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Abstract

In this thesis, we explore the integration of ConvNeXt, a CNN-based network inspired

by vision transformers, into the Intra and Inter Camera Similarity (IICS) and Intra and

Inter Domain Similarity (IIDS) frameworks for unsupervised person Re-ID. Building

upon IICS/IIDS framework that generates pseudo labels through intra and inter stages

and utilizing techniques such as Adaptive Instance and Batch Normalization (AIBN) and

Transform Normalization (TNorm) to minimize intra-camera and inter-camera variations

respectively, our work emphasizes the application of ConvNeXt as a feature extractor.

ConvNeXt gets higher mAP and CMC on the Market1501 and MSMT17 datasets than

most unsupervised learning methods. Furthermore, we explored the effect of AIBN and

TNorm normalization techniques in ConvNeXt. We showed their effectiveness in reducing

intra-camera and inter-camera variations if AIBN is inserted in the final stages (Stage

3 and stage 4) and TNorm layers are included after stage 1, stage 2, and stage 3. We

also examined the effects of four ConvNeXt variants within the IICS/IIDS framework,

emphasizing the advantages of using larger variants of ConvNeXt as a feature extractor

for person Re-ID.

Keywords: Pedestrian Identification; Unsupervised Learning, Pseudo Labels, Com-

puter Vision; Deep Learning; Surveillance; Camera Networks
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Chapter 1

Introduction

Person Re-Identification (ReID) involves matching a person seen in a camera to individu-

als seen previously in this or other cameras. The problem of person Re-ID naturally arises

in wide-area surveillance settings where person Re-ID enables a myriad of downstream

tasks, e.g., those related to security, search and rescue, and smart spaces. Consider, for

example, a shopping mall that has installed a collection of cameras to boost its security

and increase the sense of safety for its visitors. These cameras record images of individ-

uals who visit this mall. Person Re-ID technology, for example, will enable the camera

operators to tie visitors of this mall to their previous visits. Similarly, person Re-ID can

also help track the motion of individuals as they meander through the mall, moving in

and out of the field-of-view of different cameras. Person Re-ID is a long-standing prob-

lem in the video surveillance community and there is a large body of work in this area,

including a number of schemes developed over the last decade that leverage deep learning

(Ye et al., 2021).

Despite the volume of work in this area and the substantial interest in this capabil-

ity by security agencies, police, and military, the problem of person Re-ID is far from

solved. Matching and identifying individuals in images taken under a variety of view-

ing conditions—e.g., camera types and viewpoints, lighting, occlusions, pose variations,

1



Chapter 1. Introduction 2

clothing changes, multiple individuals wearing similar clothes, etc.—is a challenging task.

If we consider also that the images are taken at different times, say days or weeks apart,

the problem of person Re-ID becomes even more intractable. As mentioned earlier, the

problem of person Re-ID typically takes place in video surveillance scenarios where of-

tentimes it is not possible to acquire a high-quality photograph of an individual. This

suggests that person Re-ID cannot use biometric information for the purposes of identi-

fication.

Within this context, this thesis aims to study the problem of person Re-ID. For the

purposes of this work, we assume that the persons are photographed by multiple cameras

with possibly non-overlapping fields-of-view. Furthermore, there are no clothing changes

between images captured by different cameras. Our reasons for these assumptions are

practical: we had access to three person Re-ID datasets—Market1501 (Zheng et al.,

2015), DukeMTMC-ReID (Ristani et al., 2016), and Multi Scene Multi Time (MSMT17)

(Wei et al., 2018b)—and these datasets contain images from multiple cameras that are

taken around the same time. Therefore, each person is shown wearing the same clothes

in the images where this individual is visible. The imaging assumptions that we have

made in this work are similar to those made by other recent approaches for person Re-ID.

In order to match individuals across multiple cameras, it is important to develop

techniques that are able to compute camera-invariant features. Specifically, these fea-

tures need to capture identify-related information, ignoring confounding factors, e.g.,

pose, background, partial visibility, camera viewpoints, and color shifts, etc. Over the

last few years, researchers have investigated deep learning approaches for the purposes

of constructing features that are well-suited for person Re-ID applications. Here, CNN

backbones that are pre-trained on imagenet type data are employed as feature extractors

and the computed features are matched using nearest-neighbor-inspired approaches or

calculate the distance between these features and ranke them from the most matched fea-

tures to the least ones. More recently, metric learning and domain adaptation techniques
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have been used to improve the robustness and generalizability of these features.

The purpose of metric learning is to push features that are of the same individual

closer to each other while at the same time pulling apart the features of different persons.

Domain adaptation, on the other hand, explicitly models the differences in images (of

the same person) captured by different cameras. These differences arise due to imaging

characteristics of various cameras, e.g., viewpoint, lighting, color shifts, etc. Both of

these techniques assume that the images are labeled, i.e., each image is labeled with the

“identity” of the individual seen in this image. Specifically, it means that 1) only one

individual is visible in an image and 2) if two images show the same person then both

images have the same label. Of course, surveillance cameras capture images that show

multiple individuals; however, it is still fair to assume (1). It is relatively straightforward

to perform person detection followed by a tight crop to construct an image where only

a single person is visible. Item (2), i.e., labeling person Re-ID datasets is tedious, con-

sequently, the current trend is to develop person Re-ID techniques that eschew labeled

data. One commonly used approach is to assign pseudo-labels and use these to train

models capable of constructing features suitable for person Re-ID applications. These

methods combine feature extraction and label assignment within a single loop: extracted

features are clustered to assign labels that are used to refine the feature extractor, and

so on.

Feature similarity computation is the fundamental operation underlying any person

Re-ID scheme. The idea is simple. Features corresponding to the same individual are

“closer” to each other; whereas, those that belong to different persons sit “farther” away

from each other. Within person Re-ID, however, we need to deal with camera/domain

gaps that arise when the same person is captured by multiple cameras.

Two recent methods called IICS and IIDS for unsupervised person Re-ID generates

pseudo-labels in two stages, 1) intra and 2) inter (Xuan & Zhang, 2021; Xuan & Zhang,

2022). Furthermore, to reduce the effect of intra-camera and inter-camera variations
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on the accuracy of pseudo-labels, Adaptive Instance and Batch Normalisation (AIBN)

and Transform Normalization (TNorm) techniques are added to the feature extractor

(ResNet50). Our work closely follows IICS/IIDS approach. We employ a CNN-based

network, ConvNeXt, designed by the principles of vision transformers as a feature ex-

tractor into the IICS/IIDS framework.

Furthermore, we study the effect of adapting AIBN and TNorm techniques to Con-

vNeXt. AIBN reduces the impact of intra-camera variations caused by different poses,

viewpoints, occlusion, and other identity-related factors. Our result shows that AIBN

can be effective if inserted in the final stages of ConvNeXt (stage 3 and stage 4). Also, to

mitigate the effect of inter-camera variations, TNorm layers are added after stage 1, stage

2, and stage 3 of ConvNeXt to convert the style of images taken by different cameras.

The result shows that TNorm is effective and is it highly related to its insertion location.

Finally, we investigate four variants of ConvNeXt in IICS/IIDS Framework, and the

result shows that we reach higher mAP and CMC when we use a larger variant of Con-

vNeXt as a feature extractor. Fig. 5.5 compares the different states of our method with

IICS and IIDS methods on the MSMT benchmark dataset, which is the most challeng-

ing among Market1501 and Duke. ConvNeXt-s (isotropic) shows the smallest variant of

ConvNeXt without adopting AIBN and TNorm normalization techniques. ConvNeXt-

s (AIBN) shows AIBN is included in ConvNeXt. Also, ConvNeXt-s (AIBN, TNorm)

is when we insert AIBN and TNorm techniques into ConvNeXt. Also, ConvNeXt-B

(AIBN, TNorm) shows a larger ConvNeXt variant, including AIBN and TNorm, show-

ing the highest accuracy among other states of our method. Also, Fig. 5.6 compares our

approach to IICS and IIDS methods on Market1501.
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1.1 Social Impact

According to the Almasawa 2019 Survey, video surveillance installations have an imme-

diate impact on crime prevention, suspect identification, and maintaining public safety

in congested regions, transit hubs, and other security-sensitive sectors (Almasawa et al.,

2019). Law enforcement uses person Re-ID routinely in crime investigations. Manual

person Re-ID where a person has to go through troves of image data to identify the

culprit is tedious, sometimes impractical, and often extremely time intensive. In order

to improve efficiency and speed up the identification process, law enforcement organiza-

tions also use (automated) person re-identification procedures. By eliminating the need

for human annotation and utilizing unsupervised learning techniques, the advances in

this thesis provide workable solutions to the resource-intensive issue of identity anno-

tation. Law enforcement authorities may strengthen their investigation abilities, speed

up suspect identification, and increase their overall efficacy by using this development

(Tahboub, 2017).

It is important to bear in mind that the widespread use of person Re-ID technologies

has serious social consequences. This technology erodes individual privacy. Additionally,

it can be easily misused by authoritarian regimes to quell dissent and control behavior.

Consequently, It is important to understand where and when it is appropriate to use

this technology. The society, as a whole, has to balance its needs for security and a sense

of safety to the very real and important issue of personal privacy and freedom of thought,

movement, and action.

1.2 Thesis Outline

In chapter 2, we start by assessing supervised and unsupervied methods in person Re-ID.

In chapter 3, we explain IICS/IIDS framework, ConvNeXt, and AIBN and TNorm nor-

malization techniques. Then, we discuss the formulation of our methodology in chapter
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4. This involves using a different network as a feature extractor. Chapter 5 shows the

performance of our method, providing a thorough assessment of its effectiveness in com-

parison to other approaches. Chapter 6 concludes with a summary of our contributions,

findings, and recommendations for further research in person Re-ID.

1.3 Source Code

The Python implementation of our model can be accessed through the following link.

https://github.com/faisalqureshi/roya-dehghani-msc-person-reid

https://github.com/faisalqureshi/roya-dehghani-msc-person-reid


Chapter 2

Related Works

This chapter provides a review of the related research in person Re-ID. We start with

an introduction about person Re-ID and then we categorize methods into supervised

and unsupervised learning to investigate the various techniques researchers employ for

person Re-ID. We also identify the commonly used datasets in person Re-ID based on

our review of the previous works. Finally, we discuss our contribution which is based on

the literature review.

Figure 2.1: A common system for person Re-ID.

7
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2.1 Supervised Person ReID

Person Re-ID may be used for various practical purposes, such as criminal investigations,

multi-camera tracking, and missing person searches. Fig. 2.1 shows the process of person

Re-ID where person Re-ID’s main goal is to identify distinguishing characteristics of

people to match a given query person with the gallery’s most comparable persons in

pictures or videos. Early person Re-ID models often relied on hand-crafted attributes,

such as colors and textures, to capture the visual similarities between different images

(Liu et al., 2018; Cheng et al., 2017; Liu et al., 2017). However, these hand-crafted

features are not sufficient for large-scale applications since they often cannot capture

visual aspects found in large galleries. Starting in 2014, Convolutional Neural Network,

CNN-based deep learning replaced the role of the hand-crafted feature technique, and it

emerged as the dominant technique in computer vision research (Li et al., 2014).

Thanks to CNN-based deep learning, supervised person Re-ID has achieved impressive

accuracy on commonly used Re-ID benchmark datasets. For example, in the Market-1501

dataset (Zheng et al., 2015), the Rank-1 benchmark for single query search has increased

from 44.4% (Zheng et al., 2015) at the time of its release to 98.5% (Liu et al., 2020)

in 2020. Similarly, the Rank-1 evaluation result for the DukeMTMC-Re-ID dataset has

shown substantial improvement, rising from only 30.8% (Zheng et al., 2017)in 2017 to

over 95% in 2020.

In exploring supervised learning for person ReID, AlignedReID (Zhang et al., 2017)

has been examined. AlignedReID is a technique for person re-identification that combines

global and local feature learning processes. To extract global and local properties, it uses

a two-branch network, the global branch, and the local branch. The global branch’s

convolutional network analyses the input picture and produces feature maps. The most

important or noticeable characteristics are then preserved while the spatial dimensions

are decreased by utilizing a global pooling operation to compress feature maps. However,

the local branch generates a feature map using the same convolutional network as the
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global branch. Next, one (1× 1) kernel-sized convolutional layer and horizontal pooling

are used. The network is trained using triplet hard loss, which chooses triplet samples

based on global distances among global features.

Furthermore, (Sun et al., 2018) utilizes a Part-based Convolutional Baseline (PCB) in

conjunction with Refined Part Pooling (RPP). PCB separates the picture into horizontal

parts instead of processing it as a whole and learns unique attributes for each of these

parts. One image is first put through a series of convolutional layers, often using the

backbone network from a pre-trained model like ResNet50. This process produces a 3-

dimensional tensor. Next, the tensor is divided into some column vectors, followed by

(1 × 1) kernel-sized convolutional layer reduces the dimension of each column vector.

Then, a classifier receives each dimension-reduced column vector, in turn, to create the

final descriptor of the input picture by concatenating all generated column vectors.

On the other hand, (Luo et al., 2019) concentrated on training methodologies that are

covered in other articles or source codes to create a strong baseline for person Re-ID. The

recommended baseline model is based on ResNet50 and was trained using a combination

of classification loss and triplet loss. The authors also offer a novel neck structure called

BNNeck to split metric and classification losses into two different feature spaces. For this

purpose, after the global pooling layer, the batch normalization layer is added before the

fully connected layer, which is used for classifying identities. Separation of feature spaces

for triplet loss and classification loss improves the performance of person Re-ID.

However, (Liu et al., 2019) employ hash code to provide individual photos for quick

indexing and retrieval on huge datasets. The suggested method uses the Deeper Cut

method, which determines the locations of 14 critical points for each person’s picture, to

break down human photos into bodily parts including head, arm, upper body, and lower

body. Then these pieces are combined with other photographs to produce new positive

and negative training examples. This decomposition procedure makes it easier to create

useful training examples, which enhances feature learning. The technique is known as
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“self-guided” since it creates training samples repeatedly on its own, which results in

discriminative hash codes that may be effectively learned even with a little amount of

labeled data.

In contrast to the previous method which is focused on binary hash code, VP-ReID

employs modern techniques such as Deep Convolutional Neural Networks (DCNNs), and

efficient off-line indexing (Wei et al., 2018a). The technique uses Deepercut to distinguish

between various human body parts, particularly the head, upper body, and lower body.

Then, to obtain both global and regional properties, a Convolutional Neural Network

(CNN) made up of four sub-networks is utilized. Additionally, an offline stage of the

retrieval procedure is used to arrange pictures using the hierarchical organization tech-

nique known as Temporally Dependent Clustering (TDC). Images that belong to the

same person will be grouped together in TDC, resulting in an index that will speed up

the retrieval process later on.

For clothing-changing person re-identification (re-id) in RGB photos and videos, (Gu

et al., 2022) suggests a unique Clothes-based Adversarial Loss (CAL). The proposed

strategy penalizes the re-id model’s clothing-specific prediction ability to separate clothes-

relevant characteristics from clothes-irrelevant ones. A classifier for clothing follows the

re-id model’s core, and CAL is defined as a classification loss with many positive classes.

The authors additionally create a new dataset called Clothes-Changing Video person

re-ID (CCVID) using the raw data of a gait recognition dataset to serve as a publicly

accessible benchmark for clothes-changing video person Re-ID. The suggested technique

is a supervised learning technique that trains users using identification and clothing

information.

However, (Somers et al., 2023) proposed a model for occluded person Re-ID called

BPBreID that uses body part representations to overcome occlusions. The parts of

BPBreID are a global-local representation learning module that generates body part-

based features of the Re-ID target, a body part attention module that predicts attention
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maps highlighting the body parts of the Re-ID target, and a novel training method

called GiLt that is resistant to occlusions and non-discriminative local appearance. The

studies on well-known holistic and occluded datasets revealed that BPBreID beat state-

of-the-art algorithms on the challenging Occluded-Duke dataset by 0.7% mAP and 5.6%

rank-1 accuracy. The study concludes that part-based approaches are advantageous for

occluded person ReID because they provide fine-grained data and are well-suited to

represent human bodies that are only partially visible.

Similarly, another innovative method for dealing with occlusion in person re-identification

is the Dynamic Prototype Mask (DPM) technique. In order to transfer the alignment

from occluded retrieval to the subspace selection job, it makes use of prototype classi-

fication. This method eliminates the additional pre-trained networks that were used to

deliver body cues while also keeping the knowledge from the global wisdom and achiev-

ing automatic alignment. To fully utilize the potential of DPM, the DPM technique

also makes use of a Hierarchical Mask Generator (HMG) and a Head Enrich Module

(HEM). The DPM technique can be very helpful in real-world situations, as in surveil-

lance systems, where occlusion is a frequent problem with human re-identification. It

can significantly increase the effectiveness and precision of individual re-identification in

such circumstances (Tan et al., 2022).

Table 2.1 shows the summary of explained supervised person ReID methods. Deep

learning-based techniques depend on a lot of labeled data, which takes a lot of time and

it is almost infeasible on a large scale to annotate. Due to the substantial costs involved

in data labeling, supervised person Re-identification (Re-ID) techniques have difficulty

scaling up to huge datasets.
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Table 2.1: Related Works Summary of Supervised Person ReID

Type of method Summary Ref.

Local and Global Features
Combination of Global and
Local Feature Learning

(Zhang et al., 2017)

Part-based Features
Part-based Convolutional
Baseline

(Sun et al., 2018)

Useful Techniques Re-ID strong Baseline (Luo et al., 2019)

Hash code Binary Hash Codes (Liu et al., 2019)

DCNNs
DCNNs, Off-line Indexing,
and Distance Metric Opti-
mization

(Wei et al., 2018a)

Clothes-based Adversarial Loss (CAL)
Clothes-based Adversarial
Loss for Clothes-changing
Person Re-ID

(Gu et al., 2022)

Part-based ReID model Body Part Representations (Somers et al., 2023)

Occlusion Re-ID Approach
Dynamic Prototype Mask
(DPM)

(Tan et al., 2022)

2.2 Unsupervised Person ReID

The objective of unsupervised learning methods is to train Re-ID models utilizing unla-

beled data, decreasing the reliance on labeled data. We categorized unsupervised learning

methods into three groups based on the techniques they use.

2.2.1 Distribution Alignment

Feature distribution alignment of pictures recorded by multiple cameras can be a way to

overcome camera/domain gaps. This alignment strategy is utilized to bridge the camera

gap between cameras. (Sun & Saenko, 2016) focus on the situation where the target

domain lacks labeled data, requiring unsupervised adaptation. The CORAL method

aims to address the camera shift problem by aligning the second-order statistics of the

source and target distributions using a linear transformation. The method follows a

three-step process: feature extraction, transformation application, and training of an

SVM classifier. Deep CORAL proposes a direct integration of the CORAL technique

into deep networks. This is done by creating the CORAL loss, a differentiable loss
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function that reduces the difference between the correlations of the source and target

domains. A deep neural network that has already been trained can adapt its features

to a new target domain with the help of Deep CORAL loss, which makes it easier to

learn a non-linear transformation. A pre-trained model is used to set the basic network

parameters, and the labeled source data is then used to fine-tune them.

Similarly, (Wu et al., 2019b) introduced a strategy to address the camera gap in fea-

ture spaces due to variations in inter-camera scenes like illumination and viewpoint, lead-

ing to conflicting pairwise similarity distributions and impacting matching performance.

The proposed solution employs camera-aware similarity consistency learning in a two-step

coarse-to-fine methodology. A key component, the Camera-Aware Similarity Consistency

Loss, preserves understanding of intra-camera similarities while learning both local and

global similarity consistency. This loss function also explores the relationship between

intra-camera and inter-camera matching and uses a coarse-to-fine consistency learning

technique, with global and local phases, to enhance similarity learning. The approach

helps in retrieving the right top-ranked samples for person re-identification and depicts

the camera-aware similarity inconsistency. Fig. 2.2 shows that ResNet50 model (He et

al., 2015), pre-trained on the MSMT17 dataset (Wei et al., 2018b), was used to match

samples in two cameras (denoted by Cam 1 and Cam 2) on the DukeMTMC dataset

(Ristani et al., 2016). In intra-camera matching or inter-camera matching, pairwise sim-

ilarities are computed between each pair of samples, and the distributions are shown on

the left. The top-8 cosine similarity matches are given on the right, with the accurate

matches indicated by green bounding boxes. The variance in the feature space caused

by the inter-camera scene results in inconsistent pairwise similarity distributions, which

degrades matching efficiency (Wu et al., 2019b)

Likewise, (Lin et al., 2018) put out the Multi-task Mid-level Feature Alignment

(MMFA) network, a unique unsupervised methodology. With the use of a mid-level

feature alignment regularisation term, the model attempts to improve the tasks of classi-
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Figure 2.2: The camera-aware similarity inconsistency problem illustration.

fying people’s identities as well as learning their attributes. By treating the final feature

mappings of the feature extractor as attribute-like mid-level features, the MMFA net-

work enables mid-level deep feature alignment. As a result, mid-level properties between

the source and target domains can be aligned. The suggested technique uses a domain

adaptation strategy for mid-level feature alignment to minimize the Maximum Mean Dis-

crepancy (MMD) between the source and target domains’ mid-level feature distributions.

In order to overcome the noisy distillation problem and preserve feature space struc-

ture during evolution, (Lu et al., 2022) suggests a novel data-free incremental person

ReID framework dubbed AGD that makes use of geometric distillation and dreaming

memory. To enhance the quality of the distilled information, AGD augments distillation

in a pairwise and cross-wise manner over several perspectives of memory. In order to

avoid exemplars from arbitrarily “roiling” the space structure, AGD preserves connec-

tions between exemplars as representations drift. This allows it to modify the feature

space for new knowledge while keeping rich prior information for retrieval.



Chapter 2. Related Works 15

2.2.2 GANs (Generative Adversarial Networks)

In other studies, GANs (Generative Adversarial Networks) are used to translate the style

of photographs taken by one camera to images taken by another camera. This method

seeks to close the feature distribution camera gap between pictures captured by various

cameras.

To tackle the challenge of image style variations caused by different cameras, Cycle-

GAN is proposed (Zhong et al., 2018b). Based on a training image taken by a particular

camera, the approach may create equivalent images that appear to have been shot by

various cameras by utilizing the learned CycleGAN models. The procedure mitigates

camera style discrepancies and lowers the danger of convolutional neural network (CNN)

overfitting. It may be used as a data augmentation tool as well. The technique makes

learning pedestrian descriptors with a camera-invariant attribute easier by adding camera

information, enabling more reliable feature extraction.

Similar to the previous approach, GANs are used for the distribution of translated

images to be identical to the target domain (Zhu et al., 2017). In the absence of matched

instances, the authors offer a method for learning to translate an image from a source

domain to a target domain by introducing a cycle consistency loss, which assures that

translating an image from to and vice versa with functions and produces an image that

is close to the original input.

Previously studied methods often adopt a representation space containing id-related

and unrelated features, limiting efficiency. (Zou et al., 2020a) addressed this issue by

using a disentangling module to separate id-related and irrelevant features and an adap-

tation module to work on alignment and self-training in a shared appearance space.

These co-developed modules offer mutual benefits. The disentangling module simplifies

adaptation by focusing only on id-related data. In contrast, the adaption module bridges

the distribution gap between cameras/domains and assists in separating appearance and

structure characteristics. Self-training further supports disentangling by encouraging
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unique appearance features. The joint learning framework solves the mismatch between

training and testing data, bridging camera gaps and enhancing performance in new cam-

eras or environments.

Similarly, to close the gap between cameras and lessen the need for annotating new

instances of training, the Person Transfer Generative Adversarial Network (PTGAN)

approach is suggested (Wei et al., 2018b). Style transfer and the preservation of individual

identification are two key restrictions that PTGAN is made to operate by. For transferred

person photos to have styles comparable to those in the target dataset, style transfer seeks

to learn style mapping functions between various person datasets. The person identity

preservation goal assures that each person’s identity remains unchanged after the transfer,

which is critical for person re-identification training. The person re-identification datasets

lack matched person pictures (shots of the same person from different datasets), which

makes the style transfer task an unpaired image-to-image translation challenge. The last

category under unsupervised learning methods in person Re-ID is pseudo-label-based

methods that we study in the next section.

2.2.3 Generating Pseudo Labels

Pseudo-label-based methods in unsupervised learning initially generate pseudo-labels by

applying predefined rules based on sample similarity. These pseudo-labels are then uti-

lized to train the Re-ID model. The accuracy and reliability of the computed pseudo-

labels play a crucial role in determining the performance of these methods. High quality

pseudo-labels that accurately capture the underlying patterns and semantics of the data

lead to improved performance, as they effectively guide the model training process. Con-

versely, low-quality or erroneous pseudo-labels can negatively impact the performance of

the Re-ID model, potentially leading to suboptimal results.

Most pseudo-label-based methods use clustering algorithms based on distance or sim-

ilarity criteria among extracted features of images (Chen et al., 2020; Zhang et al., 2019;
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Wang & Zhang, 2020). (Fan et al., 2018) introduced progressive unsupervised learning

(PUL) using k-means clustering to generate pseudo-labels and transfer pre-trained deep

representations to unknown environments. The method consists of an iterative process

of pedestrian grouping and CNN fine-tuning. Initially, when the model is weak, the CNN

is fine-tuned using a carefully selected set of trustworthy examples near cluster centroids.

As the model improves, more images are progressively chosen for training, allowing the

model to learn from a broader and more varied dataset. Both pedestrian clustering and

the CNN model are enhanced simultaneously, naturally following the principles of self-

paced learning, where the task gets more challenging as the model improves. Through

the iterative approach, PUL improves the original model’s performance, adapting to the

target camera and yielding better results in unsupervised learning scenarios.

Similarly, (Lin et al., 2019) proposes a novel Bottom-Up Clustering (BUC) approach.

The suggested technique optimizes the interaction between various samples and a convo-

lutional neural network (CNN) model. In the first stages of training, each distinct picture

is treated as a distinct identity. To extract feature embeddings from the pictures, the

CNN model is used. The number of unique classes or identities is then decreased using a

bottom-up clustering approach on the feature embeddings. This clustering step allows for

discovering relationships and similarities among the samples in an unsupervised manner.

The CNN model continuously learns from various unlabeled photos, gradually exploiting

the dataset’s similarities.

Similar work in pseudo-label-based methods adds a memory bank to the network

architecture to eliminate the need to re-initialize the classifier at each epoch and propose

memory-based multi-label classification loss (MMCL) (Wang & Zhang, 2020). Every

image in the suggested method receives a single-class label before moving on to multi-label

classification utilizing the modified Re-ID model for label prediction. The label prediction

approach uses cycle consistency and similarity computing to guarantee the accuracy

of the predicted labels. To increase the Re-ID model’s training effectiveness in multi-
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label classification, the research develops the memory-based multi-label classification loss

(MMCL). The suggested Re-ID approach significantly improves due to MMCL operations

and iterative label prediction.

Other researchers focus on improving the quality of pseudo-labels. To reduce the

influence of low-quality pseudo-labels, NRMT (Zhao et al., 2020), MMT (Ge et al.,

2020a) and MEB-Net (Zhai et al., 2020b) used mutual-training. (Zhao et al., 2020)

introduced a noise-resistant mutual-training architecture to address the problem of label

noise for person Re-ID. This approach aims to generalize Re-ID models from a labeled

source domain to an unlabeled target domain where the data distribution may differ

significantly. The framework consists of two main components: mutual training and

noise resistance. Mutual training involves two Re-ID models, a source model, and a

target model, alternately updated using each other’s pseudo-labels, helping them learn

and improve in the target domain. Noise resistibility strategies, such as label smoothing

and a noise-resistible loss function, are employed to reduce the impact of noisy pseudo-

labels that could harm model performance. Overall, the framework enhances the models’

adaptability to the target domain by making them more resilient to label noise.

Moreover, (Ge et al., 2020a) proposed a method called Mutual Mean-Teaching (MMT)

to decrease the negative effect of noisy pseudo labels. To reduce the effects of label noise,

the proposed MMT architecture has a two-step pseudo label refinement process. The

refining procedure uses offline and online refined hard and soft pseudo labels. By using

updated labels, the model improves its feature representations and better reflects the

characteristics of the target domain. The study also provides a novel soft softmax-triplet

loss to handle the gently refined labels.

Similarly, (Zhai et al., 2020b) employs ensemble learning techniques to propose Mul-

tiple Expert Brainstorming Network (MEB-Net). In MEB-Net, several networks with

various architectures are pre-trained as expert models inside a source domain using a

mutual learning approach. Each expert model has unique abilities and information.
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Through a brainstorming process that involves mutual learning among the experts, the

objective is to adapt these expert models to the target domain. In each iterative epoch,

clustering algorithms forecast pseudo-labels for the target data. The expert networks

are then adjusted using these pseudo-labels through mutual learning. Mutual learning

makes it easier for experts to share information, which boosts performance in the target

domain.

In addition, (Zhang et al., 2018) describes a deep mutual learning (DML) technique

that extends the notion of model distillation by allowing numerous student networks

to collaborate and educate each other throughout the training process. Unlike the tra-

ditional model distillation, which distributes knowledge from a static instructor to a

student, DML allows for bidirectional knowledge transmission among student networks.

The DML approach exemplifies how mutual training among fundamental student net-

works may produce noteworthy outcomes for category and instance recognition tasks.

The experiments demonstrate that existing strong teacher networks are not necessary for

excellent performance. The shared learning of student networks outperforms traditional

distillation methods that rely on a more strong but static instructor.

(Zhu et al., 2022) suggests a pre-training technique for person re-identification (ReID)

named Part-Aware Self-Supervised Pre-Training (PASS). The technique, which is based

on the Transformer architecture, is made to draw out specific information from photos

to enhance Re-ID performance. PASS creates part-level features by segmenting pictures

into several local regions and giving each part a unique learnable token. The strategy is

assessed and found to perform better on several benchmark datasets than current state-

of-the-art approaches. The study also contains visualization experiments to demonstrate

the model’s focus regions and its capability to handle occlusion conditions.

However, The Intra and Inter Camera Similarity (IICS) approach proposed by (Xuan

& Zhang, 2021) offers a solution for acquiring accurate pseudo-labels for training the

Re-ID network. The method divides the computation of sample similarity into two
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steps. The first stage is Intra-camera computing, which uses CNN features directly, and

similarity calculations are made within each camera. This step generates the pseudo-label

by clustering samples and giving them the same label within each cluster. The training

of the Re-ID model is conducted using a multi-branch network, where each branch is

optimized for a different classification task within the same camera, and multiple tasks

optimize the common backbone. The second step uses both CNN feature similarity

and Jaccard similarity among classification score vectors in inter-camera computation.

The Adaptive Instance and Batch Normalisation (AIBN) technique is also introduced to

improve classifier generalization without diminishing discriminative performance.

In addition to AIBN, Transform Normalization (TNorm) and knowledge distillation

were added to the IICS method and proposed Intra and Inter Domain Similarity (IIDS)

method (Xuan & Zhang, 2022). TNorm is a normalization technique that reduces inter-

camera variations caused by camera-related factors. It essentially transfers the style of

images taken by one camera to those taken by another. This transformation is achieved by

altering the camera-related feature statistics, effectively converting the image style. The

work also involves self-knowledge distillation, where information is transferred between

the original features and TNorm-simulated features. Knowledge distillation is commonly

used to transmit information from a “teacher” model to a “student” model, and it can also

facilitate information sharing among multiple samples bearing the same label. Further

details on TNorm and AIBN are provided in the subsequent chapter.

Table 2.2 shows a summary of methods in unsupervised learning methods. In un-

supervised learning, no labeled data is used. Some research tries to align the feature

distributions of images captured by different cameras. These methods seek a transfor-

mation or mapping function that aligns the feature distributions without the need for

labeled data by learning from the innate structure of the data. Another group of re-

searchers uses GANs to transfer the style of images taken by one camera to the images

taken by a different camera. By doing so, the researchers could reduce the camera gap
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between feature distribution of images taken by different cameras. In contrast to other

methods, other researchers generate pseudo labels to supervise the training model. It is

interesting to note that those methods that use pseudo labels perform better than other

methods in unsupervised learning.

2.3 Dataset

There are three commonly used datasets that most researchers use to test the performance

of person Re-ID models, namely Market1501 (Zheng et al., 2015), DukeMTMC-ReID

(Ristani et al., 2016), and MSMT17 (Wei et al., 2018b).

Market1501 dataset contains 32,668 photos with 1,501 distinct IDs. 6 cameras

were placed in front of a campus grocery to collect these photographs. The Deformable

Part Model (DPM) (Felzenszwalb et al., 2009) was used to achieve precise identification

and cropping. The training set is used for model training and contains 12,936 photos

exhibiting 751 identities. The gallery portion, which contains 19,732 photos depicting

750 identities, serves as a reference for comparison during evaluation. Also, the query

subset, which contains 3,368 hand-drawn photos corresponding to the same 750 gallery

IDs, is used to test the model’s performance. The photos in the Market-1501 dataset

are all 128 by 64 pixels in size. To make this dataset’s reference easier to understand

throughout this thesis, we shall use the word “Market”. Fig. 2.3 illustrates some sample

images from the Market1501 dataset.

DukeMTMC-reID dataset is derived from the larger DukeMTMC dataset (Ristani

et al., 2016), which is primarily concerned with pedestrian tracking. The DukeMTMC

collection contains 36,411 photos with 1,812 unique IDs recorded from 8 distinct cameras.

Similarly to Market-1501, DukeMTMC-reID is broken into three major components. The

training subset includes 16,522 photos representing 702 identities, whereas the gallery

part includes 17,661 images representing 1,110 identities. In addition, the gallery includes
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Table 2.2: Related Works Summary of Unsupervised Person Re-ID

Type of method Summary Ref.

Distribution Alignment

Distributions Alignment of
Source and Target Data

(Sun & Saenko, 2016)

The Camera-Aware Similarity
Consistency Loss

(Wu et al., 2019b)

Optimizing Identity Classifi-
cation, Feature Alignment

(Lin et al., 2018)

Incremental Person Re-
Identification

(Lu et al., 2022)

GANs

Cycle Consistency Loss (Zhu et al., 2017)
Introduction of CycleGAN (Zhong et al., 2018b)
Disentangling Id-related and
Id-unrelated Features

(Zou et al., 2020a)

MSMT17 Dataset Introduc-
tion, Person Transfer GAN (Wei et al., 2018b)

Separation of Positive and
Negative Samples

(Jin et al., 2020)

Pseudo label Generation

K-means Clustering (Fan et al., 2018)
Bottom-up Clustering (Lin et al., 2019)
Memory-based Multi-label
Classification Loss

(Wang & Zhang, 2020)

Mutual-training Framework,
domain shift and Label Noise

(Zhao et al., 2020)

Mutual Mean-Teaching
(MMT) Framework, Refining
Pseudo Labels

(Ge et al., 2020a)

Multiple Expert Brainstorm-
ing Network (MEB-Net)

(Zhai et al., 2020b)

Unsupervised ReID Pre-
Training

(Zhu et al., 2022)

Two-stage Generation Pseudo
Label Approach, AIBN Inclu-
sion to Feature Extractor

(Xuan & Zhang, 2021)

Two-stage Generation Pseudo
Label Approach, AIBN and
TNorm Inclusion to Feature
Extractor, Self-Knowledge
Distillation Between TNorm-
simulated Features and
Original Features

(Xuan & Zhang, 2022)
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Figure 2.3: Market1501 sample images.

Figure 2.4: Duke sample images.
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Figure 2.5: MSMT17 sample images.

an extra 2,228 photos with 702 IDs for searching purposes. It is worth mentioning that

the photos in this collection vary in size. We shall use the word “Duke” to simplify

references to this dataset throughout this thesis report (Fan et al., 2018). Fig. 2.5

depicts Some sample images. It should be noted that the Duke dataset was retracted

due to social concern.

MSMT17 is a recent dataset for person Re-ID (Wei et al., 2018b). It consists of

126,441 pictures from 4,101 different people that were taken using 15 different cameras.

There are 32,621 photos from 1,041 identities for training and 93,820 images from 3,060

identities for testing. The dataset is more difficult to analyze than the DukeMTMC-

ReID and Market1501 datasets because of the variety of scene alterations, the long time

range,— day or night time—, and the high number of unique IDs. Fig. 2.5 shows some

sample images from this dataset.

2.4 Summary of Person Re-ID Methods

In the previous sections, we examined different methods for person Re-ID, both with and

without annotated data. Although supervised learning with deep neural networks has
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shown impressive results, it is problematic for large-scale datasets since it needs labeling.

However, unsupervised learning approaches, which do not require labels for training Re-

ID models, have been investigated by researchers as a solution to this problem.

Regarding supervised learning person Re-ID, we assessed a few methods. Some re-

searchers focus on both local and global features for person Re-ID. Others focus on deep

learning hash code. On the other hand, in unsupervised person Re-ID, we can categorize

methods into three groups. Some methods try to align the distribution of images, and

others utilize Generative Adversarial Networks (GANs) to convert the style of images

taken by one camera to the ones taken by another camera. However, some generate

pseudo labels to supervise model training.

2.5 Our Contributions

Based on our literature review, we can conclude that the unsupervised learning approach

is more practical in the real world than supervised learning where labeled data is needed.

Since the person Re-ID model’s primary goal is to extract discriminative features, we

examine a CNN network that has been designed based on a vision transformer as the

feature extractor into the IICS/IIDS approach. To this end, we employ ConvNeXt, a

CNN-based network as a feature extractor (Liu et al., 2022).

The reason to choose ConvNeXt is that IICS and IIDS methods examined VGGNet-

19 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2015). We decided to

examine a recent CNN-based architecture whose performance is better than the vision

transformer (Liu et al., 2022). We did not use the vision transformer because our data

is images, not sequential data such as Videos. Our contributions can be summarized as

follows:

• ConvNeXt-based Feature Extraction in IICS/IIDS: One of the major strides

we take is to extend the IICS/IIDS framework by incorporating a ConvNeXt as a
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feature extractor.

• Exploration of ConvNeXt Variants: We conduct a study of four different

ConvNeXt variants to unravel their suitability and effectiveness within the context

of person Re-ID, specifically within the IICS/IIDS framework.

• Incorporation of AIBN and TNorm with ConvNeXt: We investigate the im-

pact of integrating Adaptive Instance Batch Normalization (AIBN) and Transform

Normalization (TNorm) within the ConvNeXt framework.

• Intra and Inter-Stage Analysis: IICS/IIDS divided the problem of training

feature extractors for person Re-ID into two steps: intra-camera and inter-camera.

In this thesis we analyzied the roles played by these two stages and we confirm the

findings in IICS/IIDS that both stages lead to better feature extractors, leading to

better performance on the task of person Re-ID.



Chapter 3

Background Knowledge

This chapter begins with an explanation of the IICS/IIDS framework, followed by a de-

tailed explanation of the ConvNext structure, comparing it to Residual Network (ResNet)

and Swin Transformer (Swin-T) for the purpose of person Re-ID. We also discuss other

variants of ConvNeXt. Finally, we will delve into the AIBN and TNorm normalization

techniques and explain how we can integrate them into ConvNeXt.

3.1 IICS/IIDS Framework

IICS/IIDS Framework is an unsupervised learning framework where no labels are used.

This approach uses pseudo labels to supervise the training process (Xuan & Zhang, 2021;

Xuan & Zhang, 2022). Fig. 3.1 depicts that the IICS/IIDS framework has two different

stages for training the person Re-ID model. In the first stage, intra-stage, there is a

multi-branch network where a feature extractor is shared among all cameras, and for

each camera, there is a different classifier. Images taken by each camera are given to the

feature extractor and clustering is used to generate pseudo labels based on the Euclidean

similarity among CNN features. On the other hand, in inter stage, the network is the

same feature extractor used in the intra-stage and only one classifier. The weights of the

feature extractor are directly copied from the intra-stage. At this stage, images from all
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cameras are given to the feature extractor to extract features and do clustering based

on CNN-feature similarity and Jaccard similarity on classification score vectors from

classifiers that exist in intra stage. In the following sections, each stage will be explained

in more detail.

3.1.1 Intra-camera training

In the Intra stage, the dataset is divided based on the index of cameras. This separation

helps to concentrate on capturing the distinct visual characteristics present in each cam-

era’s field of view. Fig. 3.3 shows that the images taken by camera 1 are given to the

feature extractor to extract CNN feature vectors. Based on Euclidean similarity on CNN

feature, agglomerative clustering generates pseudo labels. The same process is done for

other cameras’ images as well. Generated pseudo labels are then used to train the fea-

ture extractor and classifiers. The network at this stage can be considered a multi-branch

network where a feature extractor is shared among cameras, and each branch (classifier)

is responsible for each camera. Training Intra network helps to reduce the variations

between different cameras. During the Re-ID process, the shared embedding space en-

ables direct comparisons between images taken by various cameras. Fig. 3.3 illustrates

that for each camera, a different classifier is provided for each branch separately. The

outputs of classifiers are compared to the clustering-derived pseudo-labels to compute

the softmax cross-entropy loss. All branches are trained with their own losses and add

all losses together and update the weights of the network.

3.1.2 Inter-camera training

At this stage, as Fig. 3.4 shows, the network here is a shared feature extractor and

only one classifier. The probability that two samples from different cameras belong

to the same identity is estimated by the Jaccard similarity between classification score

vectors. A camera-independent feature should be used to reflect the similarity between
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Figure 3.1: IICS/IIDS structure. (Xuan & Zhang, 2021; Xuan & Zhang, 2022).
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Figure 3.2: Intra-camera training stage. Feature extraction and clustering process is
done for each camera separately.

Figure 3.3: Intra-camera training stage. It shows the network at the Intra stage and how
pseudo labels are used to train the network.
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Figure 3.4: Inter-camera training stage. It shows the process of generating pseudo labels.
Clustering at this stage incorporates not only Euclidean CNN similarity but also the Jac-
card similarity between classification score vectors. This Jaccard similarity is computed
by concatenating the classification scores of classifiers from the Intra-camera stage.

the classification probabilities that each classifier in the Intra stage produces for a given

image. The CNN feature of each image is passed through all classifiers that exist in

the Intra stage, then concatenates all these probabilities as a vector (classification score

vector). The Jaccard similarity is used to indicate the probability that the two images

belong to the same identity. At this stage, in addition to CNN feature similarity, Jaccard

similarity is considered to do clustering to generate pseudo-labels across cameras. Fig.

3.5 depicts that generated pseudo-labels are then used to train the network using a

combination of softmax cross entropy and triplet losses. The softmax cross entropy loss

ensures that the model accurately classifies each image, while the triplet loss is used to

learn discriminative features that can separate different identities.

In the IICS method, AIBN normalization is integrated into the feature extractor to

reduce intra-camera variations. However, in the IIDS method, AIBN and TNorm are

inserted into the feature extractor to reduce Inter-camera variations. TNorm is used to
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Figure 3.5: Inter-camera training stage. It depicts how generated pseudo labels are used
to train the network.

generate the simulated features to increase training samples. As a result, TNorm loss

is added to intra-camera and inter-camera training. In IICS/IIDS framework, ResNet50

included by AIBN and TNorm is used as a feature extractor. However, our method

was built upon IICS/IIDS methods, with an investigation into employing ConvNeXt as

a feature extractor. We will explain the details of ConvNeXt and its differences with

ResNet architecture.

3.2 ConvNeXt

ConvNeXt is a CNN-based network that is designed by the principles of transformers

(Liu et al., 2022). This network was designed based on standard ResNet to resemble

the design of a vision transformer and apply 1) macro design, 2) ResNeXt, 3) inverted

bottleneck, 4) large kernel size, and 5) various layer-wise micro designs. Regarding macro

design concept, it should be noted that in ConvNeXt has 4 stages. The number of blocks

in each stage is [3, 3, 9, 3], based on the stage compute ratio in Swin transformer (Swin-T)

which is [1 : 1 : 3 : 1]. Similar to vision transformers, the stem cell which is responsible

for downsampling includes “patchify” strategy. The stem cell includes a kernel size of

(4× 4) with a stride of 4. Furthermore, in terms of ResNeXtify, it is said that depthwise
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convolution and the weighted sum operation in self-attention that exist in transformers

are comparable, which results in information being mixed in the spatial dimension only.

Similarly, ConvNeXt separates spatial and channel mixing through the use of depth-wise

and point-wise (1 × 1) convolutions. Similar to transformers where each block has an

inverted bottleneck, ConvNeXt includes a similar bottleneck. This means that the MLP

(Multi-Layer Perceptron) block’s hidden dimension is four times bigger than its input

dimension in transformers and it is true in ConvNeXt as well.

In addition to these characteristics, the depth-wise kernel size in ConvNeXt is (7× 7)

to have a global receptive field that acts similar to one of the most distinguishing aspects

of non-local self-attention in vision transformers. In ConvNeXt, depth-wise convolution

layer relocate to the beginning of stage 1. This is because after downsampling, the

number of channels of input is reduced before applying a large kernel size of (7 × 7).

Fig. 3.7 shows that in the ConvNeXt block, there is only one Gelu activation function

(Hendrycks & Gimpel, 2016), which is a smoother variation of ReLU. Also, similar to

transformer blocks, ConvNeXt has only one normalization layer in each block which

is Layer Normalization (LN) (Ba et al., 2016). In the next section, we compare the

differences between ResNet50 and ConvNeXt which shows the better performance of

ConvNeXt in vision tasks.

3.3 ConvNeXt (isotropic)

There are different variants of ConvNeXt, including ConvNeXt (isotropic), whose ar-

chitecture has minor differences from ConvNeXt. The isotropic version of ConvNeXt

lacks the notion of many stages and downsample layers. In the ConvNeXt (isotropic)

model, we employ ConvNet blocks and a single stem directly, without any downsam-

pling layers, to reduce the input image’s spatial resolution by a factor of 16. Also, the

dimension or number of channels remains constant throughout the model. ConvNeXt
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Figure 3.6: Resnet, ConvNeXt and Swin transformer architectures (Liu et al., 2022).

(isotropic) matches the architecture of vision transformer ViT-S/B/L with (14× 14) fea-

ture resolution throughout. The feature dimension and depth at ConvNeXt-S (isotropic),

ConvNeXt-B (isotropic), and ConvNeXt-L (isotropic) is 384, 768, and 1024 with the

depth of 18, 18, and 36, respectively.

3.4 Different Variants of ConvNeXt

There are different variants of ConvNeXt. The difference between different variants is

in the number of blocks in each stage and the dimension. Table. 3.1 shows different

variants of ConvNeXt. For example, ConvNeXt-T has four stages and the dimension

of each stage is 96, 192, 384, and 768, respectively. Also, the number of blocks in each

stage is 3, 3, 9, and 3 in a row. However, ConvNeXt-S (isotropic) shows that there are

18 blocks, and the dimension is 384.
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Figure 3.7: Block designs for ResNet, ConvNeXt and Swin-T. In ResNet, we have a
Normalization layer after each layer. However, in ConvNeXt, just there is one normal-
ization layer before the (1× 1) convolutional layer. Also, the activation function used in
ConvNeXt is Gelu, while in ResNet, it is Relu. Another difference is in the size of the
kernel which is larger in ConvNeXt than it is in ResNet50. The depth-wise kernel size in
ConvNeXt is (7× 7) to have a global receptive field that acts similar to one of the most
distinguishing aspects of non-local self-attention in vision transformers.

Table 3.1: Different variants of ConvNeXt.

Variants Channels Blocks Params
ConvNeXt-T (96, 192, 384, 768) (3, 3, 9, 3) 29M
ConvNeXt-S (96, 192, 384, 768) (3, 3, 27, 3) 50M
ConvNeXt-B (128, 256, 512, 1024) (3, 3, 27, 3) 89M
ConvNeXt-L (192, 384, 768, 1536) (3, 3, 27, 3) 198M
ConvNeXt-XL (256, 512, 1024, 2048) (3, 3, 27, 3) 350M

ConvNeXt-S (isotropic) 384 18 22M
ConvNeXt-B (isotropic) 768 18 87M
ConvNeXt-L (isotropic) 1024 36 306M
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3.5 Adaptive Instance and Batch Normalisation (AIBN)

The purpose of AIBN (Adaptive Instance and Batch Normalisation) is to mitigate the ef-

fects of intra-camera variations caused by different poses and people’s appearances, mak-

ing person Re-ID challenging. Instance-specific style characteristics may be normalized

by instance normalization (IN), making the network more resistant to identity-related

changes (Ulyanov et al., 2017). However, using IN alone may eliminate person identity-

related clues, which might be harmful to feature discriminatory power of the network.

On the other hand, Batch Normalisation (BN) speeds up convergence while keeping in-

dividual variance, protecting the discriminative ability (Ioffe & Szegedy, 2015). As a

result, BN and IN both have advantages and are complementary to each other.

To learn the IN and BN combination in an adaptive manner, AIBN was suggested

(Xuan & Zhang, 2021). AIBN is a technique that linearly blends the statistics, such as the

mean and variance, obtained from Instance Normalization (IN) and Batch Normalization

(BN). For a given feature map x ∈ RH×W×N , AIBN transforms it into x̂, i.e.,

x̂[i, j, n] = α
x[i, j, n]− (λµbn + (1− λ)µin)√

λσ2
bn + (1− λ)σ2

in + ϵ
+ β, (3.1)

where µbn, σ
2
bn and µin, σ

2
in are the mean and variance calculated by BN and IN, respec-

tively. The symbols β and α are affine parameters, with λ being the learnable mixture

weight. To prevent negative values, the mixture weight for each layer is confined to

the range of [0, 1] during network forward inference, and it is optimized using back-

propagation. Details of IN and BN can be found in previous works (Ulyanov et al., 2017;

Ioffe & Szegedy, 2015). Their parameters are computed as,

µbn =

∑
n

∑
i,j x[i, j, n]

N ·H ·W
, (3.2)

σ2
bn =

∑
n

∑
i,j(x[i, j, n]− µbn)

2

N ·H ·W
, (3.3)
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µin =

∑
i,j x[i, j, n]

H ·W
, (3.4)

σ2
in =

∑
i,j(x[i, j, n]− µin)

2

H ·W
, (3.5)

where, µbn and σ2
bn represent the mean and variance of BN, while µin and σ2

in represent the

mean and variance of IN. The symbols N , H, and W denote the dimensions of the feature

map x. To integrate AIBN techniques in ConvNeXt, we replace Layer Normalization

(LN) in ConvNeXt Block with AIBN in the final stages (Stage 3 and Stage 4).

3.6 Transform Normalization (TNorm)

According to style transfer studies (Dumoulin et al., 2016; Huang & Belongie, 2017),

feature statistics can record and store the style information of pictures. To reduce the

effect of the camera-related factors in person ReID, IIDS (Xuan & Zhang, 2022) proposed

Transform Normalization (TNorm) to improve the performance of Re-ID model by reduc-

ing the effect of the camera-related factors on deep feature representations of images. In

other words, TNorm normalizes the feature vector of each image based on the statistics

of all images captured by the same camera, mitigating variations in the camera’s setting,

including lighting conditions, illumination levels, and image resolutions.

Computing the camera-related feature statistics on all training images of each camera

is time-consuming. For a more efficient implementation, feature statistics within a mini-

batch of each camera are computed. Given a mini-batch of features xc ∈ RH×W×N from

camera c, the feature statistics for camera c are computed as

µc =

∑
n

∑
i,j xc[i, j, n]

N ·H ·W
, and (3.6)

σc =

√∑
n

∑
i,j(xc[i, j, n]− µc)2

N ·H ·W
, (3.7)
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we compute the moving average during training in order to pursue more accurate feature

statistics. The resulting µ̃c and σ̃c for camera c is computed with a momentum parameter

η as,

µ̃c = (1− η)µc + ηµ̃c, and (3.8)

σ̃c = (1− η)σc + ησ̃c, (3.9)

given a feature xc from camera c and feature statistics of camera d; d ̸= c, TNorm first

normalizes xc, then uses feature statistics on camera d to convert the image style. This

leads to another feature x̂d, which preserves identity-realted cues in xc and presents the

style in camera d, i.e.,

x̂d =
σ̃d(xc − µ̃c)

σ̃c

+ µ̃d. (3.10)

TNorm can be used for data augmentation by randomly selecting the target camera

d. To study the effect of TNorm in the ConvNeXt network, we study different positions

of TNorm in ConvNeXt, and we show that to get better performance, the TNorm layers

should be added after stage 1, stage 2, and stage 3 into ConvNeXt architecture.
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Method

In this chapter we describe our method for person Re-ID. We begin our discussion by

providing a formal definition of the person Re-ID problem.

4.1 A Formal Definition of Person-ReID

Say we have a gallery G of images of P individuals recorded by a collection of cameras C.

Specifically, G =
⋃

c∈[1,C] Ic, where Ic represents the set of images recorded by camera c.

C is the short-hand for |C|, i.e., the number of cameras. Furthermore, ∀i ̸=jIi ∩ Ij = ϕ.

Given a query image Iq, the goal of the person Re-ID problem is to find the “closest

match” in G. We can represent this mathematically as

g = argmax
g∈[1,G]

sim(Iq, Ig), (4.1)

where Ig ∈ G and G = |G|.

For our purposes, finding the matching images in G is sufficient. In many practical

scenarios gallery images are labelled with the identity of the individuals seen in these

images. Consider, for example, the passport photos database. Person Re-ID as defined

in Eq.4.1 is useful even when images in the gallery do not contain person identity in-
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formation. In such conditions, person Re-ID allows us to track and monitor individuals

over large areas and over extended time periods.

The performance of a person Re-ID system is closely tied to its ability at computing

image similarity, i.e., the images of the same individual taken under various viewing

conditions should be more similar to each other than the images of different individuals.

This is accomplished by constructing feature extractors, which compute image features

that latch on to person identities and that are robust to the usual confounding factors,

such as lighting, pose, the degree of occlusion, camera characteristics, clothing, etc. Image

matching is then performed in the feature space, where the features constructed from the

images of the same individual sit closer to each other than the features constructed from

the images of different individuals. We can re-write Eq. 4.1 as follows to capture this

intuition:

g = argmin
g∈[1,G]

∥xq − xg∥2, (4.2)

where xq and xg denote features for images Iq and Ig, respectively. Specifically, xq =

F(Iq; Θe) and xg = F(Ig; Θe), where F : I 7→ x ∈ RD denotes the feature extractor,

parameterized by Θe and D is the feature dimension.

Our goal then is to construct, or rather learn in the parlance of deep learning, a

feature extractor that captures person identity information and is robust to confounding

factors. Furthermore, we aim to learn this feature extractor in the absence of labelled

data.

4.2 On Intra and Inter Camera Similarity

Let’s consider images captured by a single camera for a moment. These images exhibit

differences due to multiple factors, including, person identities, poses, orientation, cloth-

ing, etc. Images from multiple cameras, on the other hand, also exhibit differences due

to camera-related artifacts, such as color response, placement, etc. Work by (Xuan &
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Zhang, 2021; Xuan & Zhang, 2022) cogently argues that both intra and inter camera vari-

ations must be taken into account when constructing a feature extractor for the purposes

of person Re-ID. They propose a general framework that neatly separates the feature

extractor learning procedure into two stages, aptly named intra and inter. Furthermore,

their method does not assume labelled training data, which makes it well-suited for appli-

cations in the real-world where it is often infeasible, if not outright impossible, to collect

labelled datasets at the appropriate scale.

Since we follow the feature extractor learning strategy introduced in (Xuan & Zhang,

2021; Xuan & Zhang, 2022), below we formally describe the intra and inter stages and

how these two are related to each other. Let’s consider a training set of unlabelled images

T , which contains images recorded by C cameras. Specifically, T = ∪c∈[1,C]Ic, where Ic

is the set of images from camera c and ∀i ̸=jIi ∩ Ij = ϕ. Recall that our goal is to learn

a feature extractor F that is well-suited to the problem of person Re-ID.

4.2.1 Intra Stage

Let’s begin with the intra stage. We divide this stage into two phases: 1) psuedo-label

generation and 2) feature extractor refinement.

Camera-Specific Psuedo-Labelling (A)

We discuss the pseudo-label generation procedure first. We assume that we have an initial

feature extractor F . It is a common practice to use a pretrained model, say a ResNet50

trained on the Imagenet dataset, as the initial feature extractor model. Now, for each

camera c, use this feature extractor to construct Xc = {x | x = F(I,Θe) and I ∈ Ic}.

Next, use agglomerative clustering with average linkages to partition Xc into {Pk
c | k ∈

[1, Kc]} sets. Here Xc = ∪k∈[1,C]Pk
c and P i

c ∩ Pj
c = ϕ for all i ̸= j. The clustering uses

pair-wise Euclidean distance ∥xl − xm∥2 between features as distance metric. Clustering

information is used to assign psuedo-labels to images in Ic as follows: assign label k to



Chapter 4. Method 42

image I ∈ Ic if x ∈ Pk
c , where x = F(I,Θe). It is important to remember that psuedo-

labels are camera specific. This suggests that even if images from different cameras have

the same pseudo-label, it does not mean that these images represent the same “identity.”

We will return to this issue in the inter stage.

Feature Extractor Refinement (B)

The pseudo-labels are used to fine-tune the feature extractor F in a supervised-learning

settings as follows. First, setup a Kc-way classifier Kc for each camera c. Specifically,

Kc : x ∈ Xc 7→ RKc . Say Kc is parameterized by Θc then the parameters {Θe,Θ1, · · · ,Θc}

are updated using gradient-descent on the loss defined below:

lintra =
∑
I∈T

⊮Ic(I) cross-entropy (p̂,p) ,

where p is one-hot-encoded psuedo-label for I and p̂ = K(F(I; Θe); Θc). It follows that

both p̂ and p are Kc-dimensional vectors when I ∈ Ic. ⊮ denotes an indicator variable

defined as follows:

⊮Ic(I) =


1 if I ∈ Ic

0 otherwise

(4.3)

and

cross-entropy(p̂,p) = −
∑
i

pi log p̂i.

Recall that p̂, and by extension p, are only defined within the context of I ∈ Ic. The

above procedure not only learns camera-specific classifiers, it also learns a shared feature

extractor F . Psuedo-labelling plus feature extractor refinement steps can be performed

multiple times, in principle improving the feature extractor at each iteration.
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4.2.2 Inter Stage

Next, we discuss the inter stage. The process is similar to intra stage. It also comprises

two steps: 1) psuedo-label generation and 2) feature extractor refinement.

Psuedo-Label Generation (C)

As before, features X computed from I ∈ T are clustered into K partitions {P i | i ∈

[1, K]}. Agglomerative heirarchical clustering with average linkage is used for this pur-

pose. In addition to using pair-wise Euclidean distance (in the feature space) as distance

metric, Jaccard similarity between K1, · · · ,KC outputs are also used. Specifically, for

a given image I ∈ T , each classifier c outputs a Kc-dimensional vector that represents

the probability over all labels in camera c. These outputs are concatenated to construct

a (K1 + K2 + K3 + · · · + KC)-dimensional vector, which is normalized to construct a

probability distribution that we refer to as q. Then the pair-wise Jaccard similarity is

∆(Il, Im) =
ql ∩ qm

ql ∪ qm

.

Next, image I is assigned psuedo-label k if its feature x ∈ Pk. This process assigns

psuedo-labels to images across cameras. Now it is possible for two images captured from

different cameras to have same label.

Feature Extractor Refinement (D)

As before, the algorithm uses these labels to update the feature extractor as follows:

construct K-way classifier K : x 7→ RK . Say, classifier K is parameterized by Θ then

parameters Θe and Θ are updated via gradient descent using the following loss:

linter =
∑
I∈T

cross-entropy (p̂,p) ,
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where p is the one-hot-encoded psuedo-label assigned to I and p̂ = K(F(I; Θe); Θ) is

the predicted label. Similar to intra stage, psuedo-label generation and feature extractor

refinements steps can be performed multiple times.

4.2.3 Putting It All Together

The overall scheme followed in (Xuan & Zhang, 2021; Xuan & Zhang, 2022) can be

described as a series of intra and inter stages. Specifically in their work uses the following

regime:

[(A,B)× 3 followed by (C,D)× 2]× 40.

In the previous chapter 3, we show that both intra and inter stages have a role to play

and that either stage on its own leads to poor performance.

4.2.4 Feature Extractor

The above scheme learns a feature extractor that accounts for image variations related

to person identities while ignoring variations due to other factors, including camera char-

acteristics and placements. The work by (Xuan & Zhang, 2021; Xuan & Zhang, 2022)

proposes to use a ResNet50 feature extractor, which is pre-trained on ImageNet. Their

experiments suggested that vanilla ResNet50 does not do well for the problem of person

Re-ID. Consequently, they modified ResNet50 by adding normalization layers. Details

about their feature extractor model are discussed in 3.

Within the realm of person Re-ID systems, the feature extractor holds a pivotal role

in determining performance. Therefore, this thesis is dedicated to the exploration of

ConvNext as the feature extractor within the IICS/IIDS framework. In the preceding

chapter (3), we elaborated on the ConvNeXt architecture. Additionally, we conducted an

analysis of various ConvNeXt iterations, differing in block count and dimensions. To delve

into the impact of AIBN and TNorm, we seamlessly integrated them into ConvNeXt.
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In the subsequent chapter, we will present our findings that the inclusion of AIBN

blocks in ConvNeXt’s third and fourth stages yields improved performance. Furthermore,

our study reveals that optimal placement of TNorm is achieved after the first, second,

and third stages.



Chapter 5

Experiments and Results

In this chapter, we outline the role of Intra-camera and Inter-camera training in person

Re-ID. We assess the effect of only focusing on the Intra-camera or Inter-camera stages to

show both Intra and Inter stages are complementary to get a better result in person Re-

ID. The outcomes of incorporating AIBN and TNorm into ConvNeXt are then discussed.

Also, we look at the role of placement of AIBN and TNorm within ConvNeXt. Finally, we

demonstrate the outcome of employing different ConvNeXt variants within the IICS/IIDS

framework.

5.1 The Role of Intra-camera and Inter-camera train-

ing in IICS/IIDS framework

Differences in feature distribution across various cameras pose significant challenges in

person ReID tasks. When a person is captured across multiple cameras, their visual

appearance can substantially change due to variations in factors such as lighting condi-

tions, camera angles, picture quality, and camera settings. These differences are referred

to as inter-camera variations. Fig. 5.1a depicts a t-SNE plot showcasing the features of

various identities captured by different cameras. Different markers demonstrate different
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cameras. The plot illustrates a tendency for features from the same camera, shown in the

same marker, to cluster together, suggesting that images taken by a particular camera

exhibit a similar distribution. However, Fig. 5.1b demonstrates the effectiveness of the

trained person Re-ID model in mitigating camera-related factors on feature distribution.

The figure highlights that, following the training of the person Re-ID model, images of

the same individual captured by different cameras shown in different markers can cluster

together.

Besides inter-camera variations, intra-camera variations also play a significant role.

Fig. 5.1a illustrates also how features of the same identity fail to group together due to

intra-camera variations resulting from disparities in pose, appearance, and other identity-

related factors. In contrast, Fig. 5.1b demonstrates that after training the Re-ID model,

features of the same identity shown in the same color can successfully form cohesive

groups.

(a) Before training (b) After training

Figure 5.1: Intra-camera and Inter-camera variations.
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(a) Before training (b) After training

Figure 5.2: The result of intra-stage training. Different identities are shown in different
colors and different markers denoted by different cameras.

5.2 Intra-camera training

We investigate the effectiveness of intra-stage. Fig. 5.2 demonstrates that intra-stage

training contributes to bringing features from the same identity closer together to a

certain extent, regardless of the source cameras of the images. Specifically, Fig. 5.2a

reveals that features of the same identity are initially distant. Subsequently, following

intra-camera training, Fig. 5.2b illustrates the moderately successful outcome of bringing

the features of the same identity into closer proximity. Overall, only the Intra-camera

stage is not group features of the same images together.

5.3 Inter-camera training

We examine the effect of only Inter-camera training. In this experiment, we cannot utilize

Jaccard similarity due to the absence of an Intra-camera training stage. In other words,

our inter-stage training solely relies on CNN feature similarity to generate pseudo-labels

for network training. Fig. 5.3a visually portrays the feature distribution of images from
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different identities, which is scattered and widely dispersed before inter-camera training.

Correspondingly, Fig. 5.3b demonstrates that inter-camera training does not effectively

cluster features from the same identity in close proximity. Consequently, exclusive inter-

camera training does not facilitate the aggregation of features from the same identity.

As a result, relying only on Inter-camera training cannot improve the grouping features

of the same images. Intra and Inter stages complement each other to perform well in

person Re-ID.

(a) Before training (b) After training

Figure 5.3: The outcome of the inter-stage training is revealed, with different identities
represented by varying colors, and different markers signifying different cameras.

5.4 Implementation Details

We use a tiny variant of ConvNeXt, ConvNext-S (isotropic) (Liu et al., 2022) as the

feature extractor without AIBN and TNorm. For other experiments, we used other

variants of ConvNext with AIBN and with both AIBN and TNorm. We used a pre-

trained model on ImageNet to initialize the training of the feature extractor with these

pre-trained weights. During the training phase, the input picture is scaled to a fixed size
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of height 256 and width 128 pixels. Various picture augmentation techniques, such as

random flipping (horizontal flipping) and random erasing, are used to improve the model’s

robustness and generalization. Two phases are completed successively throughout each

training round: intra-camera and inter-camera.

5.5 Training Procedure and Hyperparameter Justi-

fication

Our training procedure consists of 40 clustering rounds, designed to ensure a fair com-

parison with prior works such as IICS and IIDS. Within each cluster round, the training

process is divided into two stages: intra-network and inter-network.

The choice of hyperparameters resulted from a combination of trial and error as well

as insights drawn from the methods used in IICS and IIDS methods.

5.5.1 Intra Network Training

In the intra-camera training stage, the batch size for each camera is set to 8. We utilize the

Stochastic Gradient Descent (SGD) optimizer. The learning rate for ConvNeXt layers

is set at 0.0005, while for the fully connected layers, it is set at 0.005. Intra-network

training involves 3 epochs.

5.5.2 Inter Network Training

In the inter-camera training stage, a mini-batch in the inter stage consists of 32 images,

drawn from 8 randomly selected clusters (4 images per cluster). The SGD optimization

technique is employed for updating model parameters. The learning rate for ConvNeXt

base layers is set to 0.001, while other layers for classification have a learning rate of 0.01.

Inter-network training involves 2 epochs.
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5.5.3 Loss Functions and Margins

The relative relevance of the cross-entropy and triplet loss terms is set to 1 in the inter

stage. The triplet loss margin is set to 0.3, defining the minimum required distance

between anchor-positive and anchor-negative pairs.

5.5.4 Jaccard Similarity Parameters

The initial value for parameters demonstrating the relative importance of Jaccard simi-

larity in calculating similarity in the inter stage is set to 0.02.

5.5.5 Clustering Stopping Criterion

We establish a similarity threshold that dynamically determines the number of clusters.

This threshold is derived by selecting the similarity value at the 0.2% quantile after

arranging the sample similarities in descending order. Also, after each training epoch, it

is decreased gradually by 0.001.

5.6 Dataset

We train and test our approaches on three frequently used person Re-ID datasets in-

cluding DukeMTMC-ReID (Ristani et al., 2016), Market1501 (Zheng et al., 2015) and

MSMST17 (Wei et al., 2018b). You can find the description of each dataset at the end

of the related works Chapter 2.3.

5.7 Performance Metrics

During the training phase, we only use images and camera ids from the training set of each

dataset, with no annotation information. During the inference time, the Re-ID model

should extract features from a query image and gallery images, and then the similarity
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between these feature vectors should be measured. The result would be a ranked list

showing gallery set images from the most similar image to the least one. We measure

the mean Average Precision (mAP) and Cumulative Matching Characteristic (CMC) to

evaluate the performance of Our method to other methods.

mean Average Precision (mAP)

The mean Average Precision (mAP) is a common metric used in person ReID to eval-

uate the performance across all queries. A higher mAP value indicates better overall

performance. It can be formally defined as follows:

mAP =
1

Q

Q∑
q=1

1

Rq

Rq∑
k=1

P (q, k) · rel(q, k), (5.1)

where:

• Q represents the total number of queries.

• Rq is the number of retrieved items for query q.

• P (q, k) denotes the precision at cut-off k in the list for query q.

• rel(q, k) is an indicator function equal to 1 if the item at rank k is a relevant item

for query q, and 0 otherwise.

Cumulative Matching Characteristics (CMC)

One often used performance metric in person ReID to assess the rank-based retrieval per-

formance is Cumulative Matching Characteristics (CMC). The CMC curve demonstrates

the probability that the correct match appears within the top-k ranks of the retrieved

list. The CMC curve is defined as:

CMC(k) =
1

Q

Q∑
q=1

1 (min(rankq) ≤ k) , (5.2)
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Table 5.1: Ablation study on intra and inter stages. Pretrain denotes directly using
ImageNet pre-trained model without training. “Intra” and “Inter (w/o Jaccard)” denote
intra-camera and inter-camera training stages respectively. “Intra + Inter” displays both
intra-camera and inter-camera, where ConvNeXt is used without adaptation of AIBN and
TNorm.

Dataset
Market Duke

mAP Rank1 mAP Rank1
Pretrain 5.7 16.5 4.8 13.2
Intra 46.3 69.9 28.1 45.8

Inter (w/o Jaccard) 27.2 48.8 8.2 17.1
Intra + Inter 72.7 89.8 48.2 67.1

where:

• Q represents the total number of queries.

• rankq is the rank of the correct match for query q within the retrieved list.

• 1(x) is the indicator function, equal to 1 if the condition x holds, and 0 otherwise.

5.8 Ablation study

Impact of solely Intra-stage or Inter-stage: We examine the impact of Intra-camer

and Inter-camera training. For the first experiment, we use a pre-trained ConvNeXt

model without fine-tuning. Another experiment is when we rely on only Intra or Inter

stage training. During the Inter-camera training, we do not consider Jaccard similar-

ity; instead, just CNN feature similarity is calculated. Lastly, we use intra-camera and

inter-camera training, with ConvNeXt as the feature extractor without AIBN or TNorm

techniques. As Table 5.1 shows, the best performance is when both Intra-camera and

Inter-camera training is done.

Effectiveness of AIBN and TNorm and Different inserting locations: To

mitigate intra-camera and inter-camera variations in feature extraction, we incorporate

two normalization techniques, AIBN and TNorm, into the ConvNeXt network. AIBN
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Table 5.2: Ablation study on different locations of AIBN in ConvNeXt architecture. For
instance, “AIBN (Block 2-3-4)” denotes replacing the LN in 1st to 4th stage blocks with
AIBN. The best state is when we add AIBN in the final stages (stage 3 and stage 4).

Dataset Market Duke
Setup mAP Rank1 mAP Rank1

Baseline 72.7 89.8 48.2 67.1
All 50.3 69.9 28.1 45.8

AIBN (Block 1-2) 69.2 85.3 35.6 58.2
AIBN (Block 4) 73.2 90 51.8 71.1

AIBN (Block 2-3-4) 74.2 91.2 53.9 72.3
AIBN (Block 3-4) 74.8 91.4 54.4 72.8

Table 5.3: Ablation study on different locations of TNorm. “TNorm (stage 1-2-3-4)”
shows inserted TNorm after the 1st to 4th stages in ConvNeXt architecture. The highest
value is reached in the state “TNorm (stage 1-2-3)”.

Dataset Market Duke
Setup mAP Rank1 mAP Rank1

Baseline 72.7 89.8 48.2 67.1
TNorm (Stage 1) 74.3 92.1 50.9 69.2
TNorm (Stage 1-2) 74.9 92.7 51.8 71.1

TNorm (Stage 1-2-3) 75.4 92.4 57.8 76.3
TNorm (Satge 1-2-3-4) 74.2 92 50.2 70.1

mitigates intra-camera variations caused by differences in poses, appearances, and other

identity-related factors, while TNorm addresses inter-camera variations due to different

camera configurations like color shifts. Our experimentation reveals that substituting

all LN layers with AIBN reduces performance; however, employing AIBN instead of

LN specifically in stages 3 and 4 of ConvNeXt results in an improvement. The precise

impact of these adjustments at various locations within ConvNeXt can be found in Table

5.2. Furthermore, to reduce the effect of inter-camera variations on extracted features of

images, we inserted the TNorm layer after each layer in ConvNext. Table 5.3 shows the

highest performance is reached when we add them after stage 1-2-3 in ConvNeXt.
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5.9 Comparison with State-of-the-art Methods

We compared our method to other unsupervised and transfer learning approaches on

three common datasets, Market1501, Duke, and MSMT17. Tables 5.4, 5.5 and 5.6 show

the comparison of the different states of our method with other existing approaches on

Market1501, Duke, and MSMT17, respectively. The accuracy value of our model is an

average obtained from training with three different random seeds. The last four rows of

Tables present our method in different states. Iso-ConvNeXt-S is the smallest variant of

ConvNeXt (isotropic), which we use as a feature extractor in the IICS/IIDS framework.

Iso-ConvNeXt-S (AIBN) illustrates the scenario when ConvNeXt (isotropic) is adopted

with the AIBN technique. Iso-ConvNeXt-S (AIBN, TNorm) shows the combination

where ConvNeXt (isotropic) is implemented with both AIBN and TNorm. We reach

the highest accuracy with ConvNeXt-B (AIBN, TNorm), which is the larger variant of

ConvNeXt, used as a feature extractor with both AIBN and TNorm techniques inserted

into it. We compared our method to other methods, notably GAN-based methods like

PTGAN (Wei et al., 2018b), distribution alignment-based methods like TJ-AIDL (Wang

et al., 2018), and pseudo-labels-based methods like MAR (Yu et al., 2019). Pseudo-labels-

based techniques regularly outperformed other types of strategies. Fig. 5.5 shows the

accuracy of our method is higher than IICS and IIDS methods on MSMT17 datasets.

Also, Fig. 5.6 illustrates the higher performance of our method on Market15 as well.

However, Fig. 5.7 illustrates the accuracy of our method is less than the accuracy of

IICS and IIDS on the Duke benchmark dataset. Overall, our method has higher accu-

racy than the other two recent methods (Xuan & Zhang, 2021) and (Xuan & Zhang,

2022) on Market1501 and MSMT17 datasets. We report the accuracy of our model as an

average obtained from training with three different random seeds, ensuring robustness in

the results. The superior performance of ConvNeXt over standard ResNet, which origi-

nally was used in IICS/IIDS in person Re-ID tasks, can be attributed to the combination

of depthwise and point-wise convolution. This allows a separation of spatial and chan-
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Table 5.4: Comparison performance between our method to other methods on Mar-
ket1501. Pseudo Label* shows that the methods are pseudo-label-based, but they ini-
tialize the weights from a person-reid pre-trained model. “NTB” stands for “Not To Be
Published”.

type Method (Reference) Venue
Market1501

Source mAP Rank-1 Rank-5 Rank-10

GANTs
PTGAN (Wei et al., 2018b) CVPR18 Duke - 38.6 - 66.1
HHL (Zhong et al., 2018a) ECCV18 Duke 31.4 62.2 78.8 84.0

DG-Net++ (Zou et al., 2020b) ECCV20 Duke 61.7 82.1 90.2 92.7

Distribution Alignment
TJ-AIDL (Wang et al., 2018) CVPR18 Duke 26.5 58.2 74.8 81.8
MMFA (Lin et al., 2018) BMVC18 Duke 27.4 56.7 75.0 81.8
CSCL (Wu et al., 2019a) ICCV19 Duke 35.6 64.7 80.2 85.6

Pseudo Label*

MAR (Yu et al., 2019) CVPR19 MSMT17 40.0 67.7 81.9 -
AD-Cluster (Zhai et al., 2020a) CVPR20 Duke 68.3 86.7 94.4 96.5

NRMT (Zhao et al., 2020) ECCV20 Duke 71.7 87.8 94.6 96.5
MMT-500 (Ge et al., 2020a) ICLR20 Duke 71.2 87.7 94.9 96.9

MEB-Net* (Zhai et al., 2020b) ECCV20 Duke 71.9 87.5 95.2 96.8

Pseudo Label

LOMO (Liao et al., 2015) CVPR15 None 8.0 27.2 41.6 49.1
BOW (Zheng et al., 2015) ICCV15 None 14.8 35.8 52.4 60.3
BUC (Lin et al., 2019) AAAI19 None 29.6 61.9 73.5 78.2
HCT (Zeng et al., 2020) CVPR20 None 56.4 80.0 91.6 95.2

MMCL (Wang & Zhang, 2020) CVPR20 None 45.5 80.3 89.4 92.3
JVTC+ (Li & Zhang, 2020) ECCV20 None 47.5 79.5 89.2 91.9
IICS (Xuan & Zhang, 2021) CVPR21 None 72.1 88.8 95.3 96.9
IIDS (Xuan & Zhang, 2022) CVPR22 None 78.3 91.2 96.2 97.7

Our Method

Iso-ConvNeXt-S TBD None 72.7 89.8 95.4 97.2
Iso-ConvNeXt-S (AIBN) TBD None 74.8 91.4 97.2 98.0

Iso-ConvNeXt-S (AIBN, TNorm) TBD None 79.7 94.6 98.1 98.7
ConvNeXt-B (AIBN, TNorm) NTB None 83.1 97 99.2 99.6

nel mixing, efficiently processing spatial information (like body structure) independent

of channel information (such as appearance). This separation enables the learning of

discriminative characteristics in each dimension, enhancing the overall functionality of

Re-ID systems and improving their ability to differentiate between individuals.

While ConvNeXt-B with AIBN and TNorm normalizations would offer superior per-

formance, the trade-off between performance gains and environmental costs should be

carefully considered.
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Table 5.5: Comparison performance between our method to other methods on
DukeMTMC-ReID. Pseudo Label* shows that the methods are pseudo-label-based, but
they initialize the weights from a person-reid pre-trained model. “TBD” stands for “To
Be Determined”.

type Method (Reference) Venue
DukeMTMC-ReID

Source mAP Rank-1 Rank-5 Rank-10

GANs
PTGAN (Wei et al., 2018b) CVPR18 Market - 27.4 - 50.7
HHL (Zhong et al., 2018a) ECCV18 Market 27.2 46.9 61.0 66.7

DG-Net++ (Zou et al., 2020b) ECCV20 Market 63.8 78.9 87.8 90.4

Distribution Alignment
TJ-AIDL (Wang et al., 2018) CVPR18 Market 23.0 44.3 59.6 65.0
MMFA (Lin et al., 2018) BMVC18 Market 24.7 45.3 59.8 66.3
CSCL (Wu et al., 2019a) ICCV19 Market 30.5 51.5 66.7 71.7

Pseudo Label*

MAR (Yu et al., 2019) CVPR19 MSMT17 48.0 67.1 79.8 -
AD-Cluster (Zhai et al., 2020a) CVPR20 Market 54.1 72.6 82.5 85.5

NRMT (Zhao et al., 2020) ECCV20 Market 62.2 77.8 86.9 89.5
MMT-500 (Ge et al., 2020a) ICLR20 Market 63.1 76.8 88.0 92.2

MEB-Net* (Zhai et al., 2020b) ECCV20 Market 63.5 77.2 87.9 91.3

Pseudo Label

LOMO (Liao et al., 2015) CVPR15 None 4.8 12.3 21.3 26.6
BOW (Zheng et al., 2015) ICCV15 None 8.3 17.1 28.8 34.9
BUC (Lin et al., 2019) AAAI19 None 22.1 40.4 52.5 58.2
HCT (Zeng et al., 2020) CVPR20 None 50.7 69.6 83.4 87.4

MMCL (Wang & Zhang, 2020) CVPR20 None 40.2 65.2 75.9 80.0
JVTC+ (Li & Zhang, 2020) ECCV20 None 50.7 74.6 82.9 85.3
IICS (Xuan & Zhang, 2021) CVPR21 None 59.1 76.9 86.1 89.8
IIDS (Xuan & Zhang, 2022) CVPR22 None 68.7 82.1 90.8 93.7

Our Method

Iso-ConvNeXt-S TBD None 48.2 67.1 77.3 80.6
Iso-ConvNeXt-S (AIBN) TBD None 54.3 72.8 81.3 84.6

Iso-ConvNeXt-S (AIBN, TNorm) TBD None 60.8 78.3 85.5 89.8
ConvNeXt-B ( AIBN, TNorm) TBD None 65.2 80.3 83.4 87.6
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Table 5.6: Comparison of our method with other methods on MSMT17 datasets. Pseudo
Label* shows that the methods are pseudo-label-based, but they initialize the weights
from a person-reid pre-trained model. “TBD” stands for “To Be Determined”.

Type Method (Reference) Venue
MSMT17

Source mAP Rank-1 Rank-5 Rank-10

GANTs
PTGAN (Wei et al., 2018b) CVPR18 Market 2.9 10.2 - 24.4
ECN(Zhong et al., 2019) CVPR 2019 Market 8.5 25.3 36.3 42.1
SSG(Fu et al., 2019) ICCV19 Market 13.2 31.6 - 49.6

Distribution Alignment
NRMT(Zhao et al., 2020) ECCV20 Market 19.8 43.7 56.5 62.2

DG-Net++(Zou et al., 2020b) ECCV20 Market 22.1 48.4 60.9 66.1
MMT-1500(Ge et al., 2020a) ICLR20 Market 22.9 49.2 63.1 68.8

Pseudo Label*

PTGAN (Wei et al., 2018b) CVPR18 Duke 3.3 11.8 - 27.4
ECN (Zhong et al., 2019) CVPR 2019 Duke 10.2 30.2 41.5 46.8
SSG (Fu et al., 2019) ICCV19 Duke 13.3 32.2 - 51.2

NRMT (Zhao et al., 2020) ECCV20 Duke 20.6 45.2 57.8 63.3
DG-Net++(Zou et al., 2020b) ECCV20 Duke 22.1 48.8 60.9 65.9
MMT-1500 (Ge et al., 2020a) ICLR20 Duke 23.3 50.1 63.9 69.8

Pseudo Label

MMCL (Wang & Zhang, 2020) CVPR20 None 11.2 35.4 44.8 49.8
JVTC+ (Zhang et al., 2021) ECCV20 None 17.3 43.1 53.8 59.4
SpCL (Ge et al., 2020b) NeurIPS20 None 19.1 42.3 55.6 61.2

IICS (Xuan & Zhang, 2021) CVPR21 None 26.9 56.4 68.8 73.4
IIDS (Xuan & Zhang, 2022) CVPR22 None 35.1 64.4 76.2 80.5

Our Method

Iso-ConvNeXt-S TBD None 27.5 57.3 69.1 74.5
Iso-ConvNeXt-S (AIBN) TBD None 29.6 60.0 72.4 77.9

Iso-ConvNeXt-S (AIBN, TNorm) TBD None 36.4 65.1 77.8 82.6
ConvNeXt-B (AIBN, TNorm) TBD None 40.2 71.3 82.0 86.3
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Table 5.7: Comparison between different variants of ConvNeXt in IICS and IIDS frame-
works.

Dataset Market Duke MSMT
Set up mAP Rank1 mAP Rank1 mAP Rank1

Iso-ConvNeXt-S
AIBN 74.8 91.4 54.3 72.8 29.6 60.0

AIBN+TNorm 79.7 94.6 60.8 78.3 36.4 65.1

ConvNeXt-T
AIBN 75.2 92.3 55.1 73.5 30.2 61.4

AIBN+TNorm 81.5 95.6 62.0 91.3 38.6 68.3

ConvNeXt-S
AIBN 75.9 93.0 55.7 74.1 32.5 62.7

AIBN+TNorm 82.3 96.1 62.5 91.9 39.1 69.4

ConvNeXt-B
AIBN 76.5 93.8 56.5 75.3 34.0 63.5

AIBN+TNorm 83.1 97 65.2 80.3 40.2 71.3

5.10 Different Variants of ConvNeXt

Within the IICS/IIDS framework, we explore other variants of ConvNeXt. Table 5.7

compares different ConvNeXt variants in IICS/IIDS framework. We initialize the weights

of the feature extractor by ImageNet-1 K-trained models. Furthermore, Fig. 5.9 and Fig.

5.8 illustrate that larger ConvNeXt variants get better performance.

5.11 Complexity

Floating Point Operations Per Second (FLOPs) is a common unit of measurement for

assessing how computationally intensive a certain model or technique is. Typically, a

model with a greater FLOPs number is more sophisticated and demands a larger com-

putational budget (Liu et al., 2022). Table 5.8 shows the complexity of ResNet50 and

other variants of ConvNeXt. It shows that larger variants of ConvNeXt have higher com-

plexity. Also, Fig. 5.4 demonstrates the same point that a larger variant of ConvNeXt

exhibits higher complexity, despite achieving better accuracy. In our approach, we also

employ the smallest variant of ConvNeXt (isotropic) to maintain a network complexity

comparable to that of ResNet50.
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5.12 Discussion

It is worth noting that the number of parameters in a neural network often directly

impacts its capacity to learn and represent complex patterns. In our study, we observed

that an increase in the number of parameters led to an improvement in performance

metrics. The larger variant of ConvNeXt has better performance than the smaller one.

This can be attributed to the enhanced ability of the model to capture intricate features

and nuances within the data, ultimately resulting in better generalization. it’s crucial to

consider the trade-off between performance gains and computational efficiency.

In conclusion, our findings underline the significance of parameterization in model

performance, emphasizing the need for a judicious choice in tailoring the neural network

architecture to the specific problem domain.

Table 5.8: This table presents the complexities and parameter counts of various archi-
tectures. ’M’ denotes million, and ’G’ indicates gigabyte (Liu et al., 2022).

Architecture #Param FLOPs
ResNet-50 25.6M 4.1G

Iso-ConvNeXt-S 22M 4.3G
ConvNeXt-T 28.6M 4.5G
ConvNeXt-S 49.6M 8.7G
ConvNeXt-B 88.6M 15.4G
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Figure 5.4: Complexity comparison among different architecture.

Figure 5.5: Comparison of our method to IICS and IIDS method, in which ResNet50
was originally used as a feature extractor on MSMT dataset.
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Figure 5.6: Comparison of our method with IICS and IIDS methods on Market1501
dataset.

Figure 5.7: Comparison of our method with IICS and IIDS methods on Duke dataset.
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Figure 5.8: mAP comparison of different variants of ConvNeXt on Market dataset.

Figure 5.9: CMC comparison of different variants of ConvNeXt on Market dataset.



Chapter 6

Conclusion

In this chapter, we go over our contributions. Also, we mention the limitations of our

method and the suggested ideas for future research.

6.1 Summary of Our Conclusion and Contribution

in Person Re-ID

In our thesis, we have made some advancements in person Re-ID, mainly focusing on the

Intra and Inter Camera Similarity (IICS) and Intra and Inter Domain Similarity (IIDS)

paradigms. Our contributions are as follows:

• Use of ConvNeXt for person Re-ID: We extended IICS/IIDS approaches by

using ConvNeXt-based feature extractor.

• Detailed Analysis of ConvNeXt Variants: We explored other variants of Con-

vNeXt within the IICS/IIDS framework, and our findings highlight that employing

larger ConvNeXt models leads to better accuracy within IICS/IIDS framework.

• Integration AIBN and TNorm into ConvNeXt: We examined the suitability

of AIBN and TNorm techniques in ConvNeXt. Our results revealed that the point

64
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of insertion within the network significantly impacts the performance of the AIBN

and TNorm techniques. Optimal performance was achieved when we integrated

AIBN into the block in the last two stages of ConvNeXt. As for TNorm, our analysis

suggests it should be embedded after stages 1-2-3 of ConvNeXt. The adaptation of

both these techniques proved effective when inserted at suitable network locations.

• Significance of Both Intra and Inter Stages: We studied the effects of intra

and inter stages, proposed by IICS/IIDS, and our results confirm that both stages

are necessary to construct feature extractors that are well-suited to the problem of

person Re-ID as set up in this thesis.

• Benchmarking Excellence: We evaluated our method against three commonly

used benchmarks: Market1501, DukeMTMC, and MSMT17. The results show

that our method has better accuracy on Market1501 and MSMT17 than most

unsupervised learning methods, including IICS/IIDS framework.

6.2 Limitations

6.3 Limitations

• Scalability Concerns: We consider the potential limitations and challenges as-

sociated with the application of our method in practical scenarios. One important

consideration lies in the scalability of our method when implemented in real-time

scenarios with a substantial number of cameras. The challenge arises from the sig-

nificant increase in processing time, which can hinder its applicability in situations

where timely responses are crucial. As the number of cameras grows, the compu-

tational demands placed on the system can lead to delays, potentially limiting the

effectiveness of our approach in such high-demand settings.
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• Dataset Biases and Generalization: Another aspect requiring attention per-

tains to the dataset employed for training our model. Notably, the dataset pre-

dominantly consists of photos capturing individuals in Asia. This composition

introduces a potential concern about generalizing our model’s performance across

diverse demographics. Given the inherent variations in appearance, attire, and

features among different groups of people, our model’s accuracy and effectiveness

might vary when extended to populations outside the dataset’s original context.

Ensuring robust performance across broader demographics remains a challenge.

• Challenges with Cluttered Images: It is also important to think about how

our model performs while dealing with congested pictures. It might be challenging

for the model to understand situations where numerous people are seen in a single

frame. The presence of several people may add complexity that makes it difficult

for the model to discriminate between and reliably identify different persons. Ad-

ditionally, difficulties might occur when it’s necessary to use a close crop to isolate

certain elements of crowded situations. As a result, it is important to carefully

consider the trade-offs between precision and computing efficiency. This may have

an influence on the quality of the results acquired.

• Occlusion Handling and Future Prospects: It is crucial to note that our

current method faces limitations in coping with occlusion. While we incorporate

erasing techniques during preprocessing to simulate occlusion in images, the ap-

proach is not a comprehensive solution. Instances where individuals are partially

or entirely covered, such as a person behind a car, can lead to failures in our model’s

identification capabilities.

• Clothing Changes: Additionally, it is important to recognize that our model

assumes no clothing changes between images captured by different cameras. While

this assumption is made for practical reasons based on the datasets available to us,
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it may not reflect real-world scenarios where individuals often change their clothing.

The impact of clothing variations on person Re-ID is a recognized challenge, and

this limitation suggests that our findings should be interpreted within the context

of these assumptions. Future research may explore methods to address the impact

of clothing changes on person Re-ID systems.

6.4 Future Work

To cope with the limitations of our method, we can consider the following potential

research.

• Diverse Dataset Collection: Future work should concentrate on the acquisition

of more extensive and diverse datasets. We can increase the robustness and ap-

plicability of our model by carefully selecting datasets that represent a variety of

populations and environmental circumstances. The desired result is a more robust

and adaptive strategy that not only works well across different racial and ethnic

groupings but also flourishes in a variety of climatic environments to improve ro-

bustness and generalizability.

• Improving Resistance to Occlusion: As our method currently struggles with

cluttered images and occlusions, future work could look into integrating techniques

to better handle occlusions. This can be achieved through the integration of ad-

vanced techniques tailored to overcome occlusion-related issues. Additionally, lever-

aging datasets containing occluded identities can facilitate the development of a

more adept model, capable of effectively navigating real-world clutter and occlu-

sion scenarios. This enhancement aims to elevate the method’s practicality and

broaden its scope within contexts characterized by visual obstructions.

• Mitigating Privacy Implications in Datasets: Future studies must reduce pri-
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vacy implications using datasets like the Duke benchmark utilized in our research.

The potential sensitivity of the data raises ethical concerns as we investigate person

Re-ID. To address this, we can explore methods such as data masking, synthetic

data creation for producing statistically similar data without compromising privacy,

and anonymization technique for obscuring personally identifiable information to

protect people’s privacy while retaining study effectiveness. Close collaboration

with legal and ethical experts will be required to ensure compliance with legisla-

tion and preserve the highest ethical standards in data usage.
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