
PoT: Bridging IoT with Phone Technology

by

Haytham Khalil

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Faculty of Engineering and Applied Science
University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada
September 2023

© Haytham Khalil 2023

Thesis Examination Information

Submitted by: Haytham Khalil

Doctor of Philosophy in Electrical and Computer Engineering

Thesis title: PoT: Bridging IoT with Phone Technology

An oral defense of this thesis took place on September 14, 2023 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Sanaa Alwidian

Research Supervisor Dr. Khalid Elgazzar

Examining Committee Member Dr. Mohamed El-Darieby

Examining Committee Member Dr. Akramul Azim

Thesis Examiner Dr. Masoud Makrehchi, Ontario Tech University

External Examiner Dr. Tamer Nadeem, Virginia Commonwealth University

The above committee determined that the thesis is acceptable in form and content and

that a satisfactory knowledge of the field covered by the thesis was demonstrated by the

candidate during an oral examination. A signed copy of the Certificate of Approval is

available from the School of Graduate and Postdoctoral Studies.

ii

Abstract

The ”Phone of Things” (PoT) introduces an innovative integration of IoT systems

with the widely available telephone network infrastructure. It repurposes underused

home landlines and existing communication servers, weaving them into the IoT fabric.

By transforming IoT devices into SIP endpoints within the VoIP ecosystem, users can

monitor and interact with these devices through regular phone calls, voice commands,

or text messages. PoT presents a seamless user experience by capitalizing on ubiquitous

phone network infrastructure while promoting context-aware telephony solutions. Us-

ing open-source technologies, PoT ensures affordability, interoperability, scalability, and

security.

A tangible PoT prototype is developed using a Raspberry Pi equipped with Asterisk,

a renowned open-source IP-PBX software. The Raspberry Pi acts as a gateway, facil-

itating communication between IoT devices and VoIP servers. Performance evaluation

testing reveals that the Raspberry Pi 4 B can manage up to 182 concurrent calls, while

the less performant Raspberry Pi Zero W can handle 12 simultaneous calls. These re-

sults highlight the potential of these compact, affordable boards as ideal PoT gateways

for homes and small-to-medium businesses, making deployment of the framework more

economical.

In addition, the thesis introduces ”tSIP”, a streamlined SIP version designed for

PoT. It offers a concise message format, achieving up to 22% and 46% size reduction

compared to traditional SIP and CoSIP messages. This compact format ensures quicker

transmission, energy efficiency, and optimized network usage. The study also presents a

decentralized registration and authentication mechanism for PoT, based on blockchain

technology. A prototype is crafted on a private blockchain, emphasizing privacy, speed,

and cost-effectiveness. This mechanism aligns with SIP’s security standards and caters

to embedded smart devices’ constraints.

iii

Lastly, to illustrate PoT’s real-world application, the ”Location Transparency Call”

(LTC) system is introduced. LTC provides a context-aware telephony solution for busi-

nesses. It tracks employees via their RFID access tags, ensuring that incoming calls are

redirected to the nearest phone to their current location, reducing missed business call

occurrences.

Keywords— Phone of Things (PoT); Tiny Session Initiation Protocol (tSIP), Location

Transparency Call (LTC); Internet of Things (IoT); Voice over Internet Protocol (VoIP);

Asterisk; Blockchain

iv

Author’s Declaration

I hereby declare that this thesis consists of the original work I have authored. This

is a true copy of the thesis, including any required final revisions, as accepted by my

examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech University)

to lend this thesis to other institutions or individuals for the purpose of scholarly re-

search. I further authorize the University of Ontario Institute of Technology (Ontario

Tech University) to reproduce this thesis by photocopying or by other means, in total

or part, at the request of other institutions or individuals for the purpose of scholarly

research. I understand that my thesis will be made electronically available to the public.

Haytham Khalil

v

Statement of Contribution

The work described in this thesis has been published as:

• Haytham Khalil; and Khalid Elgazzar, Phone of Things (PoT): Empowering IoT

Systems Through VoIP Infrastructure and Voice Commands. In Proceedings of the

7th IEEE World Forum on the Internet of Things - WF-IoT 2021, New Orleans,

Louisiana, USA, June 14 - July 31, 2021.

• Haytham Khalil; and Khalid Elgazzar, Performance Evaluation of Single-Board

Embedded Linux Platforms as Asterisk Servers for Phone of Things (PoT) Appli-

cations. IWCMC 2022 IIIoT, Dubrovnik, Croatia, May 30 –June 03, 2022.

• Haytham Khalil; and Khalid Elgazzar, Location Transparency Call (LTC) Sys-

tem: An Intelligent Phone Dialing System Based on the Phone of Things (PoT)

Architecture, Future Internet, MDPI, vol. 14(4), pages 1-22, March 2022.

• Haytham Khalil; and Khalid Elgazzar, Leveraging Blockchain for Device Registra-

tion and Authentication in tSIP-Based Phone-of-Things (PoT) Systems, IWCMC

2023 Smart & Sustainable Communications, Marrakesh, Morocco, June 19 - 23,

2023.

• Haytham Khalil; and Khalid Elgazzar, tSIP: A Lightweight SIP-Based Messag-

ing Protocol for Resource-Constrained Embedded Devices, The 31st International

Conference on Software, Telecommunications and Computer Networks (SoftCOM

2023), Split, Croatia, 21-23 September, 2023.

vi

Acknowledgements

I want to express my heartfelt gratitude to all those who have supported and guided

me throughout this incredible journey of completing my PhD thesis. Without their

invaluable contributions, this accomplishment would not have been possible.

First and foremost, I extend my most profound appreciation to my supervisor, Profes-

sor Khalid Elgazzar. Your unwavering support, expert guidance, and immense knowledge

have shaped my research and nurtured my academic growth. Your dedication to my de-

velopment as a scholar has been truly inspiring, and I am grateful for the countless hours

you have invested in mentoring and advising me.

I am also indebted to my thesis committee members, Professor Mohamed El-Darieby

and Professor Akramul Azim. Your expertise, critical insights, and constructive feedback

have immensely enriched my research. Your commitment to ensuring the quality and

rigour of my work has been invaluable, and I am grateful for the time and effort you have

dedicated to reviewing and evaluating my thesis.

I want to extend my appreciation to the faculty and staff of the University of On-

tario Institute of Technology (Ontario Tech University), who have created a conducive

academic environment that fosters intellectual growth and supports research endeavours.

The resources, facilities, and opportunities provided by the university have been pivotal

in successfully completing my doctoral studies.

I am grateful to my colleagues in the IoT Research Lab at Ontario Tech University,

who have shared their knowledge, ideas, and experiences, fostering a stimulating intellec-

tual community. Their collaboration, discussions, and support have enhanced the quality

vii

of my research and have been a source of inspiration.

My heartfelt thanks also go to my family and friends for their unwavering love, encour-

agement, and belief in my abilities. Their constant support and understanding during

the challenging moments of this journey have been a source of strength and motivation.

To everyone mentioned above and those who may not be specifically named but have

played a part in my academic and personal growth, please accept my deepest appreciation.

Your support and encouragement have been the cornerstones of my achievements. With

sincere gratitude,

Haytham Khalil

viii

List of Abbreviations

ACL Access Control List

AGI Application Gateway Interface

AMI Asterisk Management Interface

API Application Programming Interface

ASIC Application Specific Integrated Circuits

BACnet Building Automation and Control Network

BAS Building Automation System

BLE Bluetooth Low Energy

CA Certificate Authority

CMO Cellular Mobile Operator

CoAP Constrained Application Protocol

CODEC Coder-Decoder

COI Community of Interest

CoSIP Constrained Session Initiation Protocol

CPU Central Processing Unit

DALI Digital Addressable Lighting Interface

DIY Do-It-Yourself

DoS Denial of Service

DPoS Delegated Proof of Stake

DSP Digital Signal Processing

DTLS Datagram Transport Layer Security

e2e end-to-end

ECDSA Elliptic Curve Digital Signature Algorithm

FXO Foreign Exchange Office

ix

GATT Generic Attribute

GCP Google Cloud Platform

GPIO General Purpose Input/Output

GPL 2 General Public License Version 2.0

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation, and Air Conditioning

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IM Instant Messaging

IMS IP Multimedia Subsystem

IOC Indicator of Compromise

IoT Internet of Things

IP-PBX Internet Protocol Private Branch Exchange

IP Internet Protocol

IPsec IP Security

ISDN Integrated Services Digital Network

ISP Internet Service Provider

ITSP Internet Telephony Service Provider

IVR Interactive Voice Response

JSON JavaScript Object Notation

LAN Local Area Network

LON Local Operating Network

LoRa Long Range (a spread spectrum modulation technique)

LoRaWAN Long Range Wide Area Network

LTC Location Transparency Call

M2M Machine-to-Machine

x

MOH Music on Hold

MOS Mean Opinion Score

MQTT Message Queueing Telemetry Transport

MQTT-SN Message Queueing Telemetry Transport for Sensor Network

NIC Network Interface Card

NLU Natural Language Understanding

NVS Non-Volatile Storage

OS Operating System

OTA Over-the-Air

P2P Peer-to-Peer

PBFT Practical Byzantine Fault Tolerance

PBX Private Branch Exchange

PCM Pulse Code Modulation

PKI Public Key Infrastructure

PLC Powerline Communication

PoA Proof of Authority

PoS Proof of Stake

PoT Phone of Things

POTS Plain Old Telephone Service

PoW Proof of Work

PSAP Public Safety Answering Point

PSTN Public-Switched Telephone Network

QoS Quality of Service

RAM Random Access Memory

REST REpresentational State Transfer

RFID Radio Frequency Identification

RTOS Real-Time Operating System

xi

RTT Round-Trip Time

RTU Remote Terminal Unit

S/MIME Secure Multi-purpose Internet Mail Extensions

SBC Single Board Computer

SCTP Stream Control Transmission Protocol

SDN Software-Defined Network

SHG SIP-based Home Gateway

SIL Single In-Line

SIP Session Initiation Protocol

SNT Social Network of Things

SPI Serial Peripheral Interface

SUA SIP User Agent

TCP Transmission Control Protocol

TDM Time Division Multiplexing

TI Texas Instruments

TinyML Tiny Machine Learning

TLS Transport Layer Security

TPS Transactions Per Second

tSIP Tiny Session Initiation Protocol

UA User Agent

UC Unified Communication

UDP User Datagram Protocol

URI Uniform Resource Identifier

USB Universal Serial Bus

VIoT Voice over Internet of Things

VLAN Virtual Local Area Network

VoIP Voice over Internet Protocol

xii

VoLTE Voice over Long Term Evolution

VPN Virtual Private Network

VPS Virtual Private Server

WDS Wireless Distribution System

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

XML Extensible Markup Language

xiii

Contents

Thesis Examination Information ii

Abstract iii

Author Declaration v

Statement of Contribution vi

Acknowledgment vii

List of Abbreviations ix

List of Tables 1

List of Figures 2

1 Introduction 5

1.1 Internet of Things (IoT) . 5

1.2 Voice over Internet Protocol (VoIP) . 7

1.3 Session Initiation Protocol (SIP) . 8

1.4 Blockchain . 8

1.5 Problem Statement and Challenges . 9

1.5.1 PoT Grand Vision . 9

1.5.2 Lacking in the Current Practices 11

xiv

1.6 Research Questions . 15

1.7 Research Objectives . 16

1.8 Primary Beneficiaries . 17

1.9 Thesis Contributions . 20

1.10 Thesis Outline . 21

2 Background and Literature Review 23

2.1 Open-Source IoT Frameworks . 24

2.1.1 Background . 24

2.1.2 Shortcomings . 26

2.2 The Evolution of Business Communication Systems 28

2.2.1 Private Branch Exchange (PBX) 29

2.2.2 Hybrid PBX . 29

2.2.3 IP-PBX . 30

2.3 Asterisk: The Open-Source PBX Framework 30

2.3.1 Overview . 30

2.3.2 Leveraging Asterisk IP-PBX in IoT Applications 31

2.4 IoT Devices . 32

2.4.1 Single Board Computers (SBCs) 35

2.4.2 Embedded Linux . 37

2.5 IoT Messaging Protocols . 40

2.5.1 Overview . 40

2.5.2 Challenges in IoT Messaging Protocols 41

2.5.3 Common IoT messaging Protocols 43

2.6 Session Initiation Protocol (SIP) . 45

2.6.1 Overview . 45

2.6.2 SIP Methods and Transactions 46

2.6.3 IoT and SIP Integration: Challenges 48

xv

2.6.4 IoT and SIP Integration: State of the Art 49

2.6.5 tSIP: A Lightweight Version of the SIP Protocol for Constrained

Devices . 51

2.7 Blockchain . 52

2.7.1 Overview . 52

2.7.2 Types of Blockchains . 53

2.7.3 Consensus Algorithms . 54

2.7.4 Smart Contracts . 56

2.7.5 SIP and Blockchain Integration: Benefits and Possibilities 57

2.7.6 SIP and Blockchain Integration: Challenges 58

2.7.7 SIP and Blockchain Integration: State of the Art 59

2.8 Summary . 62

3 Proposed PoT Framework 64

3.1 Overview . 65

3.2 PoT Gateway . 67

3.2.1 PoT Gateway as an IP-PBX Server 67

3.2.2 PoT Gateway as an OpenVPN Client 69

3.2.3 PoT Gateway as a Wi-Fi Access Point 71

3.2.4 PoT Gateway as an MQTT Broker/Publisher 72

3.2.5 PoT Gateway and Chatbots Integration 74

3.2.6 Enabling the PoT gateway with Powerline Communication (PLC)

Capability . 76

3.2.7 Enabling the PoT Gateway with Tiny Chatbot Agent Capability . 78

3.2.8 Enabling the PoT Gateway with PSTN Interface Circuitry 81

3.3 PoT Devices . 82

3.4 Summary . 86

xvi

4 PoT Framework Implementation 88

4.1 Feasibility Study . 89

4.1.1 Introduction . 89

4.1.2 VoIP Codecs . 90

4.1.3 Passthrough vs. Transcoding VoIP Calls 91

4.1.4 VoIP Call Quality Metrics . 93

4.1.5 Motivation . 95

4.1.6 Methodology . 96

4.1.7 Passthrough VoIP Testing . 99

4.1.8 Transcoded VoIP Testing . 101

4.2 tSIP: A lightweight SIP-Based Messaging Protocol for PoT 102

4.2.1 tSIP: Overview . 102

4.2.2 tSIP: Binary Encoding of SIP Messages 104

4.2.3 tSIP: Packet Formation . 112

4.3 A lightweight and Blockchain-Based Device Registration and Authentica-

tion for PoT Applications . 114

4.3.1 Introduction . 114

4.3.2 Overview . 115

4.3.3 System Initialization . 120

4.3.4 PoT Gatway Registration . 120

4.3.5 Gadget Registration . 122

4.4 Summary . 122

5 PoT Framework Use Cases 125

5.1 Introduction . 125

5.2 Context-Aware Telephony Solutions . 126

5.3 Redefine Mature Phone Features in a Modern Way 127

5.4 Location Transparency Call (LTC) System 129

xvii

5.4.1 Background . 129

5.4.2 Architecture . 131

5.4.3 WiFi-Enabled RFID Door Entry Nodes 133

5.4.4 Entering and Exiting a Place . 134

5.5 Session Semantic Utilization . 135

5.6 Summary . 139

6 Experimental Setup and Evaluation 140

6.1 Experiments Setup . 141

6.2 Experiments Objectives . 143

6.3 PoT Gateway as an IP-PBX Server . 143

6.3.1 Passthrough VoIP Testing . 143

6.3.2 Transcoding VoIP Testing . 147

6.3.3 Passthrough vs. Transcoding VoIP Calls 147

6.3.4 Conclusion . 149

6.4 Integration with Chatbot Agents . 149

6.4.1 Google Assistant: Intents, Actions, and Fulfillment 150

6.4.2 PoT Gateway and Google Assistant: The Integration Workflow . 151

6.4.3 Voice Activity Detection (VAD) 153

6.4.4 Evaluating the Integration with Google Assistant 157

6.5 tSIP Protocol Evaluation . 160

6.5.1 Serialization and Deserialization of tSIP Messages 160

6.5.2 tSIP Packet Capture . 162

6.6 Evaluation of the Registration and Authentication Mechanism 164

6.6.1 Implementations . 165

6.6.2 Security Analysis . 168

6.7 Summary . 169

xviii

7 Conclusion and Future Work 171

7.1 Conclusions . 172

7.2 Possible Future Directions . 176

Bibliography 178

xix

List of Tables

2.1 Raspberry Pi Boards Comparison Matrix. 35

2.2 Comparing SIP Protocol with Popular Messaging Protocols for IoT. . . . 45

2.3 Comparison of Public, Private, and Consortium Blockchains [18]. 53

3.1 Basic configuration of the VPS instance utilized by the proposed system. 70

4.1 Acceptable VoIP call quality metrics set by Cisco. 93

4.2 Role of System Components in the Blockchain Network 119

5.1 Truth table of the example scenario’s floor plan. 136

5.2 Entering and exiting illustration example. 136

6.1 VoIP call quality measurements during passthrough and transcoded VoIP

call testings for different Raspberry Pi boards. 148

6.2 Response time of different Raspberry Pi boards when interfaced with

Google Assistant. 159

6.3 Comparison between tSIP, CoSIP, and SIP message sizes for different mes-

sage types used during session establishment and tear down. 163

1

List of Figures

2.1 Embedded systems classification. 32

2.2 IoT protocol stack (Adapted from [59]) 39

2.3 SIP Transactions (SIP Call Origination and Termination Example). . . . 47

3.1 Overview of the Phone of Things (PoT) framework. 65

3.2 Scalability of PoT through SIP Trunks: Facilitating Multi-Site Intercon-

nections. 68

3.3 Overview of secure tunnel establishment between distant PoT gateways

through VPN connection. 70

3.4 Flowchart of the integration between the embedded Asterisk server to the

PoT gateway and Google’s Dialogflow chatbot agent. 73

3.5 Architecture of the PLC adapter controller for the proposed PoT framework. 75

3.6 Overview of the proposed PLC-enabled PoT framework. 76

3.7 SparkFun’s TinyML development board (MicroMod Artemis Processor

board). 78

3.8 Flowchart of tiny chatbot embedding in the PoT gateway using TinyML. 79

3.9 Silvertel’s Ag2130 PSTN interface module. 80

3.10 Silvertel’s Ag2130 evaluation board. 80

3.11 CPC5750 single-channel voice band codec IC. 80

3.12 Multi-standard CC2650 SensorTag from Texas Instruments (TI). 82

2

LIST OF FIGURES 3

3.13 M5Stack: Core2 ESP32 IoT development kit. 84

3.14 ModBus thermostat. 84

4.1 Flowchart of the evaluation methodology for SBCs as PoT gateways with

embedded Asterisk server in the proposed framework. 97

4.2 Overview of passthrough VoIP testing workflow. 100

4.3 Overview of transcoding VoIP testing workflow. 101

4.4 tSIP registration. 106

4.5 Protocol Buffers (Protobuf) utilization for encoding and decoding tSIP

messages. 111

4.6 tSIP packet structure (tSIP MESSAGE method as an example). 112

4.7 Architecture model of the proposed blockchain-based registration and au-

thentication mechanism. 115

4.8 Flowchart of smart contract deployment by the designated admin node

(i.e., the PBX server). 119

4.9 PoT Gateway registration with the PBX server. 121

4.10 Device registration with the PoT gateway. 123

5.1 Overview of the Location Transparency Call (LTC) system. 130

5.2 The door entry node component of the proposed LTC system (breadboard

view). 132

5.3 Example scenario of entering and exiting premises. 134

5.4 An example of tSIP REFER utilization in a session semantics application. 137

6.1 Relation between the number of active channels and the operating system

load average (passthrough). 144

6.2 Relation between the number of active channels and the CPU utilization

(passthrough) . 144

LIST OF FIGURES 4

6.3 Relation between the number of active channels and the operating system

load average (transcoding). 146

6.4 Relation between the number of active channels and the CPU utilization

(transcoding). 146

6.5 Contrasting the maximum number of simultaneous active channels that

different Raspberry Pi board families can gracefully serve. 148

6.6 Message size in bytes per message type for SIP, CoSIP, and tSIP. 164

Chapter 1

Introduction

1.1 Internet of Things (IoT)

The Internet of Things (IoT) is a recent buzzword that has found its way into almost

every domain, from home automation applications with simple sensors, actuators, and

programmed on/off functionalities to medical, aviation, and industrial applications, fea-

turing sensitive devices and timely critical missions [1]. Recent research statistics reveal

that in 2021, there were over 10 billion connected IoT devices [2]. This number is pro-

jected to reach 41 billion by 2027, with more than 152,000 IoT devices expected to

connect to the Internet every minute by 2025 [2]. IoT changes how we interact with our

surroundings, including people themselves, by allowing IoT devices and wearable elec-

tronics to interactively infer from each other without human intervention. IoT systems

leverage sensed information, helping people make better-informed decisions.

Since the emergence of the IoT, and as the name implies, the IoT mainly depends

on the Internet to provide the ultimate connectivity between the compartments of the

IoT ecosystem, namely the end users, the IoT devices, and the cloud-hosted back-end

services. Internet connectivity requires things that constitute the IoT system to employ

the TCP/IP protocol stack in their embedded firmware. Therefore, simple objects with

5

Chapter 1. Introduction 6

limited processing capacity or power consumption constraints that cannot implement

the TCP/IP protocol stack in their embedded firmware can connect to the Internet

through IoT gateways [3]. IoT gateways act as middleware that connects non-Internet-

enabled devices to the Internet. However, in either case, this requires the constituent

Internet-enabled IoT devices or the middleware gateways to employ medium- to large-

scale embedded systems to achieve the designated task of IoT. This comes at a cost in

terms of the price and the power sizing of the IoT system. Nevertheless, the consistent

connectivity of devices to the Internet is the least energy-efficient piece of the whole IoT

system framework. Moreover, wireless access technologies, which are dominant in IoT

applications, are accounted for as the least energy-efficient access network technologies

[4].

On the other hand, cybersecurity anxiety is still a significant concern that prevents

the IoT from reaching its potential. With their fundamentally limited-resource embedded

systems, IoT devices cannot be efficiently secured against cyberattacks. Cybersecurity

represents a weak point in the overall IoT system. Hackers could exploit these intrinsi-

cally poorly secured IoT devices and pose a serious impersonation threat, allowing them

to penetrate the underlying critical network infrastructure and harm its operation by

reducing its availability, for example. Statistics reveal that 84% of companies adopting

IoT solutions have reported security breaches related to IoT [5]. This, in turn, results in

”walled gardens” of IoT systems [6]. Walled gardens imply that the utilization of sensed

information from each IoT system is confined to its originators through their local or

managed networks without being exposed to the Internet. This hinders the interoper-

ability between different IoT systems and prevents the maximum utilization of sensed

information.

Chapter 1. Introduction 7

1.2 Voice over Internet Protocol (VoIP)

Voice over Internet Protocol (VoIP) is a relatively mature technology that began in 1973

when a protocol for ARPANET was invented to enable network voice [7, 8]. However, it

was not until 1995 that the first commercial VoIP solution hit the market [8]. Initially, the

adaptation to VoIP technology appeared to be slow, from less than 1% of all business calls

in 1998 to 25% in 2003 [9]. However, due to the advancement of digital transformation and

the emergence of broadband technologies in the past decade, VoIP is currently prevailing

and reaching new heights as a reliable and cost-effective means of telecommunication

over the Internet. For example, there were more than one billion mobile VoIP users in

2017, with an estimated three billion mobile VoIP users in 2021 [9]. However, VoIP will

soon replace the Integrated Services Digital Network (ISDN) and the Plain Old Telephone

Service (POTS) as most telecom companies are planning to update their legacy telephone

systems to VoIP at the end of 2025 [10].

Asterisk is open-source, Linux-based software for building feature-rich telephony ap-

plications [11]. It is a hybrid Time Division Multiplexing (TDM) and packet voice Private

Branch Exchange (PBX). According to statistics published by Asterisk, there are over

one million Asterisk server deployments in 170 countries, with over 2 million annual

downloads [12]. A typical Asterisk system consists of different loadable modules, each

responsible for specific phone functionality [13]. Asterisk empowers the creation of spe-

cialized modules to meet various telephony application needs thanks to the freedom that

comes with open-source technology. In contrast to conventional PBX, the dialplan mod-

ule in Asterisk is fully customizable and can be tailored to respond to external events.

However, although Asterisk has its own scripting language to configure its operation,

it can still be programmed using famous high-level programming languages, such as

Python, Java, C++, PHP, and node.js, using the Asterisk Gateway Interface (AGI),

which provides application-level control of selected features of the Asterisk system [12].

Chapter 1. Introduction 8

1.3 Session Initiation Protocol (SIP)

Session Initiation Protocol (SIP) is a mature signalling, presence, and instant messaging

protocol used in VoIP [14]. Although an older signalling protocol exists, ITU-T H.323

[15], SIP utilization in VoIP prevails. This is due to its simpler architecture and fewer

logical components [14]. SIP is used to establish and tear down media sessions between

calling parties in the VoIP ecosystem. The main signalling functions of SIP include

locating the called parties, querying their willingness to establish sessions with the calling

parties, exchanging the information required to establish the sessions, and tearing down

the established sessions when the communicating parties hang up [16]. SIP can run

over many transport protocols, such as UDP, TCP, or SCTP. Moreover, it can run over

secure transport protocols like TLS and DTLS [14]. However, UDP is commonly used in

VoIP environments because it is a lightweight transport protocol with a cheap connection

setup that fits VoIP applications’ soft real-time constraints over statistical multiplexing

mediums like the Internet. SIP is an HTTP-inspired protocol that inherits the same text-

based message format as the HTTP protocol [17]. SIP’s text-based messages are large

in size, and it takes a lot of processing power (CPU and RAM) to construct and parse

SIP messages [17], which comes at the cost of complex implementation in a constrained

environment like IoT gadgets.

1.4 Blockchain

Blockchain is a revolutionary technology that has defined a secure and tamper-resistant

paradigm for information exchange in a decentralized consensus [18]. Satoshi Nakamoto

[19] firstly proposes blockchain as a purely peer-to-peer electronic cash payment system

without the default crucial need for a financial institution in the middle for authentication

and authorization purposes. However, blockchain’s ”distributed ledger” feature can be

Chapter 1. Introduction 9

adapted to any data exchange system, extending the horizon of blockchain applications.

Therefore, while the first generation of blockchain focuses on financial transactions, the

second generation has a much more comprehensive range of applications. Nevertheless,

with the emergence of smart contracts [20], which are predefined scripts executed on each

transaction, a new dimension of blockchain applications has emerged that builds on top

of the distributed nature of blockchain to build decentralized incentive applications.

1.5 Problem Statement and Challenges

The thesis proposes the Phone of Things (PoT), an innovative framework that bridges the

gap between IoT and VoIP technologies. PoT offers affordable, secure, and scalable solu-

tions for designing IoT systems. By leveraging the widely available phone network infras-

tructure and assets, PoT seamlessly integrates them into the IoT architecture, extending

gadgets’ accessibility through pervasive phone networks. This approach enhances user

engagement with surrounding devices. It capitalizes on the mature abstractions of phone

technologies, catering to individuals who may need to be more technologically savvy or

are more accustomed to pre-internet times. PoT’s context-aware telephony solutions

leverage the synergy between IoT and VoIP, empowering businesses to create innovative

telephony applications that re-imagine mature phone features for modern times, leading

to increased productivity and an improved user experience during phone calls. To delve

into the specifics of the PoT framework, this section addresses Heilmeier’s catechism [20],

elucidating PoT’s objectives, identifying shortcomings in current practices, and exploring

the potential community of interest (COI) for PoT.

1.5.1 PoT Grand Vision

Despite the increasing emergence of IoT devices and many companies’ widespread adop-

tion of VoIP, these technologies are often handled separately. PoT aims to bridge the

Chapter 1. Introduction 10

gap between IoT and VoIP, forging a meaningful relationship between them. Currently,

numerous companies either stick to their legacy telephony systems or migrate to VoIP,

but in both cases, they primarily use these systems for conventional voice communica-

tion between parties. However, the integration of IoT presents exciting opportunities

for VoIP users. VoIP can become an integral component of the IoT architecture, with

existing Unified Communication (UC) solutions acting as central hubs for monitoring

and controlling devices within the premises. Consequently, devices associated with PoT

can be easily commanded and monitored using ubiquitous phone network infrastructure

(such as VoIP and PSTN) and assets (such as POTS, IP phones, and softphones). Even

without internet access, a simple phone call with intuitive voice commands can be used

to interact with these devices effectively.

This thesis proposes tSIP, a streamlined version of the SIP protocol designed for

resource-constrained smart objects. With its tiny footprint, tSIP can be deployed on

limited-resource devices effectively. tSIP messages can be mapped to the original SIP

messages using a proxy (i.e., PoT gateway). tSIP fosters PoT adoption and establishes

a standardized, lightweight communication protocol between low-resource embedded de-

vices and the existing Unified Communications (UC) solution within the premises. As

a result, these devices can function seamlessly as typical SIP endpoints in the VoIP

ecosystem, allowing for easier control and monitoring.

Additionally, the thesis proposes a lightweight decentralized registration and authen-

tication mechanism based on the blockchain technology for smart gadgets in the PoT

system. The proposed mechanism facilitates secure associations between the devices and

the communication server without relying on high-end communication servers or placing

trust in third-party entities. By leveraging the Ethereum blockchain and smart con-

tracts, the proposed mechanism implements a programmatic, immutable access control

mechanism. This ensures a secure, trustless, and scalable environment for PoT without

disrupting the existing SIP-based VoIP architecture.

Chapter 1. Introduction 11

The thesis implements the Location Transparency Call (LTC) system as a use-case

application of PoT, utilizing the PoT framework. LTC aims to enhance telephony so-

lutions with a context-aware approach, leveraging IoT and VoIP technologies to create

innovative telephony applications. By harnessing data inferred from the RFID-enabled

door entry nodes within the premises, LTC effectively addresses the issue of missed busi-

ness calls by automatically forwarding incoming calls based on the gathered information

regarding the current location of the called party within the premises. This optimization

reduces notoriously long call waiting times, increasing customer satisfaction.

1.5.2 Lacking in the Current Practices

Although IoT is increasingly emerging, it has yet to reach its potential promise. The

following impede IoT from reaching its potential commitment:

1.5.2.1 Fragmented Ecosystems

The IoT landscape is characterized by numerous proprietary ecosystems, each with its

own set of compatible devices, protocols, and frameworks. This is sometimes referred to

as the ”Intranet of Things” or ”vertical silos” [21, 22]. This fragmentation of ecosystems

poses challenges for interoperability, as devices from one ecosystem may not seamlessly

integrate or communicate with devices from another [23]. It creates a dilemma for con-

sumers, businesses, and developers who must navigate these different ecosystems, making

it challenging to create cohesive IoT solutions or scale deployments across multiple plat-

forms [23]. This lack of standardization can lead to vendor lock-in, limiting choice,

and hindering innovation. Efforts are underway to address this dilemma through initia-

tives promoting interoperability and common standards, such as developing open-source

frameworks and industry collaborations. Finding solutions to bridge the gap between

different IoT ecosystems is crucial to unlocking the full potential of the IoT and enabling

a more connected and unified digital future. The ultimate purpose of the proposed PoT

Chapter 1. Introduction 12

system is to eventually provide a modular, multi-tier, VoIP-enabled, and Do-It-Yourself

(DIY) ecosystem for IoT system designers. The proposed framework utilizes open-source

technologies and could arbitrarily encompass third-party cloud-hosted services according

to specific application needs. This, in turn, allows incentive application concentration,

architecture abstraction, and faster time to market to IoT system designers.

1.5.2.2 Walled-Off Data

Walled-off data in the context of the Internet of Things (IoT) refers to the practice of

isolating and restricting access to data generated by IoT devices within specific bound-

aries or ecosystems, typically referred to as ”walled gardens” [6]. Walled-off data involves

implementing measures to control the flow and availability of data, typically within man-

aged networks or proprietary platforms. Walled-off data addresses concerns regarding

privacy, security, and ownership of IoT-generated information. By confining data within

predefined boundaries, organizations or individuals can maintain tighter control over

their data, allowing them to enforce stricter data governance policies and protect sensi-

tive information from unauthorized access. However, the concept of walled-off data also

raises questions about data interoperability, collaboration, and the potential for data

silos, which may limit innovation and hinder the realization of the full potential of the

IoT. Striking a balance between data protection and sharing remains crucial as the IoT

continues evolving and transforming various industries.

In this context, PoT facilitates data exchange and sharing by promoting ubiquitous

phone network infrastructure as a bridge between devices from various ecosystems. For

example, VoIP technologies can extend access to sensed information in multi-site business

domains through the established SIP trunks between the sites. Like cloud computing,

which can provide shared data space across the Internet, PoT could provide shared data

space between devices that are confined to the phone network. This, in turn, helps break

down the barriers of walled-off data for businesses that are skeptical about their data

Chapter 1. Introduction 13

privacy and security and prefer to be air-gapped from the Internet.

1.5.2.3 Device Loads and Bandwidth

PoT leverages the VoIP network infrastructure within the premises to provide reliable

and secure access to the surrounding smart gadgets within the premises. VoIP and data

traffics are typically deployed on different subnets or VLANs (Virtual Local Area Net-

works) [24]. This ensures optimal performance, enhances security, and simplifies network

management, making it a crucial practice in maintaining a reliable and efficient network

infrastructure. By isolating VoIP traffic from data traffic, we prevent data-intensive oper-

ations from impeding the real-time requirements of voice calls. Additionally, segregating

VoIP and data traffic helps prioritize voice packets, reducing the chances of jitter, packet

loss, or latency issues that can degrade the call quality. Therefore, using VoIP networks

in PoT improves the proposed framework’s quality of service (QoS), ensuring a smoother

and more reliable communication experience and facilitating better bandwidth allocation

management as the PoT system scales and more devices are added.

On the other hand, IoT system designers are usually in a trade-off between imple-

mented device capabilities on the one hand and the expected cost, power consumption,

and bandwidth requirements on the other hand. In a later development stage of the pro-

posed PoT framework, The PoT system could implement an autonomous gateway based

on TinyML [25], enabling the embedding of tiny machine learning algorithms into the

gateway itself. TinyML enables local inference on the PoT gateway, eliminating the need

for constant data transmission to the cloud for processing. Performing ML computations

on the PoT gateway reduces the dependency on high-bandwidth Internet connections and

cloud computing resources, allowing the system to be fully functional through the phone

network without needing Internet access or degrading the VoIP traffic. This reduces the

deployment cost of PoT by eliminating the costs associated with maintaining and scal-

ing the cloud infrastructure. In addition, it mitigates latency, network connectivity, and

Chapter 1. Introduction 14

privacy concerns, as data remains on the gateway, reducing the need for transmitting

sensitive data to external servers.

1.5.2.4 Cloud Attacks

Cloud attacks pose a significant challenge to IoT security [26]. Given the cloud’s capacity

to handle vast amounts of IoT data, cloud providers have become prime targets for

cyberattacks. This puts system designers in a challenging position, balancing the benefits

and convenience of cloud computing for IoT systems with concerns about potential critical

data leaks in the event of successful cyberattacks.

To address this issue, the proposed PoT framework leverages VoIP networks to counter

cloud attacks. Using VoIP technologies for communication with smart gadgets, sensitive

data remains within a local, segregated VoIP network, reducing dependence on cloud-

based services and minimizing the attack surface. Also, in the proposed PoT framework,

secured tunnels are implemented between distant gateways using VPN (Virtual Private

Network) technologies [27], creating a more secure device environment and limiting data

exposure to potential cloud-based attacks.

Moreover, VoIP technologies inherently incorporate encryption protocols to safeguard

VoIP traffic during transmission, ensuring the confidentiality and integrity of sensitive

information. By leveraging VoIP technologies, we strengthen data privacy and bolster

the overall security of PoT deployments. Additionally, the proposed blockchain-based

registration and authentication mechanism for smart gadgets in the proposed framework

provides a robust and secure association between limited-resource gadgets and the gate-

way, mitigating the risk of impersonation threats on the associated devices.

1.5.2.5 Botnet Attacks

IoT gadgets present a broad surface for hackers to exploit their inherent vulnerabilities,

jeopardizing the security of the underlying critical network infrastructure. PoT introduces

Chapter 1. Introduction 15

a novel approach to IoT system connectivity to mitigate this risk by leveraging the

ubiquitous telephone network infrastructure and phone technologies.

In traditional IoT setups, connectivity between components heavily relies on the In-

ternet and the dynamic IP addresses assigned by ISPs (Internet Service Providers). The

problem with these dynamic IP addresses is that they lack uniqueness, making it chal-

lenging to identify and secure individual users when connecting to the Internet. This issue

opens the door to cybersecurity attacks, as these IP addresses can be easily masqueraded

or spoofed using freely available technologies.

In contrast, phone numbers offer an inherent global uniqueness that cannot be easily

replicated. This characteristic provides an excellent opportunity for IoT system admin-

istrators to implement fine-grained access control based on the calling party’s phone

number, bolstering security. Unlike IP addresses, conceiving a calling phone number is

practically impossible, further enhancing the system’s protection.

Moreover, as the proposed PoT system matures, the gateway could implement dy-

namic VLAN assignments for associated devices, effectively isolating them from the crit-

ical network infrastructure. This isolation helps mitigate the impact of botnet attacks

when devices are managed through the Internet.

Therefore, by utilizing the telephone network infrastructure and implementing robust

access controls based on phone numbers, PoT offers a more secure and reliable connec-

tivity solution for IoT systems, safeguarding against cyber threats and enhancing overall

system resilience.

1.6 Research Questions

This section sheds light on the research questions regarding the intricate challenges and

opportunities the proposed framework tries to address and achieve.

• How can IoT and VOIP technologies be effectively integrated?

Chapter 1. Introduction 16

• What are the technical challenges and considerations in leveraging the ubiquitous

phone network infrastructure to extend the accessibility options of IoT systems?

• How can the assets of the phone network infrastructure be optimally utilized to

enhance the functionality and efficiency of IoT devices and applications?

• What security and privacy concerns that need to be addressed when bridging IoT

and VOIP technologies together?

• What communication protocols can be utilized in such a framework and what are

the requirements for efficient communication?

1.7 Research Objectives

• Develop a Phone of Things (PoT) framework to integrate IoT and VoIP technolo-

gies.

• Investigate the adaptation of a tiny version of the SIP (Session Initiation Protocol)

protocol to enable seamless integration between IoT and VOIP technologies within

the Phone of Things (PoT) framework.

• Develop methods for unifying message exchange between embedded IoT sensors

and established communication servers to enable meaningful interactions and com-

munication between the two domains.

• Explore strategies to ensure interoperability between diverse IoT and VOIP com-

ponents, considering the heterogenity of IoT ecosystems and devices.

• Evaluate encryption methods and techniques for securing data transmission within

the PoT framework.

• Develop mechanisms for verifying the identity of IoT devices and users and con-

trolling access to sensitive resources to ensure security and privacy.

Chapter 1. Introduction 17

• Design user-friendly interfaces to enable PoT users to monitor and control IoT

devices seamlessly through phone technology and infrastructure.

• Explore practical use cases and applications where the PoT framework can provide

significant value, with a focus on smart homes, industries, and businesses.

• Investigate the scalability of the PoT framework to accommodate a growing number

of IoT devices and users.

1.8 Primary Beneficiaries

This subsection reviews the potential community of beneficiaries of the proposed PoT

system:

1.8.0.1 Telecommunication Companies (PSTN & ITSP)

The first community of interest (COI) for the proposed PoT framework in the thesis would

be the telecommunication companies, such as the public switched telephone network

(PSTN) companies and the Internet Telephony Service Providers (ITSPs). Telecommu-

nication companies can reap several benefits from integrating IoT and VoIP technologies.

IoT integration allows telecom companies to expand their service offerings by providing

connectivity solutions for a wide range of IoT devices. By leveraging their existing

infrastructure, telecom companies can offer specialized IoT connectivity plans, device

management services, and value-added solutions tailored to specific IoT use cases. For

example, a call-barring service can help limit incoming and outgoing calls, which acts

as an access control list to the proposed PoT system and hardens its security. This in-

tegration opens up new revenue streams and enables telecom companies to tap into the

growing IoT market.

Furthermore, IoT and VoIP integration can improve telecom companies’ operational

efficiency. By utilizing IoT devices and sensors, telecom companies can monitor and

Chapter 1. Introduction 18

manage their network infrastructure more effectively. Real-time data collected from IoT

devices can help identify network issues, optimize network performance, and proactively

address potential outages.

Moreover, integrating IoT and VoIP could facilitate data-driven insights for telecom

companies. The vast amount of data generated by IoT devices and VoIP systems can be

leveraged for analytics and business intelligence purposes. Telecom companies can gain

valuable insights into customer behaviour, network usage patterns, and service quality,

enabling them to make data-driven decisions, improve customer experience, and optimize

their service offerings.

1.8.0.2 Business and Industry

The following COI for PoT would be the business and industry domains. By utilizing

PoT, companies can leverage their existing UC solutions within the premises beyond just

making and receiving calls. The office telephone sets can be used as control hubs to com-

mand and monitor all appliances within the premises. Besides, PoT, empowered chatbot

integration, can be used to build intelligent and dynamic Interactive Voice Response

(IVR) systems for enterprises. Therefore, instead of building the conventional static IVR

menus, which could not adapt to changes in the enterprise, we can exploit the PoT as

an integral part of the existing UC to extract useful facts from what the caller says and

forward the call accordingly to the suitable destination. This reduces the notorious long

call queueing time and improves customer satisfaction.

The same concept can also be used to automatically query information from the

suitable device(s) associated with the PoT gateway to answer users’ questions, which will

benefit public sensing and industrial applications. PoT can also be involved in incentive

telephony applications for businesses that leverage the integration between IoT and VoIP

to build context-aware, innovative telephony solutions that increase business productivity

and availability. In Chapter 5, the thesis proposes the location transparency call (LTC)

Chapter 1. Introduction 19

system for enterprises as a use-case application of PoT. The LTC system intelligently

mitigates the impact of missed business calls. It provides high availability and dynamic

reachability to employees in the workspace based on the information inferred from the

surrounding gadgets.

Third-party platforms, like Twilio, have been utilized to provide phone interface ca-

pabilities to businesses and applications [28]. These platforms are interfaced through

APIs (Application Programming Interfaces) to build customer interactions on their pre-

ferred channels. However, third-party platforms need more flexibility to adapt to the

dynamic requirements of applications. Nevertheless, it incurs an extra cost that hinders

its widespread usage. PoT overcomes the drawbacks of third-party services and provides

an interface to the existing phone network infrastructure within the premises of enter-

prises at no additional cost. PoT enables adaptive phone integration that fits the needs

of different applications. Therefore, rather than relaying customer requests to a static

inbound phone number of the business, which is the case with third-party platforms, PoT

can be programmatically finely tuned to dynamically route calls to arbitrarily existing ex-

tensions within premises based on predefined criteria. This, combined with the potential

of TinyML embedding in the PoT gateway, can be used in industry for automatic sensor

readings in the field, inference of sensed information, auto-dialling predefined extensions

in case of irregularities or emergencies, and more.

1.8.0.3 Home Residents

The following COI would be the home residents. There are enormous generations of

people whose recollections originate before the Internet. For these people, the phone is,

as yet, a valuable innovation. Therefore, if one wishes to do business with those people,

one had better do an excellent job that can be handled using telephone calls.

The IoT systems are still expensive and are not widely spread in homes, not to mention

the hassle of potential infrastructure modifications and device changes. This, in turn,

Chapter 1. Introduction 20

makes the home residents reluctant to install IoT systems due to their deployment cost.

PoT provides a Do-It-Yourself (DIY) IoT framework based on open-source technologies,

and it exploits the use of the existing and rarely-used telephone network infrastructure

in homes. At its simplest form, home residents would plug the PoT gateway into the

existing telephone landline at homes to control the associated IoT devices to the gateway

through a simple phone call and intuitive spoken commands.

Besides, the PoT can be configured to automatically initiate phone calls to predefined

destinations in case of emergencies or reading thresholds from the associated devices.

Also, the PoT gateway could integrate a powerline communication (PLC) modem in a

later stage of system development. This allows controlling dozens of simple and legacy

devices at home, which are still in great use today, such as light bulbs and power strips.

The PoT, with its embedded chatbot capability, provides an intuitive, natural conversa-

tional interface to home residents who do not need to be technically savvy by default.

The PoT incurs no running cost if confined to the local or managed network and is more

secure when managed through the phone network.

1.9 Thesis Contributions

The main contributions of the thesis are summarized as follows:

• We propose a boilerplate framework for the Phone of Things (PoT) based on open-

source technologies. We delineate the framework’s components and highlight the

motivation behind choosing the enabling technologies they utilize. Also, we propose

future directions for PoT development.

• We conduct a feasibility study of embedded Linux platforms acting as PoT gate-

ways, promoting the utilization of tiny and cost-effective embedded Linux boards

for PoT applications in homes and small-to-medium-sized business domains.

Chapter 1. Introduction 21

• We propose a tiny version of the Session Initiation Protocol (SIP), which we call

tSIP. tSIP is a lightweight version of the SIP protocol deployable on limited-resource

smart gadgets. tSIP messages can be mapped to their original SIP messages with

the help of a proxy, i.e., a PoT gateway. tSIP allows smart gadgets to act as typical

SIP endpoints in the VoIP ecosystem and facilitates their management through the

communication servers.

• We propose a lightweight and blockchain-based registration and authentication

mechanism between smart gadgets, the PoT gateway, and the communication

server. The proposed mechanism provides a secure, trustless, and scalable envi-

ronment for PoT without requiring high-end communication servers, affecting the

existing SIP-based VoIP architecture, or mandating trust in third-party entities.

• As a use-case application of PoT, we propose the location transparency call (LTC)

system. LTC is a context-aware telephony solution for businesses that leverages

the information inferred from the surrounding gadgets to dynamically forward calls

to the employees to the nearest extension at their current location, mitigating the

effect of missed business calls.

1.10 Thesis Outline

• Chapter 1 introduces the research topic, discussing the enabling technologies that

form the basis of the study. It presents the problem statement and outlines the

unique contribution of the thesis.

• Chapter 2 comprehensively reviews the state-of-the-art, focusing on integrating

IoT and VoIP, the performance of embedded Linux platforms as IP-PBX servers,

the usage of SIP protocol in IoT applications and device deployments, and the

application of blockchain in VoIP registration and authentication.

Chapter 1. Introduction 22

• Chapter 3 introduces the proposed Phone of Things (PoT) framework in detail,

comprehensively describing its implementation. The chapter provides deep insights

into the proposed architecture.

• Chapter 4 delves into tSIP, the proposed lightweight version of the SIP protocol.

It also presents the blockchain-based registration and authentication mechanism

explicitly designed for PoT.

• Chapter 5 explores various use case scenarios of the proposed PoT framework,

demonstrating its versatility and potential applications in different domains.

• Chapter 6 presents and discusses the experimental results and performance eval-

uation of the proposed PoT system.

• Chapter 7 offers concluding remarks, summarizing the key findings and contribu-

tions of the thesis. It also discusses potential future directions for further research

and advancements of the proposed PoT framework in the thesis.

Chapter 2

Background and Literature Review

The thesis proposes the Phone of Things (PoT), a boilerplate framework for IoT. The

poT represents a novel paradigm that leverages the ubiquitous presence of phone network

infrastructure (i.e., PSTN and VoIP) and assets (i.e., communication servers, phone sets,

softphones, etc.) as controllers for IoT devices. With VoIP’s increasing popularity in

all buildings, PoT represents a promising approach to extending the functionality and

connectivity of IoT systems. Integrating VoIP with IoT devices enables enhanced user

experiences, seamless control, and access to various services and applications. The liter-

ature review in this chapter explores the enabling technologies behind the PoT, focusing

on key components of the proposed PoT framework, such as open-source technologies,

messaging protocols, and the blockchain. By examining the current state of research and

development in this area, this review aims to provide insights into the advancements, chal-

lenges, and potential applications of PoT. Understanding the underlying technologies is

crucial for harnessing the full potential of PoT and driving the evolution of smart and

interconnected IoT ecosystems. Lastly, Section 2.8 provides a summary of the chapter.

23

Chapter 2. Background and Literature Review 24

2.1 Open-Source IoT Frameworks

2.1.1 Background

The importance of IoT frameworks based on open-source technologies cannot be over-

stated. Open-source frameworks provide several advantages that contribute to the success

and widespread adoption of IoT applications:

• Open-source frameworks foster collaboration and innovation among developers and

the broader community. By providing access to the source code and allowing con-

tributions from a diverse range of developers, these frameworks encourage sharing

knowledge, best practices, and the development of new features and functionalities.

This collaborative environment leads to faster iterations, improved reliability, and

increased security through community-driven reviews and contributions.

• Open-source frameworks offer flexibility and customization options. Developers can

modify and extend the frameworks to suit their specific needs, enabling the creation

of tailored solutions. This adaptability allows for seamless integration with existing

infrastructure and the ability to address the unique requirements of different IoT

applications.

• Open-source frameworks often have active communities that provide support, doc-

umentation, and continuous improvements. This ecosystem of contributors ensures

ongoing development, maintenance, and updates, enhancing the longevity and sta-

bility of IoT solutions.

• Open-source frameworks promote vendor neutrality and prevent vendor lock-in.

Organizations can freely choose from various hardware and software components

by avoiding proprietary solutions, fostering competition and reducing costs. This

Chapter 2. Background and Literature Review 25

freedom of choice and interoperability encourage a diverse IoT ecosystem where

devices, applications, and platforms can seamlessly communicate and collaborate.

In conclusion, open-source IoT frameworks empower developers, enable customiza-

tion, foster innovation, and promote interoperability, making them vital for the growth

and success of IoT applications across various industries. The following represents some

popular open-source IoT frameworks in the literature.

• Eclipse IoT [29]: Eclipse IoT is a set of open-source projects that provide a

platform for building IoT applications. According to [30], the Eclipse IoT Working

Group (WG) at the Eclipse Foundation is the biggest open-source community.

Eclipse IoT includes projects like Eclipse Paho (for MQTT messaging), Eclipse

SmartHome (for building smart home applications), Eclipse Kura (for building

IoT gateways), and Eclipse Californium (for CoAP protocol support).

• ThingsBoard [31]: ThingsBoard is an open-source IoT platform that enables

rapid development, management, and scaling of IoT applications. It offers device

management, data collection, processing, and visualization capabilities.

• OpenHAB [32]: OpenHAB is a vendor and technology-agnostic open-source au-

tomation software for the home. It provides a framework and runtime for building

smart home solutions. It supports various devices and technologies and offers fea-

tures like rules engines, user interfaces, and integrations with other systems.

• Home Assistant [33]: Home Assistant is an open-source home automation plat-

form that focuses on privacy and local control. It runs on various systems, including

Raspberry Pi, and supports a wide range of devices and integrations.

• Kaa [34]: Kaa IoT is an open-source IoT platform for building, managing, and

integrating connected products. It provides device management, data collection,

analytics, and visualization features.

Chapter 2. Background and Literature Review 26

• The Things Network (TTN) [35]: The Things Network is an open-source and

decentralized IoT network infrastructure that allows devices to connect and com-

municate with applications. It uses LoRaWAN (Long Range Wide Area Network)

technology for long-range, low-power wireless communication.

• Node-RED [36]: Node-RED is an open-source visual programming tool for wiring

together hardware devices, APIs, and online services. It provides a browser-based

flow editor and a wide range of nodes that can be connected to create IoT applica-

tions.

2.1.2 Shortcomings

While open-source IoT frameworks offer numerous benefits, they come with their poten-

tial shortcomings. Here are some common shortcomings associated with these frame-

works:

• Complexity: IoT frameworks can have a steep learning curve, especially for users

who are new to IoT development. The complexity arises from the need to un-

derstand the framework’s architecture, configuration, and integration with various

hardware and software components. In the proposed PoT framework, we enable

IoT devices to act as typical phone endpoints in the phone ecosystem. The ease

of phone technology is undeniable, thanks to its maturity and widespread familiar-

ity among people. The mature abstractions of phone technology would make PoT

accessible and easy to use for individuals of all ages and technical backgrounds.

Moreover, the widespread adoption of softphones has led to high comfort and fa-

miliarity among users, making them a natural choice for extending the reach of IoT

applications through the Phone of Things (PoT) paradigm. Leveraging the mature

phone technology in the context of PoT reduces users’ learning curve and encour-

ages seamless integration with existing IoT ecosystems. As a result, people can

Chapter 2. Background and Literature Review 27

effortlessly control and manage a diverse range of IoT devices from their standard

phone sets at home and office or softphones on their mobile phones, contributing

to a more connected, efficient, and user-centric IoT landscape.

• Limited Hardware Support: Some open-source IoT frameworks may have lim-

ited support for specific hardware devices or protocols. This can pose challenges

when integrating devices that are not officially supported or require additional cus-

tomization. In this context, PoT provides native support for IoT devices with the

phone system. This is done by providing a tiny version of the SIP protocol called

tSIP. tSIP is a lightweight messaging protocol based on the SIP protocol deployable

on constrained IoT devices. With the help of a proxy, tSIP messages can be mapped

to their original SIP counterparts. tSIP fosters greater interoperability, scalability,

and energy efficiency, facilitating the seamless integration and operation of diverse

devices through the proposed framework.

• Scalability: Scalability can be a concern when using specific open-source IoT

frameworks. Depending on the design and architecture, some frameworks may

struggle to handle a large number of devices or high data throughput, leading to

performance issues. While integrating into the existing phone network infrastruc-

ture, the PoT framework offloads the communication servers from the potentially

excessive resources needed to handle the registration and authentication of the

surrounding devices. This is done by using blockchain technology to provide a

decentralized registration and authentication mechanism for associated devices in

the PoT framework. The proposed mechanism delegates the burden of device reg-

istration and authentication to PoT gateways, promoting PoT scalability while

not affecting the existing VoIP deployments within the premises. Alongside, PoT

allows enterprises to scale over their existing phone trunks, which can be easily

provisioned, providing flexibility to adapt to changing call requirements as the PoT

Chapter 2. Background and Literature Review 28

system scales.

• Security Considerations: Security is critical to IoT applications. While open-

source frameworks often have security features, the responsibility of implementing

secure practices falls on the developer. Inadequate security measures can expose

vulnerabilities and put the entire system at risk. In the proposed PoT frame-

work, employing blockchain for device registration and authentication provides

immutability and ensures the integrity of device registrations to the communi-

cation server. On the other hand, Phone numbers are generally considered more

secure than IP addresses due to several factors. Phone numbers are associated with

physical devices and are typically tied to specific individuals or organizations and

regulated by telecommunications providers. This physical association adds a layer

of accountability and traceability to communication. It also allows for building

a finely-grained access control list (ACL) for PoT systems that can not be easily

breached. However, IP addresses can be easily masked, hidden, or spoofed, making

it challenging to reliably identify a communication’s true origin or ownership.

2.2 The Evolution of Business Communication Sys-

tems

In the ever-evolving business communication landscape, PBX (Private Branch Exchange),

Hybrid PBX, and IP-PBX systems have played pivotal roles in enabling efficient, reliable,

future-proof communication solutions in the corporate world. The following subsections

review their main characteristics.

Chapter 2. Background and Literature Review 29

2.2.1 Private Branch Exchange (PBX)

Traditionally, PBX systems are TDM (Time Division Multiplexing) and hardware-based

communication systems. PBX systems rely on physical connections using copper wires

[37]. They allow organizations to manage internal calls, transfer calls, and access es-

sential telephony features within their premises. With the utilization of limited trunk

lines, referred to as FXO (Foreign Exchange Office) in the telecommunication engineering

parlance, PBX systems provide the outbound dialling capability to the Public-Switched

Telephone Network (PSTN) or the Cellular Mobile Operators (CMO). Enterprises use

PBX to reduce their calling expenditures since having a distinct phone line for each exten-

sion incurs high costs to their budget. However, PBX systems are an obsolete technology

nowadays. They are vendor-specific hardware systems with various modules installed

in cabinets to achieve the required functionalities, captivating their maintainability and

scalability [38]. Nevertheless, they mandate dedicated phone network wiring within the

premises, complicating their installation and increasing their deployment cost [38].

2.2.2 Hybrid PBX

A Hybrid PBX combines traditional TDM PBX and IP-based technologies, i.e., SIP [14]

and H.323 [38]. It combines both analog and digital communication methods, allowing

organizations to leverage existing infrastructure while gradually transitioning to more

advanced IP telephony. Hybrid PBX systems typically support a mix of analog, digital,

and IP-based endpoints. They offer flexibility by accommodating both traditional ana-

log devices, such as analog phones and fax machines, and IP-based devices, like VoIP

phones and softphones. Hybrid PBX systems allow organizations to upgrade their tele-

phony infrastructure at their own pace and take advantage of IP-based features and cost

savings while still utilizing their existing analog equipment. However, Hybrid PBXs are

vendor-locked-in proprietary systems, increasing their maintenance and service costs [38].

Chapter 2. Background and Literature Review 30

Nonetheless, Hybrid PBX systems are not interoperable, impeding their scalability [38].

2.2.3 IP-PBX

An IP-PBX, or Internet Protocol Private Branch Exchange, is a telephony system that

operates entirely on IP-based networks, such as local area networks (LANs) or the Inter-

net [39]. IP PBX systems use VoIP technology to transmit voice calls over IP networks,

converting voice into digital packets for transmission. IP-PBX offers numerous advan-

tages over traditional PBX systems, including cost savings, scalability, flexibility, and

integration with other IP-based applications. IP-PBX systems support a wide range of

features, such as call routing, call recording, voicemail, video conferencing, and unified

communications (UCs). They also allow remote users to connect to the system using

secure VPN (Virtual Private Network) connections, enabling seamless communication

across different locations. IP-PBX systems are highly adaptable and can integrate with

various IP devices, making them suitable for modern communication needs.

2.3 Asterisk: The Open-Source PBX Framework

2.3.1 Overview

Asterisk is a powerful open-source PBX software that has gained significant popularity

in the realm of telecommunications [15, 40]. Developed by Digium (now part of Sangoma

Technologies), Asterisk offers a flexible and feature-rich platform for building customized

communication systems. As an open-source PBX, Asterisk allows businesses to take

advantage of cost savings and customization opportunities. It supports a wide range of

telephony protocols, including VoIP, ISDN (Integrated Services Digital Network) [41],

and traditional analog telephony. With Asterisk, users can create sophisticated call

routing systems, interactive voice response (IVR) menus, call queuing, voicemail, and

Chapter 2. Background and Literature Review 31

more. Asterisk’s modular architecture and extensive library of add-on modules enable

users to tailor their PBX solution to their specific requirements. Asterisk’s open-source

nature fosters a vibrant community of developers contributing to its ongoing development,

ensuring its continuous improvement and adaptability to evolving communication needs.

2.3.2 Leveraging Asterisk IP-PBX in IoT Applications

To the best of our knowledge, Phone of Things (PoT) is the first research work in the

literature that proposes a general-purpose, VoIP-enabled, and multi-tier IoT framework

that exploits the integration between phone and IoT technologies. Former researchers

employ limited phone functionalities as the third party to assist their proposed IoT

system, targeting specific applications. At this point, the literature contains research

focusing on limited VoIP functionalities employed by some of the proposed IoT systems.

To that extent, the author of [42] proposes IoT and VoIP integration. He uses similar

underlying hardware to that used in the proposed PoT framework. However, the system

lacks real integration with VoIP. The author utilizes the built-in dialplan functions to

scan for user input via the keypad and invokes a script that controls the I/O pins of the

embedded platform accordingly. Besides, the author does not provide for system security

and scalability. The authors of [43] propose a SIP-based IoT gateway that automatically

calls healthcare providers in case of medical emergencies based on outlier readings of

biomedical sensors attached to a human. Here, the IoT gateway does not employ a SIP

server itself. However, it relies on an external SIP client responsible for initiating an

emergency call to the appropriate healthcare destination, limiting its capability. It is an

application-specific integration between IoT and VoIP. Nevertheless, since no VoIP server

is incorporated within the IoT gateway, it is stripped of most VoIP functionalities. In

[44], the authors propose an intelligent water heating system for buildings based on IoT

technology that is activated through the use of IVR on a cloud-hosted Asterisk-based

PBX. Again, the proposed system in the latter employs limited functionalities of VoIP

Chapter 2. Background and Literature Review 32

connectivity. Besides, it neither provides for system security nor scalability. In [45], the

authors mediate an external Asterisk PBX server as a bridge between the user and an

ESP32-based embedded device to control its pins using textual command inputs issued

using a SIP client. Similar to the latter, the authors in [46] provide a similar approach to

supervising home appliances by employing a dedicated Asterisk server and using WLAN,

which confines system usage to the local home network. Another application of VoIP

integration with an IoT system is introduced in [47]. The authors in the latter build

an intelligent postbox system that auto-notifies the user by phone call when a shipment

arrives. Besides, the system allows users to inspect and open the postbox remotely.

However, there is no native support of VoIP since the system proxies VoIP functionalities

to a third-party Asterisk server.

Embedded
Systems

Based on Performance
of the Microcontroller

Small-Scale
Embedded Systems

Medium-Scale Embedded
Systems

Sophisticated
Embedded Systems

Based on Performance
and Functional
Requirements

Stand-Alone
Embedded Systems

Real-Time
Embedded Systems

Networked
Embedded systems

Mobile
Embedded Systems

Figure 2.1: Embedded systems classification.

2.4 IoT Devices

IoT devices come in various forms, sizes, and complexities, from simple devices utilizing

small-scale embedded systems to more complex devices empowered by medium-to-large

Chapter 2. Background and Literature Review 33

scale embedded systems and Single Board Computers (SBCs) [48]. Generally, embedded

systems are classified based on either the embedded controller’s performance or the sys-

tem’s functional requirement [49], as depicted in Figure 2.1. Based on the performance

of the utilized controller, embedded systems are furtherly divided into three categories:

• Small-scale embedded systems: Simple embedded systems are characterized

by their limited computational capabilities and dedicated functionality. They often

consist of 8-bit microcontrollers or low-power processors, minimal memory, and

specific sensors or actuators to perform a singular task efficiently. These devices

are typically cost-effective, energy-efficient, and designed for resource-constrained

environments. IoT systems typically utilize this category of embedded systems for

sensor nodes with limited functionalities. The simple functions of multiple sensor

nodes typically coalesce together through the use of an IoT gateway to achieve the

designated complex task of the IoT system [50].

• Medium-scale embedded systems: This category typically employs 16-bit or

32-bit microcontrollers. As a result, they are more powerful than small-scale em-

bedded systems. However, the integration between the underlying hardware of this

category and the software to control it is more complex. High-level programming

language tools, like compilers, debuggers, simulators, etc., are available to design

applications using medium-scale embedded systems. Nevertheless, this category of

embedded systems can employ operating systems (OS), mostly Linux-kernel-based

OS, which furtherly ease the process of application development using this category

of embedded platforms by masking the complexity of the underlying hardware inter-

facing through providing device drivers, file systems, network connectivity stacks,

etc. which are available through easy-to-use libraries and/or graphical user in-

terfaces (GUIs). This embedded system category includes many embedded Linux

platforms like Raspberry Pi [51], Beaglebone [52], etc. They are usually used for

Chapter 2. Background and Literature Review 34

processing-intensive IoT applications or as gateways for simpler sensor nodes that

constitute the IoT system.

• sophisticated embedded systems: This category of embedded systems is de-

signed using one or multiple 32-bit or 64-bit microcontrollers. These systems pos-

sess very high hardware and software complexities. They are used for highly com-

plex and processing-intensive functions that require hard real-time processing, like

medical and military applications. They typically employ Real-Time Operating

Systems (RTOS), which provide scheduling guarantees to ensure deterministic be-

haviour and timely response [53]. Essentially, this category of embedded systems

outperforms the requirements of typical IoT applications with almost no-to-soft

real-time constraints requirements.

The common characteristics across IoT devices include connectivity, enabling commu-

nication and data exchange with other devices and systems, and the ability to sense and

collect data from the environment using sensors. IoT devices often have power efficiency

considerations to ensure extended battery life or optimal power usage, mandating effi-

cient, preferably event-triggered, messaging protocols. Security is another critical aspect,

as IoT devices must protect sensitive data and resist potential threats. Scalability and

interoperability are vital to accommodate expanding and integrating a diverse range of

IoT devices and platforms.

Overall, IoT devices span a spectrum of complexity, from simple embedded devices

performing dedicated functions to complex systems utilizing SBCs. Each category serves

specific use cases and offers varying levels of computational power, connectivity, and

customization options to fulfill the diverse requirements of IoT applications.

Chapter 2. Background and Literature Review 35

Table 2.1: Raspberry Pi Boards Comparison Matrix.

Model RPi Zero RPi Zero 2 W RPi 3 B+ RPi 4 B

SOC Type Broadcom BCM2835 Broadcom BCM2710 Broadcom BCM2837B0 Broadcom BCM2711
CPU Clock 1 × ARM 1176JZF-S, 1.0 GHz 4 × ARM Cortex-A53, 1.0 GHz 4 × Arm Cortex-A53, 1.4 GHz 4 × Arm Cortex-A72, 1.5 GHz

RAM 512 MB 512 MB 1 GB 1 GB/2 GB/4 GB
GPU Broadcom VideoCore IV Broadcom VideoCore IV Broadcom VideoCore IV Broadcom VideoCore VI

USB Ports 1 1 4 4 (2 × USB 3.0 + 2 × USB 2.0)
Ethernet No No Gigabit Ethernet (max. 300 Mbps) Gigabit Ethernet (no limit)

Power over Ethernet No No Yes (requires separate PoE HAT) Yes (requires separate PoE HAT)
WiFi No WiFi 802.11b/g/n dual-band WiFi 802.11ac Dual Band WiFi 802.11ac Dual Band

Bluetooth No 5.0 BLE 4.2 BLE 5.0 BLE
Video Output Mini HDMI Mini HDMI HDMI/3.5 mm Comp./DSI micro-HDMI/3.5 mm Comp./DSI
Audio Output I2S/Mini HDMI/3.5 mm Composite I2S/Mini HDMI/3.5 mm Composite I2S/HDMI/3.5 mm Composite I2S/HDMI/3.5 mm Composite
Camera Input 15 Pin CS 15 Pin CS 15 Pin CS 15 Pin CS
GPIO Pins 40 40 40 40
Memory MicroSD MicroSD MicroSD MicroSD

2.4.1 Single Board Computers (SBCs)

Single board computers (SBCs) play a vital role in the IoT ecosystem, offering immense

importance and value for IoT applications [54]. These compact and self-contained com-

puting devices integrate all essential components of a computer onto a single circuit

board. These credit card-sized computers feature robust processing capabilities, gener-

ous memory, storage options, and an array of input/output interfaces. Also, SBCs often

come with built-in connectivity options such as Ethernet, Wi-Fi, or BlueTooth (BLE).

Their compact size, low power consumption, and cost-effectiveness make them ideal for

deploying IoT solutions in various domains. SBCs serve as the brain of capable IoT

devices or a gateway for an array of simpler devices, enabling data processing, commu-

nication, and control functionalities. They can run operating systems, execute software

applications, and connect to the Internet, allowing for real-time data acquisition, analysis,

and decision-making. Furthermore, SBCs provide a flexible and customizable platform

for IoT developers, empowering them to build and deploy tailored IoT solutions based

on specific project requirements. Whether used in industrial automation, smart homes,

or wearable devices, SBCs offer the processing power and connectivity needed to enable

seamless integration and intelligent interaction between IoT devices, making them an

essential component in the IoT landscape.

The Raspberry Pi line of products, compared in Table 2.1, is a prominent example

of the SBC domain. Raspberry Pi models exemplify the power and versatility of SBCs.

Chapter 2. Background and Literature Review 36

The Raspberry Pi ecosystem offers a range of models tailored to different needs. The

models vary in terms of computational power, memory capacity, connectivity options, and

peripheral support. Each model caters to specific IoT requirements, from the entry-level

Raspberry Pi Zero to the more advanced Raspberry Pi 4. The Raspberry Pi Foundation

also provides a user-friendly Linux-based operating system called Raspberry Pi OS [55],

along with a rich repository of software libraries and development tools. This ecosystem

simplifies the software development process and fosters innovation, allowing developers

to create custom IoT solutions easily. Moreover, the Raspberry Pi community is vibrant

and enthusiastic, offering extensive online resources, forums, and projects for users to

collaborate and share their experiences. This community-driven approach empowers

individuals to explore and expand the capabilities of Raspberry Pi boards in diverse

IoT applications, ranging from home automation to robotics, industrial monitoring, and

beyond.

The Raspberry Pi is an excellent choice as a gateway in the proposed PoT system due

to several compelling motivations. Its affordability makes it accessible to a wide range

of user categories in home automation or business domains. The cost-effective nature

of Raspberry Pi boards allows for PoT scalability, enabling the deployment of multi-

ple PoT gateways across various premises or remote sites without substantial financial

constraints. Besides, the Raspberry Pi’s powerful processing capabilities and versatile

connectivity options make it well-suited for PoT gateway functionality to aggregate sim-

ple devices, typically existing in homes and offices, into a coherent VoIP-enabled smarter

system. Its onboard Ethernet and Wi-Fi connectivity and the availability of USB and

GPIO interfaces facilitate seamless integration with a diverse range of IoT devices and

networks. Moreover, Raspberry Pi’s Linux-based operating system and its extensive soft-

ware ecosystem allow us to build a modular software stack for the PoT gateway that can

be tailored to the specific requirements of different application needs. This flexibility

enables incorporating our proposed custom messaging protocol (i.e., tSIP) and security

Chapter 2. Background and Literature Review 37

mechanisms capabilities within the PoT gateway.

2.4.2 Embedded Linux

Embedded Linux is a powerful operating system that plays a crucial role in the IoT

domain, enabling intelligent and connected devices to be deployed. Embedded Linux

enables a robust and flexible platform for developing IoT solutions by offering various

features and capabilities. Its open-source nature allows for customization, making it

suitable for various IoT applications across industries such as manufacturing, healthcare,

smart homes, agriculture, and transportation. With its small footprint and resource-

efficient design, Embedded Linux can run on low-power devices, making it ideal for

resource-constrained IoT environments. Its rich set of libraries, tools, and frameworks

facilitates the development of applications, connectivity, and data management for IoT

devices. Moreover, Embedded Linux benefits from extensive community support and

frequent updates, ensuring the availability of security patches, bug fixes, and new features.

Its versatility, reliability, and compatibility make Embedded Linux popular for building

robust and scalable IoT solutions that seamlessly integrate with other devices, systems,

and cloud platforms.

Measuring the performance of embedded Linux systems is of utmost importance in

ensuring their optimal functionality and efficiency. Performance measurement provides

valuable insights into the system’s behaviour and resource utilization, allowing for identi-

fying and resolving potential bottlenecks, inefficiencies, or areas for improvement. Devel-

opers can make better-informed design decisions by quantifying metrics such as response

time, throughput, latency, memory usage, CPU utilization, and power consumption. It

helps fine-tune the system configuration, improve resource allocation, and identify ar-

eas where system enhancements can be made. Additionally, performance measurement

facilitates benchmarking and comparisons between different software and hardware con-

figurations, enabling designers to select the most suitable options for their specific use

Chapter 2. Background and Literature Review 38

cases. This information is precious in the context of IoT, where embedded Linux sys-

tems often operate in resource-constrained environments with limited processing power,

memory, and energy availability. By measuring and monitoring performance, develop-

ers can ensure that their embedded Linux systems in IoT deployments meet the desired

requirements, provide reliable operation, and deliver optimal performance, leading to

enhanced user experiences, increased efficiency, and improved overall system reliability.

Listed below are some of the numerous tools available for the performance evaluation of

Linux-based systems. However, this list is by no means exhaustive since, in Linux and

open-source platforms in general, developers may implement their own approaches and

set of tools to achieve the same targets, which is uncountable:

• top/ps [56]: The top and ps commands are typically installed on all Linux dis-

tributions by default. While the ps command provides an instantaneous snapshot

of system activity per thread, the top command provides essentially similar infor-

mation as ps at defined intervals, which can be as granular as one-hundredth of a

second. Despite their powerfulness and readiness, these commands are overlooked

by many Linux users.

• free [56]: It is a pre-installed and readily accessible application on most Linux

distributions. free is a convenient command to view a snapshot of system memory

usage and can be used to detect memory leakages, a situation where a computer

program fails to release dynamically allocated memory after it is no longer needed,

or disc instability caused by excessive swapping.

• valgrind [57]: valgrind is a popular, extensible, and GPL2-licensed open-source

framework for advanced programmers that can be used to detect memory-related

errors and threading issues. valgrind utility automatically and dynamically de-

tects these errors as the code executes. However, it may produce false positives.

Although it is a handy utility, it can be exceedingly intrusive because the code

Chapter 2. Background and Literature Review 39

executes 50 times slower than its actual execution speed [58].

In Chapter 4, we examine the feasibility of using embedded Linux platforms as PoT

gateways in the proposed framework, focusing on evaluating the performance of Rasp-

berry Pi’s line of products in this role. Specifically, we assess the operating system’s

capabilities by simulating a growing number of simultaneous calls using the embedded

Asterisk installation. The objective is to demonstrate the potential of cost-effective

embedded Linux SBCs for PoT applications, particularly in residential and small-to-

medium-sized settings. By analyzing the performance of these devices as PoT gateways,

we aim to encourage their widespread adoption in practical PoT scenarios.

Figure 2.2: IoT protocol stack (Adapted from [59])

Chapter 2. Background and Literature Review 40

2.5 IoT Messaging Protocols

2.5.1 Overview

To foster adaptability and scalability in the IoT, the long-term interoperability of the

underlying infrastructure of the IoT should be maintained. Concurrently, amidst the

relentless rapid pace of technological progress, IoT networks must be flexible to easily

incorporate and capitalize on novel, optimized hardware designs that are on the line. This

requires good IoT standards to avoid the problems with vendor lock-in and backward

compatibility issues that often come with hardware-driven solutions that are not open-

source. Therefore, the application layer technologies, shown on top of the IoT protocol

stack in Figure 2.2, that are based on robust standards and are certified by reputable

standard development bodies (e.g., IEEE) provide a universal and transparent framework

that encourages worldwide acceptance and cross-vendor support in the future.

Messaging protocols are application layer protocols that are crucial in the IoT ecosys-

tem. They facilitate efficient and reliable communication between interconnected devices.

These protocols enable seamless data exchange, command delivery, and real-time inter-

actions among various IoT devices, systems, and services [60]. Messaging protocols are

designed to address the unique challenges of IoT environments, including limited band-

width, intermittent connectivity, and constrained resources. They offer lightweight, low-

overhead communication mechanisms optimized for low-power devices, allowing efficient

utilization of network resources. These protocols prioritize efficiency and scalability while

ensuring secure and reliable data transmission. The importance of messaging protocols in

IoT lies in their ability to enable interoperability and seamless integration. With a stan-

dardized messaging protocol, devices from different manufacturers running on different

platforms can communicate and exchange data effortlessly. This interoperability fosters

the development of robust and scalable IoT solutions by promoting device agnosticism

Chapter 2. Background and Literature Review 41

and avoiding vendor lock-in [61].

Moreover, messaging protocols facilitate decoupling IoT components, enabling asyn-

chronous communication patterns. This loose coupling enhances system flexibility, scal-

ability, and responsiveness, allowing real-time data analysis, event-driven automation,

and intelligent decision-making. Messaging protocols also contribute to the reliability

and resilience of IoT systems. Some messaging protocols provide mechanisms for quality

of service (QoS) levels, ensuring message delivery and guaranteeing that critical data

reaches its intended destination [62].

2.5.2 Challenges in IoT Messaging Protocols

Messaging protocols in IoT face several challenges, and one of the key aspects is the ab-

sence of a one-size-fits-all solution [63]. The diverse nature of IoT applications, devices,

and network environments introduces complexity and variations that necessitate different

messaging protocols to suit specific requirements. Some IoT deployments may prioritize

low latency and real-time responsiveness, making protocols like MQTT (Message Queu-

ing Telemetry Transport) an ideal fit [64]. However, other scenarios like constrained and

resource-limited devices may call for lightweight protocols like CoAP (Constrained Ap-

plication Protocol) to minimize overhead [65]. The challenge lies in selecting the most

appropriate messaging protocol for a specific IoT application, considering factors such as

bandwidth constraints, device capabilities, network topology, and security requirements.

Interoperability is another significant challenge [60]. As IoT ecosystems encompass

many devices and platforms from different manufacturers, ensuring seamless communi-

cation and data exchange becomes complex. Although standardization efforts have led

to the development of common messaging protocols, achieving interoperability between

heterogeneous devices and platforms can still be challenging. Bridging the gap between

protocols and establishing interoperable frameworks is an ongoing concern in the IoT

community that still attracts many researchers.

Chapter 2. Background and Literature Review 42

Security is also a critical challenge [66]. Messaging protocols must ensure the confiden-

tiality, integrity, and authenticity of transmitted data in IoT environments. Protecting

sensitive information, preventing unauthorized access, and addressing potential vulnera-

bilities in messaging protocols are crucial to safeguard IoT ecosystems from data leakage

and cyber threats.

Scalability is another challenge with the increasing number of devices and the ex-

ponential data growth in IoT deployments [60]. Messaging protocols must handle the

growing volume of messages efficiently and scale to accommodate the expanding network

without compromising performance or reliability.

Moreover, the varying network conditions and connectivity issues in IoT environments

pose challenges for messaging protocols. Fluctuating network availability, low bandwidth,

intermittent connectivity, and high packet loss mandate protocols that can gracefully

handle such conditions, ensuring reliable communication and minimizing data loss [67].

Addressing these challenges requires carefully evaluating the specific IoT deployment,

considering factors such as application requirements, device capabilities, network con-

straints, and security considerations. It calls for implementing appropriate protocols,

protocol gateways, and mechanisms that enable efficient and secure communication, con-

sidering the unique characteristics and demands of the IoT landscape. We contrast the

common messaging protocols typically used in IoT in the following subsections: MQTT,

CoAP, and HTTP (Hypertext Transfer Protocol). We then overview the SIP (Session

Initiation Protocol) protocol, the predominant protocol used in the VoIP ecosystem.

We highlight the unique characteristics of the SIP protocol and the motivation behind

adopting it in the IoT domain. Also, we review the state-of-the-art literature considering

using the SIP protocol in IoT, highlighting the uniqueness of our proposed tSIP as native

support for the SIP protocol in constrained PoT applications.

Chapter 2. Background and Literature Review 43

2.5.3 Common IoT messaging Protocols

2.5.3.1 MQTT

MQTT is a standard lightweight messaging protocol widely used in the IoT ecosystem.

Its main characteristics make it suitable for IoT applications that require efficient, re-

liable, and scalable communication. MQTT is designed to be lightweight, minimizing

network bandwidth and reducing the processing burden on resource-constrained devices

typically found in the IoT domain. This characteristic makes it well-suited for IoT de-

ployments where devices have limited power and bandwidth capabilities. MQTT follows

a publish-subscribe messaging paradigm, enabling efficient and asynchronous communi-

cation [64]. Devices can publish messages on specific topics; others can subscribe to these

topics to receive relevant interest data. This decoupling allows for scalable and flexible

communication between devices and systems. MQTT supports three Quality of Service

(QoS) levels to ensure message delivery reliability [68]. QoS levels range from ”at most

once” (fire and forget) to ”at least once” (guaranteed delivery) and ”exactly once” (as-

sured single delivery). This flexibility enables system designers to choose the appropriate

QoS level based on the specific requirements of their IoT applications. MQTT is de-

signed to support intermittent and unreliable network connections. This includes session

persistence, message retention, and the ability to store and forward messages, ensuring

that data is reliably transmitted even during network disruptions. These characteristics

make MQTT a popular choice for IoT applications that demand efficient, scalable, and

reliable communication.

2.5.3.2 CoAP

CoAP is a lightweight messaging protocol designed specifically for resource-constrained

IoT devices. Its main characteristics make it an efficient and suitable choice for IoT

applications that require low overhead and energy-efficient communication [65]. CoAP is

Chapter 2. Background and Literature Review 44

designed to be lightweight and simple, minimizing IoT devices’ processing and memory

requirements. It utilizes a RESTful (REpresentational State Transfer) architecture, simi-

lar to HTTP, allowing easy integration with web-based services and interoperability with

existing web technologies [69]. CoAP operates over UDP (User Datagram Protocol),

which provides low-latency communication suitable for real-time applications. CoAP

offers a compact header format and efficient message encoding, reducing the overhead

and improving communication efficiency. Alongside, CoAP supports resource discovery

and observation mechanisms, enabling devices to discover and interact with available

resources in a network [65]. This capability allows for efficient monitoring and control of

IoT devices and services. Additionally, CoAP supports various methods for communica-

tion, including GET, POST, PUT, and DELETE, enabling device-to-device and device-

to-server interactions. Nonetheless, CoAP includes mechanisms for congestion control

and reliable message delivery, such as retransmission and acknowledgement mechanisms.

These characteristics make CoAP an ideal choice for IoT applications with constrained

devices, limited bandwidth, and energy requirements, providing an efficient and scalable

communication protocol for resource-constrained environments.

2.5.3.3 HTTP

HTTP is a mature and widely used protocol in web applications. However, its characteris-

tics limit its usability in IoT applications [70]. HTTP is a request-response protocol that

operates over TCP (Transmission Control Protocol), offering reliable and connection-

oriented communication. Its main characteristics include a well-defined structure, flex-

ibility, and support for various data formats. HTTP utilizes the client-server model,

where clients initiate requests and servers respond with the requested data. This makes

HTTP suitable for web-based IoT applications, where data is fetched from servers or

transmitted to cloud services.

The usability of HTTP in IoT applications stems from its widespread adoption and

Chapter 2. Background and Literature Review 45

Table 2.2: Comparing SIP Protocol with Popular Messaging Protocols for IoT.

Criteria HTTP CoAP MQTT SIP

Communication Architecture Model Client/Server Client/Server Client/Server
Client/Server
Peer-to-Peer

Message Semantic Request/Response
Request/Response
Publish/Subscribe

Publish/Subscribe
Request/Response
Publish/Subscribe
(long) Session-based

Header Size Undefined 4 byte 2 byte Undefined

Message Size Large and undefined Small and undefined
Small and undefined

(256 MB max)
Large and undefined

Transport Protocol TCP UDP
TCP

UDP (MQTT-SN)
TCP
UDP

Encoding Format Text Binary Binary Text

Security TLS/SSL DTLS TLS/SSL
TLS/SSL
DTLS

QoS Limited Yes Yes Yes

compatibility with existing web technologies. It leverages the existing infrastructure

and knowledge surrounding web development, making integrating IoT devices with web-

based services and frameworks easier. Additionally, HTTP’s support for various data

formats, such as JSON (JavaScript Object Notation) and XML (Extensible Markup

Language), enables seamless interoperability and easy integration with different systems

[71]. However, HTTP also has limitations in the context of IoT. One major drawback

is its relatively high overhead regarding message size and the need for persistent con-

nections, delegating its deployments to capable devices in the IoT ecosystem, typically

the gateways [70]. This can be problematic for IoT devices with limited resources and

constrained networks, resulting in increased power consumption and decreased efficiency.

Moreover, HTTP’s request-response nature is unsuited for scenarios requiring real-time

communication or asynchronous event-driven interactions.

2.6 Session Initiation Protocol (SIP)

2.6.1 Overview

The Session Initiation Protocol (SIP) is a signalling protocol widely used for establishing,

modifying, and terminating multimedia sessions in the VoIP ecosystem [14]. SIP is an

efficient candidate to provide a unified application protocol paradigm to IoT systems

Chapter 2. Background and Literature Review 46

typically populated with heterogeneous devices. This is because SIP inherently supports

different communication architecture models (e.g., client/server and peer-to-peer) and

different messaging semantics (e.g., request/response, publish/subscribe, and long session-

based) typically encountered in simple and advanced IoT systems. The request/response

message semantic can be used to issue a command to configure IoT devices or to query

information from them. The publish/subscribe semantic is used to efficiently build event-

based interaction with IoT devices that react to predefined thresholds of their readings

or state changes. However, the session-based message semantics can be used to build

advanced IoT systems incorporating rich media types that are exchanged by establishing

communication channels over a period of time. Moreover, SIP operates at the application

layer of the TCP/IP protocol stack. It can utilize the TCP and UDP transport layer

protocols, giving system designers the flexibility to trade off between guaranteed delivery

on the one hand and real-time constraints that require low latency on the other hand

based on the application requirements. Also, one of the key characteristics of SIP is

its flexibility and extensibility, allowing for the integration of various communication

technologies and devices. SIP can facilitate seamless communication and interoperability

between IoT devices, enabling them to establish real-time sessions, exchange data, and

collaborate with other devices or services. This makes SIP suitable for IoT applications

that require interactive and collaborative capabilities, such as smart homes, industrial

automation, telemedicine, and smart cities. Table 2.2 contrasts the SIP protocol with

the standard IoT messaging protocols, highlighting its unique characteristics.

2.6.2 SIP Methods and Transactions

In SIP, methods are commands or actions to initiate, modify, or terminate participant

sessions. SIP defines various methods that enable communication and control within

a session [14]. These methods provide the foundation for initiating and managing ses-

sions within the SIP protocol. Each method serves a specific purpose, facilitating various

Chapter 2. Background and Literature Review 47

INVITE

User Agent
(UA)

RTP Media Path

INVITE Transaction

100 Trying

180 Trying

200 OK

ACK

BYE

200 OK

ACK Transaction

BYE Transaction

Provisional
Responses

Final
Response

Final
Response

User Agent
(UA)

Figure 2.3: SIP Transactions (SIP Call Origination and Termination Example).

session establishment, modification, and termination stages. By utilizing these meth-

ods, SIP enables flexible and interactive communication among participants in real-time

communication sessions. Some commonly used SIP methods include:

• INVITE: This method initiates a session and invites a user to participate in a com-

munication session, such as a voice or video call. The INVITE method contains

details about the call, including the participants’ addresses, media capabilities,

and session parameters.

• ACK: After receiving a successful response to an INVITE request, the ACK method

confirms the acceptance of the response. It acknowledges the establishment of the

session and ensures the reliable delivery of the response.

• BYE: The BYE method terminates an established session. It indicates the desire to

end a call or session between participants. The BYE message includes information

about the reason for ending the session, such as user-initiated termination or call

Chapter 2. Background and Literature Review 48

completion.

• REGISTER: The REGISTER method is used by a user agent to register its contact

information with a SIP server. This allows the user agent to receive incoming calls

and messages.

• OPTIONS: The OPTIONS method is used to query the capabilities and characteristics

of a remote user agent or server. It allows a user agent to retrieve information

about supported methods, media types, and other session-related features.

On the other hand, a SIP transaction represents a sequence of request and response

messages exchanged between entities involved in a communication session [14]. A SIP

transaction begins with transmitting a request message, such as an INVITE or REG-

ISTER, and concludes with a final response message, such as a 200 OK or a failure

response. SIP transactions follow a specific state model that progresses through various

states based on the messages exchanged. The initial state is the ”Trying” state while

the initial request is being processed. As the transaction progresses, it can transition to

states such as ”Proceeding” to indicate that the request is processed and provisional re-

sponses are being sent and ”Completed” to indicate that the final response has been sent.

SIP Transactions provide an essential mechanism for managing the reliability and con-

sistency of SIP communications. They ensure that messages are delivered reliably and

that the necessary acknowledgments and confirmations are received. SIP transactions

help handle retransmissions, timeout management, and transaction-level consistency, en-

suring the integrity and robustness of the communication process. Figure 2.3 depicts

SIP transactions incurred through a typical SIP call session, from its origination to the

termination by the participant user agent (UA).

2.6.3 IoT and SIP Integration: Challenges

Integrating SIP into the IoT domain presents several challenges:

Chapter 2. Background and Literature Review 49

• First, SIP is an HTTP-inspired text-based protocol. Therefore, despite the unique

features of SIP, it often goes beyond most IoT devices’ processing and storage limits.

This means that the full protocol stack of SIP cannot be directly implemented on

resource-constrained IoT devices. This mandates the provision of optimization and

adaptation strategies to ensure efficient resource utilization.

• Second, the security of SIP-based communication in IoT environments is crucial.

Protecting sensitive data, ensuring authentication and authorization, and safe-

guarding against potential attacks are paramount considerations. Implementing

secure and robust mechanisms within SIP-based IoT systems is necessary to main-

tain the integrity and privacy of communication.

• Furthermore, scaling SIP-based IoT systems to accommodate a large number of

devices and concurrent sessions can be challenging. Efficient session management,

load balancing, and network optimization are essential to handle the increased

traffic and ensure reliable and responsive communication. Additionally, interop-

erability among different SIP implementations and compatibility with diverse IoT

platforms and devices can be complex, requiring adherence to standardized SIP

profiles and support for industry-wide protocols.

2.6.4 IoT and SIP Integration: State of the Art

Numerous research in the literature has utilized the SIP protocol in their proposed IoT

systems or frameworks to leverage its capabilities. For example, the authors of [72] pro-

posed an IoT service platform called iSIPtalk. It leverages the inherent capabilities of

the SIP protocol to provide developers with the full range of support, flexibility, and

the rapid development cycle needed to deploy advanced IoT solutions demanding low la-

tency, high data rates, and different quality of service (QoS). To justify the applicability

of their proposed framework, they implemented a real testbed that targets a vehicular

Chapter 2. Background and Literature Review 50

service that tracks vehicle locations and monitors their status. The authors rely on ca-

pable computing devices that run the Linux OS to deploy the SIP user agents (SUA)

and the SIP proxy. The authors of [73] proposed a SIP-based Home Gateway (SHG)

to interface with Zigbee and Bluetooth smart objects in homes. SHG facilitates the in-

tegration between domotics devices and the existing SIP infrastructure, allowing users

to control smart objects at home using SIP clients. SHG uses a subset of SIP methods

to satisfy home automation applications. Again, SHG is based on a capable embedded

Linux single-board computer (SBC) to implement the SIP protocol capabilities of the

SHG. The authors of [74] proposed a SIP-based emergency framework called SEEK that

automatically calls the appropriate Public Safety Answering Points (PSAPs) if events are

triggered by body sensors that measure vital signs of the human body. Once an event

is triggered, the framework establishes a call to the corresponding PSAP through a pro-

prietary SIP client (softphone) that encapsulates critical data and location information

into the body of the SIP messages using Sensor Model Language [75]. The sensor gate-

way of the SEEK platform does not possess SIP functionalities. However, it delegates

SIP tasks to a proprietary SIP client that runs on a mobile phone. The authors of [76]

proposed VIoT (Voice over Internet of Things), which integrates IoT devices with voice

capabilities into the VoIP ecosystem to enable new customer applications and motivate

further research on integrating IoT protocols and telephony applications.

The authors of [17] proposed CoSIP, a lightweight version of the SIP protocol for

constrained devices. The purpose of CoSIP is to allow duty-cycled devices to instan-

tiate communication sessions in a standardized fashion for M2M (machine-to-machine)

application scenarios. CoSIP is a generic constrained binary encoding of the SIP pro-

tocol that follows the same message syntax as CoAP. However, there exist differences

in the key concepts between SIP and CoAP. For example, there is no concept of SIP

dialogs in CoAP. This requires some tweaks to the original message syntax of CoAP to

accommodate SIP encoding by CoSIP. This complicates the implementation of CoSIP

Chapter 2. Background and Literature Review 51

and hinders its portability among intrinsically heterogeneous IoT devices with different

hardware architectures and programming language support. Nonetheless, to the best of

our knowledge, CoSIP is the only research in the literature to provide smart objects with

SIP capabilities through a constrained version of the SIP protocol.

2.6.5 tSIP: A Lightweight Version of the SIP Protocol for Con-

strained Devices

To address IoT and SIP integration challenges, the thesis proposes tSIP. tSIP is a con-

strained version of the SIP protocol. It provides a portable, lightweight message format

that can be deployed in limited-resource devices to enable them with SIP communication

capabilities. tSIP allows for standardized peer-to-peer communication between smart

objects in their communication network vicinity. It reduces processing power, network

traffic, and energy consumption in IoT contexts. Alongside, with the help of a proxy,

tSIP messages can be turned into their original SIP messages if a communication server

exists on the premises. The proxy can be a PoT gateway or an add-on Asterisk mod-

ule installed on top of the existing Asterisk-based communication server. This allows

tSIP -enabled devices to act as typical SIP endpoints in the VoIP ecosystem, where each

device would then be assigned a unique phone number by the communication server

through which it can be administered. This provides seamless interaction and enhances

user engagement with the surrounding devices. People could use the existing phone sets

at home or within the premises, combined with simple and intuitive voice commands, as

delineated in Chapter 3, as a unified interface to administer and query information from

the surrounding devices. Furthermore, cost-effective embedded Linux platforms (such as

the Raspberry Pi) can be used simultaneously as a PoT gateway and a PBX server, even

in homes without a PBX server by default. As per the performance evaluation study in

Chapter 4, embedded Linux platforms can provide adequate concurrent active channels

when acting as Asterisk servers to provide VoIP functionalities to home residents. In

Chapter 2. Background and Literature Review 52

Chapter 6, we compare our proposed tSIP protocol to both the original SIP protocol and

CoSIP to show how tSIP is better in terms of portability and compression ratio.

2.7 Blockchain

2.7.1 Overview

Blockchain technology has emerged as a revolutionary concept that can potentially trans-

form various industries [77]. It originated in 2008 with the introduction of Bitcoin, the

first decentralized cryptocurrency [19]. Blockchain is a distributed ledger that maintains

a chronological chain of blocks containing transactions or data. Its main characteristics

include decentralization, immutability, auditability, and fault tolerance.

Decentralization is a fundamental aspect of blockchain, as it eliminates the need for

a central authority, such as a bank or government, to oversee transactions. Instead, a

network of computer nodes collaboratively validate and record transactions, ensuring

transparency and trust among participants through the utilization of an agreed consen-

sus mechanism. The immutability of the blockchain ensures that once a transaction is

recorded, it cannot be altered or tampered with, enhancing the integrity and reliability

of data.

Blockchain technology has applications beyond cryptocurrency [78]. In finance, for

example, it offers secure and transparent transactions, reducing the need for intermedi-

aries. Supply chain management benefits from blockchain’s ability to track and verify

the authenticity and movement of goods, enhancing transparency and reducing fraud.

Blockchain also enables secure and decentralized digital identity management, enabling

individuals to control and protect their personal information. Additionally, it has poten-

tial applications in healthcare, intellectual property rights, and more which attract the

intention of many researchers.

However, blockchain faces scalability, energy consumption, and regulatory concerns

Chapter 2. Background and Literature Review 53

Table 2.3: Comparison of Public, Private, and Consortium Blockchains [18].

Public Blockchain Private Blockchain Consortium Blockchain
Participation in Consensus All nodes Single organization Selected nodes in multiple organizations

Access Public read/write Can be restricted Can be restricted
Identity Pseudo-anonymous Approved participants Approved participants

Immutability Yes Partial Partial
Transaction Processing Speed Slow Fast Fast

Permissionless Yes No No

[79]. As more transactions are added to the blockchain, scalability becomes a crucial

factor that needs to be addressed. The energy-intensive consensus mechanisms used in

blockchain networks have raised concerns regarding sustainability. Furthermore, regula-

tions surrounding blockchain technology and cryptocurrencies vary across jurisdictions,

requiring legal frameworks to catch up with technological advancements.

2.7.2 Types of Blockchains

Blockchain technology can be classified into three main types: public, private, and con-

sortium blockchains [18].

• Public blockchain: Public blockchains, such as Bitcoin and Ethereum [80], are

open and decentralized networks where anyone can participate [81]. They are char-

acterized by a distributed network of nodes that collectively validate transactions

and maintain the blockchain. Public blockchains offer transparency, immutability,

and security through consensus mechanisms, such as Proof of Work (PoW) or Proof

of Stake (PoS) [82]. They are typically used for cryptocurrencies and applications

that require a trustless and permissionless environment.

• Private blockchains: Private blockchains are restricted and accessible only to

a specific group or organization. These blockchains are centralized and governed

by a single entity, giving them greater control over access and governance. Pri-

vate blockchains provide privacy, scalability, and efficiency compared to public

blockchains. They suit enterprise applications, where confidentiality and regulation

Chapter 2. Background and Literature Review 54

compliance are crucial. A private blockchain is utilized by the proposed registration

and authentication mechanism in the thesis to securely associate the surrounding

smart objects within the premises to the communication server of the enterprise

due to its privacy characteristics, fast transaction processing, and cost-effectiveness.

• Consortium blockchains: This type of blockchain combines elements of both

public and private blockchains [83]. They are governed by a group of organizations

rather than a single entity, ensuring a more distributed and decentralized approach

while maintaining a certain level of control. Consortium blockchains are designed

for specific industry sectors or collaborations between organizations. They offer

shared governance, enhanced privacy, and selective participation, allowing multiple

entities to collaborate on a common blockchain infrastructure. As a future direc-

tion of the proposed PoT framework, consortium blockchains might be used to allow

telecom companies to provide PoT as a service to their existing portfolio. In the

context of PoT, consortium blockchains can facilitate secure and transparent in-

teractions among telecom companies, IoT device manufacturers, service providers,

and stakeholders to collaborate and share resources while maintaining a level of

control and trust.

Table 2.3 contrasts the main characteristics of public, private, and consortium blockchains.

2.7.3 Consensus Algorithms

Consensus algorithms play an essential role in maintaining the integrity and agreement

of data within a blockchain network. These algorithms are designed to enable distributed

nodes to reach a consensus on the validity of transactions and ensure that the blockchain

remains secure and consistent [82]. Several consensus algorithms exist, each with its own

set of characteristics.

• Proof of Work (PoW): PoW is a commonly used consensus algorithm notably

Chapter 2. Background and Literature Review 55

utilized by Bitcoin. PoW requires participants, known as miners, to solve complex

mathematical puzzles to validate transactions and add new blocks to the blockchain.

The main characteristic of PoW is its reliance on computational power and energy

consumption. It ensures that consensus is achieved through the majority of com-

putational work performed by honest nodes, making the network more resilient

against attacks.

• Proof of Stake (PoS): PoS is a consensus algorithm that addresses the energy

consumption concerns associated with PoW. In PoS, participants, known as val-

idators, are selected to validate transactions and create new blocks based on the

amount of cryptocurrency they hold. The main characteristic of PoS is that the

probability of a validator being chosen to create a new block is proportional to

their stake in the network. This ensures that participants with a larger stake are

more likely to be selected, theoretically aligning their interests with the network’s

security.

• Proof of Authority (PoA): PoA is a consensus algorithm that relies on the

identity and reputation of network participants rather than computational power

or stake. PoA requires a predefined set of trusted nodes, known as authorities, to

validate transactions and create new blocks. The main characteristic of PoA is that

authority nodes are identified and selected based on their reputation, expertise, or

a formalized governance process. The proposed registration and authentication

mechanism in the thesis utilizes PoA. PoA ensures fast block creation times and

high throughput but relies on the trustworthiness and accountability of the selected

authorities. Alongside this, PoA allows the potential to roll back the blockchain at

any time in the past, which is common during application development.

There are also consensus algorithms such as Delegated Proof of Stake (DPoS) [84],

Practical Byzantine Fault Tolerance PBFT) [85], and Raft [86], each with its own unique

Chapter 2. Background and Literature Review 56

characteristics. DPoS introduces a voting system where participants elect a limited

number of delegates to validate transactions. PBFT focuses on reaching consensus in

networks where participants may be malicious or unreliable, ensuring agreement among

a set of known validators. Raft is a consensus algorithm designed for distributed systems,

providing strong leader-based consensus.

2.7.4 Smart Contracts

Smart contracts are self-executing agreements with predefined rules and conditions en-

coded on a blockchain [87]. They automate the execution of agreed obligations without

intermediaries. The main characteristic of smart contracts is their ability to automati-

cally enforce contract terms once predefined conditions are met, removing the need for

manual intervention and reducing the risk of fraud or manipulation. Smart contracts

are written in programming languages designed explicitly for blockchain platforms, such

as Solidity for Ethereum [88]. They enable the exchange of digital assets, the transfer

of ownership, and the implementation of complex business logic. Smart contracts have

diverse applications across industries, including supply chain management, financial ser-

vices, healthcare, and decentralized applications. They enable secure, tamper-resistant,

and verifiable interactions between multiple parties, facilitating automated and trustwor-

thy transactions. However, smart contracts are only as reliable as the code written, and

potential vulnerabilities or bugs can have significant consequences. Therefore, careful au-

diting, testing, and security practices are essential to ensure the robustness and integrity

of smart contracts deployed on a blockchain.

The proposed registration and authentication mechanism in the thesis uses the Ethereum

blockchain and smart contracts to implement a programmatic, immutable access con-

trol mechanism to administer the association of devices with the communication server,

avoiding the exhaustion of the communication server resources, overwhelming its de-

sign capacity, or altering the existing SIP-based VoIP architecture and configuration as

Chapter 2. Background and Literature Review 57

delineated in Chapter 4.

2.7.5 SIP and Blockchain Integration: Benefits and Possibilities

The integration of blockchain with SIP communication holds the potential to introduce

several benefits and possibilities [89]. By leveraging blockchain technology, SIP com-

munication can benefit from enhanced security, transparency, and trust. Blockchain’s

decentralized nature and immutability can provide a more secure and tamper-proof envi-

ronment for SIP-based communication, reducing the risk of unauthorized access, fraud,

and data manipulation. Additionally, blockchain’s transparent and auditable nature can

promote trust among participants by allowing them to verify the integrity and authen-

ticity of communication transactions.

Integrating blockchain with SIP communication enables new business models and rev-

enue streams. Smart contracts, for example, can automate and streamline the execution

of SIP-based services, such as call routing, billing, and service provisioning. This can

reduce administrative overhead, eliminate intermediaries, and enable new monetization

models. Blockchain-based micropayments [90] and tokenization [91] can facilitate seam-

less and secure financial transactions between SIP participants, opening up possibilities

for innovative value-added services for telecom companies.

Furthermore, blockchain can facilitate identity management and authentication in

SIP communication. By utilizing blockchain for identity verification and storing verified

user identities, trust can be established between SIP participants without relying on

centralized identity providers. This can enhance privacy, reduce identity theft risk, and

enable secure and trusted communication between parties, eliminating the notorious

resource exhaustion of standard-based authentication algorithms.

Another possibility is the integration of blockchain and SIP for data management

and auditing. Blockchain’s immutable and transparent nature can facilitate the reliable

tracking and auditing of communication data, such as call records and logs. This can

Chapter 2. Background and Literature Review 58

ensure regulatory compliance, simplify auditing processes, and provide a trustworthy

record of communication activities.

2.7.6 SIP and Blockchain Integration: Challenges

Integrating blockchain technology into SIP communication poses several challenges that

need to be addressed for successful implementation:

• Latency: Blockchain’s inherent characteristics, such as its distributed nature and

consensus mechanisms, introduce additional latency and complexity to real-time

communication. The time required for transaction validation and block confirma-

tion, especially in public blockchain networks, can impact the responsiveness and

efficiency of SIP-based communication systems, potentially affecting the quality of

real-time voice and video streams.

• Scalability: Scalability is a significant challenge when integrating blockchain with

SIP. Blockchain networks, especially public ones, face limitations regarding trans-

action processing capacity and network throughput. The high transaction volumes

generated by SIP-based communication can strain the blockchain network, poten-

tially leading to delays, increased fees, or congestion.

• Interoperability: Ensuring seamless interoperability between blockchain-based

SIP systems and existing traditional telecommunication infrastructures and proto-

cols can be complex. Standardization efforts and the development of interoperabil-

ity frameworks are necessary to bridge the gap between the blockchain and SIP

domains.

• Privacy: Privacy and confidentiality pose challenges when integrating blockchain

with SIP. Blockchain’s transparent and immutable nature conflicts with the privacy

requirements of certain communication scenarios. Ensuring the confidentiality of

Chapter 2. Background and Literature Review 59

call details, identities, and sensitive information while leveraging the benefits of

blockchain technology demands careful design and the integration of appropriate

privacy-enhancing mechanisms.

• Compliance: The regulatory landscape surrounding blockchain and communica-

tion technologies may present challenges. Compliance with data protection, pri-

vacy, and telecommunication regulations needs to be considered when integrating

blockchain into SIP-based systems.

Addressing these challenges requires research, innovation, and collaboration between

the blockchain and SIP communities. Research and iterative development can help iden-

tify best practices and solutions. Ultimately, carefully considering the trade-offs and the

specific requirements of the SIP communication context is necessary to determine the fea-

sibility and benefits of integrating blockchain technology while mitigating the associated

challenges.

2.7.7 SIP and Blockchain Integration: State of the Art

Efficient VoIP deployment mandates the provision of security mechanisms to fix the inher-

ent security vulnerabilities of the SIP protocol and ensure authentication, confidentiality,

integrity, and availability for participants. More solutions have yet to be proposed in the

literature to secure SIP. The current solutions are based on well-known internet security

standards, namely HTTP digest, TLS (transport layer security), IPSec, and S/MIME

(secure multi-purpose internet mail extensions) [92]. However, these SIP security op-

tions could be better; they all have several drawbacks [93]. Also, VoIP systems follow a

centralized architecture. The central SIP server relies on the public key infrastructure

(PKI), utilizes several server certificates, and performs complex hash computations to

authenticate communicating participants to the server. This burdens the server with

many heavy processes, affecting its performance and hindering VoIP scalability. It also

Chapter 2. Background and Literature Review 60

renders the PBX servers more vulnerable to denial of service (DOS) attacks.

Recently, we are witnessing increasing research in the literature to enhance the se-

curity of VoIP communication, thanks to adopting remote work settings for businesses,

especially after the pandemic. Standard-based research, like those proposed in [94, 95],

focuses on enhancing the authentication algorithms used in SIP protocols while main-

taining the default centralized architecture of the VoIP system. However, hardening the

authentication algorithm often results in higher resource consumption for complex cal-

culations. This burdens the VoIP server and impacts its efficiency. Nonetheless, it still

includes the single point of failure predicament, affecting its liability.

Therefore, blockchain recently arose as a viable solution to tackle the drawbacks

of the current security practices of VoIP systems. For example, The authors of [96]

propose a secured end-to-end (e2e) VoLTE (Voice over Long Term Evolution) session

based on the Ethereum blockchain. Their proposal depends on generating cryptographic

key pairs (private and public) for user equipment (UE), where the public key is stored

in the Ethereum blockchain. Their proposal mitigates the vulnerability concerns of the

default end-to-access (e2a) security of VoLTE, where the sessions are just encrypted

between the mobile terminals and the IP Multimedia Subsystem (IMS), which uses the

SIP protocol as its primary protocol. Their proposal shows minimal overhead for the

existing IMS network and negligible call setup time compared to the original VoLTE

setting. Interestingly, they propose in [97] a similar mechanism to provide a secure end-to-

end VoIP system based on the Ethereum Blockchain. The blockchain is used as a keystore

for the cryptographic public keys of VoIP users, eliminating the notoriously crucial need

for a centralized certificate authority (CA) to authenticate VoIP users. However, their

proposed mechanism shows a higher call setup than the existing security practices of

VoIP.

The authors of [98] propose the SIPchain, a SIP defense cluster based on blockchain

technology. SIPchain utilizes the blockchain to maintain a decentralized, immutable

Chapter 2. Background and Literature Review 61

Indicator of Compromise (IOC) ledger. Each SIP node in the SIPchain implements its

own firewall rules to protect the node. Once the node detects an attack, it issues a

transaction to the blockchain that contains information about the recently recognized

compromise. The peer nodes read this information and act proactively by implementing

the appropriate firewall actions to protect themselves against the attack, even before

it scratches their surface. SIPchain helps the scalability of secured VoIP systems and

mitigates the drawbacks of limited expertise professionals within the organizations to

maintain the security of the deployed VoIP systems. Nevertheless, the efficiency of the

SIPchain is affected by the induced high latency of information dissemination in public

blockchains.

The authors of [89] propose a lightweight registration and authentication mechanism

for SIP-based VoIP systems. They implement a decentralized identity model to facilitate

the registration and authentication process between the SIP clients and the SIP server.

The results show negligible resource utilization compared to the current security practices

in VoIP systems, namely TLS and IPsec. However, it still suffers from the default-induced

high latency of block formation in the public blockchain.

The authors of [99] propose VoIPChain, a decentralized blockchain-based identity

authentication mechanism for VoIP systems that enhances the average time delay of call

setup compared to the existing blockchain-based authentication mechanisms.

On the other hand, the literature currently lacks sufficient research targeting resource-

limited devices in the context of blockchain technology. While blockchain has gained

significant attention and research focus, most studies have primarily concentrated on

conventional computing environments with ample resources. However, resource-limited

devices, such as IoT devices, present unique challenges that demand tailored solutions.

Integrating blockchain into these devices requires addressing issues of limited process-

ing power, memory constraints, energy efficiency, and communication protocols. Further

research is still needed to explore lightweight consensus algorithms, optimized data stor-

Chapter 2. Background and Literature Review 62

age techniques, efficient transaction verification mechanisms, and secure communication

protocols that can accommodate the resource limitations of these devices. Investigating

the potential benefits and trade-offs of blockchain in resource-constrained environments

is crucial to unlock the full potential of blockchain technology across diverse domains.

2.8 Summary

This chapter provides a comprehensive background and literature review on the enabling

technologies of the proposed Phone of Things (PoT) framework in the thesis. The chap-

ter begins with an overview of the open-source IoT (Internet of Things) frameworks in

the literature, highlighting their shortcomings and paving the way for further research

and development of frameworks to address the affordability, accessibility, interoperabil-

ity, scalability, and privacy of IoT systems. Also, the chapter explores the evolution and

ubiquitousness of business communication systems, leading to the motivation towards

integrating them into IoT applications. In that context, the chapter focuses on Asterisk,

a Swiss-knife open-source PBX (Private Branch eXchange) software for building cus-

tomized telephony applications to fulfil the integration between IoT and communication

systems (i.e., VoIP). It reviews the research in the literature that leverages Asterisk in

IoT applications. The chapter also covers areas regarding IoT device classification and

embedded Linux as a predominant open-source OS for SBCs, leading to the potential of

tiny, capable, and cost-effective gateways for IoT applications.

The chapter provides a thorough literature review that explores the messaging pro-

tocols in the IoT domain to hit a key concept of the proposed research in the thesis. The

review covers areas regarding their main characteristics and common challenges leading

to the lack of a ”one-size-fits-all” messaging protocol in IoT. Consequently, the chap-

ter reviews the SIP (Session Initiation Protocol) protocol as a capable and suitable IoT

messaging protocol candidate. The chapter reviews the main characteristics of the SIP

Chapter 2. Background and Literature Review 63

protocol, contrasting them with their standard IoT messaging protocols counterparts to

highlight its superiority. The chapter overviews the challenges of the SIP protocol that

still impede its wide adoption in IoT applications and reviews state of the art in the

literature regarding the integration between IoT and SIP, leading to the motivation of

the proposed tiny version of the SIP protocol in the thesis (i.e., tSIP).

Finally, the chapter reviews the literature considering integrating blockchain tech-

nology with the SIP protocol. It provides an in-depth analysis of existing research and

literature concerning the integration of blockchain and SIP, exploring the potential ben-

efits, challenges, and future directions in this emerging field. The chapter describes

the blockchain concept, highlighting its respective features and functionalities. It then

delves into the literature review, covering key aspects such as the role of blockchain in

enhancing security and trust in SIP communication, the impact on identity management

and authentication, the potential for smart contracts in SIP-based transactions, and the

challenges associated with integrating the blockchain with SIP.

Chapter 3

Proposed PoT Framework

This chapter introduces the proposed Phone of Things (PoT) framework. PoT is an

extensible open-source IoT framework that addresses the limitations observed in the lit-

erature regarding state-of-the-art IoT frameworks. IoT is unique in its native accessibility

through existing phone technologies, assets, and infrastructure. This is achieved through

the utilization of open-source technologies and hardware platforms, the provision of a

tiny native wrapper for the SIP (Session Initiation Protocol) protocol deployable on het-

erogeneous and constrained devices, and the proposal of a lightweight registration and

authentication mechanism to facilitate the association of devices and PoT gateways to

the existing communication servers without overwhelming their resources, affecting their

design capacities, or changing their existing configurations. This reduces the deployment

cost of the proposed PoT framework and provides widespread coverage and connectivity

without the need for additional infrastructure investments. Also, PoT allows IoT systems

to benefit from pervasive phone network coverage, reaching both urban and rural areas

where the phone network is already present. Furthermore, PoT can leverage the existing

capabilities of phone networks, such as voice communication, messaging services, and

location-based services, to enhance the system’s functionality and provide a more com-

prehensive user experience. The following sections provide an in-depth breakdown of the

64

Chapter 3. Proposed PoT Framework 65

system’s component hierarchy, outlining each element’s specific roles and responsibilities.

Figure 3.1: Overview of the Phone of Things (PoT) framework.

3.1 Overview

The proposed PoT framework is depicted in Figure 3.1. The PoT framework comprises

a hierarchy of interconnected devices with different capabilities operating on different

layers. Various heterogeneous and typically constrained devices at the perception layer

sense and actuate the surroundings and communicate with the PoT gateway using many

communication protocols stack [100]. These communication protocol stacks depend on

device capability, distance, data rate, power consumption, and environmental considera-

tions. At the lower end of the spectrum, serial protocol stacks such as RS232 and RS485

are commonly utilized by devices for short-range communication over wires to provide re-

liable point-to-point or multi-drop connections, making them suitable for scenarios where

devices are in close proximity to the PoT gateway [101]. As the need for broader coverage

and higher data rates arises, capable communication protocol stacks like Ethernet and

Chapter 3. Proposed PoT Framework 66

Wi-Fi come into play, enabling fast and reliable communication over local area networks

(LANs) and Wireless Local Area Networks (WLANs) for capable devices and making

them suitable for IoT deployments within the enterprise or industrial settings [100].

The PoT gateway plays a crucial role in enabling seamless VoIP connectivity to het-

erogeneous IoT devices, each utilizing different communication protocol stacks. The PoT

gateway has the flexibility to support multiple communication protocols, accommodating

the diverse connectivity requirements of various devices within the typical IoT ecosys-

tem. This flexibility allows for integrating devices operating on protocols like Ethernet,

Wi-Fi, Zigbee, Z-Wave, Bluetooth, and more. To support multiple protocol stacks, the

PoT gateway adopts different approaches. One approach involves natively supporting

some protocol stacks directly on the gateway hardware. This means that the necessary

hardware components, such as radio modules and transceivers, are built into the gateway

itself, enabling direct communication with devices using different protocols. This native

support offers seamless connectivity and simplifies the deployment process. Another ap-

proach involves using dongles or add-on modules that support other protocol stacks that

are not natively supported by the PoT gateway’s hardware. These dongles are plugged

into the IoT gateway, expanding its compatibility with additional communication proto-

cols. The latter approach allows for greater flexibility, as new protocols can be added or

upgraded through the use of compatible dongles without requiring significant hardware

changes or replacements, maintaining the system’s modularity and allowing for seamless

expansion and adaptation as new devices and protocols emerge in the ever-evolving IoT

landscape.

On top of the communication layer between the constituent surrounding devices and

the gateway, the proposed system utilizes a proposed lightweight messaging protocol,

which we call tSIP, tailored for small code footprints, efficient data exchange, and seam-

less interaction with the device through the existing communication server within the

premises. tSIP provides lightweight abstractions of the SIP protocol methods that can

Chapter 3. Proposed PoT Framework 67

be translated back to their original SIP messages with the help of the PoT gateway.

Consequently, the PoT gateway acts as a central hub that receives tSIP messages from

the perception layer devices and maps them to their corresponding SIP messages. The

gateway ensures seamless integration between the IoT devices and the communication

server by leveraging this mapping process, rendering devices as typical SIP endpoints

in the VoIP ecosystem. Furthermore, the gateway is responsible for registering the de-

vices to the communication server and authenticating their identity before granting their

messages exchange with the communication server. This registration and authentication

mechanism is implemented through the provision of a decentralized algorithm based on

blockchain technology and smart contracts deployment. The proposed registration and

authentication mechanism is meant to secure devices association with the communica-

tion servers while preventing the exhaustion of their resources or affecting their designed

capacity, promoting the adoption of the proposed framework. Therefore, the proposed

PoT framework provides a cohesive, modular, and standardized approach to facilitate

communication and collaboration between IoT devices and the existing SIP-based com-

munication infrastructure, enabling enhanced connectivity and interoperability within

the IoT ecosystem.

3.2 PoT Gateway

3.2.1 PoT Gateway as an IP-PBX Server

The PoT gateway is built upon an embedded Linux platform, namely the Raspberry Pi 3

Model B+ board [102]. The PoT gateway is equipped with an open-source IP-PBX server

through the installation of bare-metal Asterisk [40] software on top of the Raspberry Pi

OS [103] (previously called Raspbian). Integrating Asterisk into the PoT gateway brings

numerous benefits to the realm of telecommunications and smart objects:

Chapter 3. Proposed PoT Framework 68

Text

Internet

PoT
Gateway

Cloud-Hosted

IP-PBX Server

PSTN

Internet Telephony Service Provider (ITSP)

UC Server

Home
Office

Enterprise
Building

SIP
Trunk

PoT Gateway as an

integral part to the

existing UC solution

in large enterprise

PoT Gateway as a

standalone solution

for small business

Activate
relay no.1

Figure 3.2: Scalability of PoT through SIP Trunks: Facilitating Multi-Site Interconnec-
tions.

• Asterisk, being an open-source telephony platform, offers flexibility and scalability

to the proposed system, allowing seamless integration with IoT devices and gate-

ways through the existing phone network infrastructure. This enables the creation

of a robust and adaptable framework that can seamlessly handle diverse device

types through the existing phone assets (i.e., phone sets, softphones, etc.).

• Asterisk’s advanced call routing capabilities enable efficient call management and

routing for IoT devices, facilitating smooth communication between devices, users,

and applications.

• Asterisk’s support for various telephony protocols and codecs ensures compatibility

with various telecommunication systems (i.e., IP-PBX, legacy TDM PBX, PSTN,

ITSP, etc.), ensuring interoperability and eliminating communication barriers.

• Asterisk’s extensive feature set, including voice recognition, text-to-speech, and call

Chapter 3. Proposed PoT Framework 69

recording, enhances the functionality of PoT systems, enabling voice-controlled IoT

devices and comprehensive monitoring capabilities through the mature technologies

and abstractions of phone systems that people of all ages and backgrounds are

already familiar with.

• Integrating Asterisk into the proposed framework to provide VoIP communication

brings significant advantages, especially for homes and small-to-medium-sized busi-

nesses that may not have an IP-PBX system by default. This, combined with the

utilization of powerful yet cheap SBCs, offers an affordable, scalable, and feature-

rich solution for them to enjoy the advantages of modern telephony systems without

the need for complex and expensive infrastructure, especially the significant invest-

ments in dedicated IP-PBX equipment.

• It allows interfacing the proposed framework with remote communication systems

through standardized SIP trunks [104]. SIP trunking is a mature virtual connection

that leverages the existing TCP/IP network infrastructure, ultimately the Internet,

to interconnect distant communication servers. SIP trunks eliminate the use of a

dedicated physical connection between communication servers, reducing the cost

and eradicating wasted resources. Also, since SIP trunks are virtual connections,

adding or removing trunks is seamless and dynamic, enhancing the PoT system’s

scalability, as illustrated in Figure 3.2.

Ultimately, integrating Asterisk into the proposed framework empowers businesses

and individuals to build reliable and intelligent communication infrastructures that drive

the seamless integration of surrounding IoT devices into our everyday lives.

3.2.2 PoT Gateway as an OpenVPN Client

The PoT gateway can be connected to the Internet using a wired connection utilizing

the built-in Fast Ethernet port on the Raspberry Pi board. The Raspberry Pi board is

Chapter 3. Proposed PoT Framework 70

Table 3.1: Basic configuration of the VPS instance utilized by the proposed system.

Property Configuration

Server Location Toronto, Canada
Server Type Linux, Ubuntu 18.04 × 64
No. of CPUs 1

RAM 1 GB
Storage 25 GB SSD

Bandwidth 500 GB
Cost $5 USD/month

Hypervisor

Physical Hardware

PoT Gateway No. 1

The Internet

WAN: <Public_IP_Address_1>
LAN: 10.10.11.0/24
WLAN: 10.10.1.0/24

WAN: <Public_IP_Address_3>
LAN: 10.10.13.0/24

172.16.10.254

WAN: <Public_IP_Address_2>
LAN: 10.10.12.0/24
WLAN: 10.10.2.0/24

Virtual Private Server (VPS) Instance

Home
Office

Enterprise
Building

OpenVPN Client

PoT Gateway No. 2
OpenVPN Client

OpenVPN Server

Text

Text

Figure 3.3: Overview of secure tunnel establishment between distant PoT gateways
through VPN connection.

Chapter 3. Proposed PoT Framework 71

configured as an OpenVPN client [105]. At the startup of the board, it automatically

connects through the Internet to an OpenVPN server running on a Linux-based virtual

private server (VPS) instance hosted by Vultr [106], as illustrated in Figure 3.3. Table 3.1

lists the basic configuration of the VPS instance. Enabling the PoT gateway with a VPN

(Virtual Private Network) connection brings several advantages, particularly in terms of

secure communication and enhanced management capabilities. Integrating a VPN into

the PoT gateway ensures all communications between distant gateways are encrypted,

ensuring privacy and protection against unauthorized access. This is especially crucial

when dealing with sensitive data or exchanging messages between distant gateways over

the network. Additionally, the VPN connection enables secure remote access to the

PoT gateway, allowing system administrators to manage and monitor the gateways from

anywhere with an internet connection. This facilitates efficient fleet management, as

administrators can remotely configure and troubleshoot devices without the need for

physical access. Moreover, the VPN connection enables seamless firmware upgrades for

the gateway. By securely transmitting firmware updates over the VPN, administrators

can ensure that the gateways run the latest software versions with improved features,

bug fixes, and security patches. Overall, enabling a PoT gateway with a VPN connection

offers a robust and secure communication infrastructure, convenient fleet management,

and firmware upgrade capabilities, empowering businesses and individuals to maintain a

reliable and up-to-date framework.

3.2.3 PoT Gateway as a Wi-Fi Access Point

The PoT gateway is configured as an access point using the built-in dual-band WLAN

interface on the Raspberry Pi board. Enabling the gateway as a Wi-Fi access point offers

several benefits and holds great potential for future upgrades to the proposed framework.

The gateway becomes a versatile communication hub by incorporating Wi-Fi capabili-

ties into the gateway, providing wireless connectivity to nearby Wi-Fi-enabled devices.

Chapter 3. Proposed PoT Framework 72

This enables seamless integration and communication between Wi-Fi-enabled devices,

creating a standalone, unified, and interconnected ecosystem. Moreover, leveraging the

SDN (Software-Defined Network) [107] paradigm as a future upgrade direction for the

proposed framework, the gateway can be dynamically managed and configured to adapt

to changing network conditions. SDN allows for centralized control and programmabil-

ity, enabling efficient allocation of network resources and optimizing performance. The

gateway, acting as a Wi-Fi access point, can easily integrate with SDN controllers, en-

abling administrators to monitor and manage network traffic, apply security policies,

and prioritize traffic based on specific requirements. This level of control and flexibility

enhances the network’s overall efficiency, scalability, and security. Additionally, combin-

ing the PoT gateway as a Wi-Fi access point with SDN paves the way for innovative

applications such as location-based services, context-aware networking, and intelligent

resource allocation. Ultimately, enabling the PoT gateway as a Wi-Fi access point in the

context of SDN brings significant advantages in terms of seamless connectivity, efficient

network management, and the potential for transformative IoT applications.

3.2.4 PoT Gateway as an MQTT Broker/Publisher

The PoT gateway acts as a message broker, namely an MQTT broker. This brings

numerous benefits to the proposed framework. Firstly, it enables seamless communication

and data exchange between ubiquitous and MQTT-supported IoT devices, applications,

and cloud services on the one hand and the PoT gateway on the other hand, facilitating

their monitoring and control through the phone network infrastructure. By serving as

a centralized MQTT hub, the PoT gateway allows devices with different protocols and

standards to interact seamlessly and effortlessly with the proposed framework through

MQTT message exchange, facilitating its interoperability. This promotes the integration

of diverse devices and systems into the proposed framework, ensuring smooth operation

and efficient utilization of surrounding devices. Secondly, leveraging the PoT gateway as

Chapter 3. Proposed PoT Framework 73

a message broker enhances the scalability and flexibility of the proposed framework, as it

can handle multiple connections and efficiently distribute messages across the network.

This optimizes the overall performance and responsiveness of the proposed framework,

enabling real-time data processing and analysis.

The PoT gateway could also publish messages to cloud-hosted real-time databases,

like the Firebase Realtime database [108] from Google Cloud Platform (GCP). This

database could provide a shared data space between the PoT gateways. It also acts

as an external interface to potential third-party services and applications. Besides, the

shared data space between the PoT gateways would coalesce into a social network of

things (SNT) and support assistive services in the public sensing domain. A sample web

application is implemented using a Python-based web development framework, namely

Django, to monitor and control the proposed framework using an instance of the Firebase

Realtime database interfaced to the PoT gateway through MQTT over WebSocket [109].

Figure 3.4: Flowchart of the integration between the embedded Asterisk server to the
PoT gateway and Google’s Dialogflow chatbot agent.

Chapter 3. Proposed PoT Framework 74

3.2.5 PoT Gateway and Chatbots Integration

Integrating the PoT gateway with a chatbot agent, such as Dialogflow from Google [110],

offers numerous benefits and holds great potential in the realms of telephony and IoT

applications. By interfacing the PoT gateway with a chatbot agent, users can leverage

natural language processing and machine learning capabilities to enable interactive and

intelligent communication with the surrounding gadgets. This integration allows users

to interact with their IoT devices using intuitive voice commands and text messages

through regular phone calls using their existing phone sets, making the interaction more

user-friendly and intuitive. For telephony applications, users can make voice calls to

the PoT gateway, which, in turn, interacts with the chatbot agent to perform various

tasks, such as making phone calls, sending messages, creating dynamic interactive voice

response (IVR) for businesses, or retrieving information from specific surrounding gadgets

to answer the caller’s queries. This enhances the overall telephony experience by adding

intelligent, automated, and personalized features to the communication process. In terms

of IoT applications, integrating the PoT gateway with a chatbot agent enables voice-

controlled device management, status monitoring, and real-time notifications. Users can

use voice commands to control and inquire about the status of their surrounding gadgets,

facilitating seamless and efficient user engagement with the surrounding devices. This

integration opens up opportunities for innovative IoT applications, such as smart home

automation, voice-controlled industrial processes, personalized IoT services, and context-

aware telephony solutions.

In the proposed PoT framework, the PoT gateway is interfaced with Google’s Di-

alogflow [110] through the embedded Asterisk server on the gateway, as an example of

chatbot integration with the gateway. We configured the Asterisk server running on the

PoT gateway such that we built an interactive voice response (IVR) menu on a specific

extension number. Upon dialling this number, the IVR instructs the caller to ask Google

Chapter 3. Proposed PoT Framework 75

Assistant a question or invoke the developed Dialogflow chatbot application using pre-

defined word(s). Asterisk then waits for a predetermined amount of time for the user’s

utterance. Upon detecting the user’s voice, it records the user’s utterances as an audio file

and saves it to the gateway. The system then changes the sampling rate of the recorded

audio file from 8kHz (the sampling rate of phone calls) to 16kHz (suitable for Google

Assistant), sends the file using the low-level APIs offered by Google to Google Assistant

via the Internet, and waits for a reply. Upon receiving the audio file from Google As-

sistant, the system first changes the sampling rate of the received audio file from 16kHz

to 8kHz and plays back the response to the user. The received responses may include

responses to the user’s query or the status of actions carried out on the associated devices

with the PoT gateway. Asterisk interfacing and audio file manipulation are carried out

using scripts written in the Python programming language. These scripts are invoked

by Asterisk using the AGI [111]. Figure 3.4 depicts a flowchart of the abovementioned

process.

STEVAL-XPLM01CPL
Power line communication AC coupling circuit

(coupling and isolation)

X-NUCLEO-PLM01A1
Power line communication expansion board

(Based on ST7580 power line transceiver SoC)

Arduino Board
(Control logic)

Relay Board

Adapter Controller AC Outlet

Figure 3.5: Architecture of the PLC adapter controller for the proposed PoT framework.

Chapter 3. Proposed PoT Framework 76

Room 1Room 2

PLC-enabled PoT GatewayRoom 3

AC Plug

AC Plug AC Plug

Power
Cable

Turn off light
at room 1

Figure 3.6: Overview of the proposed PLC-enabled PoT framework.

3.2.6 Enabling the PoT gateway with Powerline Communica-

tion (PLC) Capability

Empowering the PoT gateway with Powerline Communication (PLC) modem offers no-

table benefits in terms of expanding connectivity options, enhancing the reach of sur-

rounding devices, and hardening the proposed system security. PLC utilizes existing

powerlines within the premises to transmit data, effectively turning electrical wiring into

a communication medium [112]. PLC highly extends the range of connected devices to

the PoT gateway, including all mains-powered devices at home and in the enterprise.

By integrating a PLC modem into the PoT gateway, PLC-enabled devices can utilize

powerlines to establish communication links with the gateway, eliminating the need for

additional wired or wireless infrastructure. This allows the conversion of billions of legacy

and non-IoT-enabled devices, which are still in production and are widely used today,

Chapter 3. Proposed PoT Framework 77

to controllable objects. The range of legacy devices includes conventional light bulbs,

power strips, and home appliances. In the proposed framework, this is done through

the development of an adapter controller which integrates a powerline communication

modem, as depicted in Figure 3.5. The adapter controller fits between the device and

the mains. It connects to the PoT gateway, which utilizes a PLC modem, through the

existing powerlines, as illustrated in Figure 3.6.

PLC opens up new possibilities for connecting devices in areas where traditional

wireless signals may have limitations or face interference, like industrial settings. PLC-

enabled devices can seamlessly communicate and exchange data over the powerlines,

enabling a wider range of IoT applications, including smart home automation, energy

management, and industrial control systems. Furthermore, PLC communication provides

robustness and reliability, as powerlines are typically stable and offer consistent connec-

tivity. This integration improves connectivity in environments with unreliable wireless

signals or congestion. Moreover, PLC offers several security benefits when integrated into

the proposed framework. One of the key advantages is the inherent encryption. PLC

modems often utilize encryption algorithms to protect data transmitted over powerlines,

ensuring that sensitive information remains secure. This encryption provides an addi-

tional layer of privacy, preventing unauthorized access and eavesdropping on data trans-

missions. Additionally, PLC systems typically operate within a closed network, limiting

access to authorized devices connected to the same powerlines. This isolation reduces

the risk of external attacks and unauthorized access attempts. Moreover, PLC commu-

nication is less susceptible to wireless signal interception or interference as it utilizes the

existing power infrastructure. This makes it more challenging for potential attackers to

tamper with or disrupt the communication flow. Furthermore, combined with other se-

curity measures of the proposed framework, such as extension number-based ACL, PLC

helps to enhance the overall system security. Therefore, with proper configuration and

monitoring, potential vulnerabilities of the proposed system are largely mitigated and

Chapter 3. Proposed PoT Framework 78

can be identified and addressed promptly.

SparkFun MicroMod Artemis Processor

SparkFun MicroMod Machine Learning Carrier Board

Figure 3.7: SparkFun’s TinyML development board (MicroMod Artemis Processor
board).

3.2.7 Enabling the PoT Gateway with Tiny Chatbot Agent Ca-

pability

Enabling the proposed framework with a tiny chatbot agent using TinyML technolo-

gies offers several compelling benefits to the framework. TinyML refers to deploying

machine learning models on resource-constrained devices, such as microcontrollers and

SBCs [25]. By integrating tiny chatbot agents into the PoT gateway, users can directly

experience localized, fast, and intelligent communication with the gateway. The tiny

chatbot agent embedded in the gateway leverages the power of TinyML to process nat-

ural language and deliver personalized responses in real time, decoupling the proposed

framework’s dependence on the Internet to be fully functional. This local processing

Chapter 3. Proposed PoT Framework 79

Answer Call

Wait for User Utterance

Voice Detected
within Predefined

Period?

Record Audio File

Change Sampling Rate
from 8kHz to 16kHz

Send Audio File to TinyML
Development Board

Yes

Hangup Call

End

No

Feature Provider
Convert raw audio data into

spectrograms

TFLite Interpreter
Runs the model

Command Responder
Send the recognized command’s

code to the PoT Gateway

Model
Trained to classify limited

set of commands

Command
Recognized?

End

Receive
Command

Code?

Take Action
On Associated Devices Based
On Received Command Code

Hangup Call

End

No

Yes

No

Yes

Turn off light
at room 2

Figure 3.8: Flowchart of tiny chatbot embedding in the PoT gateway using TinyML.

reduces reliance on cloud services, enabling faster response times, enhancing privacy, and

improving the offline capabilities of the proposed framework. Furthermore, deploying a

tiny chatbot agent, suitable for IoT applications with limited command sets, on the gate-

way optimizes its resource utilization, minimizing its power consumption and memory

requirements. This allows for efficient operation of the gateway, extending its battery

life and reducing the operational costs of the framework. Figure 3.7 gives an example

of a TinyML module, namely Sparkfun’s MicroMod Artemis Processor board, plugged

into Sparkfun’s MicroMod Carrier Board. Figure 3.8 shows the flow chart that illustrates

embedding a tiny chatbot into the PoT gateway.

Chapter 3. Proposed PoT Framework 80

Figure 3.9: Silvertel’s Ag2130 PSTN interface module.

Figure 3.10: Silvertel’s Ag2130 evaluation board.

Figure 3.11: CPC5750 single-channel voice band codec IC.

Chapter 3. Proposed PoT Framework 81

3.2.8 Enabling the PoT Gateway with PSTN Interface Cir-

cuitry

Integrating a PSTN (Public Switched Telephone Network) interface circuit into the PoT

gateway offers significant benefits in terms of interoperability and enhanced communica-

tion capabilities. The PSTN interface circuit enables seamless connectivity and commu-

nication between legacy telephony systems (i.e., TDM PBX and PSTN) and the proposed

framework. By integrating PSTN support, the PoT gateway can bridge the gap between

legacy and modern telephone networks, allowing framework reachability from both tra-

ditional landline phones and modern communication servers. This integration enhances

the versatility and accessibility of the PoT system, enabling users to leverage existing

legacy telephone infrastructure while incorporating the benefits of IP-PBX functionali-

ties integrated into the gateway. Moreover, the PSTN interface circuit facilitates reliable

and high-quality voice communication by connecting to the robust and well-established

PSTN network. This ensures compatibility with various telephony services, including

emergency calls. Additionally, integrating the PSTN interface circuit with the PoT gate-

way offers the potential for advanced features such as call routing, voicemail, and call

forwarding to the pervasive PSTN using the existing and rarely used landline phones at

homes without the need for third-party SIP trunking services like ITSP, reducing the

deployment cost of the proposed framework.

The PSTN interface circuit embedded in the PoT gateway is built around a PSTN

interface module from Silvertel, namely the Ag2130 [113], shown in Figure 3.9. Ag2130 is

a self-contained, highly integrated PSTN interface circuit in a single in-line (SIL) module.

Ag2130 connects to the analogue phone line utilizing an evaluation board for the module,

shown in Figure 3.10, with all the proper impedance and isolation. The input and output

analogue audio pins from the Ag2130 are connected to the CPC5750, a single-channel

voice band audio codec integrated chip (IC) shown in Figure 3.11, for digitization. The

Chapter 3. Proposed PoT Framework 82

gateway controls different settings of the audio codec IC through the built-in SPI (Serial

Peripheral Interface) interface of the gateway’s SBC. In contrast, the audio data is sent

and received from the audio codec IC using the PCM pins of the gateway’s SBC.

3.3 PoT Devices

The PoT devices in the proposed system include all connected objects to the PoT gateway

for developing and testing the proposed PoT framework as a proof-of-concept. Unlike

IoT devices, PoT devices do not necessarily implement the TCP/IP protocol stack to

connect to the PoT gateway. Hence, PoT devices are a superset of IoT devices. The PoT

gateway provides different, less processing-intensive communication protocol options for

simple devices with processing or power consumption constraints. The employed PoT

devices in the proposed framework include:

Figure 3.12: Multi-standard CC2650 SensorTag from Texas Instruments (TI).

Chapter 3. Proposed PoT Framework 83

• CC2650 SensorTag: It is a multi-standard IoT device from Texas Instruments

(TI) that offers a multitude of functionalities and features, shown in Figure 3.12.

Equipped with a wide range of sensors such as temperature, humidity, accelerom-

eter, gyroscope, magnetometer, and ambient light sensor, the SensorTag provides

comprehensive environmental data about its surroundings for monitoring and anal-

ysis [114]. To interface the SensorTag with the PoT gateway, we utilize the Blue-

tooth capabilities of both devices, namely BLE. The Raspberry Pi supports BLE

connectivity, allowing it to establish a connection with the SensorTag. We establish

a communication link between the two devices by installing the necessary Bluetooth

software and libraries to the PoT gateway. Once connected, the PoT gateway can

access the SensorTag’s sensor data by reading and parsing the Bluetooth GATT

(Generic Attribute) profiles exposed by the SensorTag. These profiles provide ac-

cess to the sensors on the SensorTag, such as temperature, humidity, accelerometer,

etc. Using Python programming language, we developed scripts on the PoT gate-

way to retrieve data from the SensorTag’s sensors. The gateway invokes These

scripts autonomously to respond to specific user queries through phone calls.

• M5Stack: It is an innovative and versatile development platform offering a com-

pact, all-in-one solution for building IoT prototypes and projects. Its compact form

and rechargeable battery make it highly portable and ideal for on-the-go prototyp-

ing. The M5Stack platform features a modular design, combining an ESP32-based

microcontroller with various stackable modules, including displays, sensors, com-

munication modules, and input devices. This modular approach allows for easy

customization throughout the development of tSIP, and the proposed registration

and authentication mechanism of the devices to the PoT gateway, as delineated in

Chapter 4. Additionally, M5Stack supports various programming languages, such

as MicroPython [115] and Arduino, facilitating its development cycle. The M5Stack

can seamlessly connect to the PoT gateway with its onboard Wi-Fi and Bluetooth

Chapter 3. Proposed PoT Framework 84

Figure 3.13: M5Stack: Core2 ESP32 IoT development kit.

capabilities.

Figure 3.14: ModBus thermostat.

• ModBus device: The Modbus protocol, specifically Modbus RTU or Modbus

TCP, provides a standardized and efficient method for monitoring and control-

ling devices. Modbus is crucial in building automation systems (BAS), providing

a standardized and reliable communication protocol for seamlessly integrating di-

verse devices and systems. In a BAS, various components such as sensors, actuators,

Chapter 3. Proposed PoT Framework 85

controllers, and supervisory software must exchange data to monitor and control

building systems effectively. Modbus, with its simplicity and widespread adoption,

facilitates this data exchange by enabling interoperability between different devices

and vendors. For example, Modbus can connect temperature sensors, HVAC con-

trollers, lighting systems, energy meters, and more, allowing the BAS to monitor

and adjust environmental conditions, optimize energy usage, and ensure occupant

comfort. By implementing Modbus capability to the PoT gateway, the proposed

framework can efficiently gather data from distributed devices on the premises and

provide centralized control and monitoring to these devices through the existing

phone network infrastructure. We designed a ModBus driver for the PoT gateway

to facilitate integration with ModBus devices. As proof of concept, we interface

the gateway to an RTU ModBus temperature sensor. To integrate the tempera-

ture sensor with the PoT gateway, we install a USB-to-RS485 dongle to the PoT

gateway to connect it to the temperature sensor, install the pyserial library to

enable Modbus communication in the gateway and write Python code to estab-

lish communication with the Modbus device. We can read and write data from/to

the ModBus resisters in the thermostat to respond to user commands and queries

invoked through a phone call regarding the sensor.

• Relay board: Integrating a relay board into the PoT gateway offers the proposed

framework advanced control and automation capabilities. A relay board consists

of multiple relays that can be controlled individually and electronically, enabling

the PoT system to switch and control external devices or circuits. Leveraging re-

lay board integration with the PoT gateway, users can remotely control electrical

appliances, lights, motors, or other electronic devices. This integration allows for

implementing advanced automation scenarios and intelligent control of various sys-

tems as future work for the proposed PoT framework. For example, in a smart

home context, integrating a relay board enables the PoT system to control lights,

Chapter 3. Proposed PoT Framework 86

HVAC systems, or security devices, providing convenience, energy savings, and

enhanced security. Moreover, relay boards offer flexibility and expandability, as

they can handle multiple relays and support different voltages and currents. This

allows for the customization and scalability of the PoT system based on specific

needs and requirements. By integrating a relay board into the PoT infrastructure,

users can remotely control and automate a wide range of devices, enhancing con-

venience, efficiency, and the overall functionality of the connected ecosystem to the

framework.

3.4 Summary

This chapter presents the proposed Phone of Things (PoT) framework. The PoT frame-

work is proposed as a paradigm shift for IoT system design. It extends the accessibility

options for the surrounding devices within the premises through the ubiquitous phone

network infrastructure and assets. This provides seamless interaction with the surround-

ing objects through mature phone technologies whose abstractions are recognized by all

people of different ages, enhancing user engagement with the surrounding objects.

The chapter begins by discussing the role of the PoT gateway within the framework

and its different configuration possibilities. It explores the concept of the PoT gateway as

an IP-PBX server, OpenVPN client, Wi-Fi access point, and MQTT broker/publisher.

This is intended to highlight the wide range of configuration possibilities regarding the

gateway to accommodate various PoT application needs, thanks to the modular design

philosophy of the gateway.

The chapter also explores integrating the gateway with chatbot agents for innovative

telephony applications and the possibility of a tiny chatbot embedding within the PoT

gateway using TinyML technology, obviating the need for Internet access to be fully

functional. The chapter also overviews integrating a powerline communication (PLC)

Chapter 3. Proposed PoT Framework 87

modem with the gateway to manage mains-powered devices by simple phone calls us-

ing the PoT gateway through the existing powerline cables. The chapter also reviews

interfacing the gateway to PSTN and legacy TDM-PBX systems by developing an FXO

circuit interfaced with the gateway, emphasizing the importance of interoperability and

compatibility.

The chapter then delves into the types of devices that can be associated with the

PoT gateway, highlighting the wide range of possibilities, including sensors, actuators,

wearables electronics, and BAS devices. Each device type is explained in detail, discussing

its functionalities and potential applications within the framework.

Overall, the proposed PoT framework chapter provides a comprehensive understand-

ing of the gateway’s role, the diverse range of devices that can be integrated, and the

various configuration options available within the framework. This knowledge lays the

foundation for the subsequent chapters, where the framework’s implementation, testing,

and evaluation will be discussed in greater detail.

Chapter 4

PoT Framework Implementation

This chapter focuses on the implementation details of the proposed PoT (Phone of

Things) framework introduced in the previous chapter. It delves into the technical as-

pects and provides a comprehensive development process overview. The implementation

phase transforms the theoretical framework into a tangible and functional system. This

chapter will explore the tools, technologies, and methodologies to realize the proposed

framework. We start with a feasibility study of embedded Linux SBCs as a suitable

candidate to act as PoT gateways in the proposed framework. This allows for efficient

development and deployment of PoT applications based on these tiny and cost-effective

SBCs, as developers can leverage the rich ecosystem of Linux-based software and frame-

works while optimizing the deployment cost of the framework. Additionally, embedded

Linux platforms offer excellent scalability, enabling them to handle diverse PoT require-

ments and accommodate varying computational power and memory levels.

The chapter then focuses on the two main contributions of the thesis to realize PoT.

Firstly, it starts with developing a lightweight messaging protocol based on the SIP

(Session Initiation Protocol) protocol, called tSIP, for PoT applications. tSIP allows

constrained devices to act as typical SIP endpoints in the VoIP ecosystem, facilitating

their command and monitoring through communication servers. Secondly, the chapter

88

Chapter 4. PoT Framework Implementation 89

goes through the development of a lightweight registration and authentication mechanism

based on blockchain technology. The proposed mechanism provides a robust and secure

association of surrounding devices with the existing communication server within the

premises without exhausting its resources.

This chapter aims to provide a detailed account of the development process, offering

insights into the practical considerations, challenges faced, and rationale behind the cho-

sen implementation approaches. The information presented here will serve as a valuable

resource for understanding the inner workings of the framework and pave the way for the

subsequent chapter, where the evaluation and performance analysis of the implemented

system will be discussed.

4.1 Feasibility Study

4.1.1 Introduction

A feasibility study is crucial in determining the viability and success of implementing

embedded Linux SBCs as PoT gateways in the proposed framework. This study helps to

assess the practicality and potential challenges associated with this implementation. By

conducting a thorough feasibility study, various aspects are carefully evaluated, including

technical requirements, the maximum number of simultaneous VoIP calls the utilized SBC

can gracefully handle, and the recommended configurations of the embedded Asterisk

server within the PoT gateway for different application scenarios, ensuring better system

responsiveness and standardized VoIP call quality metrics. This helps identify potential

risks, limitations, and possible solutions to ensure a seamless integration and efficient

operation of the PoT gateway as the system scales. The feasibility study also sets realistic

expectations for a successful implementation.

Chapter 4. PoT Framework Implementation 90

4.1.2 VoIP Codecs

VoIP Codecs are essential components in the VoIP ecosystem. Codecs are responsible for

encoding and compressing voice signals into digital packets for efficient transmission over

IP networks [116]. They also handle the decoding process at the receiving end to restore

the voice signals to their original form. VoIP codecs are critical in determining the audio

quality, bandwidth utilization, and overall performance of VoIP calls. Various codecs are

available, each with its own characteristics, trade-offs, and compression algorithms [116].

G.711 audio codec is a widely used codec that provides excellent audio quality but

consumes higher bandwidth due to its uncompressed nature. G.729, on the other hand,

is a low-bit-rate codec, typically utilized by ITSPs, that offers good voice quality while

significantly reducing bandwidth requirements. When conducting a feasibility study in

VoIP, it is beneficial to consider both the G.711 and G.729 audio codecs due to the

following reasons:

• Audio Quality vs. Bandwidth Efficiency: G.711 offers superior audio quality

as it transmits voice signals in an uncompressed format. This makes it ideal for

scenarios where audio fidelity is a priority, such as in professional environments or

when maintaining call clarity is crucial. On the other hand, G.729 is a low-bit-rate

codec that provides reasonable audio quality while significantly reducing bandwidth

requirements. Considering both codecs allows for evaluating the trade-off between

audio quality and bandwidth efficiency based on the specific needs and limitations

of the VoIP deployment.

• Bandwidth Considerations: Bandwidth availability and limitations are key fac-

tors in VoIP implementations. G.711 consumes higher bandwidth due to its uncom-

pressed nature, making it suitable for scenarios with abundant network resources.

G.729, being a compressed codec, optimizes bandwidth usage and is ideal for envi-

ronments with limited bandwidth or when transmitting calls over low-bandwidth

Chapter 4. PoT Framework Implementation 91

connections, such as communication with ITSPs. By evaluating both codecs, the

feasibility study can determine the codec that best aligns with the available network

infrastructure and the desired quality of service.

• Compatibility and Interoperability: G.711 and G.729 are widely supported

and have broad compatibility across VoIP systems, devices, and networks. Both

codecs ensure compatibility with different endpoints, softphones, and SIP-based

systems. It allows for seamless communication and interconnectivity between di-

verse devices and networks, enhancing the feasibility and versatility of VoIP de-

ployment.

• Scalability and Cost: Scalability is important when planning VoIP deployments.

G.729 requires fewer network resources due to its compression algorithm, making

it more scalable for large-scale implementations where the number of simultaneous

calls is high. This scalability can have cost implications, such as reduced infrastruc-

ture requirements and potential cost savings on bandwidth usage. By evaluating

G.729 alongside G.711, the feasibility study can assess the scalability and cost-

effectiveness of the VoIP solution.

Therefore, considering G.711 and G.729 codecs in the feasibility study allows for a

comprehensive evaluation of the trade-offs between audio quality, bandwidth efficiency,

compatibility, scalability, and cost. It ensures that the chosen codec aligns with the

specific requirements and constraints of the VoIP deployment, ultimately leading to an

informed decision on the feasibility and viability of the project.

4.1.3 Passthrough vs. Transcoding VoIP Calls

Passthrough and transcoding VoIP calls represent two distinct approaches to handling

voice communication over IP networks, each with advantages and considerations [117].

Chapter 4. PoT Framework Implementation 92

In passthrough VoIP calls, the voice data is transmitted without modification or com-

pression. This method is advantageous as it preserves the original audio quality and

minimizes latency since the voice packets are transmitted as-is. However, passthrough

calls require high network bandwidth, making them more suitable for scenarios where

bandwidth is abundant, such as local networks or dedicated VoIP connections.

On the other hand, transcoding VoIP involves compressing the voice data to reduce

bandwidth requirements. This compression can be lossy, resulting in a slight degrada-

tion of audio quality. However, transcoding reduces bandwidth consumption, making it

a more practical choice for environments with constrained network resources or when

transmitting calls over the Internet. Transcoding also allows for compatibility between

different VoIP protocols or codecs, enabling seamless communication between various

devices or VoIP systems.

Transcoding VoIP typically requires more processing capability than passthrough calls

due to the additional computational tasks involved. When transcoding, the voice data

must be decoded from the source codec, processed or modified as needed, and then en-

coded into the target codec before transmission. This involves significant computational

overhead and requires specialized hardware or software resources to handle the transcod-

ing operations efficiently. The more intensive the transcoding operation (e.g., converting

between high-complexity codecs or handling multiple simultaneous transcoding calls), the

higher the processing requirements. Transcoding also introduces additional latency to

the VoIP call due to the decoding and encoding processes. This latency can impact real-

time communication and may require appropriate buffering mechanisms to mitigate any

adverse effects on call quality. Dedicated hardware components or specialized software

solutions can be employed to address the increased processing demands of transcoding.

Hardware solutions like digital signal processors (DSPs) or application-specific integrated

circuits (ASICs) can offload the transcoding tasks from the main processor, enabling ef-

ficient and scalable processing. Software-based transcoding can leverage multi-core pro-

Chapter 4. PoT Framework Implementation 93

Table 4.1: Acceptable VoIP call quality metrics set by Cisco.

Metric Acceptable Value

Jitter <30 msec

Packet Loss <1%

RTT <300 msec

cessors or utilize specialized libraries and frameworks optimized for audio processing.

The system’s processing capability is important when implementing transcoding in a

VoIP infrastructure. Sufficient processing power and appropriate hardware or software

resources should be allocated to handle the transcoding workload effectively, ensuring

smooth, high-quality voice communication.

Choosing between passthrough and transcoding VoIP calls depends on the specific

requirements of the communication system. Passthrough is ideal when maintaining high

audio quality is critical, and bandwidth is not a constraint. Conversely, transcoding bal-

ances audio quality and bandwidth efficiency, making it suitable for conserving network

resources. Ultimately, the decision should be based on available bandwidth, network

conditions, and the desired audio fidelity for the VoIP communication system.

4.1.4 VoIP Call Quality Metrics

VoIP call quality metrics are essential for assessing and monitoring voice communication

performance over IP networks [118]. These metrics provide objective measurements that

help evaluate the overall call quality and user experience. Common VoIP call quality

metrics include:

• MOS (Mean Opinion Score): MOS is a subjective measurement representing

a call’s overall perceived voice quality. It is typically rated on a scale from 1 to 5,

with 5 being excellent quality. MOS is obtained by conducting subjective listening

tests where human listeners rate the call quality based on factors such as clarity,

background noise, and distortion. MOS provides a reliable indication of the user’s

Chapter 4. PoT Framework Implementation 94

satisfaction with the call quality.

• Jitter : Jitter refers to the variation in the arrival time of voice packets at the des-

tination. It is caused by network congestion, packet loss, or inconsistent network

conditions. High jitter can result in choppy or distorted voices during calls. Mon-

itoring and measuring jitter help identify network issues that impact call quality

and enable appropriate measures to mitigate its effects.

• Packet Loss : Packet loss occurs when voice packets are not delivered to the destina-

tion successfully. It can lead to gaps or interruptions in the conversation, affecting

call quality. Measuring packet loss helps identify network issues or congestion that

may require troubleshooting or network optimization to minimize its impact on

voice calls.

• Latency : Latency, often called delay, is the time it takes for voice packets to travel

from the source to the destination. Excessive latency can cause noticeable conversa-

tion delays, leading to natural and interactive communication difficulties. Monitor-

ing and managing latency help ensure real-time voice transmission and a seamless

user experience.

By monitoring and analyzing these VoIP call quality metrics, designers can identify

and address issues that impact call performance, enhance the user experience, and opti-

mize the VoIP infrastructure for consistent and high-quality voice communication. Cisco,

a leading networking and communication solutions provider, has established a set of ac-

ceptable VoIP quality metrics that serve as industry benchmarks [119]. These metrics

define the desired thresholds for various parameters contributing to a satisfactory VoIP

call experience. For example, Cisco’s acceptable VoIP quality metrics often include jitter,

packet loss, and round-trip time (RTT) criteria. Table 4.1 lists the acceptable VoIP call

quality metrics set by Cisco. It shows that jitter is typically expected to be less than

30 milliseconds to ensure smooth and consistent voice transmission. To maintain audio

Chapter 4. PoT Framework Implementation 95

continuity, packet loss is typically less than 1%. RTT, which measures the round-trip

time between the source and destination, must be less than 300 milliseconds to mini-

mize delays and maintain real-time communication. These metrics established by Cisco

provide a framework for evaluating and maintaining the quality of VoIP calls, ensuring

optimal performance and user satisfaction in communication networks.

4.1.5 Motivation

When conducting a feasibility study of using Raspberry Pi boards as Asterisk servers

in the proposed PoT framework, testing both passthrough and transcoding scenarios

to comprehensively evaluate the gateway’s capabilities is crucial. Testing passthrough

scenarios allows for assessing the Raspberry Pi’s ability to handle VoIP calls without

any codec conversion or modification. This provides insight into the board’s call rout-

ing, signalling, and basic voice transmission performance. On the other hand, testing

transcoding scenarios allows for a more in-depth analysis of Raspberry Pi’s processing

capacity and efficiency. It helps determine how well the gateway can handle the addi-

tional computational load of decoding and encoding voice data between different codecs,

providing a clearer picture of its performance under more demanding conditions.

The feasibility study can identify any limitations or bottlenecks in Raspberry Pi’s

processing capabilities by testing both passthrough and transcoding scenarios. It helps

determine if the device can handle the expected call volumes and concurrent transcoding

tasks and provide satisfactory voice quality. Additionally, this approach enables the

evaluation of resource allocation, such as CPU utilization, memory usage, and network

bandwidth requirements, to ensure that the Raspberry Pi as Asterisk server operates

within acceptable limits.

Testing both scenarios also helps assess the scalability of the system. It provides

insights into the number of concurrent calls the Raspberry Pi can gracefully handle in

passthrough and transcoding modes. This information is valuable in determining if the

Chapter 4. PoT Framework Implementation 96

embedded Asterisk server to the PoT gateway can meet the projected demands of a VoIP

infrastructure and whether additional hardware resources or optimization techniques are

necessary for future scalability.

Testing both passthrough and transcoding scenarios during the feasibility study of

Raspberry Pi boards as Asterisk servers in PoT applications allows for a comprehensive

evaluation of its performance, capacity, and suitability for the intended use case scenario.

It also helps identify potential limitations or performance issues, allowing PoT system

designers to make informed decisions and determine the feasibility of effectively using the

SBCs as gateways in the proposed framework.

4.1.6 Methodology

In the following subsections, we evaluate the performance of Raspberry Pi boards that

run Raspberry Pi OS when acting as IP-PBX servers using the open-source Asterisk 16

IP-PBX installed on top of the Raspberry Pi OS. This comparative study promotes tiny

and cost-effective embedded Linux SBCs as suitable candidates for PoT applications in

home and small- to medium-sized business domains or as an integral part of the UC

solutions in large enterprises to empower them with PoT capability.

We gauge the resource utilization and the operating system responsiveness of different

Raspberry Pi boards with differentiated capabilities while programmatically initiating an

increasing number of simultaneous VoIP calls. Both passthrough and transcoded VoIP

calls are implemented, tested, and contrasted to give a comprehensive overview of the

boards’ performance at different VoIP setups. We also monitor the VoIP call quality

metrics, namely, jitter and packet loss, throughout each scenario to ensure it falls within

the acceptable limits set by Cisco.

We utilize the following Python libraries in the developed Python testing scripts:

• pycall: It is used for creating and using Asterisk files, and it enables programmatic

origination of VoIP calls through the testing script

Chapter 4. PoT Framework Implementation 97

Start

Originate call to MoH extension

Start

Originate call to MoH extension

def originate_call():
 call = Call('PJSIP/moh@pi2pi')
 con = Context('loopback', 's', '1')
 cf = CallFile(call, con)
 cf.spool()

Capture %CPU utilization

def cpu_utilization_measure(PID):
 cpu_util = [0,0,0]
 p = psutil.Process(PID)
 cpu_util[0] = p.cpu_percent(interval=1)
 cpu_util[1] = p.cpu_percent(interval=5)

 cpu_util[2] = p.cpu_percent(interval=15)

Capture load average

def load_average_measure(PID):
 load_avg = [0,0,0]
 load_avg[0],
 load_avg[1],
 load_avg[2] = os.getloadavg()

%CPU utilization > 300

if cpu_util[2] > cpu_threshold:

 break

Load average > 4

if load_avg[2] > cpu_threshold:

 break

End

1

2

Yes

Yes

No

No

IP Phone

Ethernet cable
Eth

e
rn

e
t cab

le

Figure 4.1: Flowchart of the evaluation methodology for SBCs as PoT gateways with
embedded Asterisk server in the proposed framework.

Chapter 4. PoT Framework Implementation 98

• psutil: It is used to retrieve information on running processes and the system

performance metric (i.e., %CPU utilization and load average).

• os: It runs Linux bash commands from within the testing scripts and sends remote

commands to the peer PoT gateway used during the transcoding VoIP testing.

• subprocess: it is used to spawn new processes, connect to their input/output/error

pipes, and get their return codes.

The test script records the metrics of the processes running on the gateway after

each call generation. The records are saved by the test script within the gateway and

used for further analysis and visualization using data visualization software, namely,

Tableau Desktop. Figure 4.1 shows the flow diagram of the proposed performance testing

algorithm, which is summarized as follows:

1. A music-on-hold (MOH) extension is configured on the embedded Asterisk server

into the PoT gateway. MOH maintains each originated call to that extension alive

until the calling party hangs up the call. MOH allows programmatically originating

an increasing number of simultaneous calls at the PoT gateway.

2. After each call origination, the operating system metrics are captured by the test-

ing script and compared against predefined threshold values defined in the script.

Thresholds are set such that %CPU utilization <75% for single-core ARM boards

and <300% for quad-core ARM boards (equivalent to 75% per core) and the load

average (5-minute interval) < 4. These thresholds aim at:

(a) Protecting the embedded platform from potential hardware damage due to

the excessive CPU utilization by the Asterisk process.

(b) Maintaining the responsiveness of the operating system to be able to carry

out the evaluation measurements.

Chapter 4. PoT Framework Implementation 99

(c) Maintaining the quality metrics of the VoIP calls at acceptable values.

(d) Determining the maximum number of simultaneous VoIP calls the embedded

platform can gracefully serve.

3. Another VoIP call originated at the beginning of the test using an IP phone set.

It calls a MOH extension and is kept alive throughout the testing procedure. The

traffic of this VoIP call is captured using Wireshark. During the test procedure, the

traffic capture monitors the VoIP call quality metrics while originating an increasing

number of VoIP calls to ensure that both jitter and packet loss of the established

VoIP calls still fall within the standard acceptable limits.

4.1.7 Passthrough VoIP Testing

Figure 4.2 overviews the passthrough VoIP testing procedure. In passthrough, the calling

parties use the same codec to transform analog audio signals into a digital format suitable

for transmission over the network. For passthrough performance evaluation, the testing

script forces the embedded Asterisk server into the PoT gateway to originate a call to

the MOH extension through the loopback interface of the board. This resembles a SIP

trunk operation. The call origination by the script creates a communication channel

with the Asterisk server (i.e., Channel #1). On the other hand, passing the call to the

called party (i.e., MOH extension) is carried out by a SIP trunk interface defined in

pjsip wizard.conf configuration file that uses the loopback interface of the board (i.e.,

Channel #2). Since both Channel #1 and Channel #2 are configured to use the same

audio codec (i.e., ulaw), a passthrough VoIP call is established between the script and

the MOH extension. This configuration has two advantages:

1. It allows passthrough testing using a single Raspberry Pi board.

2. It shortens the testing time; since each originated call represents two active chan-

nels. As a result, it reduces the testing time by 50%.

Chapter 4. PoT Framework Implementation 100

pjsip.conf
[udp_endpoint](!)
transport=udp_transport
disallow=all
allow=ulaw
…………
[1000](basic_endpoint,udp_endpoint)
type=endpoint
callerid="GRANDSTREAM 1" <1000>
auth=1000
aors=1000
…………

pjsip_wizard.conf
[trunk_defaults](!)
type = wizard
endpoint/allow = !all,ulaw
aor/qualify_frequency = 30
registration/expiration = 1800
…………
[loopback](trunk_defaults)
endpoint/context = from-extensions
remote_hosts = 127.0.0.1:5060
sends_registrations = no
accepts_registrations = no
sends_auth = no
accepts_auth = no
…………

extensions.conf
[from-extensions]
exten => *65,1,Gosub(moh,s,1)
…………
[moh]
exten => s,1,NoOp(Music On Hold)
exten => s,n,Ringing()
exten => s,n,Wait(2)
exten => s,n,Answer()
exten => s,n,Wait(1)
exten => s,n,MusicOnHold()
…………

passthrough_test.py
def originate_call():
 call = Call('PJSIP/*65@loopback')
 con = Context('loopback', 's', '1')
 cf = CallFile(call, con)
 cf.spool()
…………

μ-law

C
h

an
n

el
 #

1
 (
μ

-l
aw

)

C
h

an
n

el
 #

2
 (
μ

-l
aw

)

Each iteration of this script

generates TWO channels

Figure 4.2: Overview of passthrough VoIP testing workflow.

Chapter 4. PoT Framework Implementation 101

pjsip_wizard.conf
[pi2pi1]
type = wizard

endpoint/allow = !all,ulaw,g722
aor/qualify_frequency = 30
registration/expiration = 1800
endpoint/context = from-extensions

remote_hosts = 10.10.11.1:5060
sends_registrations = no
accepts_registrations = no
sends_auth = no
accepts_auth = no

…………

pjsip_wizard.conf
[pi2pi2]
type = wizard

endpoint/allow = !all,g722,ulaw
aor/qualify_frequency = 30
registration/expiration = 1800
endpoint/context = from-extensions

remote_hosts = 10.10.11.1:5060
sends_registrations = no
accepts_registrations = no
sends_auth = no
accepts_auth = no

…………

pjsip_wizard.conf
[pi2pi1]
type = wizard

endpoint/allow = !all,ulaw,g722
aor/qualify_frequency = 30
registration/expiration = 1800
endpoint/context = from-extensions

remote_hosts = 10.10.11.2:5060
sends_registrations = no
accepts_registrations = no
sends_auth = no
accepts_auth = no

…………

pjsip_wizard.conf
[pi2pi2]
type = wizard

endpoint/allow = !all,g722,ulaw
aor/qualify_frequency = 30
registration/expiration = 1800
endpoint/context = from-extensions

remote_hosts = 10.10.11.2:5060
sends_registrations = no
accepts_registrations = no
sends_auth = no
accepts_auth = no

…………

Transcoding

Transcoding_test.py
def originate_call():

 call = Call('PJSIP/*65@pi2pi1)
 con = Context('loopback', 's', '1')
 cf = CallFile(call, con)
 cf.spool()
…………

[from-extensions]
exten => *65,1,Dial(PJSIP/${EXTEN}@pi2pi2,,25)
…………

Raspberry Pi # 1

 (PoT Gateway)

extenstions.conf

Raspberry Pi # 2

12

3

4

5

SIP Trunk #1 (μ-law)

SIP Trunk #2 (g722)

Each iteration of this

script generates TWO

channels

Figure 4.3: Overview of transcoding VoIP testing workflow.

4.1.8 Transcoded VoIP Testing

Figure 4.3 shows an overview of transcoding VoIP testing procedures. In the transcoding

VoIP testing, we utilize another Raspberry Pi board. The second board is equipped with

a bare-metal Asterisk server without the need for other applications or services running on

the PoT gateway. The embedded Asterisk servers on the two boards are interconnected

using two distinct SIP trunks. The SIP trunks are configured such that they use different

audio codecs. SIP trunk #1 utilizes ulaw audio codec, and SIP trunk #2 utilizes g729

audio codec. We use these codecs because they are popular, open-source, and can be

freely utilized by any VoIP system. The second Raspberry Pi board is used to run the test

script. The test script calls a MOH extension on the helper board (i.e., Raspberry Pi 2).

However, the script forces the call to go through SIP trunk #1, which utilizes ulaw audio

codec. Once the call is received at the PoT gateway (i.e., Raspberry Pi 1), it goes through

Chapter 4. PoT Framework Implementation 102

the extensions defined in the extensions.conf configuration file on the PoT gateway

to find a match. The extension definition of MOH on the PoT gateway is defined such

that it goes through SIP trunk #2. Since the audio codecs of the incoming channel (i.e.,

SIP trunk #1) and the outgoing channel (i.e., SIP trunk #2) are different, transcoding

is performed on the PoT gateway before passing the call back to the helper board (i.e.,

Raspberry Pi 2) through SIP trunk #2. Therefore, we can monitor the performance of

the PoT gateway while carrying out transcoding operations. Since the test script runs on

the helper board (i.e., Raspberry Pi 2), we utilize os and subprocess Python libraries

to send remote Linux bash commands from the helper board to the PoT gateway. These

commands are used to retrieve information about the performance measurements of the

PoT gateway (i.e., %CPU utilization and load average).

4.2 tSIP: A lightweight SIP-Based Messaging Pro-

tocol for PoT

4.2.1 tSIP: Overview

The following subsections delve into the details of designing a SIP-based messaging proto-

col for the PoT applications called tSIP. tSIP is a lightweight Session Initiation Protocol

(SIP) implementation designed for resource-constrained devices and low-power communi-

cation scenarios in PoT applications. The primary goal of the proposed tSIP is to provide

a simplified and efficient SIP implementation that consumes minimal memory, process-

ing power, and energy. tSIP is tailored to meet the unique requirements of PoT devices,

which often operate with limited resources, such as microcontrollers or low-power embed-

ded systems. By optimizing the SIP functionality and reducing the protocol’s footprint,

tSIP enables seamless integration of VoIP capabilities into a wide range of PoT devices

without adversely affecting their performance. Using binary encoding, tSIP messages

Chapter 4. PoT Framework Implementation 103

can efficiently be transmitted and processed by PoT devices. The binary format reduces

the message size and eliminates the need for extensive parsing and text-based processing,

which are resource-intensive operations. This streamlined encoding enables the seamless

integration of tSIP into devices without overburdening their limited resources or mandat-

ing extensive firmware modifications, which can be impractical. The reduced complexity

and seamless integration of tSIP make it easier for developers to implement SIP func-

tionality in their devices, accelerating the development cycle and time to market. The

reduced energy consumption of tSIP contributes to prolonged battery life, which is crucial

for PoT devices that may be battery-powered or have limited access to power sources.

Therefore, PoT devices can extend their operational lifespan and enhance their overall

efficiency by utilizing the minimal energy required for SIP operations. The tSIP integra-

tion process typically involves the addition of a software layer that handles tSIP messages

exchange with a proxy (i.e., PoT gateway), allowing for seamless communication between

the device and the SIP network.

To this extent, the PoT gateway as a tSIP proxy is an intermediary component cru-

cial in mapping constrained tSIP messages to their original SIP counterparts. The PoT

gateway bridges resource-constrained PoT devices utilizing tSIP messages and the larger

SIP infrastructure (i.e., the communication server). Its primary function is facilitating

communication between tSIP-enabled devices and standard SIP devices or services by

translating and mapping the constrained tSIP messages to their original SIP format.

The PoT gateway understands the limitations and optimizations of tSIP and the specific

requirements of the constrained devices it serves. It receives the tSIP messages from the

devices and then converts them to their corresponding standard SIP messages to ensure

compatibility with the broader SIP ecosystem. This mapping process involves transform-

ing the message structure, headers, and other elements to align with the standard SIP

protocol. This mapping allows PoT devices to virtually act as typical SIP endpoints to

the communication server, facilitating their management and control through the exist-

Chapter 4. PoT Framework Implementation 104

ing SIP infrastructure within the premises. It allows these devices to communicate with

standard SIP endpoints, participate in VoIP calls, exchange messages, and take advan-

tage of the rich features and functionalities the standard SIP ecosystem offers without

requiring the constrained devices to handle the complexity of full-scale SIP protocols.

It abstracts the intricacies of the mapping process, allowing the constrained devices to

focus on their core functions while maintaining compatibility with standard SIP.

4.2.2 tSIP: Binary Encoding of SIP Messages

4.2.2.1 Google Protocol Buffers (Protobuf)

Binary encoding is a data representation method that encodes information using only

two symbols: 0 and 1, effectively converting complex data into a sequence of bits [120].

Protocol Buffers is a popular and efficient solution among the various binary encoding

formats [121]. Developed by Google, Protocol Buffers, or Protobuf, offers a compact

and language-agnostic serialization format of structured data that enables seamless data

interchange between systems written in different programming languages. Its character-

istics include high performance, as Protobuf efficiently packs data, resulting in smaller

message sizes, reduced bandwidth requirements, and optimized serialization and deserial-

ization times. Additionally, Protocol Buffers support backward and forward compatibil-

ity, allowing users to evolve their data structures without breaking existing applications.

Moreover, Protobuf provides schema definition through a simple language, ensuring bet-

ter maintainability and ease of versioning. Due to these qualities, Protobuf has become a

preferred choice in distributed systems, enabling faster and more reliable data exchange

while minimizing resource consumption.

Protobuf plays a vital role in IoT applications, addressing the challenges of data com-

munication and device interoperability in a resource-constrained environment [121]. In

the IoT, where millions of devices generate and exchange vast amounts of data, efficiency

Chapter 4. PoT Framework Implementation 105

and compactness of data representation become crucial factors. Protobuf’s characteristics

make it well-suited for IoT applications. Firstly, its compact binary format reduces the

size of data payloads, minimizing the bandwidth required for communication, a crucial

consideration in low-power and limited connectivity scenarios. This efficiency is espe-

cially advantageous when dealing with data transmission over wireless networks, where

every byte saved can extend the device’s battery life and reduce data transfer costs.

Secondly, Protobuf’s language-agnostic nature enables seamless integration with vari-

ous devices and platforms. Protocol Buffers allow developers to define a common data

schema, facilitating smooth data exchange and interoperability between heterogeneous

devices, regardless of the programming language used in their implementation. More-

over, Protobuf’s support for backward and forward compatibility allows devices to be

updated without breaking compatibility with existing data formats, making it easier to

maintain and scale IoT systems. Furthermore, security is a paramount concern in IoT.

Protobuf can be more resistant to specific attacks as a binary format than text-based se-

rialization formats like JSON (JavaScript Object Notation) or XML (Extensible Markup

Language), reducing the risk of injection and tampering vulnerabilities [122].

Binary encoding of SIP messages using Protobuf in the proposed tSIP messaging pro-

tocol offers several advantages for efficient and streamlined communication. By leveraging

Protobuf in the proposed tSIP, original SIP messages are encoded into a binary format

that minimizes size, improves processing speed, and enhances interoperability. Proto-

buf’s binary encoding offers a significant size reduction for tSIP messages compared to

their original heavy text-based encoding formats of the original SIP messages. tSIP mes-

sages are more compact, requiring less bandwidth for transmission and storage. This size

reduction is especially valuable for resource-constrained devices and networks with lim-

ited bandwidth, allowing faster message transfer and more efficient resource utilization.

In addition to its smaller size, Protobuf also enhances the processing speed of tSIP mes-

sages. Due to the efficient binary format, tSIP messages can be deserialized and processed

Chapter 4. PoT Framework Implementation 106

more quickly. This is particularly important in real-time communication scenarios where

speed and responsiveness are crucial, ensuring minimal latency and improved overall

performance. Alongside this, Protobuf’s schema definition language provides flexibil-

ity and extensibility to the proposed tSIP messaging protocol. The schema allows for

defining the structure of the original SIP messages and specifying the data types, fa-

cilitating interoperability between different systems and programming languages. This

flexibility simplifies the integration of Protobuf-encoded tSIP messages into existing de-

vices, applications, and communication frameworks, promoting seamless communication

and interoperability across the larger SIP ecosystem. Furthermore, leveraging the back-

ward compatibility of Protobuf-encoded messages, as new features or fields are added to

tSIP messages, older versions can still be parsed and processed correctly. This allows

for graceful upgrades and backward compatibility between different versions of the pro-

posed tSIP messaging protocol, ensuring smooth transitions and avoiding disruptions in

communication.

Figure 4.4: tSIP registration.

Chapter 4. PoT Framework Implementation 107

4.2.2.2 tSIP Schemas with Protocol Buffers

The proposed tSIP schemas, built using Protobuf, offer an ingenious approach to the chal-

lenges of exchanging SIP messages with resource-constrained devices in IoT and other

constrained environments. Using the Protobuf framework, we define a compact and op-

timized data structure representing a constrained SIP message version (i.e., tSIP). These

tSIP schemas efficiently pack the essential information required for SIP communication

while minimizing the message size, reducing bandwidth usage, and conserving valuable

resources on constrained devices. Listing 4.1 shows the code snippet of the .proto file

representing the implementation of REGISTER method of the SIP protocol in the proposed

tSIP. It encompasses various elements essential for SIP communication with resource-

constrained devices. The Method enum lists the supported SIP methods, with REGISTER

as the primary device registration method. Additionally, the Sensor enum represents

the capabilities of the device, such as TEMPERATURE, HUMIDITY, and PRESSURE.

The message structure itself includes specific fields for various SIP parameters, such as

Cseq for SIP transaction tracking, Call ID for SIP session tracking, and Contact IP and

Contact Port to indicate the device’s IPv4 address and listening port number, respec-

tively. Furthermore, the schema includes fields for the PoT IP and PoT Port, which

denote the IPv4 address and listening port number of the PoT Gateway. Finally, the

Sensor field, marked as repeated, specifies that the device supports temperature measure-

ments. This well-structured and compact .proto file ensures the seamless exchange of

SIP REGISTER messages between constrained devices and the embedded Asterisk server

to the gateway, optimizing data representation and enhancing communication efficiency

in resource-constrained environments.

1 syntax = ”proto3 ” ;

2 message tSIP {

3 enum Method // Supported SIP methods

4 { REGISTER = 0 ;

Chapter 4. PoT Framework Implementation 108

5 INVITE = 1 ;

6 MESSAGE = 2 ;

7 ACK = 3 ;

8 BYE = 4 ;

9 CANCEL = 5 ;

10 PUBLISH = 6 ;

11 NOTIFY = 7 ;

12 REFER = 8 ; }

13 enum Sensor // Sensor c a p a b i l i t i e s

14 { TEMPERATURE = 0 ;

15 HUMIDITY = 1 ;

16 PRESSURE = 2 ; }

17 Method method = 1 ; // REGISTER

18 uint32 Cseq = 2 ; // SIP t r an sa c t i on t rack ing

19 unit32 Cal l ID = 3 ; // SIP Se s s i on t rack ing

20 unit32 Contact IP = 4 ; // Device : IPv4 address

21 unit32 Contact Port = 5 ; // Device : L i s t en ing port no .

22 uint32 PoT IP = 6 ; // PoT GW: IPv4

23 unit32 PoT Port = 7 ; // PoT GW: L i s t en ing port no .

24 repeated Sensor s enso r = 8 ; // Temperature supported

25 }

Listing 4.1: SIP REGISTER method definition in .proto file.

The REGISTER method in the proposed tSIP plays a pivotal role in enhancing the

usability and efficiency of device location in constrained environments. By leveraging

the REGISTER method, resource-constrained devices can easily register their presence and

location with the embedded Asterisk server in the PoT gateway. Using Protocol Buffers,

the compact and optimized data structure defined in the tSIP schema ensures that the

REGISTER message contains only the essential information, conserving valuable resources

on the constrained devices. The usability of the REGISTER method lies in its ability to

establish a central location database on the PoT gateway, where all registered devices

Chapter 4. PoT Framework Implementation 109

and their corresponding SIP URIs (Uniform Resource Identifier), IP addresses, and con-

tact details are stored. This directory of registered devices serves as a reference point for

efficient call routing and message delivery. When a SIP user wishes to communicate with

a specific device to query its sensed information, the PoT gateway can quickly retrieve

the device’s location information from the database, ensuring seamless and reliable con-

nectivity. Moreover, in resource-constrained environments with limited battery power or

intermittent connectivity, the REGISTER method allows devices to update their location

information periodically or when changes occur, ensuring accurate and up-to-date device

tracking. This feature is crucial for IoT applications, where devices may be mobile or

deployed in dynamic environments. Figure 4.4 depicts the tSIP REGISTER method to al-

low the PoT gateway (registrar) to store the location of the IoT device and its supported

sensing capabilities. Therefore, the PoT gateway can use this information to choose the

suitable IoT device and use the MESSAGE method to ask it for information about what it

has sensed to answer the user’s question efficiently.

4.2.2.3 tSIP Messages Encoding Using Protobuf

Creating a .proto file for defining the structure of selective SIP methods is a fundamental

step in leveraging Protocol Buffers in the proposed tSIP messaging in the thesis. The

.proto file outlines the message formats and data types required to represent the specific

SIP methods selected for implementation by tSIP. These methods include REGISTER,

INVITE, ACK, BYE, and other essential SIP messages. Within the .proto file, we define

the fields and attributes and their data types, specifying the necessary information for

each SIP method. The field names and attributes are not included in the Protobuf data.

Instead, every field in a Protobuf message has a distinct number and may be designated

as optional or necessary, giving developers the flexibility and extensibility to structure

messages optimized for their needs. Once the .proto file is created, the next step is to use

the protoc compiler provided by Protocol Buffers to generate the compiled native wrapper

Chapter 4. PoT Framework Implementation 110

class of schemas representing the constrained versions of the selective SIP methods in the

desired programming language. The Protobuf compiler (protoc) natively supports various

programming languages (e.g., C++, Python, Java, Go, JavaScript, C#). However, other

programming languages are supported by third-party compilers. The protoc compiler

with the appropriate options and the .proto file as input produces language-specific

code files that handle the serialization and deserialization of tSIP messages according to

the defined structure.

After generating the code, the next phase involves deploying it to the target devices,

including the Raspberry Pi gateway and the M5Stack Core2 ESP32 IoT development

board. To deploy the code on the Raspberry Pi gateway, we ensure that the neces-

sary dependencies and libraries for the Protocol Buffers are installed on the device. The

generated code is integrated into the existing PoT application stack running on the Rasp-

berry Pi, allowing it to handle tSIP messages received from the M5Stack development

board efficiently, transform received tSIP messages to their SIP messages counterpart,

and pass the transformed tSIP messages to the embedded Asterisk server to the gateway

for further processing.

For the M5Stack board, deploying the code involves including the generated code

files in the developed firmware project for the board. We ensure the appropriate libraries

and configurations are set up to support Protocol Buffers on the ESP32 platform. We

use Nanopb [123], a small-footprint third-party Protobuf implementation in ANSI C, to

generate the native wrapper class for tSIP messages that can be used on microcontrollers

(i.e., ESP32). This step is crucial to effectively enable tSIP message processing and seri-

alization on the resource-constrained ESP32 board. After successful deployment to both

devices, the Raspberry Pi gateway and the M5Stack board are equipped to communicate

using the selective SIP methods implementation by tSIP with the help of Protobuf. tSIP

ensures a streamlined, efficient, and standardized data exchange between the devices,

optimizing resource usage and enhancing the overall performance of SIP-related appli-

Chapter 4. PoT Framework Implementation 111

cations in PoT scenarios. The procedures mentioned above for encoding and decoding

tSIP messages using the Protobuf are depicted in Figure 4.5.

Figure 4.5: Protocol Buffers (Protobuf) utilization for encoding and decoding tSIP mes-
sages.

4.2.2.4 Relaying Messages between SIP Servers and Constrained Devices

Pytwinkle serves as a powerful bridge between Asterisk, a full-featured SIP server em-

bedded within the PoT gateway, and the existing communication servers within the

premises in typical PoT application scenarios. This Python-based framework facilitates

the relay of SIP communication, enabling seamless interaction between the surround-

ing constrained devices and the existing capable SIP servers within the premises. By

acting as an intermediary, Pytwinkle takes advantage of Asterisk’s extensive capabilities

and compatibility with standard SIP protocols while utilizing the tSIP module to effi-

ciently translate and adapt SIP messages received from the communication server for

the limited resources and capabilities of the tSIP-enabled devices. This seamless integra-

Chapter 4. PoT Framework Implementation 112

tion allows constrained devices to participate in complex SIP communication scenarios

and act as typical SIP endpoints in the VoIP ecosystem, opening up new possibilities

for real-time communication and telephony applications even in environments with re-

stricted computational power and bandwidth constraints. With Pytwinkle, we harness

the power of Asterisk’s rich features while ensuring smooth, reliable, and efficient SIP

communication with tiny devices, contributing to advancing innovative PoT applications

and low-resource communication solutions.

Figure 4.6: tSIP packet structure (tSIP MESSAGE method as an example).

4.2.3 tSIP: Packet Formation

Efficient packet formation in the proposed tSIP is of paramount importance due to the

inherent constraints of resource-limited devices and networks. In typical PoT applications

utilizing constrained devices, such as those found in IoT devices or embedded systems,

available processing power, memory, and bandwidth are often severely limited. As a

result, every byte of data transmitted matters, and inefficient packet formation can lead

to wastage of precious resources and impact the system’s overall performance.

In the proposed tSIP messaging protocol, a fixed-length header contains the size of

upcoming packets. This approach optimizes packet delivery in resource-constrained en-

vironments. The receiver can predict the exact amount of data to expect in the following

packet by including the packet size within a fixed-length header. This predictive capa-

bility eliminates the need for the receiver to perform dynamic packet size calculations or

Chapter 4. PoT Framework Implementation 113

to search for delimiters, both of which would consume additional processing resources.

Optimizing packet delivery in this manner brings several advantages:

1. Reduced Overhead : Including the packet size in the header eliminates the need for

additional metadata or control information to indicate the packet size. This reduc-

tion in overhead conserves valuable bandwidth and processing power, particularly

for tSIP-enabled devices with strict data transmission constraints.

2. Streamlined Parsing : With fixed-length headers, the receiver can efficiently parse

incoming packets by directly extracting the size information from the header. This

streamlined parsing process results in faster and more deterministic packet process-

ing, making it ideal for resource-constrained devices with limited computational

capabilities.

3. Improved Packet Handling : Predicting the packet size in advance allows for better

memory management on the receiver’s side. It enables the allocation of an ap-

propriately sized buffer to accommodate the incoming packet without the need for

dynamic memory reallocation, which can be costly in terms of processing time and

fragmentation.

4. Enhanced Reliability : Fixed-length headers with explicit size information contribute

to improved packet validation. The receiver can check whether the expected packet

size matches the received data, helping detect and handle potential errors or packet

truncations. Also, it simplifies software-defined timeout and retransmission imple-

mentations for reliable delivery of the protocol messages if it is not supported by

the underlying transport layer (e.g., UDP).

In this context, Figure 4.6 depicts packet formation of instant messaging (IM) imple-

mentation by tSIP. The message payload is appended to the MESSAGE method header,

and a content-length attribute is included in the MESSAGE method header to determine

the end of the header and the beginning of the payload of the message.

Chapter 4. PoT Framework Implementation 114

4.3 A lightweight and Blockchain-Based Device Reg-

istration and Authentication for PoT Applica-

tions

4.3.1 Introduction

The growing adoption of VoIP and SIP for communication services has led to an in-

creased focus on securing these communication channels. Traditional registration and

authentication mechanisms in SIP systems often rely on centralized servers and complex

protocols, leading to more resource utilization on capable devices and scalability issues.

Therefore, the deployment complexity of applying traditional registration and authenti-

cation mechanisms in SIP systems on resource-constrained devices can be a significant

challenge. Resource-constrained devices like IoT devices often have limited processing

power, memory, and energy capabilities. Traditional registration and authentication

mechanisms typically rely on complex cryptographic protocols and communication with

centralized servers, which may need to be better suited for these constrained environ-

ments. Implementing such mechanisms on resource-constrained devices can lead to in-

creased processing overhead, longer registration times, and higher energy consumption,

potentially compromising the device’s overall performance and user experience. More-

over, these mechanisms might require frequent communication with centralized servers,

leading to potential network congestion and latency issues, particularly when devices are

connected via low-bandwidth networks. As a result, the deployment complexity becomes

a significant hindrance, necessitating the exploration of lightweight and efficient alter-

natives, such as blockchain-based registration and authentication mechanisms, to ensure

secure and seamless communication on resource-constrained devices.

In the following subsections, we propose a lightweight decentralized registration and

Chapter 4. PoT Framework Implementation 115

authentication mechanism based on blockchain technology for smart gadgets in the PoT

system to facilitate their association with communication servers. The proposed mech-

anism provides a secure, trustless, and scalable environment for PoT without requiring

high-end communication servers, affecting the existing SIP-based VoIP architecture, or

mandating trust in third-party entities. The proposed mechanism uses the Ethereum

blockchain and smart contracts to implement a programmatic, immutable access control

mechanism to administer the association of IoT devices with the communication server.

Figure 4.7: Architecture model of the proposed blockchain-based registration and au-
thentication mechanism.

4.3.2 Overview

In this subsection, we overview the proposed solution for registering and authenticating

resource-constraint devices to the communication server in PoT applications by harness-

ing the power of blockchain technology. By combining the principles of blockchain’s

Chapter 4. PoT Framework Implementation 116

decentralization and tamper-resistant properties with a lightweight SIP protocol (i.e.,

tSIP), we present a secure, efficient, and scalable mechanism for associating smart gad-

gets with communication servers. This blockchain-based approach offers enhanced trust,

data integrity, and privacy, making it an ideal fit for resource-constrained devices and

fostering the scalability of the proposed PoT framework. Figure 4.7 overviews the ar-

chitecture of the proposed mechanism. From a high-level perspective, it consists of the

following:

1. Full node of private blockchain : It runs on a local machine using the virtual

Ethereum platform and utilizes the Proof-of-Authority (POA) consensus algorithm.

POA is a reputation-based consensus mechanism that provides an efficient and high-

throughput (i.e., transactions per second (TPS)) solution for private blockchain

networks. POA depends on a limited, predefined set of nodes to serve as system

moderators for block validation. In the proposed mechanism, POA satisfies the

SIP security requirements while enhancing the call setup time and reducing the

hardware specification requirements of the blockchain node. Also, the node features

smart contract deployment via Solidity that implements functions to add or remove

gadgets from the approved device list of a specific PoT gateway during initial device

setup. The functions utilize a multidimensional mapping data structure indexed by

the public keys of the associated PoT gateways to the PBX server and the unique

smart gadget tokens. Likewise, the smart contract implements functions to check

the authenticity of associated PoT gateways to the PBX server and the authenticity

of gadget association with a specific PoT gateway before proxying tSIP messages

between the gadget and the communication server.

2. SIP-Based PBX server : A SIP, Asterisk-based IP-PBX server running on a

local machine resembles the communication server in the premise with VoIP phone

sets registered to it. The motivation behind the proposed mechanism is to allow

Chapter 4. PoT Framework Implementation 117

the PBX server to interact with the heterogeneous objects within the premises

without affecting its VoIP architecture or impacting its designed capacity. The

burden of objects’ registration and authentication is delegated to the PoT gateway.

The PBX server communicates with the PoT gateway through a mature VoIP

technology, namely SIP trunks. Similar to the typical SIP trunk configuration in

the VoIP ecosystem, a numbering scheme is defined in the PBX server for each

SIP trunk configuration to a specific PoT gateway. This allows the PBX server

to route the call to the corresponding PoT gateway based on the callee’s number.

The proposed system uses the [1-2]XXXX numbering scheme for PoT for simplicity.

[1-2] represents a 1-digit code for the PoT gateway that matches the range of digits

in the brackets (in this case, 1 and 2). In the proof-of-concept implementation, we

utilized two PoT gateways and assigned a distinct digit to each. The remaining

four digits (i.e., XXXX) represent the unique extension number of a specific gadget

associated with a particular PoT gateway. In the proposed mechanism, the PBX

server acts as a transaction issuer on the blockchain. It has a verifiable, self-signed

identity (i.e., a private/public key pair) for the blockchain. It neither mandates

hosting a full copy of the blockchain nor engaging in computationally intensive

consensus algorithms to create new blocks. The PBX server is also responsible

for deploying the smart contract to the blockchain during the system startup and

issuing the corresponding smart contract functions to add or remove PoT gateways

from the list of associated PoT gateways to the PBX server.

3. PoT Gateways : Act as proxies between gadgets and the PBX server to map tSIP

messages to their SIP counterparts and vice versa. Like the PBX server, a PoT

gateway acts as a transaction issuer on the blockchain. The PBX server uses the

gateway’s public key to issue the smart contract function that adds the gateway

to the list of associated gateways with the PBX server. While setting up the

association of a gadget with the PoT gateway for the first time, the PoT gateway

Chapter 4. PoT Framework Implementation 118

is used to interact with the gadget’s developed firmware to generate its unique

extension number and store the gateway’s public key in the non-volatile storage

(NVS) of the gadget. The extension number of the gadget is generated based on

the received device attributes to facilitate localizing the object in the system. Also,

while registering the object, the PoT gateway invokes the smart contract function

to add the unique device identity to the immutable list of associated devices with

the gateway. Similarly, the gateway invokes a smart contract function to check the

authenticity of the gadget’s identity before granting a tSIP message exchange with

it.

4. Smart gadgets: Smart gadgets in the proposed system imply devices with em-

bedded programmable software (i.e., firmware) that controls their functionality.

These devices typically have resource constraints and require optimized messaging

and communication protocols for prolonged battery life. We utilize ESP32-based

development boards in the proposed system to simulate smart gadgets. ESP32 is

a cost-effective and feature-rich MCU from Espressif Systems. It has integrated

Wi-Fi and Bluetooth connectivity, over-the-air (OTA) firmware update capability,

and built-in serial communication protocols that fit many IoT applications. Lim-

ited resources for smart objects hinder their engagement in blockchain processing.

The proposed mechanism leverages the encrypted storage capability of ESP32 to

store and transfer gadgets’ unique identities and their predefined attributes to the

PoT gateway during the registration process.

Table 4.2 summarizes the role of the proposed system components in the blockchain

network.

Chapter 4. PoT Framework Implementation 119

Table 4.2: Role of System Components in the Blockchain Network

System Component Node Type Storage Validator
Blockchain Node Full Node Full Blockchain Yes

PBX Server Transaction Issuer None No
PoT Gateway Transaction Issuer None No
Smart Gadgets None None No

Figure 4.8: Flowchart of smart contract deployment by the designated admin node (i.e.,
the PBX server).

Chapter 4. PoT Framework Implementation 120

4.3.3 System Initialization

To initialize the proposed mechanism, we create an asymmetric keypair (i.e., private and

public keys) on the PBX server using the Elliptic Curve Digital Signature Algorithm

(ECDSA), which resembles the server’s self-signed certificate. The generated public key

is used to deploy the developed smart contract and assign the PBX server the admin

credibility, allowing the PBX server to associate PoT gateways with it. The flowchart in

Figure 4.8 depicts the smart contract deployment process during system initialization.

It is worth noting that only one component (i.e., the communication server) is assigned

admin credibility in the proposed mechanism. The admin node in the proposed mech-

anism is responsible for creating the unique IDs for the associated gateways, which are

then concatenated with their public keys to create their addresses on the blockchain by

calculating the hash (SHA-256) of the concatenated string (the public key of the gateway

plus its unique ID). This does not overwhelm the PBX server since it has to be done once

when registering the gateway with the PBX server for the first time, with all gateway

attributes, including its ID, written to the blockchain to avoid impacting the storage

capacity of the PBX server.

4.3.4 PoT Gatway Registration

Like the PBX server, each PoT gateway has a unique, verifiable identity used to register

and authenticate the gateway on the blockchain. During registration, the gateway sends

a registration request to the PBX server along with its public key. The PBX server (i.e.,

admin node) receives the public key, creates a unique ID for the gateway, encrypts the

generated ID with the received public key, and sends the encrypted ID to the gateway.

Also, the PBX server appends the ID to the gateway’s public key and calculates the hash

(SHA-256) of the concatenated string. Upon receiving the encrypted ID from the PBX

server, the PoT gateway decrypts it using its private key and sends an acknowledgment

Chapter 4. PoT Framework Implementation 121

Figure 4.9: PoT Gateway registration with the PBX server.

Chapter 4. PoT Framework Implementation 122

to the PBX server. The PBX server then invokes a smart contract function to append

the gateway to the list of registered gateways on the PBX server using its calculated

hash. Once the transaction is successful, the PBX server sends a message to the gateway,

indicating the success of the registration process. The PoT registration process is depicted

in Figure 4.9.

4.3.5 Gadget Registration

In the proposed system, the non-volatile storage (NVS) of ESP32 is used to store the

device-specific data to mitigate impersonation threats. ESP32 supports hardware-level

encryption to prevent the retrieval of SPI flash data via physical readouts. In the pro-

posed system, we use two kinds of encryption:

1. Build-time encryption: It is used to store the unique device ID, and device at-

tributes that are already known at the compile time.

2. Run-time encryption: It stores the gateway’s public key when registering the device

with the gateway during the device setup. The application generates the key for

encryption, where the firmware’s data is encrypted and decrypted on the fly by

invoking the corresponding ESP-IDF function.

Figure 4.10 illustrates the process of registering a device with the PoT gateway.

4.4 Summary

This chapter presents the implementation details of the proposed Phone of Things (PoT)

framework. It begins with a comprehensive feasibility study evaluating embedded Linux

single-board computers (SBCs) (i.e., Raspberry Pi) as potential candidates to act as PoT

gateways in the proposed framework to handle its ecosystem’s requirements. The study

assesses factors such as percentage CPU utilization and load average of the operating

Chapter 4. PoT Framework Implementation 123

Figure 4.10: Device registration with the PoT gateway.

Chapter 4. PoT Framework Implementation 124

system running on the boards while generating an increasing number of simultaneous

VoIP calls with different configurations (i.e., passthrough and transcoding VoIP calls)

for comprehensiveness.

Following the feasibility study, the chapter delves into implementing a lightweight

version of the SIP (Session Initiation Protocol) protocol, which we call tSIP, that can be

deployed on resource-constrained devices within the PoT framework. This miniaturized

SIP protocol aims to reduce the overhead and processing demands of the original SIP

protocol while maintaining essential functionalities required for seamless communication

between resource-constrained devices and the communication servers. tSIP ensures effi-

cient data exchange and device interactions while ensuring compatibility with the overall

PoT architecture.

The chapter culminates with proposing a blockchain-based registration and authenti-

cation mechanism for the PoT framework. Recognizing the need for robust security and

decentralization in the PoT ecosystem, the blockchain mechanism leverages distributed

ledger technology to securely manage device registration, identities, and authentication

processes. By integrating blockchain, the PoT framework gains enhanced data integrity,

privacy, and trust among devices, ensuring secure interactions without reliance on central

authorities. The proposal highlights the benefits of this blockchain-based approach, of-

fering a tamper-resistant and scalable solution for registration and authentication within

the PoT environment, paving the way for a more secure and interconnected network of

IoT devices.

Chapter 5

PoT Framework Use Cases

5.1 Introduction

In today’s rapidly evolving digital landscape, the convergence of cutting-edge technolo-

gies has paved the way for groundbreaking innovations, transforming how we interact

with our environment and devices. One such transformative fusion is the integration of

Internet of Things (IoT) and Voice over Internet Protocol (VoIP) technologies, giving rise

to an unprecedented era of smart and context-aware telephony solutions. In this chapter,

we review use case scenarios where the seamless integration of IoT and VoIP through

the provision of the proposed multi-tier Phone of Things (PoT) framework would revo-

lutionize telephony solutions for businesses, amplify user engagement with surrounding

devices, and redefine mature phone terminologies in a modern and efficient way as we

know it.

As the IoT ecosystem continues to expand, connecting an ever-growing array of smart

devices and sensors, it has unlocked unparalleled possibilities for data-driven insights

and automation. Concurrently, VoIP technology has already made considerable strides

in simplifying global communication, enabling voice and multimedia transmission over

the Internet. By converging these two powerful technologies, a new paradigm emerges –

125

Chapter 5. PoT Framework Use Cases 126

one where telephony becomes more than just voice communication but an immersive ex-

perience that actively engages users with their interconnected devices and surroundings.

Throughout this chapter, we delve into use case scenarios of the proposed PoT frame-

work, examining how it enhances the functionality and capabilities of telephony systems.

We will uncover how the real-time data exchange between IoT devices and VoIP networks

through the proposed PoT framework enables seamless interaction with the user’s envi-

ronment, leading to more personalized and context-aware communications. Furthermore,

we will explore use case scenarios across industries where this integration could usher in

a wave of innovation, revolutionizing customer experiences, improving operational effi-

ciency, and unlocking new business opportunities.

5.2 Context-Aware Telephony Solutions

The context-aware telephony Solution is a remarkable example of the tremendous bene-

fits of the seamless integration of IoT and VoIP technologies. By combining the power of

the IoT and VoIP technologies, innovative telephony solutions could revolutionize how we

engage with our surroundings during phone calls. With an array of interconnected smart

devices and sensors to the PoT gateway in the proposed PoT framework, the system could

actively capture real-time data from the user’s environment, such as occupancy, ambient

noise, lighting conditions, and even temperature. Leveraging this contextual information

exchange between the proposed PoT framework and the existing communication servers

within the premises, the VoIP network would optimize call quality, automatically adjust-

ing audio settings to ensure crystal-clear communication, even in noisy or challenging

environments. Moreover, it could spontaneously forward incoming calls in vacant places

to other destinations based on some criteria instead of wastefully ringing extensions in

empty places, leveraging the exchange of occupancy sensors’ data between the PoT gate-

way and the communication server. This eradicates the notoriously long waiting times

Chapter 5. PoT Framework Use Cases 127

for phone calls. As a result, the user experiences a heightened sense of presence and

immersion as the telephony solution adapts seamlessly to the ever-changing dynamics

of their surroundings. This enhances the overall user experience of phone calls, fosters

customer satisfaction in business domains, and provides efficient and distraction-free con-

versations, ultimately reshaping how we perceive and interact with telephony systems in

our daily lives.

5.3 Redefine Mature Phone Features in a Modern

Way

Integrating IoT and VoIP technologies enables redefining traditional phone features, like

call forwarding, in a modern and efficient manner. Leveraging this integration, the

modern call forwarding system goes beyond simple call redirection after a static, pre-

determined number of rings. It now incorporates intelligent decision-making capabilities

based on real-time contextual data from the surrounding IoT devices. For instance,

when a called person is away from their phone, the system can automatically route calls

to nearby extensions or smart speakers, ensuring that important calls are not missed.

Furthermore, with VoIP technology, call forwarding becomes highly flexible, allowing

users to set up dynamic forwarding rules based on time, location, or even the presence

of specific individuals, leveraging the information inferred from RFID card readers, for

example. This redefined call forwarding approach enhances user convenience and maxi-

mizes accessibility and responsiveness, ensuring that calls are efficiently directed to the

most appropriate device, ultimately improving overall communication efficiency in the

modern interconnected world.

Interactive Voice Response (IVR) is an automated telephony attendant that allows

callers to interact with a computerized voice and make selections using their telephone’s

touch-tone keypad or voice commands. IVR serves as a virtual front-end for various

Chapter 5. PoT Framework Use Cases 128

organizations, enabling them to efficiently handle a high volume of incoming calls while

providing callers with prompt and interactive responses. Through a series of pre-recorded

voice prompts and menus, IVR guides callers through different options and routes their

calls to the appropriate destination based on their selections. However, in its current

practice, IVR is a static configuration that needs to be rebuilt every time a change is

required. Moreover, customers usually report frustration regarding option tree changes,

confusion, routing calls to the wrong places, or long waiting times to get a response after

being routed to the intended representative. The proposed PoT framework integrated

with chatbot technology represents a groundbreaking advancement in optimizing IVRs

within phone systems. This innovative integration combines the power of IoT and the

conversational capabilities of chatbots to revolutionize the traditional IVR experience.

By leveraging PoT’s connectivity with a wide array of smart devices and sensors, the

IVR system gains valuable real-time insights into the called person’s environment and

preferences. This contextual awareness empowers the chatbot to offer dynamically per-

sonalized and contextually relevant responses, transforming the interaction into a natural

and seamless conversation. Callers can use natural language to engage with the IVR sys-

tem, eliminating the need to navigate through cumbersome menus. Moreover, PoT’s

chatbot integration allows for intelligent call routing and dynamic escalation to human

agents when needed, streamlining issue resolution and enhancing overall customer sat-

isfaction. With this powerful fusion, businesses can create more efficient, personalized,

and interactive IVR experiences, fostering more robust customer relationships and setting

new standards for modern phone systems.

Chapter 5. PoT Framework Use Cases 129

5.4 Location Transparency Call (LTC) System

5.4.1 Background

In today’s fast-paced business landscape, missed calls can have significant ramifications,

leading to lost opportunities and potential revenue. Businesses typically mitigate the

impact of missed calls through voicemail. Voicemail [124] is a mature feature that comes

off the shelf with the most unified communication (UC) solutions. A voicemail stores

voice messages that the caller can optionally leave to be retrieved later by the person

called. The UC platform lets the recipient retrieve voice messages through phone or

email. However, statistics reveal that 80% of phone calls to businesses go to voicemails,

and the average voicemail response rate is less than 5% [125]. The authors of [126]

propose to send an SMS notification to the person missing a call on their desk phone.

The authors of [127] interface with an Asterisk system and look for a series of SIP

messages that indicate missed calls. They then extract the called phone number from

each message, query a database for the corresponding mobile number of the called person,

and send a text message if a result is found. IBM holds a patent [128] that utilizes

SMS notification to a remote phone device when a missed call occurs. The approaches

mentioned above, however, are somehow similar. They do not provide a solution to

offer the highest availability, decrease missed call occurrences, and help reduce their

corresponding drawbacks. Nevertheless, they provide means to facilitate the retrieval

of the missed calls list. Organizations can do better by eliminating the utilization of

voicemails in their firms and providing better availability to their employees to mitigate

the impact of missed calls in the first place. Moreover, call centers reveal that a voicemail

may be seen as a negative encounter for customers and subtracts from their satisfaction.

Customers usually need instant answers to their inquiries and are unwilling to wait hours

for someone to call back and help [129].

Chapter 5. PoT Framework Use Cases 130

To address this critical challenge, we introduce the Location Transparency Call (LTC)

System, a robust use-case scenario that offers a practical solution for businesses. Lever-

aging the seamless integration of IoT and VoIP in the proposed PoT framework, this

innovative system enables business professionals to maintain constant connectivity and

accessibility, regardless of their physical location. With PoT’s IoT capabilities, the LTC

System can intelligently and dynamically route incoming business calls to employees to

the nearest extension at their current location within the business premises. The sys-

tem ensures that calls are efficiently forwarded to the most convenient and available

extension through real-time location tracking, effectively mitigating the risk of missed

business calls. Whether on the go or working remotely, professionals can stay connected

to their clients, colleagues, and opportunities, ensuring enhanced productivity and su-

perior customer service. The LTC System stands as a testament to the transformative

potential of PoT, empowering businesses to overcome communication barriers, maximize

responsiveness, and seize every opportunity that comes their way.

Send Webhook RequestSend Webhook Request

https://pot-ltc.info/webhookhttps://pot-ltc.info/webhook

extension = 102extension = 102

Room #3

Room #2Room #1

RFID
Reader ID: 10 RFID

Reader ID: 30

RFID
Reader ID: 20

Lucas
RFID Tag #2

Noah
RFID Tag #1

William
RFID Tag #3

Oliver
RFID Tag #5

James
RFID Tag #4

Start

Answer Call

Record Audio File

Change Sampling Rate from 8kHz to 16kHz

Invoke Dialogflow Chatbot Agent

Send Audio File to
Dialogflow via Google Assistant

Read Received Response File from
Dialogflow & Extract the Extension Number

Originate a Call to the Extension Number
and Pass it to the Calling Person

Response

Action

Intents

User says

Publisher

Publisher

Publisher

PoT

Gateway

xxxx_8khz.wav

xxxx_16khz.wav

called = “Noah”

E
x
t
e
n
s
t
i
o
n

=

g
e
t
_
e
x
t
e
n
s
i
o
n
(
c
a
l
l
e
d

=

“
n
o
a
h
”
)

EndExt: 102

xxxx.txt

PoT

Gateway

Broker/Subscriber

update_extension
(tag_no, reader_id)

…………
{
 _id: ObjectId(“563479cc8a8a4246bd27d784”),
 “timestamp”: 1643111702
 “EmployeeName”: “noah”,
 “RFIDtag”: 1
 “PreviousReaderID”: 10
 “CurrentReaderID”: 20
 “ExtensionNumber”: 102
}
…………

Employee_extension_mapping.json

Web
Server

Subscriber

Talk to Noah

Talk to Noah

Ringing...

Figure 5.1: Overview of the Location Transparency Call (LTC) system.

Chapter 5. PoT Framework Use Cases 131

5.4.2 Architecture

Figure 5.1 depicts the proposed LTC system. The LTC system is based on the PoT

architecture proposed and delineated in the previous chapters and inherits its enabling

technologies and modular design philosophy. LTC consists of a PoT gateway, a set of

WiFi-enabled RFID door-entry nodes distributed along with the entrances of the rooms

within the premise, and assistive cloud-hosted services (namely, MongoDB database and

Dialogflow’s chatbot agent). The door entry nodes are connected to the PoT gateway

through Wi-Fi. The PoT gateway acts as an MQTT broker that relays user logs at

door entry nodes (publishers) to the cloud-hosted MongoDB instance (subscriber). User

logs include their RFID tag numbers, the ID of the door entry that publishes the log,

and the timestamp of the log occurrence. The cloud-hosted database maps the user

tracking, based on their RFID tag numbers, to the extension number(s) at their current

location, depending on the ID of the door entry node that pushes the log information.

Upon dialling a preconfigured hotline extension number, the call is auto-answered by

the embedded Asterisk server of the PoT gateway, and it invokes a developed Python

script. The script saves the user’s utterance as an audio file, sends it to the developed

Dialogflow’s chatbot agent, and waits for a reply. The chatbot agent recognizes the

user’s intent, identifies entities in the user’s speech, and determines the target employee

to be called based on the exact explicit name mentioned or the question asked by the

calling person. The chatbot then sends a webhook request to the cloud-hosted database

querying the extension number at the current location of the target person to be called.

Upon reception of the extension number, the Dialogflow chatbot sends a text file to the

PoT gateway that contains the extension number. A Python script reads the received

response file from Dialogflow and extracts the extension number. The script then passes

the extension number to the Asterisk server running on the PoT gateway to originate a

call to that extension number and pass the call to the calling person.

Chapter 5. PoT Framework Use Cases 132

Figure 5.2: The door entry node component of the proposed LTC system (breadboard
view).

Chapter 5. PoT Framework Use Cases 133

5.4.3 WiFi-Enabled RFID Door Entry Nodes

Door entry nodes are a vital component of the LTC system, and they are used to track

users’ current locations while they move inside the enterprise premises. In the proposed

LTC model, we use the Radio Frequency Identification (RFID) [130] technology to track

the users’ mobility while they enter or exit the rooms. The door entry node, depicted

in Figure 5.2, mainly consists of an RFID reader and a Wi-Fi module. The door entry

node is meant to be simple, cheap, and easy to install and integrate under different cir-

cumstances without potential infrastructure modification. The proposed door entry node

uses NXP’s PN532 Near Field Communication (NFC) controller for RFID functionalities

and Espressif’s ESP32 Microcontroller Unit (MCU) for the application logic and Wi-Fi

connectivity.

When a user carrying an RFID tag passes by a door entry node, the door entry node

(MQTT publisher) reads the RFID tag and publishes the tag number and the reader ID

to the MQTT broker (the PoT gateway). The web server (MQTT subscriber) subscribes

to all users’ topics by default, receives the update from the PoT gateway and updates the

MongoDB database accordingly. The MongoDB database dynamically maps the nearest

extension number to a specific user based on his current location. The nearest extension

number is determined by the following: the current door entry checkpoint, the previous

door entry checkpoint, and the preconfigured table created at the system startup. The

preconfigured table maps the checkpoints’ sequence to the location based on the specific

floor plan of the premise.

It is worth noting that the emergence of BLE/LoRa tags and beacons also pro-

poses suitable and cost-effective indoor positioning candidates for LTC applications [131].

Moreover, LTC can take advantage of the enterprise’s wireless distribution system (WDS)

to track people’s location without further infrastructure requirements. This is believed

to reduce the system cost; since the LTC system would only need the PoT gateway to

Chapter 5. PoT Framework Use Cases 134

function. This also enhances the organizations’ workflow; since the system would neither

require the employees to tap their RFID tags every time they enter or exit a place nor

need expensive long-range RFID readers to be utilized by the door entry checkpoints.

Figure 5.3: Example scenario of entering and exiting premises.

5.4.4 Entering and Exiting a Place

The proposed LTC system uses a single-door entry checkpoint for each room to track

the users’ mobility. The architecture of the door entry node, depicted in Figure 5.2,

depends on the RFID reader, and it does not utilize any other kind of sensors to help

identify whether the user is entering or exiting the room. This is meant to simplify the

design and the installation of the door entry node. We designed the tracking database’s

schema to maintain fields that hold the identities of the current door entry checkpoint

and the previous door entry checkpoints. Knowing these two identities of door entry

checkpoints and the truth table that is manually configured during system startup based

on the specific floor plan of the premise, we can determine whether the user is entering or

exiting a place. Moreover, we set up a fallback extension for invalid unmapped entries in

Chapter 5. PoT Framework Use Cases 135

the truth table. Invalid entries may be due to system glitches or missed RFID tag readings

when the users enter or exit places. The fallback extension number can be configured as

the default extension number of the user or as an arbitrary extension number (i.e., the

receptionist extension).

Figure 5.3 gives an example scenario that illustrates the leverage of a manually pre-

built truth table and a single RFID checkpoint at each door entry to determine the user

location. Table 5.1 shows the truth table of the example scenario. The table logically

maps the specific floor plan given in the example. It states the location based on the

previous (i.e., t−1) and the current (i.e., t) identities of the door entry checkpoints. All

users’ (t−1) entries are initialized to void/empty upon system startup. This indicates

that the user does not exist within the company’s premises. This methodology is easy to

implement and does not propagate errors in case of missed or invalid reading sequences.

Table 5.2 gives examples of valid and invalid entries based on the truth table mentioned

above.

5.5 Session Semantic Utilization

The inherent session-based message semantics of the SIP protocol and its constrained

implementation in the proposed tSIP enable the development of advanced IoT solutions.

This would be advantageous for IoT applications requiring continuous real-time streaming

of sensor node data in case of emergencies when critical alarms are triggered. For example,

session-based semantics can be utilized in medical applications where tSIP-enabled body

sensors can autonomously originate a call to the Public Safety Answering Point (PSAP)

and stream their readings to them when the readings exceed their typical values. This

makes it easier for doctors to quickly determine how sick a patient is and direct them to

the right place to get the necessary care.

Also, in the realm of modern device communication, ensuring seamless and reliable

Chapter 5. PoT Framework Use Cases 136

Table 5.1: Truth table of the example scenario’s floor plan.

Reader ID (t−1) Reader ID (t) Location Extension No. Remark
- 10 Reception 1000 Coming
10 10 Reception 1000 Leaving (Fallback)
10 20 Room 1 1001 Entering Room 1
10 30 Room 2 1002 Entering Room 2
10 40 Room 3 1003 Entering Room 3
20 10 Reception 1000 Leaving (Fallback)
20 20 Reception 1000 Entering Reception
20 30 Room 2 1002 Entering Room 2
20 40 Room 3 1003 Entering Room 3
30 10 Reception 1000 Leaving (Fallback)
30 20 Room 1 1001 Entering Room 1
30 30 Reception 1000 Entering Reception
30 40 Room 3 1003 Entering Room 3
40 10 Reception 1000 Leaving (Fallback)
40 20 Room 1 1001 Entering Room 1
40 30 Room 2 1002 Entering Room 2
40 40 Reception 1000 Entering Reception

Table 5.2: Entering and exiting illustration example.

No. Name RFID Tag No. Reader ID (t−1) Reader ID (t) Location Extension No.
1 James 1 10 10 Not Exist 1000 (Fallback)
2 Oliver 2 - 10 Reception 1000
3 William 3 20 20 Reception 1000
4 Lucas 4 10 20 Room 1 1001
5 Noah 5 20 30 Room 2 1002
6 Henry 6 10 40 Room 3 1003
7 Jacob 7 30 40 Room 3 1003
8 Lucas 4 - 20 Invalid 1000 (Fallback)

Chapter 5. PoT Framework Use Cases 137

Figure 5.4: An example of tSIP REFER utilization in a session semantics application.

Chapter 5. PoT Framework Use Cases 138

interactions between connected devices is of utmost importance. The proposed resource-

constrained version of the SIP protocol (i.e., tSIP) delineated in the previous chapter

stands at the forefront of facilitating this communication with remarkable finesse. One

of its key strengths lies in its potential adept utilization of session semantics, enabling

robust and contextually aware device communication. Through session semantics, the

PoT gateway can establish and manage communication sessions that go beyond mere

data exchange, encompassing rich context and application-specific information. This al-

lows devices to engage in more meaningful interactions, dynamically adapting to chang-

ing network conditions and ensuring uninterrupted communication even in challenging

environments. By harnessing session semantics implementation by tSIP, it empowers

associated devices with the gateway to communicate intelligently, optimizing resources

and enhancing overall reliability, thereby fulfilling robust communication between the

gateway and the associated devices.

For example, the tSIP implementation of the REFER method allows the tSIP-enabled

sensor node (transferor) to redirect the PoT gateway (transferee), establishing a session

with it, to another sensor node (transfer target) with similar capabilities if the current

sensor node (transferor), for example, signifies insufficient residual energy or hardware

resources to fulfill its current session involvement with the PoT gateway (transferee), as

depicted in Figure 5.4. The transferor sensor node sends a constrained REFER message to

the PoT gateway in this context. Leveraging the location database in the PoT gateway,

the PoT gateway searches for an alternative sensor node with similar capabilities and

informs the transferor sensor node that it accepts the REFER message. The PoT gateway

then tries to establish a session with the alternate sensor node (transfer target). Once the

session is established between the PoT gateway and the alternate sensor node, the PoT

gateway notifies the transferor sensor node that the new session has been successfully

established with the transfer target. Eventually, the transferor sensor node terminates

its established session with the PoT gateway.

Chapter 5. PoT Framework Use Cases 139

5.6 Summary

The chapter delves into diverse use case scenarios of the proposed Phone of Things (PoT)

framework, showcasing its immense potential in reshaping the telecommunication and IoT

landscapes. First, the chapter explores context-aware telephony solutions. PoT’s inte-

gration of IoT and VoIP technologies enables seamless interactions with the surrounding

devices, leveraging real-time data for more intelligent, personalized, and intuitive user

experiences of phone calls. Next, the chapter highlights how PoT redefines mature phone

features, such as call forwarding, through its chatbot integration, optimizing Interactive

Voice Responses (IVR) and streamlining communication. The chapter further unveils the

Location Transparency Call (LTC) system, powered by PoT, which mitigates the impact

of missed business calls by intelligently and dynamically routing them to alternate desti-

nations based on the information regarding the location and availability of called parties

inferred from the surrounding devices associated with the gateway. Lastly, the chapter

delves into implementing session semantics in tSIP, showcasing how this lightweight SIP

stack ensures robust and contextually-aware device communication, enabling devices to

adapt to changing network conditions intelligently.

Collectively, the chapter demonstrates how the proposed PoT framework empow-

ers a wide range of industries with innovative telephony solutions, ultimately fostering

enhanced user experiences, improved operational efficiency, and seamless device commu-

nication in the modern interconnected world.

Chapter 6

Experimental Setup and Evaluation

In this chapter, we present the experimental evaluation and results of the Phone of

Things (PoT) platform proposed in the thesis that leverages Single Board Computers

(SBCs) as gateways to enable seamless integration and communication between the sur-

rounding devices and the communication servers. The core communication framework

of the proposed PoT platform is based on a lightweight version of the Session Initiation

Protocol (SIP), called tSIP, designed to facilitate efficient message exchange between de-

vices and their corresponding gateways. Additionally, the PoT platform implements a

novel blockchain-based registration and authentication mechanism to enhance security

and enable a robust association of devices to their respective gateways. The evaluation is

conducted in a real-world environment comprising the essential framework’s components.

This includes SBCs as gateways, devices (i.e., legacy and IoT devices), and assistive op-

tional cloud infrastructure (i.e., OpenVPN server and Google Assistant). We measured

key performance metrics of the proposed framework. This includes resource utilization

of the embedded Linux SBCs when acting as gateways in the proposed framework. We

also evaluate the characteristics of the proposed tSIP messaging protocol based on its

implementation in the proposed framework to show the benefits it brings in terms of

the resultant message sizes compared to the original SIP messages and CoSIP counter-

140

Chapter 6. Experimental Setup and Evaluation 141

parts. Furthermore, we assessed the platform’s security by analyzing the efficiency of the

blockchain-based registration and authentication mechanism. The experimental results

demonstrate that the proposed PoT platform efficiently utilizes SBC resources, optimiz-

ing its deployment cost. Moreover, the blockchain mechanism exhibits robust security. It

facilitates secure device registration and authentication, making it a promising solution

for seamlessly integrating and managing surrounding devices in real-world applications.

6.1 Experiments Setup

The PoT gateway in the proposed framework boasts a modular and robust software stack

designed to facilitate the seamless integration of different software components, making

it easier to customize the gateway according to specific requirements and use cases. At

the core of the software stack lies a scalable and reliable operating system, i.e., Linux,

which forms the foundation for all other components. We choose the Raspberry Pi OS

(previously known as Raspbian). Raspberry Pi OS is a popular choice as it is optimized

for Raspberry Pi hardware. On top of the OS, the gateway utilizes the Asterisk open-

source IP-PBX application, empowering it to handle VoIP communication and manage

various telephony functionalities efficiently. The gateway employs an OpenVPN client

application to create a secure tunnel between the gateway and an external OpenVPN

server, promoting system scalability by providing secure communication between distant

gateways. Additionally, the software stack incorporates the tSIP implementation scripts

developed in Python to map original SIP messages to their constrained tSIP message

counterparts and vice versa. The software stack also integrates the essential libraries

for blockchain technology, enabling secure and transparent transaction issuing by the

gateway to the blockchain network to register and authenticate associated devices to the

gateway. Moreover, the software stack of the gateway includes the developed Python

scripts to interact with Google Assistant, offering a seamless and user-friendly interface

Chapter 6. Experimental Setup and Evaluation 142

for device interaction. This comprehensive software stack empowers the POT gateway

to efficiently manage data flow, ensure robust security, and provide a seamless user ex-

perience.

Nevertheless, to ensure process monitoring and management of the different software

components within the PoT’s gateway software stack, we utilize s6-overlay. s6-overlay is

a lightweight and powerful process supervision suite designed to enhance the reliability

and stability of running applications, which aligns perfectly with the modular nature

of the POT gateway’s software stack. By integrating s6-overlay into the POT gateway,

each individual software module operates within its own separate and supervised process.

This process isolation ensures that if one component encounters an issue or crashes, it

will not impact the stability or availability of the entire system. s6-overlay constantly

monitors these processes, automatically restarting them if necessary, maintaining con-

tinuous operation even in the face of failures. The process monitoring capabilities of

s6-overlay are crucial for the environment of the proposed PoT framework, where the

POT gateway may interact with numerous devices and handle diverse data streams. The

constant supervision of the software modules enables the gateway to maintain optimal

performance and quickly recover from any unforeseen issues, thus enhancing the overall

reliability of the proposed POT ecosystem. Additionally, s6-overlay allows for efficient

resource utilization, as it optimizes memory usage and avoids unnecessary overhead. This

is especially advantageous in resource-constrained devices like the PoT gateway, where

the efficient management of processes becomes vital. Furthermore, s6-overlay comple-

ments the scalability of the PoT framework since s6-overlay can adapt and efficiently

handle the increased workload, thanks to its modular approach and process supervision

capabilities.

Chapter 6. Experimental Setup and Evaluation 143

6.2 Experiments Objectives

The proposed PoT framework’s primary objectives are to enable seamless communication

and interaction between devices and communication servers while ensuring secure and

robust device registration and authentication at the gateway level and optimizing its

deployment cost, promoting its wide adoption in home automation and other industries.

The following experiments aim to validate the performance of the underlying tiny and

cost-effective hardware platforms used in the proposed gateway prototypes to prove these

objectives. The experiments also assess the performance and efficiency of the constrained

tSIP protocol in this context and evaluate the security and scalability of the blockchain-

based registration and authentication mechanism. By achieving these objectives, the

proposed PoT framework provides a robust and user-friendly solution for managing and

interacting with the surrounding devices via the existing communication servers within

the premises while maintaining a secure and reliable communication environment.

6.3 PoT Gateway as an IP-PBX Server

6.3.1 Passthrough VoIP Testing

The performance evaluation of the Raspberry Pi boards when processing passthrough

VoIP calls is shown in Figures 6.1 and 6.2. The maximum number of simultaneous calls

the boards can gracefully handle are contrasted in Figure 6.5. Obviously, the maxi-

mum number of simultaneous calls is proportional to the board’s hardware specifications

concerning the CPU core type, number of cores, and memory size.

The results show that the least powerful Raspberry Pi board family model, namely,

Raspberry Pi Zero W, can gracefully handle up to 24 active channels, representing 12

simultaneous calls, after which the load average starts to exceed one. The CPU utilization

of the board at this maximum number of simultaneous calls is 94%. On the other hand,

Chapter 6. Experimental Setup and Evaluation 144

Figure 6.1: Relation between the number of active channels and the operating system
load average (passthrough).

Figure 6.2: Relation between the number of active channels and the CPU utilization
(passthrough)

Chapter 6. Experimental Setup and Evaluation 145

Raspberry Pi 4 B, the current most powerful model of the Raspberry Pi board family, can

gracefully handle up to 364 active passthrough channels (182 simultaneous calls) before

the five-minute load average starts to exceed four. The CPU utilization of the board at

this number of simultaneous passthrough VoIP calls is 266% (66.5% per core). Based

on the board’s hardware specifications, the maximum number of simultaneous calls for

other Raspberry Pi models lies between Raspberry Pi Zero W and Raspberry Pi 4 B.

It is worth noting that Raspberry Pi Zero 2 W, the newest member of the Raspberry Pi

boards family that launched in October 2021, has comparable performance to Raspberry

Pi 3 B+. Raspberry Pi Zero 2 W comes at the same form factor as Raspberry Pi Zero W

with a neglectable price increase ($19 CAD for Raspberry Pi Zero 2 W compared to $15

CAD for Raspberry Pi Zero W). However, Raspberry Pi Zero 2 W comes with a quad-core

ARM Cortex A53 processor, unlike the single-core ARM11 that comes with Raspberry

Pi Zero W. The results show that Raspberry Pi Zero 2 W can gracefully serve up to 278

active channels, whereas Raspberry Pi 3 B+ can gracefully serve 308 active channels.

Therefore, Raspberry Pi Zero 2 W can ideally fit PoT applications where physical size

and power consumption are the primary concerns.

Except for Raspberry Pi Zero W, the performance of the Raspberry Pi boards used in

the evaluation exceeded the VPS instance’s performance, whose specifications are listed

in Table 3.1. Raspberry Pi Zero 2 W, for instance, can support an approximately 70%

higher number of active channels than the number of active channels supported by the

VPS. It is also worth noting that the boards can still serve more VoIP calls if we switch

the threshold to the 15-minute load average instead of the 5-minute load average or

raise the threshold limit slightly beyond four. However, when the load average exceeds

four, some VoIP call processes will be queued, waiting to be served by the operating

system. This queuing affects the soft real-time constraints of VoIP, degrading the quality

measurements of the established VoIP calls.

Chapter 6. Experimental Setup and Evaluation 146

Figure 6.3: Relation between the number of active channels and the operating system
load average (transcoding).

Figure 6.4: Relation between the number of active channels and the CPU utilization
(transcoding).

Chapter 6. Experimental Setup and Evaluation 147

6.3.2 Transcoding VoIP Testing

The simultaneous transcoding VoIP call capacity testing results that the Raspberry Pi

boards can safely process are shown in Figures 6.3 and 6.4. In contrast to passthrough

VoIP, transcoded VoIP is a process-intensive task that consumes many resources. There-

fore, it is obviously expected that a smaller number of simultaneous transcoding VoIP

calls can be afforded than simultaneous passthrough VoIP calls using the same platform.

After using the same thresholds imposed on the testing algorithm when performing the

passthrough testing, the results showed that the Raspberry Pi 4 B board, for example,

can gracefully handle up to 176 active channels (88 simultaneous calls) before outpac-

ing the thresholds. This represents 48% of passthrough VoIP calls the same board can

afford. The ratio between the number of graceful transcoding VoIP calls to the number

of graceful passthrough VoIP calls is proportional to the board’s processing power. The

higher the board’s processing power, the higher the ratio of transcoded to passthrough

VoIP calls the board can gracefully afford. Concerning the VoIP call quality metrics

of established calls throughout the testing procedure, the results from Wireshark, as

summarized in Table 6.1, show values of jitter and packet loss that all fall within the

acceptable standardized limits of VoIP call quality metrics.

6.3.3 Passthrough vs. Transcoding VoIP Calls

It is worth noting that the number of maximum simultaneous transcoded VoIP calls

represents an extreme, where every originated call needs transcoding, of what actually

happens in real situations. In most real cases, transcoding is more likely avoided by en-

forcing particular audio codecs to be utilized by the communicating parties. Transcoding

only happens when interconnecting with third-party providers, e.g., Internet Telephony

Service Providers (ITSP), that operate other audio codecs to what we have already uti-

lized. Therefore, the maximum number of simultaneous VoIP calls the Raspberry Pi

Chapter 6. Experimental Setup and Evaluation 148

Figure 6.5: Contrasting the maximum number of simultaneous active channels that dif-
ferent Raspberry Pi board families can gracefully serve.

Table 6.1: VoIP call quality measurements during passthrough and transcoded VoIP call
testings for different Raspberry Pi boards.

RPi 4 B RPi 3 B+ RPi Z 2 W RPi Z W

Passthrough Trans. Passthrough Trans. Passthrough Trans. Passthrough Trans.

Forward (Phone-to-RPi)

Max jitter
(milliseconds)

9.35 10.49 11.87 10.97 12.05 13.85 15.33 16.02

Mean jitter
(milliseconds)

7.08 6.45 8.09 6.88 9.96 10.13 11.58 13.69

RTP Packets 132,486 115,715 111,460 65,414 101,623 37,211 8688 5058
Expected 132,486 115,715 111,460 65,414 101,623 37,211 8688 5058
Packet loss (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Reverse (RPi-to-Phone)

Max jitter
(milliseconds)

5.07 5.98 5.90 8.43 8.85 9.32 10.02 20.36

Mean jitter
(milliseconds)

0.65 0.68 0.70 0.73 0.98 0.85 0.90 3.5

RTP Packets 132,450 115,624 111,365 65,369 101,577 37,188 8610 5049
Expected 132,450 115,624 111,365 65,369 101,577 37,188 8610 5049
Packet loss (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Chapter 6. Experimental Setup and Evaluation 149

boards gracefully serve lies somewhere between the maximum number of passthrough

VoIP calls and the maximum number of transcoding VoIP calls the specific platform can

serve. The exact number of simultaneous VoIP calls depends on the application that

defines the expected setup of the established VoIP calls.

6.3.4 Conclusion

The feasibility study of employing Raspberry Pi boards as suitable PoT gateway candi-

dates to handle an adequate number of simultaneous calls for a PoT application demon-

strates promising results. The Raspberry Pi’s versatility and low cost make it an attrac-

tive choice for creating PoT gateways with VoIP capabilities. By integrating Asterisk, the

Raspberry Pi can effectively manage multiple concurrent calls while connecting various

devices within the PoT ecosystem. However, it is crucial to consider the specific require-

ments of the PoT application and the expected call volume. A single Raspberry Pi may

suffice for smaller-scale PoT deployments, like in home automation. However, for more

extensive and demanding PoT networks, multiple or a cluster of Raspberry Pi boards

might be necessary to ensure optimal call quality and performance. Despite its inherent

processing power and memory limitations, the Raspberry Pi’s ability to handle simulta-

neous calls, combined with its GPIO pins for connecting sensors and actuators, makes it

an attractive candidate for implementing cost-effective and adaptable PoT gateways.

6.4 Integration with Chatbot Agents

We deployed and tested chatbot integration in the proposed framework to leverage chat-

bot agents’ sophisticated natural language processing and AI algorithms capabilities,

such as Google Assistant and Amazon Alexa. This integration enables the provision

of innovative telephony solutions that help enhance user experience with phone calls,

as delineated in Chapter 5. We tested integrating the gateway with Google Assistant,

Chapter 6. Experimental Setup and Evaluation 150

empowering users with new possibilities for querying and monitoring their surroundings,

making virtual assistants more inclusive, accessible, and valuable in diverse scenarios.

Also, phone call queries can be useful in areas with limited internet access or during

network outages.

6.4.1 Google Assistant: Intents, Actions, and Fulfillment

Google Assistant’s workflow incorporates the interaction of actions, intents, and fulfill-

ment, the basic building blocks of Google Assistant, to provide an interactive conversa-

tional user experience. The following summarizes these elements:

1. Intents : Intents represent the user’s intentions or requests expressed in natural

language. When users interact with Google Assistant, their voice query or typed

message is processed to identify the intent behind it. Dialogflow, a natural lan-

guage understanding (NLU) platform developed by Google, plays a crucial role in

determining the intent. Dialogflow examines the user’s input, recognizes the intent,

and extracts relevant entities (i.e., parameters) from the user’s query, enabling the

Assistant to understand the user’s request accurately.

2. Actions : Actions are the logical representations of an application or service’s various

capabilities and functionalities built for Google Assistant. Each intent corresponds

to a specific action or set of actions. For example, by asking for a person’s name in

the proposed location transparency call (LTC) system proposed in Chapter 5, the

corresponding action queries a database about the nearest extension number to the

called person’s current location within the premises, which is dynamically mapped

by the LTC system utilizing the information inferred from the RFID sensor nodes

within the premises. Therefore, actions are designed to handle different intents and

provide appropriate responses based on the user’s query.

3. Fulfillment : Fulfillment is the backend service or code that processes the user’s

Chapter 6. Experimental Setup and Evaluation 151

intent and generates a response based on the action associated with that intent. It

is responsible for fulfilling the user’s request with dynamic and personalized content.

The fulfillment service can interact with databases, APIs, or other external services

to gather the necessary information to respond accurately to the user’s query. In

the case of the LTC system example mentioned earlier, the fulfillment is the text

file sent by Google Assistant to the system containing the extension number to

reach the person called.

6.4.2 PoT Gateway and Google Assistant: The IntegrationWork-

flow

The workflow of the integration of Google Assistant with the PoT gateway works as

follows:

1. Triggering the Assistant : The user initiates a phone call by dialling a specific phone

number on the embedded Asterisk server to the gateway, which is associated with

integrating the gateway and Google Assistant. The embedded Asterisk server au-

tomatically invokes a developed Python script upon receiving a call on this specific

extension, leveraging the power of Asterisk’s AGI (Asterisk Gateway Interface)

feature. We apply the necessary configurations in the extensions.conf file of the

Asterisk system to define the dialplan and specify the extension context, extension

number, and the AGI command to execute the Python script.

2. Establishing a connection with Google Assistant : Leveraging Google’s Python SDK,

we install the necessary packages, including the Google Assistant library and its

dependencies on the gateway. We set up a Google Cloud Project and enabled the

Google Assistant API, obtaining the necessary credentials for authentication. With

the credentials in place, the developed Python script creates an instance of Google

Assistant. The Assistant SDK handles audio input/output and communication

Chapter 6. Experimental Setup and Evaluation 152

with the Google Assistant service. Through this connection, the script can send

user utterances or text queries to Google Assistant and receive responses, allowing

integration of the power of Google Assistant into the gateway.

3. Sending user queries to Google Assistant : The developed Python script interfaces

to the established VoIP channel with the user. It stores user utterances as an audio

file. The sampling rate of the audio file is 8kHz, the default sampling rate for

phone calls. The script then oversamples the audio file into the required format for

communication with the Assistant API (i.e., 16kHz) and sends the processed audio

data as a voice query to the Google Assistant service, which will process the user’s

utterance and generate a response.

4. Taking actions and generating responses : We developed a prototyping Dialogflow

chatbot application for the proposed framework. The bot is connected to Google

Assistant, allowing users to interact with the bot through Google Assistant. When

a user initiates a conversation with Google Assistant through the gateway and ad-

dresses the chatbot, Google Assistant processes the user’s voice query and sends it to

the Dialogflow chatbot application for analysis. The chatbot application interprets

the user’s intent, entities, and context based on the trained data to understand

the user’s request accurately. Based on this analysis, the chatbot takes actions

like fetching data from databases, calling APIs, interacting with other services, or

generating a custom response tailored to the user’s query.

5. Playing back responses : The generated responses by Google Assistant are fetched

by the developed Python script, downsampled from 16kHz to 8KHz by the script

and played back to the user through the established VoIP channel, completing the

conversation loop.

Chapter 6. Experimental Setup and Evaluation 153

6.4.3 Voice Activity Detection (VAD)

Voice Activity Detection (VAD) is a fundamental audio processing technique for detect-

ing and distinguishing speech segments from silence or background noise in audio stream

applications. The primary objective of VAD is to identify user utterances, allowing ap-

plications to focus on processing and analyzing only the relevant speech potions, thereby

optimizing computational resources compared to other approaches like continuous listen-

ing and fixed-time window. VAD improves the user experience in the proposed integration

between the gateway and Google Assistant, as it ensures that audio file processing by the

gateway is triggered only when user utterance is detected, optimizing resource utilization

of the board.

We integrate this functionality into the developed script using the WebRTC VAD

library for Python (i.e., webrtcvad). First, we install the necessary Python packages

and the webrtcvad library. We read the audio data from the real-time audio stream

of the established VoIP channel with the user. The VAD algorithm segments the audio

into frames and classifies each frame as either containing speech or not. Analyzing the

classification results lets us detect voice activity and identify speech regions within the

audio, reducing the amount of audio data that needs to be processed and transmitted to

Google Assistant.

The following Python pseudo-code provides a general outline of the aforementioned

steps to interface the PoT gateway to Google Assistant. For simplicity, the pseudo-code

utilizes the Asterisk Manager Interface (AMI) to answer the call, record user utterances

while waiting for silence, send the recorded audio file to Google Assistant, wait for a

response, and then play back the response to the caller. The Asterisk Manager Interface

(AMI) is a set of commands and events that interact with the Asterisk system. It allows

external applications or scripts to programmatically control and monitor various aspects

of the Asterisk server.

Chapter 6. Experimental Setup and Evaluation 154

1 import time

2 from asterisk.ami import AMIClient, SimpleAction

3 import webrtcvad # VAD library

4

5 ### Function to apply voice activity detection to audio data

6 def apply_vad(audio_data, vad):

7 is_speech = vad.is_speech(audio_data, sample_rate=8000)

8 return is_speech

9 ### Function to record audio from the channel using AMI with VAD

10 def record_audio_with_vad(client, channel, filename):

11 vad = webrtcvad.Vad()

12 vad.set_mode(2) # Set VAD aggressiveness (0-3)

13 response = client.send_action(SimpleAction(

14 "MixMonitor",

15 Channel=channel,

16 File=filename,

17 Format="wav"

18))

19 if response.get("Response") == "Success":

20 print(f"Recording started on channel {channel}.")

21 else:

22 print(f"Failed to start recording on channel {channel}.")

23 # Loop for recording until silence is detected

24 while True:

25 response = client.send_action(SimpleAction(

26 "GetChannel",

27 Channel=channel,

28 Variable="SPEECH(dB)"

29))

Chapter 6. Experimental Setup and Evaluation 155

30 rms = float(response.get("Value", "0"))

31 # Read audio data from the channel

32 audio_data = read_audio_data_from_channel(channel)

33 # Apply VAD to check if there’s speech in the audio data

34 is_speech = apply_vad(audio_data, vad)

35 if not is_speech:

36 break # Stop recording if silence or no speech is detected

37 time.sleep(0.1) # Wait for a short interval before checking again

38 # Stop the recording

39 response = client.send_action(SimpleAction(

40 "MixMonitorStop",

41 Channel=channel

42))

43 if response.get("Response") == "Success":

44 print(f"Recording stopped on channel {channel}.")

45 else:

46 print(f"Failed to stop recording on channel {channel}.")

47 def main():

48 # Set parameters and connect to Asterisk AMI

49 asterisk_host = "localhost"

50 asterisk_user = "username"

51 asterisk_pass = "password"

52 channel = "SIP/1001" # Preconfigured SIP channel for Google Assistant

integration

53 output_file = "user_utterance.wav"

54 silence_threshold = -40 # Silence threshold as needed based on the

specific environment

55 # Connect to Asterisk AMI

56 client = connect_to_ami(asterisk_host, asterisk_user, asterisk_pass)

Chapter 6. Experimental Setup and Evaluation 156

57 # Answer the incoming call on the specified channel

58 answer_call(client, channel)

59 # Record the user’s utterance and save it to a file using VAD

60 record_audio_with_vad(client, channel, output_file)

61 print(f"User’s utterance recorded and saved to {output_file}")

62 # Oversampling recorded audio file

63 ...

64 # Send converted audio file to Google Assistant

65 ...

66 # Wait to receive a response from Google Assistant

67 ...

68 # Downsample the received audio file of the response

69 ...

70 # Playback the response to the caller

71 response_audio = "response_audio.wav"

72 playback_audio(client, channel, response_audio)

73 print("Response playback completed.")

74 # Disconnect from Asterisk AMI

75 client.close()

76

77 if __name__ == "__main__":

78 main()

Listing 6.1: Python pseudo-code snippet for integrating Google Assistant with the PoT

gateway.

Chapter 6. Experimental Setup and Evaluation 157

6.4.4 Evaluating the Integration with Google Assistant

To evaluate the integration with Google Assistant in the PoT gateway, we measure the

response time from the end of the user query until the user receives the response from

Google Assistant. We use timestamps in the developed Python code to insert markers at

key points, such as when the user query is processed and sent to Google Assistant and

when the response from Google Assistant is received, processed, and starts playing back

to the user. We use the time module in Python to calculate the timestamps as shown

in Listing 6.2. By using timestamps, we can measure the time it takes for each specific

part of the process.

Typically, the average response time from sending a query to Google Assistant until

receiving a response can vary depending on several factors, including the network speed,

processing power of the board, the complexity of the query, and the overall load on

Google Assistant servers. Therefore, response times fluctuate due to network conditions

and server loads.

1 import time

2

3 # ... (Code to record user query)

4 # Record the start time when the PoT gateway starts processing the user query

5 start_time = time.time()

6 # ... (Code for processing user query and send it to Google Assistant)

7 # Record the time when the query is sent to Google Assistant

8 start_time_response = time.time()

9 # ... (Waiting for response...)

10 # ... (Code for processing the response received from Google Assistant)

11 # Record the time when the response starts playing back to the user

12 end_time_response = time.time()

13 # ... (Code for playing back the response received from Google Assistant)

Chapter 6. Experimental Setup and Evaluation 158

14 # Calculate the total response time

15 total_response_time = end_time_response - start_time

16 query_processing_time = start_time_response - start_time

17 response_time = end_time_response - start_time_response

18 print("Total Response Time:", total_response_time, "seconds")

19 print("Query Processing Time:", query_processing_time, "seconds")

20 print("Response Time:", response_time, "seconds")

Listing 6.2: Python pseudo-code snippet for measuring the response time when

integrating the PoT gateway to Google Assistant.

We evaluate Google Assistant integration with the PoT gateway using different Rasp-

berry Pi boards. We measure the time it takes for a query to be sent to Google Assistant

and for the response to be received. We write a Python script that runs on each Rasp-

berry Pi board to perform the test. The script initiates the communication with Google

Assistant, places time stamps on the key points, as illustrated in Listing 6.2, sends the

predefined query, records the response time, and then calculates and stores the results.

We execute the test script on each Raspberry Pi board multiple times with different

queries to accurately capture the average response time, as some queries may have dif-

ferent complexities and response times. The Python pseudo code of the test script is

shown in Listing 6.3. We collect the results from all Raspberry Pi boards and Calculate

the average response time for each board based on the multiple test runs.

1 import time

2 from google_assistant_api import send_query_to_google_assistant

3

4 def measure_response_time(query):

5 start_time = time.time()

6 response = send_query_to_google_assistant(query)

Chapter 6. Experimental Setup and Evaluation 159

7 end_time = time.time()

8

9 response_time = end_time - start_time

10 return response_time

11

12 def main():

13 queries = ["What_is_the_weather_like_today.wav",

14 "Tell_me_a_joke.wav",

15 "What_is_the_square_root_of_64.wav"]

16

17 for query in queries:

18 response_time = measure_response_time(query)

19 print(f"Query: {query} | Response Time: {response_time:.2f} seconds")

20

21 if __name__ == "__main__":

22 main()

Listing 6.3: Python pseudo-code snippet for the test script to measure the response time

when interfaces with Google Assistant.

Table 6.2: Response time of different Raspberry Pi boards when interfaced with Google
Assistant.

Raspberry Pi 4 Raspberry Pi 3 B+ Raspberry Pi Zero 2 W
Response Time 3.44 4.13 4.67

Table 6.2 shows the average response time obtained from running the test script

on different Raspberry Pi boards. The differences in response times are attributed to

variations in the different Raspberry Pi models’ processing power. However, the results

for the response times are generally suitable for PoT applications. The Raspberry Pi

Chapter 6. Experimental Setup and Evaluation 160

4, with an average response time of 3.44 seconds, demonstrates the best response time

among other Raspberry Pi boards. While slightly slower than the Raspberry Pi 4 model,

the Raspberry Pi 3 and the Raspberry Pi Zero 2 W still manage an average response

time of 4.13 and 4.67 seconds, respectively. These results indicate that these boards can

handle voice interactions with Google Assistant within an acceptable response time range.

For most PoT applications, these response times are well within acceptable bounds,

allowing users to interact with the devices and the telephony system within the premises

and receive timely responses without significant delays. The Raspberry Pi 4 would be

preferred if the application requires faster response times. On the other hand, if the

application has more relaxed response time requirements, the Raspberry Pi 3 or Zero 2

W might be sufficient, potentially allowing for cost-effective solutions in specific scenarios.

6.5 tSIP Protocol Evaluation

This section evaluates the proposed tSIP messaging protocol for PoT applications. The

evaluation ensures seamless and efficient communication between PoT devices and the

gateway in the proposed framework. We evaluate the size of selective tSIP messages with

their counterparts in the literature, namely the SIP and CoSIP messages. The following

subsections cover the evaluation workflow of the proposed tSIP messages.

6.5.1 Serialization and Deserialization of tSIP Messages

Serializing and deserializing tSIP messages is crucial when working with Protocol Buffers

(Protobuf). Serialization refers to the process of converting structured tSIP data, repre-

sented by a .proto file, into a compact binary format that can be efficiently transmitted

over networks or stored in files. This serialized binary data is platform-agnostic, making

exchanging information between different components of the proposed framework writ-

ten in different programming languages easy. Deserialization, on the other hand, is the

Chapter 6. Experimental Setup and Evaluation 161

reverse process of serialization. It involves taking the binary data received and recon-

structing it into its original structured form, which is the protocol buffer message. This

allows applications to process the data and extract meaningful information efficiently.

Listing 6.4 shows the Python pseudo-code to implement the .proto file of tSIP pre-

sented in Section 4.2.2.2. We import the necessary modules and the auto-generated

protocol buffer classes for the .proto file we get after running the protoc.

The serialize tSIP message function creates an instance of the tSIP message, sets

the values for its fields, and serializes it to bytes. The deserialize tSIP message func-

tion takes the serialized data, deserializes it, and processes the retrieved fields.

1 # Pseudo-code for creating and serializing the tSIP message

2 function serialize_tSIP_message():

3 // Create an instance of the tSIP message

4 tsip_msg = tSIP()

5

6 // Set the values for the fields

7 tsip_msg.method = tSIP.REGISTER

8 tsip_msg.Cseq = 1

9 tsip_msg.Call_ID = 12345

10 tsip_msg.Contact_IP = 192168001 // IP address of the device

11 tsip_msg.Contact_Port = 5060 // Port number the device is listening to

12 tsip_msg.PoT_IP = 192168002 // PoT GW IP address

13 tsip_msg.PoT_Port = 5070 // PoT GW port number

14 tsip_msg.sensor.extend([tSIP.TEMPERATURE, tSIP.HUMIDITY])

15

16 // Serialize the message to bytes

17 serialized_data = tsip_msg.SerializeToString()

18

19 return serialized_data

Chapter 6. Experimental Setup and Evaluation 162

20

21 # Pseudo-code for deserializing the tSIP message

22 function deserialize_tSIP_message(serialized_data):

23 // Create an empty instance of the tSIP message

24 tsip_msg = tSIP()

25

26 // Parse the serialized data into the tSIP message instance

27 tsip_msg.ParseFromString(serialized_data)

28

29 // Access the values of the fields for further process

30 print("Method:", tsip_msg.method)

31 print("Cseq:", tsip_msg.Cseq)

32 print("Call_ID:", tsip_msg.Call_ID)

33 print("Contact_IP:", tsip_msg.Contact_IP)

34 print("Contact_Port:", tsip_msg.Contact_Port)

35 print("PoT_IP:", tsip_msg.PoT_IP)

36 print("PoT_Port:", tsip_msg.PoT_Port)

37 print("Sensor:", tsip_msg.sensor)

Listing 6.4: Python pseudo-code snippet for serializing and deserializing tSIP messages.

6.5.2 tSIP Packet Capture

To capture the tSIP messages and calculate their sizes, we use Wireshark, a free network

protocol analyzer, to capture the UDP packets from the network interface card (NIC) of

the host machine used in the test. Also, we use the Netcat (nc) command in Linux to set

up a UDP server on the host machine for receiving UDP packets through the network. To

create the tSIP messages for evaluation purposes, we first used CloudShark to get shared

packet captures of SIP messages. We encode their equivalent tSIP messages following

Chapter 6. Experimental Setup and Evaluation 163

the steps delineated in Section 4.2. We use the Nanopb Protobuf compiler to create the

compiled class bindings of the .proto file in the C language. This class is then imported

to the M5Stack development board and is used by a developed sketch to encode the tSIP

messages with the header field values equal to their corresponding ones in the shared

SIP messages we get from CloudShark. We leveraged the auto-generated functions in

the compiled C class to get the encoded tSIP messages and their sizes. The sketch then

creates the corresponding tSIP packets for different session messages as delineated in

Section 4.2.3. The sketch sends the packets to the UDP server, and their sizes (including

encapsulations by the underlying layers of the UDP/IP protocol stack) are compared

against their corresponding SIP messages. We also looked at how well tSIP and CoSIP

compressed SIP messages. The results are shown in Table 6.3.

Table 6.3: Comparison between tSIP, CoSIP, and SIP message sizes for different message
types used during session establishment and tear down.

Message type tSIP (bytes) SIP (bytes) tSIP Compression Ratio CoSIP Compression Ratio
REGISTER 69 460 0.150 0.451
INVITE 156 740 0.211 0.537

100 TRYING 105 503 0.209 0.505
180 RINGING 107 504 0.212 0.465

200 OK 112 514 0.218 0.577
ACK 98 485 0.202 0.595
BYE 110 546 0.201 0.592

Fig 6.6 depicts the size of SIP, CoSIP, and tSIP messages. tSIP achieves the highest

compression ratio of SIP messages compared to the compression ratio of CoSIP. The

resulting message size of tSIP is almost half the size of its corresponding CoSIP. This im-

plies better bandwidth utilization and shorter transmit times, which also optimizes power

consumption for tSIP-enabled constrained IoT devices. Furthermore, given Protobuf’s

portability, widespread community support, and the availability of Protobuf compilers

in various programming languages, tSIP is far more suitable for deployment in hetero-

geneous applications. The sketch used to encode tSIP messages and make their packets

takes up 15 KB of program storage space and 1 KB of dynamic memory. This means it

Chapter 6. Experimental Setup and Evaluation 164

0

100

200

300

400

500

600

700

800

REGISTER INVITE 100 TRYING 180 RINGING 200 OK ACK BYE

M
e

ss
a

g
e

 S
iz

e
 (

B
y

te
s)

Session Message

SIP CoSIP tSIP

Figure 6.6: Message size in bytes per message type for SIP, CoSIP, and tSIP.

can be used on embedded devices with less memory and storage space.

6.6 Evaluation of the Registration and Authentica-

tion Mechanism

This section evaluates the registration and authentication mechanism designed for the

proposed PoT framework. Through the evaluation, we seek to analyze this novel ap-

proach’s performance, security, and usability aspects, ultimately determining its suit-

ability for integration into the envisioned PoT framework. This evaluation will offer

valuable insights and empirical evidence to inform the design decisions and highlight the

potential benefits of adopting the new registration and authentication mechanism for

securing the PoT ecosystem.

Chapter 6. Experimental Setup and Evaluation 165

6.6.1 Implementations

6.6.1.1 The PBX server

As a proof of concept, we Implement a bare-metal Asterisk installation on a local Linux

machine using virtualization techniques. The virtual machine of the PBX server features

1GB of RAM, 25GB of storage, and a single-core 2.4GHz CPU. Asterisk, an open-source

PBX software, resembles the communication server within the premises for managing

voice, video, and messaging services within the development environment for the evalu-

ation. We utilize Asterisk 18 IP-PBX software installed on top of Ubuntu Server 18.04.

The installation process involves setting up the Linux environment, installing prereq-

uisite libraries and dependencies, and compiling Asterisk from the source code. Once

installed, we configure extensions, SIP trunks, and dial plans, enabling call routing and

communication features between the PBX server, SIP extensions, and the prototyping

PoT gateways in the development environment as depicted in Figure 4.7. the PBX server

is configured with two SIP trunks that connect the PBX server to the PoT gateways.

We need not consider the PBX server’s performance since the proposed mechanism dele-

gates the registration and authentication of the PoT devices to the blockchain, avoiding

impacting the PBX server’s performance or affecting its design capacity. A single SIP

trunk configuration to each PoT gateway abstracts the communication with each set of

devices to their corresponding gateway. The performance evaluation of the PBX server

is shown in Figure 6.1 and Figure 6.2 using the methodology presented in Section 4.1.6.

6.6.1.2 The blockchain node

The full node of the private blockchain in the proposed system is implemented on a Linux

docker image running on a local Linux machine, and acts exactly as the public Ethereum

blockchain. We install the Geth application on top of the Linux image, which is the

standard distribution of Ethereum written in the Go programming language. We utilize

Chapter 6. Experimental Setup and Evaluation 166

the PoA consensus algorithm, elevate the authority of the node to create new blocks, set

up the PoA genesis block, and define the network’s consensus rules and permissions. The

utilized local Linux machine for the private blockchain node deployment features Intel

Core i5 CPU@3.20GHz, 16GB RAM, and 500GB SSD HDD. The computation overhead

(i.e., % CPU utilization) of the private blockchain node is around 41%.

We utilize a private blockchain with a reduced mining consensus algorithm, single

network node, and hence reduced competition for block creation. Therefore, latency

(the time taken for a transaction to be processed, confirmed, and made available on the

blockchain network) and throughput (the number of transactions the network can process

per second (TPS)) are negligible in our test environment. Alongside, it is worth noting

that in the proposed mechanism, block creation is performed when issuing a transaction

to register a PoT gateway or device for the first time. However, this would change if we

utilize a public blockchain network like Ethereum.

6.6.1.3 The Gas Price

In blockchain networks, gas price is crucial in governing transaction costs and prioritizing

transactions for block inclusion. Gas represents the computational effort required to

execute a transaction or smart contract function. Every operation within a blockchain

network consumes a specific amount of gas, and the gas price determines the fee users

must pay for each unit of gas consumed. Setting a higher gas price incentivizes miners or

validators to prioritize a transaction, as they are more likely to include it in a block and

receive the associated transaction fees. Conversely, lower gas prices might lead to delayed

transaction processing or even exclusion from blocks during times of network congestion.

Gas prices are essential for striking a balance between transaction priority and network

efficiency, and they allow blockchain networks to allocate computational resources fairly

and efficiently while preventing resource abuse.

We use REMIX, an Ethereum IDE for contract development, to develop the smart

Chapter 6. Experimental Setup and Evaluation 167

contract for the proposed registration and authentication mechanism. If applying the

proposed mechanism to the public Ethereum network, the most expensive part will be

deploying the smart contract during system initialization. The deployment cost depends

on the memory utilization and the acquired computation resources in the developed

smart contract functions. Approximately 0.000550 ETH will be spent to deploy the

smart contract of the proposed mechanism, which works out to USD 1.03 at the average

Ether price of $1,879.16 USD on July 29, 2023. Comparatively, it costs around 0.000097

ETH, or about $0.18 USD per transaction issuance, to register a new PoT gateway or

device.

6.6.1.4 The PoT gateway

The PoT gateways are implemented using Raspberry Pi 3 Model B+ boards running at

1.2GHz and 1GB of RAM. We develop Python scripts to facilitate the interaction with

the blockchain and the smart gadgets associated with the gateway. The Python script

that interacts with the blockchain utilizes the Web3 Python library that facilitates the

interaction with the Ethereum blockchain by providing APIs to issue a transaction, read-

ing block data, and interfacing with smart contracts. The PoT gateway plays the role

of a transaction issuer in the proposed mechanism, with no block storage requirements

or block validation commitments, even if applied to the public Ethereum network. The

impact of issuing a transaction to register a new device or reading block data to authen-

ticate a device before granting its data exchange with the PBX server is negligible, and

it has a slight impact on the performance evaluation study or the Raspberry Pi when

acting as a PoT gateway conducted in Section 6.3.

6.6.1.5 The smart gadgets

Since the heterogeneity of smart objects and their different capabilities considering pro-

cessing and storage constraints, the proposed mechanism does not impact the resource

Chapter 6. Experimental Setup and Evaluation 168

limits of embedded devices, promoting their engagement in PoT. In the prototype of the

proposed mechanism, we utilize a tiny storage capacity to store the predefined device

ID (32 bits), attributes (100 Bytes (JSON)), and the public key of the associated PoT

gateway (256 bits). We utilize the SPI flash encryption capability of ESP32 to securely

save the device’s ID and attributes, mitigating the impersonation threats against the

device.

6.6.2 Security Analysis

The proposed mechanism ensures that it meets the CIA triad for tSIP communication:

confidentiality, integrity, and availability.

6.6.2.1 Confidentiality

It ensures that messages are securely transmitted from source to destination, prevent-

ing unauthorized access attempts to eavesdrop on the transmitted information. In the

proposed mechanism, confidentiality is achieved through the utilization of asymmetric

cryptography for tSIP registration and authentication messages between the gadget and

the PoT gateway on the one hand and the utilization of blockchain technology, which

heavily depends on cryptography, to maintain the list of authenticated gadgets at the

gateway on the other hand.

6.6.2.2 Integrity

It implies consistency and trustworthiness of information through its life cycle. The

proposed system meets integrity by utilizing blockchain technology, which keeps an im-

mutable ledger of transactions that is very hard to alter. Also, integrity is achieved by

encrypting the NVS flash partition, which contains identifiable information about the

gadget, to mitigate the impersonation threats.

Chapter 6. Experimental Setup and Evaluation 169

6.6.2.3 Availability

It means the readiness of data for authorized parties when requesting it. Availability is

achieved in the proposed mechanism through blockchain technology’s inherent decentral-

ization nature, where all transactions happening over the blockchain network are repli-

cated and updated by each participating full node. This means that if one or some of the

participating full nodes go offline, the system still functions, ensuring high availability.

6.7 Summary

This chapter presents a comprehensive implementation and evaluation of the proposed

Phone of Things (PoT) framework in the thesis. The chapter begins by providing an

in-depth overview of the proposed PoT framework’s experimental setup, highlighting its

software stack’s architecture. The chapter then goes through a thorough performance

evaluation of SBCs (i.e., Raspberry Pi) as suitable candidates to act as PoT gateways in

the proposed framework. The evaluation shows that Raspberry Pi boards can gracefully

handle an adequate number of simultaneous VoIP call with different configuration scenar-

ios (i.e., passthrough and transcoding). This promotes the utilization of these tiny and

cost-effective boards as Gateways in the proposed framework, optimizing its deployment

cost.

To facilitate the implementation of seamless and advanced interaction with the sur-

rounding devices, the chapter reviews the integration of the gateway with Google Assis-

tant. This promotes seamless accessibility to the devices through intuitive voice com-

mands via phone calls and provides innovative telephony solutions as well. The chapter

goes through the integration workflow and evaluates the response time of different Rasp-

berry Pi boards while handling user queries and Google Assistant responses. The boards

demonstrate good response time for PoT applications.

The chapter also evaluates the proposed tSIP messaging protocol. It starts by review-

Chapter 6. Experimental Setup and Evaluation 170

ing the serialization and deserialization process of tSIP by abstracting the implementation

details of tSIP through pseudo-code examples. It also highlights tSIP packet capture by

the testing server for evaluation purposes. The results show that tSIP achieves smaller

packet sizes than SIP and COSIP counterparts, implying faster transmit time, prolonged

battery life for devices, and efficient network bandwidth utilization. Also, the code foot-

print of tSIP is small, promoting its deployment to a wide range of embedded devices.

Lastly, the chapter reviews a novel blockchain-based registration and authentication

mechanism for devices in PoT. It reviews the implementation of different components

of the proposed mechanism and evaluates the performance of different aspects of the

proposed mechanism.

Chapter 7

Conclusion and Future Work

IoT (Internet of Things) and VoIP (Voice over Internet Protocol) technologies have yet to

be fully integrated, despite the potential benefits of combining these two powerful com-

munication paradigms. While both IoT and VoIP have independently made significant

advancements, the convergence of these technologies faces some challenges. IoT devices,

often designed with limited resources considering processing, memory, and power con-

sumption, mandating lightweight communication protocols to transmit data efficiently.

On the other hand, VoIP demands capable devices featuring real-time and reliable com-

munication, which is hard to achieve on resource-constrained IoT devices. Integrating

the two technologies requires addressing issues like security, bandwidth optimization, and

interoperability between diverse IoT devices and VoIP platforms.

Therefore, we propose the Phone of Things (PoT) framework in this thesis. The

proposed poT holds tremendous promise as a modular platform based on open-source

technologies to seamlessly integrate IoT and VoIP technologies, bridging the gap be-

tween the two domains and enabling innovative communication solutions. PoT leverages

the widespread adoption of VoIP technologies and the advanced capabilities of the com-

munication servers to act as central hubs for IoT devices, facilitating easy control and

monitoring through typical phone calls and intuitive voice commands. By integrating

171

Chapter 7. Conclusion and Future Work 172

VoIP functionality directly into the proposed PoT framework and providing a constrained

version of the SIP protocol, we envision rendering the surrounding devices into typical

SIP endpoints in the VoIP ecosystem. Therefore, users can seamlessly interact with the

surrounding IoT devices and engage in real-time voice communication with the devices

through the ubiquitous phone assets (i.e., phone sets, softphones) connected to the exist-

ing communication servers within the premises. Besides, this integration opens up new

possibilities for enhanced user experiences of phone calls, such as context-aware tele-

phony solutions and dynamic IVRs. As technology evolves, PoT’s potential to serve as

a comprehensive platform for IoT and VoIP integration may pave the way for exciting

advancements in both domains and further enrich the landscape of connected devices

and communication technologies.

7.1 Conclusions

The proposed PoT framework represents an innovative approach to seamlessly integrate

IoT and VoIP technologies, taking advantage of a miniaturized SIP protocol version (i.e.,

tSIP) and blockchain technology for efficient registration and authentication mechanism.

Combining the proposed tSIP protocol and blockchain allows for a robust, secure com-

munication infrastructure tailored to resource-constrained IoT devices in typical PoT

framework applications. With tSIP, the proposed PoT framework ensures that data ex-

change between the surrounding devices and the PoT gateways remains efficient even on

devices with limited resources. By leveraging blockchain technology, PoT provides a de-

centralized and tamper-proof mechanism for device registration and authentication in the

PoT ecosystem, enhancing the overall security and privacy of the proposed framework.

The blockchain-based mechanism simplifies device onboarding and enables seamless com-

munication between devices, eliminating the need for centralized servers and reducing

potential points of failure. As a result, the proposed PoT framework offers a scalable,

Chapter 7. Conclusion and Future Work 173

resilient, and secure platform that fosters seamless integration between IoT devices and

VoIP services, opening up new avenues for advanced voice-controlled IoT applications

and intelligent telephony solutions.

Chapter 2 provides an in-depth analysis of the current state of research and develop-

ment in several key areas relevant to the proposed PoT framework. Firstly, it examines

the integration of Asterisk in IoT applications, exploring how this open-source IP-PBX

communication software can enhance IoT frameworks’ connectivity and communication

capabilities. Next, the chapter delves into the analysis of standard IoT messaging pro-

tocols and their characteristics, assessing their suitability for efficient data exchange in

IoT ecosystems. Special attention is given to the SIP protocol and its integration into

IoT, investigating the challenges and opportunities it presents for enabling efficient mes-

sage exchange paradigms in IoT applications. Finally, the chapter explores blockchain

technology as a viable secure SIP registration and authentication solution. It reviews re-

cent blockchain-based approaches in the literature for ensuring the integrity and privacy

of SIP-based communications. By synthesizing and critically evaluating the existing

literature in these areas, the chapter lays the foundation for developing the proposed

PoT framework that integrates Asterisk, a constrained version of the SIP protocol, and

blockchain technology to enable secure and efficient bridging between IoT and VoIP in

the proposed PoT framework.

Chapter 3 outlines the essential building blocks of the proposed PoT platform, focus-

ing on the gateway and potential devices. The PoT gateway is designed as a versatile

and powerful component with multiple functionalities to achieve its designated tasks. It

serves as an IP-PBX server, enabling seamless VoIP communication between IoT devices

and users. Additionally, the gateway functions as an OpenVPN client, ensuring secure

and private tunnels between distant gateways. It also acts as a Wi-Fi access point, facili-

tating easy and convenient connectivity for IoT devices. Moreover, the gateway takes on

the role of an MQTT broker, facilitating efficient and lightweight event-driven messaging

Chapter 7. Conclusion and Future Work 174

for data exchange. In a further enhancement, the chapter discusses the integration of the

gateway with a chatbot agent, empowering it with interactive capabilities. The chatbot

integration enables the gateway to communicate with users through natural language pro-

cessing, thereby enabling device monitoring and control through typical phone calls and

intuitive voice commands, enhancing the overall user experience. Additionally, the chap-

ter highlights the incorporation of tiny chatbot capability into the gateway, ensuring the

gateway’s efficient handling of basic voice commands and decoupling its dependence on

the Internet. The chapter also emphasizes the gateway’s integration with powerline com-

munication technology. The gateway can leverage existing electrical wiring to establish a

reliable communication network for legacy and mains-powered devices by incorporating

a powerline communication modem. This integration provides a cost-effective solution

for extending the connectivity options for the surrounding devices within the premises.

Chapter 4 presents a thorough feasibility study on using single-board computers

(SBCs) as suitable candidates for acting as PoT gateways in the proposed PoT frame-

work. The study assesses the performance of various SBCs with different capabilities

when handling increasing passthrough and transcoding VoIP calls. The study aims to

promote tiny and cost-effective embedded Linux platforms as suitable PoT gateways can-

didates. It provides insights into the maximum number of simultaneous VoIP calls that

different boards can gracefully handle without exhausting their resources. This helps de-

signers to optimize their PoT design decisions by selecting the appropriate boards for PoT

gateways that fit their specific application needs. Additionally, the chapter delves into the

details of the proposed tiny version of the SIP protocol (i.e., tSIP) explicitly tailored for

PoT applications. It provides an in-depth review of the proposed tSIP binary encoding

and packet formation, ensuring efficient and lightweight communication for resource-

constrained IoT devices. Moreover, the chapter outlines the proposed blockchain-based

registration and authentication mechanism for PoT applications. The blockchain solu-

tion offers a decentralized and secure approach to device registration and authentication

Chapter 7. Conclusion and Future Work 175

in PoT applications, enhancing the overall security and privacy of the PoT ecosystem.

Combining the performance evaluation of SBCs, the customized SIP protocol, and the

blockchain-based security mechanism, the chapter lays the foundation for a robust and

practical implementation of the PoT framework, enabling seamless integration of IoT

and VoIP technologies with enhanced communication capabilities.

Chapter 5 explores a range of use-case scenarios based on the proposed PoT frame-

work. It reviews various context-aware telephony solutions utilizing the integration be-

tween IoT and VoIP technologies in the proposed PoT framework. It also discusses how

the PoT framework redefines mature phone technologies in a modern context. The chap-

ter examines how PoT can address context-specific communication needs, enhancing user

experiences through intelligent call routing based on contextual information. By leverag-

ing the PoT framework, businesses can implement the proposed Location Transparency

Call (LTC) systems that mitigate missed business calls by intelligently redirecting calls

to available and relevant extensions, ensuring seamless communication regardless of the

user’s physical location. Furthermore, the chapter delves into session semantic commu-

nication for devices in PoT, highlighting how the framework enables devices to commu-

nicate with the gateway in a meaningful and contextually relevant manner. These use

case scenarios demonstrate the versatility and applicability of the proposed PoT frame-

work, showcasing its potential to revolutionize traditional phone technologies and unlock

innovative communication solutions tailored to the specific needs of users and businesses

in today’s interconnected world.

Chapter 6 presents a comprehensive implementation and evaluation of the proposed

PoT framework. It provides an in-depth overview of the framework’s experimental setup

and software stack architecture. The chapter evaluates Raspberry Pi’s (SBCs) perfor-

mance as PoT gateways, demonstrating their ability to handle simultaneous VoIP calls

with various configuration scenarios. Integrating the gateway with Google Assistant

promotes seamless device interaction, providing innovative telephony solutions. The in-

Chapter 7. Conclusion and Future Work 176

tegration workflow is evaluated, and the average response time of different Raspberry

Pi boards is shown to be suitable for PoT applications. The tSIP messaging proto-

col is evaluated, showing smaller packet sizes than their corresponding SIP and CoSIP

counterparts, resulting in faster transmit time, longer battery life, and efficient network

bandwidth utilization. Also, the code footprint of tSIP is small, promoting its deploy-

ment to a wide range of embedded devices. Finally, the chapter reviews the proposed

blockchain-based registration and authentication mechanism for devices in PoT, evaluat-

ing its implementation and performance. The analysis demonstrates that the proposed

mechanism complies with the security standards of the SIP protocol and fits the con-

straints of embedded smart objects.

7.2 Possible Future Directions

The future directions for the proposed PoT framework in the thesis hold immense poten-

tial for advancing communication technologies and IoT applications. One prominent di-

rection is continuously refining and optimizing the PoT gateway’s capabilities to support

a broader range of IoT devices and communication protocols. This includes enhancing

the gateway’s capacity to handle more complex IoT workflows and exploring the inte-

gration of building automation system (BAS) protocols [132]. Integrating BAS protocols

like BACnet (Building Automation and Control Network) [133], LonWorks [134], KNX

(Konex) [135], and DALI (Digital Addressable Lighting Interface) [136] into the PoT

framework holds significant potential for creating a comprehensive and interconnected

smart environment. By incorporating these protocols, the proposed PoT framework can

seamlessly communicate with various building automation devices and systems, enabling

coherent and centralized control and monitoring of building infrastructure. BACnet, a

widely adopted standard, allows for interoperability among different BAS components,

making it possible for the PoT framework to interact with HVAC systems, lighting con-

Chapter 7. Conclusion and Future Work 177

trols, and other building automation devices. LonWorks enables communication between

devices over a Local Operating Network (LON). It is known for its robustness and flex-

ibility in creating networked systems. KNX is a global standard for home and building

automation that allows different devices and systems to communicate and interact with

each other. DALI is a protocol specifically designed for controlling and dimming build-

ing lighting systems. Integrating these protocols, in turn, empowers users to control

and manage building automation systems remotely via the phone network (PSTN and

VoIP) through voice commands, enabling energy efficiency, cost savings, and improved

occupant comfort. As the IoT and building automation domains continue to evolve, this

integration can revolutionize how we interact with smart buildings, making them more

user-friendly, adaptive, and environmentally sustainable.

Another promising direction for the proposed PoT framework is the exploration of AI

and machine learning algorithms to enhance the context-aware telephony capabilities of

PoT further. By leveraging AI, the framework can dynamically adapt call routing and

device interaction based on user behaviour and preferences, providing a more personalized

and seamless communication experience. Additionally, future developments may focus on

expanding the PoT ecosystem through collaborations with industry partners and open-

source communities, fostering innovation and creating a broader range of compatible

devices and applications. Moreover, research efforts may be directed toward optimizing

the proposed blockchain-based registration and authentication mechanism to improve

scalability and efficiency while ensuring robust security for an expanding network of IoT

devices.

Also, utilizing open-source frameworks for building tailor-made Linux-based operating

systems, such as Yocto and Buildroot [137], for the gateways in the proposed framework

offers numerous potential benefits for PoT deployments. Yocto Linux provides a power-

ful and flexible build system, enabling the creation of custom Linux distributions with

specific configurations and packages tailored to the requirements of the PoT gateway. By

Chapter 7. Conclusion and Future Work 178

leveraging Yocto’s build system capabilities, we can optimize the operating system for

the hardware of the PoT gateway, ensuring efficient resource utilization and performance.

Additionally, creating a tailor-made operating system allows for the inclusion of only es-

sential components, minimizing the attack surface and enhancing security. Moreover, this

approach facilitates easy integration of the PoT gateway into existing IoT infrastructures,

ensuring seamless communication with various IoT devices and cloud platforms. This

adaptability ensures that the PoT gateway can effectively interact with a wide range of

IoT devices, making it highly versatile and future-proof.

Bibliography

[1] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid Khan. Future in-

ternet: the internet of things architecture, possible applications and key challenges.

In 2012 10th international conference on frontiers of information technology, pages

257–260. IEEE, 2012. ISBN 0769549276.

[2] Khalid Elgazzar, Haytham Khalil, Taghreed Alghamdi, Ahmed Badr, Ghadeer

Abdelkader, Abdelrahman Elewah, and Rajkumar Buyya. Revisiting the internet

of things: New trends, opportunities and grand challenges. Frontiers in the Internet

of Things, 1, 2022. ISSN 2813-3110. doi: 10.3389/friot.2022.1073780. URL https:

//www.frontiersin.org/articles/10.3389/friot.2022.1073780.

[3] Qian Zhu, Ruicong Wang, Qi Chen, Yan Liu, and Weijun Qin. Iot gateway: Bridg-

ingwireless sensor networks into internet of things. In 2010 IEEE/IFIP Interna-

tional Conference on Embedded and Ubiquitous Computing, pages 347–352. Ieee,

2010. ISBN 1424497191.

[4] Chrispin Gray, Robert Ayre, Kerry Hinton, and Rodney S Tucker. Power con-

sumption of iot access network technologies. In 2015 IEEE International Confer-

ence on Communication Workshop (ICCW), pages 2818–2823. IEEE, 2015. ISBN

1467363057.

[5] William Wong. Iot security breaches: 4 real-world exam-

179

https://www.frontiersin.org/articles/10.3389/friot.2022.1073780
https://www.frontiersin.org/articles/10.3389/friot.2022.1073780

BIBLIOGRAPHY 180

ples, 2021. URL https://conosco.com/industry-insights/blog/

iot-security-breaches-4-real-world-examples.

[6] Piet De Vaere and Adrian Perrig. Liam: An architectural framework for decentral-

ized iot networks. In 2019 IEEE 16th International Conference on Mobile Ad Hoc

and Sensor Systems (MASS), pages 416–427. IEEE, 2019. ISBN 1728146011.

[7] Stylianos Karapantazis and Fotini-Niovi Pavlidou. Voip: A comprehensive survey

on a promising technology. Computer Networks, 53(12):2050–2090, 2009. ISSN

1389-1286.

[8] techienerd. A brief history of voip: How voice over ip changed

communication, June 2023. URL https://voipinsights.com/

history-of-voip-how-voice-over-ip-changed-communication/.

[9] Jason Hoffman. Voip adoption statistics for 2019 & beyond, 2019. URL https:

//wisdomplexus.com/blogs/voip-adoption-statistics-2019-beyond.

[10] The future of voip is in the iot, 2019. URL https://www.idtexpress.com/blog/

the-future-of-voip-is-in-the-iot/.

[11] Pablo Montoro and Eduardo Casilari. A comparative study of voip standards with

asterisk. In 2009 Fourth International Conference on Digital Telecommunications,

pages 1–6. IEEE, 2009. ISBN 0769536956.

[12] Asterisk: Open source communications software, 2023. URL https://www.

asterisk.org/.

[13] Jim Van Meggelen, Leif Madsen, and Jared Smith. Asterisk: The future of tele-

phony. ” O’Reilly Media, Inc.”, 2007. ISBN 0596510489.

[14] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston, Jon

https://conosco.com/industry-insights/blog/iot-security-breaches-4-real-world-examples
https://conosco.com/industry-insights/blog/iot-security-breaches-4-real-world-examples
https://voipinsights.com/history-of-voip-how-voice-over-ip-changed-communication/
https://voipinsights.com/history-of-voip-how-voice-over-ip-changed-communication/
https://wisdomplexus.com/blogs/voip-adoption-statistics-2019-beyond
https://wisdomplexus.com/blogs/voip-adoption-statistics-2019-beyond
https://www.idtexpress.com/blog/the-future-of-voip-is-in-the-iot/
https://www.idtexpress.com/blog/the-future-of-voip-is-in-the-iot/
https://www.asterisk.org/
https://www.asterisk.org/

BIBLIOGRAPHY 181

Peterson, Robert Sparks, Mark Handley, and Eve Schooler. Sip: session initiation

protocol. Report 2070-1721, 2002.

[15] Asterisk — the open-source pbx, 2022. URL https://www.asterisk.org/.

[16] Alan B Johnston. SIP: understanding the session initiation protocol. Artech House,

2015. ISBN 1608078647.

[17] Simone Cirani, Marco Picone, and Luca Veltri. Cosip: a constrained session initia-

tion protocol for the internet of things. In European Conference on Service-Oriented

and Cloud Computing, pages 13–24. Springer, 2013.

[18] Muhammad Salek Ali, Massimo Vecchio, Miguel Pincheira, Koustabh Dolui, Fabio

Antonelli, and Mubashir Husain Rehmani. Applications of blockchains in the inter-

net of things: A comprehensive survey. IEEE Communications surveys and tutori-

als, 21(2):1676–1717, 2019. ISSN 1553-877X. doi: 10.1109/COMST.2018.2886932.

[19] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized

business review, page 21260, 2008.

[20] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian Weng,

and Muhammad Imran. An overview on smart contracts: Challenges, advances and

platforms. Future Generation Computer Systems, 105:475–491, 2020. ISSN 0167-

739X.

[21] Bengt Ahlgren, Markus Hidell, and Edith C-H Ngai. Internet of things for smart

cities: Interoperability and open data. IEEE Internet Computing, 20(6):52–56,

2016. ISSN 1089-7801.

[22] Sylvain Kubler, Jérémy Robert, Ahmed Hefnawy, Kary Främling, Chantal Cherifi,

and Abdelaziz Bouras. Open iot ecosystem for sporting event management. IEEE

Access, 5:7064–7079, 2017. ISSN 2169-3536.

https://www.asterisk.org/

BIBLIOGRAPHY 182

[23] Jérémy Robert, Sylvain Kubler, Niklas Kolbe, Alessandro Cerioni, Emmanuel Gas-

taud, and Kary Främling. Open iot ecosystem for enhanced interoperability in

smart cities—example of métropole de lyon. Sensors, 17(12):2849, 2017. ISSN

1424-8220.

[24] Salah A Alabady, Fadi Al-Turjman, and Sadia Din. A novel security model for

cooperative virtual networks in the iot era. International Journal of Parallel Pro-

gramming, 48:280–295, 2020. ISSN 0885-7458.

[25] Ramon Sanchez-Iborra and Antonio F Skarmeta. Tinyml-enabled frugal smart

objects: Challenges and opportunities. IEEE Circuits and Systems Magazine, 20

(3):4–18, 2020. ISSN 1531-636X.

[26] Ramachandra Gurunath, Mohit Agarwal, Abhrajeet Nandi, and Debabrata

Samanta. An overview: security issue in iot network. In 2018 2nd international con-

ference on I-SMAC (IoT in social, Mobile, analytics and cloud)(I-SMAC) I-SMAC

(IoT in social, Mobile, analytics and cloud)(I-SMAC), 2018 2nd international con-

ference on, pages 104–107. IEEE, 2018. ISBN 1538614421.

[27] Mazen Juma, Azza Abdel Monem, and Khaled Shaalan. Hybrid end-to-end vpn

security approach for smart iot objects. Journal of Network and Computer Appli-

cations, 158:102598, 2020. ISSN 1084-8045.

[28] Cary Stothart, Ainsley Mitchum, and Courtney Yehnert. The attentional cost of

receiving a cell phone notification. Journal of experimental psychology: human

perception and performance, 41(4):893, 2015. ISSN 1939-1277.

[29] Eclipse iot - leading open source community for iot innovation, 2023. URL https:

//iot.eclipse.org/.

[30] Johannes Kristan, Paolo Azzoni, Lukas Römer, Sven Erik Jeroschewski, and Elisa

Londero. Evolving the ecosystem: Eclipse arrowhead integrates eclipse iot. In

https://iot.eclipse.org/
https://iot.eclipse.org/

BIBLIOGRAPHY 183

NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium,

pages 1–6. IEEE, 2022. ISBN 1665406011.

[31] Thingsboard - open-source iot platform, 2023. URL https://thingsboard.io/.

[32] openhab, 2023. URL https://www.openhabfoundation.org/.

[33] Home assistant, 2023. URL https://www.home-assistant.io/.

[34] Kaa — enterprise iot platform with free plan, 2023. URL https://www.kaaiot.

com/.

[35] The things network, 2023. URL https://www.thethingsnetwork.org/.

[36] Node-red — low-code programming for event-driven applications, 2023. URL

https://nodered.org/.

[37] JA Herndon and FH Tendick. A time division switch for an electronic private

branch exchange. IEEE Transactions on Communication and Electronics, 83(73):

338–345, 1964. ISSN 0536-1532.

[38] Bilal Muhammad Khan, Muhammad Fahad, Rabia Bilal, and Ali Hanzala Khan.

Performance analysis of raspberry pi 3 ip pbx based on asterisk. Electronics, 11

(20):3313, 2022. ISSN 2079-9292.

[39] Sandeep Sonaskar and Shubhangi Giripunje. Voice over intranet based private

branch exchange system design. In 2011 3rd International Conference on Electron-

ics Computer Technology, volume 6, pages 287–291. IEEE, 2011. ISBN 1424486793.

[40] Mark Spencer. Introduction to the asterisk open source pbx. Linux Support Ser-

vices, Inc, 2002.

[41] Gary C Kessler and Peter V Southwick. ISDN concepts, facilities, and services.

McGraw-Hill, Inc., 1996. ISBN 0070342490.

https://thingsboard.io/
https://www.openhabfoundation.org/
https://www.home-assistant.io/
https://www.kaaiot.com/
https://www.kaaiot.com/
https://www.thethingsnetwork.org/
https://nodered.org/

BIBLIOGRAPHY 184

[42] Ghannam Aljabari. Integrating voip systems with the internet of things. The 4th

Palestinian International Conference on Computer and Information, 2015.

[43] Foteini Andriopoulou, Theofanis Orphanoudakis, and Tasos Dagiuklas. Iota: Iot

automated sip-based emergency call triggering system for general ehealth purposes.

In 2017 IEEE 13th International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob), pages 362–369. IEEE, 2017. ISBN

1538638398.

[44] Danilo De Freitas Melo, Epaminondas De Souza Lage, Anderson Vagner Rocha, and

Braz De Jesus Cardoso. Improving the consumption and water heating efficiency in

smart buildings. In 2017 13th International conference and expo on emerging tech-

nologies for a smarter world (CEWIT), pages 1–6. IEEE, 2017. ISBN 1538622750.

[45] Juan Pablo Berŕıo López and Yury Montoya Pérez. Integration of asterisk ip-pbx

with esp32 embedded system for remote code execution. Multidisciplinary Digital

Publishing Institute Proceedings, 21(1):38, 2019. ISSN 2504-3900.

[46] Leonel Hernandez and Maria Ospina. Scheme and creation of a prototype for the

supervision of lights and electronic devices with a pbx, using a wlan solution based

on iot. In 2019 IEEE Colombian Conference on Communications and Computing

(COLCOM), pages 1–6. IEEE, 2019. ISBN 1728135036.

[47] Jirawat Sangkong and Machigar Ongtang. Smart voip postbox with confirmation

receipt using iot technology. In Proceedings of the 2017 International Conference

on Industrial Design Engineering, pages 71–75, 2017.

[48] Karen Rose, Scott Eldridge, and Lyman Chapin. The internet of things: An

overview. The internet society (ISOC), 80:1–50, 2015.

[49] KV Shibu. Introduction to embedded systems. Tata McGraw-Hill Education, 2009.

ISBN 007014589X.

BIBLIOGRAPHY 185

[50] Hao Chen, Xueqin Jia, and Heng Li. A brief introduction to iot gateway. In

IET international conference on communication technology and application (IC-

CTA 2011), pages 610–613. IET, 2011. ISBN 184919470X.

[51] Charles Severance. Eben upton: Raspberry pi. Computer, 46(10):14–16, 2013.

ISSN 0018-9162.

[52] Gerald Coley. Beaglebone black system reference manual. Texas Instruments,

Dallas, 5:2013, 2013.

[53] Neven Nikolov, Ognyan Nakov, and Daniela Gotseva. Operating systems for iot

devices. In 2021 56th International Scientific Conference on Information, Commu-

nication and Energy Systems and Technologies (ICEST), pages 41–44. IEEE, 2021.

ISBN 1665428872.

[54] Jonathan A Ariza and Heyson Baez. Understanding the role of single-board com-

puters in engineering and computer science education: A systematic literature re-

view. Computer Applications in Engineering Education, 30(1):304–329, 2022. ISSN

1061-3773.

[55] Jolle W Jolles. Broad-scale applications of the raspberry pi: A review and guide

for biologists. Methods in Ecology and Evolution, 12(9):1562–1579, 2021. ISSN

2041-210X.

[56] William Shotts. The Linux command line: a complete introduction. No Starch

Press, 2019. ISBN 1593279531.

[57] Martin Becker and Samarjit Chakraborty. A valgrind tool to compute the working

set of a software process. arXiv preprint arXiv:1902.11028, 2019.

[58] A. Goucher and T. Riley. Beautiful Testing: Leading Professionals Reveal How

BIBLIOGRAPHY 186

They Improve Software. O’Reilly Media, 2009. ISBN 9781449388683. URL https:

//books.google.ca/books?id=qAv8p4piP2cC.

[59] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and

Moussa Ayyash. Internet of things: A survey on enabling technologies, proto-

cols, and applications. IEEE communications surveys & tutorials, 17(4):2347–2376,

2015. ISSN 1553-877X.

[60] Eyhab Al-Masri, Karan Raj Kalyanam, John Batts, Jonathan Kim, Sharanjit

Singh, Tammy Vo, and Charlotte Yan. Investigating messaging protocols for the

internet of things (iot). IEEE Access, 8:94880–94911, 2020. ISSN 2169-3536.

[61] Nitin Naik. Choice of effective messaging protocols for iot systems: Mqtt, coap,

amqp and http. In 2017 IEEE international systems engineering symposium

(ISSE), pages 1–7. IEEE, 2017. ISBN 1538634031.

[62] Selma Dilek, Kerem Irgan, Metehan Guzel, Suat Ozdemir, Sebnem Baydere, and

Chalermpol Charnsripinyo. Qos-aware iot networks and protocols: A comprehen-

sive survey. International Journal of Communication Systems, 35(10):e5156, 2022.

ISSN 1074-5351.

[63] Mehar Ullah, Syed Rameez Ullah Kakakhel, Tomi Westerlund, Annika Wolff, Dick

Carrillo, Juha Plosila, and Pedro HJ Nardelli. Iot protocol selection for smart grid

applications: Merging qualitative and quantitative metrics. In 2020 43rd Inter-

national Convention on Information, Communication and Electronic Technology

(MIPRO), pages 993–998. IEEE, 2020. ISBN 9532330992.

[64] Dipa Soni and Ashwin Makwana. A survey on mqtt: a protocol of internet of

things (iot). In International conference on telecommunication, power analysis and

computing techniques (ICTPACT-2017), volume 20, pages 173–177, 2017.

https://books.google.ca/books?id=qAv8p4piP2cC
https://books.google.ca/books?id=qAv8p4piP2cC

BIBLIOGRAPHY 187

[65] Carsten Bormann, Angelo P Castellani, and Zach Shelby. Coap: An application

protocol for billions of tiny internet nodes. IEEE Internet Computing, 16(2):62–67,

2012. ISSN 1089-7801.

[66] Parul Datta and Bhisham Sharma. A survey on iot architectures, protocols, se-

curity and smart city based applications. In 2017 8th International conference

on computing, communication and networking technologies (ICCCNT), pages 1–5.

IEEE, 2017. ISBN 1509030387.

[67] Jorge E Luzuriaga, Juan Carlos Cano, Carlos Calafate, Pietro Manzoni, Miguel

Perez, and Pablo Boronat. Handling mobility in iot applications using the mqtt

protocol. In 2015 Internet Technologies and Applications (ITA), pages 245–250.

IEEE, 2015. ISBN 1467395579.

[68] Jevgenijus Toldinas, Borisas Lozinskis, Edgaras Baranauskas, and Algirdas Dobro-

volskis. Mqtt quality of service versus energy consumption. In 2019 23rd Interna-

tional Conference Electronics, pages 1–4. IEEE, 2019. ISBN 1728122090.

[69] Cenk Gündoğan, Christian Amsüss, Thomas C Schmidt, and Matthias Wählisch.

Toward a restful information-centric web of things: A deeper look at data orien-

tation in coap. In Proceedings of the 7th ACM Conference on Information-Centric

Networking, pages 77–88, 2020.

[70] Tetsuya Yokotani and Yuya Sasaki. Comparison with http and mqtt on required

network resources for iot. In 2016 international conference on control, electronics,

renewable energy and communications (ICCEREC), pages 1–6. IEEE, 2016. ISBN

150900744X.

[71] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta.

Comparison of json and xml data interchange formats: a case study. Caine, 9:

157–162, 2009.

BIBLIOGRAPHY 188

[72] I-Fen Yang, Yi-Chun Lin, Shun-Ren Yang, and Phone Lin. The implementation

of a sip-based service platform for 5g iot applications. In 2021 IEEE 93rd Ve-

hicular Technology Conference (VTC2021-Spring), pages 1–6. IEEE, 2021. ISBN

1728189640.

[73] Rosario G Garroppo, Loris Gazzarrini, Stefano Giordano, Michele Pagano, and

Luca Tavanti. A sip-based home gateway for domotics systems: From the architec-

ture to the prototype. In International Conference on Computer Networks, pages

344–359. Springer, 2016.

[74] Foteini Andriopoulou, Anastatios Fanariotis, and Theofanis Orphanoudakis. Seek:

Sip-based emergency embedded framework supports elderly and disabled to per-

form emergency calls. In 2018 21st Euromicro Conference on Digital System Design

(DSD), pages 442–449. IEEE, 2018. ISBN 1538673770.

[75] Mike Botts and Alexandre Robin. Opengis® sensor model language (sensorml)

implementation specification. version 1.0. 0. 2007.

[76] Abdulkadir Karaagac, Pieterjan Camerlynck, Pieter Crombez, and Jeroen Hoebeke.

Viot: Voice over internet of things. In 2020 Global Internet of Things Summit

(GIoTS), pages 1–6. IEEE, 2020. ISBN 1728167280.

[77] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. Blockchain technology

overview. arXiv preprint arXiv:1906.11078, 2019.

[78] Joe Abou Jaoude and Raafat George Saade. Blockchain applications–usage in

different domains. Ieee Access, 7:45360–45381, 2019. ISSN 2169-3536.

[79] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.

Blockchain challenges and opportunities: A survey. International journal of web

and grid services, 14(4):352–375, 2018. ISSN 1741-1106.

BIBLIOGRAPHY 189

[80] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151(2014):1–32, 2014.

[81] Dominique Guegan. Public blockchain versus private blockhain. 2017.

[82] Du Mingxiao, Ma Xiaofeng, Zhang Zhe, Wang Xiangwei, and Chen Qijun. A

review on consensus algorithm of blockchain. In 2017 IEEE international conference

on systems, man, and cybernetics (SMC), pages 2567–2572. IEEE, 2017. ISBN

1538616459.

[83] Omar Dib, Kei-Leo Brousmiche, Antoine Durand, Eric Thea, and Elyes Ben

Hamida. Consortium blockchains: Overview, applications and challenges. Int.

J. Adv. Telecommun, 11(1):51–64, 2018.

[84] Fan Yang, Wei Zhou, QingQing Wu, Rui Long, Neal N Xiong, and Meiqi Zhou.

Delegated proof of stake with downgrade: A secure and efficient blockchain consen-

sus algorithm with downgrade mechanism. IEEE Access, 7:118541–118555, 2019.

ISSN 2169-3536.

[85] Oluwakayode Onireti, Lei Zhang, and Muhammad Ali Imran. On the viable area

of wireless practical byzantine fault tolerance (pbft) blockchain networks. In 2019

IEEE Global Communications Conference (GLOBECOM), pages 1–6. IEEE, 2019.

ISBN 1728109620.

[86] Dongyan Huang, Xiaoli Ma, and Shengli Zhang. Performance analysis of the raft

consensus algorithm for private blockchains. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, 50(1):172–181, 2019. ISSN 2168-2216.

[87] Shuai Wang, Yong Yuan, Xiao Wang, Juanjuan Li, Rui Qin, and Fei-Yue Wang.

An overview of smart contract: architecture, applications, and future trends. In

2018 IEEE Intelligent Vehicles Symposium (IV), pages 108–113. IEEE, 2018. ISBN

1538644525.

BIBLIOGRAPHY 190

[88] Chris Dannen. Introducing Ethereum and solidity, volume 1. Springer, 2017.

[89] M. Abubakar, Z. Jaroucheh, A. Al Dubai, and B. Buchanan. Blockchain-based

authentication and registration mechanism for sip-based voip systems. In 2021

5th Cyber Security in Networking Conference (CSNet), pages 63–70, 2021. ISBN

2768-0029. doi: 10.1109/CSNet52717.2021.9614646.

[90] Andi Xu, Mi Li, Xin Huang, Nian Xue, Jie Zhang, and Qiankun Sheng. A

blockchain based micro payment system for smart devices. Signature, 256(4936):

115, 2016.

[91] Yifeng Tian, Zheng Lu, Peter Adriaens, R Edward Minchin, Alastair Caithness,

and Junghoon Woo. Finance infrastructure through blockchain-based tokenization.

Frontiers of Engineering Management, 7:485–499, 2020. ISSN 2095-7513.

[92] Osama Younes and Umar Albalawi. Securing session initiation protocol. Sensors,

22(23):9103, 2022. ISSN 1424-8220.

[93] Dimitris Geneiatakis, Tasos Dagiuklas, Georgios Kambourakis, Costas Lambri-

noudakis, Stefanos Gritzalis, Karlovassi Sven Ehlert, and Dorgham Sisalem. Sur-

vey of security vulnerabilities in session initiation protocol. IEEE Communications

Surveys & Tutorials, 8(3):68–81, 2006. ISSN 1553-877X.

[94] Mahdi Nikooghadam and Haleh Amintoosi. A secure and robust elliptic curve

cryptography-based mutual authentication scheme for session initiation protocol.

Security and privacy, 3(1), 2020. ISSN 2475-6725. doi: 10.1002/spy2.92.

[95] Mahdi Nikooghadam and Haleh Amintoosi. Perfect forward secrecy via an ecc-

based authentication scheme for sip in voip. The Journal of supercomputing, 76(4):

3086–3104, 2020. ISSN 0920-8542. doi: 10.1007/s11227-019-03086-z.

BIBLIOGRAPHY 191

[96] E. F. Kfoury and D. J. Khoury. Secure end-to-end volte based on ethereum

blockchain. In 2018 41st International Conference on Telecommunications and

Signal Processing (TSP), pages 1–5, 2018. doi: 10.1109/TSP.2018.8441204.

[97] Elie F. Kfoury and David J. Khoury. Secure end-to-end voip system based on

ethereum blockchain. J. Commun., 13:450–455, 2018.

[98] A. Febro, H. Xiao, and J. Spring. Sipchain: Sip defense cluster with blockchain. In

2019 Principles, Systems and Applications of IP Telecommunications (IPTComm),

pages 1–8, 2019. doi: 10.1109/IPTCOMM.2019.8920874.

[99] Mustafa Kara, Hisham RJ Merzeh, Muhammed Ali Aydın, and Hasan Hüseyin

Balık. Voipchain: A decentralized identity authentication in voice over ip using

blockchain. Computer Communications, 198:247–261, 2023. ISSN 0140-3664.

[100] Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne,

Luigi Alfredo Grieco, Gennaro Boggia, and Mischa Dohler. Standardized protocol

stack for the internet of (important) things. IEEE communications surveys &

tutorials, 15(3):1389–1406, 2012. ISSN 1553-877X.

[101] John Sonnenberg. Serial communications rs232, rs485, rs422. Technical brief,

Raveon Technologies Corp, 2018.

[102] Raspberry Pi. Raspberry pi 3 model b. online].(https://www. raspberrypi. org,

2015.

[103] Gerry Howser and Gerry Howser. Raspberry pi operating system. Computer

Networks and the Internet: A Hands-On Approach, pages 119–149, 2020. ISSN

3030344959.

[104] Janne Magnusson. Sip trunking benefits and best practices. Ingate Systems whitepa-

per, 2006.

BIBLIOGRAPHY 192

[105] Muhammad Iqbal and Imam Riadi. Analysis of security virtual private network

(vpn) using openvpn. International Journal of Cyber-Security and Digital Foren-

sics, 8(1):58–65, 2019.

[106] Josip Balen, Denis Vajak, and Khaled Salah. Comparative performance evaluation

of popular virtual private servers. Journal of Internet Technology, 21(2):343–356,

2020. ISSN 2079-4029.

[107] Myung-Ki Shin, Ki-Hyuk Nam, and Hyoung-Jun Kim. Software-defined networking

(sdn): A reference architecture and open apis. In 2012 International Conference

on ICT Convergence (ICTC), pages 360–361. IEEE, 2012. ISBN 1467348287.

[108] Wu-Jeng Li, Chiaming Yen, You-Sheng Lin, Shu-Chu Tung, and ShihMiao Huang.

Justiot internet of things based on the firebase real-time database. In 2018 IEEE

International Conference on Smart Manufacturing, Industrial & Logistics Engi-

neering (SMILE), pages 43–47. IEEE, 2018. ISBN 1538631830.

[109] Daniel Kant, Andreas Johannsen, and Reiner Creutzburg. Analysis of iot security

risks based on the exposure of the mqtt protocol. Electronic Imaging, 2021(3):

96–1–96–8, 2021. ISSN 2470-1173.

[110] Navin Sabharwal, Amit Agrawal, Navin Sabharwal, and Amit Agrawal. Intro-

duction to google dialogflow. Cognitive virtual assistants using google dialogflow:

develop complex cognitive bots using the google dialogflow platform, pages 13–54,

2020. ISSN 1484257405.

[111] Nir Simionovich. Asterisk gateway interface 1.4 and 1.6 programming. Packt Pub-

lishing Ltd, 2009. ISBN 1847194478.

[112] Niovi Pavlidou, AJ Han Vinck, Javad Yazdani, and Bahram Honary. Power line

communications: state of the art and future trends. IEEE Communications mag-

azine, 41(4):34–40, 2003. ISSN 0163-6804.

BIBLIOGRAPHY 193

[113] Ag2130 - silvertel — power over ethernet modules — telecom modules, 2023. URL

https://silvertel.com/ag2130/.

[114] Shaik Javeed Hussain, Samiullah Khan, Raza Hasan, and Shaik Asif Hussain. De-

sign and implementation of animal activity monitoring system using ti sensor tag.

In Cognitive Informatics and Soft Computing: Proceeding of CISC 2019, pages

167–175. Springer, 2019. ISBN 981151450X.

[115] Gabriel Gaspar, Peter Fabo, Michal Kuba, Juraj Dudak, and Eduard Nemlaha.

Micropython as a development platform for iot applications. In Intelligent Algo-

rithms in Software Engineering: Proceedings of the 9th Computer Science On-line

Conference 2020, Volume 1 9, pages 388–394. Springer, 2020. ISBN 3030519643.

[116] Kyungtae Kim and Young-June Choi. Performance comparison of various voip

codecs in wireless environments. In Proceedings of the 5th International Conference

on Ubiquitous Information Management and Communication, pages 1–10, 2011.

[117] Bur Goode. Voice over internet protocol (voip). Proceedings of the IEEE, 90(9):

1495–1517, 2002. ISSN 0018-9219.

[118] Alan Clark. Common voip metrics. In Workshop on End-to-End Quality of Service.

What is it? How do we get it, volume 1, page 3, 2003.

[119] Tim Szigeti and Christina Hattingh. Quality of service design overview. Cisco, San

Jose, CA, Dec, pages 1–34, 2004.

[120] Amandeep Kaur, Srinidhi Ayyagari, Manasi Mishra, and Rachit Thukral. A litera-

ture review on device-to-device data exchange formats for iot applications. JOUR-

NAL OF INTELLIGENT SYSTEMS AND COMPUTING, 1(1):1–10, 2020. ISSN

2976-8098.

https://silvertel.com/ag2130/

BIBLIOGRAPHY 194

[121] Srdan Popic, Drazen Pezer, Bojan Mrazovac, and Nikola Teslic. Performance eval-

uation of using protocol buffers in the internet of things communication. In 2016

International Conference on Smart Systems and Technologies (SST), pages 261–

265. IEEE, 2016. ISBN 1509037209.

[122] Kazuaki Maeda. Performance evaluation of object serialization libraries in xml,

json and binary formats. In 2012 Second International Conference on Digital In-

formation and Communication Technology and it’s Applications (DICTAP), pages

177–182. IEEE, 2012. ISBN 1467307343.

[123] Amrit Kumar Biswal and OBADA AL MALLAH. Analytical assessment of binary

data serialization techniques in iot context (evaluating protocol buffers, flat buffers,

message pack, and bson for sensor nodes). 2019.

[124] Steve Whittaker, Julia Hirschberg, Brian Amento, Litza Stark, Michiel Bacchiani,

Philip Isenhour, Larry Stead, Gary Zamchick, and Aaron Rosenberg. Scanmail:

a voicemail interface that makes speech browsable, readable and searchable. In

Proceedings of the SIGCHI conference on Human factors in computing systems,

pages 275–282, 2002.

[125] Sales. Cold call sales voicemail scripts that get callbacks, 2020. URL https:

//pipeline.zoominfo.com/sales/cold-sales-voicemails.

[126] James P Dupuis and Michael C Stinson. Sms notifications for missed calls expand-

ing mobility for tdm environments. In Proceedings of the 3rd annual conference on

Research in information technology, pages 71–74, 2014.

[127] Irham Nurhalim and David Gunawan. Pstn voip application support system de-

sign using mobile short message service (sms): Case study of pstn voip missed call

notification to mobile phone by sms. In Proceedings of the 2011 International Con-

https://pipeline.zoominfo.com/sales/cold-sales-voicemails
https://pipeline.zoominfo.com/sales/cold-sales-voicemails

BIBLIOGRAPHY 195

ference on Electrical Engineering and Informatics, pages 1–4. IEEE, 2011. ISBN

1457707527.

[128] Michael N Aberethy Jr, Travis M Grigsby, Michael A Paolini, and Lakshmi Potluri.

Missed call integration with voicemail and granular access to voicemail, 2013.

[129] Understanding the impact of voicemail, 2015. URL https://www.answer365.ca/

blog/102-understanding-the-impact-of-voicemail.html.

[130] Ron Weinstein. Rfid: a technical overview and its application to the enterprise. IT

professional, 7(3):27–33, 2005. ISSN 1520-9202.

[131] Kyungki Kim, Sining Li, Milad Heydariaan, Nour Smaoui, Omprakash Gnawali,

Wonho Suh, Min Jae Suh, and Jung In Kim. Feasibility of lora for smart home

indoor localization. Applied Sciences, 11(1):415, 2021. ISSN 2076-3417.

[132] Pedro Domingues, Paulo Carreira, Renato Vieira, and Wolfgang Kastner. Building

automation systems: Concepts and technology review. Computer Standards &

Interfaces, 45:1–12, 2016. ISSN 0920-5489.

[133] Larry K Haakenstad. The open protocol standard for computerized building sys-

tems: Bacnet. In Proceedings of the 1999 IEEE International Conference on Con-

trol Applications (Cat. No. 99CH36328), volume 2, pages 1585–1590. IEEE, 1999.

ISBN 078035446X.

[134] Byoung-Hee Kim, Kwang-Hyun Cho, and Kyoung-Sup Park. Towards lonworks

technology and its applications to automation. In Proceedings KORUS 2000. The

4th Korea-Russia International Symposium On Science and Technology, volume 2,

pages 197–202. IEEE, 2000. ISBN 0780364864.

[135] Michele Ruta, Floriano Scioscia, Giuseppe Loseto, and Eugenio Di Sciascio. Knx:

A worldwide standard protocol for home and building automation: State of the

https://www.answer365.ca/blog/102-understanding-the-impact-of-voicemail.html
https://www.answer365.ca/blog/102-understanding-the-impact-of-voicemail.html

BIBLIOGRAPHY 196

art and perspectives. Industrial Communication Technology Handbook, pages 58–

1–58–19, 2017.

[136] PF Hein. Dali-a digital addressable lighting interface for lighting electronics. In

Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS

Annual Meeting (Cat. No. 01CH37248), volume 2, pages 901–905. IEEE, 2001.

ISBN 0780371143.

[137] Tuomo Perä. Comparison of custom embedded linux build systems: Yocto and

buildroot. 2022.

	Thesis Examination Information
	Abstract
	Author Declaration
	Statement of Contribution
	Acknowledgment
	List of Abbreviations
	List of Tables
	List of Figures
	Introduction
	Internet of Things (IoT)
	Voice over Internet Protocol (VoIP)
	Session Initiation Protocol (SIP)
	Blockchain
	Problem Statement and Challenges
	PoT Grand Vision
	Lacking in the Current Practices

	Research Questions
	Research Objectives
	Primary Beneficiaries
	Thesis Contributions
	 Thesis Outline

	Background and Literature Review
	Open-Source IoT Frameworks
	Background
	Shortcomings

	The Evolution of Business Communication Systems
	Private Branch Exchange (PBX)
	Hybrid PBX
	IP-PBX

	Asterisk: The Open-Source PBX Framework
	Overview
	Leveraging Asterisk IP-PBX in IoT Applications

	IoT Devices
	Single Board Computers (SBCs)
	Embedded Linux

	IoT Messaging Protocols
	Overview
	Challenges in IoT Messaging Protocols
	Common IoT messaging Protocols

	Session Initiation Protocol (SIP)
	Overview
	SIP Methods and Transactions
	IoT and SIP Integration: Challenges
	IoT and SIP Integration: State of the Art
	tSIP: A Lightweight Version of the SIP Protocol for Constrained Devices

	Blockchain
	Overview
	Types of Blockchains
	Consensus Algorithms
	Smart Contracts
	SIP and Blockchain Integration: Benefits and Possibilities
	SIP and Blockchain Integration: Challenges
	SIP and Blockchain Integration: State of the Art

	Summary

	Proposed PoT Framework
	Overview
	PoT Gateway
	PoT Gateway as an IP-PBX Server
	PoT Gateway as an OpenVPN Client
	PoT Gateway as a Wi-Fi Access Point
	PoT Gateway as an MQTT Broker/Publisher
	PoT Gateway and Chatbots Integration
	Enabling the PoT gateway with Powerline Communication (PLC) Capability
	Enabling the PoT Gateway with Tiny Chatbot Agent Capability
	Enabling the PoT Gateway with PSTN Interface Circuitry

	PoT Devices
	Summary

	PoT Framework Implementation
	Feasibility Study
	Introduction
	VoIP Codecs
	Passthrough vs. Transcoding VoIP Calls
	VoIP Call Quality Metrics
	Motivation
	Methodology
	Passthrough VoIP Testing
	Transcoded VoIP Testing

	tSIP: A lightweight SIP-Based Messaging Protocol for PoT
	tSIP: Overview
	tSIP: Binary Encoding of SIP Messages
	tSIP: Packet Formation

	A lightweight and Blockchain-Based Device Registration and Authentication for PoT Applications
	Introduction
	Overview
	System Initialization
	PoT Gatway Registration
	Gadget Registration

	Summary

	PoT Framework Use Cases
	Introduction
	Context-Aware Telephony Solutions
	Redefine Mature Phone Features in a Modern Way
	Location Transparency Call (LTC) System
	Background
	Architecture
	WiFi-Enabled RFID Door Entry Nodes
	Entering and Exiting a Place

	Session Semantic Utilization
	Summary

	Experimental Setup and Evaluation
	Experiments Setup
	Experiments Objectives
	PoT Gateway as an IP-PBX Server
	Passthrough VoIP Testing
	Transcoding VoIP Testing
	Passthrough vs. Transcoding VoIP Calls
	Conclusion

	Integration with Chatbot Agents
	Google Assistant: Intents, Actions, and Fulfillment
	PoT Gateway and Google Assistant: The Integration Workflow
	Voice Activity Detection (VAD)
	Evaluating the Integration with Google Assistant

	tSIP Protocol Evaluation
	Serialization and Deserialization of tSIP Messages
	tSIP Packet Capture

	Evaluation of the Registration and Authentication Mechanism
	Implementations
	Security Analysis

	Summary

	Conclusion and Future Work
	Conclusions
	Possible Future Directions

	Bibliography

