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Abstract

In this thesis, we consider the efficient coordinated multi-cell multicast beamforming

design in massive massive multiple-input multiple output (MIMO) cellular networks.

For the problem that aims to minimize the base station transmit power, we obtain the

optimal multicast beamforming solution structure. Utilizing the optimal structure

to reduce the computational complexity, we propose to determine the parameters

in the optimal beamforming solution via semi-definite relaxtion (SDR) or successive

concex approximation (SCA). To further design a fast algorithm applicable to massive

MIMO systems, we apply the alternating direction method of multipliers (ADMM)

technique and propose an ADMM-based first-order algorithm to solve the quality of

service (QoS) problem, which decompose the QoS problem into subproblems with

closed/semi-closed form updates.

Following this, we consider the max-min fair problem that aims to maximize the

minimum signal to the interference and noise (SINR) of each user. We present the

optimal max-min fair (MMF) coordinated multicast beamforming solution structure

through the inverse relation between the QoS and MMF problem. We propose to use

the projected subgradient algorithm (PSA) to obtain a solution to the MMF problem,

which is a fast algorithm with closed-form updates and low computational complexity.
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Simulation results show that our proposed methods can achieve near-optimal

performance. Besides, with much lower computational complexity in a massive MIMO

system than existing algorithms.

Keywords: multi-cell; multicast beamforming; MIMO; coordinated beamform-

ing
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Chapter 1

Introduction

1.1 Overview

In recent decades, wireless communication technologies has developed dramatically.

According to [1], the number of subscribers worldwide has increased from 300 million

to more than 6 billion. The large amount mobile users leads to the vast development

of wireless services, and the user demands significantly different as compared to 25

years ago. Nowadays, the new activities provided by the smartphone, i.e., video/audio

streaming, social media, gaming, and other host apps, require a higher data trans-

mission rate. In addition, other non-human-operated devices like the Internet of

Things (IoT) also need robust wireless communication. To satisfy these increasing

requirements, many new wireless technologies have emerged in recent years [2–15].

Among them, massive multiple-input multiple output (MIMO) system has become a

underpinning technology for the 5th generation (5G) and beyond wireless network.

According to the Cisco Visual Networking Index Forecast for 2017-2022 [16], wireless

data will grow at a compound annual growth rate of 46%, and video data is expected

to account for 82% of all internet traffic by 2022, which grows from 75% in 2017.

Moreover, users demand high quality of videos, such as or/and these types of videos
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require high transmit data rate.

The massive MIMO system [2] is a MIMO system equipped with large scale anten-

nas, which can be considered as an extension of multi-user MIMO system. Compared

to point-to-point or multi-user MIMO, the massive MIMO has shown more bene-

fits [3]: improving the energy efficiency, reducing interference between groups or cells.

For energy efficiency, the massive MIMO comprise small and low cost antennas, these

independent antennas make the system more robust and reduce the energy cost. In

addition, the large scale antennas at the transmitter enables transmitting different

signals to multiple users simultaneously, which leads to the massive MIMO achieve

spatial multiplexing. Thus, both the signal to the interference and noise (SINR) at

users and the network capacity can be increased significantly [17].

Besides the massive MIMO, another important technique to satisfy the nowadays

increasing demanding is beamforming. Since 5G or beyond wireless networks and

services require ultra high data rates, coverage and connectivity, the multi-antenna

multicast beamforming has been playing a key role in recent years for supporting

high-speed content distribution. This transmission technology is to send the com-

mon data to multiple users simultaneously. Based on the user distribution, multicast

beamforming can be divided into several categories, i.e., single-group, multi-group,

and multi-cell multicast beamforming. For designing beamforming techniques, several

major performance metrics, such as transmit power, quality of service (QoS) [18–24],

max-min fair (MMF), [21,25–30], are considered most recently. The objective of QoS

problem is to minimize the transmit power, which is subject to the SINR among all

the users satisfy the target. For the MMF problem, which is to maximize the worst
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SINR among all users, subject to the transmit power satisfy a budget.

Since the family of the above problems (QoS and MMF) are non-deterministic

polynomial-time hard (NP-hard) [18], most literature works are rely on designing it-

erative algorithms to solve them. Among the existing approaches, the semi-definite

relaxtion (SDR) [18,19,21,31,32] is a typical method to get an approximate solution

to solve the QoS or MMF problem. However, these SDR-based methods perform

deteriorate in large scale antenna systems. To overcome this drawback, thesuccessive

concex approximation (SCA) [33, 34] is proposed for multicast beamforming with a

larger number of antennas. However, the computational complexity will still grow rel-

atively fast as the number of antenna array increases, which is not suitable for massive

MIMO systems. Therefore, more numerical algorithms are developed to reduce the

computational complexity under massive MIMO systems.

For 5G wireless networks design, the combination of massive MIMO system with

the multicast beamforming technique has been becoming a major trend to support

high user data rate. In a massive MIMO cellular system, the base stations (BSs) can

coordinate with each other to send user data, which is beneficial to reduce the inter-

ference [35]. For downlink transmission, there are two types of multi-cell multicast

beamforming: coordinated beamforming and cooperative beamforming.

For coordinated beamforming [4, 5, 36, 37], the BSs coordinate their beamform-

ing vectors to transmit data to reduce interference to each other. There is no data

information exchange between the BSs. Therefore, the inter-cell interference can be

reduced and the SINR at users can be improved effectively. Also, the BSs can im-

prove the overall performance by jointly optimizing the beamformers. These benefits
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make the coordinated multi-cell multicast beamforming one main technique in multi-

antenna cellular systems. For coordinated multicast beamforming in conventional

multi-antenna systems, both the QoS and MMF problems are considered in [31], and

the SDR method is applied to find a solution. Also, the authors in [38, 39] designed

a low-complexity multi-cell multicast beamforming method to obtain a suboptimal

solution for massive MIMO system.

For cooperative beamforming, BS cluster is formed by several BSs to share data

among BSs and transmit data to users simultaneously. This approach requires strin-

gent symbol-level synchronization among BSs, which is difficult to achieve in practice.

There are limited literature works to design coordinated multicast beamforming

for massive MIMO systems. In particular, no existing work study the optimal beam-

forming structure or propose other low-complexity algorithms for multi-cell multicast

beamforming in massive MIMO systems.

1.2 Motivation and Objective

The optimal beamforming structure for both QoS and MMF problems under the multi-

group multicast beamforming scenario with a single BS have been obtained in [40],

which reveals a low-dimensional structure that can be exploited for the beamforming

design. In particular, it shows that the computational method can be independent of

the number of users. In a multi-cell multicast scenario, the weighted matimum ratio

transmit (MRT), and zero-forcing (ZF) multicast beamforming structure are proposed

to solve the MMF problem under [38]. However, these considered structures are

suboptimal. The optimal coordinated mulitcast beamforming structure in the multi-
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cell multicast scenario is still unknown, and whether it will entail a low-complexity

beamforming design for massive MIMO multi-cell systems is still an open problem.

This thesis considers the multi-cell multicast downlink transmission for a large-

scale massive MIMO system under a multi-cell multicast scenario. Motivated by the

above challenges, we aim to obtain the optimal beamforming structure for the QoS and

MMF problems. Furthermore, we aim to explore the optimal structure to design low-

complexity algorithms for obtaining the coordinated multicast beamforming solution

for both the QoS and MMF problems.

1.3 Thesis Contribution

This thesis mainly considers solving the QoS and MMF problem under a multi-cell

multicast beamforming scenario. We first develop the optimal beamforming structure

for the QoS problem based on [40]. Following this structure, we proposed several

methods to obtain the optimal/suboptimal beamforming solution. Also, for the QoS

problem, we adopted the alternating direction method of multipliers (ADMM) [41]

combined with the optimal structure to decrease the complexity. Furthermore, a

second-order iteratively algorithm and a fast-first order projected subgradient algo-

rithm (PSA) [42], along with the optimal structure of QoS, are presented to solve the

MMF problem.

1. The optimal QoS multicast beamforming solution

Compared with the multi-group multicast scenario, the power inequality con-

straint in the multi-cell multicast scenario is individual, implying that the QoS

becomes a min-max optimization problem with more constraints than the multi-
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group case. We obtain that the optimal beamforming structure at each BS and

show that it is only related to the channel covariance matrices and its own

cell’s user channels, we also prove the inverse relation between the QoS and

MMF problem, which leads to the optimal beamforming structure for the MMF

problem.

2. Efficient algorithm for QoS multicast beamforming

Based on the optimal QoS beamforming structure, we apply several common

numerical methods, e.g., SDR, and SCA, to solve the QoS problem but in a

much reduced problem dimension. To develop a computationally efficient algo-

rithm suitable for massive MIMO, we develop an ADMM-based fast algorithm

to obtain the multicast beamforming solution, where we obtain semi-closed form

updates to iteratively solve each SCA subproblem. The simulation results show

that our proposed algorithms can nearly achieve the stationary optimal solu-

tion. At the same time, the complexity is reduced substantially compared with

directly utilizing SDR or SCA.

3. Efficient algorithm for MMF multicast beamforming

We utilize the optimal beamforming structure and propose a first-order fast algo-

rithm to solve the MMF problem. First, following the inverse relation between

QoS and MMF, we iteratively solve the MMF problem by utilizing the opti-

mal beamforming structure and the QoS beamforming solution. The reduced-

dimension size structure can not only help to reduce the consumption cost but

achieves near-optimal performance. Next, to avoid solving the QoS problem
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multiple times and further reduce the complexity, we adopt a projected subgra-

dient algorithm [42] to solve the MMF problem under the multi-cell scenario.

The PSA-based algorithm directly solves the MMF problem. It only requires

simple closed-form updates and has convergence guarantee. The simulation re-

sults show near-optimal performance and fast computation time as compared

with existing algorithms, demonstrating its effectiveness.

1.4 Thesis Organization

The organization of this thesis is arranged as follows. In Chapter 2, we mainly present

beamforming techniques for multi-group/multi-cell multicast scenarios, the standard

form of QoS or MMF problem, and fast algorithm techniques. In Chapter 3, we mainly

focused on deriving the optimal beamforming structure and following with the fast

first-order algorithms to solve the QoS problem. In Chapter 4, the iteratively second-

order algorithm and the fast first-order algorithm PSA are presented. In Chapter 5,

we show the conclusion of this thesis.

1.5 Notation

In this thesis, transpose, Hermitian, trace, and conjugate of A are denoted by AT ,

AH , tr(A) and A∗ respectively. An identity matrix is denoted by I. A semi-definite

matrix A is denoted as A ≽ 0. Notation x ∼ CN (a,Y) means x forms the complex

Gaussian distribution with mean a and covariance matrix Y. E[x] stands for the

expected value of variable x. For the convergence study section, a → b represents

a converges to b, and ϵ is defined as a fixed threshold for all the algorithms. The
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Euclidean norm of a vector a is denoted by ∥a∥. The abbreviation i.i.d. stands for

independent and identically distributed.



Chapter 2

Literature Review

2.1 Beamforming Techniques

Beamforming techniques have been studied for wireless communication a couple of

decades ago since combining multiple signal paths can provide diversity and array

gain. Nowadays, this technique has already become a crucial part of communication

applications. Generally, there are two major beamforming techniques: unicast and

multicast beamforming. In the following subsections, we present a brief overview of

different techniques for beamforming.

2.1.1 Unicast Beamforming

Unicast beamforming is a typical technique for transmitting data from BS to users. It

is used by the BS to send the private data stream dedicated to each user. For regular

downlink unicast beamforming, QoS, MMF, or sum-rate maximization are typically

considered as the beamforming design metrics [43–45]. For example, the author in [43]

combined the diversity scheme and power allocation in a downlink cellular wireless

system. In [44], a joint downlink beamforming and power control problem was consid-

ered in a frequency flat multi-antenna broadcast channel. In [45], a simple closed-form
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solution for power minimization in the downlink unicast beamforming scenario was

provided.

2.1.2 Multicast Beamforming

As the increasing demands for wireless multicast services and applications, e.g., video

conference, mobile commerce, intelligent transportation system, multicast beamform-

ing techniques have been developed for this type of services. Multicast beamforming

is a transmission technique used by the BS to send the common data to multiple

users simultaneously. This technique provides better spectrum and power efficiency

in sending the common data to multiple users, than using the conventional unicast

beamforming to treat the common message as private data to send to each user. Based

on the transmission scenarios, the multicast beamforming technique can be divided

into single-group multicasting, multi-group multicasting, multi-cell multicasting.

Single-Group Multicast Beamforming

Single-group multicast beamforming is a technique that only considers a single group

of users in the cell, and all the users in the group will receive the same message from

the BS. The QoS and the MMF problem under single-cell single group scenario are

considered in [18]. In [46], it is proven that both the QoS and MMF problem are

NP-hard, and the SDR-based method is developed to solve these NP-hard problems.

The two major problems QoS and MMF are already proven to be NP-hard and

non-convex [47]. The sub-optimal solutions obtained at the early stage mostly are

through the SDR-based methods along with Gaussian randomization to recover a fea-

sible solution [19,47]. Furthermore, [19] also developed a new strategy called stochas-
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tic beamforming to avoid randomization, and at the same time improve the SDR

approximation performance. Due to the high computational complexity faced by the

SDR-based methods, [33] proposed to apply the SCA method for the QoS problem,

which leads to a convergent iterative second-order cone programming (SOCP) so-

lution. Different from the above works, [48] study a particular class of non-convex

quadrtically constrained quadratic program (QCQP) problems. They construct a

convex surrogate function and present a first-order method to solve the subproblems

more efficiently than directly using the SCA method.

Multi-Group Multicast Beamforming

Extending the single-group multicast beamforming scenario to multiple groups [21,

25,26,49], the BS sends messages to multiple group, one message to one group. Thus,

the users in the same group receive common data from the BS. This scenario can

efficiently multiplex data to multiple groups but also bring inter-group interference.

Thus, beamforming design is more challenging in this case.

For the multiple multicast group scenario, both QoS and the MMF problem are

considered in [21]. Also, the authors in [25] proposed a suboptimal solution for the

MMF problem under per-antenna power limit. To avoid the inter-group interference,

dirty paper preceding is applied for minimizing the total power objective in [49].

In [26], a SCA-based algorithm is considered to solve the MMF problem for the

multi-group multicasting scenario.
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Multi-Cell Multicast Beamforming

Multicast beamforming design has also been studied for multi-cell networks. The

early study in [50] mainly considered maxmizing the worst SINR in a single frequency

network, in which the algorithm is based on spatio-temporal correlation knowledge,

with a regular update of SINR. In [31], both the QoS and MMF beamforming are

investigated under coordinated multi-cell multicast beamforming. A QoS-based al-

gorithm for the QoS problem was proposed and the inverse relationship between the

QoS and MMF problem. In [51], BS-clustering and local BS cache are applied jointly

to minimize the transmit power for each multicast group.

Under different multicast beamforming scenarios, two types of problem formula-

tions are typically considered: QoS problem and the MMF.

2.2 Massive MIMO Systems

2.2.1 Overview

As the wireless service demanding grows, i.e., social media, intelligent system, IoT,

the requirement for higher wireless communication technique has been increasing in

recent decades. These increasing demandings make the massive MIMO system become

an indispensable part. Compared to the traditional MIMO system e.g., point-to-point

MIMO system [52–54], multi-user MIMO system [55–59], massive MIMO system can

improve the data rate or link reliability [2]. Furthermore, other benefits of the massive

MIMO system are inexpensive low-power components, reduced latency, simplification

of the MAC layer, and robustness against intentional jamming [3].

Generally, the massive MIMO system is combined with the beamforming tech-
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nique. A single-group multicast beamforming problem with large antenna/user num-

bers is considered in [60]. They proposed linear programming-assisted sub gradient

descent method, which is a first-order method for solving the MMF problem. In [61],

the MMF problem under single-group in a massive MIMO setting is studied.

For multi-group multicasting in massive MIMO, the authors in [62] considered the

MMF problem using a fixed maximum-ratio transmission or ZF beamforming struc-

tures. In [63], the ADMM technique was proposed for multi-group multicast beam-

forming design in large-scale wireless systems. The optimal beamforming structures

for the QoS and the MMF problems are obtained in [40]. The obtained beamforming

structure shows an inherent low-dimensional structure, which provides opportunity

for low-complexity algorithm designs for massive MIMO systems. Following this, the

author in [64] developed two fast-first order algorithms to solve the QoS problem,

including the extragradient method and the ADMM-based method. Besides these

computational methods, the authors in [65] consider applying jointly adaptive group-

ing and beamforming to improve the data rate in massive MIMO system.

Jointly unicast and multicast beamforming in massive MIMO has also been con-

sidered in the literature. HybridCast is designed in [66] for multi-user MIMO system

to improve the efficiency. Since the pure multicasting is sent at a base rate, which

would waste the link margin when delivering extra information. Different only con-

sidering the QoS and MMF problem, multi-objective optimization problem is studied

in [27]. Furthermore, a null-space method based interference cancellation is proposed

in [67]. In [68], the jointly problem was decomposed into two subproblems for the

unicast users and multicast users respectively. For the unicast part, a closed-form
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solution was presented in [68]. For the multicast part, based on the optimal multicast

beamforming structure in [40], the authors combined it with an ADMM-based fast

algorithm to get closed-form updates for the QoS problem beamforming design.

The multi-cell multicast beamforming in massive MIMO has been investigated in

several studies [38, 39, 69, 70]. Coordinated multicast beamforming design was con-

sidered in [69], and the pilot scheme for eliminating contamination was proposed for

coordinated multi-cell network. In [38] the MMF problem for both coordinated and co-

operative multi-cell multicast beamforming with large-scale antennas was considered,

and the suboptimal beamforming schemes, weighted maximum ratio transmission

and zero-forcing beamforming, were used to reduce the computational complexity.

In [39], with the same suboptimal beamforming schemes, the SDR-based approach

was proposed for maximizing the minimum signal-to-leakage ratio. In [70], a constant

envelope precoding construction was proposed for reducing the implementation cost

and improving efficiency.

Besides the QoS and MMF problem mentioned above, other design objectives

have also been considered under multicast beamforming. In [29, 71], the energy-

efficient problem is studied under multi-cell multi-user multigroup multicast scenario,

in which the joint coordinated beamforming and antenna selection are applied. For

the sum-rate maximization problem, are considered in [72–74].

2.2.2 Challenges in Massive MIMO

Although the massive MIMO system can bring many benefits, there still exit chal-

lenges to design effective and efficient beamforming schemes for massive MIMO. In



16

recent years, one main focus is on developing low-complexity algorithms that are

implementable in massive MIMO.

In [40], the optimal beamforming structure is proposed for solving the QoS prob-

lem. This low-dimension structure is independent with the antenna size, which yield a

huge efficiency improvement. For the large number user case, the first-order algorithm

can reduce the computational complexity. The ADMM-based algorithms [63,64,68,75]

mainly focus on decomposing the QoS problem to a sequence of subproblems, and a

closed/semi-closed form solution can be generated for each subproblem. Besides, an

extragradient method with an adaptive step-size procedure is proposed in [64] to solve

the QoS problem, which can also provides closed-form updates.

However, these low-complexity first-order algorithms are mostly designed for

multi-group multicast beamforming with a single BS in massive MIMO. The opti-

mal structure or algorithms cannot be directly applied to the multi-cell case, when

multiple BSs exist with individual BS power requirement. In this thesis, we con-

sider to design the optimal beamforming structure and low-complexity algorithms for

multi-cellular systems.

For the MMF problem, the optimal beamforming structure derived in [40] is

difficult to be used directly due to unknown parameters. The MMF problem is solved

via solving the QoS problem iteratively [40]. Although this method can reduce the

computational complexity at each iteration, the computational efficiency still needs to

be improved. In [42], a first-order algorithm, the PSA is designed for overcoming this

challenge, for multi-group mutlicast beamforming with a single BS. However, limited

results exist for coordinated multicast beamforming for massive MIMO.



Chapter 3

The Optimal QoS Multi-cell
Multicast Beamforming Design

In this chapter, we first consider deriving the optimal beamforming structure for the

QoS problem under a multi-cell multicast beamforming scenario. Following this, we

proposed numerical algorithms to solve the QoS problem. The optimal structure is

applied for both the fast first-order and second-order algorithms.

3.1 System Model

We consider a downlink multicast transmission scenario in a multi-cell massive MIMO

system consisting of J cells. The BS in each cell is equipped with M antennas. Each

BS provides the multicast service to a group of K users in its cell, where each user

is equipped with a single antenna. We assume that all BSs use the same spectrum

bandwidth for transmission.

We study the coordinated multicast beamforming among the J coordinating cells

for the multicast service. Each BS multicasts a message to the K users in its own cell,

using the beamforming vector that is jointly designed among all the BSs. Define the

cell index set J ≜ {1, · · · , J} and the user index set K ≜ {1, · · · , K}. The serving
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BS in cell j is denoted by BS j. Let hj,ik denote the M × 1 channel vector from BS

j to user k in cell i, for j, i ∈ J and k ∈ K. Let wi denote the M × 1 multicast

beamforming vector at BS i. The received signal at user k in cell i is given by

yik = wH
i hi,iksi +

J∑
j=1,j ̸=i

wH
j hj,iksj + nik, k ∈ K, i ∈ J . (3.1)

where si is the data symbol transmitted from BS i with E[|si|2] = 1, and nik is the

receiver additive white Gaussian noise at the user with zero mean and variance σ2.

The first term in (4.2) is the desired signal, and the second term is the interference

from the other BSs of the coordinated neighboring cells.

In this chapter, we consider the QoS multicast beamforming problem. The objec-

tive is to minimize the BS transmit power while meeting the minimum SINR target

at each user. For a multi-cell system, each BS may have its individual power budget

target, denoted by pi, i ∈ J . Therefore, this problem is formulated as minimizing the

maximum power margin ∥wi∥2/pi of all the BSs among the coordinated cells, given

by

Po : min
w

max
i

1
pi

∥wi∥2

s.t.
|hH

i,ikwi|2∑J
j=1,j ̸=i |hH

j,ikwj|2 + σ2 ⩾ γik, k ∈ K, i ∈ J

where w ≜ [wH
1 , · · · ,wH

J ]H is the concatenated multicast beamforming vectors of all

BSs, and γik is the minimum SINR target at user k in group i.
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3.2 The Optimal Coordinated Multicast Beamform-
ing

We now consider the QoS problem Po for multi-cell coordinated multicast beamform-

ing. The problem has a min-max objective. To handle this, we introduce the auxiliary

variable t and convert Po into the following equivalent problem for (w, t):

P1 : min
w,t

t

s.t.
|hH

i,ikwi|2∑J
j=1,j ̸=i |hH

j,ikwj|2 + σ2 ⩾ γik, k ∈ K, i ∈ J (3.2)

1
pi

∥wi∥2 − t ⩽ 0, i ∈ J .

As mentioned earlier, P1 is an NP-hard problem, whose optimal solution is diffi-

cult to obtain directly in either primal or dual domain. Despite of this, we are able

to obtain the structure of the optimal solution to P1. To find the optimal solution

structure, we follow the same technique in [40] that is used to derive the optimal

beamforming structure for the scenario of multi-group multicast beamforming under

a single BS.

In particular, we consider the SCA method for solving P1. It iteratively solves a

sequence of convex approximations of the original problem to obtain the sub-optimal

solution that is guaranteed to converge to a stationary solution. We will analyze

the solution of the SCA method to obtain the structure of the optimal beamforming

solution to P1.
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3.2.1 The SCA Method

For P1, consider M × 1 auxiliary vector zi, i ∈ J . Based on the property of positive

semi-definite matrix, for any zi, i ∈ J , we have

wH
i hi,ikhH

i,ikwi ⩾ 2Re{wH
i hi,ikhH

i,ikzi}+ zH
i hi,ikhH

i,ikzi, (3.3)

where the equality holds if and only if wi = zi. Thus, given z ≜ [zH
1 , . . . , zH

J ]H ,

applying (3.3) to the numerator of the SINR expression in the constraint in (3.2), we

obtain a lower bound on the SINR. Replacing the SINR with this lower bound, we

obtain the following jointly convex approximation optimization problem for P1:

P1SCA(z) : min
w,t

t

s.t. γik

J∑
j=1,j ̸=i

|hH
j,ikwj|2 − 2Re{wH

i hi,ikhH
i,ikzi}

+ |zH
i hi,ik|2 + γikσ

2 ⩽ 0, k ∈ K, i ∈ J (3.4)

1
pi

∥wi∥2 − t ⩽ 0, i ∈ J . (3.5)

where the non-convex SINR constraint in (3.2) is replaced by the convex constraint

on the lower bound of SINR in (3.4). Let (w⋆(z), t⋆(z)) be the optimal solution to

P1SCA(z). As a result, this solution is feasible to P1. Replacing z with the optimal

solution w⋆(z), we iteratively solve a sequence of convex approximation subproblems

until convergence. This SCA method is guaranteed to converge to a stationary point

w⋆ of Po.

3.2.2 The optimal solution to SCA subproblem

For P1SCA(z) in each SCA iteration under given z, since it is a jointly convex prob-

lem and Slater’s condition holds, we can obtain the optimal solution by solving the
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Lagrange dual problem [76], similar as in [40] except that P1SCA(z) now is a joint

optimization problem with respect to (w.r.t.) (w, t). The Lagrangian for P1SCA(z) is

given by

L(w, t,λ,µ; z)

= t+
J∑

i=1
µi

(
∥wi∥2

pi

− t
)

+
J∑

i=1

K∑
k=1

λik

[
γik

∑
j ̸=i

|wH
j hj,ik|2

− 2Re{wH
i hi,ikhH

i,ikzi}+ |zH
i hi,ik|2 + γikσ

2
]

(3.6)

where λik and µi are the Lagrange multipliers associated with the QoS constraint

in (3.4) for user k in cell i and the BS power constraint in (3.5), respectively, and

we define λ ≜ [λT
1 , . . . ,λ

T
J ]T with λi ≜ [λi1, . . . , λiK ]T and µ ≜ [µ1, . . . , µJ ]T . After

regrouping the terms w.r.t. t and wi in (3.6), we rewrite the Lagrangian as

L(w, t,λ,µ; z)

= (1− 1Tµ)t+
J∑

i=1

K∑
k=1

λik

(
σ2γik + |zH

i hi,ik|2
)

+
J∑

i=1
wH

i

(
µi

pi

I +
∑
j ̸=i

K∑
k=1

λjkγjkhi,jkhH
i,jk

)
wi

− 2
J∑

i=1
Re

{
zH

i

(
K∑

k=1
λikhi,ikhH

i,ik

)
wi

}

= (1− 1Tµ)t+
J∑

i=1

K∑
k=1

λik

(
σ2γik + |zH

i hi,ik|2
)

+
J∑

i=1
wH

i Ri−(λ,µ)wi − 2
J∑

i=1
Re
{
νH

i wi

}
(3.7)

where

Ri−(λ,µ) ≜ µi

pi

I +
J∑

j=1,j ̸=i

K∑
k=1

λjkγjkhi,jkhH
i,jk, (3.8)

νi ≜

(
K∑

k=1
λikhi,ikhH

i,ik

)
zi. (3.9)



22

Note that Ri−(λ,µ) contains the sample channel covariance matrix from BS i to all

users in other cells.

The Lagrange dual function is given by

g(λ,µ; z) ≜ min
w,t
L(w, t,λ,µ; z), (3.10)

and the dual problem for P1SCA(z) is

D1,SCA(z) : max
λ≽0,µ≽0,

g(λ,µ; z).

By solving the the minimization of L(w, t,λ,µ; z) in (3.10), we obtain the closed-

form solution w⋆
i (z), i ∈ J , to P1SCA(z) as follows.

Proposition 3.1. The optimal solution w⋆
i (z) to P1SCA(z) is

w⋆
i (z) = R−1

i− (λ⋆,µ⋆)
(

K∑
k=1

α⋆
ikhi,ik

)
, i ∈ J (3.11)

where (λ⋆,µ⋆) are the optimal Lagrange multipliers to the dual problem D1,SCA(z) with

µ⋆
i > 0, i ∈ J , and 1Tµ⋆ = 1; and also, α⋆

ik ≜ λ⋆
ikhH

i,ikzi, k ∈ K, i ∈ J .

Proof. See Appendix A.

Let Hi ≜ [hi,i1, . . . ,hi,iK ] denote the channel matrix between BS i and its own

K users in cell i. Denote α⋆
i ≜ [α⋆

i1, . . . , α
⋆
iK ]T . Then, we can rewrite the optimal

solution w⋆
i (z) in (3.11) as

w⋆
i (z) = R−1

i− (λ⋆,µ⋆)Hiα
⋆
i , i ∈ J . (3.12)

3.2.3 The optimal solution to the QoS Problem

As mentioned earlier, we iteratively solve a sequence of SCA subproblems P1SCA(z)

by replacing z with w⋆(z) obtained from the previous subproblem, until z converges
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to a stationary point w⋆ of Po. In particular, if the stationary point is the global

optimal solution w⋆ = wo, then z converges to the optimum z → wo, and we also

obtain the maximum objective value to. Following this, first, we see that regardless of

z, the structure of w⋆
i (z) remains as in (3.12), while w⋆

i (z) depends on z only through

(λ⋆,µ⋆) for D1,SCA(z) and α⋆
i , Second, when z→ wo, the optimal (λ⋆,µ⋆) for the dual

problem D1SCA(z) also converges to the optimal (λo,µo) of D1,SCA(wo), i.e., the dual

problem of P1. Thus, we obtain the optimal solution to P1. The solution is stated in

the following theorem.

Theorem 1. The optimal beamforming solution to the QoS problem Po for multi-cell

coordinated multicast beamforming is given by

wo
i = R−1

i (λo,µo)Hiao
i , i ∈ J (3.13)

where (λo,µo) are the optimal dual solutions to D1,SCA(wo) with µo
i > 0, i ∈ J ,

ao
i ≜ [ao

i1, . . . , a
o
iK ]T is the optimal weight vector with the weight for user k in cell i

given by ao
ik ≜ λo

ik(1 + γik)(hH
i,ikwo

i ), k ∈ K, i ∈ J , and

Ri (λ,µ) ≜ µi

pi

I +
J∑

j=1

K∑
k=1

λjkγjkhi,jkhH
i,jk, i ∈ J . (3.14)

Furthermore, the optimal value of Po is

max
i

1
pi

∥wo
i∥2 = σ2λoTγ (3.15)

where γ is the SINR target vector of all users: γ ≜ [γT
1 , . . . ,γ

T
J ]T with γi ≜ [γi1, . . . γiK ]T ,

i ∈ J .

Proof. See Appendix B.
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Theorem 1 shows that the optimal multicast beamforming vector wo
i for each BS

i given in (3.13) is a weighted minimum mean square error (MMSE) beamformer.

The matrix Ri (λ,µ) is a per-BS noise-plus-weighted-channel-covariance matrix. The

first term is the normalized receiver noise term scaled by µi/pi, which reflects the

BS transmit power used w.r.t. its power budget target. The second term contains

the channels between BS i to all users in J cells. The term Hiao
i is the weighted

user channels in cell i, which can be viewed as a group-channel direction for cell i:

ĥi ≜ Hiao
i . The optimal weight vector ao

i shows the relative significance of the channel

of each user in cell i in this group-channel direction and thus the beamformer wo
i .

The optimal multicast beamforming vector wo
i for BS i is only a function of the

channels from BS i to all users in J cells. Thus, wo
i can be computed locally at each

BS, without requiring the global knowledge of channel state information in other cells.

However, note that the optimal solution wo
i in (3.13) is shown in a semi-closed-form,

where λo, µo and ao
i need to be computed. Determining their optimal values require

considering J cells jointly.

3.3 Numerical Algorithms

Note that even though we have the optimal structure for wo
i , since P1 is an NP-

hard problem, obtaining the optimal values (λo,µo) and ao is difficult. Thus, in this

section, we design algorithms to determine these parameters λ and µ.
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3.3.1 Obtaining Undetermined Parameters

From Proposition 3.1, 1Hµ = 1 and µi > 0, ∀i ∈ J . Thus, we have µi ∈ (0, 1).

However, the value of each µi still can not be easily solved directly. Thus, to simplify

the computation, we propose to set µi = 1/J , ∀i ∈ J , and denote µ̃ = [1/J, . . . , 1/J ]T .

After setting µ̃ in Ri(λ, µ̃), we need to determine λ. From Theorem 1, we

have ao
ik ≜ λo

ik(1 + γik)(hH
i,ikwo

i ), ∀k, i. Let δik ≜ hH
i,ikwo, k ∈ K, i ∈ J , and δi =

[δi1, . . . , δiK ]T . Then, we can express ao
ik into the vector form ao

i as

ao
i = Dλi

(
I + Dγi

)
δi. (3.16)

Also, based on the optimal solution in (3.13), we have

δik = hH
i,ikwo

i = hH
i,ikR−1

i (λo
i , µ̃)Hiao

i

= hH
i,ikR−1

i (λo
i , µ̃)HiDλi

(I + Dγi
)δi. (3.17)

Writing (3.17) into a vector form for each i ∈ J , we have

δi = HH
i R−1

i (λo
i , µ̃)HiDλi

(
I + Dγi

)
δi, (3.18)

which leads to

(
HH

i R−1
i (λo

i , µ̃)HiDλi

(
I + Dγi

)
− I

)
δi = 0. (3.19)

At the optimality, the optimal λo
i should satisfy (3.19) (assuming the optimal µo).

Since directly solve (3.19) is difficult due to the unknown δi, similar to the approach

in [40], we consider a sufficient condition for (3.19), below and use it, to develop a

suboptimal algorithm obtaining λ:

HH
i R−1

i (λo
i , µ̃)HiDλi

(
I + Dγi

)
= I, i ∈ J . (3.20)
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Algorithm 1 Fixed-point Iterative method for λi

1: Initialization : Set m = 0; Set ϵ; Initialize λ ≽ 0.

2: repeat

3: Compute Ri(λ(m)
i , µ̃) based on (3.14).

4: For each i ∈ J , k ∈ K, compute

λ
(m+1)
ik = 1

(1 + γik) hH
i,ikR−1

i

(
λ

(m)
i , µ̃

)
hi,ik

⩾ 0.

5: m← m+ 1.

6: until maxi,k

∣∣∣λ(m+1)
ik − λ(m)

ik

∣∣∣ ⩽ ϵ.

This sufficient condition can be described per-element as follows for each i ∈ J :λik (1 + γik) hH
i,ikR−1

i (λo
i , µ̃)hi,ik = 1, k ∈ K

λik (1 + γik) hH
i,ikR−1

i (λo
i , µ̃)hi,il = 0, l ̸= k, l ∈ K.

(3.21)

Note that there are typically more equations than variables in (3.21) to solve.

Thus, λik may not satisfy all the equations. Following the proposed method in [40],

we obtain by only solving the first equation in (3.21) (i.e., the diagonal components

in (3.20), which can be solved using the fixed-point iterative method shown in Algo-

rithm 1.

3.3.2 Conventional Methods for Computing Weight Vectors
The SDR Method

Based on the optimal beamforming structure in (3.13) and (λ, µ̃) obtained from the

above, we convert the original problem P1 w.r.t. (w, t) into a joint optimization of

(a, t), given by

P2 : min
a,t

t

s.t. |aH
i HH

i R−1H
i (λo, µ̃)hi,ik|2∑J

j=1,j ̸=i |aH
j HH

j R−1H
j (λo, µ̃)hj,ik|2 + σ2 ⩾ γik,
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k ∈ K, i ∈ J (3.22)

1
pi

∥R−1
i (λo, µ̃)Hiai∥2 − t ⩽ 0, i ∈ J .

Note that by this problem conversion, we now have a much smaller problem P2

than P1, since a is a JK × 1 vector, w is a JM × 1 vector, and K ≪ M in a

massive MIMO system. We can apply the conventional SDR method along with the

Gaussian Randomization procedure to solve P2. Specifically, define Xi ≜ aiaH
i , Gi ≜

R−1
i (λ, µ̃)Hi, fj,ik ≜ GH

j hj,ik, for j, i ∈ J , k ∈ K, and drop the rank-1 constraint, P2

is relaxed to the following SDP problem w.r.t. (X, t)

P2SDR : min
{Xi},t

t

s.t. tr(fi,ikfH
i,ikXi) ⩾

J∑
j=1,j ̸=i

tr(fj,ikfH
j,ikXj) + σ2, k ∈ K, i ∈ J

1
pi

tr(GH
i GiXi) ⩽ t, i ∈ J

Xi ≽ 0, i ∈ J .

Note that P2SDR is a jointly SDP problem for X and t, which can be solved

using standard CVX solvers. Recovering the solution ai from the optimal solution

X⋆
i depends on the rank of X⋆

i . If rank(X⋆
i ) = 1, Xi = a⋆

i a⋆H
i , then a⋆

i can be

extracted directly from X⋆
i . Otherwise, we use the Gaussian randomization method

[77] to extract weight vector a⋆
i , which is briefly described below: Denote J̃ ≜ {i :

rank(Xi) > 1, i ∈ J }.

i) Generate L independent and identically distributed (i.i.d) random vectors a(l)
i ∼

CN (0,Xi), l = 1, . . . , L, i ∈ J̃ .

ii) For each l, check whether {a(l)
i }J

i=1 do not satisfy the SINR constraint (3.22); If
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not, regenerate {a(l)
i }i∈J until they meet the SINR constraint .

iii) Find l⋆ = arg min
l

max
i

{
∥w(l)

i ∥2

pi

}
, where w(l)

i = R−1
i (λo, µ̃)Hia(l)

i and set w⋆
i =

w(l)
i , i ∈ J .

SCA method

The computational complexity of SDR is relatively high, and its performance suffers

as the problem size grows. SCA is a more computationally efficient method that

overcomes these drawbacks of SDR. We can use SCA similar as P1SCA to iteratively

solve P2 for a.

Specifically, denote u ≜ [uH
1 , . . . ,uH

J ]H , where ui is K × 1 auxiliary vector for

i ∈ J . Given u, we apply the convex approximation to the constraint in (3.22) The

above problem can be solved using the standard SDP solvers., we have the following

joint optimization problem over (a, t) at each SCA iteration: P2SCA(u):

P2SCA(u) : min
a,t

t

s.t. 2Re
{
aH

i fi,ikfH
i,ikui

}
− |uH

i fi,ik|2

⩾
J∑

j=1,j ̸=i

|aH
j fj,ik|2 + σ2, k ∈ K, i ∈ J

1
pi

∥Giai∥2 − t ⩽ 0, i ∈ J .

The iterative procedure of SCA is the same as that described before Section 3.2.1,

where we update u with the solution to P2SCA(u) and solve P2SCA(u) iteratively until

convergence.

Initialization: The SCA method requires the initial u(0) should to be feasible to

P2. We can use the solution of the SDR method aSDR as the initial point. Note
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that since we only need a feasible point, we can limit the number of trials L in the

Gaussian randomization procedure to further reduce the computational complexity

in generating the initial point. Besides ensuring the feasibility, aSDR is a good initial

point that can accelerate the convergence for SCA.

3.3.3 Fast ADMM-SCA Method for Computing Weight Vec-
tors

In the SCA method, each SCA update needs to solve the convex problem P2SCA(u),

which typically is computed using the interior-point algorithm [76] by the standard

convex solvers, such as CVX [78]. Since the interior-point algorithm is a second-

order algorithm, its computational complexity is still relatively high, especially when

the problem size grows. Thus, we consider using the first-order fast algorithm to

provide fast computation of the solution. In particular, we propose to apply ADMM

technique [64] to solve P2SCA(u) at each SCA iteration. ADMM is a robust numerical

method that can provide fast computation to solve large-scale problems. Depending

on the problem structure and the specific ADMM construction design in the problem,

it can be used to break down a large problem into small subproblems to be solved

individually with lower computational complexity.

In order to apply the ADMM technique, we first introduce the auxiliary variables

v ∈ R and dj,ik ∈ C, k ∈ K, i, j ∈ J , and equivalently transform P2SCA(u) into the

following problem:

PADMM(u) : min
a,d,t,v

t

s.t. dj,ik = aH
j fj,ik, k ∈ K, i, j ∈ J , (3.23)
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v = t, (3.24)

γik

J∑
j=1,j ̸=i

|dj,ik|2 + |uH
i fi,ik|2 + γikσ

2 − 2Re{di,ikfH
i,ikui} ⩽ 0,

k ∈ K, i ∈ J , (3.25)

1
pi

∥Giai∥2 − v ⩽ 0, i ∈ J (3.26)

where d ≜ [dH
11, . . . ,dH

JK ]H ∈ CJKtot , with dik ≜ [d1,ik, . . . , dj,ik]T ∈ CJ .

Denote the feasible set for d satisfying the constraint (3.25) as F , and that for

(a, v) satisfying the constraint (3.26) as C. Define the indicator functions for F and

C respectively as

IF(d)≜

0 d ∈ F
∞ o.w.

, IC(a, v)≜

0 (a, v) ∈ C
∞ o.w.

. (3.27)

Then, we can equivalently transform PADMM(u) into the following equality-constrained

problem:

P ′

ADMM(u) : min
a,d,t,v

t+ IF(d) + IC(a, v)

s.t. dj,ik = aH
j fj,ik, k ∈ K, i, j ∈ J

v = t.

Based on the ADMM technique, the augmented Lagrangian of P ′
ADMM(u) is given by

Lρ(a,d, t, v,q, z) = t+ IF(d) + IC(a, v)+

ρ

2

J∑
j=1

J∑
i=1

K∑
k=1
|dj,ik − aH

j fj,ik + qj,ik|2 + ρ

2(v − t+ z)2 (3.28)

where ρ > 0 is the penalty parameter, and {qj,ik ∈ C, k ∈ K, i, j ∈ J } and z ∈ R

are the dual variables associated with the respective equality constraints in P ′
ADMM(u).

Also, we denote q ≜ [qH
11, . . . ,qH

JK ]H , with qik ≜ [q1ik, . . . , qJik]T .
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Note that our particular design of auxiliary variables v and d and their respec-

tive equivalency constraints in (3.23) and (3.24) enables us to break the minimize

of Lρ(a,d, t, v,q, z) into smaller subproblems. Specifically, we note that the terms

in (3.28) for the optimization variables (d, v) and (a, t) are separate. Thus, we can

decompose the optimization of Lρ(a,d, t, v,q, z) into two subproblems for (d, v) and

(a, t) separately, and solve them alternatively. Our proposed ADMM-based algorithm

for P2SCA(u) is summarized in Algorithm 2. The ADMM procedure constrains three

updating steps in each iteration. The two ADMM blocks in the first two steps involve

solving two minimization subproblems w.r.t. (d, v) and (a, t) in (3.29) and (3.30),

respectively. In particular, we will show below that we are able to derive a closed-

form solution for each of these subproblems. As a result, the above specific ADMM

construction leads to a fast algorithm to compute the solution for P2SCA(u) at each

SCA iteration. Finally, since P2SCA(u) is convex, the ADMM procedure is guaranteed

to converge to the optimal solution.

Next, we present the details of the solution to each subproblem.

Closed-Form (d, v)-Update

Given a(l)
i , t(l) and q(l)

i , from (3.28), the minimization of (d, v) in (3.29) can be sepa-

rated, which is equivalent to solve the following two subproblems

Pd(u) : min
d

ρ

2

J∑
j=1

J∑
i=1

K∑
k=1
|dj,ik − aH(l)

j fj,ik + q
(l)
j,ik|2

s.t. γik

J∑
j=1,j ̸=i

|dj,ik|2 + |uH
i fi,ik|2 + γikσ

2 − 2Re{di,ikfH
i,ikui} ⩽ 0,

k ∈ K, i ∈ J . (3.33)



32

Algorithm 2 ADMM-based Algorithm for P2SCA(u)
1: Initialization: Set ρ; Set a(0) = u(l),q(0) = 0, z(0) = 0, t(0) = 0; Set l = 0.

2: repeat

3: Update the auxiliary vectors d(l+1) and variable v(l+1)

{d(l+1), v(l+1)} = arg min
d,v

Lρ(a(l), t(l), v,d,q(l), z(l)) (3.29)

4: Update a(l+1) and t(l+1)

{a(l+1), t(l+1)} = arg min
a,t

Lρ(a, t, v(l+1),d(l+1),q(l), z(l)) (3.30)

5: Update dual variables q(l+1) and z(l+1)

q
(l+1)
j,ik = q

(l)
j,ik +

(
d

(l+1)
j,ik − a(l+1)H

j fj,ik

)
,∀i, j, k (3.31)

z(l+1) = z(l) + (v(l+1) − t(l+1)). (3.32)

6: Set l← l + 1.

7: until convergence.

and

Pv : min
v

t+ ρ

2 |v − t+ z|2

s.t. 1
pi

∥Giai∥2 ⩽ v, i ∈ J . (3.34)

We can decompose Pd(u) into Ktot subproblems, one for each user k in cell i, as

Pdsub(u) : min
dik

ρ

2

J∑
j=1
|dj,ik − a(l)H

j fj,ik − q(l)
j,ik|2

s.t. γik

J∑
j=1,j ̸=i

|dj,ik|2 + |uH
i fi,ik|2 + γikσ

2 − 2Re{di,ikfH
i,ikui} ⩽ 0,

k ∈ K, i ∈ J . (3.35)

Note that Pd(u) is a convex quadrtically constrained quadratic program (QCQP)-
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1 problem, for which a closed-form solution can be obtained. In particular, such

QCQP-1 problem has been considered in [64], where the closed-form solution is shown.

Specifically, Define e(l)
1,j,ik ≜ a(l)H

j fj,ik − q
(l)
j,ik, e2,ik ≜ |uH

i fi,ik|2 + γikσ
2, e3,ik ≜ fH

i,ikui,

then we have

Pdsub(u) : min
dik

ρ

2

J∑
j=1
|dj,ik − e(l)

1,j,ik|2

s.t. e2,ik + γik

J∑
j=1,j ̸=i

|dj,ik|2 − 2Re{di,ike3,ik} ⩽ 0 (3.36)

the optimal solution do
ik for Pdsub(u) is given by

do
j,ik =


e

(l)
1,i,ik + νo

ike
∗
3,ik, j = i;

e
(l)
1,j,ik

1+νo
ik

γik
, j ̸= i.

(3.37)

Substituting the closed-form expression of do
j,ik in (3.37) into the inequality constraint

(3.36), which leads to

f(νo
ik) = e2,ik + γik

∑J
j ̸=i |e

(l)
1,j,ik|2

(1 + νo
ikγik)2 − 2Re{e(l)

1,i,ike3,ik} − 2νo
ik|e3,ik|2 ⩽ 0. (3.38)

and νo
ik is the unique real positive root of the cubic equation (3.38), which can be

obtained by applying the cubic equation formula.

Now we solve Pv for v. We first rewrite the constraint in (3.34), and the problem

is equivalent to

Pv : min
v

t+ ρ

2 |v − t+ z|2

s.t. v ⩾ max 1
pi

∥Giai∥2, i ∈ J . (3.39)

Note that Pv is a convex problem with linear constraints. f(v) ≜ t+ ρ
2 |v− t+ z|2, the

domain of f(v) is [maxi
1
pi
∥Giai∥2,∞). Thus, Pv is equivalent to find the minimum
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point of f(v) over the domain of f(v). Taking the derivative of f(v), and let it equal

to 0,

f
′(v) = 2v + 2(z − t) = 0⇒ v⋆ = t− z. (3.40)

If v∗ ∈ [maxi
1
pi
∥Giai∥2,∞), then v∗ is the optimal solution for Pt. Otherwise, f(v)

monotonically increases in the domain [maxi
1
pi
∥Giai∥2,∞), and thus f(v) achieves

its minimum value at v = maxi
1
pi
∥Giai∥2. Thus, we obtain the closed-form solution

of vo as:

vo ≜ max
(

max
i

1
pi

∥Giai∥2, t− z
)
. (3.41)

Semi-closed-form (a, t)-Update

Given d(l+1) and q(l), optimizing a and t jointly for the minimization problem in (3.30)

is equivalent to solve the following problem.

min
a,t

(
t+ ρ

2

J∑
j=1

J∑
i=1

K∑
k=1
|d(l+1)

j,ik − aH
j fj,ik + q

(l)
j,ik|2 + ρ

2(v(l+1) − t+ z(l))2
)

s.t. 1
pj

∥Gjaj∥2 − v(l+1) ⩽ 0, j ∈ J . (3.42)

Since the terms in the objective function and constraints for a and t are separate, the

above joint optmization problem can be decomposed into two subproblems for t and

a separately. The subproblem for t is given by:

Pt : min
t

t+ ρ

2
(
v(l+1) − t+ z(l)

)2
. (3.43)

The subproblem for a can be further decomposed into J subproblems, one for each

aj

Paj
(u) : min

aj

ρ

2

J∑
i=1

K∑
k=1
|d(l+1)

j,ik − aH
j fj,ik + q

(l)
j,ik|2
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s.t. 1
pj

∥Gjaj∥2 ⩽ v, (3.44)

The problem Pt is a convex quadratic unconstrained optimization problem for t.

Let f(t) = t+ ρ
2(v(l+1) − t+ z(l))2. taking the derivative of f(t) and set it to zero, we

obtain

f
′(t) = 1− ρ(v(l+1) − t+ z(l)) = 0

⇒ t⋆ = v(l+1) + z(l) − 1
ρ
. (3.45)

The subproblem Paj
(u) is again a convex QCQP-1 problem. We can solve it by the

Karush-Kuhn-Tucker (KKT) conditions. The Lagrangian of Paj
(u) is given by

L(aj, λ̃j) = ρ

2

J∑
i=1

K∑
k=1
|dj,ik − aH

j fj,ik + qj,ik|2 + λ̃j

(
1
pj

∥Gjaj∥2 − v
)
, (3.46)

where λ̃j is the Lagrangian multiplier associated with the constraint in (3.44). The

KKT conditions are

1
pj

∥Gjaj∥2 − v ⩽ 0; (3.47)

λ̃j ⩾ 0; (3.48)

λ̃j

(
1
pj

∥Gjaj∥2 − v
)

= 0; (3.49)

ρ

(
J∑

i=1

K∑
k=1

fj,ikfH
j,ik

)
aj − ρ

J∑
i=1

K∑
k=1

(dj,ik + qj,ik)∗fj,ik + 2λ̃j

pj

GH
j Gjaj = 0. (3.50)

From (3.50), aj is obtained as

aj =
(

2
ρ
· λ̃j

pj

GH
j Gj +

J∑
i=1

K∑
k=1

fj,ikfH
j,ik

)−1 J∑
i=1

K∑
k=1

(dj,ik + qj,ik)∗fj,ik. (3.51)

Based on the complementary slackness condition in (3.49), the following is possible:

λ̃j =

0, if 1
pj
∥Gjaj∥2 − v < 0,

⩾ 0, if 1
pj
∥Gjaj∥2 − v = 0.

(3.52)
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Thus, if aj in (3.51) with λ̃j = 0 satisfies the constraint in (3.44) (i.e., Paj
(u) be-

comes an unconstrained optimization problem), then, the optimal λ̃⋆
j = 0. Otherwise,

λ̃⋆
j should be such that (3.47) holds with equality. In the later, we can use bi-section

method to find λ̃j.

3.4 Simulation Results

We consider a coordinated multi-cell multicast beamforming scenario with J = 3 BSs

and one group per cell. Each cell has a unit cell radius, and users in the cell are

randomly located with a uniform distribution. User channels are generated indepen-

dently with hj,ik ∼ CN (0, βj,ikI), ∀j, i ∈ J , k ∈ K. We use simplified path loss model

for channel variance βj,ik as βj,ik = ξ0d
−κ
j,ik, where dj,ik is the distance between BS j

the the user k in cell i. κ is the pathloss exponent, which is set to κ = 3.5, and ξ0 is

the path loss constant. For the power budget of each BS, we set the power constraint

of all the BSs are equal to 10W. The value of ξ0 is determined by setting the nominal

averaged SNR at the cell boundary to be −5 dB, i.e., Pξ0/σ
2 = −5[dB]. The perfor-

mance results are averaged over 100 channel realizations and over 10 realizations of

user locations.

3.4.1 Convergence Behaviour Study

In this section, we consider to study the convergence behaviour of the Lagrangian

multiplier λ and our proposed algorithms. The details and analysis are shown in the

following sections.
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The Performance of Lagrangian Multiplier λ

Before comparing the performance on our propose algorithms, we study the conver-

gence behaviour on the Lagrangian multiplier in the covariance matrix Ri(λ,µ) first.

The convergence behaviour over λ over different antenna size M (From 16 to 64) is

shown in Fig. 3.1. For this convergence study, we utilize the default system setup:

J = 3, K = 5. From the figure, we can tell all of the λiks can converge in less than 45

iterations. Besides, we can also conclude from Fig. 3.1 that it needs less iterations to

converge when antenna size M increases.

0 5 10 15 20 25 30 35 40 45

0

0.002

0.004

0.006

0.008
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0.014
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0.018

0.02

Figure 3.1: The convergence of λ̃ by using Algorithm 1 (J = 3, K = 5).

Moreover, we present the cumulative distribution function (CDF) curve over the

iterations need for λ convergence under different M in Fig. 3.2, which is generated over

100 channel realizations. This CDF also indicates the λ converges in less iterations
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when the M is large.
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Figure 3.2: CDF of the iterations need for λ convergence under different M (J = 3,
K = 5).

Convergence Behaviour for the OptSCA-ADMM Algorithm

In this section, we mainly study the convergence behaviour of OptSCA-CVX and

OptSCA-ADMM, based on the optimal beamforming structure. (Theorem 1).

Before studying the convergence behavior, we need to determine the penalty pa-

rameter ρ first. Since the performance may be sensitive to the picked penalty param-

eter ρ, we set a range of value of ρ to observe the influence on different number of

antennas M to the change of objective value. To ensure the accuracy of this simula-

tion study, we use the same set of channel realizations for different parameter ρ under

the same number of antenna M . Fig. 3.3 shows the influence of the objective value

maxi
1
pi
∥w∥2 affected by the penalty parameter ρ under different number of antennas.
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Figure 3.3: Performance affected by different ρ over number of antennas M (J =
3, K = 5).

From Fig. 3.3, we can conclude that when ρ = 0.1 or ρ = 0.2, the objective

value maxi
1
pi
∥w∥2 stays relatively steadily. For the consideration of performance,

ρ = 0.2 can make most cases achieve a lower objective value. Therefore, we set the

penalty parameter ρ in the OptSCA-ADMM algorithm as 0.2 based on this simulation

observation.

The fast first-order algorithm OptSCA-ADMM consists of outer-layer SCA it-

eration over u; and the inner-layer Algorithm 2 for solving P2SCA(u) in each SCA

iteration. We first study the convergence behavior of the inner-layer ADMM (Al-

gorithm 2). We set M = 50, 100, 200 and K = 5. For Algorithm 2, we consider

the maximum relative difference maxi
∥a(l)

i −a(l−1)
i ∥

∥a(l−1)
i ∥

between two consecutive iterations.

Fig. 3.4 shows the convergence behaviour of the maximum relative difference of a over

iterations under Algorithm 2 in the first outer-layer SCA iteration. We observe that

the trajectory decreases fast and reach the threshold in less than 10 iterations when

M is large. While compared to the large-scale cases, it may need more iterations to
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Figure 3.4: QoS problem for solving P2SCA(u): the maximum relative difference of a
over the inner-layer iterations at the first outer-layer SCA iteration. (J = 3, K = 5).

converge when the M is small.

In Fig. 3.5, we also plot the trajectory of the objective value of P2SCA(u) over

iterations under Algorithm 2 in the first outer-layer of the SCA iteration. The system

setting for Fig. 3.5 is M = 50, J = 3, K = 5, from which we can see the objective

power ratio can be reduced more than 1 dB in the first outer-layer SCA iteration.
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Figure 3.5: QoS problem for solving P2SCA(u): the maximum individual power ratio
maxi

1
pi
∥wi∥2 over the inner-layer iterations at the first outer-layer SCA iteration

(M = 50, J = 3, K = 5).

In Fig. 3.6, we show the trajectory of the objective value of P2 over the outer-

layer SCA iterations under OptSCA-ADMM and OptSCA-CVX. As twe see, since

both algorithms solve P2SCA(u) optimally, they achieve the same objective value outer

iteration and converge fast in less than 10 iterations.

In Fig. 3.7 , we also show the CDF of the iterations need by the first outer

iteration of the OptSCA-ADMM algorithm. As the CDF indicates that over 90%

channel realizations can converge less than 500 iterations, and the needed iterations

remains rough steadily over the M increases.
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Figure 3.6: QoS problem for solving P2SCA(u): the maximum individual power ratio
maxi

1
pi
∥wi∥2 over the outer-layer iterations. (M = 50, K = 5).
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Figure 3.7: The CDF curve of inner-layer P2SCA(u) (J = 3, K = 5).
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3.4.2 Performance Comparison QoS Problem

We now show the performance of our proposed algorithms for the QoS problem Po

and compare them with other methods. We set K = 5 and SINR target γik = 10 dB,

∀i, k, Fig. 3.8 shows the maximum power margin maxi ∥wi∥2/pi over the number of

antennas M .

0 50 100 150 200 250 300 350 400 450 500

-20

-15

-10

-5

Figure 3.8: QoS problem: the maximum individual power ratio maxi
1
pi
∥wi∥2 vs. the

number of antenna size M (K = 5).

We see that all of our proposed algorithms, OptSDR, OptSCA-CVX, and OptSCA-

ADMM, perform very close to the lower bound, which means our proposed algorithms

achieve nearly optimal performance for K = 5. To compare the computational com-

plexity, we show the average computation time of the algorithms in Table 3.1. The

first row shows the computational time for determining λ, which is increasing as the

antenna size grows. From Table 3.1, we see that



44

Table 3.1: Comparison of average computation time (sec) for QoS problem Po (J =
3, K = 5).

M 100 200 300 400 500

λ 0.0889 0.0573 0.1496 0.2433 0.3648
OptSDR 0.0199 0.0158 0.0174 0.0131 0.0108

OptSCA-CVX 2.5859 2.2480 2.6264 2.4451 2.3545
OptSCA-ADMM 0.0889 0.0573 0.0496 0.0433 0.0648

DirectSDR 33.8828 239.4786 - - -

1. The computation time of OptSDR, OptSCA-CVX and OptSCA-ADMM re-

main roughly unchanged as M increases, This is because by using the optimal

beamforming structure in (3.13), we reduce the original problem Po to weight

optimization problem w.r.t. a, and the dimension of the optimization variable

is reduced from JM to JK, which only depend on the group size and no longer

depend on the number of antennas M . In contrast, the computational com-

plexity of DirectSDR increases with M significantly and is not practical for

implementation as M becomes large.

2. The computational time of OptSCA-ADMM is only 1.5% ∼ 4% of that of

OptSCA-CVX. This demonstrates that OptSCA-ADMM has significantly lower

computational complexity than OptSCA-CVX in solving the SCA subproblem

P2SCA(u). n particular, OptSCA-ADMM uses Algorithm 2 to solve P2SCA(u),

which uses the closed-form or semi-closed form updates. This significantly re-

duces the computation time as compared with the conventional convex solver.

In Fig. 3.9, we show maxi ∥wi∥2/pi vs. the number of users K per cell for M =

50, 100, 200. OptSCA-ADMM and OptSCA-CVX can nearly attain the lower bound
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for all values ofK and M . However, OptSDR performance deteriorates asK increases,

with a noticeable gap to the lower bound. This is expected for the SDR-based method,

as it is an approximate method and is known to be less accurate for problems of larger-

size.
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Figure 3.9: Performance for P2SCA(u): the maximum individual power ratio
maxi

1
pi
∥wi∥2 over the number of users K. (M = 100).

The average computation times of different methods used to generate Fig. 3.9 are

shown in Table 3.2. Compared with our proposed algorithms, DirectSDR method has

high computational complexity even when K is small. For the large problem size,

i.e., K = 10, the computational cost of utilizing ADMM technique is two magnitudes

less than solving SCA via the conventional convex solver CVX solver. This again

demonstrates the computational advantage of OptSCA-ADMM as a fast algorithm

over other algorithms.
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Table 3.2: Comparison of average computation time (sec) for QoS problem Po (J =
3,M = 100).

K 3 5 7 10

OptSDR 0.0387 0.0533 0.0580 0.0784
OptSCA-CVX 2.2869 3.6130 6.1978 14.0025

OptSCA-ADMM 0.0100 0.0140 0.0207 0.1018
DirectSDR 45.78 217.11 374.65 1055.63

3.5 Summary

In this chapter, we focused on the QoS problem under multi-cell multicast scenario

firstly. By applying the Lagrangian, we drive the optimal beamforming structure,

which is a reduced-dimension size form compared to the original beamformer. More-

over, the optimal multicast beamforming vector wo
i for BS i is only a function of the

channels from BS i to all users in J cells. Thus, wo
i can be computed locally at each

BS, without requiring the global knowledge of channel state information in other cells.

Following the optimal structure, we proposed several numerical algorithms to

solve the QoS problem. These algorithms are all based on a fixed-point iterative

method to compute the Lagrange parameter λ. All of the SCA based approaches,

i.e., OptSCA-CVX and OptSCA-ADMM can achieve lower bound nearly, while the

OptSDR algorithm has a deteriorate performance when the number of users increases.

For the computation complexity, the fast first order Algorithm 2 shows the best

performance.



Chapter 4

Multicast Beamforming For the
MMF Problem

The previous chapter focuses on the QoS problem for the coordinated multicast beam-

forming design. We have derived the optimal structure of the multicast beamforming

vector wi at each BS i. Utilizing this optimal structure, Several computational meth-

ods, including the second-order algorithms such as SDR and SCA and the first-order

fast algorithm based on the ADMM technique, are proposed to compute the weight

parameters with reduced computational complexity for large-scale systems. In this

chapter, we consider the weighted MMF problem for multi-cell coordinated multicast

beamforming.

4.1 System Model

We consider a downlink multicast transmission scenario in a multi-cell massive MIMO

system consisting of J cells. The BS in each cell is equipped with M antennas. Each

BS provides the multicast service to a group of K users in its cell, where each user

is equipped with a single antenna. We assume that all BSs use the same spectrum

bandwidth for transmission.
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We study the coordinated multicast beamforming among the J coordinating cells

for the multicast service. Each BS multicasts a message to the K users in its own cell,

using the beamforming vector that is jointly designed among all the BSs. Define the

cell index set J ≜ {1, · · · , J} and the user index set K ≜ {1, · · · , K}. The serving

BS in cell j is denoted by BS j. Let hj,ik denote the M × 1 channel vector from BS

j to user k in cell i, for j, i ∈ J and k ∈ K. Let wi denote the M × 1 multicast

beamforming vector at BS i. The received signal at user k in cell i is given by

yik = wH
i hi,iksi +

J∑
j=1,j ̸=i

wH
j hj,iksj + nik, k ∈ K, i ∈ J . (4.1)

where si is the data symbol transmitted from BS i with E[|si|2] = 1, and nik is the

receiver additive white Gaussian noise at the user with zero mean and variance σ2.

The first term in (4.2) is the desired signal, and the second term is the interference

from the other BSs of the coordinated neighboring cells.

We study the coordinated multicast beamforming among the J coordinating cells

for the multicast service. Each BS multicasts a message to the K users in its own cell,

using the beamforming vector that is jointly designed among all the BSs. Define the

cell index set J ≜ {1, · · · , J} and the user index set K ≜ {1, · · · , K}. The serving

BS in cell j is denoted by BS j. Let hj,ik denote the M × 1 channel vector from BS

j to user k in cell i, for j, i ∈ J and k ∈ K. Let wi denote the M × 1 multicast

beamforming vector at BS i. The received signal at user k in cell i is given by

yik = wH
i hi,iksi +

J∑
j=1,j ̸=i

wH
j hj,iksj + nik, k ∈ K, i ∈ J . (4.2)

where si is the data symbol transmitted from BS i with E[|si|2] = 1, and nik is the

receiver additive white Gaussian noise at the user with zero mean and variance σ2.
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The first term in (4.2) is the desired signal, and the second term is the interference

from the other BSs of the coordinated neighboring cells. The transmit power at BS i

is given by ∥wi∥2, for i ∈ J .

In this chapter, we consider the QoS multicast beamforming problem So (4.3).

The objective of MMF problem is to maximize the worst-case performance among all

cells, subject to each BS transmit power limit pi, i ∈ J . The worst-case performance

in each cell is represented by the minimum weighted SINR among K users. Thus, the

problem is formulated as

So : max
w

min
i,k

1
γik

|hH
i,ikwi|2∑J

j=1,j ̸=i |hH
j,ikwj|2 + σ2

s.t. ∥wi∥2 ⩽ pi, i ∈ J . (4.3)

In particular, we solve So based on the optimal results obtained from the QoS

problem. Firstly, So in (4.3) can be equivalently expressed by

S1 : max
w,t

t

s.t.
|hH

i,ikwi|2∑
j ̸=i |hH

j,ikwj|2 + σ2 ⩾ tγik, k ∈ K, i ∈ J

1
pi

∥wi∥2 ⩽ 1, i ∈ J . (4.4)

4.2 The Optimal Solution Structure for MMF Prob-
lem

For the scenario of a single BS with multiple multicast groups, the inverse relationship

between the QoS problem and MMF problem are two inverse problems has been

shown [40]. For multi-cell coordinated multicast beamforming, we show that such

inverse relationship also holds for QoS problem P1 in (3.2) and MMF problem S1 in
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(55). Specifically, we parameterize the weighted MMF problem S1 as S1(γ,p) for a

given individual transmit power budget p ≜ [pN , . . . , pJ ]T , and an SINR target vector

γ ≜ [γT
1 , · · · ,γT

J ]T with γi ≜ [γi1, . . . , γiK ]T . Also, we denote objective value as

to = S1(γ,p). Similarly, the QoS problem P1(p) is parameterized as P1(p,γ).Then

we have the following proposition.

Proposition 4.1. The QoS problem P1 and the MMF problem S1 is stated below are

inverse problems with the following inverse relation:

to = S1(γ,P1(p, toγ) · p), (4.5)

1 = P1(p,S1(γ,p) · γ). (4.6)

Proof. We first prove (4.5) by contradiction. Let {w}J
i=1 be the optimal solution of

P1(p,γ) with optimal value 1. Consider the MMF problem S1(γ,p), the set {w}J
i=1

is a feasible solution since maxi
1
pi
∥wi∥2 = 1, which yields 1

pi
∥wi∥2 ⩽ 1, i ∈ J . Let to

be the corresponding optimal value with {wi}J
i=1. Assume the existence of another

feasible solution {w̃i}J
i=1 with associated optimal value t̃o > to. Then, it is possible

to find a constant c < 1 to scale down this solution set {w̃i}J
i=1, while still fulfilling

the SINR constraints of problem P1(p,γ). The resulting set {cw̃i}J
i=1 has a smaller

objective value (minimum individual transmitted power) than 1, which contradicts

optimality of {wi}J
i=1.

Similarly, this procedure can be also utilized to prove (4.6). Specifically, let

{w̃i}J
i=1 and t̃o denote an optimal solution and the associated optimal value to the

MMF problem S1(γ,p). Consider the QoS problem P1(t̃oγ,p), the set {w̃i}J
i=1 is a

feasible solution since mini,k
1

γik
SINRik = t̃o, then SINRik ⩾ t̃oγik. From the individual
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power inequality constraint in (4.4), we can see that 1
pi
∥w̃i∥2 ⩽ 1. In this case, the

objective value associated with {w̃i}J
i=1 is 1

pi
∥w̃i∥2 = 1. Assume there exists another

feasible solution {wi}J
i=1 with associated optimal value ρi(wi) < 1. This contradicts

optimality of {w̃i}J
i=1 for S1(γ,p), since the power budget 1−ρi(wi) can be distributed

evenly to yield an objective value to larger than t̃o.

The inverse relation shown in Proposition 4.1 allows us to solve the MMF problem

S1 by iteratively solving P1 along with a bi-section search over t until the maximum

transmit power margin among the BSs is equal to 1. From this approach, we see that

the solution of the MMF problem has a structure similar to that of the QoS problem

shown in Theorem 1. We state the optimal beamforming vector for MMF problem S1

(4.4) below.

Theorem 2. The optimal beamforming solution for the multi-cell coordinated multi-

cast beamforming MMF problem S1 is given by

wo
MMF,i = R−1

MMF,i(λo
QoS,µ

o
QoS)Hiao

MMF,i, i ∈ J (4.7)

where

R−1
MMF,i(λo

QoS,µ
o
QoS) ≜

µo
QoS,i

pi

I + 1
σ2

J∑
j=1

K∑
k=1

λo
QoS,jkγjk

λoT
QoSγ

hi,jkhH
i,jk, (4.8)

with λo
QoS and µo

QoS being the optimal Lagrangian multipliers from wQoS in (3.13) from

the QoS problem P1(p, toγ) in Theorem 1.

In the above theorem, aMMF,i ≜ [aMMF,i1, . . . , aMMF,iK ]T is the weight vector for BS

i with given by

ao
MMF,ik ≜ λo

QoS,ikδik

(
1 + γik

σ2λoT
QoSγ

)
(4.9)
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where δik ≜ hH
i,ikwo

MMF,i, i ∈ J , k ∈ K.

The optimal objective value to for problem S1 is given by

to = 1
σ2λoT

QoSγ
. (4.10)

Proof. From the inverse relation in (4.5) and (4.6), we can obtain the optimal wo
MMF,i

from the QoS problem P1(toγ,p). Note according to the proof of Theorem 1 in

Appendix A at the optimality, we have (B.10). Based on (4.6), the minimum objective

value of P1(toγ,p), i.e., the maximum individual power ratio, is 1,

1 = toσ2λoT
QoSγ, (4.11)

where λo
QoS is obtained by (3.21) of P1(toγ,p). Thus,

to = 1
σ2λoT

QoSγ
(4.12)

Also, since the optimal wo
MMF,i for S1(γ,p) has the similar optimal beamforming struc-

ture as in QoS problem, except that γik is now replaced by toγik, which based on (4.12)

is given by

toγik = γik

σ2λoT
QoSγ

. (4.13)

Thus, substituting (4.13) into the covariance matrix Ri(λo,µo) in (3.14), we have

R−1
MMF,i(λo

QoS,µ
o
QoS) in (4.8). Similarly, using the same relation, ao

ik now becomes ao
MMF,ik

shown in (4.9). Hence, we have the optimal beamforming vectors wo
MMF,i in (4.7).

However, it is still challengeable to obtain the solution through directly applying

the optimal structure in Theorem 2. Since the parameters λo
QoS and µo

QoS need to

be determined in the covariance matrix R−1
MMF,i(λo

QoS,µ
o
QoS) are related to the QoS



53

problem, which are involved and impossible to compute at a time. Thus, we consider

to apply the inverse relationship of QoS and MMF problem in Proposition 4.1 to

obtain wMMF,i, which is named as QoS2MMF algorithm. This method focuses on

iteratively solving the QoS problem to find wi for P1(p, tγ) with a bisection search

over t until the maximum transmit power margin 1
pi
∥wi∥2 among all the BSs is equal

to 1.

The main steps for this QoS2MMF iterative method is summarized as follows.

1. Set the upper bound thigh and lower bound tlow of the SINR target for the QoS

problem P1(p, tγ), since t = S1(γ,p).

2. Set t = thigh+tlow
2 .

3. Solve P1(p, tγ) and obtain the solution {wi(t)}J
i=1.

4. Update thigh = t if ρ ⩾ 1, or tlow = t, otherwise.

5. Repeat Step 2 to 4 until thigh → tlow.

Compared to directly solving So by the SDR method, which has computational

complexity of O((MJ)3), the complexity of the proposed QoS2MMF algorithm is

O((KJ)3) per bi-section iteration, the computational complexity for each iteration is

reduced from O((MJ)3) to O((KJ)3).

4.2.1 Fast First-Order Algorithm for MMF Problem

The proposed QoS2MMF method requires to solve the QoS problems multiple times

during the bi-section search over t, which adds computational complexity and is not
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the most efficient algorithm. To further reduce the computational complexity, we

propose a first-order algorithm based on the PSA [42] to solve the MMF problem

So. The PSA-based algorithm was originally proposed for the single-BS multi-group

multicast beamforming MMF problem in [42]. We show below that we can adopt this

approach to solve the multi-cell coordinated multicast beamforming MMF problem.

4.2.2 Asymtotic Structure of the Channel Covariance Matrix

From the analysis in Section 4.2, the difficulty of directly computing wMMF,i (4.7)

is in the determination of RMMF,i(λo
QoS,µ

o
QoS), since it requires the knowledge of to.

Observing the structure of covariance matrix RMMF,i(λo
QoS,µ

o
QoS) in (4.8), we notice

that the contribution from each user channel hik is weighted by 1
σ2

λo
QoS,jkγjk

λoT
QoSγ

, which

represents the portion of transmit power allocated to each user. As M → ∞, we

can derive the asymptotic expression for RMMF,i(λo
QoS,µ

o
QoS) and use this asymptotic

expression as an approximation to design a low-complexity approach to compute the

solution.

We express each channel as hi,jk ≜
√
βi,jkgi,jk, where βi,jk is the channel variance,

and gi,jk is the normalized channel vector representing the small-scale fading whose

elements are i.i.d and zero mean. Then, we obtain the asymptotic expression of

RMMF,i(λo
QoS,µ

o
QoS) as M becomes large by following the techniques and results in [40].

Using this expression, RMMF,i(λo
QoS,µ

o
QoS) can be approximated by

RMMF,i(λQoS,µQoS) ≈
µi

pi

I + β̄h

σ2K

J∑
j=1

K∑
k=1

gi,jkgH
i,jk ≜ R∞

MMF,i, (4.14)

where β̄h is the harmonic mean of the large-scale channel variances of all users, is
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represented by

β̄h ≜
1

1
K

(∑J
j=1

∑J
i=1

∑K
k=1

1
βi,jk

)
. (4.15)

Since channel covariance R∞
MMF,i in (4.14) is expressed in closed-form, the only un-

known variable in (4.7) to be computed is weight vectors ai. Similar to Section ??, we

apply the structure of wo
MMF,i in (4.7) to S1 to convert it into a weight minimization

problem w.r.t. a:

wMMF,i = R−1
MMF,i(λQoS,µQoS)(4.14)HiaMMF,i (4.16)

S2 : max
a

min
i,k

1
γik

aH
i Bi,ikai∑J

j=1,j ̸=i aH
j Bj,ikaj + σ2 k ∈ K, i ∈ J

s.t. 1
pi

∥Giai∥2 ⩽ 1, i ∈ J (4.17)

where a ≜ [aH
1 , . . . aH

J ]H , Gi ≜ R∞
MMF,iHi, for i ∈ J , and Bj,ik ≜ GH

j hj,ikhH
j,ikGj, for

k ∈ K, j, i ∈ J .

Note that the dimension of weight vector a is KJ , which is much lower than that

of the beamforming vector w, which is MJ for massive MIMO systems with K ≪M .

Thus, S2 has much smaller size than S1.

4.2.3 Problem Reformulation

Since S2 is still a non-convex and NP-hard problem, we consider to adopt the PSA

method [42] to compute a near-stationary solution to S1 efficiently.

Denote the weighted SINR for user k in cell i as

ψik(a) = − 1
γik

aH
i Bi,ikai∑J

j=1,j ̸=i aH
j Bj,ikaj + σ2 , (4.18)
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and denote the feasible set of S2 as

A ≜ {a : 1
pi

∥Giai∥2 ⩽ 1}. (4.19)

Then, we can equivalently express the optimization objective in S2 in a min-max

form as mina maxi,k ψi,k(a). Furthermore, define a probability vector y : y ⩾ 0 and

1Ty = 1. Define

f(a,y) ≜ ψT (a)y, (4.20)

where ψ(a) ∈ RKtot containing all ψik(a)’s.

Thus, we can further equivalently rewrite S2 as

S3 : min
a∈A

max
y∈Y

f(a,y). (4.21)

From the definition of weighted SINR, we can tell an optimal solution of y is yo ≜

[0, . . . , 0, 1, 0, . . . , 0]T , the index of 1 shows the worst-SINR-user position among the

total JK users Note that f(a,y) is concave in y and nonconvex in a. Thus, S3

is a nonconvex-concave min-max problem. Let g(a) ≜ maxy∈Y f(a,y). Then, the

problem S3 can be further expressed as:

S4 : min
a∈A

g(a) (4.22)

Since g(a) may not be differentiable, and its gradient ∇ag(a) may not exits, we apply

the PSA method to find a solution at the vicinity of a stationary point for S4

4.2.4 The Projected Subgradient Algorithm

At iteration l:

y(l) ∈ arg max
y∈Y

f(a(l),y) (4.23)
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a(l+1) = ΠA
(
a(l) − α∇af(a(l),y(l))

)
(4.24)

where α > 0 is the step size, and ΠA(a) denotes the projection of point a onto

set A. Denotes the ratio of the transmit power over its power budget at BS i as

ρai
≜ 1

pi
∥Giai∥2, then the projection is given by

ΠA(ai) =
{ √

1
ρai

ai, ai /∈ A, i ∈ J
ai, ai ∈ A, i ∈ J

(4.25)

For update in (4.24), we need to compute the gradient ∇af(a,y) w.r.t. a, which can

be obtained in closed-form. In particular, the gradient of f(a,y) is given by

∇af(a,y) = [∇a1f(a,y), . . . ,∇aJ
f(a,y)]H (4.26)

where

∇aî
f(a,y) = ∇aî

ψH(a)y = ∇aî
ψik(a), i, î ∈ N , k ∈ K.

The gradient ∇aψik(a), for k ∈ K, i, î ∈ J , is given by

∇aî
ψik(a) =



− 2Bi,ikai∑J
j ̸=i,j=1 aH

j Bj,ikaj + σ2 , i = î,

2aH
i Bi,ikaiBĩikaî

(∑J
j ̸=i,j=1 aH

j Bj,ikaj + σ2)2 , i ̸= î.

(4.27)

The proposed PSA-based first-order algorithm for the MMF problem is summa-

rized in Algorithm 3.

Remark: Algorithm 3 requires an initial point a(0). To find a good initial point,

we proposed solving P2SDR along with one iteration bi-section over t, and use the

Gaussian randomization method to generate the weight vector a from X. Note that

the initial point a(0) does not need to be feasible, the projection operation ΠA(·) in

(4.25) will project a into A in (4.19) after one iteration.
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Algorithm 3 MMF-PSA for S1

1: Initialization: Set initial a(0).

2: repeat

3: y(l) ∈ arg maxy∈Y f(a(l),y).

4: a(l+1) = ΠA(a(l) − α∇af(a(l),y(l))).

5: l← l + 1.

6: until convergence.

7: Obtain w by using (4.16).

4.3 Simulation Results

Similar as the study on QoS problem, default system for MMF problem setup is J = 3

multicasting cells, with K = 5 users each cell. For MMF problem So, we evaluate the

following three proposed algorithms in this chapter:

• QoS2MMF-SDR: Solving S1 by iteratively solving the QoS problem P1 using

OptSDR, along with bi-section search over t.

• QoS2MMF-SCA: Solving S1 by iteratively solving the QoS problem P1 using

OptSCA-CVX, along with bi-section search over t.

• MMF-PSA: The proposed PSA-based fast algorithm in Algorithm 3.

For comparison, we also present the following the methods:

• Upper Bound for So: Solving the relaxed problem of S1 via SDR along with

bi-section search over t.

• DirectSDR: Solve the relaxed problem of S1 via the SDR method, combining

with the Gaussian randomization approach to obtain {wi}.
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• WeightedMRT [38]: A low-complexity suboptimal approach proposed in [38]

that using the MRT beamforming structure.

4.3.1 Convergence Behavior

For the MMF problem So, we study the convergence behavior of Algorithm 3. We set

M = 100, K = 5 as the default system.

In MMF-PSA algorithm, we need to determine step size α. Fig. 4.1 shows the

convergence behavior of the absolute difference of the minimum SINR under a series

of step size α settings. From this figure, we can observe that if α ⩽ 10−4, there is

an obvious trend shown for the objective value converge. Also, as the step size α

decreases, the less iterations needed for the absolute difference of minimum SINR.
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Figure 4.1: Convergence behavior of absolute difference of minimum SINR under
different step size α (M = 50, K = 5).

Fig. 4.2 shows the minimum SINR that can achieved under different step size

α settings when we set threshold for |g(a(l+1) − g(a(l))| as ϵ = 10−5. From Fig. 4.2,
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we can see that the minimum SINR stays relatively unchangeable if α ∈ (10−7, 10−4).

From these observations, overall for the rest simulation results, we set as α = 10−4

and ϵ = 10−3 to obtain a faster convergence.
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Figure 4.2: Influence on the minimum SINR affected by the step size α under different
number of users K (M = 50, J = 3, ϵ = 10−5).

Fig 4.3 shows the trajectory of the absolute difference |g(a(l+1)) − g(a(l))| over

iterations, where g(a) is the objective function of S4 in (4.22). We see this absolute

difference reaches 10−3 in less than 800 iterations.
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Figure 4.3: Convergence behavior for S4: Absolute difference of minimum SINR be-
tween two consecutive iterations among all users. (M = 100, K = 5).

4.3.2 Performance Analysis for MMF Problem

We now study the performance of our proposed MMF-PSA in Algorithm 3 for the

MMF problem So over the number of antennas M and the number of users K per cell.

Fig 4.4 shows the average mininum SINR among users vs. M under all the methods

listed at the beginning of this section. We see that our proposed algorithm nearly

attain the upper bound, indicating its near-optimal performance. WeightedMRT [38]

uses a suboptimal beamforming structure to compute the weight vectors a, and thus

it has a increasing gap to our algorithm as M increases, and thus the computation

time remains roughly constant over M .
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Figure 4.4: MMF problem: The average minimum SINR vs. the number of antennas
M . (K = 5).

The corresponding computation times of these methods in Fig. 4.4 are shown in

Table 4.1. The computation time of QoS2MMF-SDR and QoSMMF-SCA is higher

among these algorithms and increases slightly with M . As discussed in Section 4.2.1,

this is because the two methods use bi-section search and requires to iteratively solve

the QoS problem, which is not computationally efficient. In contrast, our proposed

MMF-PSA is substantially faster than the rest methods,to compute the solution,

and the computation time is roughly constant as M increases. The computation

time for WeightedMRT [38] is comparable to QoSMMF-SDR and stays steadily as

M increases. It uses the suboptimal structure applied and solve the relaxed MMF

problem So directly.

We also show the average minimum SINR over K by different methods in Fig 4.5,
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Table 4.1: Comparison of average computation time (sec) for MMF problem So

(J = 3, K = 5).
M 100 200 300 400 500

MMF-PSA 1.3054 1.2672 1.3967 1.3985 1.1924
QoS2MMF-SDR 13.28 14.01 16.46 20.24 25.01
QoS2MMF-SCA 96.91 104.71 91.73 115.58 119.48

WeightedMRT [38] 15.4778 15.0249 15.2444 15.1870 15.3118
DirectSDR 2258 18334 - - -

for M = 50, 100, 200. Overall,our proposed MMF-PSA and QoSMMF-SCA nearly

attain the upper bound for all values of M . They significantly outperform Weight-

edMRT [38] , which shows 1 ∼ 2 dB gap to ours as K increases. Also, the SDR-based

algorithms, DirectSDR and QoS2MMF-SDR, have deteriorating performance as K

increases, which is due to its inaccurate approximation as the problem size grows.
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Figure 4.5: MMF problem: The average minimum SINR vs. the number of users K.
(M = 100).



64

Table 4.2: Comparison of average computation time (sec) for MMF problem Po

(J = 3,M = 100).
K 3 5 7 10

MMF-PSA 0.7828 1.0558 1.3884 2.4346
QoS2MMF-SDR 5.2624 6.7534 8.6851 12.9281
QoS2MMF-SCA 26.96 56.60 77.55 137.57

WeightedMRT [38] 6.1583 7.8044 10.3540 18.4640
DirectSDR 1240.5 2474.8 4083.8 7517.6

In Table 4.2, we summarize the average computation time of the methods shown

in Fig 4.5. The computation time of all the methods increase with K, Our proposed

MMF-PSA is the fastest algorithm. Compared with other methods, its computation

time is only 1.7% ∼ 2.8% of that for QoS2MMF-SCA and 13% ∼ 18% of that for

QoS2MMF-SDR or WeightedMRT. This shows MMF-PSA is highly effective in both

performance and computational efficiency.

4.4 Summary

This chapter derives the optimal beamforming structure for the MMF problem under

a multi-cell multicast scenario. However, the structure is almost impossible to be

utilized directly for the MMF problem since the parameters needed are challenging

to determine. To address this issue, we proposed iteratively solving the QoS problem

to obtain the solution to the MMF problem.

Indeed, we apply the PSA method [42] and combine the asymptotic beamform-

ing structure with the first-order approach. Compared to the iterative QoS2MMF

method, the MMF-PSA shows low complexity. Besides the QoS2MMF method, the

other proposed methods can all achieve a stationary upper bound even if the number
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of users is large.



Chapter 5

Conclusions and Future Work

In this thesis, we considered both the QoS and the MMF problem for multi-cell mul-

ticast beamforming. We applied the derivation of the optimal beamforming solution

structure in [40] to develop the optimal solution for a multiple-cell case. The derivation

by the Lagrangian duality shows the beamforming solution has a similar structure as

in [40]: the weighted user channels in each cell can be viewed as a group-channel direc-

tion for the cells. By the derived structure, we proposed three algorithms, OptSDR,

OptSCA-CVX, and OptSCA-ADMM, to solve the QoS problem numerically. Theo-

retically, the two last algorithms are both based on the SCA method. The difference

is that the former utilizes a CVX solver, and the latter focuses on the ADMM tech-

niques to solve the SCA problem iteratively. The simulation result presented that our

proposed algorithms can obtain near-optimal solutions compared with directly using

the SDR method. Also, our proposed methods have less computational complexity.

For the MMF problem, we developed the optimal beamforming structure and

applied the inverse relation between it and the QoS problem. Since determining the

parameters in MMF optimal beamforming structure directly is almost impossible,

we mainly focus on obtaining the MMF beamformer by iteratively solving the QoS
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problem. From the simulation result, our QoS2MMF-SCA can achieve the upper

bound closely. However, these QoS2MMF methods have relatively high computation

complexity. To overcome this, we apply another approach, PSA [42], to solve the MMF

problem. Compared with other methods, i.e., Weighted MRT [?] or DirectSDR, this

PSA method provided a closed-form gradient and utilized a projection to get closer

to the near-optimal solution. Simulation results showed that our proposed algorithms

can perform very closely to the upper bound, besides the QoS2MMFSDR method.

In the future, the ADMM techniques and QoS2MMF-SCA can be combined to

improve the performance of the MMF method further. Although this approach may

still need a bi-section search, the complexity at each iteration can be reduced compared

to utilizing CVX solver. Moreover, the extra gradient-based SCA algorithm [64] can

also be utilized to solve the QoS problem, which is also a first-order algorithm. Finally,

our proposed algorithms can be extended to study a common scenario in reality, such

as a jointly unicast with a multi-cell multicast system.



Appendix A

Proof of Proposition 3.1

Proof. Based on (3.7), the minimization of L(w, t,λ,µ; z) over w and t in (3.10)

can be separated. Assuming the optimal Lagrange multipliers (λ⋆,µ⋆) for the dual

problem D1,SCA(z), solving the the minimization of L(w, t,λ⋆,µ⋆; z) by setting the

derivative of L(w, t,λ⋆,µ⋆; z) w.r.t. wH
i , i ∈ J , to 0 , we have

∂

∂wH
i

L(z,w, t,λ⋆,µ⋆)=Ri−(λ⋆,µ⋆)wi(z)− νi = 0. (A.1)

Also, by setting the derivative of L(w, t,λ⋆,µ⋆; z) w.r.t. t, we obtain 1Tµ⋆ = 1.

We now show that µ⋆
i > 0 and thus Ri−(λ⋆,µ⋆) is invertible. This can be proved

by contradiction. Assume µ⋆
i = 0 for some i. Then, Ri−(λ⋆,µ⋆) in (3.8) is rank

deficient. Notice that it is spanned by channels from BS i to all users in other cells

{hi,jk, k ∈ K, j ∈ J , j ̸= i}, while νi from (3.9) is a linear combination of channels

from BS i to its own users in cell i {hi,ik, k ∈ K}. Since channels of different users

are independent, this means that there is no solution to the linear equation in (A.1),

regardless of the values of γik or z. In other words, the gradient in (A.1) will not be 0

at optimality. This contradict with the condition of the optimal solution to P1SCA(z).
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Thus, the optimal µ⋆
i > 0, for i ∈ J . Following this, from (A.1) we have

w⋆
i (z) = R−1

i− (λ⋆,µ⋆)
(

K∑
k=1

λ⋆
ikhi,ikhH

i,ik

)
zi

which leads to (3.11).



Appendix B

Proof of Theorem 1

Proof. The proof follows the proof of [40, Theorem 1]. Specifically, by the optimal

w⋆
i (z) for P1SCA(z) in (3.11), we have the following

Ri−(λ⋆,µ⋆)w⋆
i (z) =

K∑
k=1

λikhi,ikhH
i,ikzi. (B.1)

Since Ri(λ,µ) = Ri−(λ,µ) +∑K
k=1 λikγikhi,ikhH

i,ik, we can rewrite (B.1) as

Ri(λ⋆,µ⋆)w⋆
i (z)

=
(

Ri−(λ⋆,µ⋆) +
K∑

k=1
λikhi,ikhH

i,ik

)
w⋆

i (z)

=
K∑

k=1
λ⋆

ikhi,ikhH
i,ikzi +

K∑
k=1

λ⋆
ikγikhi,ikhH

i,ikw⋆
i (z)

=
K∑

k=1
λ⋆

ik(1 + γik)
(
hi,ikhH

i,ikzi + hi,ikhH
i,ikw⋆

i (z)
)
. (B.2)

As z→ wo, we have w⋆
i (z)→ wo

i . At the same time, the optimal (λ⋆,µ⋆) for the

dual problem D1SCA(z) also converges to the optimal (λo,µo) of D1,SCA(wo), which is

the dual problem of P1. Thus, at the limit as z→ wo, (B.2) becomes

Ri(λo,µo)wo
i =

K∑
k=1

λo
ik(1 + γik)(hH

i,ikwo)︸ ︷︷ ︸
≜ao

ik

hi,ik

= Hiao
i (B.3)
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Following the argument in Appendix A, we can similarly show that µo
i > 0, for i ∈ J ,

and thus Ri(λo,µo) is full rank and invertible. Thus, we obtain the optimal solution

in (3.13) for i ∈ J .

The optimal value of Po is also the optimal to in P1. Consider the optimal solution

to P1SCA(z) in each SCA iteration in (3.11). We can express νi in (3.9) in a compact

matrix form as

νi = HiDλi
HH

i zi, (B.4)

where Dλi
≜ diag(λi). Thus, the optimal beamforming vector w⋆

i (z) can be rewritten

as below

w⋆
i (z) = R−1

i− (λ⋆,µ⋆)HiDλi
HH

i zi. (B.5)

Denote γi ≜ [γi1, . . . γiK ]T , i ∈ J , and γ ≜ [γT
1 , . . . ,γ

T
J ]T . Substituting the above

expression (B.5) into (3.10), the Lagrangian is equivalent to

g(λ,µ; z) ≜ min
w,t
L(w, t,λ,µ; z)

= (1−
J∑

i=1
µi)t+

J∑
i=1

K∑
k=1

λik

(
σ2γik + |zH

i hi,ik|2
)

+
J∑

i=1
zH

i HiDλi
HH

i R−1
i− (λ⋆,µ⋆)HiDλi

HH
i zi

− 2
J∑

i=1
Re

{
zH

i HiDλi
HH

i R−1
i− (λ⋆,µ⋆)HiDλi

HH
i zi

}

= (1−
J∑

i=1
µi)t+ σ2

J∑
i=1
λT

i γi +
J∑

i=1
zH

i HiDλi
HH

i zi

−
J∑

i=1
zH

i HiDλi
HH

i R−1
i− (λ⋆,µ⋆)HiDλi

HH
i zi

=
J∑

i=1
zH

i HiDλi
HH

i

(
I−R−1

i− (λ⋆,µ⋆)HiDλi
HH

i

)
zi

+ (1−
J∑

i=1
µi)t+ σ2

J∑
i=1
λT

i γi. (B.6)
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Based on the proof of Proposition 3.1, the solution for QoS problem at the opti-

mality is represented as (3.12), substituting the optimal weight vector αo
i into (3.12),

wo
i = R−1

i− (λo,µo)Hiα
o
i

= R−1
i− (λo,µo)HiDλoHH

i wo
i . (B.7)

Thus,

(
I−R−1

i− (λo,µo)HiDλo
i
HH

i

)
wo

i = 0. (B.8)

Through the iterative SCA method and under optimal setting of µo, if the primal

problem P1SCA(z) converges to the optimum, the Lagrangian multiplier in dual prob-

lem D1SCA(λ) would also converge, which is λ⋆(z)→ λo based the optimal convergence

of zi → wo
i in (3.12). Thus, the first term in (B.6) would become zero.

Also, the KKT conditions for Lagrangian L(w, t,λ⋆,µ⋆; z) (3.6) still hold. By

applying the partial derivative of L(w, t,λ⋆,µ⋆; z) w.r.t. t set as zero, we obtain

1Tµ⋆ = 1 at the optimality, which is equivalent to

J∑
j=1

µ⋆
i = 1. (B.9)

Now, we conclude that the first and second term in (B.6) become zero as zi

converges to the optimum wo
i , which yields the optimum value is the term left

t⋆ = min t = max
λ,µ

g(λ,µ; z) = σ2
J∑

i=1
λ⋆

iγi = σ2λ⋆Tγ. (B.10)

Based on the above proof, as z → wo through iterative SCA methods, D1SCA(λ⋆) →

D1SCA(λo), PSCA(z) → Po, thus t⋆ → to and the minimum individual objective value

is obtained as (B.10).
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