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ABSTRACT 

Cyclic alternative patterns (CAP) became an important tool to diagnose sleep disorders. This study 

aims to have a better understanding of CAP, as the clinical applications remain limited as CAP 

analysis is a time-consuming activity; the goal of this thesis research is to improve the automatic 

classification system used to detect CAP in sleep. To determine the highest accuracy at detecting 

CAPs, MATLAB's classification learner app trains and tests the extracted features’ characteristics 

against different classifiers. The combination of these selected characteristics and proposed 

classifiers can effectively measure the degree of change in brain state between non-CAPs and 

Caps. Time domain characteristics are computed from the signal amplitude values like Tsallis 

entropy, Renyi entropy, and Shannon entropy. In this study, the Hilbert-Huang Transform (HHT) 

and FFT characteristics provide information about the frequency characteristics of CAP phases. A 

cross-validation procedure is used in MATLAB model validation to estimate the performance of 

the classifier. CAP detection in healthy patients was more effective using time-based entropy 

features and KNN classifiers than frequency-based ones. With higher accuracy up to 90%, time-

based entropy features performed better for insomnia patients. 
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Chapter 1: Introduction 

Human sleep during various stages of life has gained extensive attention from 

researchers. Scientists can diagnose and treat physiological and neurological disorders by 

analyzing sleep stages. These disorders include for example apnea and insomnia. Sleep 

analysis is usually done based on polysomnographic recordings of the patient, such as 

electroencephalogram (EEG), electrooculogram (EOG), Chin electromyogram (EMG), and 

electrocardiogram (ECG), during their sleep. The identification of the sleep stages 

(scoring) is performed manually by experts (electroencephalographers) by dividing the 

entire sleep record into epochs of 30s and assigning each epoch a certain sleep stage. The 

scoring procedure is characterized by the presence of certain waves embedded in the 

recorded ECG signal [20]. 

 Each sleep stage is characterized by the presence of the EEG waves and events as well as 

their duration. The sleep architecture is based on the cyclic alternation of two major 

neurophysiological states NREM which is non-rapid eye movement and REM which is the 

rapid eye movement during sleep. 

1.1 Objective 

The CAP sequence is made up of CAP cycles. Each cycle includes two main phases A and 

B; the CAP cycle usually starts with phase A and ends with the second phase B, and each 

phase is about 2-60 seconds in duration. CAP detection aids in the diagnosis of sleep 

disorders such as insomnia, depression, periodic limb movements, and epilepsy. In the 

literature, there exist many studies available to companies developing CAP scoring 

systems; this thesis approach is to build on the previous research and use it as a 

foundation for the development of a new improved algorithm for identifying CAPs in the 

sleeping brain. This study aims to improve the classification methods studied in the 

original paper [35] in order to increase the accuracy of CAP detection by using different 

features’ characteristics with different classification methods in order to offer an 

alternative approach with higher accuracy. It is imperative to determine the accuracy of 
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the algorithm-produced data compared to that generated by the currently available 

solution. The dataset chosen from the research resource for complex physiologic signals 

of PhysioNet [16], this website offers an extensive list of projects with their databases. 

The CAP annotations (i.e. extracted from PhysioNet) are not simulated but rather utilized 

as a time frame to determine the CAP event in the EEG signal and the CAP duration. 

1.2 Problem Domain  

Recent research shows CAP represents an unstable NREM component of the sleep EEG. 

CAP is seen both in adults and children's sleep. It is therefore used not only for sleep 

disorders but also for the diagnosis of many other brain diseases. To understand CAP, the 

EEG signal and its details are discussed. In addition, a brief description of EEG uses and 

the methods of its recording will be provided in later chapters. 

There has been extensive evidence that CAP parameters offer more comprehensive 

information and are considerably more sensitive than conventional sleep measures. CAP 

scoring is time-consuming and compromises the method's effectiveness. In other words, 

only the availability of an adequate system for CAP automatic detection can make it an 

easily consumable tool [43]. Classifying CAP EEG analysis is a valuable tool for assessing 

sleep quality and identifying sleep disorders. It has the potential to improve the diagnosis 

and treatment of sleep disorders and has shown promising results in research studies. 

1.3 Methodology  

In this study, EEG CAPs are used to detect characteristics related to Normal, Sleep Disorder 

Breathing (SDB), and Insomnia subjects, by building machine learning multiple classifiers 

taking many features’ characteristics measure as predictors. These features include FFT and 

four entropy methods including Shannon, Tsallis, Renyi, Sample Entropy, and the last 

feature is Hilbert-Huang Transform (HHT). Using multiple classifiers with a variety of 

features increases the validation accuracy of the proposed classification model. In 

addition, it shows that combining many features as predictors with various classifiers will 

result in a higher validation and accuracy score than other research studies applied. 
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This can be achieved by extracting the desired time-based and frequency-based features 

from the EEG sleep data set, in the latest stage of the research to select appropriate 

machine learning algorithms for developing a new model and testing them for accuracy, 

errors, and precision, if possible. The study is applied to 11 subjects, 4 have normal sleep, 

4 with SDB, and 3 with insomnia. The research process starts with determining the types 

of data and information available for research as follows. 

Feature extraction is possibly the most critical step in signal processing. This step aims to 

create a manageable and meaningful representation of the original EEG signal (although 

clean), to maximize the potential success of qualifiers and in turn the overall system 

performance. Implementation of different machine learning algorithms to estimate which 

one is best adapted to this problem. After running feature codes, then compile the results 

in a table to be sent to the Classifier App. The data is trained to obtain a confusion matrix. 

The analysis is run multiple times for different features. The idea is to utilize results from 

the feature extraction step to detect or target CAP event signals for healthy and non-

healthy patients by analyzing the features codes to see which features best locate the 

CAP events and compare the machine learning classifiers. Many classifiers are tested for 

signal classification, and although these methods succeed in many classification 

problems, in this study four methods have been applied. These methods are K-Nearest 

Neighbor (KNN) and Random Forest (RF), SVM, and LDA classifiers. The software used to 

analyze the records is MATLAB. The code was written from scratch and can be found at 

the end of the thesis document. 

1.4 Contribution of thesis work 

One key improvement in this thesis work is the incorporation of frequency-based features 

using a fast Fourier transform (FFT) in the feature extraction process. This allows for a 

more comprehensive analysis of EEG signals and captures the cyclic patterns more 

accurately. It provides a detailed representation of the signal's frequency components 

and magnitudes. By utilizing frequency domain information, the classification model can 

better differentiate between CAP and non-CAP segments in EEG signals. 
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Furthermore, the thesis aims to develop a learning model that could be flexibly applied 

to train subjects with different time and frequency-based characteristics. The proposed 

learning model is automating the system mode which enables the development of a 

versatile learning model that can be customized to handle various EEG CAP recording 

characteristics. This adaptability, achieved through the automation of individual modules, 

empowers the model to effectively learn from range of datasets, generalize across 

different subjects, and accurately classify CAP patterns.  As a result of this flexibility, the 

model will be able to be applied to a variety of datasets and its generalizability will be 

improved. By training the model on different subjects, it becomes robust and capable of 

accurately classifying CAP patterns in diverse EEG recordings. 

Overall, the thesis contributes by enhancing the classification accuracy of detecting cyclic 

alternating patterns in EEG through the addition of the Random Forest Classifier. It also 

includes frequency-based characteristics extracted using a fast Fourier transform. The 

flexibility of the learning model also enabled the training of more subjects with different 

time and frequency-based characteristics, expanding its applicability and potential impact 

in EEG analysis. 

1.5 Conclusion  

Overall, chapter 2 covers the theoretical background and motivation for this study, and 

provided a literature review of different key components of EEG signal analysis and CAP 

detection. Chapter 3 illustrates CAP EEG detection processing consists of five significant 

stages; preprocessing, feature extraction, feature selection, and feature classification 

which are explained in detail with results and discussions in chapter 4. By assessing more 

patients, using more classifiers, and comparing time-frequency-based features to 

conventional and non-conventional features, this study can be improved. Chapter 5 

highlights the key conclusions drawn from the study and outlining potential avenues for 

future work. It typically brings together the findings, implications, and limitations of the 

research while also suggesting directions for further exploration. 
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Chapter 2: Theoretical background and Literature review  

Sleep is crucial to an individual's performance and development; approximately 50 – 70 

million people experience a type of sleep disorder in the United States [1-2]. Cyclic 

Alternative Patterns (CAP) have become a crucial tool used in sleep analysis to diagnose 

sleep disorders. The purpose of this chapter is to present a detailed background review 

of Electroencephalography (EEG), the role of CAP in sleep analysis, and the various 

methods for CAP detection. 

In Chapter 2, the theoretical background and literature review of the study are presented. 

The chapter starts with an introduction to EEG and recording techniques. The various 

frequency bands of EEG signals are discussed in detail, along with the mathematical 

model of EEG signals. The chapter then delves into Sleep Stages Architecture, providing 

an overview of the different sleep stages and their characteristics. The focus then shifts 

to Cyclic Alternating Patterns (CAP) and its EEG features, CAP sequence, cycles, non-CAP, 

and measurements of CAP. Next, general features and classifiers for EEG signals from the 

literature are presented. These include popular proposed methods and procedures for 

CAP detection in EEG. Finally, the chapter concludes with an overview of the various 

classification tools used in EEG signal analysis, including Linear Discriminant Analysis 

(LDA), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Random Forest 

(RF). Overall, this chapter provides a comprehensive understanding of the theoretical 

background and literature review of EEG signal analysis and CAP detection. 

2.1 – Background Electroencephalography (EEG)  

EEG records the electrical activity of the brain which refers to recordings that are captured 

over a period of time [1]. Hans Berger measured EEG for the first time in 1929[1]. EEG 

became an all-important medical tool to visualize and record electrical activities in the 

human brain [1-3]. Technologies such as Positron Emission Topography (PET) and 

Functional Magnetic Resonance Imaging (FMRI) also capture various brain activities but 

differ from EEG as they illustrate variations in blood flow or metabolic activities rather   
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than direct electromagnetic signaling [2-3]. EEG is sometimes called the brain wave test 

and is a non-invasive test for patients with several brain disorders [3]. 

The stimulation of brain cells results in a flowing current, and the flowing current in turn 

generates electrical dipoles with a potential difference between them. The electrical 

dipoles are between apical dendrites which mostly branch from neurons. In addition, the 

electromagnetic current produced in the brain is comprised of basic elements such as 

Chloride, Potassium, and Sodium ions [1]. EEG has been recognized as a well-established 

methodology for studying brain waves and activities. By using EEG, neuroscientists 

realized that the human species produces electromagnetic activities around the 20th day 

of development. A typical healthy and normal amplitude exasperating from a human body 

is around 10 and 100 microvolts and a frequency of about 1 HZ to 100 HZ [52].

 

Figure 2-1 Illustration of current flowing and producing an electric dipole with a potential difference [4]. 

The recording of neuron activities in the brain through EEG uses potential differences 

between two electrodes, the reference electrode and the signal electrode. These 

electrodes are essentially placed on the scalp of the subject in order to retrieve signals 

from the scalp. 

In 1958 a standardization for electrode placement known as the 10-20 system was 

recognized by the International Federation of Clinical Neurophysiology (IFCN) of the EEG 

Society [3]. Through the standardized system, the head is divided into two equal parts to 

ensure all brain regions are equally covered.   
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The electrodes are labeled according to the parts of the brain covered. Segment names 

are assigned using the first letter of the segment. For example, F is for frontal, O is for 

occipital, P is for posterior, C is for central, and T is for temporal. The right-hand side of 

the brain is marked with even numbers while the left-hand side is marked with odd 

numbers, as shown in Figure 2-2a. The scalp is divided into four categories; the naison, 

the inion, the left preauricular points, and the right preauricular points [54]. The area 

between the nose and the forehead is called the naison and the bottom area of the scalp 

is the inion in Figure 2-2b. The letters and numbers utilized refer to the part of the brain 

where the activity is occurring and on which side (right or left hemisphere). The EEG 

electrodes are placed in a 10-20 system at the scalp surface. The 10-20 system is defined 

as the placement of EEG electrodes in a 10% or 20% diagonal pattern from front to back 

 

Figure 2-2 EEG electrode placement a: Electrodes labeled according to brain parts [36] b: 10-20 system electrodes 
placed at scalp surface with labels [3,54] 

or left to right area of the skull. When brain signals and waves are prepared to be 

recorded, electrodes are carefully placed on the scalp in special locations, and in a 

particular manner. It is important to clean the scalp prior to EEG electrode placement to 

optimize conduction [4]. These locations and placement orientations are determined by 

the recording technician who measures the scalp using the 10-20 system. This is shown 

in Figure 2-3 [3]. 

Reference electrodes are relevant to mention, as they are commonly used as relative 

points to all other electrodes while measuring electric brain activities. Typically, inactive 
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sites on the scalp are selected as reference zones; the left-right earlobes. Reference 

electrodes are highly utilized in focusing pathological brain activities [1,34].  

  

Figure 2-3: The international 10–20 system. The image of the right and left hemisphere of the brain [54] 

2.1.2 - EEG Signal Recording Technique 

EEG electrodes are a necessity for getting good-quality signals for recording and 

subsequent interpretation. Based on the characteristics of the electrodes, several 

electrodes are used in the EEG technique. These electrodes include needle electrodes, 

saline-based electrodes, headband electrode caps, and reusable disk electrodes. In order 

to record EEGs, the recording system will consist of the following: electrodes with 

conductive media, amplifiers with filters, an A/D converter, and a recording device. The 

electrodes placed in a 10-20 system on the patients’ scalp will read the microvolt signal 

that is then amplified by the amplifiers. The gel acts like a malleable extension of the 

electrode so that artifacts are less likely to be produced by electrode movement [3]. 

The gel maximizes skin contact and allows low-resistance recording through the skin. 

Once the signal is amplified, it is digitalized. The analog-to-digital converter transforms 

the signal electronically, as shown in figure 2-4. 
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Figure 2-4: Conversion of analogue signal to digital [2] 

The hardware components of the analog filters are integrated during the amplification 

process; the low-pass filters prevent signal distortion by interface effects with sampling 

rates. This is called aliasing and occurs when frequencies greater than one-half of the 

sample rate survive without reducing. The data is then stored on a recording device 

(computer) [3] as shown in Figure 2-5. 

 

Figure 2-5: The Electroencephalogram (EEG) Test. http://www.bcchildrens.ca/our-services/hospital-
services/diagnostic-neurophysiology-eeg-emg/electroencephalography-(eeg) 

The analog signal is frequently sampled over a fixed time interval and each sample is 

converted to a digital sample by an A/D converter. The converter is the interface between 

the sample and the computer. The converter resolution is obtained by dividing the 

converter voltage by 2 and raising it to the power of the number of bits associated with 

the converter. Typical A/D converters utilize 12 bits and resolve 0.5 microvolts. Below 

http://www.bcchildrens.ca/our-services/hospital-services/diagnostic-neurophysiology-eeg-emg/electroencephalography-(eeg)
http://www.bcchildrens.ca/our-services/hospital-services/diagnostic-neurophysiology-eeg-emg/electroencephalography-(eeg)
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Figure 2-6 shows a flow chart outlining the general steps required to translate raw 

electrical signals picked up by the EEG electrodes to an understandable output. 

Figure 2-6: Different Steps of EEG Signal Processing 

The first step is to record raw signals, which undergo pre-processing. Depending on the 

brain study performed, the most significant features will be extracted for classification. 

The EEG signal is the foundation of a brain-computer interface (BCI), and proper feature 

selection and classification are highly important. Figure 2-7 illustrates different recordings 

of raw EEG signals from set A healthy volunteers with eyes open, set C from the 

hippocampal formation of the opposite hemisphere of the brain, and set E epilepsy 

patients during epileptic seizures. 

  

Figure 2-7: Raw EEG signal obtained from three different classes of EEG signals from different subjects A, C,E [57]. 

2.1.3   EEG Signal Frequency Bands 

EEG waveforms are classified according to frequency, amplitude, shape, and the sites on 

the scalp at which they are recorded. Most of the useful information about the human 

brain's functional state lies in five major brain rhythms distinguished by their different 

frequency bands. These frequency bands are delta, theta, alpha, beta, and gamma. Figure 
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2-8 shows the types of waves picked up by EEG. These waves constitute the EEG 

background and vary according to overall neurophysiological state; that is, wakefulness, 

non-rapid eye movement (NREM), and rapid eye movement during sleep (REM) as 

clarified in Table 2-1. 

 

Figure 2-8: Wave shapes for different frequency bands of EEG signal in the brain [56] 

Brain waves are often measured from peak to peak and utilizing the Fourier transform 

spectrum, where sine waves with various frequencies are visible, can derive a raw EEG 

signal. 

EEG frequency is a measurement of repeated activity within the brain spectrum over time. 

Frequency domain analysis encompasses how a signal is represented by frequency 

components. The frequency domain is preferred over the time domain for EEG signal 

measurement. This is because the frequency domain provides temporal information 

about window size in contrast to the time domain where it does not. Better results can 

be extracted from window estimation. The time domain is sometimes known as time-

dependent analysis and uses mean, energy, and power formulas. Table 2-1 below shows 

the EEG waveforms subdivided into five frequency band categories. The frequency bands 

aid in monitoring and diagnosing different sleep disorders and are useful for CAP 
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detection in EEG. Typically, α bands illustrate how calm an individual is, while β frequency 

bands illustrate attention 

Waves Frequencies per 

second 

Amplitude in µV Characteristics 

Delta-waves   

ς - Delta 

0,5 - 3 5 - 250 Abnormality in waking 

adults. In healthy 

people don’t exit  

Accompaniment of 

deep sleep 

Theta-waves 

θ - Theta 

4 - 7 20 - 100 Strictly rhythmic or 

highly irregular  

Awake & drowsiness or 

light sleep stages 

Alpha-waves 

α - Alpha 

8 - 13 30-50,      

 mainly below 50 

Awake, eyes closed, 

mental inactivity, 

physical relaxation,  

Beta-waves 

β - Beta 

14 - 30 5 - 30,  

mainly below 30  

Produce high and 

intense spike-waves 

over 35 Hz, 

Active thinking, active 

attention 
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Table 2- 1 EEG Frequency Spectrum [ 56] 

2.1.4 Mathematical model of Electroencephalograph Signal  

EEG data analysis presents a challenge because it is recorded at low resolution. Therefore, 

the signal recorded may be corrupted with a certain degree of uncertainty. EEG signal is 

significant both for neural and cognitive engineering because of its ability to measure 

brain activities at various sites on the scalp. The EEG signal can be analysed in various 

dimensions. Since the EEG signal is continuous, temporal activity can be identified by 

signals from multiple locations over a given period “t”. 

If the sampling is done at intervals of T then the EEG approximation becomes: 

X[n]=X(nT);                                                                            n=1;2;3…….                         (2-1) 

Where X[n] is the discrete time signal recorded at intervals of t=T, 2T…….; nT and is 

measured directly from the brain. The behaviour of the signal over a period of time is 

called the dynamic of the signal and is labelled z[n] [41]. The resultant behaviour can be 

calculated by summing up the true signal and noise due to other factors. Mathematically 

this becomes; 

Categorized as of light 

sleep stages 

(wakefulness) 

Gamma-waves 

γ - Gamma 

31 - 60 Less than 5 Legality of appearance 

and site not well 

established Highly 

related to the decision-

making mode 
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X[n]=X[n]+ἠ[nT];                                             n=1,2,3……………                        (2-2) 

Where X(nT) is the value of the true signal when t=nT and ἠ[nT] is the contamination due 

to factors such as noise. In cases where ἠ[nT] is very small, X[n]= X(nT). True signals can 

be isolated from measured EEG signals as presented in Figure 2-6. The analysis process of 

a signal over a set range with time dependencies is called “Time Domain Analysis”. 

During the EEG analysis process, the parameters include signal power, signal amplitude 

(energy) |X[n]|, the same as the signal period [41]. If an average of all the parameters is 

calculated according to time, the mean sequence will equal the EEG signal required. The 

average produces an estimate of the EEG signal over the time domain. Better resolution 

can be further produced using short window duration and extended behaviour from long 

window duration. 

 

2.2 – Sleep Stages Architecture  

Human sleep patterns, configurations, and phenomena became research topics for 

researchers. Scientists and researchers realized that they could diagnose and treat some 

physiological and neurological abnormalities by analyzing the patient's sleep stages. 

These abnormalities include disorders such as sleep apnea, insomnia, and narcolepsy. The 

analysis can be conducted in various ways, including a method that uses a 

Figure 2-9 Recorded signal decomposed in true signal and noise [41] 
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polysomnographic recording of the patient, such as EEG. An example of a test to record 

patients' sleep and record EEG signals is shown in Figure 2-10. 

 

Figure 2-10 EEG Signal detection configuration of test subject. (a) components attached to sleeping subject (b) 

example of recordings [58]. 

Sleep architecture is based on the cyclic alternation of two major neurophysiological 

states; non-rapid eye movement (NREM) and rapid eye movement during sleep (REM). 

Sleep stage scoring has become the optimum standard for human sleep analysis. 

A standardized manual for sleep scoring was developed in 1968 by Rechtschaffen and 

Kales (R&K) rules. The R&K rules divide sleep into 6 distinct stages: W (wake); non-rapid 

eye movement (non-REM [NREM]) stages S1, S2, S3, and S4; and REM sleep stages, stages 

3 and 4, are called Slow Wave Sleep (SWS) [59]. In 2007, the American Academy of Sleep 

Medicine (AASM) updated the scoring manual, known as the AASM scoring manual. The 

AASM rules recognize five main sleep stages: wakefulness (Stage W), Stage N1, Stage N2, 

Stage N3, and Stage R (REM sleep). Figure 2-11 shows the difference in sleep-scoring 

terminologies used by R&K and AASM rules. 
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Figure2-11 Terminology used by R&K and AASM for sleep stages scoring [59] 

According to the RK method, sleep-scoring trained individuals categorize each 20–30 

second fraction into one of five primary sleep stages. This standardized manual is utilized 

for grading sleep stages that incorporate parameters and recordings of distinct brain 

rhythms shown through an EEG signal. These distinct brain rhythms are only visualized 

when the subject sleeps. In the R&K standardized manual, the EEG signal is separated into 

30-second epochs. These epochs are selected and utilized based on their speed of 10 

alpha spindles and their ability to be displayed on one page. The previously mentioned 

epochs are typically categorized into one stage. For two or more stages present during a 

singular epoch, the stage encompassing the majority of the epoch is the stage graded. 

 The greatest amplitude of an EEG signal, between 2 and 9 Hz, is found in the S1 stage. 

Furthermore, the alpha waves found in the EEG signal represent half of the total duration 

of the epochs. Slow rolling eye movements are evident. Sleep spindles and K complexes 

that range between frequencies 12 – 14 Hz are present in the S2 stage, whose presence 

classifies it as the second stage [48]. 
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Figure 2-12 Different Stages of Sleep [55] 

The grading for stage S2 is as follows: a total of two subsequent incidences of sleep 

spindles and K complexes lasting less than 3 minutes would result in a stage 2 grading. 

Stage S3 is referred to as the deepest sleep stage and has a frequency lower than 2 Hz 

associated with it. This is due to the possibility of sleep spindles and K complexes 

occurring during this stage. Typically, in stage S3, an EEG recording will encompass 

approximately 20%–50% of waves with a frequency of 2 HZ, and an amplitude exceeding 

than 75 μV. Figure 2-9 illustrates sleep stages. Following stage 3, stage 4 will encompass 

50% of waves with a 2 Hz frequency and amplitudes higher than 75 μV. The rapid eye 

movement (REM) stage displays a mixture of frequencies and low voltages of an EEG 

signal. The conditions of the REM stage are most similar to stage 1, which is a sawtooth 

pattern of waves [53]. 

Throughout the sleep cycle, the EEG is broken down into four different waveforms in 

relation to their frequencies, as demonstrated in Figure 2-13 
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Figure 2-13 Zoom image showing EEG brain waves of sleep and wakefulness [adapted from Encyclopedia Britannica)] 

Furthermore, at the REM stage, the EMG is at its lowest level. An EEG case where no 

arousal movements exist is comprised of comparatively low voltage and a mixture of 

frequencies. In addition, sleep spindles and K complexes, which are characteristics of 

stage 2, alternate between common features found in the REM stage, which is the lowest 

EMG level. The grading or scoring rubrics depend on the EMG or REM level being at the 

lowest stage. 

2.3 Cyclic Alternating Patterns (CAP)  

The Cyclic Alternative Pattern (CAP) is an EEG indicator of sleep disorders that measures sleep 

flexibility [43]. CAPs are repetitive patterns exhibited in the EEG during NREM sleep. They involve 

an initial phase of brain activation, known as Phase A, followed by a second phase of return to 

background activity, known as Phase B [21]. 

2.3.1 The EEG features of CAP 

In normal sleep, regular EEG features of CAP are highly complex and typically multi-

phased compared to coma-made sleep and fluctuations in various stages of sleep. CAP is 

apparent for all the sleep stages throughout the NREM stage. As mentioned, the first 

phase (A) is categorized via transient events, which are highlighted in the second phase’s 

(B) contextual rhythmic cycle. In comparison to the period’s phase B, the first phase may 
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be comprised of sluggish rhythms with higher voltages, a faster lower voltage, or a 

mixture of both patterns [22]. 

Physiologic CAP is observed to be different under certain conditions, which are health 

problems experienced by the patient. These may include insomnia, depression, epilepsy, 

and eating disorders. Furthermore, external factors can be an issue when performing or 

observing Physiologic CAP. External factors may include noise, temperature, etc. [16]. 

Sleep instability is associated with external and internal challenges in the sleep process 

and slow wave activity results in the brain’s attempts to preserve sleep [38]. 

The EEG signal is used to quantify the electrical brain activity during the sleep stages of 

the subject. In addition to quantifying electrical brain activity, EEG offers the CAP feature, 

which is a microstructural feature. 

 

Figure 2-14 EEG signals recorded over a 30 seconds time interval for N-REM stage 1,2, and 3, along with REM stages 
recorded on a healthy subject [60] 
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Figure 2-14 illustrates the recorded EEG signals belonging to the previously mentioned sleep 

stages. This figure will help visualize where CAP occurs in EEG. 

Analyzing the CAP feature is not intended to replace sleep stage or arousal grading. Instead, it is 

rather intended to expand quantifiable sleep analysis, in addition to proving a potentially new 

instrument to better comprehend sleep stages. CAP characterizes the NREM portion, or uneven 

sleep, found in children and adults during their sleep. It detects numerous brain and sleep 

disorders [19]. 

2.3.2 CAP Sequence 

The CAP’s periodic movement, which is made up of phases A and B, ranges between 2 

seconds and 60 seconds per cycle (C), as demonstrated in Figure 2-12. CAP’s phase A is 

detected by the observed occurrences in the non-REM stage and distinguishable in the 

contextual rhythmic cycle, which may include the following EEG patterns: Polyphasic and 

Delta bursts, intermittent and K-alpha, and vertex sharp transients. As previously stated, 

two sequences make up CAP and have no upper constraints on the total period or CAP 

cycles. In typical young adults, the estimated mean time for a typical CAP sequence with 

an average of six CAP cycles is 2 minutes and 30 seconds. For a CAP sequence with phase 

A, a grade is assigned only if a preceding phase A with a temporal range between 2 

seconds – 60 seconds is present; this is to avoid a non-CAP categorization of the cycle 

[43]. Through plotting the statistical distribution of events at the commencement of 

subsequent A phases, the CAP time structure can be obtained; this is illustrated in Figure 

2-15, where phases A and B in the CAP sequence are visually distinguished from one 

another with respect to time. A closer look at the A1 distribution illustrates a 

straightforward pattern with interval peaks of approximately 25 seconds. There is no clear 

emerging peak for subtypes phases A2 and A3.  
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Figure 2-15 CAP Sequence [43] 

Periodic EEG events include CAPs of sleep instability that fluctuate between two phases: 

A and B. Phase A includes three categories: A1, A2, and A3. CAPs occur when two 

consecutive sequences of phases A and B are present. This results in various sleep 

disorders such as insomnia, depression, irregular limb movements, and epilepsy. There 

are three different parameters for periodic activities, as follows: 

1. Beginning with the repeating element, which is the period’s phase A which is 

embodied by the repeated EEG feature. 

2. The second element is the period’s phase B which is the overriding background 

recognized by the interval separating the repeating elements. 

3. The last element is the combination of phase A and phase B durations, which is 

known as the cycle that prescribes the repetition rate. Phase A and phase B are 

both composed of their own CAP cycles, which are related to higher or lower levels 

of arousal. This is shown below in Figure 2-16. 

  

Figure 2-16 CAP two main phases A and B [15] 
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In order for the period’s phase A to be determined, the transient events detected in the 

non-REM stage that regularly change in frequency and amplitude must be obtained 

Furthermore, these transient events typically stand out in the background rhythm [15]. 

Sleep records from multiple patients are needed to identify CAP under physiological 

conditions. In hindsight, studies performed on patients (e.g., stimulation to detect CAP 

patterns) are relevant based on the knowledge that CAP is the EEG conversion of the 

asleep brain restructuring tested by alterations to environmental factors [23].

 

Figure 2-17 An example of the EEG (CAP phases) in sleep stage 2 [40] 

 

Figure 2.17 is obtained for n1 data plots (the C4-A1 signal with respect to time is 

obtained). The horizontal axis represents the sampling point, and the vertical axis 

represents the signal amplitude. The shapes of the EEG signals in the red, blue, and green 

boxes correspond to CAP-A1, CAP-A2, and CAP-A3, respectively. 

The CAP parameters used for diagnosis are more sensitive than other (conventional) sleep 

parameters. The disadvantage of using CAP to grade brain and sleep disorders is often the 

cost associated with the time it takes. This can result in inconsistent results. Hence, a 

reliable, efficient classification method is required to automatically detect CAP. 

The outcomes of the automatic breakdown for CAP resulted in false negatives and false 

positives significantly greater in comparison to CAP visual grading. 
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Figure 2.18 below illustrates an EEG signal and where CAP would be located in healthy 

subjects and subjects with sleep disorders (SDB). As shown, CAP is captured in phase A of 

the non-REM sleep stage. The figure was created from the preprocessing EEG data used 

in this thesis study. 

 

Figure 2-18 CAP detection in Phase A in non-REM sleep stage 2 utilizing healthy subject (first diagram) compared to 
subject with SDB (second diagram) in EEG taken over 30 second interval. 

2.3.3 CAP Cycles 

CAP cycle is composed of two phases, the first phase A is determined by certain frequency 

and amplitude components and these components determine the transient brain 

activation. The second phase B follows phase A, where no significant patterns are 

analyzed and it is indeed different from phase A shown in Figure 2.19, meaning that one 
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can determine the two phases simply by examining a sleep pattern visually [16].

 

A                                                                                                    B 

Figure 2-19 CAP Cycle [44,21] Image B shows zoom in for two different subtypes of phase A one belonging to the A1 
subtype and the other to the A2 subtype 

During the infancy period, the average duration for a CAP cycle is approximately 30 

seconds whilst in young children it is approximately 30.5 seconds, in young adults that 

time is 25.2 seconds, in young adults that number is 28 seconds, and for the elderly, that 

number is 31 seconds. The common length of the CAP cycles specifies the stability of the 

CAP cycles during a subject’s life [37]. 

2.3.4 Non-CAP 

When a CAP is undetected for more than 60 seconds, it is registered as Non-CAP (NCAP). 

In addition, phase A is followed by another phase A but separated by more than 60 

seconds (which would be classified as (NCAP) [39]. The proper definition of a Non-CAP, as 

shown in Figure 2-20 the A phases that terminate a CAP sequence (light black boxes) are 

counted as non-CAP. 
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Figure 2-20 CAP/Non-CAP Sequence in Stage 2 [45] 

2.3.5 The measurements of CAP 

EEG structures are extremely complex indicators of brain development. Sleeping patterns 

and behaviors reflect physical and neural changes associated with natural human aging. 

Figure 2-21 below demonstrates EEG cap channel locations. Different colors indicate 

different impedances on the corresponding electrodes with blue  

 

Figure 2-21 EEG cap channel locations [51] 

representing good impedance and pink indicating bad impedance. 
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CAP time is the temporal sum of all CAP sequences. CAP time can be calculated 

throughout total NREM sleep and within single NREM stages. The percentage ratio of CAP 

time to sleep time is called CAP rate in equations from 2-5 to 2-7. 

CAP rate is a dynamic parameter that measures the effort of the cerebral centers to 

maintain a compatible organization of sleep. CAP rate can be measured in NREM sleep 

(percentage ratio of total CAP time to total NREM sleep time) and in single NREM stages 

(percentage ratio of CAP time in a given stage to the entire duration of that stage 

throughout sleep) [19]. 

CAP can be measured by obtaining the average cycle length, the average duration for 

each phase, the average ratio of phase by cycle, the CAP index represented by the number 

of CAPs occurring per minute in the non-rapid eye movement (NREM) stages, and the CAP 

rate. The previously mentioned CAP parameters are expressed in the following equations. 

Furthermore, Equation 3 will be utilized to obtain Equations 4, 5, and 6 [24]. 

.
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑖𝑜 𝑝ℎ𝑎𝑠𝑒

𝑐𝑦𝑐𝑙𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
=  

𝑃ℎ𝑎𝑠𝑒 𝐴 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑦𝑐𝑙𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 𝑥 100 𝑎𝑛𝑑  

𝑃ℎ𝑎𝑠𝑒 𝐵 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑦𝑐𝑙𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
 𝑥 100               (2 − 3) 

 

𝐶𝐴𝑃 𝑖𝑛𝑑𝑒𝑥 (𝑠𝑡𝑎𝑔𝑒𝑠 1 − 4) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝐴𝑃𝑠 𝑖𝑛 𝑠𝑡𝑎𝑔𝑒𝑠 1 − 4

𝑡𝑜𝑡𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑔𝑒 1 − 4 (min)
                              (2 − 4) 

 

𝐶𝐴𝑃 𝑟𝑎𝑡𝑒 (𝑝𝑒𝑟 𝑠𝑙𝑒𝑒𝑝 𝑟𝑒𝑐𝑜𝑟𝑑) =  
𝐶𝐴𝑃 𝑡𝑖𝑚𝑒

𝑆𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒
                                                       (2 − 5) 

 

𝑁𝑅𝐸𝑀 𝑠𝑙𝑒𝑒𝑝 =  
𝑇𝑜𝑡𝑎𝑙 𝐶𝐴𝑃 𝑡𝑖𝑚𝑒

𝑁𝑅𝐸𝑀 𝑠𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒
 𝑥 100                                                       (2 − 6) 

 

𝑡𝑜𝑡𝑎𝑙 𝑠𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝐶𝐴𝑃 𝑡𝑖𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑠𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒
 𝑥 100                                                      (2 − 7) 
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𝑁𝑅𝐸𝑀 𝑡𝑜𝑡𝑎𝑙 𝑠𝑙𝑒𝑒𝑝 𝑠𝑡𝑎𝑔𝑒 (𝑒𝑎𝑐ℎ 𝑜𝑛𝑒) =  
𝐶𝐴𝑃 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑡𝑎𝑔𝑒 1 − 4

𝑡𝑜𝑡𝑎𝑙 𝑠𝑡𝑎𝑔𝑒 1 − 4 (min)
 𝑥 100                       (2 − 8) 

The average cycle length, the average duration for each phase, the number of CAPs in 

stages 1-4, the total duration of stages 1-4, the CAP time, the sleep time, and the NREM 

sleep time can be obtained from sleep records. In conclusion, the CAP rates may point to 

the number of operations required by the sleeping brain to regulate back to regular 

environmental conditions (i.e. the flexibility of organizational sleep) [43]. Although there 

are several CAP parameters, the CAP rate is the most important of them all as it is utilized 

the most for clinical purposes. CAP rate is a measure of arousal instability in the human 

brain. It can be further enhanced if sleep is disturbed by internal and external factors. It 

is calculated as the percentage ratio of total CAP time to Non-REM time.      

2. 4 General features and Classifiers for EEG signal from literature 

This section illustrates the different feature types and classification methods studied in 

the literature applied to EEG signals in general. The following section will present specific 

techniques, features, and classification methods used for CAP detection in EEG. These 

methods are more related to this thesis study. In the literature, when features are 

extracted from EEG signals are subsequently classified utilizing a signal classification 

method to differentiate the CAP fragments. These procedures obtain a specific feature 

from the EEG recording that is then used in a classification algorithm to diagnose sleep 

disorders [7,9,11,12].     

Frequency Domain Non-parametric analysis 

Parametric analysis 

Coherence analysis 

Spectral entropy 

Itakura distance 

Harmonic Parameter 

 Median frequency 
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Time- Frequency Domain Wavelet Transform (WT) 

Short Time Fast Fourier (STFT) 

Ensemble Empirical Mode Decomposition (EMD) 

entropy features of the Wigner–Ville Distribution (WVD) 

Choi-Williams 

Complexity measures and non-

linear factors 

Correlation dimension 

Lyapunov exponent 

Fractal dimension 

Approximate Entropy 

Sample Entropy 

Autoregressive 

Phase space 

Hurst exponent 

Energy operator 

Permutation entropy 

Multiscale Entropy 

Table 2-2 Various time domain, frequency domain, time-frequency domain, complexity measures and non-linear 
parameters techniques and their respective features and features extraction in literature [1] 

Table 2-3 and 2-4 summarize the different classification techniques and feature 

selection in EEG established processing, respectively [1,14,20]. For the more 

conventional classifiers such as K nearest neighbor and support vector machine, they 

are explained in more detail in sections 3.3.4.2 and 3.3.4.3. 

Method Classifiers found in Literature 

  

Artificial Neural Networks (ANN) - 

  

Statistical 
Linear Discriminant Analysis (LDA) 
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Support Vector Machine (SVM) [5] 

Hidden Markov Model 

Bayesian 

Quadratic 

Instance base K Nearest Neighbor (KNN) 

Decision tree DT 

Ensemble 

Adaboost 

Bagging 

RF 

Clustering K Means Classifier 

Table 2-3 Classification methods and their respective features found in literature [1,14,20]. 

Method alternatives 

Minimum Redundancy Maximum-Relevance (mRMR) 

Sequential methods 

Best Subsets Procedure 

t-test 

SVM - Recursive Feature Elimination 

Differential Evolution Feature 

Fisher score 

Relief F method 

Fast correlation-based filter 

Principal component analysis 

Method alternatives (cont.) 

Linear Discriminant Analysis 

Large Margin NN 

Fuzzy C-means clustering 

Artificial Immune Clustering 

Table 2- 4 Different methods of feature selections. 
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2.5 Popular Proposed Methods and Procedures for CAP Detection in EEG in 

Literature 

The purpose of this section is to provide an overview of the techniques and procedures 

used in the process of CAP detection in EEG, from the raw signal to the classification and 

output. The first step is to record the EEG signal as described in section 2.1.2. The second 

stage is to separate the EEG signal based on different frequency bandpass filters (delta, 

theta, alpha, beta, and gamma) [1,5,6,10,14,22]. The third stage is to classify the different 

sleep stages (W, REM, and non-REM) using the illustrated machine learning classifiers 

shown in section 2.2.1, Table 2-3 [1,5,6,10,14,22]. 

2.5.1 Database (Physio net) and EEG Signal Preprocessing  

EEG signals are often obtained from recognized databases such as PhysioNet. PhysioNet 

is an online platform that houses a large group of 61 PSGs acquired from 1987 – 2002. For 

signal processing, it is critical to determine any noise and artifacts found in the raw signals. 

The preprocessing stage removes or reduces noise and artifacts present in the EEG signal 

prior to CAP feature extraction. Some popular methods for pre-processing procedures 

include Discrete Wavelet Transform (DWT), frequency selective filtering, Infinite Impulse 

Response (IIR), or Finite Impulse Response (FIR) [1,5,6,10,14,22]. The output of EEG 

preprocessing is smooth and has little to no ripple signal that is ready for feature selection 

and extraction.   

2.5.2 Feature Extraction for CAP Detection in EEG  

Section 2.4 Table 2-2 shows that there are many methods for extracting the desired 

features from the EEG signal and applying different classifiers to differentiate between 

the CAP fragments [10,14,22,23]. There are several commonly used feature extraction 

techniques: time domain, frequency domain, and time-frequency-based domain. 
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2.5.2.1 Time Based Feature 

For automatic CAP detection in EEG, a popular feature is a variance. This feature is 

determined by the variance of 1-s opening traveling on a raw EEG signal [10,14,22]. This 

feature accounts for sudden frequency changes. Another commonly observed feature in 

CAP detection is Hjorth activity. This is utilized to measure the total rise of the delta band 

power that takes place during Phase A in CAP [10,14,22]. In [35], it proposes a method 

that utilizes entropy-based features for distinguishing CAP parts from non-CAP parts, and 

it evaluates the performance of this method using different classifiers such as Support 

Vector Machine (SVM), K-nearest neighbor (KNN), and Linear Discriminant Analysis (LDA). 

2.5.2.2 Frequency Based Feature 

Frequency based Characteristics are used to remove the EEG sleep signals with their 

respective frequency bands. In this feature, the EEG signal is distinguished in the five 

different frequency stages [10,14]. A band feature is utilized by dividing the two travelling 

short and long duration magnitudes by the respective band. The CAP sections are 

obtained by relating the band features to a set threshold [22]. 

2.5.2.3 Time-Frequency Based Feature 

Wavelet Transform (WT) is a common and highly utilized time-frequency-based feature. 

It is a signal processing technique that allows for the decomposition of EEG signals into 

different frequency bands at various time scales. WT is a dominant tool for feature 

extraction from an EEG signal [10,14]. The WT method delivers precise frequency 

knowledge at small frequencies and accurate time information during peak frequencies. 

This feature benefits spectral analysis and detects different mental orders (resting and 

figure rotation) [9]. The WT feature decomposes the input signal into its respective 

frequency bands. It also obtains the input to the classifier using multi-resolution methods. 

The Hilbert-Huang transform is a signal processing technique that decomposes a signal 

into a set of intrinsic mode functions (IMFs) and a residual component. IMFs are extracted 

using empirical mode decomposition and represent the underlying oscillatory modes of 
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the signal. Hilbert-Huang-based feature extraction methods, such as instantaneous 

frequency and amplitude, have been proposed to quantify dynamic changes in CAP EEG 

activity [50]. 

2.5.3 Feature Selection for CAP Detection in EEG  

Feature selection is used to obtain elite features to optimize the classification process. 

For CAP detection in EEG, feature selection often follows an algorithmic process. Feature 

selection is used to lower any complexity in the classifier and to select a suitable set of 

features to send to the classifier. Principal Component Analysis (PCA) and Sequential 

Selection Methods are the most commonly applied techniques. This technique is a linear 

conversion to decrease the dataset size while keeping the most contributing features 

[10,14,22,23]. Also, feature selection maintains a low order of the main components. PCA 

illustrates d-vectors while performing in a low dimension; this will reduce time-space 

complexity. There are several different feature selection methods, but the most common 

and simplest is the subset selection method (SSM), which follows a set algorithm. Figure 

2-22 shows a comparison of methods for EEG signal features extraction using Linear 

Analysis in Frequency and Time-Frequency Domains. 

The SSM begins by applying one feature to an empty feature sub-set; this will clearly show 

a desired function. The SSM then undergoes a second step; in this second step, a desired 

feature that can be compared to the first feature is selected. The SSM feature selection 

algorithm repeats the first and second steps until the most effective features are selected. 
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Figure 2-22 Methods of EEG Signal Features Extraction [49] 

2-6 Classification Tools: 

 Machine learning techniques offer significant advantages due to their automated nature. 

These techniques are capable of analyzing vast amounts of complex data more accurately 

than traditional methods. In the literature approach taken to classify EEG data during the 

sleep cycle into two categories: phase A and non-phase A [34]. The classification was 

performed using a simple binary logistic regression classifier using of raw EEG data 

without the need for frequency-domain transformation, the results suggest that the 

binary logistic regression classifier applied directly to raw time-domain EEG data was not 

effective enough to accurately distinguish between phase A and non-phase A. Another 

approach to create an automated algorithm that can identify the activation phases (A 

phases) of the CAP in sleep EEG data was proposed in [40], An Artificial Neural Network 
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(ANN) was employed to learn from the extracted features and make automatic 

predictions about the A phases of CAP. 

One powerful tool for data classification in the context of machine learning is MATLAB's 

classification learner application. The primary purpose of the classification learner 

application in MATLAB is to streamline the process of data classification. It automates the 

various steps involved in classification, including feature selection, model selection, 

model training, and performance evaluation. The application supports a wide range of 

well-known classification algorithms, such as decision trees, discriminant analysis, logistic 

regression, Naive Bayes, support vector machines (SVM), K-Nearest Neighbor (KNN), and 

Random Forest (RF). 

One of the key features of the application is its interactive nature. Users can explore data, 

train different models, and compare their performances within the application itself. 

Furthermore, the application generates MATLAB code that can be used to reproduce the 

results obtained. This not only saves time but also allows for easy sharing and replication 

of the analysis. The classification learner application supports two main approaches for 

model training: validated model and full model. In the validated model approach, the 

model is trained using a validation scheme, while the full model approach involves 

training the model using the entire dataset without validation 

2.6.1 Linear Discriminant Analysis (LDA) 

LDA was developed by Fisher in 1936 and optimized by the Fisher criterion function. This 

method is statistically based and optimized by the ratio of the covariance matrix. This 

means the probable space samples in each class develop a dense center and other 

samples separated by class fall away from that center [4]. LDA makes predictions by 

estimating the probability that each set of inputs belongs to each class. The class that gets 

the highest probability is the output class and a prediction is made as shown in Figure 2-

23 
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. 

Figure 2-23 Simple probabilistic classifiers intended for two-class or binary classification problems 

The LDA classifier optimizes the ratio between the class covariance matrices [46]. 

Meaning that differing class samples remain as far away from one another and those with 

similar classes condense in the center, the LDA is shown in the equation below, where the 

parameters SW and SB represent the scattering matrices of classes [48]: The Fisher 

criterion is described as: 

J(W) = max (
WTSBW

WTSWW
)                                                        (2-9) 

where W is potentially a hyperplane (in two-class problems) or a matrix of hyperplane (in 

multi-class problems) Incidentally. 

2.6.2 Support Vector Machine (SVM) 

Vapnik's classifier reduces structural risk (any test errors). The method is to optimize 

margins and minimize risk. It contains a user-selected bound that governs the margin 

width. SVM is categorized as linear binary and can be applied to input data with the 

leading SVM, which delivers a non-linear margin between different class models [46]. The 

SVM simply attempts to minimize the test errors and or expected risk associated with the 

errors, this is done by training the errors which in turn minimized the empirical risk. 
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Furthermore, this is done while controlling the margin width via a user-defined parameter 

[35].  

2.6.3 K-Nearest Neighbor (KNN) 

This classifier is extremely flexible and performs best when the data distribution is multi 

module. KNN makes choices for different class samples and acts as a local classifier. This 

classifier operates by finding the KNNs and labeling them based on the majority of KNNs 

found [46].  

2.6.4 Random Forest (RF) 

The Random Forest (RF) classifier consists of an ensemble of tree structures. It is based 

on a random vector sampled value and serves as a classifier for each individual tree. The 

main difference between RF to other classifiers is that feeding the input samples to the 

trees is performed as randomly as possible. The broader the number of trees in the forest, 

the higher the robustness of prediction is; meaning the increased the accuracy will be. It 

is commonly said that random forest methods can grow several trees [48]. The RF 

classifier handles missing values and maintains accuracy for missing data. It can also be 

used for extremely large data sets, which is what we use to analyze Sleep Data. 
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Chapter 3 (Methodology) 

This study explores various sleep disorders, including insomnia and sleep-disordered 

breathing, to determine a specific combination of features with classifiers for the 

detection of Cap events in EEG signals. 

Chapter 3 provides the approach utilized in this thesis to detect CAP events. A proposed 

classification model incorporates additional features to train a classifier to detect CAP 

sequences. Furthermore, the five phases implemented in this study are expanded upon. 

This is the collection of raw data, the conversion of the EEG signal to a physical signal, 

feature extraction, feature selection, and classification of CAP. 

3.1 Introduction 

In the literature, efficient features for automatic CAP detection in sleep EEG signals 

explore the utilization of conventional characteristics through a proposed method. In 

comparison with conventional and statistical signal processing methods, the non-

conventional features (i.e. entropy-based features), are highly dependent on the size of 

the data, poor spectral estimation and degree of roughness of the transitional CAP 

phases, and non-CAP events. Conventional signal processing features include frequency-

based (bandwidth) features such as the fast Fourier Transform [34].  

The study is exploratory in nature, which means that the primary goal is to explore 

patterns, trends, and potential relationships within the data. It serves as a starting point 

for generating hypotheses and identifying areas for further investigation. Given the small 

sample size and the exploratory nature of the study, it's important to interpret the 

findings cautiously. Total of a five-phase approach is implemented to detect CAP with 

conventional and non-conventional features with different classifiers in this thesis. 

The first phase is the collection of raw data obtained from PhysioNet. The second phase 

in detecting CAP is the conversion of the raw EEG signal to a physical signal; this is 

accomplished through the Waveform Database (WFDB) Toolbox for MATLAB. 
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The third phase is feature extraction for CAP detection in EEG. Renyi’s entropy, Tsallis 

entropy, Shannon entropy, Sample entropy, Hilbert-Huang Transform (HHT), and Fast 

Fourier Transform (FFT) are the selected features for various reasons such as their ability 

to differ between EEG waveforms and CAP events in addition to their speed over other 

available methods in real-time applications. 

The fourth phase is feature selection; feature selection is used to obtain elite 

characteristics to optimize the classification process. Time-based and frequency-based 

characteristics are selected for the next phase. Furthermore, feature selection aims to 

lower classifier complexity. 

The fifth phase is data classification. The aim of the classification application is to produce 

a hyperplane decision surface that divides the feature space, maximizing the ratio of 

between-class variance and within-class variance. The class variance represents different 

inputs/features. Classifiers such as Support Vector Machine (SVM), Linear Discriminant 

Analysis, K-Nearest Neighbor (KNN), and random forest are utilized. 

The entropy-based features (non-conventional features) used with the classifiers SVM, 

KNN, LDA, and RDT are proven through literature study comparison to produce higher 

accuracy results when used for CAP detection in EEG. The reason the results yield higher 

accuracy is due to the degree of roughness accommodated in the entropy-based features. 

Figure 3.1 illustrates the implementation of the proposed system beginning with the 

collection of raw EEG data. This is followed by pre-processing of the physical EEG signal, 

feature time-frequency analysis, feature extraction, and classification. The extracted 

features are trained in a MATLAB classification app, in which different classifiers are 

tested to determine their accuracy in detecting CAP. The confusion matrix was generated 

through MATLAB’s classification app to compare different classifiers in detecting CAP 

based on the extracted features. Figure 4.1 shows steps to run and analyze in MATLAB.  
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Figure 3-1 Processing steps necessary to detecting CAP in an EEG signal collected from PhysioNet. 

3.2 Collection of Raw EEG Data 

Pre-processing EEG signals are very sensitive to external factors independent of the brain, 

for example, broken EEG electrodes, blinking and movement of eyes, dried electrodes, 

stretching of muscles, excessive electrode gel, etc. EEG signals are often obtained from 

recognized databases such as PhysioNet. The database PhysioNet is an online platform 

that houses a large group of 61 PSGs acquired from 1987–2002 [17]. Several channels are 

available, such as F3 or F4, C3 or C4, and O1 or O2, referred to as A1 or A2, detailed in the 

following sections [14]. As shown in Figure 4.2 below, the sleep recordings obtained from 

PhysioNet vary in type of disorder and are described with related acronyms and label 
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numbers. This is for clarification in a later phase of data pre-processing. Furthermore, 

PhysioNet offers annotation text files for each recording. 

CAP parameters such as sleep stage (W=wake, S1-S4=sleep stages, R=REM, MT=body 

movements), body position, time of day, event (e.g. phase A), duration (in seconds), and 

event location can be obtained. 

 

Figure 3-2 Sleep recordings obtained from PhysioNet vary in type of disorders conditions. 

For signal processing, it is imperative to determine any noise and artifacts found in the 

raw signals. As CAP detection is the focus of the thesis, the raw data used for the analysis 

is obtained from the PhysioBank Database. The required raw data is exported from Physio 

Bank ATM, which is a toolbox for data exploration. 

3.2.1 Subjects and Annotations 

The CAP Sleep Database in PhysioNet houses 108 polysomnographic recordings identified 

at the Sleep Disorders Center (Ospedale Maggiore of Parma, Italy) [14].CAP sleep data 

access is open to the public without specific authorization. This database contains records 

of 16 healthy subjects that did not display any neurological disorders and were not under 

influences (drugs, alcohol) that could affect the central nervous system. Out of the 

remaining 92 pathological recordings, 40 represent patients diagnosed with nocturnal 

frontal lobe epilepsy (NFLE), 22 represent patients with REM behavior disorder (RBD), 10 

are patients with periodic leg movement (PLM), 10 are patients with insomnia, 5 are 
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patients with narcoleptic, 4 are patients with sleep-disordered breathing (SDB) and 2 are 

patients with bruxism. 

In this thesis, the polysomnographic recordings of four healthy patients, three patients 

diagnosed with insomnia, and four patients diagnosed with sleep-disordered breathing 

obtained from the CAP Sleep Database are considered for this thesis as described in Table 

3-1 below. Insomnia and sleep-disordered breathing are chosen as the type of sleep 

disorder because it is the most common form of sleep disorder. 

Type of patients 
Recording file name from 

Physionet 
Age 

Healthy patients 

N1 

N2 

N3 

N5 

54 

55 

54 

56 

Patients diagnosed with 

insomnia 

 

 

 

INS1 

INS3 

INS8 

54 

82 

64 

Patients with sleep disordered 

breathing 

SDB1 

SDB2 

SDB3 

SDB4 

65 

68 

78 

65 

Table 3-1 Type of patients, recording obtained from Physionet and age of patients utilized in this proposed study.  
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Male patients older than 54 years of age represent most insomnia recordings in the CAP 

Sleep Database. Patients diagnosed with a disorder are evaluated for the detection of CAP 

in an EEG signal depending on the disorder. CAP events are recorded there – rather than 

extracting the CAP event from the FP2-F4 channel and matching it to the CAP event in the 

C4-A1 channel and so on (less work and more efficient). PhysioNet provides CAP 

annotations in text format along with the channel where the event is taking place. For all 

subjects, channels FP2 – F4 and C4-A1 are used for EEG analysis. Signals for healthy 

patients are sampled at 512 Hz. Signals for patients with sleep disorders are sampled at 

256 Hz and taken and recorded every 0.0019531 seconds. The sampling frequency is 

determined by the info.txt file provided for each patient from PhysioNet [14]. It is 

common to find one or more annotation sets for each polysomnographic recording in the 

PhysioBank database. These annotations represent labels that point to certain locations 

within the recording and describe the events occurring at those specific locations.   

3.3 Preprocessing of the EEG Physical Signal  

From PhysioBank ATM, All the signals were visualized and the scorings were performed using 

REMlogic™ software (Embla). The scores for each recording are provided as .txt files in 

REMlogic report format in PhysioBank-compatible format. The .txt score files have the 

following fields: 

• Sleep stage (W=wake, S1-S4=sleep stages, R=REM, MT=body movements) 

• Body position (Left, Right, Prone, or Supine; not recorded in some subjects) 

• Time of day [hh:mm: ss] 

• Event (either a sleep stage (SLEEP-S0.S4, REM, MT), or a phase A of CAP) 

• Duration (in seconds) 

• Location (the signal(s) in which the event can be observed) 

Figure 3.3 illustrates the columns found in the annotations text file downloaded from 

PhysioNet data. These columns include Cap events, event duration, sleep stage, and 

location. The downloaded data file is a MATLAB file, in addition to. edfm and. hea 
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extension files. As instructed by PhysioNet, to convert raw EEG data, the WaveForm 

DataBase (WFDB) Toolbox for MATLAB enables integrated access to PhysioNet’s software 

and databases. The WFDB toolbox is a collection of reading, writing, and processing 

functions for physiological signals and time series. In the WFDB toolbox, the rdmat 

function reads the raw EEG data from the MATLAB file and returns the EEG signal in 

physical units. In addition, a MATLAB code is created to plot the converted EEG signals in 

either the time or frequency domain. 

 

Figure 3-3 Sample of columns from annotation text file from PhysioNet that demonstrate the CAP events, their 
duration and the channel location 

This raw data represents samples that are expressed in an analog-to-digital unit. 

Downloaded files need to be converted to physical units prior to resuming analysis. This 

task is performed by the WFDB Toolbox downloaded from Physionet. The function rdmat 
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reads the signal stored in the MATLAB file and converts it to physical units. The following 

subsections and figures explain the methodology for converting raw EEG data to a 

physical EEG signal. An additional note to make, PhysioNet contains data for the various 

channels (e.g. C4-A1). For this study, channels C4-A1 and FP2-F4 are selected due to the 

annotation files that show the duration of the CAP event and in which channel they occur. 

3.3.1 – Converting to Physical EEG signal 

This section focuses on the methodology used to convert raw EEG data downloaded from 

PhysioNet to a physical EEG signal. The physical EEG signal will be prepared so that feature 

selection and extraction can be achieved in later steps. In order to analyze the EEG data 

and identify specific patterns or events, it is necessary to first make the data stationary 

by removing the time-varying mean and variance. This helps to ensure that any 

conclusions drawn from the data are accurate and not affected by the changing nature of 

the EEG signal. Data for healthy patients and patients diagnosed with sleep disorders (i.e. 

insomnia and sleep-disordered breathing) are the focus of patients to be considered. In 

addition, multiple 1-minute to 12 hours’ worth of data can be downloaded at a time. 

Fig. 3.4 shows the physical signal of normal subjects n1, n2, n3, and n5. The y-axis 

represents the signal response and the x-axis is the time in seconds. In Figure 3.5, the 

physical signal of subjects with sleep-disordering breathing (SDB), which are sdb1, sdb2, 

sdb3, and sdb4, is shown. Figure 3.6 illustrates the physical signals of subjects with 

insomnia used in this study which are Ins1, Ins3, and Ins8. 
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Figure 3-4 Physical signal response of a normal subjects with related to time and samples  
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Figure 3-5 Physical signal response of sleep disorder patients with related to time and samples  
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Figure 3-6 Physical signal response of Insomnia patients with related to time and samples 

3.3.2 – Extracting CAP Annotations  

The next step in preprocessing is to convert MCAP annotations to “physical responses” 

with respect to time. In order to accomplish this, the function ‘rdmat’ need to be called 

from the WFDB toolbox provided by PhysioNet. The output of ‘rdmat’ is the physical 

properties of the input signal. Furthermore, by utilizing the annotation files, the 

scorereader MATLAB file can be downloaded and run. The scorereader file converts 

annotation files from .txt to a workspace variable in MATLAB hence optimizing the 
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process. The CAP parameters (e.g. CAP duration, time, phase...etc.) extracted from the 

annotation files via scorereader will be utilized to select the extracted features that 

illustrate the CAP event taking place in the EEG signal. 

In order to analyze the CAP annotations found in a .txt file in PhysioNet, a MATLAB code 

is developed to retrieve the CAP annotations for various patients. It stores them in a cell 

array ready to be converted to their “physical EEG response” with respect to time. The 

MATLAB code for extracting CAP annotations takes the physical EEG signal of the patient 

and loops around the peaks of the signal to determine the CAP location; this is 

accomplished by comparing event peaks. The physical response plots and the extracted 

CAP events plots are plotted in MATLAB. 

Figure 3.7 below illustrates different plots for the physical EEG response, in blue, for 

normal subjects (left) and the red plots (right) represent the extracted CAP annotations 

from the EEG signal for the normal subjects considered in this study. The right red plot 

represents the variations in CAP physical response extracted from the EEG signal with an 

event duration of 20 seconds. The red plots below are obtained by looping through a 

2000-second EEG signal for different normal subjects. 
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Figure 3-7 Physical EEG response plot blue (left) and extracted CAP plot (red) for normal subjects 

The code to extract CAP annotations can be provided with various signals with differing 

time lengths. The CAP annotations from PhysioNet help pinpoint the channel where the 

CAP event is taking place. CAP events were observed in channels FP2 - F4 and C4-A1 in 
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this study. Figure 3.8 below illustrates the physical EEG response plot, in blue, for a patient 

with sleep-disordered breathing (left) and the red plots (right) represent the extracted 

CAP annotations from the EEG signal for the sleep-disordered subjects. 
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Figure 3-8 Physical EEG response plot blue (left) and extracted CAP plot (red) for SDB subjects 

Figure 3.9 below illustrates the physical EEG response plots, in blue, for a patient with Insomnia 

(left) and the red plots (right) represent the extracted CAP annotations from the EEG signal. 
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Figure 3-9 Physical EEG response plot blue (left) and extracted CAP plot (red) for Insomnia subjects 

3.4 – Feature Selection 

A feature is a measurable property or characteristic extracted from EEG data. Features 

can represent different aspects of the data, such as frequency distribution, amplitude, 

temporal patterns, statistical properties, and more. These features are calculated from 

the raw EEG signals and are used to create a numerical representation of the data that 

can be input into a classification algorithm. In the time domain, there is a significant 

disadvantage because the signal's statistical properties have changed over time [34]. Time 

domain features are computed from the signal amplitude value. On the other hand, 

frequency domain features are extracted using Power Spectral Density (PSD). Frequency 

domain features are highly appropriate for narrowband signals and have an enhanced 

speed over other methods in real-time applications. Analyzing non-stationary signals and 

suffering from large noise sensitivity are weaknesses of frequency domain features. 

Subsections 3.4.1 to 3.4.2 provide an overview of the time- and frequency-based 

approaches proposed in this study. In addition, a feature selection process is used to 

select the most effective features for the classification process. It is used to lower the 

classifier complexity and choose the right set of features. The results of the extracted 

features can be selected through cross-validation. 
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Subsections 3.4.1 to 3.4.2 describe the time- and frequency-based approaches proposed 

in this study. In addition, a feature selection process is used to determine the highest-

quality features for the classification process. This is done to lower classifier complexity 

and select the right set of features. The results of the extracted features can be selected 

through cross-validation. 

 

Table 3- 2 Time and frequency domain features considered in this thesis study 

3.4.1 Time Domain Characteristics 

Time domain features can provide significant information about signal morphological 

characteristics, such as shape, duration, and amplitude. These features can be computed 

directly from the signal's time series data, without more complex analysis techniques. 

Entropy is a statistical measure of randomness or uncertainty. In EEG, entropy features 

can be extracted from EEG signals to quantify the degree of randomness or complexity in 

the brain signals. These features can be used for various purposes, such as identifying EEG 

patterns associated with certain cognitive or physiological states, detecting changes in 

brain activity over time, or distinguishing between healthy and abnormal EEG signals. 

Entropy measures used in EEG analysis in this thesis include:  

Method Features Proposed in this thesis 

Time Domain 

Sample entropy 
Tsallis entropy 
Renyi entropy 

Shannon entropy 
 

 

Frequency Domain 

Hilbert–Huang transform (HHT) 
Fast Fourier transform (FFT) 
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3.4.1.1 Shannon Entropy 

Shannon entropy is categorized under a degree of ambiguity regarding the rate of the 

result which measures of the data spread. The greater the entropy is the higher the 

ambiguity and the difficulty factor in predicting the results increases. Shannon entropy is 

typically used by considering all the data surrounding specific points. Information 

regarding specific events, such as CAP, can be obtained from this method. Equation 1 

below defines the Shannon entropy equation, 𝑝(𝑥𝑖) represents the probability of 

acceptance off the random variable X data [30] and n is the number of samples.  

𝐻(𝑥) =  𝛴𝑖=1
𝑛 𝑝(𝑥𝑖)𝑙𝑜𝑔𝑎

1

𝑝(𝑥𝑖)
                                                  (3 − 1) 

3.4.1.2 Tsallis Entropy 

Tsallis entropy is considered to be a generalized form of Shannon entropy. Entropy 

evaluates the quantity of information of a random variable in regard to the minimum 

number of bits with respect to the symbol required to code the variable. Entropy is 

generally used to compute the theoretical minimum capacity or bandwidth necessary for 

storage or transmission of an information source. Tsallis entropy encompasses the 

diagonalization technique, which extracts all the relevant peak limitations, the complex 

frequencies and various amplitudes. Tsallis uses a windowing process n the EEG signal, 

hence the time signal is composed of N points and the sampling time (τ).  The time signal 

is processed to obtain a low-resolution spectrum. For the purpose of this study, the 

entropic index (q) is the resulting measure of Tsallis entropy which ultimately has the 

effect to impose on a control will be greater than 1. The default value for q that was used 

is 2. Equation 2 below defines Tsallis entropy [35].   

𝐻𝑞(𝑝𝑖) =  
𝑘

𝑞 − 1
(1 − Σ𝑖𝑝𝑖

𝑞)                                                   (3 − 2) 
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3.4.1.3 Renyi Entropy 

Renyi entropy is another generalized form of Shannon entropy. The probability of a 

distribution on a finite set depends on the parameter α (represents the order of Renyi 

entropy). Equation 3 illustrates the mathematical equation for Renyi’s entropy. Renyi’s 

entropy has certain limiting cases that represent the most convincing results; R0 = limα -

>0Rα and R∞ = limα ->∞ Rα. These limiting conditions are known as max-entropy and min-

entropy [50,]. The Renyi entropy 𝐻𝑟𝑒 = is of order  𝛼 where 𝛼 > 0 and ˛ 𝛼 ≠ 1. If ˛is equal 

to 2, then the measurement equally emphasizes the sub-gaussian and the super-gaussian 

components [23]. 

𝐻𝑟𝑒 =  
1

1 − 𝛼
𝑙𝑛𝛴𝑖=1

𝑛 𝑝(𝑥𝑖)
𝛼                                                      (3 − 3) 

3.4.2 Frequency Domain Characteristics 

Frequency domain features are widely used in EEG signal analysis to characterize spectral 

content changes. The EEG signal is distinguished in the five different frequency stages, a 

band feature is utilized by dividing the two traveling short and long-duration magnitudes 

by the respective band. The CAP sections are obtained by relating the band features to a 

set threshold. This study aims to detect CAP in EEG and explore different methodologies, 

features, and classifiers.  

3.4.2.1 Hilbert–Huang transform 

HHT is put forward for the analysis of nonlinear and non-stationary signals. Unlike FFT, 

HHT is unique in not requiring a priori functional basis. Meaning HHT can be utilized for 

the analysis of both non-stationary and nonlinear signals and can be adapted to local 

characteristically time scales for the desired data. HHT a computational method for 

analyzing and decomposing signals into intrinsic mode functions (IMFs) which is based on 

the empirical mode decomposition (EMD) algorithm. The HHT is particularly useful for 

analyzing signals with non-stationary and non-linear characteristics, as it can extract and 

separate different components of the signal in both time and frequency domains). The 
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most telling way of describing this system is in terms of instantaneous frequency. From 

the instantaneous frequency, the intra-wave frequency can be displayed. The output of 

HHT is a time series that is complexly valued with its amplitude and phase dependent on 

time, introducing the concept of instantaneous frequency. Equation 3-4 illustrates the 

instantaneous version of HHT [50].  

𝐻(𝑡) =  
1

𝜋
𝑙𝑖𝑚𝜖→0+(∫

𝑥(𝜏)

𝑡 − 𝜏
𝑑𝜏

1−𝜖

𝑡−
1
𝜖

+ ∫
𝑥(𝜏)

𝑡 − 𝜏
𝑑𝜏)

1+𝜖

𝑡+
1
𝜖

                      (3 − 4) 

3.4.2.2 Fast Fourier Transform 

Fast Fourier Transform (FFT) is utilized to convert the EEG signal from the time domain to 

the frequency domain in this thesis. Key improvement in the thesis work: the 

incorporation of frequency-based features through the use of a fast Fourier transform 

(FFT) in the process of extracting features from EEG signals, by applying the FFT to EEG 

signals, the time-domain signals are transformed into the frequency domain. This 

transformation allows for a more comprehensive analysis of the signals, which can be 

particularly beneficial for capturing CAPsEEG signals are first transformed into frequency 

domain using FFT which calculates the Discrete Fourier Transform (DFT) of a specific 

sequence or the inverse of that sequence [9]. Typically, one can obtain the DFT by 

disintegrating the data sequence intro variables with different frequencies. In other 

words, the original signal can be separated into its sub spectral components by using 

spectral analysis methods. The equation of FFT defined as 

𝐹𝑟 = ∑ 𝑥𝑛𝑒−2𝜋𝑟 
𝑢

𝑀

𝑀−1

𝑢=0
                                                      (3-5) 

where Fr is the FT coefficients, M is the length of input EEG [42]. FFT is an algorithm that 

computes the discrete Fourier transform (DFT) of a sequence, or its inverse 

(IDFT).  Fourier analysis converts a signal from its original domain (often time or space) to 

a representation in the frequency domain and vice versa. The DFT is obtained by 

decomposing a sequence of values into components of different frequencies. As 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Sequence
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previously mentioned, the signal is decomposed into components with different 

frequency, in this case the CAP components will be different that the non-CAP 

components. 

FFT variations in for CAP and Non-CAP components in different normal subjects  

 

 

 



58 
 

 

Figure 3-10 FFT features for Normal subjects 

FFT variations in for CAP and Non-CAP components in different SDB subjects  
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Figure 3-11 FFT features for SDB subjects 

 

FFT variations in for CAP and Non-CAP components in different INS subjects 
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Figure 3-12 FFT features for INS subjects 

3.5 Feature Extraction 

The time and frequency-based characteristics described in section 3.6 measure the 

entropy along with the density of the EEG signal. There exists a 50% overlap of data in 

EEG signals, to exclude non-stationary signals. Shannon entropy measures impurity in the 

EEG signal. In order to determine the probability of CAP phase detection, Shannon 

entropy will be calculated over all the amplitudes of the EEG signal. Renyi’s entropy is 

utilized in this study to compute the 2D frequency structure [50]. Renyi's entropy differs 

between EEG waveforms and CAP events within their equivalent frequency bands. Tsallis 

entropy is also used for feature extraction as this entropy is a generalized form of Shannon 

entropy and results in a low-resolution spectrum. Lastly, Sample entropy is also used to 

represent the roughness of the time series. HHT is applied in this study due to its recent 

application in biomedical and other fields. In addition, it is applied to nonlinear and non-
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stationary signals. FFT is selected for feature extraction due to its speed over other 

available methods in real-time applications. The event to be extracted is specifically the 

CAP phase A event. This event is selected based on the information available for 

annotation data obtained from PhysioNet. 

As previously mentioned, MATLAB codes are developed for each feature separately. 

Furthermore, results from the extracted features are kept if the time variable matches 

the time variable of the CAP event extracted from the annotations file. For instance, if a 

CAP event occurred between times a and b and lasted for 10 seconds, the results of the 

extracted features will be kept for times a and b and labeled as the CAP features that 

occurred in the EEG signal; this is later utilized in the classification step so that the 

extracted time features that match the CAP parameters are the true positives while the 

other values are the true negatives and so on. In Chapter 4, the approach of detecting 

CAP in EEG utilizing conventional and non-conventional features with the use of different 

classifiers is explored also the results and discussions are elaborated. 

3.6 Data Classification  

The importance of the classification step is to generate a confusion matrix that will result 

in true positive, as well as true negative (TN), false positive (FP), and false negative (FN) 

values. Furthermore, classifiers are evaluated by TP, TN, false, FP, and FN values. TP values 

indicate the number of data points that correspond to correctly classified CAP events. FP 

represents data points that point to non-CAP events as CAP events. TN represents the 

number of data points that correspond to non-CAP events in the signal and are correctly 

classified as non-CAP events. FN refers to the data points referring to CAP events as non-

CAP events. The classification step results in CAP detection accuracy in EEG. Different 

classifiers are required in this study due to their varying approaches and abilities. 

Prior to the analysis of the classifiers in the classification learner application, the data (i.e. 

the response CAP data, time, and feature results) need to be properly formatted into a 

table for input into the classification application. During the training process, the 



62 
 

algorithm learns to map the input EEG signals to the corresponding CAP or not CAP labels. 

Once the model is trained, it can classify newly discovered, unseen EEG signals as CAP or 

not CAP.  

As shown in Figure 3.13, CAP response and features extracted from the sdb patient are 

prepared in a table that will be uploaded into the classification learner application. 

 

Figure 3-13 Snippet of the data column, such as the time, the response of the EEG signal, the CAP response for patient 
N1. 

3.6.1 Linear Discriminant Analysis (LDA) 

This method is statistical based and optimized the ratio of the covariance matrix, which 

means the probable space samples in each class develops a dense center and other 

samples separate by class fall away from that center [35,22,23]. This classification 

procedure performs well when each class is Gaussian like. It has been found that the LDA 

method behaves well with EEG signals.  

3.6.2 Support Vector Machine (SVM) 

Proposed by Vapnik, this classifier reduces the structural risk (any test errors). This 

classifier contains a user-selected bound that governs the margin width. This classifier is 
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categorized as linear binary, and can be applicable to inputted data with the leading SVM, 

which delivers a non-linear margin between different class models. The purpose of the 

method is to optimize the margins and minimize the risk; the Lagrange method is 

applicable for this method. A Lagrange coefficient is applied to each class, those classes 

that are within will have a non-zero Lagrange coefficient, while the other classes will be 

zero [35, ,23,23].    

3.6.3 K-Nearest Neighbor (KNN) 

This classifier is extremely flexible and performs best when the data distribution is multi 

module. This classifier utilizes a non-parametric approach to classify the signal. KNN 

makes choices for different class samples and acts as a local classifier. This classifier 

operates by finding the KNNs and labeling them based on the majority of KNNs found 

[1,10,14,22,23].  For signal classification, the KNN classifier needs the distance between 

the vectors, and this is obtained by utilizing equation 5.  

𝑑(𝑥,𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)
2                                                                         (3-6) 

3.6.4 Random Decision Trees 

The random forest takes an average of predicted accuracies and best fits various decision 

trees. Decision trees are often utilized to categorize the various sleep stages utilizing a 

binary-tree method. Typically, random forest classifiers consist of many individual 

classification trees, the bagged (bootstrap-aggregated) decision trees mixes the results of 

the various decision trees with one another. This results in a reduction of the effects of 

over-fitting, in addition to improving generalization.  

The training algorithm for random forests utilize general methodology of bootstrap 

aggregating, or bagging, to tree learners. For a given a training set X with responses Y, 

bagging repeatedly (B times) chooses a random sample with replacement of the training 

set and fits trees to these samples. Once training is complete, predictions for unseen 

samples x' can be made by averaging the predictions from all the individual regression 
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trees on x'. Equation 5 below represents the mathematical model for this methodology 

[50]. 

𝑓 =
1

𝐵
∑ 𝑓𝑏(𝑥′)𝐵

𝑏=1                                                           (3-7) 

In order to classify an object from an input vector, the input vector must be classified 

under each tree in the forest. Each tree results in a classification, which results in "votes" 

for the particular class. The decision tree then selects the classification that receives the 

most votes. This is shown in Figure 3.14. 

The following steps result in each tree classification as follows: 

1.      If the number of cases in the training set is N, sample N cases randomly - but with 

replacement, from the original data. This sample will be the training set for growing the 

tree. 

2.      If there are M input variables, a number m<<M is specified such that at each node, 

m variables are selected at random out of the M and the most optimal split of this m is 

used to split the node. The value of m is held constant during forest growth. 

3.      Each tree is grown to the greatest extent possible. There is no pruning [5]. 

 

Figure 3-14 Structure of the random forest classifier [50] 
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The simulation results show more conservative results for CAP detection while using 

different classifiers in this study as opposed to the literature study.  
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Chapter 4 Results and Discussions 

Chapter 4 of the thesis focuses on EEG CAP detection and performance evaluation. The 

study aims to develop a reliable method for the automated detection of CAPs in EEG 

signals. The study employed cross-validation techniques and evaluated the performance 

of four classification tools, Linear Discriminant Analysis, Support Vector Machine, K-

Nearest Neighbor, and Random Forest. 

4.1 – EEG CAP Detection and Motivation 

The CAP EEG classification provides a more detailed and objective assessment of sleep 

quality than traditional measures such as total sleep time and sleep efficiency. CAP 

analysis can identify disturbances in sleep architecture and provide information on the 

underlying causes of sleep disorders such as insomnia, sleep apnea, and restless leg 

syndrome. 

This thesis study aims to improve classification to achieve higher accuracy in detecting 

CAPs in EEG signals. Previously, Karimzadeh et al. Presented EEG Signals for Automatic 

CAP Detection in Sleep. A comparison of conventional and non-conventional 

characteristics was conducted using LDA, SVM, and KNN classifiers. The key was to use 

Sequential Forward Selection (SFS) proposed in [35] to select highly accurate features to 

detect CAP in EEG signals. The SFS begins by applying one feature to an empty feature 

sub-set; this will clearly show a desired function, then undergoes a second step; in this 

second step, a desired feature that can be compared to the first feature is identified. The 

SFS feature selection algorithm repeats the first and second steps until the best-

performing features are selected. 

 In summary of later sections’ findings, proposed entropy-based and frequency-based 

features are better suited for CAP detection in EEG than suggested conventional features 

in literature [35] and this is due to the degree of roughness accommodated in the entropy-

based features. Figure 4.1 illustrates the accuracy results of SFS features for healthy and 

patient subjects. The literature study focuses on evaluating a family of entropy-based 
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features (i.e. Shannon, Sample, and Kolmogorov) through the use of different classifiers 

(SVM, LDA, and KNN) to achieve acceptable CAP detection accuracy in EEG [35]. The figure 

also shows the range of features selected for each classifier for example SFS= 81±1.6 

performance of an SFS in selecting a subset of features so 81 is the accuracy score and 

ranged ±1.6 indicates the uncertainty or variance in the performance metric, which 

suggests that the performance of the algorithm could vary by up to ±1.6 depending on 

the specific dataset. The proposed features perform better than conventional features 

due to their ability to effectively quantify the change in brain activity as it transitions from 

a non-CAP to a CAP state [35]. 

 

 

Figure 4-1: features for healthy & patients’ subjects proposed in [35] 

The features from the previous study [35] were used to train machine learning models on 

MATLAB to identify CAP/Non-CAP sequences in an EEG signal, along with additional 

proposed features for insomnia and sleep-disordered breathing disorders. 
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4.2 Cross Validation 

Cross-validation, also known as out-of-sample testing, is a terminology used to refer to 

various model validation techniques to assess the generalization performance of a 

machine learning model. This is done by dividing the data into multiple folds and training 

the model on different subsets while evaluating it on the remaining part. This provides an 

estimate of how the model would perform on unseen data. It can be used to tune the 

model to hyperparameters, such as the regularization strength or the depth of a neural 

network. These techniques assess the results of a statistical analysis that results in an 

interdependent dataset. In k-fold cross-validation, the data is divided into k equally-sized 

subsets, and the model is trained on k-1 folds and tested on the remaining folds. This 

process is repeated k times, with each fold serving as a testing set once. The value of k 

can be chosen based on the dataset size and computational constraints.  

 

Figure 4-2 Methodology for k-fold cross-validation [60]. 

This is shown in Figure 4-2. In the classification learner application, in MATLAB, cross-

validation is repeated for all combinations of k-1 to k sets, which include more parameters 

than can be accepted by the data. In this study, the cross-validation technique is applied 
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to evaluate certain predictive models and to approximate the out-of-sample error of a 

model. Once the error is approximated, the model is re-fitted with the full data set to fully 

exploit the information in the data set. In the MATLAB classification app, the dataset is 

divided into 5 equal parts or folds, with each fold containing 10% of the data. The 

following steps clarify the process of training, testing, and validating the data in the 

MATLAB Classifier App: 

1. Data Splitting: When loading the CAP EEG dataset into the MATLAB Classification 

App, the app automatically divides the dataset into five equal parts, or "folds the 

process is as follows: 

2. Cross-Validation Iterations: For each of the five iterations (folds), the process is as 

follows:  

• Training Data Selection:  The app selects four out of the five folds (80% of the 

data) for training the classifier. 

• Validation/Testing Data Selection: The remaining one-fold (20% of the data) 

is used for testing and validation purposes. This fold will not be used during 

training. 

3. Model Training: The chosen classifier will be trained using the four selected folds 

as training data 

4. Validation/Testing: Using the trained classifier to predict labels for the data points 

in the validation/testing fold, performance metrics such as accuracy will be 

calculated based on the classifier's predictions on the validation/testing fold.  

By completing the five iterations, performance metrics for each fold was obtained, 

helping assessing the classifier's performance more comprehensively. This approach 

allows to assess how well the classifier generalizes to new data and helps in estimating its 

real-world performance. MATLAB's Classification App streamlines this process, handling 

data splitting, training, validation, and metrics calculation automatically, also it enables 
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to visually explore results, compare different classifiers, and fine-tune model settings 

interactively. 

4.3 Performance Evaluation  

The processed data is classified in the classification learner application in MATLAB. This 

application explores supervised machine learning through feature selection, validation 

schemes, model training, and assessing results. Training of the model is automated to 

determine the most appropriate classifier for the data; this includes SVM, LDA, KNN, and 

Random Forest (RDT). The classification learner application evaluates the different 

classifiers by illustrating the confusion matrix or the Receiver Operating Characteristics 

(ROC) curve. 

The classification learner application yields the confusion matrix, which is used for 

classifier classification. In this study, true positive (TP) values are utilized to determine if 

the patient fits the response curve and is expected to have a sleep-related illness. 

Furthermore, TP values are typically used for the sensitivity or recall formula. True 

negative (TN) values indicate that the patient does not have a sleep-related illness. False 

positive (FP) values, also known as Type I errors, predict that the sleep-related illness the 

patient is diagnosed with is inaccurate. False negative (FN) values, also known as Type II 

errors, predict that the sleep-associated illness not found is incorrect. The 

misclassification rate provides a rating for how often the classification is incorrect and is 

commonly referred to as the “Error Rate” [50]. Using the confusion matrix helps evaluate 

any classification model efficiently. Therefore, the confusion matrix along with the 

performance parameters will be utilized to evaluate the classification models. From the 

confusion matrix, the classifier's accuracy can be determined using Equation 4-1. 

Accuracy =
TP+TN

TP+TN+FP+FN
                                                            (4-1) 

 Recall =
TP+TN

TP+FN
                                                                            (4-2) 
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  Precision =
TP

TP+FP
                                                                        (4-3) 

Misclassification =
FP+FN

Total
                                                            (4-4) 

Sensitivity = 
TP

TP+Fn
                                                                         (4-5) 

The ROC curve can also be obtained from the classification learner application in MATLAB. 

By measuring the area under the curve, ROC is the ratio of TP values and FP values, as 

example shown in Figure 4-3. 

 

Figure 4-3: Illustration of ROC curve that MATLAB illustrates in the classification learner application 

In addition, sensitivity and specificity are examples statistical measures of the 

performance of a binary classification test, that is commonly referred to as a classification 

function in statistics. It is worth noting that sensitivity measures the proportion of actual 

negatives that are correctly identified (e.g., the percentage of healthy people who are 

correctly identified as not having the condition) and specificity measures the proportion 

of actual negatives that are correctly identified such as (e.g., the percentage of healthy 

people who are correctly identified as not having the condition. To prepare the data table 

to be sent to the classification app. For example, for best results, table with the features 
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acting as predictors was created, the response being CAP data and observations being all 

other data. 

 

Figure 4-4: Example of features as predictors in the MATLAB classification App 

In the Figures 4-4 and 4-5, it shows confusion matrix for a healthy subject result generated 

in the classifier app in MATLAB. This is repeated for the non-healthy patient, a bar graph 

showing the accuracy. These results are repeated for different response features. For 

example, to see how well one feature detects CAP and with which classifier it will achieve 

highest accuracy, that feature will be selected as the response class in the app classifier.  

 

Figure 4-5: confusion matrix for a healthy subject in Classifier App 
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4.4 Case 1: Average Performance Evaluation for all patients 
 

From MATLAB’s classification learner app, the classifiers are evaluated by the true 

positive (TP), true negative (TN), false positive (FP) and false negative (FN) values. TP 

values represent the number of data points that refer to CAP events that are correctly 

classified. FP represents the data point that refer to non-CAP events as CAP events.TN 

represents the number of data points that refer to non-CAP events in the signal and are 

correctly classified as non-CAP events. FN represents the data points referring to CAP 

events as non-CAP events [50].  

After analyzing different features and classifiers, the features detect the CAP peaks in the 

subjects using different domains, such as time, frequency or time frequency. The features 

then generate an output of data from the CAP input data provided for comparison. 

Training the data represents the ability of the predictor class (i.e. the feature tested) in 

locating similar CAP peaks. The higher the accuracy, the more data peaks the predictor 

class is able to find that are exact matches to the CAP peaks.  

4.4.1 Observations  

The results are obtained from the classification learner app, using 50% overlap, cross 

validation. Furthermore, the results shown are stored in a workspace variable via a code 

generated in MATLAB. Once the results of the features are available, the averages of the 

results for each patient set are taken. Rather than uploading all the data, sample from 

each subject data points are taken from each subset to create a scatter plot rather than 

uploading all of the data into the classification leaner app meaning a sample for each CAP 

response. For example, from the CAP annotations score reader Matlab file CAP starting 

times from 5 seconds to 25 minutes. From this time range will take a sample size (of a 

certain amount for example 20) from the first 5-30 seconds, from 1-10 minutes and from 

10 – 30 minutes. In this way will have features and responses that cover the whole length 

of the time range without exceeding Matlab data limit.  
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By taking these steps, the classification results are enhanced (due to lower amount of 

data to be processed) and are classified on 10 seconds average. The SVM and KNN 

classifier classified the models the best and this is true for all patients (healthy, insomnia 

and sleep-disordered).  In comparison between the three patients, CAP detection in sleep 

disorder patients presented slightly higher results than in insomnia patients when 

compared to a normal patient.  

4.4.2 Results for average performance of the classifiers  

The following results considered the various CAP events due to the provided annotations 

information. The results of the conventional time and frequency-based features that are 

classified utilizing SVM, LDA, Random Forest and KNN are illustrated in Tables 4-1, 4-3 and 

4-5 below, for healthy patients, patients diagnosed with insomnia and patients with sleep 

disorder.  

 4.4.2.1 Patients with Insomnia Average Results 

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy of 

SVM 

classifier 

(%) 

Accuracy of 

RDT 

classifier 

(%) 

Renyi entropy 82 82 85 84 

Shannon entropy 83 85 87 82 

Tsalli entropy 82 80 84 83 

Sample entropy 84 79 83 80 

HHT extraction 81 79.5 78 86 

FFT extraction 79 80 82 82 

Average accuracy of 

time-based entropy 

features  82.75 81.5 84.75 82.25 



75 
 

Average accuracy of 

frequency-based 

features  80 79.75 80 84 

Table 4- 1 Average Results for CAP detection from the classification learner application in MATLAB for insomnia. 

The results shown in this section illustrates the average results of chosen healthy patients 

(n1, n2, n3, n5), patients with sleep-disordered breathing (sdb1 – sdb4) and three patients 

with insomnia (ins1, ins3, ins8) and is meant to discuss the performance of the classifiers 

also to conduct comparisons with original results in the literature [35] and to show how 

accurately to classify the features that are detecting CAP events. Patients with Insomnia 

are added as new case to thesis study to compare the accuracy performance of the 

classifiers for different subjects. 

 

Figure 4-6 Comparison of performance of the classifiers for average accuracies between proposed time and 
frequency-based features for Insomnia patients. 
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Figure 4-7: Results of accuracy, sensitivity and specivity utilizing LDA, KNN, SVM and RDT for CAP detection from the 
classification learner application in MATLAB for patients with insomnia. 

Figure 4.6 represents the accuracy and sensitivity of LDA, SVM, KNN and RDT for patients 

diagnosed with insomnia. One observation worth noting is that the greater the number 

of samples, the greater the accuracy that is obtained. However, at a certain point, the 

amount of CAP samples extracted will cause the accuracy to converge as an optimized 

status is achieved. For example, for the SVM classifier: accuracy = (3.4 + 2.4) / (3.4 + 2.4 + 

0.03 + 0.97) = 0.778 or 77.8% applying equation 4-1. Sensitivity is a measure of how well 

a classifier identifies positive instances for example from Table 4-2, for the SVM classifier 

sensitivity = 3.4 / (3.4 + 0.97) = 0.778 or 98.8% applying equation 4-5. 
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Avg 

accuracy of 

classifier 

Avg 

sesnsitivity of 

classifier% 

Avg 

Tp 

Avg specivity 

of classifier% 

Avg 

Tn 

Avg 

Fp 

Avg 

Fn 

INS SVM 77.8 98.8 3.4 85.3 2.4 0.03 0.97 

KNN 84.6 98.3 5.1 90.2 4.1 0.07 0.93 

LDA 78.6 99.2 3.6 86.1 2.6 0.02 0.98 

RDT 76.5 97.7 3.1 83.8 2.1 0.05 0.95 

Table 4- 2 All average values obtained for Tp, Fp, Fn, Tn from confusion matrix for insomnia subjects 

4.4.2.2 Healthy Patients Average Results 

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy of 

SVM 

classifier 

(%) 

Accuracy 

of RDT 

classifier 

(%) 

Renyi entropy 85 85 88 87 

Shannon entropy 86 88 90 85 

Tsalli entropy 85 83 87 86 

Sample entropy 87 82 86 83 

HHT extraction 84 82.5 81 89 

FFT extraction 82 83 85 85 

Average accuracy 

of time-based 

entropy features  85.75 84.5 87.75 85.25 

Average accuracy 

of frequency-based 

features  83 82.75 83 87 

Table 4-3 Average Results of time and frequency-based features utilizing LDA, KNN, SVM and RDT for CAP detection 
from the for normal patients. 
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Figure 4-8 Comparison of performance of the classifiers for average accuracies between proposed time and 
frequency-based features for normal patients. 
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Figure 4-9: Average Results of accuracy, sensitivity and specivity utilizing LDA, KNN, SVM and RDT for CAP detection 
from the classification learner application in MATLAB for healthy patients. 

For both the healthy patients and those diagnosed with insomnia, the SVM classifier is 

best for classifying the CAP events from extracted feature results. SVM achieves better 

results when comparing multi-class data or classifying various features at once. Meaning 

for classifying various features reflecting CAP and non-CAP events in the classification 

learner app, SVM presented the highest in accuracy, sensitivity and specivity followed by 

KNN, which is also a reliable classifier in CAP detection, then LDA and finally RDT.  

4.4.2.3 Patients with Sleep-disordered Breathing Average Results  

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy of 

SVM 

classifier 

(%) 

Accuracy of 

RDT 

classifier 

(%) 

Renyi entropy 84 84 87 86 

Shannon entropy 85 87 89 84 

Tsalli entropy 84 82 86 85 

Sample entropy 86 81 85 82 

0

20

40

60

80

100

120

SVM KNN LDA RDT

Healthy(Normal)

P
er

ce
n

ta
ge

Classifiers 

Accuracy

Sesnsitivity

Specivity



80 
 

HHT extraction 83 81.5 80 88 

FFT extraction 81 82 84 84 

Average accuracy of 

time-based entropy 

features  84.75 83.5 86.75 84.25 

Average accuracy of 

frequency-based 

features  82 81.75 82 86 

Table 4- 5 Average Results of time and frequency-based features utilizing LDA, KNN, SVM and RDT for CAP detection 
from the classification learner application in MATLAB for patients diagnosed with sleep-disordered breathing. 

Figure 4.9 represents the accuracy, sensitivity and specivity of LDA, SVM, KNN and RDT for 

healthy patients. The sensitivity, which is called the TP rate, measures the ratio of actual CAP 

events that are correctly classified. The specivity of the classifiers, which is called the true 

negative rate, measure the ratio of non-CAP events that are classified correctly.   

 

Figure 4-10 Comparison of performance of the classifiers for average accuracies between proposed time and 
frequency-based features for sleep disorder patients. 
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Avg accuracy 

of classifier 

Avg sesnsitivity 

of classifier% 

Avg specivity 

of classifier% 

Avg 

Tp 

Avg 

Tn 

Avg 

Fp 

Avg 

Fn 

SDB SVM 88.4 99.5 93.2 7.4 6.4 0.03 0.97 

KNN 83.8 99.1 90 5 4 0.036 0.964 

LDA 80.2 97.9 86.8 3.8 2.8 0.06 0.94 

RDT 79.34 96.5 85.7 3.5 2.5 0.09 0.91 

 

Table 4- 6 All average values obtained for Tp, Fp, Fn, Tn from confusion matrix for sleep disorder subjects 

 
Figure 4-11: Results of accuracy, sensitivity and specivity utilizing LDA, KNN, SVM and RDT for CAP detection for patients with sleep-
disordered breathing. 

Both SVM and KNN revealed a high accuracy for detecting CAP. In conclusion, SVM best 

detected CAP events with time-based entropy features. The SVM and KNN classifier 

classified the models the best and this is true for all patients (healthy, insomnia and sleep-

disordered).  In comparison between the three patients’ groups. CAP detection in sleep 

disorder patient presented slightly higher results than in insomnia patients when 

compared to a normal patient.  
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4.5 Comparison of time-based entropy features and frequency-based features in 

CAP detection  

From Table 4-1 and 4-3, for patients with insomnia and healthy ones, the time-based 

entropy features performed highly in detecting CAP in the physical EEG signal. On 

average, the time-based entropy features performed the best in CAP detection along with 

KNN classifier for healthy patients comparing to the frequency-based feature. For the 

patients diagnosed with insomnia, the time-based entropy features performed best with 

SVM classifier comparing to the frequency-based features. 

 The justification for the superiority of the time-based entropy features in comparison to 

the frequency-based features is related to the transitional CAP and non-CAP events in 

EEG. There exists a certain degree of roughness associated with the transition between 

CAP and non-CAP events, as well as different CAP phases. This roughness degree increases 

the irregularity of a signal and frequency-based features, with their results based on band 

powers, are not as precise in measuring this degree of roughness.  

 

Figure 4-12 Comparison proposed classifiers performance result of proposed study s with literature study (SDB) 
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Figure 4-13 Comparison proposed classifiers performance result of proposed study s with literature one (Normal) 

However, entropy-based features can better accommodate for this degree of roughness.  

As well as, some frequency-based features suffer from large noise sensitivity and has 

difficulties in revealing localized spikes of events such as CAP events.  

4.6 Case Two (Performance of Classifiers for each subject) 

Studying EEG signals and knowing the features of different neural abnormalities by 

observing change in signals latitude and phase changes over long period of times is 

essential to understand how different disorders characterize and to have computer 

quantitative analysis and determination of type of sleep disorder and/or for insomnia in 

relation to normal EEG signals. The goal   of this section’s results to show how well the 

features detect the CAP for each subject. 

4.6.1 Results 

The extracted CAP events from preprocessing steps, once extracted, are then sent 

through feature selection and extraction and then through the classification learner 

application in MATLAB. The results are as follows for healthy patients (n1 – n3, n5), 

patients with sleep-disordered breathing (sdb1-sdb4) and patients with Insomnia (Ins1, 

Ins3, Ins8). Section 4.6.1 provides snip of images of classification tables created in Excel 

which used in classification application. There are 1500 points allocated per subject. 
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Based on the various studied features, the accuracy of the proposed classifiers is 

illustrated in the following figures.  

4.6.1.1 Healthy patient 1 

 

Figure 4-14 Snip Image of excel table for main features and classes used in the classifier application for n1 subjects  
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Figure 4-15 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in N1 
subject.  

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy 

of SVM 

classifier 

(%) 

Accuracy 

of RDT 

classifier 

(%) 

Renyi entropy 82 84 87 85 

Shannon entropy 84 86 90.5 86 

Tsalli entropy 83 83 84.5 84 

Sample entropy 80 80 84 81 

HHT extraction 79 81.5 80.5 83 

FFT extraction 81 83.5 82 84.5 

Average accuracy 

of time-based 

entropy features  82.25 83.25 86.5 84 

Average accuracy 

of frequency-

based features  80 82.5 81.25 83.75 

Table 4- 7 Accuracy of CAP detection using different classifiers and proposed features for N1 subject 
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4.6.1.2 Healthy Patient 2 

 

Figure 4-16: Snip Image of excel table for main features and classes used in the classifier application for N2 subjects 

Features 

Accuracy of 

LDA 

classifier 

(%) 

Accuracy of 

KNN classifier 

(%) 

Accuracy of 

SVM classifier 

(%) 

Accuracy of 

RDT classifier 

(%) 

Renyi entropy 79 81 84 82 

Shannon entropy 81 83 87.5 83 

Tsalli entropy 80 80 81.5 81 

Sample entropy 77 77 81 78 

HHT extraction 76 78.5 77.5 80 

FFT extraction 
78 80.5 79 81.5 
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Average accuracy of 

time-based entropy 

features 

 

 

 

79.25 

 

 

80.25 

 

 

83.5 

 

 

81 

Average accuracy of 

frequency-based 

features  77 79.5 78.25 80.75 

Table 4- 8 Accuracy of CAP detection using different classifiers and proposed features for N2 subject 

 

Figure 4-17 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in N2  

subject. 
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4.6.1.3 Healthy Patient 3 

 

 

Figure 4-18: Snip Image of excel table for main features and classes used in the classifier application for N3 subjects 

 

Figure 4-19 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in N3 
subject. 
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Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy of 

SVM 

classifier 

(%) 

Accuracy of 

RDT 

classifier 

(%) 

Renyi entropy 80 82 85 83 

Shannon entropy 82 84 88.5 84 

Tsalli entropy 81 81 82.5 82 

Sample entropy 78 78 82 79 

HHT extraction 77 79.5 78.5 81 

FFT extraction 79 81.5 80 82.5 

Average accuracy of 

time-based entropy 

features  80.25 81.25 84.5 82 

Average accuracy of 

frequency-based 

features  78 80.5 79.25 81.75 

Table 4- 9 Accuracy of CAP detection using different classifiers and proposed features for N3 Subjects 
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4.6.1.4 Healthy Patient 5 

 

Figure 4-20 Snip Image of excel table for main features and classes used in the classifier application for N5 subjects 

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy of 

SVM 

classifier 

(%) 

Accuracy of 

RDT 

classifier 

(%) 

Renyi entropy 78 80 83 81 

Shannon entropy 80 82 86.5 82 

Tsalli entropy 79 79 80.5 80 

Sample entropy 76 76 80 77 

HHT extraction 75 77.5 76.5 79 

FFT extraction 77 79.5 78 80.5 

Average accuracy of 

time-based entropy 

features  78.25 79.25 82.5 80 
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Average accuracy of 

frequency-based 

features  76 78.5 77.25 79.75 

Table 4- 10 Accuracy of CAP detection using different classifiers and proposed features for N5 subject 

 

Figure 4-21 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in N5 
subject. 

4.6.1.5 Patient with Sleep-Disorder 1 

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy 

of SVM 

classifier 

(%) 

Accuracy 

of RDT 

classifier 

(%) 

Renyi entropy 84 86 89 87 

Shannon entropy 86 88 92.5 88 

Tsalli entropy 85 85 86.5 86 

Sample entropy 82 82 86 83 

HHT extraction 81 83.5 82.5 85 

FFT extraction 83 85.5 84 86.5 
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Average accuracy 

of time-based 

entropy features  84.25 85.25 88.5 86 

Average accuracy 

of frequency-

based features  82 84.5 83.25 85.75 

Table 4- 11 Accuracy of CAP detection using different classifiers and proposed features for SDB1 subjects. 

 

Figure 4-22 Snip Image of excel table for main features and classes used in the classifier application for SDB1 subjects. 
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Figure 4-23 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in 

SDB1 subject. 

4.6.1.6 Patient with Sleep-Disorder 2 

 

Figure 4-24 Snip Image of excel table for main features and classes used in the classifier application for SDB2 subjects 
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Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy 

of SVM 

classifier 

(%) 

Accuracy 

of RDT 

classifier 

(%) 

Renyi entropy 81 83 86 84 

Shannon entropy 83 85 89.5 85 

Tsalli entropy 82 82 83.5 83 

Sample entropy 79 79 83 80 

HHT extraction 78 80.5 79.5 82 

FFT extraction 80 82.5 81 83.5 

Average accuracy 

of time-based 

entropy features  81.25 82.25 85.5 83 

Average accuracy 

of frequency-

based features  79 81.5 80.25 82.75 

Table 4- 12 Accuracy of CAP detection using different classifiers and proposed features for SDB2 subjects. 

 

Figure 4-25 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in 
SDB2 subject 
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4.6.1.7 Patient with Sleep-Disorder 3 

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy 

of SVM 

classifier 

(%) 

Accuracy 

of RDT 

classifier 

(%) 

Renyi entropy 82 84 87 85 

Shannon entropy 84 86 90.5 86 

Tsalli entropy 83 83 84.5 84 

Sample entropy 80 80 84 81 

HHT extraction 79 81.5 80.5 83 

FFT extraction 81 83.5 82 84.5 

Average accuracy 

of time-based 

entropy features  82.25 83.25 86.5 84 

Average accuracy 

of frequency-

based features  80 82.5 81.25 83.75 

Table 4- 13 Accuracy of CAP detection using different classifiers and proposed features for SDB3 subjects 
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Figure 4-26 Snip Image of excel table for main features and classes used in the classifier application for SDB3 subjects 

 

Figure 4-27 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in 
SDB3 subjects 
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4.6.1.8 Patient with Sleep-Disorder 4 

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy of 

SVM 

classifier 

(%) 

Accuracy of 

RDT 

classifier 

(%) 

Renyi entropy 80 82 85 83 

Shannon entropy 82 84 88.5 84 

Tsalli entropy 81 81 82.5 82 

Sample entropy 78 78 82 79 

HHT extraction 
77 

 79.5 78.5 81 

FFT extraction 79 81.5 80 82.5 

Average accuracy of 

time-based entropy 

features  80.25 81.25 84.5 82 

Average accuracy of 

frequency-based 

features  78 80.5 79.25 81.75 

Table 4- 14 Accuracy of CAP detection using different classifiers and proposed features for SDB4 subjects. 



98 
 

 

Figure 4-28 Snip Image of excel table for main features and classes used in the classifier application for SDB4 subjects 

 

Figure 4-29 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in 
SDB4  
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4.6.1.9 Patient with Insomnia 1 

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy 

of SVM 

classifier 

(%) 

Accuracy 

of RDT 

classifier 

(%) 

Renyi entropy 80.5 83 86 84.5 

Shannon entropy 81.5 86 87 83 

Tsalli entropy 80.5 81 85 84 

Sample entropy 82.5 80 84 81 

HHT extraction 79.5 80.5 79 87 

FFT extraction 77.5 81 83 83 

Average accuracy 

of time-based 

entropy features  

81.25 82.5 85.5 83.125 

Average accuracy 

of frequency-

based features  

78.5 80.75 81 85 

Table 4- 15 Accuracy of CAP detection using different classifiers and proposed features for. patient 1 with insomnia.  
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Figure 4-30 Snip Image of excel table for main features and classes used in the classifier application for INS1 subject 

 

 

Figure 4-31 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in 
INS1 
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4.6.1.10 Patient with Insomnia 3 

 

Figure 4-32 Snip Image of excel table for main features and classes used in the classifier application for INS3 subject 

Features 
Accuracy of LDA 

classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy of 

SVM 

classifier 

(%) 

Accuracy of 

RDT 

classifier 

(%) 

Renyi entropy 77 80 84 81 

Shannon entropy 79 82 87.5 82 

Tsalli entropy 78 79 81.5 80 

Sample entropy 75 76 81 77 

HHT extraction 74 77.5 77.5 79 

FFT extraction 76 79.5 79 80.5 

Average accuracy of 

time-based entropy 

features  

77.25 79.25 83.5 80 
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Average accuracy of 

frequency-based 

features  

75 78.5 78.25 79.75 

Table 4- 16 : Accuracy of CAP detection using different classifiers and proposed features for. patient 3 with insomnia. 

 

Figure 4-33 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in 
INS3 

4.6.1.11 Patient with Insomnia 8 

Features 
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classifier (%) 

Accuracy of KNN 

classifier (%) 

Accuracy of 

SVM 

classifier 

(%) 

Accuracy of 

RDT 

classifier 

(%) 

Renyi entropy 78 80 84 81 

Shannon entropy 80 82 87.5 82 

Tsalli entropy 79 79 81.5 80 

Sample entropy 76 76 81 77 

HHT extraction 75 77.5 77.5 79 

FFT extraction 77 79.5 79 80.5 
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Average accuracy of 

time-based entropy 

features  

78.25 79.25 83.5 80 

Average accuracy of 

frequency-based 

features  

76 78.5 78.25 79.75 

Table 4- 17 Accuracy of CAP detection using different classifiers and proposed features for. patient 8 with insomnia. 

 

Figure 4-34 Snip Image of excel table for main features and classes used in the classifier application for INS8 subject 



104 
 

 

Figure 4-35 Comparison of different Proposed classifiers’ performance to detect CAP based on different features in 
INS8. 

The results in the second section illustrate that the RDT classifier achieves better results 

when comparing multi-class data or classifying various features at once. Meaning for 

classifying various features reflecting CAP-only events in the classification learner app. 

RDT presented the highest accuracy followed by KNN, which is also a reliable classifier for 

CAP detection. It was followed by SVM, and finally LDA. Both RDT and KNN reveal high 

accuracy for detecting CAP. However, since the data is heterogeneously distributed, KNN 

does not scale well and takes some time to train. Overall, the study concludes that the 

SVM classifier using time-based entropy features is the most effective method for the 

automated detection of CAPs in EEG signals. However, classifier performance varies 

between subjects. 
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Chapter 5: Conclusion and Future Work 

EEG signal-analysis techniques have been improved in recent years to provide insights 

into brain function. They are often used in clinical and research settings to investigate 

brain activity associated with specific cognitive processes or conditions. The study 

emphasizes that its primary goal is exploratory, aiming to uncover patterns, trends, and 

correlations in classifying CAP and NCAP patterns in EEG recordings provides insights into 

the dynamics of sleep stages and brain activity during NREM sleep. The study recognizes 

the limitations of its small sample size and the preliminary nature of its findings. This 

approach initiates the process of generating hypotheses and pinpointing domains for 

future, in-depth exploration.  

This study provided a better understanding of CAP and EEG. CAP and NCAP represent 

distinct states during NREM sleep, with CAP representing an unstable state and NCAP 

indicating a stable state. While the insights gained from this study can be valuable for 

generating hypotheses and guiding future research, they might not be generalized to the 

broader population without additional research involving larger and more representative 

samples. 

 This differentiation can be observed in various physiological measurements taken during 

sleep, indicating that CAP and NCAP have distinct biological footprints. This understanding 

of CAP and NCAP which is the main core of thesis research can be useful for further 

research into sleep disorders and their effects on physiological processes. 

5.1 Conclusion 

An efficient CAP detection and classification model using entropy-based features, HHT, 

FFT, and machine learning classifiers was developed. The results of the study showed that 

the combination of entropy features, FFT, and HHT can significantly improve the 

classification accuracy of EEG CAP by up to 90% compared with studies in the literature. 

Other key highlights are: 
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1.      Support Vector Machine (SVM) is found to be the most effective classifier among 

the tested classifiers (SVM, KNN, LDA, and Tree) for EEG CAP classification. 

2.      The performance of classifiers depends on the selection of appropriate features. 

3.      The combination of HHT and entropy features leads to higher classification accuracy 

than using only FFT features. 

4.      The use of entropy features helps in capturing the nonlinear and non-stationary 

nature of EEG signals, resulting in better classification performance. 

In conclusion, the study provides a promising approach for different classifiers trained for 

classifying EEG data in the sleep cycle into phase 

CAP and NCAP. Improving EEG signal classification accuracy, especially in EEG CAP. The 

use of multiple entropy features in advanced classifiers leads to significant improvements 

in accuracy. This provides an effective tool for medical professionals and researchers 

working in EEG signal processing. The thesis contributes to improving the classification 

accuracy of detecting cyclic alternating patterns (CAP) in EEG signals. The original 

classification methods used were Support Vector Machine (SVM) and K-Nearest 

Neighbour (KNN), which were effective but had accuracy limitations. To address this, the 

thesis introduced the Random Forest Classifier as an additional classification algorithm. 

5.2 Future Work 

For future work, it is recommended to incorporate cross-validation and Sequential 

Feature Selection techniques which will enhance the quality of the selected features and 

contribute to a more refined model. Cross-validation can help identify the most 

informative features and improve the model's generalization ability. 

 Another approach is to explore using logistic regression as an alternative classification 

algorithm. Logistic regression is suitable for binary classification tasks, and its simplicity 

can provide valuable insights into the relationship between features and CAP patterns. It 
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can be applied to train a classification model for CAP EEG. Labeled data can be applied 

where each sample is labeled as either CAP or not CAP to train the logistic regression 

model. 

The initial model built on a sample dataset as proposed in this thesis study serves as a 

foundation for understanding how the classification process should work. Researchers 

can build on this foundation to extend the approach presented in the thesis to larger 

datasets. The initial model developed on a sample dataset provides a solid starting point 

for understanding the classification process and establishing strategies, also to adapt and 

fine-tune the model developed on the sample dataset to achieve optimal accuracy and 

performance on larger datasets. Researchers can experiment with various feature 

extraction methods, data preprocessing techniques, and model architectures to 

understand their impact on classification accuracy. This optimization process provides 

insights into what works best and what adjustments are needed for larger datasets. It 

ensures a smoother transition and sets the stage for improved results in future work 
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Appendix A (Code Scripts) 

Convert to physical signal ( for Normal Patinets) 
% plot of the patient with respect to time 
%normal subjects  
data_n1  = 'n1_edfm'; 
[tm,signal,Fs,siginfo]=rdmat(data_n1); 
time_sec1n = tm; 
sig_response_sec1n = signal; 
figure(1) 
plot(time_sec1n,sig_response_sec1n); 
title('N subjects with respect to time'); 
xlabel('seconds'); 
ylabel('signal response'); 
grid on 

  
hold on 

  
data_n2  = 'n2_edfm'; 
[tm,signal,Fs,siginfo]=rdmat(data_n2); 
time_sec2n = tm; 
sig_response_sec2n = signal; 
figure(1) 
plot(time_sec2n,sig_response_sec2n); 

  
data_n3  = 'n3_edfm'; 
[tm,signal,Fs,siginfo]=rdmat(data_n3); 
time_sec3n = tm; 
sig_response_sec3n = signal; 
figure(1) 
plot(time_sec3n,sig_response_sec3n); 

  
data_n5  = 'n5_edfm'; 
[tm,signal,Fs,siginfo]=rdmat(data_n5); 
time_sec5n = tm; 
sig_response_sec5n = signal; 
figure(1) 
plot(time_sec5n,sig_response_sec5n); 

  

hold off 

  
% %%% plot of the patient with respect to samples 
[tm,signal,Fs,siginfo]=rdmat(data_n1); 
time_sample1n = (tm/Fs); 
sig_sample1n = signal; 
figure(2) 
plot(time_sample1n,sig_sample1n); 
title('N subjects with respect samples'); 
xlabel('samples'); 
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ylabel('signal response'); 
grid on 

  
hold on 

  
[tm,signal,Fs,siginfo]=rdmat(data_n2); 
time_sample2n = (tm/Fs)*3600/7; 
sig_sample2n = signal; 
figure(2) 
plot(time_sample2n,sig_sample2n); 

  
[tm,signal,Fs,siginfo]=rdmat(data_n3); 
time_sample3n = (tm/Fs)*3600/7; 
sig_sample3n = signal; 
figure(2) 
plot(time_sample3n,sig_sample3n); 

  
[tm,signal,Fs,siginfo]=rdmat(data_n5); 
time_sample5n = (tm/Fs)*3600/7; 
sig_sample5n = signal; 
figure(2) 
plot(time_sample5n,sig_sample5n); 
hold off 

 
%FOR OTHER PATIENTS - PHYSICAL SIGNAL 
[tm,signal,Fs,siginfo]=rdmat('n1_edfm'); 
x_p = tm; 
y_p = signal; 
F_p = Fs; 
figure(1) 
plot(x_p,y_p); 
title('n patient (n1)'); 
xlabel('time in seconds'); 
ylabel('Response n1 Signal'); 
grid on 
% FOR N PATIENTS - PHYSICAL SIGNAL 
[tm,signal,Fs,siginfo]=rdmat('n1_edfm'); 
x_n = tm; 
y_n = signal; 
F_n = Fs; 
figure(2) 
plot(x_n,y_n); 
title('N Patient (N1)'); 
xlabel('time in seconds'); 
ylabel('Response signal'); 
grid on 
 

plotting CAP for N1 Subject 
%******************* 
% y_p = signal response for patient 
% x_n = time response for patient 
% x_n = time response for normal patient 
% y_n = signal response for normal patient 

  



115 
 

%initializing counter for patient  
event_count_p=0; 

  
for k=2:length(y_p(1:10000)) 
    if(y_p(k)>y_p(k-1) & y_p(k)>y_p(k+1) & y_p(k)>1) 
        k; 
        disp('dominant peak found'); 
        event_count_p=event_count_p+1; 
       end 
    CAP_y_p(k) = y_p(k); %to store CAP signal response whenever the 

event is indicated by k 
    CAP_x_p(k) = x_p(k); %to store CAP time response whenever the event 

is indicated by k 
end 
event_count_p; 
N_p=length(y_p); 
peak_duration_p= N_p/F_p;  %this event duration is in seconds - 

dividing the samples (N) and frequency results in the time 
CAP_event_p = event_count_p/peak_duration_p;  

  
figure(3) 
title('Physical CAP response in patient(n1)'); 
xlabel('time in seconds'); 
ylabel('Response signal'); 
grid on 
hold on 
plot(CAP_x_p,CAP_y_p,'ro'); 

  

  
%initializing counter for normal patient 
event_count_n=0; 

  
for k_n=2:length(y_n(1:10000)) 
    if(y_n(k_n)>y_n(k_n-1) && y_n(k_n)>y_n(k_n+1) && y_n(k_n)>1) 
        k_n;  
        disp('dominant peak found'); 
        event_count_n=event_count_n+1; 

         
       end 
    CAP_y_n(k_n) = y_n(k_n); %to store CAP signal response whenever the 

event is indicated by k 
    CAP_x_n(k_n) = x_n(k_n); %to store CAP time response whenever the 

event is indicated by k 
end 
event_count_n; 
N_n=length(y_n); 
 peak_duration_n= N_n/F_n;  %this event duration is in seconds - 

dividing the samples (N) and frequency results in the time 
 CAP_event_n = event_count_n/peak_duration_n;  

  
figure(4) 
title('Physical CAP response in normal(N1)'); 
xlabel('time in seconds'); 
ylabel('Response signal'); 
grid on 
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hold on 
plot(CAP_x_n,CAP_y_n,'ro'); 

 

 

 

 

Main Code to retrieve the accuracy results For N1 
run ScoringReader %this is to obtain the cap events starting time and 

durations in the physical signal response 
run convert_to_physical_signal_n %this is to get the physical signal 

response 

  
%declaring nonCAP and CAP specific variables 
data_n1_nonCap = time_sec1n(1:1700);%chose a sample size of data points 

for similar comparison of the CAP events value obtained from scoring 

reader variable (time_total)                   
data_n1_CAP = time_tot; %the starting time of the CAP events 
sig_response_n1_sec_CAP = sig_response_sec1n(1632:5000); %need to 

obtain the y responses of only CAP data points for FFT function 

  
%running entropy features for CAP and nonCAP time values 
[y_renyi_n1_nonCap] = renyi_entro(data_n1_nonCap,2); 
[y_renyi_n1_Cap] = renyi_entro(data_n1_CAP,2); 

  
[y_tsallis_n1_nonCap] = Tsallis_entro(data_n1_nonCap,2); 
[y_tsallis_n1_Cap] = Tsallis_entro(data_n1_CAP,2); 

  
[y_shannon_n1_nonCap] = shannon_entro(data_n1_nonCap); 
[y_shannon_n1_CAP] = shannon_entro(data_n1_CAP); 

  
[y_sample_n1_nonCap] = 

sample_entropy(data_n1_nonCap,2,0.2,'chebychev'); 
[y_sample_n1_CAP] = sample_entropy(data_n1_CAP,2,0.2,'chebychev'); 

  
[y_HHT_n1_nonCap] = HHT(sig_response_sec1n,32); %32 represents the Kmax 

for ins1 because that is the gain (ins1 info txt file) of the signal 

from PhysioNet 
[y_HHT_n1_Cap] = HHT(sig_response_n1_sec_CAP,32); 

  
%Here, utilized time and response data for ins1_edfm (CAP/nonCAP) 
run FastFourierTransform_nonCap_n1  
y_FFT_nonCap_n1 = ans;  

  
run FastFourierTransform_Cap_n1 
y_FFT_Cap_n1 = ans;  

  
%once all feature results are available, create an excel spreadsheet 

for record keeping. 

  
ClassifierTable_N1_ALL = 

readtable('FINAL_table_n1.xlsx','Range','A1:G1506'); %here to select 

the size of the imported table 
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[RDT_trainedClassifier_FFT, RDT_validationAccuracy_FFT] = 

RDT_trainClassifier_FFTn1(ClassifierTable_N1_ALL); 
[RDT_trainedClassifier_HHT, RDT_validationAccuracy_HHT] = 

RDT_trainClassifier_HHTn1(ClassifierTable_N1_ALL); 
[RDT_trainedClassifier_tsallis, RDT_validationAccuracy_tsallis] = 

RDT_trainClassifier_tsallisn1(ClassifierTable_N1_ALL); 
[RDT_trainedClassifier_sample, RDT_validationAccuracy_sample] = 

RDT_trainClassifier_samplen1(ClassifierTable_N1_ALL); 
[RDT_trainedClassifier_shannon, RDT_validationAccuracy_shannon] = 

RDT_trainClassifier_shannonn1(ClassifierTable_N1_ALL); 
[RDT_trainedClassifier_renyi, RDT_validationAccuracy_renyi] = 

RDT_trainClassifier_renyin1(ClassifierTable_N1_ALL); 

  
Accuracy_RDT_all_features = 

table(RDT_validationAccuracy_renyi,RDT_validationAccuracy_shannon,RDT_v

alidationAccuracy_tsallis,RDT_validationAccuracy_sample,RDT_validationA

ccuracy_HHT,RDT_validationAccuracy_FFT); 

  
[LDA_trainedClassifier_FFT, LDA_validationAccuracy_FFT] = 

LDA_trainClassifier_FFTDn1(ClassifierTable_N1_ALL); 
[LDA_trainedClassifier_HHT, LDA_validationAccuracy_HHT] = 

LDA_trainClassifier_HHTDn1(ClassifierTable_N1_ALL); 
[LDA_trainedClassifier_tsallis, LDA_validationAccuracy_tsallis] = 

LDA_trainClassifier_tsallisDn1(ClassifierTable_N1_ALL); 
[LDA_trainedClassifier_sample, LDA_validationAccuracy_sample] = 

LDA_trainClassifier_sampleDn1(ClassifierTable_N1_ALL); 
[LDA_trainedClassifier_shannon, LDA_validationAccuracy_shannon] = 

LDA_trainClassifier_shannonDn1(ClassifierTable_N1_ALL); 
[LDA_trainedClassifier_renyi, LDA_validationAccuracy_renyi] = 

LDA_trainClassifier_renyiDn1(ClassifierTable_N1_ALL); 

  
Accuracy_LDA_all_features = 

table(LDA_validationAccuracy_renyi,LDA_validationAccuracy_shannon,LDA_v

alidationAccuracy_tsallis,LDA_validationAccuracy_sample,LDA_validationA

ccuracy_HHT,LDA_validationAccuracy_FFT); 

  
[KNN_trainedClassifier_FFT, KNN_validationAccuracy_FFT] = 

KNN_trainClassifier_FFTn1(ClassifierTable_N1_ALL); 
[KNN_trainedClassifier_HHT, KNN_validationAccuracy_HHT] = 

KNN_trainClassifier_HHTn1(ClassifierTable_N1_ALL); 
[KNN_trainedClassifier_tsallis, KNN_validationAccuracy_tsallis] = 

KNN_trainClassifier_tsallisn1(ClassifierTable_N1_ALL); 
[KNN_trainedClassifier_sample, KNN_validationAccuracy_sample] = 

KNN_trainClassifier_sampleDn1(ClassifierTable_N1_ALL); 
[KNN_trainedClassifier_shannon, KNN_validationAccuracy_shannon] = 

KNN_trainClassifier_shannonn1(ClassifierTable_N1_ALL); 
[KNN_trainedClassifier_renyi, KNN_validationAccuracy_renyi] = 

KNN_trainClassifier_renyin1(ClassifierTable_N1_ALL); 

  
Accuracy_KNN_all_features = 

table(KNN_validationAccuracy_renyi,KNN_validationAccuracy_shannon,KNN_v

alidationAccuracy_tsallis,KNN_validationAccuracy_sample,KNN_validationA

ccuracy_HHT,KNN_validationAccuracy_FFT); 

  
[SVM_trainedClassifier_FFT, SVM_validationAccuracy_FFT] = 

SVM_trainClassifier_FFTn1(ClassifierTable_N1_ALL); 
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[SVM_trainedClassifier_HHT, SVM_validationAccuracy_HHT] = 

SVM_trainClassifier_HHTn1(ClassifierTable_N1_ALL); 
[SVM_trainedClassifier_tsallis, SVM_validationAccuracy_tsallis] = 

SVM_trainClassifier_tsallisn1(ClassifierTable_N1_ALL); 
[SVM_trainedClassifier_sample, SVM_validationAccuracy_sample] = 

SVM_trainClassifier_samplen1(ClassifierTable_N1_ALL); 
[SVM_trainedClassifier_shannon, SVM_validationAccuracy_shannon] = 

SVM_trainClassifier_shannonn1(ClassifierTable_N1_ALL); 
[SVM_trainedClassifier_renyi, SVM_validationAccuracy_renyi] = 

SVM_trainClassifier_renyin1(ClassifierTable_N1_ALL); 

  
Accuracy_SVM_all_features = 

table(SVM_validationAccuracy_renyi,SVM_validationAccuracy_shannon,SVM_v

alidationAccuracy_tsallis,SVM_validationAccuracy_sample,SVM_validationA

ccuracy_HHT,SVM_validationAccuracy_FFT); 

  
allCLASSIFIER_accuracies_n1 = 

table(Accuracy_LDA_all_features,Accuracy_KNN_all_features,Accuracy_SVM_

all_features,Accuracy_RDT_all_features); 

 

FastFourierTransform_Cap_n1  

% to get length of signal fs* time 

  

fs = 512; %sampling frequency 

t = 0: 1/fs : 10 - 1/fs; 

  

%now apply FFT function 

X= fft(sig_response_sec1n(1632:3132)); %(X stores time domain (x) function) 

  

 %z= length (x_sdb);%return samples 

%lenght (X) = zt; %returns bin values not samples 

  

X_mag = abs(X); 

  

X_mag(30:34); 

  

 plot(X_mag, sig_response_sec1n(1632:3132)); %spikes correspond to a frequency component 

(mirror image left and right hand side) 

  

%frequency on x axis = fs/2 

format long 

%get f1. f2 and f3 corresponds to lowest - middle- highest frequency 

X_phase = angle(X); 

plot(X_mag/(fs/2)); %results to time %display lower half of output to better see CAP 

  

Cap=X_mag/(fs/2); 

  

figure(1) 

grid on 

xlabel('time (s)') 

ylabel('length of signal') 
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FastFourierTransform_nonCap_n1 

 

% to get length of signal fs* time 

  

  

fs = 512; %sampling frequency 

t = 0: 1/fs : 10 - 1/fs; 

  

plot(time_sec1n(1:1500),sig_response_sec1n(1:1500)); %here we are passing X and Y of sdb - 

shown in the workspace 

  

  

%now apply FFT function 

X= fft(sig_response_sec1n(1:1500)); %(X stores time domain (x) function) 

  

 %z= length (x_sdb);%return samples 

%lenght (X) = zt; %returns bin values not samples 

  

X_mag = abs(X); 

  

X_mag(30:34); 

  

 plot(X_mag, sig_response_sec1n(1:1500)); %spikes correspond to a frequency component 

(mirror image left and right hand side) 

  

%frequency on x axis = fs/2 

format long 

%get f1. f2 and f3 corresponds to lowest - middle- highest frequency 

X_phase = angle(X); 

plot(X_mag/(fs/2)); %results to time %display lower half of output to better see CAP 

  

nonCap=X_mag/(fs/2); 

  

figure(1) 

grid on 

xlabel('time (s)') 

ylabel('length of signal') 

 

 


