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ABSTRACT 

With the growing diversification of modern urban transportation options, such as 

small-scale autonomous delivery vehicles, autonomous patrol robots, e-bikes, and e-

scooters, sidewalks have gained newfound importance as critical features of High-

Definition (HD) Maps. Since these emerging modes of transportation are designed to 

operate on sidewalks to enhance public safety, there is an urgent need for efficient and 

precise sidewalk annotation methods for HD maps. This is crucial for accurate 

representation and the development of robust path-planning algorithms for autonomous 

vehicles to navigate urban environments safely. The following thesis proposes a semantic 

segmentation-based sidewalk extraction on aerial images method using an A* path 

planning algorithm for sidewalk segmentation refinement. The A* path planning algorithm 

with and without heuristic function was then applied to the extracted and refined sidewalk 

annotations to generate a safe and efficient route for autonomous navigation. An objective 

function considering travel distance and safety level is also proposed to determine the 

optimal route on the sidewalk and crosswalk. The results of this work show that the 

proposed sidewalk extraction method can precisely and efficiently predict sidewalks from 

aerial images, and it is feasible to navigate throughout the city using the predicted 

sidewalks.  

 

Keywords: semantic segmentation; sidewalk extraction; route optimization; HD maps; 

autonomous vehicles  
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Chapter 1. Introduction 

1.1 Background and Motivation 

Autonomous driving has been among the most popular yet challenging topics in recent 

years. Among all modules in an autonomous driving system, HD maps have drawn a 

noticeable amount of attention in recent years. HD maps have been known for their high 

precision, usually centimetre-level, and rich geometric and semantic information normally 

unavailable on traditional maps. An HD map contains all critical static properties (such as 

roads, road markings, traffic lights, buildings, and obstacles) of the environment necessary 

for autonomous driving, especially the objects that are impossible for sensors to 

appropriately detect due to occlusion. In an autonomous driving system, an HD map is used 

to constantly interact with different sensors, including camera, lidar, and radar, to construct 

a real-time perception module, which ultimately supports the mission and motion planning 

of the ego vehicle. This interaction is further demonstrated in Figure 1.1.  

As a base layer of an HD map, the road network defines all drivable and non-drivable 

lanes, such as local ways, highways, pedestrian crossings, and sidewalks. It is a 

fundamental geofencing component binding the ego vehicle within drivable roads. It also 

works as a traditional map, allowing the autonomous driving system to plan and navigate 

the path. Extracting road networks from aerial images is also appealing since aerial 

photographs have extensive coverage of maps, usually at the city scale, and are constantly 

updated through satellites. This allows the autonomous driving system to understand the 

environment before planning the route. Traditionally, road network annotations/extractions 

were done by labour, which was costly, time-consuming, and low precision due to human 

error. In recent years, with the fast development of accelerated Graphics Processing Units 
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(GPUs) and excellent deep learning (DL) algorithms, road network extraction has become 

an automatic application with high precision and efficiency and low labour cost. Most of 

the current DL-based road network extraction research focuses on extracting motorways or 

highways from aerial images due to the increasing popularity of autonomous vehicles, 

resulting in a considerable lack of sidewalk extraction methods. However, with 

increasingly more small-scale vehicles and robots operating autonomously on the road, the 

significance of including a sidewalk network in an HD map cannot be ignored. Thus, 

accurate and automatic sidewalk extraction methods are in demand. Additionally, global 

routing on sidewalks is also inevitable for smooth navigation throughout the urban 

environment. The quality of the selected route for autonomous navigation also depends on 

factors, such as the total distance of the route and the safety concerns on the route. Thus, 

routing methods for generating high quality route on sidewalk networks are in demand.   

 

Figure 1.1 Interaction Between HD Maps and Other Autonomous Driving Modules 

1.2 Scope and Objectives 

The primary scope of this research is to develop an efficient and precise method for 

sidewalk extraction on aerial images utilizing semantic segmentation and segmentation 
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refinement. All extracted sidewalk images are to be concatenated together to construct a 

city-scale sidewalk network of a part of North Oshawa. A cost-based routing algorithm is 

then applied to the network to generate a smooth route using only sidewalks and crosswalks 

(if necessary). An objective function with the mini-max strategy is also proposed to select 

the efficient route considering the route distance and safety. The purpose of route planning 

is to show the feasibility of autonomous robots travelling through the city using sidewalks 

and crosswalks. The objective function can also be adapted to other global path planning 

applications with specific preferences.  

The detailed objectives include: 

• Developing an automatic sidewalk extraction method using the deep learning 

approach  

• Developing a cost-based global routing algorithm incorporating terrain types 

(sidewalk vs crosswalk) 

• Developing an objective function for global routing optimization 

Tasks are required to be completed to achieve the objective above include: 

• The design of a customized sidewalk dataset with precise sidewalk masks 

specifically for sidewalk extraction and semantic segmentation research 

• The development of an automatic sidewalk extraction method on aerial images 

using semantic segmentation 

• A comprehensive comparison of semantic segmentation performance on 

sidewalk extraction 
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• The development of a path-planning-based sidewalk segmentation refinement 

method 

• The development of a cost-based routing algorithm for sidewalk and crosswalk 

networks 

• The design of an objective function that determines the optimal route for 

different route planning applications or preferences considering travel distance 

and safety level 

1.3 Contributions 

To the knowledge of the author, the main contributions of this research are listed below: 

• A customized sidewalk dataset is prepared for sidewalk extraction and semantic 

segmentation research, which can also be used as a benchmark dataset for future 

research. 

• A DL-based sidewalk extraction method is proposed to annotate all sidewalks 

efficiently and precisely when given an aerial image, replacing the traditional 

manual labelling methods.  

• A path planning-based segmentation refinement method is proposed to fix 

broken/incomplete sidewalks when segmentation algorithms fail to produce 

correct predictions.  

• All extracted sidewalk images are concatenated to construct a city-scale 

sidewalk network map of a part of North Oshawa, including the Ontario Tech 

University, residential area, and urban traffic, which can be used as a map 

texture in an HD map for route planning and navigation. 
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• Using GPS coordinates, a cost-based routing algorithm is applied to the city-

scale sidewalk network map for global route planning and navigation. Various 

routes between two locations on the map are generated when different cost 

values are given.  

• An objective function is proposed for route optimization considering distance 

and safety level.  

• A path follower simulation is created to mimic the real-life scenario of an 

autonomous robot following the generated route on the sidewalk network.  

1.4 Outline 

The thesis is organized as follows: 

Chapter 1 introduces the research background, scope, objectives, 

contributions/outcomes, and thesis outline.  

Chapter 2 provides an in-depth literature review regarding DL-based road network 

extraction on aerial images for HD maps, outlining the lack of current road network 

extraction research.  

Chapter 3 describes the design process in detail on the sidewalk dataset preparation, 

including the aerial image and the sidewalk mask.  

Chapter 4 describes the proposed DL-based sidewalk extraction method, including 

introducing semantic segmentation algorithms, model training and evaluating, and 

sidewalk extraction performance before refinement. The second part of this chapter 

describes the proposed sidewalk segmentation refinement method and the results after 

the refinement.  
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Chapter 5 describes the cost-based route planning algorithm on the extracted sidewalk 

and the objective function considering both route distance and safety level. The path 

follower simulation is carried out in detail in the second part of this chapter. 

Chapter 6 concludes the current work and suggests future work to be done.   
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Chapter 2. Literature Review  

2.1 Introduction 

The “high-definition map” concept was first carried out in the Mercedes-Benz 

research in 2010 for the Bertha Drive Project. In the Bertha Drive Project, a Mercedes-

Benz S500 completed the Bertha Drive Memorial Route fully autonomously, using a highly 

precise and informative 3D road map [1]. The road map was later named “High-Definition 

Live Map” by a mapping company called HERE [2]. In the HD map defined by HERE, a 

three-layer data structure, shown in Figure 2.1, is adopted, including a Road Model, a Lane 

Model, and a Localization Model as the first, second, and third layers, respectively. The 

three-layer structure is also adopted by other mapping companies and organizations, such 

as TomTom and Lanelet (Bertha Drive), with different layer names, as shown in Table 2.1.    

Table 2.1 Examples of the three-layer structed HD maps 

Layer number HERE Lanelet (Bertha Drive) TomTom 

1 HD road Road network 

(OpenStreetMap) 

Navigation data 

2 HD lanes Lane level map Planning data 

3 HD localization Landmarks/Road 

marking map 

Road DNA 

In the three-layer structure, the first layer defines all road characteristics, including 

but not limited to road topology/network, direction of travel, travelling rules, intersections, 

curbs/boundaries, slopes/ramps, and elevation. Its role is to provide general navigation 

information. The second layer defines the lane-level features such as road types, widths, 

speed limits, and stop areas. This layer supports the perception module of the autonomous 
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driving system for decision-making based on real-time traffic or environment. The third 

layer localizes the autonomous vehicle by adding roadside furniture like trees, buildings, 

traffic signs and signals, and road markings. Those features allow the autonomous vehicle 

to quickly localize itself by matching the HD map environment to the real-time 

environment.  

Road networks, as the base/first layer of an HD map, define the general topology of 

the map and are essential for an autonomous driving system to localize the ego vehicle and 

plan routing. Road network extraction, a process of manually or automatically annotating 

the road or road boundary from an aerial map, as shown in Fig. 2.2, is also commonly done 

on aerial or satellite images since they have high resolution, extensive map coverage, and 

up-to-date map information. As mentioned in Chapter 1, DL-based road network extraction 

methods have been actively proposed and intensively used to replace the traditional manual 

annotation methods. This chapter provides a comprehensive literature review on DL-based 

road network extraction methods, and their advantages and limitations are also discussed. 

 

Figure 2.1 Road boundary extraction on NYC planimetric dataset [3] 
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2.2 Deep Learning-based Road Network Extraction Methods  

Automatic road network extraction on aerial images can be classified into 

segmentation-based, iterative graph growing, and graph-generation methods.  

2.2.1 Segmentation-based Methods 

Semantic segmentation is a computer vision task that aims to correctly give the 

same colour code to pixels of an image that belongs to the same class/category. An example 

of image segmentation data is presented in Figure 2.2, where each class is labelled in a 

specific colour code, such as roads, pedestrians, vehicles, signs, and traffic lights. In 

segmentation-based methods, the probabilistic segmentation map is predicted from an 

aerial image, and the segmentation prediction is refined and extracted through post-

processing.  

 

Figure 2.2 Image segmentation example from the Cityscapes Dataset [4] 

DeepRoadMapper, proposed by Mattyus et al., is a segmentation-based method that 

directly predicts the road topology and annotates the road network from aerial images. In 
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this approach, a variant of ResNet [5] was used to segment aerial images into interest 

categories, such as roads and buildings. A softmax activation function was used with a 

threshold of 0.5 probability to filter the road class, and the shinning [6] method was applied 

to extract the road's centerline. Additionally, the endpoints of the discontinued road were 

connected to alleviate the discontinuity issue of the road segmentation. In their work, 

shown in Figure 2.3, the yellow lines are considered potential roads, and the A* algorithm 

was applied here to select the shortest path between every two discontinuities. This 

approach was evaluated on the TorontoCity dataset and achieved the state-of-the-art 

(SOTA) result in the year of the publication. Besides the excellent performance, it is 

noticeable that the heuristics (A* algorithm) is not an ideal solution when the road or the 

surrounding environment complexity increases as the shortest path is not always the correct 

path.  

 

Figure 2.3 DeepRoadMapper road network extraction [7] 

Batra et al. proposed the Orientation Learning and Connectivity Refinement 

approaches to enhance the segmentation-based road network extraction performance and 

improve the road segmentation refinement method in the DeepRoadMapper. This proposed 
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method fixed the road network discontinuity issue by predicting the road topology's 

orientation and segmentation and using an n-stacked multi-branch convolutional neural 

network (CNN) to correct road segmentation results. This method was evaluated on the 

SpaceNet [8] and the DeepGlobe [9] dataset, and the results were compared with 

DeepRoadMapper and other methods [10]–[13] to show its SOTA performance. The 

evaluation results and the comparison are shown in Table 2.2, where the best results are 

bolded. 

Additionally, a road segmentation refinement method was proposed by Ghandorh 

et al., adding an edge detection algorithm on top of the segmentation-based method [14]. 

The proposed method combined the encoder-decoder architecture with dilated 

convolutional layers and the attention mechanism to allow the neural network to segment 

large-scale objects and focus more on the crucial features. The road segmentation was then 

further refined by applying an edge detection algorithm to them.  

Table 2.2 Comparison of the state-of-the-art road extraction methods on SpaceNet and DeepGlobe dataset. IOUr 
and IoUa refers to relaxed and accurate road IoU. APLS refers to average path length similarity 

Method 
SpaceNet DeepGlobe 

Precision Recall F1 IoUr IoUa APLS Precision Recall F1 IoUr IoUa APLS 
DeepRoadMapper 
(segmentation) [7] 60.61 60.80 60.71 43.58 59.99 54.25 79.82 80.31 80.07 66.76 62.58 65.56 

DeepRoadMapper (full) [7] 57.57 58.29 57.93 40.77 N/A 50.59 77.15 77.48 77.32 63.02 N/A 61.66 
Topology Loss (with BCE) 
[10] 50.35 50.32 50.34 33.63 56.29 49.00 76.69 75.76 76.22 61.58 64.95 56.91 

Topology Loss (with Soft IoU) 
[10] 52.94 52.86 52.90 35.96 57.69 51.99 79.63 79.88 79.75 66.32 64.94 65.96 

LinkNet34 [12] 61.30 61.45 61.39 44.27 60.33 55.69 78.34 78.85 78.59 64.73 62.75 65.33 
LinkNet34 [12] + Orientation 
[30] 63.82 63.96 63.89 46.94 62.45 60.76 81.24 81.73 81.48 68.75 64.71 68.71 

MAN [11] 49.84 50.16 50.01 33.34 52.86 46.44 57.59 56.96 57.28 40.13 46.88 47.15 
RoadTracer [13] 62.82 63.09 62.95 45.94 62.34 58.41 82.85 83.73 83.29 71.36 67.61 69.65 
OrientationRefine [30] 64.65 64.77 64.71 47.83 63.75 63.65 83.79 84.14 83.97 72.37 67.21 73.12 
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2.2.2 Iterative Graph Growing Methods 

Iterative graph growing methods, as the name implies, generate the road network 

from aerial images by selecting several vertices along the road or road boundary and 

constructing the road network vertex by vertex until the entire road network is created. 

The iterative graph growing method was proposed by Bastani et al. to solve the 

broken road segmentation issue. The author noticed that the performance of the heuristics 

dramatically drops when there is more uncertainty or complexity in the road segmentation, 

which can be caused by occlusion and complex topology, such as parallel roads [13]. The 

purely CNNs-based road segmentation performs poorly as the occlusion area increases, 

which rises from trees, shadows, buildings, and over-road bridges. Since prior approaches 

[7], [15] could not handle such problems very well, Bastani et al. proposed a new method, 

RoadTracer [13], to address the abovementioned issues and automatically extract the road 

networks from aerial images. The RoadTracer adopts an iterative graph construction 

process. It has a search algorithm guided by a CNNs-based decision function. The search 

algorithm starts from a known single vertex on the road or road boundary, and as the search 

algorithm explores the aerial map, it continuously adds vertices and edges to the road 

network. The CNNs-based decision function decides if a vertex or an edge can be added to 

the road network. As the search algorithm finishes exploring, all added vertices and edges 

are connected one after another to generate the road graph in an iterative growing manner. 

The growing process can be visualized in Figure 2.4. Additionally, RoadTracer was also 

evaluated on the SpaceNet and the DeepGlobe dataset, and the results are shown in Table 

2.2.  
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The iterative graph growing method does solve the road segmentation discontinuity 

issue caused by occlusions; however, the limitation of this method is also apparent. The 

efficiency of this method heavily depends on the scale of the road network or the aerial 

map as well as the exploring speed of the search algorithm. Since it creates the road network 

vertex-by-vertex, the process will become time-consuming as the road network scale 

grows. To the best of the author’s knowledge, RoadTracer is the first work that applies the 

iterative graph growing method in road network extraction research. Thus, further research 

on implementing more efficient strategies on large-scale maps or enhancing the speed of 

the search algorithm should be conducted.  

 

Figure 2.4 Iterative graph growing method for road network extraction [1] 

2.2.3 Graph-generation Methods 

Graph-generation methods extract road networks by directly predicting the road 

network graphs from aerial images. This method encodes the input aerial images into vector 

fields for prediction purposes by the neural network. The prediction is then decoded into 

segmentation graphs using up-sampling algorithms such as the transposed convolutional 

neural network. Besides road networks, this method has also been used to extract other 

features, including line segments[16], line-shaped objects [17], and polygon-shaped 

buildings [18].  
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Xu et al. adopted the graph-generation method and added a transformer [19] into 

the algorithm to propose a novel system named csBoundary [20] for automatic road 

network extraction. The system's first part contains a Feature Pyramid Network (FPN) [21] 

that inputs a 4-channel aerial image. The FPN processes the image and predicts a keypoint 

map and a segmentation map, as shown in Figure 2.5. A set of vertex coordinates with a 

length of m is then extracted from the keypoint map. For each set of the vertex coordinates, 

a size of 𝐿𝐿 × 𝐿𝐿 region of interest (ROI) is cropped and placed on the keypoint map, as 

shown in the red box in Figure 2.5. The system then concatenates the input image, the 

segmentation map, and the keypoint map to construct a 6-channel feature tensor. Inspired 

by the transformer algorithm, Xu et al. proposed the attention for adjacency net (AfANet), 

which builds the second part of the csBoundary system. The encoder of AfANet uses the 

6-channel feature tensor with the ROI to compute the local and global feature vectors. The 

decoder of AfANet takes the local and global feature vectors as well as the extracted vertex 

to predict the adjacency matrix for generating the road network graph. All obtained graphs 

are then stitched together to construct the final city-scale road boundary graph, as shown 

in Figure 2.5. 

 

Figure 2.5 CsBoboundary system architecture 
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2.2.4 Other Methods 

Besides the methods mentioned above, there are also different approaches in road 

network extraction using various data sources/formats instead of aerial images, such as 

vehicle dashcam images, lidar point clouds, and the fusion of both. 

Schreiber et al. [22] used 3D reconstruction to reconstruct the road from camera 

images. Jang et al. [23] designed a fully convolutional network to detect and classify the 

road in camera images. Ibrahim et al. and Ding et al. utilized lidar point clouds to create 

3D road maps. The former applied a loop detection algorithm and the 3D normal 

distribution transformation (NDT) algorithm to extract the road from point clouds, and the 

latter created a 3D HD map using the NDT algorithm with a digital 3D scene of the actual 

scene as a reference.  Ma et al. proposed BoundaryNet [24], a novel DL framework 

adopting a modified U-Net [25] and a conditional deep convolutional generative 

adversarial network (c-DCGAN) [26], to extract road boundaries using both laser scanning 

point clouds and satellite imagery. Li et al. built the road map by fusing GPS trajectories 

and remote sensing images [27]. Yu et al. designed a fully convolutional network (FCN) 

and used a residual fusion strategy to merge feature maps learned from lidar-camera data 

for road detection [28]. Gu et al. created a mapping layer to project the features of lidar’s 

imagery view onto the camera’s perspective imagery view. They designed a conditional 

random forest (CRF) framework to extract both range and colour information from lidar-

camera data. Since road network extraction using other data sources and data fusion are 

out of the scope of this thesis, such methods will not be further discussed. However, readers 

can refer to [1] for more details.  
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2.2.5 Summary  

The segmentation-based method automatically extracts road networks from aerial 

images and can be directly applied to large-scale maps for fast road network extraction 

using CNN. However, the performance of this method heavily relies on the 

quality/clearance of the road network on aerial images. The segmentation-based method 

does not guarantee a correct prediction if the aerial image contains occlusion that blocks 

the road network. Segmentation refinement is usually applied after the segmentation 

prediction, such as path planning and edge detection, to fix the discontinuity issue. It still 

cannot completely address this issue, especially when the complexity of the road network 

increases. 

On the other hand, the iterative graph growing method solves the discontinuity issue 

by adopting a search algorithm powered by a CNN-based decision function, but it still has 

its limitations. Since this method generates the road vertex-by-vertex, the extraction time 

dramatically increases as the size of the road map increases. This method also suffers from 

the drifting issue because it generates the road iteratively, making it challenging to extract 

large-scale road networks. Graph-generation methods are still limited to extracting certain 

shapes of the object as they depend on the ability of the decoding algorithm, which strains 

their generalization ability. More powerful decoding algorithms need to be developed to 

enhance the performance of graph-generation methods. Table 2.3 compares the evaluation 

results of the above three road network extraction methods on the Topo-Boundary [3] 

benchmark dataset using APLS and TLTS [29] evaluation metrics, including 

OrientationRefine [30] (segmentation-based), Enhanced-iCurb [3] (iterative graph 

growing), Sat2Graph [17] (graph generation), and csBoundary [20] (graph generation).  
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Table 2.3 Evaluation results of three road extraction methods on the Topo-Boundary 
benchmark dataset 

Methods Precision Recall F1 APLS TLTS 
2.0 5.0 10.0 2.0 5.0 10.0 2.0 5.0 10.0 

OrientationRefine 0.517 0.816 0.868 0.352 0.551 0.589 0.408 0.637 0.678 0.235 0.219 
Enhanced-iCurb 0.412 0.695 0.785 0.412 0.671 0.749 0.410 0.678 0.760 0.299 0.279 

Sat2Graph 0.460 0.484 0.604 0.128 0.240 0.293 0.159 0.304 0.374 0.037 0.030 
csBoundary 0.309 0.659 0.830 0.291 0.600 0.738 0.297 0.652 0.772 0.376 0.343 

Furthermore, from reviewing the above road network extraction methods, it is easy 

to notice that all the proposed work solely focuses on extracting driveways/highways for 

autonomous vehicles. Since sidewalks have become an unavoidable feature on HD maps 

due to the growing diversification of modern transportation options, automatic sidewalk 

extraction methods are in demand.   
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Chapter 3. Aerial Image Dataset Preparation   

3.1 Introduction 

When training a deep learning algorithm/model for some specific application, such 

as object detection, object recognition, and semantic segmentation, one of the most 

important aspects is the dataset used for training. The quality and the size of the dataset 

have a direct impact on the final performance of the deep learning model. Unlike object 

detection/recognition datasets, where annotations are directly placed on the training image, 

a semantic segmentation dataset has two types of image data: images and masks. Images 

in sidewalk extraction refer to the original aerial images that will be the input of the DL 

algorithm. Masks here refer to the sidewalk annotation image, where sidewalk pixels from 

the original aerial image are assigned to a colour, and the background pixels are set to a 

different colour. Dataset preparation is a multi-step process, including sidewalk annotation 

on aerial images, image processing, and dataset splitting. This chapter will provide details 

on the dataset preparation process.  

3.2 Sidewalk annotation on aerial images  

The Quantum Geographic Information System (QGIS) software is the primary 

platform for collecting all aerial images and sidewalk annotations. In QGIS, a raster layer 

of Google Satellite Image (GSI) is loaded on the software as the base aerial map. The map 

is set to the EPSG:3857-WGS 84 coordinate system since this system has high-resolution 

aerial images and top-down views of the map. A scale of 1:1000 is selected to maintain the 

clarity of the aerial images while allowing them to have enough sidewalk features within 

each aerial image. With the coordinate system and the scale correctly set, a new Shapefile 

layer is created on top of the GSI map layer. The new Shapefile layer uses the same 
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coordinate system to avoid the mismatching issue with the GSI map layer when creating 

the sidewalk annotation. The Polygon is selected for the geometry type of this layer since 

this type best describes the general shape of the sidewalk. The newly created Shapefile 

layer will be the sidewalk layer that contains all sidewalk annotations on the GSI map layer. 

On the sidewalk layer, various polygon shapes can be created by defining the polygon's 

vertices. To create polygons that fit the sidewalk, vertices are placed along the edge of 

sidewalks. The more vertices selected, the better the polygon shape will fit the sidewalk. 

To maintain the annotation precision and reduce the time consumption, straight sidewalks 

have fewer vertices than curved sidewalks. The contour of the sidewalk polygon, along 

with the polygon itself, are assigned to the same colour code. The purpose of the same 

colour code is to help reduce the complexity of the image processing part. An example of 

the original and annotated aerial image is shown in Figure 3.1 and Figure 3.2, respectively, 

where the sidewalk annotation is assigned an RGB value of (255, 127, 0).  

 

Figure 3.1 Original aerial image at 1:1000 scale 
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Figure 3.2 Annotated aerial image at 1:1000 scale 

 The sidewalk annotation covers Ontario Tech University's North campus, 

residential areas, and urban traffic of a part of North Oshawa. Once the sidewalk annotation 

has been completed, some image processing procedures will be conducted to prepare the 

sidewalk dataset.  

3.3 Image Processing  

3.3.1 Aerial and Sidewalk Annotation Image Exportation 

The first procedure in the image processing step is to export the aerial image as well 

as the sidewalk annotation image. The sidewalk annotation image here differs slightly from 

Figure 3.2, as seen in Figure 3.3. Since the only feature that the DL algorithm will learn is 

the sidewalk, features other than sidewalks will all be treated as the background. This leads 

the sidewalk annotation image to only contain two types of pixels: white (255, 255, 255) 

and orange (255, 127, 0). Since the annotation is done on a large city-scale aerial map, it is 

necessary to crop the map into multiple same-sized images and export them into proper 

format in an efficient manner. To do so, the QGIS Python plugin is used to go through the 

aerial map automatically, initialize the image size, crop the image, and save all images in 
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a proper order for both aerial images and annotation images. The pseudocode for this 

process can be seen as follows: 

Algorithm 1 Aerial Image and Annotation Image Export 
Input: QGIS Project, vertical_num, horizontal_num 
Output: Aerial and annotation images 
Function render_and_convert(): 
    Initialize QGIS project instance 
    Initialize QGIS map settings 
    Set the destination CRS (Coordinate Reference System) 
    Set layers to those in the current QGIS project 
    Define output size 
    Set the output size in map settings 
    Get current extent from map canvas 
    Extract x_min, y_min, x_max, y_max from current extent 
    Store these in original_extent 
    Define shift_distance_horizontal as width of original_extent 
    Define shift_distance_vertical as height of original_extent 
    Initialize image_count to 0 
 
    For j from 0 to vertical_num:   
        For i from 0 to horizontal_num:   
            Compute new_extent by shifting original_extent by i * shift_distance_horizontal 
                             horizontally and j * (-shift_distance_vertical) vertically 
            Set the new_extent in map settings 
            Initialize and start parallel map rendering job 
            Wait for rendering job to finish 
            Save rendered image to temporary PNG file 
            Call convert_to_geotiff() to convert temporary PNG to GeoTIFF 
            Increment image_count 
 
Function convert_to_geotiff(src_filename, dst_filename, extent, img_size): 
    Open source file using GDAL 
    Initialize GDAL GeoTIFF format driver 
    Create destination dataset as a copy of the source dataset 
    Compute pixel width and height based on extent and image size 
    Set GeoTransform using calculated pixel width, pixel height, and extent 
    Close source and destination datasets 
 
Call render_and_convert() 

In the above Algorithm, the entire annotated map is essentially divided into a grid 

map. For each grid, an aerial image and its corresponding sidewalk annotation image are 
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cropped. vertical_num and horizontal_num are the height and width of the grid map which 

can be adjusted based on the coverage of the sidewalk annotation. The program starts from 

the first cell located on the top left corner and crops the image from left to right and top to 

bottom. The aerial images and sidewalk annotation images are saved in two different 

formats: Portable Network Graphics (PNG) and Georeferenced Tag Image File Format 

(GeoTIFF). PNG is an image format that commonly used in training DL models. The saved 

PNG files here will be used for sidewalk extraction model training. GeoTIFF, on the other 

hand, is an extension of the Tag Image File Format (TIFF). A GeoTIFF file contains 

additional metadata that allows it to be placed in the correct geographical location. It is 

specifically designed to be used by Geographic Information Systems (GIS) software, which 

requires information about the coordinate system and projection rules. The exported 

GeoTIFF files are useful for HD maps in GPS-based localization and route planning, and 

will be used for the route planning part of the thesis.  

 

Figure 3.3 Sidewalk Annotation Image 
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3.3.2 Binary Sidewalk Masks Creation 

A very common application in the DL field is the binary classification. The task for 

a DL algorithm in a binary classification is to learn and differentiate a specific object type 

from a give data source. Sidewalk extraction is a binary classification application where 

the DL model needs to learn from the sidewalk dataset and differentiate the sidewalk 

feature from all other background features. In binary classification for sidewalk extraction, 

the sidewalk annotation image, also known as mask, is required to be in a binary format, 

where the image contains only two values (colours): 0 (black) and 1 (white). In a mask 

image, shown in Figure 3.4, sidewalks are represented by 1 and background are represented 

by 0.  

The sidewalk annotation image exported from the previous section is used to create 

the binary masks. This process is also made automatic by using Python programming 

language and the OpenCV library. Each sidewalk annotation image (Figure 3.3) was first 

read into a matrix and converted it into grayscale using functions cv2.imread and 

cv2.IMREAD_GRAYSCALE from OpenCV. This step essentially converted the 3-channel 

(RGB) image to a single channel image where pixel values range from 0 to 255. A binary 

thresholding method, Eq. 3.1, was applied on the grayscale image, where all pixel intensity 

values 𝐼𝐼(𝑥𝑥,𝑦𝑦) that are greater than a specified threshold value are set to a maximum value 

maxVal and the remaining pixel values are set to zero.  

𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) = �𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝐼𝐼(𝑥𝑥,𝑦𝑦) > 𝑑𝑑ℎ𝑟𝑟𝑟𝑟𝑑𝑑ℎ𝑜𝑜𝑚𝑚𝑑𝑑
0, 𝑜𝑜𝑑𝑑ℎ𝑟𝑟𝑟𝑟𝑤𝑤𝑒𝑒𝑑𝑑𝑟𝑟  (3.1) 
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The threshold value is defined by using the Otsu’s Thresholding method. Otsu’s method, 

Eq. 3.2, is an advanced way to determine an optimal threshold t by maximizing the 

between-class variance of the thresholded black and white pixels.  

𝜎𝜎𝑏𝑏2(𝑑𝑑) = 𝑤𝑤1(𝑑𝑑) ∙ 𝑤𝑤2(𝑑𝑑) ∙ (𝜇𝜇1(𝑑𝑑) − 𝜇𝜇2(𝑑𝑑))2 (3.2) 

where 𝑤𝑤1(𝑑𝑑) and 𝑤𝑤2(𝑑𝑑) are the sum of the probability of the two classes separated by some 

threshold t, Eq. 3.3 and 3.4, and 𝜇𝜇1(𝑑𝑑) and 𝜇𝜇2(𝑑𝑑) are the average intensity values for the 

two classes, Eq. 3.5 and Eq. 3.6.  

𝑤𝑤1(𝑑𝑑) = �𝑝𝑝(𝑒𝑒)
𝑡𝑡

𝑖𝑖=0

 (3.3) 

𝑤𝑤2(𝑑𝑑) = � 𝑝𝑝(𝑒𝑒)
𝐿𝐿−1

𝑖𝑖=𝑡𝑡+1

 (3.4) 

𝜇𝜇1(𝑑𝑑) =
1

𝑤𝑤1(𝑑𝑑)�𝑒𝑒 ∙ 𝑝𝑝(𝑒𝑒)
𝑡𝑡

𝑖𝑖=0

 (3.5) 

𝜇𝜇2(𝑑𝑑) =
1

𝑤𝑤2(𝑑𝑑) � 𝑒𝑒 ∙ 𝑝𝑝(𝑒𝑒)
𝐿𝐿−1

𝑖𝑖=𝑡𝑡+1

 (3.6) 

where i is the intensity value of a selected pixel and L is the number of possible intensity 

levels in the matrix, which is 256 for an 8-bit grayscale image. The Algorithm for the 

binary mask creation process is shown below:  
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Algorithm 2 Binary Masks Creation 
Input: Sidewalk annotation images, sidewalk_annotation_image_dir, binary_mask_dir 
Output: Sidewalk binary masks 
Initialize a list of PNG filenames from sidewalk_annotation_image_dir 
 
For each png_name in list of PNG filenames: 
    Read the image into a grayscale matrix im_gray using cv2.imread 
    Apply thresholding to im_gray to obtain binary black and white image im_bw using  
                    cv2.threshold 
    Apply Otsu's thresholding method to automatically determine the threshold value 
 
    Invert the binary image using cv2.bitwise_not() to get invert 
    Save the inverted image to binary_mask_dir 

In Algorithm 2, the OpenCV function cv2.bitwise_not was used after the binary 

thresholding to invert the black and white pixel values. The program essentially turns all 

the orange sidewalk annotations into white pixels and all white backgrounds into black 

pixels. The examples of result masks along with their aerial images are shown in Figure 

3.4, where the aerial images are on the left column and the masks are on the right column. 

Both aerial images and masks have a size of 1835 × 875 pixels.  

3.3.3 Image Augmentation 

Image augmentation is an image processing technique involving image 

transformations, such as horizontal flip, vertical flip, and random rotation. It is commonly 

used in deep learning, particularly for tasks like object detection, image classification, and 

semantic segmentation. Multiple work has shown that image augmentation is effective in 

increasing the size of the dataset and enhancing the model performance [25], [31]. When 

preparing the sidewalk dataset, image augmentation including horizontal and vertical flip 

are used to increase the size of the dataset. Two other image augmentation methods are 

also used during the training of the algorithm including random rotation and 

TrivialAugment [32], which will be discussed in Chapter 4. A sample of the original data 
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and the augmented data is shown in Figure 3.5 and Figure 3.6, where the original image 

and mask, the horizontal flipped image and mask, and the vertical flipped image and mask 

are on the first, the second, and the third row respectively.  

 

  

  

  

  

  

Figure 3.4 Aerial image and sidewalk mask examples 
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3.3.4 Dataset Split 

A general process in preparing a dataset for model training in deep learning is to split 

the dataset into training, testing, and validating sets. A training set, seen by the neural 

network, is the dataset that the deep learning model will be trained on or learn features 

from. It contains the most portion of the dataset, ranging from 60% to 99%, depending on 

the size and the diversity. A testing and validating set, unseen by the neural network, is the 

dataset that the deep learning model will be tested and evaluated on after being trained on 

the training set. A testing or a validating set usually contains 1% to 20% of the entire 

dataset, also depending on the size and the diversity of the dataset. The testing set is usually 

used immediately after every training epoch to test the model performance. The validation 

set is used to validate the model performance again after the model is trained and tested on 

the training and testing sets. Sometimes the testing or the validating set is neglected to 

provide more training data for the deep learning model to learn from. When preparing the 

sidewalk dataset, the train_test_split function from the Python library Scikit-learn is used 

to split the dataset into train, test, and validation sets with a ratio of 8:1:1.  

3.4 Summary 

The finalized sidewalk dataset contains 636 image data pairs, covering the Ontario 

Tech University’s North campus, some residential areas, and some busy traffic areas of 

Oshawa, Ontario, Canada. There are 508 data pairs in the training set, 65 data pairs in the 

testing set, and 63 data pairs in the validation set. Each image data pair contains one aerial 

image and one corresponding sidewalk mask in binary image format. Each image has a 

size of 1835 × 875 pixels which will be directly fed into the DL algorithm for training and 

evaluating.  
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Figure 3.5 Original aerial image and augmented aerial image 
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Figure 3.6 Original mask and augmented mask 



30 
 

Chapter 4. Sidewalk Extraction on Aerial Images 

4.1 Introduction  

Sidewalk extraction is a task to either manually or automatically annotate all 

sidewalk features on aerial/satellite images. It is a branch of the road network extraction 

research. Traditionally, road network is manually labelled using GIS software such as 

OpenStreetMap (OSM), QGIS, and ArcGIS. This is an exhausting and inefficient process 

which requires a large amount of labor work. The quality and the precision of labelled 

networks are also not guaranteed. In recent years, with the fast development of powerful 

GPUs, computing power and speed of computers have dramatically increased. This makes 

it possible to train bigger and deeper neural networks. Researchers have also proposed 

various DL-based methods to automate the road network extraction process. This Chapter 

presents a DL-based automatic sidewalk extraction on aerial images method using semantic 

segmentation with image augmentation and transfer learning techniques. Various 

segmentation algorithms will be used to train on the sidewalk dataset and the sidewalk 

extraction performance of each model will also be compared. The extraction result with 

the best performance will be used for the segmentation refinement stage. In the refinement 

stage, a path planning algorithm is used to fix any discontinuity in the sidewalk 

segmentation. Finally, the extracted and refined sidewalk extraction results will be 

presented.  

4.2 Sidewalk Extraction with Semantic Segmentation (Part I) 

4.2.1 Semantic Segmentation 

The goal of semantic segmentation is to correctly give the same color code to pixels 

of an image that belong to the same class/category. It can be either a binary or a multi-class 
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classification DL task. Sidewalk extraction is a binary classification task using semantic 

segmentation since sidewalk and background are the only two classes on the aerial image. 

When training a segmentation DL model, the inputs are aerial images, and the outputs are 

sidewalk segmentation predictions. The predictions are compared with the ground truth 

labels (mask images) to compute the training loss and other evaluation metrics.  

Several SOTA semantic segmentation models are selected to train and compare on 

the sidewalk dataset, including U-Net [25], LinkNet [12], FPN [21], MA-Net [33], UNet++ 

[34], PSPNet [35], PAN [36], and DeepLabV3+ [37]. U-Net [25] was originally designed 

for biomedical image segmentation. It utilizes the famous encoder-decoder architecture to 

down sample and up sample the image tensor to learn features and make predictions. U-

Net was a significant advancement in the field of semantic segmentation due to its 

introduction of skip connections between the encoder and decoder pathways. When input 

image tensors are down sampled in the encoder pathway, the spatial information are lost. 

The skip connections concatenate the image tensor from the encoder and the decoder 

together to help recover the spatial information, thus enabling the model to produce better 

segmentation results. It is also known for handling small datasets. UNet++ [34] is a 

modified and advanced variant of U-Net. It introduced nested skip pathways, dense skip 

connections, and deep supervision to the original U-Net architecture to improve 

performance and reduce the chance of false positives and false negatives in the 

segmentation maps. Instead of having a single skip connection between each encoder and 

decoder pathway, UNet++ utilizes multiple nested skip pathways between all encoders and 

decoders to capture and propagate more low-level features to the decoder. The dense skip 

connections help improve gradient flow and feature reuse to capture intricate details in 
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images by facilitating the flow of features across the network. Deep supervision ensures 

the model to perform well not only at the final layer but also at intermediate layers. LinkNet 

[12], similar to U-Net, also adopts the encoder-decoder architecture. LinkNet employs a 

more efficient decoder with fewer parameters and uses the residual blocks [5] to mitigate 

the vanishing gradient problem. It is designed to perform segmentation in a 

computationally efficient manner while still maintaining high accuracy, making it suitable 

for real-time segmentation applications. FPN [21] was primarily designed for object 

detection applications and later was also used in semantic segmentation. It consists of a 

bottom-up pathway, a top-down pathway, and lateral connections. The bottom-up pathway 

usually uses a pretrained model like ResNet [5]or VGG [38] to extract features at different 

scales as the input image tensor passes through the layers. The top-down pathway 

upsamples the coarse feature spatially and enhances them using features learned from the 

bottom-up pathway. The lateral connections merge features from both pathways at the 

same spatial size using techniques like element-wise addition or concatenation. The above 

three key components allow the network to make predictions at multiple scales, which is 

useful for detecting objects or features that vary in scales. PAN (Pyramid Attention 

Network) [36] was primarily designed for tasks like semantic segmentation. It adopts the 

attention mechanism and feature fusion techniques to capture features with fine-grained 

details. Additionally, the pyramid pooling module in the architecture performances feature 

pooling at different scales, making the network more robust to variations in scale and 

position. PSPNet (Pyramid Scene Parsing Network) [35], similar to PAN, also contains the 

pyramid pooling module. The network generally starts with a pre-trained backbone model, 

such as ResNet [5], to learn low-level features from the input image tensor. The pyramid 
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pooling module takes those low-level features and pools them at various grid scales. The 

pooled features are then upsampled to the original size and concatenated to the original 

feature map. The network then applies a convolutional layer and a softmax layer after the 

pyramid pooling to refine the results and make segmentation prediction. PSPNet is capable 

of capturing scenes at different scales and fusing the features to improve segmentation 

performance. MA-Net (Multi-scale Attention Network) [33] was also primarily designed 

for semantic segmentation tasks, specifically in liver and tumor segmentation. Similar to 

PAN, it also utilizes the attention mechanism to capture rich contextual dependencies. In 

addition, it incorporates the MFAB (Multi-scale Feature Aggregation Block) to capture the 

channel dependencies between any feature map by multi-scale semantic feature fusion [33]. 

Multiple variants based on the MA-Net, such as STDC-MA network [39] and Multi-

Attention UNet [40], have been proposed for semantic segmentation tasks in different 

fields, such as remote sensing, autonomous driving, and intelligent transportation. Lastly, 

DeepLabV3+ [37] is an extension of the DeepLabV3 [41] model designed for semantic 

segmentation. The model introduces the atrous convolution (also known as dilated 

convolution) to prevent the number of parameters or the computational complexity from 

increasing when having a larger field of view. Similar to PSPNet, DeepLabV3+ also uses 

the spatial pyramid pooling to capture multi-scale information from feature maps. In 

addition, the model proposed an encoder-decoder architecture to refine the segmentation 

results, especially along the object edges/boundaries. The model is known for achieving 

high segmentation accuracy while retaining speed and computational efficiency.  
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4.2.2 Model Training and Testing 

The process of training a DL model for semantic segmentation tasks can be viewed 

in Figure 4.1. The input of the neural network is the aerial image. Since the training dataset 

is relatively small, the transfer learning technique is used during the training process. In 

deep learning, transfer learning refers to the practice of taking a pre-trained model, usually 

a previously SOTA model trained on a large dataset, and adopting it for a different but 

related task. It involves two stages: pre-training and fine-tuning. In pre-training, a neural 

network model, such as ResNet [5] and VGG [38], is trained on a large-scale dataset. The 

dataset is often much larger and more general than datasets for some specific tasks (e.g., 

ImageNet [42] dataset contains over 14 million images belonging to approximately 22000 

classes). This step is also known as the feature extraction step as the pre-trained model has 

learned meaningful features which can be repurposed for the segmentation model to learn 

a specific feature. This stage omits the process of training a neural network completely 

from scratch, which is generally more time-consuming and lower in performance. In the 

fine-tuning stage, the pre-trained model is fine-tuned on the new and specific task, such as 

the sidewalk feature. This stage usually involves replacing the final layer of the pre-trained 

model and adding a new layer or model to continue training on the new dataset. This step 

updates the weights from the pre-trained model, so they fit the new feature/task. In the 

transfer learning step of training the sidewalk segmentation model, the ResNet152 [5] 

model is used as the backbone for the initial feature extractor and ImageNet [42] is selected 

as the pre-trained weights. The semantic segmentation model discussed in the previous 

section comes in after the transfer learning stage to train on the sidewalk dataset and learn 
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the sidewalk feature. The last layer of the segmentation model is set to a Sigmoid function, 

Eq. 4.1, as the activation function for binary classification purposes.  

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑟𝑟−𝑥𝑥 (4.1) 

where x is the input to the activation function, often referred to as the pre-activated value. 

The Sigmoid function maps the input x to a value between 0 and 1, which can be interpreted 

as the probability p of the specific class. The output is defined in Eq. 4.2: 

� 𝑝𝑝 ≥ 0.5:𝐶𝐶𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒𝐶𝐶𝑦𝑦 𝑚𝑚𝑑𝑑 𝑑𝑑ℎ𝑟𝑟 𝑝𝑝𝑜𝑜𝑑𝑑𝑒𝑒𝑑𝑑𝑒𝑒𝑝𝑝𝑟𝑟 𝑐𝑐𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑
𝑝𝑝 < 0.5:𝐶𝐶𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑒𝑒𝐶𝐶𝑦𝑦 𝑚𝑚𝑑𝑑 𝑑𝑑ℎ𝑟𝑟 𝑛𝑛𝑟𝑟𝑛𝑛𝑚𝑚𝑑𝑑𝑒𝑒𝑝𝑝𝑟𝑟 𝑐𝑐𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 (4.2) 

where the positive class represents the sidewalk, and the negative class represents the 

background. In the sidewalk extraction task, after the image tensors going through the 

segmentation model with Sigmoid function, the model will produce a probability 

distribution map, also known as the prediction. The probability distribution map defines 

the probability of each pixel being the sidewalk pixel. The sidewalk prediction from the 

Sigmoid function is then compared with the ground truth label (mask) to compute the 

Binary Cross Entropy (BCE) loss, Eq. 4.3: 

𝐿𝐿(𝑦𝑦, 𝑦𝑦�) = −
1
𝑁𝑁� (𝑦𝑦𝑖𝑖 log(𝑦𝑦�𝑖𝑖) + (1− 𝑦𝑦𝑖𝑖) log(1− 𝑦𝑦�𝑖𝑖))

𝑁𝑁

𝑖𝑖=1
 (4.3) 

where 𝐿𝐿(𝑦𝑦,𝑦𝑦�) is the BCE loss, 𝑦𝑦 is the ground truth label, 𝑦𝑦� is the prediction, 𝑁𝑁 is the total 

number of observed images during training, and i is the index of an observation in the 

training set. Considering two sample predictions from the segmentation model with 

Sigmoid function, Sample 1: ground truth label 𝑦𝑦1 = 1 (sidewalk), predicted probability 

𝑦𝑦�1 = 0.9; Sample 2: ground truth label 𝑦𝑦2 = 0 (background), predicted probability 𝑦𝑦�2 =

0.3 . The BCE loss for sample 1 and 2 are 𝐿𝐿(𝑦𝑦1, 𝑦𝑦�1) ≈ 0.105 and 𝐿𝐿(𝑦𝑦2,𝑦𝑦�2) ≈ 0.357, 
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respectively. The average BCE loss of two samples is approximately 0.231. The ultimate 

goal of training the segmentation model for sidewalk extraction is minimizing the BCE 

loss calculated above. The process until computing the BCE loss is generally called the 

forward pass, where the neural network uses current weights and bias to make predictions 

and compares with the ground truth label to calculate the loss. The BCE loss is then used 

to update the training weights (and bias) through backpropagation to further lower the loss 

by using the Adaptive Moment Estimation (Adam) [43] optimizer. The Adam optimizer is 

an extension of the Stochastic Gradient Descent (SGD) optimization algorithm, combining 

the advantages of two other popular optimization algorithms: AdaGrad (Adaptive 

Gradient) and RMSprop (Root Mean Squared Propagation). It uses the first and the second 

moments to adaptively change the learning rate for each parameter (weights and biases), 

Eq. 4.4, 4.5, 4.6, 4.7, and 4.8, eventually minimizing the BCE loss.  

𝑚𝑚𝑡𝑡 = 𝛽𝛽1 ∙ 𝑚𝑚𝑡𝑡−1 + (1 − 𝛽𝛽1) ∙ 𝑛𝑛𝑡𝑡 (4.4) 

𝑝𝑝𝑡𝑡 = 𝛽𝛽2 ∙ 𝑝𝑝𝑡𝑡−1 + (1 − 𝛽𝛽2) ∙ 𝑛𝑛𝑡𝑡2 (4.5) 

𝑚𝑚�𝑡𝑡 =
𝑚𝑚𝑡𝑡

1− 𝛽𝛽1𝑡𝑡
 (4.6) 

𝑝𝑝�𝑡𝑡 =
𝑝𝑝𝑡𝑡

1 − 𝛽𝛽2𝑡𝑡
 (4.7) 

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝛼𝛼 ∙
𝑚𝑚�𝑡𝑡

�𝑝𝑝�𝑡𝑡 + 𝜖𝜖
 (4.8) 

where 𝑛𝑛𝑡𝑡  is gradient of the parameter 𝜃𝜃𝑡𝑡  (weights and biases) at time t, 𝑚𝑚𝑡𝑡  and 𝑝𝑝𝑡𝑡  are 

estimates of the first and the second moment of the gradients respectively, 𝛽𝛽1 and 𝛽𝛽2 are 

exponential decay rates for the moment estimates, 𝑚𝑚�𝑡𝑡 and 𝑝𝑝�𝑡𝑡 are bias-corrected versions of 

𝑚𝑚𝑡𝑡 and 𝑝𝑝𝑡𝑡, 𝛼𝛼 is the learning rate, 𝜖𝜖 is a small scalar added to the denominator to prevent 
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division by zero, and 𝜃𝜃𝑡𝑡+1 is the updated parameter (updated weights and biases). Adam 

optimizer is often considered an advanced form of gradient descent to find the local minima. 

Imagine a person is driving down a valley and the goal is to reach the lowest point (which 

represents the minimum loss in machine learning tasks). Adam optimizer provides a 

smarter way to drive down the valley than basic gradient. First, it can adjust the moving 

speed based on how steep or gentle the slope has been recently. If the person has been 

going down steep slopes, the person might speed up (this is similar to how Adam adapts 

the learning rate based on the gradients). Second, if the road is uneven (representing the 

noisy gradients), Adam helps smooth out these bumps and allows for a more consistent 

descent. Lastly, Adam remembers the past slopes (gradients) and adjusts the current 

direction and speed accordingly, like having a memory of the journey that helps guide the 

future steps. The optimization process is also known as the backward pass, where the 

weight and bias are updated through backpropagation. After every training epoch, dice loss 

and intersection over union (IoU) are used as evaluation metrics, defined in Eq. 4.9 and 

4.10, to measure the model performance.  

𝐷𝐷𝑒𝑒𝑐𝑐𝑟𝑟 𝑚𝑚𝑜𝑜𝑑𝑑𝑑𝑑 = 1 −
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇 (4.9) 

𝐼𝐼𝑜𝑜𝐼𝐼 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁 (4.10) 

where TP, FP, and FN are true positive, false positive, and false negative, respectively, Eq. 

4.11, 4.12, and 4.13.  

𝑇𝑇𝑇𝑇 = �(𝑝𝑝𝑟𝑟𝑟𝑟𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑𝑒𝑒𝑜𝑜𝑛𝑛[𝑒𝑒] × 𝑛𝑛𝑟𝑟𝑜𝑜𝑔𝑔𝑛𝑛𝑑𝑑𝑇𝑇𝑟𝑟𝑔𝑔𝑑𝑑ℎ[𝑒𝑒]
𝑁𝑁

𝑖𝑖=1

) (4.11) 
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𝐹𝐹𝑇𝑇 = �(𝑝𝑝𝑟𝑟𝑟𝑟𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑𝑒𝑒𝑜𝑜𝑛𝑛[𝑒𝑒] × (1− 𝑛𝑛𝑟𝑟𝑜𝑜𝑔𝑔𝑛𝑛𝑑𝑑𝑇𝑇𝑟𝑟𝑔𝑔𝑑𝑑ℎ[𝑒𝑒]
𝑁𝑁

𝑖𝑖=1

)) (4.12) 

𝐹𝐹𝑁𝑁 = �((1 − 𝑝𝑝𝑟𝑟𝑟𝑟𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑𝑒𝑒𝑜𝑜𝑛𝑛[𝑒𝑒]) × 𝑛𝑛𝑟𝑟𝑜𝑜𝑔𝑔𝑛𝑛𝑑𝑑𝑇𝑇𝑟𝑟𝑔𝑔𝑑𝑑ℎ[𝑒𝑒])
𝑁𝑁

𝑖𝑖=1

 (4.13) 

where 𝑁𝑁 is the number of pixels in the image, 𝑝𝑝𝑟𝑟𝑟𝑟𝑑𝑑𝑒𝑒𝑐𝑐𝑑𝑑𝑒𝑒𝑜𝑜𝑛𝑛[𝑒𝑒] is the predicted label (either 

0 or 1) of the 𝑒𝑒𝑡𝑡ℎ pixel, and 𝑛𝑛𝑟𝑟𝑜𝑜𝑔𝑔𝑛𝑛𝑑𝑑𝑇𝑇𝑟𝑟𝑔𝑔𝑑𝑑ℎ[𝑒𝑒] is the actual label (either 0 or 1) of the same 

pixel. The entire training process repeats until either the given repeating time (number of 

epochs) reached, or the loss cannot be lowered any more. The training process is also 

presented in Algorithm 3 and Figure 4.1. 

 Within each training epoch, a testing loop is called after the training loop. The 

testing loop is essentially a training loop without the backward pass; thus, parameters will 

not be updated. It takes the image from the test set (unseen by the neural network) and 

perform the forward pass on the image to compute the BCE loss, dice loss, and IoU score. 

The testing results are compared with the training results to observe the model performance 

and determine if the model is underfitting or overfitting. In the field of deep learning, 

underfitting refers to model performing badly on both training and test sets. Overfitting 

means that, instead of learning from the training set, the model simply memorizes the 

training set and only performs well on the training set but badly on the testing set. The 

testing loop is essential since a good deep learning model should perform well on both seen 

and unseen data. It is also helpful for model fine-tuning based on the feedback from both 

training and testing results.  
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Algorithm 3 Train Semantic Segmentation Model for Sidewalk Extraction 
Input: 

SidewalkDataset: Dataset containing images and corresponding ground truth 
ResNet152_Pretrained_Weights: Pre-trained weights from ImageNet 
Num_Epochs: Number of epochs of training  
Learning_Rate: Learning rate (𝛼𝛼) 

Output: 
Trained_model: A semantic segmentation model trained for sidewalk extraction  

Initialize ResNet152 with pre-trained ImageNet weights  
Feature_Extractor = Initialize_ResNet152(ResNet_Pretrained_Weights) 

Initialize Semantic Segmentation Model 
Segmentation_Model = Initialize_Segmentation(Feature_Extractor) 

Initialize Transformation 
Transformation = Initialize_Transformation(Random_Rotation, 
TrivialAugment) 

Initialize Optimizer with Learning Rate 
Optimizer = Initialize_Optimizer(Segmentation_Model, Learning_Rate) 

Initialize BCE Loss Function 
Loss_Function = Initialize_BCE_Loss() 

for epoch = i to Num_Epochs do: 
 for each (Batch_Images, Batch_Labels) in SidewalkDataset do: 

Predictions = Segmentation_Model.Forward_Pass(Batch_Images) 
Loss = Loss_Function(Predictions, Batch_labels) 
Compute_Gradients(Loss) 
Optimizer.Step() 
Optimizer.Zero_Grad() 

end for  
Validate and log metrics  

end for 
 
Save Trained_Model 
 
Return Trained_Model 
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Figure 4.1 Semantic Segmentation with Transfer Learning 

The training and testing of the semantic segmentation model is conducted on the 

Segmentation Model’s framework [44] using Python programming language with the 

PyTorch machine learning framework. During training, two image augmentation 

techniques are used on the training data, including random rotation and TrivialAugment 

[32]. The RandomRotation transformation function from PyTorch rotates the input image 

randomly within the a given angle range and fills the corner with black pixels after the 

rotation. Examples of random rotation augmentation is shown in Figure 4.2, Figure 4.3, 

Figure 4.4, Figure 4.5, and Figure 4.6, where the Figure 4.2 is the original aerial image, 

and the rest four are the randomly rotated images. TrivialAugment, on the other hand, is a 

mix of random transformations, such as rotation, flipping, changing the brightness, and 

changing the contrast. Instead of transforming an image multiple times, it transforms an 

image only once using a random transform from a given list with a random strength number. 

Examples of TrivialAugment on Figure 4.2 is shown in Figure 4.7, Figure 4.8, Figure 4.9, 

and Figure 4.10.  
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Figure 4.2 Original aerial image 

 

Figure 4.3 Random Rotated Image #1 
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Figure 4.4 Random Rotated Image #2 

 

Figure 4.5 Random Rotated Image #3 
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Figure 4.6 Random Rotated Image # 4 

 

Figure 4.7 TrivialAugment Image #1 
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Figure 4.8 TrivialAugment Image #2 

 

Figure 4.9 TrivialAugment Image #3 
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Figure 4.10 TrivialAugment Image #4 

The two image augmentation techniques applied during training artificially increase 

the size of the training dataset, which is beneficial when the training set has a limited 

amount of training data. They also introduce variability in the training data, acting as a 

form of regularization, to help prevent overfitting. This is particularly important in deep 

learning model training when the model has a large number of parameters and is prone to 

overfitting on small datasets. Models trained with augmentation also have a better 

generalization ability, which enhances the model performance on unseen data. 

Furthermore, since all aerial images are taken by satellite, there will be difference in 

brightness, clearness, and contrast between images due to shadow and weather condition. 

Involving TrivialAugment particularly strengths the generalization ability of the model on 

those special images. The Adam optimizer is used with a learning rate (𝛼𝛼) of 0.0001, 𝛽𝛽1 =

0.9, and 𝛽𝛽2 = 0.999. All segmentation models are trained on the NVIDIA RTX 3090 GPU 

for 20 epochs. A callback function is implemented in the testing loop to only keep the best 

testing results, which will be used for the segmentation refinement stage.  
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4.2.3 Segmentation Testing Results and Evaluation Comparison 

The training and testing process are conducted in two rounds. During the first 

round, TrivialAugment is not used. With the same training parameters for all segmentation 

models, the UNet++ is observed to achieve the best overall performance. The testing results 

of the UNet++ model have a dice loss of 0.004037 (the lower the better between 0 and 1) 

and an IoU score of 0.9922 (the higher the better between 0 and 1). The testing results of 

the UNet++ model is shown in Table 4.1 (bolded), along with other models’ results. In the 

second round of training, the TrivialAugment is added to the training of the UNet++ model. 

It is observed that adding the TrivialAugment slightly improves the model performance in 

both dice loss and IoU score, as shown in Table 4.1 (bolded).  

Table 4.1 Segmentation Model Testing Results  

Model Dice Loss IoU 
U-Net  0.004161 0.9918 

LinkNet 0.004215 0.9919 

FPN 0.02056 0.9599 

MA-Net 0.005137 0.99 

PSPNet 0.02056 0.9599 

PAN 0.01788 0.9662 

DeepLabV3+ 0.02099 0.9594 

UNet++ 0.004037 0.9922 

UNet++ w/TrivialAugment 0.003955 0.9923 
 

The dice loss and IoU score testing curves are also plotted in Figure 4.11.  
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Figure 4.11 Dice loss and IoU score curves 
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Once the model with the best results is saved, the validation dataset is used for 

inferencing and evaluating the generalization ability of the model on unseen aerial images. 

Similar to the testing loop, the validation step is also a forward pass process where the 

validation images are sent to the trained model. The model simply makes predictions on 

the image and uses the Sigmoid function to classify every pixel. The probability map will 

then be converted into a binary image that has the same format as the ground truth where 

sidewalks are white pixels (255), and backgrounds are black pixels (0). Some of the 

inferencing results from the model on the validation dataset are shown below, where the 

original image is on the first row, the ground truth label is on the second row, and the 

prediction is on the third row for all figures from Figure 4.12 to Figure 4.21: 
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Figure 4.12 Model inference result #1 
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Figure 4.13 Model inference result #2 
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Figure 4.14 Model inference result #3 
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Figure 4.15 Model inference result #4 
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Figure 4.16 Model inference result #5 
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Figure 4.17 Model inference result #6 
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Figure 4.18 Model inference result #7 
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Figure 4.19 Model inference result #8 
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Figure 4.20 Model inference result #9 
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Figure 4.21 Model inference result #10 
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4.2.4 Summary (Part I) 

The first part of this Chapter describes the process of the automatic sidewalk 

extraction using semantic segmentation in detail, from selecting and initializing the deep 

learning model to training and evaluating the model. The testing results shows the 

incredible performance of the trained segmentation model on unseen images. The best 

performing model, UNett++ with TrivialAugment, has a dice loss of 0.003955 and an IoU 

score of 0.9923, proving that the TrivialAugment helps enhance the model performance. 

The inferencing results from Figure 4.12 to Figure 4.21 also show the incredible 

generalization ability of the model on unseen images.  

Besides the excellent results from above, segmentation-based sidewalk extraction 

method still faces the segment discontinuity issue due to occlusions. This issue and the 

solution to it will be further discussed in the second part of this Chapter.  

4.3 Sidewalk Segmentation Refinement with Path-Planning Algorithm (Part II) 

Segmentation refinement is a post-processing technique commonly used in enhancing 

the output of a primary segmentation algorithm to improve its accuracy, reliability, or 

completeness. Since the primary segmentation method may produce errors such as over-

segmentation, under-segmentation, or misclassification of pixels, segmentation refinement 

has been frequently used to correct these errors and achieve more accurate and coherent 

segmentation results.  

In this Chapter, a path-planning-based segmentation refinement method is introduced 

to fix the broken sidewalk segment issue and further enhance the completeness of the 

sidewalk extraction method.  
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4.3.1 The Discontinuity Issue in Sidewalk Segmentation  

The discontinuity issue in sidewalk segmentation belongs to the under-segmentation 

category, which refers to the situation that the segmentation algorithm has failed to 

distinguish between different objects or structure that should ideally be in separate 

segments. In segmentation-based road network extraction from aerial images, the 

discontinuity issue often exists due to occlusion above the road, such as shadows, trees, 

and large buildings or constructions. This issue happens more frequently on sidewalks than 

on other road types which makes sidewalk extraction much harder. This occlusion issue 

causes the segmentation model sometimes labelling the covered sidewalk as the 

background class (black pixel). A graphical demonstration of such occlusion is shown in 

Figure 4.22.  
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Figure 4.22 Occlusion and segmentation discontinuity example 

The aerial image used for prediction is at the top of the figure, and the sidewalk prediction 

is at the bottom. There are two occlusions above the sidewalk, which are located inside the 

red box on the aerial image. These parts of the sidewalk are fully covered by trees. When 

it was sent to the trained model for sidewalk segmentation prediction, the segmentation 

model failed to predict the occlusions as a sidewalk feature, as seen in the red box on the 

prediction image. Such broken segmentation is critical as it is no longer considered as a 

sidewalk feature by an autonomous driving system to give proper commands such as 
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moving forward. Thus, the segmentation refinement is required to fix this issue and 

produce a complete sidewalk extraction for the autonomous driving system.  

4.3.2 Sidewalk Segmentation Refinement with A* Algorithm  

The A* path-planning algorithm is used to fix the discontinued prediction issue. 

First, the endpoints (pixel location) of the broken part of the sidewalk are located. The 

sidewalk image is then processed into a graph where each pixel represents a navigable node, 

and the endpoints represent the start and end node respectively. Then, the A* path planning 

algorithm is added to complete the missing sidewalk by finding the shortest path between 

two endpoints. A* path-planning algorithm 𝐶𝐶(𝑛𝑛) leverages two functions when generating 

the shortest path between to nodes: a cost function 𝑛𝑛(𝑛𝑛) and a heuristic function ℎ(𝑛𝑛), 

shown in Eq. 4.14.  

𝐶𝐶(𝑛𝑛) = 𝑛𝑛(𝑛𝑛) + ℎ(𝑛𝑛) (4.14) 

In Eq. 4.14, 𝑛𝑛(𝑛𝑛) represents the exact cost of the path from the starting point to any node 

𝒏𝒏, while ℎ(𝑛𝑛) is an estimated cost of the path between node 𝒏𝒏 and the end node. The 

Manhattan distance equation, Eq. 4.15, is used as the heuristic function.  

𝑑𝑑 = |𝑥𝑥1 − 𝑥𝑥2| + |𝑦𝑦1 − 𝑦𝑦2| (4.15) 

Where (𝑥𝑥1, 𝑦𝑦1)  and (𝑥𝑥2, 𝑦𝑦2)  are the coordinate of two points, and 𝑑𝑑  is the Manhattan 

distance. The heuristic function estimates the minimum cost of the path between node 𝒏𝒏 

and the end node without considering any obstacles, ensuring the path-planning algorithm 

finding the shortest path without overestimating the true cost. The algorithm computes the 

sum of the two costs and chooses the path with the lowest value of 𝐶𝐶(𝑛𝑛) . Since the 

occlusions in the sidewalk dataset are all small shadows and trees, finding the shortest path 
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between the broken sidewalk endpoints becomes a suitable solution. After applying the A*-

based segmentation refinement to the segmentation prediction, the complete sidewalk 

extraction is shown in Figure 4.23: the sidewalk prediction (in white pixel) is overlayed on 

the aerial image, and the sidewalk completed by A* is highlighted in red inside the red box. 

Zoomed-in views of both refinements are also shown in Figure 4.23(b) and Figure 4.23(c).  

 

Figure 4.23 Sidewalk segmentation refinement with A* algorithm 

4.4 Summary  

The first part of this Chapter shows the strong generalization ability of segmentation 

models on sidewalk extraction. More importantly, the trained deep learning model is able 

to correctly label lots of sidewalk features that are covered by occlusions. This shows that 
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the deep learning model managed to learn those special features using the limited dataset. 

The second part of this Chapter introduces the segmentation refinement stage to the 

sidewalk extraction model. The refinement method fixes the broken sidewalk segmentation 

by finding the shortest path between two endpoints of the discontinuity using the A* path-

planning algorithm. This method is essentially ideal for completing the sidewalk 

segmentation since the occlusion covering the sidewalk is small trees and shadows.  
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Chapter 5. Route Planning and Optimization on Sidewalk Network 

5.1 Introduction  

The purpose of sidewalk extraction is to provide the sidewalk feature to the HD map 

and enrich its informative level, making autonomous driving on sidewalks available for 

small robots and vehicles. To keep autonomous robots operating within the sidewalk zone, 

it is necessary to have a safe and efficient route planned ahead. This Chapter describes the 

use of a cost-based route planning algorithm on the extracted sidewalk network at city-

scale. An objective function considering travel distance and safety level of the generated 

path is also implemented to measure the safety and efficiency of the generated path.  

 5.2 Route Planning on the Extracted Sidewalk Network 

5.2.1 City-scale Sidewalk Network Creation 

Each sidewalk prediction from sidewalk extraction is only a small part of the aerial 

map. Thus, a city-scale aerial map with the sidewalk network is constructed using 

concatenation to allow autonomous robots to navigate through the city. This part was done 

by only overlaying the sidewalk pixels on the original aerial image and then concatenating 

the overlayed images together to construct the aerial map with the sidewalk network. In 

addition, crosswalks are also labelled for the completeness of the road network since they 

are inevitable when planning the route. Figure 5.1 shows the city-scaled aerial map with 

the sidewalk network, where the sidewalk and crosswalk network are highlighted in light 

blue. Figure 5.2 shows the city-scaled sidewalk network image that only contains the 

sidewalk (white pixel) and the crosswalk (gray pixel), which will be used for path planning. 
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Figure 5.1 City-scale aerial map with sidewalk network 
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Figure 5.2 Sidewalk and crosswalk network 



68 
 

In Figure 5.2, the crosswalk is purposely labelled in gray pixels to differentiate between 

sidewalks. In addition, Figure 5.2 uses the GeoTIFF format to store the GPS coordinate 

information for each pixel on the image. The route planning algorithm can use the GPS 

value for routing instead of using the pixel which does not provide any localization 

information. The stored coordinate system also provides the distance between each pixel, 

allowing it to calculate the actual distance of the route.  

5.2.2 Cost-based A* Routing Algorithm on the Sidewalk (Crosswalk) Network 

  Route planning on the sidewalk network is a multi-stage process. Firstly, the 

sidewalk GeoTIFF image is opened using the rasterio Python library to store the GPS 

coordinate system in the memory. The image is then converted into a cost array that 

consists of pixel values of 0 (black), 255 (white), and 128 (gray). In the cost array, all black 

pixels are initiated as non-navigable since they represent the background. White and gray 

pixels are both initiated as navigable but with different costs since they represent sidewalks 

and crosswalks, respectively. The skeletonize function from the skimage.morphology 

library is used to skeletonize the cost array. The skeletonization aims to shrinks down the 

pixel width of the sidewalk and the crosswalk. This step increases the efficiency of the 

route planning algorithm when going through all the navigable, and it also prevents it from 

generating a route that has a zig-zag shape. Secondly, a node graph is created from the 

skeletonized cost array using the networkx library. The node graph is generated by iterating 

through the navigable pixels and adding edges between the navigable neighboring pixels. 

For each edge, the cost is set as the average of the costs of the two nodes it connects. The 

idea here is to build a weighted graph where the weight of each node represents the cost to 

traverse that pixel, and the weight of each edge is an average of the costs of the nodes it 
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connects. By giving different costs to sidewalk and crosswalk nodes, various routes can be 

generated between two endpoints. Lastly, two variants of A* path-planning algorithm are 

applied on the weighted node graph using the GPS coordinate of the start and end nodes. 

The first variant does not contain any heuristic function and the second one uses the 

Euclidean Distance, Eq. 5.1, as the heuristic function.  

𝑑𝑑(𝑝𝑝,𝑞𝑞) = �(𝑞𝑞1 − 𝑝𝑝1)2 + (𝑞𝑞2 − 𝑝𝑝2)2 (5.1) 

Where 𝑑𝑑(𝑝𝑝,𝑞𝑞)  is the Euclidean Distance, and 𝑝𝑝  and 𝑞𝑞  are two points represented by 

(𝑝𝑝1, 𝑝𝑝2) and (𝑞𝑞1, 𝑞𝑞2).   

5.2.3 Objective Function for Optimal Route Planning  

 An Objective function considering total travel distance and route safety level is 

proposed to evaluate the “quality” of a generated route, as defined in Eq. 5.2.  

𝑄𝑄 = 𝑤𝑤1 ∙ 𝐷𝐷 + 𝑤𝑤2 ∙ (1− 𝑆𝑆) (5.2) 

Where 𝑄𝑄 is the quality of a particular segment in the route, 𝑤𝑤1 and 𝑤𝑤2 are weights such 

that 𝑤𝑤1 + 𝑤𝑤2 = 1, 𝐷𝐷 is the Euclidean distance for a given segment, and 𝑆𝑆 is the safety 

score for a given segment/node, which is a value between 0 and 1, with 1 indicating 

maximum safety (e.g., a sidewalk) and 0 indicating minimum safety (e.g., a crosswalk). 

Since crosswalks have more uncertainties than sidewalks, a safer route means taking as 

many sidewalk nodes as possible to reduce the number of uncertainties from the crosswalk. 

The idea of this objective function comes from the Nash Equilibrium that the function tries 

to minimize the total travel distance of the route while maximizing the total safety score. 

The term (1 − 𝑆𝑆) ensures that a higher safety score will result in a lower quality, as the 

goal is to minimize the objective function. 𝑤𝑤1  and 𝑤𝑤2  are weights that control the 

importance of distance and safety, respectively. If the route safety is extremely important, 
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(e.g., traveling in downtown where traffic is generally much busier and taking crosswalks 

is not ideal), the safety weight can be assigned much greater than the distance weight so 

that the selected optimal route will use as many sidewalks as possible. If the route distance 

has higher priority, (e.g., ego-robot may not have enough energy for long distance 

deliveries), the distance weight can be assigned much greater than the safety weight to 

achieve a short-distance route. If tasks happen in residential areas where traffic is less 

busier and crosswalks are generally safe to take, a route planning with equal weights for 

distance and safety, where safety and distance have the same importance, can be used. Thus, 

by fine-tuning the weights 𝑤𝑤1 and 𝑤𝑤2, the objective function can be adapted to various 

route planning applications.  

5.3 Route Planning Results and Discussion 

The route planning algorithm is applied between two locations, the starting location is 

on the sidewalk at Founders Dr and Conlin Rd, and the ending location is on the sidewalk 

of Clearbrook Dr and Blackwood Blvd intersection. The coordinates, longitude and latitude, 

of the starting and ending location under the EPSG:3857-WGS 84 coordinate system are 

(-8783043.932, 5457265.278) and (-8778264.198, 5456317.822), respectively. The cost 

for sidewalk is fixed at 0.5, while different costs for crosswalk, including 0.5, 1.0, 5.0, 10.0, 

20.0, 30.0, 40.0, and 50.0, are used for different runs. The highest cost for crosswalk stops 

at 50.0 due to the reason that the route planning algorithm starts generating the same results 

for cost equal to 50.0 and above. This indicates that, when the cost for crosswalk is much 

higher than it for sidewalk, there are some inevitable crosswalks that the route planning 

algorithm must take to get to the destination. Three scenarios are considered when 

initializing the objective function weights: 1. Safety has the highest priority (𝑤𝑤1 =
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0.1,𝑤𝑤2 = 0.9); 2. Mileage has the highest priority (𝑤𝑤1 = 0.9,𝑤𝑤2 = 0.1); 3. Both safety 

and mileage have an equal amount of priority (𝑤𝑤1 = 0.5,𝑤𝑤2 = 0.5). The A*-based route 

planning algorithms with and without the heuristic function are run with different 

combinations of the objective function weights and the crosswalk costs. The results are 

shown in the tables below (E.D represents Euclidean Distance and lowest values are 

bolded).  

Table 5.1 Route planning results (𝑤𝑤1 = 0.1,𝑤𝑤2 = 0.9) 

Crosswalk 
Cost 

Heuristic 
Function 

Total 
Nodes 

Total Distance 
(km) 

Total Quality 
(Q) 

0.5 E.D 37298 9.88 12737.8 
1.0 E.D 37278 9.87 14395.4 
5.0 E.D 37266 9.87 16656.8 
10.0 E.D 38524 10.20 22443.6 
5.0 None 33096 8.77 22827.8 
0.5 None 33262 8.81 23731.8 
1.0 None 33064 8.75 23989.2 
10.0 None 34284 9.08 24654.8 
20.0 E.D 36554 9.68 25388.5 
20.0 None 36086 9.56 25954.6 
40.0 E.D 51076 13.52 37030.5 
30.0 None 51076 13.52 37178.1 
40.0 None 51076 13.52 37178.1 
30.0 E.D 52128 13.80 37752.2 
50.0 E.D 52130 13.80 37765.9 
50.0 None 52130 13.80 37913.5 
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Table 5.2 Route planning results (𝑤𝑤1 = 0.9,𝑤𝑤2 = 0.1) 

Crosswalk 
Cost 

Heuristic 
Function 

Total 
Nodes 

Total Distance 
(km) 

Total Quality 
(Q) 

5.0 None 33096 8.76 31954.2 
1.0 None 33064 8.75 32054.8 
0.5 None 33262 8.81 32202.2 
10.0 None 34284 9.08 33213.2 
0.5 E.D 37298 9.88 34568.2 
1.0 E.D 37278 9.87 34734.6 
20.0 None 36086 9.56 34959.4 
5.0 E.D 37266 9.87 34975.2 
20.0 E.D 36554 9.68 35312.5 
10.0 E.D 38524 10.20 36736.4 
40.0 E.D 51076 13.52 49514.5 
30.0 None 51076 13.52 49530.9 
40.0 None 51076 13.52 49530.9 
30.0 E.D 52128 13.52 50529.8 
50.0 E.D 52130 13.80 50549.5 
50.0 None 52130 13.80 50549.5 

 

Table 5.3 Route planning results (𝑤𝑤1 = 0.5,𝑤𝑤2 = 0.5) 

Crosswalk 
Cost 

Heuristic 
Function 

Total 
Nodes 

Total Distance 
(km) 

Total Quality 
(Q) 

0.5 E.D 37298 9.88 23653.0 
1.0 E.D 37278 9.87 24565.0 
5.0 E.D 37266 9.87 25816.0 
5.0 None 33096 8.76 27391.0 
0.5 None 33262 8.81 27967.0 
1.0 None 33064 8.75 28022.0 
10.0 None 34284 9.08 28934.0 
10.0 E.D 38524 10.20 29590.0 
20.0 E.D 36554 9.68 30350.5 
20.0 None 36086 9.56 30457.0 
40.0 E.D 51076 13.52 43272.5 
30.0 None 51076 13.52 43354.5 
40.0 None 51076 13.52 43354.5 
30.0 E.D 52128 13.80 44141.0 
50.0 E.D 52130 13.80 44149.5 
50.0 None 52130 13.80 44231.5 
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Table 5.1 shows the route planning results when safety has the highest priority. The 

minimum total quality value is 12737.8 when the route planning algorithm is applied with 

Euclidean distance heuristic function and the cost for crosswalk is 0.5. The total distance 

of the generated route is approximately 9.88 kilometers. Table 5.2 shows the route planning 

results when mileage has the highest priority. The minimum total quality value is 31954.2 

when the route planning algorithm is applied without a heuristic function and the cost for 

crosswalk is 1.0. Table 5.3 shows the route planning results when safety and mileage share 

an equal amount of priority. The minimum total quality value is 23653 when the route 

planning algorithm is applied with Euclidean distance heuristic function and the cost of 

crosswalk is 0.5. Thus, when safety has the highest priority or safety and distance share an 

equal amount of priority, the optimal route is generated when A*-based route planning 

algorithm is applied with Euclidean distance as heuristic function and the cost for 

crosswalk is at 0.5. When distance has the highest priority, the optimal route is generated 

when A*-based route planning algorithm is applied without a heuristic function and the 

cost for crosswalk is 1.0. The graphical representation of two optimal routes are shown in 

Figure 5.3 and Figure 5.4, where the generated route is labelled in red. Some major 

differences between the first and the second route can be observed from the figure. Starting 

from the Ontario Tech University campus, route #1 takes the south bound of the sidewalk 

then turns onto the west bound sidewalk of the Simcoe St. It switches to the east bound 

sidewalk of the Simcoe St after passing the Commencement Dr and continues until it 

reaches the Glovers Rd. The route then turns onto the north bound sidewalk of the Glovers 

Rd and continues until it reaches the Sarasota St. The route starts heading south on the 

Sarasota St then turns onto the north bound sidewalk of the Ormond. After following the 
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Ormond Dr heading northeast, it turns onto the south bound sidewalk of the Blythwood 

Square to reach the Wilson Rd. After heading south on the east bound sidewalk of Wilson 

Rd, the route turns onto the Greenvailey Trail. The route makes its last turn from the 

Greenvailey Trail onto the Blackwood Blvd north bound sidewalk and continues heading 

east until it reaches the ending location. On the other hand, optimal route #2 continues 

heading south on the west bound sidewalk of the Simcoe St after departures from the school 

campus. At the Glovers Rd, it switches to the east bound sidewalk of the Simcoe St and 

continues heading south until it reaches the Taunton Rd, instead of taking the Glovers Rd. 

It then turns onto the north bound sidewalk of the Taunton Rd and heads east until the 

Wilson Rd. The route then heads north on the west bound sidewalk of the Wilson Rd and 

turns onto the south bound sidewalk of the Blackwood Blvd. After switching to the north 

bound sidewalk of the Blackwood Blvd, it continues heading east on the sidewalk until 

reaches the ending location. The major differences between two optimal routes are the total 

travel distances and the route complexity. Since for optimal route #1, safety has more or 

equal weights compared to mileage, the route planning algorithm tries to use as many 

sidewalk nodes as possible, resulting in more routes generated in the residential area, as 

shown in Figure 5.3. This leads to more detours in the route in order to avoid taking 

crosswalks, resulting in a more complex route. Optimal route #2, on the other hand, has 

mileage as the top priority, resulting in more routes generated in the busy traffic area and 

using as many crosswalk nodes as possible as “shortcuts” to achieve low travel distance. 

Thus, optimal route #2 has a higher Q value than optimal route #1. 

By observing the table, it can be noticed that as the cost for crosswalk increases 

from 10.0 to 50.0, the total quality value dramatically increases regardless of the weight of 



75 
 

distance and safety. This indicates that distance has a stronger impact on the Q value when 

the crosswalk cost is much higher than the sidewalk cost. The relationship is reasonable 

since the higher the crosswalk cost is, the more distance the autonomous robot will travel, 

leading to higher Q. Higher travel distance also leads to more uncertainties on the road. 

When the cost for crosswalk is between 0.5 and 10.0, a low travel distance does not 

guarantee an optimal route. In the table above, the lowest travel distance is achieved, 

approximately 8.75 kilometers, when A* is used without heuristic function and the 

crosswalk cost is 1.0. However, the Q value of this route is not at minimum.  
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Figure 5.3 Optimal Route #1  
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Figure 5.4 Optimal Route #2 
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5.4 Path Following Simulation on the Generated Route  

To mimic the real-life scenario of an autonomous robot travelling between two 

locations on the generated route, a path following simulation is created using ROS (Robot 

Operating System) and Gazebo simulator. The route from Figure 5.4 is selected for the 

path following simulation. Since the route is generated by connecting all selected nodes 

together, pure pursuit is used in the simulation as the waypoint following algorithm.  

Pure pursuit is a geometric approach to compute the steering commands for an 

autonomous robot to follow a path. It operates by calculating the curvature that will take 

the robot from its current position to a lookahead position on the path. In the algorithm, a 

lookahead distance 𝐿𝐿𝑑𝑑 is firstly defined, which is the distance ahead of the robot at which 

it targets a point on the path. This point is called the lookahead point (𝑝𝑝𝑙𝑙𝑙𝑙). The curvature 

(𝜅𝜅) required to reach the lookahead point is then calculated using the following equation: 

𝜅𝜅 =
2𝑦𝑦
𝐿𝐿𝑑𝑑2

 (5.3) 

Where 𝑦𝑦 is the lateral offset between the robot’s current position and the lookahead point, 

which is measured perpendicular to the robot’s current heading. The steering angle 𝛿𝛿 

required to follow the curvature is then determined using the bicycle vehicle model, defined 

as:  

𝛿𝛿 = arctan (
𝐿𝐿 ∙ 𝜅𝜅

1 + 𝜅𝜅2 ∙ 𝐿𝐿𝑟𝑟2
) (5.4) 

Where 𝐿𝐿 is the distance between the front and rear axles of the robot and 𝐿𝐿𝑟𝑟 is the distance 

from the rear axle to the center of mass of the robot. Since for most path following 
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applications where the speed is constant and 𝜅𝜅 is relatively small, the term 𝜅𝜅2 ∙ 𝐿𝐿𝑟𝑟2 becomes 

negligible. Eq. 5.4 simplifies to:  

𝛿𝛿 = arctan (𝐿𝐿 ∙ 𝜅𝜅) (5.5) 

The waypoints used in the simulation are from the node positions from the generated path 

after they are converted to the Gazebo coordinate. The robot used for the simulation is the 

Husky UGV (Unmanned Ground Vehicle) model. The simulation environment is 

initialized with the aerial map, Figure 5.4, as the base texture. The Husky robot is placed 

on the map texture at the starting location. A Python script is implemented to start the 

simulation, read the waypoint file, and send the steering command to the robot using the 

pure pursuit algorithm. The simulation continues running until the last waypoint, the 

ending location, has been reached. A short clip of the simulation has been made available 

at https://youtu.be/X5sh19oVV2w. The process of the simulation is also demonstrated in 

the algorithm below: 

Algorithm 4 Pure Pursuit Waypoints Following  
Input: waypoints from generated path   

Lookahead distance 
Wheelbase length of the robot 

Output: steering angle  
While robot has not reached the final waypoint: 

Determine the current position of the robot 
From the current position, find the next lookahead point based on the lookahead 
distance 
Compute the angle between the robot’s current heading and the lookahead point 
Determine the curvature required to turn from the current heading to the angle 
calculated  
Calculate the steering angle using the curvature and wheelbase length  
Apply the steering angle to the robot 
Update the robot’s position based on the movement 

End While  
 

https://youtu.be/X5sh19oVV2w


80 
 

5.5 Summary  

This chapter describes the cost-based A* route planning algorithm for routing on 

sidewalk and crosswalk, and an objective function for choosing an optimal route for 

different scenarios. The cost-based A* route planning algorithm is applied multiple times 

with various costs for crosswalk, and with and without the Euclidean distance as the 

heuristic function. The objective function uses the minimax methodology to minimize the 

total travel distance while maximizing the route safety level. Three conditions including 

highest priority for safety, equal priority for both distance and safety, and highest priority 

for distance are considered when using the objective function to obtain the optimal route. 

However, the proposed objective function is not limited to the above three scenarios. By 

initializing the different weights for distance and safety, optimal routes for different 

scenarios or applications can be determined by finding the route with the lowest quality 

value. The chapter then finishes with describing a simulation of autonomous path following 

application using one of the optimal routes with ROS and Gazebo simulator. The 

simulation aims to mimic as well as prove the feasibility of the real-life scenario of robots 

autonomously following the generated routes on the sidewalk.  
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Chapter 6. Conclusion 

6.1 Conclusion  

On the way to achieving fully autonomous driving, HD maps have become a key 

component of every aspect of an autonomous driving system, including mapping, 

localization, navigation, perception, mission planning, and motion control. An informative 

HD map provides an autonomous driving system with the ability to plan ahead and avoid 

accidents. In recent years, automatic road network extraction for HD maps has become a 

mature technique thanks to the fast development of powerful GPUs and incredible deep 

learning algorithms. Automatic sidewalk extraction, as a missing part of the HD map, has 

already shown its necessity with the growing diversification of modern urban 

transportation options, such as autonomous delivery robots, E-bikes, and E-scooters. This 

lack of research makes methods for automatic sidewalk extraction in demand.  

Semantic segmentation algorithms have been known for their precision and efficiency 

in recognize and separate different objects at pixel level. The automatic sidewalk extraction 

on aerial image method proposed in the thesis also utilizes segmentation-based methods. 

To create a deep learning model that segments sidewalks from the background on an aerial 

image, the deep learning model must first be trained on a sidewalk specific dataset. Thus, 

a sidewalk dataset containing high-resolution aerial images with precise sidewalk 

annotations is created. The dataset covers sidewalk features in different terrains, such as 

school campus, residential area, traffic crossings, and motorways, aiming to have the deep 

learning model learn all types of sidewalks. Data augmentation technique is also used in 

dataset preparation to increase the size of the dataset. When training the sidewalk extraction 

model, multiple SOTA semantic segmentation models, including U-Net [25], LinkNet 
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[12], FPN [21], MA-Net [33], UNet++ [34], PSPNet [35], PAN [36], and DeepLabV3+ 

[37], are trained, tested, and evaluated using the aerial image dataset. TrivialAugment [32]  

and transfer learning techniques are used during training to enhance the model’s final 

performance. A callback function is also implemented so that the program constantly 

updates and keeps the best result. By comparing the results of evaluation metrics in Table 

4.1, the UNet++ with TrivialAugment model is observed to have the best sidewalk 

extraction performance. The inference results from Figure 4.12 to Figure 4.21 also show 

the incredible performance of the model, especially when sidewalks are covered by 

occlusions.  

Segmentation refinement technique is applied on the discontinued sidewalk 

segmentation predictions that are caused by occlusion, such as trees, shadows, and 

buildings. The A*-based segmentation refinement method is proposed to fix the 

disconnected sidewalk segmentation issue by finding the shortest path between two 

endpoints. This method is an ideal sidewalk segmentation refinement method since, 

comparing to other road network extraction, sidewalks have low network complexity and 

occlusion on the sidewalk are also relatively small. The refined sidewalk extraction images 

are then concatenated together to construct a city-scale sidewalk network that can be used 

for path planning and other topology applications.  

Route planning algorithm is applied on the city-scale sidewalk network to generate 

routes for sidewalk and crosswalk-only autonomous driving through the city. The cost-

based A* route planning algorithm is proposed to generate different routes based on the 

cost of crosswalk. The higher the crosswalk cost is, the fewer crosswalk nodes will be 

taken. An objective function adopting the mini-max technique to determine the optimal 
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route when travel distance and safety are both considered. By varying the weights for travel 

distance and safety, the optimal routes for different applications or preferences can be 

determined by finding the minimum Q value from the objective function. The proposed 

objective function can be applied to not only route planning on sidewalks but also to other 

route planning applications.  

To show the usage of route planning on sidewalk and crosswalk and its feasibility for 

navigating through the city, a path following simulation is conducted. Pure pursuit is used 

as the path tracking algorithm which utilizes the lookahead distance to compute the steering 

angle by calculating the curvature between the current robot position and the lookahead 

point. The simulation shows that path planning on sidewalk and crosswalk can be used for 

applications like delivery robot that are only allowed to operate on the sidewalk and 

crosswalk. It also proves the feasibility of traveling through the city using solely sidewalks 

and crosswalks. 

In conclusion, the proposed sidewalk extraction on aerial image method with A* path 

planning algorithm-based segmentation refinement technique offers an automatic way to 

precisely extraction sidewalks for HD maps, filling the gap in sidewalk extraction research. 

The prepared aerial image dataset can be used for further sidewalk extraction research or 

semantic segmentation algorithm research. For route planning on sidewalks and 

crosswalks, the cost-based A* route planning algorithm is able to generate different routes 

based on the safety requirement. The proposed objective also provides a way to determine 

an optimal route for different route planning applications and preferences.  
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6.2 Recommendations and Future Work  

The work discussed in this thesis can be expanded upon by the following additions and 

implementations.  

1. Compared to other semantic segmentation datasets, the aerial image dataset is a 

small dataset for segmentation research.  The dataset also only contains two classes, 

sidewalk and background, which limits it to binary classification application. Thus, 

future work should focus on expanding the size and the category of the dataset for 

more semantic segmentation research. In addition, sidewalks also have different 

shapes, sizes, and colors depending on where they are located. Thus, classifying 

sidewalk types by annotating each type in a specific label should also be conducted 

in future work. 

2. The sidewalk dataset is labelled on the Google Satellite Image, which is not always 

up to date. This could lead to mismatch between the extracted sidewalk network on 

HD map and the actual sidewalk network. Thus, finding a reliable satellite image 

resource or developing a method to keep the sidewalk dataset up to date should be 

considered for future work. 

3. Besides segmentation-based sidewalk extraction method proposed in this thesis, 

other types of methods including graph-generation and iterative graph growing 

methods are also suitable for sidewalk extraction. Thus, more sidewalk extraction 

algorithms should be implemented to compare with the work in this thesis and 

further improve the extraction results.  

4. For route planning on sidewalk applications, A* with and without heuristic function 

is used in this work. Future research should explore more route planning algorithms 
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to plan routes on sidewalk and crosswalk network. Additionally, route planning 

application should consider more aspects, such as considering the travel directions 

when on different bounds of the sidewalk, considering stop signs to reduce the stop 

and start frequencies, and considering taking alternative routes other than sidewalks 

and crosswalks.  
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