
Efficient Design of Reconfigurable
Intelligent Surface Assisted Multi-group

Multicast Beamforming

by

Mohammad Ebrahimi

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Masters of Applied Science in Electrical and Computer
Engineering

The Faculty of Engineering and Applied Science

Department of Electrical and Computer Engineering

University of Ontario Institute of Technology(Ontario Tech
University) Oshawa, Ontario, Canada

September 2023

© Mohammad Ebrahimi, 2023



THESIS EXAMINATION INFORMATION

Submitted by: Mohammad Ebrahimi

Masters of Applied Science in Electrical and Computer Engineering

Thesis title: Efficient Design of Multi-group Multicast Beamforming via Reconfigurable
Intelligent Surface

An oral defense of this thesis took place on September 25, 2023 in front of the

following examining committee:

Examining Committee:

Chair of Examining Committee : Dr. Akramul Azim

Research Supervisor : Dr. Min Dong

Examining Committee Member : Dr. Shahram ShahbazPanahi

Thesis Examiner: Dr. Ying Wang, Faculty of Engineering and

Applied Science, Ontario Tech University

The above committee determined that the thesis is acceptable in form and content

and that a satisfactory knowledge of the field covered by the thesis was demonstrated

by the candidate during an oral examination. A signed copy of the Certificate of

Approval is available from the School of Graduate and Postdoctoral Studies.

ii



Abstract

This thesis considers a multi-group multicasting scenario facilitated by a reconfig-

urable intelligent surface (RIS). We propose low-complexity scalable algorithms for

the joint design of the base station (BS) multicast beamformer and the RIS passive

beamformer to minimize the transmit power subject to the quality-of-service (QoS)

constraints and maximize the minimum quality-of-service among all users mainting

a power budget constraint which is also known as max-min fair (MMF) problem.

By exploring the interaction of the BS and RIS beamforming in the QoS problem,

we formulate two subproblems, a BS multicast QoS problem and a RIS max-min-fair

multicast problem, to be solved alternatingly. Our alternating multicast beamforming

approach (AMBA) not only enables us to exploit the optimal multicast beamforming

structure at the BS, but also allows us to employ a fast first-order projected subgradi-

ent algorithm (PSA) to solve the RIS MMF subproblem. Furthermore, we show that

QoS problem and MMF problem in our RIS-aided scenario are inverse problems, and

by using the optimal beamforming structure for BS beamformer, we propose a low

complexity and efficient algorithm to solve MMF problem as well. The mentioned

algorithm first reformulate the MMF problem by turning the two objective parame-

ters in MMF problem (BS and RIS beamforming vectors) into a single one and then

iii
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employs fast first-order projected subgradient algorithm here, and at the same time

avoids usual alternating process which is commonly used for two-objective parameters

problems. After analysing the multicast scenario, we will show that our algorithms is

applicable for general case of unicast as well. Simulation results show the effective-

ness of our proposed alternating approach for QoS problem and its advantage in terms

of both performance and computational complexity over other alternative methods.

Further simulations show the behavior of our PSA-based algorithm for MMF problem

for different set-up parameters, and its effectiveness over similar proposed methods in

special cases.

Keywords: multicast; reconfigurable intelligent surface (RIS); beamforming, opti-

mal solution structure; projected subgradient algorithm (PSA)
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Chapter 1

Introduction

1.1 Overview

Over the past few decades, mobile communication technology has undergone remark-

able evolution. The introduction of the fourth generation (4G) wireless technology

was a pivotal moment in mobile communication. Rolled out in the late 2000s, 4G

wireless networks offered significant advancements over its predecessor, 3G networks.

It provided faster data speed, improved network reliability, and the capability to

support data-intensive activities such as video streaming and mobile gaming. This

innovation reshaped the mobile landscape, fostering the growth of smartphones and

app ecosystems, fundamentally altering how people consume multimedia and inter-

act with technology on the move. Furthermore, it made possible the invention of

new technologies such as Internet of Things (IoT), Internet of Vehicles (IoV), and

machine-to-machine (M2M) communications.

The increasing demand for higher data rate, lower latency, and greater network

capacity to support a growing array of data-intensive applications and devices, posed

significant challenges for 4G networks, pushing the systems to their limits in handling

the soaring demand placed upon them. To address these challenges and meet the re-
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quirements of the modern era, the 5th generation (5G) networks have been developed.

The 5G networks offer ultra-high data rates, extensive coverage, and seamless connec-

tivity while ensuring ultra-low latency and energy consumption [1–10]. In particular,

massive Multiple-Input Multiple-Output (MIMO) is the underpinning technology for

5G networks to cope with the ever-increasing growth in wireless traffic and high data

rate service demands. Massive MIMO utilizes a large number of antennas at the base

station (BS) to form transmission beams for multi-user data transmission to improve

data throughput and increase network capacity. This technology can significantly

enhance spectral efficiency and enable better spatial multiplexing of data to multiple

users simultaneously. Massive MIMO-based transmission design holds both promise

and challenges. Optimizing arrays of numerous antennas requires balancing power

allocation, interference management, and efficient communication channels. Yet, the

computational complexity of processing abundant data from these arrays can lead

to latency and resource concerns. In response, numerous research efforts have been

devoted to developing advanced algorithms that navigate these complexities, aiming

to harness the potential of massive MIMO systems effectively [11–13].

1.1.1 Multicast Beamforming

With the rise of data-heavy tasks such as social medias with millions of users, and the

need of sending the same information to groups of users at once, multicasting has be-

come necessary. Instead of sending the same data separately to each user, multicasting

transmits it to a group of users all at once, saving radio resources and reducing network

congestion. This is crucial for tasks like live video streaming, distributing software
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updates, and efficiently sharing data with multiple devices. Multi-antenna multicast

beamforming is a physical layer transmission technique that can efficiently deliver

common messages to multiple users simultaneously, enabling rapid content distribu-

tion in wireless systems. Multicast beamforming design has been investigated for a

single-group scenario [14], multiple-group scenario [15–17], multi-cell networks [18,19],

relay networks [20–23], cognitive radio networks [24–27] and cloud-radio networks [28].

Unlike unicast beamforming that uses dedicated beam for transmitting private data

to each user [29], tackling multi-group multicast beamforming problems is challeng-

ing since these problems fall into the category of non-deterministic polynomial-time

hard (NP-hard) problems. Different optimization algorithms or signal processing

techniques have been developed to provide design solutions for various transmission

scenarios or systems in the literature [14, 30–33]. Most of these works have utilized

numerical algorithms to find approximate solutions with good performance.

1.1.2 Reconfigurable Intelligent Surface

With new applications such as real-time holographic communication or Augmented

Reality (AR), the quest for ultra-high data rates, remarkably low latency, and the

efficient management of a sprawling network of interconnected devices has pushed

the boundaries of the 5G technologies. One important technology that has emerged

recently to aid wireless networks to evolve them into future beyond 5G (B5G) such as

the sixth-generation (6G) is reconfigurable intelligent surface (RIS). RIS uses a pla-

nar surface consisting of passive reflective elements to control the phase shifts of the

reflected wireless signal towards the desired direction. Furthermore, regarding to its
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passive reflective nature, it consumes a neglecting amount of power [34]. By locating

RIS between the BS and users and forming passive beamforming via the RIS path,

RIS can actively control and improve the wireless propagation channel conditions,

and thus creates a smart reconfigurable wireless environment to enhance communica-

tions performance [35,36]. RIS-assisted designs have been explored in a wide range of

wireless applications for performance enhancement in the recent literature, including

coverage, spectral efficiency, and power consumption [37–40]. In densely populated

cities where sky-scraper and other city structures block the direct line-of-sight signals

from the transmitter that results in weak channel conditions, RIS provides promising

opportunities to create a RIS path to strengthen wireless channels as well as mitigate

interference among users. As wireless multicasting becomes increasingly popular to

support content distribution and delivery in future wireless services and applications,

it is important to investigate how to effectively utilize RIS to enhance the wireless

prorogation environment to improved multicast performance. Although adding RIS to

wireless networks add a significant challenge to solve beamforming problems, it will

come with numerous benefits. The integration of reconfigurable intelligent surface

technology into both multicast and unicast communication scenarios offers a multi-

tude of benefits that significantly enhance the efficiency and performance of wireless

networks. In multicasting, RIS aids in directing signals towards multiple recipient

groups simultaneously, effectively mitigating interference and enabling tailored signal

shaping for each group. This not only improves the overall spectral efficiency but

also enhances coverage and signal strength, resulting in more reliable multicast trans-

missions. Similarly, in unicast scenarios, RIS technology optimizes signal paths by
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dynamically adjusting phase and amplitude, resulting in precise beamforming that

enhances signal quality, reduces interference, and extends coverage. These benefits

collectively translate into increased network capacity, improved quality of service,

and seamless connectivity, making RIS-aided multicasting and unicast communica-

tion pivotal in addressing the growing demands of modern wireless networks.

1.2 Motivation and Objective

In practical downlink multicast scenarios, multicast beamforming performance typ-

ically is limited by the weakest user in a group with the worst channel condition.

This limitation by the wireless prorogation environment cannot be improved by mul-

ticast beamforming design optimization. To break this barrier, RIS offers a promising

solution by intelligently manipulating the wireless propagation environment. In par-

ticular, RIS can form passive beamforming by controlling the phase shifts of the

reflective elements, which effectively controls the signal paths and and improves the

channel conditions among users to enhance the multicast beamforming performance.

With this potential, it is important to investigate RIS-assisted multicast beamforming

design to enhance the wireless multicast performance. This enables the optimization

of resource allocation to achieve both fairness and enhanced system performance si-

multaneously. The ability of RIS to adaptively modify the wireless environment has

the potential to revolutionize wireless communication systems, enabling equitable and

efficient utilization of network resources. The promising enhancement of the RIS come

with numerous challenges. As we discussed earlier, transmit multicast beamforming

is already an NP-hard optimization problem. Adding RIS, which typically contains
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a large number of reflective elements, into the system will increase the overall design

difficulty in term of joint beamforming design and finding a computationally efficient

solution.

Motivated by the above, in this thesis, we consider the joint design of active

beamforming at the BS and passive beamforming at the RIS in a general multi-group

multicasting scenario. We consider two commonly considered problem formulations

for the joint beamforming design: the quality of service (QoS) problem, which is to

minimize transmission power while meeting the QoS target requirements at users;

the max-min fair (MMF) problem, which is to maximize the minimum QoS measure

among users subject to the BS transmit power constraint. Our goal is to design

high-performing algoirthms that are also computationally efficient.

1.3 Thesis Contribution

This thesis aims to provide an efficient mulitcast beamforming design for an RIS-

assisted downlink multi-group multicast scenario. In this thesis, both the QoS and

MMF problems are considered for the joint beamforming design. That is to mini-

mize the transmit power subject to the signal-to-interference-and-noise ratio (SINR)

requirements at users, and to maximize the minimum SINR among all users subject

to the BS transmit power budget constraint. The primary contributions of this thesis

can be summarized as follows:

• We propose a fast alternating multicast beamforming approach for the QoS

problem. We explore the structure of the QoS problem in terms of the inter-

action of the BS multicast and RIS passive beamforming to transform it into
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a favorable format. The resulting joint optimization problem can be naturally

broken into two subproblems to be solved using alternating optimization tech-

nique. The two subproblems are essentially two types of multicast beamforming

problems: the BS multicast beamforming QoS subproblem, and the RIS pas-

sive multicast beamforming MMF subproblem. We can judiciously exploit the

optimal multicast beamforming structure to efficiently solve the BS multicast

subproblem. Furthermore, for the RIS beamforming subproblem, we propose to

adopt a first-order projected subgradient algorithm (PSA) [41] to solve it, which

has simple closed-form updates and convergence guarantee.

• For the MMF problem, we first show the inverse relationship between the QoS

and MMF problems for the RIS-aided multicast beamforming. Then, we use the

optimal BS beamforming structure again to transform the MMF problem into

an equivalent form, for which employs PSA to solve it with low computational

complexity. In particular, we propose a PSA-based iterative algorithm to acquire

a sub-optimal solution for both BS and RIS beamforming vectors using closed-

form expression updates and convergence guarantee.

• We show that our overall approach for multi-group multicasting scenario is

applicable to the general downlink multiuser unicast beamforming design as

well.

• Finally, simulation results demonstrate the effectiveness of our proposed algo-

rithms for both QoS and MMF problems in both performance and computational

complexity over other alternative methods.
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The research work from this thesis has resulted in the following accepted or in

preparation publications:

• M.Ebrahimi,and M.Dong, “Efficient Design of Multi-group Multicast Beam-

forming via Reconfigurable Intelligent Surface,” in the 57th Asilomar Conference

on Signals, Syst., Compt., Asilomar, California, USA, October 29 to November

1, 2023.

• M.Ebrahimi, and M.Dong, “Efficient Design of Reconfigurable Intelligent Sur-

face Assisted Downlink Multiuser Beamforming,” in preparation to be submitted

to IEEE journals.

1.4 Thesis Organization

The subsequent sections of this thesis are structured in the following manner. In

Chapter 2, literature review on RIS-aided beamforming techniques, and benefits and

challenges of this newly developed technology is presented. In Chapter 3, we propose

our alternating multicast beamforming algorithm for the RIS-aided multicast QoS

problem, and reformulate the QoS problem into the desired shape. Furthermore,

we propose our fast algorithm to solve QoS beamforming problem, and generalize it

to unicast scenario. In Chapter 4, we disscuss the connection between the QoS and

MMF problems and propose a first-order fast algorithm to solve it. Chapter 5 provides

simulation study for our proposed algorithms for the QoS and MMF problems, and

Chapter 6 presents the conclusion and future work.
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1.5 Notations

The main notations used in this thesis are summarized below. The symbols used to

represent Hermitian, transpose, and conjugate are (.)H , (.)T , and (.)∗, respectively.

The Euclidean norm of a vector is symbolized by ∥.∥. The symbol a ≽ 0 represents

element-wise nonnegative. When referring to a matrix, A ≽ 0 indicates that matrix

A is positive semidefinite. The trace of matrix A is denoted as tr(A). The real part

of x is represented as Re{x}, and E(x) denotes the expectation of x. The abbre-

viation i.i.d. stands for independent and identically distributed, and signifies that

x ∼ CN (0, I) is a complex Gaussian random vector with zero mean and covariance I.



Chapter 2

Literature Review

2.1 Downlink Beamforming

Downlink beamforming, a critical technology in wireless communication systems,

plays a pivotal role in optimizing the efficiency and quality of data transmission.

By directing the transmission of signals from a BS towards individual users or devices

with precision, downlink beamforming enhances signal strength, mitigates interfer-

ence, and increases overall network capacity. This technology enables the customiza-

tion of signal delivery, focusing on specific areas or users, thereby improving network

coverage and user experience in high-density environments. Downlink beamforming

also contributes to energy efficiency (EE) by minimizing wasteful broadcasting and

reducing power consumption. In essence, downlink beamforming revolutionizes wire-

less communication by maximizing the utilization of available resources, improving

spectral efficiency, and ensuring seamless connectivity, making it an indispensable tool

for modern communication networks and their ability to meet the escalating demands

of data-driven applications and services. In following subsections, we explain briefly

about the literature works in this area.
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2.1.1 BS Active Beamforming

Beamforming represents a signal processing method to transmit signals directionally,

aiming to enhance signal strength at the desired recipient while minimizing signal

interference with neighboring users in the vicinity. In conventional downlink commu-

nication systems, beamforming was only done at the BS, and because it consumes

power for transmission, we will refer to it as active beamforming. As we mentioned

earlier, beamforming can be used for both unicast and multicast wireless systems.

2.1.2 Unicast Beamforming

In unicast beamforming the BS will send a distinct message to each indivdual user.

This technique is one of the most common one in the field of wireless data transmission.

As we mentioned in the previous chapter, unicast beamforming has been studied

extensively in the past [29, 42–46]. In the context of downlink multi-user unicast

beamforming, an uncomplicated closed-form solution for the problem of minimizing

power has been derived in [44]. This solution exhibits a straightforward and easily

understandable configuration, requiring just a single user-specific design parameter.

2.1.3 Multicast Beamforming

In multicasting, the BS sends a common message to each group of users. Multicasting

brings about various advantages and challenges. One of the primary benefits is its

ability to efficiently deliver data from a single source to multiple receivers, reducing

the need for redundant transmissions and conserving valuable bandwidth. Multicast-

ing can also enhance network scalability by reducing the overall load on the network
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infrastructure. However, wireless multicasting design faces many challenges. The

issue of ensuring reliable and synchronized delivery of data to all intended recipi-

ents in a wireless environment can be complex, as interference, fading, and varying

signal strengths can impact reception quality. Numerous works has been done to

find the best approach for multicast beamforming for both the QoS and MMF prob-

lems. The first work on multicast beamforming design considered a system with just

a single group [14]. The design approach was later extended to multi-group multi-

casting [15–17]. The earlier literature works adopted semi-definite relaxation (SDR)

approach [14–17,30], but SDR has a high computational complexity, especially when

used in large-scale problems where BS is equipped with a large number of antenna,

and as an approximate method, its performance deteriorates as the problem size be-

comes large. and inaccurate. With the number of antennas increasing, the successive

convex approximation (SCA) technique has become more attractive for its lower com-

putational complexity and better performance [32,33]. In order to face the challenges

posed by computational complexity, new multicast beamforming technique that re-

duced complexity has been introduced for large-scale MIMO systems which designed

to serve multiple groups [47], and the mentioned problem has been further studied

in [48] using alternating direction method of multipliers (ADMM). Later in [49, 50]

the multi-group secnario has extended to multi-cell, and low-complexity beamforming

techniniqes have been introduced for large-scale problems.

The optimal multi-group multicast beamforming structure was recently obtained

in [51]. This structure has been exploited to develop fast and scalable algorithms

for large-scale multicast beamforming problems in massive MIMO systems [41, 52].
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Furthermore, by using the inverse relationship between QoS and MMF problems [53],

it is also shown in [51] that a solution to MMF problem can also be obtained using

the optimal beamforming structure. By utilizing the optimal structure, a fast first

order algorithm based on the projected subgradient algorithm (PSA) was proposed

in [41] to find a sub-optimal solution to MMF problem. Finally, by utilizing the op-

timal beamforming structure, in [54] a combination of unicast and multicast scenario

has been analyzed and a fast closed-form based iterative algorithm introduced using

ADMM.

2.2 RIS-Aided Downlink Beamforming

By introducing RIS into wireless communication systems, It is shown that a joint

beamforming operation can be done at both the BS and RIS. This opens a path to new

opportunities to enhance quality of data transmission in unicast and multicast wireless

systems. RIS-aided downlink beamforming stands as a transformative advancement in

wireless communication systems to increase the capacity of wireless network for data

transmission. By intelligently manipulating the phase and amplitude of incoming

signal, RIS technology enables precise control over the direction of the transmitted

message. This capability holds paramount importance in enhancing the performance

of downlink communication. Like the conventional downlink systems, here we can

categorize the beamforming problems into two unicast, and multicast as well.
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2.2.1 RIS-Aided Unicast Beamforming

Unicast beamforming in RIS aided downlink systems has been analyzed in several

works. The idea of joint active and passive beamforming was first introduced in

[35, 55]. In this terminology, beamforming at RIS is referred as passive since in most

RIS aided systems, RIS elements only change the phase of the received signal, and

considered as passive elements, but in [56], an special reflective surface is used for

RIS, which has the ability of damping the power of received signal as well. Analysis

in [35, 55] coveres unicast beamforming for single user and multi-users system by

considering QoS problem. The algorithm presented in [35] is based on alternating

optimization (AO) between power minimization at base station and aligning the phase

of direct path and RIS-created indirect path between BS and users, at RIS. This idea

comes from this fact that in alternating optimization algorithm, by considering a

constant value for BS active beamformer, the QoS problem will reduce to feasibility

problem and stops searching after the first round. In [55] the beamforming at RIS only

consider the feasibility problem. Both [35, 55] consider SDR as the main numerical

method to solve QoS problem in their algorithms. In [57] the MMF problem for a

multi-user unicast problem has been analysed using Optimal Linear Precoder (OLP)

method, and [58] uses alternating descend round to maximize the users’ worst rate

which is equivalent to the MMF problem. [58] also study the mentiond problem in both

cases of proper and improper Gaussian signalling. Furthermore, in [37, 38], solutions

to sum-rate maximization and energy efficiency maximization problems have been

presented using different numerical methods in different situation where beamformer
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is aware and not aware of perfect channel state information (CSI).

2.2.2 RIS-Aided Multicast Beamforming

Adding RIS to a multicasting wireless communication system, will add more challenges

to the mentioned problems, because usually RIS is considered as a passive elements

which only changes the phase of received signal. Although this feature makes the

design of physical layer easier, it adds a unit modulus constraint for RIS elements to

both the QoS and MMF problems which is highly non-linear and non-convex.

RIS-assisted multicast beamforming design has recently been investigated for the

single-group [59,60] and multi-group settings [61–63]. For the first group of problems,

it is shown that using RIS for the purpose of phase-alignment between the direct path

from BS to users and indirect path through the RIS is a favorable approach, and for

the latter that contains inter-group interference, joint BS and RIS beamforming opti-

mization for maximizing sum group rate was considered in [61,62]. Specifically, with

alternating optimization (AO), [61] proposed bounding and smoothing techniques,

along with a majorization minimization method. In [62], the smoothing technique

was applied directly to the rate objective, along with a low-complexity alternating

projected gradient algorithm to improve performance and reduce computational com-

plexity. In [63], for an RIS-assisted symbiotic radio multicast system that includes

the primary receivers and an internet-of-things receiver, transmit power minimization

subject to the quality-of-service constraints, i.e., the QoS problem, was considered,

where using AO with SDR was proposed. However, since SDR incurs high computa-

tional complexity for a large number of RIS elements and BS antennas, the method is
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impractical for large-scale systems. Furthermore, in [64], problem QoS is approached

using AO and SDR with the help of two layers of iterative algorithms and difference-

of-convex (DC) function to force SDR method to converge to a rank 1 solution and

reduce the inaccuracy of this method, the efficiency of this algorithm is not certain

for one of the iterative layers of it reduces the QoS problem into a feasibility problem,

and algorithm will stop searching after the first round. With these limited results,

there is a need to develop effective RIS-aided multicast beamforming algorithms.

Multicast beamforming optimization is inherently an NP-hard problem, which

makes finding the optimal solution to this problem almost impossible. As we men-

tioned earlier, both the QoS and MMF problems are non-convex NP-hard problems,

and the existing numerical algorithms mainly try to find a suboptimal solutions to

these problems [59–64]. One main challenge is the computational efficiency of pro-

posed algorithms for RIS with large number of elements and in large-scale MIMO

systems. Most of the proposed most of numerical methods such as SDR are extremely

slow and also inaccurate for large-scale systems. Later works which have used SCA

to tackle the non-convexity of QoS and MMF problems, still suffers relatively high

computational complexity.

A main challenge of solving the QoS problem for a RIS-aided system is how

to effectively use the alternating optimization, the problem will reduce to feasibility

problem by considering a constant value for BS active beamforming vector. Due

to this, most current works [cite] in this area to focus on the MMF problem (or

maximizing the sum-rate problem), instead of the QoS problem, in both unicasting

and multicasting.



Chapter 3

RIS-aided Multicast Beamforming
Design

In this chapter, we consider the QoS problem for the RIS-aided multigroup multicast

beamforming scenario. Utilizing the optimal beamforming structure at BS and using

fast first-order projected subgradient algorithm (PSA) to solve the RIS MMF sub-

problem, we propose a low-complexity scalable algorithm for the joint design of the

BS multicast beamformer and the RIS passive beamformer to minimize the transmit

power subject to the quality-of-service. Furhtermore, different aspects of the proposed

algorithm will be disscussed such as complexity analysis, and we will also discuss that

our proposed algorithm is applicable for the general case of unicasting scenario as

well.

3.1 System Model

We consider a RIS-assisted downlink multi-group multicast scenario, as shown in

Fig.3.1. a base station (BS) equipped with N antennas multicasting messages to G

user groups, and a RIS consisting of M passive reflective elements is deployed to

assist the data transmission between the BS and the users. We assume that each
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Base Station

RIS

Multicast Group 1

Multicast Group 2

Multicast Group 3

Beamformer

Figure 3.1: An example of RIS-assisted downlink multi-group multicast scenario.

group consists of K single-antenna users1, and the users from the same group receive

a common message that is independent to other groups. The BS controls the phases

of the RIS array elements via a RIS controller to adjust the incident signals to the

desired directions. We denote G ≜ {1, . . . , G} and K ≜ {1, . . . , K} as the set of all

groups and the set of users in each group, respectively, and denote M ≜ {1, . . . ,M}

as the set of RIS elements.

Let Hr denote the M ×N channel matrix from the BS to the RIS, hd
ik the N × 1

channel vector from the BS to user k in group i, and hr
ik the M × 1 channel vector

from the RIS to user k in group i, for k ∈ K, i ∈ G. We use wi to represent the N × 1

multicast beamforming vector at the BS for group i ∈ G. Also, let e ≜ [e1, . . . , eM ]T

denote the vector containing the M reflection coefficients at the RIS, where em = ejθm

with θm ∈ (−π, π] being the phase shift of element m. We refer to e as the RIS passive

1We consider the same size for all groups to simplify the notation. Generalization to individual
group size Ki for group i is straightforward.
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beamforming vector. It is also considered that the channel state information (CSI) is

perfectly known at BS. The signal received at user k in group i is given by

yik =
G∑

j=1
wH

j

(
hd

ik + HH
r diag(e)hr

ik

)
sj + nik (3.1)

= wH
i

(
hd

ik+Gike
)
si +

∑
j ̸=i

wH
j

(
hd

ik+Gike
)
sj + nik (3.2)

where si is the symbol intended for group i with E[|si|2] = 1, nik ∼ CN (0, σ2) is the

receiver additive white Gaussian noise with variance σ2, and Gik ≜ HH
r diag(hr

ik) is

the N ×M cascaded channel from the BS to user k in group i via the RIS.

The received SINR at user k in group i is then given by

SINRik =
|wH

i

(
hd

ik + Gike
)
|2∑

j ̸=i |wH
j

(
hd

ik + Gike
)
|2 + σ2

. (3.3)

The total transmit power at the BS is Ptot = ∑G
i=1 ∥wi∥2.

3.2 Problem Formulation

In this chapter, we focus on the QoS problem for the multicast beamforming design

in this RIS-assisted transmission scenario. Specifically, our objective is to jointly

design the multicast beamforming vectors wi and RIS reflection coefficient vector e

to minimize the BS transmit power while ensuring that the SINR target at each user

is met. This joint beamforming optimization problem is formulated as

Po : min
w,e

G∑
i=1
∥wi∥2 (3.4a)

s.t. SINRik ≥ γik, k ∈ K, i ∈ G (3.4b)

|em|2 = 1, m ∈M (3.4c)

where w ≜ [wH
1 , . . . ,wH

G ]H , and γik is the SINR target for user k in group i.
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Note that even in the conventional downlink multicast scenario without RIS, the

QoS problem for multi-group multicast beamforming is well-known to be a non-convex

quadratically constrained quadratic programming (QCQP) problem which is NP-hard.

The joint optimization problem Po is even more challenging with the additional passive

beamformer e from RIS involved in the SINRik expression in (3.3) and the non-convex

constraints in (3.4c). As a result, obtaining the optimal solution for Po is difficult, and

we focus on providing a good suboptimal solution. Furthermore, since M is expected

to be large, Po is a large-scale problem. Thus, our goal is to develop an effective

computational method with high performance but low computational complexity.

3.3 Beamforming Design

To solve Po, we consider the alternating optimization (AO) technique, i.e., to opti-

mize Po with respect to (w.r.t.) the BS multicast beamformer w and RIS passive

beamformer e alternatingly. However, directly applying AO to Po is not an effective

method. This is because that the objective function in Po is only a function of w.

For AO, with given w, Po w.r.t. e will reduce to a feasibility problem, for which the

value of e from the previous iteration update is already a feasible solution. Thus, the

algorithm will stuck at the value of (w, e) after the first round of updates, and the

quality of this solution merely depends on the quality of the initial point, without any

quality guarantee.

To address the above issue, we first analyze the relation between w and e to

understand how they interact in Po and then utilize it to devise an effective algorithm

to solve the QoS problem.
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3.3.1 QoS Problem Reformulation

To explore the structural relation between w and e in Po, we can equivalent the set

of SINR constraints in (3.4b) as the follow constraint:

SINRik ≥ γik, ∀k ∈ K, i ∈ G

⇔ SINRik

γik

≥ 1, ∀k ∈ K, i ∈ G

⇔ min
i,k

SINRik

γik

≥ 1 (3.5)

Following the above, we can replace (3.4b) with (3.5) and equivalently rewrite Po

as

P1 : min
w,e

G∑
i=1
∥wi∥2 (3.6a)

s.t. min
i,k

SINRik

γik

≥ 1 (3.6b)

|em|2 = 1, m ∈M. (3.6c)

Noting that the RIS reflection vector e only affects SINRik’s in the SINR constraints

in (3.6b), we can further transform P1 into the following equivalent problem:

P2 : min
w

G∑
i=1
∥wi∥2 (3.7a)

s.t. max
e:|em|2=1,m∈M

min
i,k

SINRik

γik

≥ 1. (3.7b)

Comparing P2 with Po, we note that the original set of SINR constraints in

(3.4b) is replaced by the constraint in (3.7b), whose left hand side is a max-min

weighted SINRs optimization problem w.r.t. e, and the unit-modulus constraints for

the elements in e in (3.4c) are now the constraints for this max-min optimization

problem.
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3.3.2 Alternating Multicast Beamforming Approach

Once transforming Po into P2, we see that P2 inherently contains two optimization

problems w.r.t. w and e, respectively. Based on this, we naturally break down P2 into

two subproblems to solve alternatingly. In particular, as we will show below, these

two subproblems are essentially two types of multicast beamforming problems: 1) BS

multicast beamforming QoS problem w.r.t. w; 2) RIS passive multicast beamforming

MMF problem w.r.t. e. Our overall proposed alternating multicast beamforming

(AMBF) approach includes the alternating optimization step and a final processing

step to ensure a feasible solution to Po. We first describe the two subproblems and

the final processing step below, leaving the proposed fast algorithms for solving the

subproblems to Sections 3.4.1 and 3.4.2.

3.3.3 BS multicast beamforming QoS problem for w

For given RIS passive beamforming vector e, Po is reduced to the following BS mul-

ticast beamforming problem for w:

Pe : min
w

G∑
i=1
∥wi∥2 (3.8a)

s.t. SINRik ≥ γik, k ∈ K, i ∈ G. (3.8b)

Note that Pe is in the form of a typical QoS problem for downlink multi-group mul-

ticast beamforming, with the effective channel between BS and user k in group i

consisted of the direct path and the RIS-path.
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3.3.4 RIS multicast beamforming MMF problem for e

Optimizing the RIS passive beamformer e in Po with given w is the main challenge.

As discussed at the beginning, directly applying AO to the original problem Po is

not effective. However, once we convert Po into P2, for given w, we naturally have

the following optimization problem w.r.t. e, which is to maximize the minimum gap

between the received SINR and the SINR target, i.e., the ratio SINRik

γik
:

Sw : max
e

min
i,k

SINRik

γik

(3.9a)

s.t. |em|2 = 1, m ∈M. (3.9b)

Remark 1. Note that Sw can be viewed as a weighted MMF multicast beamforming

problem, where the beamformer e is designed to transmitting messages to all the

users in the system. However, it has three key differences from the conventional

MMF multicast problem: i) Although we can equivalent this case to a single-group

multicast beamforming, it contains intra-group self-interference. ii) The beamformer

e appears in both the numerator and the denominator of the SINR expression in

(3.3), where the denominator term can be viewed as the interference to all other

users. Thus, from the perspective of e, SINRik in (3.3) can in fact be interpreted as

the signal-to-leakage-and-noise ratio (SLNR) for user k in group i. Thus, the MMF

problem Sw w.r.t. e is based on the SLNR metric. iii) Different from the conventional

transmit power constraint, the constraints in (3.9b) can be viewed as a non-convex

per-element power constraint, where it requires each element consumes exactly one

unit power.

Due to the difference discussed above, Sw is more challenging to solve than the
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conventional MMF problem, which is already NP-hard. To tackle this problem, we

note that the constraints in (3.9b) are equivalent to

|em|2 ≤ 1,m ∈M; eHe = M. (3.10)

Thus, we can replace the constraints in (3.9b) with (3.10) and transform Sw into the

following equivalent problem:

Seq
w : max

e
min

i,k

SINRik

γik

(3.11a)

s.t. |em|2 ≤ 1,m ∈M, (3.11b)

eHe = M. (3.11c)

To make the problem more tractable, we relax Seq
w by transferring the constraint

in (3.11c) into the objective function in (3.11a) as a penalty term with a penalty

weight ζ > 0. The relaxed problem is given by

S̃w : max
e

min
i,k

SINRik

γik

+ ζ
eHe
M

(3.12a)

s.t. |em|2 ≤ 1, m ∈M. (3.12b)

Remark 2. The penalty term in (3.12a) is to ensure that in solving S̃w, eHe is as

close to M as possible. We choose the penalty term in this form such that the two

terms in the objective function are both normalized: the SINR term mini,k
SINRik

γik
≥ 1,

and the RIS passive beamformer term eHe
M
≤ 1. In this way, the values of the two

terms are both around 1, which are comparable to each other and are not affected by

the values of SINR or ∥e∥2. This simplifies the choice of penalty parameter ζ, which

can remain the same for different values of SINR or ∥e∥2.
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Although S̃w is still a non-convex and NP-hard problem, compared with Sw, it

is more amenable to efficient algorithm design to compute a solution, which will be

discussed later. Following the above, our AMBF approach is to solve the two multicast

beamforming problems, i.e., Pe for the BS and S̃w for the RIS, alternatingly.

3.3.5 Final processing

Let (w⋆, e⋆) denote the solution after the above alternating optimization procedure.

Since S̃w is a relaxed problem of Sw, (w⋆, e⋆) may not be feasible to Po. Thus, we

have the final processing step to obtain the feasible solution (wfinal, efinal) as follows:

• Project e⋆ onto its feasible set: efinal = exp (j∠e⋆), i.e., take the phase of each

element in e⋆;

• Solve Pefinal with efinal and obtain wfinal.

3.4 Fast Algorithms for the AMBF Approach

In the following sections, we present fast algorithms to solve subproblems Pe and S̃w.

3.4.1 Fast Algorithm for BS Multicast Beamforming Pe

As mentioned earlier, Pe is a typical downlink multicast beamforming QoS problem.

Define h̃ik ≜ hd
ik + Gike as the N × 1 equivalent channel from BS to user k in group

i, which includes both the direct path and the RIS path. The received SINR at user

k in group i in (3.3) can be rewritten as

SINRik = |wH
i h̃ik|2∑G

j ̸=i |wH
j h̃ik|2 + σ2

, k ∈ K, i ∈ G. (3.13)
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Although the QoS problem Pe is known to be NP-hard, the recent work in [51]

has obtained the structure of the optimal multicast beamforming solution, which

can be utilized to compute the beamforming solution w with high computational

efficiency. Based on this structure, an ultra-low-complexity first-order fast algorithm

has been recently developed for the QoS problem [52]. We directly employ this optimal

structure to compute w. Specifically, the optimal wi is a weighted MMSE filter given

by [51]

wi = R−1(λ)H̃iai , i ∈ G (3.14)

where H̃i ≜ [h̃i1, . . . , h̃iK ] is the equivalent channel matrix for group i, ai is the

K × 1 optimal weight vector containing the (complex) weight for each user channel

in group i, and R(λ) ≜ I +∑G
i=1

∑K
k=1 λ

o
ikγikh̃ikh̃ik is the noise-plus-weighted-channel

covariance matrix with λo
ik being the optimal Lagrange multipliers associated with

the SINR constraints and λ being the vector containing all λo
ik’s.

The solution wi in (3.14) is given in a semi-closed form with λ and {ai} to be

numerically determined. The value of λ can be efficiently computed by the fixed-

point method proposed in [51]. With the optimal structure of wi in (3.14), Pe can be

transformed into a weight optimization problem w.r.t. weight vectors {ai}, which has

a smaller problem size with GK variables as compared to the original problem Pe with

GN variables for N ≫ 1. We can compute {ai} by using the SCA approach discussed

in [51], and further adopt the fast ADMM algorithm proposed in [52] for computing

each SCA update using closed-form expressions with significantly low complexity.
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3.4.2 Fast Algorithm for RIS Multicast Beamforming S̃w

As discussed in Remark 1, we note that the RIS passive beamforming optimization

problem S̃w is a variant of the MMF problem, which is non-convex NP-hard. Since

the number of RIS elements M ≫ 1, the size of S̃w is large. Existing methods in the

literature often adopt SDR or SCA [61,63], but have high computational complexity

as M grows. It is important to develop a low-complexity effective algorithm to find a

solution to S̃w, especially because it needs to be solved in each AO iteration.

PSA is a fast first-order algorithm recently proposed in [41] to solve the multi-

group multicast beamforming MMF problem. Although the forms of the objective

function and the constraints of S̃w are different from those of the conventional MMF

problem considered in [41], the method can still be adapted to tackle S̃w. Thus, we

propose to apply PSA to S̃w to efficiently compute a near-stationary solution of S̃w.

3.4.3 Problem Reformulation:

Denote the feasible set of S̃w as E ≜ {e : |em|2 ≤ 1, m ∈ M}. From the objective

function in (3.12a) and using the SINR expression in (3.3), we define

ϕik(e) ≜ − 1
γik

|wH
i (hd

ik+Gike)|2∑
j ̸=i |wH

j (hd
ik+Gike)|2+σ2 − ζ

eHe
M

, (3.15)

for k ∈ K, i ∈ G. Then, S̃w can be rewritten as

S̃w : min
e∈E

max
i,k

ϕik(e). (3.16)

We can further transform it into the following equivalent problem

S̃ ′ : min
e∈E

max
y∈Y

f(e,y) (3.17)



28

where f(e,y) ≜ ϕT (e)y, with ϕ(e) being a GK×1 vector containing all ϕik(e)’s, and

Y ≜ {y : y ≽ 0,1T y = 1} is a probability simplex. Since Y is a probability simplex,

an optimal solution to the inner maximization problem in S̃ ′ is y = [0, · · · , 1, · · · , 0]T ,

with 1 at some jth position, which equivalent to the inner maximization in (3.16).

Note that both E and Y are compact convex sets.

3.4.4 The Projected Subgradient Algorithm

Since f(e,y) is concave in y and non-convex in e, problem S̃ ′ is a non-convex-concave

min-max problem, which is NP-hard. Since S̃ ′ has the same structure as the problem

considered in [41] (i.e., min-max optimization with f(e,y) ≜ ϕT (e)y and a convex

feasible set), we employ PSA in [41] to find a near-stationary point of S̃ ′. PSA is

an iterative algorithm. We use notation ẽ(j) to indicate the jth PSA update for

computing e for S̃w (in order to differentiate this iterative update on e from that of

the alternating procedure between Pe and S̃w. Specifically, the updating procedure

at iteration j is given by2

y(j) ∈ arg max
y∈Y

f(ẽ(j),y); (3.18)

ẽ(j+1) = ΠE(ẽ(j) − α∇ẽf(ẽ(j),y(j))) (3.19)

where α > 0 is the step size, and ΠE(e) is the projection of e onto the feasible set

E . Since we have the per-element constraint on each em, ΠE(e) performs per-element

projection, given by

ΠE(e) =

em if |em| ≤ 1
em

|em| o.w
, for m ∈M.

2Note that PSA in [41] is provided using all real-valued variables. We provide the complex version
of it, which we can show to be equivalent to the real versio.
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From (3.18), as mentioned earlier, once y(j) is obtained, we know that f(e,y(j)) =

ϕi′k′(e) = maxi,k ϕik(e), for some i′k′. With a slight abuse of notation to ease our

presentation, we use ϕik(e) to represent ϕi′k′(e). Then, the gradient ∇ef(e,y(j)) has

the following expression:

∇ef(e,y(j)) = ∇eϕik(e)

= −
(Qiike + qiik)Iik(e)−∑j ̸=i(Qjike + qjik)Sik(e)

γikI2
ik(e)

− ζ

M
e (3.20)

where Iik(e) ≜
∑

j ̸=i |wH
j (hd

ik + Gike)|2 + σ2, Sik(e) ≜ |wH
i (hd

ik + Gike)|2, Qjik ≜

GH
ikwjwH

j Gik, and qjik = GH
ikwjwH

j hd
ik.

Note that the updates in each PSA iteration are all in closed-form as in (3.18)–

(3.20), with only matrix and vector multiplications. Thus, PSA has a low computa-

tional complexity and is particularly suitable for solving S̃w with large value of M .

The convergence analysis of PSA in [41] is applicable to our problem. It shows that

the above PSA procedure is guaranteed to converge in finite time to a point at the

vicinity of a stationary point for S̃w.

3.5 Discussion on the AMBF Algorithm

We summarize our proposed fast AMBF algorithm for the RIS-assisted multicast QoS

problem Po in Algorithm 1. It combines the proposed AMBF approach in Section 3.4

and the fast algorithms proposed above for computing the updates in AMBF. A few

aspects of the algorithm are discussed below:
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3.5.1 Initialization

The AMBF approach requires an initial feasible point of the RIS passive beamformer

e(0) for the BS multicast beamforming subproblem Pe. The feasible point need to

satisfy the unit-modulus constraints in (3.4c), which can be easily obtained by gener-

ating a random phase for each element in e(0). In each iteration n of the alternating

optimization, solving S̃w by PSA also requires an initial point ẽ(0) for the update in

(3.18). It should directly take e(n) used in Pe, which is updated from the previous

iteration, i.e., ẽ(0) = e(n).

3.5.2 Computational Complexity

Algorithm 1 consists of solving two optimization problems Pe and S̃w at each iteration.

We discuss the computational complexity for solving each subproblem below:

i) As mentioned in Section 3.4.1, using the optimal multicast beamforming struc-

ture w in (3.14), Pe is converted into the weight optimization problem w.r.t. {ai}

with total GK variables, which can be solved by SCA [51]. If each SCA subproblem

is solved using a typical interior point method [65] by the standard convex solver, the

computational complexity is O((GK)3) per SCA iteration which does not grow with

neither M nor N . Note that this computational complexity can be further reduced

by using the first-order fast ADMM algorithm proposed recently in [66], which only

involves closed-form updates and has the computational complexity in the order of

O((GK)2).

ii) Problem Sw is solved using PSA with updates in (3.18) and (3.19) in each

iteration. At each iteration, obtaining y(j) in (3.18) involves computing SINR for all
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Algorithm 1 Alternating Multicast Beamforming Algorithm for solving RIS-assisted
QoS problem Po.

1: Initialization: Set feasible initial point e(0); Set n = 0.
2: repeat
3: With e(n), solve Pe to obtain w(n+1) by using (3.14).
4: With w(n), set e(0) = e(n); Solve S̃w using PSA updates (3.18) and (3.19) to

obtain e(n+1).
5: Set n← n+ 1.
6: until convergence
7: Set efinal = exp (j∠e(n)).
8: Obtain wfinal by solving Pefinal .
9: return (wfinal, efinal).

GK users to find the maximum SINR, which requires G2K(NM + M + N) flops.

The computation in (3.19) is mainly at computing the gradient ∇ef(e,y(j)) as in

(3.20). We note that all the terms in (3.20), i.e., Qjike, qjik, Iik(e), and Sik(e)

are part of the SINR expression that has already been computed. Thus, calculating

∇eϕik(e) only requires 2GM + 2M flops. Thus, the entire updates per iteration

requires G2K(NM +M +N) + 2GM + 2M flops, with the leading complexity being

G2KMN flops. This shows the complexity of PSA grows linearly over M , N , and K.

The final per-element projection complexity is O(M). Thus, the overall compu-

tational complexity for each AO iteration of Algorithm 1 is as low as O((GK)2 +

G2KMN), which is linear in both M and N .

3.5.3 Convergence

For solving Pe and S̃w alternatingly, note that the objective of the minimization

problem Pe is lower bounded and that of the maximization problem S̃w is upper

bounded. Thus, the alternating procedure is guaranteed to converge.
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3.6 Generalization to RIS-Aided Multi-user Uni-
cast Beamforming

In the special case of multicast beamforming, for K = 1 for each group, Pe reduces to

a downlink multi-user unicast beamforming problem w.r.t. w, which yields a closed-

form solution. In particular, (3.14) still holds with ai being a scalar now that can

be derived in closed-form. At the same time, Sw is still a multicast beamforming

MMF problem as discussed in Remark 1 of Section 3.3.4. Algorithm 1 is directly

applicable to this case. As we mentioned in Section 2.2.1, in [55] the QoS problem

for RIS-aided multi-user unicast has been discussed using AO as well, but unlike our

proposed Algorithm 1, they only consider solving problem Po alternatively which is

reduced to feasibility problem considering a constant w. Thus, the algorithm will stop

after first round of iteration, and wont show any significant performance comparing

to initial starting point. Analysis in [35] which consider a different form of AO is

more potent to find a better solution, for instead of solving the feasibility problem,

they also introduce a new optimization problem which try to align the phase of direct

Chanel between BS and users with the phase of indirect Chanel through RIS.



Chapter 4

RIS-aided Multicast MMF
Problem

In this chapter we consider the weighted max-min fair (MMF) problem for our RIS-

assisted multicast scenario we defined in Section 3.1. The objective is to maximize the

minimum weighted SINR among users, subject to the BS transmit power budget and

the unit-modulus constraint on each RIS reflection coefficient. The weighted SINR

essentially is the ratio between SINR and a pre-specified SINR target, where this

target sets certain fairness among users. This joint optimization problem over (w, e)

can be formulated as

So : max
w,e

min
i,k

SINRik

γik

(4.1a)

s.t.
G∑

i=1
∥wi∥2 ≤ P, (4.1b)

|em|2 = 1, m ∈M. (4.1c)

where P is the transmit power budget. Similar to the QoS problem Po, problem So

is also nonconvex and NP-hard. Below, we first examine the relation of the MMF

problem So to the QoS problem Po we have considered previously. Then, we propose

a fast algorithm to solve So efficiently.
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4.1 Inverse Relation between Po and So

For the conventional downlink multi-group multicast beamforming design at the BS,

it is known that the QoS and MMF problems are inverse problems [53]: the role

of the objective function and the constraints are switched in the two problems, and

we can solve the MMF problem by iteratively solving the QoS problem along with

a bi-section search over the minimum SINR target for the QoS problem. Thus, a

natural question arises that whether for such relation also holds for the RIS-assisted

multicast beamforming design, which now also includes the RIS passive beamformer

optimization, in addition to the BS transmit beamformers. We show below that this

is indeed the case.

Proposition 1. For RIS-assisted multicast beamforming, the QoS problem Po and

the MMF problem So are inverse problems. In particular, explicitly parameterize

So as So(γ, P ) for given γ and P with the maximum weighted SINR obtained as

to = So(γ, P ), and parameterize Po as Po(γ) with the minimum power obtained as

P = Po(γ). Then, Po(γ) and So(γ, P ) have the following relations:

to = So(γ,Po(toγ)), P = Po(So(γ, P )γ). (4.2)

proof: We can equivalently rewrite So as

S ′
o : max

w

(
max

e:|em|2=1,m∈M
min

i,k

SINRik

γik

)

s.t.
G∑

i=1
∥wi∥2 ≤ P.
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For the QoS problem Po, consider its equivalent formulation P2 in (3.7) derived in

Section 3.3.1. Comparing S ′
o and P2, we see that the objective functions and the

constraints in these two problems are the same but switched, clearly indicating that

they (equivalently So and Po) are the inverse problems. It is straightforward to see

that, at the optimality, the respective constraints in S ′
o and P2 are attained with

equality. As the result, we have the relations in (4.2).

Based on the above relation, we can solve the MMF problem So using Algorithm

1, where by the relation in (4.2), So can be solved via solving its inverse QoS problem

Po iteratively along with a bi-section search for toe. However, since the size of the

RIS reflection elements is typically large M ≫ 1, iteratively solving Po will incur

relatively high computational complexity. We need a more computationally efficient

algorithm to solve the large-scale joint optimization problem So. Next, we present a

fast algorithm to solve So directly.

4.2 Proposed Fast Algorithm for Solving So

As mentioned in Section 3.4.2, for the multicast beamforming MMF problem in the

conventional downlink scenario without RIS, PSA is proposed in [41] to obtain a

near-stationary solution. Below, we show that we can adopt PSA to directly solve

the MMF problem efficiently in the RIS-assisted multicast scenario as well.

Note from Proposition 1 that problems Po and So are the inverse problems. This

means the optimal structure of the BS multicast beamformer w still has the form

shown in (3.14). Indeed, treating the RIS-assisted channel between the BS and user

k in group i as the equivalent channel h̃ik, the problem reduces to the conventional
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multicast MMF problem, for which the optimal beamforming structure is shown as

in (3.14) [51]. However, for the MMF problem, computing λ in R(λ) is not straight-

forward. Fortunately, the asymptotic expression of R(λ) for large N is obtained in

closed-form in [51], which can be used as an approximate expression of R(λ) to further

simplify the computation. Specifically, let h̃iK =
√
β̃ikgik where β̃ik is the large-scale

channel variation and g̃ik ∼ CN (0, I). Then, the asymptotic expression of R(λ) has

the following simple closed form

R(λ) ≈ I + Pβ̄h

σ2Ktot

G∑
i=1

Ki∑
k=1

gikgH
ik ≜ R̃ (4.3)

where β̄h ≜ 1/
( 1
Ktot

G∑
i=1

Ki∑
k=1

1
β̃ik

)
is the harmonic mean of the large-scale channel

variations of all users. Using R̃ in (4.3), we can replace wi in (3.14) with the following

expression:

wi = R̃−1H̃iai , i ∈ G. (4.4)

Below, we develop our fast algorithm to solve So based on wi in (4.4) to reduce the

computational complexity.

Using wi in (4.4), we first convert So into a problem of smaller size, which is a

joint optimization problem w.r.t. {ai} and e, given by

Seq
o : max

a,e
min

i,k

SINRik

γik

(4.5a)

s.t.
G∑

i=1
∥C̃iai∥2 ≤ P, (4.5b)

|em|2 ≤ 1, m ∈M, (4.5c)

eHe = M. (4.5d)
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where a ≜ [aT
1 , · · · , aT

G]T , C̃i ≜ R̃−1H̃i, and the constraints in (4.1c) are replaced by

the equivalent set of constraints in (4.5c) and (4.5d).

Using the technique similar to that in Section 3.3.4, we relax Seq
o into the following

problem by moving the equality constraint in (4.5d) into the objective function as a

penalty term with a penalty weight δ > 0:

S̃o : max
a,e

min
i,k

SINRik

γik

+ δ
eHe
M

(4.6a)

s.t.
G∑

i=1
∥C̃iai∥2 ≤ P, (4.6b)

|em|2 ≤ 1, m ∈M. (4.6c)

Problem S̃o has a similar structure as S̃w in (3.12). The difference is that S̃o is

a joint optimization problem for (a, e). Following Section 3.4.2, we can again apply

PSA to efficiently compute a near-stationary joint solution (a, e) for S̃o. The details

are described below.

4.2.1 Problem Reformulation

Let x ≜ [aH , eH ]H . Denote the feasible set of S̃o as U ≜ {x : |em|2 ≤ 1, m ∈

M; ∑G
i=1 ∥C̃iai∥2 ≤ P}. By substituting the SINR expression in (3.3) into the objec-

tive function in (4.6a), we define

φik(x) ≜− 1
γik

|aH
i C̃H

i (hd
ik+Gike)|2∑

j ̸=i |aH
j C̃H

j (hd
ik+Gike)|2+σ2

− δeHe
M

, (4.7)

for k ∈ K, i ∈ G. Then, S̃o can be equivalently rewritten as

S̃ ′
o : min

x∈U
max

i,k
φik(x). (4.8)

Let φ(x) be a GK×1 vector containing all φik(x)’s, and let y denote a GK×1 vector

with nonnegative elements. Then, S̃ ′
o can be further transform into the following
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equivalent problem

S̃x : min
x∈U

max
y∈Y

g(x,y) (4.9)

where g(x,y) ≜ φT (x)y, and Y ≜ {y : y ≽ 0,1T y = 1}. Both U and Y are compact

convex sets. Note that g(x,y) is non-convex in x and concave in y, and problem S̃x

is a non-convex-concave min-max problem, which is NP-hard.

4.2.2 The Projected Subgradient Algorithm

Since S̃x has the same structure as S̃ ′ in (3.17), we can again apply PSA with updating

steps similar to (3.18) and (3.19). In particular, the updating procedure at iteration

j is given by

y(j) ∈ arg max
y∈Y

g(x(j),y); (4.10)

x(j+1) = ΠU
(
x(j) − η∇xg(x(j),y(j))

)
(4.11)

where η > 0 is the step size, and ΠU(x) is the projection of x onto the feasible set U .

Since the constraints on a and e in U are separate, ΠU(x) is performed for a and e

separately:

ΠU(x) =


ΠU(a; ·) =

a if ∑G
i=1 ∥C̃iai∥2 ≤ P√

P
Ptot

a o.w.

ΠU(·; e) =

em if |em| ≤ 1
em

|em| o.w.
, for m ∈M.

(4.12)

Since Y is a probability simplex, an optimal solution to the maximization problem in

(4.10) is y = [0, · · · , 1, · · · , 0]T , with 1 at some jth position. Thus, we have

g(x,y(j)) = φîk̂(x) = max
i,k

φik(x), (4.13)
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for some (̂i, k̂). Then, the gradient ∇xg(x,y(j)) is given by

∇xg(x,y(j)) = ∇xφîk̂(x)

=
[
∇aφ

H
îk̂

(x),∇eφ
H

îk̂
(x)

]H

. (4.14)

For ∇eφîk̂(x), note that φik(x) is the same as ϕik(e) by using wi in (4.4) and

change δ to ζ. Thus, the gradient ∇eφîk̂(x) can be computed using (3.20), except

that wi is given in (4.4) and ζ is replaced by δ.

To compute ∇aφîk̂(x), we use the equivalent channel h̃ik = hd
ik+Gike in (4.7) and

rewrite φik(x) in (4.7) as

φik(x) =− 1
γik

aH
i Ãiikai∑

j ̸=i aH
j Ãjikaj + σ2

− δeHe
M

,

where Ãjik ≜ C̃H
j h̃ikh̃H

ikC̃j. Then, we have

∇aφîk̂(x) = [∇a1φ
H
îk̂

(x), · · · ,∇aG
φH

îk̂
(x)]H (4.15)

where

∇ai
φîk̂(x)=



− 1
γîk̂

Ãî̂ik̂aî∑
j ̸=î aH

j Ãjîk̂aj +σ2
if i = î

1
γîk̂

(aH
î

Ãî̂ik̂aî)Ãîik̂ai(∑
j ̸=î aH

j Ãjîk̂aj +σ2
)2 o.w.

(4.16)

4.2.3 Final Processing

Since the PSA is to solve S̃o, which is a relaxed problem of So, its solution may not be

feasible to So, i.e., e⋆ may not satisfy (4.1c). Thus, we have this final processing step

to obtain a feasible solution to So. Let x⋆ = [a⋆H , e⋆H ]H be the solution produced by
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the updating procedure in (4.10) and (4.11). If e⋆ does not satisfy (4.1c), we have the

following step to obtain a feasible solution based on (a⋆, e⋆):

• Project e⋆ onto its feasible set: efinal = exp (j∠e⋆), which takes the phase of

each element in e⋆;

• Given efinal, we solve Seq
o in (4.5) w.r.t. a to obtain the final beamforming solu-

tion wfinal. Note that in this case, Seq
o is reduced to the following conventional

MMF problem:

Seq(efinal) : max
a

min
i,k

SINRik

γik

(4.17a)

s.t.
G∑

i=1
∥C̃iai∥2 ≤ P. (4.17b)

where SINRik is as shown in (3.13) with the equivalent channel h̃ik computed

based on efinal. As mentioned earlier, the PSA-based fast algorithm has been

proposed in [41] for this MMF problem, and we use directly apply it to compute

the solution afinal to Seq(efinal) efficiently. In particular, we use a⋆ as a good

initial point to this algorithm to achieve fast convergence and good performance.

.

We summarize our proposed first-order fast algorithm for the RIS-assisted mul-

ticast MMF problem So in Algorithm 2. Again, based on the existing convergence

analysis [41], the PSA updating procedure in (4.10) and (4.11) is guaranteed to con-

verge in finite time to a point at the vicinity of a stationary point for S̃o.
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4.3 Discussions

Like the previous chapter, in the following lines, we will discuss the different aspects

of our peoposed algorithm to solve our RIS-aided multicast MMF problem.

4.3.1 Initialization

The proposed updating procedure in (4.10) and (4.11) requires an initial point x(0) =

[a(0)H
, e(0)H ]H . This initial point can be generated randomly, as the projection (4.11)

will ensure that the subsequent points {x(n)} are feasible. However, a good initial

point improves the rate of convergence. Thus, instead of a random initial point, we

consider the following approach.

We first generate e(0) using a random phase for each element. Given e(0), Seq
o in

(4.5) is reduced to the MMF problem w.r.t. a, which is similar to Seq(efinal) in (4.17).

In particular, the MMF problem w.r.t. a can be further equivalently written as

Seq(e(0)) : max
a,t

t (4.18a)

s.t. SINRik

γik

≥ t, k ∈ K, i ∈ G (4.18b)

G∑
i=1
∥C̃iai∥2 ≤ P. (4.18c)

We generate a(0) by solving this MMF problem. Note that in this way, (a(0), e(0)) is

feasible to S̃o. In the literature, a common approach for the above MMF problem

is to solve its inverse problem, i.e., the QoS problem similar to Pe in (3.8) for given

t, along with bi-section search over t [51, 53]. Since our goal is only to generate a

feasible point for S̃o, to reduce the computational complexity, we only need to solve
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the QoS problem1 along with one single bi-section search over t, to obtain the initial

point a(0).

4.3.2 Computational Complexity

For the updates in (4.10) and (4.11) at each iteration, the update y(j) is obtained in

(4.13) by finding the maximum SINR among GK users, which requires G2K(NM +

M + N) flops. The update in (4.11) requires to calculate ∇aφîk̂(x) and ∇eφîk̂(x).

Since ∇eφîk̂(x) is computed using (3.20), as discussed in Section 3.5.2.ii), it requires

2GM + 2M flops. To compute ∇ai
φîk̂(x) in (4.16), we need to calculate aH

j C̃H
j h̃îk̂ for

all j’s. Note that C̃j’s only need to computed once before the updating procedure.

Computing h̃îk̂ based on e(j) requires N(M + 1) flops. Then, obtaining aH
j C̃H

j h̃îk̂ for

all j ∈ G needs GK(N + 1) flops. We also need to calculate Ãî̂ik̂aî = C̃H
î

h̃îk̂h̃H
îk̂

C̃îaî.

Note that since C̃H
î

h̃îk̂ and h̃H
îk̂

C̃îaî are already computed when calculating aH
j C̃H

j h̃îk̂

for all j, we have Ãî̂ik̂aî readily available without extra computation. Finally, we need

K(2G− 1) flops to calculate the final value of ∇ai
φîk̂(x) for all ai’s. Thus, the overall

leading complexity of the updating procedure in each iteration is G2KMN +GKN +

GM +MN , which grows linearly with M and N .

4.4 Generalization to RIS-Assisted Multi-user Down-
link Beamforming

Similar to the generalization to the downlink RIS-assisted multi-user beamforming for

power minimization discussed in Section 3.6, our proposed fast algorithm for the mul-

1To solve the QoS problem, we use the classical approach of SDR with the Gaussian randomization
procedure.
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Algorithm 2 First-order fast algorithm for RIS-assisted MMF problem So.
1: Initialization: Set feasible point x(0); Set n = 0.
2: repeat
3: Update x(n) using (4.10) and (4.11) to obtain x(n+1).
4: Set n← n+ 1.
5: until convergence
6: Set efinal = exp (j∠e(n)).
7: Solving S(efinal) to obtain wfinal.
8: return (wfinal, efinal).

ticast beamforming MMF problem is also directly applicable to the general downlink

RIS-assisted multi-user beamforming for the max-min fair objective. As we men-

tioned in Section 2.2.1, [57, 58] have been studied the MMF problem and maximize

the users’ worst rate problem which is equivalent to MMF problem as well. In [57],

OLP is used to find a suboptimal answer to MMF problem iterativly, and in [58]

alternating descend round has been used to solve the users’ worst rate problem.



Chapter 5

Simulation Results

In this chapter we discuss the results of our simulation for our RIS-aided multigroup-

multicast wireless communication system, and compare it with the current state of

the art.

5.1 Simulation Setup

We consider a downlink RIS-assisted multicast scenario with a BS and an RIS. Unless

specified otherwise, our default system setup is G = 2 groups and K = 2 users

per group, N = 4 antennas at the BS, and M = 5 × 5 reflective elements for the

RIS. The locations of the BS and the RIS using the (x, y, z)-coordinates in meters are

(0, 0, 0) and (70, 70, 0), respectively. We consider the RIS as a rectangular surface with

array elements placed on the (y, z)-plane. The users are located randomly within a

circle centered at the RIS with the radius 20 m on the (x, y)-plane. We set the

target SINR γik = γ, ∀i, k. We assume a line-of-sight (LOS) channel between the

BS and the RIS. Thus, Hr is modeled as a Rician fading channel matrix given by

Hr = βBR
(√

Kr
1+Kr

HLOS
r +

√
1

1+Kr
HNLOS

r

)
, where the path gain βBR is modeled as

βBR[dB] = −30− 22 log 10(dB-R) with dB-R being the BS-RIS distance in meters, the
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Rician factor Kr = 10, HNLOS
r is the non-line-of-sight (NLOS) component modeled as

[HNLOS
r ]ij ∼ CN (0, I), and HLOS

r is the LOS component. The LOS component HLOS
r

is a function of the BS and RIS locations and is modeled as

HLOS
r = bRIS(ψ2, θ2)bBS(ψ1, θ1)H . (5.1)

In (5.1), ψ1 and θ1 are the azimuth and elevation angles of departure (AoD) from the

BS to the IRS, and bBS(ψ1, θ1) is the BS steering vector given by

bBS(ψ1, θ1) =
[
1, . . . , e

2π(N−1)dBS
λc cos(ψ1) cos(θ1)

]
(5.2)

where dBS is the distance between two adjacent BS antennas, λc is the carrier wave-

length, and cos(ψ1) cos(θ1) = xRIS−xBS
dB-R

. We assume dBS = λc

2 . Similarly, ψ2 and θ2 are

the azimuth and elevation angles of arrival (AoA) from the BS to the RIS, and the

mth entry of the RIS steering vector bRIS(ψ2, θ2) is given by

[bRIS(ψ2, θ2)]m = e
2πdRIS

λc [ym sin(ψ2) cos(θ2) + zm sin(θ2)] (5.3)

where dRIS is the distance between two adjacent RIS elements, ym = mod(m− 1,My)

with My being the number of RIS elements along the y-axis, zm = ⌊m− 1,Mz⌋ with

Mz being the number of RIS elements along the z-axis, sin(ψ2) cos(θ2) = yBS−yRIS
dB-R

,

and sin(θ2) = zBS−zRIS
dB-R

. We assume dRIS = λc

2 . We consider two different scenarios

for the channels between the RIS and users: channels with and without a LOS path.

Thus, the channel hr
ik between the RIS and user k in group i is modeled as hr

ik =

βr
ik

(√
Kr

ik

1+Kr
ik

hr,LOS
ik +

√
1

1+Kr
ik

hr,NLOS
ik

)
, where βr

ik is the path gain modeled as βr
ik[dB] =

−30−22 log 10(dR-U
ik ), with dR-U

ik being the distance between the RIS and the user, Kr
ik

is the Rician factor, and hr,NLOS
ik ∼ CN (0, I). We set Kr

ik = 10 for the scenario with
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a LOS path and Kr
ik = 0 for the scenario without a LOS path. The LOS component

hr,LOS
ik is modeled as hr,LOS

ik = bRIS(ψ3,ik, θ3,ik), where ψ3,ik and θ3,ik are the azimuth

and elevation AoD, and the mth entry of the RIS steering vector bRIS(ψ3,ik, θ3,ik) is

expressed as

[bRIS(ψ3,ik, θ3,ik)]m = e
2πdRIS

λc [ym sin(ψ3,ik) cos(θ3,ik) + zm sin(θ3,ik)] (5.4)

where sin(ψ3,ik) cos(θ3,ik) = yik−yRIS
dR-U

ik
and sin(θ3,ik) = zik−zRIS

dR-U
ik

. We model the channel

between BS and each user as Rayleigh fading and generated i.i.d as hd
ik ∼ CN (0, βd

ikI),

where βd
ik is the respective path gain modeled as βd

ik[dB] = −32.6− 36.7 log 10(dB-U
ik ),

with dB-U
ik being the respective BS-user distances, ∀k, i. The receiver noise power is

set to σ2 = −100 dBm. For subproblems S̃w and S̃o, we set the penalty parameter

ζ = 0.1. For PSA updates in (3.19) for the QoS problem, we set the step size α = 10,

and for the updates in (4.11) for the MMF problem, we set η = 1.1

5.2 Convergence Behavior of the Proposed Algo-
rithms

We first study the convergence behavior of our proposed AMBF algorithm in Algo-

rithm 1, which alternatingly solves two multicast subproblems at the BS and the RIS

using our proposed fast algorithms. Fig. 5.1 shows the convergence behavior of sub-

problem S̃w, which is solved using PSA, in one iteration round of AMBF algorithm

for three random channel realizations. As we expected from the convergence analysis

in [41], the PSA starts converging after 1000 ∼ 3000 iterations rounds. Furthermore,

1We have conducted extensive experiments using different values of α, η, and ζ and found that
ζ = 0.1, α = 10, and η = 1 in general provide the best balance between the performance and the
convergence speed.
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Figure 5.1: Convergence behavior of the MMF subproblem S̃w (N = 4,M = 25, G =
2, K = 2, γ = 10 dB, Kr

ik = 0).

denote the total transmit power at the BS as Ptot = ∑G
i=1 ∥wi∥2. Fig. 5.2 shows

the trajectory of Ptot over the number of iterations by Algorithm 1. We assume the

channel between the RIS and each user follows Rayleigh fading with Kr
ik = 0, ∀k, i.

Fig. 5.2 shows the trajectory for three random channel realizations. We observe that

our proposed AMBF approach converges within about 6 ∼ 12 iterations, which is

relatively fast, especially given that we use fast algorithms for computing the solution

to each subproblem.

Finally, Fig. 5.3 shows the convergence behavior of the MMF problem solved using

Algorithm 2 for three random channel realizations. Here we also consider the channel

between the RIS and each user follows Rayleigh fading with Kr
ik = 0, ∀k, i. Similar

to subproblem S̃w, in Algorithm 2, we also use PSA, which makes the convergence

analysis in [41] applicable here as well. As Fig. 5.3 shows, even in worse scenarios,
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Figure 5.2: Convergence behavior of the AMBF Algorithm (N = 4,M = 25, G =
2, K = 2, γ = 10 dB, Kr

ik = 0).

Algorithm 2 starts to converge after 700 ∼ 1000 iterations.

5.3 Performance Comparison for the QoS Problem

We now evaluate the performance of our proposed AMBF algorithm in Algorithm 1.

For performance comparison, we consider the following methods:

1. No RIS: A conventional downlink multi-group multicast scenario without the

RIS;

2. Random RIS: Apply random phase-shift for the RIS elements. For the QoS

problem Po, with given e, solve the BS multicast beamforming problem Pe for

w;

3. Direct AO [64]: Apply the AO approach directly to Po, where the subproblem

w.r.t. e is a feasibility problem with the SINR constraints in (3.4b) and the
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Figure 5.3: Convergence behavior of the Algorithm 2 (N = 30,M = 100, G = 2, K =
2, γ = 10, P = 10dB dB, Kr

ik = 0).

unit-modulus constraints in (3.4c);

4. RIS-SDR: Apply Algorithm 1, except that instead of solving subproblem S̃w

w.r.t. e, we solve the following relaxed problem of Seq
w by dropping the constraint

in (3.11c):

max
e

min
i,k

SINRik

γik

(5.5a)

s.t. |em|2 ≤ 1,m ∈M, (5.5b)

which can be further expressed as

SRelaxed
w : max

e
t (5.6a)

s.t. SINRik

γik

≥ t, k ∈ K, i ∈ G (5.6b)

|em|2 ≤ 1,m ∈M. (5.6c)

Problem SRelaxed
w is solved by SDR with bi-section search over t;
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5. RIS-SCA: Similar to RIS-SDR, apply Algorithm 1, except that we solve SRelaxed
w

by SCA with bi-section search over t. In particular, SRelaxed
w is convexified into

a convex approximation problem and solved iteratively using a standard convex

solver.

5.3.1 Performance over target SINR γ

We show the total transmit power Ptot vs. target SINR γ under different methods in

Fig. 5.4 for RIS-user channels being Rayleigh fading withKr
ik = 0, ∀k, i, and in Fig. 5.5

for RIS-user channels being Rician fading with Kr
ik = 10. First, for both Figs. 5.4

and 5.5, we see that RIS with random passive beamforming or direct AO on Po bring

nearly no benefit as compared with the case of no RIS. Thus, RIS passive beamforming

needs to be effectively designed to improve the channel conditions among users to

enhance the overall system performance. The substantial gain can be seen when

the RIS passive beamforming is effectively optimized. In particular, our proposed

Algorithm 1 provides about 4 dB power reduction over the no RIS case for γ ≥ 4 dB

in Fig. 5.4 and γ ≥ 6 dB in Fig. 5.5. The performance of RIS-SCA is nearly the

identical to that of Algorithm 1, while RIS-SDR performs worse than Algorithm 1

or RIS-SCA with a noticeable gap, especially in Fig. 5.4. This is expected, as SDR

is an approximation method with a degraded performance when the problem size is

relatively large.

Since Algorithm 1 implements the proposed fast algorithms in Section 3.4 to

solve subproblems, its computational advantage is demonstrated in Table 5.1, where

we provide the average computation time of Algorithm 1, RIS-SCA, and RIS-SDR,
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Figure 5.4: Total transmit power Ptot vs. target SINR γ (N = 4,M = 25, G =
2, K = 2, Kr

ik = 0).

as the number of RIS elements M increases from 20 to 100. We see that besides

providing the best performance, Algorithm 1 is also the fastest algorithm with much

lower computational complexity than the other two methods, especially as the value

of M becomes large. We see that the computational complexity of Algorithm 1 only

grows mildly with M .

5.3.2 Performance over the number of RIS elements M

In Figs. 5.6 and 5.7, we show the total transmit power Ptot as the number of RIS

reflective elements M increases under different methods for γ = 10 dB, where we set

Kr
ik = 0 in Fig. 5.6 and Kr

ik = 10 in Fig. 5.7. As expected, the transmit power for

random RIS and direct AO remains roughly flat without change as M increases, as

they are not effectively using RIS. In contrast, Algorithm 1 jointly optimizes the RIS

and the BS beamforming vectors, and the resulting transmit power is decreased by
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Figure 5.5: Total transmit power Ptot vs. target SINR γ (N = 4,M = 25, G =
2, K = 2, Kr

ik = 10).

4 dB as M increases from 20 to 100. Similar to Figs. 5.4 and 5.5, Algorithm 1 and

RIS-SCA have nearly identical performance, while RIS-SDR performs worse with a

noticeable gap as large as 2 dB. In particular, compared with Fig. 5.5 with a relatively

smaller gap for M = 25, we see from Fig. 5.7 that the gap becomes much more

noticeable as M increases.

5.4 Performance Comparison for the MMF Prob-
lem

We now evaluate the proposed RIS-assisted design for the MMF problem. For per-

formance comparison, besides our proposed Algorithm 2, we consider the following

methods:

1. No RIS: A conventional downlink multi-group multicast scenario without RIS;



53

Table 5.1: Average Computation Time for Different M (sec).

M 20 40 60 80 100

Algorithm 1 4.58 4.80 5.21 5.64 6.38

RIS-SDR 23.52 27.30 38.13 57.02 84.29

RIS-SCA 21.16 25.52 31.84 40.71 51.98
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Figure 5.6: Total transmit power Ptot vs. M (γ = 10 dB, G = 2, K = 2, Kr
ik = 0).

2. Random RIS: Apply random phase-shift for the RIS elements, and with given

e, solve the BS multicast beamforming MMF problem for w;

3. Relaxed S̃o: Only solving our proposed relaxed problem S̃o in (4.6), which

uses a penalty term and each em is not guaranteed to have a unit modulus. In

other words, Algorithm 2 without the final processing step to obtain the feasible

solution e. The purpose is to quantify the loss in the final processing step in
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Figure 5.7: Total transmit power Ptot vs. M (γ = 10 dB, G = 2, K = 2, Kr
ik = 10).

Algorithm 2 and show how good is the relaxed problem as an approximation of

the original problem So.

4. Alternating projected gradient (APG) method [62]: An alternating projected

gradient (APG) method recently proposed in [62] to maximize the achievable

sum group-rate of all groups, where the group-rate is defined as the minimum

rate among users in the group.

Remark 3. Note that the objective for the APG method in [62] is different

from our MMF max-min SINR (or rate) objective. However, for the single

group multicast scenario where G = 1, the two objectives becomes the same.

Since there are no existing methods designed for the RIS-assisted multicast

MMF problem, we use this special single-group case to compare Algorithm 2

with the APG method proposed in [62]. Also, we note that besides [62], [61]



55

also proposed the multicast beamforming algorithms for the sum-group-rate

maximization. It is shown in [62] that the APG outperforms the method in [61]

in both performance and the computational complexity. Thus, we choose APG

in [62] as the current state-of-the-art for comparison.

In the following simulation, we set the BS transmit power P = 10 dBm.

5.4.1 Multiple Groups

Fig. 5.8 shows the average minimum SINR vs. M by different methods for N = 30.

First, we see that Algorithm 2 and relaxed S̃o provide a nearly identical performance

for all values of M . This demonstrates that the solution to S̃o is mostly feasible

to So and thus the final processing step causes a negligible difference. This further

indicates that our proposed relaxed problem S̃o is a good approximation of the original

problem So. Next, we see that the minimum SINR achieved by Algorithm 2 increases

noticeably as M increases, as compared with random RIS, especially when M >

N . This demonstrates the effectiveness of our proposed algorithm to utilize RIS to

improve the channel conditions among users.

We also show the average minimum SINR vs. N under different methods in

Fig. 5.9 for M = 100 and Kr
ik = 0. Again, we see that random phase-shift provides

little gain over the case of no RIS. Compared with no RIS and random RIS, our

proposed Algorithm 2 provides about 2 dB SINR gain for different values of N . In

Fig. 5.10, we show the average minimum SINR vs. the number of users K in each

group for N = 30 and M = 100. The gain of Algorithm 2 over random RIS and no

RIS is clearly seen for all values of K. The gain is smaller for a larger value of K,
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Figure 5.8: Average minimum SINR vs. M (N = 30, G = 2, K = 2, P = 10 dB, Kr
ik =

0).

which is expected because in the multicasting scenario, the beamforming vector needs

to cover more users in a larger group, which results in a decreased beamforming gain.

5.4.2 Single Group

We now compare our proposed algorithm with the APG method in [62] for the MMF

problem in the single group scenario. Fig. 5.11 shows the average minimum SINR

vs. the number o RIS elements M for G = 1, K = 4, and N = 30. We see that our

proposed algorithm outperforms APG substantially with 1 dB ∼ 2.5 dB gain for M

ranging from 40 ∼ 100.

Besides the performance, we also compare the average computation time of Algo-

rithm 2 and the APG method Table 5.2 for the setting used in Fig. 5.11. We see that

both methods have similar computation time and scale with M similarly. Although
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Figure 5.9: Average minimum SINR vs. N (M = 100, G = 2, K = 2, P =
10 dB, Kr

ik = 0).

APG is slightly faster than Algorithm 2, the difference is not significant.

5.4.3 Unicast Scenario

We also compare the performance of Algorithm 2 with the APG method in the unicast

scenario for RIS-assisted downlink beamforming. We set G = 4 and K = 1, which

presents a 4-user case. Note that in this special case, Algorithm 2 and APG have

different design objectives. APG is essentially to maximize the sum rate of all users,

while Algorithm 2 is to maximize the minimum SINR among users. For comparison,

we plot the average minimum SINR and the sum rate performance overM in Figs. 5.12

and 5.13, respectively, for N = 30 and Kr
ik = 0, ∀k, i. As we see, for both the minimum

SINR and the sum rate, our proposed algorithm outperforms APG.
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Figure 5.10: Average minimum SINR vs. K (N = 30,M = 100, G = 2, P =
10 dB, Kr

ik = 0).

Table 5.2: MMF-Average Computation Time for Different M (sec).

M 20 40 60 80 100

Algorithm 2 0.43 0.65 0.98 1.41 2.1

APG [51] 0.29 0.47 0.71 1.03 1.61
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Figure 5.11: Average minimum SINR vs. M (N = 30, G = 1, K = 4, P =
10 dB, Kr

ik = 0).
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Figure 5.12: Average minimum SINR vs. M (N = 30, G = 4, K = 1, P =
10 dB, Kr

ik = 0).
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ik = 0).



Chapter 6

Conclusions and Future Work

In this thesis, we consider joint BS and RIS beamforming design for a RIS-assisted

multi-group multicast scenario for both QoS and MMF problems. Aiming to provide

efficient and scalable algorithms to solve these challenging NP-hard problems: 1)

We have proposed a fast alternating multicast beamforming algorithm for the QoS

problem to minimize the BS transmit power. We have formulated the BS multicast

and RIS passive beamforming subproblems by exploring their interaction in the QoS

problem and solve them by the alternating optimization technique. Furthermore,

we have proposed to use PSA to solve the challenging RIS beamforming problem

with computationally-cheap closed-form updates. 2) We have discovered that like

the traditional multigroup multicast problem without the assistance of RIS, here

also there is a duality realtionship between QoS and MMF problem. 3) Using this

knowledge, we have proposed to solve MMF problem by turning it into a single variable

optimization problem and solve it by PSA which as we mentioned is a low-complexity

updating procedure. Using the duality realtionship between QoS and MMF problems,

we also use the optimal beamforming structure for BS beamforming vector to further

reduce the computational complexity of PSA. 4) Simulation results have demonstrated
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the advantage of our proposed algorithms in both performance and computational

complexity over other numerical-based and alternative methods.

There are multiple potential extensions that can be explored in relation to this

study. We proposed our algorithms with the assumption that BS is aware of perfect

CSI, but in reality usually it is not the case, and a constant channel estimation process

should be performed due to the random nature of the wireless channel and potential

movements of users. It is critical to explore the potential of RIS in respect to channel

estimation, and learn about the possible improvements that RIS can achieve. Fur-

thermore, it is also important to investigate whether and how to extend our methods

to optimize RIS in the multicarrier systems, such as orthogonal frequency division

multiplexing (OFDM) systems. Another important missing factor which can be the

subject of future studies is finding different methods of RIS phase-shift initialization,

for in this thesis usually random initialization has been used for the phase of RIS

elements. It is undeniable that in solving non-convex problems such as multicast

beamforming using iterative algorithm, the quality of final solution is under the effect

of starting point.
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