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Abstract

Time Slotted Channel Hopping (TSCH) is a medium access control mode defined in IEEE

802.15.4e standard. This protocol is a crucial component of fourth-generation IoT ap-

plications, enabling efficient communication through synchronized time slots and channel

hopping. By employing TSCH, IoT devices can achieve improved reliability, reduced inter-

ference, and increased network capacity. However, the energy consumption of IoT devices

remains a significant challenge in large-scale deployments.

This research introduces an energy-aware (EARL) schedule based on Reinforcement Learn-

ing (RL) for the 802.15.4e Time-Slotted Channel Hopping (TSCH) mode. The goal is to

turn off slots in the 802.15.4e TSCH frame that are not highly utilized so as to conserve

energy. By considering a predefined threshold, each node determines the slots that should

be deactivated. This adaptive scheduling strategy allows the nodes to conserve energy ef-

fectively by minimizing unnecessary radio operations.

Through extensive simulations and evaluations with simple and large-scale network config-

urations, the proposed energy-aware TSCH scheduling algorithm using Q-learning demon-

strates promising results and is compared with the Orchestra protocol. This innovative ap-

proach reveals superior performance compared to Orchestra, achieving notably improved

outcomes in both packet delivery rate and energy savings.
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Chapter 1

INTRODUCTION

Industry 4.0 is often referred to as the fourth industrial revolution (IR 4.0) [1] and heavily depends on

the utilization of IoT (Internet of Things) and WSNs (Wireless Sensor Networks). IoT, a specialized

field of engineering, facilitates the interconnection of numerous small physical objects, enabling

them to work together toward common objectives, and gaining significance due to their widespread

usage. IoT and WSNs are applied in diverse areas such as environment sensing, traffic tracking,

medical systems, and various aspects of daily life [2]. By gathering and processing data from

these compact nodes and then transferring it to operators, they play a significant role in driving

modernization efforts.

Wireless sensor network (WSN) nodes are typically compact devices, either powered by small

batteries or energy-harvesting mechanisms, comprising a microcontroller, a small memory, one or

more sensors, and a low-power radio transceiver [3]. Even though those motes are very lightweight

and cost-effective, one of the primary limitations is the energy constraint that arises from the chal-

lenges of recharging or replacing batteries once the WSN has been deployed.

This finite storage capacity of batteries and the constrained capabilities of energy-harvesting

devices significantly influence WSN research, leading to a strong focus on minimizing energy con-

sumption. In order to extend the network’s lifespan, it is common to adopt energy-efficient ap-

proaches that focus on managing radio activities like sensing and communication while maintaining
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a balanced power consumption level. However, scheduling the node’s radio operations proves to be

the most challenging aspect, as it directly correlates with the Medium Access Control (MAC) layer.

The MAC layer plays a crucial role in coordinating access to the radio channel, exerting a sig-

nificant impact on the overall network performance. Consequently, it affects energy consumption

and important metrics like throughput and latency. A well-optimized MAC protocol could handle

the key factors contributing to energy waste, for instance, idle listening, packet collisions, overhear-

ing, and redundant retransmission [4]. Moreover, it must guarantee successful packet reception to

their intended destinations in a multi-hop network.

Numerous standardization efforts, such as WirelessHART [5], ISA [6], Bluetooth [7], Zigbee

[8], IEEE 802.15.4 [9] have been undertaken to respond to the requirements of diverse industrial IoT

applications. Out of these standards, Zigbee is unsuitable for industrial applications due to its defi-

ciencies in determinism, frequency, path diversity, and the unreliability of its medium access control

(MAC) [10]. The other two protocols, WirelessHART and ISA, relays on the centralized approach

resulting in the inability to reuse resources and consequently leading to scalability challenges.

To overcome the above limitations, the IEEE standard 802.15.4 (in 2012)introduced MAC layer

amendments known as IEEE 802.15.4e-2012. It has been evaluated as an extension to the pre-

existing IEEE 802.15.4-2011 standard and the most recent version, IEEE 802.15.4-2015 [11]. The

IEEE 802.15.4e standard presents a variety of MAC layer functionalities serving diverse applica-

tion areas within industrial systems. Those MAC behavior modes are Time slotted channel hopping

(TSCH), deterministic and synchronous multichannel extension (DSME) as well as low latency

deterministic networks (LLDN). Among these, TSCH has attracted considerable worldwide inter-

est due to its remarkable abilities in the field of fourth industrial automation. It has become the

most promising technology for future IoT applications by ensuring high reliability, low latency, and

energy efficiency.

Even though the standard defines how a TSCH node will communicate with others, it does not

define the policies to create and maintain the schedule [12]. Designing an optimal schedule is an
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open research in this sector, and to effectively address this issue, several studies have been proposed,

including centralized and distributed approach.

With centralized scheduling [13], the schedule is built, maintained, and distributed by a central

controller node. This node possesses extensive information about various aspects like network ar-

rangement and routing. This approach is commonly adopted by steady industrial networks where

schedule adjustments are infrequent due to the consistent network layout and traffic patterns [14].

Although centralized scheduling can generate highly efficient schedules, adapting to frequent alter-

ations in network characteristics like size scalability and changing application needs can be chal-

lenging. Additionally, there might be significant overhead in gathering and disseminating informa-

tion.

In contrast to the centralized scheduling approach, many studies have opted for the distributed

scheduling technique for its potential to address certain limitations. Unlike the centralized ap-

proach, in the distributed technique, the schedule is constructed through negotiation between nodes

[15]. However, sometimes distributed scheduling faces a challenge known as the visibility issue.

Monitoring and troubleshooting a low-power network where decisions are reached through intra-

node negotiations can prove to be challenging for the network operator due to the complexity and

lack of transparency in the process.

An Autonomous scheduling approach can be an attractive alternative for TSCH MAC schedul-

ing as it overcomes these issues due to its decentralized nature and low complexity features. This

research adopts a reinforcement learning-based energy-aware schedule for TSCH networks.

In this methodology, each node independently constructs the schedule, establishing a decentral-

ized system. The decision-making process heavily relies on state-action pairs and reward values,

employing a trial-and-error approach. Unlike other autonomous schedules, this novel method oper-

ates without necessitating dedicated communication between nodes, thus avoiding additional con-

vergence or signaling overhead. Moreover, the individual nodes require minimal prior knowledge

and computational complexity.
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The proposed approach operates in real-time, enhancing its adaptability to network architecture

and external variations.

1.1 MOTIVATION

In today’s fast-changing tech world, the Internet of Things (IoT) has emerged as a crucial factor,

attracting industries and consumers with its multifaceted applications. One essential component of

IoT is Wireless Sensor Networks (WSNs), which play a vital role in the broad world of IoT applica-

tions. These networks, characterized by their low-power sensor nodes, have become instrumental in

facilitating seamless communication between devices, systems, and users. However, as the demand

for wireless IoT applications continues to grow, the need for advanced solutions becomes increas-

ingly crucial. This entails the convergence of high throughput, unwavering reliability, and energy

efficiency to address the challenges posed by the concurrent operation of numerous nodes.

The IEEE 802.15.4e standard has gained widespread acceptance as a foundational framework

for establishing connections among energy-efficient, reliable communication devices powered by

batteries, commonly known as ’things’ in the context of IoT applications. This standard is particu-

larly tailored to scenarios where power availability is limited and demands for data throughput are

not overly stringent. Among the collection of MAC behaviors governed by this standard’s Time

Slotted Channel Hopping (TSCH) is mainly adopted for the fourth industrial application due to its

lower latency and high throughput features.

TSCH merges the benefits of channel hopping, enhancing reliability, with time-slotted access

that facilitates energy efficiency and congestion-free utilization of wireless connections. In TSCH

networks, sensor nodes maintain a predefined schedule that governs their transmission and recep-

tion times. Therefore, an optimal schedule is of utmost significance for ensuring optimal network

performance. To address this, we propose an energy-aware schedule for the TSCH network uti-

lizing the Reinforcement Learning algorithm. The key aspect of the proposed approach focuses

on diminishing energy usage by using online learning to keep unused active slots in a sleep state.
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In wireless sensor networks, most energy depletion occurs for unwanted listening of the receiving

node. To overcome this issue, the proposed dynamic and learning-based strategy approach provides

an optimum scheduling solution while maintaining a balanced packet delivery ratio and lower power

consumption.

1.2 NOVELTY OF THIS THESIS

The core novelty of this thesis resides in the pioneering implementation of a learning-based schedul-

ing framework within the Time-Slotted Channel Hopping (TSCH) Medium Access Control (MAC)

protocol, with a primary focus on minimizing power consumption for energy-constrained Internet of

Things (IoT) devices. The distinctive feature of this work is the integration of reinforcement learn-

ing into the TSCH MAC protocol, enabling the establishment of an energy-efficient mechanism for

data transmission and reception.

In a decentralized manner, each node autonomously computes its scheduling decisions using

a reinforcement learning model, thereby eliminating the need for inter-node signaling overheads.

The proposed approach leverages an online learning system that dynamically adapts the wake-up

schedule of radio operations based on a predetermined threshold, effectively extending network

longevity through periodic transitions between sleep and active states.

Unlike traditional techniques reliant on fixed slot allocations, this research pioneers a flexible

and adaptive strategy, utilizing the Q-learning algorithm to enable nodes to independently adjust

their radio according to real-time environmental patterns.

1.3 CONTRIBUTIONS

In summary, the main contributions of this thesis are:

• A novel approach to energy-aware scheduling is presented, utilizing Reinforcement Learning

(RL) within the IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) medium access



Chapter 1. INTRODUCTION 6

control protocol. The implementation is integrated into the TSCH-Sim Simulator [16]. This

approach employs RL algorithms triggered by events like data transmission or reception.

• An adaptive threshold-based method is employed to manage radio on-off activity. Experi-

ments are conducted to identify the optimal threshold value and its effects on the count of

active slots.

• A variety of heterogeneous network architectures, ranging from simple to complex, are de-

veloped based on factors like density and traffic rate. These architectures are evaluated using

the proposed approach, assessing the balance between packet delivery rate and energy con-

sumption.

• The RL algorithm’s convergence behavior is explored, considering different transition phases

and learning rates required to achieve optimal performance. Additionally, a gradient-based

epsilon-decay technique is suggested to enhance exploration and exploitation probabilities

for more effective learning convergence.

• The proposed approach is evaluated and compared against the state-of-the-art Orchestra

scheduling method. We show how the RL-based scheme retain performance in terms of a

trade-off between PDR and energy expenditure.

1.4 ORGANIZATION OF THE THESIS

In this thesis, we organize our work into six sections. In Chapter 2, we conduct a comprehensive

literature review of current Medium Access Control (MAC) scheduling methods, categorizing them

into centralized, distributed, and reinforcement learning-based approaches.

Moving on to Chapter 3, we delve into background studies concerning the Time-Slotted Channel

Hopping (TSCH) protocol and the reinforcement learning algorithm related to our research. We

illustrate the key aspects of the TSCH MAC through appropriate diagrams, while also providing
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an in-depth explanation of the functioning process of the reinforcement learning-based algorithm.

This chapter introduces our energy-conscious reinforcement learning algorithm tailored for TSCH

networks. It outlines the algorithm’s specifics, including its layered architecture, and offers an

overview of the proposed system’s workflow.

Chapter 4 offers an outline of the implementation of the proposed approach within a simulation

environment. It includes a sequence diagram illustrating the operational steps for a clearer compre-

hension of integrating the proposed approach with the MAC layer. Additionally, the chapter covers

the discussion of simulation tools and the analysis of essential parameters needed for scenario vali-

dation.

Chapter 5 is more focused on scenario design and simulation validation. It provides an analysis

of various scenarios with specific attributes. Furthermore, this chapter describes selecting parame-

ters for the reinforcement learning approach and provides the formulas for evaluating metrics such

as PDR (Packet Delivery Ratio), latency, and power consumption within the proposed system.

Within this chapter, the outcomes of each scenario are discussed in terms of PDR, latency, and

number of active slots. Additionally, it offers a brief overview of the outcomes achieved through

Orchestra scheduling for each corresponding scenario. A comparative analysis is then presented,

accompanied by valid justifications. In the conclusion section of this chapter it provides an overview

of the stability analysis of Q values and the approach used to estimate the average packet delivery

ratio, illustrated with the assistance of a diagram.

The final chapter of this thesis, Chapter 6, we conclude our work and outline potential future

directions for research related to IEEE 802.15.4e TSCH MAC scheduling. Within this chapter, we

encapsulate the primary contributions and discoveries of our thesis.
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Chapter 2

LITERATURE REVIEW

The 802.15.4e standard has significantly advanced node communication, yet it does not define

any policy regarding scheduling mechanisms. As a result, scheduling within TSCH networks has

emerged as an active research area. Several studies have explored this domain, intending to de-

sign schedulers tailored to specific application requirements, encompassing energy consumption,

throughput, and delay considerations. Two primary categories have emerged: Centralized and De-

centralized scheduling. Furthermore, a promising and progressively intriguing approach involves

autonomous scheduling based on the Reinforcement Learning algorithm. Our work also delves

into this area, as we have generated a schedule using a Reinforcement Learning-based algorithm,

optimizing energy usage by putting unnecessary listening nodes to sleep mode.

This chapter provides an overview of the existing work on various scheduling approaches for

TSCH networks employing conventional and reinforcement learning-based algorithms, highlighting

the progress and gaps and setting the stage for the proposed research carried out in this thesis.

2.1 Centralized Scheduling

In a centralized approach, all communication within the network is scheduled by a single node

known as the coordinator or manager. This coordinator, often referred to as the Path Computation

Element (PCE) [17], is responsible for constructing and managing the network schedule.
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One of the known centralized scheduling algorithms for the TSCH network is TASA (Traffic

Aware Scheduling Algorithm) was proposed by Palattella et al. [18]. New industrial (IIoT) applica-

tions can effectively leverage this protocol, aiming for low latency and employing low-duty cycles

to conserve power.

The main objective of TASA is to create an optimized schedule that minimizes the required

number of timeslots for efficiently transmitting all the data to the coordinator. Achieving this goal

involves utilizing graph theory, explicitly employing matching and coloring processes. The protocol

aims to find the most suitable schedule that requires the fewest timeslots to deliver the accumulated

data to the coordinator successfully. To achieve efficient scheduling, TASA employs a matching

algorithm, which schedules all eligible links simultaneously in the same timeslot. Additionally, the

protocol adopts a vertex coloring approach for assigning channel offsets to each slot. The authors

also observed that introducing more channels can enhance network metrics such as throughput,

reduce latency, and decrease energy consumption.

Jin et al.[19] presented AMUS (Adaptive Multi-hop Scheduling), an early centralized schedul-

ing protocol with the key objectives of ensuring high reliability and low latency. This algorithm

efficiently employs an End-of-Q notification technique to conserve nodes’ energy consumption.

AMUS introduces a novel tentative resource allocation method, which allocates additional slots to

vulnerable links that assist in lowering delay caused by interference or collision. AMUS also used

the PCE-based protocol to gather information from nodes for computing the schedule. The ini-

tial information gathering employs CSMA/CA, followed by calculating and disseminating the first

schedule to the nodes. Even though this protocol outperforms TASA regarding reliability and lower

latency, it has higher power consumption resulting in an increased duty cycle.

This paper [20] introduces the Multichannel Optimized Delay time Slot Assignment (MOD-

ESA) scheduling approach for the TSCH network. It is suitable for homogeneous networks, where

the data rate is the same for all the motes. In this protocol, at every iteration, it allows only one

node and provides an appropriate link to assign one of its required transmissions. Moreover, it helps
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reduce buffer congestion by first scheduling the node with the higher number of packets. However,

this technique has been enhanced and extended [21] to accommodate heterogeneous traffic.

2.2 Decentralized Scheduling

Unlike the centralized scheduler, in the distributed approach, individual nodes engage in negotia-

tions with their neighboring nodes and independently make decisions regarding the scheduling of

links with specific neighbors. Here, we outline the key distributed solutions below.

The first decentralized scheduling algorithm for TSCH network was proposed by Tinka et.al

[22] and conducted with mobile networks. This protocol comes with two variations: Aloha-based

and Reservation based scheduling. The researchers utilize advertisement packets to transmit infor-

mation about available slots and the corresponding channels for connectivity. Additionally, Connec-

tion Request packets serve the purpose of establishing links between nodes. In the case of Aloha,

a single channel is allocated for broadcasting advertisements to attract new neighbors. However,

Reservation-based scheduling improves upon Aloha by introducing a dedicated timeslot for adver-

tisements. Simulation results indicate that both methods effectively handle dynamic nodes, with

the reservation-based algorithm exhibiting superior performance compared to the Aloha-based al-

gorithm. Nevertheless, it’s important to note that neither of these solutions is well-suited for nodes

with energy constraints.

A Distributed Scheduling algorithm (DIS-TSCH) for the time-synchronized channel-hopping

network is introduced by Wang et al. in [23] . This protocol primarily relies on the node’s local

information, such as location inherited from RPL (e.g., rank, graph depth etc.). The approach’s core

concept is allocating single slots to all leaf nodes, while intermediate nodes are assigned multiple

slots depending on the number of children. Afterward, for every designated time slot, a channel

offset is assigned. While this schedule might result in some idle slots, simulation results demonstrate

that this method achieves high throughput, low latency, and minimal control overhead, consequently

leading to reduced power consumption.
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Another distributed scheduling for IEEE 802.15.4e networks is Wave [24]. This algorithm is

a convenient approach for raw data converge-cast, as it is a multichannel and slot assignment al-

gorithm with traffic awareness. In this approach, every single node (within range) has knowledge

about its parent and conflicting nodes. In this protocol, information is acquired through signaling

between neighboring nodes, and the initial Wave is generated by incorporating all the partial infor-

mation available to each node. The sink node solely computes the first Wave and disseminates this

data within the tree. Subsequently, individual nodes autonomously compute the subsequent waves.

This protocol performs better when applied to a heterogeneous network than a homogeneous one.

In [25], Soua et. al introduced DiSCA (Distributed Scheduling for Convergecast in Multichan-

nel WSNs Algorithm), a distributed interference and traffic-aware scheduler tailored for TSCH net-

works. The main goal of DiSCA is to minimize the timeslots needed for transmitting total packets

to the sink. It prioritizes scheduling for nodes with higher packet transmission requirements. Each

iteration generates a micro-schedule that can overlap, reducing the number of slots. It also considers

the sink, which is equipped with multiple radio interfaces and weighs varying traffic loads gener-

ated by other nodes. Simulation shows that DiSCA outperforms Wave [24] regarding the required

number of slots for different configuration setups.

Another well-known scheduling protocol, Autonomous Link Based Cell Scheduling (ALICE),

was introduced by Kim et al. [26]. This algorithm has been further investigated by Elsts et al.

[27] for facilitating multichannel. ALICE is a kind of autonomous scheduling protocol which man-

ages resources as links by allocating cells (timeslots) for one-directional links between neighboring

nodes. Utilizing traffic direction operations, routing, and slot frame management ensures that down-

stream and upstream communications remain isolated and do not interfere with each other. As both

referenced papers demonstrated, it exhibits enhanced performance compared to other autonomous

schedule techniques.

Jeong et al.[28] presented a new approach, introducing the On-Demand TSCH Scheduling with
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Traffic Awareness (OST) algorithm. This novel protocol autonomously allocates resources based on

the nodes’ traffic load. Notably, OST’s unique feature allows it to adjust the timeslot frequency in

real-time as required dynamically. This dynamic resource allocation enables nodes to transmit their

accumulated data swiftly. The study’s results demonstrate a significant enhancement in reliability

by 60% and a remarkable 52% improvement in energy efficiency compared to other existing state-

of-the-art protocols.

The Minimal Scheduling Function (MSF) [29] is a scheduling mechanism developed by the

6TiSCH working group. This protocol consists of two distinct phases: the joining and operational

phases. During the joining phase, a node enters the network and allocates a shared slot for TSCH,

RPL, and control messages. Following this, the node assigns two additional slots: one for receiving

data from its child nodes and the other for transmitting data to its parent node, ultimately reaching

the sink. The latter phase comes into play when two nodes negotiate using the 6TiSCH protocol

stack to allocate cells. MSF is closely reliant on RPL, making it vulnerable to network failures

in the event of RPL errors. Additionally, authors in [30] compared MSF with the On-The-Fly

(OTF) protocol [31] and concluded that MSF’s performance might be compromised by issues in the

6TiSCH stack, particularly related to RPL configuration, similar to other resource negotiation-based

scheduling methods.

Orchestra [32] is an autonomous scheduling approach that operates without the need for either

a centralized or distributed scheduler. It stands out for its simplicity, lightweight nature, and adapt-

ability. Relying on RPL (network topology), Orchestra quickly responds to sudden changes in the

network. The protocol eliminates the necessity for negotiations; nodes independently compute and

maintain their schedules, automatically updating them if the topology changes, all without incurring

signaling overhead. The Orchestra schedule comprises three distinct slot frames, each exclusively

allocated to handle specific traffic types: MAC TSCH beacons, RPL signaling traffic, and applica-

tion data. The length of each slotframe introduces a trade-off, aiming to balance network capacity,

latency, and energy consumption. Simulation results demonstrate that Orchestra achieves a higher
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delivery ratio while maintaining a favorable trade-off between latency and energy consumption.

2.3 RL-Based Scheduling

An RL-based approach is a goal-oriented process where an agent engages in several actions to

reach its objective. Each time the agent interacts with the environment utilizing available actions

and based on the performance, it earns a reward value specifying how well it performs.

The RL-based process involves a fundamental choice between a multiagent negotiation ap-

proach and a single-agent localized decision-making strategy to optimize metrics (e.g., throughput,

latency, channel ) or derive an ideal schedule for WSNs.

In the multiagent framework, nodes collaboratively negotiate and coordinate to formulate a col-

lective outcome that best serves the network’s objectives. This cooperative approach necessitates

exchanging information, where nodes share data about their local conditions, capabilities, and de-

mands. Conversely, in the single-agent procedure, nodes autonomously reach their target based on

individual assessments of reward and available resources, with limited interactions with other nodes

[33].

However, In both scenarios, the key point lies in how nodes leverage reinforcement learning

(RL), using feedback mechanisms and reward signals to guide their decisions. The following sec-

tions cover most of the recent RL-based scheduling algorithms for wireless sensor networking.

In [34], Nguyen-Duy et. al have proposed an RL-based algorithm for radio scheduling of TSCH

network. RL-TSCH leverages a single channel of the medium and employs RL techniques to mini-

mize collisions among transmitting nodes. The protocol takes into consideration both the number of

packets in the transmission buffer and the remaining energy level of each node. At the start of each

timeslot, RL-TSCH decides whether to activate or deactivate the node’s radio based on the node’s

current and previous state. During the active timeslots, RL-TSCH behaves similarly to the Minimal

Scheduling Algorithm (MSA) of TSCH, while during the non-active timeslots, it deactivates its ra-

dio. The algorithm utilizes Q-learning with an action space that involves selecting the number of
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active slots. The reward function is designed to minimize energy consumption while ensuring high

throughput and reliability. Experimental results demonstrate that RL-TSCH significantly reduces

energy consumption compared to MSA.

This paper [35] presents a Reinforcement Learning (RL) based Medium Access Control (MAC)

protocol to extend network lifetime for wireless sensor networks. The proposed method uses the

Q learning algorithm to save energy, which adjusts the radio sleeping and active periods based on

data traffic load and neighboring state information. Each agent’s action is to determine when it

should be active or asleep for every single time slot. The reward function is computed considering

the current node state and the neighboring node’s status. Performance is evaluated on a real-time

testbed (small network), and Contiki Cooja simulator (large-scale). The outcome shows that QL-

MAC considerably reduces energy expenditure while preserving better PDR than CSMA/CA.

In [36], Park et. al introduced a multiagent Reinforcement Learning (RL) based TSCH schedul-

ing that allows contention but minimizes collision in a dense network. According to this algorithm,

each node acts as an agent that learns the transmission slot with the lowest failure rate and sends

the packet only on that slot. An action peeking (AP) mechanism has been adopted to have better

convergence in this multiagent system. During AP, a node can observe the communication between

neighboring nodes in the listening mode, which assists it in having reservation knowledge about

the current slot. Results show that QL-TSCH outperforms both Orchestra and FTA [37] in terms of

PDR, a better end-to-end packet delay than Orchestra.

Pratama et al. [38] proposed a reinforcement learning-based Q-learning technique that calcu-

lates the optimal number of cells for the TSCH network. To find the required number of cells during

each slotframe iteration, the system uses previous state information such as queue utilization, cell

utilization, and reliability. The reward function is calculated based on the queue utilization, the

number of unused dedicated cells, and the number of drop packets. The result comparison has been

made with the QL-TSCH and MSF (Minimal Scheduling Function) scheduling. The experiment

outcome shows that the proposed algorithm has a better network lifetime than QL-TSCH and MSF
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algorithms. Again it achieves a better packet delivery ratio in different scenarios. Even though the

number of slots (101 slots) is the same as MSF, the experimented system has comparatively lower

latency than MSF.

A self-organizing [39] reinforcement learning approach for scheduling nodes’ wake-up cycles in

a wireless sensor network is proposed by Mihaylov et. al . In this protocol, each node learns to stay

awake when it needs to communicate with its parents/children nodes (nodes that belong to the same

coalition). At the same time, the node learns to stay asleep when neighboring nodes on the same

hop communicate (nodes in another coalition). In other words, the node desynchronizes with the

neighboring nodes not in its coalition to avoid radio interference and packet loss. Each agent stores

a quality value’ for each timeslot, which is updated every time an event (overheard, sent or received

packets, idle listening) occurs during that slot. The node will stay awake for those consecutive

timeslots (of a length equal to the duty cycle) with the highest sum of Q-values. Evaluating this

protocol in different topologies has shown that it provides much lower end-to-end latency than S-

MAC [40].

In [41], Liu et al. introduced RL-MAC as a reinforcement learning-based MAC protocol for

WSNs. The core objective of RL-MAC is the optimization of the radio on-off mechanism within

nodes, aimed at minimizing energy consumption in sensor nodes. A distinctive feature of the pro-

posed algorithm lies in its adaptability to both the traffic generation pattern of the node itself and that

of its neighboring nodes. The method encounters the number of packets queued for transmission at

the beginning of the slotframe. The action is the reserved active time for the node. In this approach,

a node can actively infer the state of other nodes to achieve the cumulative goal for a wide range

of traffic conditions. In comparison with established MAC protocols like S-MAC and T-MAC, the

performance evaluation of RL-MAC demonstrates that it outperforms in terms of energy efficiency

and throughput.

Phung et. al [42]presents a multichannel protocol tailored for WSNs focused on data collection.
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The core of this protocol relies on an innovative scheduling algorithm driven by reinforcement learn-

ing principles. The primary objective of this algorithm is to mitigate energy consumption attributed

to collisions, idle listening, and the deafness problem within WSNs. The algorithm effectively

tackles the combined challenge of route selection and transmission scheduling in a completely de-

centralized manner, eliminating the need for node coordination. In simpler terms, nodes are taught

not just which parent to forward data to but also the optimal channel for transmission.

In practical terms, a node takes an action from a predefined set of options during each time slot.

The node then records the success probability for each action performed in that slot. This probability

is updated based on the chosen action, forming the foundation for selecting the most favorable

actions during the scheduling phase. if an action proves successful in a given slot, it is repeated

in the subsequent frame. Conversely, an unsuccessful action prompts the node to randomly select

another action from the available options in the next frame. The outcomes of the proposed protocol

indicate its superior performance compared to a frequency-hopping protocol named McMAC [43]

concerning Packet Delivery Ratio (PDR) and end-to-end latency.

Reference name Objectives MAC Layer Comments
Hung et al. [34] Energy consumption IEEE 802.15.4e Small networks with few nodes, homogeneous traffic rates
Park et al. [36] High throughput IEEE 802.15.4e No receiving schedule, nodes listening through entire slotframe

Yolanda et al. [38] Dynamic cell allocation IEEE 802.15.4e Emphasized on keeping low cell count and packet loss
Mihaylov et al. [39] Low latency Other MAC Nodes stay awake for consecutive slots(Lng:duty cycle) for all nodes

Phung et al [42] Throughput & energy Other MAC Emphasized on learning based channel utilization and lower packet collision
Claudio et al. [35] Energy saving Other MAC No insights on learning transitional phase and overall network latency

Liu et al. [41] Throughput & energy Other MAC Did not provide any clue on delay measurement
Stefano et al.[44] Energy saving Other MAC Emphasized on traffic load and neighboring condition

Table 2.1: Summary of existing studies concentrating RL-based algorithm

Table 2.1 provides an overview of the established methods that exclusively employed the Re-

inforcement Learning-based algorithm. The information presented in the table demonstrates that a

majority of investigations utilized the Q-learning algorithm to fulfill their goals.

Hence the ’Approach’ column indicates the pieces of information that were utilized leveraging

the Q-learning algorithm. Moreover, among these studies, few primarily focused on time-slotted

channel-hopping networks.
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Our proposed work introduces an innovative approach to tackle the problem of idle radio recep-

tion, aiming to reduce power consumption while maintaining a balanced packet delivery. In contrast

to prior research, where the RL algorithm was predominantly applied to transmission scheduling,

our study explores deeper into achieving an energy-efficient scheduling solution that encompasses

both transmission and reception aspects.

In contrast to existing work, the proposed approach operates without necessitating dedicated

communication between nodes, thus avoiding additional convergence or signaling overhead.
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Chapter 3

METHODOLOGY

This chapter presents the technical background studies and methodology of the proposed approach.

A brief description of Time Slotted Channel Hopping (TSCH) MAC protocol and Reinforcement

Learning (RL) based algorithm has been carried out to provide a foundation for the work presented

in this thesis. The Medium Access Control (MAC) protocol within the data link layer is a vi-

tal controller of energy resources in modern communication systems. MAC protocols are crucial

in minimizing unnecessary energy expenditure by intelligently managing how devices access the

shared communication medium. A key aspect of these MAC’s energy-saving proficiency lies in its

scheduling mechanisms. By strategically allocating time slots for data transmission and reception,

the MAC protocol limits collisions, reduces idle listening periods, and ensures efficient channel

utilization.

Reinforcement Learning (RL) has emerged as a remarkable tool in addressing various chal-

lenges of Wireless Sensor Networking (WSN) by offering innovative solutions to enhance multiple

aspects, such as throughput improvement, reduced delays, and efficient energy conservation. No-

tably, the integration of RL into WSNs brings about a remarkable change, enabling these networks

to efficiently adapt to dynamic environments, upgrade operational efficiency, and promote promis-

ing solutions to complex problems.

To save energy, the proposed approach utilized TSCH MAC which functioned according to a
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schedule generated by the RL-based algorithm. The schedule facilitates control over the transitions

of the node’s active and sleep modes in real-time, resulting in power conservation.

3.1 TIME SLOTTED CHANNEL HOPPING (TSCH) MAC PROTOCOL

In order to facilitate the successful functionalities of today’s innovative system, industrial IoT de-

vices need to operate swiftly regardless of the number of connected devices, should exhibit reliable

and predictable behavior, withstand challenging environmental conditions, and maintain strong se-

curity and resilience measures. Hence, thanks to IEEE 802.15.4e standard [45], aiming to establish

a range of MAC behavior modes suited for distinct application domains within the realms of process

and factory automation.

Among these modes, one notable mode is TSCH (Time-Slotted Channel Hopping), which offers

significant advantages in terms of high determinism, reliability, and low power consumption. By

employing time synchronization and channel hopping mechanisms, TSCH effectively addresses

the stringent demands of the fourth industrial network. The following sections briefly cover the

fundamental elements of the TSCH protocol.

3.1.1 Slot Frame

A slot frame represents a self-repeating unit that operates periodically to synchronize all the nodes

in a network. Each slot frame has an associated handle. TSCH can accommodate both single and

multiple slot frames. The multiple slot frame can establish distinct communication schedules for

various node groups or operate the network with varying duty cycles.

The size of the slotframe is flexible and can be adjusted based on the application’s specific re-

quirements. A larger slotframe can have better throughput but increase the overall network latency.

On the other hand, reducing the length of the slotframe increases the frequency of time slot rep-

etition, leading to improved reliability and higher power consumption. Figure 3.1 (a) depicts the

slotframe of a TSCH network.
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(a) TSCH Slotframe (b) TSCH Timeslot

Figure 3.1: The structure of slotframe and timeslot of a TSCH network [46]

3.1.2 Time Slot

A slot frame can be further divided into smaller subunits known as a timeslot to exchange data and

acknowledgment between devices as depicted in Figure 3.1 (b). The timeslot of each successive

slotframe can be identified using Absolute Slot Number (ASN). The ASN value represents the total

number of timeslots that have elapsed since the start of the network. At the start of the network, the

value of ASN is initialized to zero and gradually increased by one at every timeslot as follows:

ASN = (K ∗ S + t) (3.1)

Where K denotes slot frame cycle, S belongs to slotframe size, and t is the timeslot. A timeslot

can be either dedicated or shared. In the case of a dedicated timeslot, it is exclusively assigned to

a single owner, and any re-transmissions take place during the subsequent time slot. Conversely,

shared timeslots are deliberately allocated to multiple devices for transmission. As a result, the

likelihood of collision is higher, and this collision is identified when the acknowledgment is not re-

ceived. Hence, in order to minimize the chances of collisions, a re-transmission back-off algorithm

is applied to shared links. This algorithm involves increasing the size of the back-off window after

each transmission failure and resetting it to its minimum value following a successful transmission.
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(a) Network Topology (b) Channel Hopping mechanism

Figure 3.2: These figures illustrate the channel hopping mechanism for 3 cycles where the
slotframe contains 7 timeslots.[48] Hence each time the frequency is generated
using equation 3.2

3.1.3 Channel Hopping

Channel hopping is another technique employed in TSCH networks. Transmitting data across var-

ious frequencies enables TSCH to facilitate communication via multiple channels, known as mul-

tichannel communication [47], as illustrated in Figure 3.2. The utilization of different frequencies

generates frequency diversity, which helps mitigate the impact of interference and multipath fad-

ing. This, in turn, enhances reliability. TSCH implements channel hopping by utilizing 16 distinct

communication channels, each identified by a channel offset within the range of (0, 15). In a TSCH

network, all the nodes share the same hopping sequence. The physical channel (real channel for

packet transmission) of a shared or dedicated cell is determined as follows:

f = F [(ASN + ChannelOffset)%Nchannels] (3.2)

F is a lookup table containing a sequence of available physical channels, and Nchannels denotes

the total number of available channels.
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3.1.4 Network Formation

The initiation of network formation in TSCH begins with a PAN coordinator, which broadcasts the

network’s existence through an enhanced beacon (EB) [49]. EB is a frame that contains all the

essential information, such as time synchronization, channel hopping, slotframe, and timeslot, that

requires a node to join the network. When a new node intends to join the network, it initially starts

listening to the available channel and waits until it receives an EB transmitted by any neighboring

nodes. Upon receiving the EB frame, the node synchronized itself and initialized the slotframe and

links in the EB. Then it changes its mode to the TSCH network.

Start Randomly Scanning channel 

Listen on channel for an EB

Received EB?

Notify to higher layer

Initialize slotframe and links

Switch to TSCH mode

Y

N

Figure 3.3: TSCH network formation procedure

After completing the joining procedure, the node starts transmitting EB to neighboring nodes.

Figure 3.3 demonstrates the general process of joining the TSCH network.
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3.1.5 TSCH Scheduling

In the TSCH network, a schedule determines the operation of a node at a particular timeslot. That

means the schedule is responsible for defining slots for transmission (either data packet or control

packets), reception, and idle slots that allow the node to preserve energy. In addition, the schedule

specifies the appropriate channel offset to be utilized for communication purposes.

In TSCH, a schedule can be defined as a matrix of channel offset and time slots representing

the cell. A cell located at the intersection between a designated row and column (i.e., channel offset

and time slot offset) of that matrix describes a link between neighbor nodes at the data link layer.

For a network of five nodes and four edges, an example of a schedule with four timeslots and four-

channel offsets is illustrated in Figure 3.4 (b). Thereby, there are 16 cells in this slot frame. Each

cell in the TSCH slot frame is considered half-duplex. This clarifies that a node can not transmit

and receive at the same time slot or receive from multiple nodes during the same time slot, even if

the transmission occurs on a different frequency band. These problems lead collision of packets, as

depicted in Figure (b). Considering the first case at time slot 4, node two receives data from node

five and sending back to node one, which results in a collision. Again, for the latter case, which

happened at time slot 1, nodes four and five send a packet to node two, which also leads collision of

packets.
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Figure 3.4: A simple TSCH schedule with collision scenario
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3.1.6 TSCH Timeslot Mode

A TSCH schedule can incorporate the various state of a time slot, which serve as indications for

nodes to either transmit, listen, or set their radios to sleep mode. The IEEE 802.15.4e standard has

distinguished seven different categories of state for a times slot [50]. A brief description of each of

them is given below:

• TxDataRxAck: During this particular time slot, a node transmits a frame and gets an ac-

knowledgment (ACK) once the data has been received.

• TxData: The node sends a frame without expecting to receive an acknowledgment. More

specifically, it species a broadcast transmission

• RxDataTxAck: During this time, a node actively listens to the channel and receives a frame,

then responds with an ACK to confirm the successful receipt of the transmitted frame.

• RxData: In this time state, a node listens and receives a frame, but no ACK is required to

send. Consequently, it defines a broadcast reception.

• RxIdle: When a node indefinitely listens to a particular channel but does not receive a frame.

• Sleep: The mote remains idle and does not engage in transmission or reception activities.

• TxDataRxNoAck: The node transmits a frame and expects an ACK, but no ACK is received.

A collision of the data frame could cause this situation.

3.2 REINFORCEMENT LEARNING TECHNIQUE

Reinforcement Learning (RL) is defined as a segment of machine learning that diverges from the

conventional path of supervised learning by not relying on fixed datasets for its learning process.

In reinforcement learning, labeled data typically is not utilized for training purposes. However, this

doesn’t imply a complete absence of guiding information [51].
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Figure 3.5: Reinforcement Learning procedure [58]

The system operates based on an established reinforcement learning protocol, triggering a feed-

back signal referred to as a ’reward’ upon achieving the intended outcome. For instance, in the con-

text of a robot’s walking control, the distance covered could serve as the reward metric. Similarly,

within a Go game program, the outcome of victory or defeat translates into the reward. In cases of

loss, the reward takes the form of a negative value, commonly termed as a penalty. Reinforcement

learning (RL) is widely employed in various fields and domains, encompassing industrial manufac-

turing [52], robot control [53], simulation [54], optimization, scheduling and gameplay [55],[56].

To get into the working procedure, the RL algorithm involves an agent that interacts with an

environment and learns optimal action through a trial-and-error approach, as depicted in Figure

3.5. According to Sutton and Barto (2018) [57], reinforcement learning is a machine learning

method that relies on gathering experience from engaging with the environment in order to acquire

knowledge. During this learning process, the agent is oriented towards achieving specific goals and

must explore various actions to determine which ones lead to the most favorable rewards.

The relationship between an agent and its environment is established through states, actions, and

rewards, which are precisely defined within the formal framework of Markov Decision Processes.

In the learning process, an agent in state S can take an action a that leads it to another state S′

and receives a reward r from the environment. This process is repeated multiple times until the

algorithm converges, deriving an optimal policy Π.
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RL can be easily implemented within a distributed architecture such as Wireless Sensor Net-

works (WSNs), where each node aims to select actions that are anticipated to maximize its long-term

rewards. In this setup, nodes within the WSNs interact with their respective environments, receiv-

ing feedback as rewards or penalties based on their actions. By utilizing reinforcement learning,

the nodes learn to make decisions that optimize their cumulative rewards over time, contributing to

the overall performance and efficiency of the network. Reinforcement learning has found practical

use in various scenarios, such as training game-playing agents [59], educating robots with the abil-

ity to learn [60], and developing content placement agents that can intelligently suggest articles or

advertisements based on individual user preferences [61].

An RL framework can be structured either as a single agent or a multi-agent system, depending

upon the nature of the challenge at hand and the complexity of the environment. The fundamental

contrast between single-agent RL and multi-agent RL lies in the agent’s engagement with the envi-

ronment and its effort to optimize individual rewards in the former, whereas in the latter, within a

multi-agent system, agents engage not only with the environment but also with each other, striving

to enhance their collective rewards.

One of the most popular RL algorithms is Q-learning. The Q-Learning algorithm operates

as a model-free, off-policy method within the domain of reinforcement learning. In this learning

paradigm, action selection rely on state’s value, determined through an updating mechanism. The

agent opts for actions that yield the highest rewards from its environment, where these rewards can

vary in positivity or negativity based on the environment’s characteristics. It is worth highlighting

that the utilization of Q-learning has been widespread and effective in addressing various issues

problem Wireless Sensor Networks (WSNs) (e.g.[62], [63],[64],[65]).

This thesis will focus on Q-learning related to our objectives of preserving energy in a TSCH

network. A detailed discussion on Q-learning is depicted in the following section.
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3.2.1 Q -Learning Algorithm Details

The Q-learning algorithm is defined using a collection of elements (S, A, T, R). Here, S represents

a discrete group of states within the environment, A signifies a discrete set of available actions,

T stands for the state transition function S × A × S, producing values between 0 and 1, and R

stands for the reward function S × A → R . Q learning possesses a compelling feature: it starts

with no prior understanding of state transitions and reward functions, which it gradually learns from

interactions with the environment. At each step, the agent gets information about its state s ∈ S

from the environment and picks an action a ∈ A. Once this action is taken, the environment’s state

changes, leading to the emergence of a reinforcement signal r ∈ R. This signal is then used to

assess the decision quality by updating the relevant Q(s, a) values [66].

The primary objective of an agent is to select actions that maximize the value function,Q(s, a)

associated with the specific state-action pair [67]. Hence, Q(s, a) denotes the anticipated cumulative

discounted rewards resulting from the action taken in state s.

Q(st+1, at) = (1− α)Q(st, at) + α[rt+1 + γMaxaQ(st+1, a)] (3.3)

where α is the learning rate (0 < α < 1) parameter and is used to tune the learning speed. The

discounting factor, 0 < γ < 1, influences the agent’s preference for prioritizing either immediate

rewards or long-term rewards; r represents the reward obtained when the agent executes action a

in state s, which consequently leads to state Q(st+1). Moreover, MaxaQ(st+1, a) signifies the

highest Q-value achievable among the actions that can be taken in the subsequent state.

In order to better converge for the Q-learning algorithm, it is essential to explore every state-

action pair. This can be done by taking advantage of exploration and exploitation probability. In

this regard, an agent will explore a random action with the probability ϵ and exploit the environment

with the best-known action with probability (1−ϵ). There are various techniques to determine those

probability values. It could be a fixed value or a decaying ϵ-greedy approach [68]. In the latter case,
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the value of epsilon decreases solely over time. The gradient-based ϵ-greedy method that has been

used for this experiment is as follows:

epsilon = epsilon+ learningRate ∗ gradient (3.4)

gradient = −1 ∗ epsilonDecayRate (3.5)

epsilon = Max(0,Min(1, epsilon)) (3.6)

Where epsilonDecayRate indicates the rate at which the exploration probability gradually de-

creases over time.

3.3 PROPOSED APPROACH WORKFLOW

A three-layer network architecture has been considered to facilitate the implementation of the

proposed approach. This architecture comprises the layers of Application, Network, and MAC

(Medium Access Control). The subsequent sections provide concise descriptions of each of these

layers.

3.3.1 Application And Network Layer

An application layer has been designed to interact with the network layer while constructing the

whole network architecture. Its primary function is to configure the network topology and define

essential attributes for the simulation. To build the topology, the application layer requires informa-

tion on the total number of nodes needed for deployment and their respective categories.

The layer assigns a unique ID for each node and specifies its category. Moreover, the layer is re-

sponsible for defining the packet generation rate for each distinct sender node. This rate determines

how frequently each node generates data after a certain period. Additionally, the application layer

determines the position, layout, and connections among all the nodes in the network. This step is
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essential for establishing the overall structure of the network.

The network layer facilitates the movement of data packets towards the central sink node. Due

to the random positioning of nodes, not all nodes are located near the root node. To address this, a

multi-hop routing approach has been employed, using the nearest next-hop identifier. This strategy

guarantees the successful delivery of each packet to its intended destination.

3.3.2 MAC Layer

The MAC (Medium Access Control) layer ensures efficient and reliable communication among

nodes. It conducts several core functions vital for the proper functioning of the network. It defines

the transmission range, which determines the maximum distance a node can communicate with its

neighbors. Moreover, using a radio propagation model, the network layer establishes links between

nodes. The model considers the transmission range and ensures that nodes within this range are

connected. Another essential role of this layer is to calculate nodes’ Received Signal Strength

Indicator (RSSI) value to determine the signal strength for efficient data transmission.

The proposed system has been considered the Unit Disk Graph Model (UDGM) for radio prop-

agation. In this model, signal propagation involves circular areas centered on the transmitting node

to simulate radio coverage. The likelihood of successful packet reception depends on the distance

and is computed using the following formula:

Psuccess = 1− d2 ∗ (1− UDGM RX Success) (3.7)

The central aspect of this research revolves around the MAC layer, which incorporates a learning

algorithm to efficiently manage the on-off periods of the radio transmission module. Specifically,

it is responsible for regulating access to the transmission medium and interacting with the network

layer for engaging transmission and acknowledgment.

The proposed approach has considered a single slotframe comprised of multiple shared cells
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based on network architecture, as shown in Figure 3.6. The first cell is an EB cell mainly used to

broadcast an Enhanced Beacon (EB) to neighboring nodes to join the TSCH network. On the other

hand, rest cells are shared and used to transmit or receive unicast packets or to sleep. The proposed

algorithm is responsible for scheduling only the unicast cells.
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Figure 3.6: Slot frame structure

In order to access the medium, Q-learning has been embedded in the MAC layer. The pri-

mary objective of the algorithm is to acquire an optimal wake-up schedule, effectively reducing

the number of slots during which the node’s radio remains active. By doing so, it aims to mitigate

energy wastage caused by factors like idle listening and significant sources of energy dissipation

on the receiving side. By leaning on an adaptive schedule, the system can gradually reduce power

consumption while maintaining the network’s other metrics, such as PDR and latency.

Energy Aware Reinforcement Learning (EARL)

The proposed approach is based on a reinforcement learning algorithm and is suitable for online

learning. Since the system is reactive, an agent engages in an environment, chooses a particular

action at each step, and obtains a reward in response from the environment. As the optimal action is

not known in advance, the agent must learn from its experiences by executing a sequence of diverse

actions and inferring the best one based on the received rewards.

In the Q-learning algorithm, the agent’s actions rely on a ’Q-function’ to assess the value of

a specific action in its current state. Thus, each node computes the Q-function for every timeslot

within a frame, and these Q-values are stored and updated across the slotframe. In our scenario,

each calculated Q-value indicates the effectiveness of turning the radio ON at a specific slot in the
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frame, ultimately creating an efficient wake-up schedule for the node in the current slotframe. In

this approach, the features of the Q-learning algorithm are declared below:

• Agent: Each node of a network is considered an agent.

• Action: The available actions to a node decide whether it should stay active for communica-

tion or turn off the radio to enter the sleep mode during each single timeslot.

• Action Space: Since the action is related to scheduling timeslots, the action space is propor-

tional to the number of slots within a frame.

• Reward: Reward defines the positive and negative feedback of a taken action involving

successful packet transmission and acknowledgment.

• Policy: In the context of Q-learning, the policy serves as the guiding principle for agents

to make decisions in each state, aiming to maximize their overall reward. Several methods

can be used to determine which action to take. One straightforward approach is greedy

selection, where the agent always chooses the action with the highest state-action value,

focusing solely on exploitation. However, this method may lead to locally optimal policies

in many optimization problems, which may differ from the globally optimal solution.

In contrast, exploration is a strategy where the agent deliberately chooses non-optimal actions

in its current situation to gain more knowledge about the problem. This knowledge helps

the agent avoid getting stuck in locally optimal policies and eventually reach the globally

optimal solution. But, excessive exploration can significantly decrease the performance of

the learning algorithm. Achieving the right balance between exploration and exploitation is

a significant challenge in Q-learning.

A simple approach suggested to address this challenge is the ϵ-greedy strategy, where a pa-

rameter ϵ ( 0 < ϵ < 1) determines the probability of exploration. A higher value of ϵ

corresponds to a greater likelihood of exploration. The choice of ϵ significantly impacts the
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algorithm’s performance. Several studies concluded [57] that nonzero ϵ values generally

yield better results compared to the blindly greedy case. However, excessive exploration

becomes unnecessary after an initial period of interaction between the agent and the envi-

ronment, assuming that the state-action-pair values remain constant. Therefore, the proposed

system potentially improves the basic ϵ-greedy approach by gradually reducing the value of

ϵ as described in previous section 3.2.1 during the learning process. By doing so, we aim

to improve the agent’s capability to gain new knowledge while preventing any performance

decline employed by a constant ϵ value.

According to the proposed method, every node has its own Q table that stores a set of Q-values.

The length of the Q table is equal to the slotframe size. The Q values correspond for each timeslot

during the learning phase. Hence, the learning phase specifies the duration commencing after the

network stabilization period and persists until the transition state begins.

For every individual node, the Q-function is calculated for each slot within the slotframe. The

resultant Q-values are saved and progressively revised as frames progress. Each of these Q-values

signifies the advantage of activating the node during a particular slot to receive or transmit data.

As a result, this collection of values governs the node’s activation pattern throughout the ongoing

frame. The proposed method employs a single Q table for both transmission and reception, and the

Q values are modified in response to specific slot events like data transmission or reception. When

considering a particular node, denoted as n, the quality value of a specific timeslot t is estimated

using the subsequent update formula:

Qn
t,f+1 ← (1− α)Qn

t,f + α(r + γMaxaQ
n
t,f+1) (3.8)

where Qn
t,f specifies the Q-value associated to the timeslot t of the current frame f , and Qn

t,f+1

is the updated value of the same slot but for subsequent frame.

Notably, it should be mentioned that initially, all nodes have their radio active in every timeslot,
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indicating that they are actively monitoring the entire frame. At the onset of the transition phase,

nodes make a determination to either remain active or enter sleep mode, as depicted in the equation

below.

Radio{slot i} =


Active, Qn

i ≥ Threshold

Sleep, Otherwise

If the Q value of a particular slot i falls below this threshold, the node will enter a sleep mode

throughout the entire slot duration to conserve energy. Otherwise, the node will stay active to receive

or transmit data.

Algorithm Details

Algorithm 1 presents the Q-learning-based TSCH MAC scheduling, a dynamic and iterative proce-

dure that aims to optimize communication efficiency. The proposed system is designed as event-

based inside the simulator.

At the inception of each slotframe cycle, the algorithm embarks on the MAC scheduling proce-

dure. If the packet buffer contains data, the algorithm iterates through the buffer, selecting an action

based on the ChooseAction function. This function balances between exploration and exploitation

strategies: occasionally opting for exploration (with a probability determined by ϵ) and otherwise

favoring exploitation. During exploration, a random action is selected within the slotframe, allow-

ing the algorithm to discover new scheduling possibilities. Conversely, during exploitation, the

algorithm leverages the best-known actions to optimize the current schedule.

After each action is executed at the MAC layer, the algorithm observes a reward and proceeds

to update the Q-table accordingly. The reward is determined by whether an acknowledgment is

received. If an acknowledgment is received, the reward is positive; otherwise, it is zero.
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Algorithm 1: EARL based TSCH Scheduling
1 Initialize parameters: Q table, γ, α ϵ, action space : A, gradient;
2 Func TSCH Schedule():
3 Repeat at the beginning of each slotframe cycle;
4 if (Pkt Buffer has packet) then
5 for i = 0; i < length(Buffer); i++ do
6 scheduled slot← ChooseAction(Pkt Src);
7 end
8 Update epsilon(ϵ);
9 end

10 else
11 No Schedule is Needed;
12 end
13 Func ChooseAction(Nodei):
14 Pexploitation← Uniform rand();
15 if (Pexploitation < ϵ) then
16 Do exploration with ϵ;
17 return random action a ∈ A;
18 end
19 else
20 Do exploitation with (1− ϵ);
21 return best known action maxa∈AQ(s, a) ;
22 end
23 After performing each action at MAC layer, observe reward and update Q table;
24 reward← get reward();
25 Q table←Update Qtable(reward);
26 Func get reward():
27 if (Acknowledgment == True) then
28 r ← 1;
29 end
30 else
31 r ← 0;
32 end
33 return r

34 Func Update Qtable(r):
35 Qn

t,f+1 ← (1− α)Qn
t,f + α(r + γMaxaQ

n
t,f+1)

36 Func Update epsilon(curr ϵ):
37 ϵ = curr ϵ+ α ∗ gradient;
38 gradient = −1 ∗ epsilonDecayRate;
39 return Max(0,Min(1, ϵ));
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On the Receiving end, as the algorithm starts (i.e., before entering the transition phase), all

nodes are actively engaged in continuous listening throughout each time slot according to algorithm

2. Subsequently, during the transition phase, nodes exclusively focus their listening efforts on time

slots where their corresponding Q-values are either equal to or exceed a predetermined threshold.

Upon receiving a frame, an agent (i.e, node) identifies whether the frame’s destination id cor-

responds to its own. If the frame’s destination id aligns with the agent’s id, the frame is accepted;

otherwise, it is discarded. Following a frame’s successful reception, the node updates the acknowl-

edgment and the Q table for the respective timeslot. Upon reception at the data link layer, if the

current receiving node is not the ultimate destination, the frame is subsequently forwarded to the

network layer to facilitate its onward transmission toward the final destination.

After transmitting a frame, an agent (sender node) waits for acknowledgment. An acknowl-

edgment could be true or false based on the success or failure of the frame due to collision. Upon

receiving an acknowledgment, an agent can determine its action’s effectiveness.

The Q-table is continuously updated using the reward gained from the executed action, with

the goal of maximizing cumulative rewards over time. The update involves calculating the new Q-

value utilizing the existing Q-value, the reward received, and the potential future rewards associated

with the chosen action. On the transmission (TX) side, updating the Q value relies on both the

exploration or exploitation policy, whereas the receiving (Rx) side employs only the exploitation

policy. This updating step consistently improves the Q-table and refines the scheduling decisions

made by the algorithm.

Additionally, the proposed EARL algorithm maintains an adaptive exploration rate, which grad-

ually adjusts to encourage exploration at the start and shifts to exploitation. This process enables the

algorithm to balance discovering new scheduling strategies and exploiting well-performing actions.
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Algorithm 2: Energy Aware learning based Packet Reception
Initialize: threshold : ϕ, transition phase : TP

1 foreach transmitted pkt do
2 if (TP ) then
3 if Q(ts) ≥ ϕ then
4 Set Radio Active;
5 end
6 else
7 Set Radio Sleep;
8 end
9 end

10 else
11 Active on every slots;
12 end
13 while (Radio ON) do
14 if (this.id == frame destination id) then
15 received frame;
16 update Acknowledgment;
17 upgrade Q(s, a);
18 end
19 else
20 Discard frame;
21 end
22 end
23 end
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Chapter 4

IMPLEMENTATION

This chapter introduces the experimental framework created to simulate our novel energy-aware

reinforcement learning algorithm, referred to as EARL. It also offers a comprehensive explanation

of the integration of our proposed approach into the simulation environment and provides a detailed

discussion of the parameter analysis associated with the simulation.

4.1 Implementation Details

This section briefly overviews the simulation tool and network configuration of the designed topol-

ogy. Furthermore, it presents a detailed description of leveraging the proposed approach with the

medium access layer. To illustrate this integration, a sequence diagram is presented, outlining the

workflow aligning with the existing simulator.

4.1.1 Simulation Tool

Simulators and emulators play a crucial role in designing wireless IoT applications prior to their

real-world implementation. Each of these tools comes with its own strengths and limitations, tai-

lored to specific types of applications. Simulators focus on assessing the software aspect of the
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application, observing how it functions within a software-defined environment. For this experi-

ment, we chose the TSCH-Sim simulator. TSCH-Sim was chosen over Cooja [69] because it is only

suitable for networks with up to a few hundred nodes [16] and tends to encounter challenges related

to synchronization and other issues related to custom code extensions. Furthermore, it is selected

over the 6TiSCH simulator [70] as it lacks any non-standard schedules and routing protocols and

does not have an architecture that would facilitate the addition of custom extensions.
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Figure 4.1: TSCH-Sim class diagram showing original and additional new classes

TSCH-Sim is a new discrete event simulator for TSCH and 6TiSCH networks. TSCH-Sim is

constructed using modern JavaScript and incorporates modules to make it easily extensible by users,

allowing seamless integration with the Web. The simulator adheres to the TSCH protocol specified

in the IEEE 802.15.4-2015 standard [71] while supporting features from the evolving 6TiSCH stan-

dards and routing protocols like RPL [72]. The fundamental architecture of TSCH-Sim is comprised

of several loosely connected components. Figure 4.1 illustrates a class diagram depicting the origi-

nal internal structure and the supplementary classes we developed for the simulator.
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4.1.2 Network configuration

The chosen simulator contains a configuration file that carries all the necessary attributes required to

create the network and depicted in the Listing 4.1. In the configuration file, NODE TY PES, is an

object key that contains an array of different types of nodes that are used to construct the network.

Each distinct node type must include crucial parameters like the node’s NAME, START ID, and

COUNT , denoting the initial ID and total number of nodes of this type, respectively. Each type’s

total number of nodes increases sequentially up to the specified COUNT value.

Additionally, the configuration file defines the packet generation frequency for each node and

their respective final destinations specified as APP PACKET PERIOD SEC and TO ID.

For instance, nodes 2 and 3 generate packets every 1.5 seconds destined for node 1, as demonstrated

in the Listing below. Apart from network construction information, the config file also allows the

specification of essential parameters for the TSCH protocol. These parameters encompass the total

number of channels required for channel hopping, the number of retransmissions in the event of

packet failure, the packet buffer size, and packet size. Within the configuration, we incorporate a

random seed generation process with the number of simulation executions. This process ensures that

a distinct set of outcomes is produced for each simulation, eliminating any repetition and enhancing

result diversity.

The position of each node is defined using the POSITION object key, which holds the unique

id and X,Y coordinates for individual node. Furthermore, in order to establish communication

between neighboring nodes using a radio propagation model, it is essential to specify connections

within the config file. The CONNECTION key, depicted in the Listing, represents a connection

between two nodes within range of each other. It is important to clarify that the CONNECTION

specification in the network is distinct from routes and is specifically related to the link between

nodes. It serves as a requirement for two nodes to communicate, and if ACKs (Acknowledgements)

are utilized, it must be bidirectional.
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1 {"SIMULATION_DURATION_SEC":800,
2 "MAC_HOPPING_SEQUENCE":TSCH_HOPPING_SEQUENCE_2_2,
3 "APP_WARMUP_PERIOD_SEC":100,
4 "Max_QUEUE_SIZE":16,
5 "ACTION_SPACE":15,
6 "SIMULATION_NUM_RUNS":10,
7 "NODE_TYPES":[
8 {
9 "NAME":"root",

10 "START_ID": 1,
11 "COUNT": 1
12 },
13 {
14 "NAME": "intermediate",
15 "START_ID": 2,
16 "COUNT": 2,
17 "APP_PACKETS":{"APP_PACKET_PERIOD_SEC": 1.5,
18 "TO_ID": 1}
19 },
20 ..........
21 {
22 "NAME": "leaf",
23 "START_ID": 5,
24 "COUNT": 1,
25 "APP_PACKETS":{"APP_PACKET_PERIOD_SEC": 3,
26 "TO_ID":1}
27 }
28 ],
29 "POSITIONS":[
30 {"ID":1,"X":20.00,"Y":25.00},
31 {"ID":2,"X":22.50,"Y":22.00},
32 .....
33 {"ID":5,"X":28.00,"Y":13.00}
34 ],
35 "CONNECTIONS":[
36 {"FROM_ID":2,"TO_ID":1,
37 "LINK_MODEL":"UDGM"},
38 {"FROM_ID":1,"TO_ID":2,
39 "LINK_MODEL":"UDGM"},
40 ......
41 {"FROM_ID":5, "TO_ID":2,
42 "LINK_MODEL":"UDGM"},
43 {"FROM_ID":2,"TO_ID":5,
44 "LINK_MODEL":"UDGM"}
45 ]
46 }

Listing 4.1: A sample of the configuration file for 5 nodes network

4.1.3 EARL Algorithm Integration with MAC Layer

In order to access the medium access control (MAC) layer effectively, it is essential to incorporate

it into a schedule. A Reinforcement Learning (RL)-based algorithm has been adopted for this re-

search. The implementation of the proposed EARL algorithm is summarized in sequence diagram

4.2.
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Figure 4.2: Sequence diagram representing the integration of the EARL algorithm within
MAC and Network modules of the corresponding simulator

To complete the network formation phase, at the beginning of the simulation, each node ran-

domly scans the channel to join the Time-Slotted Channel Hopping (TSCH) network, as discussed

in section 3.1.4. Upon receiving an Enhanced Beacon (EB) from a neighboring node, the intended

node joins the network, synchronizes its time with the parent node, and updates its routing table.

Once the network formalization is complete, each node starts generating packets according

to the packet generation rate defined in the network configuration earlier. These packets contain
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essential information such as Source, Destination, Packet Sequence Number, and Payload Size, and

are stored in the packet buffer.

According to the proposed approach, at the starting of each slotframe cycle, the system checks

if there is a packet in the buffer. If so, it invokes the Q-learning algorithm to schedule the packet

for transmission. This periodic process is seamlessly implemented and integrated to align with the

existing network module of the simulation flawlessly.

In order to schedule a packet, a node requires to select an available action from action space,

which represents timeslots. This decision-making process is facilitated by the agent invoking the

action-choosing function, which is implemented within the Q learning scheduler.mjs module

and aligned with the simulator’s MAC and Network modules.

The Q-learning algorithm selects an action based on a defined policy, which is influenced by a

probability value called Pexploitation. This probability is generated using a uniform random number

generation approach with the aid of a seed and mask. The use of seed and mask ensures diversity and

uniform distribution during generation. Based on the Pexploitation value, the agent decides whether

to pick a random timeslot within the frame or the action with the highest Q value. To achieve learn-

ing convergence, a gradient-decay approach is employed inside the Q learning scheduler.mjs

module.

Initially, the exploration value ϵ is set high at 0.8, meaning the agent is supposed to choose

random actions 80% of the time and known actions only 20% of the time. However, this value

gradually decreases with learning stability. Once the corresponding timeslot is chosen, the agent

updates its action. After scheduling all packets in the buffer, each utilizing its corresponding node,

the simulator executes the transmission and reception processes.

The time and ASN (Absolute Slot Number) values increase by one at each simulation step.

During each step of the simulation, the proposed approach calculates the current timeslot using the

present ASN value of the simulation and the defined action space. As mentioned in section 3.3.2,

all timeslots are designed as shared, meaning a slot can be used for data transmission or reception at
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any given time. For each timeslot, the proposed system iterates through each node and determines

the role of a transmitter, receiver, or in sleep mode. During learning phase, at each timeslot, if a

node’s action matches the current timeslot, the node selects the corresponding cell for transmission

or reception. The node then checks for a packet in that corresponding cell. If there is no packet

present, the node assumes the role of RX (receiver) in the schedule, indicating that the node is in

listening mode to receive a packet. If there is a packet, the node obtains it and acts as a transmitter

(TX), indicating that the node has a packet to transmit during the scheduled timeslot.

After determining the schedule decision, the TX nodes transmit packets and await acknowledg-

ment. According to the proposed algorithm, at the beginning, all the nodes have their radio ON on

every timeslot for the entire frame. So, upon receiving a packet, if the packet is not destined for

the present node, it simply rejects the packet. Conversely, a packet is received only by the intended

node. In case a node receives two packets simultaneously from neighboring nodes, instead of losing

both packets due to collision, the node accepts the packet with the higher Received Signal Indicator

(RSSI) value.

Upon receiving an acknowledgment for the packet the transmitter (sender node) sent, a node

determines the reward for the action taken. A true acknowledgment implies a positive reward, in-

dicating that the targeted node successfully receives the packet and the taken action is suitable for

scheduling data packets. Whereas a false acknowledgment denotes, a packet might be collided due

to collision. Based on the acknowledgment, the estimated reward value serves as a definitive mea-

sure of the performance of the actions undertaken and the rescheduling process. According to the

reward, the Q table is updated, and the epsilon value is degraded using the gradient decay approach

at each epoch. When the learning convergence is reached, marking the onset of the transition phase,

the activation of the node at a specific time slot is determined by the Q value, which is regulated by

a predefined threshold.
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4.2 Simulation Setup

The proposed approach is implemented and tested considering a discrete event simulator named

TSCH-Sim, designed by [16]. It is a discrete event simulator that supports all major protocols.

The simulator allows a configuration file of any network topology that needs to be validated. The

configuration file supports all the crucial parameters required to construct the network.

In this simulator, the MAC layer is designed following the TSCH protocol. The Q-learning

algorithm is tailored to MAC to allow the appropriate medium access among nodes. We considered

both simple and large-scale networks to validate our algorithm. All the networks are heterogeneous,

implying that the packet generation rate varies from node to node. For the radio propagation model,

UDGM (Unit Disk Graph Model) has been considered.

For the experiments, two radio channels are considered for the channel hopping mechanism

of the TSCH protocol. The TSCH-Sim simulator comes with a warm-up period, which signifies a

duration during which packet generation is prohibited until the period expires. This provision guar-

antees that when it’s time to generate a frame (as nodes generate frames at varying time intervals),

the specific node must have already joined the network, as a frame cannot be generated by a node

that has not yet joined. A warm-up period can be helpful (but not mandatory) to ensure accurate

packet generation. However, the EARL algorithm can operate properly whether there is a warmup

period activated or not. The proposed RL (Reinforcement Learning) approach schedule depends on

the frame availability in the buffer and relies on only frame utilization to allocate timeslots.

For the experiment, the timeslot duration is considered as ten milliseconds, which means that

during this period, a node transmits data and receives an acknowledgment based on the success or

failure of the packet. The slotframe is comprised of a bunch of those timeslots. In this experiment,

we experienced different slotframe lengths to see how effectively it generates an optimal schedule

accounting for the latency and power consumption attributes.
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4.2.1 RL Parameter Determination

This section discusses the parameter selection of the RL-based algorithm tailored with the reason

behind choosing the suitable one. The subsequent sections provide a comprehensive elaboration on

these aspects.

Learning Rate Analysis

The learning rate α plays a crucial role in tuning the speed at which the algorithm’s learning con-

verges. A higher α ∈ [0, 1] value leads to a quicker convergence of the Q value towards the reward

r. Typically, α is set to a small value to provide some robustness in achieving a stable state during

the learning process. We examined different learning rates, including 0.03, 0.95, and 0.5, and found

that 0.03 offered the best convergence and greater stability for the protocol, as illustrated in Figure

4.3.
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Figure 4.3: Learning rate Analysis

In the process of determining the learning rate value, we took into account scenario one. Another

important parameter to consider is the frame length N . It’s essential to ensure that N is sufficiently

large to guarantee the availability of unique slots for nodes. If there aren’t enough slots in a frame,

nodes won’t be able to find unique slots. However, if N is overestimated, it can introduce additional
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latency and reduce the maximum achievable throughput. Our experiment explored three different

frame sizes: 9, 15, and 25.

Exploration Probability Analysis

Several experiments were conducted to determine the optimal balance between exploration and

exploitation probabilities. Both fixed values and a gradient descent approach that gradually reduces

the exploration probability over time were tested. The experimental data and results indicate a clear

superiority of the gradient method over the fixed exploration probability as illustrated in Figure 4.4.

Consequently, based on these findings, the decision was made to utilize the gradient method as the
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Figure 4.4: Exploration probability analysis

primary strategy in this experiment.

To obtain the optimal gradient, various values were explored. For instance, an exploration

probability of 0.02 leads to increased exploration while causing higher energy usage.

An epsilon value of 0.8 with an epsilon decay rate of 0.09, coupled with a learning rate of 0.03,

demonstrated a promising equilibrium between exploration and exploitation. With each iteration,

the exploration probability gradually decreases by gradient, facilitating a smooth convergence in the

learning process. Consequently, it ensures high packet delivery while maintaining optimal energy
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Figure 4.5: Epsilon Analysis

savings. The same topology (small-scale scenario) was used for this test. Figure 4.5 illustrates the

analysis of epsilon with varying parameters.

Reward Evaluation

The reward is chosen based on successful packet transmission or failure. The positive reward is

achieved only after getting successful reception of a packet or a True acknowledgment. On the

contrary, a negative reward implies the failure of a data packet or False acknowledgment. A set of

experiments has been conducted to find the one that suits better. Positive reward values of 1 and

negative rewards of 0, -1, and -10 were tested. A combination of 1 and -1 achieved a better steady

state of the proposed approach and tested through scenario one of seven nodes network.

It is experienced that a negative reward of -1 has a stronger influence on the current Q value

when the Q value is positive, and vice versa. As a result, a time slot that consistently yields negative

rewards is less likely to be the preferred choice. Consequently, nodes will actively seek timeslots

that reliably provide positive rewards. This learning process guides the network towards an optimal

steady state condition where all nodes occupy distinct timeslots. This behavior resembles that of a

schedule-based network, but it eliminates the necessity for scheduling information exchange or the
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determination of node priorities for each time slot. This is particularly crucial in Wireless Sensor

Networks (WSNs) where centralized control is absent.
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Chapter 5

ANALYSIS AND COMPARISON

This chapter presents the design of various network scenarios, ranging from simple configurations to

more intricate, large-scale network architectures. We provide an overview of the distinctive features

and specific requirements associated with each of these network designs. Furthermore, it discusses

the evaluation metrics to compute the performance of the proposed approach and the parameter

selection for the reinforcement learning approach.

Subsequently, we discuss the performance evaluation of the proposed algorithm within the con-

text of each designed network scenario. This evaluation encompasses an analysis of simulation

results, focusing on key metrics such as Packet Delivery Ratio (PDR), latency, and the number of

active slots, which serve as an indicator of energy consumption.

Toward the conclusion of this chapter, we validate each scenario using the state-of-the-art Or-

chestra scheduling protocol. This validation process allows for a comprehensive comparative anal-

ysis, offering insights into the effectiveness of our proposed approach. Furthermore, within the

concluding segments of this chapter, we analyze the Q values stability over time and provide a

brief description of the computational method used to determine the average Packet Delivery Ratio

(PDR) with its representation through a Boxplot diagram.
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5.1 Scenario Design and Results Analysis of EARL algorithm

The application of monitoring finds widespread use in industrial settings, involving the placement

of sensor nodes in a random fashion. These sensors transmit data towards a single designated desti-

nation, often routed through intermediary sensors along the way. This gives rise to a traffic pattern

known as converge-cast, where the intensity of data traffic increases notably as the network scales

up and the destination is approached. It is imperative to consider this phenomenon to meet the

stringent requirements of reliability and energy efficiency in industrial contexts. This underscores

the significance of employing a well-optimized Medium Access Control scheduler, which can ef-

fectively manage data flow and prevent issues like excessive queuing and packet loss. This thesis

presents three distinct scenarios characterized by light to high node density and embedded within a

heterogeneous network architecture.

Table 5.1 provides a comprehensive overview of three distinct network scenarios specified by

unique attributes and requirements.

Scenario 1 Scenario 2 Scenario 3
Network size 7 20 50

No. of neighbors 1.7 2 3
Avg. hop 1.5 2.2 3.1

Depth 2 3 5
Packet interval(s) 1, 2.5 1, 2, 3.5, 4.6,

7, 9, 12.5
1, 3, 4, 5.5, 7.5, 8,
9, 10.5, 12, 13.5,15

Table 5.1: Summary of three different network scenario designs

Scenario 1 is designed around a small-scale network configuration that necessitates short data

intervals as depicted in Figure 5.1.

This scenario boasts an average hop count of 1.5 hops to reach the root node, with a maximum

depth of 2 hops. Within this network, six nodes are actively transmitting packets, employing a range

of data rates, including 1s and 2.5s. Notably, the average number of neighbors in this architecture
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Root

Figure 5.1: 7 nodes network architecture

stands at approximately 1.7, indicating a predominantly low level of node connectivity, typically

fewer than two neighbors per node.

Scenario 2, in contrast, represents a network scenario tailored for high-traffic applications, de-

manding a multi-hop network infrastructure capable of handling substantial packet loads, illustrated

in figure 5.2. On average, it requires 2.2 hops to reach the root node, with a maximum depth of

Root

Figure 5.2: 20 nodes network architecture

three hops. In this configuration, nineteen nodes engage in packet generation, employing a diverse

set of data rates ranging from 1s to 12.5s. This mix of data rates implies a combination of light and

heavy traffic generation patterns. In this scenario, the average number of neighbors is approximately

1.9, indicating that each node maintains an average of two connections with other nodes, thereby
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facilitating a medium-scale multi-hop network communication.

Scenario 3 is designed to enhance network scalability by incorporating a greater number of

nodes, resulting in a more extensive multi-hop network structure. To transmit a packet to the root

node, an average of three hop counts is required, and the depth of this network architecture reaches

up to five hops. This scenario involves the participation of forty-nine nodes, each generating packets

at varying data rates, as detailed in the accompanying table. Furthermore, this network architecture

exhibits an average number of more than two neighboring nodes, thus establishing a framework for

a large-scale, multiple multi-hop network configuration.

A set of Experiments has been conducted to evaluate the EARL based TSCH MAC protocol

under varying traffic rates. Table 5.2 presents the parameters associated with the general situation,

particularly highlighting the Q-learning-based MAC approach.

Parameter Scenario 1 Scenario 2 Scenario 3
Simulation duration 800 800 1600 sec

Nodes 7 20 50
Slotframe size 9, 15 25 25

Warm-up period 100 200 500 sec
Radio Model UDGM UDGM UDGM
Packet size 22 bytes 22 bytes 22 bytes

Max re-transmission 7 7 7
Number of simulations 10 10 10

α 0.03 0.03 0.03
γ 0.95 0.95 0.95

Table 5.2: Simulation and Q-learning parameters

Regarding the scenario details, a configuration with seven nodes was deployed in a compact

setting, while a medium and larger-scale scenario with the multi-hop involving 20 and 50 nodes

was randomly placed. For each distinct configuration, the nodes transmit messages containing a

consistent 22-byte payload, enabling a transmission range of approximately 40 and 100 meters.We

evaluated the maximum number of MAC re-transmissions as seven attempts. A buffer size of both
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16 and 100 has been utilized across multiple network scenarios. This buffer size implies the max-

imum number of outgoing packets toward each neighboring node. This value also indicates that a

queue overflow can occur above this number due to exceeding the scheduling of the slotframe. To

prevent the repetition of generating identical schedules and ensure the efficacy and efficiency of the

proposed algorithm, each scenario is simulated with a random seed generation and distinct values

assigned to the Number of Run parameters.

The proposed approach operates in a decentralized manner, which implies avoiding signaling

overhead among agents. Nodes primarily focus on their actions and rewards to create their optimum

schedule. This approach remains stable even when the number of nodes increases, maintaining a

consistent packet delivery rate while minimizing energy consumption. This is achieved through a

dynamic learning-based radio wake-up scheme, which balances the trade-off between packet deliv-

ery rate (PDR) and power usage.

The experiments consider slotframe sizes of 9, 15, and 25 to test various network scenarios.

The size of each agent’s action space is determined by the number of slots within a slotframe.

Generally, a larger action space leads to slower convergence of the reinforcement learning (RL)

algorithm, as demonstrated by Leng et al. [73]. Conversely, a small action space may result in sub-

optimal solutions and increase energy consumption in the system. Determining the right number

of time slots within a frame is a topic for future research. However, the appropriate values for

these slotframes are determined through simulation experiments and by following related RL-based

experiments conducted by Park et al. [35].

At the beginning of the simulation, all slots are continuously active until the nodes get enough

experience with taken actions and come together towards the best radio schedule for saving energy.

After the transition phase, nodes turn the Radio ON only based on the Q table value determined by

the threshold. To identify the optimal transition phase, a series of periods are explored and tested

across three distinct network scenarios. Upon evaluating the results of these experiments, it has

been determined that a transition phase (TP ), calculated using the equation provided below, yields
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superior learning convergence.

TP = (TotalSimulation time−Warmup period) ∗ 30% (5.1)

Power consumption is quantified in relation to the total number of active slots within a slotframe.

A critical aspect of our configuration revolves around determining the appropriate threshold value.

This value plays a crucial role in slot activation and significantly influences the overall performance

of the protocol, particularly when the number of nodes within the network changes. Consequently,

we have thoroughly examined threshold values, which have been segmented into three distinct anal-

yses: one for scenarios involving small as presented in Table 5.3, and another two for medium and

large scale configuration, as depicted in Table 5.4, 5.5. These analyses allow us to gain deeper in-

sights into how varying threshold values impact the protocol’s performance under different network

conditions, offering a more comprehensive understanding of the system’s behavior.

5.1.1 Evaluation Metrics

The performance of the proposed RL-based MAC scheduling approach has been assessed in various

scenarios, including both small and large-scale settings. Our evaluation primarily centered on three

key performance metrics: the packet delivery ratio (PDR), energy consumption, and end-to-end

delay. PDR serves as a critical indicator of protocol efficiency in any network, as it offers valu-

able insights into the protocol’s effectiveness by considering its impact on power consumption and,

consequently, the longevity of network nodes.

Measuring latency is a vital aspect of assessing network performance, as it directly influences

the efficiency and reliability of data transmission. Delays in packet delivery can result in packets

arriving out of sequence or exceeding their allowable transmission time, ultimately diminishing the

PDR. Conversely, lower latency tends to enhance PDR by ensuring timely and accurate delivery of

packets, reducing the likelihood of congestion and packet loss in the network. The calculation of
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these metrics followed to the formulas outlined below.

• Packet Delivery Ratio (PDR): The packet delivery ratio essentially quantifies the efficiency

with which data packets are successfully delivered from a source node to a destination node

within a network. It can be calculated by comparing the number of packets successfully deliv-

ered to their destination with the total number of packets sent. A higher PDR indicates better

network performance and reliability. The PDR is calculated using the following formula,

PDR =

∑N
i=1 packet successfully received

Total number of Packet sent
∗ 100 (5.2)

• Power Consumption: The lower power consumption is achieved by employing unnecessary

listening slots to sleep mode. The proposed approach determines the number of slots active

during the communication. Each timeslot is shared, and hence, multiple nodes can utilize

a single slot. The system, therefore, undertakes the task of estimating the number of dis-

tinct slots that remain active within a slotframe. Then, the average number of active slots is

computed using the equation provided below:

Avg slots on =

∑N
i=1Number of slots on in sloframes

Total Number of slotframes
(5.3)

• Latency: Network delay refers to the total time (propagation, transmission, queuing, and

processing period) a packet takes to travel from a source node to a destination node. It is

estimated in seconds. Hence, the delay is evaluated by taking the difference between the time

a packet is generated and is successfully received by the destination. The average delay has

been estimated utilizing the below equation,

Delay =

∑N
i=1(time(i)received − time(i)generated)

Total packets
(5.4)
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The execution of a run is as follows:

• Warm-up-time: until this time all the nodes boot.

• Warm-up + random value: nodes start transmission towards root using learned schedule.

• X sec: Start measuring metrics.

here, X defines the time to wait for the convergence of the learning. The value of X depends on

the network architecture. These timings and settings are described in more detail in section 5.1.2

below.

5.1.2 Scenario One Results

We considered a tree topology of seven nodes in a small-scale scenario. Here, node one is the root

node, two nodes are assigned as intermediate, and the rest are leaf nodes. Leaf nodes are capable

of only transmitting data. On the other hand, intermediate nodes are designed to both send and

receive data. More specifically, these nodes can generate packets and transmit their packet as well

as packets of their child node.

As mentioned in the above section 5.1, we considered heterogeneous network architecture to

validate our proposed approach, which implies that nodes generate packets at different time frames.

Each node transmits 22-byte packet, maintaining the UDGM radio model with a range of forty

meters. A slotframe size of 15 timeslots has been used. Table 5.3 reports the threshold analysis for

the small-scale scenario.

Threshold 0.4 0.8 0.9
PDR 100% 93.63% 76%

Slots ON 20.01% 18.56% 14.86%

Table 5.3: Scenario one Threshold analysis with respect to PDR and Slots On

Selecting the optimal threshold value in this context holds significant importance due to its

direct influence on conserving energy through radio on-off activity. The key factor in determining
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when to turn off the radio relies most on this chosen threshold value. While diverse scenarios were

explored using varying thresholds, the focus here is on the most relevant outcomes.

For this small scaenario, we’ve configured the learning rate (α) to be 0.03, the exploration

probability (ϵ) to be 0.8, and an epsilonDecayRate of 0.09. The determination of packet delivery

and the total count of active slots takes place following the transition phase.

It can be seen that setting the threshold at 0.4 results in a higher packet delivery ratio (PDR).

This optimal scheduling involves an average of 3 active slots. Figure 5.3 depicts the percentage of

packet delivery ratio with respect to the total number of active slots for this network architecture.

After a transition phase, all the nodes within the system adeptly converge toward an optimal wake-

up schedule. Once established, this optimal radio schedule becomes persistent over time, effectively

preserving energy caused by idle listening on the receiving side.
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Figure 5.3: Scenario one PDR vs Slot on

5.1.3 Scenario Two Results

A network architecture comprising 20 nodes has been deployed on a medium scale in a multi-hop

interconnected manner. Within this topology, 19 nodes are designated as the source, while one node
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is the sink node. The distance between nodes is set at 40 meters. A frame length of 25 slots has been

chosen, where each of these is 10 milliseconds to accommodate the packet delivery to the destined

node.

The simulation period is chosen as 800 seconds. The warm-up period is considered as 200

seconds since the simulation started. This warm-up phase signifies the completion of network for-

mation, during which all nodes successfully join the TSCH network. The action space is equivalent

to the frame length. In the initial phase, all nodes maintain their radios in an active state, listening to

every slot until they enter the transition phase. The transition phase is estimated using the equation

5.1. According to the formula, the transition phase is set as 380 seconds for this topology.

In order to find an optimal balance between packet delivery ratio (PDR) and power dissipation,

we perform simulations using various threshold values. Each test case employs a learning rate of

0.03.

Threshold 0.4 0.6 0.7 0.8 0.9
PDR 98.1% 90.79% 80.20% 71% 59.96%

Slots ON 14% 12.83% 11.94% 11.61% 9.04%

Table 5.4: 20 nodes architecture Threshold analysis with respect to PDR and Slots On

Table 5.4, depicts the data for the packet delivery ratio and the total number of active slots.

It can be seen that the most favorable balance between PDR and energy consumption is achieved

when employing a threshold value of 0.4. As indicated in the table, configuring the threshold at 0.7

yields intermediate results, while a value of 0.9 results in higher average packet loss and standard

deviations. The results obtained highlight that when prioritizing reduced energy consumption, there

is a slight reduction in the PDR value. As a result, in a medium-scale network with 20 nodes with a

multi-hop heterogeneous configuration, an optimal scheduling configuration necessitates an average

of 3.5 slots where the radio remains active due to multiple nodes participating in communication at

various intervals. Figure 5.4 depicts the percentage of PDR with respect to the total number of slots

active at that time.
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Figure 5.4: 20 nodes architecture PDR vs Slot on

5.1.4 Scenario Three Results

To assess the scalability of the proposed approach, we conducted an evaluation in a significantly

more heterogeneous and densely populated network consisting of 50 nodes. Similar to the other

two network topologies, this network features a designated root node, with the remaining nodes

serving as source nodes. A slotframe size of 25 slots is considered to facilitate communication and

coordination. As the network is denser compared to the previous one, it demands more time to

complete the network joining process. To achieve this, a simulation duration of 1600 seconds has

been selected, with a warm-up period extending to 500 seconds. The transition phase duration is

computed using equation 5.1 and is determined to be 830 seconds.

Table 5.5 presents the results for packet delivery and energy consumption across various thresh-

old values.

According to the table, a threshold value of 0.4 ensures an optimal balance between packet

delivery ratio (PDR) and power consumption. Furthermore, the table illustrates that selecting a
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Threshold 0.4 0.6 0.7 0.8 0.9
PDR 92.73% 81.30% 76.60% 70.01% 58%

Slots ON 16.53% 13.18% 11.84% 11.56% 9.87%

Table 5.5: 50 nodes architecture Threshold analysis with respect to PDR and Slots On

threshold of 0.7 deactivates more slots to conserve energy while still maintaining a moderate packet

delivery performance. Conversely, a threshold value of 0.9 results in a higher average packet loss

rate.

In contrast to the previous medium scale populated network, there is a slight increase in the num-

ber of active slots required to accommodate sufficient transmissions in this network. As indicated

in the table, an optimal schedule necessitates an average of four active slots to achieve improved

packet delivery performance. Figure 5.5 depicts the packet delivery ratio vs number of slots on at
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that time.
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In summary, it is noteworthy that the proposed EARL based approach exhibits remarkable per-

formance in three distinct scenarios. Specifically, it excels in achieving an optimal Packet Delivery

Ratio (PDR) while efficiently reducing the radio’s active state duration. This dual achievement

leads to the effective optimization of energy consumption within individual nodes, which, in turn,

contributes significantly to prolonging the overall lifespan of the network.

In essence, this approach’s versatility and effectiveness make it a valuable solution across a

range of network scales, ensuring superior PDR and sustainable and efficient energy utilization.

This combination of benefits holds the potential to enhance the longevity and reliability of wireless

networks under various operational conditions.

5.1.5 Orchestra Scheduling Result Analysis

To ensure a fair comparison, all three designed scenarios have been validated using the Orchestra

scheduling approach. The Orchestra scheduling technique operates as an autonomous scheduler,

where individual nodes independently generate schedules without engaging in negotiation with

neighboring nodes [74]. This method proves particularly effective for systems demanding robust

packet reliability. Each node autonomously determines its schedule in this methodology based on

routing information, leveraging the RPL [75] (IPv6 Routing Protocol for Low Power and Lossy

Networks) routing protocol. The Orchestra schedule encompasses distinct slotframe of varying

lengths, each designated for specific traffic types: Application data, TSCH enhanced beacon (EB),

and RPL traffic. A prioritization scheme is employed, wherein the lowest-priority slotframe serves

application traffic, and the highest-priority slotframe serves TSCH traffic.

For validation within our small-scale scenario, slotframe sizes of 15, 31, and 397 were assigned

to the application, RPL signaling, and TSCH beacon, respectively. All other configuration param-

eters, including node type, data rate, and radio propagation model, were maintained consistently.

Each experiment was conducted five times, setting the num of run parameter to ten with random

seed generation employed. The reported results are based on the average outcomes.
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Upon conducting simulations for a duration of 800 seconds, it was observed that it achieved

100% packet delivery utilizing 22% of active slots. This result is very close to our proposed ap-

proach, providing a high reliability of 100% while maintaining different traffic rates.

The second scenario with 20 nodes network configuration was also verified using the Orchestra

protocol, with a unicast slotframe size of 25. All other parameters remained constant to ensure a fair

comparison between the proposed and this algorithm. Orchestra scheduling exhibited a high Packet

Delivery Ratio (PDR) of 100% across various data rates. However, there was a marginal increase

in power consumption. This is attributed to Orchestra’s design, which aims to provide superior

reliability even in contention-based scenarios, necessitating additional resources.

This can be explained by the fact that for each node, one slot for sending and one for receiving,

independently from the application scenario, along with dedicated slots for EBs transmission, which

minimizes the chances of collisions. Consequently, the number of active slots increased by 21% in

the 20-node scenario.

For the third scenario with more extensive network architecture, we further utilized the orchestra

scheduling algorithm to the test, keeping all other network parameters unchanged. Once more, we

opted for a unicast slotframe size of 25. The findings indicate that as network density increases,

the algorithm’s reliability diminishes. While employing Orchestra, we observed a Packet Delivery

Ratio (PDR) of 74.056%, utilizing 28% of its active slots. This might be because sparse networks

encounter fewer collisions than dense networks, where a substantial number of neighbors can lead to

increased traffic congestion. This additional energy consumption might be caused by the additional

number of nodes requiring more resources in a densely populated area. Table 5.6 overviews the

results of the Orchestra schedule, presenting data on the Packet Delivery Ratio (PDR) and the count

of active slots across three distinct scenario designs.
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Scenario One Scenario Two Scenario Three
PDR 100% 100% 74.06%

Slots ON 22% 21% 28%

Table 5.6: PDR and Slots On Analysis of Orchestra for different scenarios

5.2 TSCH Scheduling Approach Comparison

Figure 5.6 illustrates the packet delivery ratio (PDR) for different network architectures utilizing

different approaches. In a simple scale scenario, the proposed EARL-based scheduler, implemented
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Figure 5.6: Comparison of packet delivery ratio between TSCH scheduler

with a 15-slot slotframe, achieved an impressive packet delivery ratio (PDR) of 100%. In com-

parison, the state-of-the-art scheduler Orchestra also attained a 100% PDR, with the only notable

difference being a slight increase in the total number of active slots, approximately 22%.

In a medium scale network scenario, where were 20 nodes and the slotframe size was set to 25

slots, the proposed EARL approach yielded an impressive PDR of up to 98.122%. Orchestra, due to

its collision-free operation, maintained a 100% PDR. However, in this case, the scheduler utilized
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around 21% of its active slots, while our method achieved a PDR close to similarity but with a lower

percentage of active slots (14%), demonstrating our emphasis on energy conservation alongside a

satisfactory packet delivery ratio.

In a more challenging scenario with 50 nodes and a slotframe size of 25 slots, the EARL-based

scheduler showcased superior performance, achieving a PDR of 92.738%, in contrast to Orchestra’s

PDR of up to 74.06%. Notably, Orchestra utilized 28% of its active slots, nearly double the per-

centage of active slots used by the EARL-based scheduler (16.53%). These results underscore the

limitations of Orchestra, particularly in scenarios characterized by higher heterogeneous traffic rates

and multiple multi-hop connections. It further highlights the robustness of our proposed learning-

based approach, which excels in high-traffic environments, maintains balanced energy consumption

and ensures a superior packet delivery ratio. As illustrated in Figure 5.7, the average packet latency
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Figure 5.7: Comparison of average packet delay

achieved by the EARL-based method is consistently shorter than that of the Orchestra scheduler

across all scenarios.
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The extended packet delay observed with the Orchestra scheduler can be attributed to the in-

creased time it takes to route packets to their final destinations, particularly in scenarios involving

multiple multi-hop connections. This difference in packet delay is most pronounced in the 50-node

network architecture, which represents a five-hop multi-hop environment. In this case, the RL-

based scheduler demonstrated an average packet delay of 981.33 milliseconds, in sharp contrast to

the 5009 milliseconds delay recorded with the Orchestra scheduler.

5.3 Stability Analysis of Q value

We conducted an analysis of Q value stability over time. Figure 5.8 illustrates the stable condition

of a node within a 15-slot timeframe. The learning phase commences at approximately 100 seconds

Figure 5.8: Stability analysis of Q value within 15 slots

and approaches stability at around 250 seconds. In this instance, the learning-up period is configured

for 300 seconds. From the graph, it is evident that initially, the system explores various timeslots

extensively. As it gains experience through a trial-and-error approach, it gradually stabilizes by

selecting the top three slots.

Similarly, Figure 5.9 illustrates the stability of the Q value for a node across 25 slots. Here,

the learning phase initiates around 500 seconds, and by 600 seconds, the system is on the verge of
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stability.

Figure 5.9: Stability analysis of Q value within 25 slots

5.4 Packet Delivery Ratio (PDR) Analysis

Figure 5.10 serves as a visual representation depicting the distribution of Packet Delivery Ratio

(PDR%) values across three distinct scenarios. The x-axis represents the scenarios, while the y-axis

quantifies the PDR values. We computed the mean of PDR based on the ten simulations of each

scenario design. Scenario One, within the framework of this boxplot analysis, exhibits a tightly

clustered distribution of Packet Delivery Ratio values, with a mean of 100%. The interquartile

range suggests that most data points fall within a narrow range, as the minimum value is 98%,

indicating excellent PDR performance.

Moving to Scenario Two, the mean is slightly lower at 98%, but the distribution is slightly wider,

ranging from a minimum of 93% to a maximum of 99.99%.

Scenario Three, with a mean of 92%, presents a broader distribution from a minimum of 84%

and highlights a distinct range of PDR values.
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Figure 5.10: Average PDR estimation within scenarios
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Chapter 6

CONCLUSION

In conclusion, this paper addresses the medium access scheduling issue of IEEE 802.15.4e TSCH

protocol, widely utilized by fourth industrial IoT applications. While state-of-art techniques have

been provided various solutions, their performance can be limited when dealing with network met-

rics such as scalability and adaptability to certain changes in architecture. A reinforcement learning-

based approach has been proposed to address these challenges and enhance the network perfor-

mance.

This thesis presents an energy-aware adaptive scheduling scheme for TSCH networks, that

leverages with MAC layer and provides solutions in real time based on the environment. Due to

its reactive nature, the proposed algorithm requires very few knowledge and hence reduces the

signal heading and computation complexity. The approach is robust to any topology change and

dynamically handles the radio on-off activities to conserve power while ensuring high reliability.

The experimental results show that the proposed RL-based algorithm can improve power con-

sumption even when dealing with high-density communication with heterogeneous traffic features.

The superiority of learning-capable nodes is illustrated by a comparative study with state-of-art or-

chestra protocol. Based on the results of the experiments, it can be deduced that schedulers utilizing

Reinforcement Learning (RL) have demonstrated their ability to efficiently adjust resource usage

according to the needs of the application, ultimately leading to energy conservation.
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Furthermore, the suggested approach ensures a reduction in the signaling overhead typically

associated with other autonomous scheduling methods. Each node independently creates schedules

in a decentralized fashion, eliminating the need for dedicated node communication. Additionally, it

helps conserve energy by minimizing communication requirements.

The frame size represents a critical parameter in our protocols, employing a significant impact

on network performance, including factors like latency and energy efficiency. It’s worth noting that

nodes have a specific allocation of slots within each frame. The total number of slots in each frame

is predetermined, aiming to avoid collisions in cases of excessively short frame sizes while also

minimizing additional delays and throughput reduction associated with overly large frame sizes.

The ideal frame size is influenced by various factors.

In our simulation, we determined the optimal frame size through a series of extensive exper-

iments and by considering related work in our study. One potential avenue for future research

lies in dynamically determining more precise frame size, eliminating the need for prior frame size

estimates in the protocol.

The proposed research work is more focused on putting the idle listening slot in sleep mode.

The number of active slots directly correlates with energy consumption because the more active

slots you have, the more energy the network consumes. Focusing on the number of active slots

provides a clear and straightforward metric for energy conservation, making it easier to demonstrate

the effectiveness of the proposed technique in conserving energy. So far, the proposed approach has

not utilized any energy model to compute network lifetime. As future research, we would like to

integrate an energy model.

The experiment was carried out within a discrete event simulation framework, specifically using

TSCH-Sim (Elsts 2020). This approach proves advantageous when access to a physical testbed

is challenging. Future steps in this research involve conducting the experiment within the IoT-

LAB environment, allowing for the observation of real-world Wireless Sensor Network (WSN)

challenges, including issues such as interference, multi-path fading, and precise energy consumption
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assessment.



71

Bibliography

[1] M. Majid, S. Habib, A. R. Javed, et al., “Applications of wireless sensor networks

and internet of things frameworks in the industry revolution 4.0: A systematic liter-

ature review,” Sensors, vol. 22, no. 6, p. 2087, 2022.

[2] A. Ali, Y. Ming, S. Chakraborty, and S. Iram, “A comprehensive survey on real-time

applications of wsn,” Future internet, vol. 9, no. 4, p. 77, 2017.

[3] M. Kocakulak and I. Butun, “An overview of wireless sensor networks towards in-

ternet of things,” in 2017 IEEE 7th annual computing and communication workshop

and conference (CCWC), Ieee, 2017, pp. 1–6.

[4] A. Irandoost, S. Taheri, and A. Movaghar, “Pl-mac: Prolonging network lifetime

with a mac layer approach in wireless sensor networks,” in 2008 Second Interna-

tional Conference on Sensor Technologies and Applications (sensorcomm 2008),

2008, pp. 109–114. DOI: 10.1109/SENSORCOMM.2008.120.

[5] W. Specification, “Wirelesshart specification 75: Tdma data-link layer,” HART Com-

munication Foundation Std, 2008.

[6] I. ISA, “100.11 a-2009: Wireless systems for industrial automation: Process control

and related applications,” International Society of Automation: Research Triangle

Park, NC, USA, 2009.

https://doi.org/10.1109/SENSORCOMM.2008.120


Bibliography 72

[7] P. Bhagwat, “Bluetooth: Technology for short-range wireless apps,” IEEE Internet

Computing, vol. 5, no. 3, pp. 96–103, 2001.

[8] C. M. Ramya, M. Shanmugaraj, and R. Prabakaran, “Study on zigbee technology,” in

2011 3rd international conference on electronics computer technology, IEEE, vol. 6,

2011, pp. 297–301.

[9] I. C. S. L. S. Committee et al., “Ieee standard for information technology-telecommunications

and information exchange between systems-local and metropolitan area networks-

specific requirements part 11: Wireless lan medium access control (mac) and physi-

cal layer (phy) specifications,” IEEE Std 802.11ˆ, 2007.

[10] G. Anastasi, M. Conti, and M. Di Francesco, “A comprehensive analysis of the mac

unreliability problem in ieee 802.15.4 wireless sensor networks,” IEEE Transactions

on Industrial Informatics, vol. 7, no. 1, pp. 52–65, 2011. DOI: 10.1109/TII.20

10.2085440.

[11] “Ieee standard for local and metropolitan area networks–part 15.4: Low-rate wireless

personal area networks (lr-wpans) amendment 1: Mac sublayer,” IEEE Std 802.15.4e-

2012 (Amendment to IEEE Std 802.15.4-2011), pp. 1–225, 2012. DOI: 10.1109

/IEEESTD.2012.6185525.

[12] D. De Guglielmo, S. Brienza, and G. Anastasi, “Ieee 802.15. 4e: A survey,” Com-

puter Communications, vol. 88, pp. 1–24, 2016.

[13] D. Chen, M. Nixon, and A. W. Mok, “Real-time mesh network for industrial au-

tomation,” Cham, Switzerland: Springer, pp. 1–6, 2010.

[14] M. Nobre, I. Silva, and L. A. Guedes, “Routing and scheduling algorithms for wire-

lesshart networks: A survey,” Sensors, vol. 15, no. 5, pp. 9703–9740, 2015.

https://doi.org/10.1109/TII.2010.2085440
https://doi.org/10.1109/TII.2010.2085440
https://doi.org/10.1109/IEEESTD.2012.6185525
https://doi.org/10.1109/IEEESTD.2012.6185525


Bibliography 73

[15] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, and D. Dujovne, “6tisch min-

imal scheduling function (msf), document, draft-chang-6tisch-msf,” IETF, Internet

Draft, Tech. Rep., 2019.

[16] A. Elsts, “Tsch-sim: Scaling up simulations of tsch and 6tisch networks,” Sensors,

vol. 20, no. 19, p. 5663, 2020.

[17] A. Farrel, J.-P. Vasseur, and J. Ash, “A path computation element (pce)-based archi-

tecture,” Tech. Rep., 2006.

[18] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia, “Traffic

aware scheduling algorithm for reliable low-power multi-hop ieee 802.15. 4e net-

works,” in 2012 IEEE 23rd International Symposium on Personal, Indoor and Mo-

bile Radio Communications-(PIMRC), IEEE, 2012, pp. 327–332.

[19] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, “A centralized scheduling

algorithm for ieee 802.15. 4e tsch based industrial low power wireless networks,”

in 2016 IEEE Wireless Communications and Networking Conference, IEEE, 2016,

pp. 1–6.

[20] R. Soua, P. Minet, and E. Livolant, “Modesa: An optimized multichannel slot assign-

ment for raw data convergecast in wireless sensor networks,” in 2012 IEEE 31st in-

ternational performance computing and communications conference (IPCCC), IEEE,

2012, pp. 91–100.

[21] R. Soua, E. Livolant, and P. Minet, “Musika: A multichannel multi-sink data gather-

ing algorithm in wireless sensor networks,” in 2013 9th International Wireless Com-

munications and Mobile Computing Conference (IWCMC), IEEE, 2013, pp. 1370–

1375.



Bibliography 74

[22] A. Tinka, T. Watteyne, and K. Pister, “A decentralized scheduling algorithm for time

synchronized channel hopping,” in Ad Hoc Networks: Second International Con-

ference, ADHOCNETS 2010, Victoria, BC, Canada, August 18-20, 2010, Revised

Selected Papers 2, Springer, 2010, pp. 201–216.

[23] W.-P. Wang and R.-H. Hwang, “A distributed scheduling algorithm for ieee 802.15.

4e networks,” in 2015 IEEE International Conference on Smart City/SocialCom/-

SustainCom (SmartCity), IEEE, 2015, pp. 95–100.

[24] R. Soua, P. Minet, and E. Livolant, “Wave: A distributed scheduling algorithm for

convergecast in ieee 802.15. 4e tsch networks,” Transactions on Emerging Telecom-

munications Technologies, vol. 27, no. 4, pp. 557–575, 2016.

[25] R. Soua, P. Minet, and E. Livolant, “Disca: A distributed scheduling for convergecast

in multichannel wireless sensor networks,” in 2015 IFIP/IEEE International Sympo-

sium on Integrated Network Management (IM), 2015, pp. 156–164. DOI: 10.1109

/INM.2015.7140288.

[26] S. Kim, H.-S. Kim, and C. Kim, “Alice: Autonomous link-based cell scheduling for

tsch,” in Proceedings of the 18th International Conference on Information Process-

ing in Sensor Networks, 2019, pp. 121–132.

[27] A. Elsts, S. Kim, H.-S. Kim, and C. Kim, “An empirical survey of autonomous

scheduling methods for tsch,” IEEE Access, vol. 8, pp. 67 147–67 165, 2020. DOI:

10.1109/ACCESS.2020.2980119.

[28] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “Ost: On-demand tsch scheduling with

traffic-awareness,” in IEEE INFOCOM 2020-IEEE Conference on Computer Com-

munications, IEEE, 2020, pp. 69–78.

https://doi.org/10.1109/INM.2015.7140288
https://doi.org/10.1109/INM.2015.7140288
https://doi.org/10.1109/ACCESS.2020.2980119


Bibliography 75

[29] T. Chang, M. Vucinic, X. Vilajosana, S. Duquennoy, and D. Dujovne, “6tisch min-

imal scheduling function (msf),” Internet Engineering Task Force, Internet-Draft

draft-ietf-6tischmsf-02, 2019.

[30] F. Righetti, C. Vallati, S. K. Das, and G. Anastasi, “An evaluation of the 6tisch

distributed resource management mode,” ACM Transactions on Internet of Things,

vol. 1, no. 4, pp. 1–31, 2020.

[31] M. R. Palattella, T. Watteyne, Q. Wang, et al., “On-the-fly bandwidth reservation for

6tisch wireless industrial networks,” IEEE Sensors Journal, vol. 16, no. 2, pp. 550–

560, 2015.

[32] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra: Robust

mesh networks through autonomously scheduled tsch,” in Proceedings of the 13th

ACM conference on embedded networked sensor systems, 2015, pp. 337–350.

[33] G. Neto, “From single-agent to multi-agent reinforcement learning: Foundational

concepts and methods,” Learning theory course, vol. 2, 2005.

[34] H. Nguyen-Duy, T. Ngo-Quynh, F. Kojima, T. Pham-Van, T. Nguyen-Duc, and S.

Luongoudon, “Rl-tsch: A reinforcement learning algorithm for radio scheduling in

tsch 802.15. 4e,” in 2019 International Conference on Information and Communica-

tion Technology Convergence (ICTC), IEEE, 2019, pp. 227–231.

[35] C. Savaglio, P. Pace, G. Aloi, A. Liotta, and G. Fortino, “Lightweight reinforcement

learning for energy efficient communications in wireless sensor networks,” IEEE

Access, vol. 7, pp. 29 355–29 364, 2019.



Bibliography 76

[36] H. Park, H. Kim, S.-T. Kim, and P. Mah, “Multi-agent reinforcement-learning-based

time-slotted channel hopping medium access control scheduling scheme,” IEEE Ac-

cess, vol. 8, pp. 139 727–139 736, 2020.

[37] H. Park, H. Kim, K. T. Kim, S.-T. Kim, and P. Mah, “Frame-type-aware static

time slotted channel hopping scheduling scheme for large-scale smart metering net-

works,” IEEE Access, vol. 7, pp. 2200–2209, 2018.

[38] Y. H. Pratama and S. Chung, “Rl-sf: Reinforcement learning based scheduling func-

tion for distributed tsch networks,” in 2022 IEEE 12th International Conference

on Electronics Information and Emergency Communication (ICEIEC), IEEE, 2022,

pp. 5–8.

[39] M. Mihaylov, Y.-A. Le Borgne, K. Tuyls, and A. Nowé, “Decentralised reinforce-
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