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ABSTRACT

The smart electric grids rely on integrating the information and communication
technologies (ICT) into the electric power grid infrastructure to facilitate the exchange of
information for an enhanced and economic operation. Such integration of ICT into the
existing electric grids makes them vulnerable to cybersecurity threats, ranging from data
breaches to service disruptions. The work in this thesis investigates the use of machine
learning techniques to detect and classify such cyberattacks. A novel approach that uses a
fine tree bagging ensemble learning technique to detect and classify the cyberattack types
from normal and power quality disturbances is developed. The proposed approach extracts
the relevant features for classifying different cyber-attack types such as message
suppression, denial-of-service and data manipulation. The proposed approach is tested on
a publicly available dataset and the results are compared to three other machine learning
techniques, namely decision tree, nearest neighbor, and support vector machine. The results
have shown that the proposed approach is very effective in the detection and the
classification of the cyberattack types as well as it is insensitive to the selection of the
training and the testing datasets.
Keywords: Classification; cyberattack; data manipulation; ensemble learning; substation

automation.
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STATEMENT OF CONTRIBUTIONS

The main contribution of this thesis is to introduce a novel method for smart grid
cyberattack classification that not only detects different cyberattacks but it can also

identify the type of cyberattack.

In this research, Predictor Importance (PI) technique is calculated and is used to identify

the key relevant physical and network features needed to classify the cyberattack types.

A novel approach is introduced that utilizes a Fine Tree Bagging-based Ensemble learning
approach with hyperparameter optimization of parameters such as k-fold and number of

learners discussed in detail in Chapter#5.

This study showcases the efficacy of the proposed methodology by computing various
evaluation criteria and comparing it with other machine learning methodologies as

presented in Chapter#6.

The proposed approach is insensitive to the selection of the training and the testing datasets

and hence it overcomes the limitations of the existing approaches that suffer overfitting.
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1. Introduction

1.1. Background

Smart grid (SG) is a modernized version of the legacy electric grid. The smart grid
integrates the information and communication technology (ICT) into the electric power
grid for an efficient and an economic operation. This integration involves sharing
information, between intelligent electronic devices (IEDs) and the supervisory control and
data acquisition (SCADA) systems used in the substation automation systems. By
exchanging this information, the smart grid becomes more efficient, allows for smooth
integration of renewable energy resources and ensures the cost-effective operation of its

assets [1].

The model depicted in Figure 1.1 illustrates the structure of a smart grid. These grids
possess unique characteristics when compared to the conventional grids, such as the ability
for power to flow in both directions in real time and seamless communication between
utility companies and consumers. Moreover, there is also a communication established
between the distribution substations and the customers, which is made possible by devices,
like IEDs, SCADA and switchgears [2]. This communication framework offers a multitude
of advantages including automated metering, redundancy, maintenance capabilities, self-

heal mechanisms, efficient energy management as well as improved reliability and security

[3].
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Figure 1.1: National Institute of Standards and Technology (NIST) SG Model [4]

With the advancements in ICT, the field of cybersecurity faces new challenges
particularly when it comes to securing the electricity grid infrastructure. The integration of
Internet of Things (loT) applications, industrial devices and Wireless Sensor Networks
(WSNss) has exposed the electric power grid to cyber threats that can jeopardize the national
security [5]. Unfortunately, these devices often lack built-in security measures against
attacks leaving them vulnerable to breaches. Additionally, concerns arise from the
utilization of devices such as smart meters that communicate autonomously without human
involvement. Furthermore, the legacy systems such as the conventional SCADA systems

may not have up to date security solutions in place.



1.2. Trends of Cyberattack Worldwide

The security of the control systems that manage the critical infrastructures has
become a primary focus for cyber terrorism and warfare. Figure 1.2 shows a timeline
summarizing major smart grid attacks around the world from 2010 to 2023. One of the
notable cyberattacks occurred in 2010, when a malware referred to as Stuxnet targeted an
Iranian nuclear enrichment centrifuges causing significant damage to their equipment [6].
The attack involved exploiting vulnerabilities on the substation computer system through
a Universal Serial Bus (USB) drive and injecting malicious software into Siemens
Programmable Logic Circuits (PLCs). This caused the centrifuges to spin at frequencies
than usual leading to increased wear and tear. Additionally, the malware manipulated

sensor readings to hide the attack from the operators.

In December 2015, Ukraine experienced a cyber-attack through the injection of a
malware called BlackEnergy, which specifically targeted two western oblast power grids.
As aresult, 30 substations were disconnected for approximately three hours. This malicious
act led to a power outage that impacted around 230,000 residents. Consequently individuals
faced difficulties in reaching out to their utility providers as the attack disrupted phone

communication, with power companies [7].
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Figure 1.2: Overview of cyberattacks on Smart Grids since 2010 [8].




During the period between 2019 and 2020, a number of cyber attacks occurred. In
March 2019, a power grid located in the western region of the United States experienced a
denial of service (DoS) attack. The attack has affected a few industrial machines, which
encountered failures lasting less than five minutes [9]. Another significant incident took
place in Ukraine around April 2022. This particular attack involved a malware known as
"Industroyer2"”, which was specifically designed to manipulate system commands. The
malware directly targeted the utility equipment of a Ukrainian energy firm and sent
commands to the substation devices responsible for regulating the electricity flow.
Fortunately, the attack was discovered in time to prevent a power outage that could have

affected approximately two million people [10].

In April 2023 Hydro Quebec, the electricity supplier in Quebec, Canada encountered
a cyber incident that led to disruptions in their utility services while addressing power
outages [11]. A hacking group with alleged ties to Russia claimed responsibility for the

cyberattack, on this government owned power provider.

The number of cyberattack attempts is increasing in all sectors worldwide. The
biggest increase however has been experienced in the manufacturing and utility sector,
where the number of data breaches has constantly been on the rise [12]. From the cases of
cyberattacks on smart grids mentioned above, the primary reason behind these losses is the
vulnerability of the smart grid and the exploitation of these vulnerabilities through
cyberattacks. When a smart grid is poorly designed to have countermeasures against
cyberattacks, the integration of ICT and the increased application of 10T pose cybersecurity

threats to such critical electricity infrastructure [8].



1.3. Vulnerable Assets in Smart Grid Infrastructure

Smart grids are complex systems that bring together physical networks, information
technology (IT) and operational technology (OT) making them crucial infrastructures. Any
weakness, whether internal or within the interconnected systems has the potential to
jeopardize the grid security leading to power outages, financial losses and other significant
consequences [13]. This integration encompasses systems such as Advanced Metering
Infrastructure (AMI), Supervisory Control and Data Acquisition (SCADA) substations,
synchrophasor systems, energy management systems (EMS), distribution management

systems (DMS) and electric vehicle charging stations.

The Advanced Metering Infrastructure (AMI) plays a role in facilitating the
bidirectional data exchange between end users and the utility companies [14]. It consists
of three components; smart meters for monitoring power consumption, data collectors that
store data from smart meters in specific geographic regions and the AMI headend, which
acts as a central server where the utility companies aggregate and manage the collected
data. The SCADA systems are primarily used for monitoring and controlling the automated
functions. They include measuring instruments, logic controllers, a Master Terminal Unit
(MTU), a communication network and a Human Machine Interface (HMI). The logic
controllers work alongside sensors to manage the data flow efficiently by detecting
anomalies and regulating the system components. These controllers communicate with the
MTU using industrial protocols, like IEC 61850 [15]. The Human Machine Interface
(HMI) plays a role in facilitating this interaction. Substations are a part of the electrical
grid as they handle the transmission and distribution of power. They consist of devices such

as Intelligent Electronic Devices (IEDs), Remote Terminal Units (RTUs), HMIs and



Global Positioning System (GPS) [14]. Synchrophasor systems are technologies utilized in
modern grids. They incorporate Phasor Measurement Units (PMUs), Phasor Data
Concentrators (PDCs) and a communication network. PMUs measure waveforms, while
PDCs consolidate this data using standards like IEEE C37.118.2 and IEC 61850 for
communication [16]. The Energy Management System (EMS) enables communication
between utilities and third-party service providers allowing users to regulate their
electricity usage. Finally, the Distribution Management Systems (DMS), which analyze
real time electric distribution data to optimize power flows, prevent overloads and enhance
outage management [17]. However, since DMS is integrated with IT infrastructure, it can
be susceptible to cyber threats due to weaknesses in authentication, encryption and security

measures.

Among these technologies, the Advanced Metering Infrastructure (AMI) and
Supervisory Control and Data Acquisition (SCADA) systems are particularly vulnerable
to cyberattacks [18]. The AMIs vulnerability stems from its consumer end devices and
protocols that often lack security features like authentication, encryption and any excessive
overhead due to the ease of use [19]. The SCADAs susceptibility lies in internal threats
where an individual with system access can introduce malware similar to the Stuxnet
incident in Iran [20]. Furthermore, the substations and the synchrophasor systems, which
play a role in the functioning of the power grid are highly sought after by cyber attackers
as the communication protocols utilized in the systems such as the IEC 61850 are very

vulnerable to attacks because of the deficiency of the protection scheme [21].



1.4. Impacts of Cyberattack on Smart Grid

The smart grid relies heavily on computer networks and other related technologies,
which makes it susceptible to cyberattacks that can disrupt its operation. Internet-connected
sensors, devices and networks are often targets of probing, espionage, ransomware attacks,
theft and even physical destruction. Given the number of online nodes spread across wide
geographical regions, the smart grid is highly exposed to significant cyber threats.
Additionally, the power generation, transmission and usage are connected to other aspects
of the economy such as manufacturing, transportation, healthcare and more. An attack on

the power grid could result in disruptions to everyday production and livelihoods.

B Manufacturing

B Water

M Energy

H Transportation

B Communications

m Healthcare

W Government Facilities

m All others

Figure 1.3: Cyber Incidents on Critical Infrastructure Reported to the DHS, Industrial

Control Systems Cyber Emergency Response Team (ICS-CERT) [22]

As reported in [22], there has been an increase in cyberattacks on critical
infrastructure within the USA. The energy industry has become a prime target accounting
for 35% of these attacks as shown in Figure 1.3. These cyberattacks that target power grids

can have severe impacts and could cost economies such as that of the USA $243 billion to
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$1 trillion [23]. Successful cyberattacks can cause failures, synchronization loss, power
outages, financial and social damages, data breaches, cascading failures and even complete
blackouts [24]. In July 2019 Manhattan in New York experienced a blackout, which
impacted other critical infrastructures [25]. The impact of such blackouts can result to loss
of production, business closures, food spoilage, damage to electrical and electronic devices
and the inability to operate certain systems in hospitals and other critical areas. It is worth
noting that blackouts can also lead to property loss due to incidents, like arson and looting

as observed during other occurrences [26].

1.5. Problem Statement and Motivation
Today’s smart grid employ conventional intrusion detection and prevention systems
(IDPS), which utilizes signature-based and anomaly methods to identify cyberattacks.
However, recent reports indicate that these approaches are insufficient in safeguarding the
grid [27]. Many reports have also highlighted the growing occurrence of cyberattack
incidents and their reaching global effects. Table 1.1 provides a summary of major smart

grid attacks and the resulting outcomes since 2010.



Table 1.1: Cyberattacks and their Impacts to some Smart grids around the world.

Year Type of Country Targeted Impact and Ref #
cyberattack assets Consequence
2010 Data Iran SCADAV/ICS | Centrifuges for uranium [6]
Manipulation enrichment rendered
Attack ineffective.
2014 Social South | Communication | 5,986 phishing emails [28]
engineering Korea network with malicious codes
attack were sent to 3,571
nuclear plant employees.
2015 | Distributed | Ukraine | Transformer 1.4 million people lost [7]
Denial of substations power, causing
Service communication
(DDoS) problems with power
attack companies.
2016 FDIA Israel | National power | Israeli power facilities [29]
supply system halt due to technical
ISSues.
2017 | Encrypting | Ukraine Power plant Abnormal operations [30]
ransomware computer occurred at multiple
attack systems national power facilities
due to the infection.
2020 Denial of Italy Internal IT IT network blockage [31]
Service attack network caused customer service
interruption.
2020 Data Pakistan AMI and Data theft caused service | [32]
Manipulation Energy interruptions.
Attack Management
System
2022 | Command Ukraine Substation The attack-controlled [33]
manipulation equipment power flow through
attack direct interaction with
utility equipment
2023 Denial of Canada Outage Hydro-Québec's outage- | [11]
service attack management | checking platforms went
systems down.

With the rise of the cyberattacks in smart grids, it becomes crucial to be able to
categorize these attacks, for better understanding. This classification is vital as it enables
an implementation of countermeasures to protect against current and future attack types. A

timely identification of attack categories also facilitates responses and the implementation
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of measures to prevent catastrophic incidents from spiraling out of control. Safeguarding

the integrity of grid systems heavily relies on these countermeasures.

1.6. Contributions

The following summarizes the main contributions of this thesis:

e To develop an approach that uses machine learning techniques to detect the

cyberattacks as well as provide classification of the attack types.

e To investigate and identify the key relevant physical and network features that is

needed to classify the cyberattack types.

e To develop an approach that is effective in the detection and the classification of
the cyberattacks without suffering the problem of data overfitting as in the

existing approaches.

e To develop an approach that is insensitive to the selection of the training and the

testing datasets.

1.7. Thesis Organization
This thesis includes seven chapters. Chapter 1 explains the trend and impact of
cyberattacks on smart grid environment. Further, it explains the vulnerabilities of assets in
the smart grid infrastructure and the importance of detecting and classifying cyberattacks
followed by the problem statement and motivation. In conclusion, this research highlights

the contributions made by the thesis.

Chapter 2 surveys different methodologies for the detection and classification of

cyberattack types that were previously published in the literature. The advantages and
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disadvantages of each method is presented and discussed. Finally, the main research gaps
of the problem are outlined. Furthermore, the research direction to be pursued in this thesis

is emphasized.

Chapter 3 is dedicated to the common Machine Learning-based methodologies utilized in
cyberattack detection. This chapter explains the mathematical background of the three most
popular machine learning techniques — Decision Tree, Support Vector Machine and K-
Nearest neighbor. Finally, the benefits and drawbacks of each algorithm was also

highlighted.

Chapter 4 discusses the IEC 61850 standard and its role in substation automation systems
(SAS). The information model and the communication framework outlined by the standard
is discussed. Additionally, the establishment of the communication within the devices in
the substation and the structure and transmission of the GOOSE and Sampled value (SV)

are also highlighted.

Chapter 5 describes the proposed model to detect and classify the cyberattacks in IEC
61850 SAS. Firstly, the data collection and the steps taken to preprocess it are discussed.
Furthermore, the Fine Tree Bagging based Ensemble (FTBE) methodology for training and
classifying attacks is discussed in detail. Lastly the process of the proposed approach and

the metrics employed in this evaluation process are illustrated.

Chapter 6 provides the analysis of the approach put forward and showcases the findings.
The algorithm is implemented, and tests were conducted using different selection of
training and testing data. The results of different k-folds and the number of learners are

presented and are discussed by comparing the classification accuracies, F-score, precision,
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recall with the other machine learning methodologies highlighted in Chapter 3.
Furthermore, the sensitivity of the proposed approach to the variation of the k-fold values

and number of learners was explored.

Finally, Chapter 7 presents the main conclusion and recommendation regarding the
classification of cyberattacks in IEC 61850 substation automation systems. It also presents
potential avenues for future research and development that can build upon the findings and

contributions of this study.
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2. Literature Review

2.1. Introduction

In this chapter, previous work in the literature addressing the detection and the
classification of the cyberattacks in smart grids are presented and are reviewed. The
literature is divided into two categories; research focused solely on detecting the cyber
attacks and research that includes both the detection and the classification of the
cyberattacks. The first section of this chapter examines the previous work that used
machine learning and non-machine learning methods to detect the cyber attacks. In the
subsequent section, an overview of the previous work in the literature that proposed
techniques that utilized machine learning based and non-machine-based approaches, for

both detecting and classifying cyber attacks.

The main objective of the work presented in this thesis is to identify and classify the
cyberattacks on smart grids. The literature review sheds light onto the previous efforts to
classify cyberattack types through the use of machine learning. The intention is to evaluate
these contributions, compare the effectiveness of specific techniques, and identify any
limitations. Finally, this chapter highlights the research areas that require further

exploration and sets the stage for the main findings of the research presented in this thesis.

2.2. Previous Work on Detection of Cyberattacks.

This section presents the existing methods that are introduced in the literature for the
detection of cyberattacks. The previous work is classified into two different types: non-
machine learning based approach and machine learning based approach as discussed

below.
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2.2.1. Non-Machine Learning Based Approach

Non-machine learning based approaches such as model-based algorithms are
methods used in detecting cyberattacks in smart grids. This method involves creating
models of smart grids using both real-time streaming measurements and static data like
system parameters and substation configurations. Based on the system model, estimation-

based detection approaches have been utilized by the researchers.

In the static estimation method, each step of estimation is handled independently
without any information being passed to the next step. The main approach utilized for
identifying attacks is the Weighted Least Squares (WLS) estimation technique. The work
in [34] employed WLS to detect failures that could lead to changes in network topology or
measure incorrect voltages. Furthermore, the work in [35] examined the repercussions of
FDIA and incorporated WLS into their detection methodology. To enhance the
convergence speed, a recursive version of WLS was proposed in [36], which updates the
state estimation using historical states. In [37], the WLS is applied to identify anomalies,
in voltage controllers within the transmission system. The major drawback of using the
WLS estimator approach is its dependence on the assumption that a smart grid operates in
a steady-state with sufficient redundancy. However, in real-life scenarios, the smart grids
encounter changes in demand and generation, making it challenging to maintain a stable

condition [38].

In dynamic state estimation approaches, the methods such as Kalman filter (KF)
are widely employed. The KF method entails forecasting the state based on the previous
one and adjusting the prediction using measurements obtained at that moment. In [39], KF

was utilized to identify FDIA in automatic generation control (AGC) systems emphasizing
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the impacts of FDIA. Furthermore, in [40] an approach using KF for real time operations
to estimate and detect FDIA was proposed. A significant limitation associated with Kalman
filter is that it becomes more complex as the number of buses in a network grows because
of the need to create Jacobian and error covariance matrices. Also, if there is nonlinearity
in the network, the Kalman filter will struggle to accurately estimate and detect the

cyberattacks [41].

2.2.2. Machine Learning Based Approach

The work in [42] investigated an Intelligent Remedial Action Scheme (IRAS) that
aimed to distinguish between the cyberattacks and the physical disturbances in the smart
grid. The approach utilized an anomaly detection technique based on decision trees with
voltage and current phasors serving as the features. However, it is important to
acknowledge the limitations of this method as the classification model could potentially be
prone to overfitting, leading to false positives. Furthermore, relying on differential features
of voltage and current phasors may not provide sufficient resilience against cyberattacks

that can effectively hide their activities and evade detection.

In a study conducted in an IEC 61850 substation environment, a behavior-based
intrusion technique proposed in [43] was implemented. The aim is to detect anomalies
using dynamic features and acquire Generic Object Oriented Substation Event (GOOSE)
and Manufacturing Message Specification (MMS) factors. For the experimental set-up,
261 normal traffic scenarios were randomly selected. The Packet Capture (PCAP) files
containing the most likely IEC 61850-related vulnerabilities based on 27 attack scenarios

were inserted randomly into the dump file for analysis. However, the study only focused
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on detecting a GOOSE spoofing attack using dynamic features and disregarded the other

types of attacks.

The work in [44] introduced a rule-based Network Intrusion Detection System
(NIDS) for digital substations. The Rule based methods typically involve analyzing data to
identify patterns and establish classification rules. However, this can be quite challenging
when working with large datasets that have numerous features leading to complex models
and potential problems with overfitting. Additionally, the NIDS discussed in the study did
not take into account the disturbance scenarios, which were consequently omitted from the

classification analysis.

Hyunguk et al. [45] proposed an anomaly detection model through normal behavior
profiling of the MMS and GOOSE packets in order to identify abnormal events in the
network. According to Figure 2.1 during the processing stage, MMS and GOOSE packets
are extracted from the data collected in the substation network using packet filtering. These
packets are then grouped into datasets using a 3-phase preprocessing technique. To ensure
accuracy either EM (Expectation Maximization) or LOF (Local Outlier Factor) was applied
to identify and remove any outliers from these datasets. Once the outliers were removed,
the normal-behavior models for each of the three datasets using a one class SVM algorithm
was created. In real time, the anomaly detection engine receives packets for preprocessing
and compares them against the established normal behavior models to determine whether
they are within expected parameters or exhibit abnormal behavior. Based on this

comparison an alarm and log are updated accordingly.
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In [46], a collaborative intrusion detection system (CIDS) that can be executed
within several IEDs is presented. The algorithm-based intrusion system is used to detect
intrusions in both GOOSE and Sample Value (SV) messages. A significant drawback in
the implementation of this approach is that such IDS will require a large amount of
communication between devices to facilitate effective detection and mitigation of cyber-
attacks. This high level of communication can result in substantial network congestion
when more than two CIDS IEDs are attacked simultaneously, which may, in turn,

compromise the system's overall performance and reliability.

In [47], a hybrid intrusion detection system (HIDS) was proposed. The purpose of

this system was to learn and analyze the behavior of power systems during situations such,
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as disturbances, normal control operations and cyber attacks. To implement and generate
data for the power system scenarios, a hardware in the loop testbed was utilized. This
testbed included a real-time digital time simulator (RTDS) that simulated transmission
lines, breakers, generators and load. The hybrid IDS employed a common paths mining
approach, which proved to be effective in classifying 90.4% of the tested scenario
instances. However, it is important to note that this approach relies on detecting
correlations or similarities in the patterns of system activity that may not indicate malicious
intent. Consequently, there is a possibility that legitimate user actions might be flagged as

threats by the system leading to an increase in false positives.

The work in [48] introduced a concept referred to as True Data Integrity. It presents
an approach using an Agent Based Model to measure the vulnerability of data to attacks.
The True Data Integrity-Agent Based Model (TDI-ABM) focuses on analyzing time series
values and comparing them against malicious values at a specific moment. By evaluating
the values, the model predicts the subsequent values and calculate any error at the end of
the timeframe to determine if an attack has taken place. Through experimentation with
replay attacks using the Artificial Feed forward Network (AFN) the model achieved a
98.19% accuracy in detecting false data. However, it is worth noting that this study did not
investigate scenarios involving disturbance events. Additionally, training this model with
AFN can be computationally expensive and time consuming, particularly when dealing
with large datasets. These factors may limit its scalability and efficiency in real world

applications where fast and precise predictions are often necessary.

Zia et al. in [49] proposed a method for detecting FDIA and locating compromised

meters using machine learning techniques such as binary relevance (BR) and classifier
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chain (CC). The BR method involves training one binary classifier for each label using a
large set of synthesized measurements. These classifiers are then used for testing purposes.
The CC method trains multiple binary classifiers that are interconnected in a chain based
on the feature space. The findings of this research demonstrate that the BR method achieves
an accuracy rate of 95.1% in detecting and locating FDIASs surpassing algorithms, like CC,
SVM and light gradient-boosting machine (LGBM). Nevertheless, this study did not

explore the adaptability of these methods to other cyberattacks or systems.

2.3. Previous Work on Detection and Classification of Cyberattacks

This section provides an overview of the existing methodologies that have been
introduced in the literature for the detection and classification of cyberattacks. The previous
works are classified into two different types: non-machine learning based approach and

machine learning based approach as discussed below.

2.3.1. Non-Machine Learning Based Approach

Several studies have utilized non-machine learning approaches such signature-
based techniques to detect and classify cyberattack threats and anomalies. Signature-based
approaches rely on pre-existing databases and fixed signatures to detect and classify attacks

that are known [50].

A method for detecting and classifying cyber attacks was proposed in [51], which
leverages Gaussian processes to identify anomalies, within different attack types.
Furthermore, the work in [52] presented a cyberattack detection and classification
technique that relies on the Pearson correlation coefficient to measure the relationship

between parameters of Phasor Measurement Units (PMUs).
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The work in [53] presented a set of fifty signature rules for Modbus protocols used
in serial communication interfaces. The study employed the Snort IDS to verify these rules.
Nonetheless the study provides instructions, on how other IDS systems can adopt these
rules. Each rule encompasses a text field, which incorporates protocol specific details.
However, it is important to mention that the study did not offer any numeric results

regarding the efficiency of these rules.

The study in [54] focused on the DNP3 protocol. The work also utilized the Snort
IDS to provide signature rules. A template was established for intrusion detection, which
was then utilized to create signature rules for the DNP3 protocol. These generated signature
rules are capable of detecting and classifying anomalies in the protocol including
reconnaissance attacks, DoS attacks and hybrid attacks. However, the study did not provide

any evaluation procedure in their work.

The study in [55] introduced an IDS framework for substations, which employs
signatures and focuses on the active power limitation attacks. They developed a stateful
analysis plugin, which can be incorporated into an IDS. The plugin has three functions: it
decodes the application layer packets, it applies rules for detecting attack patterns and
differentiates between content conditions and state tags, and it updates the protected
devices states. The study tested this plugin using the Manufacturing Message Specification
(MMS) protocol per IEC 61850 standards, detected and classified two attacks but did not

provide numerical results.

The signature-based technique is reliable and has a low rate of false positives.
However, it cannot detect unknown attacks that are not specified by any signature. This

limitation results in various intrusion detection system (IDS) topologies [50].
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2.3.2. Machine Learning Based Approach

In the study presented in [56], various machine learning models were assessed in a
system that compared SCADA and IEDs. The findings revealed that the JRipper +
Adaboost algorithm demonstrated a low false positive rate when employing a three-class
classification system (normal, disturbance and attack categories). However, the algorithm
encountered challenges in differentiating between specific types of attacks, such as remote
tripping attack, relay setting change attack and FDIA. As a result, it exhibited a high rate

of false positives.

M. Keshk et al. in [57] introduced a method known as privacy preservation
intrusion detection (PPID) to identify intrusion events in SCADA systems. However, the
findings of the study indicate that prioritizing privacy preservation may result in
information unavailability for intrusion detection, which potentially impacts the accuracy

of detecting the different types of attacks.

In [58], a two-layer machine learning model that relied on a Random Forest
Classifier (RFC) was proposed. The main aim of the first layer was to distinguish between
normal operation and cyberattacks. Subsequently the second layer categorized the
identified state into types of cyberattacks. However, the RFC approach used in their study
was simplistic as it did not involve tree pruning or any stopping criteria, which made the
classification model susceptible to overfitting. Consequently, the approach have high

misclassification errors when used on the foreign test datasets.

In [59], a sequential classification machine learning model known as bidirectional
long short-term memory (BIiLSTM) was utilized. The BiLSTM model demonstrated

effectiveness in identifying FDIA and replay attacks with a low rate of false negatives at
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0.372%. However, this approach is time and resource consuming when applied to large
datasets due to its complexity. Furthermore, the study did not thoroughly explore how the

selection of datasets, for training and testing impacts the accuracy of classification.

In [60], a classification model which is made up of enhanced Extra Tree (ET) that
utilizes the Synthetic Minority Oversampling Technique (SMOTE) was developed. The
aim of this model is not to detect attacks but also to identify the specific types of attacks.
By using SMOTE, the study addressed the challenge of imbalanced data by oversampling
the minority class. Additionally, the study employed the ET classifier, which is a tree-based
ensemble method specifically designed for dealing with unbalanced classification
problems. The experimental findings indicate that their proposed ET-SMOTE algorithm
surpasses existing benchmark models, in terms of accuracy achieving an accuracy rate of
99.79%. However, it is worth noting that this study solely relied on a single dataset, which

may introduce some vulnerability to overfitting issues.

2.4. Research Gaps
The previous work that has been published in the literature is summarized in Table 2.1.

The following is a summary of the identified research gaps from the previous work.

e The literature review revealed that there is a lack of research focusing on identifying
and classifying the types of attacks and disturbance scenarios. Moreover, the
cyberattack datasets tend to be complex and imbalanced due to the rarity of attack
scenarios. This underscores the importance of developing a detection and

classification model.
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e The previous work published in the literature has indicated the necessity for a
technique that can distinguish between different types of attacks and highlight the
relevant features associated with each type.

e The literature has also revealed the need for a technique that is not susceptible to

overfitting and is not sensitive to the selection of training and testing datasets.

Table 2.1: Literature Review Table of Detection and Classification of Cyberattacks in

Smart Grids
Detection Technique
- A - Exan_1ining Data set
Ref # Mach!ne Non_— Classification | Overfitting various Interchange
Learning | Machine datasets
Learning

[34]-[40] x N X X X X
[42] N x x N x x
[43] v x x NA NA x
[44] N X X x X x
[45] N x x N N x
[46] v x x NA NA v
[47] N X X N X X
[48] N x x x x x
[49] N X X NA x X

[51]-[55] x v \ X x x
[56] N x V x x x
[57] v X N X x x
[58] N x N x N x
[59] \ x N x x x
[60] N x N x x x

NA — Not Available, x - Not Performed, V - Performed
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2.5. Summary

This chapter summarizes the previously published work in the literature related to the
detection and classification of cyberattacks in smart grid. Initially, the chapter highlighted
the research in the area of cyberattack detection, then it discussed the approaches that have
been employed in identifying anomalies in the smart grid. Secondly, the chapter presented
a summary of the approaches that have been utilized to detect and classify different
cyberattack types. The studies that presented several approaches for the detection and
classification of cyberattacks have been reviewed and the main outcomes of the studies
were highlighted. In addition, the limitations of these studies were presented and discussed.
The identification of research gaps and the subsequent discussion of the recommended
approach to address these gaps will be the focus of this thesis. The next chapter explains
the common machine learning approaches in smart grid used to compare with the proposed

approach.
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3. Machine Learning Methodologies used in Smart Grid

3.1 Introduction

The field of machine learning is a significant aspect of artificial intelligence. It has
proven to be valuable when it comes to managing the amount of data generated by smart
grids. Machine learning techniques have become tools, for analyzing data and making
decisions that ensure the smooth operation of the grid. Through machine learning, the
information is gained from raw data and predictions are made based on that information.
This involves utilizing algorithms that carefully examine data using a set of instructions to
generate predictions and make informed decisions. In the context of smart grids, machine
learning functionalities encompass tasks, like power generation management, optimizing
schedules, determining prices, detecting faults or malfunctions, predicting consumption
patterns, implementing adaptive control measures as well as identifying and classifying
cyberattacks. Integrating machine learning into the smart grid is essential because of the
incorporation of new technologies into the grid. This will play a role in the much-needed
task of safeguarding the grid against the rising number of cyberattacks. In this section the

background of the common machine learning techniques used in this thesis is provided.

3.2. Machine Learning-Based Algorithms
One effective approach, for identifying and categorizing cyberattacks in grids involves the
use of machine learning techniques. Unlike other algorithms, machine learning relies on
data from the system being analyzed. There are two types of machine learning algorithms:
supervised and unsupervised. Supervised learning utilizes labelled datasets to classify data
or make predictions about outcomes. On the other hand, the unsupervised learning uses

unlabelled data to uncover patterns for clustering or association purposes [61]. This thesis
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specifically focuses on the implementation of machine learning methodologies as the
dataset used is labelled to enable the identification and classification of cyberattacks in the

substation automation systems.

3.3. Supervised learning Methods

In supervised learning, the model requires labeled data to learn the patterns. Each input
is linked to a specific output as (s;,y;), where s; represents the it* input sample and y; is
the label that falls under normal, disturbance, or attack type [62]. In this thesis, the
supervised learning methodologies compared with the proposed approach are Decision

tree, Support Vector Machine and K-nearest neighbor.

3.4. Decision Tree Algorithm

A decision tree is a machine learning method that has a structure resembling an inverted
tree or pyramid. It is employed to address issues related to event classification in smart
grids. In this technique each internal node of the tree represents an input feature and the
branches connecting these nodes are determined by input characteristics. The resulting
values of the output feature are assigned along these branches [63]. Decision trees visually
depict the decisions that need to be made, potential outcomes and various combinations of

decisions and events as shown in Figure 3.1 [64].
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Figure 3.1: Decision Tree[61]

There are algorithms that can automatically generate a decision tree from a dataset.
These algorithms include Iterative Dichotomiser 3 (ID3), Classification and Regression
Trees (CART), J48, C4.5, C5.0 Chi square Automatic Interaction Detector (CHAID) and
Quick, Unbiased, Efficient Statistical Tree (QUEST). In this research, the CART algorithm
is used to construct the decision tree because it can handle both classification and regression
tasks. To predict the class of the dataset used in this research, the algorithm begins at the
root node of the tree. It compares the values of the root attribute with those of the test
system dataset attribute. It then proceeds along the branches based on this comparison and
moves to the next node. This process is repeated for each node by comparing attribute

values until the leaf node of the tree is reached.

3.4.1. Decision Tree Attribute Selection Measure
The decision tree is grown by selecting the optimal split among the attributes of the

datasets, based on the Gini index that measures the impurity of the tree nodes [65]. The
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attribute that is selected for splitting is determined by measuring the node impurity and
selecting the attribute with the lowest weighted Gini Index. The pure node has a

characteristic of all the observation being from the same class [66].

c—-1 31
Gini(t) =1— Z[p(ilt)]2 e
i=0

Where p(i|t) is the portion of observation that belongs to class i at a given node t and

¢, the number of class labels. The Weighted Gini index (Giniweight) is defined as:

n
X (3.2)
Giniyeign: = Z?t X Gini(t)

Where, X; is the number of scenarios in node t, T is total number of scenarios, Gini(t)

is the Gini index value at a given node t, and n is the number of nodes.

3.4.2. Strengths and Limitations of Decision Trees
The decision tree methodology is an effective technique for the classification of events

in several applications. Below are the advantages and disadvantages of this methodology.
Advantages of the Decision Tree Algorithm

e The process of using this method is similar to how humans make decisions in real-
life.

e This approach proves to be helpful in solving decision-related problems, while
considering all possible outcomes.

o Itrequires less data cleaning in comparison to other algorithms.

Disadvantages of the Decision Tree Algorithm
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e The decision tree can be complex when it contains numerous layers.
o It can be susceptible to overfitting [67].
o If there are more class labels, the computational complexity of the decision tree

may also increase.

3.5. Support Vector Machine Algorithm

In the field of machine learning, the Support Vector Machine (SVM) is also a popular
supervised learning method. It helps to classify or regress data sets that can be either
discrete or continuous depending on the type of data [68]. The SVM algorithm creates a
linear classifier by assigning training instances to predefined categories. Its primary
objective is to find the line or decision boundary that separates classes in an n-dimensional
space so that new data points can be accurately assigned to their appropriate category. This

optimal decision boundary is known as the hyperplane of the SVM.

3.5.1. Hyperplane and Support Vectors in the SVM algorithm

In SVM, there can be one or multiple hyperplanes that separate classes in an n-
dimensional space. The number of dimensions in the hyperplane depends on the features
in the dataset. For instance, if there are three features, the hyperplane will be a 2-
dimensional plane as shown in Figure 3.2. Three lines divide the three classes into their
groups. The hyperplane is created with the maximum margin, which represents the distance
between data points. The data points or vectors that are the closest to the hyperplane and
have an influence on its position are called Support Vectors. They are named so because

they support the hyperplane.
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Figure 3.2: Representation of SVM in a 2-dimensional space [68]

To reduce the computational complexity, kernel functions are utilized to represent
the data mapping. In this research, a Gaussian kernel is employed for SVM due to its ability
to classify data based on statistical variances with high computational efficiency, owing to

its nonlinear properties. The Gaussian kernel is mathematically defined as follows:

p (3.3)
K(x;,x;1) = exp _VZ(xij - xi’j)z

j=1
Where, 1y is the kernel coefficient. The SVM algorithm will undergo accuracy testing

through cross-validation, with varying penalty parameters denoted by C, and kernel

coefficients vy.

3.5.2. Strengths and Limitations of Support Vector Machine Algorithms
Using SVM for identifying events in substation automation systems can also be
considered as it offers significant advantages. Below are the benefits and drawbacks of this

methodology.
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Advantages of SVM Algorithm

e It excels in handling high dimension data.
e SVM is particularly useful for small datasets as it exhibits good generalization
abilities.

e With the use of kernel functions, it can effectively classify data.
Disadvantages of SVM algorithm

e One of the drawbacks of the SVM algorithm is that it struggles to handle large
datasets efficiently.

e The methodology is computational expensive and takes large training time.

3.6. K-Nearest Neighbor Algorithm

The K Nearest Neighbor (KNN) algorithm is an effective technique in machine
learning. It has shown its usefulness in tasks, including fault detection, localization and
classification [69]. It works by looking at the class that is commonly chosen by the
neighbors of an object. It is referred to as a lazy learner algorithm because it stores all
training samples and only builds a classifier when a new, unlabeled sample needs to be
classified [70]. Figure 3.3 provides an illustration of how KNN works. It relies on learning
through resemblance by comparing test samples with training samples that are similar to
them. To classify a data point using KNN, the algorithm searches for its K-nearest
neighbors and measures the distance to each neighbor. It then counts how many data points
belong to each category among these neighbors. The assigned class label is determined by

which category has the majority of the neighbors, which in this instance is category 1.
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Figure 3.3: Implementation of the Algorithm for K=5 (a) Before KNN and (b) After

KNN [71]

3.6.1. Selecting K in the KNN Algorithm
The effectiveness of the K-nearest neighbor algorithm is influenced by the choice of
“K” [72]. However, determining the value for “K* when implementing the KNN algorithm
on a dataset is not straightforward. To find the “K” value multiple values are tested to
identify the optimal value. If “K” is too small there is a risk of overfitting due to noise in
the training dataset. On the other hand, if “K” is too large, misclassification may occur as

distant data points could be included in its neighbors list.

In this research, the K-nearest neighbor (KNN) algorithm is utilized for data
classification by determining its closest k neighbors. The proximity between the data points

is measured using the Euclidean distance equation.

dij = ||Si - S]” ,Sj €S (34)
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In the context of this study, the symbols S and s represent the labeled and unlabeled
data, respectively. When the value of k exceeds 1, the classification of data is determined
by the majority of its neighboring data points. To determine the optimal k value, several
different k values will be evaluated through a process of cross-validation, with the goal of

maximizing the accuracy of the classification.

3.6.2. Strength and Limitation of KNN Algorithms

Advantages of the KNN Algorithm

e This method is easy to comprehend and implement.
e It has the ability to handle noisy training data.

e Performs well in scenarios where a single sample may have multiple class labels

[72].
Disadvantages of KNN Algorithm

¢ When dealing with a large number of potential neighbors to compare with an
unlabeled sample, the computational costs can be quite high [72].
e Itissensitive to the local structure of the data and has memory limitations [73].

e Due to being a supervised lazy learner, it may also run at a slower pace.
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3.7. Summary

The classification process can be divided into two phases. The first is the training phase,
where the classification model is built. Then there is the classification phase, where the
trained model is used to assign an unknown data object to one of the predefined class labels.
In this section, different commonly used classification techniques in data mining were
explored. A study of algorithms such as Decision Trees, Support Vector Machines (SVM)
and K-Nearest Neighbor (KNN) were discussed. The strengths and weaknesses of each
algorithm were also highlighted. By examining the pros and cons of each method, this
thesis offers a framework, for comparing the proposed methodology with these classifiers

in detecting and categorizing cyberattacks.
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4. Analysis of the IEC 61850 Substation Communication Standard

4.1.Introduction to IEC 61850 Standard

In the past, substation automation systems utilized master/slave architectures, which
relied on communication protocols such, as Modbus and Distribution Network Protocol
(DNP) to transmit substation data to a remote location. These protocols operated based on
tags requiring users to access data by providing a tag or an index number. While this
approach ensured a dependable communication network, the engineering process required

to implement these protocols complicated the entire system.

The advancement of microprocessor technology and data networking has led to the
adoption of Ethernet-based systems as the preferred method of communication in IEDs,
surpassing serial communication. This preference for Ethernet offers benefits such as
reduced wiring time, lower cabling costs and improved network addressability. However,
the main drawback is the utilization of data protocols in non-standardized systems, which
hinders interoperability between IEDs, from different vendors [74]. As a result, such

substations require the use of complex protocol converters.

The development of the IEC 61850 standard was driven by the necessity to address
issues related to interoperability and interchangeability [75]. Introduced in 2004, the IEC
61850 is a standard that integrates various practices for substation automation [76]. It
incorporates the utilization of logical nodes and offers well-defined procedures for
designing, modelling, representing data and configuring IEDs within a substation
automation system. This has resulted in enhanced interoperability among IEC 61850
complaint IEDs compared to those that do not comply [16]. Notably, the IEC 61850
standard has gained adoption across electrical substations worldwide [77].
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Table 4.1: Scope and Outline of the IEC 61850 standard [78, 79]

Part Number

Title

IEC 61850-1 Introduction and overview
IEC 61850-2 Glossary
IEC 61850-3 General Requirements
IEC 61850-4 System and Project Management
IEC 61850-5 Communication Requirements for Function and Device
Models
IEC 61850-6 Substation Automation System Configuration Language
IEC 61850-7 Basic Communication Structure for Substation and
Feeder Equipment
IEC 61850-7-1 Principles and Models
IEC 61850-7-2 Abstract Communication Service Interface
IEC 61850-7-3 Common Data Classes
IEC 61850-7-4 Compatible Logical Mode Classes and Data Classes
IEC 61850-7-5 Technical Report
IEC 61850-8 Specific Communication Service Mapping (SCSM):
IEC 61850-8-1 Guideline For Mapping from IEC 61850 To IEC 60870
5-101/-104 (Technical Specification)
IEC 61850-9 Process Bus Mapping
IEC 61850-9-1 Sample Values (SV) Over Serial Uni-directional Multi-
Drop Point-To-Point Links
IEC 61850-9-2 Sampled Values Over ISO/IEC 8002-3
IEC 61850-10 Conformance Testing
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The IEC 61850 standard consists of ten parts and multiple subsections that encompass
aspects concerning data modeling and communication framework. Table 4.1 highlights

each parts scope and relevance, to substation automation systems.

4.2. Communication Architecture of IEC 61850

According to the IEC 61850 standard an Ethernet-based substation automation
structure follows an approach consisting of three levels: station level, bay level, and process
level. Furthermore, the architecture incorporates two types of buses: process bus and station

bus. Figure 4.1 illustrates the IEC 61850 substation architecture.
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Figure 4.1: Architecture of an IEC 61850 based substation
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The Process level consists of merging units (MU), sensors, Resistance Thermal
Detectors (RTDs) and breaker IEDs to link switchgear equipment together with the substation
automation systems located in the Bay level kiosks [75]. To facilitate communication and data
transfer between the process level and bay level, the process bus acts as a conduit. It enables
the transmission of raw data including measurements from current and voltage transformers as

well, as control information [75] .

The Bay level serves as a link facilitating the connection of different control and
protection IEDs using station level ethernet switches. To ensure the separation of substation
components like lines and transformers from the remainder of the substation, serial
connections are employed [78]. Additionally, all automation systems located at the Bay
level are housed in separate kiosks ensuring distance from the switchgear equipment [80].
Communication between the Station level and Bay level and even inter IED

communication within both levels is made possible through the station bus.

At the station level, there is Human Machine Interface (HMI), station computers, a
database, and remote communication interfaces. These tools are used to archive, automate,

store data, and manage multiple Bay level devices with the help of specialized software.

4.3. IEC 61850 Information Model

This section describes the storage of data and metadata in an IED and their
representation in the IEC 61850 standard. The model consists of elements that describes
the information model such as setpoints, measured values, and sequence of events.
Additionally, the components related to the communication configuration, which is

referred to as the information exchange model in IEC 61850-7-1 subsection is described.
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4.3.1. Logical device
The data source in IEC 61850 begins with a server that stores files and is connected to a
physical device where a logical device operates. Within this logical device, there are

various logical nodes [79].

ﬁ Data Class |

Logical Node
(3ton)

Au|

\/Loglcd Deovice,
(1ton)

LOGICAL DEVICE (IED1)

" Physical
) Davice

PHYSICAL DEVICE (Network Address)

4

Figure 4.2: IEC 61850 device representation [81]

A physical device acts as a means of communication, between the logical devices such,
as Ethernet or other networks. In the logical device (LD) model there are nodes that provide
the required information for a device. The LD outlines the functions that need to be carried
out by a device as shown in Figure 4.2. A logical device comprises of logical nodes and

each device must have at least three logical nodes [82].

4.3.2. Logical Nodes

In the IEC 61850 Standard, the logical node (LN) holds significant importance. LNs
act as virtual representations of the fundamental functions within a SAS and serve specific
functions through predefined groupings of data objects[83]. Table 4.2 presents the

complete list of logical node groups and their respective labels.
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Table 4.2: Categorisation of Logical Nodes in IEC 61850

Logical Groups

Group Labels

Logical Groups

Group Labels

System Equipment

Automatic Control A Protection Related R
Supervisory C Sensor and S
Control Monitoring

Generic G Instrument T
Transformers

System logical L Switchgear X

nodes

Metering M Power Y
Transformers

Protection P Further Power Z

Interfacing and
archiving

To simulate a complete device, LNs can function as building blocks. From Figure 4.2,
examples of LNs include the XCBR for LN1, which portrays circuit breaker capabilities of
a switch, and the MMXU for LN2, which provides all electrical metering measurements in
3-phase systems such as voltage, current, watts, vars, power factor, etc. [78]. Table 4.3
shows all the logical node classes in an IEC 61850 based substation and their description

[84].

Table 4.3: Logical Node Classes in IEC 61850 substation

LN Classes Description LN Classes Description
GGIO Generic logical PTOC Time overcurrent
node protection
MMTR Metering RBRF Breaker failure
MMXU Measurement unit XCBR Circuit breaker
PDIF Differential XSWI Circuit switch
protection
PDIS Distance protection YPTR Power transformer
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4.3.3. Data Class

Data Class or Data Objects (DOs) refer to preassigned names given to objects that are
associated with one or more nodes. Each logical node is linked to one data object. Common
data classes serve purposes, such, as indicating integer status, measured values or defining
analog settings [85]. For instance, the OpCnt data object of the logical node class XCBR
(Circuit Breaker) denotes the operation count of the circuit breaker. The OpCnt utilizes the
integer status data object class. Table 4.4 showcases the data objects and their respective

functions in substations based on IEC61850 [80].

Table 4.4: Data Objects in IEC 61850[86]

Data Class Name Description
A Phase to ground amps
Ang Angle between phase current and voltage
BIkCls Status Information
Loc Local operation
Operation of a logical node Op
Pos Switch position
Str Starting of a logical node
Tr Trip activation

4.3.4. Data Attribute

Lastly, the data objects, which holds data that has certain features referred to as Data
attributes. Data attributes are predetermined attributes that can be used by numerous
objects, like value, quality, timestamp, and description. These shared attributes are outlined
in Clause 6 of IEC 61850-7-3 [87]. Common Data Classes (CDC) are standard groups of

data attributes, as defined by IEC 61850. Every data object within a logical node is part of
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a CDC. The data attributes consists of parameters such as Boolean, Coded Enum, integer,

Bit String, and floating point, that make up the data types [80].

4.3.5. Naming Convention in IEC 61850

The IEC 61850 standard uses a hierarchical naming convention for devices, logical

nodes, data objects, and data attributes. This naming convention is crucial because it

eliminates ambiguity. As shown in Figure 4.3, the first part of the naming convention is

the logical device name chosen by the utility. The second part refers to the logical node.

As explained in Section 4.3.2, the first letter of the logical node represents the logical group

to which it belongs. In the figure, the logical node begins with "M", which stands for

metering. The third part indicates the instance number of the logical node, which in this

case is "Feeder number 3". The fourth part refers to the "Data Object Name", which is

defined as Phase-to-Ground amps. Finally, the fifth part is the Data Attribute of the logical

node defined in a CDC. The PhsA represents Phase A, cVal represents the complex value,

mag is the magnitude of the complex value, and f is the floating-point value.

Relayl MMXU

v

Logical Device Name

3 . PhV.

Logical Node Class

Logical Node Instance

phsA. c¢Val. mag. f

\ J

Data Object Name

h 4

Data Attribute Names

Figure 4.3: Default Naming scheme of IEC 61850
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4.4. Substation Configuration Language

Before the implementation of the IEC61850 protocol, communication between
vendor IEDs was limited [85]. This was due to manufacturers designing their products
using proprietary tools, making it impossible to achieve interoperability. To resolve this
issue, the Substation Configuration Language (SCL) was introduced in IEC 61850-6. The
SCL is an Extensible Markup Language (XML) based language that is used to describe
how different vendor IEDs connect and interact with each other. The SCL enables the
exchange of relevant information about both the entire system and individual components
[88]. The SCL allows vendors to define the functionalities of IEDs allowing users to
conveniently set up IEC 61850 clients without the need for a list of data points. Also, it

facilitates the export and import of IED configurations to applications and tools.

The IEC 61850-6 introduces two tools for substation automation system configuration:
the IED Configurator and the System Configurator. The IED Configurator, often vendor-
specific, creates and loads IED configuration files. Conversely, the System Configurator,
vendor-independent, merges various IED configuration files into one substation-wide file,
which then guides specific IED configurations. The different types of SCL files illustrated

in the configuration information flow process in Figure 4.4 are described below [88]:

e System Specification Description (SSD): Describes the entire single-line diagram
system and the individual device functions.

e Substation Configuration Description (SCD): Describes a single substation
automation system’s communication and function configuration.

e |ED Capability Description (ICD): Describes the complete communication

functions and data model capabilities supported by an IED.
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e Configured IED Description (CID): Describes all the data required from the system

to configure a specific IED.

e System Exchange Description (SED): Describes the Information required for data

exchange between substations.

e Instantiated IED Description (11D): Describes the configuration of an IED for a

specific project.

In this research, the IID file was accompanied with the data set files used to evaluate

the proposed approach.

System
Configurztion Tool

SED
file
] ICD
SSD Ié]I: file
file

System IED Configuration
Configuration Tool Tool

SCD ICD
file file

Figure 4.4: Information flow of the configuration process

4.5. Overview and Configuration of GOOSE and Sampled Values in IEC 61850

Based on the guidelines provided by IEC 61850, smart grid application messages can
be divided into two categories: Subscriber/Publisher and Client/Server. The
Subscriber/Publisher messages serve time-critical purposes like sending control commands

such as tripping, blocking or indicating state changes as well as performing metering and
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protection functions. On the other hand, Client/Server messages are typically used for
voltage control, condition monitoring and data recording in case of failures. In this thesis
the focus is on the publisher/subscriber message category, which includes GOOSE and

Sample values. These specific message types were utilized in this research.

45.1. 1EC 61850 Publisher-Subscriber Architecture

In this system architecture, there are two kinds of devices that interact with each other;
the publisher and the subscriber. One device function as a GOOSE publisher while another
device acts as a GOOSE subscriber. The publisher device broadcasts messages to all
devices on the network and only the subscriber device captures the message to access the
data. To ensure that devices receive GOOSE messages within 3 milliseconds after an event
in the substation, the publisher device increases the rate at which the messages are sent
through a retransmission mechanism. Afterward the device maintains a pace of message
sending allowing the subscriber device to identify any communication failures [89]. Figure

4.5 provides an illustration of how the publisher-subscriber communication model

operates.
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Figure 4.5: Publisher and subscriber communication [90].
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4.5.2. Retransmission Mechanism

The retransmission mechanism process used by the publisher device is illustrated in
Figure 4.6. In the two-state process, the first state is characterized by inactivity while the
second state involves the occurrence of an event. During the first state, the retransmission
mechanism is implemented to ensure that the same set of data is transmitted at intervals of
Tmax. Although there may be instances where some retransmissions are lost or susceptible
to errors during transmission but in the end the subscriber will eventually receive the
correct information. In the second state when there are changes in the data, new information
is retransmitted shortly after a brief interval of Tmin (where Tmin is less than Tmax). This
sequence is repeated a few times, with each subsequent retransmission interval increasing
until it matches the length of Tmax at which point the system reverts back to the first state.
The retransmissions that take place during this state are referred to as "fast retransmissions”

and the manufacturer has flexibility in determining the duration of these intervals [91].
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Figure 4.6: Retransmission mechanism in publisher-subscriber architecture [91]
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4.5.3. Generic Object-Oriented Substation Events (GOOSE)

The GOOSE messages refer to a type of peer-to-peer communication that utilizes
services to send the same event message to multiple IED devices in a substation. The
purpose of GOOSE messages can vary depending on their application types. These types
are categorized based on their time requirements for transmission as defined by IEC 61850
[92]. The GOOSE protocol's primary objective is to enable rapid and accurate data
transmission between two or more IEDs. It achieves this by using Ethernets message
design, which allows for sending of content without establishing a connection resulting in
fast data transfer. However, one potential drawback of this approach is that GOOSE may
be less reliable since it doesn't provide confirmation of data delivery. To address this issue
the protocol incorporates the retransmission mechanism that ensures reliability at the data

link layer [92].

4.5.2. Operation of the GOOSE protocol

When an event occurs in a substation automation system that uses GOOSE there is a
change in the Status Number (Stnum) field of an IED indicating a failure. It is crucial to
transmit this data to all devices subscribed to the GOOSE multicast group so that another
IED can isolate the failure. To enhance the reliability in delivering GOOSE messages, the
protocol employs the retransmission mechanism that relies on timing and relay messages
to minimize the loss of data packets. This means that the same GOOSE message is sent
multiple times with the interval between retransmissions increasing [93]. If the first
GOOSE message carrying information gets lost, fast retransmission reduces the chances of

losing that information since it’s repeated with the Stnum. The time it takes to achieve a
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stable condition, through retransmission follows a geometric progression and typically

takes around 1 second to ensure any electrical fault has been addressed by then.

45.3.

GOOSE frame

Since GOOSE is operating directly on the IEEE 802.3 Ethernet frame, the frame

structures are very similar. It contains the physical layer, the data link layer and the

application layer. A graphical representation of the GOOSE message structure is shown in

Figure 4.7.

Ethernet 802.1Q Ethertype GOOSE
MAC MAC TPID | PCP | CFI | VID Type APPID | Length | Reserved | Reserved | goosePDU
dest. src 1 2

Figure 4.7: Goose message format [93]

In the Ethernet field, the source Media Access Control (MAC) address indicates the
IED that sends the message, while the destination Multicast MAC address is the
group that the message is being sent to.

The 802.1Q is 4 bytes sized field responsible for adding a Virtual Local Area
Network (VLAN) tag to the Ethernet frame, enabling the use of VLANS with
varying priorities in messages.

The Ethertype field, which is 2 bytes in size, denotes that this packet pertains to
GOOSE and holds a value of 0x88B8.

The Application Identifier (APPID) field is an attribute that identifies the
application associated with a received GOOSE message.

The length establishes the octet representing the total size of GOOSE Protocol Data

Unit (goosePDU), along with 8 bytes of the APPID and Ethernet,
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e The "Reserved" fields are designated for future use and have a value of 0 assigned
to them.
e The goosePDU field is on the application layer and it contains the GOOSE

application data such as Stnum, Sqnum, DatSet, AllData etc.

The goosePDU contains the actual data along with some useful metadata. In this thesis
these data are characterized as the network features of the GOOSE frame. These features

are further explained in Section 5.3.1.

4.5.4. Sampled Values (SV)

According to the IEC 61850 standard, messages related to sampled values are also time-
critical. At the process level, the Sampled Values protocol is used to send analog values
that are related to sensor or actuator measurements. The devices that are monitored at this
level are mostly analog, so the data packets are formatted to represent analog values in
digital format [94]. The traffic related to Sampled Values is continuous and provides
protection functions and metering. Similarly, there is no acknowledgement feature in the
sampled values protocol used to determine reception and interpretation of sample value
packets. In this thesis, these values are broadly referred to as physical features, and they

are further explained in Section 5.3.1.

4.6. Wireshark

Wireshark serves as a network protocol analyzer, utilized to capture and examine
real-time GOOSE communication for substation networks based on IEC61850. It is
typically used to analyze packets transmitted across Ethernet in any network [61]. Within
the IEC-61850 standard, Ethernet-transmitted GOOSE messages can be scrutinized, and

this software displays all the GOOSE related details. Furthermore, it can produce various
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statistics for each message received via Ethernet, using the IEC61850 protocol. To
visualize both the dataset and emulation capture, this research employs the Wireshark

network analyzer software. Figure 4.8 displays the Wireshark interface of a captured

GOOSE packet.

Am i@ XE Q= EF = @ e e
No. Time Source Destination Protocol Length Info
GOOSE
Filter
Destination Source TPID Tor
address address
862.1Q Virtual LAN, PRI: @, DEI: @, ID: @ _ ~ d 00 09 ge 21 73 32|81 od BE 00 Is2
w GOOSE 3 es| [ [0 oo 61 76 8@ 15 4c 49 av- LI
APPID: Bx03e8 (1000) 4 31431 Sof52 AFASA 20Mc 4c de 3@ 24 41 6c  EDIIPROT /LLN@$AL
Length: 128 72 64|81 02]07 0 82 15|4c 49 45 44 31 31 50 arm LIED1P
. 52|4F 54 |2f 4c|dc 4e |30 24|41 6¢ 61 72 6d 83 15  ROT/LLNG $Alarm
:‘““’eg ;: 2"2222 gg) 4c(49 45|44 31|31 50 52 4F |54 2f 4c 4c de 30 24 LIEDLIPR OT/LLNGS
eserved £ Bx ' al|6c 61|72 6d |84 08 5c d3[d9 ac 86 24 dd @a 85  Alarm -\ 4
v goosePdu - @1 86|21 09|87 @1 |08 88|01 1 89 01 0 8a o1
gocbiief: LIED11PROT/LLN@SALarm @5(ab of 33 @106 85|01 @1[83 A1 60 83 01 @ 83
timeAllowedtolive: 2000
datSet: LIED11PROT/LLN@$Alarm | GOOSE ‘
goID: LIEDI1PROT/LLNGSAlarm
t: May 9, 2010 87:41:32.523900080 UTC Packet
: May 9, 141:32.5 APPID Length Reserved 1 Reserved 2
Sthum: 1
sqlum: @
simulation: False
confRev: 1
ndsCom: False
nusDatSetEntries: 5
allData: 5 items |
[BER encoded protocol, to see BER internal fields set protocol BER preferences) v
< >
¥ ASLpapng Packets: 38305 - Displayed: 38305 (100.0%)

Figure 4.8: Wireshark user interface of the capture of a GOOSE packet.
4.7. Summary

This chapter provides an overview of the IEC 61850 standard, including its
framework and implementation in the substation domain. It describes the information
model used by devices that communicate with the IEC 61850-GOOSE protocol and its
origin. The chapter also explains the concept of GOOSE interoperability, its naming
convention, and the communication architecture used by the standard. In addition, the

communication language used in IEDs, as well as how data are transmitted using
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GOOSE and the message format in which GOOSE is structured are also discussed.
Finally, the Wireshark software, which is utilized for analyzing the network and
physical features of the GOOSE and SV messages received from the subscriber

respectively, is discussed.

52



5. Model for the Detection and Classification of Cyberattacks in IEC
61850 Substation Automation Systems

5.1. Introduction

Several machine learning methodologies and their capabilities have been presented in
Chapter 3. Various types of cyberattacks can be detected but if the attack is not classified
it can affect the ability of Electrical Operators to implement targeted countermeasures
which could have an impact on the reliability, stability, security, and quality of power
supply to consumers[95]. The description of the cyberattacks studied will be presented.
The machine learning model used in this work for the detection and classification of
different cyberattack types will be introduced in this chapter. The model utilizes a bagging-
based ensemble learning technique classifier, which consists of eager learners. This work
presents the process of acquiring data, as well as preprocessing and feature engineering.
The k-fold cross-validation method and number of learners parameter is used to optimize
the performance of the proposed method. Moreover, an evaluation metric for the study of
the obtained results will be discussed. Finally, this chapter also presents the essential

physical and network features that are crucial for classifying different cyberattack types.

5.2. Attack Types Description

The most common cyberattack types that target substation automation systems are Data
Manipulation (DM), Message Suppression (MS), and Denial of Service (DoS) [96]. Other
prevalent attacks include FDIA attacks and replay attacks. In this chapter, a detailed
description of all the aforementioned cyberattacks on IEC 61850 and the potential impacts

are described.
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5.2.1. FDIA Attack

False Data Injection Attacks aim to inject malicious measurements and modify the
results. The FDIA could violate data integrity in various regions as transmission,
communication, generation, control, etc. It can be seen in a different part of the smart grid
that contains data. In this section, the FDIA will be evaluated in the grid without
categorizing. It will be examined with the same approach for all regions. The main goal of
FDIA attacks is to corrupt measurements and manipulate results. During transmission,
communication, generation, and control, FDIA attacks can compromise the integrity of
data thus jeopardising the cybersecurity. The attackers' objective is to manipulate the
readings of multiple sensors, IEDs, and phasor measurement units (PMUs) with the
intention of misleading the decision-making process of the smart grid [97]. In terms of
cyberattacks, FDIA is considered as one of the most dangerous attacks. Presently, there is
a significant attention on FDIAs as they are regarded as one of the most extensively studied
cyber physical security attacks targeting smart grids [98] given the damage it has done on

the systems that were affected by it.

Figure 5.1 illustrates the process of FDIA attacks in Smart Grid. Attackers have the
ability to manipulate meter measurements by compromising meters on a local level,
falsifying data packets that are sent to the control center through the exploitation of
plaintext transmission protocol or altering the control center database [99]. Real-world
incidents such as the December 2015 Ukrainian electric power blackout attack confirm
these types of attacks [100]. Attackers can inject falsified monitoring data through
compromising smart meters, sensors or IEDs, hijacking communication between sensor

networks and the SCADA system, or intruding the SCADA system. As a result, the false
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measurements can lead to an incorrect estimate of the smart grid state, which can mislead
the control center to make wrong decisions and operations such as bad real-time electricity

pricing and even large-area power failure accidents [101].
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Figure 5.1: FDIA in smart Grid [37]

Steady state control, transient and auxiliary control, substation control and energy/load
control are major operation and control blocks of power systems in which FDIA attacks
can affect [102]. Figure 5.2 shows a detailed taxonomy of FDIA attacks against various

power system control and operation blocks.
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Figure 5.2: A taxonomy of FDIA attacks against various power system control and

operation blocks [102]

There are several algorithms in power systems that are susceptible to FDIA attacks,
including static state estimation (SSE), dynamic state estimation (DSE), optimal power
flow (OPF), and security constrained economic dispatch (SCED). These types of attacks
can involve a variety of tactics, such as redistributing load measurements, falsifying
topology, or coordinating physical attacks by using false data. Additionally, not only steady
state operations but also transient and auxiliary control blocks, such as rotor angle stability,
automatic generation control (AGC), automatic voltage control (AVR), volt/VVAR controls,
and FACTS devices, are vulnerable to these attacks. Furthermore, substation control and
communication architecture, including IEC 61850, PMU/SCADA data communication

channels, are potential targets. The advanced metering infrastructure (AMI), residential
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load controls, distributed energy routing algorithms, micro-grids, and electricity markets

are also potential targets for data attacks.

5.2.2. Data Manipulation Attack

To tamper with measurements and manipulate data, attackers’ resort to Data
Manipulation (DM) attacks. These attacks exploit vulnerabilities by injecting manipulated
network payloads into systems, aiming either at destabilizing the power grids or masking
unauthorized alterations. The main goal of the attacker lies in compromising sensor and
Intelligent Electronic Devices' (IEDs") readings. Their intended outcome is to deceive the
substation automation systems decision-making process and by extension the entire smart

grid [103].

In this type of cyberattack the contents or payload of network packets are modified in
a way that goes unnoticed by both the publisher and subscriber [104]. The aim is to carry
out a malicious act or an unauthorized action using the IEDs. According to [105] they are
typically two forms of data manipulation attacks in IEC 61850 substation automation
systems. The first case involves seizing the GOOSE control message packet and altering it
with a message that allows the attacker to assume control and manipulate circuit breakers
within a substation [106]. This attack can also be associated with Sample Value (SV)
packets, where the attacker fabricates an analog value, which is then transmitted to a control
center in the substation resulting in undesired operations. Through these attacks, the
attacker gains control over IEDs and can cause unplanned power outages or even damage

field devices within the substation [106].

In the second case, the attack type expands upon the earlier mentioned attack. However,

this time it involves an automated approach using a malware script [107]. This malware
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has the capability to capture, modify, and inject GOOSE message packets into the
IEC61850 network. In order for the malware to carry out its objectives, it must first be
installed on a computer within the substation network. This method of attack was
successfully used against Kyivoblenergo, a regional electricity distribution company in
Ukraine [108]. The researchers in [107] used this attack to exploit a weakness in GOOSE,
where encryption and digital signatures are not feasible due to the requirement of
immediate action within 4ms for any communication through a GOOSE message.
Consequently, transmitted packets can easily be intercepted, modified, and retransmitted
into the network without any form of encryption or digital signature. Figure 5.3 illustrates

how this attack can be orchestrated.
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Figure 5.3: Network Diagram for Data Manipulation Malware Attack [107]

In carrying out the data manipulation attack, the verification of GOOSE messages

in an IEC61850 network using Scapy (a Python program used for sniffing as well as packet
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dissection, forging and sending back the network packets) is the first step. After the
identification of GOOSE messages through Scapy, the GOOSE Ether-type, which is
0x88B8 is detected by capturing the raw packets. The next step is to decode the GOOSE
message using the Abstract Syntax Notation One (ASN.1) defined in IEC 61850-8-1
protocol. After the decoding process, the malware script focuses on three fields: Status
Number, Sequence Number, and Boolean values. These features are further explained in
Section 5.3. The main aim of the malware script is to trip the circuit breaker by changing
the Boolean value from true to false. However, for this attack to work, the values in the
Status Number and Sequence Number fields must also be correct. Therefore, by examining
the values of these fields in the GOOSE messages communicated between the publisher
and the subscriber, the subscriber can then establish the accurate values to incorporate in

the forged message.

5.2.3. Message Suppression Attacks

A Message suppression attack involves the unauthorized interception and alteration of
protocol header fields in the GOOSE communication architecture, with the goal of
obstructing the delivery of important messages or updates to legitimate IEDs in the
network. In instances of message suppression attacks occurring within communication
networks of GOOSE protocol frames, attackers can exploit vulnerabilities by manipulating
sequence associated with these frames. By doing so, they are able to disrupt the subsequent
arrivals of relevant information through these frames. Furthermore, the attackers can
introduce modified versions of the GOOSE frames, which bear higher status numbers

compared to previously transmitted ones. Subsequently, when subscribers process these
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newly-introduced modified frames and encounter legitimate GOOSE frames with

equivalent or lower status numbers, they will dismiss them as insignificant [107].

5.2.4. Denial-of-Service Attacks

A Denial of Service (DoS) attack is directed towards disrupting or disabling a service.
Ultimately making it unavailable to users or leading to substantial delays. The intention
behind such an attack is to overpower the systems' resources to render it inoperable.
Substation systems utilizing Internet Protocol (IP) including GOOSE are frequently

targeted by this form of assault [97].

A DoS attack has the potential to disrupt the proper functioning of an IED by preventing
it from responding to genuine requests made by other IEDs. This can result into lack of
power supply, unauthorized shutdown of substation equipment and other various
devastating outcomes. The DoS attacks can be executed in several ways, one of which
involves flooding the targeted IED with a substantial volume of GOOSE or SV messages
until it becomes overwhelmed and renders the IED incapable of acknowledging valid
requests [106]. Another strategy according to [109] entails carrying out a GOOSE
poisoning attack, wherein the attacker aims to deceive the subscriber into accepting
GOOSE messages with higher sequence numbers than those sent by the publisher.
Therefore, only the attackers' GOOSE messages will be accepted and processed by the
subscribers, rendering all the legitimate GOOSE messages from the publisher obsolete. An
overview of the test bed for DoS attack by creating poisoned GOOSE attack is presented

in Figure 5.4.
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The work in [109] highlighted the three variations of the GOOSE poisoning attack.
These variants are known as the high-status number attack, high-rate flooding attack, and
semantic attack. In the high-status number attack the attacker sends a single spoofed
GOOSE frame with an extremely high-status number from their source to a GOOSE
subscriber, which is an IED. The goal here is to deceive the subscriber into accepting this
spoofed frame as legitimate. In the high-rate flooding attack, the attacker takes a different
approach by sending a series of spoofed GOOSE messages with increasing status numbers.
Eventually, these spoofed frames surpass the expected status number on the GOOSE
subscriber and create confusion in its functioning. The semantic attack involves two
distinct phases. In the first phase the attacker carefully observes network traffic to gather
information about the status numbers used in transmitted GOOSE messages and to identify
patterns and rates of change. Armed with this knowledge, the attacker moves onto the
second phase where they send spoofed GOOSE messages that have higher status numbers

than what was observed in earlier transmissions [109].

A DoS attack targeting GOOSE messages could potentially disrupt the proper

functioning of subscriber IEDs. As a consequence, only the GOOSE messages introduced
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by the attacker would be processed by the subscriber IEDs. Persistent injection or flooding
of these packets leads to a denial of service (DoS) attack preventing legitimate sender
traffic from reaching the subscriber IEDs. Furthermore, this attack could allow the attacker

to alter the payload of existing traffic.

5.2.5. Replay Attacks

During this type of attack, the attacker captures GOOSE messages and retains them for
future use. Subsequently, the attacker retransmits the stored messages to initiate an action
through the IED to the circuit breaker while it operates normally, to carry out undesirable
outcomes. Also, in the case of SV message replay attack, the attacker can seize an SV
packet containing precise power, current and voltage data and resend it numerous times to
another protective device within the substation. This situation may result in unplanned
outages if SV packets with identical power, current and voltage values circulate throughout

the system multiple times [110].

5.3. Feature description

The messaging system used in the IEC 61850 protocol consists of network and physical
features, which quickly sends out substation event details, including alerts and changes in
status [92]. The following is a description of the network and physical features found in a

SASs that utilizes the GOOSE protocol for communication.

5.3.1. Network Features
In GOOSE protocol, there are two identifiable categories of proprietary network
features [43]. They consist of dynamic features, which are established through the analysis

of the statistical trends related to volume and frequency of traffic [43]. The second category
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is referred to as static features. These features play a significant role and are commonly

selected through and extracted from different fields within a single GOOSE packet [45].

a. Status Number (Stnum)

The "Status Number" is a static feature that carries important information about the
state of a particular device or process in the substation. This could involve the status of a
circuit breaker (open or closed), a warning signal (Alarm), or other measurement
information that needs to be communicated in real time within the substation network. The
value of the Stnum is constant under normal operation and only changes when an event

occurs.

b. Sequential Number (Sgnum)

The "Sequence Number" is a static feature that plays a pivotal role in maintaining the
integrity and order of transmitted messages. Each GOOSE message in terms of circuit
breaker status, alarm signal, measurement information is assigned a unique sequence

number, which is incremented whenever a new message sent.

c. allData

The "allData" field is a static feature that carries a variety of data types, including
Boolean control signal values (BCV). These signals represent binary state information,
typically reflecting the status of a particular IED or process within the substation. Boolean
control signals can indicate a range of conditions. In this thesis, they denote the control
status of circuit breakers, earth switches and disconnectors. They also include protection

alarm status of the protection systems within the substation.
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d. numDatSetEntries
This static feature indicates the amount of data in the “allData” field. It is the number

of elements that makes up the specific data set.

e. Source Internet Protocol Address

The Source Internet Protocol address or Source IP is a static feature that comprises of
the unique identifier assigned to the originating device (such as a protective relay or a

circuit breaker) that sends the GOOSE message.

f. Destination Internet Protocol Address

The Destination Internet Protocol (IP) address is a static feature that comprises of the
unique identifier that indicates the intended recipient of the GOOSE message in the

network.

g. GOOSE message heartbeat

A dynamic feature that refers to the mean time interval of the GOOSE arrival times.

h. GOOSE message length

This static feature describes the length of the GOOSE header.

i. GOOQOSE control block reference (gocbRef)

The GOOSE control block reference is a static feature that contains all the details of a

pre-defined control block.

j. Application ID (APPID)
GOOSE application identification consists of information about the type of application

sent from the publisher.
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5.3.2. Physical Features

a. Current Measurement Values

The current measurement values serve as a vital physical feature that delivers real time
sensor data regarding the electric current passing across different parts of the substation,
namely transmission lines, transformers, and circuit breakers. These significant details are
acquired and gathered by dedicated sensors known as current transformers (CTs)
positioned within the IED. The CTs relay this information to monitoring and control

systems, which allow for further examination of this collected data.

b. Voltage Measurement Values

Voltage measurement values allow for instantaneous assessment of electrical potential
difference occurring at distinct locations across the substation. This valuable data is usually
sourced from voltage transformers (VTs) or potential transformers (PTs) installed within
the IED devices. Subsequently, this information is transmitted to monitoring and control

systems found within substation facilities.

c. Active Power

Active power is a feature that holds utmost importance as it directly influences the
successful completion of useful work required by an electrical load. To efficiently gather
this power, Intelligent Electronic Devices (IEDs) are deployed throughout the substation
infrastructure. These devices diligently observe voltage and current waveforms as part of

their monitoring process.

d. Frequency
When discussing electrical systems, the term "frequency" refers to how many

cycles occur within one second. This feature is measured in Hertz (Hz), and the numeric
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value assumes great significance across North America's power system where an
established standard frequency of 60 Hz holds firm. Considered as an essential parameter,
this feature represents an equilibrium between electricity production and its subsequent

consumption.

e. Circuit breaker Status

This feature describes the statuses of the different circuit breakers in the substation

automation system.

5.4. Data Collection

This thesis makes use of datasets that contain information collected from IEDs
operating on the IEC 61850 based GOOSE communication protocol in simulated
distribution Substation Automation Systems (SAS). The synthesized datasets were
collected from two different systems. The access to the network packet capture (PCAP)
files for both systems is gotten from the public GitHub repositories of [59] and [111]. The
Wireshark packet analyzer is used to analyze the files and gain a deeper understanding of

the data.

The study in [59] presents an encompassing dataset comprised of network packets
acquired from a test bed of five virtual machines (VMs). Within this setup, one VM
emulates a 66/22kV primary plant while the remaining VMs simulate Intelligent Electronic
Devices (IEDs). To explore potential vulnerabilities, two non-malicious behaviors termed
normal and disturbance were implemented. Subsequently, a series of attack scenarios
targeting the IEDs connected with IED1 and IED2 were conducted. The attacks were

classified into two categories: Replay attacks and False Data Injection Attacks (FDIA),
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wherein data within the primary message is modified or false data/messages are introduced.
Lastly, these attack scenarios were executed under both normal operation and disturbance

operation settings.

To further analyze the behavior of a system in various situations, the work in [111]
constructed a dataset utilizing network packet data from a 66/11kv distribution substation
featuring 18 IEDs. The dataset allowed them to simulate different scenarios including
normal, disturbance and attack cases. During the normal scenarios they exposed the system
to either variable or non-variable load conditions resulting in distinct current and power
readings displayed by each IED due to changing energy demands over time. Conversely,
the non-variable load scenarios exhibited steady energy flows as they experienced
negligible variations in load demand. Disturbance cases were further divided into three
categories: Busbar Protection, Under Frequency and Breaker Failure — each designed to
test how the system responds to specific fault types. Lastly, four primary cases were defined
for attack scenarios: Data Manipulation (DM), Denial of Service (DoS), Message
Suppression (MS) and Composite Attack — aimed at creating a synthesized dataset for

cybersecurity study in IEC 61850.

5.5. Data Preprocessing

After acquiring all the packet capture (PCAP) files from the two GitHub repositories -
[112] and [113], a thorough preprocessing procedure was executed to prepare multiple
datasets suitable for various experiments. This intricate process consisted of several stages:
completion of any missing values, removal of redundant features, normalization of input
data and encoding of labeled data. In depth analysis and clarification on each step

undertaken during the preprocessing process is presented below.
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1. Missing value Imputations

One of the most common challenges when working with simulated datasets that
attempts to mimic real world dataset is managing missing values. These missing values can
appear as NaN values, blanks, or other placeholders and can negatively affect the
evaluation of machine learning models if the models were trained on datasets with missing
values. To address this issue, several techniques have been proposed in recent years. These
include hot and cold deck imputations, mean imputations, and extrapolation and
interpolation imputations, as well as zero imputation. Hot deck and cold deck methods
involves filling in missing data with values from similar records (hot deck) or a donor pool
(cold deck). Mean imputation replaces missing values with the mean of available cases.
Extrapolation and interpolation estimations assume specific trends in the data to estimate
missing values. In this study, the zero-imputation technique is utilized to handle missing
data. This technique involves replacing missing values for a particular feature with a fixed
value of zero. This technique is selected because it aligns well with the nature of the data
collected and the purpose of our analysis. The dataset used in this thesis included instances
where a Denial of Service (DoS) attack was simulated. Consequently, a significant portion
of the data had blank spaces instead of physical measurement values, indicating that no
data was recorded for those instances where packets were parsed without physical value
information. These blank spaces were attributed to DoS attacks, emphasizing the
importance of effectively handling missing values in datasets that have been impacted by

cyber-attacks.
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2. Feature Selection

Feature selection techniques play an important role in selecting the most important
features to decrease training time and to reduce model overfitting thus increasing the
algorithm’s accuracy [66]. Feature/Predictor Importance was the selection method used.
Predictor Importance (PI) is a method that generates a score for each of the input features
for a particular model. A higher score indicates that the feature will have a greater impact
on the model used in classification. This method is highlighted in the classification process
of the proposed approach in Section 5.6.7. In this thesis, the feature dimensions were
reduced to relevant features. Using the PI method, features with high scores were selected.
These features include GOOSE Heartbeat, Goose length, Status number, Sequence
number, allData and all the physical features. Also, after preprocessing, some features were
derived from the selected features, as shown in Table 5.1, Table 5.2, Table 5.3 Table 5.4.
Conversely, removed features include gocbRef, APPID, Source IP and Destination IP.
These features were removed because through the PI method, these features had very low
scores therefore signifying that they had very little to no impact on the training model. In
addition, having these types of features can make the model learn based on irrelevant
features, hence decreasing the accuracy of the model. Attributes, including some network
features and sample values, can have a significant impact on the detection accuracy of

malicious traffic in the network.

3. Data Normalization

The accuracy of identifying malicious traffic in a network can be significantly affected
by the choice of input features. With this in mind, carrying out data normalization on the

datasets is imperative as machine learning algorithms face the challenge of recognizing
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features that have varying scales. Data normalization is necessary to organize input data
and to ensure consistency and similarity across all fields and records. By normalizing or
standardizing the data, potential biases can be mitigated, leading to more accurate analysis

and predictions.

From the 4-1ED dataset, six physical features related to the current were extracted
and processed. These features are based on the 66/22kV primary plant architecture as
shown in Figure 5.5. Each of the six physical features is the average value of one horizontal
level within the substation. Specifically, these features represent the average currents in the
66kV lines and circuit breakers (high voltage), transformer’s 66kV side windings (wl),
transformer’s 22kV side windings (w2), transformer circuit breakers, 22kV lines and

circuit breakers (low voltage), and all the feeders.
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This configuration will assist in figuring out the IED that has been compromised
whenever there is a presence of an attack due to inconsistent readings from any of the six
horizontal levels. Also, all circuit breaker statuses on the high voltage side, transformers
and low voltage side were summarized into one feature. The circuit breaker statuses are
compiled into a specific sequence and are represented as a binary number, given that the
circuit breakers only have an open state (0) and a closed state (1). In this thesis, the
processed network features, Difference in Stnum "Dif_Stnum" and Difference in Sqnum
"Dif_Sgnum™ is used to determine any changes in the "Stnum" and "Sgnum™ values
compared to their previous values. This helps to maintain a constant value of 0 for "Stnum"
and 1 for "Sgnum". If there is a deviation from these values, it may indicate a potential
attack. Also, the feature "Dec_allData" involves converting the Boolean control signals of
"allData" field extracted from wireshark from binary to decimal format. For instance, the
Boolean control value [1, 1, 1, O] present in the "Dec-allData" field is converted into a
binary number "1110," which was then converted to the corresponding decimal number

"14". Table 5.1 and Table 5.2 list the processed network and physical features utilized.
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Table 5.1: 4-1ED Dataset Network Features Description

Network features

Description

GOOSE Heartbeat

The temporal duration between two adjacent packets

GOOSE length

The length of the GOOSE header

Dif-Stnum The differential value between the current Stnum and the
previous Stnum
Dif-Sgnum The differential value between the current Sgnum and the

previous Sgnum

numDatSetEntries

The amount of data in the “allData” field

Dec-allData

The decimal number of converting all Boolean values in the
“allData”field

Table 5.2: 4-1ED Dataset Physical Features Description

Physical features Description
I-high The average current values among
high-voltage level
I-wl The average current value among transformers' winding 1
I-w2 The average current value among transformers' winding 2
I-trsf-cb The average current value among all transformers' circuit
breakers
I-low The average current value among low voltage
level
I-fdr The average current among all feeders
Bin-cb-status The binary sequence of statuses of all circuit breakers
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The standardization of the network and physical features contained within the 18-
IED dataset also helps mitigating potential biases as well due to the diversified nature of
such dataset. All the Boolean control values (BCV) were transformed into unique
numerical values to reduce the computational costs. The control feature "Dec" represents
the Boolean to decimal conversion of the following Boolean control values: Circuit breaker
Open/Close Status (1), Disconnector Open/Close Status (1), Protection tripped (0), and
Intertrip command send (0), which correspond to the decimal number "12". Also, linear
transformation was performed on the other input data features such Stnum, voltage and
power using the Min-Max normalization technique. This is used to scale the values of the
features to a range between 0 and 1. The minimum and maximum values are obtained from

the data, and each individual value is then substituted according to equation 5.1.

N vi—-min . ,
v, = ——4 (new_max, — new_min,) + new_min, (5.1)
maxa—ming

Where, A represents Stnum, voltage and power features, max, and min, denote the
maximum and minimum absolute values of the attribute data A respectively. The term v;"
refers to the newly computed value for each packet, while v; represents the original value
of each packet. The new_max, and new_min refer to the maximum and minimum values
of the desired range, that is, the boundary values of the features normal operating range,
respectively. Table 5.3 and Table 5.4 lists the processed network and physical features used

in this work and their description.
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Table 5.3:Network Features Description of the 18-1ED Dataset

Network features

Description

BCV_Dec Boolean to decimal conversion of Information pertaining to
the control status
v -Stnum The Min-Max normalized Stnum values within the measuremel
(measurements) reading of an IED
v -Stnum The Min-Max normalized Stnum values from the Status
(Status) measurement of an IED

v'-Stnum (Alarm)

The Min-Max normalized Stnum values from the Alarm

updates of an IED

Dif-Sgnum The difference observed between successive Sqnum values
(measurements) within the measurement reading of an IED
Dif-Sgnum The difference observed between successive Sqnum values
(Status) from the Status values of an IED

Dif-Stnum (Alarm)

The difference observed between successive Sqnum values

from the Alarm updates of an IED

Numofblank

The quantity of absent attributes within a singular data entity.

v'_Stnum +

v'_Sgnum < 0:

Summation of v_Stnum and v'_Sqgnum. Results less than 0

gives a flag (1111).
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Table 5.4: Physical Features Description of the 18-1ED Dataset

Physical features

Description

V' - Current Line 'L1°

The difference observed between two successive current

readings in Line 1

V" - Current Line 'L2’

The difference observed between two successive current

readings in Line 2

V' - Current Line 'L3’

The difference observed between two successive current

readings in Line 3

v -Voltage Phase 'L1-N’

The Min-Max normalized line 1 to neutral voltage readings

v'-Voltage Phase 'L2-N’

The Min-Max normalized line 2 to neutral voltage readings

v -Voltage Phase 'L3-N’

The Min-Max normalized line 3 to neutral voltage readings

v - Active Power

The Min-Max normalized active power readings

50-Frequency

The deduction of the prevailing frequency from the

designated nominal frequency
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4. Encoding Labeled Data

A crucial element of data preprocessing involves the encoding of labeled data. In this
thesis, all disturbance operations were labeled as ‘Disturbance,” while normal traffic was
labeled as ‘Normal.” For the 4-1ED dataset the attack types described as False Data
Injection Attack and Replay attack were labelled as FDIA and Replay respectively. The
attack types in the 18-1ED dataset described as Data manipulation attacks, Message
suppression attacks, and Denial of service attacks were labeled as DM, MS, and DoS,

respectively.

5.6. Fine Tree-based Bagging Ensemble (FTBE) Approach for Cyberattack
Classification

This section describes the proposed approach for classifying different types of
cyberattacks using a bagging-based ensemble learning technique also known as bootstrap
aggregating. Previous research has shown that decision trees used in recursive partitioning
exhibit instability when working with small datasets [114]. Such instability can have
adverse effects on both classification accuracy and tree structure. To mitigate these issues,
a strategy involving multiple classifiers can be adopted [115]. The method of constructing
an ensemble involves using distinct subsets of training data along with a decision tree
serving as the base learner. Decision tree classifiers are generally classified into three
categories: Coarse Tree, Medium Tree, and Fine Tree. In this work, Fine Tree (FT)
classifier type is selected based on its superiority over other classifier types [116]. The
explanation of the FT model’s implementation within the bagging-based ensemble learning
approach is presented. The detailed information regarding the parameter settings necessary

for achieving optimal accuracy is also provided in this section.
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5.6.1. Fine Tree Model

The classification of decision trees can be considered unstable due to the fact that even
minor changes in the training data can have a significant impact on the overall structure of
the tree [117]. To manage the complexity of the tree, various stopping criteria are utilized
[118]. These criteria are typically assessed using metrics like the total number of nodes and
leaves, the depth of the tree and the number of attributes used. During the growth process
of the tree, it will keep expanding until a stopping criterion is satisfied. These criteria may

involve conditions such as:

The tree's depth has reached its maximum limit.

e The ideal splitting criteria does not exceed a particular threshold.

e |If the node were to be split, there would be insufficient cases in one or more of the
child nodes as it would fall below the minimum number of cases required for child
nodes.

e The number of cases in the terminal node is lower than the minimum number of

cases required for parent nodes.

Over fitting of data can occur when the decision-making process becomes overly reliant
on irrelevant features [118]. To address this issue in traditional decision tree learning,
researchers have proposed different solutions. One such solution is pruning as
demonstrated in the work presented in [119]. Their method, known as depth impurity (DI)
pruning, takes into account the complexity of sub-trees and preserves those sub-trees that
generate relevant decision rules. However, it was discovered that this method did not
improve the classification efficiency. In a subsequent study conducted by [120], various

pruning algorithms for estimation trees were analyzed to determine the most suitable one
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for specific situations. It was deduced that depth control of the tree and proper feature

selection can greatly enhance the performance of an algorithm.

In this thesis, controlling the depth of the model was used to prevent overfitting. In
doing this three decision tree classifier types are considered — Coarse Tree, Medium Tree,
and Fine Tree. Coarse tree is a type of decision tree that consists of few leaves to make
coarse distinctions between classes with a maximum number of 4 splits. The Medium tree
is a type of decision tree with relatively more splits, up to 20 maximum number of splits.
The Fine tree model is a type of decision tree that consists of many leaves to enable many
fine distinctions between classes. However, the maximum number of splits is set to 100 in
order to control the depth of the model to prevent overfitting. The process when the fine
tree model was compared with the medium and coarse tree models, it performed better as
it was more adaptable to the datasets it was not initially trained on. The work in [120] used
20 machine learning algorithms to compare the performance of two cross validation
techniques on the University of California, Irvine (UCI) datasets. Coarse tree, medium tree
and fine tree were amongst the 20 algorithms. Overall, from the results, the Fine tree
algorithm performed very well and also had a higher accuracy than the other two algorithms
for both cross validation techniques. The fine tree classifier has proven to be one of the

most efficient techniques [116].

5.6.2. Finding best split

In growing the individual fine tree models, the input data are first preprocessed and
then the outcome of this process is a set of physical and network features. The selected
physical and network features serve as the input to the classification tree generation

process. Initially, the numeric values of the continuous attributes are sorted in ascending
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order. Next, the Candidate Split Positions (CSP) are identified by taking the midpoint
between two adjacent values for each feature, in order to evaluate the Gini index of a

candidate split position.

sorted value, — sorted value, (5.2)

CSP =
2

The Gini index is then calculated using:

c—1 (53)
Gini(t) =1 — Z[p(ilt)]2

=0

Where p(i|t) is the portion of observation that belongs to class i at a given CSP node
t and c, the number of class labels. Then, the Weighted Gini index (Giniyeignc) is

computed as:

.. c Xt .. (5.4)
Giniyeigne = Z? X Gini(t)
t=0
Where, X; is the number of scenarios in node t, T is total number of scenarios, Gini(t) is
the Gini index value at a given node t and n is the number of nodes. The same process is
repeated for the remaining CSP. The CSP that produces the lowest Gini weighted average
is determined to be the best split point. This process is repeated among all the features and

is then used in the construction of the fine trees.

5.6.3. K-fold Cross Validation
Datasets generated from distribution substations are often imbalanced. There are cases
were attack scenarios may be few compared to the other instances. In order to achieve a

classification model approach that handles imbalanced dataset, thorough training and

79



evaluation of each instance present in the dataset must be carried out. In turn averaging all
recorded accuracies across the trained instances. To avoid cases like underfitting or
overfitting for specific trained datasets, k-fold cross validation serves as a method for

developing a well generalized model.

The k-fold validation method divides the data into “k” segments or folds of equal or
nearly equal size. In each iteration, the model is trained and is tested on these folds. During
each iteration one-fold is kept aside for testing while the model is trained on the remaining
“k-1” folds as shown in Figure 5.6. To determine the overall accuracy of the model, the
accuracy achieved in each iteration is averaged. Additionally for each fold an error value
is calculated using equation (5.6). The total error (¢) is then obtained by summing up the

errors from all k iterations.

. 12" . (5.5)
kdui=q "

The average accuracy of the k-fold accuracies (a) determines the performance of the

classification model [121].

a=1—¢ (5.6)
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Figure 5.6: Process of the K-fold cross validation method [122]

5.6.4. Bagging-based Ensemble Classifier

Bagging creates an ensemble of classifiers by sampling with replacement from the set
of training data to create new training sets called “bags” [123]. Bagging-based ensembles
train their base learners independently from each other, and they use data transformations
to promote diversity into the predictions of the model. When a base learner, typically a
weak learner, is considered individually on large imbalanced datasets, they sometimes
provide inadequate prediction accuracy [124]. This limitation can be addressed by
combining multiple models into one that delivers better overall performance. In this work,
a weak learner — Fine Tree, serves as the base learner. A weak learner is an appropriate
description for this type of base learner due to its tendency to exhibit high bias or high
variance after computation [124]. A model with high bias implies that it has not thoroughly
understood the underlying data. This issue is independent of the data distribution and can
result in future predictions that are unrelated and incorrect. Conversely, when a model

overlearns from the data (high variance), accurate prediction of subsequent points becomes
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challenging due to large variations between individual data points. Figure 5.7 visually

depicts the concept of high bias and high variance in a weak learner.

/
/; \_, Impossible

- to predict
| next point
L-_ Meodel unrelated to |."|
1, 4
I,,ﬁ’ - /

distribution. Incorrect
Predictions.

High Bias High Variance

Figure 5.7: High Bias and High Variance Performance of a Weak Learner [124]

Weak learners, which can be characterized as models that either have a high bias
(underfit) or a high variance (overfit), face challenges when it comes to properly
generalizing and predicting accurately when in isolation. Ensuring a balance between bias
and variance is crucial in order to develop a model that can accurately generalize from the
data it was trained on to new unseen data. Ensemble learning serves as a strategy that aims
to achieve this balance [125]. Depending on the specific model being used, Ensemble
learning techniques are able to address either high bias or high variance in weak learners,
resulting in a more well rounded and robust learner. As a result the model becomes more

generalized and is able to provide accurate predictions as shown in Figure 5.8.
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Figure 5.8: Plot Performance of an Ensemble Learner

5.6.5. Fine Tree Bagging-Based Ensemble (FTBE) Approach
After the construction of the fine trees, the bagging-based ensemble learning approach
creates several randomized fine trees by determining the best split among the dataset’s
attributes as explained in Section 5.6.1, which is done by assessing the impurity of the tree
nodes using the Gini index. From the initial training dataset containing x-number of
instances, y-number of subsets of data are created from the training set. The y in this case
is referred to as the Number of Learners. A subset of X sample points is taken from the
initial dataset for each subset. Each subset is taken with replacement, which means that a
specific data point can be sampled more than once. For each subset of data, the
corresponding fine tree is trained independently by and evaluated on every instance in the
dataset. This was done using the K-fold cross validation method as explained in Section
5.6.3. The models created from this process are homogeneous, meaning that they are of the

same type. The ensemble E, which comprises m decision tree classifiers, is expressed as:

E = {FT,,FT,, FTs, ..., FTy} (5.7)

Once the individual trees are generated from the randomized subsets, the resulting

classification outcomes are determined through a majority voting scheme. Each of the
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classifiers, FT;, makes a prediction y; for each data point in the test set, where y; represents
the predicted class out of the k possible classes (y;, V5, ..., ¥x). To determine the final
predicted class for a given data point ‘x’, the mode of the classes predicted by the fine tree

classifiers in the ensemble is calculated using:

Ym(x) = mode{FT,(x), FT,(x), FT5(x), ..., FT,,(x)} (5.8)

Where, FT;(x) denotes the prediction y;(x)for a given data point 'x' and it represents the
selection of the most commonly predicted class among the fine tree classifiers. Figure 5.9
illustrates the approach used to grow the fine tree classifiers for feature extraction and

implementation.

5.6.6. Number of Learners

When developing the ensemble classifier model, it is important to find the number of
fine trees required for optimal outcomes. This directly correlates with the number of
learners employed during the process. By increasing the number of learners, a greater
subdivision of data can be achieved, enabling each fine tree to undergo more
comprehensive training. A very large number of learners however, can increase the
complexity of the model. Therefore, finding the optimal number of learners that makes the

ensemble learning model inexpensive is imperative.
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Figure 5.9: Feature Extraction and Class Prediction of the Proposed Approach
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5.6.7. Predictor Importance (PI)

An advantage of this approach is the use of Predictor Importance (PI), which helps
identify the most significant features for each fine tree classifier. This function assesses a
features importance after the model is trained [126]. To calculate this metric, the changes
in node risk caused by splits on every predictor are summed, and then divided by the total
number of branch nodes [127]. This enables the determination of which features have the
most impact on the classification outcomes of the fine tree.

AR; .
Pl = —— 5.9)

N branch

Where, R; is the node risk of the node i, and Nj,.4cn 1S the total number of branch
nodes. The AR; = R, — Ry, is the difference between the node risk of the parent node and
the total node risk of the children’s nodes. A node risk is stated as a node impurity weighted

by the node probability:

R, = B,E, (5.10)
The total risk of the children’s node is calculated using:
Rre = PoEci + PEcy + -+ + PpEy (5.11)

Where, P, is the node probability of the parent node, and E,, is the node impurity

of parent node, which is obtained using the Gini Index from equation (5.3) . P, and E_,
refers to the node probability and node impurity of the ‘n’ number of children nodes

respectively.
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5.7. Evaluation Metrics

Assessing a classifier's efficacy requires evaluating its performance using evaluation
metrics. In this thesis, various measures such as accuracy, precision, recall, and F1-score
are employed to evaluate the proposed approach for the classification of cyberattack types.
The significance of this stage cannot be overstated as it determines overall effectiveness of

the classifier used.

5.7.1. Accuracy Measure
The classification accuracy measures the total number of correctly predicted cases in

relation to the overall number of cases.

TP + TN (5.12)
TP + TN + FP + FN

Accuracy =

The instances denoted by TP, TN, FP, and FN refer to the number of True Positive, True
Negative, False Positive, and False Negative rates, respectively. In TP cases, the attack
type is classified accurately. For FP cases, a normal or a disturbance instance is
misclassified as an attack type. In FN cases, an attack scenario is mistakenly classified as
a normal or disturbance scenario. Finally, for TN cases, normal and disturbance scenarios

are classified accurately.

5.7.2. Precision
Precision is a measure of how well attack predictions by the classifier match actual attack
instances. It determines the fraction of accurately predicted attacks. A classifier's false

positive rate decreases as its precision increases [121].
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TP (5.13)
TP + FP

Precision =

5.7.3. Recall
The recall metric calculates the proportion of attack instances that were accurately
identified as attacks by the classifier. This metric indicates the effectiveness of the classifier
in identifying attacks. A classifier with a high recall score will have a minimal number of

attack scenarios that are inaccurately classified [121].

TP (5.14)

Recall = TP+—FIV

5.7.4. F1-score

The F1-score is the metric that calculates the harmonic mean of precision and recall

[121].

2 (5.15)
1 + 1
precision = recall

F1 — score =

5.7.5. Confusion Matrix
The confusion matrix is a representation that helps evaluate the accuracy of a
classification model. It presents a table, as shown in Table 5.5 that displays the number of
correctly and incorrectly predicted records. The table shows predicted classes in columns
and true classes in rows. It shows nine instances where TPy, represents cases classified as

Normal by the classifier, and they were actually normal cases. However, Ey, is a sample
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from the normal class that was wrongly classified as a disturbance. Therefore, the sum of
Eyp and Ey, (FNy = Eyp + Ey ) represents false negatives in the Normal class, indicating
all normal cases that were misclassified as disturbance or attack cases. On the other hand,
the sum of Epy and E,4y (FPy = Epy + E4y) represents false positives in the Normal class,

indicating all non-normal cases that were misclassified as normal cases.

Table 5.5: Confusion matrix
Predicted Class

Normal | Disturbance | Attack type

. Normal TPy Epn Eun
(72}
[353
é Disturbance Enp TPp Ep
= Attack type Ena Epa TP,

5.8. Summary

This chapter describes the methodology used in the detection and classification of
cyberattacks in IEC 61850 substation Automation Systems. Firstly, the cyberattacks types
and features of the GOOSE communication packets are described. The proposed approach
is developed by first preprocessing the dataset through data normalization, missing value
imputation, encoding labelled data and followed by feature selection, which utilizes the
prediction importance technique to select features that impacts the model’s classification.
Furthermore, the Fine Tree Bagging-based Ensemble (FTBE) learner is introduced where
the growing of the Fine Tree classifier and the implementation of the bagging-based
ensemble is described. In addition, the k-fold cross validation method and number of

learners hyper parameters for detection and classification of the cyberattacks are described.
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Finally, the FTBE approach is developed along with the description of the evaluation

metrics used assess the model.
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6. Results and Evaluation

6.1. Introduction

This chapter assesses the performance of the proposed FTBE approach developed in
this thesis and compares to the methodologies highlighted in Chapter 3. Two test systems
that employ IEC 61850 GOOSE communication were utilised to generate datasets
pertaining to the cyberattack types investigated in this study. The [59] and [111] public
GitHub repositories contain the network packet capture (pcap) files for the respective
systems. First, the dataset is preprocessed through data normalization, missing value
imputation, encoding labelled data and feature selection. The fine tree then takes into
account the selected features through the Pl technique described in chapter 5 to find the
best split. Next, the k-fold and number of learners hyperparameters of the bagging
ensemble learner were tuned so that the classification accuracy could be determined. In
order to evaluate the sensitivity of the proposed approach to the choice of the training and
the testing dataset, different cases representing different combinations of line IEDs
(LIEDS) for both systems are used in this work. Furthermore, the sensitivity of the proposed
approach to the variations in the k-fold parameter and the number of learners is also carried

out on the results to achieve the optimal settings for k-fold and number of learners.

6.2. Test System Description

In order to test the proposed approach, a dataset is necessary for training and testing.
The systems used in this study replicate not only the physical system of typical distribution
level substations but also a number of the important electrical protection operating
scenarios under a variety of disruptions, which are then followed by a number of potential

cyber-attack scenarios.
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6.2.1. Test System 1

The test system created by [59] simulated five virtual machines (VM) that ran on
Oracle VirtualBox. One of the VM simulates a 66/22kV distribution substation automation
system (Primary plant) using MATLAB/Simulink. The system consists of a 66kV high
voltage line, two transformers, a 22kV low voltage line, four feeders, and nine circuit
breakers. The other four VMs represents four Intelligent Electronic Devices (IEDs)
simulated using OpenPLC. The IEDs are made up of three instantaneous overcurrent
protection devices (IED_PIOC) and one circuit breaker failure protection (IED_BFP).
These IEDs are situated at transformer 1(IED_PIOC_TRSF1), transformer 2
(IED_PIOC_TRSF2), 22 kV circuit breaker 2 (IED_BFP), and on the feeder side
(IED_PIOC_FDR), as shown in Figure 6.1. Ten short-circuit fault blocks were set up to

generate events at ten different locations.
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Figure 6.1: 66/22kV Substation Test System used to Generate the 4-1ED Dataset.
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C/C++ is used to create VM communication networks such as GOOSE trip
messages between IEDs and the primary plant, according to the IEC 61850 library
(libiec61850). Each VM also has OpenPLC, MATLAB/Simulink, and “libiec61850”
interface programs. As illustrated in Figure 6.2, the interface program in VM-IEDs reads
analogue values from Simulink in VM-Primary Plant through User Datagram Protocol
(UDP) packets and passes them to OpenPLC. The program reads OpenPLC digital signals
and delivers them to “libiec61850” to construct GOOSE packets. After VM-Primary Plant's
“libiec61850” program receives GOOSE packets, the interface program reads digital
signals from decoded packets and sends them to Simulink through UDP packets. The IEDs

send GOOSE messages to primary plant circuit breakers through the central process bus.
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Figure 6.2: Structure of Communication Networks in the Test system
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6.2.2. Test System 2

The test system by [111] simulated a 66/11KkV substation automation system. This
substation consists of 18 Intelligent Electronic Devices (IEDs); 2 Transformer IEDs
(TIEDs), 14 Line Feeder IEDs (LIEDs), 1 Bus IED (BIED), and 1 Under Frequency Load
Shedding IED (UFIED) as shown in Figure 6.3. In this redundantly designed system, the
voltage transformers located at each 66kV bus reduce the voltage to an 11kV level, which
is typically used for distribution purposes. The substation is interconnected with
neighboring substations through line feeders, ensuring a resilient configuration. To
simulate GOOSE communications, a uniqgue MAC address is assigned to each IED, and it
is presumed that all 18 IEDs belong to the same multicast group and can receive multicast
frames sent by any IED. Then, the power system data log is created manually for each IED
in CSV format to describe the operating current, voltage, power, and frequency

measurements under various scenarios.
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Figure 6.3: Single-line diagram of the 66/11kV substation automation system

94



Figure 6.4 illustrates the communication workflow in this test system. Firstly, the
SCL conversion program extracts meaningful IED models from the SCL file to generate
attack-free GOOSE traces. The Attack-Free Trace Generator accepts power system data
logs, simulation configurations, and static IED models. The PowerWorld simulator
generates the power system data log with IED nominal current and voltage measurements
in time series order. The scenario configuration, power system configuration, and
simulation configuration define the scenario setup, power system setup and the simulation
setup. The Attack-Free Trace Generator generates GOOSE traces from these inputs. To
generate attack-induced GOOSE traces the Attack-Induced Trace Generator requires a
network trace and attack scenario configuration. The Attack-Free Trace Generator
generates the input network trace. Then the Attack-Induced Trace Generator's traffic replay
tool reproduces the input network trace's traffic as a baseline for editing. The Attack-
Induced Trace generator injects specific attack signatures into the input network trace by
defining the attack type, the IED GOOSE identifier, the time of attack, and the value to be

modified in the attack scenario settings.
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Figure 6.4: Communication framework for generating attack-free and attack induced

GOOSE traces.
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6.3. Scenario description of the Test Systems dataset
The test systems generated two datasets — 4 IED dataset from test system 1 and 18
IED dataset from test system 2. These datasets are used to evaluate the effectiveness of the
proposed approach. Generally, there are three different behaviors in substation automation,
which are: normal operation when no unusual events happen, disturbance operation when
non-malicious events happen and attack operations that disrupts the substations operation

and cause damage.

6.3.1. Test System 1: 4-1ED dataset

In this dataset, the network ‘pcap’ files contains the network features highlighted
in Section 5.3.1. The sensor data only contains circuit current values from the four IEDs
and operational status of the various circuit breaker. The ‘pcap’ files from the five VMs
were converted to comma-separated values (CSV) files and merged into one CSV file. This
CSV file is then linked with the physical sensor data to create the dataset, which contains
both network features and physical features. In this thesis, the 4-1ED dataset samples

consist of four types of behaviour. The following are the scenarios in the dataset:

1. Normal operations: No unusual event occurs.

2. Disturbance operation: A fault in the phase-to-phase connection, which is
related to the failure of the overcurrent protection, and this failure leads to the
breaker failure protection being activated.

3. Cyberattacks from IED 1 under normal and disturbance operation: IED1 is used
to describpe the |IED protecting transformer 1 i.e., transformer
1(IED_PIOC_TRSF1). Two attack scenarios regarding GOOSE messages are

created from IED1.
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e Replay attack: IED 1 injects replayed GOOSE trip messages and stop
protection or trigger Unexpected protection. Flgure 6.5 shows the
Wireshark capture of replay attacks from IED 1 (IED_POIC_TRSF1).
A
AR ® R Qe EF S =S QT
m"-:;\.?‘:::‘a.‘fc—‘ Ctrl-
No. . Time Source Destination Protocol Lengtl stNum sqNum  allData integer Info
78.267884  20:17:01:16:f0:32  01:0c:cd:01:00:01 GOOSE 147 1 [ a4 1,0,0,1
89.268850  20:17:01:16:f0:32  01:0c:cd:01:00:01 GOOSE 147 1 1 a4 1,0,0,1 Nofinal
910.269524  20:17:01:16:¥0:32  01:0c:cd:01:00:01  GOOSE 147 A 2 4 1,0,0,1—p
10 10.452330  20:17:01:16:0:23 _ 01:0c:cd:01:00:01 GOOSE 147 1 ) 2 0,1,0,1 packers
11 10.754321  20:17:01:16:f0:99  01:0c:cd:01:00:01 GOOSE 142 1 0 5 0,0,0,0,0
12 10.767029  20:17:01:16:f0:11  ©01:0c:cd:01:00:01 GOOSE 152 1 0 7 0,0,0,0,0,0,0
13 11.270410 _ 20:17:01:16:70:32___01:0c:cd:01:00:01 __GOOSE__ 147 1 3 4 1,0,0,1 Replay
14 11.452678  20:17:01:16:¥0:23  01:0c:cd:01:00:01 GOOSE 147 1 i 4 0,1,0,1 packets
15 11.755084  20:17:01:16:10:99  01:0c:cd:01:00:01 GOOSE 142 1 1 5 0,0,0,0,0
16 11.767949  20:17:01:16:f0:11  01:0c:cd:01:00:01 GOOSE 152 1 1 7 0,0,0,0,0,0,0
17 12.270894 20:17:01:16:0:32 01:0c:cd:01:00:01  GOOSE 147 1 4 4 1,0,0,1
Figure 6.5: Wireshark capture of replay attack GOOSE packets from IED 1.
e FDIA: Original non-trip messages from IED1 are modified to trip
messages and to stop protection or trigger unexpected protection. Flgure
6.6 shows the Wireshark capture of FDIA attacks from IED 1
(IED_POIC_TRSF1).
A
AmZ® R QemsEF S| = QT
[Ilép'.w y a display filter ... <Ctrl-/>
No. : Time Source Destination Protocol Length stMum sqNum  allData integer
2 15.183994 20:17:01:16:0:23  01:0c:cd:01:00:01  GOOSE 147 1 e 4 @,1,0,1 } Normal
3 16.184457 20:17:01:16:70:23  01:0c:cd:01:00:01  GOOSE 147 1 1 4 e,,0,1
417.185403 20:17:01:16:¥0:23  01:0c:cd:01:00:01  GOOSE 147 1 2 4 0,1,0,1 packets
5 17.618779 20:17:01:16:2:54  20:17:01:16:f0:01  TCP
6 18.185832 20:17:01:16:f0:23 91:0c:cd:01:00:01 GOOSE 147 1 3 4 0,1,0,1
7 18.646364 20:17:01:16:f2:54 20:17:01:16:10:01 TCP
[3719 080328 20:17:01:16:70:32 _ 01:0c:cd:01:00:01 _ GOOSE 147 1 e 4 1001
9 19.186171 20:17:01:16:0:23  01:0c:cd:01:00:01  GOOSE 147 1 4 4  0,1,0,1
 19.449043 20:17:01:16:70:99  01:0c:cd:01:00:01  GOOSE 142 1 @ 5  0,0,0,0,0
E1 20.080858 20:17:01:16:0:32 _ 01:0c:cd:01:00:01 _ GOOSE 147 1 14 1,0,0,1 | FDIA
12 20.186779 20:17:01:16:70:23  01:0c:cd:01:00:01  GOOSE 147 1 s 4  0,1,0,1 packets
13 20.449249 20:17:01:16:70:99 _ 01:0c:cd:01:00:01  GOOSE 42 1 1 5 0,0,0,0,0
|14 20.651158 20:17:01:16:0:11  01:0c:cd:01:00:01  GOOSE 152 1 07 a,a,a,a,a,a,el
15 20.662213 20:17:01:16:2:54 _ 20:17:01:16:10:01 __TCP
[16 21.081429 20:17:01:16:70:32 _ 01:0c:cd:01:00:01 _ GOOSE 147 1 2 4 1,0,0,1 ]
17 21.187176 20:17:01:16:70:23 __ 01:0c:cd:01:00:01 _ GOOSE 1471 6 4 0,1,0,1

2259,

Figure 6.6: Wireshark capture of FDIA GOOSE packets from IED 1.
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4. Cyberattacks from IED 2 under normal and disturbance operation: IED2 is used

to describe the IED protecting transformer 2 i.e. transformer 2

(IED_PIOC_TRSF2). Two attack scenarios regarding GOOSE messages are
created from IED2.

e Replay attack: IED 2 injects replayed GOOSE trip messages and stop

protection or trigger unexpected protection. Figure 6.7 shows the

Wireshark capture of replay attacks from IED 1 (IED_POIC_TRSF2).

A
A n ® RO QewmEF S _ = Qi
[wl‘ Apply a display filter
No. Time Source Destination Protocol Length stNum sqNum  allData integer Normal
1 0.000000 20:17:01:16:10:99 01:0c:cd:01:00:01  GOOSE 142 1 0 5 0,0,0,0,0 } ackets
2 1.001243 20:17:01:16:10:99 091:0c:cd:01:00:01  GOOSE 142 1 1 5 0,0,0,0,0 P
[31.259524 20:17:01:16:70:23 _ 01:0c:cd:01:00:01 _ GOOSE 147 1 0 4 0,1,0,1 ]
4 2.001645 20:17:01:16:10:99 01:0c:cd:01:00:01  GOOSE 142 1 2 5 0,0,0,0,0 Replay
5 2.186589 20:17:01:16:f0:32 01:0c:cd:01:00:01  GOOSE 147 1 0 4 1,0,0,1 packets
6 2.186913 20:17:01:16:f0:11 01:0c:cd:01:00:01  GOOSE 152 1 0 7 0,0,0,0,0,0,0
7 2.259901 20:17:01:16:10:23 01:0c:cd:01:00:01  GOOSE 147 1 1 4 Godl )il
8 3.882596 20:17:091:16:19:99 01:0c:cd:01:900:01  GOOSE 142 1 3 5 0.0.0.0.0
Figure 6.7: Wireshark capture of replay attack GOOSE packets from IED 2.
e FDIA: Original non-trip messages from IED2 are modified to trip
messages and to stop protection or trigger unexpected protection. Figure
6.8 shows the Wireshark capture of FDIA attacks from IED 1
A
AR ® RO Qe EF S| =E QQ QT
(W] Apply 2 trl
No. Time Source Destination Protocol Length stNum sqNum  allData integer
1 0.000000 20:17:01:16:f0:99 01:0c:cd:01:00:01  GOOSE 142 1 %] 5 0,0,0,0,0
|20.889226 20:17:01:16:10:23 01:0c:cd:01:00:01  GOOSE 147 1 9 4 0,1,0,1 |}
3 1.000489 20:17:01:16:f0:99 01:0c:cd:01:00:01  GOOSE 142 1 1 5 9,0,0,0,0
7 1.813300 20:17:01:16:70:11 _ 01:0c:cd:01:00:01 _ GOOSE 152 il ® 7 0,0,0,0,0,0,0
5 1.890379 20:17:01:16:10:23 01:0c:cd:01:00:01  GOOSE 147 1 1 4 9,1,0,1 FDIA
6 2.000948 20:17:01:16:0:99  01:0c:cd:01:00:01  GOOSE 142 1 2 5 00,000 packets
7 2.737439 20:17:01:16:10:32 01:0c:cd:01:00:01  GOOSE 147 1 2] 4 1,0,0,1
8 2.813641 20:17:01:16:10:11 01:0c:cd:01:00:01  GOOSE 152 sk 1 7 0,0,0,0,0,0,0
9 2.890807 20:17:01:16:f0:23 01:0c:cd:01:00:01 _ GOOSE 147 ! 2 4 0,1,0,1

Figure 6.8: Wireshark capture of FDIA GOOSE packets from IED 2.
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Based on the case description of the 4-1ED dataset, only two IEDs - IED1 and IED2,
account for the attack instances. Table 6.1 lists the sample distribution of the different

scenarios created from test system 1 to generate the 4 IED dataset.

Table 6.1: Scenario description of the 4-1ED dataset

Behavior type Number of Samples Labels
Normal Operation 7447 Normal
Disturbance Operation 12457 Disturbance
Attacks from IED 1 under normal 4232 Replay

and disturbance operation 3783 EDIA
Attack from IED 2 under normal and | 5078 Replay
disturbance operation 4824 EDIA

6.3.2. Test System 2: 18-1ED dataset

In this dataset, the power system data log for each IED is generated in CSV format
to describe operating current, voltage, power, and frequency measurements during normal
and disturbance operations. According to Figure 6.3 each of the 18 IEDs is assigned a
unique MAC address to simulate GOOSE communications. After simulation, the ‘pcap’
files from each IED are converted to comma-separated values (CSV) files. The CSV format
of the GOOSE communication of each IED is then merged with the power system data log
of the respective IED. In this thesis, the 4-1ED dataset samples consist of six scenarios. The

following are the scenarios in the dataset:

1. Normal operations: This operation experienced two scenarios — variable and non-

variable load circumstances. During the variable load scenario there is a demand
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shift over a period of time causing each IED to display distinct current and power

measurements. Conversely, during the non-variable load scenario there is a stable

energy flow as a result of negligible variations in load demands.

Disturbance operations: Three disturbance scenarios in which the substation

protection system operates are considered.

Busbar protection: This disturbance operation is the inability of IED/IEDs
to detect overcurrent. In this scenario, a fault arises at the 66kV bus-1
busbar, and LIED10 detects an overcurrent while other IEDs fail to detect
it. LIED10, through GOOSE communication then identifies the busbar
fault, initiates a trip for its breaker and associated busbar breakers. The trip
status is then transmitted to LIED11, LIED12 AND TIED13.

Breaker failure: This disturbance operation constitutes a circuit breaker
experiencing mechanical failure. In this scenario, a fault arises in the feeder
connecting substation S/S 3-1, activating the associated LIED11
overcurrent element. However, a mechanical failure prevents breaker CB-
11 from tripping. Alternatively, the GOOSE communication from LIED11
to LIED10, LIED12, and TIED13 results in the tripping of circuit breakers
CB-10, CB-12, and CB-13, as well as the remote circuit breaker in S/S 3-1.
Under frequency: In this disturbance scenario, there is a frequency drop
across the busbar. The Under Frequency Intelligent Electronic Device
(UFIED) detects frequency drops in the 11kV buses via GOOSE. It then

initiates a trip sequence starting with the least priority consumer and
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progressing through higher priority consumers until the frequency

stabilizes.

The Following is the description of the simulated GOOSE-related cyberattack operations

designed to compromise the substation's operation.

3. Data Manipulation: This involves the spoofing of false information to the IEDs to
mask unauthorized changes. Below are the tactics in which this attack was
conducted.

e Data Manipulationl (DM1): In this attack scenario false current
measurements are injected to bias the power system state estimation process

without being detected as shown in Figure 6.9, Figure 6.10, and Figure 6.11.

A

AW 1® NG Qe=EFL=aaar

M \goose.gochef == "LIED10MEAS/LLNO$Measurement”

No. Time ProtoAcoI Length stNum sqNum  allData integer gocbRef
526 10.941907871 GOOSE 185 1 9 10 314,305,309,38101,38102,.. LIED1OMEAS/LLNO$Measurement
587 11.988170885 GOOSE 185 1 10 10 311, 305,309,38110,38092,.. LIED1OMEAS/LLNO$Measurement
588 11.991219530 GOOSE 185 1 11 10 310,310,38105,38105,.. LIED1OMEAS/LLNO$Measurement
647 13.052160697 GOOSE 185 1 11 10 311,314,306,38091,38103,.. LIED1OMEAS/LLNO$Measurement

Figure 6.9: LIED10 injects a GOOSE frame (No. 588) with a value of 380 for phase A
current magnitude at 11.9 seconds.

r

A m ® RE Qe EF IE|=E QqaQqiF

n [goose.gochef == "LIED10MEAS/LLNO$Measurement"

No. Time Proto?:ol Length stNum sgNum  allData integer gocbRef
1109 21.488219697 GOOSE 185 1 19 10 310,311,305,38107,38107,.. LIED1OMEAS/LLN@O$Measurement
1174 22.528242961 GOOSE 185 1 20 10 309,310,307,38095,38096,.. LIED1OMEAS/LLNO$Measurement
1175 22.531529160 GOOSE 185 1 21 10 310, 310,38105,38105,.. LIED1OMEAS/LLNO$Measurement
1232 23.589875181 GOOSE 185 1. 21 10 315,307,309,38117,38100,.. LIED1OMEAS/LLNO$Measurement
1287 24.660866705 GOOSE 185 1 22 10 307,313,307,38109,38118,.. LIED1OMEAS/LLNO$Measurement

Figure 6.10: LIED10 injects a GOOSE frame (No. 1175) with a value of 270 for phase B

current magnitude at 22.5 seconds.
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A

Am1® RB Qe=EFe /= qaqil

L] Iguuse.gochRef == "LIED10MEAS/LLNO$Measurement”

No. Time PFEItU’l\Iﬂ Length stNhum sgqNum  allData integer gocbRef
1758 33.092973103 GOOSE 185 1 30 10 305,313,312,38103,38097,.. LIED1OMEAS/LLNO$Measurement
1771 33.110630583 GOOSE 185 1 31 1e 316,310381@5,38185,... LIED1OMEAS/LLN@$Measurement
1817 34.145874763 GOOSE 185 1 31 10 308,313,308,38096,38093,.. LIED1OMEAS/LLNO$Measurement
1872 35.206495583 GOOSE 185 1 32 10 308,308,315,38113,38098,.. LIED1OMEAS/LLNO$Measurement
1929 36.256361775 GOOSE 185 1 33 10 305,311,312,38097,38114,.. LIED1OMEAS/LLN@$Measurement

Figure 6.11: LIED10 injects a GOOSE frame (No. 1771) with a value of 360 for phase C

current magnitude at 33.1 seconds.

e Data Manipulation2 (DM2): In this attack scenario, a malicious GOOSE

frame is injected to control the state of the circuit breaker as shown in Figure

6.12.

A

AmZ® RO QeuwEFs S = qaqar

[ [goose.gocbRef == "LIED11PROT/LLNOSAlarm"

No. Time Protocol Length  sthum squlj\m allData integer  gocbRef boolean
368 8.098212156 GOOSE 128 1 6 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
426 9.156068783 GOOSE 128 1 7 5 1 LIED11PROT/LLN@$ALarm False,False,False,False
483 10.216799268 GOOSE 128 1 8 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
541 11.262115733 GOOSE 128 1 9 5 1 LIED11PROT/LLN@$Alarm False,False,False, False
595 12.314320774 GOOSE 128 1 10 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
597 12.321186937 GOOSE 128 1 11 5 1 LIED11PROT/LLN@$ALlarm False, False,False
649 13.377080741 GOOSE 128 1 11 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
706 14.431902707 GOOSE 128 1 12 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
765 15.489272869 GOOSE 128 1 13 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
821 16.555723561 GOOSE 128 1 14 5 1 LIED11PROT/LLN@$ALarm False,False,False,False
874 17.602002698 GOOSE 128 1 15 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
931 18.654232852 GOOSE 128 1 16 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
993 19.696890381 GOOSE 128 1 17 5 1 LIEDI1PROT/LLN@$Alarm False,False,False,False

Figure 6.12: LIED11 injects malicious GOOSE frame (No. 597) changing the circuit

breaker status from FALSE to TRUE (‘tripped’) at 12.3 seconds.

e Data Manipulation3 (DM3): In this attack scenario, an old GOOSE payload

containing circuit breaker 'trip' status and other measurements messages is

replayed as shown in Figure 6.13 and Figure 6.14.
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A

Am 2@ RN QewEFgesS=qeai

| 1l [ goose.gocbRef == "LIED11PROT/LLNO$Alarm"

No. . Time Protocol Length stNum sqNum  allData integer  gocbRef boolean
2708 53.782550486 GOOSE 128 1 51 5 i I LIED11PROT/LLN@$Alarm False,False,False,False
2734 53.856258657 GOOSE 128 3 (] 5 1 LIED11PROT/LLN@O$Alarm False,False,False
2762 54.850722351 GOOSE 128 4 52 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
2764 54.858621347 GOOSE 128 zi 1 5 1 LIED11PROT/LLN@$Alarm False,False,False
2816 55.899548054 GOOSE 128 1 53 5 1 LIED11PROT/LLN@$Alarm False,False,False,False
2869 56.963406022 GOOSE 128 T 54 5 1 LIED11PROT/LLNO$Alarm False,False,False, False

Figure 6.13: LIED11 replays valid GOOSE frames (No. 2734 and No. 2764) with "open”

(True) circuit breaker data at times 53.8 sec and 54.8 sec.

A

Am ® REB/ Qe EF IE|=E QaaE

\ L] \goose.gochef == "LIED22MEAS/LLNO$Measurement”

No. Time Protocol  Length stNum sqNum  allData integer gocbRef
7781 154.282722666 GOOSE 186 1 146 10  312,315,305,38101,38105,38105,30001359,18499545  LIED22MEAS/LLNO$Measurement
7834 155.310682489 GOOSE 186 1 147 1@  314,307,315,38108,38111,38105,29999126,18498824  LIED22MEAS/LLNO$Measurement
[7847 155.879637356_GOOSE 185 5 © 10 613,671,612,38105,38105,38105,30000000,18500000  LIED22MEAS/LLNOSMeasurement |
7888 156353829895 GOOSE 186 1 148 10 309,309,307,38116,38094,38111,30000117,18498066 _ LIED22MEAS/LLNO$Measurement
| 2901 156.880987932 GOOSE 185 5 1 1o 610,673.610,38105, 38105 38105,30000000,18500000 L TED22MEAS/L L NO$Measurement
7942 157.419850805 GOOSE 186 1 149 10 313,308,309,38104,38097,38099,30001378,18499762  LIED22MEAS/LLNO$Measurement
[7955 157.882200745 GOOSE 185 5 2 10  611,672,614,38105,38105,38105,30000000,18500000  LIED22MEAS/LLN@$Measurement |
7996 158.475438101 GOOSE 186 1 150 10 314,312,311,38108,38115,38114,30000506,18500501  LIED22MEAS/LLN@$Measurement
[8009 158.883954297 GOOSE 185 5 3 10 611,672,612,38105,38105,38105, 30000000, 18500000 __ LIED22MEAS/LLN@SMeasurement |
8050 159.533230814 GOOSE 186 1 151 10  305,313,306,38095,38105,38090,29999769,18500350  LIED22MEAS/LLNO$Measurement
[8263 159.884810694 GOOSE 185 5 410 610,674,613,38105,38105,38105, 18500000 LIED22MEAS/LLNO$Measurement |
8104 160. 594492464 GOOSE 186 1 152 10  314,308,314,38113,38097,38112,30000388,18501946  LIED22MEAS/LLNO$Measurement
8157 161.635835681 GOOSE 186 1 153 1@ 315,311,310,38102,38111,38096,30001743,18499541 | TED22MEAS/LLNO$Measurement

Figure 6.14: LIED22 replays fault current measurements (No. 7847, No. 7901, No. 7955,

No. 8009, and No. 8063) between times 155.8 sec and 159.88 sec.

4. Denial of Service (DoS): The objective of this attack scenario is to obstruct the flow

of information to the intended IEDs by overwhelming the substation network with

GOOSE messages to reduce service availability. Figure 6.15 shows the DoS attack

on LIED10.
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A

A R

No.

® RO QeuwZFi S| =EQqqal
L] ‘goose.gu:bRef == "LIED10CTRL/LLNOSStatus"

Time Protocol  Length stNum sqium  allData integer gocbRef boolean
180 5.106668127  GOOSE 131 1 3 5 1,1,0,1 LIED1QCTRL/LLN@$Status False
239 6.150543841  GOOSE 131 1 4 5 1,1,0,1 LIEDI@CTRL/LLNO$Status False
296 7.200396824  GOOSE 131 1 5 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
353 8.259264544  GOOSE 131 1 6 5 1,1,0,1 LIEDIOCTRL/LLN@$Status False
410 9.322026801  GOOSE 131 1 7 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
469 10.380178508 GOOSE 131 1 8 5 1,1,0,1 LIED1@CTRL/LLN@$Status False
526 11.429357217 GOOSE 131 1 9 5 1,1,0,1 LIEDI@CTRL/LLNO$Status False
283 12.475887474 GOOSE 131 1 19 5 1.1.0.1 LIEDIGCTRL /1L NO$Status False
586 12.482163344 GOOSE 124 ] ] 2 1234,5678 LIED1@CTRL/LLN@$Status
587 12.484169967 GOOSE 124 (] 1 2 1234,5678 LIED1@CTRL/LLNG$Status
591 12.486018472 GOOSE 124 L] 2 2 1234,5678 LIEDIQCTRL/LLN@$Status
592 12.488116547 GOOSE 124 o 3 2 1234,5678 LIED1@CTRL/LLN@$Status
593 12.490239000 GOOSE 124 L] 4 2 1234,5678 LIED1@CTRL/LLN@$Status
594 12.492146580 GOOSE 124 (] 5 2 1234,5678 LIED1@CTRL/LLN@$Status DoS
598 12.494217377 GOOSE 124 ] 6 2 1234,5678 LIED1@CTRL/LLN@$Status packets
599 12.496229040 GOOSE 124 ] 7 2 1234,5678 LIED1@CTRL/LLNG$Status
603 12.498101240 GOOSE 124 L4 8 2 1234,5678 LIED1OCTRL/LLN@$Status
604 12.500158045 GOOSE 124 0 9 2 1234,5678 LIEDIOCTRL/LLNOSStatus

Figure 6.15: Denial-of-Service (DoS) attack on LIED10

5. Message Suppression (MS): This attack involves modifying the GOOSE header
fields to take over the communication channel in order to prevent legitimate IEDs
from receiving vital messages or updates. Below are the tactics in which this attack
was conducted.

e Message Suppressionl (MS1): In this attack scenario, a high Stnum value
or slightly higher than the previously recorded Stnum is injected, where

Sgnum # 0 as shown in Figure 6.16 and Figure 6.17.

A

A m ® R Qe EF S _|=E QQaQiF

(W [ goose.gocbRef == "LIED10CTRL/LLNOS$Status"

No. Time Protocol Length stNum sqNum  allData integer gocbRef boolean
486 12.889210943 GOOSE 131 1 9 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
539 13.936225626 GOOSE 131 ! 10 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
542 13.939850506 GOOSE 132 9999 10 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
593 14.998401850 GOOSE 131 1 11 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
647 16.058520717 GOOSE 131 1 12 5 1,1,0,1 LIED1OCTRL/LLN@$Status False

Figure 6.16: LIED10 injects a GOOSE frame (No. 542) with Stnum=9999 and

Sgnum=10 at 13.9 secs.
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‘” .

A m ® R Q @ = E Q Q| TF

=98 .=

(W Igoose.gochef == "LIED12CTRL/LLNO$Status"

No. Time Protocol Length stNum sqNum  allData integer gocbRef boolean
706 17.130304741 GOOSE 131 i 13 5 1,1,0,1 LIED12CTRL/LLN@$Status False
759 18.192254381 GOOSE 131 1 14 5 1,1,0,1 LIED12CTRL/LLN@$Status False
784 18.944812681 GOOSE 131 5 1,1,6,1 LIEDI2CTRL/LLN@$Status  False
814 19.237246159 GOOSE 131 1 15 5 1,1,0,1 LIED12CTRL/LLN@$Status False
867 20.288962202 GOOSE 131 i 16 5 1,1,0,1 LIED12CTRL/LLN@$Status False

Figure 6.17: LIED10 injects a GOOSE frame (No. 784) with Stnum=5 and Sqnum=15 at

18.9 secs.

e Message Suppression2 (MS2): In this attack scenario, a previously valid
GOOSE frame containing high Stnum is replayed, where Sgnum = 0 but

stale timestamp as shown in Figure 6.18 and Figure 6.19.

A~

A m ® R Qe EF SIS = Qe &

[i [ goose.gocbRef == "LIED10CTRL/LLNO3Status"

No. Time Protocol Length stNum sqNum  allData integer gocbRef boolean
319 6.275627881  GOOSE 131 1 6 5 1,1,0,1 LIED1OCTRL/LLNO$Status False
372 7.337581635  GOOSE 4131 B 7 5 1,1,0,1 LIED1OCTRL/LLNO$Status False
425 8.395527909  GOOSE 1313 1 8 5 1,1,0,1 LIED1OQCTRL/LLN@$Status False
478 9.445136905  GOOSE 131 1 9 S 1,1,0,1 LIED1OCTRL/LLN@$Status False
531 10.492781535 GOOSE 131 1 10 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
534 10.498055494 GOOSE 132 5 1,1,0,1 LIED1OCTRL/LLN@$Status  False
585 11.553984083 GOOSE 131 1 -1 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
638 12.614083319 GOOSE 131 1 12 5 1,1,0,1 LIED1OCTRL/LLNO$Status False
691 13.667628550 GOOSE 131 1 13 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
744 14.729292100 GOOSE 131 1 14 5 1,1,0,1 LIED1OQCTRL/LLN@$Status False
798 15.784832476 GOOSE 131 1 15 5 1,1,0,1 LIED1OQCTRL/LLN@$Status False
851 16.837084236 GOOSE 131 i 16 5 1,1,0,1 LIEDIOCTRL/LLN@$Status False

Figure 6.18: LIED10 replays a GOOSE frame (No. 534) with Stnum=9999 and Sqnum=0

at 10.4 secs.
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[i |goose.gochef == "LIED12CTRL/LLNO$Status"

No. Time Protocol Length stNum sqNum  allData integer gocbRef boolean
697 13.686185520 GOOSE 131 1 13 5 1,1,0,1 LIED12CTRL/LLN@$Status False
750 14.748156329 GOOSE 131 1 14 5 1,1,0,1 LIEDI2CTRL/LLN@$Status  False
774 15.500779798 GOOSE 131 5 1,1,0,1 LIEDI2CTRL/LLN@$Status  False
804 15.806709056 GOOSE 131 1 15 5 1,1,0,1 LIEDI2CTRL/LLN@$Status  False
857 16.844606256 GOOSE 131 1 16 5 1,1,0,1 LIEDI2CTRL/LLN@$Status  False

Figure 6.19: LIED12 replays a GOOSE frame (No. 774) with Sthrum=5 and Sgnum=0 at

15.5 secs.

e Message Suppression3 (MS3): In this attack scenario, a high Stnum frame
with Sqnum = 0 and a valid timestamp is injected, as shown in Figure 6.20

and Figure 6.21.

‘ A

Am 1@ RE QewEFI = aaar

[i [goose.gochef == "LIED10CTRL/LLNO$Status"

No. Time Protocol Length stNum sgNum  allData integer gocbRef boolean
478 9.445537282 GOOSE 131 1 9 5 1,1,0,1 LIED1OCTRL/LLNO$Status False
531 10.491758219 GOOSE 131 1 10 5 10501 LIED1OCTRL/LLN@O$Status False
534 10.498219056 GOOSE 132 |9999 9 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
585 11.553736003 GOOSE 131 1 11 5 1:350,4 LIED1OCTRL/LLNO$Status False
638 12.613515285 GOOSE 131 b ! 12 5 1,1;0,%1 LIED1OCTRL/LLN@$Status False

Figure 6.20: LIED10 injects a GOOSE frame (No. 534) with Stnum=9999 and Sgnum=0

at 10.4 secs.

A
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[ n Igoose.gochef == "LIED12CTRL/LLNO$Status"

No. Time Protocol Length stNum sgNum  allData integer gocbRef boolean
697 13.684796530 GOOSE 131 1 13 5 1,1,0,1 LIED12CTRL/LLN@$Status  False
750 14.747558739 GOOSE 131 1 14 5  1,1,0,1 LIED12CTRL/LLN@$Status  False
774 15.505919291 GOOSE 131 5 1,1,0,1 LIEDI2CTRL/LLN@$Status  False
804 15.804176652 GOOSE 131 1 15 5 1,1,0,1 LIED12CTRL/LLN@$Status  False
857 16.844726479 _GOOSE 131 il 16 5  1,1,0,1 LIEDI2CTRL/LLN@$Status _ False

Figure 6.21: LIED12 injects a GOOSE frame (No. 774) with Stnum=>5 and Sqnum=0 at

15.5 secs.
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e Message Suppressiond (MS4): In this attack scenario, a high Sqgnum frame
to cause GOOSE frames to arrive at the receiver out-of-sequence i.e., not

matching the order of transmission at the sender is injected, as shown in

Figure 6.22.

A

Am:Z® R Qe EF S| = QQQTIF

[bd | goose.gocbRef == "LIED10CTRL/LLNO$Status"

No. Time Protocol Length stNum sgNum  allData integer gocbRef boolean
498 11.693120999 GOOSE 131 1 9 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
553 12.740146911 GOOSE 131 1 10 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
556 12.748779307 GOOSE 132 il 5 1,1,0,1 LIEDIOCTRL/LLN@$Status  False
607 13.801947671 GOOSE 131 1. 11 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
661 14.861464565 GOOSE 131 1 12 5 1,1,0,1 LIED1OCTRL/LLN@$Status False
716 15.915308872 GOOSE 131 1 13 5 1,1,0,1 LIED1OCTRL/LLN@$Status False

Figure 6.22: LIED10 injects a GOOSE frame (No. 556) with Sqnum=9999 at time= 12.7

SecC.

6. Composite attack: This attack scenario is comprised of both a data manipulation
attack and a message suppression attack as shown in Figure 6.23 and Figure 6.24.
A high Stnum attack is injected followed by the modification of the circuit breaker

status associated with CB-11.

A

A m ® R Qe EF I | =E Qi

(W [ goose.gocbRef == "LIED11CTRL/LLNOS$Status"

No. Time Protocol Length stNum sgNum  allData integer gocbRef boolean
486 10.309045606 GOOSE 131 2 9 5 1,1,0,1 LIED11CTRL/LLNO$Status False
539 11.362088209 GOOSE 131 i ! 10 5 1,1,0,1 LIED11CTRL/LLN@$Status False
542 11.366868813 GOOSE 132 19999 0 5 1,1,0,1 LIED11CTRL/LLN@$Status False
593 12.423963501 GOOSE 131 1 11 5 154..9.1 LIED11CTRL/LLNO$Status False
647 13.478013193 GOOSE 131 1 12 5 1.9.0.1 LIEDI1CTRL/LLN@$Status False

Figure 6.23: LIED11 injects a GOOSE frame (No. 542) with Sthrum=9999 and Sgnum=0

at 11.3 sec.
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[ [goose.gocbRef == "LIED11CTRL/LLNO$Status"

No. Time Protocol Length stNum sgNum  allData integer gocbRef boolean
701 14.536842913 GOOSE 131 1 13 5 1,1.9.1 LIED11CTRL/LLNO$Status False
759 15.602556955 GOOSE 131 1 14 5 1;3150.1 LIED11CTRL/LLNO$Status False
792 16.367363458 GOOSE 131 2 0 5 1,0,1 LIED11CTRL/LLNO$Status False
822 16.648983173 GOOSE 131 1 15 5 1;750,1 LIED11CTRL/LLN@$Status False
878 17.700876604 GOOSE 131 1 16 5 1,1.0.19 LIED11CTRL/LLNO$Status False

Figure 6.24: LIED11 modifies the CB-11 Boolean value from '1' to '0" and injects the

modified GOOSE frame (No. 792) at 16.3 secs.

From the case description of the 18-1ED dataset only four IEDs bearing the
designations LIED 10, LIED 11, LIED 12, and LIED 22 out of the 18 IEDs account for
most attack instances. Table 6.2 shows the total number of attacks identified in these IED
datasets by aggregating the number of attack packets encountered during each IED attack.
It also presents a comprehensive record of the overall count of attacks that were detected
in the IED dataset by summing up the number of attack packets encountered during each

individual attack on an IED.

Table 6.2: Scenario description of the 18 IED dataset

IED Packets per attack Total packets

LIED 10 e DM =3 packets 5007
e DoS =5000 packets
e MS =4 packets

LIED 11 e DM = 3 packets S
e Composite = 2 packets (1
DM and 1 MS)
LIED 12 e DoS = 5000 packets 5003
e MS=3
LIED 22 e DM =5 packets 5
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6.4.Training and Testing of Automated Classification

Various combinations of IED datasets are tuned to evaluate the sensitivity of the
proposed approach to selecting datasets for training and testing. When these combinations
are configured, the dataset used for training contains normal, disturbance and all the
cyberattack cases while the dataset used for testing consists of normal scenarios,
disturbance scenarios as well as any of the cyberattack cases. This assembly method
ensures that the full spectrum of all conditions is covered, allowing a more comprehensive

assessment of the response of the proposed approach.

These combinations are applied to the two test system datasets. In the 4-1ED dataset,
two cases are used in this thesis. The first case is aimed at training the models for all normal,
disturbance, FDIA attacks and replay attacks originating exclusively from IED1 in order
to detect and classify FDIA attacks and replay attacks originating from IED2. In the second
case, the data sets for training and testing are then swapped. For the 18-1ED dataset, four
cases representing different combinations of the line IEDs (LIEDs) are used. Table 6.3

highlights the combinations for training and testing.

109



Table 6.3: 18-1ED Dataset Combinations for Training and Testing

Case Number

Line IED Combinations

Training

Testing

Case 1

LIED 10 & LIED 11

LIED 12 & LIED 22

Case 2

LIED 12 & LIED 22

LIED 10 & LIED 11

Case 3

LIED 10 & LIED 22

LIED 11 & LIED 12

Case 4

LIED 11 & LIED 12

LIED 10 & LIED 22

6.5. Results of Implementing the Proposed Approach on the 4-1ED Dataset

The proposed Fine-Tree-Bagging Ensemble (FTBE) learning approach is implemented
on the simulated substation automation system data of test system 1. The number of
learners and k-fold values were determined via a trial-and-error method to obtain the
highest accuracy, which was kept constant for further analysis. Furthermore, the results
have been compared with those obtained when applying other classifiers highlighted in
Chapter 3. Table 6.4 presents the detection accuracy obtained by implementing the
proposed FTBE approach on the 4-1ED dataset. The test accuracy of the decision tree (DT)
approach decreased from 93.63% to 91.80% when the training and testing datasets were
switched. Similarly, the accuracy of K-nearest neighbour (KNN) and support vector
machine (SVM) classifiers decreased when the datasets were changed as well. The FTBE
approach follows the same trend when the datasets are interchange, but it performs better

than the other classifiers, exhibiting a maximum detection accuracy of 94.24% and 92.60%,
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in case 1 and case 2 respectively. In case 1, the highest classification accuracy is achieved

when Kk-fold is set to 6 and there are 10 learners. Conversely, case 2 achieved maximum

classification accuracy with 4 learners and k-fold set to 12. The accuracy difference

between case 1 and case 2 indicates a minor sensitivity to the selection of the training and

the testing dataset. It can be deduced that the specific characteristics of the IEDs can affect

the performance of the proposed approach. Observing the results, however, reveals that the

high accuracy of the FTBE method remained comparatively stable even when the training

and testing datasets were swapped. This consistency demonstrates the insensitivity of 4-

IED datasets approach to selecting IEDs for training and testing.

Table 6.4: Comparative analysis of the Accuracy Results of the 4-1ED Dataset

Case Training Testing | Methods Train Test Accuracy

Number Accuracy (%) (%)

Case 1 IED 1 IED 2 DT 99.14 93.63
KNN 98.12 92.65
SVM 96.86 90.59
FTBE 99.06 94.24

Case 2 IED 2 IED 1 DT 99.20 91.80
KNN 99.40 91.43
SVM 97.28 88.72
FTBE 99.21 92.60

6.5.1. Confusion Matrices and Features Identification for Cyberattack Types

The detailed analysis of the confusion matrices and predictor importance for the 4 IED

data set is provided in Figure 6.25 and Figure 6.26. The results obtained from the confusion

matrices shown in Figure 6.25(a) and Figure 6.26(a) indicate that replay attacks are
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relatively easier to identify compared to FDIA attacks. Specifically, in cases 1 and 2 the
proposed approach is able to accurately detect replay attacks with an accuracy of 95.6%
and 93.7% respectively. However, FDIA attacks were misclassified as normal or replay
attacks for few instances and in some cases, they were misclassified as disturbances.
Further examination of the predictor importance plots depicted in Figure 6.25(b) and Figure
6.26(b) reveals that among the physical features, the current at the feeders (I_FDR) had the
highest PI estimate. In addition. Network features like heartbeat and Dec_allData showed
similar Pl estimate values, indicating their crucial role in classifying different types of

cyberattacks.

Furthermore, it is observed that FDIA attacks are often followed by sudden changes in
current or power consumption patterns. By continuously monitoring the feeder, the model
can detect and classify such instances as false data being injected. The heartbeat and
Dec_allData feature also play a significant role in identifying FDIA attacks. Any deviations
in frequency, timing, or content of GOOSE packets suggest potential FDIA attacks.
Furthermore, inconsistent or unexpected changes in Boolean control command signals
(Dec-allData) also indicate an FDIA attack according to the learning approach. The "Dec
allData" feature is highly important when it comes to classifying replay attacks. Any
irregularities or patterns that do not adhere to typical characteristics imply that previously
recorded control commands are being replayed, enabling the model to identify such attacks.
However, changes in current values at the feeder also provide an indication of the impact
of replay attacks. When previously recorded data is fed into the system with an attempt to
appear as normal, deviations in current values from expected patterns can be an indicator

that there is a replay attack.
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6.5.2. Sensitivity and Error Analysis

In this thesis a comprehensive study is conducted to examine how the proposed
approach is influenced by the choice of the k-fold and number of learners parameters. The
findings indicate that case 1 outperforms case 2 slightly in terms of accuracy. Using brute
force, the highest accuracy for case 1 was achieved with 6-folds and 10 learners, while for
case 2, it was with 12-folds and 4 learners. However, it is observed that there is no
consistent value for k fold or number of learners that consistently yields the highest
accuracies for both cases. To analyze this, the k-fold that leads to the highest classification
accuracy is kept constant and the number of learners is varied from 2 to 10 learners. The
maximum of 10 learners was chosen for its optimal balance of accuracy, computational
efficiency, and risk of overfitting. Beyond this point, no significant gains in accuracy were
observed. Likewise, the number of learners that achieved the highest accuracy is kept
constant and the k-fold varied from 2 to 12. A maximum k-fold value of 12 was selected
as it yielded optimal accuracy, with no significant improvements observed beyond this
point. The rate of change from the maximum accuracy for case 1 and case 2 is calculated

and presented in Table 6.5 and Table 6.6.

From Table 6.5 it can be seen that utilizing a k fold value of 12 for both cases lead to
the most consistent performance with a negligible percentage change of 0.3536 from the
highest detection accuracy of 94.24% for case 1 and 92.60% for case 2. This suggests that
when using a k fold value of 12, the accuracy of the detection model remains stable.
Similarly, Table 6.6 shows that employing 10 learners also results in a minimal percentage
change of 0.2560 from the best detection accuracy of 94.24% for case 1 and 92.60% for

case 2.
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Table 6.5: Percentage Change when Number of Learners is Constant with Kfold 2 to 12

k-fold i?:sc?lrlacy (%) %o Change i?:scirzacy (%) %o Change Ei‘:igoé’
2 92.59 1.74 84.94 8.27 10.01
3 93.86 0.39 87.41 5.60 5.99
4 93.53 0.75 88.64 4.27 5.02
5 93.06 1.25 90.35 242 3.67
6 94.24 0 88.90 3.98 3.98
7 94.17 0.07 87.16 5.87 5.94
8 94.00 0.25 86.82 6.23 6.48
9 93.65 0.62 90.95 1.77 2.39
10 93.88 0.38 87.62 5.37 5.75
11 93.93 0.33 91.11 1.60 1.93
12 93.91 0.35 92.60 0 0.35

Table 6.6: Percentage Change when KFOLD is Constant with Number of Learners 2 to 10

0
I:f}l ll;lzla?rirers i?::lrlacy (%) % Change i?:f:irlacy (%) % Change E(})lilﬂg?
2 92.12 2.25 90.81 1.89 4.14

3 92.68 1.65 92.35 0.26 1.91

4 93.30 0.99 92.60 0 0.99

5 93.78 0.48 91.56 1.11 1.59

6 93.98 0.27 91.84 0.82 1.09

7 94.02 0.23 91.92 0.72 0.95

8 94.08 0.17 92.28 0.33 0.5

9 93.99 0.26 92.18 0.44 0.7

10 94.24 0 92.36 0.25 0.25
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Therefore, it can be recommended per test system 1, that using a k fold value of 12 and
employing 10 learners will achieve optimal performance in both cases. These findings offer
insights into how sensitive the proposed approach is to variations in the k fold and number

of learners parameters.

6.6. Result of Implementing the Proposed Approach on the 18-1ED Dataset

Table 6.7 lists the detection accuracies obtained when implementing the proposed
FTBE classifier on the 18-1ED dataset. An in-depth exploration of k-fold and number of
learner values, both ranging from 2 to 10, was performed through a nested iterative process
to obtain the highest accuracy, which was then kept constant for further analysis. Visual
inspection of the results reveals that the proposed FTBE also outperforms the other
machine learning classifiers as it was able to achieve an accuracy of 100% in all cases. In
regard to Case 1, the classification accuracy is most effectively achieved with 3 learners
and a k-fold setting of 2. In Case 2, the optimal results are obtained by employing 8 learners
and a k-fold setting of 7. In Case 3, the highest accuracy is achieved by utilizing 2 learners
and a k-fold setting of 4. Lastly, for Case 4, the maximum accuracy is attained with the
employment of 3 learners and a fold setting of 6. This result further demonstrates the
insensitivity of the proposed FTBE classification approach when selecting the datasets for
training and testing. Additionally, the result also includes the precision, recall, and F1-
scores. It is important to note that "NaN" values exist for the DT, KNN, and SVM machine
learning classifiers. This is due to instances in which no affirmative sample is predicted for
a particular scenario. Therefore, precision and F1-score values cannot be calculated for
these instances. In addition, the other machine learning classifiers also had poor recall

values in comparison to the proposed FTBE approach, resulting in lower F1-scores. The
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reason for the low recall value in other machine learning algorithms is that the datasets
from this test system are highly imbalanced. This means there is a significant difference in
the number of instances between classes. Due to this imbalance, it becomes difficult for
these algorithms to correctly identify cyberattacks, which are the minority class in this case.
However, the proposed FTBE classifier was able to overcome this challenge and achieve
high recall values resulting in higher F1 score values compared to other machine learning
classifiers. This further demonstrates the effectiveness and suitability of the learning

approach for dealing with class imbalance issues in cyberattack problems.

Table 6.7: Comparative Analysis of the Accuracy Results of the 18-1ED Dataset

Case Method Accuracy (%) Precision Recall F1-score

1 DT 99.99 0.9200 0.9998 0.9583
KNN 99.84 NaN 0.5974 NaN
SVM 99.88 NaN 0.7981 NaN
FTBE 100 1 1 1

2 DT 99.96 0.9000 0.8857 0.8927
KNN 99.77 NaN 0.5982 NaN
SVM 96.44 NaN 0.6342 NaN
FTBE 100 1 1 1

3 DT 96.71 0.5991 0.5502 0.5736
KNN 99.79 NaN 0.5982 NaN
SVM 96,56 NaN 0.5485 NaN
FTBE 100 1 1 1

4 DT 99.96 NaN 0.8000 NaN
KNN 99.83 NaN 0.5972 NaN
SVM 99.85 NaN 0.5983 NaN
FTBE 100 1 1 1

118



6.6.1. Confusion Matrices and Features Identification for Cyberattack Types

The classification of attack types through the FTBE based approach proposed herein
proved successful according to the findings illustrated by confusion matrices and predictor
importance plots shown in Figure 6.27 — Figure 6.30. These visual representations of the
confusion matrices clearly exhibit a strong concordance between true and predicted classes
underscoring accurate classification outcomes. By focusing on significant physical and
network features highlighted through predictor importance plots, valuable insights are
gained into factors contributing to this success. A closer analysis identified frequency
(Freq) as having the highest Pl values among the examined physical features. Additionally,
three network features - Boolean to decimal conversion (BCV_Dec), GOOSE sequence
number (Sgnum) and numofblanks - also demonstrated high Pl values. These results
suggest that Freq, BCV_Dec, Sqnum, and numofblanks are indispensable for successful

classification of attack types of this test system data.

Further investigation revealed that specific features excelled at identifying attack
categories. For instance, the changes in frequency (Freq) proved instrumental in detecting
Data Manipulation attacks. Furthermore, the unique sequence numbers assigned to
GOOSE messages, determined by the IEC 61850 protocol enabled the effective
identification of Message Suppression attacks through the Sgnum feature. This feature
serves as a more direct and efficient way to identify Message Suppression attacks because
if a message is suppressed, a gap or inconsistency in the sequence of numbers will occur,
signaling a Message Suppression attack. Also, by detecting sudden changes in circuit
breaker and disconnector status, the Boolean to decimal conversion (BCV_Dec) feature

successfully detected anomalies indicative of potential data manipulation. Lastly,
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identifying DoS attacks was made possible by leveraging the numofblanks feature, which

overwhelms system capacity with 5000 packets and results in gaps within communication

logs where typical traffic would be recorded.
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Figure 6.27: Classification results of case 1. (a) Confusion Matrix and (b) predictor
importance.
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Figure 6.28: Classification results of case 2. (a) Confusion Matrix and (b) predictor

importance.
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Figure 6.29: Classification results of case 3. (a) Confusion Matrix and (b) predictor

importance.
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6.6.2. Sensitivity and Error Analysis

To assess the robustness of the FTBE approach a sensitivity analysis is also conducted
on the 18-1ED dataset. The focus is also to understand how the changes in the k-fold
parameter and the number of learners may affect the results. Using brute force,
the highest accuracy for each case was achieved with the following k-fold and learner
combinations: Case 1 with 2-folds and 3 learners, Case 2 with 7-folds and 8 learners, Case
3 with 4-folds and 2 learners, and Case 4 with 6-folds and 3 learners. It is observed that
there is no consistent value for k fold or number of learners that consistently yields the
highest accuracies for all cases. By varying the number of learners from 2 to 10 and the k
folds from 2 to 10, the percentage change in accuracy from the maximum classification
accuracy when these parameters are varied is calculated for all cases. A maximum of 10
folds and 10 learners was chosen due to the lack of significant accuracy improvement
beyond these values. Figure 6.31(a) shows the plot of the detection accuracy against the
number of learners while keeping the k-fold constant. It is observed that changing the
number of learners had only a minimal impact on accuracy. When using 3 learners, it can
be seen that there was only a small percentage difference of 0.0284 from the maximum
classification accuracy of 100%. This had the least percentage change across all cases when
the k-fold is kept constant. Therefore, this suggests that employing just 3 learners is

sufficient for achieving excellent results.

Figure 6.31(b) shows the plot of the detection accuracy against the k-fold while keeping
the number of learners constant. Similarly, when the k-fold is adjusted it is noticed that the
accuracy changes were also minor. Using a k fold value of 4 across all cases resulted in an

insignificant percentage difference of 0.1012 from the maximum classification accuracy.
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Based on these findings it is clear that the proposed approach remains highly stable
when using a k-fold value of 4. This parameter holds great significance in the approach and

ensures reliable and robust results.

6.7. Summary

In this chapter, the FTBE approach was implemented for the detection and
classification of different cyberattack types. The approach was tested on two different
datasets, and the relevant physical and network features were evaluated to help the model
identify different cyberattack types accurately. The results indicate that the FTBE approach
performs consistently without being affected by the selected training and testing data,
addressing issues of overfitting and sensitivity. The performance of the proposed approach
was evaluated based on detection accuracy, precision, recall, and Fl-score, and its
sensitivity and error analysis were assessed on both datasets. The findings revealed that the
proposed approach could classify all cyberattack cases in the 18-1ED dataset with 100%
accuracy. Moreover, the proposed approach successfully classified 94.24% of scenarios in

case 1 and 92.60% of scenarios in case 2 of the 4-1ED dataset.
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7. Conclusion and Recommendations

7.1. Conclusion

The work in this thesis aims to detect and classify cyberattacks in IEC 61850 protocol-
based Substation Automation System. After reviewing the state-of-the-art literature, it
became evident that firstly, most of the research focused only on the detection of
cyberattacks without identifying the type of cyberattack the system experienced. Secondly,
the classification approaches presented in the past did not evaluate their approach with
different datasets to avoid the issue of overfitting. Therefore, the main contribution of the
proposed approach is the capability of the model to detect and classify cyberattack types
from normal and disturbance events on two different datasets and hence facilitating more

precise mitigative measures.

In this research, the feasibility of using the FTBE approach to learn and classify types
of cyberattacks was explored. The approach involves creating subsets of training data by
selecting from the primary dataset. By employing a bagging-based ensemble strategy
several decision trees were developed by finding the best split for the tree generation
process. The purity of tree nodes is evaluated using the Gini index. To control the depth
and avoid overfitting, a fine tree model with numerous leaves is established. These fine
trees allow for classification with up to 100 splits. After the construction of these fine trees
from the randomized subsets, the final classification decisions using a majority voting
system is made. The performance of the proposed FTBE-based approach and other
machine learning classifiers was compared. The results from the 4-1ED dataset shows that
classification accuracy exceeds 92% for case 1 and case 2 while on the 18 IED dataset, it

achieved an accuracy of 100% across all four cases. These results demonstrate that the
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approach does not only outperform other machine learning classifiers but it also remains
flexible and insensitive to the selection of training and testing datasets subjected to
cyberattacks. Additionally, the proposed FTBE based approach was subjected to a
sensitivity analysis to examine the impact of parameter selection such as the choice of k-
fold and the number of learners on classification accuracy. The results obtained from
analyzing the 4-1ED dataset indicated that using a k-fold value of twelve and employing
ten learners yielded the highest accuracy. Conversely, when examining the outcomes, from
the 18-1ED dataset, it was found that a k-fold value of four and utilizing three learners

provided the highest accuracy.

Furthermore, in order to find the most salient physical and network features needed to
classify the cyberattack types, this thesis proposed the use of the predictor importance
technique. This technigue involves assigning scores to input features of the model, which
helps indicate how important each feature is when making predictions. The findings
demonstrate that in the 4 IED dataset, the current, as a feature stands out in identifying both
FDIA and replay attacks. Similarly, among the network features, the binary state
information reflecting the status of an IED in GOOSE messages proves to be the most
valuable for recognizing replay attacks. In the case of the 18-1ED dataset, the frequency
emerges as a distinctive feature for identifying data manipulation attacks. Also, within the
network features, sequence number (Sgnum) and number of blanks (numofblanks) in
GOOSE messages are indicators for identifying message suppression and denial-of-service

attacks.
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7.2. Recommendations

Based on the work presented in this thesis, the following represents the thesis
recommendations for classifying cyberattack types in smart grid. Firstly, it is crucial that
researchers focus on developing methodologies that accurately classify attack types. This
will help in creating targeted countermeasures to combat these attacks effectively.
Secondly, it is important to validate these methodologies using several datasets to ensure
their effectiveness across various cyberattack scenarios and avoid any potential issues of
overfitting. Lastly, selecting the parameters for classification accuracy is essential, for
conducting sensitivity analysis. In future studies, it would be highly beneficial to explore
automated or semi-automated approaches that can dynamically identify optimal parameters

and enhance model optimization.

7.3. Future Work

Some next steps that can be taken to build the work presented in the thesis are: Potential
mitigation strategies for cyberattacks in Smart Grids. For integrity-targeted attacks like
false data manipulation attacks, the use of encrypted transmissions is recommended. To
combat availability-targeted attacks such as denial-of-service, techniques like rate limiting
could be employed. These approaches would enhance the cybersecurity of Substation
Automation Systems. Researchers can also implement this cyberattack classification
approach in the field of Electric Vehicles and Vehicle-to-Everything (V2X)
communication. As vehicles increasingly communicate with various entities like traffic
lights, other vehicles, and city infrastructure, understanding and expanding the

classification approach to V2X communication will be crucial.
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