more

inline cylinders ( [112], [71]). It is reported that such an increase in the out-of-phase

component means that there is a positive added damping effect due to the vortex

impingement on the downstream cylinders causing flow distortion in the gap. For

these two cases, the Strouhal periodicity observed from the aeroacoustic response

in Figure 3.4 is within the shear layer instability range. So, the analogy here is

that the shear layer separates from the rod surface and impinges somewhere on the

rod surface then interacts with the trailing rounded edge, the same as the shear

layer impingement on the downstream cylinders in an inline cylinders arrangement.

According to Howes [42], the bluff body leading edge is the main contributor to the

acoustic energy generated which is expended in sustaining the flow vorticity. This

means that the upstream corners rounding has an attenuation effect on the acoustic

energy generated field during resonance which in turn weaken the flow-sound energy

exchange. This will be further discussed in the phase-locked flow characteristics

section.

3.3.4 Time-averaged flow topology

Time-averaged flow characteristics in the wake of all rod cases with aspect ratio of

l/h = 2 is studied in this section to further elaborate the effect of different edge

rounding on the wake dynamics. Figure 3.7 shows the time-averaged normalized

streamwise velocity (u/U∞) contours with streamlines superimposed in the x–y plane

at U∞ = 27.6m/s. To outline the recirculation zone, a red contour line is drawn

which is defined by u/U∞ = 0. The vortex formation length is defined as the distance

between the origin and the end of the recirculation region along the x-axis ( [59], [147]).

As shown in figure 3.7, all the cases exhibit a symmetric topology in the wake
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Figure 3.6: In-phase cmh and out-of-phase cdh lift coefficient components for all the
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in terms of the recirculation bubble and velocity recovery. The all-sharp edges case

and the two-downstream rounded edges case exhibit a relatively large primary and

secondary recirculation region and longer vortex formation length compared to the

other two cases. The primary recirculation region is defined as the region on the top

and bottom walls of the rod and the secondary recirculation region is defined as the

region downstream in the near wake. The presence of such two regions is because of

the forced separation of the flow from the leading sharp edge. The strong curvature

of the streamlines in both regions generates a severe pressure gradient on the top and

bottom walls of the rod which in turn increases the hydrodynamic loading on the rod

DNS. This is evident from figure 3.5(c, e) as these two cases showed average C ′
l of 0.8

and 0.6, respectively, outside of acoustic resonance. In figure 3.7 comparing cases (b)

and (d) with cases (a) and (c), the recirculation region is substantially smaller and

less curved and so does the vortex formation length. Also, the primary recirculation

region on the rod walls is absent and the velocity recovery in the wake extends over

a smaller region in the transverse direction. This results in a lower hydrodynamic

loading on the cylinder which is evident from figure 3.5(d) and (f) as these two

cases showed approximately the same C ′
l values outside of acoustic resonance which

was around 0.1. From figure 3.4 we can see that the cases which involved rounding

of the upstream edges (d and f) showed a completely different dominant Strouhal

number which is close to the shear layer instability values reported in the literature

( [85]). This major difference is due to the upstream edge rounding which delays

the separation and the main shedding mode switches from vortex shedding to shear

layer instability hence, eliminating the primary recirculation region and considerably

reducing the vortex formation length.

The shedding process is a result of velocity fluctuations in the near wake which

is a result of the complex interaction between the free stream and the rod. The
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(a) All-sharp edges (b) Two-upstream rounded edges

(c) Two-downstream rounded edges (d) All-rounded edges

-0.21.5 0.20.81.2
ū/U∞

Figure 3.7: Time-averaged normalized streamwise velocity (u/̄U∞) contours with
streamlines superimposed in the x–y plane at U∞ = 27.6m/s. (a) all-sharp edges, (b)
two-upstream rounded edges, (c) two-downstream rounded edges, and (d) all-rounded
edges. The red contour line represents u/̄U∞ = 0, which outlines the recirculation
region. The streamlines are represented by contour lines.
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shear and normal Reynolds stresses in the wake are an explicit interpreter of the

velocity fluctuations. So, to further understand the shear layer interaction with the

rod’s different edges rounding, shear Reynolds stress and normal Reynolds stress are

shown in figure 3.8. The figure clearly shows that the cases cluster into two groups.

all-sharp edges and the downstream-rounded edges exhibit nearly the same behavior,

while the two upstream rounded edges and all edges rounded cases manifest the same

behavior. This observation agrees well with figure 3.7.

The first column of Figure 3.8 shows the streamwise normalized Reynolds stress

(u′u′/U2
∞) fluctuations. Figure 3.8(a, e) show a lobe-like structure emanating from

the leading edge with high Reynolds stress values which is symmetric about the rod

centreline. This lobe outlines the shear layer which is separated from the upstream

sharp edges. The gradient increases from the inner to the outer envelope due to the

formation of vortices and the primary recirculation bubble. It is important to note

that figure 3.8(a) which corresponds to all-sharp edges showed relatively lower shear

Reynold stress values inside the lobes compared to figure 3.8(e). This suggests that

the rounding of the downstream edges enhances the rolling of the inner shear layer

into the wake. However, the sharp edges disrupt the inner shear layer rolling and

decrease the shear layer momentum [61]. Such Reynolds stress distribution in the

wake emphasizes the fact that the vortices formation for these two cases is due to the

separation of the shear layer from the leading edge and rolling in an alternate manner

in the near wake forming the large-scale vortex shedding single street. On the other

hand, figure 3.8(c) and (g) show a different distribution compared to the two former

discussed cases. The lobe-like structure is absent and the high Reynolds stress values

are concentrated downstream of the rod in the wake. This suggests that upstream

edges rounding delays the leading edge separation. This will be further corroborated

in the next section showing the POD phase-averaged vorticity field.
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The second column of figure 3.8 shows the transverse normalized Reynolds stress

(v′v′/U2
∞) fluctuations. The red line denotes the boundary of the recirculation region

and is plotted by extracting the points of u = 0 and outlining these points by an iso-

contour. The maximum value of the v′v′/U2
∞ is located along the wake centreline for

all the investigated cases. Figure 3.8(d, h) which involve a sharp leading edge showed

a much narrower Reynolds stress contour compared to the other two cases which

involve a rounded leading edge. On the other hand, the two cases which involved

downstream edge rounding showed a relatively higher maximum v′v′/U2
∞ compared

with the two other cases which possess a sharp downstream edge. This suggests that

the downstream rounding increases the cross-stream velocity fluctuations.

Table 3.4 shows the value and location (Lv′v′/U2
∞
/h) of the peak normal Reynolds

stress (v′v′/U2
∞) and the C ′

l value at the velocity (U∞ = 27.6m/s) at which the time-

averaged analysis is conducted. We can see that there is a strong positive correlation

between the location of the peak normal Reynolds stress (v′v′/U2
∞) and the C ′

l value.

As the location of the peak normal Reynolds stress is further downstream, the gradi-

ent of velocity fluctuation downstream extends across a longer distance which causes

a stronger curvature in the streamlines inside the secondary recirculation region which

in turn induces a stronger pressure gradient which increases the fluctuating hydrody-

namic load on the rod. This agrees well with the streamlines shape in figure 3.7. It

is worth noting that the location of the peak normal Reynolds stress (v′v′/U2
∞) does

not coincide with the end of the recirculation zone for all the cases since the flow

entrainment inside the recirculation region decreases the velocity fluctuations due to

the more uniform flow circulation.
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Figure 3.8: Time-averaged Reynolds shear stress (u′u′/U2
∞) and normal stress

(v′v′/U2
∞) at U∞ = 27.6m/s. (a, b) all-sharp edges, (c, d) two-upstream rounded

edges, (e, f) two-downstream rounded edges, and (g, h) all-rounded edges. The red
contour line represents u/U∞ = 0, which outlines the recirculation region.
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Table 3.4: The value and location (Lv′v′/U2
∞
/h) of the peak normal Reynolds stress

(v′v′/U2
∞) and the C ′

l value at the time-averaged analysis velocity (U∞ = 27.6m/s)

Case Lv′v′/U2
∞
/h v′v′/U2

∞ C ′
l

(a) All edges sharp 3.91 0.26 0.79
(b) upstream rounded edges 2.22 0.28 0.12

(c) downstream rounded edges 3.06 0.38 0.59
(d) All edges rounded 1.69 0.32 0.1

3.3.5 Phase-averaged flow topology

This section discusses the intrinsic flow topology in the near wake of the rounded

edge cases in comparison with the sharp edge case for the aspect ratio of l/h = 2.

To construct the unsteady flow characteristics in the near wake, proper orthogonal

decomposition (POD) analysis [117] is conducted based on the progressive snapshots

of the flow field using the PIV system. For each case, 1200 snapshot-based on POD

are captured for each case. The goal is to capture each mode energy, the temporal

evolution of the flow structures in the wake, and the spatial flow features. In order to

achieve that goal, the POD modes Ψk(x), eigenvalues (λk), and time coefficients (ak)

are obtained ( [138], [125]) The mode number (k) depicts the contribution of each

mode to the wake turbulent kinetic energy ( [134], [95]) figure 3.9(a, b) present the

absolute and cumulative mode energies, respectively. For bluff body wakes, the first

two POD modes capture the preponderance of the intrinsic turbulent kinetic energy

in the flow ( [50], [134]). As shown in figure 3.9, for the four investigated cases, the

first two modes represent 42-53% of the total turbulent kinetic energy. These two

POD modes are associated with the main shedding mode in the wake. The rest of

the modes resemble about 5% of the total kinetic energy which is generated from

small-scale vortical structures before coalescence and random turbulent motion. For

the sharp edges case and the upstream edges rounding case, the first POD modes
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pair captures 42% of the total turbulent kinetic energy. However, for the downstream

edges rounding and all edges rounding cases the first POD modes pair captures 53%

and 47% of the total turbulent kinetic energy, respectively. Rounding the downstream

edge increases the susceptibility of the shear layer interaction between the upstream

and downstream edges. As a result, there is more turbulent kinetic energy generation.

This is evident by referring to figure 3.8 and 3.4, the two cases which involved down-

stream edges rounding showed relatively higher Reynolds stresses in the streamwise

and transverse directions compared with the other two cases. The Reynolds stresses

in both directions are a direct measure of the velocity fluctuations which are directly

correlated to the wake turbulent kinetic energy.

The POD method proposed by van Oudheusden et al. (2005) [134] is implemented

to obtain the phase-averaged data. Luckily, the majority of the TKE is concentrated

in the first POD mode pair. So, a low-order model could be enacted to obtain

the periodic phase-averaged component of the flow. To do so, the mean flow along

with the first pair of the POD modes are utilized to obtain the reconstructed flow

field(Urec), so, it becomes:

Urec(x, ϕ) = U(x) + a1(ϕ)ψ1(x) + a2(ϕ)ψ2(x) (3.12)

where ψn(x) is the spatial features , an is the temporal coefficient, and U is the

time-averaged velocity vector. n = 1, 2 denotes the first pair of POD modes that

are implemented in the analysis as stated later. Figure 3.9(c) shows a scatter plot of

the temporal coefficients (a1 and a2) from the snap-shot POD post-analysis data for

the sharp edges case. The data is scattered shaping an ellipse having the following

equation:
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Figure 3.9: Energy distribution of the PODmodes in the turbulent kinetic energy: (a)
mode energy (λk), (b) cumulative mode energy, and (c) Scatter plot of the temporal
coefficients a1 and a2 from the POD analysis performed on the PIV data for the all
edges sharp case. Black open square-downstream rounded edges; yellow open square-
all edges rounded; green open square-sharp edges; red open square-upstream rounded
edges

a21
2λ1

+
a22
2λ2

= 1 (3.13)

λ1 and λ2 are the eigenvalues of the first pair of POD modes. To obtain the instan-

taneous flow field phases, the following equation is used:

ϕ = tan−1

[√
λ2a1√
λ1a2

]
(3.14)

All the instantaneous flow field data is sorted into a number of bins. Eqn.4.5 is

utilized to obtain the number of bins. In order to capture the evolution of the shear

layer and its rolling into the wake, all the instantaneous flow fields are separated into

16 bins. As a result, the phase difference between every two consecutive phases is

22.5◦.

To further analyze the shedding modes in the wake and understand the vortex

formation and propagation in the wake, figure 3.10 and 3.11 shows four equidistant

phase-averaged snapshots of the vorticity field with the flow streamlines superimposed

at U∞ = 27.6m/s. It is clear that again the four cases cluster into two groups,
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the all-sharp edges and downstream-rounded edges cases showed a similar wake and

shear layer behavior, while the upstream rounded edges and all edges rounded cases

pronounced almost the same shedding pattern. The first group which involved a

sharp leading edge showed the separation of the shear layer from the leading edge

with no interaction with the rod surface or the trailing edges, then rolling up into

the wake forming positive and negative vortex cores in the wake. Gerrard (1966) [35]

stated that this is a result of mutual induction between the two separated shear

layers from the leading edge and rolling into the wake. The shear layer starts rolling

approximately between 2.5 to 3.5 rod heights downstream, which agrees with the

results shown in figure 3.7 in terms of the vortex formation length. Moreover, the

streamlines distortion and movement in the transverse direction are more pronounced

and stronger for these two cases. This match the findings in figure 3.8 as these two

cases have higher global normal Reynolds stress in the transverse direction compared

with the other two cases which is translated to a much higher fluctuating lift coefficient

compared with the other two cases.

The second group which involved upstream edges rounding showed the formation

of vortex cores right at the trailing edges forming a two-street vortex shedding in

the wake having relatively smaller vortex cores compared to the other group. The

rounding of the upstream edge eliminates the definitive separation point which forces

the formation of the free shear layer, instead, it triggers the instability of the shear

layer impinging on the rod surface and interacting with the trailing edge forming

weaker vortices in the wake.
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(a) All-sharp edges

(b) Two-upstream rounded edges

0 -55

Figure 3.10: Four equidistant Phase-averaged vorticity fields with the flow stream-
lines superimposed at U∞ = 27.6m/s. (a) all-sharp edges, (b) two-upstream rounded
edges.
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(c) Two-downstream rounded edges

(d) All-rounded edges

0 -55

Figure 3.11: Four equidistant Phase-averaged vorticity fields with the flow stream-
lines superimposed at U∞ = 27.6m/s (c) two-downstream rounded edges, and (d)
all-rounded edges.
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3.3.6 Phase-locked flow topology during self-excited acoustic

resonance

Figure 3.10 shows the phase-locked vorticity field over one acoustic pressure cycle at

the peak of acoustic pressure value during the third mode excitation for the cases

with upstream-rounded edges and downstream-rounded edges. In order to effectively

distinguish individual vortices, we employ the Q-criterion, a tool that accentuates

regions of high vorticity correlating with distinct vortex formations. Originating

from the velocity gradient tensor, the Q-criterion delineates regions where the vor-

ticity magnitude surpasses the rate of strain. In our analysis, we establish a Q-value

threshold of 0.005. This designated value facilitates the robust detection of large-

scale vortices characterized by significant recirculation patterns. Both showed the

same vortical structure in the wake. Vortices form on the rod surface and interact

with the trailing edges forming a two-street shedding pattern. However, before the

onset of resonance, we can see from figure 3.10 that the downstream-rounded edges

case exhibits a single shedding street. . Bearman and Obasaju (1982) [8] observed the

same switching in the shedding pattern downstream for a square rod during forced-

induced vibration at a reduced velocity equal to 4 and a forced oscillation amplitude

of only 10% of the rod length, l. Moreover, the pressure coefficient in the centre of

the base changed from - 1.6 when the body was stationary to -0.54 when the body

was forced to oscillate. This yields to a reduction ratio of about 3 in the base pressure

which is close to the reduction ratio observed in the fluctuating lift coefficient shown

in figure 3.5(c). This is a striking similarity between the mechanisms of flow-induced

vibration and flow-induced acoustic resonance. Noteworthy, similar analogy was ob-

served by Mohany and Ziada (2009) [72]. They observed that the phase jump between

the acoustic pressure and the lift force during acoustic resonance excitation exhibits
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the same behaviour as that between the lift force and the cylinder displacement for

the case of forced-induced vibration reported by Carberry et al. (2001) [17]. Such

finding confirms that the dominant shedding mode for the rod case with upstream-

rounded edges, which is named shear layer instability mode, is what triggers early

excitation of the third acoustic mode for the rod case with downstream-rounded edges.

This suggests that this mode is intrinsically present but masked out before resonance

excitation by the dominant vortex shedding mode downstream of the rod.

Comparing the vorticity field downstream of the two cases, it is obvious that the

downstream-rounded edges case has a more defined vortex structure with less distor-

tion in the cylindrical structure and enhanced vorticity content. This is interesting

since for the case of the downstream-rounded edges the third acoustic mode was

excited by a completely weak masked instability. However, in the case of upstream-

rounded edges it is excited by the dominant wake shedding mode. According to

Howes (1980) [42], the bluff body leading edge is the main contributor to the acoustic

energy generated which is expended in sustaining the flow vorticity. This means that

the upstream corners rounding has an attenuation effect on the generated acoustic

energy during resonance which in turn weaken the flow-sound energy exchange and

this yields a weaker and distorted vorticies which is confirmed from figure 3.12.

3.4 Conclusion

In this chapter, the characteristics of the shedding modes and dynamic lift force of

rectangular rods with different aspect ratios and edge geometry subjected to cross-flow

were experimentally investigated during and before the onset of different transverse

duct acoustic modes excitation. Direct measurements of the dynamic lift force were

conducted. Phase-averaged and phase-locked PIV measurements were carried out to
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Two-upstream rounded edges

Figure 3.12: Eight equidistant phase-locked vorticity fields with the flow streamlines
superimposed in the wake during third acoustic mode excitation over an acoustic
pressure cycle at its peak value for the two upstream rounded edges case
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Two-downstream rounded edges

Figure 3.13: Eight equidistant phase-locked vorticity fields with the flow streamlines
superimposed in the wake during third acoustic mode excitation over an acoustic
pressure cycle at its peak value for the two downstream rounded edges case.98



characterize the time-averaged and phase-locked flow topology in terms of the main

shedding modes and the shear layer behavior. The main findings of this investigation

are illustrated in Figure 3.14 and summarized as follows:

1. The case of l/h = 1 and l/h = 0.5 showed typical vortex shedding progression

and lock-in to the first acoustic mode with Strouhal numbers equal to 0.14 and

0.06, respectively.

2. For the cases of l/h = 2, the all-sharp edges and the downstream-rounded edges

cases showed similar aeroacoustic response. Both showed a Strouhal number of

Stl ≈ 0.16 − 0.18 and sudden excitation of the third acoustic mode. On the

other hand, the upstream-rounded edges case and the all-rounded edges case

showed a Strouhal number of Stl ≈ 0.5 − 0.52 and normal excitation of the

first and the third acoustic modes at the frequency coincidence with the wake

shedding.

3. The coupling mechanism between the duct higher acoustic modes and the

masked shear layer instability depends on the rod length, l. So, to early ex-

cite the third transverse acoustic mode of the duct, the rod length l must be

sufficiently long.

4. Before the onset of resonance, the upstream edge rounding seemed to have a

significant reduction effect on the dynamic lift force as both cases which involved

upstream edge rounding had C ′
l ≈ 0.1 while the other two cases that had sharp

upstream edges reported C ′
l ≈ 0.8− 0.6.

5. During acoustic resonance excitation, there was a significant reduction in the

dynamic lift coefficient for the two cases which early excited the third acoustic

mode compared to the values before the onset of resonance.
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6. Phase-averaged PIV measurements showed that outside of acoustic resonance

excitation, the sharp-leading edge plays a vital role in the shear layer separation

and pronouncing a specific shedding mode in the wake. Rounding the leading

edge resulted in producing shear layer instability mode in the wake of the rod

eliminating the primary recirculation region, while the sharp leading edge case

showed the typical shear layer separation from the leading edge and rolling up

into the wake shedding vortices.

7. Phase-locked PIV measurements confirmed that the early excitation of the third

acoustic mode for the sharp-edges and the downstream-rounded edges cases is

due to the coupling between the shear layer instability shedding mode with

the duct acoustic mode, although this mode was completely masked before

the onset of the early third mode excitation, the third acoustic mode acted

as an external forcing source that enhanced this mode and coupled with it to

materialize acoustic resonance.
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Figure 3.14: A Schematic that shows the effect of the rod length in the flow direc-
tion, upstream edge rounding, and the acoustic excitation on pronouncing different
shedding modes in the wake of rectangular rods.
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Chapter 4

Self-selection of Flow Instabilities

by Acoustic Perturbations Around

Rectangular Cylinder in

Cross-Flow

This chapter is submitted to Journal of Fluid Mechanics under the name: A. Mohany,

A. Shoukry , and L. Pastur. Self-selection of Flow Instabilities by Acoustic Pertur-

bations Around Rectangular Cylinder in Cross-Flow. Journal of Fluid Mechanics

(2023)

4.1 Introduction

Numerous studies have been conducted to reveal the underlying flow physics in the

wake of bluff bodies in cross-flow. Bluff bodies exhibit complex flow structures in

their wakes due to the unsteady flow separation and impinging mechanism that re-
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sults in the formation of periodic vortex streets. Better understanding of these in-

trinsic flow features will clarify their effect on the surface and wake pressure dis-

tributions which directly influence the hydrodynamic loading on the bluff body.

Such knowledge is crucial for the development of more efficient flow control tech-

niques and consequently preventing undesirable coupling between the vorticiy shed-

ding from the bluff body with an acoustic or a structural vibration mode. Most

of the studies that have been conducted on bluff bodies over the last few decades

have concentrated on circular cylinders ( [96], [37], [115], [141]) and square cylinders

( [135], [9], [84], [98]; [126], [57], [63], [130]), while relatively less attention was given to

rectangular cylinders in cross-flow despite their wide use in various industrial applica-

tions. Rectangular cylinders are commonly utilized in trashracks placed at hydraulic

intakes of hydropower plants to serve as filters and prevent debris from entering hy-

draulic systems, pylons, bridge decks, towering structures, offshore platforms, etc.

Some of these applications have experienced failures due to a coupled interaction

between the flow instabilities around the rectangular cylinders with a structural vi-

bration mode [see for example: [22], [54], [137]]. Therefore, the main objective of this

work is to investigate the flow instabilities around rectangular cylinders at different

flow incidence angles and demonstrate experimentally, for the first time, the ability

of acoustic perturbations to self select and modulate the flow instabilities to engage

in a feedback loop of oscillation.

One fundamental distinction between circular and rectangular cylinders arises

from the presence of four well-defined separation points located at the edges of the

rectangular cylinder, resulting in flat wall surfaces between the adjacent edges. Conse-

quently, the wake flow becomes more intricate due to the presence of two predominant

separation regions in the shear layer (i.e. the leading edge (LE) separation and the

trailing edge (TE) separation). For elongated rectangular cylinders with an aspect
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ratio AR = l/h > 3, where the aspect ratio (AR) represents the ratio between the

streamwise dimension (l) and the cross-stream dimension (h), both the LE and TE

shed vortices at high Reynolds numbers. The shedding from both edges exhibits

synchronization to the same frequency, indicating the existence of a feedback loop

between the pressure perturbations at the TE caused by vortex roll and formation,

and the separation of the shear layer at the LE. Additionally, it is observed that the

Strouhal number demonstrates a stepwise behavior with respect to the aspect ratio

(AR) ( [84], [77], [91], [68], [127]). The stepwise behviour is attributed to a locked

feedback mechanism between the frequency of the LE and TE vortices, with a wave-

length that is directly correlated to the streamwise dimension of the cylinder. The

mode progression is associated with the parameter ”n”, representing the number of

vortices present on the lateral face of the rectangular cylinder between the leading

and trailing edges. For rectangular cylinders with aspect ratios (AR) between 3 and

5, the first mode of the impinging leading-edge vortex (ILEV) is manifested, char-

acterized by one LE vortex on the lateral faces (i.e. n = 1). As the aspect ratio

increases, the wavelength also increases until reaching a threshold that allows for the

transition to the second ILEV mode (i.e. n = 2), which means two distinct vortex

cores are formed along the lateral face.

In their pioneering work, Nakamura & Nakashima (1986) [77] introduced the con-

cept of the leading edge (LE) vortex shedding and termed the overall shedding mech-

anism as impinging-shear-layer instability. They proposed that this instability is

independent of the mutual induction between the two shear layers originating from

the lateral faces of the cylinder. To verify this hypothesis, a splitter plate was inserted

into the wake of a rectangular cylinder with an aspect ratio (AR) of 5. Remarkably,

the shedding frequency remained unchanged both before and after the insertion of the

splitter plate. Similarly, Shabaan & Mohany (2022) [114] recently observed the same
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shedding mode during self-excited acoustic resonance for a rectangular cylinder with

an AR as low as 2. These findings underscore the presence of this shedding mode

even at low aspect ratios and further highlight its nature as a resonant oscillation of

the fluid.

Naudascher & Rockwell (1994) [81] classified three distinct vortex shedding regimes

for rectangular cylinders based on the aspect ratio (AR). Type I, known as leading-

edge vortex shedding (LEVS), is characterized by a separation bubble at the leading

edge of the body. Type II, referred to as ”impinging leading-edge vortex (ILEV)

instability,” involves the shedding of leading-edge (LE) vortices from the separation

bubble at the leading edge, which subsequently interact with the trailing-edge (TE)

vortices. Type III is trailing-edge vortex shedding (TEVS), where vortices detach

from the trailing edges of the rectangular cylinder. Hourigan et al. (2001) [41] later

discovered a hybrid shedding type that can occur at Reynolds numbers below 2000,

representing a combination of the ILEV and TEVS shedding modes. They observed

that the TE vortices are forced to modulate their frequency to align closely with

the shedding frequency, enabling the shedding of LE vortices within one complete

shedding cycle with proper phasing. This accommodation of the full shedding cycle

wavelength along the length of the cylinder occurs due to the synchronization between

the LE and TE shedding modes.

Building upon Nakamura& Nakashima (1986) [77] work, the ILEVS mode is con-

sidered a resonant oscillation of the fluid that can be triggered by coupling with

a resonant acoustic wave within an enclosure. The feedback control is established

through the pressure perturbation originating from the flow field discontinuity at the

trailing edge, which is a result of vortex production at the cylinder’s trailing edge.

The formation of the LE vortices occurs due to the interaction of the shear layer with

the leading edge. When the LE vortex passes the TE, a localized pressure pulse is
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generated due to strain concentration at a specific point. This pulse subsequently

travels upstream, triggering the shedding of a LE vortex from the leading edge shear

layer.

Parker &Welsh (1972) [93] revealed in their study that there could be four possible

vortex shedding patterns depending on the cylinder’s aspect ratio. (I) cylinders with

(AR < 3.2) experience flow separation that occurs at the LE with no reattachment

to the plate’s surface and the LE separated shear layer rolls into the wake forming

a regular vortex shedding street, which is in other words named LEVS. (II) cylin-

ders with (3.2 < AR < 7.6) exhibit a trailing edge interaction with the LE vortices

producing ILEV/TEVS mode. (III) cylinders with (7.6 < AR < 16) experiences

shear layer reattachment somewhere on the lateral face before the trailing edge which

forms a separation bubble that sheds vortices randomly. This shear layer behav-

ior is said to produce irregular shedding patterns with no distinct vortex shedding

street. (IV) cylinders with (16 < AR) experiences similar behavior to those in (III)

however, the vortices shedding from the separation bubble dissipate before reaching

the trailing edge. Additionally, they observed a regular shedding pattern exist under

acoustic resonance conditions for high aspect ratios. [79] suggested that although for

high aspect ratios (AR > 12) there is no organized shedding pattern that can be

detected, the organized shedding pattern observed by Stokes & Welsh (1986) [121] is

a manifestation of the ILEV inherited in the flow but the acoustic field acted as an

external forcing source to excite it. Contrarily, Mills et al. (2003) [67] put forth a

contrasting hypothesis referred to as the trailing-edge shedding. They contested that

the shedding pattern, detected under resonant conditions in the study of Stokes &

Welsh (1986) [121], was not an instance of ILEV shedding as proposed by Nakamura

et al. (1991) [79] but rather a different shedding mechanism. Thus, one of the pri-

mary objectives of our research is to navigate through these conflicting viewpoints
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and clarify the effect of the acoustic resonance on the unsteady flow structures around

a rectangular cylinder. Such an endeavor will deliver a more unified understanding of

the underlying shedding mechanisms at both resonant and non-resonant conditions.

For higher Reynolds numbers, two studies conducted by Okajima (1982a) [84] and

Igarashi (1984) [49] have revealed that flow characteristics and aerodynamics remain

relatively insensitive to the upstream Reynolds number beyond a value of approx-

imately 104. However, the angle of incidence has a notable effect on shifting the

separation points, thereby altering the free shear layer separation and resulting in

wake rolling. This shift in separation points can ultimately impact the hydrodynamic

loading, the Strouhal number of dominant shedding patterns, and heat transfer co-

efficients. Furthermore, several studies have reported that changes in the shedding

pattern in the wake can occur due to variations in shear layer separation dynam-

ics caused by the angle of incidence ( [118]; [144]). Kinsely (1990) [57] thoroughly

reviewed Strouhal number data from the literature for various aspect ratios and in-

cidence angles. The general trend observed in most cases showed a rapid increase in

the Strouhal number and a significant decrease in the aerodynamic forces at small

angles of attack (α < 15◦). This trend is thought to be associated with the shear layer

separation and subsequent reattachment to the cylinder’s windward lateral face. The

reattachment of the shear layer reduces pressure fluctuations in the wake, reducing

the aerodynamic forces imposed on the rod. Other studies reported similar trends for

Strouhal number and aerodynamic forces ( [105]; [29]; [107]).

Compared to the studies reporting on vortex shedding modes and aerodynamic

forces, fewer investigations have focused on characterizing the velocity field and wake

dynamics of rectangular cylinders. Work by several authors ( [28], [64], [65], [90], [45],

[60]) employed various flow visualization techniques, such as particle image velocime-

try (PIV) and laser Doppler velocimetry (LDV), to accurately construct the near
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and far wake velocity fields, time-averaged turbulence properties, and phase-averaged

streamline patterns. These approaches provide valuable insights into the wake flow

topology, allowing for choosing the optimum configuration for different industrial

applications and the development of effective techniques for suppressing vortex shed-

ding. Igarshi (1984) [49] implemented surface-oil flow and smoke to study the flow

around a square cylinder at different angles of incidence. He divided the wake flow

patterns into four different regimes based of the incidence angle, i.e., (I) 0◦ ≤ α ≤ 5◦:

symmetric flow with perfect separation, (II) 5◦ ≤ α ≤ 13◦: asymmetric flow with

separation, (III) 14◦ ≤ α ≤ 35◦: reattachment flow type, and (IV ) 35◦ ≤ α ≤ 45◦:

wedge flow type. [134] reported the velocity field around a square cylinder using par-

ticle image velocimetry at four different angles of incidence. For α = 0◦ the boundary

layer bifurcates into two branches from the midpoint on the square section in the

cross-stream direction and then separates from the two leading sharp edges. The free

shear layer rolls into the wake forming two distinct recirculation regions. A primary

region in the wake which is due to the large-scale vortex formation in the wake and a

secondary region at the cylinder’s lateral faces in the stream-wise direction. Between

α = 5◦ and α = 10◦ the two recirculation regions merged together into one region

in the wake. Flow reattachment was observed between α = 10◦ and α = 15◦. The

topological analysis of this study did not precisely match the flow topology equation

outlined by [48] due to the difficulties in capturing the near-surface flow topology

because of the laser reflections and insufficient spatial resolution or image count in

the PIV window size. To compensate for the flow visualization challenges, multiple

investigators have conducted computational fluid dynamics studies on square cylin-

ders to capture the near-surface, wake topology, and unsteady flow characteristics

( [129], [106], [20]).

In light of the previous discussion, for square and rectangular cylinders, the shear
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layer behavior and the periodic flow structures in the wake are found to be sensitive

to the aspect ratio and angle of incidence. However, most of the studies focused on

high aspect ratios (3 < A.R < 16) as it is assumed that below this range the shear

layer is said to be stable with natural shedding process occurring in the wake. Thus,

the objective of this study is to employ particle image velocimetry (PIV) techniques

in a high-speed wind tunnel to investigate the flow around a rectangular cylinder with

an aspect ratio AR = 2 with different angles of incidence under different conditions:

during self-excited acoustic resonance and outside of resonance excitation. In an at-

tempt to explore whether the excited resonant mode reported by Stokes % Welsh

(1986) [121] is due to a coupling with the inherent ’ILEV’ instability as reported by

Nakamura et al. (1991) [79] or it is a different vortex shedding mechanism as proposed

later by Mills et al. (2002) [67]. This will help us gain a comprehensive understand-

ing of the flow dynamics and vortices’ impingement mechanisms from various edges

of the rectangular plates, which will provide valuable insight into how an acoustic

resonant field can influence and alter the interaction of vortices with different edges.

Furthermore, it will shed light on the modulation occurring between the leading and

trailing edge vortices. Acoustic resonance, being a global feedback mechanism, plays

a crucial role in modulating the overall system frequency. The detailed analysis and

observations from this study will contribute to a better understanding of the com-

plex flow behavior and the impact of acoustic resonance on the flow patterns around

rectangular cylinders.
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4.2 Experimental Setup

4.2.1 Wind tunnel facility

Experiments were conducted within an open-loop wind tunnel. The wind tunnel

consists of a test section measuring 762 mm in length, 254 mm in height, and 127

mm in width. This test section is made out of acrylic to allow for flow visualization.

Figure 4.1 presents a schematic representation of the case examined in the study

with the faces and nodes label that will be used throughout the study. In order to

ensure uniform flow distribution in the spanwise direction, pressure measurements

were conducted at 11 different locations along the span of the cylinder, covering a

wide range of Reynolds numbers. The findings indicated that the mean base pres-

sure coefficient exhibited minimal spanwise variation, falling within the experimental

uncertainty of the measurements. All tested cases were positioned at a distance of

381 mm from the parabolic bell mouth entrance. At this specific location, hot-wire

measurements were conducted, revealing that the transverse flow uniformity devi-

ated by a maximum of 1% from the free stream velocity. The FFT of the natural

turbulence spectrum showed no observable peaks within the frequency range of inter-

est. Throughout the velocity range, the maximum turbulence intensity was carefully

measured and determined to be below 0.8%. The experiments were conducted under

controlled environmental conditions, maintaining a temperature of 25◦C and 50%

humidity. Monitoring of the indoor climate was carried out using an indoor climate

sensor to ensure consistent conditions throughout the experiments. To achieve ac-

curate control of the incidince angle, a precisely laser-cut acrylic window is utilized

in conjunction with a dial mechanism. The dial allows for rotation and locking at

specific orientations by employing a countersunk screw and a nut externally to the

wind tunnel. Careful attention is given to ensure seamless integration of the dial and
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Figure 4.1: Schematic of the rectangular cylinder geometry with faces and nodes
label

window, both of which were meticulously aligned with the acrylic walls of the test

section. This alignment was implemented to promote smooth airflow and minimize

turbulence intensity within the test section.

4.2.2 Acoustic pressure measurements

Acoustic pressure signal is recorded for 120 seconds for each measurement throughout

the entire velocity range, encompassing speeds from 20 m/s to 150 m/s, with incre-

mental steps of 2.76 m/s. The velocity range corresponds to a Reynolds number,

based on the streamwise length, ranging from Rel = 3.5× 104 to 2.5× 105, when the

cylinder’s angle of incidence is zero. This is achieved with the aid of a flush-mounted

pressure microphone which is strategically positioned on the top wall of the wind

tunnel right above the middle of the rod. This position corresponds to the maxi-

mum pressure amplitude of the transverse acoustic mode. This was determined in a

separate experiment using an array of flush-mounted microphones on the top wall at

different streamwise positions. The details are not shown here for the sake of brevity.
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A sampling frequency of 20 kHz is employed which is far below the targeted shedding

frequencies. Welch’s modified periodogram method, incorporating a 50% overlap and

a resolution of 1 Hz, is employed to analyze the pressure signal and generate the fre-

quency spectrum using Fast Fourier Transform. To isolate and accurately capture the

desired pressure values, a band-pass filter with a range of ±50Hz centered around the

dominant frequency peak is applied. This filtering process allows for the extraction

of the relevant pressure information. The resulting filtered pressure signal is then

utilized to calculate the root mean square value of the pressure (Prms) which is then

normalized and given as P ∗ using the following equation:

P ∗ =
2Prmsc

ρU3
∞

, (4.1)

where c is the speed of sound (m/s), ρ the air density (kg/m3), and U∞ the mean

flow speed (m/s).

As the shedding patterns develop in the cross-stream direction inducing pressure

perturbations in the transverse direction, the cylinder is exactly placed in the middle

of the duct height (i.e. acoustic particle velocity antinodes of the λ/2, 3λ/2 and 5λ/2

modes). So, only the odd-numbered transverse acoustic modes can be excited. Figure

4.2 illustrates a schematic representation of the acoustic pressure distribution within

the duct for the excited odd-numbered transverse modes. The theoretical value of

these modes can be calculated using the following equations:

fa(1) =
c

2H
, fa(3) =

3c

2H
, fa(5) =

5c

2H
(4.2)

Moreover, it provides a direct measurement of the frequencies at which vortex

shedding occurs in the wake. When the frequency of the vorticity shedding coincides

with the natural frequency of an acoustic duct mode, resonance may be established.
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Figure 4.2: Schematic representation of the acoustic pressure distribution inside the
duct for the odd-numbered transverse modes.

If the flow excitation energy is higher than the acoustic damping of the system.

When acoustic resonance materializes a feedback loop between the flow and sound

fields, results in the amplification of acoustic energy and the generation of audible

acute noise. The interplay between the flow dynamics and acoustic phenomena has a

profound effect in shaping the wake topology during resonance excitation.( [12], [70],

[52]).

4.2.3 Particle image velocimetry (PIV)

In this study, LaVision system is employed (Particle Image Velocimetry) to capture

and analyze the instantaneous velocities of the flow field within the two-dimensional

laser sheet domain. Figure 4.3 shows the full PIV setup. The utilization of the PIV

system ensures precise and comprehensive velocity measurements, facilitating a thor-

ough investigation of the flow dynamics under resonant and non-resonant conditions.
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Figure 4.3: Schematic of the full PIV setup.

Flow field seeding and illumination

The flow seeding in this study involved the use of atomized Di-Ethyl-Hexyl-Sebacat,

with a maximum particle size of 2µm. To illuminate the two-dimensional plane, a

Double-head 532 nm ND:YAG laser operating in a double pulse mode was employed.

The laser was set to a frequency of 15 Hz with a peak power output of 200 mJ. To

achieve a thin and well-defined laser sheet, the laser beam was directed towards an

optical mirror, which efficiently scattered the laser light. A precise linear actuation

mechanism was employed to position the laser sheet in the middle of the x-y plane.

The laser sheet illuminated the test section from the bottom, passing through an

optical-grade acrylic wall. To control the pulse duration, a mechanical shutter was

incorporated into the laser head, enabling phase-locked measurements at specific fre-

quencies. This allowed for accurate synchronization of the PIV measurements with

the flow dynamics. For data processing, autocorrelation techniques were employed.

Image pairs from two successive frames were processed, with specific regions such as
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the cylinder area and surface reflections, if any, masked out to ensure accurate anal-

ysis. This ensured the extraction of reliable velocity information from the captured

images.

Image capturing and acquisition

To capture the flow images, a 12-bit camera operating in a double frame mode was

utilized. The camera had a maximum resolution of 2752x2000 pixels. In order to en-

hance the image acquisition process, a green light filter was installed on the camera,

matching the wavelength of the laser used. The camera was directly connected to

a PC, enabling real-time image transfer and analysis. The camera shutter was syn-

chronized with the laser pulsing, ensuring precise timing for capturing the flow field.

This synchronization was achieved through the DaVis software, which facilitated the

coordination between the camera and the laser. To improve the accuracy of the flow

measurements, dynamic filters were applied during the data processing stage. These

filters were designed to eliminate background noise and remove any false vectors from

the analyzed flow field. The filters relied on the image intensity variation as a criterion

for identifying and deleting faulty vectors, ensuring that only reliable and meaningful

data points were retained for further analysis.

To conduct measurements during off-resonance conditions, a series of images were

captured representing various shedding cycles. To reconstruct a consistent shed-

ding cycle, Proper Orthogonal Decomposition (POD) analysis was employed using a

dataset comprising 1200 images. This allowed for the identification and extraction of

the dominant flow structures and shedding patterns.

Phase-locked Particle Image Velocimetry (PIV) measurements are performed dur-

ing self-excited acoustic resonance to capture the shedding mode in a synchronized

manner. To achieve this synchronization, the acoustic pressure cycle is used as a ref-
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erence signal. This signal is captured by the flush-mounted microphone in real-time

and displayed on an oscilloscope for visualization. The signal gain is adjusted through

the oscilloscope to optimize the timing. A timing box then locks the frequencies of

the camera and the laser to the acoustic pressure cycle frequency. By dividing the

acoustic pressure cycle into eight phases, the camera captures pairs of images at con-

sistent intervals. Specifically, 250 instantaneous pairs of images are captured, with

each pair corresponding to a phase interval of 45 degrees on the acoustic pressure

cycle. This approach ensures that the PIV measurements are performed at precise

and consistent phases of the acoustic resonance.

Imaging and post processing

The image acquisition and post-processing are carried out using DaVis 10.0 soft-

ware. To extract accurate velocity information, the interrogation window technique

is applied in two steps. In the first step, a single pass is performed with an initial in-

terrogation window size of 64 × 64 pixels and a 50% overlap. This step helps capture

the overall flow features and provides an initial estimation of the velocity field. For

the second step, four passes are performed using a smaller interrogation window size

of 24 × 24 pixels with a 50% overlap. This finer resolution allows for a more detailed

analysis of the flow field and improves the accuracy of velocity measurements. To en-

sure high-quality results, post-processing techniques are employed. Faulty vectors are

identified and removed, and denoising filters are applied to obtain a smooth flow field.

In regions where illuminated particles are missing, dynamic interpolation techniques

are utilized to estimate particle displacements based on the surrounding particles’

motion. Spatial sliding filters are also applied to further enhance the quality of the

flow field. Depending on the specific requirements of each case, different sliding filters

such as Gaussian, minimum, and maximum filters are utilized to optimize the results.
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These filters help in reducing noise and refining the spatial distribution of the velocity

field.

4.3 Results and discussion

4.3.1 Flow under non-resonant condition

Strouhal number of natural vortex shedding

Figure 4.4 illustrates the Strouhal number Sth′ , normalized by the projected stream-

wise dimension, corresponding to the natural vortex shedding periodicity from a rect-

angular cylinder at different flow incidence angle. The Strouhal number, derived from

the Fast Fourier Transform (FFT) analysis of the acoustic pressure signal, accurately

mirrors the dominant shedding mode. Initially, the Strouhal number stands at a value

of 0.9 for zero angle of incidence. As the cylinder begins to tilt, the Strouhal number

sharply ascends to around 0.18, indicating substantial alterations in the wake flow

characteristics, which are discussed in detail in this section. At an incidence angle

of approximately α ≈ 60◦, the Strouhal number trend shows an inflection point and

begins to descend, reaching a value of about 0.15 at α = 90◦. This observation under-

scores a significant transformation in the flow topology beyond the symmetric wedge

angle, which is around ∼ 63◦ for cases with an aspect ratio (AR) of 2. The Strouhal

number aligns well with existing literature, reflecting both the values and the trend

associated with changes in the angle of incidence as reported by Kinsely (1990) [57].

Time-averaged flow topology

The time-averaged flow characteristics are studied under non-resonant conditions, at

different angles of incidence to understand how the cylinder tilting influences the
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Figure 4.4: Strouhal number of natural shedding measured under non-resonant con-
ditions at different angles of incidence.

steady flow characteristics. This will provide a baseline comprehension of the flow

topology when we discuss the flow-induced acoustic resonance later in section 4.3.2

Figure 4.5 depicts the contours of time-averaged normalized streamwise velocity

(u/U∞) in the x-y plane at a flow velocity of U∞ = 19.32m/s. This specific flow ve-

locity is chosen because it ensures non-resonant conditions for all the tested incidence

angles. Streamlines are superimposed on the contours to provide further visualization

of the flow patterns. The red contour line represents the recirculation zone’s bound-

ary, defined by u/U∞ = 0. The length of the vortex formation region is determined

as the distance from the origin to the end of the recirculation region along the x-axis

( [59]).

The diagram depicted in Figure 4.5(a) (representative of a zero angle of incidence)

conspicuously presents a considerably large primary and secondary recirculation re-

gion, both demonstrating an extended vortex formation length relative to the remain-
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ing cases. The primary recirculation region is delineated as the zone situated on the

lateral faces of the cylinder, while the secondary recirculation region is designated as

the zone immediately downstream in the wake of the cylinder. These dual regions

manifest due to the compelled separation of the flow instigated by the leading sharp

edge of the structure. This structural aspect leads to a pronounced curvature of the

streamlines within both regions, consequently generating an extreme pressure gra-

dient on the upper and lower surfaces of the cylinder. This gradient subsequently

amplifies the hydrodynamic loading exerted upon the cylinder [131]. In Figure 4.5(b)

(α = 5◦), the absence of a recirculation bubble on the windward lateral face is notice-

able. However, there is still a decrease in the velocity near that surface, indicating a

velocity deficit. Moreover, the contour line representing u/U∞ = 0 intersects precisely

at the leeward upper edge. This suggests that the flow reattachment occurs on the

windward face, while flow separation takes place at the leeward upper edge. This

observation aligns with Figure 4.10(b), where no dominant peaks are observed out-

side of the acoustic resonance. Such observation suggests that the flow reattachment

disrupts the traditional vortex shedding mechanism as a consequence of the mutual

induction between the counteracting shear layers from the lower and upper sides of

the cylinder. This occurrence parallels the effect observed when a splitter plate is in-

troduced into the wake, acting to isolate the interacting shear layers from the lateral

faces of the cylinder. For Figure 4.5(c) (α = 10◦), figure 4.5(d) (α = 15◦), and figure

4.5(e) (α = 30◦), the velocity contour shows no velocity deficiency on the windward

lateral face which means that the flow is fully attached. Also, the recirculation re-

gion contour line intersects the leeward face of the cylinder slightly below the leeward

upper edge which emphasizes on the fact that there are TE (trailing edge) vortices

that shed from this edge. The elliptical stagnation points are no longer on the same

cross-stream line which in turn alters the recirculation bubble streamwise elliptical
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topology and creates the asymmetric wake shape. This is a result of the asymmetry

of the body. It is important to note that the elliptical stagnation point is defined

as a point in the flow that resembles a local minimum or maximum of the stream

function. Upon comparison, Figure 4.5(a) (α = 0◦) and figure 4.5(g) (α = 90◦) share

a striking resemblance, both embodying symmetric geometries. At first glance, one

might be led to believe that the recirculation regions for both configurations extend

the same length and exhibit identical downstream lengths. However, for the case

where α = 0◦, the primary recirculation is conspicuously absent. Furthermore, the

recirculation bubble topology for the case of α = 90◦ exhibits significantly less ellip-

tical characteristics compared to the recirculation bubbles observed for the α = 0◦

scenario.

Figure 4.6 represents the normalized component v′v′ of the Reynolds stresses.

Such quantity resembles the variance of the vertical velocity fluctuations. It measures

the intensity of the turbulent fluctuations in the vertical direction of the flow. It is

important to note that the prime denotes a fluctuating quantity. It further helps to

illustrate the vertical intensity and structure of the turbulence, which can be crucial in

understanding how the wake behaves as the angle of incidince is varied. The boundary

of the recirculation bubble is superimposed, accompanied by a prominent red dot.

This dot denotes the position of the maximum v′v′/U2
∞, with its value explicitly

stated. Upon looking at all of the cases, the apex of v′v′/U2
∞ consistently aligns with

the wake’s centreline. This line embodies the equilibrium induction boundary. The

detachment of large-scale vortices, bearing the greatest vorticity content and hence

substantial velocity fluctuations, occurs when the large-scale vortex core coincides

with this line. As the shear layer undergoes alternation across this line, it endures

the most pronounced transverse fluctuations, hence, an increase in the intensity of

the fluctuating kinetic energy. For incidence angles α = 0◦ and α = 5◦, the apex of
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Figure 4.5: Time-averaged normalized streamwise velocity (u/̄U∞) contours with
streamlines superimposed in the x–y plane at U∞ = 19.32m/s. The red contour line
represents u/̄U∞ = 0, which outlines the recirculation region. The streamlines are
represented by contour lines. The ’X’ outlines the end of the recirculation region
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v′v′/U2
∞ is not in coincidence with the recirculation bubble boundary. This means

that there is a spatial separation between the region of the highest turbulence intensity

and the flow reattachment point. This might be attributed to the long streamwise

length of the cylinder. Increasing the incidence angle, the apex of v′v′/U2
∞ starts

coinciding with the recirculation bubble boundary, and its value sore significantly.

This means that as the cylinder bluffness increases (AR decreases) there is more

synchrony between the region of most intense turbulence and the flow reattachment

point which induce strong cross-stream turbulence, suggesting large-scale mixing in

the wake and potentially contributing to the wake widening. Such finding correlates

with the less elliptical recirculation bubble topology at high angles of incidence shown

in Figure 4.5.

Phase-averaged flow topology

After studying the time-averaged flow characteristics, now, it becomes constructive to

explore the shedding topology in greater detail through the construction of a phase-

averaged flow field. This approach furnishes us with a profound understanding of

the shear layer behavior, particularly in relation to the flow separation, impingement,

and the formation of large-scale vortical structures. To unravel the unsteady flow

characteristics in the near wake, a proper orthogonal decomposition (POD) analysis

POD4 is implemented at the same flow velocity at which the time-averaged analysis

is performed (U∞ = 19.32m/s). This method leverages progressive snapshots of

the flow field, gathered using the Particle Image Velocimetry (PIV) system. For

each case, a total of 1200 snapshots are captured to construct the POD modes. The

overarching objective here is threefold: (i) to quantify the energy associated with each

mode, (ii) to chronicle the temporal evolution of the wake flow structures, and (iii)

to map out the spatial characteristics of the flow. To fulfill this objective, the POD
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modes are extracted denoted by ψk(x), eigenvalues (λk), and temporal coefficients

(ak), as outlined in previous studies ( [138], [125]). The mode number (k) serves as

a representation of each mode’s contribution to the turbulent kinetic energy within

the wake ( [134], [95]). In the context of bluff body wakes, the dominant pair of POD

modes encapsulates the majority of the inherent turbulent kinetic energy resulting

from the high vorticity content of the large-scale vortices shed in the wake ( [50], [134]).

The POD method is implemented as proposed by van Oudheusden et al. (2005b)

[134] to procure phase-averaged data. Fortuitously, the bulk of the turbulent kinetic

energy (TKE) is consolidated within the first pair of POD modes as evident from

Figure 4.7(a). As a result, a low-order model can be enacted to derive the periodic

phase-averaged component of the flow. This is achieved by combining the mean flow

with the leading pair of the POD modes to reconstruct the flow field (Urec). Therefore,

the equation is as follows:

Urec(x, ϕ) = U(x) + a1(ϕ)ψ1(x) + a2(ϕ)ψ2(x), (4.3)

Where U(x) is the mean flow field averaged over ϕ. The notation n = 1, 2 is indicative

of the leading pair of POD modes employed in the analysis, as further delineated.

Figure 4.7(b) presents a scatter plot of the temporal coefficients (a1 and a2), derived

from the snapshot POD post-analysis data for the angle of incidence α = 0◦ case.

This data scatter to form an ellipse, conforming to the following equation:

a1(ϕ)
2

2λ1
+
a2(ϕ)

2

2λ2
= 1, (4.4)

Where aj(ϕ) is the mean value of the time coefficient aj in phase ϕ, shown as a red

circle in Figure 4.7(b). The terms λ1 and λ2 correspond to the eigenvalues of the

leading pair of POD modes. To ascertain the phases of the instantaneous flow field,
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the subsequent equation is employed:

ϕ(t) = tan−1

[√
λ2a1(t)√
λ1a2(t)

]
(4.5)

The entirety of the instantaneous flow field data is classified into several bins, with

the quantity determined by Eq.(4.5). To encapsulate the evolution of the shear layer

and its subsequent roll into the wake, the instantaneous flow fields are parsed into 16

bins. Consequently, there is a phase difference of 22.5◦ degrees between every pair of

successive phases.

As depicted in Figure 4.7(a), the principal pair of modes accounts for a range of

38% to 56% of the total turbulent kinetic energy. Notably, for the incidence angles α =

0◦ and α = 5◦, the total energy within the first pair is significantly lower compared

to the other angles of incidence. Of these, α = 5◦ specifically demonstrates the least

energy encapsulated within the first pair of modes. This finding corroborates the

data in Figure 4.10(b), which lacks a prominent peak outside of resonance excitation.

As the incidence angle increases, there is a corresponding increase in the energy

contained within the first pair of modes. This implies that the shedding process at

the initial two incidence angles might be subject to perturbations from turbulence,

flow reattachment, or flow instabilities. However, beyond these angles, the shedding

pattern exhibits enhanced coherence, with reduced random turbulence and fewer

formations of small-scale vortical structures. These observations are consistent with

the data presented in Figure 4.6, which shows an increase in transverse Reynolds

stress as the incidence angle increases.

Presented in Figure 4.8 is the phase-averaged vorticity field with the streamlines

superimposed, which is constructed employing the first pair of POD modes. These

particular modes epitomize the fluctuations that are associated with the dominant
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shedding pattern within the wake. There exists a phase difference of 180◦ between

the columns on the left and right, this exact phase shift is selected due to its vivid

illustration of the shear layer alternation and flapping behavior. A point of hyperbolic

stagnation, indicated by a red dot, is introduced to the diagram. This point, which

represents a saddle in the stream function ∇2ψ = −ωz, can be visually discerned from

the distribution of the wake streamlines. Owing to its inherent instability and the

consequent flow divergence, the hyperbolic stagnation point serves as a valuable tool

for pinpointing the instant of large-scale vortex separation from the shear layer. For

Figure 4.8(a) and (b) (α = 0), the flow separates from the leading edges (windward

edges) with no evidence of flow reattachment or impingement to the lateral faces

of the cylinder. The shear layer rolls into the wake forming large-scale vortices by

mutual induction between the flapping shear layers which manifest a pure leading edge

vortex shedding (LEVS) mode. Moving to α = 5◦ the shear layer separated from the

windward upper edge mainly rolls into the wake but there is a partial shear layer

reattachment to the windward lateral face evident from the shear layer evolution

from the leading edge and streamlines paths. However, the shear layer separated

from the windward lower edge has no interaction with the cylinder, and the vortex

detaches further downstream. Starting from α = 10◦ up until α = 30◦ the upper

shear layer is completely attached to the windward lateral face and the vortices shed

from the trailing edge while the lower shear layer separates from the windward lower

edge and sheds into the wake. It is clear that the leeward lower edge plays a role

in shaping the lower shear layer vortex. The shedding pattern can be identified as

hybrid LEVS/TEVS mode for these cases. The predominance of the same shedding

mode and shear layer behavior for these cases can be attributed to the range of these

angles. This angle range is above the threshold for flow reattachment, approximately

5◦ ( [57]), but remains below the symmetric wedge angle of incidence. This positioning
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between these two crucial angles explains why these cases nearly manifest the same

behavior. Moving to Figure 4.9, at α = 75◦, the lower shear layer separates from

the windward upper edge and impinges on the trailing edge. This is evident from

the streamlines distribution at the windward face and the vortex formation region

at the windward lower edge at ϕ = 180◦. The upper shear layer separates at the

leeward upper edge with no evidence of flow reattachment. The vortex cores are

significantly larger compared to the previous cases. This is attributed to the fact that

this angle of incidence is beyond the symmetric wedge angle of incidence. Beyond,

this angle, the lower shear layer reattaches to the windward face near the TE, and

the windward lateral face acts as an impinging surface rather than having the flow

fully attached to it. So, the shedding mode can be designated as LEVS/ILEVS

mode from the upper and lower shear layers respectively. At an angle of incidence

of α = 90◦, a spatio-temporal symmetry manifests owing to the inherent symmetry

of the cylinder resulting in LEVS mode, similar to the case at α = 0◦. However, the

vortex cores appear notably larger and less elliptical in shape. This occurrence can be

attributed to two primary reasons. Firstly, a reduced streamwise dimension amplifies

the momentum of the shear layer as it rolls into the wake, fostering the formation

of a vortex with enhanced vorticity content. Secondly, the expanded cross-stream

dimension allows for a more substantial gap between the separation edge and the

wake centerline, providing a wider spatial range for the vortex to form.

4.3.2 Flow under resonant condition

Flow-sound interaction response

This section focuses on the aeroacoustic response of the rectangular cylinder at various

angles of incidence. The objective is to understand as well as gain insights into the
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Figure 4.7: Energy distribution of the POD modes in the turbulent kinetic energy:
(a) mode energy (λk), and (b) Scatter plot of the temporal coefficients a1 and a2 from
the POD analysis performed on the PIV data for the angle of incidence α = 90◦. The
definition of the red circle is given by Eq.(4.4).

self-selection of different shedding modes in response to acoustic transverse modes.

This will help us understand the mechanisms underlying the shedding process and

how they are influenced by the angle of the cylinder. Furthermore, the aeroacoustic

response identified the flow velocities at which the phase-locked PIV measurements

are performed. This enables a thorough examination of the shedding pattern changes

and provides valuable information about the correlation between the flow and acoustic

fields.

Figure 4.10 delineates the normalized acoustic pressure plotted on the y-axis. The

secondary x-axis represents the peak frequency detected in the Fast Fourier Transform

(FFT) of the acoustic pressure signal. The green shade resembles a region at which

self-excited acoustic resonance is observed. The acoustic pressure is a result of the

velocity perturbations caused by the shedding process. Therefore, the peak frequency

detected in the FFT corresponds to the dominant shedding pattern frequency, which

generates pressure perturbations and produces acoustic sound. To extract the root

mean square value of the acoustic pressure, a narrow band-pass filter is applied to

the pressure signal, specifically around the peak frequency. This filtering step helps
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Figure 4.8: Phase-averaged vorticity field with the streamlines superimposed at U∞ =
19.32 m/s for all the tested incidence angles
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Figure 4.9: Phase-averaged vorticity field with the streamlines superimposed at
U∞ = 19.32 m/s for all the tested incidence angles (Continued)

eliminate any noise contamination.

Figure 4.10(a) illustrates the shedding progression of the rectangular cylinder at

zero angle of incidence up to a flow velocity of U∞ = 73.41 m/s. Up to this ve-

locity, the shedding frequency gradually increases in a consistent manner. However,

at this specific flow velocity, a sudden frequency jump occurs, accompanied by a

rapid increase in the normalized acoustic pressure. The shedding frequency expe-

riences a significant jump, increasing approximately fourfold from fs = 469 Hz to

fs = 1931 Hz, which is close to the frequency of the third acoustic transverse mode

of the duct. The observed frequency is slightly lower than the theoretical acoustic

mode frequency which is attributed to the added mass effect, as discussed in previ-

ous studies ( [71], [73], [111]). This clear frequency lock-in suggests the occurrence

of self-excited acoustic resonance. Parker & Welsh (1979) [140] observed a similar

phenomenon with a rectangular cylinder possessing an aspect ratio (AR) of 5. In-
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triguingly, they reported a sudden stimulation of the duct’s primary transverse mode,

with the frequency abruptly doubling. This event was ascribed to what they termed

”excited” vortex shedding. Nevertheless, a definitive source of this excitation was

not substantiated, as the study lacked the implementation of modern flow visualiza-

tion techniques. Nakamura et al. (1991) [79] later stated that this is attributed to

’ILEV’ being excited. They stated two main reasons for his speculation, firstly, this

is an intrinsic masked characteristic of coherent flow structures in turbulent flows

( [128]) which can be excited by an externally tuned source. Secondly, the frequency

at which the jump took place matches the natural ILEVS frequency. The Strouhal

number which matches the jump in our case is Stl′ = 0.6 which is exactly equal to

the first mode of the ILEV for elongated rectangular rods with AR ranging from 3

to 5 reported in the literature ( [84], [77], [91], [68]). This scenario prompts a cru-

cial question: Is the detected frequency jump indicative of another stable natural

vortex shedding mode, or does it signify shear layer instability? To resolve whether

this constitutes an inherent ILEV or is reflective of a natural vortex-shedding mode,

flow-sound phase-locked PIV measurements of the flow field will be discussed in the

forthcoming sections.

Looking at Figure 4.10(b) which shows the aeroacoustic response at α = 5◦ one

can notice that there are only data points during resonance excitation and no data

points outside acoustic resonance excitation. This is because outside of acoustic res-

onance, no distinct peaks are observed in the spectra of the acoustic pressure signals.

Rockwell (1977b) [101] reported that there are no distinct peaks in the velocity fluc-

tuations spectrum for a square cylinder at an angle of incidence α = 14◦ which means

that there is no detectable contribution to the vortex shedding process. However,

for higher α values the distinct peaks reappear again. He stated that this is a result

of the flow reattachment. Since the rectangular cylinder employed in our study has
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AR = 2, this phenomenon occurs at a substantially lower α. Even though this case

shows no dominant peaks in the acoustic pressure spectra, the POD analysis can

identify organized turbulent fluctuations that form this shedding mode. However,

the flow reattachment destabilizes the mode and that is why this case showed the

least turbulent energy in the first two modes as shown in Figure 4.7. Multiple acous-

tic modes are excited all coinciding with two main Strouhal lines, corresponding to

Stl′ = 0.6 and Stl′ = 1.21, respectively. It is intriguing to observe that the transitions

between the different shedding modes occur instantaneously without any lock-out pe-

riods. The switch between the first and third modes, as well as the fifth and third

modes, happens abruptly. During acoustic resonance excitation, the vortices exhibit

spanwise correlation ( [93], [121]), and the vortex shedding process is significantly en-

hanced, masking any minor or masked instabilities. This enhancement is evident from

the acoustic pressure spectra, which exhibits a sharp peak with a high-quality factor.

However, it is important to note that higher mode flow instabilities are still able to

synchronize with higher acoustic transverse modes. This implies that even during

self-excited acoustic resonance, other shedding modes or instabilities are inherently

present and can engage in continuous energy exchange with the nearest acoustic res-

onant mode. When comparing these values to the prior case of α = 0◦, the Strouhal

line with the lesser slope coincides with the steeper line for the α = 0◦ case, both

aligning with the ILEV periodicity for aspect ratios (AR) within the range of 3 to

5 as indicated in the existing literature. Intriguingly, the steeper Strouhal line for

α = 5◦ aligns with the values for the second mode (n = 2) of the ILEV periodicity,

which was previously observed exclusively for AR values ranging from 6 to 9. This

observation necessitates further exploration and flow visualization which we will delve

into in a subsequent section.

Figure 4.10(c) corresponds to an incidence angle of α = 10◦ and displays a similar
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behavior, with two shedding modes where one dominates and matches the natural

vortex shedding Strouhal number, while the higher Strouhal periodicity emerges only

when it coincides with an acoustic duct mode frequency. From an incidence angle of

α = 15◦ onwards, the higher Strouhal periodicity appears to diminish, leaving only the

dominance of natural vortex shedding with a characteristic resemblance to the first

acoustic mode at the coinciding frequency. The trend of the maximum normalized

acoustic pressure demonstrates an increasing pattern, except for a drop observed at

α = 75◦. This suggests a significant change in the vortex formation and the wake

dynamics at this particular angle, which will be further discussed later in the chapter.

The flow-sound interaction response provides clear evidence that for incidence angles

α < 15◦, the dominant shedding mode outside of acoustic resonance excitation is the

natural vortex shedding. However, there exists an instability or higher-order shedding

mode that couples with the third and fifth acoustic transverse modes. The insights

gleaned from these findings encourage us to visualize the flow dynamics under specific

resonant conditions, thereby aiming to gain a more profound comprehension of the

self-selection mechanism that governs the different shedding modes. By scrutinizing

the flow behavior under resonant conditions, we can elucidate the complex processes

that provoke the excitation of these distinctive shedding modes. Ultimately, a better

understating of the underlying mechanisms driving the observed phenomena can be

established.

Flow-sound phase-locked flow topology

To address the pivotal question posited in the previous section, a detailed investigation

of the vorticity field during self-excited acoustic resonance is carried out. The acoustic

pressure signal is used to trigger the laser to visualize the flow over one complete

acoustic pressure cycle dividing it into 8 consecutive phases. In order to identify
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Figure 4.10: Aeroacoustic response of a rectangular cylinder with aspect ratio AR = 2
at different angle of incidence α
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discrete vortices, the Q-criterion is utilized to outline the circulation in the high

vorticity regions which correspond to a separate vortex. The Q-criterion derived

from the velocity gradient tensor identifies the regions where the vorticity is higher

than the strain with a specific value which is set to Q > 0.005 in our case. Such value

allows robust identification of large-scale vortices with significant recirculation. Figure

4.11 depicts a Phase-locked vorticity field with the streamlines superimposed over a

complete acoustic pressure cycle during the third mode excitation (fa3) for α = 0◦

with the Q-criterion as a black marker. The Strouhal number which matches this case

is Stl′ = 0.6 as shown previously in Figure 4.10. It is clear at the first glance that the

shedding pattern is completely different from the shedding pattern observed outside

of resonant condition (Figure 4.8(a)). At ϕ = 0◦, which corresponds to the zero phase

of the acoustic pressure cycle, there is one clear LE vortex within the upper and

lower shear layer both separated by a phase shift and convecting downstream. At the

same instant, there is a TE vortex already formed and partially rolled on the leeward

face toward the wake centerline. At ϕ = 45◦ the LE vortex from the upper shear

layer impinged on the trailing edge combining with the TE vortex which was already

formed from the previous phase. At ϕ = 90◦, the combined vortex detached and shed

in the wake forming a hyperbolic saddle point. At ϕ = 135◦ a TE vortex is already

forming and the vortex shed in the wake from the upper shear layer has a completely

different topology with enhanced vorticity content and more circular topology. This is

attributed to the flow-sound interaction occurring under resonant conditions, during

which there is an exchange of energy leading to heightened acoustic pressure levels

and an enhancement of flow correlation. The resonance conditions effectively serve

as a platform for energy transfer, thereby amplifying the acoustic pressure levels and

enhancing the flow correlation. At ϕ = 180◦, the LE vortex is formed within the upper

shear layer and the TE vortex significantly grew from the last phase. Afterward, the
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symmetric alternation takes place until the acoustic pressure cycle is complete.

Now, let us focus on the formation phase of the LE and TE vortices within the

lower shear layer, which rotates in an anticlockwise direction. The TE vortex takes

shape between ϕ = 90◦ and ϕ = 135◦. Assuming it forms equidistant between

these two phases, the formation phase of the TE vortex can be approximated to

be at ϕ ≈ 112.5◦. Regarding the LE vortex, it materializes between ϕ = 315◦ and

ϕ = 0◦. Adopting the same assumption, the LE vortex formation phase approximates

to ϕ ≈ 337.5◦. Consequently, a phase difference of ϕ ≈ 135◦ can be observed between

the LE and TE vortices. Figure 4.12 shows one complete cycle of the acoustic pres-

sure signal discretized at an arbitrary phase from the time series. It is clear that

there are two distinct peaks which are distant by ϕa ≈ 135◦. This phase shift exactly

matches the phase shift between the LE and TE vorticies calculated from the vorticity

field. This is a clear evidence that this shedding pattern is an ILEV/TEVS shedding

pattern with n = 1 which is controlled by the acoustic resonance which excites and

modulates the feedback between the TE and LE within the acoustic pressure cycle.

Indeed, it is modulated and masked by the natural shedding mode. Interestingly, the

ILEV mode has been documented in the literature to emerge from an aspect ratio

(AR) of 3, with a corresponding stepwise increase in the Strouhal number as the AR

escalates. This signifies that in our case (AR = 2) the resonant condition imparts an

added streamwise length effect on the cylinder, thereby enabling the manifestation of

the instability. This is clear evidence that this shedding pattern is an ILEV/TEVS

shedding pattern with n = 1 which is controlled by the TE vortices. This is evident

from ϕ = 90◦ at which there is an LE vortex within the lower shear layer and no TE

vortex formed. Moving to ϕ = 180◦ the TE vortex is formed because of the suction

pressure caused by the detached vortex from the upper face at the previous phase.

So, the TE vortex formation is self-sustained, and as it sheds after impingement the
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pressure perturbation caused by this vortex stimulates the LE to shed a new vortex.

The acoustic resonance excites and modulates the feedback between the leading and

trailing edge. The reason why this mode is not detectable under non-resonant condi-

tions is that the feedback pressure perturbation between the two edges is weak and

its frequency is significantly less than the natural shedding mode frequency. Indeed,

it is modulated and masked by the natural shedding mode. This suggests a coupling

of the acoustic mode with the pressure feedback loop that exists between the leading

and trailing edges. This coupling effectively ’locks’ the system, engendering sound

at its resonant frequency and subsequently modulating the global instability. As a

result, this mechanism allows for the dominance of the shear layer instability. Such

finding aligns with Nakamura et al. (1991) [79] comment on [121] self-excited acous-

tic resonance experiment and contradicts Mills et al. (2003) [67] statement that the

excited pattern is a natural shedding mode.

Figure 4.13 illustrates the phase-locked vorticity field for α = 5◦ at the peak

coincidence between the Strouhal line Stl′ = 1.21 and the third transverse acoustic

mode of the duct. Evidently, a unilateral shedding street is present, devoid of any

vortex alternation in the wake. Steady separation bubbles form in the wake, similar

to those observed in the time-averaged velocity contour (Figure 4.5(b)). In the upper

shear layer (rotating clockwise), the shear layer experiences complete separation, with

no boundary-layer fluid originating from the windward upper edge, leading to vortex

formation within the shear layer. Subsequently, this vortex impinges just before the

trailing edge, prompting the formation and shedding of a TE vortex into the wake,

and the initiation of a new vortex at the LE. In contrast, for the lower shear layer,

vortices shed at the windward lower edge and are convected downstream, with the

shear layer drifting in the same direction. Over a single complete acoustic pressure

cycle, two vortices are shed from both the upper and lower the windward edges.
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Figure 4.11: Phase-locked vorticity field with the streamlines superimposed over a
complete acoustic pressure cycle during acoustic third mode excitation fa3 for α = 0◦

at Stl′ = 0.6
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Figure 4.12: Single complete acoustic pressure cycle discretized at an arbitrary phase
ϕa during third mode excitation fa3 for α = 0◦ at Stl′ = 0.6

Notably, a novel hybrid mode is observed, termed ILEV/LEVS, that has not been

reported in the existing literature. However, the matching Strouhal number equates

to that for ILEV/TEVS at n = 2, which has been previously noted for elongated

cylinders (6 < AR < 9) in the literature.

Figure 4.14 portrays a single complete acoustic pressure cycle, discretized at an

arbitrary phase ϕa during the third acoustic mode excitation fa3 for α = 5◦ at

Stl′ = 1.21. It is clear that the signal is a pure sinusoidal wave, reinforcing the

observation that the ILEV at the upper shear layer is not modulated by a feedback

loop between the discrete TE and LE vortices. But rather by the impinging LE vor-

tex on the TE with the absence of the formation of the TE vortices. Considering

the sinusoidal characteristic of the acoustic pressure signal, the shedding of leading

edge (LE) vortices from the lower shear layer is instigated and regulated by a global

acoustic perturbation, thereby producing a spatiotemporally symmetric wake.

Analogously, Nakamura & Nakashima (1986) [77] conducted an experiment on

a rectangular cylinder with AR = 5, both with and without a splitter plate in the

wake, discovering that the instability mechanism and the shedding frequency were
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Figure 4.13: Phase-locked vorticity field with the streamlines superimposed over a
complete acoustic pressure cycle during acoustic third mode excitation fa3 for α = 5◦

at Stl′ = 1.21

not influenced by the splitter plate positioned at the TE. In this instance, the small

incidence angle introduces this pseudo isolation in the wake even though the cylinder

is not symmetric in the cross-stream direction. This provides compelling evidence

that the instability observed here is the ILEV instability which is globally modulated

by acoustic perturbation under resonant conditions.

Figure 4.15 depicts the phase-locked vorticity field at an incidence angle of α = 5◦,

at the coincidence between the Strouhal line Stl′ = 0.6 and the third transverse

acoustic mode of the duct. This Strouhal number aligns with the excitation case

for α = 0◦. Despite the similarity in the coupling with the third acoustic mode as
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Figure 4.14: Single complete acoustic pressure cycle discretized at an arbitrary phase
ϕa during third mode excitation fa3 for α = 5◦ at Stl′ = 1.21

in the previous case, the characteristics of the flow and the mechanism of vortex

shedding differ substantially. Evidently, the vortex-shedding mechanism of the upper

and lower shear layers significantly differs. Looking at the upper shear layer, the

ILEV/TEVS mechanism is present. However, the boundary-layer fluid is significantly

more attached to the windward lateral face compared to the α = 0◦ case. This is due

to the incidence angle, which stimulates the shear layer to attach to the windward

lateral face. Furthermore, the Leading Edge (LE) vortex exhibits less vorticity content

and is smaller in comparison to the α = 0◦ case. Conversely, the mechanism for

the lower shear layer is primarily LEVS, characterized by a vortex forming at the

windward lower edge and convecting within the shear layer. Interestingly, the vortex

impinges on the leeward lower edge (trailing edge), but this interaction does not

disrupt the vortex circulation. Instead, it modifies the vortex topology into a more

elliptical shape. Nevertheless, the vortex regains its circular topology in the wake due

to the correlation with the acoustic resonance.

Figure 4.16 shows one complete cycle of the acoustic pressure signal discretized

at an arbitrary phase from the time series. A very similar cycle trend to the case of
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α = 0◦ with also a phase shift between the two peaks equals ϕa ≈ 135◦ which matches

the TE and LE vorticies phasing from the phase-locked vorticity field. Interestingly,

even though, the shedding mechanism is not symmetric from the upper and lower

shear layer, the ILEV/TEVS still dominates the frequency response and the acoustic

resonance modulates the two mechanisms from both shear layers to reproduce an

organized vortex shedding street in the wake.

Therefore, in the case where α = 5◦, the interaction with the third acoustic

mode occurred at two distinct flow velocities, corresponding to the coincidence of

two separate Strouhal lines with the acoustic mode. Nonetheless, the mechanisms of

excitation in both cases differ markedly which is evident from the flow topology and

the acoustic pressure signal. These observations highlight the principle that although

acoustic perturbation serves as an external stimulus, the flow self-selects and sustains

its instability, contingent on favorable frequency alignments with the inherent flow

instability. Comparing the flow topology for the cases of α = 0◦ and α = 5◦ during

resonant conditions and before resonant conditions in Figure 4.8, the flow topology is

substantially different. This emphasize on the fact that, at low incidence angle during

resonant conditions, the flow self-selects an inherent flow instability which is masked

by the coherent turbulent structures and the organised natural vortex shedding.

Figure 4.17 depicts the phase-locked vorticity field corresponding to an incidence

angle of α = 10◦, aligning with a Strouhal number of Stl′ = 0.6. This number corre-

sponds to the lower-slope Strouhal line from Figure 4.10. Capturing the phase-locked

flow field for the higher-slope line coincidence was not achievable due to the narrow

lock-in range and weak excitation. The Strouhal number for this case aligns with

the natural vortex shedding range, evident from the vorticity field displaying natu-

ral shedding in the wake. The upper shear layer is fully attached to the windward

lateral face and sheds from the TE, while the shear layer separates entirely from the
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Figure 4.15: Phase-locked vorticity field with the streamlines superimposed over a
complete acoustic pressure cycle during acoustic third mode excitation fa3 for α = 5◦

at Stl′ = 0.6
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Figure 4.16: Single complete acoustic pressure cycle discretized at an arbitrary phase
ϕa during third mode excitation fa3 for α = 5◦ at Stl′ = 0.6

windward lower edge, forming a vortex and a recirculation zone bounded by the lee-

ward lateral face. This shear layers interaction results in a LEVS/TEVS mode with

the acoustic mode modulating the shedding frequency and locking it to the acoustic

mode frequency over a range of velocities. Intriguingly, the phase difference in vortex

formation between the upper and lower shear layers is virtually nil. Upon examining

Figure 4.18, a pronounced and broad peak is apparent. This peak distinctly illustrates

the synchronized formation of counter-rotating vortices. This synchronization is at-

tributable to that specific incidence angle, which isolates the upper and lower shear

layers. Consequently, the formation of a hyperbolic stagnation point, responsible for

vortex detachment, takes place one time through the shedding cycle after the lower

shear layer vortex has almost passed the cylinder. At this juncture, corresponding to

ϕ = 0◦ in our case, both vortices detach, with the upper shear layer vortex leading

spatially because of the difference in the size of the counter rotating vorticies.

Figure 4.19 illustrates the case where α = 15◦. Here, the shear layer is fully

attached to the windward lateral face, with vortices being shed from the leeward upper

edge. The shear layer extends spatially downstream, with the TE vortex forming at a
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Figure 4.17: Phase-locked vorticity field with the streamlines superimposed over a
complete acoustic pressure cycle during acoustic third mode excitation fa3 for α = 10◦

at Stl′ = 0.29
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Figure 4.18: Single complete acoustic pressure cycle discretized at an arbitrary phase
ϕa during third mode excitation fa3 for α = 10◦ at Stl′ = 0.29
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Figure 4.19: Phase-locked vorticity field with the streamlines superimposed over a
complete acoustic pressure cycle during acoustic first mode excitation fa1 for α = 15◦

at Stl′ = 0.26

certain distance from the leeward face. This configuration results from the incidence

angle which, as with the previous case, segregates the upper and lower shear layers and

shifts the formation of a hyperbolic stagnation point further downstream. However,

in this case (α = 15◦), the vortex formation is out of phase. This is attributed to the

higher incidence angle which allows for a longer vortex formation length for the lower

shear layer, enabling it to interact with the forming upper shear layer vortex. This

interaction induces the creation of a saddle point in an out-of-phase manner.

For the case where α = 75◦, the flow topology within the wake varies significantly
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compared to the previously discussed cases of α = 10◦ and α = 15◦. As depicted in

Figure 4.20, the flow impacts the windward lateral face for this scenario, separating

fully from the windward upper edge and rolling into the wake to form a large-scale

vortex. However, the flow partially separates from the windward lower edge, with

the vortex forming at the leeward lower edge (trailing edge), as evident from Figure

4.20(a). Increasing the incidence angle to α = 90◦, the wake becomes spatially

symmetric in the cross and streamwise directions. The two shear layers experience

significant flapping in the streamwise direction. The leading edge separation induces

the formation of vortical structures. Due to the large suction pressure in the wake,

the shear layer is diverted toward the upper and lower faces and the large-scale vortex

forms at the cylinder trailing edge and starts growing until its centre passes through

the wake centreline at which it detaches from the shear layer and shedding alters its

direction.

The larger vortex cores are due to the larger crosswise cylinder length, which allows

the shear layer to entrain more flow, inducing a higher suction pressure. Furthermore,

since the incidence angle exceeds the symmetric wedge angle, there is significantly

less interaction between the large-scale vortices and the leeward edges. This lack of

interaction allows the growth of vortex circulation to be more pronounced.

Comparing the flow topology for the cases of α > 5◦ under resonant and non-

resonant conditions, the flow topology is not changed but only becomes more coherent

and correlated. The absence of the shear layer instability modes is due to two main

reasons. Firstly, due to the unsymmetrical geometry which does not signify any

flow instability but rather prompts the natural vortex shedding mode. Secondly, the

reduced streamwise length of the rod as the angle of incidence increases makes the

vortex shedding mode dominant.
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Figure 4.20: Phase-locked vorticity field with the streamlines superimposed over a
complete acoustic pressure cycle during acoustic first mode excitation fa1 for α = 75◦

at Stl′ = 0.1
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Figure 4.21: Phase-locked vorticity field with the streamlines superimposed over a
complete acoustic pressure cycle during acoustic first mode excitation fa1 for α = 90◦

at Stl′ = 0.06
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Flow-sound energy transfer under resonant conditions

In our quest to unravel the complex interplay between flow and sound under reso-

nant conditions, and to illuminate the self-selection mechanism of the inherent flow

instabilities, a hybrid model that combines numerical and experimental parameters

is employed. This model assesses the transfer of aeroacoustic energy between the

fluid flow and the resultant acoustic field by implementing Howe (1980) [43] integral

formulation of aerodynamic sound. The sound generated as a result of fluid flow is

as follows

∂2ρ

∂t2
− c20∇2ρ =

∂2

∂xi∂xj

(
ρvivj + pij − c20ρδij

)
. (4.6)

Where vi and vj are the components of the fluid velocity in the i and j directions,

respectively, pij represents the perturbed stress tensor of the fluid, and δij is the

Kronecker delta function, which equals 1 when i = j and 0 otherwise. The term

∂2ρ
∂t2

describes the temporal acceleration of density fluctuations and the term c20∇2ρ

reflects the spatial variation of these density fluctuations. It’s effectively the spatial

”spread” of the acoustic wave.

It is important to note that the density ρ inherits fluctuations which are dependent

on the spatial turbulent stress tensor. The challenge of deriving definitive solutions

for Eq.(4.6) is anticipated, given that this formulation represents an integral variation

of the Navier-Stokes equation. The source term within this equation embodies sev-

eral aspects of fluid dynamics and acoustic interactions. It encompasses not only the

generation of sound but also accounts for self-modulation brought about by acoustic

non-linearity, convective influences from the flow, refractive shifts related to varia-

tions in sound speed, and attenuation stemming from thermal and viscous effects.

Howe (1997) [44] seminal work proposed that the sound generation resulting from

the fluctuating fluid forces driven by a vorticity field can be effectively modeled as
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a dipole source. In a scenario with an incompressible flow field, characterized by

vorticity ω⃗, acoustic particle velocity u⃗a, the acoustic pressure p, which is radiated

from a localized dipole source, can be quantified as per the subsequent equation:

∂2p

∂2t
−∇2p = c0ρ0∇ · (ω⃗ × u⃗a) . (4.7)

Thus, to calculate the acoustic power, denoted as Π, evaluation of the integral (over

a unit area) of the dot product of the vorticity vector ω⃗ and the cross product of the

instantaneous flow velocity vector U⃗ and the acoustic particle velocity vector u⃗a is

performed. This result is then multiplied by the fluid local density to derive the final

acoustic power Π (J/m2).

Π = −ρ
∫
ω⃗ ·

(
U⃗ × u⃗a

)
d∀ (4.8)

The algorithm is designed to calculate both the spatial distribution of net and in-

stantaneous acoustic sources and sinks in proximity to the rectangular cylinder during

self-excited acoustic resonance. This methodology assists in pinpointing the regions

where large-scale vortices function as acoustic sources and the areas where they serve

as sinks. By distinguishing these regions, a deeper understanding is obtained of

the dynamic behavior of vortices in different flow conditions and their influence on

self-excited acoustic resonance. In order to carry out this method, an experimental

measurement of the acoustic pressure during resonance is required to ascertain the

acoustic pressure (Prms). Phase-locked Particle Image Velocimetry (PIV) is conducted

at eight distinct phases of the acoustic pressure cycle to define the two-dimensional

velocity field. Subsequently, the vorticity field (ω⃗) is computed using the eight-point

circulation method suggested by Raffel et al. (2018) [97].

Next, a numerical simulation is carried out to derive the two-dimensional spatial
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distribution of the acoustic particle velocity at the mid-plane, which aligns with the

plane where the PIV measurements are conducted. The solution to the Helmholtz

equation, calculated through a finite element analysis (FEA), provides the distribution

of both acoustic pressure and acoustic particle velocity at the selected plane for various

acoustic transverse modes. The Helmholtz equation for sound pressure in a moving

fluid is given as follows:

∇2φ+ k2φ = 0, (4.9)

where ∇2 is the Laplacian operator and the k = 2πfa/c is the wavenumber. The

acoustic pressure as a function of time can be modeled as a simple harmonic wave as

follows:

p(x, y, z, t) = φ(x, y, z)ei(2πfa)t (4.10)

Solving Eq. (4.9) and (4.10) over the two-dimensional domain with 30l upstream and

downstream distance to employ the zero acoustic pressure boundary condition. The

domain is discretised with quadrilateral mesh. Euler’s equation is used to derive the

acoustic particle velocity distribution from the acoustic pressure distribution

ρ
∂u⃗a
∂t

= −∇p (4.11)

To obtain the spatial field of the acoustic particle velocity U⃗a at the frequency of

excitation, equation (4.11) is integrated giving the following

U⃗a(x, y, z) =
∇p̂(x, y, z)

2π · ρ · fa1,a3,a5
, (4.12)

Where Prms is acoustic pressure (rms) obtained experimentally and p̂(x, y, z, t) is

the spectral amplitude of the pressure distribution obtained after solving Eq. (4.9)

and (4.10) numerically. It is important to note that the acoustic particle velocity U⃗a
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leads the acoustic pressure by 90◦ during acoustic resonance ( [3]). Thus, the acoustic

particle velocity vector as a function of time u⃗a(x, y, z, t) is calculated as follows over

the acoustic pressure cycle

u⃗a(x, y, z, t) = U⃗a(x, y, z)e
i(2πfat+π/2). (4.13)

Afterward, all the needed parameters are plugged into Eq. (4.8) to compute the instan-

taneous and net acoustic pressure Π(x, y, t). Figure 4.22 summarizes the methodology

used to compute the acoustic power production.

Figure 4.23(a, b) shows the instantaneous acoustic power (Π) calculated at two

instants of the acoustic pressure cycle ϕ = 0◦ and ϕ = 180◦ respectively along with the

computationally obtained acoustic particle velocity distribution for the case α = 0◦.

Figure 4.23(c, d) resembles the normalized net acoustic power. To compute the net

acoustic power, the acoustic power is integrated within a transverse spatial bound

y = ±2h and streamwise spatial bound −2 < x/h < 4. Plotting the acoustic energy

transfer can provide valuable understanding of the vortex formation process and the

areas where positive or negative energy exchange occurs between the flow and the

sound field. Positive acoustic power values indicate that the region is acting as an

acoustic source. This implies that the flow is continuously transmitting energy to the

sound field to maintain a resonant condition. On the other hand, a negative value of

the acoustic power highlights a region where there is a local acoustic sink as the flow

is absorbing energy from the flow field to correlate and sustain the large-scale vortical

structures. In the discussed cases, the third acoustic mode is excited, where the

acoustic particle velocity is in the negative direction around the cylinder at acoustic

pressure phase ϕ = 0◦ and positive at acoustic pressure phase ϕ = 0◦. As shown in

Figure 4.23(a), an acoustic sink is present within the upper vicinity of the rod and at
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the upper TE. This matches the finding in Figure 4.11(a), as this phase corresponds

to the formation of a trailing edge vortex and the convection of a LE vortex within

the upper span of the cylinder. Afterwards this vortex turns into an acoustic source

as it shed downstream at ϕ = 180◦. Looking at the net normalized acoustic power

distribution in Figure 4.23(c, d), alternating acoustic sources and sinks are present

within the span of the cylinder, which is attributed to the LE vortex alternating

between being a source and a sink as the acoustic particle velocity is alternating.

This is a strong evidence that the LE vortex fully forms at the LE and, as it convects

downstream to the TE, it contributes to the acoustic field. A strong acoustic sink is

present just downstream of the cylinder. This is attributed to the formation of TE

vorticies as the vortex formation process absorbs energy from the acoustic field. Such

findings elucidate the synchronization between the LE vorticies, TE vorticies and the

acoustic field to sustain the ILEV/TEVS instability.

Moving to the case of α = 5◦ at Stl′ = 1.21, Figure 4.24 shows that at the two

out of phase instants, there is a stream of acoustic sources and sinks within the shear

layer alternating between the upper and lower shear layers as the acoustic particle

velocity switches its direction. This is because the vortex production is continuous

and is within the shear layer as evident from Figure 4.13. Looking at the net acoustic

power distribution, local alternating sources and sinks are present with the upper

and lower shear layers. This outlines the isolation between the upper and lower

shear layers, since there is no spatially extended source or sink in the transverse

direction. Interestingly, a significant acoustic source is present at the upper TE of

the cylinder. Looking back at Figure 4.13, it is obvious that this point is a shear

layer impingement point that generates sound and acts as an acoustic source over the

pressure cycle. Moreover, Figure 4.24(d) depicts two sinusoidal net acoustic power

alternations compared to only one observed for the previous case. This is attributed
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Figure 4.23: Instantaneous acoustic power (Π) calculated at two instants of the
acoustic pressure cycle ϕ = 0◦ and ϕ = 180◦ respectively with the acoustic particle
velocity Ua vectors superimposed (a, b); normalized net acoustic power over one
pressure cycle (Πh/U3

∞) (c, d) during third acoustic mode excitation fa3 for α = 0◦

at Stl′ = 0.6.
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Figure 4.24: Instantaneous acoustic power (Π) calculated at two instants of the
acoustic pressure cycle ϕ = 0◦ and ϕ = 180◦ respectively with the acoustic particle
velocity Ua vectors superimposed (a, b); normalized net acoustic power over one
pressure cycle (Πh/U3

∞) (c, d) during third acoustic mode excitation fa3 for α = 5◦

at Stl′ = 1.21

to the different mode number of ILEVS/TEVS shedding mode associated with each

case. Figure 4.25 shows the instantaneous and total acoustic power for the same angle

of incidence α = 5◦ but at the point of coincidence with Stl′ = 0.6. The acoustic

source and sinks are similar to the case of α = 0◦ with a strong acoustic sink forming

at the TE at ϕ = 0◦ which corresponds to the formation of the TE vortex. This

emphasizes on the fact the shedding mechanism for these two cases at these point of

coincidence is the same which is ILEV/TEVS with n=1.

At α = 10◦, which corresponds to a natural shedding mode, the net acoustic power

is negative in the near wake due to the formation of large-scale vortices. However,

there is no net power production or absorption along the span of the cylinder as

evident from Figure 4.26. This is due to the absence of LE vortices which is evident
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Figure 4.25: Instantaneous acoustic power (Π) calculated at two instants of the
acoustic pressure cycle ϕ = 0◦ and ϕ = 180◦ respectively with the acoustic particle
velocity Ua vectors superimposed (a, b); normalized net acoustic power over one
pressure cycle (Πh/U3

∞) (c, d) during third acoustic mode excitation fa3 for α = 5◦

at Stl′ = 0.6
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Figure 4.26: Instantaneous acoustic power (Π) calculated at two instants of the
acoustic pressure cycle ϕ = 0◦ and ϕ = 180◦ respectively with the acoustic particle
velocity Ua vectors superimposed (a, b); normalized net acoustic power over one
pressure cycle (Πh/U3

∞) (c, d) during third acoustic mode excitation fa3 for α = 10◦

at Stl′ = 0.29

from figure 4.17. So, the vortex formation and convection are mainly present in the

cylinder wake.

4.3.3 Conclusions

Flow visualization methodologies have clearly demonstrated that the wake structure

of a rectangular cylinder with an aspect ratio (AR) of 2 is strongly influenced by

the incidence angle under non-resonant conditions. Furthermore, under acoustic per-

turbations triggered during resonance excitation, the inherent shear layer instability

with a Stl′ = 0.6n can couple with an acoustic transverse mode given a frequency

coincidence. However, this instability is completely undetectable under non resonant
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conditions.

In the case of an incidence angle of α = 0◦, the ILEV/TEVS instability mode

with n = 1 arises when its frequency synchronizes with the third transverse acoustic

mode. This ILEV/TEVS instability mode was reported in the literature only when

the aspect ratio of the cylinder was much larger than 3 (i.e. AR > 3) under non-

resonant conditions. For an incidence angle of α = 5◦, the ILEV/TEVS instabilities

of n = 1 and n = 2 are observed under resonant conditions at different flow velocities.

These different velocities correspond to the coincidence of two separate Strouhal lines

with the third acoustic mode. The ILEV/TEVS instability of n = 2 is reported in

the literature for 6 < AR < 9 under non-resonant conditions. Such observations

underscore that the combined effect of the angle of incidence and self-excited acoustic

resonance can exert a substantial influence on the effective streamwise length of the

cylinder. Beyond α = 5◦, only natural vortex shedding, characterized by a hybrid

LEVS/TEVS mode, is observed under both resonant and non-resonant conditions.

However, during resonance, an increase in the correlation and vortex strength is

noted. The work presented in this chapter shows that the excited resonant mode

that was reported in the literature by Stokes & Welsh (1986) [121] is in fact due

to a coupling with the inherent ’ILEV’ instability as reported by Nakamura et al.

(1991) [79].

160



Chapter 5

Conclusions and Recommendations

5.1 Summary and conclusions

This research has furnished a wealth of experimental results, deepening our under-

standing of the complex interplay between flow and sound in the context of rectangular

cylinders. By investigating a variety of factors such as aspect ratios, edge geometries,

and angles of incidence, we have broadened the scope of our knowledge in this area.

The findings elucidated intricate mechanisms governing fluid-structure interactions,

shedding light on how physical characteristics of rectangular cylinders influence these

complex dynamics. This, in turn, lays a robust foundation for future work in this

realm, further driving advancements in the field. Here is a list of the main conclusions

of this study:

1. The cases with l/h = 1 and l/h = 0.5 displayed standard vortex shedding

progression, locking in to the initial acoustic mode with Strouhal numbers of

0.14 and 0.06 respectively. For the situations where l/h = 2, both scenarios with

all-sharp edges and downstream-rounded edges showcased similar aeroacoustic

responses. Both had a Strouhal number of Stl ≈ 0.16 − 0.18, coupled with a
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sudden excitation of the third acoustic mode. In contrast, cases with upstream-

rounded edges and fully rounded edges exhibited a Strouhal number of Stl ≈

0.5 − 0.52, along with a conventional excitation of both the first and third

acoustic modes in sync with the frequency of wake shedding. The interaction

mechanism between the duct’s higher acoustic modes and the obscured shear

layer instability is contingent upon the rod’s length, l. Therefore, to prompt an

early excitation of the duct’s third transverse acoustic mode, the rod length l

should be adequately lengthy.

2. Outside of acoustic resonance excitation, rounding the upstream edge appeared

to significantly reduce the dynamic lift force due to the absence of the leading

edge vorticies and the major change in the Strouhal number.

3. The onset of shear layer instability which is only self-excited by acoustic coupling

impose significantly less hydrodynamic loading on the cylinder.

4. The unexpected excitation of the third acoustic mode in cases with sharp edges

and downstream-rounded edges can be attributed to the couple between the

shear layer instability shedding mode and the duct’s acoustic mode. While

this mode was entirely obscured prior to the early initiation of the third mode,

it seems the third acoustic mode served as an external forcing element. This

reinforced the mode and established a coupling with it, thereby manifesting

acoustic resonance. This is evident from the phase-locked PIV measurments

performed. The wake structure of a rectangular cylinder with an aspect ratio

(AR) of 2 is significantly influenced by the incidence angle under non-resonant

conditions, as revealed by flow visualization methodologies.

5. Under resonant conditions, the masked shear layer instability with a Stl′ =

0.6n can engage in a coupling with an acoustic transverse mode if a frequency
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coincidence exists. This instability, however, remains undetectable under non-

resonant conditions.

6. For an incidence angle of α = 5◦, the ILEV/TEVS instabilities of n = 1 and

n = 2 are observable under resonant conditions at differing flow velocities.

These velocities correspond to the coincidence of two separate Strouhal lines

with the third acoustic mode. The ILEV/TEVS instability of n = 2 is reported

for 6 < AR < 9 under non-resonant conditions.

7. The combined influence of the angle of incidence and self-excited acoustic res-

onance can substantially affect the effective streamwise length of the cylinder.

8. Beyond α = 5◦, only natural vortex shedding, characterized by a hybrid LEV-

S/TEVS mode, is observed under both resonant and non-resonant conditions.

Nonetheless, during resonance, the correlation and vortex strength increase.

5.2 Recommendations for future investigations

To complement this study, some other investigations can be done to further un-

derstand the complex interaction between flow and sound during resonance during

acoustic resonance excitation. Here are some suggested avenues for future research:

1. Future work should explore aspect ratios greater than 2, which naturally exhibit

ILEV/TEVS shedding patterns. It would be insightful to understand how self-

excited acoustic resonance impacts these specific shedding patterns, potentially

influencing their onset, magnitude, and frequency.

2. Investigate the combined influence of the angle of incidence and edge modifica-

tions, such as chamfering and rounding, during self-excited acoustic resonance.
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This could shed light on how these factors work in conjunction to affect the

overall dynamics and acoustics of the system.

3. Another promising area of investigation involves examining the concurrent in-

fluence of forced oscillation and acoustic resonance on the shear layer’s response.

Such a study could provide vital insights into the complex interplay between

these factors and further our understanding of fluid-sound-structure interac-

tions.

4. Stoneman et al. (1988) [122] introduced noteworthy findings regarding the re-

lationship between the cross-stream length and spacing of cylinders in tandem

configurations in relation to the acoustic pressure generated during resonance.

However, to better comprehend this intriguing relationship and its implications,

a more comprehensive study could be carried out. For instance, investigating

different aspect ratios would provide an understanding of how the this ratio af-

fects the acoustic response. Moreover, varying the spacing ratio, or the distance

between the cylinders in comparison to their cross-stream length, can elucidate

the role of spatial arrangement in acoustic resonance. These investigations can

lead to the establishment of proximity and isolation criteria for rectangular

cylinders placed in tandem arrangements.

5. A key recommendation is to perform direct measurements of the hydrodynamic

loading on the rectangular cylinder for all previously mentioned studies. As

indicated in our research, changes in the behavior of the shear layer could have

significant effects on hydrodynamic loading. Future studies need to consider

these effects for a more comprehensive understanding of flow-structure interac-

tions.
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Appendix A

Appendices

A.1 Particle Image Velocimetry (PIV)

To estimate the uncertainty in the PIV measurements, correlation statistics analysis

is applied through DaVis 12.0 software. This type of analysis utilizes different factors

to estimate the uncertainty such as:

1. Uneven seeding distribution throughout the plane of interest.

2. Background noise due to reflections.

3. Camera focus adjustments.

4. window size for interrogation during post-processing.

The case of AR = 2 at a velocity U∞ = 19.32m/s under non-resonant conditions is

utilized for this analysis. 1200 images are captured after which statistical averaging is

performed to construct a time-averaged or phase-averaged flow field. The uncertainty

in the flow velocity in the x-direction is obtained with 95% confidence. Figure A.1

shows the uncertainty distribution. We can see that the maximum value is within
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00.3 0.15
Figure A.1: Uncertainty of time-averaged flow velocity decomposed in the streamwise
direction for the case of AR = 2 and α = 0◦

the shear layer right after separation and is equal to 0.29m/s. The error percentage

can be calculated as follows:

Error =
ϵu
U∞

· 100 = 1.5% (A.1)
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