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ABSTRACT 

The smart electric grids rely on integrating the information and communication 

technologies (ICT) into the electric power grid infrastructure to facilitate the exchange of 

information for an enhanced and economic operation. Such integration of ICT into the 

existing electric grids makes them vulnerable to cybersecurity threats, ranging from data 

breaches to service disruptions. The work in this thesis investigates the use of machine 

learning techniques to detect and classify such cyberattacks. A novel approach that uses a 

fine tree bagging ensemble learning technique to detect and classify the cyberattack types 

from normal and power quality disturbances is developed. The proposed approach extracts 

the relevant features for classifying different cyber-attack types such as message 

suppression, denial-of-service and data manipulation. The proposed approach is tested on 

a publicly available dataset and the results are compared to three other machine learning 

techniques, namely decision tree, nearest neighbor, and support vector machine. The results 

have shown that the proposed approach is very effective in the detection and the 

classification of the cyberattack types as well as it is insensitive to the selection of the 

training and the testing datasets. 

Keywords: Classification; cyberattack; data manipulation; ensemble learning; substation 

automation. 
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1. Introduction 

1.1. Background 

 Smart grid (SG) is a modernized version of the legacy electric grid. The smart grid 

integrates the information and communication technology (ICT) into the electric power 

grid for an efficient and an economic operation. This integration involves sharing 

information, between intelligent electronic devices (IEDs) and the supervisory control and 

data acquisition (SCADA) systems used in the substation automation systems. By 

exchanging this information, the smart grid becomes more efficient, allows for smooth 

integration of renewable energy resources and ensures the cost-effective operation of its 

assets [1]. 

 The model depicted in Figure 1.1 illustrates the structure of a smart grid. These grids 

possess unique characteristics when compared to the conventional grids, such as the ability 

for power to flow in both directions in real time and seamless communication between 

utility companies and consumers. Moreover, there is also a communication established 

between the distribution substations and the customers, which is made possible by devices, 

like IEDs, SCADA and switchgears [2]. This communication framework offers a multitude 

of advantages including automated metering, redundancy, maintenance capabilities, self-

heal mechanisms, efficient energy management as well as improved reliability and security 

[3]. 
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Figure 1.1: National Institute of Standards and Technology (NIST) SG Model [4] 

 With the advancements in ICT, the field of cybersecurity faces new challenges 

particularly when it comes to securing the electricity grid infrastructure. The integration of 

Internet of Things (IoT) applications, industrial devices and Wireless Sensor Networks 

(WSNs) has exposed the electric power grid to cyber threats that can jeopardize the national 

security [5].  Unfortunately, these devices often lack built-in security measures against 

attacks leaving them vulnerable to breaches. Additionally, concerns arise from the 

utilization of devices such as smart meters that communicate autonomously without human 

involvement. Furthermore, the legacy systems such as the conventional SCADA systems 

may not have up to date security solutions in place. 
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1.2. Trends of Cyberattack Worldwide 

 The security of the control systems that manage the critical infrastructures has 

become a primary focus for cyber terrorism and warfare. Figure 1.2 shows a timeline 

summarizing major smart grid attacks around the world from 2010 to 2023. One of the 

notable cyberattacks occurred in 2010, when a malware referred to as Stuxnet targeted an 

Iranian nuclear enrichment centrifuges causing significant damage to their equipment [6]. 

The attack involved exploiting vulnerabilities on the substation computer system through 

a Universal Serial Bus (USB) drive and injecting malicious software into Siemens 

Programmable Logic Circuits (PLCs). This caused the centrifuges to spin at frequencies 

than usual leading to increased wear and tear. Additionally, the malware manipulated 

sensor readings to hide the attack from the operators. 

 In December 2015, Ukraine experienced a cyber-attack through the injection of a 

malware called BlackEnergy, which specifically targeted two western oblast power grids. 

As a result, 30 substations were disconnected for approximately three hours. This malicious 

act led to a power outage that impacted around 230,000 residents. Consequently individuals 

faced difficulties in reaching out to their utility providers as the attack disrupted phone 

communication, with power companies [7]. 
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Figure 1.2: Overview of cyberattacks on Smart Grids since 2010 [8]. 
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 During the period between 2019 and 2020, a number of cyber attacks occurred. In 

March 2019, a power grid located in the western region of the United States experienced a 

denial of service (DoS) attack. The attack has affected a few industrial machines, which 

encountered failures lasting less than five minutes [9]. Another significant incident took 

place in Ukraine around April 2022. This particular attack involved a malware known as 

"Industroyer2", which was specifically designed to manipulate system commands. The 

malware directly targeted the utility equipment of a Ukrainian energy firm and sent 

commands to the substation devices responsible for regulating the electricity flow. 

Fortunately, the attack was discovered in time to prevent a power outage that could have 

affected approximately two million people [10]. 

 In April 2023 Hydro Quebec, the electricity supplier in Quebec, Canada encountered 

a cyber incident that led to disruptions in their utility services while addressing power 

outages [11]. A hacking group with alleged ties to Russia claimed responsibility for the 

cyberattack, on this government owned power provider.  

 The number of cyberattack attempts is increasing in all sectors worldwide. The 

biggest increase however has been experienced in the manufacturing and utility sector, 

where the number of data breaches has constantly been on the rise [12]. From the cases of 

cyberattacks on smart grids mentioned above, the primary reason behind these losses is the 

vulnerability of the smart grid and the exploitation of these vulnerabilities through 

cyberattacks. When a smart grid is poorly designed to have countermeasures against 

cyberattacks, the integration of ICT and the increased application of IoT pose cybersecurity 

threats to such critical electricity infrastructure [8]. 
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1.3. Vulnerable Assets in Smart Grid Infrastructure 

 Smart grids are complex systems that bring together physical networks, information 

technology (IT) and operational technology (OT) making them crucial infrastructures. Any 

weakness, whether internal or within the interconnected systems has the potential to 

jeopardize the grid security leading to power outages, financial losses and other significant 

consequences [13]. This integration encompasses systems such as Advanced Metering 

Infrastructure (AMI), Supervisory Control and Data Acquisition (SCADA) substations, 

synchrophasor systems, energy management systems (EMS), distribution management 

systems (DMS) and electric vehicle charging stations. 

 The Advanced Metering Infrastructure (AMI) plays a role in facilitating the 

bidirectional data exchange between end users and the utility companies [14]. It consists 

of three components; smart meters for monitoring power consumption, data collectors that 

store data from smart meters in specific geographic regions and the AMI headend, which 

acts as a central server where the utility companies aggregate and manage the collected 

data. The SCADA systems are primarily used for monitoring and controlling the automated 

functions. They include measuring instruments, logic controllers, a Master Terminal Unit 

(MTU), a communication network and a Human Machine Interface (HMI). The logic 

controllers work alongside sensors to manage the data flow efficiently by detecting 

anomalies and regulating the system components. These controllers communicate with the 

MTU using industrial protocols, like IEC 61850 [15]. The Human Machine Interface 

(HMI) plays a role in facilitating this interaction. Substations are a part of the electrical 

grid as they handle the transmission and distribution of power. They consist of devices such 

as Intelligent Electronic Devices (IEDs), Remote Terminal Units (RTUs), HMIs and 
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Global Positioning System (GPS) [14]. Synchrophasor systems are technologies utilized in 

modern grids. They incorporate Phasor Measurement Units (PMUs), Phasor Data 

Concentrators (PDCs) and a communication network. PMUs measure waveforms, while 

PDCs consolidate this data using standards like IEEE C37.118.2 and IEC 61850 for 

communication [16]. The Energy Management System (EMS) enables communication 

between utilities and third-party service providers allowing users to regulate their 

electricity usage. Finally, the Distribution Management Systems (DMS), which analyze 

real time electric distribution data to optimize power flows, prevent overloads and enhance 

outage management [17]. However, since DMS is integrated with IT infrastructure, it can 

be susceptible to cyber threats due to weaknesses in authentication, encryption and security 

measures.  

 Among these technologies, the Advanced Metering Infrastructure (AMI) and 

Supervisory Control and Data Acquisition (SCADA) systems are particularly vulnerable 

to cyberattacks [18]. The AMIs vulnerability stems from its consumer end devices and 

protocols that often lack security features like authentication, encryption and any excessive 

overhead due to the ease of use [19]. The SCADAs susceptibility lies in internal threats 

where an individual with system access can introduce malware similar to the Stuxnet 

incident in Iran [20]. Furthermore, the substations and the synchrophasor systems, which 

play a role in the functioning of the power grid are highly sought after by cyber attackers, 

as the communication protocols utilized in the systems such as the IEC 61850 are very 

vulnerable to attacks because of the deficiency of the protection scheme [21]. 
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1.4. Impacts of Cyberattack on Smart Grid 

 The smart grid relies heavily on computer networks and other related technologies, 

which makes it susceptible to cyberattacks that can disrupt its operation. Internet-connected 

sensors, devices and networks are often targets of probing, espionage, ransomware attacks, 

theft and even physical destruction. Given the number of online nodes spread across wide 

geographical regions, the smart grid is highly exposed to significant cyber threats. 

Additionally, the power generation, transmission and usage are connected to other aspects 

of the economy such as manufacturing, transportation, healthcare and more. An attack on 

the power grid could result in disruptions to everyday production and livelihoods. 

 

Figure 1.3: Cyber Incidents on Critical Infrastructure Reported to the DHS, Industrial 

Control Systems Cyber Emergency Response Team (ICS-CERT) [22] 

 As reported in [22], there has been an increase in cyberattacks on critical 

infrastructure within the USA. The energy industry has become a prime target accounting 

for 35% of these attacks as shown in Figure 1.3. These cyberattacks that target power grids 

can have severe impacts and could cost economies such as that of the USA $243 billion to 
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$1 trillion [23]. Successful cyberattacks can cause failures, synchronization loss, power 

outages, financial and social damages, data breaches, cascading failures and even complete 

blackouts [24]. In July 2019 Manhattan in New York experienced a blackout, which 

impacted other critical infrastructures [25]. The impact of such blackouts can result to loss 

of production, business closures, food spoilage, damage to electrical and electronic devices 

and the inability to operate certain systems in hospitals and other critical areas. It is worth 

noting that blackouts can also lead to property loss due to incidents, like arson and looting 

as observed during other occurrences [26]. 

1.5. Problem Statement and Motivation 

 Today’s smart grid employ conventional intrusion detection and prevention systems 

(IDPS), which utilizes signature-based and anomaly methods to identify cyberattacks. 

However, recent reports indicate that these approaches are insufficient in safeguarding the 

grid [27]. Many reports have also highlighted the growing occurrence of cyberattack 

incidents and their reaching global effects. Table 1.1 provides a summary of major smart 

grid attacks and the resulting outcomes since 2010. 
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Table 1.1: Cyberattacks and their Impacts to some Smart grids around the world. 

Year Type of 

cyberattack 

Country Targeted 

assets 

Impact and 

Consequence 

Ref # 

2010 Data 

Manipulation 

Attack 

Iran SCADA/ICS Centrifuges for uranium 

enrichment rendered 

ineffective. 

[6] 

2014 Social 

engineering 

attack 

South 

Korea 

Communication 

network 

5,986 phishing emails 

with malicious codes 

were sent to 3,571 

nuclear plant employees. 

[28] 

2015 Distributed 

Denial of 

Service 

(DDoS) 

attack 

Ukraine Transformer 

substations 

1.4 million people lost 

power, causing 

communication 

problems with power 

companies. 

[7] 

2016 FDIA Israel National power 

supply system 

Israeli power facilities 

halt due to technical 

issues. 

[29] 

2017 Encrypting 

ransomware 

attack 

Ukraine Power plant 

computer 

systems 

Abnormal operations 

occurred at multiple 

national power facilities 

due to the infection. 

[30] 

2020 Denial of 

Service attack 

Italy Internal IT 

network 

IT network blockage 

caused customer service 

interruption. 

[31] 

2020 Data 

Manipulation 

Attack 

Pakistan AMI and 

Energy 

Management 

System 

Data theft caused service 

interruptions. 

[32] 

2022 Command 

manipulation 

attack 

Ukraine Substation 

equipment 

The attack-controlled 

power flow through 

direct interaction with 

utility equipment 

[33] 

2023 Denial of 

service attack 

Canada Outage 

management 

systems 

Hydro-Québec's outage-

checking platforms went 

down. 

[11] 

 

 With the rise of the cyberattacks in smart grids, it becomes crucial to be able to 

categorize these attacks, for better understanding. This classification is vital as it enables 

an implementation of countermeasures to protect against current and future attack types. A 

timely identification of attack categories also facilitates responses and the implementation 
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of measures to prevent catastrophic incidents from spiraling out of control. Safeguarding 

the integrity of grid systems heavily relies on these countermeasures. 

1.6. Contributions 

The following summarizes the main contributions of this thesis: 

 To develop an approach that uses machine learning techniques to detect the 

cyberattacks as well as provide classification of the attack types.  

 To investigate and identify the key relevant physical and network features that is 

needed to classify the cyberattack types. 

 To develop an approach that is effective in the detection and the classification of 

the cyberattacks without suffering the problem of data overfitting as in the 

existing approaches. 

 To develop an approach that is insensitive to the selection of the training and the 

testing datasets.  

1.7. Thesis Organization 

 This thesis includes seven chapters. Chapter 1 explains the trend and impact of 

cyberattacks on smart grid environment. Further, it explains the vulnerabilities of assets in 

the smart grid infrastructure and the importance of detecting and classifying cyberattacks 

followed by the problem statement and motivation. In conclusion, this research highlights 

the contributions made by the thesis. 

Chapter 2 surveys different methodologies for the detection and classification of 

cyberattack types that were previously published in the literature. The advantages and 
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disadvantages of each method is presented and discussed. Finally, the main research gaps 

of the problem are outlined. Furthermore, the research direction to be pursued in this thesis 

is emphasized. 

Chapter 3 is dedicated to the common Machine Learning-based methodologies utilized in 

cyberattack detection. This chapter explains the mathematical background of the three most 

popular machine learning techniques – Decision Tree, Support Vector Machine and K-

Nearest neighbor. Finally, the benefits and drawbacks of each algorithm was also 

highlighted. 

Chapter 4 discusses the IEC 61850 standard and its role in substation automation systems 

(SAS). The information model and the communication framework outlined by the standard 

is discussed. Additionally, the establishment of the communication within the devices in 

the substation and the structure and transmission of the GOOSE and Sampled value (SV) 

are also highlighted. 

Chapter 5 describes the proposed model to detect and classify the cyberattacks in IEC 

61850 SAS. Firstly, the data collection and the steps taken to preprocess it are discussed. 

Furthermore, the Fine Tree Bagging based Ensemble (FTBE) methodology for training and 

classifying attacks is discussed in detail. Lastly the process of the proposed approach and 

the metrics employed in this evaluation process are illustrated. 

Chapter 6 provides the analysis of the approach put forward and showcases the findings. 

The algorithm is implemented, and tests were conducted using different selection of 

training and testing data. The results of different k-folds and the number of learners are 

presented and are discussed by comparing the classification accuracies, F-score, precision, 
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recall with the other machine learning methodologies highlighted in Chapter 3. 

Furthermore, the sensitivity of the proposed approach to the variation of the k-fold values 

and number of learners was explored.  

Finally, Chapter 7 presents the main conclusion and recommendation regarding the 

classification of cyberattacks in IEC 61850 substation automation systems. It also presents 

potential avenues for future research and development that can build upon the findings and 

contributions of this study. 
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2. Literature Review 

2.1. Introduction 

In this chapter, previous work in the literature addressing the detection and the 

classification of the cyberattacks in smart grids are presented and are reviewed. The 

literature is divided into two categories; research focused solely on detecting the cyber 

attacks and research that includes both the detection and the classification of the 

cyberattacks. The first section of this chapter examines the previous work that used 

machine learning and non-machine learning methods to detect the cyber attacks. In the 

subsequent section, an overview of the previous work in the literature that proposed 

techniques that utilized machine learning based and non-machine-based approaches, for 

both detecting and classifying cyber attacks. 

The main objective of the work presented in this thesis is to identify and classify the 

cyberattacks on smart grids. The literature review sheds light onto the previous efforts to 

classify cyberattack types through the use of machine learning. The intention is to evaluate 

these contributions, compare the effectiveness of specific techniques, and identify any 

limitations. Finally, this chapter highlights the research areas that require further 

exploration and sets the stage for the main findings of the research presented in this thesis. 

2.2. Previous Work on Detection of Cyberattacks. 

This section presents the existing methods that are introduced in the literature for the 

detection of cyberattacks. The previous work is classified into two different types: non-

machine learning based approach and machine learning based approach as discussed 

below. 
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2.2.1. Non-Machine Learning Based Approach 

Non-machine learning based approaches such as model-based algorithms are 

methods used in detecting cyberattacks in smart grids. This method involves creating 

models of smart grids using both real-time streaming measurements and static data like 

system parameters and substation configurations. Based on the system model, estimation-

based detection approaches have been utilized by the researchers.  

In the static estimation method, each step of estimation is handled independently 

without any information being passed to the next step. The main approach utilized for 

identifying attacks is the Weighted Least Squares (WLS) estimation technique. The work 

in [34] employed WLS to detect failures that could lead to changes in network topology or 

measure incorrect voltages. Furthermore, the work in [35] examined the repercussions of 

FDIA and incorporated WLS into their detection methodology. To enhance the 

convergence speed, a recursive version of WLS was proposed in [36], which updates the 

state estimation using historical states. In [37], the WLS is applied to identify anomalies, 

in voltage controllers within the transmission system. The major drawback of using the 

WLS estimator approach is its dependence on the assumption that a smart grid operates in 

a steady-state with sufficient redundancy. However, in real-life scenarios, the smart grids 

encounter changes in demand and generation, making it challenging to maintain a stable 

condition [38]. 

In dynamic state estimation approaches, the methods such as Kalman filter (KF) 

are widely employed. The KF method entails forecasting the state based on the previous 

one and adjusting the prediction using measurements obtained at that moment. In [39], KF 

was utilized to identify FDIA in automatic generation control (AGC) systems emphasizing 
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the impacts of FDIA. Furthermore, in [40] an approach using KF for real time operations 

to estimate and detect FDIA was proposed. A significant limitation associated with Kalman 

filter is that it becomes more complex as the number of buses in a network grows because 

of the need to create Jacobian and error covariance matrices. Also, if there is nonlinearity 

in the network, the Kalman filter will struggle to accurately estimate and detect the 

cyberattacks [41]. 

2.2.2. Machine Learning Based Approach  

The work in [42] investigated an Intelligent Remedial Action Scheme (IRAS) that 

aimed to distinguish between the cyberattacks and the physical disturbances in the smart 

grid. The approach utilized an anomaly detection technique based on decision trees with 

voltage and current phasors serving as the features. However, it is important to 

acknowledge the limitations of this method as the classification model could potentially be 

prone to overfitting, leading to false positives. Furthermore, relying on differential features 

of voltage and current phasors may not provide sufficient resilience against cyberattacks 

that can effectively hide their activities and evade detection. 

In a study conducted in an IEC 61850 substation environment, a behavior-based 

intrusion technique proposed in [43] was implemented. The aim is to detect anomalies 

using dynamic features and acquire Generic Object Oriented Substation Event (GOOSE) 

and Manufacturing Message Specification (MMS) factors. For the experimental set-up, 

261 normal traffic scenarios were randomly selected. The Packet Capture (PCAP) files 

containing the most likely IEC 61850-related vulnerabilities based on 27 attack scenarios 

were inserted randomly into the dump file for analysis. However, the study only focused 



17 

 

on detecting a GOOSE spoofing attack using dynamic features and disregarded the other 

types of attacks. 

The work in [44] introduced a rule-based Network Intrusion Detection System 

(NIDS) for digital substations. The Rule based methods typically involve analyzing data to 

identify patterns and establish classification rules. However, this can be quite challenging 

when working with large datasets that have numerous features leading to complex models 

and potential problems with overfitting. Additionally, the NIDS discussed in the study did 

not take into account the disturbance scenarios, which were consequently omitted from the 

classification analysis. 

Hyunguk et al. [45] proposed an anomaly detection model through normal behavior 

profiling of the MMS and GOOSE packets in order to identify abnormal events in the 

network. According to Figure 2.1 during the processing stage, MMS and GOOSE packets 

are extracted from the data collected in the substation network using packet filtering. These 

packets are then grouped into datasets using a 3-phase preprocessing technique. To ensure 

accuracy either EM (Expectation Maximization) or LOF (Local Outlier Factor) was applied 

to identify and remove any outliers from these datasets. Once the outliers were removed, 

the normal-behavior models for each of the three datasets using a one class SVM algorithm 

was created. In real time, the anomaly detection engine receives packets for preprocessing 

and compares them against the established normal behavior models to determine whether 

they are within expected parameters or exhibit abnormal behavior. Based on this 

comparison an alarm and log are updated accordingly. 
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Figure 2.1: Architecture of the Anomaly Detection System through Normal Behavior 

Profiling [45] 

In [46], a collaborative intrusion detection system (CIDS) that can be executed 

within several IEDs is presented. The algorithm-based intrusion system is used to detect 

intrusions in both GOOSE and Sample Value (SV) messages. A significant drawback in 

the implementation of this approach is that such IDS will require a large amount of 

communication between devices to facilitate effective detection and mitigation of cyber-

attacks. This high level of communication can result in substantial network congestion 

when more than two CIDS IEDs are attacked simultaneously, which may, in turn, 

compromise the system's overall performance and reliability.  

In [47], a hybrid intrusion detection system (HIDS) was proposed. The purpose of 

this system was to learn and analyze the behavior of power systems during situations such, 
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as disturbances, normal control operations and cyber attacks. To implement and generate 

data for the power system scenarios, a hardware in the loop testbed was utilized. This 

testbed included a real-time digital time simulator (RTDS) that simulated transmission 

lines, breakers, generators and load. The hybrid IDS employed a common paths mining 

approach, which proved to be effective in classifying 90.4% of the tested scenario 

instances. However, it is important to note that this approach relies on detecting 

correlations or similarities in the patterns of system activity that may not indicate malicious 

intent. Consequently, there is a possibility that legitimate user actions might be flagged as 

threats by the system leading to an increase in false positives. 

The work in [48] introduced a concept referred to as True Data Integrity. It presents 

an approach using an Agent Based Model to measure the vulnerability of data to attacks. 

The True Data Integrity-Agent Based Model (TDI-ABM) focuses on analyzing time series 

values and comparing them against malicious values at a specific moment. By evaluating 

the values, the model predicts the subsequent values and calculate any error at the end of 

the timeframe to determine if an attack has taken place. Through experimentation with 

replay attacks using the Artificial Feed forward Network (AFN) the model achieved a 

98.19% accuracy in detecting false data. However, it is worth noting that this study did not 

investigate scenarios involving disturbance events. Additionally, training this model with 

AFN can be computationally expensive and time consuming, particularly when dealing 

with large datasets. These factors may limit its scalability and efficiency in real world 

applications where fast and precise predictions are often necessary. 

Zia et al. in [49] proposed a method for detecting FDIA and locating compromised 

meters using machine learning techniques such as binary relevance (BR) and classifier 
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chain (CC). The BR method involves training one binary classifier for each label using a 

large set of synthesized measurements. These classifiers are then used for testing purposes. 

The CC method trains multiple binary classifiers that are interconnected in a chain based 

on the feature space. The findings of this research demonstrate that the BR method achieves 

an accuracy rate of 95.1% in detecting and locating FDIAs surpassing algorithms, like CC, 

SVM and light gradient-boosting machine (LGBM). Nevertheless, this study did not 

explore the adaptability of these methods to other cyberattacks or systems.  

2.3. Previous Work on Detection and Classification of Cyberattacks 

This section provides an overview of the existing methodologies that have been 

introduced in the literature for the detection and classification of cyberattacks. The previous 

works are classified into two different types: non-machine learning based approach and 

machine learning based approach as discussed below. 

2.3.1. Non-Machine Learning Based Approach 

Several studies have utilized non-machine learning approaches such signature-

based techniques to detect and classify cyberattack threats and anomalies. Signature-based 

approaches rely on pre-existing databases and fixed signatures to detect and classify attacks 

that are known [50]. 

A method for detecting and classifying cyber attacks was proposed in [51], which 

leverages Gaussian processes to identify anomalies, within different attack types. 

Furthermore, the work in [52] presented a cyberattack detection and classification 

technique that relies on the Pearson correlation coefficient to measure the relationship 

between parameters of Phasor Measurement Units (PMUs). 
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The work in [53] presented a set of fifty signature rules for Modbus protocols used 

in serial communication interfaces. The study employed the Snort IDS to verify these rules. 

Nonetheless the study provides instructions, on how other IDS systems can adopt these 

rules. Each rule encompasses a text field, which incorporates protocol specific details. 

However, it is important to mention that the study did not offer any numeric results 

regarding the efficiency of these rules. 

The study in [54] focused on the DNP3 protocol. The work also utilized the Snort 

IDS to provide signature rules. A template was established for intrusion detection, which 

was then utilized to create signature rules for the DNP3 protocol. These generated signature 

rules are capable of detecting and classifying anomalies in the protocol including 

reconnaissance attacks, DoS attacks and hybrid attacks. However, the study did not provide 

any evaluation procedure in their work. 

The study in [55] introduced an IDS framework for substations, which employs 

signatures and focuses on the active power limitation attacks. They developed a stateful 

analysis plugin, which can be incorporated into an IDS. The plugin has three functions: it 

decodes the application layer packets, it applies rules for detecting attack patterns and 

differentiates between content conditions and state tags, and it updates the protected 

devices states. The study tested this plugin using the Manufacturing Message Specification 

(MMS) protocol per IEC 61850 standards, detected and classified two attacks but did not 

provide numerical results. 

The signature-based technique is reliable and has a low rate of false positives. 

However, it cannot detect unknown attacks that are not specified by any signature. This 

limitation results in various intrusion detection system (IDS) topologies [50]. 
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2.3.2. Machine Learning Based Approach 

In the study presented in [56], various machine learning models were assessed in a 

system that compared SCADA and IEDs. The findings revealed that the JRipper + 

Adaboost algorithm demonstrated a low false positive rate when employing a three-class 

classification system (normal, disturbance and attack categories). However, the algorithm 

encountered challenges in differentiating between specific types of attacks, such as remote 

tripping attack, relay setting change attack and FDIA. As a result, it exhibited a high rate 

of false positives. 

M. Keshk et al. in [57] introduced a method known as privacy preservation 

intrusion detection (PPID) to identify intrusion events in SCADA systems. However, the 

findings of the study indicate that prioritizing privacy preservation may result in 

information unavailability for intrusion detection, which potentially impacts the accuracy 

of detecting the different types of attacks. 

In [58], a two-layer machine learning model that relied on a Random Forest 

Classifier (RFC) was proposed. The main aim of the first layer was to distinguish between 

normal operation and cyberattacks. Subsequently the second layer categorized the 

identified state into types of cyberattacks. However, the RFC approach used in their study 

was simplistic as it did not involve tree pruning or any stopping criteria, which made the 

classification model susceptible to overfitting. Consequently, the approach have high 

misclassification errors when used on the foreign test datasets.  

In [59], a sequential classification machine learning model known as bidirectional 

long short-term memory (BiLSTM) was utilized. The BiLSTM model demonstrated 

effectiveness in identifying FDIA and replay attacks with a low rate of false negatives at 
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0.372%. However, this approach is time and resource consuming when applied to large 

datasets due to its complexity. Furthermore, the study did not thoroughly explore how the 

selection of datasets, for training and testing impacts the accuracy of classification. 

In [60], a classification model which is made up of enhanced Extra Tree (ET) that 

utilizes the Synthetic Minority Oversampling Technique (SMOTE) was developed. The 

aim of this model is not to detect attacks but also to identify the specific types of attacks. 

By using SMOTE, the study addressed the challenge of imbalanced data by oversampling 

the minority class. Additionally, the study employed the ET classifier, which is a tree-based 

ensemble method specifically designed for dealing with unbalanced classification 

problems. The experimental findings indicate that their proposed ET-SMOTE algorithm 

surpasses existing benchmark models, in terms of accuracy achieving an accuracy rate of 

99.79%. However, it is worth noting that this study solely relied on a single dataset, which 

may introduce some vulnerability to overfitting issues. 

2.4. Research Gaps 

The previous work that has been published in the literature is summarized in Table 2.1. 

The following is a summary of the identified research gaps from the previous work. 

 The literature review revealed that there is a lack of research focusing on identifying 

and classifying the types of attacks and disturbance scenarios. Moreover, the 

cyberattack datasets tend to be complex and imbalanced due to the rarity of attack 

scenarios. This underscores the importance of developing a detection and 

classification model. 
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 The previous work published in the literature has indicated the necessity for a 

technique that can distinguish between different types of attacks and highlight the 

relevant features associated with each type. 

 The literature has also revealed the need for a technique that is not susceptible to 

overfitting and is not sensitive to the selection of training and testing datasets. 

Table 2.1: Literature Review Table of Detection and Classification of Cyberattacks in 

Smart Grids 

Ref # 

Detection Technique 

Classification Overfitting 

Examining 

various 

datasets 

Data set 

Interchange 
Machine 

Learning 

Non-

Machine 

Learning 

[34]-[40]  × √ × × × × 

[42] √ × × √ × × 

[43] √ × × NA NA × 

[44] √ × × × × × 

[45] √ × × √ √ × 

[46] √ × × NA NA √ 

[47] √ × × √ × × 

[48] √ × × × × × 

[49] √ × × NA × × 

[51]-[55] × √ √ × × × 

[56] √ × √ × × × 

[57] √ × √ × × × 

[58] √ × √ × √ × 

[59] √ × √ × × × 

[60] √ × √ × × × 

NA – Not Available, × - Not Performed, √ - Performed 
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2.5. Summary 

 

This chapter summarizes the previously published work in the literature related to the 

detection and classification of cyberattacks in smart grid. Initially, the chapter highlighted 

the research in the area of cyberattack detection, then it discussed the approaches that have 

been employed in identifying anomalies in the smart grid. Secondly, the chapter presented 

a summary of the approaches that have been utilized to detect and classify different 

cyberattack types. The studies that presented several approaches for the detection and 

classification of cyberattacks have been reviewed and the main outcomes of the studies 

were highlighted. In addition, the limitations of these studies were presented and discussed. 

The identification of research gaps and the subsequent discussion of the recommended 

approach to address these gaps will be the focus of this thesis. The next chapter explains 

the common machine learning approaches in smart grid used to compare with the proposed 

approach. 
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3. Machine Learning Methodologies used in Smart Grid 

3.1 Introduction  

The field of machine learning is a significant aspect of artificial intelligence. It has 

proven to be valuable when it comes to managing the amount of data generated by smart 

grids. Machine learning techniques have become tools, for analyzing data and making 

decisions that ensure the smooth operation of the grid. Through machine learning, the 

information is gained from raw data and predictions are made based on that information. 

This involves utilizing algorithms that carefully examine data using a set of instructions to 

generate predictions and make informed decisions. In the context of smart grids, machine 

learning functionalities encompass tasks, like power generation management, optimizing 

schedules, determining prices, detecting faults or malfunctions, predicting consumption 

patterns, implementing adaptive control measures as well as identifying and classifying 

cyberattacks. Integrating machine learning into the smart grid is essential because of the 

incorporation of new technologies into the grid. This will play a role in the much-needed 

task of safeguarding the grid against the rising number of cyberattacks. In this section the 

background of the common machine learning techniques used in this thesis is provided. 

3.2. Machine Learning-Based Algorithms 

One effective approach, for identifying and categorizing cyberattacks in grids involves the 

use of machine learning techniques. Unlike other algorithms, machine learning relies on 

data from the system being analyzed. There are two types of machine learning algorithms: 

supervised and unsupervised. Supervised learning utilizes labelled datasets to classify data 

or make predictions about outcomes. On the other hand, the unsupervised learning uses 

unlabelled data to uncover patterns for clustering or association purposes [61]. This thesis 
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specifically focuses on the implementation of machine learning methodologies as the 

dataset used is labelled to enable the identification and classification of cyberattacks in the 

substation automation systems. 

3.3. Supervised learning Methods 

In supervised learning, the model requires labeled data to learn the patterns. Each input 

is linked to a specific output as (𝑠𝑖 , 𝑦𝑖), where 𝑠𝑖 represents the 𝑖𝑡ℎ input sample and 𝑦𝑖 is 

the label that falls under normal, disturbance, or attack type [62]. In this thesis, the 

supervised learning methodologies compared with the proposed approach are Decision 

tree, Support Vector Machine and K-nearest neighbor. 

3.4. Decision Tree Algorithm 

A decision tree is a machine learning method that has a structure resembling an inverted 

tree or pyramid. It is employed to address issues related to event classification in smart 

grids. In this technique each internal node of the tree represents an input feature and the 

branches connecting these nodes are determined by input characteristics. The resulting 

values of the output feature are assigned along these branches [63]. Decision trees visually 

depict the decisions that need to be made, potential outcomes and various combinations of 

decisions and events as shown in Figure 3.1 [64]. 



28 

 

 

Figure 3.1: Decision Tree[61] 

There are algorithms that can automatically generate a decision tree from a dataset. 

These algorithms include Iterative Dichotomiser 3 (ID3), Classification and Regression 

Trees (CART), J48, C4.5, C5.0 Chi square Automatic Interaction Detector (CHAID) and 

Quick, Unbiased, Efficient Statistical Tree (QUEST). In this research, the CART algorithm 

is used to construct the decision tree because it can handle both classification and regression 

tasks. To predict the class of the dataset used in this research, the algorithm begins at the 

root node of the tree. It compares the values of the root attribute with those of the test 

system dataset attribute. It then proceeds along the branches based on this comparison and 

moves to the next node. This process is repeated for each node by comparing attribute 

values until the leaf node of the tree is reached. 

3.4.1. Decision Tree Attribute Selection Measure 

The decision tree is grown by selecting the optimal split among the attributes of the 

datasets, based on the Gini index that measures the impurity of the tree nodes [65]. The 
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attribute that is selected for splitting is determined by measuring the node impurity and 

selecting the attribute with the lowest weighted Gini Index. The pure node has a 

characteristic of all the observation being from the same class [66]. 

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑[𝑝(𝑖|𝑡)]2

𝑐−1

𝑖=0

 

(3.1) 

        

Where 𝑝(𝑖|𝑡) is the portion of observation that belongs to class 𝑖 at a given node t and 

c, the number of class labels. The Weighted Gini index (𝐺𝑖𝑛𝑖𝑤𝑒𝑖𝑔ℎ𝑡) is defined as: 

𝐺𝑖𝑛𝑖𝑤𝑒𝑖𝑔ℎ𝑡 = ∑
𝑋𝑡

𝑇
× 𝐺𝑖𝑛𝑖(𝑡)

𝑛

𝑡=0

 

(3.2) 

Where, 𝑋𝑡 is the number of scenarios in node t, 𝑇 is total number of scenarios, 𝐺𝑖𝑛𝑖(𝑡) 

is the Gini index value at a given node t, and n is the number of nodes. 

3.4.2. Strengths and Limitations of Decision Trees 

The decision tree methodology is an effective technique for the classification of events 

in several applications. Below are the advantages and disadvantages of this methodology. 

Advantages of the Decision Tree Algorithm 

 The process of using this method is similar to how humans make decisions in real-

life.  

 This approach proves to be helpful in solving decision-related problems, while 

considering all possible outcomes.  

 It requires less data cleaning in comparison to other algorithms. 

Disadvantages of the Decision Tree Algorithm 
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 The decision tree can be complex when it contains numerous layers. 

 It can be susceptible to overfitting [67].   

 If there are more class labels, the computational complexity of the decision tree 

may also increase. 

3.5. Support Vector Machine Algorithm 

In the field of machine learning, the Support Vector Machine (SVM) is also a popular 

supervised learning method. It helps to classify or regress data sets that can be either 

discrete or continuous depending on the type of data [68]. The SVM algorithm creates a 

linear classifier by assigning training instances to predefined categories. Its primary 

objective is to find the line or decision boundary that separates classes in an n-dimensional 

space so that new data points can be accurately assigned to their appropriate category. This 

optimal decision boundary is known as the hyperplane of the SVM. 

3.5.1. Hyperplane and Support Vectors in the SVM algorithm 

In SVM, there can be one or multiple hyperplanes that separate classes in an n-

dimensional space. The number of dimensions in the hyperplane depends on the features 

in the dataset. For instance, if there are three features, the hyperplane will be a 2-

dimensional plane as shown in Figure 3.2. Three lines divide the three classes into their 

groups. The hyperplane is created with the maximum margin, which represents the distance 

between data points. The data points or vectors that are the closest to the hyperplane and 

have an influence on its position are called Support Vectors. They are named so because 

they support the hyperplane. 
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Figure 3.2: Representation of SVM in a 2-dimensional space [68] 

 

To reduce the computational complexity, kernel functions are utilized to represent 

the data mapping. In this research, a Gaussian kernel is employed for SVM due to its ability 

to classify data based on statistical variances with high computational efficiency, owing to 

its nonlinear properties. The Gaussian kernel is mathematically defined as follows: 

𝐾(𝑥𝑖  , 𝑥𝑖′) = 𝑒𝑥𝑝 {−𝛾 ∑(𝑥𝑖𝑗  − 𝑥𝑖′𝑗)2

𝑝

𝑗=1

}  

(3.3) 

  

Where,  𝛾 is the kernel coefficient. The SVM algorithm will undergo accuracy testing 

through cross-validation, with varying penalty parameters denoted by 𝐶, and kernel 

coefficients γ. 

3.5.2. Strengths and Limitations of Support Vector Machine Algorithms 

Using SVM for identifying events in substation automation systems can also be 

considered as it offers significant advantages. Below are the benefits and drawbacks of this 

methodology. 
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Advantages of SVM Algorithm 

 It excels in handling high dimension data. 

 SVM is particularly useful for small datasets as it exhibits good generalization 

abilities. 

 With the use of kernel functions, it can effectively classify data. 

Disadvantages of SVM algorithm 

 One of the drawbacks of the SVM algorithm is that it struggles to handle large 

datasets efficiently. 

 The methodology is computational expensive and takes large training time. 

3.6. K-Nearest Neighbor Algorithm 

The K Nearest Neighbor (KNN) algorithm is an effective technique in machine 

learning. It has shown its usefulness in tasks, including fault detection, localization and 

classification [69]. It works by looking at the class that is commonly chosen by the 

neighbors of an object. It is referred to as a lazy learner algorithm because it stores all 

training samples and only builds a classifier when a new, unlabeled sample needs to be 

classified [70]. Figure 3.3 provides an illustration of how KNN works. It relies on learning 

through resemblance by comparing test samples with training samples that are similar to 

them. To classify a data point using KNN, the algorithm searches for its K-nearest 

neighbors and measures the distance to each neighbor. It then counts how many data points 

belong to each category among these neighbors. The assigned class label is determined by 

which category has the majority of the neighbors, which in this instance is category 1. 
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(a) (b) 

Figure 3.3: Implementation of the Algorithm for K=5 (a) Before KNN and (b) After 

KNN [71] 

3.6.1. Selecting K in the KNN Algorithm 

The effectiveness of the K-nearest neighbor algorithm is influenced by the choice of 

“K” [72]. However, determining the value for “K” when implementing the KNN algorithm 

on a dataset is not straightforward. To find the “K” value multiple values are tested to 

identify the optimal value. If “K” is too small there is a risk of overfitting due to noise in 

the training dataset. On the other hand, if “K” is too large, misclassification may occur as 

distant data points could be included in its neighbors list. 

In this research, the K-nearest neighbor (KNN) algorithm is utilized for data 

classification by determining its closest k neighbors. The proximity between the data points 

is measured using the Euclidean distance equation. 

𝑑𝑖𝑗 = ‖𝑠𝑖  − 𝑠𝑗‖ , 𝑠𝑗 ∈ 𝑆  (3.4) 
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In the context of this study, the symbols S and s represent the labeled and unlabeled 

data, respectively. When the value of k exceeds 1, the classification of data is determined 

by the majority of its neighboring data points. To determine the optimal k value, several 

different k values will be evaluated through a process of cross-validation, with the goal of 

maximizing the accuracy of the classification. 

3.6.2. Strength and Limitation of KNN Algorithms 

Advantages of the KNN Algorithm 

 This method is easy to comprehend and implement. 

 It has the ability to handle noisy training data. 

 Performs well in scenarios where a single sample may have multiple class labels 

[72]. 

Disadvantages of KNN Algorithm 

 When dealing with a large number of potential neighbors to compare with an 

unlabeled sample, the computational costs can be quite high [72]. 

 It is sensitive to the local structure of the data and has memory limitations [73]. 

 Due to being a supervised lazy learner, it may also run at a slower pace. 
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3.7. Summary 

The classification process can be divided into two phases. The first is the training phase, 

where the classification model is built. Then there is the classification phase, where the 

trained model is used to assign an unknown data object to one of the predefined class labels. 

In this section, different commonly used classification techniques in data mining were 

explored. A study of algorithms such as Decision Trees, Support Vector Machines (SVM) 

and K-Nearest Neighbor (KNN) were discussed. The strengths and weaknesses of each 

algorithm were also highlighted. By examining the pros and cons of each method, this 

thesis offers a framework, for comparing the proposed methodology with these classifiers 

in detecting and categorizing cyberattacks. 
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4. Analysis of the IEC 61850 Substation Communication Standard 

4.1.Introduction to IEC 61850 Standard 

In the past, substation automation systems utilized master/slave architectures, which 

relied on communication protocols such, as Modbus and Distribution Network Protocol 

(DNP) to transmit substation data to a remote location. These protocols operated based on 

tags requiring users to access data by providing a tag or an index number. While this 

approach ensured a dependable communication network, the engineering process required 

to implement these protocols complicated the entire system. 

The advancement of microprocessor technology and data networking has led to the 

adoption of Ethernet-based systems as the preferred method of communication in IEDs, 

surpassing serial communication. This preference for Ethernet offers benefits such as 

reduced wiring time, lower cabling costs and improved network addressability. However, 

the main drawback is the utilization of data protocols in non-standardized systems, which 

hinders interoperability between IEDs, from different vendors [74]. As a result, such 

substations require the use of complex protocol converters.  

The development of the IEC 61850 standard was driven by the necessity to address 

issues related to interoperability and interchangeability [75]. Introduced in 2004, the IEC 

61850 is a standard that integrates various practices for substation automation [76]. It 

incorporates the utilization of logical nodes and offers well-defined procedures for 

designing, modelling, representing data and configuring IEDs within a substation 

automation system. This has resulted in enhanced interoperability among IEC 61850 

complaint IEDs compared to those that do not comply [16]. Notably, the IEC 61850 

standard has gained adoption across electrical substations worldwide [77]. 
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Table 4.1: Scope and Outline of the IEC 61850 standard [78, 79] 

Part Number Title 

IEC 61850-1 Introduction and overview 

IEC 61850-2 Glossary 

IEC 61850-3 General Requirements 

IEC 61850-4 System and Project Management 

IEC 61850-5 Communication Requirements for Function and Device 

Models 

IEC 61850-6 Substation Automation System Configuration Language 

IEC 61850-7 Basic Communication Structure for Substation and 

Feeder Equipment 

IEC 61850-7-1 Principles and Models 

IEC 61850-7-2 Abstract Communication Service Interface 

IEC 61850-7-3 Common Data Classes 

IEC 61850-7-4 Compatible Logical Mode Classes and Data Classes 

IEC 61850-7-5 Technical Report 

IEC 61850-8 Specific Communication Service Mapping (SCSM): 

IEC 61850-8-1 Guideline For Mapping from IEC 61850 To IEC 60870 

5-101/-104 (Technical Specification) 

IEC 61850-9 Process Bus Mapping 

IEC 61850-9-1 Sample Values (SV) Over Serial Uni-directional Multi-

Drop Point-To-Point Links 

IEC 61850-9-2 Sampled Values Over ISO/IEC 8002-3 

IEC 61850-10 Conformance Testing 
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The IEC 61850 standard consists of ten parts and multiple subsections that encompass 

aspects concerning data modeling and communication framework. Table 4.1 highlights 

each parts scope and relevance, to substation automation systems. 

4.2. Communication Architecture of IEC 61850 

According to the IEC 61850 standard an Ethernet-based substation automation 

structure follows an approach consisting of three levels: station level, bay level, and process 

level. Furthermore, the architecture incorporates two types of buses: process bus and station 

bus. Figure 4.1 illustrates the IEC 61850 substation architecture. 

 

Figure 4.1: Architecture of an IEC 61850 based substation 
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The Process level consists of merging units (MU), sensors, Resistance Thermal 

Detectors (RTDs) and breaker IEDs to link switchgear equipment together with the substation 

automation systems located in the Bay level kiosks [75]. To facilitate communication and data 

transfer between the process level and bay level, the process bus acts as a conduit. It enables 

the transmission of raw data including measurements from current and voltage transformers as 

well, as control information [75] . 

The Bay level serves as a link facilitating the connection of different control and 

protection IEDs using station level ethernet switches. To ensure the separation of substation 

components like lines and transformers from the remainder of the substation, serial 

connections are employed [78]. Additionally, all automation systems located at the Bay 

level are housed in separate kiosks ensuring distance from the switchgear equipment [80]. 

Communication between the Station level and Bay level and even inter IED 

communication within both levels is made possible through the station bus.  

At the station level, there is Human Machine Interface (HMI), station computers, a 

database, and remote communication interfaces. These tools are used to archive, automate, 

store data, and manage multiple Bay level devices with the help of specialized software. 

4.3. IEC 61850 Information Model 

This section describes the storage of data and metadata in an IED and their 

representation in the IEC 61850 standard. The model consists of elements that describes 

the information model such as setpoints, measured values, and sequence of events. 

Additionally, the components related to the communication configuration, which is 

referred to as the information exchange model in IEC 61850-7-1 subsection is described.  
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4.3.1. Logical device 

The data source in IEC 61850 begins with a server that stores files and is connected to a 

physical device where a logical device operates. Within this logical device, there are 

various logical nodes [79]. 

 

 

Figure 4.2: IEC 61850 device representation [81] 

A physical device acts as a means of communication, between the logical devices such, 

as Ethernet or other networks. In the logical device (LD) model there are nodes that provide 

the required information for a device. The LD outlines the functions that need to be carried 

out by a device as shown in Figure 4.2. A logical device comprises of logical nodes and 

each device must have at least three logical nodes [82]. 

4.3.2. Logical Nodes 

In the IEC 61850 Standard, the logical node (LN) holds significant importance. LNs 

act as virtual representations of the fundamental functions within a SAS and serve specific 

functions through predefined groupings of data objects[83]. Table 4.2 presents the 

complete list of logical node groups and their respective labels. 
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Table 4.2: Categorisation of Logical Nodes in IEC 61850 

Logical Groups Group Labels Logical Groups Group Labels 

Automatic Control A Protection Related R 

Supervisory 

Control 

C Sensor and 

Monitoring 

S 

Generic G Instrument 

Transformers 

T 

System logical 

nodes 

L Switchgear X 

Metering M Power 

Transformers 

Y 

Protection P Further Power 

System Equipment 

Z 

Interfacing and 

archiving 

I   

 

To simulate a complete device, LNs can function as building blocks. From Figure 4.2, 

examples of LNs include the XCBR for LN1, which portrays circuit breaker capabilities of 

a switch, and the MMXU for LN2, which provides all electrical metering measurements in 

3-phase systems such as voltage, current, watts, vars, power factor, etc. [78]. Table 4.3 

shows all the logical node classes in an IEC 61850 based substation and their description 

[84].  

Table 4.3: Logical Node Classes in IEC 61850 substation 

LN Classes Description LN Classes Description 

GGIO Generic logical 

node 

PTOC Time overcurrent 

protection 

MMTR Metering RBRF Breaker failure 

MMXU Measurement unit XCBR Circuit breaker 

PDIF Differential 

protection 

XSWI Circuit switch 

PDIS Distance protection YPTR Power transformer 
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4.3.3. Data Class 

Data Class or Data Objects (DOs) refer to preassigned names given to objects that are 

associated with one or more nodes. Each logical node is linked to one data object. Common 

data classes serve purposes, such, as indicating integer status, measured values or defining 

analog settings [85]. For instance, the OpCnt data object of the logical node class XCBR 

(Circuit Breaker) denotes the operation count of the circuit breaker. The OpCnt utilizes the 

integer status data object class. Table 4.4 showcases the data objects and their respective 

functions in substations based on IEC61850 [80]. 

Table 4.4: Data Objects in IEC 61850[86] 

Data Class Name Description 

A Phase to ground amps 

Ang Angle between phase current and voltage 

BlkCls Status Information 

Loc Local operation 

Operation of a logical node Op 

Pos Switch position 

Str Starting of a logical node 

Tr Trip activation 

 

4.3.4. Data Attribute 

Lastly, the data objects, which holds data that has certain features referred to as Data 

attributes. Data attributes are predetermined attributes that can be used by numerous 

objects, like value, quality, timestamp, and description. These shared attributes are outlined 

in Clause 6 of IEC 61850-7-3 [87]. Common Data Classes (CDC) are standard groups of 

data attributes, as defined by IEC 61850. Every data object within a logical node is part of 
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a CDC. The data attributes consists of parameters such as Boolean, Coded Enum, integer, 

Bit String, and floating point, that make up the data types [80]. 

4.3.5. Naming Convention in IEC 61850 

The IEC 61850 standard uses a hierarchical naming convention for devices, logical 

nodes, data objects, and data attributes. This naming convention is crucial because it 

eliminates ambiguity. As shown in Figure 4.3, the first part of the naming convention is 

the logical device name chosen by the utility. The second part refers to the logical node. 

As explained in Section 4.3.2, the first letter of the logical node represents the logical group 

to which it belongs. In the figure, the logical node begins with "M", which stands for 

metering. The third part indicates the instance number of the logical node, which in this 

case is "Feeder number 3". The fourth part refers to the "Data Object Name", which is 

defined as Phase-to-Ground amps. Finally, the fifth part is the Data Attribute of the logical 

node defined in a CDC. The PhsA represents Phase A, cVal represents the complex value, 

mag is the magnitude of the complex value, and f is the floating-point value. 

 

Figure 4.3: Default Naming scheme of IEC 61850 



44 

 

4.4. Substation Configuration Language 

Before the implementation of the IEC61850 protocol, communication between 

vendor IEDs was limited [85]. This was due to manufacturers designing their products 

using proprietary tools, making it impossible to achieve interoperability. To resolve this 

issue, the Substation Configuration Language (SCL) was introduced in IEC 61850-6. The 

SCL is an Extensible Markup Language (XML) based language that is used to describe 

how different vendor IEDs connect and interact with each other. The SCL enables the 

exchange of relevant information about both the entire system and individual components 

[88]. The SCL allows vendors to define the functionalities of IEDs allowing users to 

conveniently set up IEC 61850 clients without the need for a list of data points. Also, it 

facilitates the export and import of IED configurations to applications and tools. 

The IEC 61850-6 introduces two tools for substation automation system configuration: 

the IED Configurator and the System Configurator. The IED Configurator, often vendor-

specific, creates and loads IED configuration files. Conversely, the System Configurator, 

vendor-independent, merges various IED configuration files into one substation-wide file, 

which then guides specific IED configurations. The different types of SCL files illustrated 

in the configuration information flow process in Figure 4.4 are described below [88]: 

 System Specification Description (SSD): Describes the entire single-line diagram 

system and the individual device functions. 

 Substation Configuration Description (SCD): Describes a single substation 

automation system’s communication and function configuration. 

 IED Capability Description (ICD): Describes the complete communication 

functions and data model capabilities supported by an IED. 
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  Configured IED Description (CID): Describes all the data required from the system 

to configure a specific IED. 

 System Exchange Description (SED): Describes the Information required for data 

exchange between substations. 

 Instantiated IED Description (IID): Describes the configuration of an IED for a 

specific project. 

In this research, the IID file was accompanied with the data set files used to evaluate 

the proposed approach. 

 

Figure 4.4: Information flow of the configuration process 

4.5. Overview and Configuration of GOOSE and Sampled Values in IEC 61850 

Based on the guidelines provided by IEC 61850, smart grid application messages can 

be divided into two categories: Subscriber/Publisher and Client/Server. The 

Subscriber/Publisher messages serve time-critical purposes like sending control commands 

such as tripping, blocking or indicating state changes as well as performing metering and 
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protection functions. On the other hand, Client/Server messages are typically used for 

voltage control, condition monitoring and data recording in case of failures. In this thesis 

the focus is on the publisher/subscriber message category, which includes GOOSE and 

Sample values. These specific message types were utilized in this research. 

4.5.1. IEC 61850 Publisher-Subscriber Architecture 

In this system architecture, there are two kinds of devices that interact with each other; 

the publisher and the subscriber. One device function as a GOOSE publisher while another 

device acts as a GOOSE subscriber. The publisher device broadcasts messages to all 

devices on the network and only the subscriber device captures the message to access the 

data. To ensure that devices receive GOOSE messages within 3 milliseconds after an event 

in the substation, the publisher device increases the rate at which the messages are sent 

through a retransmission mechanism. Afterward the device maintains a pace of message 

sending allowing the subscriber device to identify any communication failures [89]. Figure 

4.5 provides an illustration of how the publisher-subscriber communication model 

operates. 

 

Figure 4.5: Publisher and subscriber communication [90]. 
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4.5.2. Retransmission Mechanism 

The retransmission mechanism process used by the publisher device is illustrated in 

Figure 4.6. In the two-state process, the first state is characterized by inactivity while the 

second state involves the occurrence of an event. During the first state, the retransmission 

mechanism is implemented to ensure that the same set of data is transmitted at intervals of 

Tmax. Although there may be instances where some retransmissions are lost or susceptible 

to errors during transmission but in the end the subscriber will eventually receive the 

correct information. In the second state when there are changes in the data, new information 

is retransmitted shortly after a brief interval of Tmin (where Tmin is less than Tmax). This 

sequence is repeated a few times, with each subsequent retransmission interval increasing 

until it matches the length of Tmax at which point the system reverts back to the first state. 

The retransmissions that take place during this state are referred to as "fast retransmissions” 

and the manufacturer has flexibility in determining the duration of these intervals [91]. 

 

Figure 4.6: Retransmission mechanism in publisher-subscriber architecture [91] 
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4.5.3. Generic Object-Oriented Substation Events (GOOSE)  

The GOOSE messages refer to a type of peer-to-peer communication that utilizes 

services to send the same event message to multiple IED devices in a substation. The 

purpose of GOOSE messages can vary depending on their application types. These types 

are categorized based on their time requirements for transmission as defined by IEC 61850 

[92]. The GOOSE protocol's primary objective is to enable rapid and accurate data 

transmission between two or more IEDs. It achieves this by using Ethernets message 

design, which allows for sending of content without establishing a connection resulting in 

fast data transfer. However, one potential drawback of this approach is that GOOSE may 

be less reliable since it doesn't provide confirmation of data delivery. To address this issue 

the protocol incorporates the retransmission mechanism that ensures reliability at the data 

link layer [92]. 

4.5.2. Operation of the GOOSE protocol 

When an event occurs in a substation automation system that uses GOOSE there is a 

change in the Status Number (Stnum) field of an IED indicating a failure. It is crucial to 

transmit this data to all devices subscribed to the GOOSE multicast group so that another 

IED can isolate the failure. To enhance the reliability in delivering GOOSE messages, the 

protocol employs the retransmission mechanism that relies on timing and relay messages 

to minimize the loss of data packets. This means that the same GOOSE message is sent 

multiple times with the interval between retransmissions increasing [93]. If the first 

GOOSE message carrying information gets lost, fast retransmission reduces the chances of 

losing that information since it’s repeated with the Stnum. The time it takes to achieve a 
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stable condition, through retransmission follows a geometric progression and typically 

takes around 1 second to ensure any electrical fault has been addressed by then. 

4.5.3. GOOSE frame 

Since GOOSE is operating directly on the IEEE 802.3 Ethernet frame, the frame 

structures are very similar. It contains the physical layer, the data link layer and the 

application layer. A graphical representation of the GOOSE message structure is shown in 

Figure 4.7. 

Ethernet 802.1Q Ethertype GOOSE 

MAC 

dest. 

MAC 

 src 

TPID PCP CFI VID Type APPID Length Reserved 

1 

Reserved 

2 

goosePDU 

 

Figure 4.7: Goose message format [93] 

 In the Ethernet field, the source Media Access Control (MAC) address indicates the 

IED that sends the message, while the destination Multicast MAC address is the 

group that the message is being sent to. 

 The 802.1Q is 4 bytes sized field responsible for adding a Virtual Local Area 

Network (VLAN) tag to the Ethernet frame, enabling the use of VLANs with 

varying priorities in messages.  

 The Ethertype field, which is 2 bytes in size, denotes that this packet pertains to 

GOOSE and holds a value of 0x88B8. 

 The Application Identifier (APPID) field is an attribute that identifies the 

application associated with a received GOOSE message. 

 The length establishes the octet representing the total size of GOOSE Protocol Data 

Unit (goosePDU), along with 8 bytes of the APPID and Ethernet,  
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 The "Reserved" fields are designated for future use and have a value of 0 assigned 

to them. 

 The goosePDU field is on the application layer and it contains the GOOSE 

application data such as Stnum, Sqnum, DatSet, AllData etc. 

The goosePDU contains the actual data along with some useful metadata. In this thesis 

these data are characterized as the network features of the GOOSE frame. These features 

are further explained in Section 5.3.1. 

4.5.4. Sampled Values (SV)  

According to the IEC 61850 standard, messages related to sampled values are also time-

critical. At the process level, the Sampled Values protocol is used to send analog values 

that are related to sensor or actuator measurements. The devices that are monitored at this 

level are mostly analog, so the data packets are formatted to represent analog values in 

digital format [94]. The traffic related to Sampled Values is continuous and provides 

protection functions and metering. Similarly, there is no acknowledgement feature in the 

sampled values protocol used to determine reception and interpretation of sample value 

packets. In this thesis, these values are broadly referred to as physical features, and they 

are further explained in Section 5.3.1.  

4.6.  Wireshark 

Wireshark serves as a network protocol analyzer, utilized to capture and examine 

real-time GOOSE communication for substation networks based on IEC61850. It is 

typically used to analyze packets transmitted across Ethernet in any network [61]. Within 

the IEC-61850 standard, Ethernet-transmitted GOOSE messages can be scrutinized, and 

this software displays all the GOOSE related details. Furthermore, it can produce various 



51 

 

statistics for each message received via Ethernet, using the IEC61850 protocol. To 

visualize both the dataset and emulation capture, this research employs the Wireshark 

network analyzer software. Figure 4.8 displays the Wireshark interface of a captured 

GOOSE packet. 

 

Figure 4.8: Wireshark user interface of the capture of a GOOSE packet. 

4.7. Summary  

This chapter provides an overview of the IEC 61850 standard, including its 

framework and implementation in the substation domain. It describes the information 

model used by devices that communicate with the IEC 61850-GOOSE protocol and its 

origin. The chapter also explains the concept of GOOSE interoperability, its naming 

convention, and the communication architecture used by the standard. In addition, the 

communication language used in IEDs, as well as how data are transmitted using 
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GOOSE and the message format in which GOOSE is structured are also discussed. 

Finally, the Wireshark software, which is utilized for analyzing the network and 

physical features of the GOOSE and SV messages received from the subscriber 

respectively, is discussed. 
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5. Model for the Detection and Classification of Cyberattacks in IEC 

61850 Substation Automation Systems 

5.1. Introduction 

Several machine learning methodologies and their capabilities have been presented in 

Chapter 3. Various types of cyberattacks can be detected but if the attack is not classified 

it can affect the ability of Electrical Operators to implement targeted countermeasures 

which could have an impact on the reliability, stability, security, and quality of power 

supply to consumers[95]. The description of the cyberattacks studied will be presented. 

The machine learning model used in this work for the detection and classification of 

different cyberattack types will be introduced in this chapter. The model utilizes a bagging-

based ensemble learning technique classifier, which consists of eager learners. This work 

presents the process of acquiring data, as well as preprocessing and feature engineering. 

The k-fold cross-validation method and number of learners parameter is used to optimize 

the performance of the proposed method. Moreover, an evaluation metric for the study of 

the obtained results will be discussed. Finally, this chapter also presents the essential 

physical and network features that are crucial for classifying different cyberattack types. 

5.2. Attack Types Description 

The most common cyberattack types that target substation automation systems are Data 

Manipulation (DM), Message Suppression (MS), and Denial of Service (DoS) [96]. Other 

prevalent attacks include FDIA attacks and replay attacks. In this chapter, a detailed 

description of all the aforementioned cyberattacks on IEC 61850 and the potential impacts 

are described.   
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5.2.1. FDIA Attack 

False Data Injection Attacks aim to inject malicious measurements and modify the 

results. The FDIA could violate data integrity in various regions as transmission, 

communication, generation, control, etc. It can be seen in a different part of the smart grid 

that contains data. In this section, the FDIA will be evaluated in the grid without 

categorizing. It will be examined with the same approach for all regions. The main goal of 

FDIA attacks is to corrupt measurements and manipulate results. During transmission, 

communication, generation, and control, FDIA attacks can compromise the integrity of 

data thus jeopardising the cybersecurity. The attackers' objective is to manipulate the 

readings of multiple sensors, IEDs, and phasor measurement units (PMUs) with the 

intention of misleading the decision-making process of the smart grid [97]. In terms of 

cyberattacks, FDIA is considered as one of the most dangerous attacks.  Presently, there is 

a significant attention on FDIAs as they are regarded as one of the most extensively studied 

cyber physical security attacks targeting smart grids [98] given the damage it has done on 

the systems that were affected by it.  

Figure 5.1 illustrates the process of FDIA attacks in Smart Grid. Attackers have the 

ability to manipulate meter measurements by compromising meters on a local level, 

falsifying data packets that are sent to the control center through the exploitation of 

plaintext transmission protocol or altering the control center database [99]. Real-world 

incidents such as the December 2015 Ukrainian electric power blackout attack confirm 

these types of attacks [100]. Attackers can inject falsified monitoring data through 

compromising smart meters, sensors or IEDs, hijacking communication between sensor 

networks and the SCADA system, or intruding the SCADA system. As a result, the false 
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measurements can lead to an incorrect estimate of the smart grid state, which can mislead 

the control center to make wrong decisions and operations such as bad real-time electricity 

pricing and even large-area power failure accidents [101]. 

 

Figure 5.1: FDIA in smart Grid [37] 

Steady state control, transient and auxiliary control, substation control and energy/load 

control are major operation and control blocks of power systems in which FDIA attacks 

can affect [102]. Figure 5.2 shows a detailed taxonomy of FDIA attacks against various 

power system control and operation blocks. 
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Figure 5.2: A taxonomy of FDIA attacks against various power system control and 

operation blocks [102] 

There are several algorithms in power systems that are susceptible to FDIA attacks, 

including static state estimation (SSE), dynamic state estimation (DSE), optimal power 

flow (OPF), and security constrained economic dispatch (SCED). These types of attacks 

can involve a variety of tactics, such as redistributing load measurements, falsifying 

topology, or coordinating physical attacks by using false data. Additionally, not only steady 

state operations but also transient and auxiliary control blocks, such as rotor angle stability, 

automatic generation control (AGC), automatic voltage control (AVR), volt/VAR controls, 

and FACTS devices, are vulnerable to these attacks. Furthermore, substation control and 

communication architecture, including IEC 61850, PMU/SCADA data communication 

channels, are potential targets. The advanced metering infrastructure (AMI), residential 
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load controls, distributed energy routing algorithms, micro-grids, and electricity markets 

are also potential targets for data attacks.  

5.2.2. Data Manipulation Attack  

To tamper with measurements and manipulate data, attackers’ resort to Data 

Manipulation (DM) attacks. These attacks exploit vulnerabilities by injecting manipulated 

network payloads into systems, aiming either at destabilizing the power grids or masking 

unauthorized alterations. The main goal of the attacker lies in compromising sensor and 

Intelligent Electronic Devices' (IEDs') readings. Their intended outcome is to deceive the 

substation automation systems decision-making process and by extension the entire smart 

grid [103]. 

In this type of cyberattack the contents or payload of network packets are modified in 

a way that goes unnoticed by both the publisher and subscriber [104]. The aim is to carry 

out a malicious act or an unauthorized action using the IEDs. According to [105] they are 

typically two forms of data manipulation attacks in IEC 61850 substation automation 

systems. The first case involves seizing the GOOSE control message packet and altering it 

with a message that allows the attacker to assume control and manipulate circuit breakers 

within a substation [106]. This attack can also be associated with Sample Value (SV) 

packets, where the attacker fabricates an analog value, which is then transmitted to a control 

center in the substation resulting in undesired operations. Through these attacks, the 

attacker gains control over IEDs and can cause unplanned power outages or even damage 

field devices within the substation [106]. 

In the second case, the attack type expands upon the earlier mentioned attack. However, 

this time it involves an automated approach using a malware script [107]. This malware 
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has the capability to capture, modify, and inject GOOSE message packets into the 

IEC61850 network. In order for the malware to carry out its objectives, it must first be 

installed on a computer within the substation network. This method of attack was 

successfully used against Kyivoblenergo, a regional electricity distribution company in 

Ukraine [108]. The researchers in [107] used this attack to exploit a weakness in GOOSE, 

where encryption and digital signatures are not feasible due to the requirement of 

immediate action within 4ms for any communication through a GOOSE message. 

Consequently, transmitted packets can easily be intercepted, modified, and retransmitted 

into the network without any form of encryption or digital signature. Figure 5.3 illustrates 

how this attack can be orchestrated.  

 

Figure 5.3: Network Diagram for Data Manipulation Malware Attack [107] 

In carrying out the data manipulation attack, the verification of GOOSE messages 

in an IEC61850 network using Scapy (a Python program used for sniffing as well as packet 
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dissection, forging and sending back the network packets) is the first step. After the 

identification of GOOSE messages through Scapy, the GOOSE Ether-type, which is 

0x88B8 is detected by capturing the raw packets. The next step is to decode the GOOSE 

message using the Abstract Syntax Notation One (ASN.1) defined in IEC 61850-8-1 

protocol. After the decoding process, the malware script focuses on three fields: Status 

Number, Sequence Number, and Boolean values. These features are further explained in 

Section 5.3. The main aim of the malware script is to trip the circuit breaker by changing 

the Boolean value from true to false. However, for this attack to work, the values in the 

Status Number and Sequence Number fields must also be correct. Therefore, by examining 

the values of these fields in the GOOSE messages communicated between the publisher 

and the subscriber, the subscriber can then establish the accurate values to incorporate in 

the forged message. 

5.2.3. Message Suppression Attacks 

A Message suppression attack involves the unauthorized interception and alteration of 

protocol header fields in the GOOSE communication architecture, with the goal of 

obstructing the delivery of important messages or updates to legitimate IEDs in the 

network. In instances of message suppression attacks occurring within communication 

networks of GOOSE protocol frames, attackers can exploit vulnerabilities by manipulating 

sequence associated with these frames. By doing so, they are able to disrupt the subsequent 

arrivals of relevant information through these frames. Furthermore, the attackers can 

introduce modified versions of the GOOSE frames, which bear higher status numbers 

compared to previously transmitted ones. Subsequently, when subscribers process these 
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newly-introduced modified frames and encounter legitimate GOOSE frames with 

equivalent or lower status numbers, they will dismiss them as insignificant [107]. 

5.2.4. Denial-of-Service Attacks 

A Denial of Service (DoS) attack is directed towards disrupting or disabling a service. 

Ultimately making it unavailable to users or leading to substantial delays. The intention 

behind such an attack is to overpower the systems' resources to render it inoperable. 

Substation systems utilizing Internet Protocol (IP) including GOOSE are frequently 

targeted by this form of assault [97]. 

A DoS attack has the potential to disrupt the proper functioning of an IED by preventing 

it from responding to genuine requests made by other IEDs. This can result into lack of 

power supply, unauthorized shutdown of substation equipment and other various 

devastating outcomes. The DoS attacks can be executed in several ways, one of which 

involves flooding the targeted IED with a substantial volume of GOOSE or SV messages 

until it becomes overwhelmed and renders the IED incapable of acknowledging valid 

requests [106]. Another strategy according to [109] entails carrying out a GOOSE 

poisoning attack, wherein the attacker aims to deceive the subscriber into accepting 

GOOSE messages with higher sequence numbers than those sent by the publisher. 

Therefore, only the attackers' GOOSE messages will be accepted and processed by the 

subscribers, rendering all the legitimate GOOSE messages from the publisher obsolete. An 

overview of the test bed for DoS attack by creating poisoned GOOSE attack is presented 

in Figure 5.4. 



61 

 

 

Figure 5.4: Test bed for DoS Attack 

The work in [109] highlighted the three variations of the GOOSE poisoning attack. 

These variants are known as the high-status number attack, high-rate flooding attack, and 

semantic attack. In the high-status number attack the attacker sends a single spoofed 

GOOSE frame with an extremely high-status number from their source to a GOOSE 

subscriber, which is an IED. The goal here is to deceive the subscriber into accepting this 

spoofed frame as legitimate. In the high-rate flooding attack, the attacker takes a different 

approach by sending a series of spoofed GOOSE messages with increasing status numbers. 

Eventually, these spoofed frames surpass the expected status number on the GOOSE 

subscriber and create confusion in its functioning. The semantic attack involves two 

distinct phases. In the first phase the attacker carefully observes network traffic to gather 

information about the status numbers used in transmitted GOOSE messages and to identify 

patterns and rates of change. Armed with this knowledge, the attacker moves onto the 

second phase where they send spoofed GOOSE messages that have higher status numbers 

than what was observed in earlier transmissions [109].  

A DoS attack targeting GOOSE messages could potentially disrupt the proper 

functioning of subscriber IEDs. As a consequence, only the GOOSE messages introduced 
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by the attacker would be processed by the subscriber IEDs. Persistent injection or flooding 

of these packets leads to a denial of service (DoS) attack preventing legitimate sender 

traffic from reaching the subscriber IEDs. Furthermore, this attack could allow the attacker 

to alter the payload of existing traffic. 

5.2.5. Replay Attacks 

During this type of attack, the attacker captures GOOSE messages and retains them for 

future use. Subsequently, the attacker retransmits the stored messages to initiate an action 

through the IED to the circuit breaker while it operates normally, to carry out undesirable 

outcomes. Also, in the case of SV message replay attack, the attacker can seize an SV 

packet containing precise power, current and voltage data and resend it numerous times to 

another protective device within the substation. This situation may result in unplanned 

outages if SV packets with identical power, current and voltage values circulate throughout 

the system multiple times [110].  

5.3. Feature description 

The messaging system used in the IEC 61850 protocol consists of network and physical 

features, which quickly sends out substation event details, including alerts and changes in 

status [92]. The following is a description of the network and physical features found in a 

SASs that utilizes the GOOSE protocol for communication. 

5.3.1. Network Features 

In GOOSE protocol, there are two identifiable categories of proprietary network 

features [43]. They consist of dynamic features, which are established through the analysis 

of the statistical trends related to volume and frequency of traffic [43]. The second category 



63 

 

is referred to as static features. These features play a significant role and are commonly 

selected through and extracted from different fields within a single GOOSE packet [45]. 

a. Status Number (Stnum) 

The "Status Number" is a static feature that carries important information about the 

state of a particular device or process in the substation. This could involve the status of a 

circuit breaker (open or closed), a warning signal (Alarm), or other measurement 

information that needs to be communicated in real time within the substation network. The 

value of the Stnum is constant under normal operation and only changes when an event 

occurs. 

b. Sequential Number (Sqnum)  

The "Sequence Number" is a static feature that plays a pivotal role in maintaining the 

integrity and order of transmitted messages. Each GOOSE message in terms of circuit 

breaker status, alarm signal, measurement information is assigned a unique sequence 

number, which is incremented whenever a new message sent. 

c. allData 

The "allData" field is a static feature that carries a variety of data types, including 

Boolean control signal values (BCV). These signals represent binary state information, 

typically reflecting the status of a particular IED or process within the substation. Boolean 

control signals can indicate a range of conditions. In this thesis, they denote the control 

status of circuit breakers, earth switches and disconnectors. They also include protection 

alarm status of the protection systems within the substation.  
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d. numDatSetEntries 

This static feature indicates the amount of data in the “allData” field. It is the number 

of elements that makes up the specific data set. 

e. Source Internet Protocol Address 

The Source Internet Protocol address or Source IP is a static feature that comprises of 

the unique identifier assigned to the originating device (such as a protective relay or a 

circuit breaker) that sends the GOOSE message. 

f. Destination Internet Protocol Address 

The Destination Internet Protocol (IP) address is a static feature that comprises of the 

unique identifier that indicates the intended recipient of the GOOSE message in the 

network. 

g. GOOSE message heartbeat 

A dynamic feature that refers to the mean time interval of the GOOSE arrival times. 

h. GOOSE message length 

This static feature describes the length of the GOOSE header. 

i. GOOSE control block reference (gocbRef)  

The GOOSE control block reference is a static feature that contains all the details of a 

pre-defined control block. 

j. Application ID (APPID) 

GOOSE application identification consists of information about the type of application 

sent from the publisher. 
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5.3.2. Physical Features 

a. Current Measurement Values 

The current measurement values serve as a vital physical feature that delivers real time 

sensor data regarding the electric current passing across different parts of the substation, 

namely transmission lines, transformers, and circuit breakers. These significant details are 

acquired and gathered by dedicated sensors known as current transformers (CTs) 

positioned within the IED. The CTs relay this information to monitoring and control 

systems, which allow for further examination of this collected data. 

b. Voltage Measurement Values 

Voltage measurement values allow for instantaneous assessment of electrical potential 

difference occurring at distinct locations across the substation. This valuable data is usually 

sourced from voltage transformers (VTs) or potential transformers (PTs) installed within 

the IED devices. Subsequently, this information is transmitted to monitoring and control 

systems found within substation facilities. 

c. Active Power 

Active power is a feature that holds utmost importance as it directly influences the 

successful completion of useful work required by an electrical load. To efficiently gather 

this power, Intelligent Electronic Devices (IEDs) are deployed throughout the substation 

infrastructure. These devices diligently observe voltage and current waveforms as part of 

their monitoring process. 

d. Frequency 

When discussing electrical systems, the term "frequency" refers to how many 

cycles occur within one second. This feature is measured in Hertz (Hz), and the numeric 
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value assumes great significance across North America's power system where an 

established standard frequency of 60 Hz holds firm. Considered as an essential parameter, 

this feature represents an equilibrium between electricity production and its subsequent 

consumption. 

e. Circuit breaker Status 

This feature describes the statuses of the different circuit breakers in the substation 

automation system. 

5.4. Data Collection 

This thesis makes use of datasets that contain information collected from IEDs 

operating on the IEC 61850 based GOOSE communication protocol in simulated 

distribution Substation Automation Systems (SAS). The synthesized datasets were 

collected from two different systems. The access to the network packet capture (PCAP) 

files for both systems is gotten from the public GitHub repositories of [59] and [111]. The 

Wireshark packet analyzer is used to analyze the files and gain a deeper understanding of 

the data. 

The study in [59] presents an encompassing dataset comprised of network packets 

acquired from a test bed of five virtual machines (VMs). Within this setup, one VM 

emulates a 66/22kV primary plant while the remaining VMs simulate Intelligent Electronic 

Devices (IEDs). To explore potential vulnerabilities, two non-malicious behaviors termed 

normal and disturbance were implemented. Subsequently, a series of attack scenarios 

targeting the IEDs connected with IED1 and IED2 were conducted. The attacks were 

classified into two categories: Replay attacks and False Data Injection Attacks (FDIA), 
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wherein data within the primary message is modified or false data/messages are introduced. 

Lastly, these attack scenarios were executed under both normal operation and disturbance 

operation settings. 

To further analyze the behavior of a system in various situations, the work in [111] 

constructed a dataset utilizing network packet data from a 66/11kv distribution substation 

featuring 18 IEDs. The dataset allowed them to simulate different scenarios including 

normal, disturbance and attack cases. During the normal scenarios they exposed the system 

to either variable or non-variable load conditions resulting in distinct current and power 

readings displayed by each IED due to changing energy demands over time. Conversely, 

the non-variable load scenarios exhibited steady energy flows as they experienced 

negligible variations in load demand. Disturbance cases were further divided into three 

categories: Busbar Protection, Under Frequency and Breaker Failure – each designed to 

test how the system responds to specific fault types. Lastly, four primary cases were defined 

for attack scenarios: Data Manipulation (DM), Denial of Service (DoS), Message 

Suppression (MS) and Composite Attack – aimed at creating a synthesized dataset for 

cybersecurity study in IEC 61850. 

5.5. Data Preprocessing 

After acquiring all the packet capture (PCAP) files from the two GitHub repositories - 

[112] and [113], a thorough preprocessing procedure was executed to prepare multiple 

datasets suitable for various experiments. This intricate process consisted of several stages: 

completion of any missing values, removal of redundant features, normalization of input 

data and encoding of labeled data. In depth analysis and clarification on each step 

undertaken during the preprocessing process is presented below. 
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1. Missing value Imputations 

One of the most common challenges when working with simulated datasets that 

attempts to mimic real world dataset is managing missing values. These missing values can 

appear as NaN values, blanks, or other placeholders and can negatively affect the 

evaluation of machine learning models if the models were trained on datasets with missing 

values. To address this issue, several techniques have been proposed in recent years. These 

include hot and cold deck imputations, mean imputations, and extrapolation and 

interpolation imputations, as well as zero imputation. Hot deck and cold deck methods 

involves filling in missing data with values from similar records (hot deck) or a donor pool 

(cold deck). Mean imputation replaces missing values with the mean of available cases. 

Extrapolation and interpolation estimations assume specific trends in the data to estimate 

missing values. In this study, the zero-imputation technique is utilized to handle missing 

data. This technique involves replacing missing values for a particular feature with a fixed 

value of zero. This technique is selected because it aligns well with the nature of the data 

collected and the purpose of our analysis. The dataset used in this thesis included instances 

where a Denial of Service (DoS) attack was simulated. Consequently, a significant portion 

of the data had blank spaces instead of physical measurement values, indicating that no 

data was recorded for those instances where packets were parsed without physical value 

information. These blank spaces were attributed to DoS attacks, emphasizing the 

importance of effectively handling missing values in datasets that have been impacted by 

cyber-attacks. 
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2. Feature Selection 

Feature selection techniques play an important role in selecting the most important 

features to decrease training time and to reduce model overfitting thus increasing the 

algorithm’s accuracy [66]. Feature/Predictor Importance was the selection method used. 

Predictor Importance (PI) is a method that generates a score for each of the input features 

for a particular model. A higher score indicates that the feature will have a greater impact 

on the model used in classification. This method is highlighted in the classification process 

of the proposed approach in Section 5.6.7. In this thesis, the feature dimensions were 

reduced to relevant features. Using the PI method, features with high scores were selected. 

These features include GOOSE Heartbeat, Goose length, Status number, Sequence 

number, allData and all the physical features. Also, after preprocessing, some features were 

derived from the selected features, as shown in  Table 5.1, Table 5.2, Table 5.3 Table 5.4. 

Conversely, removed features include gocbRef, APPID, Source IP and Destination IP.  

These features were removed because through the PI method, these features had very low 

scores therefore signifying that they had very little to no impact on the training model. In 

addition, having these types of features can make the model learn based on irrelevant 

features, hence decreasing the accuracy of the model. Attributes, including some network 

features and sample values, can have a significant impact on the detection accuracy of 

malicious traffic in the network. 

3. Data Normalization 

The accuracy of identifying malicious traffic in a network can be significantly affected 

by the choice of input features. With this in mind, carrying out data normalization on the 

datasets is imperative as machine learning algorithms face the challenge of recognizing 
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features that have varying scales. Data normalization is necessary to organize input data 

and to ensure consistency and similarity across all fields and records. By normalizing or 

standardizing the data, potential biases can be mitigated, leading to more accurate analysis 

and predictions. 

 From the 4-IED dataset, six physical features related to the current were extracted 

and processed. These features are based on the 66/22kV primary plant architecture as 

shown in Figure 5.5. Each of the six physical features is the average value of one horizontal 

level within the substation. Specifically, these features represent the average currents in the 

66kV lines and circuit breakers (high voltage), transformer’s 66kV side windings (w1), 

transformer’s 22kV side windings (w2), transformer circuit breakers, 22kV lines and 

circuit breakers (low voltage), and all the feeders.  

 

Figure 5.5: Summary of the Physical Features of the Primary Plant, Categorized by their 

Horizontal Levels. 
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This configuration will assist in figuring out the IED that has been compromised 

whenever there is a presence of an attack due to inconsistent readings from any of the six 

horizontal levels. Also, all circuit breaker statuses on the high voltage side, transformers 

and low voltage side were summarized into one feature. The circuit breaker statuses are 

compiled into a specific sequence and are represented as a binary number, given that the 

circuit breakers only have an open state (0) and a closed state (1). In this thesis, the 

processed network features, Difference in Stnum "Dif_Stnum" and Difference in Sqnum 

"Dif_Sqnum" is used to determine any changes in the "Stnum" and "Sqnum" values 

compared to their previous values. This helps to maintain a constant value of 0 for "Stnum" 

and 1 for "Sqnum". If there is a deviation from these values, it may indicate a potential 

attack. Also, the feature "Dec_allData" involves converting the Boolean control signals of 

"allData" field extracted from wireshark from binary to decimal format. For instance, the 

Boolean control value [1, 1, 1, 0] present in the "Dec-allData" field is converted into a 

binary number "1110," which was then converted to the corresponding decimal number 

"14".  Table 5.1 and Table 5.2 list the processed network and physical features utilized.   
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Table 5.1: 4-IED Dataset Network Features Description 

Network features Description 

GOOSE Heartbeat The temporal duration between two adjacent packets 

GOOSE length The length of the GOOSE header 

Dif-Stnum The differential value between the current Stnum and the 

previous Stnum 

Dif-Sqnum The differential value between the current Sqnum and the 

previous Sqnum 

numDatSetEntries The amount of data in the “allData” field 

Dec-allData The decimal number of converting all Boolean values in the 

“allData”field 

 

Table 5.2: 4-IED Dataset Physical Features Description 

Physical features Description 

I-high The average current values among 

high-voltage level 

I-w1 The average current value among transformers' winding 1 

I-w2 The average current value among transformers' winding 2 

I-trsf-cb The average current value among all transformers' circuit 

breakers 

I-low The average current value among low voltage 

level 

I-fdr The average current among all feeders 

Bin-cb-status The binary sequence of statuses of all circuit breakers 
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The standardization of the network and physical features contained within the 18-

IED dataset also helps mitigating potential biases as well due to the diversified nature of 

such dataset. All the Boolean control values (BCV) were transformed into unique 

numerical values to reduce the computational costs. The control feature "Dec" represents 

the Boolean to decimal conversion of the following Boolean control values: Circuit breaker 

Open/Close Status (1), Disconnector Open/Close Status (1), Protection tripped (0), and 

Intertrip command send (0), which correspond to the decimal number "12". Also, linear 

transformation was performed on the other input data features such Stnum, voltage and 

power using the Min-Max normalization technique. This is used to scale the values of the 

features to a range between 0 and 1. The minimum and maximum values are obtained from 

the data, and each individual value is then substituted according to equation 5.1.  

𝑣𝑖` =  
𝑣𝑖−𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴−𝑚𝑖𝑛𝐴
(𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 − 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴) + 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴     (5.1) 

Where, 𝐴 represents Stnum, voltage and power features, maxA and 𝑚𝑖𝑛𝐴 denote the 

maximum and minimum absolute values of the attribute data 𝐴 respectively. The term 𝑣𝑖` 

refers to the newly computed value for each packet, while 𝑣𝑖 represents the original value 

of each packet. The 𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 and 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴 refer to the maximum and minimum values 

of the desired range, that is, the boundary values of the features normal operating range, 

respectively. Table 5.3 and Table 5.4 lists the processed network and physical features used 

in this work and their description.  
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Table 5.3:Network Features Description of the 18-IED Dataset 

Network features Description 

BCV_Dec Boolean to decimal conversion of Information pertaining to 

the control status 

v`-Stnum 

(measurements) 

The Min-Max normalized Stnum values within the measurement 

reading of an IED 

v`-Stnum 

(Status) 

The Min-Max normalized Stnum values from the Status 

measurement of an IED 

v`-Stnum (Alarm) The Min-Max normalized Stnum values from the Alarm 

updates of an IED 

Dif-Sqnum 

(measurements) 

The difference observed between successive Sqnum values 

within the measurement reading of an IED 

Dif-Sqnum 

(Status) 

The difference observed between successive Sqnum values 

from the Status values of an IED 

Dif-Stnum (Alarm) The difference observed between successive Sqnum values 

from the Alarm updates of an IED 

Numofblank The quantity of absent attributes within a singular data entity. 

v`_Stnum + 

v`_Sqnum < 0: 

Summation of v`_Stnum and v`_Sqnum. Results less than 0 

gives a flag (1111). 
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Table 5.4: Physical Features Description of the 18-IED Dataset 

Physical features Description 

v`- Current Line 'L1’ The difference observed between two successive current 

readings in Line 1 

v`- Current Line 'L2’ The difference observed between two successive current 

readings in Line 2 

v`- Current Line 'L3’ The difference observed between two successive current 

readings in Line 3 

v`-Voltage Phase 'L1-N’ The Min-Max normalized line 1 to neutral voltage readings 

v`-Voltage Phase 'L2-N’ The Min-Max normalized line 2 to neutral voltage readings 

v`-Voltage Phase 'L3-N’ The Min-Max normalized line 3 to neutral voltage readings 

v`- Active Power The Min-Max normalized active power readings 

50-Frequency The deduction of the prevailing frequency from the 

designated nominal frequency 
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4. Encoding Labeled Data 

A crucial element of data preprocessing involves the encoding of labeled data. In this 

thesis, all disturbance operations were labeled as ‘Disturbance,’ while normal traffic was 

labeled as ‘Normal.’ For the 4-IED dataset the attack types described as False Data 

Injection Attack and Replay attack were labelled as FDIA and Replay respectively. The 

attack types in the 18-IED dataset described as Data manipulation attacks, Message 

suppression attacks, and Denial of service attacks were labeled as DM, MS, and DoS, 

respectively. 

5.6. Fine Tree-based Bagging Ensemble (FTBE) Approach for Cyberattack 

Classification 

This section describes the proposed approach for classifying different types of 

cyberattacks using a bagging-based ensemble learning technique also known as bootstrap 

aggregating. Previous research has shown that decision trees used in recursive partitioning 

exhibit instability when working with small datasets [114]. Such instability can have 

adverse effects on both classification accuracy and tree structure. To mitigate these issues, 

a strategy involving multiple classifiers can be adopted [115]. The method of constructing 

an ensemble involves using distinct subsets of training data along with a decision tree 

serving as the base learner. Decision tree classifiers are generally classified into three 

categories: Coarse Tree, Medium Tree, and Fine Tree. In this work, Fine Tree (FT) 

classifier type is selected based on its superiority over other classifier types [116]. The 

explanation of the FT model’s implementation within the bagging-based ensemble learning 

approach is presented. The detailed information regarding the parameter settings necessary 

for achieving optimal accuracy is also provided in this section. 
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5.6.1. Fine Tree Model 

The classification of decision trees can be considered unstable due to the fact that even 

minor changes in the training data can have a significant impact on the overall structure of 

the tree [117]. To manage the complexity of the tree, various stopping criteria are utilized 

[118]. These criteria are typically assessed using metrics like the total number of nodes and 

leaves, the depth of the tree and the number of attributes used. During the growth process 

of the tree, it will keep expanding until a stopping criterion is satisfied. These criteria may 

involve conditions such as: 

 The tree's depth has reached its maximum limit.  

 The ideal splitting criteria does not exceed a particular threshold.  

 If the node were to be split, there would be insufficient cases in one or more of the 

child nodes as it would fall below the minimum number of cases required for child 

nodes.  

 The number of cases in the terminal node is lower than the minimum number of 

cases required for parent nodes. 

Over fitting of data can occur when the decision-making process becomes overly reliant 

on irrelevant features [118]. To address this issue in traditional decision tree learning, 

researchers have proposed different solutions. One such solution is pruning as 

demonstrated in the work presented in [119]. Their method, known as depth impurity (DI) 

pruning, takes into account the complexity of sub-trees and preserves those sub-trees that 

generate relevant decision rules. However, it was discovered that this method did not 

improve the classification efficiency. In a subsequent study conducted by [120], various 

pruning algorithms for estimation trees were analyzed to determine the most suitable one 
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for specific situations. It was deduced that depth control of the tree and proper feature 

selection can greatly enhance the performance of an algorithm. 

In this thesis, controlling the depth of the model was used to prevent overfitting. In 

doing this three decision tree classifier types are considered – Coarse Tree, Medium Tree, 

and Fine Tree. Coarse tree is a type of decision tree that consists of few leaves to make 

coarse distinctions between classes with a maximum number of 4 splits. The Medium tree 

is a type of decision tree with relatively more splits, up to 20 maximum number of splits. 

The Fine tree model is a type of decision tree that consists of many leaves to enable many 

fine distinctions between classes. However, the maximum number of splits is set to 100 in 

order to control the depth of the model to prevent overfitting. The process when the fine 

tree model was compared with the medium and coarse tree models, it performed better as 

it was more adaptable to the datasets it was not initially trained on. The work in [120] used 

20 machine learning algorithms to compare the performance of two cross validation 

techniques on the University of California, Irvine (UCI) datasets. Coarse tree, medium tree 

and fine tree were amongst the 20 algorithms. Overall, from the results, the Fine tree 

algorithm performed very well and also had a higher accuracy than the other two algorithms 

for both cross validation techniques. The fine tree classifier has proven to be one of the 

most efficient techniques [116].  

5.6.2. Finding best split 

In growing the individual fine tree models, the input data are first preprocessed and 

then the outcome of this process is a set of physical and network features. The selected 

physical and network features serve as the input to the classification tree generation 

process. Initially, the numeric values of the continuous attributes are sorted in ascending 
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order. Next, the Candidate Split Positions (CSP) are identified by taking the midpoint 

between two adjacent values for each feature, in order to evaluate the Gini index of a 

candidate split position.  

𝐶𝑆𝑃 =  
𝑠𝑜𝑟𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒2 − 𝑠𝑜𝑟𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒1

2
 

(5.2) 

 The Gini index is then calculated using:  

𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑[𝑝(𝑖|𝑡)]2

𝑐−1

𝑖=0

 

(5.3) 

  

Where 𝑝(𝑖|𝑡) is the portion of observation that belongs to class 𝑖 at a given CSP node 

t and c, the number of class labels. Then, the Weighted Gini index (𝐺𝑖𝑛𝑖𝑤𝑒𝑖𝑔ℎ𝑡) is 

computed as:  

𝐺𝑖𝑛𝑖𝑤𝑒𝑖𝑔ℎ𝑡 = ∑
𝑋𝑡

𝑇
× 𝐺𝑖𝑛𝑖(𝑡)

𝑛

𝑡=0

 
(5.4) 

 Where, 𝑋𝑡 is the number of scenarios in node t, 𝑇 is total number of scenarios, 𝐺𝑖𝑛𝑖(𝑡) is 

the Gini index value at a given node t and n is the number of nodes. The same process is 

repeated for the remaining CSP. The CSP that produces the lowest Gini weighted average 

is determined to be the best split point. This process is repeated among all the features and 

is then used in the construction of the fine trees.   

5.6.3. K-fold Cross Validation 

Datasets generated from distribution substations are often imbalanced. There are cases 

were attack scenarios may be few compared to the other instances. In order to achieve a 

classification model approach that handles imbalanced dataset, thorough training and 
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evaluation of each instance present in the dataset must be carried out. In turn averaging all 

recorded accuracies across the trained instances. To avoid cases like underfitting or 

overfitting for specific trained datasets, k-fold cross validation serves as a method for 

developing a well generalized model.  

The k-fold validation method divides the data into “k” segments or folds of equal or 

nearly equal size. In each iteration, the model is trained and is tested on these folds. During 

each iteration one-fold is kept aside for testing while the model is trained on the remaining 

“k-1” folds as shown in Figure 5.6. To determine the overall accuracy of the model, the 

accuracy achieved in each iteration is averaged. Additionally for each fold an error value 

is calculated using equation (5.6). The total error (ε) is then obtained by summing up the 

errors from all k iterations. 

𝜀 =
1

𝑘
∑ 𝜀𝑖

𝑘

𝑖=1
 

(5.5) 

  

The average accuracy of the k-fold accuracies (𝛼) determines the performance of the 

classification model [121].  

𝛼 = 1 − 𝜀 (5.6) 
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Figure 5.6: Process of the K-fold cross validation method [122] 

5.6.4. Bagging-based Ensemble Classifier 

Bagging creates an ensemble of classifiers by sampling with replacement from the set 

of training data to create new training sets called “bags” [123]. Bagging-based ensembles 

train their base learners independently from each other, and they use data transformations 

to promote diversity into the predictions of the model. When a base learner, typically a 

weak learner, is considered individually on large imbalanced datasets, they sometimes 

provide inadequate prediction accuracy [124]. This limitation can be addressed by 

combining multiple models into one that delivers better overall performance. In this work, 

a weak learner – Fine Tree, serves as the base learner. A weak learner is an appropriate 

description for this type of base learner due to its tendency to exhibit high bias or high 

variance after computation [124]. A model with high bias implies that it has not thoroughly 

understood the underlying data. This issue is independent of the data distribution and can 

result in future predictions that are unrelated and incorrect. Conversely, when a model 

overlearns from the data (high variance), accurate prediction of subsequent points becomes 
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challenging due to large variations between individual data points. Figure 5.7 visually 

depicts the concept of high bias and high variance in a weak learner. 

 

Figure 5.7: High Bias and High Variance Performance of a Weak Learner [124] 

Weak learners, which can be characterized as models that either have a high bias 

(underfit) or a high variance (overfit), face challenges when it comes to properly 

generalizing and predicting accurately when in isolation. Ensuring a balance between bias 

and variance is crucial in order to develop a model that can accurately generalize from the 

data it was trained on to new unseen data. Ensemble learning serves as a strategy that aims 

to achieve this balance [125]. Depending on the specific model being used, Ensemble 

learning techniques are able to address either high bias or high variance in weak learners, 

resulting in a more well rounded and robust learner. As a result the model becomes more 

generalized and is able to provide accurate predictions as shown in Figure 5.8. 
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Figure 5.8: Plot Performance of an Ensemble Learner 

5.6.5. Fine Tree Bagging-Based Ensemble (FTBE) Approach  

After the construction of the fine trees, the bagging-based ensemble learning approach 

creates several randomized fine trees by determining the best split among the dataset’s 

attributes as explained in Section 5.6.1, which is done by assessing the impurity of the tree 

nodes using the Gini index. From the initial training dataset containing 𝑥-number of 

instances, 𝑦-number of subsets of data are created from the training set. The 𝑦 in this case 

is referred to as the Number of Learners. A subset of 𝑋 sample points is taken from the 

initial dataset for each subset. Each subset is taken with replacement, which means that a 

specific data point can be sampled more than once. For each subset of data, the 

corresponding fine tree is trained independently by and evaluated on every instance in the 

dataset. This was done using the K-fold cross validation method as explained in Section  

5.6.3. The models created from this process are homogeneous, meaning that they are of the 

same type. The ensemble 𝐸, which comprises m decision tree classifiers, is expressed as: 

𝐸 = {𝐹𝑇1, 𝐹𝑇2, 𝐹𝑇3, … , 𝐹𝑇𝑚} (5.7) 

 Once the individual trees are generated from the randomized subsets, the resulting 

classification outcomes are determined through a majority voting scheme. Each of the 
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classifiers, 𝐹𝑇𝑖, makes a prediction 𝑦𝑖 for each data point in the test set, where  𝑦𝑖  represents 

the predicted class out of the 𝑘 possible classes (𝑦1, 𝑦2 , … , 𝑦𝑘). To determine the final 

predicted class for a given data point ‘x’, the mode of the classes predicted by the fine tree 

classifiers in the ensemble is calculated using: 

𝑦𝑚(𝑥) = 𝑚𝑜𝑑𝑒{𝐹𝑇1(𝑥), 𝐹𝑇2(𝑥), 𝐹𝑇3(𝑥), … , 𝐹𝑇𝑚(𝑥)} (5.8) 

   

Where, 𝐹𝑇𝑖(𝑥) denotes the prediction 𝑦𝑖(𝑥)for a given data point 'x' and it represents the 

selection of the most commonly predicted class among the fine tree classifiers. Figure 5.9 

illustrates the approach used to grow the fine tree classifiers for feature extraction and 

implementation. 

5.6.6. Number of Learners 

When developing the ensemble classifier model, it is important to find the number of 

fine trees required for optimal outcomes. This directly correlates with the number of 

learners employed during the process. By increasing the number of learners, a greater 

subdivision of data can be achieved, enabling each fine tree to undergo more 

comprehensive training. A very large number of learners however, can increase the 

complexity of the model. Therefore, finding the optimal number of learners that makes the 

ensemble learning model inexpensive is imperative. 
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Figure 5.9: Feature Extraction and Class Prediction of the Proposed Approach 
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5.6.7. Predictor Importance (PI) 

An advantage of this approach is the use of Predictor Importance (PI), which helps 

identify the most significant features for each fine tree classifier. This function assesses a 

features importance after the model is trained [126]. To calculate this metric, the changes 

in node risk caused by splits on every predictor are summed, and then divided by the total 

number of branch nodes [127]. This enables the determination of which features have the 

most impact on the classification outcomes of the fine tree. 

𝑃𝐼𝑖 =
∆𝑅𝑖

𝑁𝑏𝑟𝑎𝑛𝑐ℎ
 

(5.9) 

Where, 𝑅𝑖 is the node risk of the node 𝑖, and 𝑁𝑏𝑟𝑎𝑛𝑐ℎ is the total number of branch 

nodes. The  ∆𝑅𝑖 = 𝑅𝑝 − 𝑅𝑇𝑐 is the difference between the node risk of the parent node and 

the total node risk of the children’s nodes. A node risk is stated as a node impurity weighted 

by the node probability: 

𝑅𝑝 = 𝑃𝑝𝐸𝑝 (5.10) 

 

The total risk of the children’s node is calculated using: 

𝑅𝑇𝑐 = 𝑃𝑐1𝐸𝑐1 +  𝑃𝑐2𝐸𝑐2 + ⋯ + 𝑃𝑐𝑛𝐸𝑐𝑛 (5.11) 

  

Where, 𝑃𝑝 is the node probability of the parent node, and 𝐸𝑝 is the node impurity 

of parent node, which is obtained using the Gini Index from equation (5.3) . 𝑃𝑐𝑛 and 𝐸𝑐𝑛 

refers to the node probability and node impurity of the ‘n’ number of children nodes 

respectively. 
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5.7. Evaluation Metrics 

Assessing a classifier's efficacy requires evaluating its performance using evaluation 

metrics. In this thesis, various measures such as accuracy, precision, recall, and F1-score 

are employed to evaluate the proposed approach for the classification of cyberattack types. 

The significance of this stage cannot be overstated as it determines overall effectiveness of 

the classifier used. 

5.7.1. Accuracy Measure 

The classification accuracy measures the total number of correctly predicted cases in 

relation to the overall number of cases. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(5.12) 

 

The instances denoted by TP, TN, FP, and FN refer to the number of True Positive, True 

Negative, False Positive, and False Negative rates, respectively. In TP cases, the attack 

type is classified accurately. For FP cases, a normal or a disturbance instance is 

misclassified as an attack type. In FN cases, an attack scenario is mistakenly classified as 

a normal or disturbance scenario. Finally, for TN cases, normal and disturbance scenarios 

are classified accurately. 

5.7.2. Precision 

Precision is a measure of how well attack predictions by the classifier match actual attack 

instances. It determines the fraction of accurately predicted attacks. A classifier's false 

positive rate decreases as its precision increases [121]. 



88 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(5.13) 

  

5.7.3. Recall 

The recall metric calculates the proportion of attack instances that were accurately 

identified as attacks by the classifier. This metric indicates the effectiveness of the classifier 

in identifying attacks. A classifier with a high recall score will have a minimal number of 

attack scenarios that are inaccurately classified [121]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5.14) 

   

5.7.4. F1-score 

The F1-score is the metric that calculates the harmonic mean of precision and recall 

[121]. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑟𝑒𝑐𝑎𝑙𝑙

 
(5.15) 

 

5.7.5. Confusion Matrix 

The confusion matrix is a representation that helps evaluate the accuracy of a 

classification model. It presents a table, as shown in Table 5.5 that displays the number of 

correctly and incorrectly predicted records. The table shows predicted classes in columns 

and true classes in rows. It shows nine instances where 𝑇𝑃𝑁 represents cases classified as 

Normal by the classifier, and they were actually normal cases. However, 𝐸𝑁𝐷 is a sample 
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from the normal class that was wrongly classified as a disturbance. Therefore, the sum of 

𝐸𝑁𝐷 and 𝐸𝑁𝐴 (𝐹𝑁𝑁 = 𝐸𝑁𝐷 + 𝐸𝑁𝐴) represents false negatives in the Normal class, indicating 

all normal cases that were misclassified as disturbance or attack cases. On the other hand, 

the sum of 𝐸𝐷𝑁 and 𝐸𝐴𝑁 (𝐹𝑃𝑁 = 𝐸𝐷𝑁 + 𝐸𝐴𝑁) represents false positives in the Normal class, 

indicating all non-normal cases that were misclassified as normal cases. 

Table 5.5: Confusion matrix 

 

 Normal Disturbance Attack type 

Normal 𝑇𝑃𝑁 𝐸𝐷𝑁 𝐸𝐴𝑁 

Disturbance 𝐸𝑁𝐷 𝑇𝑃𝐷 𝐸𝐴𝐷 

Attack type 𝐸𝑁𝐴 𝐸𝐷𝐴 𝑇𝑃𝐴 

 

5.8. Summary 

This chapter describes the methodology used in the detection and classification of 

cyberattacks in IEC 61850 substation Automation Systems. Firstly, the cyberattacks types 

and features of the GOOSE communication packets are described. The proposed approach 

is developed by first preprocessing the dataset through data normalization, missing value 

imputation, encoding labelled data and followed by feature selection, which utilizes the 

prediction importance technique to select features that impacts the model’s classification. 

Furthermore, the Fine Tree Bagging-based Ensemble (FTBE) learner is introduced where 

the growing of the Fine Tree classifier and the implementation of the bagging-based 

ensemble is described. In addition, the k-fold cross validation method and number of 

learners hyper parameters for detection and classification of the cyberattacks are described. 
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Finally, the FTBE approach is developed along with the description of the evaluation 

metrics used assess the model. 
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6. Results and Evaluation 

6.1. Introduction  

This chapter assesses the performance of the proposed FTBE approach developed in 

this thesis and compares to the methodologies highlighted in Chapter 3. Two test systems 

that employ IEC 61850 GOOSE communication were utilised to generate datasets 

pertaining to the cyberattack types investigated in this study. The [59] and [111] public 

GitHub repositories contain the network packet capture (pcap) files for the respective 

systems. First, the dataset is preprocessed through data normalization, missing value 

imputation, encoding labelled data and feature selection. The fine tree then takes into 

account the selected features through the PI technique described in chapter 5 to find the 

best split. Next, the k-fold and number of learners hyperparameters of the bagging 

ensemble learner were tuned so that the classification accuracy could be determined. In 

order to evaluate the sensitivity of the proposed approach to the choice of the training and 

the testing dataset, different cases representing different combinations of line IEDs 

(LIEDs) for both systems are used in this work. Furthermore, the sensitivity of the proposed 

approach to the variations in the k-fold parameter and the number of learners is also carried 

out on the results to achieve the optimal settings for k-fold and number of learners.  

6.2. Test System Description 

In order to test the proposed approach, a dataset is necessary for training and testing.  

The systems used in this study replicate not only the physical system of typical distribution 

level substations but also a number of the important electrical protection operating 

scenarios under a variety of disruptions, which are then followed by a number of potential 

cyber-attack scenarios. 
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6.2.1. Test System 1 

The test system created by [59] simulated five virtual machines (VM) that ran on 

Oracle VirtualBox. One of the VM simulates a 66/22kV distribution substation automation 

system (Primary plant) using MATLAB/Simulink. The system consists of a 66kV high 

voltage line, two transformers, a 22kV low voltage line, four feeders, and nine circuit 

breakers. The other four VMs represents four Intelligent Electronic Devices (IEDs) 

simulated using OpenPLC. The IEDs are made up of three instantaneous overcurrent 

protection devices (IED_PIOC) and one circuit breaker failure protection (IED_BFP). 

These IEDs are situated at transformer 1(IED_PIOC_TRSF1), transformer 2 

(IED_PIOC_TRSF2), 22 kV circuit breaker 2 (IED_BFP), and on the feeder side 

(IED_PIOC_FDR), as shown in Figure 6.1. Ten short-circuit fault blocks were set up to 

generate events at ten different locations. 

 

Figure 6.1: 66/22kV Substation Test System used to Generate the 4-IED Dataset. 
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C/C++ is used to create VM communication networks such as GOOSE trip 

messages between IEDs and the primary plant, according to the IEC 61850 library 

(libiec61850). Each VM also has OpenPLC, MATLAB/Simulink, and “libiec61850” 

interface programs. As illustrated in Figure 6.2, the interface program in VM-IEDs reads 

analogue values from Simulink in VM-Primary Plant through User Datagram Protocol 

(UDP) packets and passes them to OpenPLC. The program reads OpenPLC digital signals 

and delivers them to “libiec61850” to construct GOOSE packets. After VM-Primary Plant's 

“libiec61850” program receives GOOSE packets, the interface program reads digital 

signals from decoded packets and sends them to Simulink through UDP packets. The IEDs 

send GOOSE messages to primary plant circuit breakers through the central process bus. 

 

Figure 6.2: Structure of Communication Networks in the Test system 
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6.2.2. Test System 2 

The test system by [111] simulated a 66/11kV substation automation system. This 

substation consists of 18 Intelligent Electronic Devices (IEDs); 2 Transformer IEDs 

(TIEDs), 14 Line Feeder IEDs (LIEDs), 1 Bus IED (BIED), and 1 Under Frequency Load 

Shedding IED (UFIED) as shown in Figure 6.3. In this redundantly designed system, the 

voltage transformers located at each 66kV bus reduce the voltage to an 11kV level, which 

is typically used for distribution purposes. The substation is interconnected with 

neighboring substations through line feeders, ensuring a resilient configuration. To 

simulate GOOSE communications, a unique MAC address is assigned to each IED, and it 

is presumed that all 18 IEDs belong to the same multicast group and can receive multicast 

frames sent by any IED. Then, the power system data log is created manually for each IED 

in CSV format to describe the operating current, voltage, power, and frequency 

measurements under various scenarios. 

 

Figure 6.3: Single-line diagram of the 66/11kV substation automation system 



95 

 

Figure 6.4 illustrates the communication workflow in this test system. Firstly, the 

SCL conversion program extracts meaningful IED models from the SCL file to generate 

attack-free GOOSE traces. The Attack-Free Trace Generator accepts power system data 

logs, simulation configurations, and static IED models. The PowerWorld simulator 

generates the power system data log with IED nominal current and voltage measurements 

in time series order. The scenario configuration, power system configuration, and 

simulation configuration define the scenario setup, power system setup and the simulation 

setup. The Attack-Free Trace Generator generates GOOSE traces from these inputs. To 

generate attack-induced GOOSE traces the Attack-Induced Trace Generator requires a 

network trace and attack scenario configuration. The Attack-Free Trace Generator 

generates the input network trace. Then the Attack-Induced Trace Generator's traffic replay 

tool reproduces the input network trace's traffic as a baseline for editing. The Attack-

Induced Trace generator injects specific attack signatures into the input network trace by 

defining the attack type, the IED GOOSE identifier, the time of attack, and the value to be 

modified in the attack scenario settings. 

 

Figure 6.4: Communication framework for generating attack-free and attack induced 

GOOSE traces. 
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6.3. Scenario description of the Test Systems dataset 

The test systems generated two datasets – 4 IED dataset from test system 1 and 18 

IED dataset from test system 2. These datasets are used to evaluate the effectiveness of the 

proposed approach. Generally, there are three different behaviors in substation automation, 

which are: normal operation when no unusual events happen, disturbance operation when 

non-malicious events happen and attack operations that disrupts the substations operation 

and cause damage.  

6.3.1. Test System 1: 4-IED dataset 

In this dataset, the network ‘pcap’ files contains the network features highlighted 

in Section 5.3.1. The sensor data only contains circuit current values from the four IEDs 

and operational status of the various circuit breaker. The ‘pcap’ files from the five VMs 

were converted to comma-separated values (CSV) files and merged into one CSV file. This 

CSV file is then linked with the physical sensor data to create the dataset, which contains 

both network features and physical features. In this thesis, the 4-IED dataset samples 

consist of four types of behaviour. The following are the scenarios in the dataset: 

1. Normal operations: No unusual event occurs. 

2. Disturbance operation: A fault in the phase-to-phase connection, which is 

related to the failure of the overcurrent protection, and this failure leads to the 

breaker failure protection being activated. 

3. Cyberattacks from IED 1 under normal and disturbance operation: IED1 is used 

to describe the IED protecting transformer 1 i.e., transformer 

1(IED_PIOC_TRSF1). Two attack scenarios regarding GOOSE messages are 

created from IED1. 
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 Replay attack: IED 1 injects replayed GOOSE trip messages and stop 

protection or trigger unexpected protection. Figure 6.5 shows the 

Wireshark capture of replay attacks from IED 1 (IED_POIC_TRSF1). 

 

Figure 6.5: Wireshark capture of replay attack GOOSE packets from IED 1. 

 FDIA: Original non-trip messages from IED1 are modified to trip 

messages and to stop protection or trigger unexpected protection. Figure 

6.6 shows the Wireshark capture of FDIA attacks from IED 1 

(IED_POIC_TRSF1).  

 

Figure 6.6: Wireshark capture of FDIA GOOSE packets from IED 1. 
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4. Cyberattacks from IED 2 under normal and disturbance operation: IED2 is used 

to describe the IED protecting transformer 2 i.e. transformer 2 

(IED_PIOC_TRSF2). Two attack scenarios regarding GOOSE messages are 

created from IED2. 

 Replay attack: IED 2 injects replayed GOOSE trip messages and stop 

protection or trigger unexpected protection. Figure 6.7 shows the 

Wireshark capture of replay attacks from IED 1 (IED_POIC_TRSF2). 

 

Figure 6.7: Wireshark capture of replay attack GOOSE packets from IED 2. 

 FDIA: Original non-trip messages from IED2 are modified to trip 

messages and to stop protection or trigger unexpected protection. Figure 

6.8 shows the Wireshark capture of FDIA attacks from IED 1 

(IED_POIC_TRSF2). 

 

Figure 6.8: Wireshark capture of FDIA GOOSE packets from IED 2. 
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Based on the case description of the 4-IED dataset, only two IEDs - IED1 and IED2, 

account for the attack instances. Table 6.1 lists the sample distribution of the different 

scenarios created from test system 1 to generate the 4 IED dataset. 

Table 6.1: Scenario description of the 4-IED dataset 

Behavior type Number of Samples Labels 

Normal Operation 7447 Normal 

Disturbance Operation 12457 Disturbance 

Attacks from IED 1 under normal 

and disturbance operation 

4232 

3783 

Replay 

FDIA 

Attack from IED 2 under normal and 

disturbance operation 

5078 

4824 

Replay 

FDIA 

 

6.3.2. Test System 2: 18-IED dataset 

In this dataset, the power system data log for each IED is generated in CSV format 

to describe operating current, voltage, power, and frequency measurements during normal 

and disturbance operations. According to Figure 6.3 each of the 18 IEDs is assigned a 

unique MAC address to simulate GOOSE communications. After simulation, the ‘pcap’ 

files from each IED are converted to comma-separated values (CSV) files. The CSV format 

of the GOOSE communication of each IED is then merged with the power system data log 

of the respective IED. In this thesis, the 4-IED dataset samples consist of six scenarios. The 

following are the scenarios in the dataset: 

1. Normal operations: This operation experienced two scenarios – variable and non-

variable load circumstances. During the variable load scenario there is a demand 
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shift over a period of time causing each IED to display distinct current and power 

measurements. Conversely, during the non-variable load scenario there is a stable 

energy flow as a result of negligible variations in load demands. 

2. Disturbance operations: Three disturbance scenarios in which the substation 

protection system operates are considered. 

 Busbar protection: This disturbance operation is the inability of IED/IEDs 

to detect overcurrent. In this scenario, a fault arises at the 66kV bus-1 

busbar, and LIED10 detects an overcurrent while other IEDs fail to detect 

it. LIED10, through GOOSE communication then identifies the busbar 

fault, initiates a trip for its breaker and associated busbar breakers. The trip 

status is then transmitted to LIED11, LIED12 AND TIED13. 

 Breaker failure: This disturbance operation constitutes a circuit breaker 

experiencing mechanical failure. In this scenario, a fault arises in the feeder 

connecting substation S/S 3-1, activating the associated LIED11 

overcurrent element. However, a mechanical failure prevents breaker CB-

11 from tripping. Alternatively, the GOOSE communication from LIED11 

to LIED10, LIED12, and TIED13 results in the tripping of circuit breakers 

CB-10, CB-12, and CB-13, as well as the remote circuit breaker in S/S 3-1. 

 Under frequency: In this disturbance scenario, there is a frequency drop 

across the busbar. The Under Frequency Intelligent Electronic Device 

(UFIED) detects frequency drops in the 11kV buses via GOOSE. It then 

initiates a trip sequence starting with the least priority consumer and 
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progressing through higher priority consumers until the frequency 

stabilizes. 

The Following is the description of the simulated GOOSE-related cyberattack operations 

designed to compromise the substation's operation. 

3. Data Manipulation: This involves the spoofing of false information to the IEDs to 

mask unauthorized changes. Below are the tactics in which this attack was 

conducted. 

 Data Manipulation1 (DM1): In this attack scenario false current 

measurements are injected to bias the power system state estimation process 

without being detected as shown in Figure 6.9, Figure 6.10, and Figure 6.11. 

 

Figure 6.9: LIED10 injects a GOOSE frame (No. 588) with a value of 380 for phase A 

current magnitude at 11.9 seconds. 

 

Figure 6.10: LIED10 injects a GOOSE frame (No. 1175) with a value of 270 for phase B 

current magnitude at 22.5 seconds. 
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Figure 6.11: LIED10 injects a GOOSE frame (No. 1771) with a value of 360 for phase C 

current magnitude at 33.1 seconds. 

 Data Manipulation2 (DM2):  In this attack scenario, a malicious GOOSE 

frame is injected to control the state of the circuit breaker as shown in Figure 

6.12. 

 

Figure 6.12: LIED11 injects malicious GOOSE frame (No. 597) changing the circuit 

breaker status from FALSE to TRUE ('tripped') at 12.3 seconds.  

 Data Manipulation3 (DM3): In this attack scenario, an old GOOSE payload 

containing circuit breaker 'trip' status and other measurements messages is 

replayed as shown in Figure 6.13 and Figure 6.14. 



103 

 

 

Figure 6.13: LIED11 replays valid GOOSE frames (No. 2734 and No. 2764) with "open" 

(True) circuit breaker data at times 53.8 sec and 54.8 sec. 

 

Figure 6.14: LIED22 replays fault current measurements (No. 7847, No. 7901, No. 7955, 

No. 8009, and No. 8063) between times 155.8 sec and 159.88 sec. 

4. Denial of Service (DoS): The objective of this attack scenario is to obstruct the flow 

of information to the intended IEDs by overwhelming the substation network with 

GOOSE messages to reduce service availability. Figure 6.15 shows the DoS attack 

on LIED10. 
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Figure 6.15: Denial-of-Service (DoS) attack on LIED10 

5. Message Suppression (MS): This attack involves modifying the GOOSE header 

fields to take over the communication channel in order to prevent legitimate IEDs 

from receiving vital messages or updates. Below are the tactics in which this attack 

was conducted. 

 Message Suppression1 (MS1): In this attack scenario, a high Stnum value 

or slightly higher than the previously recorded Stnum is injected, where 

Sqnum ≠ 0 as shown in Figure 6.16 and Figure 6.17. 

 

Figure 6.16: LIED10 injects a GOOSE frame (No. 542) with Stnum=9999 and 

Sqnum=10 at 13.9 secs. 
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Figure 6.17: LIED10 injects a GOOSE frame (No. 784) with Stnum=5 and Sqnum=15 at 

18.9 secs. 

 Message Suppression2 (MS2): In this attack scenario, a previously valid 

GOOSE frame containing high Stnum is replayed, where Sqnum = 0 but 

stale timestamp as shown in Figure 6.18 and Figure 6.19. 

 

Figure 6.18: LIED10 replays a GOOSE frame (No. 534) with Stnum=9999 and Sqnum=0 

at 10.4 secs. 
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Figure 6.19: LIED12 replays a GOOSE frame (No. 774) with Stnum=5 and Sqnum=0 at 

15.5 secs. 

 Message Suppression3 (MS3): In this attack scenario, a high Stnum frame 

with Sqnum = 0 and a valid timestamp is injected, as shown in Figure 6.20 

and Figure 6.21. 

 

Figure 6.20: LIED10 injects a GOOSE frame (No. 534) with Stnum=9999 and Sqnum=0 

at 10.4 secs. 

 

Figure 6.21: LIED12 injects a GOOSE frame (No. 774) with Stnum=5 and Sqnum=0 at 

15.5 secs. 
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 Message Suppression4 (MS4): In this attack scenario, a high Sqnum frame 

to cause GOOSE frames to arrive at the receiver out-of-sequence i.e., not 

matching the order of transmission at the sender is injected, as shown in 

Figure 6.22. 

 

Figure 6.22: LIED10 injects a GOOSE frame (No. 556) with Sqnum=9999 at time= 12.7 

sec. 

6. Composite attack: This attack scenario is comprised of both a data manipulation 

attack and a message suppression attack as shown in Figure 6.23 and Figure 6.24. 

A high Stnum attack is injected followed by the modification of the circuit breaker 

status associated with CB-11. 

 

Figure 6.23: LIED11 injects a GOOSE frame (No. 542) with Stnum=9999 and Sqnum=0 

at 11.3 sec. 
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Figure 6.24: LIED11 modifies the CB-11 Boolean value from '1' to '0' and injects the 

modified GOOSE frame (No. 792) at 16.3 secs. 

From the case description of the 18-IED dataset only four IEDs bearing the 

designations LIED 10, LIED 11, LIED 12, and LIED 22 out of the 18 IEDs account for 

most attack instances. Table 6.2 shows the total number of attacks identified in these IED 

datasets by aggregating the number of attack packets encountered during each IED attack. 

It also presents a comprehensive record of the overall count of attacks that were detected 

in the IED dataset by summing up the number of attack packets encountered during each 

individual attack on an IED. 

Table 6.2: Scenario description of the 18 IED dataset 

IED Packets per attack Total packets 

LIED 10  DM = 3 packets 

 DoS = 5000 packets 

 MS = 4 packets 

5007 

LIED 11  DM = 3 packets 

 Composite = 2 packets (1 

DM and 1 MS) 

5 

LIED 12  DoS = 5000 packets 

 MS = 3 

5003 

LIED 22  DM = 5 packets 5 
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6.4.Training and Testing of Automated Classification 

Various combinations of IED datasets are tuned to evaluate the sensitivity of the 

proposed approach to selecting datasets for training and testing. When these combinations 

are configured, the dataset used for training contains normal, disturbance and all the 

cyberattack cases while the dataset used for testing consists of normal scenarios, 

disturbance scenarios as well as any of the cyberattack cases. This assembly method 

ensures that the full spectrum of all conditions is covered, allowing a more comprehensive 

assessment of the response of the proposed approach.  

These combinations are applied to the two test system datasets. In the 4-IED dataset, 

two cases are used in this thesis. The first case is aimed at training the models for all normal, 

disturbance, FDIA attacks and replay attacks originating exclusively from IED1 in order 

to detect and classify FDIA attacks and replay attacks originating from IED2. In the second 

case, the data sets for training and testing are then swapped. For the 18-IED dataset, four 

cases representing different combinations of the line IEDs (LIEDs) are used. Table 6.3 

highlights the combinations for training and testing. 
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Table 6.3: 18-IED Dataset Combinations for Training and Testing 

Case Number 

Line IED Combinations 

Training Testing 

Case 1 LIED 10 & LIED 11 LIED 12 & LIED 22 

Case 2 LIED 12 & LIED 22 LIED 10 & LIED 11 

Case 3 LIED 10 & LIED 22 LIED 11 & LIED 12 

Case 4 LIED 11 & LIED 12 LIED 10 & LIED 22 

 

6.5. Results of Implementing the Proposed Approach on the 4-IED Dataset 

The proposed Fine-Tree-Bagging Ensemble (FTBE) learning approach is implemented 

on the simulated substation automation system data of test system 1. The number of 

learners and k-fold values were determined via a trial-and-error method to obtain the 

highest accuracy, which was kept constant for further analysis. Furthermore, the results 

have been compared with those obtained when applying other classifiers highlighted in 

Chapter 3. Table 6.4 presents the detection accuracy obtained by implementing the 

proposed FTBE approach on the 4-IED dataset. The test accuracy of the decision tree (DT) 

approach decreased from 93.63% to 91.80% when the training and testing datasets were 

switched. Similarly, the accuracy of K-nearest neighbour (KNN) and support vector 

machine (SVM) classifiers decreased when the datasets were changed as well. The FTBE 

approach follows the same trend when the datasets are interchange, but it performs better 

than the other classifiers, exhibiting a maximum detection accuracy of 94.24% and 92.60%, 
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in case 1 and case 2 respectively. In case 1, the highest classification accuracy is achieved 

when k-fold is set to 6 and there are 10 learners. Conversely, case 2 achieved maximum 

classification accuracy with 4 learners and k-fold set to 12. The accuracy difference 

between case 1 and case 2 indicates a minor sensitivity to the selection of the training and 

the testing dataset. It can be deduced that the specific characteristics of the IEDs can affect 

the performance of the proposed approach. Observing the results, however, reveals that the 

high accuracy of the FTBE method remained comparatively stable even when the training 

and testing datasets were swapped. This consistency demonstrates the insensitivity of 4-

IED datasets approach to selecting IEDs for training and testing. 

Table 6.4: Comparative analysis of the Accuracy Results of the 4-IED Dataset 

Case 

Number 

Training Testing Methods Train 

Accuracy (%) 

Test Accuracy 

(%) 

Case 1 IED 1 IED 2 DT 99.14 93.63 

   KNN 98.12 92.65 

   SVM 96.86 90.59 

   FTBE 99.06 94.24 

Case 2 IED 2 IED 1 DT 99.20 91.80 

   KNN 99.40 91.43 

   SVM 97.28 88.72 

   FTBE 99.21 92.60 

 

6.5.1. Confusion Matrices and Features Identification for Cyberattack Types 

The detailed analysis of the confusion matrices and predictor importance for the 4 IED 

data set is provided in Figure 6.25 and Figure 6.26. The results obtained from the confusion 

matrices shown in Figure 6.25(a) and Figure 6.26(a) indicate that replay attacks are 
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relatively easier to identify compared to FDIA attacks. Specifically, in cases 1 and 2 the 

proposed approach is able to accurately detect replay attacks with an accuracy of 95.6% 

and 93.7% respectively. However, FDIA attacks were misclassified as normal or replay 

attacks for few instances and in some cases, they were misclassified as disturbances. 

Further examination of the predictor importance plots depicted in Figure 6.25(b) and Figure 

6.26(b) reveals that among the physical features, the current at the feeders (I_FDR) had the 

highest PI estimate. In addition. Network features like heartbeat and Dec_allData showed 

similar PI estimate values, indicating their crucial role in classifying different types of 

cyberattacks.  

Furthermore, it is observed that FDIA attacks are often followed by sudden changes in 

current or power consumption patterns. By continuously monitoring the feeder, the model 

can detect and classify such instances as false data being injected. The heartbeat and 

Dec_allData feature also play a significant role in identifying FDIA attacks. Any deviations 

in frequency, timing, or content of GOOSE packets suggest potential FDIA attacks. 

Furthermore, inconsistent or unexpected changes in Boolean control command signals 

(Dec-allData) also indicate an FDIA attack according to the learning approach. The "Dec 

allData" feature is highly important when it comes to classifying replay attacks. Any 

irregularities or patterns that do not adhere to typical characteristics imply that previously 

recorded control commands are being replayed, enabling the model to identify such attacks. 

However, changes in current values at the feeder also provide an indication of the impact 

of replay attacks. When previously recorded data is fed into the system with an attempt to 

appear as normal, deviations in current values from expected patterns can be an indicator 

that there is a replay attack. 
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(a) 

 

(b) 

Figure 6.25: Classification results for case 1. (a) Confusion Matrix (b) predictor 

importance. 
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(a) 

 

(b) 

Figure 6.26: Classification results for case 2. (a) Confusion Matrix (b) predictor 

importance. 



115 

 

6.5.2. Sensitivity and Error Analysis 

In this thesis a comprehensive study is conducted to examine how the proposed 

approach is influenced by the choice of the k-fold and number of learners parameters. The 

findings indicate that case 1 outperforms case 2 slightly in terms of accuracy. Using brute 

force, the highest accuracy for case 1 was achieved with 6-folds and 10 learners, while for 

case 2, it was with 12-folds and 4 learners. However, it is observed that there is no 

consistent value for k fold or number of learners that consistently yields the highest 

accuracies for both cases. To analyze this, the k-fold that leads to the highest classification 

accuracy is kept constant and the number of learners is varied from 2 to 10 learners. The 

maximum of 10 learners was chosen for its optimal balance of accuracy, computational 

efficiency, and risk of overfitting. Beyond this point, no significant gains in accuracy were 

observed. Likewise, the number of learners that achieved the highest accuracy is kept 

constant and the k-fold varied from 2 to 12. A maximum k-fold value of 12 was selected 

as it yielded optimal accuracy, with no significant improvements observed beyond this 

point. The rate of change from the maximum accuracy for case 1 and case 2 is calculated 

and presented in Table 6.5 and Table 6.6. 

From Table 6.5 it can be seen that utilizing a k fold value of 12 for both cases lead to 

the most consistent performance with a negligible percentage change of 0.3536 from the 

highest detection accuracy of 94.24% for case 1 and 92.60% for case 2. This suggests that 

when using a k fold value of 12, the accuracy of the detection model remains stable. 

Similarly, Table 6.6 shows that employing 10 learners also results in a minimal percentage 

change of 0.2560 from the best detection accuracy of 94.24% for case 1 and 92.60% for 

case 2.  
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Table 6.5: Percentage Change when Number of Learners is Constant with Kfold 2 to 12 

k-fold 
Case 1 

Accuracy (%) 
% Change 

Case 2 

Accuracy (%) 
% Change 

Total % 

Change 

2 92.59 1.74 84.94 8.27 10.01 

3 93.86 0.39 87.41 5.60 5.99 

4 93.53 0.75 88.64 4.27 5.02 

5 93.06 1.25 90.35 2.42 3.67 

6 94.24 0 88.90 3.98 3.98 

7 94.17 0.07 87.16 5.87 5.94 

8 94.00 0.25 86.82 6.23 6.48 

9 93.65 0.62 90.95 1.77 2.39 

10 93.88 0.38 87.62 5.37 5.75 

11 93.93 0.33 91.11 1.60 1.93 

12 93.91 0.35 92.60 0 0.35 

 

Table 6.6: Percentage Change when KFOLD is Constant with Number of Learners 2 to 10 

Number 

of learners 

Case 1 

Accuracy (%) 
% Change 

Case 1 

Accuracy (%) 
% Change 

Total % 

Change 

2 92.12 2.25 90.81 1.89 4.14 

3 92.68 1.65 92.35 0.26 1.91 

4 93.30 0.99 92.60 0 0.99 

5 93.78 0.48 91.56 1.11 1.59 

6 93.98 0.27 91.84 0.82 1.09 

7 94.02 0.23 91.92 0.72 0.95 

8 94.08 0.17 92.28 0.33 0.5 

9 93.99 0.26 92.18 0.44 0.7 

10 94.24 0 92.36 0.25 0.25 
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Therefore, it can be recommended per test system 1, that using a k fold value of 12 and 

employing 10 learners will achieve optimal performance in both cases. These findings offer 

insights into how sensitive the proposed approach is to variations in the k fold and number 

of learners parameters. 

6.6. Result of Implementing the Proposed Approach on the 18-IED Dataset 

Table 6.7 lists the detection accuracies obtained when implementing the proposed 

FTBE classifier on the 18-IED dataset. An in-depth exploration of k-fold and number of 

learner values, both ranging from 2 to 10, was performed through a nested iterative process 

to obtain the highest accuracy, which was then kept constant for further analysis. Visual 

inspection of the results reveals that the proposed FTBE also outperforms the other 

machine learning classifiers as it was able to achieve an accuracy of 100% in all cases. In 

regard to Case 1, the classification accuracy is most effectively achieved with 3 learners 

and a k-fold setting of 2. In Case 2, the optimal results are obtained by employing 8 learners 

and a k-fold setting of 7. In Case 3, the highest accuracy is achieved by utilizing 2 learners 

and a k-fold setting of 4. Lastly, for Case 4, the maximum accuracy is attained with the 

employment of 3 learners and a fold setting of 6. This result further demonstrates the 

insensitivity of the proposed FTBE classification approach when selecting the datasets for 

training and testing. Additionally, the result also includes the precision, recall, and F1-

scores. It is important to note that "NaN" values exist for the DT, KNN, and SVM machine 

learning classifiers. This is due to instances in which no affirmative sample is predicted for 

a particular scenario. Therefore, precision and F1-score values cannot be calculated for 

these instances. In addition, the other machine learning classifiers also had poor recall 

values in comparison to the proposed FTBE approach, resulting in lower F1-scores. The 
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reason for the low recall value in other machine learning algorithms is that the datasets 

from this test system are highly imbalanced. This means there is a significant difference in 

the number of instances between classes. Due to this imbalance, it becomes difficult for 

these algorithms to correctly identify cyberattacks, which are the minority class in this case. 

However, the proposed FTBE classifier was able to overcome this challenge and achieve 

high recall values resulting in higher F1 score values compared to other machine learning 

classifiers. This further demonstrates the effectiveness and suitability of the learning 

approach for dealing with class imbalance issues in cyberattack problems. 

Table 6.7: Comparative Analysis of the Accuracy Results of the 18-IED Dataset 

Case Method Accuracy (%) Precision Recall F1-score 

1 DT 99.99 0.9200 0.9998 0.9583 

 KNN 99.84 NaN 0.5974 NaN 

 SVM 99.88 NaN 0.7981 NaN 

 FTBE 100 1 1 1 

2 DT 99.96 0.9000 0.8857 0.8927 

 KNN 99.77 NaN 0.5982 NaN 

 SVM 96.44 NaN 0.6342 NaN 

 FTBE 100 1 1 1 

3 DT 96.71 0.5991 0.5502 0.5736 

 KNN 99.79 NaN 0.5982 NaN 

 SVM 96,56 NaN 0.5485 NaN 

 FTBE 100 1 1 1 

4 DT 99.96 NaN 0.8000 NaN 

 KNN 99.83 NaN 0.5972 NaN 

 SVM 99.85 NaN 0.5983 NaN 

 FTBE 100 1 1 1 
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6.6.1. Confusion Matrices and Features Identification for Cyberattack Types  

The classification of attack types through the FTBE based approach proposed herein 

proved successful according to the findings illustrated by confusion matrices and predictor 

importance plots shown in Figure 6.27 – Figure 6.30. These visual representations of the 

confusion matrices clearly exhibit a strong concordance between true and predicted classes 

underscoring accurate classification outcomes. By focusing on significant physical and 

network features highlighted through predictor importance plots, valuable insights are 

gained into factors contributing to this success. A closer analysis identified frequency 

(Freq) as having the highest PI values among the examined physical features.  Additionally, 

three network features - Boolean to decimal conversion (BCV_Dec), GOOSE sequence 

number (Sqnum) and numofblanks - also demonstrated high PI values. These results 

suggest that Freq, BCV_Dec, Sqnum, and numofblanks are indispensable for successful 

classification of attack types of this test system data.  

Further investigation revealed that specific features excelled at identifying attack 

categories. For instance, the changes in frequency (Freq) proved instrumental in detecting 

Data Manipulation attacks. Furthermore, the unique sequence numbers assigned to 

GOOSE messages, determined by the IEC 61850 protocol enabled the effective 

identification of Message Suppression attacks through the Sqnum feature. This feature 

serves as a more direct and efficient way to identify Message Suppression attacks because 

if a message is suppressed, a gap or inconsistency in the sequence of numbers will occur, 

signaling a Message Suppression attack. Also, by detecting sudden changes in circuit 

breaker and disconnector status, the Boolean to decimal conversion (BCV_Dec) feature 

successfully detected anomalies indicative of potential data manipulation. Lastly, 
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identifying DoS attacks was made possible by leveraging the numofblanks feature, which 

overwhelms system capacity with 5000 packets and results in gaps within communication 

logs where typical traffic would be recorded. 

  

(a) (b) 

Figure 6.27: Classification results of case 1. (a) Confusion Matrix and (b) predictor 

importance. 

 

 

(a) (b) 

Figure 6.28: Classification results of case 2. (a) Confusion Matrix and (b) predictor 

importance. 
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(a) (b) 

Figure 6.29: Classification results of case 3. (a) Confusion Matrix and (b) predictor 

importance. 

  

(a) (b) 

Figure 6.30: Classification results of case 4. (a) Confusion Matrix and (b) predictor 

importance. 
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6.6.2. Sensitivity and Error Analysis 

To assess the robustness of the FTBE approach a sensitivity analysis is also conducted 

on the 18-IED dataset. The focus is also to understand how the changes in the k-fold 

parameter and the number of learners may affect the results. Using brute force,  

the highest accuracy for each case was achieved with the following k-fold and learner 

combinations: Case 1 with 2-folds and 3 learners, Case 2 with 7-folds and 8 learners, Case 

3 with 4-folds and 2 learners, and Case 4 with 6-folds and 3 learners. It is observed that 

there is no consistent value for k fold or number of learners that consistently yields the 

highest accuracies for all cases. By varying the number of learners from 2 to 10 and the k 

folds from 2 to 10, the percentage change in accuracy from the maximum classification 

accuracy when these parameters are varied is calculated for all cases. A maximum of 10 

folds and 10 learners was chosen due to the lack of significant accuracy improvement 

beyond these values. Figure 6.31(a) shows the plot of the detection accuracy against the 

number of learners while keeping the k-fold constant. It is observed that changing the 

number of learners had only a minimal impact on accuracy. When using 3 learners, it can 

be seen that there was only a small percentage difference of 0.0284 from the maximum 

classification accuracy of 100%. This had the least percentage change across all cases when 

the k-fold is kept constant. Therefore, this suggests that employing just 3 learners is 

sufficient for achieving excellent results.  

Figure 6.31(b) shows the plot of the detection accuracy against the k-fold while keeping 

the number of learners constant. Similarly, when the k-fold is adjusted it is noticed that the 

accuracy changes were also minor. Using a k fold value of 4 across all cases resulted in an 

insignificant percentage difference of 0.1012 from the maximum classification accuracy.  
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(a) 

 

(b) 

Figure 6.31: Classification accuracies for cases 1 to 4. (a) different number of learners 

and (b) different k-folds. 
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Based on these findings it is clear that the proposed approach remains highly stable 

when using a k-fold value of 4. This parameter holds great significance in the approach and 

ensures reliable and robust results. 

6.7. Summary 

In this chapter, the FTBE approach was implemented for the detection and 

classification of different cyberattack types. The approach was tested on two different 

datasets, and the relevant physical and network features were evaluated to help the model 

identify different cyberattack types accurately. The results indicate that the FTBE approach 

performs consistently without being affected by the selected training and testing data, 

addressing issues of overfitting and sensitivity. The performance of the proposed approach 

was evaluated based on detection accuracy, precision, recall, and F1-score, and its 

sensitivity and error analysis were assessed on both datasets. The findings revealed that the 

proposed approach could classify all cyberattack cases in the 18-IED dataset with 100% 

accuracy. Moreover, the proposed approach successfully classified 94.24% of scenarios in 

case 1 and 92.60% of scenarios in case 2 of the 4-IED dataset. 
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7. Conclusion and Recommendations 

7.1. Conclusion  

The work in this thesis aims to detect and classify cyberattacks in IEC 61850 protocol-

based Substation Automation System. After reviewing the state-of-the-art literature, it 

became evident that firstly, most of the research focused only on the detection of 

cyberattacks without identifying the type of cyberattack the system experienced. Secondly, 

the classification approaches presented in the past did not evaluate their approach with 

different datasets to avoid the issue of overfitting. Therefore, the main contribution of the 

proposed approach is the capability of the model to detect and classify cyberattack types 

from normal and disturbance events on two different datasets and hence facilitating more 

precise mitigative measures.  

In this research, the feasibility of using the FTBE approach to learn and classify types 

of cyberattacks was explored. The approach involves creating subsets of training data by 

selecting from the primary dataset. By employing a bagging-based ensemble strategy 

several decision trees were developed by finding the best split for the tree generation 

process. The purity of tree nodes is evaluated using the Gini index. To control the depth 

and avoid overfitting, a fine tree model with numerous leaves is established. These fine 

trees allow for classification with up to 100 splits. After the construction of these fine trees 

from the randomized subsets, the final classification decisions using a majority voting 

system is made. The performance of the proposed FTBE-based approach and other 

machine learning classifiers was compared. The results from the 4-IED dataset shows that 

classification accuracy exceeds 92% for case 1 and case 2 while on the 18 IED dataset, it 

achieved an accuracy of 100% across all four cases. These results demonstrate that the 
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approach does not only outperform other machine learning classifiers but it also remains 

flexible and insensitive to the selection of training and testing datasets subjected to 

cyberattacks. Additionally, the proposed FTBE based approach was subjected to a 

sensitivity analysis to examine the impact of parameter selection such as the choice of k-

fold and the number of learners on classification accuracy. The results obtained from 

analyzing the 4-IED dataset indicated that using a k-fold value of twelve and employing 

ten learners yielded the highest accuracy. Conversely, when examining the outcomes, from 

the 18-IED dataset, it was found that a k-fold value of four and utilizing three learners 

provided the highest accuracy. 

Furthermore, in order to find the most salient physical and network features needed to 

classify the cyberattack types, this thesis proposed the use of the predictor importance 

technique. This technique involves assigning scores to input features of the model, which 

helps indicate how important each feature is when making predictions. The findings 

demonstrate that in the 4 IED dataset, the current, as a feature stands out in identifying both 

FDIA and replay attacks. Similarly, among the network features, the binary state 

information reflecting the status of an IED in GOOSE messages proves to be the most 

valuable for recognizing replay attacks. In the case of the 18-IED dataset, the frequency 

emerges as a distinctive feature for identifying data manipulation attacks. Also, within the 

network features, sequence number (Sqnum) and number of blanks (numofblanks) in 

GOOSE messages are indicators for identifying message suppression and denial-of-service 

attacks. 
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7.2. Recommendations 

Based on the work presented in this thesis, the following represents the thesis 

recommendations for classifying cyberattack types in smart grid. Firstly, it is crucial that 

researchers focus on developing methodologies that accurately classify attack types. This 

will help in creating targeted countermeasures to combat these attacks effectively. 

Secondly, it is important to validate these methodologies using several datasets to ensure 

their effectiveness across various cyberattack scenarios and avoid any potential issues of 

overfitting. Lastly, selecting the parameters for classification accuracy is essential, for 

conducting sensitivity analysis. In future studies, it would be highly beneficial to explore 

automated or semi-automated approaches that can dynamically identify optimal parameters 

and enhance model optimization. 

7.3. Future Work 

Some next steps that can be taken to build the work presented in the thesis are: Potential 

mitigation strategies for cyberattacks in Smart Grids. For integrity-targeted attacks like 

false data manipulation attacks, the use of encrypted transmissions is recommended. To 

combat availability-targeted attacks such as denial-of-service, techniques like rate limiting 

could be employed. These approaches would enhance the cybersecurity of Substation 

Automation Systems. Researchers can also implement this cyberattack classification 

approach in the field of Electric Vehicles and Vehicle-to-Everything (V2X) 

communication. As vehicles increasingly communicate with various entities like traffic 

lights, other vehicles, and city infrastructure, understanding and expanding the 

classification approach to V2X communication will be crucial. 
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