
Discovery of Trend Dependencies Over
Time-Series

by

Nicholas Bode

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Science (MSc) in Computer Science

Faculty of Science
University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

November 2023

© Nicholas Bode, 2023

THESIS EXAMINATION INFORMATION

Submitted by: Nicholas Bode

Master of Science in Computer Science

Thesis Title: Discovery of Trend Dependencies Over Time-Series

An oral defense of this thesis took place on November 24th, 2023 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Andrew Houge

Research Supervisor Dr. Heidar Davoudi

Research Co-supervisor Dr. Jarek Szlichta

Examining Committee Member Dr. Pejman Mirza-Babaei

Thesis Examiner Dr. Ying Zhu

The above committee determined that the thesis is acceptable in form and content and

that a satisfactory knowledge of the field covered by the thesis was demonstrated by the

candidate during an oral examination. A signed copy of the Certificate of Approval is

available from the School of Graduate and Postdoctoral Studies.

ii

Abstract

We improve constraint-based data quality using trend dependency (TD) discovery, ex-

tending existing order dependencies (ODs) to allow variations and exceptions. Unlike

ODs, TDs capture approximate functional mappings between attributes, addressing the

limitations of monotonicity. Our approach involves automatic discovery over entire

datasets and piecewise subsets. Optimizing across all possible mappings is impracti-

cal, but a single linear pass enables efficient pruning, making segmentation and trend

discovery feasible with minimal accuracy loss. We conducted comprehensive experiments

on real-world and synthetic data to evaluate our models.

Keywords: Data quality, Data cleaning, Quality constraints, Symbolic Regression, Seg-

mented Representation

iii

Author’s Declaration

I hereby declare that this submission is entirely my own work, in my own words, and

that all sources used in researching it are fully acknowledged. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech Univer-

sity) to lend this thesis to other institutions or individuals for the purpose of scholarly

research. I further authorize University of Ontario Institute of Technology (Ontario Tech

University) to reproduce this thesis by photocopying or by other means, in total or in

part, at the request of other institutions or individuals for the purpose of scholarly re-

search. I understand that my thesis will be made electronically available to the public.

Nicholas Bode

iv

Statement of Contributions

I hereby certify that I am the sole author of this thesis and that no part of this thesis has

been published or submitted for publication. I have used standard referencing practices

to acknowledge ideas, research techniques, or other materials that belong to others. Fur-

thermore, I hereby certify that I am the sole source of the creative works and inventive

knowledge described in this thesis.

v

Acknowledgements

I would like to extend my heartfelt gratitude to my dedicated supervisors, Dr. Kourosh

Davoudi and Dr. Jarek Szlichta, whose unwavering guidance and mentorship have been

instrumental throughout my academic journey. Their expertise, patience, and commit-

ment to my growth as a scholar have shaped not only my research but also my character.

To my beloved family, your continuous support and encouragement have provided me

with the foundation and motivation to pursue excellence in my studies. Your sacrifices

and belief in me have been my driving force.

I am deeply thankful to the exceptional faculty and my fellow students at Ontario

Tech University’s Computer Science Department. Your collective knowledge, insights,

and camaraderie have enriched my learning experience, fostering an environment where

intellectual growth thrives. I am proud to have been part of such a vibrant academic

community.

This dedication is a testament to the collaborative efforts and the nurturing environ-

ment that have enabled me to reach this milestone in my academic career.

vi

Table of Contents

Thesis Examination Information . ii

Abstract . iii

Author’s Declaration . iv

Statement of Contributions . v

Acknowledgements . vi

Table of Contents . ix

List of Tables . x

List of Figures . xii

List of Symbols . xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Definition . 3

1.3 Contribution . 5

1.4 Thesis Outline . 8

2 Background 10

2.1 Definitions and Notation . 10

2.2 Summary . 13

3 Literature Review 15

3.1 Discovering Data Dependencies . 15

vii

3.1.1 Functional Dependencies . 16

3.1.2 Conditional Functional Dependencies 16

3.1.3 Order Dependencies . 16

3.1.4 Band Order Dependencies . 17

3.1.5 Approximate Band Conditional Order Dependencies 17

3.2 Symbolic Regression . 17

3.2.1 Genetic Programming . 17

3.2.2 Neural Networks . 18

3.2.3 Deep Symbolic Regression . 19

3.2.4 Benchmarking . 19

3.3 Segmentation . 19

3.3.1 Sliding Window and Bottom-up (SWAB) 20

3.3.2 ClaSP . 20

3.4 Segmented Regression . 20

3.4.1 Linear Segmented Regression . 21

3.4.2 Non-Linear Segmented Regression 22

3.5 Sampling . 22

4 Methodology 23

4.1 Defining Trend Dependencies . 23

4.2 Trend Discovery . 28

4.2.1 Discovery on Strictly Ordered Data 28

4.2.2 Noisy Data with No Errors . 29

4.2.3 Approximate Trend Discovery . 30

4.2.4 Deep Learning for Symbolic Regression 36

4.3 Discovering Conditional Trend Dependencies 40

4.3.1 Standard Methods . 41

4.3.2 SWAB Segmentation . 46

viii

4.3.3 kNN-Based Classifier . 48

4.3.4 Recap . 50

5 Experimental Results 52

5.1 Experimental Methodology and Data Sources 53

5.2 Trend Discovery . 54

5.2.1 Experiment 1: Scalability - Regression 54

5.2.2 Experiment 2: Accuracy - Regression 56

5.3 Filters and Sampling . 58

5.3.1 Experiment 3: Candidate Error Detection 59

5.3.2 Experiment 4: Sampling Effectiveness 60

5.3.3 Experiment 5: Sampling Scalability 60

5.4 Conditional Trend Discovery . 61

5.4.1 Experiment 6: Scalability - Segmentation 62

5.4.2 Experiment 7: Accuracy - Segmentation 64

6 Conclusions 68

6.1 Conclusion . 68

6.2 Future Work . 69

6.2.1 Multi-Attribute Dependency Discovery 69

6.2.2 Unified Architecture for Regression and Segmentation 69

Bibliography 70

ix

List of Tables

1.1 Covid-19 Total Cases by Month (2020) 3

2.1 Notation Table . 14

4.1 Comparison of Fit Errors on COVID-19 Data 28

x

List of Figures

1.1 Covid-19 Total Cases by Month (2020) 4

1.2 APPL Stock Segmented Trend . 5

4.1 Covid-19 Total Cases by Month (2020) 24

4.2 Salary vs. Years Experience . 25

4.3 Noise Estimate: w = 10, ηest = 0.69, ηtrue = 0.8 29

4.4 Candidate breakpoints Slope Difference 32

4.5 Slope Difference Calculation . 36

4.6 Resulting Slope Difference . 37

4.7 Neural Symbolic Regression . 38

5.1 Regression Scalability (syn-im) . 55

5.2 Regression Scalability (syn-oom) . 56

5.3 Fit Error as a Fraction of Noise Estimate 57

5.4 Error Detection Rate at Different Noise Levels 58

5.5 Error Discovery Rate vs. Error Degree 59

5.6 Effect of Different Sampling Schemes on MAE 61

5.7 Sampling Effects on Time Complexity . 62

5.8 Segmented Trend Discovery Time Scaling 63

5.9 Mean Relative Error by Segmentation Algorithm 65

5.10 Ratio of Discovered Breakpoints vs Ground Truth 66

xi

5.11 Number of Errors Accurately Recovered 67

xii

List of Symbols

abcOD Approximate Band Conditional Order Dependency

ATD, ψg
e Approximate Trend Dependency

bandOD, X 7→∆ Y Band Order Dependency

c(R1) The cost associated with adding a removed tuple to R1

CFD Conditional Functional Dependency

CTD, (ψg
e , Xs) Conditional Trend Dependency

e(ψ) The approximation ratio of a TD

f, F A function representing a trend, the function search space

FD Functional Dependency

g(R0) The gain associated with removing a tuple from R0

kNN k-Nearest Neighbours

OD, X 7→ Y Order Dependency

P , p A partition scheme, a single breakpoint

R, r A relation, a removal set on R

s, t A single tuple

SWAB Sliding Window and Bottom-Up

TD, ψ : X 7→f,ϕ Y Trend Dependency

xt, xs, yt, ys An instance of an attribute within a given tuple

X, Y An attribute of R

ϕ,Φ An error function, the search space of error functions

xiii

Chapter 1

Introduction

1.1 Motivation

To ensure high-quality, data-driven analysis, you must work with clean data. Providing

data riddled with errors to a model during training will result in a skewed representation

of the underlying patterns. Data quality constraints give a straightforward method for

assessing the cleanliness of a given dataset and offering clear directions on the data

cleaning process. In this section, we will first explore two existing forms of data quality

constraints: Functional Dependencies (FDs) and Order Dependencies (ODs), as well

as a few of their extensions. Our aim is to fill the gaps left by them through Trend

Dependencies (TDs).

Functional dependencies and their extensions have been the primary focus. FDs

are a set of rules which specify a dependency relationship between attribute values.

They are denoted as a logical implication for example the value of attribute State is

dependent on attribute ZIP would be denoted ZIP → State. A conditional functional

dependency [4] (CFD) details the relationship for specific values within each attribute

for example: ZIP: /060[0-9]{2} → State: Connecticut. Here the regular expression given

corresponds to any 5-digit number beginning with ”060”. This prefix necessarily implies

1

Chapter 1. Introduction 2

that the corresponding address is located within the state of Connecticut meaning our

CFD should always hold.

Another extension, order dependencies (ODs) [32], provides a means to model the

semantics of monotonically related attributes. As an example, the OD YoB 7→ Age

implies that the table sorted on YoB should also be sorted on Age This order often does

not hold perfectly in real-world data and often includes slight variations. To address

this, introducing band order dependencies (bandODs) [23] allowed for slight variations

in the otherwise strictly monotonic data. Band ODs were then extended further into

approximate band conditional order dependencies (abcODs) [24], which allow for a few

extreme violations and allow the dependency to hold conditionally over different subsets

of the data.

In the evolving data quality landscape, limitations in current approaches become ap-

parent and require attention. Notably, no OD version provides a reasonable way to clean

data when presented with deviations from linear monotonicity, a common scenario in

real-world datasets. Furthermore, handling missing or erroneous values under these de-

pendencies needs a more systematic and intuitive approach. While they do provide some

information about the connection between two attributes, there is far more information

that can be gleaned.

To remedy these issues and pave the way for more robust data-driven models, we

introduce a novel class of data dependencies known as trend dependencies (TDs). These

TDs offer all the advantages of ODs, bandODs, and abcODs while offering simple and

practical rules for replacing missing or erroneous values. Under a TD, when inserting

a value into a tuple, the only requirement is that it falls within a trend defined by the

previous and subsequent values. This approach works well for linear, strictly monotonic

data. It also gracefully handles more complex scenarios, as exemplified by the data in

Table 1.1 sourced from the OWID COVID-19 dataset [25].

We can see that an OD holds over the data. If the value for March was missing,

Chapter 1. Introduction 3

Month Cases

January 555

February 76206

March 341585

April 2553508

May 5110064

June 8805336

July 14713623

Table 1.1: Covid-19 Total Cases by Month (2020)

a simple linear interpolation between the two neighboring elements February and April

gives us 1315857. A simple exponential curve fit predicts 819536. While neither is entirely

accurate; the exponential fit is half the distance from the true value. We illustrate this in

Fig 1.1. This problem becomes even more critical when the data does not adhere strictly

to an OD.

1.2 Problem Definition

In this thesis, we consider applying more complex models to enhance the expressive power

of constraint-based data quality. The goal is to find a simple-to-describe approximation

of a trend to assess whether a given instance is genuinely a member and to fill in any

gaps left by either erroneous or missing tuples. In essence, we search for a function that

maps approximately between two attributes and use it to clean the given relation.

One challenge that quickly presents itself is the tendency for underlying trends to

change due to factors not explicitly present in the data. To handle this, we expand

the problem to finding segmented representations, separating the data into chunks that

adhere to different functions as in Figure 1.2.

Chapter 1. Introduction 4

Figure 1.1: Covid-19 Total Cases by Month (2020)

This research compares several different methods for detecting this class of depen-

dency. We compare their similarity to the underlying data and their capacity to detect

outliers of varying significance. The naive solution to the problem of segmented symbolic

representation is intractable for anything beyond trivially small datasets. We, therefore,

design efficient sampling techniques to minimize the resource cost while maintaining a

high standard for accuracy.

We perform assessments over real-world and synthetic datasets, encompassing datasets

with errors and missing values and those without. For real datasets, we use the OWID

COVID-19 dataset [25] and the Huge Stock Market Dataset from Kaggle, which together

provide thousands of time series that adhere to a complex combination of trends. We

divide the synthetic data into two subsets, referred to as ”in-model” or ”out-of-model,”

based on whether the models used for prediction include the functions used for gener-

ation. For testing the cleaning capabilities we replace artificially removed values and

introduce statistically significant errors so we can accurately measure the model’s capac-

ity for detection. We also explore the model’s capacity for detecting real-world errors,

Chapter 1. Introduction 5

Figure 1.2: APPL Stock Segmented Trend

but the experiments are far less extensive due to the difficulty of finding data where

errors are pre-labeled.

1.3 Contribution

We present a novel class of data dependencies focused on identifying and approximating

underlying trends in the data. We formalize the definition of trend dependencies and

provide concrete metrics for assessing their quality over noisy, error-ridden datasets. We

break up the discovery of these into two major components: segmentation and regression.

We design and compare a variety of methods for each.

For segmentation, we compare three approaches: standard bottom-up segmentation,

sliding window, and bottom-up (SWAB) segmentation [17], and a deep learning, kNN-

based binary classifier [6]. We use a simple convergence-based algorithm for selecting

the number of desired change points for both classifiers. We also offer a few methods for

quickly pruning the initial dataset to reduce the number of potential change points and

Chapter 1. Introduction 6

anomalies. Each method has strengths and weaknesses, and we provide guidelines for

appropriate usage.

Regression presented a significant challenge as the space of possible functions needs to

be explored efficiently. Recent work in symbolic regression has demonstrated an impres-

sive capacity to generate functional approximations to data when that data is clean and

low-noise [3, 14, 20]. Outside of that scope, things become less simple. Because of this,

we cannot use existing models out of the box and instead must train our own which has

been tuned for this specific problem, leveraging a combination of a set transformer [21]

encoder and transformer [35] decoder. We compare this approach to a Savitsky-Golay

curve smoothing filter, simple polynomial regression, and a mix of the two. Because of

the nature of symbolic regression, the space of component function types is arbitrarily

large. Without loss of generality, we focus solely on combinations of elementary functions.

Including additional function types can be achieved by adding them to the model’s token

dictionary. Working with noisy data presented a significant challenge for both regression

models. We developed a simple solution involving an additional noise term, which we

learned alongside the base regression model. We compare this alongside the baseline

regression model and provide avenues for potential future improvements.

As the number of tuples increases, the regression and segmentation problems rapidly

become intractable. To combat this, we present a novel sampling scheme based on noise

estimation and change in approximated slope based on a similar approach used in climate

change forecasting [38]. This sampling scheme allows us to generate a set of candidate

breakpoints (where the slope of a linear fit before the point is significantly different from

the slope of a fit after), generate candidate errors (points with high deviation from the

linear fits), and perform pre-regression sampling (using points with low deviation from

the linear fits). These significantly reduce the time complexity of all aspects of this

problem without significantly affecting performance.

The regression component is independently evaluated entirely on synthetic data. We

Chapter 1. Introduction 7

do all pre-training on synthetic data and describe the general methods for its creation. We

test the segmentation on both real-world and synthetic datasets, and these tests rely on

the regression algorithms we established earlier. We demonstrate significant improvement

in accuracy and speed over standard methods for both and present optimizations that

allow the regression step to provide shortcuts for the segmentation.

In summary, our primary contributions are as follows.

1. Trend Dependencies:

(a) We introduce a novel class of data dependencies focused on identifying and

approximating underlying trends in the data continuing work done on Order

Depdencies [32] and their extensions [22–24]

(b) We formalize the definition of trend dependencies and provide concrete metrics

for assessing their quality over noisy, error-ridden datasets.

2. Segmentation Methods:

(a) We compare three approaches for segmentation: standard bottom-up seg-

mentation, sliding window, and bottom-up (SWAB) segmentation [17] and a

binary classifier.

(b) We introduce a deep learning, kNN-based binary classifier similar to [6] and

provide an algorithm for selecting the number of desired change points for

both classifiers.

(c) We offer methods for quickly pruning the initial dataset for potential change

points and provide usage guidelines.

3. Regression Techniques:

(a) We use symbolic regression, leveraging a combination of a set transformer

encoder [21] and transformer decoder [35], tuned for this specific problem.

Chapter 1. Introduction 8

(b) We compare this approach to curve smoothing filters, simple polynomial re-

gression, and a mix of the two.

(c) We address handling noisy data by introducing an additional noise term

learned alongside the base regression model.

4. Efficient Scaling:

(a) We propose a novel sampling scheme based on noise estimation and change in

approximated slope.

(b) This sampling scheme allows us to reduce the time complexity of all aspects

of this problem without significantly affecting performance.

5. Comprehensive Evaluation:

(a) We thoroughly evaluate our segmentation and regression methods on both

real-world and synthetic datasets.

(b) We demonstrate substantial improvements in accuracy and speed over tradi-

tional methods and discuss optimizations.

1.4 Thesis Outline

This thesis is organized into six Chapters and structured as follows:

• Chapter 2 introduces a few different classes of data dependencies, which provide

the framework around which we built trend dependencies. We also describe some

segmentation and regression components in our final architecture.

• Chapter 3 takes a deeper look at the evolution of constraint-based data quality. It

also showcases some previous work on segmented data representation alongside an

exploration of each task independently.

Chapter 1. Introduction 9

• Chapter 4 first provides our explicit definition of trend dependencies. We then

detail the different options for the regression step and follow the same process for

segmentation. Next, we describe the optimization and sampling techniques we

used to improve the practicality of these models. Finally, we describe the complete

architecture for trend dependency discovery and the steps required for cleaning.

• Chapter 5 reports on the success of each of the different components individually be-

fore comparing the most successful variants against other data-quality constraints.

The tests assess the model accuracy and rate of error discovery as the error signif-

icance decreases, as well as the time complexity for each piece with and without

sampling.

• In Chapter 6, we highlight the key contributions and some of the limitations of the

thesis research. The Chapter also presents some interesting future directions along

which others can extend the research presented in this thesis.

Chapter 2

Background

2.1 Definitions and Notation

We use the following notational conventions:

• Relations: We denote a relation or table with R. A relation is a set of tuples

denoted t, s. Each tuple is comprised of attributes belonging to attribute sets

X, Y with X generally being the independent variable and Y the dependent. An

instance of a given attribute is denoted with its lowercase subscripted with the

tuple for which it is a member (i.e. xs, xt, ys, yt). The list of all instances of a given

attribute is given by its corresponding attribute letter in bold-face X,Y

• Partitions: A partition or segmentation scheme P is a set of breakpoints for a

table R sorted on attribute X. The values of P , denoted p refer to a single tuple

in R. A segment S corresponds to a range of indices [i, j]. A segment of a relation;

the corresponding subset of tuples is denoted by the attribute on which it is sorted

subscripted with the index range either XS or Xi,j.

• Functions: A function, when used to represent a trend, is denoted f . When used

to represent the margin of error, we denote it ϕ. We currently limit the error

10

Chapter 2. Background 11

function to a constant leaving the extension to a general error function to future

work. We denote the search space of functions with their corresponding capitals F

and Φ

See 2.1 for a table of all notation conventions used in this document.

We then explicitly define a few terms used regularly throughout the paper.

Definition 2.1.1 (Segment) A segment refers to a contiguous subset of the data when

ordered on an attribute. Given a relation R ordered on X a segment is defined as a

sub-sequence XS = [xi, xi+1, . . . , xj], where 1 ≤ i ≤ j ≤ n.

Definition 2.1.2 (Segment Purity) Segment purity measures how well a segment cap-

tures a distinct pattern within the time series data. It quantifies the coherence and ho-

mogeneity of the observations within a segment.

We can use several measures to assess segment purity, including:

• Within-Segment Variance: This is our primary measure of purity. Generally

this corresponds the average deviation of each point from some central value. For

a trend dependency this corresponds to the average distance from the estimated

trend; in other words, the mean absolute error (MAE):

MAE =
Σn

i=0|yi − f(xi)|
n

(2.1)

where (xi, yi) ∈ R sorted on X and n is the number of tuples in R

• Correlation: This measures the linear relationship between observations within a

segment. Generally associated with the R2 = 1− (RSS
TSS

) Where RSS is the sum of

the squared residuals and TSS is the sum of squared values. We choose not to use

this as, when dealing with non-linear trends, the R2 value is no longer normalized.

Instead we divide the MAE by our estimated noise value for a general metric.

Chapter 2. Background 12

• Entropy: Another useful metric which we won’t use here but is important to

consider. Entropy measures the amount of information required to convey the

possible values of a given random variable. It was originally conceived for discrete

variables but extensions to continuous probability distributions exist. All require

an estimate of the underlying continuous distribution. Since we limit ourselves to

constant error functions we can neglect the entropy of the noise but, when extending

to arbitrary error functions the relative entropy will become an important metric

to consider.

In our case, the variance and correlation are both used in different contexts. We

largely ignore the entropy of the segment as we interpret any randomness as noise and

account for it accordingly.

Moving on to our dependencies, we first define ODs and their extensions.

Definition 2.1.3 (Order Dependency) Given attribute sets X, Y on a relation R.

An order dependency of the form X → Y states that if we sort R on X, it is also sorted

on Y in ascending or descending order.

Example 2.1.4 Figure 1.1 has a clear example of a dataset over which the ODMonth→

Cases holds.

We further extend these to allow for slight variations from monotonicity with ban-

dODs, ignore a few significant exceptions, and hold conditionally over subsets of the data

with abcODs.

Definition 2.1.5 (Band Order Dependency) Given attribute sets X, Y on a rela-

tion R. A band order dependency of the form X 7→∆ Y holds if xs < xt =⇒ ys < yt +∆

or ys > yt −∆∀t, s ∈ R

We will provide definitions for Trend Dependencies and their extensions in Chapter

4.

Chapter 2. Background 13

2.2 Summary

This chapter has established the fundamental concepts and definitions related to trend

dependencies (TDs) within the broader context of data quality enhancement. The sub-

sequent chapters build upon these foundations by delving into the automatic discovery

of TDs, their applications, and their impact on data quality improvement. In later sec-

tions, we also discuss the evaluation of these dependencies using real-world and synthetic

datasets in detail.

Chapter 2. Background 14

R A relation or table; a set of tuples with corresponding attributes

X, Y An attribute of R; X is independent Y is dependent

t, s A single tuple

xt, yt, xs, ys A single instance of an attribute within a given tuple

P A partition scheme given as a set of breakpoints

p A breakpoint in P ; a single instance of the independent attribute X

f A function used to represent the underlying trend

F The function search space for trend discovery

ϕ A function used to describe the allowable distance from the underlying trend

Φ The search space of possible error functions

Xi,jXS A segment of a relation R sorted on the attribute X

X 7→ Y An order dependency holds between X and Y ; X orders Y

X 7→∆ Y A band order dependency holds between X and Y with band width ∆

ψ : X 7→f,ϕ Y A trend dependency holds between attributes X and Y

r A removal set on R

e(ψ) The approximation ratio of a trend dependency

g(R0) The maxinmal gain associated with removing a tuple from R0

c(R1) The cost associated with adding a removed tuple back to R1

ψg
e An approximate trend dependency with gain threshold g

(ψg
e ,XS) A conditional trend dependency over segment XS

Table 2.1: Notation Table

Chapter 3

Literature Review

Constraint-based data quality has a long history, of which we will provide a brief overview.

Following that, we will look at the regression and segmentation steps individually along-

side a few sources that combine the two. Finally, we will highlight the essential resources

we drew on for the sampling techniques.

3.1 Discovering Data Dependencies

Constraint-based data quality assessment has a rich and storied history, representing a

foundational aspect of data management. In this section, we embark on a journey to

explore the core principles of data dependencies, which lie at the heart of data quality

evaluation and database management. Much like the overarching chapter, we will briefly

overview this historical context before delving into two pivotal types of data dependencies:

Functional and Order. Our exploration will encompass their formal definitions, discovery

methodologies, and intrinsic importance within the landscape of data-driven analysis.

This section sets the stage for a comprehensive understanding of data dependencies,

an essential foundation for our subsequent discussions on regression, segmentation, and

synthesizing these concepts.

15

Chapter 3. Literature Review 16

3.1.1 Functional Dependencies

Functional dependencies (FDs) are fundamental to data management, providing a formal

framework for defining how the values of specific attributes uniquely determine others

within a dataset [13]. FDs are pivotal in database design, aiding schema normalization

and query optimization [8]. Their discovery is crucial for data quality assessment, with

various algorithms and techniques developed to automate this process, facilitating data

profiling and cleansing [27].

3.1.2 Conditional Functional Dependencies

Conditional Functional Dependencies (CFDs) represent an extension of traditional Func-

tional Dependencies (FDs) that consider dependencies between attributes within specific

conditions or subsets of data [4,7,8]. Unlike standard FDs, which hold universally across

the entire dataset, CFDs capture context-specific dependencies. These dependencies have

applications in various domains, mainly where data exhibit conditional relationships.

CFDs have gained significant attention in data quality assessment, enabling the dis-

covery of nuanced dependencies that may be crucial for understanding and improving

data quality within specific contexts [12]. They provide a means to identify constraints

that hold for particular subsets of data while allowing exceptions in others, making them

a valuable tool for data profiling and cleansing. The discovery and utilization of CFDs

contribute to more accurate and context-aware data quality improvements.

3.1.3 Order Dependencies

Order Dependencies (ODs) are a cornerstone in data dependencies, providing a formal

means to model the semantics of attributes that exhibit a monotonically related ordering

within a dataset [15,16,31–33]. They define constraints that specify the order of attribute

values, ensuring that when we sort a dataset on one attribute, we know we have sorted

Chapter 3. Literature Review 17

it on another, either in ascending or descending order. ODs are essential in database

schema design and optimization, guiding data organization for efficient querying and

analysis.

3.1.4 Band Order Dependencies

Band Order Dependencies (bandODs) [23] were introduced to accommodate the often-

realistic scenario of slight variations from strict monotonicity in real-world data. Ban-

dODs allow minor deviations in the otherwise monotonically ordered data, providing a

more flexible approach to modeling data semantics. These dependencies are instrumental

in scenarios where data exhibits inherent variability, enabling a more robust representa-

tion of the underlying relationships.

3.1.5 Approximate Band Conditional Order Dependencies

The evolution of ODs led to the development of Approximate Band Conditional Order

Dependencies (abcODs) [22,24]. abcODs extend the concept further, allowing dependen-

cies to hold conditionally over subsets of the data and permitting a few extreme violations.

These dependencies capture nuanced relationships within datasets, making them partic-

ularly valuable for modeling complex data semantics and allowing for exceptions that

may be critical in real-world applications.

3.2 Symbolic Regression

3.2.1 Genetic Programming

Genetic Programming (GP) is a widespread technique in symbolic regression. GP applies

the principles of evolutionary algorithms to evolve mathematical expressions that best

fit the given dataset [1]. It explores a population of candidate solutions represented as

Chapter 3. Literature Review 18

tree structures, iteratively applying mutation, crossover, and selection operators to evolve

more accurate expressions over generations. GP has been employed in various fields to

discover symbolic formulas that describe complex relationships within data.

3.2.2 Neural Networks

The use of Neural Networks (NNs) in symbolic regression has gained attention in recent

years, leading to two notable subdomains: Neural Symbolic Regression and End-to-End

Symbolic Regression.

Neural Symbolic Regression

Neural-symbolic regression (NSR) [3, 18] methods aim to extract interpretable symbolic

formulas from neural network architectures, allowing for a more transparent understand-

ing of the underlying relationships within data. This fusion of neural networks and

symbolic reasoning offers the potential to uncover precise mathematical expressions that

humans can readily interpret, bridging the gap between data-driven modeling and tradi-

tional symbolic regression.

End-to-End Symbolic Regression

End-to-End Symbolic Regression (E2E-SR) [14] represents a recent improvement on NSR.

E2E-SR leverages the capabilities of Transformers to directly learn symbolic represen-

tations from data without the need for intermediate stages. We train these models to

predict symbolic expressions from input data, providing a seamless, end-to-end approach

to symbolic regression. E2E-SR promises to simplify the modeling process, making it

more accessible and efficient for various applications.

Chapter 3. Literature Review 19

3.2.3 Deep Symbolic Regression

Deep Symbolic Regression (DSR) [29] presents a slightly different approach to symbolic

regression. DSR leverages deep learning techniques to approximate complex functions

and extract interpretable symbolic expressions from the learned models. Deep Sym-

bolic Regression offers the advantage of automatic feature extraction and the ability to

effectively handle high-dimensional and noisy data.

Deep Symbolic Regression is continually evolving, with ongoing research exploring

novel architectures and training strategies to improve the accuracy and interpretability

of symbolic expressions extracted from deep neural networks.

3.2.4 Benchmarking

Benchmarking symbolic regression algorithms is essential to assess their performance and

identify their strengths and weaknesses. Several studies have focused on benchmarking

state-of-the-art symbolic regression algorithms [34,36] and many popular machine learn-

ing datasets include symbolic regression problems [28]. These evaluations help researchers

and practitioners select appropriate techniques for specific tasks and datasets, ensuring

that the chosen methods align with the desired accuracy and efficiency criteria. Bench-

marking also aids in advancing the field by providing insights into areas that require

further improvement and innovation.

3.3 Segmentation

Segmentation is fundamental in discovering TDs and patterns within time series data.

Two prominent approaches to segmentation are Sliding Window and Bottom-up (SWAB)

Segmentation and ClaSP.

Chapter 3. Literature Review 20

3.3.1 Sliding Window and Bottom-up (SWAB)

SWAB is an algorithm designed for segmenting time series data efficiently [17]. SWAB

employs a sliding window technique to identify segments within a time series. SWAB

performs bottom-up segmentation, a slow but relatively accurate DP-based segmentation

algorithm, over a sliding window. SWAB reduces time complexity significantly as the

sliding window execution increases linearly while the segmentation decreases quadrati-

cally with decreasing window size.

3.3.2 ClaSP

ClaSP is a parameter-free time series segmentation method that offers efficient and ef-

fective data segmentation [6]. Unlike approaches that require manual parameter tuning,

ClaSP automatically determines the optimal segmentation without user-defined param-

eters. This lack of hyperparameters makes ClaSP a robust choice for various time series

analysis tasks, providing reliable segmentation results without the burden of parameter

selection.

SWAB and ClaSP are solutions to the segmentation phase of TD discovery, facilitating

the identification of distinct patterns within time series data for further analysis.

3.4 Segmented Regression

In discovering data dependencies, segmented regression plays a pivotal role in modeling

relationships between variables when distinct patterns emerge within the data. Research

in this area has predominantly focused on two categories: linear segmented regression

and non-linear segmented regression. In this section, we delve into both these domains,

highlighting essential methods and approaches that enable us to uncover meaningful

structural changes within data.

Chapter 3. Literature Review 21

3.4.1 Linear Segmented Regression

There has been extensive research on linear segmented regression models to capture

piecewise linear relationships between variables. These models are helpful when data

exhibits different linear behaviors in various regions. Here, we review prominent methods

and techniques related to linear segmented regression.

Fast Grid Search Algorithms for Multi-phase Regression Models

Qianqian Chen’s work on fast grid search algorithms for multi-phase regression models

[5] provides insights into efficient techniques for estimating breakpoints in segmented

regression. The research focuses on developing algorithms that can identify structural

changes within data, enabling precise modeling of the linear relationships in distinct

segments.

Interval Estimation for the Breakpoint

Vito MR Muggeo’s study on interval estimation for the breakpoint in segmented regres-

sion [26] presents a smoothed score-based approach for accurately estimating breakpoints

in linear segmented regression models. This methodology enhances the reliability of iden-

tifying structural shifts in data and contributes to robust modeling.

Computation and Analysis of Multiple Structural Change Models

Jushan Bai and Pierre Perron’s work on computation and analysis of multiple structural

change models [2] offers valuable insights into statistical methods for detecting structural

changes in linear segmented regression. Their research contributes to developing algo-

rithms that can effectively identify multiple breakpoints, facilitating modeling of complex

linear relationships in data.

The exploration of linear segmented regression methods provides a foundation for

understanding how we can capture structural changes in data through piecewise linear

Chapter 3. Literature Review 22

modeling. These techniques enable researchers to unveil hidden dependencies and pat-

terns within the data, making them a valuable tool in data dependency discovery.

3.4.2 Non-Linear Segmented Regression

While linear segmented regression models see wide usage, there are many scenarios where

data relationships exhibit non-linear patterns with structural changes. Non-linear seg-

mented regression approaches offer a solution to model such complexities. In this section,

we explore methods and studies related to non-linear segmented regression, including fit-

ting segmented polynomial regression models [9, 10] and fast grid search and bootstrap-

based inference for continuous two-phase polynomial regression models [30].

3.5 Sampling

The Running Slope Difference (RSD) t-test, developed initially as a statistical method for

detecting trend turning points, has found versatile applications beyond climate science.

This innovative approach, as demonstrated by [38] in their work titled ”Assessment of the

Running Slope Difference (RSD) t-Test,” has proven valuable in various fields, including

data analysis and anomaly detection. By evaluating the differences in slopes between

consecutive segments of time series data, the RSD t-test provides a robust framework

for identifying breakpoints and anomalies. In data sampling, this method allows us to

pinpoint significant changes or irregularities within datasets, facilitating more informed

decision-making and data-driven insights across diverse domains.

Chapter 4

Methodology

In this section, we provide concrete definitions for the various classes of trend depen-

dencies described in earlier sections. We then introduce the various models utilized for

trend discovery, segmentation, noise estimation, smoothing, and sampling, along with

the architecture that combines them.

4.1 Defining Trend Dependencies

We consider three classes of trend dependencies: standard, approximate, and conditional.

Approximate TDs (ATDs) hold over the data for all but a few exceptions. Conditional

TDs (CTDs) hold over only a subset of the data. CTDs may either be approximate or

standard.

Definition 4.1.1 (Trend Dependency) Given a function f , an error function ϕ, at-

tribute sets X, Y on a relation R over which a bandOD holds, a Trend Dependency of

the form ψ : X ⇀f,ϕ Y holds perfectly over a set of tuples R if

∀x, y ∈ R : |f(x)− y| < ϕ(x) (4.1)

23

Chapter 4. Methodology 24

Example 4.1.2 In Figure 4.1 the TDMonth→f,ϕ Cases holds without exception, where

f = 121942x2.67 and ϕ = 2.55e5

Figure 4.1: Covid-19 Total Cases by Month (2020)

Moving on to ATDs, we first define a few critical metrics for discovering these depen-

dencies.

Definition 4.1.3 (Removal Set) Given a relation R, we define a removal set r on R

as the set of tuples that we must remove for a TD ψ to hold perfectly. The ratio between

the cardinalities of R and r, e(ψ) is called the approximation ratio of ψ.

Example 4.1.4 Looking at Figure 4.2 for the TD ψ : Y ears →f,ϕ Salary with f =

9449x + 25792 and ϕ = 10000 to hold we must remove the removal set r = {19, 23}

meaning it requires an approximation ratio e(ψ) = 2/30 on R

During the discovery process, we need some way of quantifying the value of increasing

the size of the removal set. Initially, we used the difference in MAE between the function

before and after removal. The change in MAE worked well for smaller datasets but

Chapter 4. Methodology 25

Figure 4.2: Salary vs. Years Experience

struggled with larger ones as the effect of removing an error is less substantial. Instead,

we use the difference in the maximum error, in other words, the change in the value of

ϕ.

Intuitively we can think of this as the percent reduction of the degree of the largest

deviation from the predicted underlying function. A good heuristic for this is simply

the difference between the first a second largest deviations. This gain value is a good

indicator of the likelihood of a given tuple being an error.

Definition 4.1.5 (Gain) Given a removal set r0 and a relation R, we define the gain

function g(R0) of increasing the size of r by one as the most significant possible decrease

in the maximum error.

Where R0 = R \ r0

r1 is a possible new removal set value after adding a new tuple from R0, i.e.:

r1 = r0 ∪ {s} : ∀s ∈ R0 (4.2)

and R1 = R \ r1 is the resulting relation.

Chapter 4. Methodology 26

g(R0) =
M0 −m1

M0

(4.3)

where

M0 = max
t∈R0

(|yt − f0(xt)|) (4.4)

represents maximum absolute error before removal,

f0 represents the function mapping X ⇀ Y found over R0 and,

m1 = min
s∈R0

(max
t∈R1

(|yt − f1(xt)|)) (4.5)

represents the minimum, max absolute error after removal,

Definition 4.1.6 (Cost) With a similar intuition as the gain, given that r0 is a possible

new removal set value after selecting a tuple from r1 to reinsert, i.e.,

r0 = r1 \ {s} : ∀s ∈ r1 (4.6)

and R0 = R \ r0 is the resulting relation.

We define the minimum cost of decreasing the approximation ratio c(R1) as

c(R1) =
m0 −M1

M0

(4.7)

where

m0 = min
s∈r1

(max
t∈R0

(|yt − f0(xt)|)) (4.8)

represents the minimum max error across all possible values of R0,

f1 represents the function mapping X ⇀ Y found over R1

M1 = max
t∈R1

(|yt − f1(xt)|) (4.9)

represents the maximum error across all values in R1,

Chapter 4. Methodology 27

Example 4.1.7 Take the simple example R0 = {(1, 6), (2, 5), (3, 8), (4, 3), (5, 2)} where

R = R0 and r0 = ∅. Assuming we use a new linear fit for each iteration, the gain

g(R0) = 3.2 with new removal set r1 = (3, 8). The cost c(R1) is identical. If we instead

only calculate the fit for the initial iteration, which is far less computationally expensive,

g = 2.4 and c = 4.0

Definition 4.1.8 (Approximate Trend Dependency) We say an ATD of the form

ψg
e = X →f,ϕ Y holds on a relation R if the TD ψ holds with approximation ratio e(ψ) = e

to a threshold g meaning no potential addition to the removal set provides g(R, r1) > g.

We can omit the sub or superscript as each is implied by the other, but at least one is

required.

Example 4.1.9 The ATD represented in Figure 4.2 is denoted ψ0.1
2/30 = Y ears →f,ϕ

Salary with the same f and ϕ.

Lastly, we define conditional trend dependencies (CTDs).

Conditional Trend Dependency (CTD)

Generally, we denote a CTD with an ATD and a range of indices (ψg
e ,Xs). It holds over

all the same conditions of an ATD over said index range.

Chapter 4. Methodology 28

Function MAE

Linear 1.71e6

Quadratic 2.49e5

Cubic 1.64e5

Logarithmic ∞

Exponential 1.63e5

Table 4.1: Comparison of Fit Errors on COVID-19 Data

4.2 Trend Discovery

This section explores methods for fitting a trend to a given data set. In Sec. 3.1, we

focus on clean data that adheres perfectly to an OD. Sec 3.2, we include deviations from

strict order incorporating noise. Finally, in Sec 3.2, we explore the detection of ATDs on

data that have significant anomalies.

4.2.1 Discovery on Strictly Ordered Data

To analyze our mini COVID-19 dataset (as shown in Figure 1.1), we immediately turn

our attention to the fitting of mathematical functions. An exponential function provides

a reasonably good fit for this data. In contrast, achieving a comparable level of accuracy

with a polynomial necessitates an increase in degree beyond three. It is rare to see such

high polynomial degrees outside of fourier transforms and they are not recommended

for use in regression discontinuity systems [11]. Consequently, we confine our analysis

to three categories of functions: polynomials with degrees less than or equal to three,

exponentials of the form a(x+b)e+c, and logarithmic functions of the form a logb(x+c)+d.

Through a systematic evaluation of these three function types, as presented in Table 4.1,

it becomes evident that the exponential function exhibits the most negligible absolute

error (MAE), thereby warranting its selection as the most suitable trend function.

Chapter 4. Methodology 29

Furthermore, we explore the potential of symbolic regression for function detection.

Notably, when data strictly adheres to an order dependency, the improvement brought

about by symbolic regression is virtually negligible. However, there are promising indica-

tions of its effectiveness, particularly in scenarios involving Approximate Trend Depen-

dencies (ATDs).

4.2.2 Noisy Data with No Errors

Computational efficiency becomes a primary concern when dealing with noisy datasets

that do not inherently contain errors. Due to its lower computational demands, we adopt

a strategy that prioritizes polynomial fitting over exponential and logarithmic functions.

Figure 4.3: Noise Estimate: w = 10, ηest = 0.69, ηtrue = 0.8

Our selection of the appropriate function model hinges on the Mean Absolute Error

(MAE) relative to our estimated noise level. If the MAE significantly surpasses our noise

Chapter 4. Methodology 30

estimate, we consider exploring logarithmic and exponential functions. This approach

optimizes computational resources, balancing model complexity and data accuracy.

To illustrate our noise estimation method, we use the synthetic dataset in Figure 4.3.

This dataset is generated using the function y = 2x+N (µ, σ) with µ = 0 and σ = 0.8 As

can be seen, the noise estimate is slightly lower than the true generating noise. This is

to be expected a smaller number of sample points allows large deviations to skew the fit

resulting in them having less impact on the mean error. We can somewhat remedy this

by increasing the window size at the risk of overweighting any changes in the underlying

trend. Since the trend in Figure 4.3 is completely linear any increase in window size

would result in the noise estimate asymptotically approaching the true value. However,

this solution is not general and any dataset with a non-linear underlying trend would

suffer greatly after a certain threshold.

4.2.3 Approximate Trend Discovery

In data analysis, outliers can manifest in various forms, including erroneous values, miss-

ing data, or points that deviate significantly from the norm. Regardless of their nature,

outliers pose a common challenge by exerting a disruptive influence on regression mod-

els. For instance, replacing a single salary data point with an erroneous zero can more

than double the Mean Absolute Error (MAE) of a regression model. Importantly, this

impact on error metrics may not reflect a corresponding effect on noise estimation. Con-

sequently, without proper mitigation, outliers can lead to the erroneous assignment of

complex trends to otherwise straightforward datasets.

To address this issue, we introduce Approximate Trend Dependencies (ATDs). Since

we often need more prior knowledge regarding the quantity and locations of anomalies

within a dataset, detecting these anomalies becomes a critical step to exclude them from

the trend-fitting process.

Chapter 4. Methodology 31

Optimal Point Removal Strategy and Gain Calculation

In practice, the optimal point removal strategy is not merely about minimizing errors

but also about understanding when a removal set is sufficiently large or when further

removals are necessary. A crucial factor to consider is the gain achieved by adding or

removing a data point from the removal set. The high value suggests we should remove

the data point, while the low gain is inconclusive, especially when multiple anomalies of

similar magnitude are present.

Estimation of Noise Distribution and Computational Efficiency

Our solution to this challenge involves estimating a distribution for the noise term around

a predicted function, excluding the potential outlier. We identify outliers as data points

with a distance greater than three standard deviations from the mean. While this will

result in some false positives, the impact of false negatives is generally far greater and

the associated cost is worth the improved detection rate.

Efficient Outlier Detection

Exhaustively calculating this for every data point is computationally infeasible due to

the exponential growth in potential removal sets, resulting in a O(2N) complexity. To

mitigate this, we employ a more efficient approach with a O(N3) complexity, utilizing

an O(N2) regression function. We sequentially consider individual outliers for function

prediction, resulting in O(AN2) complexity, where A represents the number of detected

outliers.

Pruning Techniques for Outlier Removal

We optimize further by pruning the initial dataset, providing insights into conditional

Trend Dependency (TD) discovery. Our pruning techniques rely on the same filter used

for noise estimation. We explore three distinct methods:

Chapter 4. Methodology 32

Figure 4.4: Candidate breakpoints Slope Difference

1. Distance-Based Pruning: Initially, we measure the distance of data points from

the predicted line within a window, typically using three times the standard devia-

tion as a baseline. This method has limitations, particularly in the case of skewed

windows and conflicting classifications due to data points appearing in multiple

windows.

2. Count-Based Pruning: Two additional techniques are introduced to address

these limitations. The first method counts the number of windows in which a data

point is the farthest from the predicted line. We consider it a candidate outlier if

it consistently holds this distinction in most windows. Removing points with high

counts below the majority threshold improves the trend prediction.

3. Slope Difference Method: The final and preferred method relies on analyzing

the difference in slopes when a data point is at the edges of a sliding window.

Chapter 4. Methodology 33

As illustrated in Figures 4.5 and 4.6. Pseudocode for this method is provided for

reference in Algorithm 1, as it is employed regularly. This technique detects abrupt

changes in the underlying trend and individual data points using the absolute

angular distance between the two (Line 17 in Algorithm 1). Although it requires

a second pass over the data, its efficiency remains favorable, given its potential to

reduce regression steps and enhance the pruning process. As illustrated in Figures

4.5 and 4.6. Peak detection is the most effective way to find candidates but is more

expensive than simply selecting the top-k values. It is important to note that for

points close to the edge (Line 4 in Algorithm 1) we treat the slope difference as

zero as there isn’t enough data to make a reasonable slope estimate.

Chapter 4. Methodology 34

Algorithm 1 Calculating Slope Differences

Takes a sliding window over the data set and approximates the slope at each. Then

calculates the difference and slope at each point using the window before and after it.

Input: D - data, w - window size

1: procedure CalculateSlopeDifferences(D,w)

2: S ← [] ▷ List to store slope differences

3: for i← 0 to len(D)− 1 do

4: if i < 3 or len(D)− i < 3 then

5: append 0 to S ▷ No significant difference

6: else

7: if i < w then

8: L← slope(D[: i]) ▷ Left slope

9: else

10: L← slope(D[i− w : i])

11: end if

12: if len(D)− i < w then

13: R← slope(D[i :]) ▷ Right slope

14: else

15: R← slope(D[i : i+ w])

16: end if

17: append |(arctan(L))− (arctan(R))| to S ▷ Slope difference

18: end if

19: end for

20: return S

21: end procedure

Chapter 4. Methodology 35

Final Prediction and Complexity Analysis

Once we identify candidate errors, we employ the remaining data points to generate our

segmented representation. Subsequently, we iteratively apply our gain or cost metric to

select the ideal removal set based on some threshold as in Algorithm 2. This approach

maintains a complexity of approximately O(N2), akin to the iterative point removal

process.

Algorithm 2 Generate Removal Set

Uses the gain metric to continuously expand the removal set until a threshold is reached

Input: D - data, T - threshold

1: procedure GenerateRemovalSet(D,T)

2: C ← GenerateCandidates(D) ▷ Cx - X values, Cy - Y values

3: g0 ←∞ ▷ Set initial max gain to max value

4: f ← TrendDependency(D)

5: r← ∅

6: while g > T do

7: r← max(|f(Cx)− Cy|)

8: R = D − r

9: M0 ← max(|f(Dx)−Dy)|)

10: m1 ← max(|f(Rx)−Ry)|)

11: g = M0−m1

M−0

12: end while

13: end procedure

The same logic can be applied in reverse using the cost in Equation 4.7. Instead

starting from r = C and removing until the cost is less than some threshold T .

Chapter 4. Methodology 36

Advantages and Limitations

Importantly, this method offers notable advantages, including a reduced risk of error-

induced prediction skew and identifying optimal points for exclusion, enabling sampling

of smaller data subsets and reducing complexity. However, it is essential to acknowledge

that this may lead to less precise function predictions in specific scenarios. We empirically

test various sampling schemes over real-world data to further investigate these outcomes

in Section 5.

Figure 4.5: Slope Difference Calculation

4.2.4 Deep Learning for Symbolic Regression

Symbolic regression has seen a resurgence with the recent successes of neural network-

based approaches, marking a shift from traditional genetic programming methods [1,37].

This section explores the application of deep learning techniques for symbolic regression,

mainly focusing on their adaptability to noisy data and their recent outperformance of

genetic programming-based solutions, in general, [36].

Chapter 4. Methodology 37

Figure 4.6: Resulting Slope Difference

Neural Symbolic Regression

Our initial approach drew inspiration from Neural-Symbolic Regression (NSR) proposed

by Kamienny et al. in their work [14]. The model architecture consists of a set trans-

former for encoding low-dimensional data representations and a transformer decoder for

generating symbolic expressions in prefix notation as illustrated in Figure 4.7

While NSR was designed initially for error-free data, we assessed its performance on

datasets containing noise and errors. We carefully created our synthetic training dataset

to encompass various function types. To balance computational efficiency and model

expressiveness, we constrained the skeleton size to 8 tokens, including coefficients, to

limit the function search space.

When applied to real-world data, mainly focusing on datasets with approximate

monotonicity, the NSR model exhibited modest improvements in accuracy. However,

it incurred significantly slower inference times due to increased model complexity, which

may only sometimes align with practical objectives. To address this slowdown, we ex-

plored aggressive sampling techniques, which, though effective in mitigating inference

Chapter 4. Methodology 38

Figure 4.7: Neural Symbolic Regression

time, introduced a noticeable drop in accuracy.

Our subsequent analysis, detailed in later sections, includes a comprehensive evalu-

ation of the NSR-based approach and other methodologies, such as our baseline least

squares regression. This evaluation adheres to established benchmarking guidelines for

symbolic regression, emphasizing synthetic data geared toward trend discovery.

Direct Mapping

Our second approach involved training a traditional multi-layer perceptron (MLP) to

map input-output pairs using a custom policy gradient. This method excelled in handling

clean, noisy data but struggled with more significant errors. It outperformed even our

primary regression method in speed, primarily because it required fewer data points for

accuracy.

Chapter 4. Methodology 39

However, the initial pruning step became the most time-consuming part of the process.

With it, the method’s susceptibility to outliers rendered it more practical, ultimately

reducing its time-related advantages. Although it achieved superior accuracy compared

to neural symbolic regression, it sacrificed interpretability and necessitated larger storage

space to maintain the entire model state for each predicted function.

We used a reinforcement learning-based approach to allow for a variable reward func-

tion based on the expected gain. This design also allows us to mute the effects of each

new relation by reducing any changes to the policy network.

Our approach involved pretraining on a general task and fine-tuning for task-specific

execution.

Pretraining on Synthetic In-Model Data (syn-im):

We initiated our work by pretraining the model on syn-im, a synthetic dataset care-

fully constructed to represent a broad spectrum of distinct functions. We optimized

the MLP for handling continuous input and output values. We randomly initialized the

policy network’s weights with the most successful iterations afterward to expedite the

learning process and ensure adaptability to various relations.

A critical aspect of our approach was formulating a policy gradient objective function.

This objective aimed to maximize the expected return or reward for a continuous action

space, a fundamental requirement for effective regression. The policy gradient loss took

the form: z

∇θJ(θ) = E[∇θ log(πθ(a|s)Qπ(s, a))] (4.10)

Here, θ denoted the policy network’s parameters, πθ(a|s) represented the policy net-

work’s output as a probability distribution over actions, and Qπ(s, a) indicated the ex-

pected gain associated with taking action a in state s which is the anticipated reduction

in MAE from the current model evaluated over a sample.

We generated synthetic data representing various relations within syn-im to ensure

robustness and adaptability. These relations encompassed various functional forms and

Chapter 4. Methodology 40

behaviors, challenging the model to generalize effectively across them. We trained the

policy network using REINFORCE with a drop-off after every new relation.

Evaluation on Synthetic Out-of-Model Data (syn-oom):

After successfully pretraining the model on syn-im, we evaluated its performance on

the synthetic out-of-model data, syn-oom. This dataset consisted of relations distinct

from those encountered during pretraining, putting the model’s adaptability and gener-

alization capabilities to the test.

Our fine-tuned policy network, enriched with the knowledge acquired during pre-

training, was applied to syn-oom data. By doing so, we assessed its ability to perform

regression on relations it had not explicitly encountered during training. This evaluation

allowed us to gauge the model’s robustness and capacity to effectively handle diverse,

out-of-sample relations.

Comparison and Evaluation

Our experiments involved comparing these models against our baseline least squares re-

gression to assess their strengths and weaknesses. We followed established benchmarking

guidelines for symbolic regression [36], explicitly focusing on synthetic data tailored to

our problem.

4.3 Discovering Conditional Trend Dependencies

With our various methods for detecting ATDs over an entire dataset, we now move

to the problem of detecting multiple dependencies that individually only hold over a

subset of the data. To do this, we propose a few methods for segmenting the data

using our trend discovery techniques as a metric for accuracy. The naive solution is

completely intractable with exponential complexity for just exploring the search space

independently. The pruning technique using the slope difference test described above

Chapter 4. Methodology 41

dramatically reduces this effect, but it still leaves significant room for improvement.

We give an example of such a candidate error/breakpoint set on a graph of stock data

in Figure 4.4

4.3.1 Standard Methods

We will look at a few standard segmentation methods first before getting into more

advanced techniques.

Sliding Window

The first is a sliding window-based approach, which expands a segment (Line 4 in Algo-

rithm 3) until it causes a significant decrease in segment purity (Line 5 in Algorithm 3).

Once the dip happens, we cut the segment, and a new one begins (Line 6-7 in Algorithm

3). This process works well in principle because it avoids the requirement for setting a

specific number of segments. It also results in a significant reduction in time complexity,

exploring only N possible segments. Its shortcomings, however, are far more critical. The

segmentation produced by this method is heavily affected by noise and errors. A single

error is almost always enough to warrant a new segment. Additionally, it is challenging

to fine-tune the threshold for a change point, meaning we must change it for each new

dataset.

Chapter 4. Methodology 42

Algorithm 3 Sliding Window Segmentation

Iteratively increases the size of a window until the resulting approximation is worse

than the previous iteration. Then cuts and begins a new segment.

Input: D - data, w - window size

1: procedure SegmentData(D,w)

2: S ← [] ▷ Initialize an empty list for segments

3: s← 1 ▷ Initialize the start index

4: for e← w to len(D) do ▷ Loop through the data

5: if PurityDecreases(D[s : e]) then ▷ Check if purity decreases in the window

6: CutSegment(S) ▷ Cut the segment and append to S

7: s← e+ w ▷ Update the start index

8: end if

9: end for

10: CutSegment(S) ▷ Cut the final segment

11: return S ▷ Return the list of segments

12: end procedure

Chapter 4. Methodology 43

Bottom Up

The second method we looked at is the bottom-up approach. It starts with small seg-

ments (Line 3 in Algorithm 4) and iteratively merges adjacent segments (Line 17 in

Algorithm 4) based on predefined criteria (Line 9-10 in Algorithm 4) until we form more

significant, more homogeneous segments. This method helps capture both abrupt and

gradual changes in data patterns. However, defining appropriate merging and stopping

criteria is essential to avoid over-segmentation and achieve meaningful results. We based

our merging criteria for the bottom-up method (Line 9 in Algorithm 4) on the capacity

for the trend predicted on one segment to predict values on the other. The threshold for

this change is a hyper-parameter that must be tuned accordingly, but it results in far

more accurate segmentation. This parameter is chosen automatically by assessing the

overall noise and size of the current segment; however, it is significantly slower than the

sliding window method.

Top Down

The last standard method we look at is the top-down approach. Starting with one large

segment (Line 3 in Algorithm 5) , we assess whether a split is needed (Line 4,6-8,18-21)

in Algorithm 5)and continue to do so until we reach our stopping criteria. We base the

decision to split on the break pb with the maximum gain gb. Picking where to split,

however, is a significant endeavor requiring N comparisons in general. The threshold

for splitting is somewhat arbitrary. As a rule of thumb, we continue until the noise

estimate is less than double the estimate from the preprocessing step we call this the

noise threshold N . We can tune this threshold further by setting a gain threshold for

introducing a split; however, this is only sometimes a significant improvement.

Chapter 4. Methodology 44

Algorithm 4 Bottom-Up Segmentation

Starts with a set of n-1 short segments. Iteratively merges until some merge score

threshold is reached.

Input: D - data, T - threshold

1: procedure BottomUpSegmentation(D,T)

2: Initialize S with small initial segments

3: while S can be merged do ▷ Check if segments can be merged

4: pb ← None ▷ Best merge pair

5: qb ← −∞ ▷ Best merge score

6: for s1 in S do ▷ Iterate through segments

7: for s2 adjacent to s1 do

8: q ← CalculateMergeScore(s1, s2)

9: if q > qb then

10: pb ← (s1, s2) ▷ Update best merge pair

11: qb ← q

12: end if

13: end for

14: end for

15: if qb ≥ T then ▷ Threshold check

16: MergeSegments(pb)

17: else

18: break

19: end if

20: end while

21: return S

22: end procedure

Chapter 4. Methodology 45

Algorithm 5 Top-Down Segmentation

Starts with one large segment, iteratively splits until some split score threshold is

reached

Input: S - data, N - noise threshold, Q - score threshold, P - breaks

1: procedure TopDownSegmentation(S,N , Q, P = [])

2: Initialize one large segment S covering the entire dataset

3: while stopping criteria not met do

4: MAE = FitMAE(S) ▷ Estimate MAE

5: if MAE < N then

6: break ▷ Stop if noise is within acceptable range

7: end if

8: pb ← None ▷ Best split point

9: qb ← 0 ▷ Best split gain

10: for each p ∈ S do

11: q ← CalculateSplitGain(S, p)

12: if q > qb then

13: pb ← point

14: qb ← q

15: end if

16: end for

17: if qb ≥ Q then

18: ▷ TDS is TopDownSegmentation

19: return TDS(S[: pb],N , Q, P) +[pb]+ TDS(S[pb :],N , Q, P)

20: else

21: return P ▷ Return the list of segments

22: end if

23: end while

24: end procedure

Chapter 4. Methodology 46

4.3.2 SWAB Segmentation

Our first non-standard segmentation scheme is Sliding Window and Bottom-up (SWAB)

segmentation. SWAB is an attempt to reduce the significant increase in cost associated

with bottom-up segmentation without compromising accuracy.

The general outline for this segmentation starts with a sliding window covering a

significant portion of the data, ideally larger than your largest segment. We then perform

bottom-up segmentation over this window (Line 6 in Algorithm 6), keeping the leftmost

segment and moving the window to its rightmost edge (Line 5,8 in Algorithm 6). We

repeat this process until the window reaches the end of the dataset (Line 4 in Algorithm

6). At this point, a final bottom-up segmentation is performed over the entire dataset to

merge any segments larger than the initial window size.

The pseudocode for this method is as follows:

SWAB, while seeking to reduce computational costs, comes with several weaknesses

that we must consider. One crucial aspect is the selection of the sliding window size,

which can significantly impact the quality of the segmentation results. If the window size

is too small, it might miss essential changes or patterns that occur over a larger span.

At the same time, a too-large window may lead to over-segmentation, overlooking subtle

changes within segments.

Additionally, the SWAB approach independently performs bottom-up segmentation

within each sliding window, potentially missing larger-scale patterns that span multiple

windows and limiting its ability to capture global information. The sliding window

movement can also introduce boundary effects, affecting the quality of segments near

the window edges. Overlapping segments can emerge as the window moves, leading to

redundant segmentation, while the final merging step might only partially capture the

actual relationships between segments. Moreover, the sensitivity of the segmentation

results to the window placement can reduce stability and reproducibility.

Lastly, despite its attempts to reduce computational costs compared to traditional

Chapter 4. Methodology 47

Algorithm 6 SWAB

Starts with a large window, performing bottom-up segmentation on it. Take the

leftmost resulting segment and start a new window from its rightmost point. Continue

until the window reaches the end of the dataset.

Input: D - data, w - window size

1: procedure SWAB(D,w)

2: P = []

3: s = 0

4: while e < len(D) do

5: e = min(s+ w, len(D))

6: S = BottomUp(D[s : e]) ▷ From Algorithm 4

7: P.append(S[0])

8: s = S[0]

9: end while

10: return BottomUp(P)

11: end procedure

Chapter 4. Methodology 48

bottom-up segmentation, SWAB still requires multiple iterations over the data, which can

be demanding for large datasets or complex merging criteria. As such, careful parameter

tuning and consideration of the data’s characteristics are crucial.

4.3.3 kNN-Based Classifier

We also developed a novel kNN-based classification model based on ClaSP [6]. Since

a change point is a local phenomenon, its kNN should best indicate its potential. The

classifier provides a score in [0, 1], which suggests the probability of it being the best

breakpoint. We then select the global maximum as a breakpoint, repeating the process

recursively on each segment. The process is the same as a top-down segmentation, except

we compute the loss once we complete the segmentation.

The approach is heuristic, so we can significantly improve the model’s success using

a multi-shot system. The classifier still significantly reduces time complexity over other

segmentation schemes and should still result in log-linear scaling.

Algorithm 7 Recursive Top-Down Segmentation with kNN-based Classifier

Iteratively segments data using a classifier score until some threshold is reached.

Input: D - data, T - threshold

1: procedure SegmentationWithClassifier(D,T)

2: P = [] ▷ Partition

3: kS ← ComputeKNNClassifierScores(D, classifier)

4: pb ← FindGlobalMaximum(kS)

5: if kS[pb] > T then

6: P ← SWC(D[: pb], T) + SWC(D[pb :], T)

7: end if

8: return P

9: end procedure

Chapter 4. Methodology 49

Compute Classifier Score

The classifier is a simple neural network that encodes the vector of kNNs as a single value.

We split the gradient calculation over the resulting output of each training example, with

the loss being the ratio of the MAE to the noise term of the resulting model.

Algorithm 8 Training a Classification Score based on MAE/Noise Ratio

Procedure for training our classification score using unlabelled training data

Input: D - training data, C - classifier, H - hyperparameters

1: procedure TrainClassificationScore(D,C,H)

2: Initialize model parameters randomly or with pre-trained values ▷ Initialize

model

3: for e in 1 to num epochs do ▷ Loop over epochs

4: Shuffle the training data ▷ Shuffle data

5: for x in D do ▷ Loop over examples in training data

6: P ← SegmentationWithClassifier(x,C) ▷ Segmentation

7: M ← ATD(x, P) ▷ Model

8: ŷ ←M(X) ▷ Predicted output

9: MAE ← MAE(ŷ, y) ▷ Mean Absolute Error

10: NR← ComputeNoiseRatio(ŷ, y) ▷ Noise Ratio

11: L← MAEToNoiseRatio(MAE,NR) ▷ Loss

12: ∇L← ∇MAEToNoiseRatio(L) ▷ Gradient

13: C.parameters← C.parameters−H.learning rate×∇L ▷ Update

14: end for

15: end for

16: return Trained classification score model ▷ Return trained model

17: end procedure

The result is a top-down classifier that considers the entire segmentation rather than

Chapter 4. Methodology 50

only the current split. Using the classifier’s top-k suggestions is also possible, but the

resulting accuracy improvement could be more impressive, and the stop conditions could

be more precise. With the top-down method, we reset if no value in the classifier reaches

some threshold. An alternative approach also uses the maximum deviation from the mean

classification score as the indicator, but we needed help finding a consistent method for

determining the threshold in advance.

Experimental Validation

In our experiments, we compared the performance of our multi-shot binary classifier

against three other segmentation schemes and a naive solution, particularly for smaller

datasets. Our results demonstrate the binary classifier’s superiority in terms of speed and

accuracy. This novel approach streamlines the segmentation process while enhancing the

reliability and objectivity of trend discovery, marking a significant advancement in our

methodology.

4.3.4 Recap

In conclusion, this methodology chapter presents a comprehensive framework for trend

discovery and data segmentation. We have explored various approaches to fitting trends

and adapting to data characteristics. Our methodology addresses clean data handles

noisy datasets, and identifies Approximate Trend Dependencies (ATDs) caused by out-

liers and anomalies. This adaptability ensures robust trend discovery in diverse scenarios.

Moreover, our investigation into segmentation methods offers valuable insights. We

have examined standard techniques, such as sliding window, bottom-up, and top-down

approaches, alongside a novel SWAB segmentation scheme. Additionally, we introduced

a kNN-based binary classifier, which significantly streamlines the segmentation process

while maintaining accuracy. Our experiments demonstrate its superior performance in

speed and reliability, marking a noteworthy advancement in data segmentation.

Chapter 4. Methodology 51

Overall, this methodology equips us with a versatile toolkit for robust trend discovery

and segmentation, capable of handling a wide range of data challenges. These methods lay

the foundation for our subsequent analysis and provide a solid framework for extracting

meaningful insights from complex datasets.

Chapter 5

Experimental Results

We structure this chapter into four sections, each contributing to our comprehensive

evaluation:

• Section 5.1 introduces the datasets and metrics used for our experiments.

• Section 5.2 evaluates the performance of our models in trend discovery on a single

segment.

• Section 5.3 compares our sampling schemes and assesses the improvements in time

complexity

• Section 5.4 extends the evaluation to conditional trend discovery.

Through these sections, we aim to provide a detailed analysis of our experimental

findings and their significance in addressing the challenges of trend dependency discovery.

This chapter presents the experimental evaluation of our model’s scalability, accu-

racy, and cleaning capacity. Our research aims to address [briefly mention the research

problem/objective]. We conduct experiments on a machine equipped with an Intel 6-core

2.6GHz CPU and an NVIDIA RTX 3070Ti GPU with 8GB of VRAM and 32GB of RAM.

52

Chapter 5. Experimental Results 53

5.1 Experimental Methodology and Data Sources

We perform our experiments over four datasets: two synthetic and two from the real

world.

1. COVID-19 (covid): We used the OWID COVID-19 dataset, containing 246 coun-

try and region-specific data for deaths, cases, tests, and more for a total of over

1k unique tables with up to 1k records each. We employed this dataset to explore

detection across multiple attributes.

2. Historical Stock Prices (stock): This dataset comprises daily historical data

from over 8k stocks with ETFs on the NYSE and NASDAQ from 1986 until 2018.

Each is broken into Open, High, Low, Close, and Volume. Giving over 40k unique

tables with up to 11k tuples each.

3. Synthetic Data (syn-im): We generated synthetic data with arbitrary data

points using tokens from the model vocabulary. We added noise from a normal

distribution with random variance. Tables were generated as needed with both

single and multiple generating functions. Each table contained between 1K and

10M records.

4. Out of Model Synthetic Data (syn-oom): Similar to syn-im, this dataset con-

tained synthetically generated data, but we used out-of-model tokens (e.g., xn, logn)

as basis functions.

The two synthetic datasets differ because the first (syn-im) uses only in-model tokens

for generation. In contrast, the second (syn-oom) can include tokens beyond the model

scope. This distinction aims to ensure the model generalizes to more complicated trends

where the underlying function is unclear.

We took the real-world datasets from the OWID COVID-19 [25] and the Kaggle

Huge Stock Market Dataset. These datasets are used only for detecting conditional

Chapter 5. Experimental Results 54

trend dependencies at small scales. We use the syn-im dataset exclusively at larger

scales.

We base our methodology for accuracy measurements on SR Bench [19], replacing the

R2 metric with MAE and neglecting the semantic similarity metric entirely. The switch

to MAE provides a better comparison with our noise estimation systems. We ignore

the semantic similarity metric as we are only concerned with the capacity to represent

data and not with extracting specific function classes, especially in the case of syn-oom.

However, we used the semantic similarity method for the training process in symbolic

regression.

5.2 Trend Discovery

In this section, we focus on the crucial task of trend discovery and its evaluation through

experiments. We begin by assessing the scalability and accuracy of our regression models.

Experiment 1 explores scalability without segmentation, measuring runtime performance

on the syn-im and syn-oom datasets. Experiment 2 delves into accuracy, using real-world

COVID-19 data to assess error detection and its sensitivity to error degrees. By exam-

ining trends within single data segments, we gain insights into our models’ performance

under varying conditions. These experiments lay the foundation for understanding how

our models handle real-world data and their effectiveness in identifying trends.

5.2.1 Experiment 1: Scalability - Regression

The assessment of scalability in trend discovery represents a pivotal aspect of our research,

bearing direct implications for the practical utility of our models. In this experiment, we

scrutinize the runtime performance of our trend discovery methodologies, focusing on the

absence of segmentation. This omission allows us to evaluate the inherent capabilities of

our models when confronting data trends without predefined partitioning. We consider

Chapter 5. Experimental Results 55

two datasets, namely, the syn-im and syn-oom, allowing us to assess how the model

behaves with expected and unexpected trends.

Figure 5.1: Regression Scalability (syn-im)

This experiment serves as an indispensable benchmark for comprehending how our

models navigate the landscape of trend discovery within real-world scenarios. By quanti-

fying the time required to execute these tasks, we gain insights into the practicality and

feasibility of our models across diverse applications. The observed temporal patterns also

offer insights into model convergence dynamics, while the scaling characteristics unveil

aspects of their computational efficiency.

Of note is the consistent scaling patterns exhibited across diverse models, typically

aligning within log-linear to quadratic scaling. It is noteworthy that the symbolic re-

gression model demonstrates a discernibly elevated baseline time compared to the policy

generator, highlighting the interplay between model complexity and computational effi-

ciency. This experiment is a foundational cornerstone, providing insights for subsequent

investigations and model refinement in trend discovery tasks.

Chapter 5. Experimental Results 56

Figure 5.2: Regression Scalability (syn-oom)

5.2.2 Experiment 2: Accuracy - Regression

In this experiment, we delved into the critical aspect of accuracy in trend discovery,

mainly focusing on regression models. To gauge the accuracy of our models, we conducted

an exhaustive assessment across cumulative COVID-19 datasets, encompassing metrics

related to testing, cases, and deaths on a global scale. Our accuracy assessment hinges

on calculating a fundamental ratio - the relationship between the noise estimate and the

Mean Absolute Error (MAE) derived from our model’s predictions. It is essential to note

that lower values in this ratio signify enhanced accuracy.

Our investigation included comparing error detection rates across three distinct error

degrees, with Found(1.25) as a benchmark. The significance of Found(1.25) lies in its

implication of a deviation 25 percent greater than the maximum noise value, making it

a crucial reference point for our evaluation.

The graphical representations in Figure 5.3 and Figure 5.4 provide insightful visu-

alizations of our findings. Figure 5.3 illustrates the fit error as a fraction of the noise

Chapter 5. Experimental Results 57

estimate, shedding light on the precision of our models in capturing the underlying trends

in the data. Figures 5.4, on the other hand, offers a detailed view of the error detection

rates across varying noise levels, providing a nuanced perspective on how well our models

identify and classify errors.

Figure 5.3: Fit Error as a Fraction of Noise Estimate

Among the notable outcomes of this experiment is the exceptional performance of the

policy gradient model in terms of accuracy. Symbolic regression also emerges as a strong

contender, surpassing least squares in error detection capabilities. However, it’s essential

to acknowledge that symbolic regression, while demonstrating robust accuracy, often

demands extensive sampling or substantial computational resources. This observation

underscores the trade-offs between accuracy and computational complexity, a crucial

consideration in the practical applications of our models.

Chapter 5. Experimental Results 58

Figure 5.4: Error Detection Rate at Different Noise Levels

5.3 Filters and Sampling

This section delves into experiments designed to optimize our trend dependency discovery

process. Each investigation focuses on a crucial aspect of this process, ensuring efficiency

and accuracy.

Experiment 3: Candidate Error Detection assesses the accuracy of our ini-

tial candidate error detection mechanism. Experiment 4: Sampling Effectiveness

explores various sampling schemes’ efficacy in influencing the trend dependency discov-

ery process’s accuracy. Finally, Experiment 5: Sampling Scalability measures the

time complexity of our trend discovery methods across different sample sizes, provid-

ing insights into scalability. These experiments collectively enhance the precision and

efficiency of our trend dependency discovery approach.

Chapter 5. Experimental Results 59

5.3.1 Experiment 3: Candidate Error Detection

Figure 5.5: Error Discovery Rate vs. Error Degree

In this experiment, we introduced anomalous tuples into the COVID-19 dataset and

examined the effectiveness of our initial filter in identifying these anomalies based on

their error degree. This test focuses solely on the initial detection phase, evaluating

whether we successfully identify the anomalies at this early stage before any subsequent

processing within the trend dependency discovery process.

This experiment aims to assess the accuracy of our candidate error detection mecha-

nism rigorously. We sought to determine how effectively our models can discern anomalies

in the presence of varying error degrees.

Our findings indicated that all models exhibited similar accuracy in detecting anoma-

lies, with the policy gradient model slightly outperforming the regression models as shown

in Figure 5.5. However, a notable proportion of missed anomalies resulted from setting

too high an initial error detection threshold, mainly when consecutive errors of similar

degree occurred. The fact that missed anomalies usually occur under these scenarios sug-

Chapter 5. Experimental Results 60

gests that fine-tuning the error threshold could substantially reduce these instances in

practical applications. The experiment outcomes offer valuable insights into optimizing

the error detection process for more precise trend dependency discovery.

5.3.2 Experiment 4: Sampling Effectiveness

In Experiment 4, we explored the effectiveness of various sampling schemes in influenc-

ing the accuracy of our trend dependency discovery process. The symbolic regression

model was applied to the syn-im dataset with a substantial sample size of 100, 000. We

examined three distinct sampling strategies:

Random Sampling (Evenly): This scheme selected data points randomly, ensuring an

even distribution across the dataset.

Minimum Distance from Smoothing: Data points were chosen based on their prox-

imity to the smoothed trend, aiming to capture significant fluctuations in the data.

Minimum Slope Difference: Sampling focused on data points with the most negligible

differences in slope, emphasizing areas of potential trend changes.

Our analysis, as shown in Figure 5.6, revealed that, with our chosen dataset, we

maintained a low loss even at very high sampling rates. This finding underscores the

effectiveness of sampling as a strategy for trend dependency discovery. By employing

appropriate sampling schemes, we can substantially reduce the computational demands

of the trend discovery process while preserving high accuracy. Next, we measure the

degree to which this sampling can reduce our computational need.

5.3.3 Experiment 5: Sampling Scalability

This experiment focuses on assessing the time complexity of our trend discovery methods.

We conducted a series of measurements to evaluate the runtime performance of our

symbolic regression model under various sample sizes. We performed these tests on the

syn-im dataset, with a sample size from 100k to 900k. It’s worth noting that we excluded

Chapter 5. Experimental Results 61

Figure 5.6: Effect of Different Sampling Schemes on MAE

the policy generator from these assessments as it already samples by default.

The results, depicted in Figure 5.7, clearly visualize how different sample sizes affect

the time required to complete our trend discovery tasks. As expected, reducing the

input size resulted in improved time efficiency. Notably, the baseline time for our models

corresponds to at least the duration of the filtering step.

This experiment contributes valuable insights into the relationship between sample

size and time complexity, guiding our approach to scalable trend dependency discovery.

5.4 Conditional Trend Discovery

In pursuit of a more comprehensive understanding of trend dependency discovery, we

extended our experimental scope to encompass segmentation techniques coupled with

regression models. What drove this expansion was the need to evaluate the performance

of our models in scenarios where data subsets exhibit distinct trends. By introducing

segmentation, we aimed to assess the models’ adaptability and effectiveness in identifying

Chapter 5. Experimental Results 62

Figure 5.7: Sampling Effects on Time Complexity

dependencies within segmented data, a common real-world scenario.

The minimal perceived advantage in segmented contexts justifies the exclusion of the

policy gradient model from this analysis. This decision allowed us to focus on models that

could benefit more from segmentation, contributing valuable insights into the interplay

between segmentation strategies and trend discovery within distinct data subsets. This

experiment is crucial in bridging the gap between theoretical model capabilities and

their practical applicability in real-world scenarios where data often exhibits multifaceted

trends.

5.4.1 Experiment 6: Scalability - Segmentation

We conducted Experiment 6 to assess the scalability of our segmentation methods under

different schemes. In this experiment, we focused on measuring the time required to per-

form data segmentation using three distinct approaches: standard bottom-up, SWAB,

and classifier-based methods. The datasets used for testing encompassed various con-

Chapter 5. Experimental Results 63

texts, including financial data represented by the stock dataset and public health data

defined by the covid dataset. Additionally, we employed the syn-im dataset for testing

at high volume.

Figure 5.8: Segmented Trend Discovery Time Scaling

The rationale behind this experiment was to investigate our segmentation methods’

computational efficiency, particularly in handling diverse datasets. Our results are sum-

marized in Figure 5.8. As expected, standard bottom-up segmentation exhibited less

favorable scaling behavior, aligning with prior field knowledge. However, the notable

finding was that classifier-based segmentation consistently outperformed both SWAB

and traditional bottom-up approaches. We attributed this superiority to the linear re-

lationship between the classifier-based method and candidate breakpoints, even when

no prior training data was available (zero-shot classification). This robust performance

across different datasets and complexities highlights the potential for classifier-based seg-

mentation to enhance the efficiency of trend dependency discovery processes.

The results of Experiment 6 provide valuable insights into the scalability and adapt-

Chapter 5. Experimental Results 64

ability of segmentation strategies in trend analysis tasks. These findings are particularly

relevant for researchers and practitioners seeking efficient approaches to handle diverse

datasets while maintaining the accuracy and effectiveness of trend dependency discovery.

5.4.2 Experiment 7: Accuracy - Segmentation

These experiments focus on assessing the accuracy of our trend dependency discov-

ery process when segmentation is employed. This experiment encompasses three sub-

experiments, each addressing different facets of accuracy within the segmentation con-

text.

As we delve into the results of these sub-experiments, we aim to discern which seg-

mentation strategies and classifiers demonstrate superior accuracy. This investigation

provides valuable insights into optimizing trend dependency discovery, mainly when seg-

mentation is crucial.

Sub-Experiment 7.1: MAE Comparison - Segmentation

We compared the Mean Absolute Error (MAE) against the trend and the noise estimate

as part of our accuracy assessment in the segmentation context. We analyzed this to

evaluate how well our models’ predictions aligned with trend and noise levels. These

results, shown in Figure 5.9, were primarily derived from synthetic noise estimates since

ground truth data was unavailable for real datasets.

Sub-Experiment 7.2: Breakpoint Discovery - Segmentation

This sub-experiment examined the ratio of discovered breakpoints concerning ground

truth. Our focus was to measure our segmentation algorithms’ effectiveness in accurately

identifying breakpoints. This evaluation, summarized in Figure 5.10, provided insights

into how well our algorithms captured data transition points.

Chapter 5. Experimental Results 65

Figure 5.9: Mean Relative Error by Segmentation Algorithm

Sub-Experiment 7.3: Error Recovery - Segmentation

We investigated the number of errors accurately recovered by our segmentation algo-

rithms. This analysis, shown in Figure 5.11, aimed to determine the models’ capability

to detect and recover errors within the segmented data. Specifically, we examined the

performance of multi-shot, SWAB, and single-shot classifiers in this context.

In summary, the findings from this experiment underscore the significance of seg-

mentation techniques and classifiers in the context of trend dependency discovery. The

results reveal the multi-shot classifier’s superiority in accuracy and breakpoint detection,

making it a valuable choice for enhancing the precision of trend analysis. Its effective-

ness in identifying trend transition points and errors within segmented data reduces false

positives and improves the overall reliability of trend analysis outcomes.

Conversely, the SWAB segmentation strategy demonstrates its capacity to enhance

data segmentation correctness but has a limited impact on improving data fitting accu-

racy. These observations emphasize the inherent trade-offs in segmentation approaches

Chapter 5. Experimental Results 66

Figure 5.10: Ratio of Discovered Breakpoints vs Ground Truth

and the need for careful consideration when selecting the most suitable strategy and

classifier for specific trend analysis tasks, particularly concerning computational resources

and objectives. Researchers and practitioners should thoroughly assess their requirements

to make informed choices that balance accuracy and efficiency in the trend dependency

discovery process.

In conclusion, our series of experiments aimed to comprehensively evaluate the per-

formance of our trend dependency discovery models and associated techniques.

Experiment 1 highlighted the crucial aspect of scalability in trend discovery, show-

casing the challenges of increasing dataset sizes and emphasizing the need for efficient

methods. Experiment 2 demonstrated our models’ remarkable accuracy in detecting

trends and provided insights into their potential applications, with symbolic regression

showing great promise despite computational demands. Experiment 3 focused on candi-

date error detection, reaffirming the models’ competence in identifying anomalies while

underscoring the importance of setting appropriate error thresholds.

Chapter 5. Experimental Results 67

Figure 5.11: Number of Errors Accurately Recovered

Experiments 4 and 5 delved into the efficacy of sampling, revealing its potential to sig-

nificantly reduce computational demands without compromising accuracy. Experiment

6 explored segmentation’s impact on scalability, highlighting its advantages in specific

scenarios. Finally, Experiment 7, centered on conditional trend discovery, showcased the

effectiveness of multi-shot classifiers.

In summary, our findings underline the versatility and efficiency of our trend depen-

dency discovery models, emphasizing their potential in real-world applications across

varying dataset sizes and complexities.

Chapter 6

Conclusions

6.1 Conclusion

In conclusion, this thesis has explored and presented a comprehensive examination of data

quality constraints and dependencies, focusing on the introduction of ’trend dependencies’

(TDs) as a novel addition to this domain. The thesis has advanced our understanding of

how data quality can significantly impact the performance of data-driven models.

Throughout our investigation, we have empirically demonstrated the practicality and

effectiveness of TDs in various aspects of data analysis. While TDs will not replace

existing constraints like functional dependencies (FDs) or order dependencies (ODs),

they offer a valuable alternative in scenarios where data exhibits complex, non-linear

relationships.

The experiments conducted in this thesis have emphasized the scalability, efficiency,

and effectiveness of TDs in diverse applications. They have proven their worth in error

detection and data cleaning, especially when dealing with complex, real-world datasets.

Furthermore, exploring different sampling schemes has highlighted how trend discov-

ery can be significantly optimized, reducing computational demands while preserving

accuracy.

68

Chapter 6. Conclusions 69

This thesis has contributed to the data quality constraint landscape by introducing

TDs as a pragmatic and versatile solution. These findings offer a valuable addition to the

toolkit of data analysts, researchers, and practitioners working in data-driven modeling,

facilitating more accurate and reliable analyses of complex datasets. As data plays a

pivotal role in various domains, introducing TDs represents a significant step towards

improving data quality and enhancing the performance of data-driven models in practical

applications.

6.2 Future Work

This section outlines potential avenues for future research and development in trend

dependencies (TDs) and their applications.

6.2.1 Multi-Attribute Dependency Discovery

One promising direction for future work involves extending the TD discovery process

to encompass multiple attributes simultaneously. This expansion could include start-

ing from scratch to identify TDs between various attribute combinations and leveraging

previously discovered TDs to predict new dependencies between other features. By ex-

ploring multi-attribute TDs, we aim to provide a more holistic understanding of complex

relationships within datasets, enabling more comprehensive data analysis and modeling.

6.2.2 Unified Architecture for Regression and Segmentation

Another area of exploration is the possibility of unifying the regression and segmenta-

tion steps into a single architecture rather than treating them as separate problems with

overlapping preprocessing steps. This integration could streamline the trend discovery

process, improving efficiency and scalability. Investigating the development of a uni-

fied framework that seamlessly combines regression and segmentation for TD discovery

Chapter 6. Conclusions 70

represents an exciting avenue for future research.

These future directions underscore the ongoing potential for innovation and advance-

ment in TDs. Addressing these research areas as data-driven models and analyses evolve

can further enhance our ability to extract valuable insights from complex datasets, ulti-

mately contributing to more robust and accurate data-driven decision-making processes.

Bibliography

[1] Douglas Adriano Augusto and Helio JC Barbosa. Symbolic regression via genetic

programming. In Proceedings. Vol. 1. Sixth Brazilian symposium on neural networks,

pages 173–178. IEEE, 2000.

[2] Jushan Bai and Pierre Perron. Computation and analysis of multiple structural

change models. Journal of applied econometrics, 18(1):1–22, 2003.

[3] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambat-

tista Parascandolo. Neural symbolic regression that scales. In International Confer-

ence on Machine Learning, pages 936–945. PMLR, 2021.

[4] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-

etsidis. Conditional functional dependencies for data cleaning. In 2007 IEEE 23rd

international conference on data engineering, pages 746–755. IEEE, 2006.

[5] Qianqian Chen. Fast Grid Search Algorithms for Multi-phase Regression Models.

University of Washington, 2020.

[6] Arik Ermshaus, Patrick Schäfer, and Ulf Leser. Clasp: parameter-free time series

segmentation. Data Mining and Knowledge Discovery, 37(3):1262–1300, 2023.

[7] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. Conditional

functional dependencies for capturing data inconsistencies. ACM Transactions on

Database Systems (TODS), 33(2):1–48, 2008.

71

Bibliography 72

[8] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering conditional

functional dependencies. IEEE Transactions on Knowledge and Data Engineering,

23(5):683–698, 2010.

[9] Erich Fuchs, Thiemo Gruber, Jiri Nitschke, and Bernhard Sick. Online segmentation

of time series based on polynomial least-squares approximations. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 32(12):2232–2245, 2010.

[10] A Ronald Gallant and Wayne A Fuller. Fitting segmented polynomial regression

models whose join points have to be estimated. Journal of the American Statistical

Association, 68(341):144–147, 1973.

[11] Andrew Gelman and Guido Imbens. Why high-order polynomials should not be

used in regression discontinuity designs. Journal of Business & Economic Statistics,

37(3):447–456, 2019.

[12] Lukasz Golab, Howard Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. On gen-

erating near-optimal tableaux for conditional functional dependencies. Proceedings

of the VLDB Endowment, 1(1):376–390, 2008.

[13] Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An

efficient algorithm for discovering functional and approximate dependencies. The

computer journal, 42(2):100–111, 1999.

[14] Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François

Charton. End-to-end symbolic regression with transformers. Advances in Neural

Information Processing Systems, 35:10269–10281, 2022.

[15] Reza Karegar, Parke Godfrey, Lukasz Golab, Mehdi Kargar, Divesh Srivastava, and

Jaroslaw Szlichta. Efficient discovery of approximate order dependencies. arXiv

preprint arXiv:2101.02174, 2021.

Bibliography 73

[16] Reza Karegar, Melicaalsadat Mirsafian, Parke Godfrey, Lukasz Golab, Mehdi Kar-

gar, Divesh Srivastava, and Jaroslaw Szlichta. Discovering domain orders via order

dependencies. In 2022 IEEE 38th International Conference on Data Engineering

(ICDE), pages 1098–1110. IEEE, 2022.

[17] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm

for segmenting time series. In Proceedings 2001 IEEE international conference on

data mining, pages 289–296. IEEE, 2001.

[18] Samuel Kim, Peter Y Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir

Čeperić, and Marin Soljačić. Integration of neural network-based symbolic regression

in deep learning for scientific discovery. IEEE transactions on neural networks and

learning systems, 32(9):4166–4177, 2020.

[19] William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabŕıcio Olivetti de França,

Marco Virgolin, Ying Jin, Michael Kommenda, and Jason H Moore. Contempo-

rary symbolic regression methods and their relative performance. arXiv preprint

arXiv:2107.14351, 2021.

[20] Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben

Glatt, Nathan Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic

policies with deep reinforcement learning. In International Conference on Machine

Learning, pages 5979–5989. PMLR, 2021.

[21] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and

Yee Whye Teh. Set transformer: A framework for attention-based permutation-

invariant neural networks. In International conference on machine learning, pages

3744–3753. PMLR, 2019.

Bibliography 74

[22] Pei Li, Jessica Jessica, Naida Tania, Michael Böhlen, Divesh Srivastava, and Jaroslaw

Szlichta. abcod: Mining band order dependencies. In 2022 IEEE 38th International

Conference on Data Engineering (ICDE), pages 3162–3165. IEEE, 2022.

[23] Pei Li, Jaroslaw Szlichta, Michael Bohlen, and Divesh Srivastava. Discovering band

order dependencies. In 2020 IEEE 36th International Conference on Data Engineer-

ing (ICDE), pages 1878–1881. IEEE, 2020.

[24] Pei Li, Jaroslaw Szlichta, Michael Böhlen, and Divesh Srivastava. Abc of order

dependencies. The VLDB Journal, 31(5):825–849, 2022.

[25] Edouard Mathieu, Hannah Ritchie, Lucas Rodés-Guirao, Cameron Appel, Charlie

Giattino, Joe Hasell, Bobbie Macdonald, Saloni Dattani, Diana Beltekian, Esteban

Ortiz-Ospina, and Max Roser. Coronavirus pandemic (covid-19). Our World in

Data, 2020. https://ourworldindata.org/coronavirus.

[26] Vito MR Muggeo. Interval estimation for the breakpoint in segmented regression:

A smoothed score-based approach. Australian & New Zealand Journal of Statistics,

59(3):311–322, 2017.

[27] Thorsten Papenbrock and Felix Naumann. A hybrid approach to functional depen-

dency discovery. In Proceedings of the 2016 International Conference on Manage-

ment of Data, pages 821–833, 2016.

[28] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine

Learning research, 12:2825–2830, 2011.

[29] Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santi-

ago, Soo K Kim, and Joanne T Kim. Deep symbolic regression: Recovering math-

Bibliography 75

ematical expressions from data via risk-seeking policy gradients. arXiv preprint

arXiv:1912.04871, 2019.

[30] Hyunju Son and Youyi Fong. Fast grid search and bootstrap-based inference for

continuous two-phase polynomial regression models. Environmetrics, 32(3):e2664,

2021.

[31] Jaroslaw Szlichta, Parke Godfrey, Lukasz Golab, Mehdi Kargar, and Divesh Srivas-

tava. Effective and complete discovery of order dependencies via set-based axioma-

tization. Proceedings of the VLDB Endowment, 10(7), 2017.

[32] Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. Fundamentals of order depen-

dencies. Proceedings of the VLDB Endowment, 5(11), 2012.

[33] Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. Expressive-

ness and complexity of order dependencies. Proceedings of the VLDB Endowment,

6(14):1858–1869, 2013.

[34] Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method

for symbolic regression. Science Advances, 6(16):eaay2631, 2020.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[36] Jan Žegklitz and Petr Poš́ık. Benchmarking state-of-the-art symbolic regression

algorithms. Genetic Programming and Evolvable Machines, 22(1):5–33, 2021.

[37] Jinghui Zhong, Liang Feng, Wentong Cai, and Yew-Soon Ong. Multifactorial genetic

programming for symbolic regression problems. IEEE transactions on systems, man,

and cybernetics: systems, 50(11):4492–4505, 2018.

Bibliography 76

[38] Bin Zuo, Zhaolu Hou, Fei Zheng, Lifang Sheng, Yang Gao, and Jianping Li. As-

sessment of the running slope difference (rsd) t-test, a new statistical method for

detecting climate trend turning. In EGU General Assembly Conference Abstracts,

page 4065, 2020.

	Thesis Examination Information
	Abstract
	Author’s Declaration
	Statement of Contributions
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Motivation
	Problem Definition
	Contribution
	Thesis Outline

	Background
	Definitions and Notation
	Summary

	Literature Review
	Discovering Data Dependencies
	Functional Dependencies
	Conditional Functional Dependencies
	Order Dependencies
	Band Order Dependencies
	Approximate Band Conditional Order Dependencies

	Symbolic Regression
	Genetic Programming
	Neural Networks
	Deep Symbolic Regression
	Benchmarking

	Segmentation
	Sliding Window and Bottom-up (SWAB)
	ClaSP

	Segmented Regression
	Linear Segmented Regression
	Non-Linear Segmented Regression

	Sampling

	Methodology
	Defining Trend Dependencies
	Trend Discovery
	Discovery on Strictly Ordered Data
	Noisy Data with No Errors
	Approximate Trend Discovery
	Deep Learning for Symbolic Regression

	Discovering Conditional Trend Dependencies
	Standard Methods
	SWAB Segmentation
	kNN-Based Classifier
	Recap

	Experimental Results
	Experimental Methodology and Data Sources
	Trend Discovery
	Experiment 1: Scalability - Regression
	Experiment 2: Accuracy - Regression

	Filters and Sampling
	Experiment 3: Candidate Error Detection
	Experiment 4: Sampling Effectiveness
	Experiment 5: Sampling Scalability

	Conditional Trend Discovery
	Experiment 6: Scalability - Segmentation
	Experiment 7: Accuracy - Segmentation

	Conclusions
	Conclusion
	Future Work
	Multi-Attribute Dependency Discovery
	Unified Architecture for Regression and Segmentation

	Bibliography

