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Abstract

The Proximal Policy Optimization (PPO), a policy gradient method, excels in reinfor-

cement learning with its ”surrogate” objective function and stochastic gradient ascent.

However, PPO does not fully consider the significance of frequently encountered states

in policy/value updates. To address this, this Thesis introduces Preferential Proxi-

mal Policy Optimization (P3O), which integrates the importance of these states into

parameter updates. We determine state importance by multiplying the variance of

action probabilities by the value function, then normalizing and smoothing this with

the Exponentially Weighted Moving Average (EWMA). This calculated importance

is incorporated into the surrogate objective function, redefining value and advantage

estimation in PPO. Our method auto-selects state importance, which can apply to

any on-policy reinforcement learning algorithm using a value function. Empirical

evaluations across six Atari environments demonstrate that our approach outperforms

the baseline (vanilla PPO) across different tested environments, highlighting the value

of our proposed method in learning complex environments.

Keywords: Reinforcement Learning; Policy Gradient Methods; Deep Learning; Policy

Optimization
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Chapter 1

Introduction

1.1 Introduction

Over recent decades, advancements in computational resources have had an extra-

ordinary impact in Machine Learning (ML). In particular the augmented capabilities

of Graphics Processing Unit (GPU) have fortified deep learning, making it as an

essential technological in recent times. At the forefront of this Artificial Intelligence

(AI) revolution there is a sub-domain of ML called Reinforcement Learning (RL).

RL has had major advances in recent years [34]. The field can interact with many

complex games in the Atari 2600 system [28] and defeat professional players in games

like Dota 2 [6] and StarCraft [44]. RL has grown to a point where it can excel in

many tasks such as robotics [19], healthcare [52], news recommendation [26], stock

trading [51], and many more using traditional algorithms such as advantage actor-

critic (A2C) [27], Vanilla Policy Gradient (VPG) [38] and Proximal Policy Optimization

(PPO) [33].

RL distinguishes itself within the machine learning standard by its independence

from labeled training data [36]. Instead of relying on predefined labels, RL algorithms

1



learn through interactions experienced within a specific environment. The entity that

engages with and learns from this environment is termed an ’agent’, which could be

a computational system or even a robot. The environment, on the other hand, can

span a spectrum from virtual simulations and games to tangible real-world settings. To

illustrate, consider an autonomous vehicle scenario: the agent is the vehicle’s onboard

computer system, while the environment encompasses the real-world roads, traffic,

and conditions. At discrete time intervals, the agent must decide on actions, such as

acceleration, steering, or braking, based on its current state and understanding of the

environment.

In RL, the primary objective of an agent is to optimize its total reward within a given

environment. Consequently, the design of the reward function becomes important,

as it directly influences the agent’s behavior and learning trajectory. Crafting this

function is often entrusted to human experts, making it one of the most intricate

aspects of achieving optimal RL algorithm performance. Given the profound impact

of the reward function on agent efficacy, its formulation typically requires deep domain-

specific knowledge and expertise.

RL can be classified into two main categories, model-based and model-free RL

[36]. Model-based RL requires a model to capture the transition between one state

to another, while model-free methods operate without explicit knowledge of these

transition probabilities. For scenarios with vast and intricate state spaces, such as the

previously mentioned car example, model-based approaches may become infeasible

due to the sheer complexity of modeling every known state. Model-free algorithms

instead engage directly from the environment, collecting experiences to determine

what is the transition between one state to another. However, a trade-off exists: these

algorithms require extensive experiences to grasp knowledge from their interactions,
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often requiring repeating experiences to similar situations [36].

Model-free algorithms can be further categorized into two distinct groups: The

first, off-policy [36] methods, which learn the value of the optimal policy irrespective

of the agent’s current policy. Unlike off-policy methods, which can learn about an

optimal policy while behaving according to a different policy, on-policy methods both

learn from and act according to the same policy, refining it over time. Many on-policy

algorithms, especially actor-critic methods, utilize both a policy (the one selecting the

actions), denoted as π(s), and a value function, represented as V (s), for any given

state s [36].

The value function V (s) is used to estimate the expected reward that the agent will

retrieve during training, which in turn, guide agents in selecting appropriate actions.

However, not all states possess equal significance. Recently, Anand et al. [1] proposed

Preferential Temporal Difference (PTD) Learning that employs a state-dependent

preference (i.e., importance) function, denoted as β(s), to update the value function

according to each state’s perceived importance. Consequently, states with low prefer-

ence experience infrequent updates and reduced likelihood of being employed for

updating the target, while those with high preference witness more frequent updates

and exert a greater influence on the update. This model can also be applicable in

real life. For example if using the car example mentioned earlier, a state where you

are driving on a street where no cars and pedestrians are present does not have the

same importance compared to a busy intersection with multiple cars and people are

on the street. In most RL algorithms, these states are treated the same but in reality

they are different. Anand et al. [1] demonstrated that this state-dependent preference

technique can enhance the effectiveness of the value function in RL by selectively

emphasizing high-value states and suppressing low-value states.
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The idea of certain states are more important than others is notably important for

complex environments such as the Atari 2600 games [4] where there are numerous

different states and actions to consider compared to a simple environment like the

cart-pole environment [8]. By finding and updating the value function based on these

high-value states, PTD potentially could enable more efficient and effective learning in

environments, which could ultimately lead to better performance on tasks like playing

Atari games.

Previous methodologies calculated beta values by accessing simple states that

only had few features, as demonstrated in Table 4.2 for the Cart Pole environ-

ment. Calculating beta states requires knowledge of the environment and internal

observations, such as cart pole position, velocity, and angle, as described by Anand

et al. [1]. This is practical for environments where internal observations are available

as well as having a small amount of observation space. However, in situations where

environments provide solely images (e.g., the Atari environment [8]) or offer a multi-

tude of diverse observations (e.g., the MuJoCo environments [41]), identifying beta

states becomes infeasible.

To that end, we introduce a novel Preferential Proximal Policy optimization (P3O)

algorithm equipping vanilla PPO with a mechanism leveraging state importance. First,

inspired by [22], we determine state importance (SI) for state s. Then, we smooth SI

values using Exponentially Weighted Moving Average [18] and normalize the values,

generating β(s). This allows β(s) to be any number between 0 and 1, as opposed to

fixed beta values, such as 0.1 or 1 used in the PTD approach [1].

Subsequently, we modify the Generalized Advantage Estimation (GAE) algorithm

[32] to incorporate β(s), yielding the Generalized Beta Advantage Estimation (GBAE).

This modification results in higher bias and lower variance for the advantage estimate
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if the current state is high-value and vice versa for low-value states which in turn lead

to potential increase in returns as shown in the Experiment Section 5. Bias in RL

is the consistent error in predictions, while variance is the inconsistency due to the

model’s sensitivity to different experiences. This Bias-Variance trade-off is important

as it is an important piece of achieving good generalization in RL [36].

Lastly, we integrate the automatically computed β(s) values and GBAE into the

Proximal Policy Optimization (PPO) algorithm [33], creating the Preferential Proxi-

mal Policy Optimization (P3O) algorithm. In particular, P3O replaces traditional

advantages with β-advantages and updates the value function according to β(s)

values. We compare P3O with PPO to demonstrate that our approach achieves

better performance in the Atari environments [4].

Our contributions are summarized as follows:

1. We incorporate state importance (β(s)) into the GAE algorithm to create the

GBAE algorithm.

2. We propose a Preferential Proximal Policy Optimization (P3O) approach intro-

ducing state importance and advantage calculated based on GBAE.

3. We develop an automated process for determining beta values, thus eliminating

the need for manual configuration to determine beta states based on a threshold.

4. We demonstrate the efficacy of proposed P3O in image-based environments,

highlighting the versatility of the algorithm across diverse settings.

Our algorithm is not limited to PPO and could be applied to other on-policy

Reinforcement Learning (RL) algorithms. The proposed algorithm provides a frame-

work towards preferential learning for multiple different algorithms as well. This means
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that our framework could be placed towards algorithms such as Advantage Actor Critic

(A2C) [27], or newer on-policy algorithms like Phasic Policy Gradient (PPG) [10].
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Chapter 2

Background

2.1 Agent-Environment Formulation

RL distinguishes itself from other paradigms in machine learning as it neither depends

on labeled data like supervised learning nor on unlabeled data as in unsupervised learn-

ing. Instead, RL aims to establish mappings from situations to actions with the

overarching goal of maximizing a cumulative numerical reward signal. Crucially, the

RL agent doesn’t receive explicit directives about which actions to pursue. Instead, it

autonomously explores the action space to identify those that result in the maximum

reward over time. This intrinsic exploration strategy incorporates two fundamental

RL characteristics: trial-and-error search and the influence of delayed rewards. These

characteristics highlight that chosen actions can affect not just immediate rewards but

also the potential sequence of rewards in subsequent time-steps.

To methodically capture the nuances of RL, we employ the framework of the

Markov Decision Process (MDP) characterized by a discrete action space A and state

space S. MDPs offer a formalization of sequential decision-making, encompassing the

influence of actions on both immediate and future rewards. Essentially, MDPs serve

7



Figure 2.1: This figure represents how the agent interacts with the environment. The

agent will send an action At , to the environment and the environment will send a

state of where the agent has ended up when taking the action St and a reward signal

Rt . The reward will help the agent to improve its performance based on the feedback

since the agent’s goal is to maximize the amount of reward and update the on-policy

agent’s parameters θ for the Value and Policy functions V and π respectively.

as an elegant mathematical representation of the RL challenges, setting a foundation

for RL [36].

In this formulation, the decision Markov entity is referred to as the ”agent”. The

agent operates within an ”environment” which is everything outside the agent’s control

[36]. Interaction within the environment involves the agent selecting actions based on

its internal policy, which, in turn, influences the environment. Following each action,

the environment not only transitions to a new state but also provides feedback in the

form of a reward corresponding to the action’s efficacy. The choice of action space is

often derived from the nature of the environment.

When the agent is in a state st ∈ S, it selects an action at ∈ A based on its

prevailing policy, denoted as π. Post-action, the environment yields a reward rt+1,

dependent on the current state st and the executed action at , where t signifies
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the current time-step. The agent’s objective lies in iteratively refining the network

parameters θ for the Value V and Policy π functions, trying to obtain the optimal θ

configuration that maximizes the expected return. The return Gt is derived from a

function of the reward sequence. A common example of this is the discounted return,

given by:

Gt = rt + γrt+1 + γ
2rt+2 + . . . (2.1)

In this equation, rt represents the reward at the current time-step, rt+1 is the

reward at the next time-step, and γ is the discount factor, typically set around 0.99.

A comprehensive visual representation of this agent-environment interaction is

depicted in Figure 2.1 [36].

2.2 The Exploration-Exploitation Trade-off in

Reinforcement Learning

A fundamental challenge in RL is managing the balance between exploration and

exploitation. Exploration is a phase where the agent explores multiple different actions

to determine which actions are better than others. Exploitation is the phase where the

agent will take the current best action it has learned from experience. This means that

the ideal scenario is to have the agent explore and experienced multiple different actions

for a particular state and then exploit the optimal action at that state. Successfully

navigating this trade-off is essential for an agent to learn an effective policy. The

crux of this challenge lies in the dual needs of the agent: to experiment with different

actions to understand their potential rewards and to leverage its current knowledge to
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secure immediate rewards.

The choice between exploring unfamiliar actions or exploiting known actions is often

termed the exploration-exploitation dilemma [36]. The approach an agent adopts

with respect to this dilemma can significantly shape its learning process and final

performance. Over the years, various algorithms have been introduced to address this

pivotal challenge.

For instance, the Deep Q-Network (DQN) introduced by [28] employs an epsilon-

greedy exploration strategy. This method uses a parameter, ϵ, to dictate the balance

between exploration and exploitation. Initially, with ϵ set near 1, the agent predom-

inantly explores the environment. As the agent gathers knowledge and experience, ϵ

diminishes, pushing the agent towards a more exploit-oriented strategy.

Another prominent method is the Proximal Policy Optimization (PPO). In PPO,

an entropy is used in the decision-making process. A high entropy suggests greater

uncertainty in the action choices, thus favoring exploration. In contrast, lower entropy

drives the agent to exploit known strategies. By integrating this entropy term s(π)

into the update function, PPO offers a refined approach to exploration, helping avoid

early convergence to less optimal policies.

2.3 Policies and Value Functions

State-of-the-art RL methodologies predominantly hinge on the precise estimation of

value functions. These functions, delineated across states or state-action pairs, equip

the agent with insights into the anticipated returns upon executing action a within

state s at a designated time-step t. Two primary types of value functions are prevalent

in RL: the State-Value function V π(s) and the Action-Value function Qπ(s, a) where
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π denotes the action chosen from the policy. These functions are defined policies

that guide the agent’s action-selection process. Policies can be either deterministic or

stochastic.

Formally, a policy π maps states to action probabilities. When an agent, at time

t, adheres to a policy π, π(at |st) represents the conditional probability that at given

st [36]. Essentially, a policy dictates the agent’s strategy for selecting the next action

based on the current state. A deterministic policy assigns a specific action to each

state, whereas a stochastic policy provides a probability distribution over potential

actions from which an action is sampled. For instance, in a simple grid-world scenario,

a deterministic policy might direct the agent to consistently move right from a certain

state. In contrast, a stochastic policy in the same environment could propose an 80%

likelihood of moving right and a 15% chance of moving up or a 5% chance of doing

nothing. In our algorithm we used the State-Value function V π(s) which is defined

as [36],

V π(s) = Eπ{Rt |st = s} = Eπ{
∞∑
k=0

γkrt+k+1|st = s} (2.2)

2.4 Policy Gradient Algorithms

Policy gradient methods are approaches to solve RL problems. In particular, since the

goal of RL algorithms is to find optimal behaviour strategy that will help the agent

to achieve the highest reward, the policy gradient methods model and optimize the

policy directly. Policy gradient algorithms, including Advantage Actor Critic (A2C)

[27], PPO [33], and Phasic Policy Gradient (PPG) [10], update the policy based on

the current policy distribution. All experiences used to update the policy are derived
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from the current policy unlike off-policy methods where they update from previous

experiences under different policies. The policy gradient can be expressed as:

∇θJ(θ) = E[
∞∑
t=0

∇θlogπθ(at |st)Gt ]. (2.3)

Where ∇θ represents the gradient of the object function J(θ) with respect to the

parameter θ, where at is the action a at time-step t and st is state at time-step t.

This expression is not limited to Gt and can use the TD advantage δt = rt +

V π(st+1) − V π(st), Advantage function Aπ(st , at) (Eq 2.4), Generalized Advantage

Estimation (Generalized Advantage Estimate (GAE)) Â
GAE(γ,λ)
t (Discussed in 4.3), or

the return Gβt (2.8) in Preferential Temporal Difference (PTD) Learning approach to

either reduce and improve variance within the algorithm.

The goal in policy gradient methods is to maximize the expected total reward by

repeatedly estimating the gradient.

2.5 Generalized Advantage Estimation

Policy gradient algorithms, in their raw form, offer unbiased estimates but suffer from

high variance. To address this, advantage functions, denoted by A(a, s), have been

employed to assess how an action deviates in quality from the average action for a

given state. However, directly estimating the Advantage function poses challenges.

It is essentially the difference between the Q-function Q(s, a) and the value function

V (s), both of which are prone to high variance. Formally, this relationship is given as

A(s, a) = Q(s, a)− V (s). (2.4)
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Such variance in estimates can destabilize training since both the Q(s, a) and

V (s) are estimated from data. The estimates directly affect the computation of the

advantage function and if V (S) and Q(s, a) are not estimated correctly, it can cause

training stability issues in learning. To mitigate these challenges, Schulman et al. [1]

introduced the Generalized Advantage Estimation (GAE) [32]. The GAE formulation

is given by

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l = δt + (γλ)A
GAE
t+1 , (2.5)

where γ typically assumes a value close to 0.99, representing the discount factor.

λ serves as a steeper discount factor, constrained within the interval 0 ≤ λ ≤ 1. The

term δ signifies the advantage, described as rt + γV (st+1)− V (st) at time-step t + l

for the value function V . t represents the current time step and l is the offset that

ranges from 0 to infinity.

While GAE introduces a degree of bias, it significantly curtails variance through the

introduction of a decay parameter λ. This decay parameter offers a balance between

bias and variance: when λ = 0, the estimator is heavily biased with minimized variance,

effectively becoming a pure Temporal Difference (TD) estimator. Conversely, at λ =

1, the estimator exhibits minimal bias but elevated variance, aligning with a pure

Monte-Carlo approach.

GAE ensures a more stable and efficient learning trajectory for policy gradient

methods in RL. By reducing the variance of the Advantage function, GAE facilitates

more accurate policy updates, consequently enhancing performance across a range of

tasks [32].
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2.6 Temporal Difference Learning

Temporal Difference (TD) Learning is a pivotal position in RL [36]. Its versatility is

evident in its applications, ranging from Value Function Updates to Policy Improve-

ment, and many more. A distinguishing feature of TD methods is their ability to

update estimates by bootstrapping (process of updating value estimates based on

other, current value estimates) from other learned estimates, eliminating the need

for a complete episode’s final outcome. This allows TD to harness intermediate

experiences to approximate the value function V (s) without awaiting the culmination

of the current episode. Consequently, TD methods can initiate updates immediately

upon reaching the subsequent time-step. Such a mechanism renders TD learning parti-

cularly adept at handling scenarios with prolonged or indeterminate episode lengths,

such as infinite time-series problems [36].

Upon reaching time-step t + 1, TD methods can establish a dynamic target for

the value function update. This target is then employed to generate updates using

the reward rt+1 and the projected return V (st+1). The TD error, a crucial metric in

this context, is defined as [36]:

δ = rt+1 + γV (st+1)− V (st) (2.6)

Subsequently, the TD update for the value function V (s) is articulated as:

V (st)← V (st) + αδ, (2.7)

Here, V (st) and V (st+1) denote the value functions corresponding to states at

time-steps t and t + 1, respectively. The parameter α represents the learning rate,

rt+1 signifies the ensuing time-step’s reward, and γ encapsulates the discount factor.
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2.7 Preferential Temporal Difference Learning

Temporal Difference (TD) learning underpins many RL algorithms, offering a mechan-

ism to approximate the value function of a policy. Despite its integral part of RL, tradi-

tional TD learning is not without shortcomings, especially when function approximation

is utilized. Challenges emerge in areas like credit assignment between states and error

propagation due to partial observability.

The Preferential Temporal Difference (PTD) Learning algorithm seeks to mitigate

these limitations. Central to PTD is the preference function β, which for a given

state, assigns a value in the range [0, 1], signifying the state’s relevance. Effectively, β

allows for the re-weighting of states in TD updates, equal with their perceived import-

ance. For instance, when β(s) = 0, the corresponding state remains unchanged upon

visitation, dropping its role in bootstrapping due to perceived irrelevance. Conversely, if

β(s) = 1, the state undergoes full updates and contributes wholly to the bootstrapping

process. However, this selective updating can incur its own complications; a state left

unaltered might proffer inaccurate values, thereby introducing biased updates when

employed as a target for states.

Addressing this challenge, Anand et al. [1] introduced the notion of beta returns,

denoted Gβt . This enables bootstrapping that’s based by preference, which is captured

by the following equation

GBt = rt + γ
[
β(st+1)V (st+1) + (1− β(st+1))Gβt+1

]
. (2.8)

Equipped with this beta return, the PTD algorithm can be implemented using

either a forward view (updating at every time-step) or a backward view (updating

post-episode or after a defined number of time-steps). The latter is adopted in our
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PTD implementation and respective baselines. In a linear approximation context,

Anand et al. demonstrated that the expected updates steered by Preferential TD

converge to a distinct fixed point.

The update for the value function using PTD is:

V (st)← V (st) + α(β(st)GBt + (1− β(st))V (st)− V (st)) (2.9)

2.8 Actor-Critic Methods

Actor-Critic Methods belong to the family of Temporal Difference (TD) learning

methods. Distinctively, they employ separate neural network architectures to represent

both the policy and the value function, termed as the Actor and the Critic, respectively.

• Actor: This component is responsible for determining the agent’s policy, denoted

as π(a|s; θ). It prescribes actions, represented by a, based on specific states,

symbolized by s. The parameter θ are the policy’s parameters.

• Critic: This component evaluates the efficacy of the policy by estimating its

corresponding value function, V (s). The parameters governing this value function

might be distinct from the policy’s or could be shared.

These methods operate on an on-policy model, implying that the policy undergoes

refinement throughout the learning process. The Critic leverages the TD error, as

expressed in Eq(2.6), and updates its assessment using the TD update rule given

by Eq(2.9) [31]. Following each action decision by the Actor, the Critic appraises

the state to discover if the outcomes align with or strays from expectations. This

assessment often employs the TD Error, as shown in Eq(2.6) [31]. A positive TD
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error prompts the Critic to support for the repetition of the action in future scenarios.

Conversely, a negative TD error suggests avoiding the repetition of the action [31].

Historically, many of early RL algorithms were rooted in actor-critic methodologies

[47], [3], [31]. This demonstrates the pivotal role of this algorithm in the RL domain,

serving as a foundation for advanced algorithms such as Advantage Actor Critic (A2C)

[27], Asynchronous Advantage Actor Critic (A3C) [27], Proximal Policy Optimization

(PPO) [33], and several others.

2.9 Advantage Actor Critic

The Advantage Actor-Critic (A2C) algorithm represents a prominent algorithm in RL.

By synergizing the strengths of both value-based and policy-based strategies, A2C

utilizes the Actor-Critic algorithm’s actor and critic but introducing another component

named the advantage.

Central to A2C’s efficacy is the concept of ’advantage’, quantifying the relative

merit of executing action a in state s as compared against the average policy action.

The advantage function, A(s, a), takes shape this notion, and is defined as the

discrepancy between the action-value function, Q(s, a), and the state-value function,

V (s).

A noteworthy feature of A2C is its synchronous update. The agent accumulates

experiences synchronously from multiple environment instances. It is found that A2C

produces comparable performance to its asynchronous counterpart while being more

efficient [27].

A2C’s learning trajectory unfolds in two stages:

1. Policy Evaluation: Here, the critic appraises the current policy’s value func-
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tion, predicting the expected return for every state. This serves as a foundational

baseline against which the actor’s decisions are evaluated.

2. Policy Improvement: The actor, informed by the critic’s insights, revises its

policy parameters. It employs the advantage function as an indicator, calibrating

the magnitude and direction of policy alterations.

Through the interplay between the actor and critic, A2C iteratively refines its policy,

driving it ever closer to reward maximization. Such methodical, progress cements

A2C’s stature as a important algorithm in RL.

2.10 Proximal Policy Optimization

Traditional policy gradient methods enhance policies by orienting updates towards

expected reward maximization, moderated by a learning rate. Yet, over-aggressive

updates can occasionally lead to policy deterioration. Schulman et al. [33] introduced

the Proximal Policy Optimization (PPO) algorithm to address this issue, emphasizing

incremental policy updates to ensure stable learning.

PPO’s main contribution is to moderate policy updates, ensuring they don’t diverge

significantly from a previous policy. To realize this, the objective function is appended

with a clipping mechanism to limit drastic policy alterations.

The policy objective, defined as

LCLIP (θ) = Êt
[
min

(
rt(θ)Â

GAE
t , clip (rt(θ), 1− ϵ, 1 + ϵ) ÂGAEt

)]
, (2.10)

with the following definitions:
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• θ signifies the policy parameters.

• rt(θ) =
πθ(at |st)
πθold (at |st)

is the importance sampling ratio between the new (πθ) and old

(πθold ) policies.

• ÂGAEt is the advantage function’s estimator through Generalized Advantage

Estimation (GAE).

• ϵ is a hyperparameter describing the acceptable policy update magnitude.

The clipping function modifies substantial policy updates. If the revised policy

varies extensively from its predecessor (exhibiting a high rt(θ)), it undergoes clipping,

promoting moderation in optimization steps.

Moreover, to moderate the policy gradient estimates’ variance, PPO incorporates

a baseline value function, optimized through a mean squared error loss:

LV F (θ) = min
θ

N∑
n=1

(Vθ(sn)− V̂h)2, (2.11)

where Vθ(st) estimates state st ’s value, parameterized by θ, and V̂h represents st ’s

target value.

The total PPO objective merges the clipped surrogate objective and value function

loss:

LTOTAL(θ) = LCLIP (θ)− cV FLV F (θ) + cEntS [πθ] , (2.12)

with cV F and cEnt as hyperparameters for the value function loss and an entropy

regularization term S[πθ] respectively. This entropy term bolsters exploratory behavior

helping the agent finding optimal actions.
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By embedding trust regions via clipping, PPO reduces each policy update’s magni-

tude, ensuring closeness to the preceding policy and safeguarding against optimization

divergences. PPO’s state-of-the-art achievements across multiple RL challenges, com-

bined with its elegance and efficiency, have made PPO a widely important RL algor-

ithm.

2.11 Critical States & State Importance

In RL, understanding which states critically influence an agent’s performance can be

pivotal for effective learning and exploration. Karino et al. [22] introduced a method

to quantify the significance of individual states, termed as state importance. This

measure provides insights into a state’s contribution to the overall task performance.

The essence of state importance lies in assessing the variability in the state-action

values Qπ(s, a), where the policy π influences the state-action decision process. The

variance is computed over all possible state-action pairs and is further adjusted based

on the probability of selecting a specific action when the agent is in state s. Formally,

the state importance for a state s is defined as:

SI(s) = V arp(a|s)[Q
π(s, a)], (2.13)

where V arp(a|s) represents the variance across the action distribution for state s.

A heightened state importance signifies a pronounced variability in the prospective

rewards for different actions within that state, indicating its pivotal role in task perf-

ormance. Such insights can serve as a heuristic for exploration strategies, directing

the agent towards states of higher importance, thus potentially expediting the learning

process.
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However, a limitation of this methodology lies in its applicability. While algor-

ithms that leverage state-action values can harness this technique to discern state

importance, those relying solely on state values, V π(s), cannot utilize this approach.

To segregate states based on their significance, Karino et al. [22] employed state

importance values, introducing a threshold that takes in consideration the top 10%

of states as critical. This threshold is manually configured and does not have an

autonomous procedure of selecting the percentile of states should be critical state for

every environment.

Karino et al. [22] validated their methodology across various environments, both

continuous and discrete in nature. Empirical results, particularly when integrating

critical states within Deep Q-Networks for exploration or exploitation strategies, show-

cased the method’s promising potential in bolstering RL algorithms.

2.12 Exponential Weighted Moving Average

Exponential Weighted Moving Average (EWMA) is a commonly used method for

calculating a smoothed average of a time series. Given a set of input values x1, x2, ..., xn

and a decay factor α ∈ [0, 1], the EWMA of the data is calculated recursively according

to the following formula

EWMAt = α ∗ xt + (1− α) ∗ EWMAt−1. (2.14)

In other words, the EWMA of the data is calculated by taking a weighted average

of each value, where the weights decrease exponentially with time. The decay factor

α determines the rate at which the weights decrease and controls the degree of

smoothing in the resulting average. A higher value of α gives more weight to recent
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values and results in a faster-decaying moving average, while a lower value of α gives

more weight to past values and results in a slower-decaying moving average.

EWMA is often used in time series analysis to remove noise and highlight trends

in the data. It is also commonly used in finance to calculate moving averages of

stock prices, where it is known as the Exponential Moving Average (EWMA). One

advantage of EWMA over other moving average methods is that it gives more weight

to recent values, which can make it more responsive to changes in the data. However,

the choice of the decay factor α can be critical, and different values may be more

appropriate depending on the specific application.

One potential limitation of EWMA is that it can be sensitive to outliers in the data,

which can skew the weighted average. In some cases, alternative smoothing methods

such as median smoothing or robust smoothing may be more appropriate. However,

EWMA remains a widely used and effective method for many time series applications.

2.13 Min-Max Normalization

Min-Max Normalization is a commonly used method for scaling and normalizing numeri-

cal data to a fixed range of values. Given a set of input values x1, x2, ..., xn(xi) where

min(x1, x2, ..., xn) ̸= max(x1, x2, ..., xn), Min-Max Normalization maps each value xi to

a new value yi in the range [0, 1] according to the following formula:

xnorm =
xi −min xi
max xi −min xi

(2.15)

In other words, Min-Max Normalization rescales the data to a new range based

on the minimum and maximum values in the input set. This ensures that all values

are scaled proportionally and preserves the distribution of the data. Min-Max Normal-
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ization is often used in machine learning and data analysis tasks to standardize the

input data, which can improve the performance of models that are sensitive to the

scale of the input features.

One potential limitation of Min-Max Normalization is that it can be sensitive

to outliers in the data, which can skew the scaling of the values. In some cases,

alternative normalization methods such as z-score normalization or robust scaling may

be more appropriate. However, Min-Max Normalization remains a useful and widely

used method for many applications.
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Chapter 3

Related Work

Anand et al. [1] presented a comprehensive and insightful study on PTD Learning.

They evaluated their approach in grid-based tasks with fully observable and partially

observable states. In the appendix of their paper, they have evaluated their works on

the cart-pole problems to determine if their algorithm can be useful for fully observable

environments. They used the algorithm Preferential Actor Critic, which is using

preferential temporal difference networks with Actor-Critic architecture. The author’s

did not have an automatic way to calculate beta values and thus had to determine

what threshold in the environment for the internal states. The beta values were

determined based on thresholds for cart-pole velocity, angle, and position, assigning

a static value of either 1 for states surpassing the threshold or 0.1 for those that did

not (Table 4.2). However, this method is impractical for environments with non-trivial

observation spaces (e.g., MuJoCo Environments [41]) or when states are represented

as images, such as in Atari environments. Since the MuJuCo environments have mult-

iple different internal observations, determining the optimal beta values is extremely

difficult/impractical. Another problem with this approach is that it does not fully

utilize the beta range [0,1] and instead uses static assignments to the beta values.
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For example if the state passes the threshold compared to the previous beta state, it

will have a beta value if 1, otherwise any other states will be a beta value of 0.1. This

is not fully utilizing the beta state algorithm as some states could be weighed more

than others.

A related family of algorithms is Emphatic Temporal Difference (ETD) [37] algor-

ithms. These algorithms employ an interest function to re-weight updates. The work

by Sutton, Mahmood, and White [37] presents a novel method to enhance the perf-

ormance of parametric temporal-difference (TD) learning algorithms. The authors

propose selectively emphasizing or de-emphasizing updates on different time steps.

They demonstrate that varying the emphasis of linear TD(λ)’s updates in a specific

manner stabilizes its expected update under off-policy training. Specifically, ETD

utilizes the interest of the previous state to generate emphasis at a given time. The

updates are then modified based on the emphasis values, resulting in distinct emphasis

updates for two different trajectories that converge at the same state. Although ETD

and PTD share the idea of reweighing updates according to the agent’s preference,

ETD adopts a trajectory-based update method, while PTD employs a state-dependent

parameter to adjust the updates.

Recent research by Martin et al. [24] highlighted the advantages of adopting

an adaptive interest function in Emphatic Reinforcement Learning over a uniform

interest across all states. This adaptive approach, which places emphasis on critical

states such as bottlenecks, has shown promise in transfer learning applications. The

authors underscored the challenges of crafting effective interest functions in intricate

environments and advocated for an interest function that dynamically adapts based

on the agent’s interactions within the environment. Drawing inspiration from prior

work on hyper-parameter discovery [50] [54], objective function design [49], intrinsic
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rewards [55], and temporal abstraction [42], Martin et al. proposed an online meta-

gradient-based approach to learn this adaptive interest function. Notably, both meta-

parameters and the parameters of the policy and value function are updated concurr-

ently through gradient descent.

The work by Chelu, Precup, and van Hasselt [9] explores the problem of credit

assignment in RL. The authors investigate how an agent can optimally use additional

computation to propagate new information by planning with internal models of the

world to enhance its predictions. They examine the advantages and peculiarities

of planning implemented as forethought using forward models or as hindsight using

backward models. In various carefully designed scenarios, the authors determine the

relative merits, limitations, and complementary properties of both planning mechan-

isms. The key distinction between the backward model and PTD is that PTD is

model-free. The study works to understand the gains of planning using forethought

with forward model or hindsight operating with backward models. The paper delves

into the optimal use of models in planning, focusing mainly on selecting the states in

which predictions should be re-evaluated. Finally, the authors discuss model estimation

and present a spectrum of methods extending from environment dynamics predictors

to planner-aware models.

Addressing the credit assignment challenge, Velu et al. [43] introduced the Hind-

sight DICE algorithm. Their research highlighted the limitations of prior hindsight

policies, specifically the temporal delay between the observation of non-trivial rewards

and individual steps [15], which often resulted in suboptimal learning in complex

environments [43]. Velu et al. analyzed that importance-sampling ratio estimation

techniques can significantly enhance the stability and efficiency of off-policy methods

applied to hindsight policies. They adopted the Dual stationary DIstribution Correction
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Estimation (DualDICE) approach [29] and integrated an adaptive importance ratio

approximation technique for hindsight policies, creating the Hindsight Distribution

Correction Estimation (H-DICE) [43]. Their empirical results demonstrate H-DICE’s

superiority over baseline methods, showcasing not only improved final rewards but also

a more rapid convergence rate.

There are also other works that share the idea of ignoring updates on partially

observable states like in [48], [40]. They use a trajectory-based value for the partially

observable state as a substitute to the value. The problem with this algorithm is that

trajectory-dependent values are poorly understood compared to Preferential Temporal

Difference Learning which is shown to be unbiased and it can be understood from a

theoretical point since Anand et al. has provided theory related to PTD. In Xu et

al.s work, their main problem is to interporlate direct value estimates and project the

values to the rewards and previously estimated values. Since the work of Nishanth et

al [1] is to ignore states that are deemed non-important, their works uses previously

estimated values to do this step.

Jiang et al [20] extended Emphatic Temporal Difference Networks to Deep Reinfor-

cement learning algorithms. The paper ”Emphatic Temporal Difference Learning for

Deep RL Agents” tackles the instability issues encountered in Temporal Difference

(TD) learning algorithms when combined with function approximation and off-policy

sampling, a problem known as the ”deadly triad”. The authors propose an extension

of the Emphatic Temporal Difference (ETD(λ)) algorithm to deep RL agents to

address this. ETD(λ) algorithm ensures convergence in the linear case by weighting

the TD(λ) updates, but applying ETD(λ) naively to popular deep RL algorithms,

which use forward view multi-step returns, results in poor performance. Hence, the

authors derive new emphatic algorithms for use in these contexts. The paper explains
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the background on forward view learning targets and ETD(λ), then proceeds to adapt

ETD(λ) to the forward view. The authors introduce a new multi-step emphatic trace

for n-step TD and discuss further algorithmic considerations, including extensions for

variance reduction, for the V-trace value learning target, and for the actor-critic learn-

ing algorithms. The algorithms’ performance is first evaluated on small diagnostic

Markov Decision Processes (MDPs), and then on classic Atari video games. The

proposed methods demonstrate noticeable benefits in small problems, highlighting the

instability of TD methods. Additionally, they report the highest score to date for an RL

agent without experience replay in the 200M frames on Atari games, demonstrating

the effectiveness of their approach in complex, real-world tasks.

The paper ”Deep Successor RL” by Tejas D. et al. [25] introduces a novel method

called Deep Successor RL (DSR), which incorporates Successor Representations (SR)

into an end-to-end deep RL framework. The SR methodology decomposes the value

function into two components: a reward predictor and a successor map, which repre-

sent the expected future state occupancy from any given state and the scalar rewards

for each state, respectively. The value function is computed by taking the inner product

between the successor map and the reward weights. DSR exhibits increased sensitivity

to distal reward changes due to the factorization of reward and world dynamics, and it

can extract bottleneck states (subgoals) from successor maps trained under a random

policy. DSR consists of two sub-components: a reward feature learning component

which uses a deep neural network to predict intrinsic and extrinsic rewards and learn

useful features from raw observations, and an SR component which estimates expected

future feature occupancy conditioned on the current state. The value function can

then be calculated as the dot product of these two factored representations. The

authors tested their approach on two environments using raw pixel observations,
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the MazeBase grid-world domains and the Doom game engine. They demonstrated

empirical convergence results on several policy learning problems and sensitivity of the

value estimator given distal reward changes. They also illustrated the capability of

extracting plausible subgoals for hierarchical RL by performing normalized-cuts on the

SR.

IMPALA (Importance Weighted Actor-Learner Architecture) [12] is a distributed

RL agent designed to solve a large collection of tasks using a single set of parameters.

This presents a challenge due to the increased amount of data and extended training

time. The IMPALA agent is not only efficient in single-machine training but also

scales to thousands of machines without sacrificing data efficiency or resource utili-

zation. The IMPALA system achieves stable learning at high throughput by combining

decoupled acting and learning with a novel off-policy correction method called V-trace.

Unlike the popular A3C-based agents, IMPALA actors communicate trajectories of

experience (sequences of states, actions, and rewards) to a centralized learner. This

decoupled architecture allows IMPALA to achieve very high throughput.The system’s

scalability and V-trace method enable IMPALA to achieve high data throughput rates

of 250,000 frames per second, making it over 30 times faster than single-machine

A3C. Additionally, IMPALA is more data efficient than A3C-based agents and is more

robust to hyperparameters and network architectures, allowing it to make better use

of deeper neural networks. The effectiveness of IMPALA is demonstrated by training

a single agent on multi-task problems using DMLab-30, a set of 30 tasks from the

DeepMind Lab environment, and on all games in the Atari-57 set of tasks. The results

show that IMPALA achieves better performance than previous agents with less data

and exhibits positive transfer between tasks due to its multi-task approach.

The Dyna AI architecture [35] integrates learning, planning, and reactive execution,
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with a focus on environments where an agent’s actions have nondeterministic effects

and the agent does not have complete knowledge about the impact of its actions. Key

aspects of Dyna include trial-and-error learning of an optimal reactive policy, the learn-

ing of domain knowledge in the form of an action model, planning to find the optimal

reactive policy given the action model, and reactive execution. The central principle is

that planning is equivalent to ’trying things in your head’ using an internal model of the

world. Dyna extends RL to include a learned world model. The architecture follows a

generic algorithm that involves: observing the world’s state and reactively choosing an

action, observing the resultant reward and new state, applying RL to this experience,

updating the action model based on this experience, and then repeating these steps for

hypothetical world states and actions to apply RL to hypothetical experiences. The

architecture has its theoretical foundation in dynamic programming and its relationship

to RL, temporal-difference learning, and AI methods for planning and search. Various

studies have explored the use of action models with RL methods, and the integration

of RL methods with concepts from other architectures for practical tasks. The Dyna

architecture is versatile and not confined to any specific learning method.

Temporal abstraction offers an alternative approach to traditional decision-making

in reinforcement learning. Instead of deciding on actions at each individual timestep,

temporal abstraction allows for decisions that span multiple timesteps, facilitating

higher-level reasoning and strategy planning. This becomes particularly advantageous

in scenarios where certain sequences of actions recur frequently or in environments

characterized by prolonged episodes.

Researchers at McGill University have proposed an alternative perspective that

merges the problem of discovering options with that of learning options. They introd-

uced a new option-critic architecture [2] capable of concurrently learning the internal

30



policies, termination conditions of options, and policy over options without the necessity

of additional rewards or subgoals. The proposed model has been developed based

on the policy gradient theorem, leading to a gradual learning process for intra-option

policies and termination functions. It can work with both linear and non-linear function

approximators, under discrete or continuous state and action spaces. Experimental

results have shown that the proposed approach can learn meaningful temporally ext-

ended behaviors effectively, without requiring subgoals, extra rewards, demonstrations,

multiple problems, or any other special accommodations. It is suggested that this

method offers the first end-to-end approach for learning options that scales to very

large domains with comparable efficiency.

The study investigates the modeling of temporally abstract actions in RL [39],

referred to as ”options.” Traditionally, the learning and planning of options have

been done through semi-Markov decision process (SMDP) methods, which necessitate

executing an option to completion, thus treating it as a black box. This limitation

confines SMDP methods to terminating courses of action and restricts their capability

to learn about multiple options concurrently. This paper presents ”intra-option” learn-

ing methods that overcome these constraints. In contrast to SMDP methods, intra-

option methods learn about an option from small fragments of experience consistent

with that option, without needing the option to be executed entirely. This is accomp-

lished by leveraging the fact that the SMDP generated by the options is rooted in

an underlying Markov Decision Process (MDP), thereby enabling learning about the

effects of temporally extended actions through temporal difference methods. Intra-

option methods, which are examples of off-policy learning methods, allow learning

from experience within a single option. They can learn about the model of an option

without executing it, as long as some consistent selections are made. Additionally,
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these methods can be used to learn about several different options at the same time.

The authors introduce intra-option learning algorithms for both learning the values

of the options and their models. The computational experiments demonstrate the

flexibility and speed improvements of these methods, which prove more efficient than

traditional SMDP methods.
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Chapter 4

Methodology

4.1 Methodology

To fully leverage the capabilities of our proposed algorithm, we incorporate three

essential components. First, we compute the State Importance SI(s), which is

subsequently passed through the Exponentially Weighted Moving Average (EWMA)

function to smooth the SI(s) values. We then apply Min-Max Normalization to

normalize these SI(s) values within the range [0, 1]. Next, we employ the Generalized

Beta Advantage Estimation (GBAE) to generate beta advantages Â
GBAE(γ,λ)
t where

γ = 0.99 and λ = 0.95. These beta advantages are used to calculate the policy loss

for the P3O algorithm. We then compute the value loss by using mean-squared error

with beta-values, combining the policy loss and value loss with entropy to create the

P3O loss. This loss is subsequently utilized to update the network. In the following

sections, we provide an in-depth explanation of the core techniques employed in the

P3O algorithm.
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4.1.1 Automatically Calculating Beta States

We present a method for the automatic calculation of function β(s), which consists of

three main components: State Importance (SI) computation, Exponentially Weighted

Moving Average (EWMA) smoothing, and Min-Max Normalization.

Intuitively, state Importance SI is a measure of how important the current state

s is to the potential success and failure of the agent. We calculate the SI as the

product of the variance of probability distribution p(at |st) and V π(st).

SI(st) = V ar [p(at |st)] ∗ |V π(st)|, (4.1)

where V π(s) represents the value function from the critic. Although this modification

does not capture the full SI as state-values provide less information than state-action

values (used in [22]), it is necessary for compatibility with on-policy algorithms like

Proximal Policy Optimization (PPO) that do not use state-action values in their

update.

Creating the state importance was inspired from Karino et al’s [22] but instead of

using the variance of the Q-values weighted by the probability of action given state,

we use the variance of the probability action given state multiplied by state value. By

using this modified version we can use state-values very similarly to Karino et al’s [22]

state importance but the key distinction is that the probability will determine the

critical state. This means that actions that the agent determines to have the highest

probability and will return higher reward are determined as importance states while

actions that the agent determines that won’t be that impactful with lower returns

are less important. Karino et al’s state importance is very useful in algorithms that

have q-values as these values can have more information of what is important or not.
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Since q-values have action-state values compared to our algorithm, they hold more

information and thus could retrieve a better representation of what state importance

is.

The resulting SI values are then passed through the EWMA function [18]

xt = α ∗ SI(st) + (1− α) ∗ xt−1. (4.2)

Here, xt is the smoothed value at time t, and α is the smoothing factor. α

determines the weight given to the current observation versus the previous smoothed

value. By adjusting the hyperparameter alpha, the degree of smoothing in a time series

can be controlled. A larger alpha value assigns greater weight to the most recent

observation, leading to a decrease in smoothing. Conversely, a smaller alpha value

gives more weight to the previously smoothed values, resulting in greater smoothing

of the time series.

The smoothed SI values (xt) are then normalized using the Min-Max Normalization

algorithm, transforming them into the range [0, 1]. These normalized values represent

the beta states β(s) that are used in both the Generalized Beta Advantage Estimate

(GBAE) Eq (4.3) and P3O algorithm.

4.1.2 Generalized Beta Advantage Estimation

We build GBAE upon GAE [32] by incorporating state preference function β(s) into

the GAE function Eq (2.5). This allows GBAE to assign different levels of importance

to states according to the environment. Moreover, this incorporation allows GBAE to

adaptively control the bias and variance of advantages for different states.

It is worth mentioning that the GAE/GBAE algorithms focuses on finding a balance
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between bias and variance in the advantage estimation by combining the properties

of Temporal Difference learning (TD-learning) and Monte Carlo (MC) methods [32].

In the algorithms, the parameter λ controls the balance between bias and variance,

with λ = 0 adapting TD properties and λ = 1 demonstrating MC properties (i.e the

discounted return Gt Eq (2.1)). However in GBAE, with λ = 0 the algorithm adapts

TD properties and λ = 1 demonstrates β return Eq (2.8) with baseline properties (Gβt

- V (st)).

In GBAE, the state preference function β(st+1) is incorporated into the advantage

estimation, as shown in the following equation

Â
GBAE(γ,λ)
t = δt + (1− β(st+1))(γλ)AGBAEt+1 , (4.3)

where γ is the discount factor, typically set to 0.99, and λ is the steeper discount

factor, constrained within 0 ≤ λ ≤ 1; β represents the preference function for the

current state; δ denotes the advantage, defined as rt + γV (st+1) − V (st); and rt

represents the reward at each timestep t.

With this modification, GBAE provides more flexibility in controlling the bias and

variance of advantages based on the importance of states in the environment. In

cases where the state preference function assigns a high importance (e.g., β(s) =

1) to a particular state, the advantage for that state will exhibit a higher bias and

lower variance. On the other hand, when the state preference function assigns a

lower importance (e.g., β(s) = 0), the advantage will have lower bias and higher

variance. This results in more targeted and efficient learning process. Furthermore,

the incorporation of state preferences in GBAE has the potential to enhance the

performance of policy optimization algorithms in complex environments. This will

then be used with the modified Proximal Policy Optimization (P3O) to help the policy
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Num Observation Min Max

0 Cart Position -4.8 4.8

1 Cart Velocity -Inf Inf

2 Pole Angle ∼-0.418 rad ∼0.418 rad
3 Pole Angular Velocity -Inf Inf

Table 4.1: Observation details for the CartPole-v1 environment.

Condition Cart Position Cart Velocity Pole Angle

1 0.5 0.5 0.05

2 1.0 1.0 0.1

3 0.3 0.3 0.03

Table 4.2: The different conditions Anand et al. [1] configured for the Cartpole

problem.

update.

In a comparative analysis between Beta Returns and Generalized Beta Advantage

Estimation (GBAE) shown in the Appendix (A.1), it is clear that both methods share

similar computational properties. Specifically, when the parameter λ in GBAE is set

to 1, it demonstrates characteristics related to Beta Returns. A similar observation

can be made when λ is set to 0, as the computation is the same as the Temporal

Difference (TD) advantage, represented by δt = rt + γvt+1 − vt . This resemblance

highlights the flexibility of GBAE in adapting to different learning scenarios, depending

on the chosen parameter values.

In summary, GBAE extends the capabilities of GAE by integrating state preferences

into the advantage estimation process. This modification allows GBAE to adaptiv-

ely control the bias and variance of advantages based on the importance of states

in the environment, providing a more targeted and efficient learning process. The

incorporation of state preferences in GBAE has the potential to enhance the perf-

ormance of policy optimization algorithms in complex environments.
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Figure 4.1: This figure represents the P3O (our implementation) pipeline. This

demonstrates how the calculation of the beta values are utilized within the GBAE

and P3O algorithm.

4.1.3 Preferential Proximal Policy Optimization

Preferential Proximal Policy Optimization (P3O) is a modified Proximal Policy Optim-

ization (PPO) algorithm [33] that integrates the state-preference function β(s) and

GBAE algorithms (as the advantage estimator) to update its policy and value functions.

While the policy structure remains identical to PPO, P3O replaces the advantage

function estimator ÂGAEt with the GBAE-based advantage estimator ÂGBAEt in the

policy loss computation. This change enables the P3O algorithm to prioritize impor-

tant states over less important ones during updates. The policy update for P3O is

defined as:

LCLIPt (θ) = min(rt(θ)Â
GBAE
t , cl ip(rt(θ), 1− ϵ, 1 + ϵ)ÂGBAEt (4.4)

where θ denotes the policy parameters, rt(θ) =
πθ(at |st)
πθold (at |st)

is the importance samp-

ling ratio between the current policy πθ and the old policy πθold , Â
GBAE(γ,λ)
t is GBAE,

cl ip is the bounding mechanism that constraints the policy updates within a specific

range, and ϵ is a hyper-parameter controlling the policy update size.

In P3O’s policy, instead of having normal advantages where each advantage is
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uniformly the same for bias and variance, it will have beta advantages that exhibit

high-bias and low-variance if the state has high β(s) values and vice-versa for low

β(s) values.

Furthermore, P3O introduces the automatic calculation of beta states β(S), using

method in section 4.1.1 . This approach allows the algorithm to automatically adapt

the beta states based on the environment, overcoming the limitations of using static

thresholds for determining beta states, as seen in previous works [1]. The following is

the value loss for the P3O algorithm using mean-squared error

LV Ft (θ) =

N∑
n=1

β(sn)(Vθ(sn)− V̂h)2. (4.5)

Vθ(st) is the predicted value of state st by the value function parameterized by θ,

and V̂h is the target value for state st which we used as the discounted returns. The

computation for the value function loss in P3O also differs from that in PPO.

We combine both the policy loss, value loss, and an entropy bonus S like in PPO

[33] to create the P3O objective function

LCLIP+V F+St (θ) = Et [L
CLIP
t (θ)− c1LV Ft (θ) + c2S[πθ](st)]. (4.6)

where LCLIPt represents the policy loss, LV Ft denotes the value loss, and S[πθ] is

the entropy bonus, which encourages the network to explore. The pseudo-code for

P3O is a modification of OpenAI’s Spinning Up documentation [30] and can be found

in Algorithm 4.1.

In summary, P3O extends the original PPO algorithm by incorporating the state-

preference function and GBAE to prioritize higher SI during policy and value function

updates. This modification enhances the algorithm’s performance in complex environ-
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Algorithm 4.1 Preferential Proximal Policy Optimization (P3O)

1: Input: Initial policy/value function parameters θ0
2: Output: Final policy/value function parameters θN
3: for k = 0, 1, 2, ...N-1 do

4: Collect trajectories Dk = τi using policy πk = π(θk) where t represents

timestep in trajectory τi
5: Compute rewards from environment (rt)

6: Compute method for Automatically Calculating Beta States β(s)

(section 4.1.1)

7: Compute ÂGBAEt using GBAE with beta states β(st) based on current value

function Eq(4.3)

8: Calculate policy loss using PPO-Clip objective and ÂGBAEt Eq(4.4)

9: Calculate value function loss using mean-squared error Eq(4.5)

10: Combine policy loss, value loss, and entropy bonus; update network Eq(4.6)

11: Determine θk+1 based on Eq(4.6) objective function

12: end for

ments and provides a more flexible approach to learning in situations with non-trivial

observation spaces. A diagram of the algorithm can be found in Figure 4.1.

4.1.4 Design Reasoning

In our algorithm, we employ Generalized Advantage Estimation (GAE) due to its ability

to address the high variance often seen in policy gradient methods. GAE offers an

effective way to estimate the advantage function, as evidenced by its performance in

environments like Biped and Quadruped from the MuJoCo suite [41], as demonstrated

in [32]. We selected Proximal Policy Optimization (PPO) [33] as the foundation for

our modifications, driven by its three key attributes: ease of tuning, straightforward

implementation, and competitive performance compared to other leading methods.

Our proposed algorithm extends on the concept of state importance, using the

Preferential Temporal Difference’s (PTD) β(s) to assign varying levels of significance

to different states. Inspired by Karino et al.’s State Importance (SI) framework [22],
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we seek a quantifiable measure of state importance. However, since our approach

operates within an on-policy framework, which does not explicitly incorporate Q-values,

we use a state-importance-inspired mechanism which exhibits similar properties.

We define the importance of a state based on two criteria: the potential for

exceptionally high or low rewards, and the presence of a definitive action that leads

to these rewards. Such states are considered important as they introduce a bias in

the algorithm towards actions that lead to these extreme rewards. Conversely, states

yielding uniform rewards, regardless of the agent’s actions, are deemed unimportant.

To quantify this state importance, we use Eq (4.1), which essentially multiplies

the variance of the action probabilities given the state, p(a|s), with the state-value

function, v(s). This provides a scalar measure of state importance.

However, the determination of state importance is not an isolated event. To

account for the effect of important states on their neighbors, we introduce an Exponent-

ially Weighted Moving Average (EWMA) smoothing. This ensures that states prece-

ding and succeeding an important state also get a boost in their importance scores,

thereby guiding the agent’s learning through a more effective sequence of updates.

Neglecting this smoothing factor could impair the performance of the algorithm, parti-

cularly in complex environments such as MsPacman.

This smoothed state importance measure is versatile and adaptable, making it

suitable for various types of environments, including those with intricate internal

observations or image-based observations. It eliminates the need to predefine β(s)

conditions as proposed by the authors of Preferential Temporal Difference Learn-

ing [1] (Table 4.2). We therefore integrate this measure directly into our proposed

Generalized Beta Advantage Estimation (GBAE) as defined in Eq 4.3, augmenting

the PPO policy.
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This modification to GBAE ensures that the advantages associated with high-

importance states bear a higher bias and lower variance, thereby steering the algorithm

towards these states. We found that this biasing mechanism enhances the performance

of our algorithm, emphasizing the value of incorporating state preferences into the

PPO policy optimization process.
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Chapter 5

Experiments

5.1 Atari Environments

In this section, we detail the performance of our introduced Preferential Proximal

Policy Optimization (P3O) method. We contrast its results with the standard Proxi-

mal Policy Optimization (PPO) [33] over six Atari 2600 games. We gauge the algor-

ithms based on their average returns from ten different training runs (Fig. 5.5),

individual episode returns (Fig. 5.1), variance (Fig. 5.7), entropy (Fig. 5.9), explained

variance (Fig. 5.11), and both policy (Fig. 4.4) and value loss (Fig. 4.5). All results

are post a training span of 20 million timesteps.

5.1.1 Training Details

In order to ensure a fair comparison between our proposed Preferential PPO (P3O)

algorithm and the baseline PPO, we maintained identical hyperparameters for both

algorithms. The code for the PPO and P3O algorithm was adapted from CleanRL [17].

Both models employed a learning rate of 1×10−3, which yielded the best results across
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all tested environments. The algorithms took 256 steps before updating, and each

algorithm was trained concurrently in 256 environments. The discount factor γ and

the trace decay parameter λ were set to 0.99 and 0.95, respectively. The number of

minibatches and epochs were both set to 8. All environments were trained for a total

of 20 million timesteps. The neural network architecture for both the actor and the

critic consisted of three convolutional layers and two linear layers, with rectified linear

units employed as activation functions. We trained both P3O and PPO algorithms on

each of the 6 environments using 10 different random seeds and calculated the average

returns for each run over specific episodes. This approach ensures a fair comparison

between both algorithms, as RL algorithms are prone to high variance [7].

5.1.2 Atari 2600 Environments

We utilized a suite of six Atari 2600 environments [4] provided by OpenAI’s Gym

toolkit [8] to train and evaluate our algorithms. These challenging environments,

requiring complex decision-making, serve as popular benchmarks for RL algorithms

making it the golden standard to train and test our algorithm:

• Breakout: A classic arcade game (1976) where players control a paddle to

bounce a ball and break bricks. The agent receives +1 reward point for breaking

each brick and the game ends when all bricks are cleared or when the player

loses all their balls. The observation space consists of a 210x160x3 RGB image

which represents the game’s screen.

• Freeway: Released in 1981, this game involves guiding a chicken to cross a

ten-lane highway while avoiding being hit by cars. The player receives a reward

of +1 point for each successful crossing and no penalty for being hit by a car.
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(a)

(b) (c)

Figure 5.1: These figures represent returns of each environment where it takes 10

different runs at each episode and computes the average. This is different from taking

the mean of the last ten episodes and plots what return the model provides for each

episode. The blue line is the proposed algorithm (P3O) and the orange line is the

baseline model (PPO).
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(a)

(b) (c)

Figure 5.2: These figures represent returns of each environment where it takes 10

different runs at each episode and computes the average. This is different from taking

the mean of the last ten episodes and plots what return the model provides for each

episode. The blue line is the proposed algorithm (P3O) and the orange line is the

baseline model (PPO).
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The episode ends after 2,016 time steps. The observation space, similar to

Breakout, is a 210x160x3 RGB image.

• Qbert: A 1982 puzzle game where the character Qbert navigates a pyramid

structure, changes cube colors, and avoids enemies. The agent receives +25

points by changing the color of the cubes to their target color, +300 points for

catching a green ball or by luring an enemy into jumping off the pyramid, and

+500 points for completing a level. The episode concludes when the player loses

all lives. The observation space is a 210x160x3 RGB image.

• River Raid: A scrolling shooter game (1982) where the agent controls a jet

flying over a vertically scrolling river. The agent is rewarded with points for

destroying various types of enemies (ranging from +30 to +500), +100 points

for collecting fuel, and an additional +500 points for reaching the end of a

segment. The game concludes when the player crashes or runs out of fuel. The

observation space is a 210x160x3 RGB image.

• MsPacman: In this 1982 game, the agent navigates Ms. Pac-Man through a

maze, eating pellets and avoiding ghosts. The agent receives +10 points for

each pellet or fruit eaten, and +200, +400, +800 and +1600 points for eating

the first, second, third and fourth ghost respectively after eating a power pellet.

The episode ends when the player loses all lives. The observation space is a

210x160x3 RGB image.

• Seaquest: A 1983 game where the agent controls a submarine to rescue divers,

collect treasures, avoid or destroy enemy fish, and ensure sufficient oxygen supply

by surfacing. The agent is rewarded +100 points for rescuing each diver, +200

points for every fish destroyed, +250 points for collecting treasure, and +500
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points for surfacing when the oxygen level is low. The episode ends when the

submarine is hit by an enemy or runs out of oxygen. The observation space is a

210x160x3 RGB image.

These diverse environments offer a strong assessment of the RL algorithms’ perf-

ormance and decision-making abilities while the reward structure in each environment

encourages the development of efficient strategies and intelligent navigation.

Atari Envpool Environments

Efficient exploration and learning from a large number of environments is a key challenge

in RL. To address this issue, we employed CleanRL’s Envpool code [46], which utilizes

the Envpool Python library for creating and managing a pool of environments. This

library enables the efficient execution of multiple environments in parallel, reducing the

total time required for training. The Envpool package allows for parallelization of the

training process across multiple CPU cores or GPUs. This significantly accelerates the

training process and reduces the total time required for experimentation.

In summary, the Envpool package provides a powerful tool for efficiently exploring

and learning from a large number of environments in RL. By leveraging the package’s

flexible interface and built-in tools, we can substantially improve the efficiency and

scalability of our RL algorithms.

Initialization of Networks

In our work, we used orthogonal initialization for both the policy and critic network.

The motivation behind this decision is that orthogonal initialization tends to produce

a more stable learning process in deep networks by preserving the variance of inputs

through the layers [16]. This can prevent issues such as the vanishing or exploding
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(a)

(b)
(c)

Figure 5.3: These are the games for each of the tested environments. We have

tested on six different diverse environments with multiple different action spaces and

objectives. For example Riverraid is vastly different to Freeway and Ms. Pacaman and

vice versa. Having a diverse pool of different games can allow P3O to demonstrate

how to can it perform on multiple unique environments.
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(a)

(b) (c)

Figure 5.4: These are the games for each of the tested environments. We have

tested on six different diverse environments with multiple different action spaces and

objectives. For example Riverraid is vastly different to Freeway and Ms. Pacaman and

vice versa. Having a diverse pool of different games can allow P3O to demonstrate

how to can it perform on multiple unique environments.
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gradient problem. We found that this initialization strategy worked well in our context

and helped to maintain a balanced importance across states in the policy and critic’s

learning process. We did experiment with other initialization strategies but found that

orthogonal initialization provided the best results in our experiments.

Returns and Variance

We trained both P3O and PPO algorithms on each of the 6 environments using 10

different random seeds and calculated the average returns for each run over specific

episodes. This approach ensures a fair comparison between both algorithms, as RL

algorithms are prone to high variance [7]. Our results indicate that P3O was able to

achieve higher performance during the training phase, with P3O achieving superior

returns in most environments. In the Breakout environment, P3O outperforms PPO

significantly during training. Around the 5 million timesteps mark, the algorithm

obtains higher rewards and learns a new strategy to generate substantial rewards.

Fig. 5.5 for Breakout demonstrates that the final 10 episodes’ average, across the

10 environments, reached a peak reward of 600. Examining Fig. 5.1, we observe

that Breakout sometimes attains rewards around 700. It is possible that training the

algorithm with more timesteps would lead to even greater rewards. Fig. 5.7 displays

the variance of training runs, indicating that P3O maintains substantially lower variance

up to 15 million timesteps in the breakout environment. This observation correlates

with Fig. 5.1, where, starting from 15 million timesteps, there is a more significant

increase in the variation of returns per episode. We believe the algorithm’s enhanced

performance towards the end of its training is due to its ability to discover more

effective strategies or solutions, resulting in higher rewards.

For the Freeway environment, P3O achieves similar training returns as PPO. While

51



P3O is only slightly below PPO in terms of returns around 12.5 million timestep

mark, it was still able to achieve exactly the same return at 20 million timestep. The

difference is approximately 0.5 points between PPO and P3O. Comparing the variance

of both P3O and PPO in Fig. 5.7, we find that they are quite similar.

In the environments of River Raid, MsPacman, and Qbert, P3O consistently

outperforms PPO, achieving higher training returns. For the MsPacman environment,

P3O demonstrates higher returns during training across 10 distinct environments, as

depicted in Fig. 5.5 and Fig. 5.1. We adjusted the EWMA’s alpha value to 0.75 during

training, instead of 0.9 like in the rest of the environments (except for River Raid). In

the River Raid environment, P3O managed to secure higher rewards than PPO, with

approximately 1000 more returns. We set the EMWA value to 0.6 for this environ-

ment, deviating from the commonly used value of 0.9, leading to better performance.

The variance of these environments—MsPacman, River Raid, and Qbert—are similar,

as exhibited in Fig. 5.7. Near the conclusion of training for MsPacman and River Raid,

P3O experiences a notable spike in variance across 10 different training runs. This

anomaly arises from the algorithm yielding higher returns in certain episodes and lower

returns in others. For example in River Raid environment, the algorithm is capable of

reaping rewards up to 10,000-11,000 in most episodes but reverts to around 8,000

in others, hence the dramatic variance. In the Qbert environment, P3O maintains a

lower variance throughout the training, with a spike occurring around the 17.5 million

timesteps mark.

In the Seaquest environment, the training returns in Fig. 5.1 show that the

algorithm begins to diverge from PPO around the 10 million timesteps mark. P3O

rapidly attains higher returns at 10 million timesteps and quickly surpasses PPO. When

comparing the returns per episode, the algorithm exhibits a larger returns variance. In
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(a)

(b) (c)

Figure 5.5: These figures represent the average returns of each environment where

the blue line is the proposed algorithm (P3O) and the orange line is the baseline model

(PPO). We first took the average of the last ten episodes and then calculated the

average between 10 different runs at each episode. We then graphed the average of

each episode to determine which model has better returns through training.
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(a)

(b) (c)

Figure 5.6: These figures represent the average returns of each environment where

the blue line is the proposed algorithm (P3O) and the orange line is the baseline model

(PPO). We first took the average of the last ten episodes and then calculated the

average between 10 different runs at each episode. We then graphed the average of

each episode to determine which model has better returns through training.
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Fig. 5.1, the algorithm has a maximum return of greater than 4500 but a minimum

return of greater than 2000 around the 20 million timesteps. This observation is

evident in the variance Fig. 5.7, where, around the 15-20 million timesteps, the algor-

ithm displays a considerably higher variance.

Entropy and Explained Variance in Reinforcement Learning

Entropy and explained variance serve as key metrics to understand the behavior and

learning efficacy of reinforcement learning (RL) algorithms.

Entropy quantifies the uncertainty in the policy, shedding light on the algorithm’s

exploration-exploitation trade-off. A higher entropy suggests that the policy is more

uncertain and thus leans towards exploration, sampling various actions. Conversely,

lower entropy values indicate the agent is in an exploitation phase, with the algor-

ithm relying on learned strategies. This balance between exploration and exploitation

directly impacts an algorithm’s ability to discover optimal policies.

Explained Variance gauges the predictive accuracy of the value function regarding

received returns. A well-calibrated value function is paramount in RL, as it provides

essential guidance during policy updates, especially in methods like P3O and PPO.

Examining Figure 5.9, P3O’s entropy consistently registers lower values across

environments, indicative of its tendency to exploit. This pronounced exploitation

strategy is evident in the breakout environment, marked by a rapid entropy decrease.

Such behavior suggests P3O’s confidence in its learned strategy, eliminating the need

for extensive exploration for the algorithm which is supported by superior returns

observed in Figure 5.1 for breakout. For environments like Qbert, RiverRaid, and

Seaquest, P3O commences exploitation earlier than PPO. This could stem from

P3O’s emphasis on significant states, potentially facilitating discovery of superior
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(a)

(b) (c)

Figure 5.7: To quantify the variance of the proposed algorithm and baseline model,

we computed the variance of their performance over 10 independent randomly seeded

runs on each environment. Specifically, we retrieved the variance of the total rewards

obtained at each episode and plotted the results on a graph. Lower values on the y-axis

indicate less variance, which is desirable for reproducibility. The proposed algorithm is

represented by the blue line, and the baseline model by the orange line. Each line has

been smoothed so it can be read easily.
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(a)

(b) (c)

Figure 5.8: To quantify the variance of the proposed algorithm and baseline model,

we computed the variance of their performance over 10 independent randomly seeded

runs on each environment. Specifically, we retrieved the variance of the total rewards

obtained at each episode and plotted the results on a graph. Lower values on the y-axis

indicate less variance, which is desirable for reproducibility. The proposed algorithm is

represented by the blue line, and the baseline model by the orange line. Each line has

been smoothed so it can be read easily.
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(a)

(b) (c)

Figure 5.9: These figures represent the average entropy of each environment where

the blue line is the proposed algorithm (P3O) and the orange line is the baseline

model (PPO). Entropy measures the balance between exploration and exploitation in

an algorithm. A higher entropy value indicates greater exploration, while a lower value

suggests more exploitation.
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(a)

(b) (c)

Figure 5.10: These figures represent the average entropy of each environment where

the blue line is the proposed algorithm (P3O) and the orange line is the baseline

model (PPO). Entropy measures the balance between exploration and exploitation in

an algorithm. A higher entropy value indicates greater exploration, while a lower value

suggests more exploitation.
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policies, thereby yielding improved returns. However, in MsPacman, both PPO and

P3O manifest comparable entropy values.

Turning our attention to Figure 5.11, most models demonstrate proficiency in

deciphering the underlying reward function, with P3O nearing perfection. Such adept-

ness implies accurate future return predictions, crucial for policy and value function

updates. Noteworthy observations include P3O’s accelerated reward function compreh-

ension in the Breakout and Qbert environments, as compared to PPO. This enhanced

understanding might account for P3O’s out-performance over PPO in these scenarios.

Policy and Value Loss

Understanding the dynamics of policy and value loss in reinforcement learning algor-

ithms provides crucial insights into their learning behavior and efficiency.

Policy Loss quantifies the alignment of the current policy with a desired or optimal

behavior. Specifically, a decreasing, and ideally negative, policy loss suggests that the

algorithm’s current policy surpasses its preceding iteration in terms of aligning with the

desired objectives. This typically indicates convergence towards an optimal strategy

that aims to maximize rewards.

Value Loss, on the other hand, encapsulates the divergence between the predicted

state values and the corresponding target values. These target values are typically

derived from a discounted reward formula, incorporating potential future rewards.

Minimizing this loss is paramount, as a reduced value loss directly translates to more

accurate value predictions by the model. This, in turn, bolsters the agent’s decision-

making prowess, enabling it to discern and choose actions that maximize the estimated

values of states.

Examining Figure 5.13, P3O consistently discerns more optimal strategies, parti-
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(a)

(b) (c)

Figure 5.11: This graph demonstrates the average of the ten runs for each environment

for explained variance. This graph demonstrates if the algorthms understand its reward

function. The higher it is, its mostly likely understanding how to gain reward and if

its lower, it means that the algorithm does not understand the reward function and its

either getting lucky in getting reward or memorizing how to get reward. The blue line

is the proposed algorithm (P3O) and the orange line is the baseline model (PPO).
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(a)

(b) (c)

Figure 5.12: This graph demonstrates the average of the ten runs for each environment

for explained variance. This graph demonstrates if the algorithms understand its

reward function. The higher it is, its mostly likely understanding how to gain reward

and if its lower, it means that the algorithm does not understand the reward function

and its either getting lucky in getting reward or memorizing how to get reward. The

blue line is the proposed algorithm (P3O) and the orange line is the baseline model

(PPO).
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(a)

(b) (c)

Figure 5.13: The policy shows the average update that it performs on both algorithms.

This shows if the algorithm obeys the PPO properties where it doesn’t update too

much from the old policy. The blue line is the proposed algorithm (P3O) and the

orange line is the baseline model (PPO).
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(a)

(b) (c)

Figure 5.14: The policy shows the average update that it performs on both algorithms.

This shows if the algorithm obeys the PPO properties where it doesn’t update too

much from the old policy. The blue line is the proposed algorithm (P3O) and the

orange line is the baseline model (PPO).

64



cularly around the midpoint of its iterations—RiverRaid and Seaquest being except-

ions. This indicates P3O’s general superiority in policy optimization relative to PPO.

Notably, despite Seaquest presenting a higher policy loss for P3O, it still managed to

outperform PPO. This anomaly warrants further investigation. On observing environ-

ments like Breakout, Qbert, River Raid and MsPacman, P3O’s pronounced policy

advantage becomes apparent.

Turning to Figure 5.16, PPO registers a pronounced value loss in comparison

to P3O. This can be attributed to P3O’s core design, wherein value updates are

modulated by the beta values. Specifically, a diminished beta reduces the extent of

value updates, whereas a heightened beta facilitates complete updates. This design

choice implies that P3O’s value loss will inherently be subdued for specific states in

comparison to PPO. An intriguing exception emerges in the Seaquest environment,

where P3O experiences an uptick in value loss towards the latter stages of its training,

potentially resulting from sporadic instances of exceptionally high rewards.

5.1.3 Testing Results

In order to assess the performance of P3O and PPO with a trained model, we trained a

single model for each algorithm on every environment using a randomly initialized seed.

Subsequently, we tested these models on 10 different randomly seeded environments.

Our results can be found in Table 5.1.

In the Breakout environment, the P3O model exhibited superior performance during

testing. Upon retrieving 10 different runs from the P3O model, the algorithm achieved

an average reward of 668.6, which is approximately 300 average reward points higher

than that of PPO.

Significant improvements were also observed in the Seaquest, Qbert, and MsPac-
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(a)

(b) (c)

Figure 5.15: This graph is the average value that the network predicts for 10 runs in

6 different environments. This will show what the update for the value network will

be and can determine whether appropriate updates for each is better. The blue line is

the proposed algorithm (P3O) and the orange line is the baseline model (PPO).
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(a)

(b) (c)

Figure 5.16: This graph is the average value that the network predicts for 10 runs in

6 different environments. This will show what the update for the value network will

be and can determine whether appropriate updates for each is better. The blue line is

the proposed algorithm (P3O) and the orange line is the baseline model (PPO).
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man environments. In the Seaquest environment, the P3O algorithm demonstrated an

increase of approximately 800 average rewards. For Qbert, the algorithm displayed an

increase of around 2000 average rewards. One of the most pronounced gaps between

P3O and PPO average returns was observed in the MsPacman environment. While

PPO attained an average reward of approximately 2000, P3O reached an average

reward of 5015.0, indicating an increase of nearly 3000 rewards. Conversely, PPO

outperformed P3O in terms of average rewards in the Freeway environment.

The experimental results obtained from our study suggest that the proposed P3O

algorithm demonstrates potential as a RL algorithm for Atari environments as it

outperforms the baseline in several environments. P3O’s capacity to learn varying

beta values based on SI enables the comprehensive utilization of the beta value range

between [0,1], thereby enhancing the algorithm’s overall performance. The algorithm

exhibits remarkable performance in environments such as Breakout, Qbert, MsPac-

man, and Seaquest, where the significance of specific states is particularly crucial for

obtaining high rewards. Our analysis reveals that P3O emphasizes states with high SI

that are essential for its updating and bootstrapping, which accounts for its improved

performance compared to PPO.

Nonetheless, our findings also imply that the efficacy of P3O is dependent upon

the environment. For example, Freeway environment did not display improved perf-

ormance with P3O. The variance of the P3O algorithm and the baseline PPO algor-

ithm is generally comparable, with exceptions such as Breakout, Seaquest, and Qbert,

where the variance is higher. In these environments, the increase in rewards is more

substantial, and the algorithm’s ability to explore various states and identify those

with high SI is critical. For instance, in Breakout, the algorithm may have discovered

a novel scoring method from these high-importance states, resulting in a significant

68



reward increase. We observed that the variance in Qbert escalated towards the end of

training, indicating the necessity for additional training steps to stabilize the algorithm.

In conclusion, our experimental results indicate that P3O is a promising RL algor-

ithm for Atari environments, with improved performance in specific environments. The

proposed algorithm’s capacity to learn varying beta values based on SI highlights its

potential to enhance overall performance compared to the baseline PPO algorithm.
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Models

Atari Task P3O PPO

Breakout 668.6 ±60.9 363.4 ±25.1
Freeway 22.9 ±0.6 22.8 ±0.5
Seaquest 2552.5 ±11.6 1806.0 ±6.4
River Raid 8898.0 ±88.4 8096.7 ±107.2
Qbert 18462.5 ±770.4 16855.0 ±751.8
MsPacman 5015.0 ±156.9 1975.0 ±77.1

Table 5.1: This table presents the performance results of two RL models: PPO and

P3O. The models were trained and evaluated on a range of different environments,

with the average scores computed across 10 independently randomly seeded runs for

each environment. The scores reported in the table represent the mean of the 10

trails for each model and environment, along with the corresponding standard error.

Hyperparameter Value

Total Timesteps 20 Million

Learning Rate 1e-3

Num. Environments 256

Num. Steps 256

Gamma 0.99

GAE parameter (lambda) 0.95

Minibatch Size 8

Num. Epochs 8

Clipping parameter epsilon 0.1

VF coeff. c1 (Eq.9) 1

Entropy coeff. c2 (Eq.9) 0.01

Table 5.2: PPO and P3O hyperparameters used for training all six Atari environ-

ments. They were selected based on CleanRL’s implementation of Proximal Policy

Optimization [17].
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Chapter 6

Conclusions

6.1 Contributions

In this study, we introduce a novel algorithm, Preferential Proximal Policy Optimization

(P3O), which modifies the Proximal Policy Optimization (PPO) algorithm. P3O

employs beta values calculated using State Importance SI, Min-Max Normalization,

Exponentially Weighted Moving Average (EWMA), and beta advantages derived from

the Generalized Beta Advantage Estimation (GBAE) algorithm. We evaluate the

performance of the P3O algorithm in comparison to the baseline PPO algorithm across

6 Atari environments and conduct 10 distinct runs for each environment to account

for variability in training returns.

Our results reveal that P3O outperforms PPO in 5 out of the 6 environments,

specifically Breakout, MsPacman, Qbert, River Raid and Seaquest. We observe that

the variance between the two algorithms is generally similar, with the exception of

Breakout, River Raid and Seaquest, where the algorithms discover more effective

methods for reward acquisition and consequently exhibit higher variance towards the

end of training.
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Entropy and explained variance metrics revealed that P3O tends to exploit more

than PPO, indicating its confidence in learned strategies. Additionally, understanding

policy and value loss is essential for gauging the efficiency of reinforcement learning

algorithms. P3O generally demonstrated a better refinement for policy optimization

and lower value loss compared to PPO, though there were some exceptions that

merit further investigation. Our findings demonstrate the potential that Preferential

Temporal Difference Learning can have on RL algorithms shown by P3O.

6.2 Limitations

Our algorithm demonstrated promising results. However, the introduction of an

additional hyper-parameter, the alpha value in EWMA, 2.14, may require further

adjustments for different environments. Hyperparameter tuning is notoriously challeng-

ing, often requiring intricate strategies to identify optimal values [11]. Various methods,

such as Bayesian Optimization [21] and Tree Parzen Estimations [5], have been

proposed for this purpose [53]. Our goal is to determine the best hyper-parameter for

each environment, thereby fully demonstrating P3O’s potential. It’s noteworthy that

our current choice of the EWMA value was based on a trial-and-error approach.

6.3 Future Direction

For future research, we propose assessing P3O in Mujoco environments [41], which

are renowned for their complexity and numerous internal observations. P3O could

streamline the search for optimal beta values by utilizing SI with Min-Max normal-

ization and EWMA and potentially achieve high rewards in some of Mujuco’s environ-

ments. Additionally, we recommend testing the algorithm in partially observable
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environments, as P3O’s employment of SI could result in enhanced performance by

allocating greater attention to states that yield high importance. Finally, we suggest

investigating the application of the proposed beta values β(s) within the Actor-Critic

with Experience Replay (ACER) algorithm [45].

Another direction that we would explore is to test on real-world applications

especially with applications with control. PPO is a very famous and easy to use

algorithm that is used in many research and applications. To test and compare P3O

with PPO could potentially showcase the usefulness of the algorithm in real-world

applications. Some of these applications could be in robotics [19], stock trading [51],

health care [52] and many more. Investing in more useful cases for P3O could be

beneficial and help achieve better results in those applications especially autonomous

driving applications [23] as we believe that our work could potentially excel in that

application.

In our future work, we aim to extend our approach to integrate beta values

directly into the action-value function, Q(s, a), rather than limiting them to the state-

value function, V (s). While our current investigations have primarily focused on the

application of PTD algorithms to V (s), we believe that a modification forQ(s, a) could

broaden the applicability across a more diverse set of reinforcement learning scenarios.

Such an extension holds promise for enhancing the performance of sophisticated off-

policy algorithms, such as Twin Delayed DDPG (TD3) [13] and Soft Actor-Critic

(SAC) [14].
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Appendix A

A.1 Generalized Beta Advantage Properties

To clarify the properties of Generalized Beta Advantage Estimation (GBAE) under

varying λ values, we present a demonstration using for the last three time-steps of an

episode. This example serves to illustrate that when λ = 1, GBAE yields the same

results as Gβt − V (st). Additionally, when λ = 0, GBAE is the one-step Temporal

Difference (TD) advantages δt = rt + γvt+1 − vt . The following analysis highlights

the adaptability of GBAE to different learning scenarios, depending on the selected

parameter values.
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Generalized Beta Advantage Estimation (GBAE)

A
GBAE(γ,λ)
t = δt + (1− β(st+1))(γλ)AGBAEt+1

AGBAET = δT + γλA
GBAE
T+1 = rT − VT

AGBAET−1 = δT−1 + γλ(1− β(sT ))AGBAET

= rT−1 + γλ(1− β(sT ))rT + γVT−

γλ(1− β(sT ))VT − VT−1

AGBAET−2 = δT−2 + γλ(1− β(sT−1))AGBAET−1

= rT−2 + (γλ)(1− β(sT−1))rT−1+

γ2λ2(1− β(sT−1))(1− β(sT ))rT+

γVT−1 − γλ(1− β(sT−1))VT−1−

γ2λ2(1− β(sT−1))(1− β(sT ))VT − VT−2

GBAE when λ = 0

AGAET = δT = rT − VT

AGAET−1 = δT−1 + γλ(1− β(st))AGAET

= rT−1 + γVT − VT−1

AGAET−2 = δT−2 + γλ(1− β(st−1))AGAET−1

= rT−2 + γVT−1 − VT−2
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GBAE when λ = 1

AGBAET = δT + γλA
GBAE
T+1 = rT − VT

AGBAET−1 = δT−1 + γ(1− β(sT ))AGBAET

= rT−1 + γ(1− β(sT ))rT + γVT−

γ(1− β(sT ))VT − VT−1

= rT−1 + γ(1− β(sT ))rT+

γVTβ(sT )− VT−1

AGBAET−2 = δT−2 + γ(1− β(sT−1))AGBAET−1

= rT−2 + γVT−1 − VT−2 + γλ(1− β(sT−1))rT−1

+ γ2λ(1− β(sT−1))VT

− γλ(1− β(sT−1))VT−1

+ γ2λ2(1− β(sT−1))(1− β(sT ))rT

− γ2λ2(1− β(sT−1))(1− β(sT ))VT

AGBAET−2 = rT−2 + γ(1− β(sT−1))rT−1

+ γ2(1− β(sT−1))(1− β(sT ))rT

+ γβ(sT−1)VT−1

+ γ2(1− β(sT−1))β(sT )VT

− VT−2
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Beta Returns with baseline Gβt − v(s)

GβT − VT = rT + γ[β(sT+1)V (sT+1) + (1− β(sT+1))G
β
T+1]− VT

= rT − VT

GβT−1 − VT−1 = rT−1 + γ[β(sT )V (sT ) + (1− β(sT ))G
β
T ]− VT−1

= rT−1 + γ[β(sT )(VT ) + (1− β(sT ))rT ]− VT−1

= rT−1 + γ(1− β(sT ))rT + γβ(sT )VT − VT−1

GβT−2 − VT−2 = rT−2 + γ[β(sT−1)V (sT−1) + (1− β(sT−1))G
β
T−1]− VT−2

= rT−2 + γ[β(sT−1)(VT−1) + (1− β(sT−1))[rT−1+

γ[β(sT )VT + (1− β(sT ))rT ]]]− VT−2

GβT−2 − VT−2 = rT−2 + γ(1− β(sT−1))rT−1

+ γ2(1− β(sT−1))(1− β(sT ))rT

+ γβ(sT−1)VT−1

+ γ2(1− β(sT−1))β(sT )VT

− VT−2
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