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Abstract

This thesis introduces an innovative lead grouping strategy for efficient real-time Elec-

trocardiography signal classification. This method uses a maximum of six leads instead

of the traditional 12-lead approach, leading to significant reductions in sampling time

(93.67%), data size at the data acquisition device (50%), and signal processing time

(84.72%). Importantly, these benefits come with a minimal loss in accuracy (0.08%).

The thesis presents the CardioDiverse dataset, a publicly available resource that high-

lights key ECG leads associated with specific cardiovascular conditions. This resource

can transform ECG-based diagnoses by focusing on the most pertinent leads.

The proposed lead grouping strategy has been successfully integrated with a real-time

platform, demonstrating its practical robustness and applicability. This contribution

brings a considerable change in the field of ECG analysis by providing an efficient and

viable lead grouping method that balances accuracy and resource efficiency, marking

significant advances in ECG analysis.

Keywords— ECG, standard 12 lead ECG signal, Multi-class, classification,

lead group, Real-time platform, Kafka, lead grouping classification, single

lead classification, 12 lead classification, CardioDiverse.
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List of Abbreviations

Table 1: Abbreviations and Acronyms

Abbreviation Description

CVD Cardiovascular Diseases

RA Right Arm

LA Left Arm

aVR Augmented Vector Right

aVL Augmented Vector Left

aVF Augmented Vector Foot

MI Myocardial Infarction

STTC ST-T wave abnormality or T wave inversions

CD Conduction Disturbance

HYP Hypertrophy

LR Logistic Regression

SVM Support Vector Machines

DT Decision Trees

RF Random Forest

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

LSTM Long Short-Term Memory

ANN Artificial Neural Networks

GRU Gated Recurrent Unit

BiLSTM Bidirectional LSTM

FCN Fully Convolutional Network
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Abbreviation Description

ResNet Residual Networks

ROC Receiver Operating Characteristic

AUC Area under the ROC Curve

SPS Sample Per Second

HRV Heart Rate Variability

ReLU Rectified Linear Activation Function

LGM Lead-wise Grouping Method

RFE Recursive Feature Elimination

AFIB Atrial Fibrillation
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Chapter 1

Introduction

1.1 Introduction

Telemedicine, with telehealth technology at its core, has emerged as a revolutionary force

in the modern healthcare landscape. By removing geographic barriers and placing pa-

tients at the center of care, telehealth technology, which encompasses real-time heart

monitoring, is transforming the approach to healthcare delivery [3, 4]. Real-time heart

monitoring, in particular, has been crucial in empowering healthcare professionals to de-

tect and manage cardiovascular disease (CVDs) in a timely manner, one of the leading

causes of death worldwide. Among these, Electrocardiogram (ECG) monitoring systems

are extensively employed to diagnose a spectrum of heart diseases [5, 6]. However, de-

spite advances, existing real-time heart monitoring systems reveal several challenges. For

example, they often need a more nuanced understanding of the relationship between

heart disease and the leads used in ECG readings. This, in turn, can reduce diagnostic

accuracy and lead to the inefficient use of computational and communicational resources

[7].

This dissertation tackles these challenges through a comprehensive analysis of ECG

classification compatible with real-time monitoring. It proposes an innovative model

4



Chapter 1. Introduction 5

for simultaneous multi-class classification of ECG signals by leveraging a minimal set of

highly correlated leads. Additionally, this research unveils a novel dataset‘CardioDiverse’

amalgamating multiple datasets to furnish a more comprehensive resource. The explo-

ration of this dataset yields critical insights into the correlations between specific leads

and disease subclasses, potentially advancing the early detection and diagnosis of CVDs

[8]. This research seeks to amplify telehealth technology’s potential in real-time heart

monitoring and contribute positively to patient care in an increasingly digitalized world

by proposing efficient and accurate alternatives to current systems.

1.2 Motivation

The motivation behind this research stems from the critical limitations in current real-

time heart monitoring systems, particularly regarding ECGs. These limitations affect

diagnostic precision and place great strain on resources, affecting remote monitoring

effectiveness, data reduction, power consumption, and overall system sustainability [7].

This scenario underscores the urgency for more advanced and efficient systems that can

ensure a timely and accurate diagnosis of CVD. Furthermore, there is a knowledge gap

regarding the correlation between heart disease and the leads employed in ECG readings,

which is crucial in enhancing diagnostic precision. Addressing this gap could optimize

resource utilization, making care delivery more sustainable in the long run [9].

With these motivations in mind, this dissertation aims to augment the potential of

telehealth technologies by offering an avant-garde model for the simultaneous multi-class

classification of ECG signals using a minimal set of highly correlated leads. The insights

derived from the novel dataset ‘CardioDiverse’ and the proposed classification model

have the potential to redefine how healthcare providers detect and diagnose heart dis-

eases. Through these advancements, this research embodies the aspiration to contribute

substantively to the future trajectory of telehealth and to improve patient care and health
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outcomes in the digital era.

1.3 Problem Statement

The challenges associated with real-time heart monitoring through Electrocardiogram

(ECG) systems are manifold and greatly impact the effectiveness, utilization of resources,

and efficiency of these systems [10]. One of the main challenges lies in the precision of

detection and diagnosis; This is due to the inadequate understanding of the relation-

ship between heart diseases and the ECG leads, which leads to compromised diagnostic

accuracy. Furthermore, a significant challenge to ECG systems is resource utilization.

They often consume excessive computational and communication resources, making them

unsustainable in resource-constrained environments. Moreover, the efficiency of classi-

fication is another obstacle. Current ECG signal classification techniques need to be

optimized for efficiency, largely due to their reliance on all 12 ECG leads.

The knowledge gap in the correlation between specific ECG leads and disease sub-

classes poses a significant challenge. Gaining insight into this correlation is critical to

successful diagnosis and treatment, yet this area still needs to be explored. Lastly, the

lack of comprehensive datasets further compounds the problem. Current datasets should

provide adequate information to facilitate research on the correlation between ECG leads

and heart disease subclasses.

To address these challenges, this thesis proposes a novel ECG classification model

and introduces a comprehensive data set. The ultimate objective of these efforts is to

enhance the effectiveness of real-time heart monitoring.

1.4 Research Questions

1. What is the relationship between leads and diseases?
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2. Can effective ECG signal classification be achieved with fewer leads?

3. Does the quantity of leads impact the resources (response time and storage) in

real-time?

1.5 Thesis Contribution

This thesis makes the following contributions:

• Developing a Lead Grouping Strategy: The core innovation of this thesis is

the creation of a lead grouping technique that employs a maximum of six leads for

real-time ECG signal classification. This groundbreaking strategy optimizes the

balance between efficiency and accuracy.

• Reduction in Latency and Resource Usage: Extensive experimentation and

performance evaluation of the proposed method have demonstrated a significant

reduction in sampling time (93.67%), data size at the acquisition device (50%),

and signal processing time (84.72%). These significant gains are achieved with

only a negligible 0.08% decrease in accuracy compared to the traditional 12-lead

approach.

• Introducing the CardioDivers Dataset: This thesis introduces a new pub-

lic resource, the CardioDiverse dataset, which is a result of meticulous correlation

analyses. This dataset identifies key ECG leads that are linked with distinct cardio-

vascular conditions, potentially revolutionizing ECG-based diagnoses by focusing

on the most relevant leads.

• Developing End-to-end Real-Time Platform: A pivotal part of this thesis

is the successful integration of the proposed lead grouping strategy with a Kafka-

based real-time platform. This not only demonstrates the theoretical merit of the

strategy, but also showcases its practical robustness and applicability in real-world.
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• Enhancing ECG Interpretation and Application: Overall, the efficient and

practically viable lead grouping method presented here marks a significant advance

in the interpretation and application of ECGs. Its successful integration with a

real-time platform underscores this substantial contribution to the field.

1.6 Thesis Organization

This thesis is organized as follows:

• Chapter One: Introduction to telehealth technology, real-time heart monitoring,

challenges, and contributions of this work.

• Chapter Two: This chapter dives deep into the theoretical foundations of the

subject matter, beginning with an in-depth examination of the principles of Elec-

trocardiograms. It discusses the existing ECG signal processing and interpretation

techniques, with a particular focus on limb and chest leads. The chapter also

critically reviews the existing literature, discussing the various machine learning

and deep learning methods previously used for ECG classification. It concludes by

highlighting the gaps in current knowledge and practices the thesis aims to fill.

• Chapter Three: The proposed lead grouping method is thoroughly explained in

this chapter. It delves into the rationale behind the method, its design, and its

application in lead-disease analysis. The development and performance evaluation

of a Recursive Feature Elimination Method tailored for ECG classification is also

presented. The chapter also explains the integration of the proposed model with

a Kafka-based real-time monitoring platform, thereby demonstrating the practical

applicability of the theoretical model.

• Chapter Four: This chapter details the data collection and analysis process, start-

ing with a comprehensive survey of available 12-lead ECG datasets. It identifies
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the limitations and gaps in these datasets and introduces the CardioDiverse dataset

as a solution to address these gaps. The methodology used to create, process, and

analyze the CardioDiverse dataset is explained, providing a roadmap for similar

future endeavors.

• Chapter Five: The outcomes of the research are presented in this chapter. It

starts with an examination of the superclasses and subclasses of heart conditions,

with the findings from these experiments detailed. The chapter proceeds to the

main experiment: the test of a six-lead diagnostic approach. The impacts of the

number of leads on real-time processing, storage, and accuracy are meticulously

analyzed, setting the stage for the presentation of the successful integration of the

lead grouping method with a Kafka backend. An evaluation of the end-to-end

system underlines the practical feasibility of the proposed model.

• Chapter six: The final chapter wraps up the thesis by summarizing the key

findings, contributions, and implications of the study. It emphasizes the innovative

nature of the proposed lead grouping method and the impact it has on the field of

ECG analysis. The chapter also proposes potential directions for future research,

suggesting how the results of the current study can lead to further exploration.



Chapter 2

Background and Literature Review

This chapter delves into the extensive literature concerning cardiac monitoring and clas-

sification facilitated by telehealth technologies. The focal point is to investigate the

complex relationships between electrocardiogram (ECG) lead placements and cardiac

disease diagnosis, alongside the concurrent classification of multiple diseases. Concur-

rently, we strive to broaden our understanding of the interconnections among various

diseases, as outlined in [11, 12]. The core objective is to conduct a meticulous review

of cutting-edge deep learning techniques employed within the domain of telehealth [13],

with an emphasis on those leveraging variable lead counts. This exploration aims to

outline contemporary methodologies and pinpoint existing research lacunae that merit

further exploration.

The chapter commences by providing essential background information on the elec-

trocardiogram (ECG), an instrumental diagnostic tool ubiquitously utilized for heart

function assessment, thereby setting the stage for subsequent discussions on heart dis-

ease detection and real-time monitoring. We expound on how advanced deep learning

algorithms are integrated into these processes, heralding significant potential in augment-

ing the effectiveness of cardiac monitoring and disease classification [14]. Following this,

we engage in an extensive review of the prevailing literature, highlighting studies that

10
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are closely aligned with our research objectives. This scholarly expedition grants a pro-

found understanding of the current state of telehealth technologies. Serving a dual role,

it presents an overview of the progress in real-time cardiac monitoring and situates our

research within the wider ambit of this rapidly burgeoning field.

This exhaustive review aspires to be a pivotal reference, offering insights into the

potential and challenges associated with incorporating sophisticated machine learning

algorithms into telehealth cardiac monitoring. Additionally, by identifying the existing

gaps, this chapter seeks to pave the way for pioneering research endeavors in the domain.

2.1 Electrocardiogram

The electrocardiogram (ECG) is a non-invasive medical procedure that captures the

heart’s electrical activity over time [15]. This activity is attributed to electrical impulses

traversing through the heart, instigating heartbeats. The ECG is characterized by various

components, each denoting a specific phase of the cardiac cycle [16].

An archetypal ECG trace encompasses a P wave, QRS complex, and T wave. The

P wave corresponds to atrial depolarization, attributed to the electrical signal dispersion

from the sinoatrial node across the atria, inducing contraction. The QRS complex sig-

nifies ventricular depolarization, conducting to the heart’s principal contraction. The T

wave, in contrast, denotes ventricular repolarization or recovery [16, 17].

Electrocardiograms (ECGs) are indispensably employed by cardiologists as a potent

diagnostic tool for a myriad of cardiac conditions. For instance, an elongated QRS

complex may suggest ventricular tachycardia [19], while an elevated or depressed ST

segment could be indicative of acute conditions such as myocardial infarction or ischemia

[20]. Through detailed analysis of the amplitude, morphology, and temporal properties of

each waveform within the ECG, significant inferences can be made regarding the heart’s

electrical activity and overall functionality.
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Figure 2.1: A Typical ECG Waveform [18].

The ECG signals are procured utilizing a specialized apparatus, termed as the ECG

machine. To garner the cardiac electrical signals, electrodes serve as conduits connect-

ing the patient to the ECG machine. Ten electrodes are judiciously placed: four are

attached to the limbs, and six are positioned on the chest. These electrodes, operating

as transducers, are highly sensitive to the electrical impulses generated by the heart.

Upon interception, the ECG machine amplifies and meticulously records these impulses,

culminating in an elaborate and invaluable depiction of the heart’s electrical activity.

Figure 2.2 illustrates the twelve-lead system incorporated in the electrocardiogram

(ECG). Each lead within this system furnishes a unique perspective of the heart’s elec-

trical activity, amalgamating to a holistic representation of cardiac function. These leads

are engendered from various permutations of the ten electrodes, which are systematically

arranged on the patient’s torso, conforming to standardized protocols. This illustration

elucidates the interplay between the leads and electrodes, capturing the heart’s electrical

complexities and augmenting the diagnostic acumen of medical practitioners.

Grasping the attributes and classifications of data accrued through the electrocardio-

gram (ECG) is quintessential. The data, forming the bedrock of the diagnostic process,
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Figure 2.2: Canonical Arrangement of ECG Electrodes Within The Twelve-Lead System
[1] .

can be dichotomized into two principal categories predicated on the placement of elec-

trodes relative to the patient’s anatomy: limb leads and chest (precordial) leads.

2.1.1 Limb Leads

The limb leads constitute a vital component of the electrocardiogram (ECG) examina-

tion, offering valuable insights into the heart’s electrical activity [21]. Figure 2.3 illus-

trates that the ECG electrodes are strategically placed on the patient’s body. The limb

leads are derived from electrodes that are affixed to the right arm (RA), left arm (LA),

and left leg (LL). These three electrodes are essential for obtaining Leads I, II, and III:

These leads, specifically Lead I, Lead II, and Lead III, are derived from differential

measurements between specific pairs of limb electrodes, as follows:

Lead I = LA−RA,

Lead II = LL−RA,

Lead III = LL− LA.
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Figure 2.3: Standard Placement of ECG Electrodes [18].

These limb leads offer a frontal plane depiction of the heart’s electrical activity, with

each lead contributing a unique perspective [22]:

• Lead I: Provides an observation of the heart’s electrical activity from the vantage

point of the right arm, looking towards the left arm. Deviations in Lead I may

suggest potential complications in the left lateral section of the heart.

• Lead II: Tracks the heart’s electrical activity from the right arm towards the left

leg, effectively mirroring the natural direction of the heart’s electrical conduction.

Lead II delivers a holistic view of the heart’s rhythmic activity.

• Lead III: Offers a viewpoint of the heart from the left arm towards the left leg,

yielding data regarding the lower left section of the heart.

Alongside these basic limb leads, the augmented limb leads (aVR, aVL, aVF) supply

additional frontal plane views from varied angles. These leads, which are derived from

the limb electrodes, encompass [23]:
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Figure 2.4: Standard Placement of ECG Chest Lead Electrodes [2].

• aVR: The Augmented Vector Right lead, providing a view from the heart’s right

aspect. While not as frequently utilized in diagnoses, aVR can be instrumental in

identifying specific types of arrhythmias or ischemia.

• aVL: The Augmented Vector Left lead, offering a viewpoint from the heart’s left

side. aVL proves particularly beneficial in detecting alterations in the heart’s lateral

wall.

• aVF: The Augmented Vector Foot lead, capturing the heart from the lower end or

foot. It assists in the evaluation of changes in the heart’s inferior wall.

2.1.2 Chest Leads

The precordial, or chest leads (V1 to V6), offer a horizontal plane perspective of the

heart. These leads are derived directly from the corresponding chest electrodes [24]: As

depicted in Figure 2.4, the precordial leads are positioned on the chest to capture the

heart’s electrical activity in the horizontal plane. These leads are essential for assessing

the performance and health of different sections of the heart:
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Table 2.1: Comparison Between Chest Leads and Limb Leads in ECG

Aspect Chest Leads (Precordial
Leads)

Limb Leads

Placement Placed on the chest around the
heart.

Placed on the limbs (arms and
legs).

Plane Capture in horizontal plane. Capture in the frontal plane.
Number of
leads

6 leads (V1 to V6). 4 leads (I, II, III, and aVR,
aVL, aVF).

Significance Crucial for diagnosing condi-
tions affecting the ventricles.

Useful for a broader view.

Types of views focusing on the heart’s ante-
rior, lateral, and septal regions.

focusing on the inferior and su-
perior areas of the heart.

• V1 and V2: These leads monitor the right ventricle and septum of the heart. They

can be instrumental in identifying conditions such as right ventricular hypertrophy

and certain types of bundle branch block.

• V3 and V4: These leads observe the anterior wall of the left ventricle, yielding

valuable data concerning conditions like anterior wall myocardial infarction.

• V5 and V6: These leads provide views of the left lateral section of the heart,

enabling the identification of conditions like left ventricular hypertrophy.

In an Electrocardiogram (ECG), both chest leads and limb leads are vital in evaluating

the heart’s electrical activity. As summarized in Table 2.1, chest leads are positioned on

the chest and focus on the heart’s horizontal plane, particularly around the ventricles. In

contrast, limb leads are attached to the limbs, providing insight into the heart’s electrical

activity in the frontal plane. Chest leads are especially crucial for diagnosing conditions

that affect the ventricles and are represented by six leads (V1 to V6), whereas limb

leads, which are also six (I, II, III, aVR, aVL, and aVF), give a broader view of the

heart’s activity. Each set of leads plays a complementary role, and together, they offer a

comprehensive evaluation of the heart’s electrical function [25].

There are Various ECG types, each suited for distinct purposes, are available. The

most common types encompass the resting ECG, stress test ECG, Holter monitor, and
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event monitor [26]. These ECGs are utilized in a wide array of scenarios, from conduct-

ing routine health check-ups to monitoring the progression of heart disease, detecting

sporadic symptoms, and recording infrequent and unpredictable symptoms. Each type

of ECG has unique strengths and applicability, facilitating comprehensive cardiac eval-

uations and continuous monitoring as necessary. A deeper understanding of these ECG

types and their applications enhances the capabilities of clinicians to diagnose and man-

age various heart conditions effectively and timely [27].

2.2 Processing of Electrocardiogram Signals

The process of electrocardiogram (ECG) signal processing constitutes an indispensable

component of scrutinizing the heart’s electrical behavior, pinpointing irregularities, and

formulating precise diagnoses. This section will delve into the multifaceted aspects of

ECG signal processing, encompassing the calculation of sample frequency, ascertaining

the minimum length of the signal requisite for valid classification, alongside a diverse set

of methodologies for filtering, extracting features, and segmentation.

2.2.1 Sampling Frequency and Signal Duration

Sampling frequency in the context of an ECG signal pertains to the count of data points

amassed per unit of time. A superior sampling frequency culminates in a more com-

prehensive resolution and a more authentic depiction of the ECG signal. The Nyquist-

Shannon Sampling Theorem delineates the minimum sampling frequency requisite for an

ECG signal, which propounds that the sampling frequency should be no less than double

the highest frequency component present in the signal [28]. Considering that the high-

est frequency component for ECG signals ordinarily hovers around 100 Hz, a sampling

frequency of at least 200 Hz is recommended. However, for heightened resolution, ECG

signals are frequently sampled at 500 Hz, or in some instances, 1000 Hz [29].
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The minimum duration of an ECG signal requisite for valid classification is contingent

upon the specific use-case scenario and the classifier employed. Generally, the duration of

a single cardiac cycle, which approximates around 1 second, should suffice for fundamental

rhythm classification tasks. Nonetheless, for more intricate classification tasks, such as

discerning specific morphological characteristics or detecting transient events, a longer

signal segment may be necessitated [30].

2.2.2 Filtering Techniques for Noise Reduction in ECG Signals

The analysis of electrocardiogram (ECG) signals is often complicated by the presence

of noise and various forms of interference or artifacts, such as baseline wander, power

line interference, muscle contractions, and electromagnetic radiation from surrounding

equipment. Therefore, filtering techniques become essential for retaining the clinically

relevant aspects of the ECG signal while minimizing the impact of unwanted noise.

Several common filtering techniques used in ECG signal processing include:

• Low-pass filters: These filters, also known as high-cut filters, permit the passage

of low-frequency components of the signal while attenuating the higher frequency

components [31]. They are beneficial for the removal of high-frequency noise that

might arise from sources such as muscle contractions or interference from electrode

motion. In the context of ECG signals, the use of a low-pass filter can help retain

the vital components of the signal which are typically in the lower frequency range.

• High-pass filters: High-pass or low-cut filters allow the passage of high-frequency

components while reducing the influence of low-frequency components [32]. These

filters find their utility in mitigating the effects of baseline wander, a low-frequency

artifact commonly instigated by factors such as patient respiration or movement.

• Band-pass filters: Band-pass filters permit a specific range of frequencies to

pass while attenuating components outside of this range [33]. These filters are
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particularly advantageous when the aim is to concurrently eliminate high-frequency

noise and baseline wander, offering a more comprehensive solution.

• Notch filters: These filters are designed to target and attenuate a specific narrow

frequency band, leaving the remainder of the frequency spectrum unaffected [34].

For instance, notch filters are commonly utilized to eliminate the 50 or 60 Hz power

line interference that can significantly corrupt ECG signals.

In modern digital signal processing, these filters can be implemented efficiently using

software tools. Python, for instance, offers libraries like SciPy and NumPy, which con-

tain functions that can be used to design and apply these filters to ECG signals, thus

facilitating the removal of unwanted noise while preserving the essential features of the

signals [35].

2.2.3 Feature Extraction from ECG Signals

Feature extraction constitutes a pivotal phase in the analysis of electrocardiogram (ECG)

signals, facilitating the identification and extraction of relevant characteristics or features

from the ECG signal that can be instrumental in classification or diagnostic tasks. These

features may be based on time-domain characteristics, frequency-domain properties, or

a combination of both, providing a multifaceted perspective on the heart’s electrical

activity [36].

There are numerous potential ECG features to consider, including but not limited to:

• QRS complex duration: The QRS complex duration, signifying ventricular de-

polarization, can yield insights into the functionality of the heart’s conduction

system. Abnormalities in the QRS complex duration can help pinpoint medical

conditions such as bundle branch block or ventricular hypertrophy [37].

• Amplitude of the QRS complex: The QRS complex’s amplitude can be an

important feature, as it may indicate conditions like left ventricular hypertrophy,
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where the amplitude is typically increased, or pericardial effusion, where it may be

decreased [38].

• T-wave morphology: The shape, duration, and amplitude of the T wave can be

indicative of various cardiac conditions. Abnormalities such as peaked, inverted, or

biphasic T waves can be a sign of hyperkalemia, myocardial ischemia, or ventricular

hypertrophy, respectively [39].

• RR interval: This refers to the temporal interval between successive R peaks,

which corresponds to the duration of a single cardiac cycle. Variations in the RR

interval can serve as an indicator of autonomic nervous system activity. Disorders

such as atrial fibrillation or heart block can often be inferred from changes in RR

intervals [40].

• QT interval: The QT interval, spanning from the inception of the QRS com-

plex to the conclusion of the T wave, represents the duration of both ventricular

depolarization and repolarization. Abnormal QT intervals, whether prolonged or

shortened, can be symptomatic of an elevated risk of ventricular arrhythmias or

sudden cardiac death [41].

• P-wave duration and amplitude: These attributes of the P wave, indicative of

atrial depolarization, can offer valuable information about the size and functional

capacity of the atria. Deviations from normal P-wave duration or amplitude might

be suggestive of conditions such as atrial enlargement or atrial conduction disorders

[42].

• ST-segment deviation: Any deviation of the ST segment from the baseline can

be symptomatic of ischemia, injury, or infarction. Notably, elevated or depressed ST

segments can help diagnose medical conditions like myocardial ischemia, myocardial

infarction, or pericarditis [43].
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In the contemporary landscape of digital signal processing, these features can be

extracted with remarkable accuracy using software tools and machine learning algorithms,

paving the way for automated analysis of ECG signals.

2.3 ECG Classification

Electrocardiogram (ECG) classification is a critical and complex task that entails iden-

tifying and categorizing various cardiac conditions or abnormalities based on the ECG

signals obtained from a patient. This process involves recognizing and categorizing differ-

ent patterns emerging from the heart’s electrical activity. These patterns or rhythms can

be either typical, indicative of healthy heart function, or atypical, suggesting potential

abnormalities or conditions.

The significance of accurate ECG classification cannot be overstated, as it plays a

vital role in diagnosing and monitoring various heart conditions. Abnormalities in ECG

patterns are often associated with a wide range of heart conditions, necessitating a com-

prehensive understanding of these patterns for accurate classification. for example :

• Myocardial Infarction (MI): MI, often referred to as a heart attack, involves

the death of heart muscle cells due to reduced blood flow to the heart. This reduced

blood flow often results from the blockage of coronary arteries. ECG changes seen

in MI typically include pathologic Q-waves, ST-segment elevations, and T-wave

inversions. These changes may vary depending on the location and extent of the

infarction. Rapid and accurate detection of these patterns in ECG signals is vital

as it aids in prompt MI diagnosis and treatment, potentially preventing further

myocardial damage and improving survival rates [44].

• ST-T wave abnormality or T wave inversions (STTC): Abnormalities in the

ST-T wave can suggest various heart conditions, including ischemic heart disease,

electrolyte imbalances, or left ventricular hypertrophy. In the context of ischemia,
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ST-segment depression or T-wave inversions may indicate myocardial ischemia, a

precursor to MI. Accurate recognition of these abnormalities can help identify at-

risk patients and initiate appropriate medical interventions [45].

• Conduction Disturbance (CD): CDs involve abnormal electrical conduction

within the heart, potentially conducting to irregular heart rhythms. These dis-

turbances can be seen on an ECG as changes in the P wave, QRS complex, or

PR interval. For instance, a widened QRS complex may suggest a bundle branch

block, while a prolonged PR interval could be indicative of a first-degree heart block.

Proper classification of CDs is crucial as they may indicate underlying structural

heart diseases or increased risk for adverse cardiac events [46].

• Hypertrophy (HYP): Hypertrophy refers to the thickening of heart muscle,

which can occur in response to increased workload on the heart, such as in hy-

pertension or valvular heart diseases. In an ECG, left ventricular hypertrophy

often presents with increased QRS complex amplitude, ST-T changes, and leftward

shift of the QRS axis, while right ventricular hypertrophy may cause right axis de-

viation and prominent R waves in right precordial leads. Accurate classification of

hypertrophy can help identify patients with conditions necessitating further workup

and management [44].

Thus, each cardiac condition has unique ECG patterns that can be identified and clas-

sified. Modern computational and machine learning tools have made significant strides

in aiding this classification process, enhancing diagnostic accuracy and improving patient

outcomes.

2.3.1 ECG Classification via classical machine learning

ECG classification using classical machine learning methods involves a two-step process:

feature extraction and classification. In the feature extraction step, significant and dis-
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criminative features are extracted from the ECG signals, while in the classification step,

these features are used as input to machine learning algorithms to classify different car-

diac conditions. However, feature extraction can be challenging, making ECG monitoring

complex.

• Logistic Regression (LR): Logistic regression is a statistical method for analyz-

ing a dataset in which the dependent variable is binary. In the context of ECG

classification, the logistic regression model predicts the probability of a cardiac con-

dition or abnormality based on the extracted features [47]. The logistic function,

or sigmoid function, is given by 2.1 [47] :

P (y = 1|x) =
1

1 + e−(β0+β1x1+···+βnxn)
(2.1)

• Support Vector Machines (SVM): SVM is a supervised machine learning al-

gorithm that constructs a hyperplane or a set of hyperplanes in a high-dimensional

space to separate different classes of data points [48]. SVM aims to maximize the

margin between the classes while minimizing the classification error. The classifi-

cation function for an SVM is given by 2.2 [48]:

f(x) = sign(
N∑
i=1

αiyiK(x, xi) + b) (2.2)

where K(x, xi) is the kernel function, αi are the Lagrange multipliers, and b is the

bias term.

• Decision Trees (DT): Decision trees are a non-parametric method for ECG clas-

sification that recursively partitions the feature space into regions based on the

feature values [49]. Each internal node of the tree represents a decision on a fea-

ture, while each leaf node represents the predicted class label. The decision tree

algorithm aims to minimize the classification error or a related cost function.
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• Random Forest (RF): Random forest is an ensemble learning method that con-

structs multiple decision trees and combines their predictions to improve the clas-

sification accuracy and prevent overfitting [50]. The majority vote of individual

decision trees determines the final class label. A comparison of these classical ma-

chine learning methods for ECG classification is presented in Table 2.2.

Table 2.2: Comparison of Classical Machine Learning Methods For ECG Classification
Regarding Accuracy, Sensitivity, and Specificity.

Method Accuracy Sensitivity Specificity
Logistic Regression 0.91 0.87 0.93
Support Vector Machines 0.94 0.89 0.95
Decision Trees 0.88 0.85 0.90
Random Forest 0.95 0.92 0.96

The table 2.2 above demonstrates the performance of various classical machine

learning methods in ECG classification [51, 52, 53, 54]. It is important to note

that the choice of method depends on the specific problem and the quality of the

extracted features. However, the reliance on feature extraction can make ECG

monitoring a difficult task, as the quality and selection of features significantly

impact the performance of these methods. Consequently, researchers have started

exploring deep learning approaches, which can automatically learn features from

raw ECG signals, alleviating the need for manual feature extraction and improving

classification performance.

• The Need for Transitioning from Machine Learning to Deep Learning in

ECG Classification

Traditional machine learning methodologies have been extensively utilized in ECG

classification because they can model intricate relationships between input features

and output classes. Nonetheless, these techniques heavily rely on manual feature

extraction, which calls for domain expertise and can be labor-intensive. Further-

more, the performance of these conventional machine learning algorithms is largely
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contingent on the quality and selection of the extracted features. This dependence

makes it a challenging task to attain high classification accuracy [55] consistently.

In the light of recent advancements, deep learning has surfaced as a potent alterna-

tive to traditional machine learning techniques, particularly in ECG classification.

Deep learning models, which include convolutional neural networks (CNNs), recur-

rent neural networks (RNNs), and long short-term memory (LSTM) networks, have

showcased their proficiency in learning hierarchical feature representations directly

from raw ECG signals [56]. This property obviates the necessity for manual feature

extraction and potentially leads to enhanced classification performance [57].

Furthermore, deep learning models can be optimized for specific tasks and adapted

to many ECG classification problems, such as arrhythmia detection, myocardial

infarction identification, and heart failure prediction [58]. This adaptability makes

deep learning models more suitable for handling the inherent variability and com-

plexity of ECG signals, which can be influenced by factors such as age, gender,

medical history, and signal quality [59].

The advent and advancements of deep learning technologies have streamlined the

ECG classification process and significantly enhanced its accuracy and efficiency.

As these technologies continue to evolve, they are anticipated to play a pivotal role

in diagnosing and monitoring cardiac conditions, thereby facilitating better patient

care and outcomes.

2.3.2 ECG Classification via Deep Learning

Electrocardiogram (ECG) classification via Deep Learning has seen considerable advance-

ments in recent years, with various types emerging based on the nature of the neural

networks and the architecture used.

• Artificial Neural Networks in ECG Classification
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Artificial Neural Networks (ANNs) are a powerful deep learning approach used for

ECG classification. They are composed of layers of nodes, often referred to as

”neurons,” interconnected in a manner reminiscent of the human brain’s structure.

ANNs rose to popularity in the 1990s and have since been recognized for their

effectiveness in handling both categorical and numerical predictions. Essentially,

ANNs are adept at learning patterns from data, making them akin to smoothing

algorithms. Moreover, they also have similarities with regression algorithms as

they aim to establish the relationship between inputs and outputs based on cross-

sectional data [60].

As depicted in Figure 2.5, a typical ANN consists of an input layer, hidden layers,

and an output layer [61]. Edges connect neurons in these layers, each carrying

a weight. During computation, the ANN uses these weights to calculate neuron

values, which are then passed through an activation function. This function maps

the values from the input layer to the output layer. Due to their ability to model

complex non-linear relationships, ANNs excel at sophisticated tasks like ECG clas-

sification, where capturing subtle patterns and relationships is crucial [62].

Neurons within these layers are connected via edges associated with specific weights.

The network computes neuron values based on their associated weights in an ANN,

feeding these values into an activation function. This activation function then maps

the collective values from the input to the output layer [60].

The primary strength of ANNs lies in their ability to capture complex non-linear

relationships. This makes them particularly suitable for intricate tasks like ECG

classification, where identifying and understanding the relationships within the data

is paramount to accurate classification [61]. The raw ECG signals are utilized as

inputs into the network for ECG classification. The network subsequently learns

the complex, non-linear relationships existing between the ECG signal and the re-
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Figure 2.5: Schematic Representation of an Artificial Neural Network (ANN) With Input
Layer (I), Hidden Layer (H), and Output Layer (O).

spective class labels. This learning process comprises a stage known as forward

propagation, wherein the signals are transmitted through numerous layers of the

network. Each layer elevates the data into a higher level of abstraction. Mathe-

matically, this transformation is depicted by 2.3 [61]:

h
(l)
i = f

(
N∑
j=1

w
(l)
ij h

(l−1)
j + b

(l)
i

)
(2.3)

Here, h
(l)
i denotes the activation of the i-th neuron in the l-th layer, w

(l)
ij is the

weight linking the i-th neuron in the (l − 1)-th layer to the j-th neuron in the

l-th layer, b
(l)
i is the bias term corresponding to the i-th neuron in the l-th layer, N

represents the total number of neurons in the (l−1)-th layer, and f is an activation

function.

Post prediction, the discrepancy between the predicted and the actual class labels

is computed. This discrepancy is subsequently propagated backwards through the
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network in a phase called backpropagation, and the network tweaks its parameters

in order to minimize this discrepancy. This adjustment can be represented as 2.4

[61]:

w
(l)
ij := w

(l)
ij − α

∂

∂w
(l)
ij

J(w) (2.4)

In this equation, J(w) is the cost function, α symbolizes the learning rate, and w
(l)
ij

is the weight being updated.

• Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a specialized type of ANN that have

been successfully employed in ECG classification tasks, showcasing remarkable re-

sults. The architecture of CNNs is distinctive for its incorporation of convolutional

layers, which enable the network to identify local patterns within the input data

[63].

The CNN model is adept at automatically extracting features from raw ECG sig-

nals, eliminating manual feature extraction. This ability to automate feature ex-

traction saves valuable time and resources and potentially enhances classification

performance [63].

Figure 2.6 presents an example of a CNN architecture for ECG classification. The

architecture typically consists of multiple layers: convolutional, pooling, and fully

connected. These layers collaborate to learn hierarchical features from raw ECG

signals, allowing the network to classify signals into distinct classes [63].

The convolutional layer is a key component of CNNs and detects local features in

the input data. A convolution operation is performed in this layer, which can be

mathematically represented as 2.5 [63]:
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Figure 2.6: Convolutional Neural Network (CNN) Architecture.

yi =
k∑

j=1

wjxi+j−1 + b (2.5)

where yi is the output feature map, xi+j−1 is the input data, wj is the kernel or

filter weight, k is the kernel size, and b is the bias term.

Pooling layers reduce the spatial dimensions of the feature maps, thereby reduc-

ing computational complexity and enabling the network to capture translational

invariance. The most common pooling operation is max pooling, which selects the

maximum value within a specified window.

Fully connected layers, on the other hand, combine the learned features and gener-

ate the final output for classification. The output of the fully connected layers can

be computed as 2.6 [63]:

oi = f

(
N∑
j=1

wijhj + bi

)
(2.6)

where oi is the output of the i-th neuron, hj is the input from the previous layer,

wij is the weight connecting the i-th neuron to the j-th neuron, bi is the bias term

for the i-th neuron, N is the total number of neurons in the previous layer, and f
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is an activation function.

Two primary types of CNNs are used for ECG classification: 1D CNNs and 2D

CNNs. 1D CNNs are designed to work with one-dimensional data, such as time-

series signals like ECGs. In contrast, 2D CNNs are designed to work with two-

dimensional data, such as images or spectrograms derived from ECG signals.

– 2D CNN for ECG Classification: Two-dimensional CNNs (2D CNNs) have

been leveraged for ECG classification tasks, wherein they utilize two-dimensional

convolutional layers to discern local patterns in input data. The input data

could either be 2D images or spectrograms derived from the ECG signals [64].

The convolutional layers operate by sliding a two-dimensional kernel or filter

over the input data, thereby identifying features critical to the classification

task. A typical 2D CNN’s architecture is composed of various layers, including

2D convolutional layers, pooling layers, and fully connected layers. These lay-

ers collaboratively learn hierarchical features from the input data, facilitating

the network’s ability to classify signals into distinct classes [65].

– 1D CNN for ECG Classification 1D CNNs for ECG classification use one-

dimensional convolutional layers to learn local patterns in the ECG signals.

These layers slide a one-dimensional kernel or filter across the input data,

detecting features relevant to the classification task. The architecture of a

1D CNN typically includes multiple layers, such as 1D convolutional layers,

pooling layers, and fully connected layers. These layers work together to learn

hierarchical features from raw ECG signals, enabling the network to classify

the signals into different classes [66].

Deep learning models such as Artificial Neural Networks (ANNs), One-Dimensional

Convolutional Neural Networks (1D CNNs), and Two-Dimensional Convolutional

Neural Networks (2D CNNs) have shown significant promise in ECG classifica-
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tion, outperforming traditional machine learning techniques in several aspects.

They have the capability to learn features autonomously from raw data, man-

age large-scale datasets, and support end-to-end learning, conducting to a signif-

icant enhancement in the accuracy and robustness of ECG classification systems

[67][65][66]. However, while these models have exhibited superior performance, they

may still need help dealing with sequential data. Both ANNs and CNNs might need

help with capturing the temporal dependencies in the ECG signals, which is a criti-

cal factor in accurate classification. Furthermore, the size and complexity of CNNs

can also make them computationally expensive and difficult to interpret. There-

fore, despite the advantages of ANNs, 1D CNNs, and 2D CNNs, a gap needs to be

addressed - the effective analysis of time-dependent data inherent in ECG signals.

This opens up the opportunity to explore other deep learning architectures, such

as Recurrent Neural Networks (RNNs), which are specifically designed to handle

sequential data and might offer a solution to this problem.

• Recurrent Neural Networks (RNN) for ECG Classification Recurrent Neu-

ral Networks (RNNs) [68] are a variant of artificial neural networks designed specif-

ically to handle sequential data by capturing temporal dependencies. This charac-

teristic renders RNNs particularly effective for ECG classification tasks, given their

capacity to model the time-dependent nature of ECG signals.

Figure 2.7 showcases an example of RNN architecture for ECG classification. This

architecture generally comprises of an input layer, recurrent layers, and an output

layer. Collaboratively, these layers process raw ECG signals, effectively capturing

temporal dependencies and enabling the network to distinguish between different

classes of signals [69].

One of the crucial components of RNNs is the recurrent layer, which encapsulates

temporal information from the input data. This layer utilizes a recurrent unit that
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Figure 2.7: Recurrent Neural Network (RNN) Architecture.

consistently maintains and updates hidden states over time. The output from this

recurrent layer at a given time step, denoted as t, can be represented mathematically

as 2.7 [69]:

ht = f(Wxhxt + Whhht−1 + b) (2.7)

where ht is the hidden state at time step t, xt is the input at time step t, Wxh and

Whh are the input-to-hidden and hidden-to-hidden weight matrices, respectively, b

is the bias term, and f is an activation function.
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The output layer in an RNN is responsible for generating the final output for

classification. The output of the output layer can be computed as 2.8 [69]:

oi = f

(
N∑
j=1

wijhj + bi

)
(2.8)

where oi is the output of the i-th neuron, hj is the input from the previous layer,

wij is the weight connecting the i-th neuron to the j-th neuron, bi is the bias term

for the i-th neuron, N is the total number of neurons in the previous layer, and f

is an activation function.

RNNs are effective for ECG classification, as they can model the time-varying

nature of ECG signals and capture the complex temporal dependencies between

different signal segments. However, traditional RNNs can suffer from vanishing or

exploding gradient problems, making it challenging to learn long-range dependen-

cies. To overcome these issues, advanced RNN architectures, such as Long Short-

Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) networks, have

been proposed and demonstrated improved performance in ECG classification tasks

[70].

• Long Short-Term Memory (LSTM) Networks for ECG Classification

Long Short-Term Memory (LSTM) networks represent a specialized version of

RNNs designed to overcome a central limitation of conventional RNNs: the dif-

ficulty in learning long-term dependencies due to the infamous vanishing gradient

problem. This issue refers to the propensity for gradients to become exceedingly

small during the backpropagation process, which can effectively stall the network’s

learning [71] [72].

LSTMs address this problem by integrating a memory cell capable of preserving

information for extended periods. This feature makes them exceptionally capable
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Figure 2.8: A Long Short-Term Memory (LSTM) Network Architecture.

of learning from data where substantial time gaps distance critical information

[71]. Within the context of ECG classification, an LSTM network can input a

series of ECG signals and make predictions grounded in both the current signal

and preceding signals it has processed, akin to a traditional RNN. However, due

to the integrated memory cell, it can also recall vital information from the distant

past, which may be instrumental for accurate predictions [67].

The nucleus of an LSTM network is the LSTM unit, composed of a memory cell

and three gates, namely the input gate, forget gate, and output gate. These gates

regulate the memory cell’s influx, internal, and efflux of information. The following

equations dictate the behavior of an LSTM unit 2.9 - 2.13 [67]:

ft = σg(Wf [ht−1, xt] + bf ) (2.9)

it = σg(Wi[ht−1, xt] + bi) (2.10)

ot = σg(Wo[ht−1, xt] + bo) (2.11)

ct = ft ∗ ct−1 + it ∗ σc(Wc[ht−1, xt] + bc) (2.12)
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ht = ot ∗ σh(ct) (2.13)

In these equations, xt represents the input at time t, ht−1 signifies the output from

the previous time step, ct denotes the memory cell state at time t, and ft, it, and ot

are the forget, input, and output gates respectively, which control the information

flow within the memory cell. W and b represent weights and biases, and σg, σc,

and σh are the activation functions (typically sigmoid for the gates and hyperbolic

tangent for the cell state and output) [67].

The capacity of the LSTM’s memory cell to recall long-term dependencies allows it

to capture critical information from the distant past within ECG signals, which is

often crucial for accurate ECG classification [67]. For instance, if a patient’s heart

rhythm exhibits a periodic abnormality, an LSTM network can detect this pattern

and leverage it for classification, even if it isn’t present in the most recent ECG

signals. This capability, coupled with LSTM’s resilience to noise and variability in

ECG signals, renders them an effective tool for ECG classification [67].

While the LSTM network is proficient at capturing temporal dependencies in ECG

signals, it is inherently designed to learn from past information to predict future

outcomes. However, future information can also supply valuable context for in-

terpreting the past in many clinical situations. This observation led to the de-

velopment of the Bidirectional LSTM (BiLSTM), an extension of the traditional

LSTM. The BiLSTM introduces backward information passed from future states

to augment the learning process, providing the network with a broader contextual

understanding for accurate classification [73].

• Bidirectional LSTM for ECG Classification

Bidirectional LSTMs (BiLSTMs) are an extension of the standard LSTM architec-

ture, designed to improve the model’s ability to capture information from past and

future time steps in a sequence. BiLSTMs consist of two separate LSTM layers that
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process the input sequence in opposite directions: one forward LSTM layer and one

backward LSTM layer. The forward LSTM layer processes the input sequence in

the natural order (from the beginning to the end). In contrast, the backward LSTM

layer processes the input sequence in reverse order (from the end to the beginning).

By processing the sequence in both directions, the BiLSTM can capture both past

and future context for each time step, which can be particularly useful for ECG

classification tasks where the importance of a specific ECG signal may depend on

its surrounding signals [73].

The forward pass of a BiLSTM is identical to a regular LSTM, as described in

the previous section. The backward pass, on the other hand, begins at the last

time step and works its way backward. The hidden states from the forward and

backward passes are then concatenated to create a final output vector passed to

the next network layer.

Mathematically, the forward pass of a BiLSTM is computed as follows 2.14 [73]:

−→
h t = LSTMforward(xt,

−→
h t−1) (2.14)

Where xt is the input at time step t and
−→
h t is the forward hidden state at time

step t. The backward pass is computed as 2.15 [73]:

←−
h t = LSTMbackward(xt,

←−
h t+1) (2.15)

Where
←−
h t is the backward hidden state at time step t. The final output vector

ht is then obtained by concatenating the forward and backward hidden states2.16

[73]:

ht = [
−→
h t;
←−
h t] (2.16)
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Figure 2.9: A Bidirectional LSTM (BiLSTM) Network Architecture.

In the context of ECG classification, a BiLSTM can take a sequence of ECG signals

as input and make predictions based on both the past and future signals it has seen.

This allows the BiLSTM to capture both the temporal dependencies and future

context in the ECG signals, which are often important for accurate classification.

For example, suppose a patient’s ECG signals show a pattern where an abnormality

is usually preceded and followed by certain types of waveforms. In that case, the

BiLSTM can use this contextual information to make more accurate predictions

about the presence of abnormalities [74].

Moreover, BiLSTMs have been shown to be robust to noise and variability in ECG

signals, making them an excellent choice for ECG classification tasks. In particular,

their ability to learn from both past and future information enables them to iden-

tify relevant patterns and features that may be missed by unidirectional models,

conducting to improved classification performance in real-world scenarios.

• Fully Convolutional Network (FCN)

Fully Convolutional Networks (FCNs) are a type of deep learning model predom-

inantly employed for diverse computer vision tasks, such as image segmentation
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Figure 2.10: Example of Fully Convolutional Network (FCN) Architecture for ECG Clas-
sification.

and object detection. To illustrate this, let’s consider an instance of Wang and

colleagues’ FCN architecture, specifically designed for the classification of cardiac

arrhythmias from ECG signals, which delivered exceptional performance [75].

Unlike traditional Convolutional Neural Networks (CNNs), FCNs replace fully con-

nected layers with convolutional ones, allowing the model to learn hierarchical fea-

tures directly from the input data. This feature makes FCNs suitable for handling

variable-length sequences such as ECG signals, thereby eliminating the need for

pre-processing or resizing inputs.

The exemplary FCN architecture proposed by Wang consists of multiple 1D con-

volutional layers, followed by a global average pooling layer, and ending with a

softmax output layer. The convolutional layers play a key role in identifying local

and global ECG signal features. The global average pooling layer helps in mitigat-

ing overfitting by consolidating learned features into a fixed-sized output vector.

The softmax layer then provides the final classification probabilities for each ar-

rhythmia category in question [75].

The 2.10, provides a robust and versatile framework for ECG classification, blending

the advantages of hierarchical feature learning from convolutional layers with the
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Figure 2.11: Simplified Inception Module Adapted For ECG Classification.

ability to handle variable-length input sequences. Its impressive performance in

identifying cardiac arrhythmias and its resistance to noise and patient variability

sets it apart as a powerful ECG-based diagnosis and monitoring tool.

There are several possibilities for refining and expanding this FCN architecture

further. For instance, integrating residual or dense connections between layers

could enhance the model’s capacity to learn complex features and mitigate the

vanishing gradient problem. Furthermore, combining the FCN with other deep

learning models like RNNs or LSTMs could enable the network to better understand

both spatial and temporal dependencies in ECG signals [76], [77], [78].

• Inception Networks for ECG Classification

In the landscape of deep learning architectures, Inception networks, pioneered by

Szegedy et al. [79], have achieved groundbreaking performance across various com-

puter vision tasks, most notably image classification. The core novelty of Inception

networks lies in integrating multiple parallel convolutional layers, each with a dis-

tinct kernel size, within a singular layer. This design choice enables the model to

learn a diverse array of features simultaneously [80]. For ECG classification tasks,

the architectural strengths of Inception networks allow for the automated detection

and learning of varying ECG waveform patterns across different scales.
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As illustrated in Figure 2.11, the adapted Inception module for ECG classification

processes the input through multiple parallel convolutional layers each with distinct

kernel sizes (1x1, 3x3, and 5x5) and a pooling layer. These individual layers’ output

feature maps are subsequently concatenated along the depth dimension. The final

output is a holistic representation of the input signal, encapsulating various ECG

waveform aspects.

Leveraging Inception networks for ECG classification can conduct to learning vari-

ous features at differing scales and complexities. This makes them ideally suited for

detecting and classifying various cardiac arrhythmias. Additionally, the Inception

architecture can be synergized with other deep learning models, such as LSTM

or BiLSTM networks, to effectively capture spatial and temporal dependencies in

ECG signals, further bolstering the overall classification performance [81].

The Inception architecture presents several notable advantages for ECG classifica-

tion tasks:

– Multi-scale feature learning: Owing to the usage of multiple parallel con-

volutional layers with distinct kernel sizes, the Inception network can capture

features at various scales. This capability allows it to learn diverse ECG wave-

form patterns.

– Computational efficiency: Compared to traditional deep learning models,

the Inception network can yield superior performance with relatively fewer

parameters. This translates into greater computational efficiency.

– Modularity and flexibility: The Inception module can be seamlessly inte-

grated into other deep learning architectures. For instance, it can be combined

with LSTM or BiLSTM networks to capture spatial and temporal dependen-

cies in ECG signals effectively.

– Robustness: Compared to other deep learning models, Inception networks
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have demonstrated superior robustness to noise and variations in ECG signals.

This makes them well-suited for real-world clinical applications [82].

• Residual Networks (ResNet)

Residual Networks (ResNet), proposed by He et al. [83], have advanced various deep

learning applications, including image classification, object detection, and ECG

classification. The primary innovation within ResNet lies in introducing residual

connections (also referred to as skip or shortcut connections) into the network

architecture. These connections enable the network to learn residual functions,

defined as the differences between the input and the desired output, instead of

directly learning the desired output. This mitigates the vanishing gradient problem

and allows for the training of deeper networks, resulting in enhanced performance.

– ResNet Architecture and Working Principle

ResNet architecture typically comprises multiple convolutional, batch normal-

ization, activation, and pooling layers, organized hierarchically. The unique

contribution in ResNet is the incorporation of residual connections, depicted

as arrows linking non-adjacent layers within the network. These connections

facilitate the learning of residual functions, as they permit gradients to bypass

layers during backpropagation, thus enabling deeper representation learning.

To comprehend the operating principle of ResNet, consider a simple scenario.

Given an input x and a desired output H(x), the aim in a traditional deep

network is to learn a function F (x) such that F (x) = H(x). In contrast,

ResNet strives to learn a residual function R(x) = H(x) − x, so that the

desired output can be obtained as H(x) = R(x) + x. Mathematically, this is

expressed as follows2.17 [82] :

H(x) = R(x) + x (2.17)
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This subtle modification enables the network to concentrate on learning the

difference between the input and the desired output, which often leads to

superior performance, especially in deeper networks [83].

Figure 2.12 illustrates a simple example of a residual connection within a

ResNet architecture. The input x is fed into a function R(x), representing the

residual function. The output of R(x) is then added to the input x to achieve

the desired output H(x).

– Types of ResNet

Several variants of ResNet architecture exist, which primarily differ in their

number of layers and specific layer arrangement. The most widely used vari-

ants include ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152,

where the numbers indicate the total count of layers in each network [84].

The ResNet architecture has several prominent variants, each differing in the

number of layers they incorporate. For instance, the ResNet-18 variant com-
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prises 18 layers, while the ResNet-34 variant includes 34 layers. Additionally,

the ResNet-50 variant, as the name implies, contains 50 layers. Furthermore,

the ResNet-101 and ResNet-152 variants are more complex, incorporating 101

and 152 layers. These variations in the number of layers contribute to each

ResNet variant’s differing performance and capacity, allowing for flexibility in

tackling a wide range of tasks and computational requirements.

These ResNet variants have been effectively leveraged for diverse tasks within

computer vision and signal processing domains. For example, ResNet-50,

with its moderate depth and computational complexity, has frequently been

adopted as the backbone model in numerous transfer learning applications

[85]. Meanwhile, more profound models like ResNet-101 and ResNet-152 have

been utilized in more computationally intensive tasks that require more in-

tricate feature extraction and representation, such as object detection and

semantic segmentation.

The selection of a specific ResNet variant hinges upon the requirements and

constraints of a task, including computational resources, data complexity, and

performance goals. Regardless of these varying factors, these architectures

have demonstrated exceptional performance across a broad spectrum of tasks,

encompassing ECG classification. The employment of residual connections in

these architectures is worth noting as it expedites the training of deeper net-

works, thereby facilitating the extraction of more sophisticated and discrimina-

tive features from the data, which in turn enhances classification performance

[84].

Within the realm of ECG classification, ResNets can indeed prove highly ef-

ficacious. At their core, ECG signals are temporal sequences characterized

by complex patterns and potential long-term dependencies akin to spatial hi-

erarchies in images. Consequently, a deep architecture like ResNet, which is
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intrinsically designed to learn hierarchical representations, can be exception-

ally well-suited for ECG classification [86].

The deep layers within a ResNet can learn to discern intricate patterns within

the ECG signals, such as the nuanced differences between various types of

arrhythmias or the specific features indicative of myocardial infarction. Fur-

thermore, the residual connections can facilitate the seamless flow of informa-

tion through the network, enabling effective learning of both low-level features

(like individual ECG waves) and high-level features (like heart rhythm). This

amalgamation of deep architecture and residual learning positions ResNet as

a potent tool for ECG classification [87].

Additionally, despite their depth, ResNets are relatively robust to overfitting

due to the residual connections providing a form of regularization. This trait

renders them particularly suitable for tasks such as ECG classification, where

the quantity of available data may be constrained, and the risk of overfitting

is heightened.

• XResNet

The xResNet architecture could be envisaged as an ”evolved” or enhanced version

of the traditional ResNet, featuring several tweaks designed to augment model

precision. These alterations, dubbed ResNet-B, ResNet-C, and ResNet-D, were

showcased in the ”Bag of Tricks for Image Classification with Convolutional Neural

Networks” study [88].

– ResNet-B Adjustment

The modification in ResNet-B involves a change in the stride of the initial 1x1

convolution in path A of the downsampling block from 2 to 1. Additionally, the

stride of 2 is shifted to the subsequent 3x3 convolution. In the original ResNet

layout, applying a stride of 2 to the first 1x1 convolution caused the loss of
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a substantial portion - three-quarters - of the input feature map. Moving the

stride of 2 to the second convolution overcomes this issue without altering the

output shape of path A [88].

– ResNet-C Adaptation The ResNet-C change, suggested in Inception-v2,

modifies the network’s input stem. It replaces the initial 7x7 convolution with

three consecutive 3x3 convolutions. The first of these 3x3 convolutions has a

stride of 2, and the last one leads to a 64-channel output, followed by a 3x3

max-pooling layer with a stride of 2. Although the final shape is identical,

the 3x3 convolutions are now considerably more efficient than the preceding

7x7 convolution, as a 7x7 convolution is 5.4 times more computation-intensive

than a 3x3 convolution [89].

– ResNet-D Innovation The ResNet-D enhancement, a unique modification,

is a logical progression from ResNet-B. It addresses the problem of information

loss in path B of the downsampling block. Here, a 1x1 convolution with a

stride of 2 was previously utilized, leading to the discarding of three-quarters

of the valuable input information. To solve this, ResNet-D replaces the 1x1

convolution with a 2x2 average-pooling layer with stride 2, followed by a 1x1

convolution layer [90]. The following diagram encapsulates these modifications

2.13:

The xResNet architecture can be assembled in various configurations, thus gener-

ating different versions of the architecture. These versions diverge in the number

of layers they encompass, with the most frequently encountered being xResNet50,

xResNet101, and xResNet152. The numbers in their monikers reflect the number

of layers each architecture incorporates.

• ResNet Architectures Evaluation To determine the most efficient architecture

for real-time 12-lead ECG classification, we compared the performance of these



Chapter 2. Background and Literature Review 46

+

Conv
1x1, 2048

Conv
3x3 ,512

Conv
1x1 ,512,s=2

Conv
1x1 ,2048,s=2

Output

Input

Original ResNet

+

Conv
1x1

Conv
3x3

Conv
1x1 

Conv
1x1 ,s=2

Output

Input

ResNet-B

+

Conv
1x1

Conv
3x3

Conv
1x1 

Conv
1x1 ,s=2

Output

Input

ResNet-D

+

Conv
3x3

Conv
3x3

Conv
3x3,s=2

Output

Input

ResNet-C

Maxpool
3x3,s=2

Figure 2.13: Comparison Between Original ResNet and XResNet [88].

ResNet architectures using two main metrics: the mean F1 score and the inference

time.

The mean F1 score measures the model’s accuracy in classifying normal and abnor-

mal signals in 12-lead ECG data. It is the harmonic mean of precision and recall,

defined as 2.18 [90]:

F1 = 2× precision× recall

precision + recall
(2.18)

where precision is the fraction of true positive instances among all instances that

the model predicted as positive, and recall is the fraction of true positive instances

among all actual positive instances.

The inference time represents the computational efficiency of the model. Specifi-

cally, it is the time the model takes to classify a new data point once it has been

trained. This metric is crucial in real-time applications where the classification
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speed can significantly impact the model’s utility.

Table 3.1 shows the comparison results of the ResNet architectures in terms of the

mean F1 score and inference time.

Table 2.3: Comparison Of The Performance of Different ResNet Architectures In Terms
of Mean F1 Score and Inference Time

Architecture Mean F1 Score Inference Time (s)
resnet1d18 0.89 0.015
resnet1d34 0.91 0.025
resnet1d50 0.92 0.035
resnet1d101 0.93 0.050
resnet1d152 0.93 0.060
xresnet1d18 0.92 0.017
xresnet1d34 0.93 0.028
xresnet1d50 0.94 0.038
xresnet1d101 0.95 0.052
xresnet1d152 0.95 0.063

As the table 2.3 shows, the deeper architectures tend to achieve higher mean F1

scores but also require longer inference times. The xresnet1d18 architecture, how-

ever, stands out as it achieves a relatively high mean F1 score while maintaining a

low inference time, making it an ideal choice for real-time applications.

• Xresnet1d18 Based on the comparison results in the previous subsection, the

xresnet1d18 architecture was chosen as the optimal model for the real-time clas-

sification of 12-lead ECG data. This model balances classification accuracy (as

measured by the mean F1 score) and computational efficiency (as indicated by the

inference time).

The architecture of XResNet18 consists of several basic blocks. Each block com-

prises a few convolutional, batch normalization, and ReLU activation layers. These

blocks are repeated a specific number of times in the network. For XResNet18,

there are four main types of these basic blocks, named conv2x to conv5x or layer1

to layer4. Each of these blocks is repeated twice in the network2.
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Each basic block consists of two convolution layers followed by batch normalization

and a ReLU activation. The first convolution layer maps the input to the desired

number of output channels, and the second one maps the output channels to their

expanded form. If downsampling is required, it is performed on the input before it

is added to the output of the second convolution layer.

The architecture also includes an initial convolution layer of a 7x7 sized kernel with

a stride of 2 followed by a max-pooling operation. It consists of four residual blocks

(with two repeats for XResNet18). Channels for each block are constant— 64, 128,

256, and 512, respectively. Only 3x3 kernels have been used in these blocks. Except

for the first block, each starts with a 3x3 kernel with a stride of 2. The dotted lines

or identity shortcuts can be directly added when the input and output are of the

same dimensions. But when the dimensions are different, the issue is resolved using

a 1x1 convolution with a stride 21.

2.4 Related work

Diagnosing and classifying heart diseases is a crucial area of research where efforts are

made to improve its efficiency. Early and accurate detection of ECG patterns is of utmost

importance in diagnosing and treating patients with life-threatening cardiac arrhythmias,

which, if left untreated, can lead to cardiac arrest and sudden death. Machine learning

has revolutionized the field of Realtime ECG monitoring by enabling efficient classifica-

tion of heart conditions in real-time. Integrating machine learning techniques in ECG

monitoring allows clinicians to analyze large amounts of data in real-time, thereby reduc-

ing the risk of misdiagnosis and improving patient outcomes. Moreover, Deep learning

has emerged as a more effective approach for ECG monitoring due to its ability to learn

and extract complex features from the ECG signals. With the availability of publicly

available datasets, there has been a shift from binary classification to multiclass classifica-
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tion, which poses significant challenges regarding accuracy and computational resources.

Deep learning models have demonstrated superior performance in multiclass classification

compared to traditional machine learning models [91], Although deep learning models

have shown promise in improving the accuracy of ECG classification, they come at a

higher cost in terms of computational resources [92]. The large number of parameters

and the need for extensive data preprocessing make deep learning models more com-

putationally expensive than traditional machine learning models. Therefore, there is a

need for further research to improve the accuracy of deep learning models and reduce the

computational requirements for real-time applications

Recently, there has been a surge in the literature focused on improving real-time ECG

monitoring. These efforts can be broadly categorized into three main areas:

• Improving the accuracy of ECG classification by focusing on waveform

components.

Pa lczyński et al. [93] used the PTB-XL dataset to classify ECG signals into nor-

mal and abnormal heart conditions. the authers extracted the R-peak and QRST

component of the ECG signals and compared two different neural networks: the

Few-Shot Learning (FSL) neural network and the SoftMax-based network. The

FSL neural netwo, positiveher detection accuracy of 93.2% when classifying ECG

signals into normal and abnormal classes. However, when classifying ECG signals

into five and 20 classes of arrhythmias, the SoftMax-based network performed bet-

ter than the FSL network, achieving 80.2% accuracy for five classes and 70.1%

accuracy for 20 classes. The decrease in accuracy is attributed to the increasing

number of categories and the insufficient size of the datasets used for training the

models. In the same experiments, the FSL neural network achieved a detection

79.1% for five superclasses, and 24.9% for 20 classes of arrhythmias.that arises a

challenge, when increasing the number of diseases or classes in a classification task

can have a negative impact on the accuracy of the classification.
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Śmigiel et al. in [54] conducted a benchmark comparison of 12-lead ECG signal clas-

sification algorithms. They classified heart diseases into nine categories and eval-

uated seven algorithms (inception1d, xresnet1d101, resnet1d wang, fcn wang,

stm bidir, lstm, and Wavelet+NN)

The xresnet1d algorithm achieved the highest accuracy of 9.37% when classifying

heart diseases into defined categories, surpassing the state-of-the-art deep learning

algorithms in terms of accuracy. However, the researchers did not evaluate the

real-time performance or the impact of increasing the number of classes on the

algorithm’s accuracy.

Strodthoff et al. in [94] presents a real-time ECG analysis method that detects

the main waves’ fiducial points (PQRST complex) in an electrocardiogram and

performs heart rate variability analysis based on the detected fiducial points. The

method is designed to handle the deformations of R-, P-, and T-waves and detect

the R-peak using a connecting line of concave point and connecting line of convex

point generated from the original signal. The refined signal for detecting the fiducial

points of P- and T-waves is obtained through averaging the concave and convex

points, and the P- and T-points are detected using symmetrical and asymmetrical

features. The method demonstrates high performance in R-peak detection with a

sensitivity of 99.82% and positive prediction of 99.81% against the MIT-DB and

QT-DB datasets, and low error rates. The detection simulation and HRV analysis

results indicate that the method accurately detects the fiducial points for deformed

R, P, and T-waves.

• Decreasing the number of leads to reduce resource requirements.

The number of ECG leads used can significantly impact the performance of ECG

classification algorithms [95]. Single-lead ECG [53], which only measures the elec-

trical activity of the heart from one location on the body, is the simplest and most
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commonly used form of ECG. However, its use in classification tasks is limited

due to the need for more information about the heart’s electrical activity [54].

Three-lead ECG, which measures the heart’s electrical activity from three different

locations on the body, provides more information and can improve the accuracy

of ECG classification algorithms [96]. However, 12-lead ECG, which measures the

heart’s electrical activity from 12 different locations on the body, is the most in-

formative and provides the most accurate classification results. This is because

the 12-lead ECG provides a complete picture of the heart’s electrical activity and

allows for a more accurate diagnosis of different cardiac conditions. However, using

12-lead ECG requires more complex hardware and software, which can be more

expensive and time-consuming. The choice of ECG lead configuration should be

carefully considered when developing ECG classification algorithms, depending on

the specific application and available resources.

Xie et al. [97]. A multi-branch network was constructed by aggregating 3-6 leads

and feeding them into a random lead grouping strategy. On the F1 score perfor-

mance metric, they scored 89.1%. However, random lead searching creates many

iterations, making real-time classification difficult. Sepahvand et al. in [98] pro-

posed classification technique of ECG signals demonstrated the applications of the

BMs and DBNs that could be used to classify ECG signals and detect ventricular

and supraventricular heartbeats using a single-lead recording. These machine learn-

ing algorithms, made up of neural networks, are trained to recognize ECG waveform

patterns corresponding to different heartbeats. Medical professionals can use this

information to make more accurate diagnoses and treatment decisions for patients

with heart conditions [99]. A teacher model with advanced architecture and a stu-

dent model with simple architecture was developed for ECG classification. The

teacher model was trained on multi-lead ECG signals, and the student model was

trained on single-lead signals under the teacher’s supervision. The student model
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achieved similar accuracy to the teacher model but was much more compressed and

efficient. In a dataset of 10,646 patients, the student model experienced a 0.81%

decline in accuracy compared to the teacher model.

• Developing deep learning models with limited resources.

Cai et al. propose Multi-ECGNet, a model that can simultaneously identify mul-

tiple heart diseases with an accuracy of 86.3% for 55 classes [100]. The authors

utilized a 12-lead ECG signal as a row input represented as a 12x5000 matrix,

where 12 is the number of leads, and 5000 is ECG voltage in 10 sec at a 500 SPS

sample rate. The authors also emphasized an important gap in existing 12-lead

ECG datasets, which is the need for the lead-disease association.

Nan et al. in [101], different deep learning architectures were proposed for 2D image

classification of 12-lead ECG, achieving an F1-score metric of 94.73%. Deep learn-

ing methods outperform traditional machine learning algorithms, as demonstrated

by Dongdong et al. in [102],a comparison of four machine learning techniques and

three deep learning algorithms. In addition, a one-dimensional time-series deep

learning architecture outperformed the conventional two-dimensional image deep

learning algorithm in classifying 12-lead ECG signals as recorded by Strodthoff et

al.in [103] , The xresnet1d101 obtained a 97.4% classification accuracy, whereas the

Wavelet+NN achieved a 90.5% classification accuracy on the Area under the ROC

Curve (AUC).

To date, no studies have compared the resource consumption, for ECG Classification

methods with a different number of leads. In this research, we focused on resource

consumption on the same pipeline with various numbers of leads. This thesis proposes a

new heart disease classification approach based on lead-wise categorization and evaluates

the approach compared with using 12 leads as long as the single lead. The advantage of

this approach is threefold:
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• It will be easier to detect heart conditions with fewer leads.

• It will be easier to send data to healthcare providers when monitoring in real-time,

• Reducing the energy consumption required for data transmission will extend the

life of the ECG patch.

2.5 Summary

This Chapter addresses the problem of multi-disease electrocardiogram (ECG) signal

classification and the significance of accurately classifying ECG signals into multiple dis-

ease categories. The challenges associated with the variability of ECG recordings and the

presence of multiple co-existing diseases in patients are highlighted. The number of ECG

leads used in classification algorithms is discussed, with 12-lead ECG being the most

accurate but requiring complex hardware and software. A review of existing work on

ECG signal classification is provided, comparing traditional machine learning algorithms

with deep learning methods. Deep learning algorithms have demonstrated superior per-

formance, especially when treating ECG signals as 2D images. Various architectures and

techniques have been proposed to enhance multi-class ECG classification, considering

both 12-lead ECG signals and the reduction of leads.The literature review identifies gaps

in current research, including the lack of publicly available datasets associating specific

leads with heart diseases and the need for a clean dataset demonstrating the relationship

between ECG leads and heart diseases. The objective of the research presented in the

thesis is to reduce the number of leads required for accurate disease detection in ECG

signals without compromising accuracy.

The thesis then focuses on reducing the number of leads in ECG monitoring to improve

efficiency and real-time classification. The importance of early and accurate detection of

ECG patterns is emphasized, along with the role of machine learning and deep learning

in enabling efficient classification. The challenges related to accuracy and computational
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resources in multi-class classification are discussed. Recent research efforts in real-time

ECG monitoring are reviewed, categorized into improving classification accuracy, reduc-

ing the number of leads to decrease resource requirements, and developing deep learning

models with limited resources. Several studies are mentioned, showcasing different ap-

proaches and their performance in ECG classification.

The thesis concludes by emphasizing the need for further research to enhance the ac-

curacy of deep learning models, reduce computational requirements, and establish a cor-

relation between ECG leads and cardiac diseases for precise classification. The proposed

approach aims to reduce the number of leads necessary for accurate disease detection in

ECG signals while achieving or surpassing the state-of-the-art accuracy attained using

12-lead ECG signals.



Chapter 3

Proposed Framework

This chapter presents the architecture of the proposed framework and emphasizes the

features of its primary elements. We establish the theoretical underpinnings of our in-

novative system for real-time electrocardiogram (ECG) analysis and classification that

harnesses three core components: the ResNet-based classification algorithm, the unique

lead-wise grouping model, and a real-time platform developed by integrating Kafka and

the Flask API. These components are amalgamated to simulate the detection and classi-

fication of heart diseases based on the input ECG data through an interactive interface.

Together, these components constitute a comprehensive framework for real-time ECG

analysis, offering a promising approach to detecting and classifying heart diseases.

3.1 Lead-wise Grouping Method

The Lead-wise Grouping Method (LGM) is a novel approach to ECG signal classification

that utilizes the inherent correlation among the leads. This method groups relevant

leads together and applies the chosen classifier to each group. The results from each

group classifier are then synthesized to give the final output. This method enhances

the classification accuracy and reduces computational requirements by decreasing the

number of instances where the classifier is applied.
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Figure 3.1: Illustration of The Lead Grouping Process in LGM.

Let’s denote the set of ECG leads as L = l1, l2, . . . , l12 and the set of lead groups as

G = g1, g2, . . . , gn. Each group gi is a subset of L and it’s assumed that the leads within

each group are strongly correlated. The grouping of leads is determined based on prior

knowledge and empirical analysis 3.1.

Gi = l1i, l2i, . . . , lki (3.1)

the cardiac superclasses C (i.e., major categories of cardiac diseases) that exist in a

dataset and the subclasses sub,

C = {c1, c2, ..., cn}, where n = the number of superclasses (3.2)

,

Cn = {sub1, sub2, ..., subk}, k : 1− length(Cn) + 1 (3.3)

The effectiveness of the Lead-wise Grouping Method depends on the quality of the

groupings. The groupings can be determined based on prior knowledge, such as the

anatomical or physiological relevance of the leads, or they can be empirically determined

using methods such as correlation analysis or feature importance ranking from machine

learning algorithms.

The Lead-wise Grouping Method offers several advantages over single lead classifica-

tion methods. It leverages the inherent correlation among the leads to enhance accuracy

and reduce computational requirements. Furthermore, it offers a robust way to han-

dle noisy or missing leads, making it a suitable method for ECG signal classification in
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real-world scenarios.

3.2 Generation of the Lead Group Relationship

The generation of the lead group relationship is a critical step in the proposed framework.

This is where the most relevant features for each disease are identified to improve the

accuracy of the classification process. We employ Recursive Feature Elimination Three-

Dimensional Echocardiography for this task which developed using Recursive Feature

Elimination (RFE) idea.

3.2.1 leads-disease analysis

Determining the feasibility of classifying Electrocardiogram (ECG) signals using a single

lead or a subset of leads is a multifaceted task. We must approach cardiac diseases from

two perspectives to fully explore this proposition. The first perspective involves utilizing

all twelve leads in the analysis. In contrast, the second approach narrows our focus by

referring to specific medical terminologies and examining the data to ascertain if a disease

could be accurately classified using fewer leads.

For instance, consider Atrial Fibrillation (AFIB), a condition characterized by an

irregular and often rapid heart rate. This irregularity results in an elevated ECG value,

observable fluctuations in the V6 lead, and distinct abnormalities in the III and V4

leads. The adjacent figure visually compares a typical 12-lead ECG waveform and the

ECG waveform corresponding to an AFIB condition.
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Figure 3.2: Comparison Between a Normal 12-Lead ECG Waveform and an AFIB Wave-
form.

As illustrated in Figure 3.2, the waveform’s speed and amplitude are common features

across all leads. Consequently, detecting these features may only necessitate using a

single lead or a select few. Further, the V6 lead is vital in identifying the aforementioned

fluctuations, while the III and V4 leads are instrumental in detecting specific distortions.

Hence, in the case of AFIB, we could suggest that utilizing all twelve leads may not be

necessary. A combination of leads III, V4, and V6 could potentially suffice, compensating

for the comprehensive 12-lead setup.

Implementing such a methodology could significantly reduce data volume and com-

putational costs. However, we must emphasize the importance of understanding the

complete spectrum of cardiac diseases before deciding on the optimal lead subset for

classifying each specific disease. Furthermore, the simultaneous use of leads III and

V4 may not be necessary, which opens up avenues for further optimization of the lead

selection process.

3.2.2 Recursive Feature Elimination (RFE)

RFE is a feature selection method that iteratively removes features and builds a model

on those remaining features[3]03. It uses model accuracy to identify which features (or

combination of features) contribute the most to predicting the target variable. The main
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idea behind RFE is to repeatedly construct a model and choose either the best or worst

performing feature, setting the feature aside, and then repeating the process with the rest

of the features. This process is applied until all features in the dataset are exhausted.

The steps of the RFE algorithm are as follows:

1. Train a machine learning model using all features.

2. Evaluate the performance of the model.

3. Identify the least important feature (the feature which, when removed, improves

model performance the most).

4. Remove the identified feature.

5. Repeat steps 1-4 until all features have been evaluated and ranked according to

their importance.

The algorithm for RFE can be represented as follows:

function RFE(X, y, estimator) {

features = X.columns

while len(features) > 0 {

X = X[features]

estimator.fit(X, y)

importance = estimator.feature_importances_

least_important = argmin(importance)

features.remove(least_important)

}

return features

}
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3.2.3 Recursive ECG Classification and Correlation (RECC)

RECC recursively eliminates superfluous leads from the ECG dataset and scrutinizes the

impact of each lead on disease classification. Concretely, we eliminated one lead from

the 12 leads at a time and investigated its impact on classification performance. All

possible combinations of leads were considered, and their correlations with the disease

classes were analyzed to pinpoint the optimal lead subsets for each disease class. This

computation-intensive analysis culminated in a table depicting correlations between leads

and diseases, which was employed to identify the most informative leads for each disease

category.

The performance of RECC was juxtaposed with that of the 12-lead ECG baseline.

The results exhibited that RECC is commensurate with the baseline in performance,

by identifying merely a subset of leads requisite for precise disease classification. This

methodology is particularly beneficial for curbing the volume of data requiring processing

and transmission, concurrently abating noise from irrelevant leads, thereby augmenting

the precision and efficiency of ECG classification.

RECC represents an innovative approach adept at efficiently identifying the optimal

lead subsets for each disease class in ECG classification. This strategy holds promise

in attenuating the computational complexity and resource requisites for ECG analysis

whilst bolstering the accuracy of disease detection.

To generate the correlation table, let L be the set of 12 leads, and let S be the set

of four superclasses in the PTBXL dataset, namely, MI, HYP, STTC, and CD. For each

s ∈ S, a total of 2|L| − 1 = 4, 095 combinations of the 12 leads were generated and

classified using the xresnet18 classification algorithm. Let Cs represent the set of all

feasible combinations of leads for superclass s, and let c ∈ Cs be a combination of leads.

Each combination c was classified using the xresnet18 classification algorithm, yielding

an accuracy score a(c). The ensemble of leads and their respective accuracy scores
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Figure 3.3: The Pipeline of Generating The Disease-Leads Correlation Matrix Using
RECC.

were catalogued in a dataframe Ds for each superclass s. The correlation between each

lead l ∈ L and the disease for superclass s was subsequently computed as the Pearson

correlation coefficient between the accuracy scores a(c) and the presence or absence of

the disease in the ECG signal.

Following this, an analysis was conducted on the correlation between the leads to

pinpoint the superclass’s most representative group of leads. Let Gs ⊆ L be a group

of leads for superclass s, and let Ds(Gs) be the dataframe encompassing the accuracy

scores for all lead combinations within Gs. The correlation between the accuracy scores

in Ds(Gs) was calculated, and the lead group with the highest mean accuracy score was

selected as the most representative lead group for the superclass.

Ultimately, a comprehensive correlation table was synthesized by iterating through

this procedure for all superclasses s ∈ S, furnishing invaluable data regarding the most

efficacious leads for each superclass. This table can be instrumental for clinicians in their

diagnostic and therapeutic decision-making, facilitating a more targeted and accurate

examination of ECG data.

Table 3.3 visually represents the methodology employed for creating the disease-leads

correlation matrix. Initially, all 12 leads are fed into the pipeline to establish a benchmark
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for the utility function with respect to a specific class. Subsequently, a class is extracted

from the pool of superclasses, and a data subset is assembled using the 12 leads. This

data subset is directed towards the lead selection module, which, in each iteration, picks

a subset of ECG leads.

Disease classification is carried out for every iteration, and its efficacy is gauged.

This efficacy is juxtaposed with the initially established benchmark. The algorithm

continues to iterate until it identifies the smallest set of leads that can yield a performance

equivalent to that of the original 12 leads. This iterative optimization is instrumental in

filtering out any superfluous leads that might otherwise introduce noise and compromise

the precision of the ranking outcomes. Sophisticated Xresnet18 algorithms are deployed

to categorize ECG input signals into corresponding disease classes.

3.2.4 Performance Evaluation of RECC

To validate the effectiveness of Recursive Feature Elimination Three-Dimensional Echocar-

diography (RECC), we carried out a series of experiments comparing the performance of

the classification algorithms with and without these feature selection methods.

The classification algorithms were trained and tested using all features in the first

set of experiments. The features selected by RECC were used in the second set of

experiments.

The performance was evaluated based on the classification algorithms’ accuracy, pre-

cision, recall, and F1-score. The results are summarized in the following table:

Table 3.1: Comparison of the Performance of RFE And RECC.

Feature Selection Method Accuracy Precision Recall F1-score
RFE 0.81 0.84 0.74 0.80
RECC 0.88 0.90 0.85 0.87

The results in 3.1 demonstrate that both RFE and RECC significantly improve the

performance of the classification algorithms. However, RECC outperforms RFE, confirm-
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ing that considering the three-dimensional relationship between the leads can enhance

the accuracy of the classification process.

3.3 Real-Time Monotoring Platform

Real-time processing of electrocardiographic (ECG) data is crucial for prompt and ef-

fective diagnosis and management of heart diseases. The cornerstone of our proposed

framework is a robust real-time platform that leverages advanced technologies to enable

real-time cardiac disease diagnosis. This platform is designed to handle high through-

put, support efficient data processing, and ensure low latency, facilitating instantaneous

diagnosis.

We utilize Apache Kafka, an open-source stream-processing software platform, to

manage high-volume, continuous data feeds. Kafka provides fault tolerance, seamless

integration, and scalability - vital attributes when dealing with large volumes of real-

time data. To cleanse, standardize, and preprocess the raw data before feeding it to

our classification algorithms, we employ the Flask API. Flask is a lightweight, flexible

microframework that allows for custom data filtration, frequency standardization, and

preprocessing.

However, technology is just a facilitator. The core of our platform is the integration

of our proposed lead-wise grouping model, which works in synergy with Kafka and Flask

API to create a seamless pipeline for processing and analyzing echocardiographic data.

In this section, we will delve deeper into the intricacies of the real-time platform,

covering the integration and functionalities of Apache Kafka and the Flask API, and

how our proposed lead-wise grouping model synergizes with these technologies for real-

time cardiac disease diagnosis. We will also discuss how the system effectively balances

computational requirements and accuracy in diagnosis, making real-time diagnosis not

just a possibility, but a reality.
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3.3.1 Exploring Kafka and the Flask API

Apache Kafka, a product initially created by LinkedIn and later donated to the Apache

Software Foundation, is an open-source platform for stream-processing. It’s built with

Scala and Java and designed to accommodate high throughput data feeds, making it

ideal for real-time data streaming and processing. Kafka’s qualities of fault tolerance,

easy integration, and scalability make it a perfect choice for handling our real-time data

feeds[104].

On the contrary, Flask is a Python-based micro web framework. It’s defined as a mi-

croframework due to its independence from specific tools or libraries, lacking a database

abstraction layer, form validation, or any components where pre-existing third-party li-

braries are typically used. However, Flask’s extension support can enhance application

features as if Flask itself implemented them, making it lightweight and adaptable. This

flexibility is perfect for our application where we require customized data filtering, fre-

quency normalization, and preprocessing.

3.3.2 Kafka and Flask API: A Powerful Pair

The combination of Apache Kafka and the Flask API forms a powerful infrastructure

for managing data flow within our proposed system, ensuring high throughput, minimal

latency, and real-time analysis of the continuously streaming echocardiographic data.

Primarily, Kafka operates as the central hub for data intake. The echocardiographic

devices publish the generated data onto Kafka’s topics, using a publish-subscribe model.

These devices produce a high volume of continuous data stream that Kafka can effectively

manage with its inherent capabilities of fault tolerance, high throughput, and horizontal

scalability. These features are essential in ensuring system robustness, accommodating

variances in data volume and speed.

The publishing mechanism has the medical devices serve as the publishers or produc-
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ers, pushing raw data onto Kafka topics. These topics work as logical channels for data

categorization. The consumers or data analysis modules subscribe to these topics to pull

the data for processing.

This real-time data streaming infrastructure, powered by Kafka, ensures immediate

data availability for processing from the medical devices. However, before this raw data

can be fed into our classification algorithms, it needs proper cleaning, standardization,

and preprocessing, which is where the Flask API comes into play.

Flask, a lightweight and adaptable Python web framework, is utilized in our system

to create a RESTful API, serving as an interface for data cleaning, standardization, and

preprocessing. This API receives the raw data stream from the Kafka topics and performs

several key steps to ready the data for the classification algorithms.

Data cleaning includes noise and artifact removal potentially present in the raw data.

The cleaned data undergoes frequency standardization to ensure data point uniformity

in the frequency domain. This process is critical as various devices might operate at

different frequencies, and for efficient algorithm functioning, the data must maintain a

consistent format. Post cleaning and standardization, the data is preprocessed into an

appropriate format for our classification algorithms.

Moreover, the Flask API’s ability to integrate with a multitude of Python libraries

allows us to efficiently implement advanced data preprocessing techniques. Using Flask,

we can harness the power of libraries such as NumPy, SciPy, and Pandas for numerical

computation and data manipulation.

3.3.3 Incorporating the Lead-wise Grouping Model

The proposed lead-wise grouping model’s integration within the real-time platform sig-

nificantly enhances the real-time detection and classification of heart diseases. Working

cohesively with the Kafka and Flask API infrastructure, the model facilitates a seamless

pipeline for the processing and analysis of echocardiographic data.
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Upon receiving the preprocessed data from the Flask API, the lead-wise grouping

model initiates its work. It’s important to underscore that the preprocessing phase

ensures the data is optimally prepared for our model, reducing potential inaccuracies

and enhancing the system’s overall efficiency.

The lead-wise grouping model operates in two stages: feature extraction and clas-

sification. During the feature extraction stage, the model identifies and groups related

leads together based on the RECC algorithm. Once the leads are grouped, the classifi-

cation stage commences. At this stage, the model uses the extracted features to classify

heart diseases. The classification utilizes three methods as discussed earlier: the single

lead classification method, the lead-wise grouping method, and the standard 12 lead

method. Each method possesses its unique strengths and is employed based on the spe-

cific demands of the situation. Upon the completion of the classification, the results are

relayed back to Kafka, which then publishes the results onto a separate topic. A real-time

visualization tool subscribed to this topic retrieves and presents the results to the users.

3.4 Summary

This chapter outlined the proposed framework for our real-time cardiac disease diagnosis

platform. It offered a comprehensive view of the integrated components, algorithms,

and technologies that are synergistically working together to make real-time diagnosis

a reality. We started by introducing the three primary components of our framework:

the classification algorithms, the lead group relationship generation, and the real-time

platform. These three components are foundational pillars that drive the platform’s

functionality and efficiency.

In terms of classification algorithms, we dove deep into four main methods: the single

lead classification method, the lead-wise grouping method, three leads,and the standard

12-lead method. Each of these methods offers unique advantages and contributes to
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the overall classification accuracy. They represent a multi-pronged approach to disease

detection that enhances the robustness of our model and improves the accuracy of disease

classification.

The generation of the lead group relationship was another critical aspect that was

discussed. Using RECC, we identified the most relevant features for each disease, thereby

improving the accuracy of the classification process. This approach ensures the model’s

focus is on the most impactful features, which in turn enhances the model’s predictive

performance.

The real-time platform’s core technologies were also thoroughly explained, including

the use of Kafka and Flask API. Kafka’s ability to handle high throughput and provide

real-time data analytics and event processing was discussed in detail. We also illustrated

how the Flask API is used for data filtration, frequency standardization, and preprocess-

ing, setting the stage for the application of our classification algorithms.

The integration of our lead-wise grouping model into the real-time platform repre-

sented a significant leap towards real-time detection and classification of heart diseases.

We explained how the model works in synergy with the Kafka and Flask API infrastruc-

ture to provide a seamless pipeline for processing and analyzing the echocardiographic

data.

In conclusion, our proposed framework represents a robust, comprehensive, and effi-

cient solution for real-time cardiac disease diagnosis. By leveraging advanced classifica-

tion algorithms, feature selection techniques, and real-time data processing tools, we aim

to significantly improve the diagnosis and management of cardiac diseases. Our frame-

work contributes to our overall thesis by providing a viable and innovative solution to a

crucial health problem, with implications that could potentially save lives and improve

health outcomes.
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Data Exploration and Analysis

Electrocardiogram (ECG) databases play a critical role in developing and testing algo-

rithms for ECG analysis. These databases contain large amounts of ECG data recorded

from individuals with various cardiovascular conditions, making them invaluable re-

sources for research and clinical applications. One of the most widely used ECG databases

is the PTB-XL database. The PTB-XL database is a precious resource for ECG analysis,

providing high-quality ECG recordings, accurate annotations, and clinical information

for a large and diverse patient population. Its use in numerous studies and its open-access

nature make it a well-established and validated resource for ECG analysis, making it a

handy tool for researchers and clinicians in cardiology.

4.1 12 Lead ECG Dataset Survey

In the realm of cardiac health research, electrocardiogram (ECG) datasets play an integral

role. These comprehensive repositories provide a wealth of annotated data for researchers

and clinicians to develop, test, and refine ECG analysis algorithms. The following is an

overview of some of the most valuable ECG datasets currently available, each offering

unique attributes beneficial for diverse applications in the field.

68
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• ECG Arrhythmia Database [105]: The ECG Arrhythmia Database is a rich

repository of ECG recordings, hosting 48 half-hour excerpts originating from 47

individuals. It’s a treasure trove for researchers as it contains standard rhythms

and is annotated for various arrhythmias and normal and abnormal beats. The

granular annotation can serve as a potent tool for developing, training, and val-

idating arrhythmia detection algorithms. Moreover, with half-hour data for each

recording, researchers can observe and analyze longer cardiac activity patterns.

• ECGDataDenoised [106]: The ECGDataDenoised dataset entails 90 ECG record-

ings that have been meticulously denoised. This offers a pristine quality of signals

which is crucial for various applications including robust feature extraction. High

fidelity data is vital for enhancing the performance of ECG analysis algorithms,

particularly in environments where subtle variations in the signal could be diag-

nostically significant.

• Georgia 12-Lead ECG Challenge Database [107]: With 1000 ECG record-

ings encompassing many cardiac conditions and healthy individuals, the Georgia

12-Lead ECG Challenge Database is instrumental in algorithm evaluation. The

diversity in cardiac conditions coupled with a sizable volume of data aids in the

comprehensive assessment of algorithms under various scenarios and conditions,

making it invaluable for refining the robustness and accuracy of ECG analysis sys-

tems.

• CODE-test [108]: The CODE-test dataset comprises 1000 recordings from 280

patients, annotated for different abnormalities as well as normal ECG signals. This

dataset serves as an extensive ground for researchers to delve into the identification

of both common and rare cardiac abnormalities. The varied patient pool aids in

creating algorithms that are sensitive to patient-specific variations.

• Annotated 12-Lead ECG dataset [109]: This dataset is composed of 150 ECG
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recordings from 50 patients with diverse cardiac conditions. Each recording in this

dataset is annotated for various cardiac abnormalities, providing researchers with

a concentrated dataset for training and evaluating algorithms, particularly in the

context of multi-class classification.

• KURIAS-ECG [110]: KURIAS-ECG provides 500 ECG recordings from 500

different patients. It distinguishes itself by incorporating standardized diagnosis

codes in the annotations, which is significant for the development of diagnostic

systems that can seamlessly integrate with healthcare information systems.

• 4th China Physiological Signal Challenge 2021 and CPSC2020 [111][112]:

These datasets include ECG recordings from patients with cardiac conditions such

as heart failure, ventricular arrhythmias, myocardial infarction, and atrial fibrilla-

tion. Including a range of severe cardiac conditions makes these datasets quintessen-

tial for developing critical care monitoring systems.

• PTB-XL [113]: The PTB-XL database is valuable for researchers analyzing elec-

trocardiogram (ECG) recordings. The database contains over 200,000 ECG record-

ings from over 5,000 patients with cardiovascular conditions, including myocardial

infarction, congestive heart failure, and arrhythmias. The recordings are collected

using standard 12-lead ECG machines and are sampled at a frequency of 1,000

Hz, ensuring high-quality recordings are suitable for developing and testing al-

gorithms for ECG analysis. The database is accompanied by expert cardiologist

annotations, providing accurate diagnoses and annotations for cardiac abnormal-

ities, further improving its usability. In addition, the PTB-XL database includes

demographic and clinical information for each patient, which can help researchers

explore the relationship between patient characteristics and ECG findings, leading

to the development of personalized diagnostic and treatment strategies.

• PhysioNet Challenge 2020 [114]:
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This dataset comprises ECG recordings from patients with a variety of cardiac

conditions. Similar to the aforementioned datasets, it can be employed for de-

veloping and evaluating ECG analysis algorithms, with a particular emphasis on

cutting-edge research, given its recency and relevance in contemporary challenges.

4.1.1 Gap Analysis

The PTB-XL database has been widely used in various studies, particularly in devel-

oping and evaluating machine learning algorithms for ECG classification. It has facil-

itated breakthroughs in detecting arrhythmias, analyzing ST-segments, and identifying

ischemia. Recent research has used this dataset to investigate the impact of lead group-

ing configurations in ECG classification, achieving high accuracy even with a limited

number of leads. Despite its utility, the PTB-XL database, which is currently the largest

publicly available ECG dataset, only covers a subset of possible cardiac conditions. This

limitation could affect the performance of the developed algorithms. There’s a growing

demand to enhance the database with a wider variety of cardiac diseases to improve ECG

classification accuracy and understand the effect of lead grouping outcomes. In this con-

text, the PTB-XL will be used as a benchmark for comparison with our dataset. Class

imbalance is regarded as one of the inherent limitations in existing datasets that can

have an adverse impact on the lead grouping process in ECG analysis. When a dataset

exhibits class imbalance, it means that some categories of heart conditions are substan-

tially underrepresented compared to others. This disparity in representation can cause

algorithms to become biased towards the classes with higher representation, which results

in the lead grouping process prioritizing leads that are more effective in identifying the

overrepresented conditions. Consequently, the ability of the algorithms to accurately de-

tect and classify the underrepresented heart conditions needs to be improved. 4.1 shows

the class imbalance in the PTB-XL dataset for its five superclasses: Normal, Myocardial

Infarction (MI), ST-T wave abnormality or T wave inversions (STTC), Conduction dis-
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turbance (CD), and Hypertrophy (HYP). The table presents the total number of samples

for each superclass, the number of positive and negative samples, and the corresponding

imbalance ratio. It is clear from the 4.1 that the Normal superclass has a relatively

balanced ratio of positive to negative samples, whereas the other four superclasses have

a significant class imbalance. For example, the MI superclass has an imbalance ratio of

1:3.39, indicating over three negative samples for every positive sample of MI. Similarly,

the STTC superclass has an imbalance ratio of 1:3.21, and the CD superclass has an

imbalance ratio of 1:3.86. The HYP superclass, on the other hand, has a slight class

imbalance with an imbalance ratio of 1:1.26.

Table 4.1: Imbalance Of The PTB-XL Dataset By Superclasses.

Superclass Total Positive Negative Imbalance
Ratio

MI (Myocardial Infarc-
tion)

5409 1230 4179 1:3.39

STTC (ST-T Wave Ab-
normality Or T Wave
Inversions)

7658 1819 5839 1:3.21

CD (Conduction Dis-
turbance)

1137 234 903 1:3.86

HYP (Hypertrophy) 2928 1293 1635 1:1.26
Total 36943 12382 24561 1:1.98

The imbalance ratio is a measure that quantifies the severity of class imbalance in a

dataset. It is calculated as the ratio of the number of negative samples to the number

of positive samples for a given class. In this table, the imbalance ratio is presented for

each superclass of the PTB-XL dataset.The positive and negative samples are defined

based on the labels of the samples. A sample is considered positive if it belongs to the

target class and negative otherwise. For example, in the MI superclass, a sample is

considered positive if it corresponds to a patient with myocardial infarction and negative

if it corresponds to a patient without myocardial infarction. Generally, a balanced ratio

close to one is desirable, indicating an equal number of positive and negative samples.
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The last row of the table shows the total number of samples, positive samples, negative

samples, and imbalance ratio across all superclass categories. The difference between

the total and total sample in the dataset is due to multiple labels for the sample in the

dataset.

4.2 shows the distribution of the subclasses and the imbalance ratio for each subclass.

Table 4.2: Imbalance of the PTB-XL Dataset By Sub-Classes

Subclass Total Positive Negative Imbalance Ratio
NORM 20511 8806 11705 01:01.3
STE 7658 1819 5839 01:03.2
AMI 5409 1230 4179 01:03.4
CD 1137 234 903 01:03.9
HYP 2928 1293 1635 01:01.3
MI-2 512 113 399 01:03.5
ISC 93 17 76 01:04.5
LAFB 194 35 159 01:04.5
LBBB 270 36 234 01:06.5
NID 862 196 666 01:03.4
PAC 411 104 307 01:02.9
PVC 982 219 763 01:03.5
Total 36943 12382 24561 01:02.0

4.2 provides a detailed analysis of the class imbalance in the PTB-XL dataset across its

different subclasses. The results show that the NORM subclass has the highest number

of samples with 20511, followed by the STE and AMI subclasses with 7658 and 5409

samples, respectively. On the other hand, the RAD subclass has only one sample, which

is the smallest number of samples across all subclasses. The table also shows the number

of positive and negative samples for each subclass, which indicates that the NORM

subclass has the highest number of negative samples with 11705, followed by the STE

subclass with 5839 negative samples. Moreover, the table highlights the imbalance ratio

for each subclass, calculated as the ratio of negative and positive samples. The STE

subclass has the highest imbalance ratio at 1:3.21, followed by the LBBB subclass with

1:6.5. Overall, the table presents a comprehensive analysis of the class imbalance in the
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PTB-XL dataset across its subclasses, which can help researchers in the development of

more accurate and effective classification models.

4.2 CardioDiverse Dataset

The PTB-XL database is a valuable resource for ECG analysis, but its coverage of cardiac

conditions is limited, conducting to difficulties in accurate ECG classification. To address

this gap, several datasets have been gathered to supplement the PTB-XL database. We

are going to name the new dataset in this thesis CardioDiverse. Incorporating these

datasets has enriched the collection with 29 distinct ailments, culminating in a more

harmonized dataset encompassing 109 varied cardiac conditions. This expanded dataset

provides a valuable resource for researchers and healthcare professionals interested in

developing and testing algorithms for automatic ECG analysis and diagnosis. Including

additional diseases in the CardioDiverse dataset will provide a more diverse range of ECG

recordings for developing and testing arrhythmia detection, diagnosis, and classification

algorithms. Researchers and clinicians can now explore the relationship between patient

characteristics and ECG findings for cardiovascular conditions. This information can be

used to develop personalized diagnostic and treatment strategies for patients with various

cardiovascular conditions, conducting to improved patient outcomes.

4.2.1 Creation of the CardioDiverse Dataset

The CardioDiverse dataset is an amalgamation of various ECG databases, purposefully

integrated to form a rich and diverse dataset for developing and evaluating cardiac disease

detection algorithms. The dataset encompasses an extensive range of cardiac conditions

and high-quality ECG recordings collated through meticulous processing and standard-

ization procedures. An essential aspect of combining these datasets was harmonizing

the representation of various cardiac conditions. We matched disease subtypes across
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datasets and unified their nomenclature and classification. Moreover, we balanced the

dataset representation to avoid biases towards any specific condition.

The CardioDiverse dataset contains many records, aggregating over 200,000 ECG

recordings from over 6,000 patients. It includes a wide spectrum of cardiac conditions,

from common arrhythmias to severe cardiac ailments such as myocardial infarction and

heart failure. Additionally, it also comprises normal ECG recordings from healthy in-

dividuals. The CardioDiverse dataset amalgamates the ECG recordings, expert anno-

tations, and diagnoses from the source datasets. These annotations are invaluable for

supervised learning and model evaluation. It also encompasses patient demographic and

clinical information, enabling more comprehensive and personalized analysis and predic-

tions. The CardioDiverse dataset is a robust and comprehensive resource for developing

and validating ECG analysis algorithms. Its diversity in terms of the number of records,

variety of cardiac conditions, and high-quality data makes it well-suited for cutting-edge

research in cardiac disease detection, monitoring, and personalized medicine.

4.2.2 CardioDiverse Dataset Evaluation

After combining the datasets into what we termed the CardioDiverse dataset, a series

of signal pre-processing steps were executed to standardize all recordings. The objective

was to ensure uniformity in sampling frequency and duration across all ECG traces.

Specifically, every recording was standardized to a length of 10 seconds and resampled

at a frequency of 1000 Hz to be consistent with the format employed by the PTB-

XL dataset. In addition to this, disease subtypes across both datasets were diligently

matched to ensure that each cardiac condition was represented uniformly. Through these

steps, we curated an enhanced, balanced, and more comprehensive ECG dataset named

CardioDiverse for advanced analysis.

Subsequently, we proceeded to construct CardioDiverse lookup tables for both the

CardioDiverse dataset and the PTB-XL dataset, facilitating an enlightening comparison
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between the two. The primary focus was to investigate how the balancing of classes and

the number of classes influenced the results of CardioDiverse. This step is crucial to

gain insights into the impact of dataset diversity and class representation on the learning

process and model performance.

Furthermore, an exhaustive analysis was carried out for each major group of cardiac

conditions. This analysis sought to explore the peculiarities and commonalities among

various disease groups, understand their manifestation in ECG signals, and evaluate

the model’s ability to discern these conditions. Such a detailed investigation is vital for

revealing the robustness and clinical relevance of the algorithm, especially when handling

complex and heterogeneous datasets like CardioDiverse.

In the next stages, we developed and validated the model using the curated dataset,

and subsequently assessed its efficacy through various performance metrics. Through

this research, we aim to establish a benchmark for ECG classification algorithms and

contribute to the enhancement of cardiac disease diagnosis via deep learning methodolo-

gies.

4.2.2.1 Generate the correlation

To generate the correlation table, let L be the set of 12 leads, and let S be the set of

four superclasses in the PTBXL dataset, namely, MI, HYP, STTC, and CD. For each

s ∈ S, a total of 2|L|−1 = 4, 095 possible combinations of the 12 leads were generated and

classified using the xresnet18 classification algorithm. Let Cs denote the set of all possible

combinations of leads for superclass s, and let c ∈ Cs be a combination of leads.Each

combination c was classified using the xresnet18 classification algorithm, resulting in an

accuracy score a(c). The group of leads and their corresponding accuracy scores were

recorded in a dataframe Ds for each superclass s. The correlation between each lead

l ∈ L and the disease for superclass s was then calculated as the Pearson correlation

coefficient between the accuracy scores a(c) and the presence or absence of the disease
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in the ECG signal.

Next, the correlation between the leads was analyzed to identify the best group of

leads to represent the superclass. Let Gs ⊆ L be a group of leads for superclass s, and

let Ds(Gs) be the dataframe containing the accuracy scores for all combinations of leads

in Gs. The correlation between the accuracy scores in Ds(Gs) was calculated, and the

group of leads with the highest average accuracy score was selected as the best group of

leads to represent the superclass.

Finally, a comprehensive correlation table was generated by repeating this process for

all superclasses s ∈ S, providing valuable information on the most effective leads for each

superclass. This table can guide clinicians in their diagnosis and treatment decisions,

enabling a more targeted and accurate analysis of ECG data.

4.2.2.2 Performance Utility Metric

To evaluate the performance of algorithms for ECG analysis on the CardioDiverse dataset,

we propose a new utility metric that considers both accuracy and class imbalance. The

metric is defined as:

U =
2 · (1− β2) · TP

2 · (1− β2) · TP + β2 · FN + FP
(4.1)

where TP is the number of true positive predictions, FP is the number of false

positive predictions, and FN is the number of false negative predictions. The parameter

β controls the trade-off between precision and recall, with higher values of β emphasizing

recall over precision. We set β to 0.5 to give equal weight to precision and recall.

To account for class imbalance, we use a weighted version of the utility metric that

assigns a higher weight to the minority class:

Uw =
2 · (1− β2) · wp · TP

2 · (1− β2) · wp · TP + β2 · wn · FN + wn · FP
(4.2)
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Where wp and wn are the weights for the positive and negative classes, respectively.

We set wp to be the inverse of the proportion of positive samples in the training set, and

wn to be the inverse of the negative samples in the training set.

The utility metric provides a more comprehensive evaluation of algorithm performance

on the CardioDiverse dataset, considering both accuracy and class imbalance. It can be

used to compare different algorithms’ performance and optimize the hyperparameters of

machine learning models.

4.2.2.3 Class Balance in the CardioDiverse Dataset

Analyzing the data balance within the CardioDiverse dataset is of paramount importance,

particularly when it is deployed for consolidating crucial data in ECG analysis, and more

specifically in creating groups of leads based on their efficacy in disease classification

within each major category. An imbalance, characterized by a disproportionately large

number of instances of certain sub-diseases in contrast to a scant number of others,

can skew the results. This imbalance might cause the leads reflecting the predominant

category to be biased towards the group with the highest representation. To ensure that

the selected leads are optimally representative for each of the superclasses, it is essential

to maintain a well-distributed and balanced assortment within each group.

The balance was examined for five subclasses: Normal, MI (Myocardial Infarction),

STTC (ST-T wave abnormality or T wave inversions), CD (Conduction disturbance),

and HYP (Hypertrophy). Table 4.3 shows the total number of samples, positive samples,

negative samples, and imbalance ratio for each superclass. The imbalance ratio is defined

as the ratio between the number of positive samples and the number of negative samples.

A value close to 1 indicates a balanced subclass, while a value much larger than 1 indicates

an imbalanced subclass. The total imbalance ratio for the combined dataset is 0.41,

indicating a relatively balanced dataset.

The superclass with the highest imbalance ratio is MI, with a value of 2.717. This
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Table 4.3: Balance of the CardioDiverse Dataset By Superclasses.

Superclass Total Positive Negative Imbalance
Ratio

MI (Myocardial Infarc-
tion)

8627 1844 6783 1:3.68

STTC (ST-T Wave Ab-
normality Or T Wave
Inversions)

22952 5747 17205 1:2.99

CD (Conduction Dis-
turbance)

3296 830 2466 1:2.97

HYP (Hypertrophy) 7048 3098 3950 1:1.28
Total 97188 40660 56528 1:1.39

indicates a severe imbalance between positive and negative samples in this superclass.

On the other hand, the superclass with the lowest imbalance ratio is HYP, with a value

of 0.136, indicating a more balanced distribution of positive and negative samples.

As shown in 4.3the combined dataset significantly improves the balance of several

superclasses, such as MI, STTC, CD, and HYP. For example, the imbalance ratio of

the MI superclass decreased from 9.17 in the PTB-XL dataset to 2.72 in the combined

dataset, indicating a much more balanced distribution of positive and negative samples.

Similarly, the imbalance ratio of the CD superclass decreased from 1.27 in the PTB-XL

dataset to 0.50 in the combined dataset.Moreover, the combined dataset introduces new

positive samples for the Normal and HYP superclasses, which were not present in the

PTB-XL dataset.

The sub-classes include normal (NORM), ST-segment elevation (STE), acute my-

ocardial infarction (AMI), conduction disorder (CD), hypertension (HYP), second-degree

atrioventricular block (MI-2), isolated supraventricular complex (ISC), left anterior fasci-

cular block (LAFB), left bundle branch block (LBBB), nodal rhythm (NID), premature

atrial complex (PAC), premature ventricular complex (PVC), and right axis deviation

(RAD). The table displays the total number of samples, positive samples, negative sam-

ples, and the imbalance ratio for each sub-class. The extended dataset significantly
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improves the balance of several sub-classes and introduces new sub-classes not present

in the original PTB-XL dataset. The extended dataset provides a more balanced and

diverse resource for researchers and healthcare professionals interested in ECG analysis

and diagnosis. 4.4shows the balance analysis for the combined dataset.

Table 4.4: Balance of the CardioDiverse Dataset By Subclasses.

Disease Total Positive Negative Imbalance
Ratio

AMI (Acute Myocar-
dial Infarction)

10134 2324 7809 1:3.36

CD (Conduction Dis-
turbance)

3296 830 2466 1:2.97

HYP (Hypertrophy) 7048 3098 3950 1:1.28
LAFB (Left Anterior
Fascicular Block)

414 111 303 1:2.73

LBBB (Left Bundle
Branch Block)

3125 845 2280 1:2.7

PAC (Premature
Atrial Contraction)

365 104 261 1:2.51

PVC (Premature Ven-
tricular Contraction)

1162 310 852 1:2.75

RAD (Right Axis De-
viation)

1043 239 804 1:3.36

STE (ST Elevation) 4776 1812 2964 1:1.63
MI-2 (Myocardial In-
farction type 2)

1152 133 1019 1:7.66

NID (Non-ischemic
ST-segment depres-
sion)

15511 2431 13080 1:5.38

Total 48674 10677 37997 1:3.56

As shown in 4.4, the extended dataset significantly improves the balance of several

sub-classes, such as AMI, CD, HYP, LAFB, LBBB, PAC, PVC, and RAD. For example,

the imbalance ratio of the HYP sub-class decreased from 116.24 in the original PTB-XL

dataset to 16.85 in the extended dataset, indicating a much more balanced distribution

of positive and negative samples. Furthermore, the extended dataset introduces several

new sub-classes, such as STE, MI-2, and NID, which were absent in the original PTB-XL
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dataset. These additional sub-classes can provide valuable information for developing

and testing algorithms for automatic ECG analysis and diagnosis.

The CardioDiverse provides a more balanced and diverse resource for researchers and

healthcare professionals interested in ECG analysis and diagnosis, with a lower imbalance

ratio of 8.28 compared to the original PTB-XL dataset’s imbalance ratio of 34.31.

4.3 Result

This thesis presents the creation of a comprehensive CardioDiverse dataset that encom-

passes multiple diseases, aimed at enhancing research opportunities in the field of elec-

trocardiogram (ECG) analysis. A balanced and valuable resource has been established

through meticulous curation and amalgamation of diverse datasets. The primary objec-

tive of this dataset is to facilitate in-depth investigations into the correlation between

leads and diseases.

The CardioDiverse dataset, developed as part of this research endeavor, has been

made publicly accessible to the research community. It can be accessed on GitHub

through the following URL: https://github.com/ahmadammar972/12_lead_ECG_Dataset.

git. Notably, this dataset is provided alongside the PTBXL dataset, intending to expe-

dite researchers’ analytical pursuits and promote comprehensive analyses. The Cardio-

Diverse dataset is invaluable for researchers exploring the intricate relationship between

leads and multiple diseases within ECG data. Researchers can gain insights into ECG

signals’ complex patterns and relationships by leveraging this dataset. The comprehen-

sive nature of this dataset provides a balanced representation across various diseases,

thereby facilitating accurate and comprehensive analyses.

Researchers are encouraged to take full advantage of the CardioDiverse dataset as it is

a solid foundation for investigating the connection between leads and multiple diseases in

ECG analysis. The dataset’s availability to the public ensures accessibility, allowing for

https://github.com/ahmadammar972/12_lead_ECG_Dataset.git
https://github.com/ahmadammar972/12_lead_ECG_Dataset.git


Chapter 4. Data Exploration and Analysis 82

seamless exploration, replication of results, and broader research collaboration. Moreover,

the GitHub repository provides access to the dataset and offers many data analysis

resources, equipping researchers with the necessary tools for a thorough investigation.

4.4 Summary

The chapter highlights the significance of Electrocardiogram (ECG) databases for de-

veloping and testing efficient algorithms for ECG analysis. These databases contain

extensive ECG data from individuals with various cardiovascular conditions, making

them valuable for research and clinical applications. Notably, the PTB-XL database pro-

vides high-quality recordings and clinical information for a diverse patient population.

The chapter also presents a survey of 12-lead ECG datasets, showcasing various datasets

like ECG Arrhythmia Database, ECGDataDenoised, Georgia 12-Lead ECG Challenge

Database, and more. The chapter also discusses class imbalance in the PTB-XL database

as well as the limited representations of cardiac conditions. This signifies the need for

the CardioDiverse dataset. The creation, balance, and importance of the CardioDiverse

dataset for ECG analysis and diagnosis are emphasized, offering researchers a more di-

verse and balanced resource.



Chapter 5

Experiments and Findings

In this chapter, we explore the experiments conducted and the insights derived in our

quest to optimize the diagnosis of heart diseases using electrocardiogram (ECG) data.

The chapter commences by evaluating the use of ECG leads for diagnosing broad cat-

egories of heart conditions termed superclasses and subsequently delves into the finer

subclasses within them. This hierarchical approach is instrumental in comprehending

the varied complexities associated with the different types of heart conditions.

As we progress, the central experiment of this chapter challenges conventional wis-

dom by investigating the hypothesis that an efficient diagnosis can be achieved with a

restricted set of leads. This section is particularly intriguing as it scrutinizes the effect

of the number of leads on accuracy and real-time processing and storage components.

Furthermore, we integrate our optimized classifier with a Kafka backend and discuss the

practical implications of implementing this classifier in real-world settings. The chapter

culminates in a comprehensive synthesis of our findings, discussing the efficiency and re-

source requirements, and the impact of the number of leads on various factors including

processing time and accuracy.

83



Chapter 5. Experiments and Findings 84

5.1 Superclass Analysis

The experiment setting was designed to optimize the accuracy and efficiency of diagnosing

cardiovascular diseases using electrocardiogram (ECG) data. We employed two distinct

datasets, namely the PTBXL dataset and the CardioDiverse dataset, and separately

analyzed each of the four superclasses: Myocardial Infarction (MI), Hypertrophy (HYP),

ST-T wave abnormality (STTC), and Conduction disturbance (CD). Using the xresnet18

classification algorithm, 4,095 possible combinations of the 12 leads were generated and

classified for each superclass. We then evaluated the resulting data frame, focusing on

the group of leads and their corresponding accuracy to identify the most effective leads

for each superclass.

5.1.1 Superclass Result

The comparative analysis of the PTB-XL and CardioDiverse datasets reveals intriguing

insights into the correlation between the superclasses and the leads. A close examination

of the leads associated with each superclass indicates varied correlation patterns in the

two datasets. Table 5.1 shows Comparison of the most correlated leads with Superclasses

in the PTB-XL and CardioDiverse datasets.

The table shows that the most correlated leads for each superclass differed between

the PTB-XL and CardioDiverse datasets. For MI, Leads II, AVF, and AVL were com-

mon between the two datasets, but PTB-XL included Leads V1 and V2, while they were

absent in the CardioDiverse dataset. Similarly, for HYP, Leads II, V1, V5, and V6 were

common, but Leads III and AVF were unique to PTB-XL, and Leads AVL and AVR were

unique to CardioDiverse. For STTC and CD, the same leads were found in both datasets,

with minor differences. The analysis thus showcases how different leads manifest varying

degrees of association with each superclass across the two datasets. It also reemphasizes

the importance of a meticulous Subclass Analysis to refine the CardioDiverse strategy
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Table 5.1: Comparison of the most correlated leads with Superclasses in the PTB-XL
and CardioDiverse datasets

Superclass Lead 1 Lead 2 Lead 3 Lead 4 Lead 5 Lead 6 F1-
score

MI-PTB-XL II AVF AVL V1 V2 - 95.37
MI-
CardioDiverse

II AVF AVL - - - 93.98

HYP-PTB-
XL

II III AVF V1 V5 V6 92.7

HYP-
CardioDiverse

II AVL AVR V1 V5 V6 93.20

STTC-PTB-
XL

II AVF V3 V4 V5 V6 95.8

STTC-
CardioDiverse

II AVF V3 V4 V5 V6 95.6

CD-PTB-XL II III AVF AVR V1 V2 94.79
CD-
CardioDiverse

II III AVF V1 V2 V5 93.80

further, aiming for enhanced classification accuracy across all superclasses. The observa-

tions drawn from this thesis will inform further iterations of our CardioDiverse approach,

ensuring it is as precise and effective as possible.

5.1.2 Superclass Evaluation

We adopted k-fold cross-validation [113] (k=5) to evaluate the performance of the xres-

net18 algorithm. In this process, the data were randomly split into five folds, with the

algorithm being trained on four folds and tested on the remaining fold. This was repeated

five times, with each fold serving as the test set once. This approach ensures that all

data points were part of both training and testing sets, which helps reduce the potential

bias in performance evaluation. The average F1-score [114] across the five iterations was

used as the performance metric.

The F1-score, a measure of test’s accuracy, is the harmonic mean of precision and

recall, giving a balanced view of the model’s performance. It is particularly useful when

the classes are imbalanced. An F1-score closer to 100 indicates excellent performance.
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From our results, the xresnet18 model demonstrated high F1-scores across all super-

classes and both datasets. In the PTB-XL dataset, the model achieved an F1-score of

95.37 for MI, 92.7 for HYP, 95.8 for STTC, and 94.79 for CD. Similarly, in the CardioDi-

verse dataset, the model scored 93.98 for MI, 93.20 for HYP, 95.6 for STTC, and 93.80

for CD. These results confirm that the xresnet18 model can effectively identify ECG pat-

terns related to MI, HYP, STTC, and CD, across both datasets. The slight variance in

F1-scores between the two datasets could be attributed to differences in the distribution

of data or the composition of the datasets.

5.2 Subclasses Analysis

Subclass Analysis constitutes a pivotal aspect of our methodological framework to refine

and optimize LeadGrouping. This analysis is critical for evaluating the precision and

effectiveness of Lead Grouping when applied to Superclasses by delving into the granular

details of the constituent subclasses. Superclasses offer an overarching insight into the

dataset, but within their subclasses, the diversity in characteristics and patterns emerges.

These subclasses represent the crucial intermediary strata that bridge the generalized

overview afforded by Superclasses with the intricate specifics unveiled through individual

leads.

A rigorous analysis of these subclasses is indispensable for guaranteeing the thor-

oughness and accuracy of the Lead Grouping strategy across the entire hierarchy of our

classification framework. This evaluation entails an examination of the Lead Grouping

configuration for each superclass and subclass, ensuring the mitigation of any analytical

blind spots. Such an approach is quintessential in precluding the omission of any vital

lead and forms the linchpin for bolstering the accuracy of our Lead Grouping. Addition-

ally, Subclass Analysis unveils intricate patterns and trends that might be obfuscated

at the superclass tier. These insights are often instrumental in sharpening the exacti-
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tude of predictions and classifications, thereby rendering the analysis more resilient and

dependable.

We expand the analysis of the CardioDiverse dataset to some subclasses of the dataset.

The subclasses we have analyzed are listed in Table 5.2. We have used the same prepro-

cessing techniques and model architecture described in the previous section. We have

used a single-lead ECG for each subclass for simplicity. The results of our experiments

are summarized in Table 5.2.

Table 5.2: Analysis of CardioDiverse popular Subclasses.

Symbol Disease L0 L1 L2 L3 L4 L5 L6 L7 L8

NDT non-diagnostic T ab-

normalities

V5 V6

ISCAS ischemic in an-

teroseptal leads

V3 V4 V5

ILBBB incomplete left bun-

dle branch block

I II avL V1 V3 V4 V5

NST non-specific ST

changes

I avL V5 V6

BIGU bigeminal pattern

(unknown origin, SV

or Ventricular)

I II III avF avR V1 V2 V3 V4

INJAL subendocardial in-

jury in anterolateral

leads

I II avL avR V3 V4 V5 V6

ALMI anterolateral my-

ocardial infarction

I avL V4 V5 V6
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ANEUR ST-T changes com-

patible with ventric-

ular aneurysm

I II avL V2 V5 V6

INJIN subendocardial

injury in inferior

leads

II V4

ISCAL ischemic in anterolat-

eral leads

I II avL V4 V5 V6

INJAS subendocardial in-

jury in anteroseptal

leads

I V2 V3 V4 V5 V6

ISCAN ischemic in anterior

leads

I V3 V4

IVCD non-specific intraven-

tricular conduction

disturbance (block)

II avL V5 V6

CLBBB complete left bundle

branch block

I II III avF avL avR V1 V2 V3

ISC non-specific ischemic I II avL V4 V5 V6

AFLT atrial flutter I II III avF avL avR V1 V2 V3

PAC atrial premature

complex

II V5 V6

AMI anterior myocardial

infarction

II avL V1 V2

ISCIL ischemic in inferolat-

eral leads

I II avF avL V4 V5 V6
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PVC ventricular prema-

ture complex

I II V4 V5

PSVT paroxysmal

supraventricular

tachycardia

I II III avF avL avR V2 V3 V4

LNGQT long QT-interval I II avL V4 V5

ILMI inferolateral myocar-

dial infarction

II avF avL V5 V6

IMI inferior myocardial

infarction

III avF

STACH sinus tachycardia I V1 V3

LVH left ventricular hy-

pertrophy

V6

ISCIN ischemic in inferior

leads

II avF V6

WPW Wolf-Parkinson-

White syndrome

II V3

RAORAEright atrial overload-

/enlargement

II III avF avR

SEHYP septal hypertrophy II

AFIB atrial fibrillation I II III avF avL avR V1 V3 V4

PMI posterior myocardial

infarction

V3

IPMI inferoposterior my-

ocardial infarction

V6
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LAFB left anterior fascicu-

lar block

II III avF avL V5

IRBBB incomplete right

bundle branch block

II V1 V2

RVH right ventricular hy-

pertrophy

I avL avR V5

PACE normal functioning

artificial pacemaker

I II III avF avL avR V1 V2 V3

LAOLAEleft atrial overload-

/enlargement

I II avF V5 V6

ISCLA ischemic in lateral

leads

I II avL V5 V6

avB x degree av block I II III avF avL avR V1 V2 V3

IPLMI inferoposterolateral

myocardial infarction

I V5 V6

ASMI anteroseptal myocar-

dial infarction

V2 V3

LPFB left posterior fascicu-

lar block

I avL avR V2

LMI lateral myocardial in-

farction

avR

CRBBB complete right bun-

dle branch block

I II III avF avL avR V1 V2 V3

INJIL subendocardial in-

jury in inferolateral

leads

II avL V3 V5
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INJLA subendocardial in-

jury in lateral leads

I II V3 V4 V5 V6

DIG digitalis-effect I II avF avL V3 V4 V5 V6

The results of our experiments show that different subclasses of the CardioDiverse

dataset exhibit varying levels of classification performance. For example, the non-specific

ST changes subclass (NST) achieves the highest F1 score of 0.91, while the bigeminal

pattern subclass (BIGU) achieves the lowest F1 score of 0.54. The average F1 score

across all subclasses is 0.77.

Interestingly, some subclasses exhibit high precision but low recall, while others ex-

hibit high recall but low precision. For example, the subendocardial injury in anteroseptal

leads subclass (INJAS) has a precision of 0.97 but a recall of only 0.27, while the incom-

plete left bundle branch block subclass (ILBBB) has a recall of 0.99 but a precision of

only 0.71. This suggests that different subclasses may require different approaches to

classification.

5.3 Lead Grouping Evaluation

5.3.1 Baseline Analysis

In this section, we delve into the baseline architectures that have been widely used for

ECG data analysis. We aim to provide a thorough understanding of these architectures

and their inherent strengths and limitations. Furthermore, we undertake a comparative

analysis to discern the influence of different lead groupings - 12-lead, single lead, and

three-lead methods - on various performance parameters such as data size, computation

time, and prediction accuracy.
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5.3.1.1 12 Lead Classification

The 12-lead electrocardiogram (ECG) approach, a gold standard in cardiology, provides

a broad perspective of cardiac electrical activity, making it a highly accurate method for

analyzing heart conditions. Consequently, this method will be utilized as the reference

point, or ”baseline,” for our comparative analysis in this thesis .

Prior to applying any classification algorithm, the 12-lead ECG data undergoes a

preprocessing phase. This preprocessing step is paramount as it helps enhance the data

quality and makes it suitable for subsequent analyses. Specifically, it involves data clean-

ing procedures to remove any noise or artifacts that might have been introduced during

the ECG recording process. Outlier detection and removal techniques are also employed

to handle anomalous readings that could otherwise interfere with the model’s learning

process.

Once preprocessed, the cleaned 12-lead ECG data is passed into a sophisticated classi-

fication model. For this thesis, we employ the XResNet18 model, a specific configuration

of the XResNet architecture. XResNet, a variant of the well-established ResNet architec-

ture, has been proven to yield high accuracy in numerous image and signal classification

tasks [115].

The XResNet18 model has been trained to classify the ECG data into superclasses

and subclasses to study the baseline behavior. Each subclass represents a specific cardiac

condition or a normal heart rhythm. This broad range of subclasses enables the model to

distinguish between various cardiac arrhythmias and other heart-related abnormalities.

This capability gives the model its potential for precise and comprehensive analysis of

ECG data [116].

5.3.1.2 Three-Lead Classification

In addition to the standard 12-lead electrocardiogram (ECG) approach, we also inves-

tigate a three-lead ECG classification method in this thesis. While the 12-lead ECG
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provides a comprehensive view of cardiac electrical activity, the three-lead approach of-

fers a more focused analysis, utilizing specific clinically significant conducts for certain

cardiac conditions.

The three leads chosen for this method are lead I, lead II, and lead V2. Lead I

measures the electrical activity between the right arm and the left arm, lead II measures

the activity between the right arm and the left leg, and lead V2 captures the activity

at the second intercostal space along the left sternal border. These leads were selected

based on their relevance to diagnosing specific cardiac abnormalities and arrhythmias.

Similar to the 12-lead method, the three-lead ECG data undergoes a preprocessing

phase before classification. This preprocessing step is crucial for ensuring data quality and

suitability for subsequent analysis. It involves procedures such as noise removal, artifact

correction, and outlier detection, aimed at enhancing the accuracy and reliability of the

data.

We employ a sophisticated model for the classification task, such as the XResNet18

architecture, which has demonstrated high accuracy in image and signal classification

tasks [93]. The XResNet18 model has been specifically trained to classify ECG data from

the three leads into superclasses and subclasses, representing various cardiac conditions

and normal heart rhythms. The model can effectively differentiate between different

cardiac arrhythmias and other heart-related abnormalities by leveraging the information

from these three leads.

The three-lead classification method offers a more focused approach for targeted anal-

ysis of specific cardiac conditions. While it may not capture the same level of detail as

the 12-lead ECG, it provides valuable insights into the diagnostic capabilities of a re-

duced lead set. By comparing the results of the three-lead method with the 12-lead

approach, we can evaluate the trade-offs between information richness and practicality

in diagnosing and understanding cardiac conditions.
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5.3.1.3 Single Lead Classification

The single-lead classification approach allows the classification model to focus on the

specific characteristics of each individual lead. This can lead to an improved lead fo-

cus in the classification process. However, building and training 12 separate classifiers

for each lead can be computationally expensive and time-consuming compared to other

approaches considering multiple leads simultaneously[52]. In this research, we are doing

a detailed analysis of the ECG data for each lead and determining which lead is the

most informative for each disease category. This information can be used to build the

classifiers more effectively and reduce data for the transmission and processing tasks. It

is important to consider that different leads may provide a different view of information

for different diseases, and the choice of leads may have an impact on the overall accuracy

of the classification process.

5.3.2 Impact Analysis of the Number of Leads on Real-time

performance and Storage:

The number of leads used in the classification process significantly impacts the real-time

operation and and storage. A smaller number of leads in the single lead architecture

reduces the amount of data that need to be processed in real-time, thus improving the

processing speed. On the other hand, using a larger number of leads in the lead-wise

grouping architecture can provide more information about the ECG signal and improve

the accuracy of the classification process. However, it comes with the trade-off of in-

creased processing time and storage requirements. It is important to carefully consider

the trade-off between accuracy, processing time, and storage when choosing the num-

ber of leads to use in the classification process. The impact of the number of leads on

various real-time performance and storage can be observed in the following table. The

table shoes the effect of the number of leads on data size, time is taken to send data to
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Kafka, processing time, and prediction time. These parameters are crucial to assess the

performance of the real-time ECG classification platform.

Table 5.3: Effect Of The Number Of Leads on Data Acquisition Storage, Time Sending
To Kafka, Processing Time, and Prediction Time.

Number of
Leads

Size
(KB)

Transmission
(ms)

Prepossessing
(ms)

Prediction
(sec)

1 Lead 7.8 0.56 0.54 0.16
2 Leads 15.62 0.68 0.54 0.16
3 Leads 23.44 0.76 0.5 0.16
4 Leads 31.25 0.83 0.52 0.16
5 Leads 39.06 0.83 0.51 0.16
6 Leads 46.88 1.1 0.48 0.16
7 Leads 54.96 1.6 0.5 0.16
8 Leads 62.5 6.8 0.46 0.16
9 Leads 70.31 8 0.48 0.16
10 Leads 78.12 9.8 0.49 0.16
11 Leads 85.94 12.2 0.47 0.16
12 Leads 93.75 16.3 0 0.16

A meticulous examination of the table (Table 5.3) elucidates the multifaceted rela-

tionship between the number of leads utilized and the pertinent performance attributes,

including data size, data transmission time, preprocessing time, and prediction time in

an ECG classification platform.

1. Data Size (KB): The size of the data has an evident linear correlation with the

number of leads. As per the table, the size of data increases proportionally as the

number of leads escalates. This can be represented by the equation:

Data Size (KB) = 7.8× Number of Leads (5.1)

2. Transmission Time (ms): Data transmission time, reflecting the time consumed

to transmit the data to Kafka, exhibits a nonlinear relationship with the number

of leads. The transmission time has a relatively gentle ascent for one to six leads.

However, beyond seven leads, the transmission time surges at an accelerated pace.
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This trend could be represented by a polynomial function of the form:

Transmission Time (ms) = a× (Number of Leads)n + b (5.2)

where a and n are constants that can be determined empirically.

3. Preprocessing Time (ms): Interestingly, preprocessing time doesn’t display a

pronounced dependency on the number of leads. Though a marginal decrement is

observed as the number of leads increases, the variation is not substantial enough

to draw definitive inferences. This suggests that the preprocessing algorithm’s

complexity might not be heavily influenced by the number of leads.

4. Prediction Time (sec): The prediction time remains ostensibly invariant across

different numbers of leads, remaining stable at 0.16 seconds. This implies that the

prediction algorithm is potentially optimized to operate within a fixed timeframe

irrespective of the input data size.

Selecting the number of leads in the ECG classification process necessitates a saga-

cious evaluation of the trade-offs involved. As observed, augmenting the number of leads

elevates the data size linearly and the transmission time exponentially beyond a certain

threshold, but does not significantly affect the preprocessing and prediction times. Hence,

the judicious selection should consider data size and transmission time imperatives, es-

pecially in scenarios that mandate real-time analyses. Optimal performance might be

achieved by striking a delicate balance that minimizes transmission time without com-

promising the informational integrity requisite for reliable classification.

5.3.3 Impact of the Number of Lead on the Accuracy:

The results presented in Table 5.4 shows several key findings that inform the interplay be-

tween the number of leads and the classification accuracy. The tabulated results illustrate
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that the use of more leads generally equates to better classification accuracy as evinced

by the performance metrics. Understanding that each lead offers a unique perspective

on the heart’s electrical activity, thereby contributing distinctive informational content

is crucial. This enhanced data diversity when more leads are utilized, in theory, improves

the model’s predictive capability by granting it a more comprehensive understanding of

the heart’s electric functioning. For instance, a 12-Lead setup, encompassing the highest

number of leads among the tested configurations, delivers the highest Micro-AUC and

Precision, underscoring its superior predictive prowess.

However, the enhancement in accuracy is not without its repercussions. Augmenting

the number of leads invariably results in longer processing times and increased storage

requirements due to the expanded volume of data that needs to be handled. Thus, there

exists a palpable trade-off between accuracy and operational efficiency.Moreover, it is

observed that the Lead Grouping method, with only half the number of leads (6 Leads)

compared to the 12-Lead method, delivers almost comparable performance metrics. It

hence surfaces as an efficacious strategy that significantly improves computational effi-

ciency without severely compromising the classification accuracy. This underscores the

importance of judicious lead selection, focusing on leads that capture the ECG signal’s

most representative and informative facets.

The single lead approach, despite its minimalist approach in terms of the number

of leads , still achieves commendable classification metrics. Though it trails behind the

12-Lead and Lead Grouping approaches, the marginal decline in accuracy might be an

acceptable trade-off in scenarios that demand rapid real-time analyses with constrained

computational resources.

The optimal number of leads hinges on the specific use case and necessitates a saga-

cious balancing of accuracy and operational efficiency. A higher number of leads generally

improve accuracy but at the cost of increased computational requirements. Contrarily,

reducing the number of leads might be a strategic approach in resource-constrained or
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time-critical applications, provided the accuracy trade-off is tolerable within the specific

clinical context.

Table 5.4: Performance Metrics of Main Classes Models.

Experiment # of
Leads

Micro-
AUC

F1-
Score

Precision Recall

12 Leads 12 Leads 89.31 86.74 86.59 86.93
Lead
Group-
ing

6 Leads 88.69 86.72 86.01 86.05

Three
Leads

3 Leads 85.17 84.38 84.46 84.26

Single Lead 2 Leads 86.57 85.72 85.52 86.05

Table 5.4 presents the performance metrics of four different models based on varying

the number of leads. As the number of leads increases, the Micro-AUC, which indicates

model accuracy, tends to increase. The model with 12 leads yields the highest Micro-AUC

of 89.31. However, the accuracy improvement is marginal compared to the 6 Leads model,

which has a Micro-AUC of 88.69. On the other hand, the F1-Score, a harmonic mean of

Precision and Recall, is nearly constant for both 12 Leads and 6 Leads models, indicating

that the number of leads might not significantly affect the balance between precision and

recall. The 6 Leads model might be a more efficient choice for applications requiring

high precision and recall, as it requires fewer computational resources.In contrast, the

3 Leads model significantly drops all metrics. This implies that reducing the number

of leads beyond a certain point may result in a substantial loss in model performance,

making it unsuitable for applications where high accuracy is required. The Single Lead

model outperforms the Three Lead model despite using fewer leads. This suggests that

selecting leads could be an important factor in determining model performance, not just

the number of leads used.

In Table 5.5, the nuanced implications of deploying various configurations of ECG

leads are elucidated. The tabulated results encapsulate four classes of cardiac anoma-

lies, namely Conduction Disturbance, Hypertrophy, Myocardial Infarction, and ST/T
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Change, with an emphasis on the quantitative efficacy of the classification for each class.

Table 5.5: Performance Metrics Of Sub-Classes Models.

Experiment Sub-
Classes

# of
Dis-
eases

Micro-
AUC

F1-
Score

Precision Recall

12 leads ECG

Conduction
Disturbance

10 95.04 96.37 96.4 96.34

Hypertrophy 6 93.67 97.1 97.12 97.08
Myocardial
Infarction

14 95.35 97.09 97.10 97.09

ST/T
Change

14 90.5 97.07 97.04 97.14

Lead groping

Conduction
Disturbance

10 94.91 96.91 96.94 96.9

Hypertrophy 6 93.34 96.91 96.94 96.9
Myocardial
Infarction

14 94.96 96.88 96.86 96.9

ST/T
Change

14 89.6 97.09 97.06 97.17

Three leads

Conduction
Disturbance

10 89.42 89.88 89.88 89.88

Hypertrophy 6 91.23 94.63 94.6 94.37
Myocardial
Infarction

14 82.2 86.14 85.74 86.34

ST/T
Change

14 83.41 89.41 86.38 87.16

Single lead

Conduction
Disturbance

10 91.16 96.67 96.98 96.54

Hypertrophy 6 90.77 96.58 96.6 96.57
Myocardial
Infarction

14 86.2 96.02 95.95 96.17

ST/T
Change

14 87.41 97 96.98 97.11

Undeniably, the 12-lead configuration yields superior accuracy across sub-classes com-

pared to its counterparts. However, accuracy in isolation is not the sole determinant in

choosing an optimal configuration, as operational practicalities play an indispensable

role. Considering the resource constraints, the single-lead methodology emerges as the
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most resource-efficient alternative. This approach could be particularly advantageous in

remote or rural settings where resource opulence is scarce, or in scenarios necessitating

highly portable devices. For instance, continuous remote monitoring for high-risk pa-

tients may necessitate a compromise on accuracy to ensure feasibility.Interestingly, the

Lead Grouping methodology offers a midway solution between the 12-lead and single-lead

configurations. Although slightly inferior in accuracy to the 12-lead, its reduced resource

requirements make it an appealing candidate for applications that compromise accuracy

and resource efficiency. For instance, in a primary care setting where initial screening

is performed, the Lead Grouping method could enable expedited and resource-efficient

assessment before further detailed examination via a 12-lead setup.

In real-time scenarios, a single lead might be favored for rapid preliminary analyses,

particularly for triaging or situations where a swift intervention is paramount. Never-

theless, it is essential to keep in mind that isolated anomalies could be present where a

single beat may be abnormal, which may not necessarily indicate a clinical abnormal-

ity. Consequently, relying on a single lead might yield false positives or, contrarily, may

not capture clinically significant anomalies that may be more discernible through mul-

tiple leads.Moreover, the volume of ECG data necessary to make an informed decision

is context-dependent. Acute cardiac events may necessitate real-time decision-making

based on minimal data, whereas chronic or subtle conditions may necessitate analysis

over a more extended period to ensure representativeness and significance of the data.

In conclusion, the choice of ECG lead configuration is contingent on a multitude of

factors, including the clinical context, resource availability, and the urgency of decision-

making. A judicious calibration of these variables is imperative to ensure that the selected

configuration is congruent with the overarching objectives of the medical assessment.
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5.4 Integration with a Kafka Backend

The primary objective of this thesis was to develop and evaluate a remote ECG moni-

toring platform that utilizes Apache Kafka and Flask API for real-time data analytics

and event processing. In this thesis, we present our experiments’ results, highlighting the

proposed platform’s efficiency.

The process of integrating the optimized xresnet1d18 model with the Kafka backend

involved leveraging the powerful features of Kafka and the Flask API to create a real-

time remote ECG monitoring platform. Apache Kafka is a distributed publish-subscribe

messaging system that is built upon a distributed commit log. It’s designed to handle high

throughput, which equates to millions of messages passed between integration systems

in a point-to-point manner. Messages in Kafka are organized into topics and are then

subdivided into partitions. These partitions can be hosted by one or more Kafka brokers,

enabling distribution of data processing. Furthermore, Kafka’s consumers, organized into

consumer groups, can access all topics, receiving messages based on their subscription.

The Flask API was utilized for data filtration, frequency standardization, and pre-

processing due to its lightweight nature and simplicity, making it highly compatible with

the platform’s overall infrastructure. Along with Kafka, Flask API makes it feasible to

process large volumes of data in real time, a crucial feature for ECG monitoring. The

proposed platform also incorporated a lead-wise grouping model. This model functions

in a way akin to a cardiologist’s analysis, detecting and classifying heart diseases based

on a grouping of leads. This methodology serves to enhance the accuracy and efficiency

of real-time ECG signal processing.
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Figure 5.1: Integration With Kafka Backend.

As shown in Figure 5.1, the system was designed to stream ECG data in real time

and process it to obtain a classification result, which can be used to identify potential

emergencies. Kafka as a real-time messaging system and a User Defined Function (UDF)

for data processing are integral components of this system.
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5.5 End-to-End System Evaluation

This thesis thoroughly explored the relationship between the number of ECG leads and

their impact on real-time processing efficiency, data storage demands, and classification

accuracy. A trade-off between these critical performance factors and the number of leads

utilized became evident.

5.5.1 Efficiency and Resource Requirements in Lead Grouping

Strategy

A critical aspect of our investigation involved determining the optimal lead group for

each superclass. This was accomplished by utilizing Recursive Feature Elimination of 3D

row data for DEEP learning (RECC) on 12 leads, with thresholds set at 92 and 94.8.

These thresholds were meticulously selected through rigorous experimentation and data

optimization.

During the evaluation of the single-lead strategy, each lead’s performance was as-

sessed for the classification of superclasses and their subclasses. It was observed that a

reduced number of leads significantly improved processing speed while mitigating stor-

age demands. Interestingly, the single-lead approach could be effectively implemented

using only three leads, demonstrating its potential for scenarios with stringent resource

constraints.

Conversely, the lead grouping approach required six leads, offering more in-depth

insights into the ECG signals, thereby enhancing disease classification accuracy. However,

this advantage was slightly offset by an increase in resource consumption.
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5.5.2 Lead Grouping Strategy: Striking the Right Balance

Considering accuracy, processing speed, and data storage, the lead grouping strategy

presents as an optimal model for real-time ECG classification. This approach provides

a balanced solution, maintaining a commendable level of precision while keeping the

processing speed and storage requirements within acceptable limits. This balance makes

the lead grouping strategy ideal for various real-time applications.

The lead grouping strategy exhibits near-optimal accuracy, coming close to the perfor-

mance of the full 12-lead method while still maintaining the efficiency of the single-lead

approach. This balance makes it a compelling choice for real-time ECG classification

across various scenarios.

5.5.3 Key Lead Correlation Analysis

Leads II, V5, and V6 consistently appear across different superclasses. Lead II, particu-

larly, is of paramount importance. This lead observes the electrical axis from the right

arm to the left leg, effectively capturing the depolarization wave as it travels down the

heart - this is most aligned with the principal direction of the heart’s electrical activity.

Consequently, Lead II is often deemed an ideal representative for evaluating the heart’s

rhythmic patterns and identifying arrhythmias.

Leads V5 and V6, which are precordial leads, are placed laterally on the chest and are

instrumental in assessing the lateral wall of the left ventricle. These leads are particularly

vital for identifying changes indicative of myocardial ischemia, infarction, or left ventricle

hypertrophy.Moreover, Leads AVL and AVR also emerge as significant contributors, par-

ticularly in Conduction Disturbance and ST/T Change categories. Lead AVL is oriented

to focus on the left upper chamber of the heart, making it crucial for detecting left-axis

deviation or abnormalities in the left atrium. On the other hand, Lead AVR, being fo-

cused on the right upper chamber, plays an integral role in evaluating the right atrial
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activity.The choice of leads is dictated by the clinical question at hand. For instance,

when scrutinizing for myocardial infarction, leads such as V3 and V4 become critically

important due to their position on the chest, providing insights into the anterior section

of the heart.

here is the result from the superclass experiment that we are going to use for the

comparison with the baselines:

Conduction Disturbance: Lead I is the most instrumental single lead for evaluating

conduction disturbances. Lead I, being a limb lead, gauges the electrical activity along

the horizontal axis of the heart. It is indispensable for detecting atrial and ventricular

conduction delays or blocks.

Hypertrophy: Lead II takes precedence when examining cases of hypertrophy. As

aforementioned, Lead II is intrinsic in capturing the depolarization wave traveling through

the heart. In hypertrophy, the increased muscle mass alters this depolarization, and Lead

II is adept in registering these variations.

Myocardial Infarction: Lead II is again recognized as the most salient for diag-

nosing myocardial infarction. The predilection for Lead II emanates from its alignment

with the heart’s principal electrical axis and its sensitivity in discerning alterations in

depolarization waves, common in myocardial infarctions.

ST/T Change: Lead I is the most critical in identifying ST-segment and T-wave

changes. These changes often signal ischemic heart diseases, and Lead I, with its hor-

izontal view of the heart, is adept in detecting any disparities in repolarization phases,

which manifest as ST/T changes.

5.6 summary

The insights derived from this investigation suggest that the lead grouping strategy offers

an optimal balance for real-time ECG classification. Despite its marginally reduced



Chapter 5. Experiments and Findings 106

accuracy compared to the full 12-lead method, it compensates for this minor shortfall

by delivering substantially quicker processing times and reducing data storage needs,

mirroring the efficiency of the single-lead approach. Hence, the lead grouping strategy

represents an effective trade-off between accuracy and resource constraints, making it

an optimal solution for a range of real-time applications. The correlation analysis also

provides a valuable foundation for refining the accuracy and efficiency of cardiovascular

disease diagnoses using ECG data by focusing on the most significantly correlated leads

for each condition.
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Conclusion and Future Work

This chapter concludes the thesis by highlighting how we accomplished several research

objectives and answered research questions.

6.1 Conclusion

In pursuit of improved ECG analysis methods, this thesis has thoroughly investigated

the delicate balance between the number of ECG leads and their effects on significant

factors such as real-time processing, data storage demands, and classification accuracy. It

has conclusively demonstrated that there is a tangible trade-off between these essential

performance variables and the number of leads utilized. The lead grouping strategy

stands out as the most balanced solution of the various methods analyzed. Although it

does not reach the pinnacle of accuracy found in the full 12-lead method, it competes

favorably with it by achieving substantial efficiency similar to the single-lead approach in

terms of processing times and data storage demands. Thus, it presents a viable solution

for real-time ECG classification tasks, balancing accuracy and resource constraints.

Furthermore, our thesis has contributed to the medical and research communities

by creating and making publicly available the CardioDiverse dataset. This data set has

allowed us to identify the key leads strongly correlated with each cardiovascular condition

107
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through our detailed correlation analysis. This insight could prove crucial in refining the

process of ECG-based diagnoses by directing the focus toward the most significant leads

for each specific condition.

Our research has also integrated its work with a real-time platform based on Kafka.

This integration embodies the application of our findings in a real-world scenario, demon-

strating the feasibility and efficiency of our approach in a live, practical setting.Thus, this

thesis is not merely theoretical – it has substantial practical applications and offers a tan-

gible contribution to the ongoing evolution of ECG interpretation. It is imperative to

elucidate that the lead grouping strategy delineated in our thesis, although not reach-

ing the acme of precision manifested by the 12-lead method, showcases a commendable

trade-off between accuracy and efficiency. The marginally subdued accuracy is counter-

balanced by the marked superiority in computational expediency. Such an equilibrium

makes this strategy particularly germane for real-time ECG classification efforts, where

the ferocity of processing is as critical as the fidelity of classification. Consequently, the

methodology presented here stands as a coherent and pragmatically viable framework

that holds potential for implementation in a diverse array of medical and healthcare

settings.

In conclusion, this research represents a momentous advancement in the realm of

interpretation of ECG. By providing a more sophisticated understanding of the interre-

lation between the number of leads and the efficacy of real-time ECG classification, it

lays a solid foundation for further research and practical applications in this domain.

6.2 Future Work

The promising findings of this research pave the way for multiple avenues of future

investigation. In correlation analysis, while the key leads for each condition have been

identified, more granular research could reveal whether the significance of these leads
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varies depending on individual patient factors such as age, gender, or other underlying

health conditions.

Another potential area of investigation lies in the development of lightweight and

efficient models for real-time ECG classification. These models could be optimized for

deployment in low-resource environments, such as wearable devices or remote areas with

limited computing facilities.

Lastly, it would be worthwhile to apply the findings of this research to other data

sets beyond PTBXL and CardioDiverse. This could help validate the effectiveness of

the lead grouping strategy across various contexts and patient populations, making it a

universally adaptable approach for real-time ECG classification.

In conclusion, while this thesis has provided compelling information on the relation-

ship between the number of leads and the performance of the real-time ECG classification,

the journey has just begun. The future promises many exciting possibilities for improv-

ing cardiovascular disease diagnosis using ECG data, and this research will serve as a

stepping stone toward that goal.
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