
Development of an Automated Industrial Painting System with Optimized Quality
and Energy Consumption.

by

Muhammad Idrees

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Master of Applied Science in Electrical and Computer Engineering

Faculty of Electrical and Computer Engineering

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

October 2023

© Muhammad Idrees, 2023

ii

THESIS EXAMINATION INFORMATION

Submitted by: Muhammad Idrees

Master of Applied Science in Electrical and Computer Engineering

Thesis title: Development of an Automated Industrial Painting System with Optimized Quality

and Energy Consumption.

An oral defense of this thesis took place on Sep 20, 2023, in front of the following examining
committee:

Examining Committee:

Chair of Examining Committee

Dr. Mennatullah Siam

Research Supervisor

Dr. Hossam Gaber

Examining Committee Member

Dr. Ruth Milman

Thesis Examiner

Dr. Meaghan Charest-Finn

The above committee determined that the thesis is acceptable in form and content and that a
satisfactory knowledge of the field covered by the thesis was demonstrated by the candidate during
an oral examination. A signed copy of the Certificate of Approval is available from the School of
Graduate and Postdoctoral Studies.

1

ABSTRACT

Paint application is vital for product durability and aesthetics, whether done manually

or by precise robotic systems. Manual work is error-prone and risky, while robots offer

accuracy. However, programming robot trajectories for diverse products is challenging.

Therefore, developing an autonomous system capable of generating automated paint

trajectories is desirable. While adequate work has been done to optimize paint trajectories

for coating thickness on complex free-form surfaces, the investigation of robot energy

consumption and process time in the context of painting is left unattended. Thus, this study

focuses on formulation of a hybrid optimization scheme to generate time and energy-

efficient paint trajectories while ensuring optimal coating deposition on a surface.

Moreover, considerable effort is put into the development of hardware and software for the

integrated robotic system. Results for the trajectory optimization of a car door, hood, and

bumper reveal efficient paint trajectories can be obtained using the proposed optimization

scheme.

Keywords: trajectory optimization; 3D scanning; automation; Genetic Algorithm; ROS;

2

AUTHOR’S DECLARATION

I hereby declare that this thesis consists of original work of which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted by my

examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech

University) to lend this thesis to other institutions or individuals for the purpose of scholarly

research. I further authorize University of Ontario Institute of Technology (Ontario Tech

University) to reproduce this thesis by photocopying or by other means, in total or in part,

at the request of other institutions or individuals for the purpose of scholarly research. I

understand that my thesis will be made electronically available to the public.

Muhammad Idrees

3

STATEMENT OF CONTRIBUTIONS

Part of this work described in Chapter 3 has been presented in:

M. Idrees and H. A. Gabbar, "Automated 3D scanning system for extracting surface

geometries," in Symposium on Plasma and Nuclear Systems, Oshawa, Canada, Aug 2023

Part of this work described in Chapter 3 has been presented in:

M. Idrees and H. A. Gabbar, "Automated Surface Scanning for Industrial

Applications," in WORKSHOP ON SMART SCAN, Oshawa, Canada, 2023.

Part of this work described in Chapter 4 is under review for:

M. Idrees and H. A. Gabbar, "A hybrid optimization scheme for efficient trajectory

planning of a spray-painting robot" in 3rd International Conference on Robotics,

Automation, and Artificial Intelligence (RAAI), Singapore, Dec 14-16, 2023.

4

ACKNOWLEDGEMENTS

Special thanks to Manir Isham and other lab members in the Smart Energy Systems

Lab at Ontario Tech for helping in the structural fabrication of the integrated system.

Thanks to the program supervisor, Dr. Hossam Gaber for supporting the thesis and project.

Gratitude to the supervisory and examination committee for providing feedback on the

manuscript. Finally, I would like to extend my gratefulness to Mitacs Accelerate and

Cherkam Industrial Systems (Industrial partner) for sponsoring and funding the project.

5

TABLE OF CONTENTS

THESIS EXAMINATION INFORMATION .. ii

ABSTRACT .. 1

AUTHOR’S DECLARATION .. 2

STATEMENT OF CONTRIBUTIONS ... 3

ACKNOWLEDGEMENTS... 4

LIST OF TABLES ... 8

LIST OF FIGURES ... 10

LIST OF ABBREVIATIONS AND SYMBOLS ... 18

NOMENCLATURE ... 20

Chapter 1. Introduction .. 26

1.1 Background and motivation ... 26

1.2 Problem definition and scope of the thesis .. 27

1.3 Outline of thesis ... 28

Chapter 2. Literature Review .. 29

2.1 Integrated systems for automated industrial painting .. 29

2.2 3D scanning and measurement .. 31

2.2.1 Passive 3D scanning methods ... 32

2.2.2 Active 3D scanning methods .. 33

2.2.3 Integrated systems for 3D scanning .. 35

2.3 Trajectory planning and optimization .. 36

2.3.1 Trajectory planning with paint quality optimization ... 36

2.3.2 Trajectory planning with energy optimization .. 39

2.4 Trajectory execution in simulation environment ... 40

2.4.1 CAD models .. 41

2.4.2 Spray-painting methods .. 41

2.4.3 Robot simulation software .. 42

2.5 Trajectory execution on industrial painting robots .. 43

2.5.1 Industrial painting robots .. 44

2.5.2 Robot programs ... 46

2.6 Validation of paint quality ... 47

2.7 Research objectives .. 48

Chapter 3. Design of 3D Scanning System .. 49

3.1 Introduction .. 49

3.2 Methodology .. 50

6

3.2.1 Mechanism for 3D scan acquisition ... 51

3.2.2 Depth map to point cloud ... 52

3.2.3 Box Filter to extract region of interest ... 53

3.2.4 Noise removal and raw alignment of point clouds ... 54

3.2.5 Fine alignment using ICP ... 55

3.2.6 CAD calibration in camera frame .. 57

3.2.7 Evaluating accuracy of the 3D scan ... 58

3.2.7.1 Pseudo code for computing D1 metrics .. 59

3.2.7.2 Pseudo code for computing D2 metrics .. 59

3.2.7.3 Pseudo code for computing D3 metrics .. 60

3.2.7.4 Pseudo code for computing A3 metrics .. 61

3.2.7.5 Pseudo code for evaluating 3D scan accuracy. .. 61

3.3 Conclusion ... 62

Chapter 4. Optimal Paint Trajectory Planning .. 63

4.1 Introduction .. 63

4.2 Methodology .. 63

4.2.1 Establishment of spraying process model ... 63

4.2.2 Establishment of coating deposition model .. 65

4.2.3 Manipulator forward kinematics model .. 68

4.2.4 Manipulator inverse kinematics model ... 70

4.2.5 Manipulator velocity analysis and Jacobian ... 71

4.2.6 Manipulator acceleration analysis and Hessian .. 71

4.2.7 Manipulator torque and energy model .. 72

4.2.8 Hybrid optimization scheme ... 73

4.3 Conclusion ... 81

Chapter 5. Integrated System Development ... 82

5.1 Introduction .. 82

5.2 Methodology .. 82

5.2.1 Hardware development .. 84

5.2.2 Software development .. 88

5.2.3 Graphical user interface ... 90

5.2.4 ROS RQT graph ... 93

5.3 Conclusion ... 93

Chapter 6. Results and Discussions ... 94

6.1 Spraying process, robot, and optimizer parameters ... 94

7

6.2 3D scanning and CAD calibration results .. 97

6.3 Optimal paint trajectory planning for a car door .. 101

6.3.1 Results for slicing direction θ= 0o .. 101

6.3.2 Results for slicing direction θ= 30o .. 103

6.3.3 Results for slicing direction θ= 60o .. 104

6.3.4 Results for slicing direction θ= 90o .. 106

6.3.5 Results discussions ... 107

6.4 Optimal paint trajectory planning for a car hood ... 110

6.4.1 Results for slicing direction θ= 0o .. 110

6.4.2 Results for slicing direction θ= 30o .. 111

6.4.3 Results for slicing direction θ= 60o .. 113

6.4.4 Results for slicing direction θ= 90o .. 114

6.4.5 Results discussions ... 116

6.5 Optimal paint trajectory planning for a car bumper ... 118

6.5.1 Results for slicing direction θ= 0o .. 118

6.5.2 Results for slicing direction θ= 30o .. 119

6.5.3 Results for slicing direction θ= 60o .. 121

6.5.4 Results for slicing direction θ= 90o .. 122

6.5.5 Results discussions ... 124

6.6 Experimental validation of energy consumption ... 126

6.7 Results comparison with literature ... 129

Chapter 7. Conclusion and Future Works .. 131

References ... 133

Appendices .. 140

A1. Paint system CAD drawings ... 140

A2. Robot specifications .. 140

A3. Intel Real sense D435 specifications ... 141

A4. VL53L0X TOF sensor specifications ... 141

A5. Linear actuators specifications .. 142

8

LIST OF TABLES

CHAPTER 2

Table 2.1:

Trajectory optimization results for U and V direction

trajectories.

37

Table 2.2:

Energy consumption results for COMAU Racer robot. 40

Table 2.3:

Summary of commercial robot simulation software. 43

Table 2.4:

Industrial robots for paint applications. 46

CHAPTER 4

Table 4.1: DH Table for 4 DOF PRRR manipulator.

69

CHAPTER 5

Table 5.1: Hardware components breakdown with component IDs,

descriptions, and the corresponding CAD models.

84

CHAPTER 6

Table 6.1: List of spraying process, robot, and optimizer parameters used

in analysis.

95

Table 6.2: Scanned models and their corresponding CAD calibrated in

frame {C}.

98

9

Table 6.3: Similarity scores between the 3D scanned models and the

corresponding CAD.

99

Table 6.4: Results summary for trajectory planning and optimization of a

car door for both equidistant and non-equidistant slicing.

109

Table 6.5: Results summary for trajectory planning and optimization of a

car hood for both equidistant and non-equidistant slicing.

117

Table 6.6: Results summary for trajectory planning and optimization of a

car bumper for both equidistant and non-equidistant slicing.

125

Table 6.7: Results summary of experimental validation of energy

consumption for optimal paint trajectories of car door, car hood

and car bumper.

128

Table 6.8: Results comparison summary with literature. 129

10

LIST OF FIGURES

CHAPTER 2

Figure 2.1:

Integrated system for robotic painting. 30

Figure 2.2:

Integrated system for paint quality validation. 31

Figure 2.3:

Classification of 3D scanning and measurement methods. 32

Figure 2.4:

Euclidean error for a statue and office scene. The point cloud is

taken via a depth camera and registered in Kinect Fusion.

34

Figure 2.5:

Accuracy comparison of naive, L1diag, CSR and WT+CT. 34

Figure 2.6:

Integrated system for 3D reconstruction of objects. 35

Figure 2.7:

Coating thickness model for a complex free-form surface. 38

Figure 2.8:

Coating thickness results for transitional segment opt. 39

Figure 2.9:

KR AGILUS KR 10 R1100. 44

Figure 2.10:

P-250iB/15 by FANUC. 45

Figure 2.11: IRB 5500 Flex Painter by ABB. 45

Figure 2.12:

Image processing pipeline for paint validation. 47

11

CHAPTER 3

Figure 3.1: (left) Intel Real Sense D435 sensor (right) VLX53LoX.

49

Figure 3.2: Methodology for 3D scan acquisition.

50

Figure 3.3: Schematic of 3D scan acquisition mechanism.

51

Figure 3.4: Schematic of 2D pixel image and corresponding depth values.

52

Figure 3.5: Box Filter on raw point cloud.

53

Figure 3.6: Schematic of ICP alignment between source and target point

cloud.

55

Figure 3.7: Pipeline for evaluating accuracy of the 3D scan. 58

CHAPTER 4

Figure 4.1: Spraying torch model (Elliptical Paint area).

64

Figure 4.2: Elliptical double beta distribution model of coating thickness on

an elliptical surface area.

64

Figure 4.3: Coating deposition model on a complex free-form surface.

66

Figure 4.4: DH Schematic of a 4 DOF PRRR manipulator.

68

Figure 4.5: Slicing model showing the sliced region, the elliptical paint

area, and the trajectory points.

74

12

Figure 4.6: Trajectory planning and coating deposition model on a complex

free-form surface with slice sandwiched between two spraying

gun positions.

74

Figure 4.7: Trajectory planning and optimization algorithm. The input to

the optimization algorithm is a CAD model while the output is

an optimized trajectory for the paint robot in task space. The

end-effector trajectory includes the x, y, z location, orientation,

and the velocity vector at a given point in task space.

80

CHAPTER 5

Figure 5.1: Software and hardware development methodology.

83

Figure 5.2: CAD schematic of the Integrated System with component IDs.

87

Figure 5.3: 3D rendered CAD model of the Integrated System (isometric

view).

87

Figure 5.4: 3D rendered CAD model of the Integrated System (top and side

view).

88

Figure 5.5: Schematic for Software development of the integrated system

for automated industrial painting with optimized paint quality

and energy consumption.

89

Figure 5.6: Front panel of web-based GUI.

90

Figure 5.7: Web GUI Optimizer Settings and File System Handler.

91

Figure 5.8: Web GUI miscellaneous buttons and functions.

92

13

Figure 5.9: Software packages and custom Python scripts.

92

Figure 5.10: ROS RQT Graph.

93

CHAPTER 6

Figure 6.1: Experimental setup in laboratory.

95

Figure 6.2: Selecting 3D scan and viewing it in the GUI.

97

Figure 6.3: Calibrating the 3D scan and the corresponding CAD file in the
GUI.

98

Figure 6.4: D1 and D2 density distributions for car door.

100

Figure 6.5: D1 and D2 density distributions for car hood.

100

Figure 6.6: D1 and D2 density distributions for car bumper.

100

Figure 6.7: Coating thickness and planned trajectory of a car door in {EF}

for slicing direction 𝜃 = 0௢ (left: equidistant slicing, right: non-

equidistant slicing).

101

Figure 6.8: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car door: 𝜃 = 0௢).

102

Figure 6.9: Coating thickness and planned trajectory of a car door in {EF}

for slicing direction 𝜃 = 30௢ (left: equidistant slicing, right:

non-equidistant slicing).

103

Figure 6.10: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car door: 𝜃 = 30௢).

104

14

Figure 6.11: Coating thickness and planned trajectory of a car door in {EF}

for slicing direction 𝜃 = 60௢ (left: equidistant slicing, right:

non-equidistant slicing).

104

Figure 6.12: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car door: 𝜃 = 60௢).

105

Figure 6.13: Coating thickness and planned trajectory of a car door in {EF}

for slicing direction 𝜃 = 90௢ (left: equidistant slicing, right:

non-equidistant slicing).

106

Figure 6.14: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car door: 𝜃 = 90௢).

107

Figure 6.15: Total energy, trajectory time, coating deviation and relative

coating error vs slicing direction (car door).

108

Figure 6.16: Coating thickness and planned trajectory of a car hood in {EF}

for slicing direction 𝜃 = 0௢ (left: equidistant slicing, right: non-

equidistant.

110

Figure 6.17: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car hood: 𝜃 = 0௢).

111

Figure 6.18: Coating thickness and planned trajectory of a car hood in {EF}

for slicing direction 𝜃 = 30௢ (left: equidistant slicing, right:

non-equidistant slicing).

111

15

Figure 6.19: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car hood: 𝜃 = 30௢).

112

Figure 6.20: Coating thickness and planned trajectory of a car hood in {EF}

for slicing direction 𝜃 = 60௢ (left: equidistant slicing, right:

non-equidistant slicing).

113

Figure 6.21: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car hood: 𝜃 = 60௢).

114

Figure 6.22: Coating thickness and planned trajectory of a car hood in {EF}

for slicing direction 𝜃 = 90௢ (left: equidistant slicing, right:

non-equidistant slicing).

114

Figure 6.23: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car hood: 𝜃 = 90௢).

115

Figure 6.24: Total energy, trajectory time, coating deviation and relative

coating error vs slicing direction (car hood).

116

Figure 6.25: Coating thickness and planned trajectory of a car bumper in

{EF} for slicing direction 𝜃 = 0௢ (left: equidistant slicing,

right: non-equidistant slicing).

118

Figure 6.26: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car bumper: 𝜃 = 0௢).

119

16

Figure 6.27: Coating thickness and planned trajectory of a car bumper in

{EF} for slicing direction 𝜃 = 30௢ (left: equidistant slicing,

right: non-equidistant slicing).

119

Figure 6.28: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car bumper: 𝜃 = 30௢).

120

Figure 6.29: Coating thickness and planned trajectory of a car bumper in

{EF} for slicing direction 𝜃 = 60௢ (left: equidistant slicing,

right: non-equidistant slicing).

121

Figure 6.30: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car bumper: 𝜃 = 60௢).

122

Figure 6.31: Coating thickness and planned trajectory of a car bumper in

{EF} for slicing direction 𝜃 = 90௢ (left: equidistant slicing,

right: non-equidistant slicing).

122

Figure 6.32: Mean coating thickness, energy, coating deviation and relative

coating error, fitness, slice width, speed, and inverse kinematic

configuration (car bumper: 𝜃 = 90௢).

123

Figure 6.33: Total energy, trajectory time, coating deviation, and relative

coating error vs slicing direction (car bumper).

124

Figure 6.34: Experimental energy consumption for trajectory optimization of

car door.

126

Figure 6.35: Experimental energy consumption for trajectory optimization of

a car hood.

127

17

Figure 6.36: Experimental energy consumption for trajectory optimization of

car bumper.

127

Figure 6.37: Robot executing trajectory on a car door.

128

18

LIST OF ABBREVIATIONS AND SYMBOLS

LIDAR Light Detection and Ranging

LASER Light Amplification by Stimulated Emission of Rays

RGB Red, Green, Blue

RGBD RGB and depth image

PCA Principal Component Analysis

ICP Iterative Closest Point

SVD Singular Value Decomposition

CMM Coordinate Measuring Machine

CT Computed Tomography

RFDIC Rotation-Free Digital Image Correlation

FSM Fan Shape Model

GA Genetic Algorithm

RMS Root Mean Square

CAD Computed Aided Design

CAS Computer Assisted Software

STL Stereo Lithography

HVLP High Volume Low Pressure

IRPS Integrated Robotic Painting System

GUI Graphical User Interface

ROS Robot Operating System

TOF Time of Flight

SQP Sequential Quadratic Programming

𝑃𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 Process Oriented Feature Detector

IWO Invasive Weed Optimization

TP Teach Pendant

LS List format file

JS JavaScript

HTML Hyper-text Markup Language

CSS Cascading Style Sheets

19

GPIO General Purpose Input Output

LINUX Lovable Intellect Not Using XP

RNE Recursive Newton Euler

HSI Hue, Saturation, Intensity

DH Denavit-Hartenberg

VOC Volatile Organic Compounds

FEA Finite Element Analysis

RVIZ ROS visualization

TF Transform

ROI Region of Interest

URDF Unified Robot Description Format

OS Operating System

20

NOMENCLATURE

CHAPTER 2

D1
Distance between randomly sampled point and the centroid of a point

cloud

D2 Distance between two randomly sampled points in a point cloud

D3
Area of triangle formed by 3 randomly sampled points in a point

cloud

A3
The angle of the vertex of triangle formed by 3 randomly sampled

points in a point cloud

∆𝑀௖௢௟௢௥ Amount of color deposited on an incremental area ∆𝑆

∆𝑆 Incremental area

𝜑(𝛼) Paint flow function per unit area [
௞௚

௠మ௦
]

𝛿௖௢௟௢௥ Surface color density [
௞௚

௠మ
]

𝑖௖௢௟௢௥ Color intensity [𝐻𝑆𝐼]

𝑘௖ Color constant

𝑖௦௖௔௡ Intensity range between 0 and 1 [𝐻𝑆𝐼]

𝑘௦ Scan constant

𝜙(𝛼) Color flow function [
ுௌூ

௦
]

𝜙(𝑟) Gaussian approximation of color flow function

CHAPTER 3

{𝐶} Depth Camera frame

{𝑆} Depth Sensor frame

{𝑆ଵ} Depth sensor frame translated to axis of rotation

{𝑆ଵ௥} {𝑆ଵ} frame rotated with the axis of rotation

{cg}
Centroid frame of the point cloud with its axes aligned with the depth

camera frame {C}

21

𝑃஼ Point cloud in frame the depth camera frame {C}

𝑇ௌ
஼ A 4 by 4 homogenous transform between frame {C} and {S}

𝑇ௌభ

ௌ A 4 by 4 homogenous transform between frame {S} and {𝑆ଵ}

𝑓௫ , 𝑓௬ Focal length of depth camera in x and y direction

𝑐௫ , 𝑐௬ Depth Camera center in the world frame

𝑢, 𝑣 Pixel coordinates

S Skew between world frame {W} and camera frame {C}

𝑙௫ , 𝑙௬ , 𝑙௭ Box filter length, width, and height

{S2}
Frame at the centroid of the box filter with its axes aligned with the

camera frame {C}

𝑃ୗభ(௜) Represents the 𝑖௧௛ point cloud in frame {𝑆ଵ}

𝑃௔௟௜௚௡௘ௗ
஼(௜) Represents the 𝑖௧௛ point cloud aligned in the camera frame {C}

𝑃௦௖௔௡
஼ Scanned model point cloud in the camera frame {C}

𝑃௦௖௔௡
௘௜௚ Scanned point cloud in the eigen coordinate frame

𝑃஼஺஽ CAD point cloud in some arbitrary reference frame

𝑃஼஺஽
௘௜௚ CAD point cloud in the eigen coordinate frame

𝑢஼஺஽ A 3 by 3 eigen matrix for the CAD point cloud

𝑢௦௖௔௡ A 3 by 3 eigen matrix for the scanned point cloud

𝑐஼஺஽ Principal center of the CAD point cloud

𝑐௦௖௔௡ Principal center of the scanned point cloud

𝑃஼஺஽
௔௟௜௚௡௘ௗ

CAD point cloud aligned in the eigen frame of the scanned point

cloud

𝑃஼஺஽
஼ CAD point cloud aligned in the camera frame {C}

𝑅௬൫𝜃௬(௜)൯
Represents the 4 by 4 homogenous transformation matrix giving a

relative rotation of 𝜃௬ degree about the y axis

𝑁௣௖ௗ Number of points in a point cloud

𝑞௜ Individual point in a target point cloud for ICP alignment

22

𝑝௜ Individual point in a source point cloud for ICP alignment

𝑛௤೔
 Normal vector at a given point 𝑞௜ in the target point cloud

𝑅, 𝑡
A 3 by 3 rotation matrix and a 3 by 1 translational vector obtained by

ICP

𝑝2𝑝 Short notation for point-to-point ICP

𝑝2𝑝𝑙𝑎𝑛𝑒 Short notation for point-to-plane ICP

𝑃௠௘௥௚௘ௗ
஼ Merged point cloud in the camera frame {C}

CHAPTER 4

𝑎 Longer side of ellipse

𝑏 Shorter side of ellipse

ℎ Perpendicular height of the spray gun from the surface of the object

𝛽௫
Beta value representing the spread of coating thickness along the X

direction of ellipse

𝛽௬
Beta value representing the spread of coating thickness along the Y

direction of ellipse

𝜑௫
(௠௔௫) The maximum opening angle (torch angle) of ellipse in X direction

𝜑௬
(௠௔௫) The maximum opening angle (torch angle) of ellipse in Y direction

𝑄஼భ
 Paint flow rate at point 𝐶ଵ

𝑄஼మ
 Paint flow rate at point 𝐶ଶ

𝐴஼భ
 Paint area at point 𝐶ଵ

𝐴஼మ
 Paint area at point 𝐶ଶ

𝑑஼భ
 Coating thickness at point 𝐶ଵ

𝑑஼మ
 Coating thickness at point 𝐶ଶ

𝐿௦
Connection line between the paint gun and a point 𝑠 on the surface of

the object

𝒏ഥ Normal vector of the surface at point 𝑠

𝑀ଵ Tangent plane at point O on the surface

23

𝑀ଶ A parallel plane to 𝑀ଵ intercepting point 𝑠 on the surface

𝛾 Angle between normal vector 𝒏ഥ and 𝐿௦

𝐿ଵ, 𝐿ଶ, 𝐿ଷ Link lengths of the 4 DOF PRRR manipulator

𝑚ଵ, 𝑚ଶ, 𝑚ଷ Link masses of the 4 DOF PRRR manipulator

M Link 0 mass (robot base mass)

𝑀(𝑞) Manipulator inertia matrix

𝐶(𝑞, 𝑞̇) Manipulator Coriolis and centrifugal acceleration matrix

𝐻(𝑞, 𝑞̇) Manipulator gravity and friction dynamics matrix

𝑑 Vertical offset of the robot base

𝑞 Joint space angles vector

𝑞̇ Joint space velocity vector

𝑥̇ Task space velocity vector

𝑞̈ Joint space acceleration vector

𝑥̈ Task space acceleration vector

𝐽 Jacobian in frame {0}

𝐻 Hessian in frame {0}

𝜏௡ Torque at joint n

𝜔௡ Angular velocity of link n

𝑁௝௢௜௡௧௦ Number of joints in a serial-link manipulator

𝑃௠௘௖௛ Total mechanical power of a manipulator

𝐸஺஻ Energy consumed by the manipulator while moving from point A to B

𝑡஺஻ Time taken by the manipulator while moving from point A to B

{𝑆𝐹} Slicing coordinate frame

{𝐸𝐹} Eigen coordinate frame

𝑣(௜) Speed of the paint gun along a given slicing plane 𝑖

𝑥(௜)
The x coordinate of the ellipse used in the coating function at a given

slicing plane 𝑖

cos 𝛾(௜) Cosine of angle 𝛾 at a given slicing plane 𝑖

cos 𝜑௫(௜) Cosine of angle 𝜑௫ at a given slicing plane 𝑖

ℎ௦(௜) Parameter ℎ௦ at a given slicing plane 𝑖

24

𝑃(௜,௝)
Trajectory coordinates at a slicing plane 𝑖 and trajectory point 𝑗

represented in the slicing frame {SF}

𝜓(௜,௝)
End-effector orientation vector at a slicing plane 𝑖 and trajectory point

𝑗 represented in the slicing frame {SF}

𝒗ഥ(𝒊,𝒋)
Velocity vector at a slicing plane 𝑖 and trajectory point 𝑗 represented in

the slicing frame {SF}

𝑃௣௔௧௖௛ Point cloud of a patch 𝑃௣௔௧௖௛ ∈ ℝ(3, 𝑁𝑝𝑎𝑡𝑐ℎ)

 𝑁௣௔௧௖௛ Number of points in a patch

 𝑁௣௧௦ Number of points in a slice

𝑃௥௢௕௢௧ Trajectory coordinates in the robot frame {0}: 𝑃௥௢௕௢௧ ∈ ℝ(ଷ, ே೟)

𝜓௥௢௕௢௧ Orientation vectors in the robot frame {0}: 𝜓௥௢௕௢௧ ∈ ℝ(ଷ, ே೟)

𝑉௥௢௕௢௧ Velocity vectors in the robot frame {0}: 𝑉௥௢௕௢௧ ∈ ℝ(ଷ, ே೟)

𝑑௜ௗ௘௔௟ Desired coating thickness

𝑑௦ Coating thickness at a point 𝑠 on the surface

𝑑௠௘௔௡ Mean coating thickness over a region of surface

𝑑௦௧ௗ Standard deviation of coating thickness over a region of surface

𝑁௧ Total trajectory points in a slice

∆𝑇(௡೟) Time delta between two trajectory points

𝐽ௗೞ
 Mean squared error coating cost function

𝐽ௗ೐ೝೝ೚ೝ
 Coating deviation cost function

𝐽ா Mean energy cost function.

𝐽் Mean trajectory time cost function

𝐽௧௢௧ Total cost function

𝜔ଵ Scaling factor for mean squared error cost

𝜔ଶ Scaling factor for coating deviation cost

𝜔ଷ Scaling factor for energy cost

𝜔ସ Scaling factor for time cost

𝜖 Hyper parameter in the cost function

𝛿 Slice width

𝑣௠௜௡ Minimum speed of the spraying gun

25

𝑣௠௔௫ Maximum speed of the spraying gun

𝑖𝑘௖௙
An integer index representing the inverse kinematic configuration when

converting task space coordinates to joint space

𝜃 Slicing direction: Rotation angle between frame {EF} and {SF}

CHAPTER 6

𝐼௔௩௚ Average current of the robot for the entire trajectory

𝐸௦௨௠ Total sum of energy across the trajectory points

𝐸௦௔௩ Percentage of energy savings

𝑑௠௘௔௡ Mean coating thickness on the entire surface of a point cloud

𝑑௦௧ௗ
The standard deviation of the coating thickness on the entire surface

of a point cloud

𝑑௘௥௥௢௥ Ratio of 𝑑௦௧ௗ and 𝑑௠௘௔௡

𝑟௠ Mutation rate in GA

𝑐௧௬௣௘ Crossover type in GA

𝑚௧௬௣௘ Mutation type in GA

𝑁௣௔௥௘௡௧௦ Number of mating parents in GA

𝑁௚௘௡ Number of generations in GA

𝑁௦௢௟ Number of solutions per population in GA

26

Chapter 1. Introduction

1.1 Background and motivation

Industrial painting has become increasingly important in modern manufacturing

processes. The application of paint to a product`s surface improves its longevity and

aesthetics. When paint is applied to a surface, it not only increases the corrosion resistance

of the surface, but also enhances its heat resistance, electrical insulation, and reactivity to

harmful chemicals. Robotics play an important role in paint processes since they increase

the process efficiency, productivity, and quality of the painted surface. Robotic systems

can work continuously without the need for any breaks thereby, accelerating production

times and reducing labor costs. According to a survey, vehicle production will increase to

111.7 million units by the year 2023 [1]. The increase in production rates of vehicles

demands the automation of paint processes and a need to develop a fully autonomous

system.

The process of paint automation is an ongoing topic in both academia and industry. The

key technology in paint process automation is trajectory planning over the surface of a

geometric model. Trajectory planning refers to finding an optimal paint gun path and

velocity vectors while ensuring coating uniformity over the surface of an object. While

much work has been done to develop trajectory optimization schemes to achieve coating

uniformity over the finished surface, these methods do not consider the dynamics of the

robot which leads to suboptimal trajectory planning. This thesis, therefore, focuses on

formulating a hybrid trajectory optimization scheme utilizing a genetic algorithm by taking

into consideration the geometry of the object, the dynamics of the spray-painting process,

and the robot moving the paint gun.

27

1.2 Problem definition and scope of the thesis

The manual painting process for industrial parts exhibits challenges related to

variations in coating quality, extended production timelines, heightened environmental

impact through VOC emissions [2], and compromised worker safety [3]. This thesis seeks

to investigate and implement specific strategies such as automation, eco-friendly coating

formulations, and process optimization to rectify these issues. Optimal paint trajectory

planning requires an accurate model of the geometry of the object, the dynamics of the

spraying process, and the robot moving the spraying gun. Thus, the scope of the thesis can

be divided into four folds. First, to obtain the geometry of the object, a 3D scan acquisition

system is developed to accurately measure the surface profile of the surface to be painted.

Secondly, the spray paint profile and paint deposition model are established on a complex

free-form surface and thirdly, an optimization algorithm for the optimal trajectory planning

of the spray paint process subject to paint spray and robot dynamics is developed. Finally,

the mathematical formulation of the proposed scheme is implemented in Python

programming language and the energy consumption is validated experimentally.

Additionally, a web-based GUI (graphical user interface) is also developed that lets the

user interact with the integrated system to perform 3D scans on objects, optimally plan

trajectory on the surface of the object, and execute the trajectory in real-time on the two

robotic arms installed onboard.

28

1.3 Outline of thesis

The thesis report is divided into 7 chapters. Chapter (1) describes the background of

industrial spray paint processes and the motivation to continue this thesis study. It also

describes the key concepts needed to achieve the goals of the study. Chapter (2) discusses

the theoretical concepts needed to formulate research methodology by overcoming

important shortcomings in literature. This includes the investigation of integrated systems

used for industrial painting, 3D scanning techniques for acquiring the geometries of objects

and generating signatures of 3D surfaces, trajectory planning, and optimization techniques

for complex free-form surfaces, and finally, validation techniques for validating the

uniformity of the deposited paint on the surface and energy consumed by the robot. Chapter

(3) describes the development of the 3D scan acquisition system in detail. This includes

the selection of hardware components and the application of software to generate a

complete 3D scan of a complex free-form surface. Chapter (4) discusses the mathematical

formulation of the paint spray profile, the paint deposition model on a complex free-form

surface, and the optimization algorithm for obtaining an optimal trajectory for the paint

process. Chapter (5) discusses the design and development of an integrated system for

automating the painting process with details on the web-based GUI and the software

components used. Chapter (6) discusses the results of the 3D scan acquisition system and

3D profile signatures for evaluating the accuracy of 3D scans, simulation results for the

paint surface quality achieved and the energy consumed by the robot to verify the proposed

optimization scheme, and finally, validation of the optimal trajectory executed online on

the integrated system. Chapter (7) discusses the conclusions and the future

recommendations of the thesis study by summarizing all the chapters.

29

Chapter 2. Literature Review

The problems associated with manual painting could be addressed using an

integrated robotic system capable of autonomously applying paint over surfaces. Such a

system must contain all the necessary hardware and software components to achieve the

desired automation. This includes hardware components such as an industrial robot, a paint

delivery system, a 3D scanner, and a central processing unit. The software components

include: a simulation or co-simulation environment for a friendly user interface, an

algorithm for 3D scanning of the object, a blueprint for trajectory planning and

optimization, and an execution mechanism for uploading the trajectory to the robot. The

literature review will discuss in detail the current technologies used for industrial painting;

the shortcomings associated with them, and finally suggest improvements to make the paint

process more autonomous and efficient.

2.1 Integrated systems for automated industrial painting

Literature research shows the crucial components in the integrated system design

are a paint booth, a robotic system, and the required software collection. While designing

an integrated system for paint automation, researchers focus on improving the coating

uniformity, process times, and paint waste. An early 1980`s integrated system for painting

contains a paint booth, a robot apparatus, and a rail mechanism for moving the robots [4].

The main goal behind the development of the robotic system was to minimize paint waste

by using precise robotic movements.

Similarly, a software and hardware-based prototype of an integrated robotic

painting system is developed [5]. The software modules contain part designs, process

planning, trajectory generation of robots, and motion control. The hardware components

include a work cell controller, motor drives, robotic manipulator, surface scanner, and paint

delivery units. The scanning interface uses a mechanical probe to get the topography of the

surface to be painted and converts it into a CAD model. Conversely, a CAD model can

directly be imported from the CAD library. It is then processed to generate the robot

trajectories followed by their execution on the work cell controller.

30

Another integrated system developed uses an algorithm to model the spray-painting

process, and a computer program to simulate a robot for painting curved surfaces [6]. The

painting program makes it possible to find out the optimum parameters for spray painting

such as the paint gun velocity, spray distance, and multiple paint paths. The modeling part

is done using a CAS (computer-assisted software) by two methods. If the part is simple, a

CAD model is generated in the software otherwise a laser scanner is used to get the 3D

model. An algorithm is then formulated to perform the paint thickness analysis and the

paint process is simulated. For the validation of the coating thickness, a flat surface is used.

The paint is deposited in a single paint stroke and the coating thickness is measured using

an ELCOMETER. The experimental setup includes a 𝐹𝐴𝑁𝑈𝐶 𝐴𝑟𝑐𝑀𝑎𝑡𝑒𝑟 𝑆𝑟. 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙

robot, a BINKS 95-A spray gun [7], and an ELCOMETER 345 coating thickness gauge

[8]. A schematic of this integrated system is shown in Fig. 2.1.

Figure 2.1: Integrated system for robotic painting. [6]

An integrated system containing a UR-10 robot with an HP-M2 airbrush [9] and a

scanner for digitizing the paint intensity is developed [10]. It uses a blueprint to compute

the coating intensities and then experimentally validates it. A single paint stroke is

performed to deposit some amount of paint on a surface. After an image of the paint area

is taken and digitized into color intensities, an image processing pipeline is applied to

validate the coating thickness at each intensity point. The UR-10 robot with the spray gun

is shown in Fig. 2.2.

31

Figure 2.2: Integrated system for paint quality validation. [10]

2.2 3D scanning and measurement

3D scanning is important for digitally recreating physical objects which can be

accomplished using several methods. The most popular methods include CMM

(Coordinate-measuring machine), laser scanners, and commercial computed tomography

(CT) scanners [11]. CMM does one measurement at a time and therefore, is time

consuming and less efficient. It also uses conventional monitoring equipment which makes

it unsuitable for fast scanning. On the other hand, laser scanners are fast and can quickly

scan the objects [12, 13, 14]. 3D scanning is also used for generating scenes for movies

and games. In movies and games, 3D scanning is applied to objects, landscapes, and

persons. It also finds its use in the screening of historical locations and objects for academic

research. Upon a full 3D scan of a structure, it helps identify its integrity. 3D scanners can

measure precise details in an object and captures complex geometries in a point cloud

format [15, 16, 17, 18]. 3D scanning is utilized for reconstructing historical artifacts [19].

The early Aboriginal trackways discovered at the Wallenda Lakes World Heritage Site are

used as a case study. 3D scanning can be broadly divided into two categories: passive and

active 3D scanning as shown in Fig. 2.3.

32

Figure 2.3: Classification of 3D scanning and measurement methods. [20]

2.2.1 Passive 3D scanning methods

Passive 3D scanning methods do not need a physical contact of the measuring

device with the object. These methods use geometrically correct or stochastic markings on

the surface combined with optical laws to capture the geometry of an object. Light based

passive sensors work by using the reflected light from the surface of the object [20]. These

methods are further divided into three categories: Shape from Shading, Object Raster, and

Classic Photogrammetry. Shape from shading uses a surface image to compute the three-

dimensional model of an object. A novel algorithm for shape from shading with multiple

input images, realistic camera models, low angles of illumination, and uncertain camera

positions is developed to capture a three-dimensional view of planetary images [21]. Raster

scanning is the process of scanning line by line to cover an area. The most important of the

passive methods is the photogrammetry. It uses overlapping photographs to create a 3D

representation of an object. A researcher uses target-free photogrammetry to generate dense

point clouds of different objects [22]. This algorithm uses a Rotation-Free Digital Image

Correlation (RFDIC) method to improve the matching precision and a coarse-to-fine

strategy to establish a multi-view geometry.

33

2.2.2 Active 3D scanning methods

Among the active 3D scanning methods, two subcategories are identified including

contact-based and noncontact-based methods. The contact-based methods, require a

physical contact between the measuring sensor and the object. A widely used approach is

CMM which uses a mechanical probe to generate surface topography. CMM is an obsolete

method and is slow compared to new optical based methods that use the principles of TOF

(Time of Flight), Triangulation and Interferometry. LIDAR and LASER scanners are the

prominent technologies when it comes to noncontact-based methods. A LIDAR based

scanner is commonly used for mapping surroundings due to its long range. A LASER

scanner on the other hand though limited in range, can capture more details of an object.

 Kinect Fusion is a real-time mapping system used to capture indoor 3D scenes with

variable lighting conditions by employing the use of a low-cost depth camera [23]. A per

vertex Euclidean error and per vertex angle error metrics are used to analyze the accuracy

of the Kinect Fusion method for 3D scenes [24]. It is observed that the Euclidean error lies

within 0-15 mm for an office scene and within 0-8 mm for a statue as shown in Fig. 2.4.

Similarly, a sparse reconstruction-based technique is used to generate a 3D environment

using a few depth scans [25]. Since most of the surfaces and edges have regularity, this

makes it possible to achieve high reconstruction accuracy using a limited number of

measurements of the unknown environment. The results for the 3D reconstruction accuracy

are shown in Fig. 2.5.

Another study aims at the comparison of different 3D scanning devices to capture

a human face in 3D [26]. The accuracy is computed using mean squared error between the

ground truth CAD model and the generated 3D scan. Such methods are commonly termed

as surface registration-based techniques dependent on ICP error for accuracy evaluation

[27]. ICP is an iterative process and uses the entire surface which makes it computationally

inefficient. On the other hand, feature matching-based methods use mathematical

transformations to obtain higher dimensional features of the surface for calculating

accuracy [28]. One such method uses geometric signatures to encode the surface into D1,

D2, D3, and A3 features [29]. These features are probability distributions of measurements

taken from the geometric model such as the distance between the centroid and points (D1),

34

the distance between two points (D2), the square root of the area of a triangle formed by 3

points (D3) and the angle formed by the vertex of 3 points (A3).

Figure 2.4: Euclidean error for a statue and office scene. The point cloud is taken

via a depth camera and registered in Kinect Fusion. [24]

Figure 2.5: Accuracy comparison of naive, L1diag, CSR, and WT+CT. [25]

35

2.2.3 Integrated systems for 3D scanning

An integrated system for 3D scanning comprises of hardware and software

components to capture the 3D representation of a physical object. A 3D scanner is an

important hardware component in realizing the 3D model of an object. It can be placed on

a stationary mount or a movable mount like a robotic arm. A line profile laser scanner, an

industrial robot, and a turntable mechanism are used to generate 3D scans of objects and

convert them to CAD models [30]. A set of curves are defined around the volume along

which the line profile scanner moves to generate a 3D scan of the object.

Similarly, 3D scanned models are investigated for contour tracing by designing a

robotic system [31]. This system uses a 6-DOF robotic arm, a short-range laser scanner

with 100 to 200 𝑚𝑚 range, a 30 𝜇𝑚 resolution, and a turntable for rotating the work piece

as shown in Fig. 2.6. The laser scanner can communicate with the computer and the robot

controller. A similar scanning system for large-scale objects is proposed which uses a laser

scanner, a turntable mechanism, and a robot for calibration of the system [32].

Nevertheless, a robotic system for surface measurement via a 3D scanner uses similar

components to achieve the scanning task [33].

Figure 2.6: Integrated system for 3D reconstruction of objects. [31]

36

2.3 Trajectory planning and optimization

Trajectory planning and optimization requires accurate knowledge of the geometry

of the object on which paint is to be deposited. Geometry is usually available in the form

of a CAD model or a 3D scan from a sensor device. Once the geometry of the surface is

acquired, a spraying process model needs to be established to describe the physics of the

coating thickness on the surface. A trajectory for the paint gun can then be generated to

cover the entire surface while ensuring paint quality and other objectives. Paint quality can

be qualitatively described as the uniformity of coating thickness over a painted surface.

This section of literature review analyzes the techniques used for optimizing trajectories

over complex free-form surfaces.

2.3.1 Trajectory planning with paint quality optimization

An automated trajectory planning scheme is used to find spray trajectories of

unknown parts [34]. This method uses a direct 𝑃𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 (Process Oriented

Feature Detector) based approach to extract elementary geometries from a range sensor

data. This is done by first removing the skid, calibrating, and separating the part. After this,

for each segmented part, an edge map and mesh are generated. This approach is limited to

the detection of two types of geometries: Rib Detection and Cavity Detection. Rib detection

detects parallel lines representing ribs while cavity detection finds a region lower than the

neighboring regions using surface normal.

An incremental approach for trajectory generation of spray-painting robots is

proposed [35]. This method uses several parameters like a surface model, spray and gun

model, paint distribution model, spray pattern, and desired coating thickness to generate a

spray gun trajectory. The geometry of the part is expressed in the form of triangular patches

using a CAD model. To determine the coating thickness over the surface, a circular paint

distribution model is employed. Similarly, a functional mapping between the thickness of

paint applied and important parameters like spray gun radius, the paint flow rate, and paint

37

transfer efficiency are obtained. The velocity of the paint gun and the overlap distance are

optimized to improve coating distribution over the surface.

Furthermore, the use of Bezier curves to plan spray painting trajectories is

investigated [36]. The spraying process is modelled using paint distribution on a circular

area, while the overlap is assumed constant over the surface. The use of T-Bezier curves in

trajectory planning ensures computational efficiency. The trajectories are planned along

the U and V principal directions of the geometry. Results show U direction trajectory gives

better coating thickness (51.1 𝜇𝑚), and lower process time (82 s) as tabulated in Table 2.1.

Table 2.1: Trajectory optimization results for U and V direction trajectories. [36]

 U direction V direction

Desired (𝝁𝒎) 50.0 50.0

Average (𝝁𝒎) 51.1 52.2

Maximum (𝝁𝒎) 56.3 58.3

Minimum (𝝁𝒎) 45.2 43.1

Process time (𝒔) 82 99

Recent studies show the use of point cloud slicing technique in conjunction with

the coating thickness model to generate paint trajectories [37]. These methods are based on

the geometry of the object obtained via a laser sensor. A coating thickness model is

established by defining key geometric variables on the free-form surface. Next, a slicing

technique is used to obtain a particular portion of the point cloud. A grid projection

algorithm is then used to acquire points within the slice for computing coating thickness

over them. Finally, a golden section method is used to obtain the optimal slice width, and

velocity of the paint gun. This process is repeated for all the slices until the entire surface

is covered. The spraying process model is shown in Fig. 2.7.

38

Figure 2.7: Coating thickness model for a complex free-form surface. [37]

The coating thickness is modelled using a double beta distribution. Using

equidistant slicing and a desired coating thickness of 23 𝜇𝑚, a mean coating thickness of

25.947 𝜇𝑚 is obtained over the surface of a motorcycle spoiler. The maximum and

minimum values are 34.022 𝜇𝑚 and 7.928 𝜇𝑚 respectively. On the contrary, the use of

non-equidistant slicing scheme improves the mean coating thickness to 22.2669 𝜇𝑚. The

variation in coating thicknesses is also reduced indicated by the maximal and minimal

values of 29.795 𝜇𝑚 and 6.971 𝜇𝑚 respectively. The variable overlap distances make the

paint distribution more uniform and improve the paint quality.

Another research focuses on optimizing the transitional segment of the trajectory

points on complex free-form surfaces [38]. The trajectory planning is based on the

geometry of the surface obtained via the STL (Stereo Lithography) file. An STL file is a

combination of normal vectors and vertices of the associated triangles of a 3D object. The

trajectory planning is done by first introducing the slice planes onto the workpiece and then

offsetting the points by ℎ units along the normal direction. The transitional segments can

be straight, convex, or concave and are evaluated for a range of beta angles. It is observed

that for smaller beta angles, the straight trajectory works better while for moderate to large

39

angles, the concave trajectory is better. This holds for both convex and concave-type free-

form surfaces. The paint quality metric (error) is the ratio of std. deviation and mean of the

coating thickness over the surface. The error is improved from 11.13% to 7.81% when

transitional segments are used. Results are shown in Fig. 2.8.

Figure 2.8: Coating thickness results for transitional segment opt. [38]

2.3.2 Trajectory planning with energy optimization

The energy of robotic manipulators can be optimized to generate efficient paint

trajectories while ensuring coating uniformity. The trajectory planning of manipulators is

dependent on the task it is performing. While the underlying physics of robot energy

consumption are similar, the energy optimization mechanism needs to be established for

each task. Energy optimization of robots include topology optimization to eliminate

needless densities, selection of optimal path and the use of light wight components, etc.

[39]. For the paint process, the selection of optimal path is of interest since the components

of the robots cannot be altered due to industry standards. An optimal path is generated for

the motion of an industrial ABB robot by investigating the energy consumption of multiple

trajectories between two points in space [40]. This method uses an SQP (Sequential

Quadratic Programming) type algorithm to optimize end-effector velocities leading to low

40

energy consumption. The trajectories include a right-angle trajectory, straight-line

trajectory, an energy-optimal trajectory, a time-optimal trajectory and a trajectory for pick

and place maneuver. It is observed that that the energy optimal path is a curved one in the

task space and not the straight line one.

Another study uses an invasive weed optimization (IWO) technique to find energy

efficient trajectory for a robot using via points while avoiding obstacles [41]. A cost

function is established which penalizes redundant joint rotations, and constraints the joint

angles to generate a cubic trajectory for the two revolute joints of a serial manipulator.

Similarly, another approach searches for points close to the fly target points that lead to a

low energy consumption of the robot [42]. The mechanical energy of the robot is computed

through the dynamic model and a branch and bound algorithm is then used to scan for all

possible motions to find the energy-optimal trajectory. Results show that the energy

consumption for a 6 DOF COMAU Racer robot can be reduced to around 41% as tabulated

in Table 2.2.

Table 2.2: Energy consumption results for COMAU Racer robot. [42]

 Pick and Place Passman

𝑬𝒎𝒆𝒄𝒄 (𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒕𝒓𝒂𝒋.) 0.285058 0.3861133

𝑬𝒎𝒆𝒄𝒄,𝒐𝒑𝒕 (𝒐𝒑𝒕. 𝒕𝒓𝒂𝒋.) 0.21598 (-24.23%) 0.227371 (-41.11%)

𝑬𝑻𝒐𝒕 (𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒕𝒓𝒂𝒋.) 1.260339 1.637855

𝑬𝑻𝒐𝒕,𝒐𝒑𝒕 (𝒐𝒑𝒕. 𝒕𝒓𝒂𝒋.) 1.026233 (-18.57%) 1.1937 (-27.11%)

2.4 Trajectory execution in simulation environment

Simulation software plays an important role in the development of science and

technology. They provide a convenient method for testing the system without developing

any prototype. Likewise, spray paint simulations can be used to predict the end results of

the painting without any significant cost. It is also useful for evaluating the paint quality

by measuring the surface area covered by the paint and the uniformity of the paint thickness

over the entire surface. A simulation environment usually works with physical objects

41

represented by a CAD model and a physics engine which enables the software to define

the interactions between the objects in the environment. The physics engine contains

provision for defining the spray paint methods, spray paint trajectories and dynamics of the

physics. To execute the paint trajectory in a simulation environment, it is important to

understand important concepts and terminologies. These are explained one by one.

2.4.1 CAD models

A CAD model stores information about the geometry of an object such as edges,

corners, and surfaces, and is of great importance because of the information they carry [43].

In general, CAD models can be divided into two main categories: tessellated and

parametric [44]. The tessellated model represents an object by using polygonal meshes

described by vertices, edges, and faces. A parametric model stores the geometry of an

object by using analytical equations. For instance, a cylinder can be described by two

parameters: radius and height. Parametric models are efficient for storing geometries of

simple shapes and are not suitable for modeling complex shapes. On the other hand,

tessellated models are convenient, but more prone to errors due to approximations.

2.4.2 Spray-painting methods

Spray-painting methods are techniques used to deposit spray liquids on the surface

of work pieces. There are multiple spray-painting techniques including Air Atomized

Spray, HVLP (High Volume Low Pressure), Airless Spray, Air Assisted Airless Spray,

Heated Spray and Electrostatic Spray painting [45]. The air atomized spray method is the

most conventional method and is done by mixing air particles of compressed air with the

paint. The compressed air causes the paint to atomize in the form of droplets on the surface.

Air-atomized spray painting has great heat transfer capabilities and can be used to cool hot

metal surfaces too [46]. An improvement of the air-atomized spray method is the HVLP.

The low pressure and high volume of air can mix more efficiently with paint and with the

lower impact speed on the surface, the wastage of paint is reduced [47]. Airless spray

42

systems use a high-pressure paint fluid and a nozzle to deposit paint on the surface of an

object. An improved version of the airless spray method is the air-assisted airless spray

method. This method leads to an increase in paint efficiency by reducing paint waste.

Another method is to heat the paint before applying, reducing its viscosity and hence, less

pressure is required to push it out of the nozzle. The heated paint adheres efficiently to the

surface thereby, minimizing paint waste [48]. Another method is the use of electrostatic

principles to deposit paint over the surface of metals. The surface to be painted is grounded

and the paint particles are charged to allow them to adhere to the surface [49]. This method

can be used only with metal surfaces, which is its major drawback.

2.4.3 Robot simulation software

Robot simulation software provides a user-friendly experience to test paint

trajectories and build robot programs. It has a provision of components including a library

of CAD models of robots, sample objects for testing trajectories, automatic collision

avoidance systems, axes limit features, and post processors for generating robot programs.

Some commercial simulators for paint robots include: 𝑅𝑜𝑏𝑜𝐷𝐾, 𝑅𝑜𝑏𝐶𝑎𝑑 𝑝𝑎𝑖𝑛𝑡,

𝐷𝑒𝑙𝑓𝑜𝑖 𝑃𝑎𝑖𝑛𝑡, 𝑅𝑜𝑏𝑜𝑡𝑆𝑡𝑢𝑑𝑖𝑜 ® Paint 𝑃𝑜𝑤𝑒𝑟𝑃𝑎𝑐, 𝑂𝐿𝑃 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 and

𝑅𝑜𝑏𝑜𝐺𝑢𝑖𝑑𝑒 𝑃𝑎𝑖𝑛𝑡𝑃𝑅𝑂.

𝑅𝑜𝑏𝑜𝐷𝐾 is a software developed for offline programming of robots with the

provision of simulation tools [50]. It has a user-friendly interface but is not able to generate

automated trajectories based on the geometries. It is useful for research and testing

purposes. Another simulator is the 𝑅𝑜𝑏𝐶𝑎𝑑 paint by Siemens which is also based on offline

programming [51]. It has features such as paint databases and paint coverage analysis. Its

main advantage is the availability of predefined paths which speeds up the development of

paint simulations. It also reduces processing times and increases manufacturing quality.

The main disadvantage of this software is restricted access to some robot models and

libraries. 𝐷𝑒𝑙𝑓𝑜𝑖 𝑃𝑎𝑖𝑛𝑡 is another software developed by 𝐷𝑒𝑙𝑓𝑜𝑖 which provides

capabilities like analysis of paint thickness, precise smooth surface simulation, conveyor

tracking, and automatic detection of collision [52]. It also supports post-processors for the

43

programming of industrial robots. 𝑅𝑜𝑏𝑜𝑡𝑆𝑡𝑢𝑑𝑖𝑜® paint 𝑃𝑜𝑤𝑒𝑟𝑃𝑎𝑐 by ABB is yet another

commercial simulator that provides the ability to generate robot programs for multiple

robots simultaneously [53]. Its main shortcoming is the ability to generate robot trajectories

automatically. Some simulation software also provides the ability to generate robot paths.

OLP Automatic developed by INROPA is a complete integrated system for automatically

generating robot programs [54]. It uses a LASER scanner to scan the workpiece and

construct a 3D model of the object, creates a robot path, and then executes it by generating

an appropriate robot program for the controller. Furthermore, 𝑅𝑜𝑏𝑜𝐺𝑢𝑖𝑑𝑒

𝑃𝑎𝑖𝑛𝑡𝑃𝑅𝑂 developed by FANUC is another robot simulation software which can generate

robot paths automatically [55]. A robot path is generated by simply selecting the surface

area of the object to be painted while specifying the correct options. A summary of robot

simulation software is given below in Table 2.3.

Table 2.3: Summary of commercial robot simulation software.

RoboDK

[50]

RobCAD
Paint
[51]

Delfoi
paint
[52]

RobotStudio
Paint Power

Pac [53]

OLP
Automatic

[54]

RoboGuide
Paint PRO

[55]

Company RoboDK Siemens Delfoi ABB INROPA FANUC

Automatic
Trajectory
Planning

No No No No Yes Yes

Integrated
System

No No No No Yes No

Paint
Thickness
Analysis

N/A N/A Yes N/A N/A N/A

Post
Processors

Yes Yes Yes Yes Yes Yes

2.5 Trajectory execution on industrial painting robots

Trajectory execution on industrial painting robots refers to the process of

converting trajectories (path and velocity commands) to a robot program that can be

understood by a robot. Since robot controllers are diverse, each uses its own set of rules to

construct the programs. This section briefly describes the robots used for industrial painting

processes and the programs used by them for performing trajectories.

44

2.5.1 Industrial painting robots

Apart from the 3D scanning system and trajectory optimization, it is important to

consider the experimental setup and validation techniques for the painting process. The

experimental setup contains a 3D scanning system, an industrial paint robot with a spray-

painting setup, and a robot controller program. Since paint applications have increased

considerably due to industrial developments, certain companies have specialized robots for

paint applications. A paint robot, unlike other industrial manipulators, usually has less

payload capacity, more repeatability, and a hollow wrist for routing the paint lines. A paint

robot must also be explosion-proof since the paint material can be inflammable. It should

be certified for ATEX EX II certification [56]. Some of the specialized robots are KR

AGILUS KR 10 R1100, P-250iB/15, and IRB 5500 Flex Painter. The KR AGILUS KR 10

R1100 is specialized for paint applications by of 𝐾𝑈𝐾𝐴 and 𝐷𝑢𝑟𝑟 [57]. It has a wrist

payload capacity of 10 Kg, a maximum reach of 1100 mm, and a total of 6 axes as shown

in Fig. 2.9. Similarly, the P-250iB/15 developed by FANUC (Fig. 2.10) is one of the largest

robots for paint applications [58]. It has a maximum reach of 2800 mm, a load capacity of

15 kg, and a total of 6 axes. It can be attached to walls, and floors, and can also be mounted

on rails to reach the desired pose under difficult and narrow regions. Another paint robot

developed by ABB named IRB 5500 Flex Painter (Fig. 2.11) is also capable of industrial

painting [59]. A summary of robots is tabulated in Table 2.4.

Figure 2.9: KR AGILUS KR 10 R1100. [57]

45

Figure 2.10: P-250iB/15 by FANUC. [58]

Figure 2.11: IRB 5500 Flex Painter by ABB. [59]

46

Table 2.4: Industrial robots for paint applications.

Robot Name Manufacturer
Payload
Capacity

Maximum
Reach

Number of
Axes

KR AGILUS KR 10
R1100 [57]

KUKA and Durr 10 kg 1100 mm 6

P-250iB/15 [58] FANUC 15 kg 2800 mm 6

IRB 5500 Flex
Painter [59]

ABB 13 kg 2975 6

2.5.2 Robot programs

A robot program is a set of instructions to control the movements of a robot. Every

robot controller uses its own set of rules for a robot program. A robot program is usually

in two formats:

 .LS (List) format

 .TP (Teach Pendant) format.

A List file (.LS) is an ASCII based list file which is not compiled and cannot be

executed directly by the robot controller. A .TP file on the other hand is a binary file which

is directly executed by a robot controller [60]. To convert a robot trajectory to an LS file,

simulation software or a programming language like Python can be used [61]. Simulation

software can directly convert the robot trajectory into a robot program by selecting the

appropriate post processor. The post processor generates a List file LS that contains robot

programs line by line. On the other hand, a custom Python script can also be used to convert

the robot path/trajectory directly into LS file. An LS file can then be uploaded directly to a

robot controller for execution or can be converted to .TP binary file before upload. For

conversion to .TP file, tools like 𝑊𝑖𝑛𝑂𝐿𝑃𝐶 can be considered [62].

47

2.6 Validation of paint quality

For the validation of the paint quality, multiple techniques can be used including

the calculation of mean and standard deviation of paint thickness on the surface of the work

piece, a fractional error metric, propriety coating sensors like ELCOMETER 345, and

image processing pipelines. The mean and standard deviation are obtained from the paint

deposition model and the accuracy metric outlined by [38]. However, to evaluate the paint

thickness model in real time after the paint is applied, image processing can be used [63].

This image processing pipeline starts by taking the image of the painted through a camera.

The image is first converted into a binary format using the OPENCV library followed by a

noise filtering algorithm [64]. Finally, the image is restored again in terms of original pixel

intensities and the distribution of paint is obtained. The stages of image processing pipeline

are shown in Fig. 2.12.

Figure 2.12: Image processing pipeline for paint validation. [63]

An experimental system for the validation of a color spray model is proposed by

[10]. It uses a UR-10 robot, a HP-M2 airbrush and a scanner for digitizing the color

intensities. The algorithm to convert spray flow rate to the corresponding color intensity

starts by defining a variable 𝜑(𝑟). This function is called Painting Flow function which

describes the paint flow rate per unit area. The amount of paint deposited on an incremental

48

surface area is calculated by transforming the color intensities to paint amounts using a

series of conversions. The paint flow function is approximated using gaussian distribution

governed by equation 2.1. The radius of the circle is represented by 𝑟, while the parameters

A and B are obtained experimentally. It is observed that the distribution of the paint

intensity changes by changing the parameters like paint flow rate, the paint gun velocity,

and the distance between the spray nozzle and the target surface. The mean coating

thickness decreases when the paint process time is decreased and vice versa.

 𝜙(𝑟) = 𝐴𝑒ି஻௥మ
 (2.1)

2.7 Research objectives

The problems associated with manual robotic painting can be mitigated using an

autonomous robotic system. The literature review highlighted key technologies needed to

achieve this task. The primary problem in autonomous painting is trajectory planning based

on the geometry of the surface. While much work has been done to optimize the paint

quality by searching for an optimal paint trajectory, the optimization of process time and

robot energy in conjunction with paint quality is left unattended. Thus, this research aims

to:

1. Develop a hybrid optimization scheme to optimize paint quality, process time,

and energy consumption of the trajectory planning process by taking into

consideration the dynamics of the spraying process and the robot.

2. Design a mechanism to acquire the 3D geometry of the object under

investigation for trajectory planning purposes.

3. Design an automated system to perform the experimental analysis on the

proposed optimization technique with a user-friendly GUI.

49

Chapter 3. Design of 3D Scanning System

3.1 Introduction

The literature review highlighted multiple techniques that could be used to acquire a

3D model of an object. These techniques are broadly divided into passive and active

methods. Active methods use a light source and is independent of the lighting condition of

the space where the object of interest is situated. Passive methods, however, require the

surface of the object to be illuminated. To eliminate the need for an active light source

outside the hardware of the 3D sensor, the solution to 3D scanning problem boils down to

two sensors. One class of sensors uses LASER beams and includes one point, line, and

snapshot sensors. These sensors are very expensive and have a very short range typically

200-500 mm. Another class of sensors uses an RGBD sensor which merges an RGB image

and a depth image and converts it into a point cloud. These sensors are cheaply available

and have a measurement range of 250 mm to 10 m. To capture the depth maps of the object,

Intel Real Sense D435 [65] is used. For locating the online position of the axis of rotation,

a one-point depth sensor is used [66]. These sensors are shown in Fig. 3.1. The RGB and

depth sensors of D435 have a resolution of 1920 x 1080@30 fps, and 1280 x 720@90 fps

respectively. Its measurement range is between 0.3 m and 3 m, while the depth accuracy is

less than 2% at 2 m. The measurement range of VLX53LoX sensor is 3 cm to 2 m.

Figure 3.1: (left) Intel Real Sense D435 sensor [65], (right) VLX53LoX [66].

50

3.2 Methodology

To establish a 3D scanning system for generating the geometry of the object, a

rotating turntable mechanism is used. A servo motor [67] for the turntable mechanism can

be controlled precisely at a resolution of 1o. The D435 sensor [65] is placed at 0.47 m from

the object. This allows for the inclusion of thicker objects to be scanned since the minimum

range of the sensor is 0.3 m. The object is then rotated and the RGB and depth images are

stored for each angular position. An incremental index of 30o is selected to save

computational resources. These RGB and depth images are then converted into point

clouds using the camera projection matrix [68]. After the point clouds are obtained, a box

filter is applied to extract the region of interest. The box filter removes majority of the noisy

point cloud data, however statistical noise removal is applied to further refine the point

cloud [69]. Finally, raw alignment is applied to align the 3D scans followed by ICP

registration to obtain the geometry. A summary of the methodology is shown below in Fig.

3.2.

Figure 3.2: Methodology for 3D scan acquisition.

51

3.2.1 Mechanism for 3D scan acquisition

To obtain the complete geometric model of the object, a rotating mechanism is

designed as shown in Fig. 3.3. The object of interest is a car door. It is rotated by a servo

motor along the axis of rotation. The RGBD sensor is used to capture the depth maps of

the object in {C} frame. To estimate the online position of the axis of rotation of the object,

a secondary one-point depth sensor is also installed above the main RGBD camera. Its

frame of reference {S} is aligned in orientation to the camera frame {C} and is offset by a

linear transformation 𝑇ௌ
஼ . This sensor gives the online transformation matrix 𝑇ௌభ

ௌ which can

be used to raw align the point clouds. Frame {𝑆ଵ} is the offset frame of reference of the

depth sensor aligned with the axis of rotation. Frame {𝑆ଵ௥} is the rotated {𝑆ଵ} frame that

rotates along with the object`s axis of rotation. The origin of {cg} frame represents the

geometric center of the object in {C} frame. The point cloud is termed as 𝑃஼ where C

signifies the {C} frame. The object is rotated along its axis of rotation and the RGBD

images are stored for each angular position. The two robots’ base frames are represented

by {0஺} and {0஻}respectively.

Figure 3.3: Schematic of 3D scan acquisition mechanism.

52

3.2.2 Depth map to point cloud

After the RGBD images are obtained for each angular position, these are then

converted into point clouds using the camera projection matrix. To do so, we consider a

schematic of the 2D RGB image and the corresponding depth values for each pixel. This

is shown in Fig. 3.4.

Figure 3.4: Schematic of 2D pixel image and corresponding depth values. [70]

The transformation between the pixel coordinates and cartesian coordinates can be

obtained by the application of the camera projection matrix [68].

቎

𝑥
𝑦
𝑧
1

቏ = 𝑧

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1

𝑓௫
−

𝑆

𝑓௫𝑓௬

𝑆𝑐௬ − 𝑐௫𝑓௬

𝑓௫𝑓௬
0

0
1

𝑓௬
−

𝑐௬

𝑓௬
0

0 0 1 0
0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑢
𝑣
1
1

𝑧⎦
⎥
⎥
⎥
⎤

 (3.1)

Where 𝑢 and 𝑣 are the pixel coordinates, 𝑓௫ 𝑎𝑛𝑑 𝑓௬ are the focal lengths of the

camera sensor in x and y direction and 𝑐௫ 𝑎𝑛𝑑 𝑐௬ are the camera center in the world

coordinate. S is the skew and is zero when the world frame and camera frames are aligned.

Using this transformation, the depth images are converted to point clouds.

53

3.2.3 Box Filter to extract region of interest

After the raw point cloud is obtained from the depth fields, the next step is to extract

the region of interest. This is done by applying a box filter on the raw point cloud. Since

the location of the axis of rotation is known in the {S} frame, it can be used to construct a

bounding box around the object. Another reference frame {S2} is defined at the geometric

center of the box such that its origin can be used as an anchor point for the box filter. Using

knowledge about the size of the object, 𝑙௫, 𝑙௬ and 𝑙௭ can be selected to filter out the object

of interest. The box filter is shown in Fig. 3.5.

Figure 3.5: Box Filter on raw point cloud.

54

3.2.4 Noise removal and raw alignment of point clouds

Once the region of interest is filtered out, statistical noise removal is applied to

remove noisy points and get a clean version of the object. The noise removal is applied

using open3d library in Python [69]. A set number of neighbors (700) and a standard

deviation ratio of 0.60 is selected for the noise removal. After any residual noise is

removed, the point clouds are raw aligned by rotating them backwards along the axis of

rotation. Given a point cloud in the camera frame {C}, 𝑃஼(௜), where 𝑖 is the rotational index

for a rotational angle of 𝜃௬(௜), the point cloud can be represented in frame {S1r} using the

transformations:

 𝑃ୗభೝ(௜) = 𝑇 ஼
ୗభೝ 𝑃஼(௜) (3.2)

𝑇 ஼
ୗభೝ can be obtained using the following expression:

 𝑇 ஼
ୗభೝ = 𝑇 𝑇 𝑇 େ

ୗ
ୗ

ୗభ
ୗభ

ୗభೝ (3.3)

The transformations 𝑇 େ
ୗభ and 𝑇 େ

ୗ can be obtained by using linear offsets along the

z and y axes of frame {S1} and {S} respectively, while 𝑇 ௌభ

ୗభೝ is obtained using a relative

rotation matrix along the y-axis such that:

 𝑇 ௌభ

ୗభೝ = 𝑅௬൫−𝜃௬(௜)൯ (3.4)

The point cloud in the frame {Sଵ௥} can be represented by combing equation 3.2,

3.3 and 3.4.

𝑃ୗభೝ(௜) = 𝑅௬൫−𝜃௬(௜)൯ 𝑇 𝑇 େ
ୗ

ୗ
ୗభ 𝑃஼(௜) (3.5)

The aligned point clouds can now be represented in the camera reference frame {C}

by translating them back along the z and y axes of frame {S1} and {S} respectively. This

is done by applying the transformation matrix 𝑇 ௌభ

஼ .

𝑃௔௟௜௚௡௘ௗ
஼(௜)

= 𝑇 ௌభ

஼ 𝑃ୗభೝ(௜) (3.6)

Equation 3.6 represents the raw aligned point cloud in frame {C} for each rotational angle

𝜃௬(௜). These point clouds can then be registered into one point cloud using ICP.

55

3.2.5 Fine alignment using ICP

After raw alignment, there is still a possibility of misalignment due to measurement

errors in the sensor systems. The alignment can be further refined using ICP registration.

Both point-to-point and point-to-plane ICP are applied in open3d library [69]. The fitness

values of the two are compared and the best one is chosen. The point-to-point ICP aligns a

source point cloud 𝑝௜ ∈ 𝑃 into the reference frame of a source point cloud 𝑞௜ ∈ 𝑄 by finding

an optimal rotation matrix 𝑅 and translational vector 𝑡. If the number of points in the point

cloud 𝑃 are 𝑁௣௖ௗ, the point-to-point ICP can be established using the following objective

function [27].

𝐸(𝑅, 𝑡) =
1

𝑁௣௖ௗ
෍ ‖𝒒𝒊 − 𝑹𝒑𝒊 − 𝒕‖ଶ

ே೛೎೏

௜ୀଵ

 (3.7)

Similarly, the point-to-plane ICP tries to minimize the following objective function.

𝐸(𝑅, 𝑡) =
1

𝑁௣௖ௗ
෍ ฮ(𝒒𝒊 − 𝑹𝒑𝒊 − 𝒕). 𝒏𝒒𝒊

ฮ
ଶ

ே೛೎೏

௜ୀଵ

 (3.8)

𝑛௤೔
 represents the normal vector at point 𝑞௜ ∈ 𝑄 in the target space. The optimal rotational

matrix (R) and translational vector (t) are used to align and merge point clouds and get the

final scan 𝑃௦௖௔௡
஼ in the camera reference frame {C}. A schematic of the ICP alignment is

shown in Fig. 3.6.

Figure 3.6: Schematic of ICP alignment between source and target point cloud.

56

Pseudo code for ICP Fine Alignment

Input: 𝑃௔௟௜௚௡௘ௗ
஼(௜)

(Raw aligned point clouds for each index 𝑖). 𝑁 = ∑ 𝑖 (# of point clouds)

Output: 𝑃௦௖௔௡
஼ (Merged Point cloud in frame {C})

Step 1: Assign merged point cloud to the point cloud at index 0.

 𝑃௦௖௔௡
஼ = 𝑃௔௟௜௚௡௘ௗ

஼(௜)

𝑭𝒐𝒓 𝒊 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆 (𝑵 − 𝟏): (Perform step 2 to step 5)

Step 2: Apply Point to point ICP and obtain optimal R and t.

 (𝑅, 𝑡)௣ଶ௣ = 𝑝2𝑝𝐼𝐶𝑃(𝑃𝑠𝑐𝑎𝑛
𝐶

 , 𝑃𝑎𝑙𝑖𝑔𝑛𝑒𝑑
𝐶(𝑖+1)

)

Step 3: Apply Point to plane ICP and obtain optimal R and t

 (𝑅, 𝑡)௣ଶ௣௟௔௡௘ = 𝑝2𝑝𝑙𝑎𝑛𝑒𝐼𝐶𝑃(𝑃𝑠𝑐𝑎𝑛
𝐶

 , 𝑃𝑎𝑙𝑖𝑔𝑛𝑒𝑑
𝐶(𝑖+1)

)

Step 4: Compare fitness scores.

 𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠௣ଶ௣ ≥ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠௣ଶ௣௟௔௡௘):

 (𝑅, 𝑡) = (𝑅, 𝑡)௣ଶ௣

 𝑒𝑙𝑠𝑒 if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠௣ଶ௣ < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠௣ଶ௣௟௔):

 (𝑅, 𝑡) = (𝑅, 𝑡)௣ଶ௣௟௔௡௘

Step 5: Transform the source point cloud to the target and merge.

 𝑃௦௖௔௡
஼ = 𝑚𝑒𝑟𝑔𝑒(𝑃௦௖௔௡

஼ , 𝑇(𝑅,𝑡)𝑃௔௟௜௚௡௘ௗ
஼(௜ାଵ)

)

57

3.2.6 CAD calibration in camera frame

The 3D scanned model can be used for trajectory planning and optimization,

however, it often has noise and incomplete geometric details. If a CAD model of the object

of interest is preset, it can be used for trajectory planning instead. The CAD model,

however, needs to be represented in the camera reference frame to ensure the correct spatial

location of the object. This can be done by first transforming both the CAD and scan to

their eigen coordinate system followed by ICP alignment. Once the correct ICP rotation

matrix and translational vectors are obtained, the CAD is then aligned into the scan Eigen

reference frame. Finally, the aligned CAD model is translated back to the camera reference

frame using the eigenvectors and the principal center of the scanned model. More

specifically, given 𝑃௦௖௔௡
஼ and 𝑃஼஺஽ representing the scan point cloud in frame {C} and the

CAD point cloud in some arbitrary frame, their transformations into the eigen coordinate

system yield:

 𝑃௦௖௔௡
௘௜௚

= 𝑢௦௖௔௡(𝑃௦௖௔௡
஼ − 𝑐௦௖௔௡) (3.9)

 𝑃஼஺஽
௘௜௚

= 𝑢஼஺஽(𝑃஼஺஽ − 𝑐஼஺஽) (3.10)

𝑢௦௖௔௡ and 𝑐௦௖௔௡ represent the eigenvectors and principal center of the scan while

𝑢஼஺஽ and 𝑐஼஺஽ represent the eigenvectors and principal center of the CAD. Using ICP,

𝑃௦௖௔௡
௘௜௚ and 𝑃஼஺஽

௘௜௚ are aligned via the rotation matrix R and translational vector t. This is done

using the following transformations:

 𝑃஼஺஽
௔௟௜௚௡௘ௗ

= 𝑅 𝑃஼஺஽
௘௜௚

+ 𝑡 (3.11)

The aligned CAD model can now be represented in the camera reference by applying the

following transformations:

 𝑃஼஺஽
஼ = 𝑢௦௖௔௡

ିଵ 𝑃஼஺஽
௔௟௜௚௡௘ௗ

+ 𝑐௦௖௔௡ (3.12)

58

3.2.7 Evaluating accuracy of the 3D scan

The Iterative closest point (ICP) aligns the 3D scans which are then merged into a

single 3D model of the object under investigation. It is advisable to develop a pipeline that

measures the accuracy of the 3D scanning system. Multiple techniques were discussed in

the literature review. Some of these techniques use deep neural networks (Deep Shape [71])

to encode the geometric structure of an object into higher dimensional features, while

others use simple analytical metrics like 𝐷ଵ, 𝐷ଶ, 𝐷ଷ, and 𝐴ଷ [29]. These features can then

be used to find a similarity index between the two geometric models. While neural

networks are more accurate than analytical metrics, they require a lot of data to train and

are slow to execute. On the other hand, geometric signatures, although not as accurate as

neural networks, are easy to compute and can be used to assess the accuracy of the 3D

scanning system. Another approach is to use point-to-point Euclidean errors between the

CAD and the scan point clouds also termed as ICP error. Thus, using these analytical

metrics, a pipeline for evaluating the accuracy of the 3D scanning system is developed as

shown in Fig. 3.7. The analytical metrics are used to compute the density distribution plots

called geometric signatures along with the ICP error.

Figure 3.7: Pipeline for evaluating accuracy of the 3D scan.

59

The analytical metrics for generating shape signatures work by computing

distances, areas, and angles between points selected at random in the point cloud. When a

sufficiently large sample space of these metrics is obtained, it can capture the underlying

structure of the geometry represented on a histogram or a density plot. The shape of the

histogram stores information about the underlying structure of the geometry and can be

used to evaluate the accuracy of the 3D scanning system by comparing it with the signature

of another geometry. For instance, 𝐷ଵ metric computes the distance of sample points in the

point cloud with the geometric center of the point cloud. 𝐷ଶ computes distance between

two random points taken in the point cloud. 𝐷ଷ computes the area of triangle formed by 3

random points in the point cloud. 𝐴ଷ computes the angle formed by 3 points in the point

cloud. The pseudo codes for calculating these metrics are outlined below.

3.2.7.1 Pseudo code for computing D1 metrics

Input: 𝑃 (point cloud), 𝑁௣௖ௗ(# of points in point cloud) 𝑁௦௔௠௣௟௘(# of sample points)

Output: 𝐷ଵ (An array of size 𝑁௦௔௠௣௟௘)

Step 1: Compute the geometric center of the point cloud:

𝒄 =
∑ 𝑷(𝒊)ே೛೎೏

𝒊ୀ𝟏

𝑁௣௖ௗ

Step 2: Generate random indices of size 𝑁௦௔௠௣௟௘

𝑅௦௔௠௣௟௘ = 𝑟𝑎𝑛𝑑൫𝑁௦௔௠௣௟௘൯

Step 3: Take random sample from the point cloud.

𝑃௦௔௠௣௟௘ = 𝑃ൣ𝑅௦௔௠௣௟௘൧

Step 4: Compute 𝑫𝟏:

𝐷ଵ = ට൫𝑃௦௔௠௣௟௘ − 𝑐൯
ଶ

3.2.7.2 Pseudo code for computing D2 metrics

Input: 𝑃 (point cloud), 𝑁௣௖ௗ(# of points in point cloud) 𝑁௦௔௠௣௟௘(# of sample points)

Output: 𝐷ଶ (An array of size 𝑁௦௔௠௣௟௘)

60

Step 1: Generate 2 batches of random indices of size 𝑁௦௔௠௣௟௘

ൣ𝑅ଵ௦௔௠௣௟௘ , 𝑅ଶ௦௔௠௣௟௘൧ = 𝑟𝑎𝑛𝑑൫𝑁௦௔௠௣௟௘൯

Step 2: Take two samples from the point cloud.

𝑃ଵ௦௔௠௣ = 𝑃ൣ𝑅ଵ௦௔௠௣ ൧

𝑃ଶ௦௔௠௣ = 𝑃ൣ𝑅ଶ௦௔௠௣௟௘൧

Step 3: Compute 𝑫𝟐:

𝐷ଶ = ට൫𝑃ଵ௦௔௠௣௟௘ − 𝑃ଶ௦ ൯
ଶ

3.2.7.3 Pseudo code for computing D3 metrics

Input: 𝑃 (point cloud), 𝑁௣௖ௗ(# of points in point cloud) 𝑁௦௔௠௣௟௘(# of sample points)

Output: 𝐷ଷ (An array of size 𝑁௦௔௠௣௟௘)

Step 1: Generate 3 batches of random indices of size 𝑁௦௔௠௣௟௘

ൣ𝑅ଵ௦௔௠௣௟௘ , 𝑅ଶ௦௔௠௣ , 𝑅ଷ௦௔௠௣௟௘൧ = 𝑟𝑎𝑛𝑑൫𝑁௦௔௠௣௟௘൯

Step 2: Take three samples from the point cloud.

𝑃ଵ௦௔௠௣ = 𝑃ൣ𝑅ଵ௦௔௠௣௟௘൧

𝑃ଶ௦௔௠௣௟௘ = 𝑃ൣ𝑅ଶ௦௔௠௣௟௘൧

𝑃ଷ௦௔௠௣ = 𝑃ൣ𝑅ଷ௦௔௠௣௟௘൧

Step 3: Compute side lengths of the tringles:

𝑎 = ට൫𝑃ଵ௦௔௠௣௟௘ − 𝑃ଶ௦௔௠௣௟௘൯
ଶ

𝑏 = ට൫𝑃ଵ௦௔௠௣ − 𝑃ଷ௦௔௠௣௟௘൯
ଶ

𝑐 = ට൫𝑃ଶ௦௔௠௣௟௘ − 𝑃ଷ௦௔௠௣௟௘൯
ଶ

𝑠 =
1

2
(𝑎 + 𝑏 + 𝑐)

Step 4: Compute 𝑫𝟑:

𝐷ଷ = ඥ𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

61

3.2.7.4 Pseudo code for computing A3 metrics

Input: 𝑃 (point cloud), 𝑁௣௖ௗ(# of points in point cloud) 𝑁௦௔௠௣௟௘(# of sample points)

Output: 𝐴ଷ (An array of size 𝑁௦௔௠௣௟௘)

Step 1: Generate 3 batches of random indices of size 𝑁௦௔௠௣௟௘

ൣ𝑅ଵ௦௔௠௣ , 𝑅ଶ௦௔௠௣௟௘ , 𝑅ଷ௦௔௠௣௟௘൧ = 𝑟𝑎𝑛𝑑൫𝑁௦௔௠௣௟௘൯

Step 2: Take three samples from the point cloud.

𝑃ଵ௦௔௠௣௟௘ = 𝑃ൣ𝑅ଵ௦௔௠௣௟௘൧

𝑃ଶ௦௔௠௣௟௘ = 𝑃ൣ𝑅ଶ௦௔௠௣௟௘൧

𝑃ଷ௦௔௠௣ = 𝑃ൣ𝑅ଷ௦௔௠௣௟௘൧

Step 3: Compute vectors from the 3 points with point 1 at the vertex.

𝑢ଵ = 𝑃ଶ௦௔௠௣௟௘ − 𝑃ଵ௦௔௠௣௟௘

𝑢ଶ = 𝑃ଷ௦௔௠௣௟௘ − 𝑃ଵ௦௔௠௣

Step 4: Compute 𝑨𝟑

𝐴ଷ = cosିଵ ൬
𝒖𝟏. 𝒖𝟐

|𝒖𝟏||𝒖𝟐|
൰

3.2.7.5 Pseudo code for evaluating 3D scan accuracy.

Input: 𝑃௦௖௔௡ , 𝑃஼஺஽ (Scan and CAD point clouds), 𝑁௣௖ௗ: Number of points in point cloud
and 𝑁௦௔௠௣௟௘: Sample points for computing geometric signatures

Output: 𝑆 (Similarity index)

Step 1: Compute density distribution for 𝐷ଵ metrics:

 [𝐷ଵ௦௖௔௡ , 𝐷ଵ஼஺஽] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐷ଵ(𝑃௦௖௔௡, 𝑃஼஺஽ , 𝑁௦௔௠௣௟௘)

𝑆஽ଵ = 1 − ඨ
∑(𝐷ଵ௦௖௔௡ − 𝐷ଵ஼஺஽)ଶ

𝑁௦௔௠௣௟௘

Step 2: Compute density distribution for 𝐷ଶ metrics:

[𝐷ଶ௦௖௔௡ , 𝐷ଶ஼஺஽] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐷ଶ(𝑃௦௖௔௡ , 𝑃஼஺஽ , 𝑁௦௔௠௣௟௘)

62

𝑆஽ଶ = 1 − ඨ
∑(𝐷ଶ௦௖௔ − 𝐷ଶ஼஺஽)ଶ

𝑁௦௔௠௣௟௘

Step 3: Compute density distribution for 𝐷ଷ metrics:

[𝐷ଷ௦௖௔௡ , 𝐷ଷ஼஺஽] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐷ଷ(𝑃௦௖௔௡ , 𝑃஼஺஽ , 𝑁௦௔௠௣௟௘)

𝑆஽ଷ = 1 − ඨ
∑(𝐷ଷ௦௖௔௡ − 𝐷ଷ஼஺஽)ଶ

𝑁௦௔௠௣௟௘

Step 4: Compute density distribution for 𝐴ଷ metrics:

[𝐴ଷ௦௖௔௡ , 𝐴ଷ஼஺஽] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐴ଷ(𝑃௦௖௔௡ , 𝑃஼஺஽ , 𝑁௦௔௠௣௟௘)

𝑆஺ଷ = 1 − ඨ
∑(𝐴ଷ௦௖௔௡ − 𝐴ଷ஼஺஽)ଶ

𝑁௦௔௠௣௟௘

Step 5: Take mean of the Similarity indices:

𝑺 =
𝑆஽ଵ + 𝑆஽ଶ + 𝑆஽ଷ + 𝑆஺ଷ

4

3.3 Conclusion

 This chapter described in detail the development of a 3D scan acquisition system.

A rotating mechanism is employed to allow the exposure of the object to the 3D scanner at

multiple rotational indices. An RGBD camera is used to capture the depth maps of the

object while a one-point depth sensor is used to estimate the location of the axis of rotation.

The depth maps are then converted into point clouds using the camera projection matrix.

Once the point clouds are obtained, a box filter is applied to extract the region of interest

in the point cloud. To remove any residual noise from the point clouds, a statistical noise

removal algorithm is applied. Then, a series of transformations are applied to align the

point clouds in the camera reference frame. Further fine alignment is achieved using ICP

registration. After an acceptable fitness score is achieved by the ICP registration, the point

clouds are then merged into a single point cloud. This point cloud represents the final 3D

scan of the object under investigation. Finally, a pipeline for evaluating the accuracy of the

3D scan acquisition system is also developed using the concept of geometric signatures

and point to point Euclidean errors. The results and discussion of the 3D scanning system

are discussed in detail in Chapter (6).

63

Chapter 4. Optimal Paint Trajectory Planning

4.1 Introduction

The optimal trajectory planning for paint spraying requires the establishment of the

paint spraying model, the coating deposition model, the dynamic model of the robot and

the optimization scheme for optimizing the slice thickness, the paint gun velocity, the

slicing direction, and the configuration of the robot to achieve uniform paint coating, less

process times, and minimal energy consumption. These are described in detail in this

chapter.

4.2 Methodology

4.2.1 Establishment of spraying process model

The trajectory planning for paint spraying is based on the establishment of the spraying

process model. The spraying process model defines how the paint is deposited from the

paint gun onto a surface. The spraying area ejecting paint gun is usually in the form of an

ellipse and the coating thickness can be modelled using a double beta distribution.

Although other models exist, including parabolic distribution, normal distribution and beta

distribution, the double beta distribution model has higher accuracy and practicality [37].

Furthermore, it can be converted to a parabolic and a beta distribution by adjusting the

values of 𝛽௫ and 𝛽௬. The spraying torch model and the corresponding double beta

distribution for the coating thickness are shown in Fig. 4.1 and Fig. 4.2 respectively. The

spraying area is elliptical where 𝑎 and 𝑏 represent the longer and shorter side of the ellipse

while, 𝜑௫ and 𝜑௬ represent the maximum opening angles of the ellipse in the X and Y

direction respectively.

64

Figure 4.1: Spraying torch model (Elliptical Paint area).

Figure 4.2: Elliptical double beta distribution model of coating thickness on an elliptical

surface area.

65

4.2.2 Establishment of coating deposition model

Once the spraying process model is defined using the double beta distribution, the

coating deposition model on a complex free-form surface can now be presented as shown

in Fig. 4.3. The point 𝑠 represents a point on the free-form surface on which the coating

deposition is to be computed. A vertical projection line is constructed from the spraying

gun to the free-form surface. A connection line 𝐿௦ represents the distance from the spraying

gun to the point 𝑠 which has a normal vector 𝒏ഥ. Two tangent planes 𝑀ଵ and 𝑀ଶ are drawn

at point 𝑂 and point 𝑠 such that, ℎ and ℎ௦ represent the vertical height of paint area 𝐶ଵ and

𝐶ଶ from the spraying gun. The angle 𝜑௫ represents the opening angle of the spray cone

along the X direction of the ellipse. Angle 𝛾 represents the angle between the normal vector

𝒏ഥ and the connection line 𝐿௦. Since the coating deposition rate of the spraying gun is

conserved, the amount of paint at 𝐶ଵ and 𝐶ଶ are equal. The area of paint at 𝐶ଵ and 𝐶ଶ are

represented by 𝐴஼భ
 and 𝐴஼మ

 respectively. Applying the conservation of paint flow rate, we

get:

 𝑄஼భ
= 𝑄஼మ

 (4.1)

 𝑑஼భ
𝐴஼భ

= 𝑑஼మ
𝐴஼మ

 (4.2)

 𝑑஼మ
=

𝐴஼భ

𝐴஼మ

𝑑஼భ
 (4.3)

The area relationship between point 1 and point 2 can be expressed in terms of ℎ and ℎ௦

such that:

 𝐴஼భ

𝐴஼మ

= ൬
ℎ

ℎ௦
൰

ଶ

 (4.4)

Inserting equation 4.4 into equation 4.3 yields:

66

𝑑஼మ
= ൬

ℎ

ℎ௦
൰

ଶ

𝑑஼భ
 (4.5)

Accounting for the curvature of the free-form surface, the coating thickness at point s is

then expressed as:

𝑑௦ = ൬
ℎ

ℎ௦
൰

ଶ

൬
cos 𝛾

cos 𝜑௫
൰ 𝑑஼భ

 (4.6)

It should be noted that the coating thickness is zero at point s if the angle 𝛾 ≥ 90௢ . This

condition is observed when the free-form surface is exactly vertical at point s.

Figure 4.3: Coating deposition model on a complex free-form surface.

The static coating deposition at area 𝐶ଵ for 𝑥 ∈ [−𝑎 𝑎] and 𝑦 ∈ [−𝑏 𝑏] is defined by the

equation:

𝑑஼భ
(𝑥, 𝑦) = 𝑑௠௔௫ ቆ1 −

𝑥ଶ

𝑎ଶ
ቇ

ఉೣିଵ

൮1 −
𝑦ଶ

𝑏ଶ ൬1 −
𝑥ଶ

𝑎ଶ൰
൲

ఉ೤ିଵ

 (4.7)

67

𝑑௠௔௫ represents the maximum static coating thickness deposited at the center of the ellipse.

If the spraying gun is moving with speed 𝑣 in the Y-direction, the time it takes for the

spraying gun to traverse a point 𝑀 (𝑥ெ, 𝑦ெ) on a planar surface along the shorter side of

the ellipse can be defined by:

𝑡ெ =
𝛥𝑦

𝑣
=

2𝑏 ൬1 −
𝑥ଶ

𝑎ଶ൰

ଵ
ଶ

𝑣

(4.8)

Similarly, since the spraying gun is moving with speed 𝑣 in the Y-direction, the effective

y-coordinate of the ellipse can be formulated as:

𝑦ெ = 𝑏 ቆ1 −
𝑥ெ

ଶ

𝑎ଶ
ቇ

ଵ
ଶ

− 𝑣𝑡
(4.9)

The dynamic coating deposition model at 𝐶ଵ can thus be expressed by putting the values

𝑦ெ in the beta distribution model. 𝑘௠௔௫ refers to the dynamic coating thickness (maximum

coating thickness per unit time).

𝑑஼భ
(𝑥, 𝑦) = න 𝑘௠௔௫ ቆ1 −

𝑥ெ
ଶ

𝑎ଶ ቇ

ఉೣିଵ

⎝

⎛1 −
൬𝑏(𝑎ଶ − 𝑥ெ

ଶ)
ଵ
ଶ − 𝑎𝑣𝑡൰

ଶ

𝑏ଶ(𝑎ଶ − 𝑥ெ
ଶ)

⎠

⎞

ఉ೤ିଵ

𝑑𝑡
௧ಾ

଴

 (4.10)

The coating thickness at point 𝑠 can finally be represented by adjusting equation 4.10 for

the curvature of the complex free-form surface.

𝑑௦(𝑥, 𝑦) = න 𝑘௠௔௫ ቆ1 −
𝑥ெ

ଶ

𝑎ଶ
ቇ

ఉೣିଵ

⎝

⎛1 −
൬𝑏(𝑎ଶ − 𝑥ெ

ଶ)
ଵ
ଶ − 𝑎𝑣𝑡൰

ଶ

𝑏ଶ(𝑎ଶ − 𝑥ெ
ଶ)

⎠

⎞

ఉ೤ିଵ

ቆ
ℎ

ℎ𝑠
ቇ

2

ቆ
cos 𝛾

cos 𝜑𝑥

ቇ 𝑑𝑡
௧ಾ

଴

 (4.11)

68

4.2.3 Manipulator forward kinematics model

The coating thickness model on a complex free-form surface governs the amount

of coating deposited if the paint gun is moving with a certain velocity. To establish the

hybrid optimization scheme, it is important to consider the dynamics of the manipulator

performing the paint trajectory. We consider a 4-DOF redundant PRRR manipulator with

only position control in the x, y, z direction. The first joint is a prismatic one for extended

reach, while the rest are revolute. The schematic and DH table of the 4-DOF PRRR

manipulator are shown in Fig. 4.4 and Table 4.1 respectively.

Figure 4.4: DH Schematic of a 4 DOF PRRR manipulator.

69

Table 4.1: DH Table for 4 DOF PRRR manipulator.

𝒊 𝜶𝒊ି𝟏 𝒂𝒊ି𝟏 𝒅𝒊 𝜽𝒊
1 0 0 𝑑 0
2 0 0 𝐿ଵ 𝑞ଵ
3 90௢ 0 0 𝑞ଶ
4 0 𝐿ଶ 0 𝑞ଷ
5 0 𝐿ଷ 0 0

The transformation matrices between consecutive links are:

𝑇ଵ

଴ = ൦

1 0 0 0
0 1 0 0
0 0 1 𝑑
0 0 0 1

൪

(4.12)

𝑇ଷ

ଶ = ൦

𝑐ଶ −𝑠ଶ 0 0
0 0 −1 0
𝑠ଶ 𝑐ଶ 1 0
0 0 0 1

൪

(4.13)

𝑇ସ

ଷ = ൦

𝑐ଷ −𝑠ଷ 0 𝐿ଶ

𝑠ଷ 𝑐ଷ 0 0
0 0 1 0
0 0 0 1

൪

(4.14)

 𝑇ହ
ସ = ൦

1 0 0 𝐿ଷ

0 1 0 0
0 0 1 𝑑
0 0 0 1

൪ (4.15)

Using relative transformations, the transformation matrix between frame {0} and

frame {5} can be established as:

 𝑇ହ
଴ = 𝑇ଵ

଴ 𝑇ଶ
ଵ 𝑇ଷ

ଶ 𝑇ସ
ଷ 𝑇ହ

ସ (4.16)

 𝑇ହ
଴ = ൦

𝑟ଵଵ 𝑟ଵଶ 𝑟ଵଷ 𝑐ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ)

𝑟ଶଵ 𝑟ଶଶ 𝑟ଶଷ 𝑠ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ)

𝑟ଷଵ 𝑟ଷଶ 𝑟ଷଷ 𝐿ଵ + 𝑑 + 𝐿ଶ𝑠ଶ + 𝐿ଷ𝑠ଶଷ

0 0 0 1

൪ (4.17)

70

The end effector position in frame {0} can thus be obtained from the last column

of 𝑇ହ
଴ matrix:

 𝑝௫ = 𝑐ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ) (4.18)

 𝑝௬ = 𝑠ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ) (4.19)

 𝑝௭ = 𝐿ଵ + 𝑑 + 𝐿ଶ𝑠ଶ + 𝐿ଷ𝑠ଶଷ (4.20)

4.2.4 Manipulator inverse kinematics model

The first joint angle is:

 𝒒𝟏 = 𝒂𝒕𝒂𝒏𝟐(𝒚, 𝒙) (4.21)

The third joint angle is found using the trigonometric relations:

 𝑐ଷ =
ቀ

ೣ

೎భ
ቁ

మ
ା(௭ି௅భିௗ)మି(௅మ

మା௅య
మ)

ଶ௅మ௅య
 and 𝑠ଷ = ± ඥ1 − 𝑐ଷ

ଶ

(4.22)

 𝒒𝟑 = 𝒂𝒕𝒂𝒏𝟐(𝒔𝟑, 𝒄𝟑) (4.23)

For extended reach, variable 𝑑 is adjusted. Finally, the second joint angle can be computed

using Cramer`s Rule.

𝑐ଶ =

อ
ቀ

𝑥
𝑐ଵ

ቁ −𝐿ଷ𝑠ଷ

(𝑧 − 𝐿ଵ − 𝑑) 𝐿ଶ + 𝐿ଷ𝑐ଷ

อ

ฬ
𝐿ଶ + 𝐿ଷ𝑐ଷ −𝐿ଷ𝑠ଷ

𝐿ଷ𝑠ଷ 𝐿ଶ + 𝐿ଷ𝑐ଷ
ฬ

(4.24)

 𝑠ଶ =

อ
𝐿ଶ + 𝐿ଷ𝑐ଷ ቀ

𝑥
𝑐ଵ

ቁ

𝐿ଷ𝑠ଷ (𝑧 − 𝐿ଵ − 𝑑)
อ

ฬ
𝐿ଶ + 𝐿ଷ𝑐ଷ −𝐿ଷ𝑠ଷ

𝐿ଷ𝑠ଷ 𝐿ଶ + 𝐿ଷ𝑐ଷ
ฬ

(4.25)

 𝒒𝟐 = 𝒂𝒕𝒂𝒏𝟐(𝒔𝟐, 𝒄𝟐) (4.26)

71

4.2.5 Manipulator velocity analysis and Jacobian

The end effector velocity can be equated to the joint space velocity using the

Jacobian relationship. This is given by:

 𝑥̇ = ൥

𝑣௫

𝑣௬

𝑣௭

൩ = 𝐽𝑞̇ (4.27)

The Jacobian matrix for the 4DOF PRRR configuration can be obtained by finding

the derivative of the end effector positions w.r.t joint variables such that:

 𝐽 =
𝛿𝑥

𝛿𝑞
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛿𝑥

𝛿𝑑

𝛿𝑥

𝛿𝑞ଵ

𝛿𝑥

𝛿𝑞ଶ

𝛿𝑥

𝛿𝑞ଷ

𝛿𝑦

𝛿𝑑

𝛿𝑦

𝛿𝑞ଵ

𝛿𝑦

𝛿𝑞ଶ

𝛿𝑦

𝛿𝑞ଷ

𝛿𝑧

𝛿𝑑

𝛿𝑧

𝛿𝑞ଵ

𝛿𝑧

𝛿𝑞ଶ

𝛿𝑧

𝛿𝑞ଷ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (4.28)

 𝐽 = ቎

0 −𝑠ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ) −𝑐ଵ(𝐿ଶ𝑠ଶ + 𝐿ଷ𝑠ଶଷ) −𝑐ଵ𝐿ଷ𝑠ଶଷ

0 𝑐ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ) −𝑠ଵ(𝐿ଶ𝑠ଶ + 𝐿ଷ𝑠ଶଷ) −𝑠ଵ𝐿ଷ𝑠ଶଷ

1 0 𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ 𝐿ଷ𝑐ଶଷ

቏ (4.29)

4.2.6 Manipulator acceleration analysis and Hessian

Hessian matrix relates the task space acceleration vector to joint space acceleration

vector governed by:

 𝑥̈ = ൥

𝑎௫

𝑎௬

𝑎௭

൩ = 𝐽𝑞̈ + 𝐻𝑞̇ (4.30)

The Hessian matrix is the time derivative of the Jacobian matrix. For the PRRR

configuration, it can be defined as:

 𝐻 = 𝐽̇ = ൥

𝐻ଵଵ 𝐻ଵଶ 𝐻ଵଷ 𝐻ଵସ

𝐻ଶଵ 𝐻ଶଶ 𝐻ଶଷ 𝐻ଶସ

𝐻ଷଵ 𝐻ଷଶ 𝐻ଷଷ 𝐻ଷସ

൩ (4.31)

72

The individual terms of the Hessian matrix are:

 𝐻ଵଵ = 0

(4.32)

 𝐻ଵଶ = −sଵ൫−Lଶsଶq̇ଶ − Lଷsଶଷ(q̇ଶ + q̇ଷ)൯ − cଵq̇ଵ(Lଶcଶ + Lଷcଶଷ)

(4.33)

 𝐻ଵଷ = cଵ൫−Lଶcଶq̇ଶ − Lଷcଶଷ(q̇ଶ + q̇ଷ)൯ − sଵq̇ଵ(−Lଶsଶ − Lଷsଶଷ)

(4.34)

 𝐻ଵସ = cଵ൫−Lଷcଶଷ(q̇ଶ + q̇ଷ)൯ − sଵq̇ଵ(−Lଷsଶଷ)

(4.35)

 𝐻ଶଵ = 0

(4.36)

 𝐻ଶଶ = c1൫−Lଶsଶq̇ଶ − Lଷsଶଷ(q̇ଶ + q̇ଷ)൯ − sଵq̇ଵ(Lଶcଶ + Lଷcଶଷ)

(4.37)

𝐻ଶଷ = sଵ൫−Lଶcଶq̇ଶ − Lଷcଶଷ(q̇ଶ + q̇ଷ)൯ + cଵq̇ଵ(−Lଶsଶ − Lଷsଶଷ)

(4.38)

 𝐻ଶସ = sଵ൫−Lଷcଶଷ(q̇ଶ + q̇ଷ)൯ + cଵq̇ଵ(−Lଷsଶଷ)

(4.39)

 𝐻ଷଵ = 0, 𝐻ଷଶ = 0

(4.40)

 𝐻ଷଷ = −Lଶsଶq̇ଶ − Lଷsଶଷ(q̇ଶ + q̇ଷ)

(4.41)

 𝐻ଷସ = −Lଷsଶଷ(q̇ଶ + q̇ଷ) (4.42)

4.2.7 Manipulator torque and energy model

The dynamics model of a manipulator in closed form can be written in joint space

as:

 𝜏 = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐻(𝑞, 𝑞̇)

(4.43)

Where, 𝑀(𝑞) is the inertia matrix dependent on the joint positions, 𝐶(𝑞, 𝑞̇) is the

normal and centrifugal acceleration matrix and is dependent on the joint positions and

velocities, while 𝐻(𝑞, 𝑞̇) contain the gravity and friction dynamics. Gravity is dependent

on joint position while the frictional dynamics can be more complex depending on joint

positions as well as velocities. In our analysis, the frictional dynamics are excluded to

simplify the calculations. The vector 𝜏 represents the dynamic torque provided to each

73

joint. The instantaneous power consumption of the manipulator can be found by summing

the mechanical power of all the links:

 𝑃௠௘௖௛ = ෍ 𝜏௡

ேೕ೚೔೙೟ೞ

௡ୀଵ

𝜔௡ (4.44)

𝜏௡ is the individual joint torque while 𝜔௡ is the angular velocity of the

corresponding link. The average energy consumed by the manipulator while traversing

through point A and B in a time duration of 𝑡஺஻ in the task space can be calculated using:

 𝐸஺஻ =
(𝑃{஺} + 𝑃{஻})

2
 𝑡஺஻ (4.45)

4.2.8 Hybrid optimization scheme

Since the coating deposition and the manipulator torque model are established, the

hybrid optimization scheme can now be presented. The paint gun is assumed to move along

the local y-axis of the ellipse following the curvature of the surface as shown in Fig. 4.5.

For each paint stroke, the velocity and the slice thickness must be optimized to achieve a

uniform coating thickness on the free-form surface. To optimize a given slice bounded by

two slicing planes (𝑖 and 𝑖 + 1), and separated by a distance 𝛿, a point of interest (𝑠) is

considered as shown in Fig. 4.6. The spraying gun is assumed to maintain a constant

perpendicular distance ℎ from the surface. A vertical line is drawn from the spraying gun

at the slice plane 𝑖 to intersect the surface at point 𝑂ଵ. A connection line 𝐿௦ଵ joins the

spraying gun with the point s making an angle of 𝜑௫ଵ with the vertical line. The point 𝑠 has

a surface normal 𝒏ഥ defined by the curvature of the locality. The normal vector 𝒏ഥ makes an

angle 𝛾ଵ with 𝐿௦ଵ. The effective x coordinate of the elliptical paint area is 𝑥ଵ, joining point

𝑂ଵ and 𝑠. In a similar way, these geometric variables are defined for the slice 𝑖 + 1. ℎ௦ଵ

and ℎ௦ଶ represent the perpendicular distance of the paint gun with plane 𝑀ଶ and 𝑀ସ

respectively. The slicing is performed at an angle 𝜃 with respect to the eigen coordinate

system and the trajectory is planned in this rotated eigen coordinate system called the

slicing frame {𝑆𝐹}. The trajectory planning model is shown in Fig. 4.5 and Fig. 4.6

respectively.

74

Figure 4.5: Slicing model showing the sliced region, the elliptical paint area, and
the trajectory points.

Figure 4.6: Trajectory planning and coating deposition model on a complex free-

form surface with slice sandwiched between two spraying gun positions.

75

 Using the variables defined in Fig. 4.6, the coating thickness function at an arbitrary

slice plane 𝑖 can be presented as:

 𝑑௜(𝑥, 𝑦) = න 𝑘௠௔௫ ቆ1 −
𝑥(௜)

ଶ

𝑎ଶ
ቇ

ఉೣିଵ

⎝

⎜
⎛

1 −

ቆ𝑏൫𝑎ଶ − 𝑥(௜)
ଶ ൯

ଵ
ଶ − 𝑎𝑣(௜)𝑡ቇ

ଶ

𝑏ଶ൫𝑎ଶ − 𝑥(௜)
ଶ ൯

⎠

⎟
⎞

ఉ೤ିଵ

ቆ
ℎ

ℎ𝑠(𝑖)
ቇ

2

൭
cos 𝛾

(𝑖)

cos 𝜑
𝑥(𝑖)

൱ 𝑑𝑡
௧೔

଴

 (4.46)

 The coating thickness at point 𝑠 can be 𝑑ଵ, 𝑑ଶ or 𝑑ଵ + 𝑑ଶ subject to the overlap

conditions. The overlapping conditions are derived by checking the ellipse opening

angles 𝜑௫ଵ, 𝜑௫ଶ and the angles, 𝛾ଵ and 𝛾ଶ. These conditions are outlined below:

 𝒅𝒔 = ൞

𝒅𝟏 𝑖𝑓 𝜑𝑥1 < 𝜑𝑥
(𝑚𝑎𝑥), 𝛾ଵ < 90𝑜, 𝜑𝑥2 ≥ 𝜑𝑥

(𝑚𝑎𝑥) 𝑜𝑟 (𝛾ଶ ≥ 90𝑜)

𝒅𝟏 + 𝒅𝟐 𝑖𝑓 𝜑𝑥1 < 𝜑𝑥
(𝑚𝑎𝑥), 𝛾ଵ < 90𝑜, 𝜑𝑥2 < 𝜑𝑥

(𝑚𝑎𝑥) 𝑎𝑛𝑑 (𝛾ଶ < 90𝑜)

𝒅𝟐 𝑖𝑓 𝜑𝑥2 < 𝜑𝑥
(𝑚𝑎𝑥), 𝛾ଶ < 90𝑜, 𝜑𝑥1 ≥ 𝜑𝑥

(𝑚𝑎𝑥) 𝑜𝑟 (𝛾ଵ ≥ 90𝑜)

 (4.47)

Here, 𝜑௫
(௠௔௫) represents the maximum opening angle of the ellipse along the X

direction (longer side) and is computed using the relation:

 𝜑௫
(௠௔௫)

= tanିଵ ൬
ℎ

𝑎
൰ (4.48)

The point cloud is sliced at an angle 𝜃 w.r.t the principal z-direction of the eigen

coordinate frame. The paint gun moves along the immediate y-axis of the ellipse following

the curvature of the free-form surface to complete a paint stroke. The speed 𝑣(௜) for a given

slice 𝑖 is assumed constant. The individual slices are then sub-divided into patches with

each 𝑏 distance apart along the y-axis of frame {SF}. The trajectory point for a patch is

obtained by displacing the mean position along the normal vector of the patch by ℎ units.

The number of trajectory points for a slice can be increased by decreasing the vertical

distance between the patches. Given patch points 𝑃௣௔௧௖௛ ∈ ℝ(3, 𝑁𝑝𝑎𝑡𝑐ℎ) in a portion of slice

and the corresponding trajectory point 𝑃(௜,௝) ∈ ℝ(3,1), the 𝐿௦(௜) ∈ ℝ(3, 𝑁𝑝𝑎𝑡𝑐ℎ) vector for a can

be computed using:

 𝐋𝒔(ଙ)
തതതതതത = 𝑃௣௔௧௖௛ − 𝑃(௜,௝) (4.49)

76

 𝑁௣௔௧௖௛ represents the total number of points in a patch. Using dot product between

−𝑳𝒔(ଙ)
തതതതതത and the normal vector 𝒏ഥ , angle 𝛾(௜) ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ) can be computed as:

 cos 𝛾(௜) =
−𝑳𝒔(ଙ)

തതതതതത. 𝒏ഥ

ห𝑳𝒔(ଙ)തതതതതത ห |𝒏ഥ |
→ 𝛾(௜) = cosିଵ

−𝑳𝒔(ଙ)
തതതതതത. 𝒏ഥ

ห𝑳𝒔(ଙ)തതതതതത ห |𝒏ഥ |
 (4.50)

Similarly, taking the dot product of 𝑳𝒔(ଙ)
തതതതതത and vector 𝒉ഥ the angle, 𝜑௫(௜) ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ)

is computed:

 cos 𝜑௫(௜) =
𝑳𝒔(ଙ)
തതതതതത. 𝒉ഥ

ห𝑳𝒔(ଙ)തതതതതത ห ห𝒉ഥ ห
→ 𝜑௫(௜) = cosିଵ

𝑳𝒔(ଙ)തതതതതത . 𝒉ഥ

ห𝑳𝒔(ଙ)തതതതതത ห ห𝒉ഥ ห
 (4.51)

Using 𝜑௫(௜), the term 𝑥(௜) ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ) is calculated:

 𝑥(௜) = ℎ tan (𝜑௫(௜)) (4.52)

The ratio
௛

௛ೞ(೔)
 ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ) can be computed using the law of similar triangles such

that:

 ℎ

ℎ௦(௜)
=

ට𝑥(௜)
ଶ + ℎଶ

ห𝑳𝒔(ଙ)
തതതതതതห

 (4.53)

Finally, the time duration 𝑡(௜) ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ) for each patch point is represented using

the relationship:

𝑡(௜) =

2𝑏 ඨቆ 1 −
𝑥(௜)

ଶ

𝑎ଶ ቇ

𝑣(௜)

(4.54)

Once the essential coating parameters are calculated, the coating thickness can be

computed as defined by equations 4.46 and 4.47. Next, to compute the dynamic torque of

the robot, the velocity vector of the end effector is obtained by finding a unit vector in the

direction of delta of two trajectory points. More specifically, given two consecutive

trajectory points 𝑃(௜,௝) and 𝑃(௜,௝ାଵ) in the slicing frame {𝑆𝐹} along a paint stroke, the

velocity vector at a given trajectory point 𝑗 within a slice plane 𝑖 can be defined as:

77

 𝒗ഥ(𝒊,𝒋) =
൫𝑃(௜,௝ାଵ) − 𝑃(௜,௝)൯

‖𝑃(௜,௝ାଵ) − 𝑃(௜,௝)‖
 ห𝑣(௜)ห (4.55)

The trajectory points and the velocity vector in the robot reference frame can be

found using the relative transformation matrices between the slicing frame {SF}, eigen

frame {EF} and the robot base frame {0}.

 𝑃௥௢௕௢௧ = 𝑇ௌி
଴ 𝑃 = 𝑇ாி

଴ 𝑇ௌி
ாி 𝑃 (4.56)

 𝑉௥௢௕௢௧ = 𝑅ௌி
଴ 𝑉 = 𝑅ாி

଴ 𝑅ௌி
ாி 𝑉 (4.57)

The first three rows of matrix 𝑃 ∈ ℝ(ସ, ே೟) and 𝑉 ∈ ℝ(ଷ, ே೟) represent the trajectory

points (𝑝௫ , 𝑝௬ , 𝑝௭) and velocity vectors (𝑣௫ , 𝑣௬ , 𝑣௭). Similarly, the orientation 𝜓(௜,௝) of the

end-effector (i.e., paint gun) at a slicing plane 𝑖 and trajectory point 𝑗 can be computed by

reversing the direction of normal vector that joins point 𝑂(௜,௝) and 𝑔(௜,௝). The orientation

matrix 𝜓 ∈ ℝ(3, 𝑁𝑡) can be transformed into the robot frame using the rotation matrix 𝑅ௌி
଴ . 𝑁௧

represents the total number of trajectory points in a slice.

 𝜓(௜,௝) = − 𝒏𝑶𝒈തതതതത = 𝒉ഥ (4.58)

 𝜓௥௢௕௢௧ = 𝑅ௌி
଴ 𝜓 = 𝑅ாி

଴ 𝑅 ௌி
ாி 𝜓 (4.59)

The trajectory points and the velocity vector in the task space are converted to joint

space positions and velocities using the inverse kinematics and Jacobian defined earlier.

The task space acceleration (𝑥̈) is assumed zero to simplify the calculations. The RNE

(Recursive Newton Euler) approach [72] is used to compute the link angular velocities and

joint torques to compute the mechanical energy consumption and time duration between

trajectory points. A GA (Genetic Algorithm) [73] is then used to optimize the hybrid cost

function for a given slice direction (𝜃), slice width (𝛿), speeds (𝑣ଵ, 𝑣ଶ), and the inverse

kinematic configuration of the manipulator 𝑖𝑘௖௙. The cost function for the coating thickness

is computed by taking the mean squared error of the coating thickness with the ideal coating

thickness over 𝑁௣௧௦ points in the slice.

 𝐽ௗೞ
=

1

𝑁௣௧௦
෍ቀ𝑑௦

(௞)
− 𝑑௜ௗ௘௔௟ቁ

ଶ
ே೛೟ೞ

௞ୀଵ

 (4.60)

78

To minimize the coating deviation error, we penalize the ratio of coating thickness

standard deviation and mean over a slice.

𝐽ௗ೐ೝೝ೚ೝ
=

𝑑௦௧ௗ

𝑑௠௘௔௡
 (4.61)

The mean squared error (eq. 4.60) ensures the coating thickness is close to the

desired value, while the deviation error (eq. 4.61) ensures uniformity. The standard

deviation and mean of the coating thickness over a slice can be computed using the

following:

 𝑑௠௘௔௡ =
1

𝑁௣௧௦
෍ 𝑑௦

(௞)

ே೛೟ೞ

௞ୀଵ

 (4.62)

 𝑑௦௧ௗ = ඩ
∑ ቀ𝑑௦

(௞)
− 𝑑௠௘௔௡ቁ

ଶே೛೟ೞ

௞ୀଵ

𝑁௣௧௦
 (4.63)

Similarly, to minimize the energy consumption of the manipulator, the following

objective function is introduced with ∆𝑇(௡೟) representing the time interval between two

consecutive trajectory points:

 𝐽ா =
1

𝑁௧ − 1
 ෍ ൮ቌ ෍

1

2
(𝜏௡

(௡೟)

ேೕ೚೔೙೟ೞ

௡ୀଵ

𝜔௡
(௡೟)

+ 𝜏௡
(௡೟ାଵ)

𝜔௡
(௡೟ାଵ)

) ቍ ∆𝑇(௡೟)൲

ே೟ିଵ

௡೟ୀଵ

 (4.64)

Finally, to ensure fast trajectories, low velocities can be avoided by penalizing the

average time between two consecutive trajectory points.

 𝐽் =
1

𝑁௧ − 1
 ෍ ∆𝑇(௡೟)

ே೟ିଵ

௡೟ୀଵ

 (4.65)

79

The hybrid cost function is the weighted sum of the four cost functions defined in

equation 4.60, 4.61, 4.64, and 4.65. The scaling factors 𝜔ଵ, 𝜔ଶ, 𝜔ଷ, 𝑎𝑛𝑑 𝜔ସ are adjusted

to indicate relative importance of penalty functions. It should be noted that the cost

functions are normalized on a scale of 0 and 1 before computing the hybrid cost function.

 𝐽௧௢௧ = 𝜔ଵ 𝐽ௗೞ

௡௢௥௠ + 𝜔ଶ 𝐽ௗ೐ೝೝ೚ೝ

௡௢௥௠ + 𝜔ଷ 𝐽ா
௡௢௥௠ + 𝜔ସ 𝐽்

௡௢௥௠ (4.66)

The fitness function for the genetic algorithm is then defined as inverse of the cost

function and by introducing an 𝜖 term to avoid division by zero.

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝐽௧௢௧ + 𝜖
 (4.67)

The constraints for the optimization objective are:

𝛿 ∈ [𝑎 2𝑎]

(4.68)

𝑣ଵ, 𝑣ଶ ∈ [𝑣௠௜௡ 𝑣௠௔௫]

(4.69)

𝑖𝑘௖௙ ∈ { 0 𝑜𝑟 1}

(4.70)

 𝜃 ∈ [0 𝜋] (4.71)

 A schematic of the optimization algorithm is shown in Fig. 4.7. The trajectories

once optimized, are analyzed based on four criteria including coating distribution error,

relative coating error, energy consumption, and total trajectory time. The relative error is

computed by taking the fractional difference of the mean and desired coating thickness

over the entire surface.

 𝐽ௗೝ೐೗
=

|𝑑௠௘௔௡ − 𝑑௜ௗ௘௔௟|

𝑑௜ௗ௘௔௟
 (4.72)

80

Figure 4.7: Trajectory planning and optimization algorithm. The input to the

optimization algorithm is a CAD model while the output is an optimized trajectory for the

paint robot in task space. The end-effector trajectory includes the x, y, z location,

orientation, and the velocity vector at a given point in task space.

81

4.3 Conclusion

This chapter discussed the detailed process of optimum trajectory planning for a

robotic painting process. An elliptic double beta distribution model is employed to model

the spraying process. A coating deposition model for a complex free-form surface is then

established based on spraying parameters including: the spray gun height form the surface

(ℎ), the coating deposition rate of the paint per unit time (𝑘௠௔௫), the width and length of

the elliptical paint area (𝑎, 𝑏), the beta values for the paint distribution (𝛽௫, 𝛽௬), and the

curvature (𝛾, 𝜑௫). Once the coating deposition model on a complex free-form surface is

established, the manipulator kinematic and dynamic model is analytically derived to

compute the instantaneous joint torques and link velocities at a given trajectory point. A

point cloud slicing algorithm is then used to slice a point cloud of the complex free-form

surface for optimization. The trajectory points are assigned along the slicing plane

following the curvature of the surface while maintaining a constant height (ℎ) from the

surface. The coating thickness is then computed for all the points in the given slice, while

the manipulator energy is computed for all the trajectory points within this slice. A hybrid

cost function is then established to penalize the mean squared error of the coating thickness,

the coating distribution error, the mean energy consumption, and the mean trajectory time

for one slice. A GA (genetic algorithm) then minimizes this cost function to achieve the

optimal slice width (𝛿), slice velocities (𝑣ଵ, 𝑣ଶ), the slicing direction (𝜃) and the inverse

kinematic configuration (𝑖𝑘௖௙) for all the slices in a point cloud.

82

Chapter 5. Integrated System Development

5.1 Introduction

The practical implementation of the 3D scanning system and the trajectory optimizer

can be realized by developing an integrated system containing components necessary for

the automation process. The integrated system consists of hardware and software that work

together to make an autonomous system for robotic painting. The hardware components

include sensors and actuators for sensing and controlling the various functions of the

system. The software allows for smooth integration with the system components. This

chapter outlines in detail the development process of the integrated system, its core

hardware components and the software used. It also discusses in detail the development of

a graphical user interface (GUI) for interacting with the system. The high-level

representation of the GUI makes it possible for the system to act autonomously with

minimal user intervention. This is made possible by performing the programming logic at

the backend while allowing the user to choose macro tasks in the GUI without

understanding the details behind it. The GUI has functions for instantiating 3D scanning

sequence, visualizing, and validating the accuracy of the 3D scan, running the optimizer

for trajectory planning, visualizing the trajectory and uploading the trajectories to the

robots while also providing a platform for observing critical sensor readings and camera

feeds.

5.2 Methodology

The methodology provides a macro level overview of the hardware and software

components needed to develop the autonomous system for robotic painting. The

autonomous system is broken down into 4 sub-systems. The 3D scanning system contains

hardware and software responsible for generating a 3D model of the complex free-form

surface of an object. The trajectory planning system is responsible for generating an

optimal paint trajectory. The trajectory execution system enables the system to execute the

83

trajectory via the robots installed on board. Finally, the validation system is used to validate

the 3D scan accuracy of the 3D scanning system, the paint quality and energy consumption

of the trajectory planning process. These systems are interconnected and share the

hardware and software components to achieve the desired purpose. The methodology is

shown schematically in Fig 5.1.

Figure 5.1: Software and hardware development methodology.

84

5.2.1 Hardware development

Table 5.1: Hardware components breakdown with component IDs, descriptions, and the

corresponding CAD models.

ID Component Description CAD Model

1 Aluminum Framing. Used for

building the structure of the entire

system. It also contains corner

brackets, T-brackets, and gantries

for achieving the smooth linear

motion.

2 Vertical Sliding mechanism. It

contains 2 linear actuators, a

support base for lifting the robots

and a base mount plate for securing

the linear actuators. For the

position feedback, distance sensors

are installed.

3 Electronics box for keeping the

electrical components. It contains a

raspberry pi controller, an Arduino,

2 motor controllers for the linear

actuators, a current sensor, and a

stepper driver for controlling the

stepper motor.

85

4 Horizontal sliding mechanism. It

contains a threaded rod, two guide

rails with linear gantries, bearings

and bearing supports for the

threaded rod, a stepper motor for

driving the mechanism and a

distance feedback sensor.

5 Stepper motor for moving the

horizontal slider [74].

6 Horizontal slider jockey. It

contains a lead screw head

connected to the base plate which is

then connected to the linear

gantries for moving along the guide

rails.

7 Servo rotating mechanism for 3D

scanning system. The servo [67] is

connected to the object via a

gripper that can be tightened and

loosened. The object is a car door

as illustrated in the CAD.

8 A downscaled CAD model of a car

door for 3D scanning and trajectory

planning.

86

9 Two 3DOF robots for controlling

the x, y, z location of the end-

effector [75]. The robot combined

with the vertical sliding mechanism

gives a total of 4 DOF for executing

the trajectory over the surface of

the complex free-form surface

(e.g., car door)

10 Position feedback platform for the

linear actuators. It has a VLX

distance sensor mounted on a plate.

11 VL53L0X sensor [66]. It is a time

of flight (TOF) sensor for

measuring distance. It has a

measurement range of 3 𝑐𝑚 𝑡𝑜 2 𝑚

and an accuracy of ± 1𝑚𝑚.

12 A limit switch used for

disconnecting the power from the

linear actuators [76].

13 3D scanning hardware [65]. It has

an Intel Real Sense D435 sensor

and a TOF sensor for calibration of

the rotation axis of the object. The

sensors are connected to the system

via a 3D-printed mounting plate.

87

Figure 5.2: CAD schematic of the Integrated System with component IDs.

Figure 5.3: 3D rendered CAD model of the Integrated System (isometric view).

88

Figure 5.4: 3D rendered CAD model of the Integrated System (top and side view).

5.2.2 Software development

After the system is modeled in CAD and fabricated, it is important to devise a software

mechanism that achieves the desired purpose of the autonomous system. As such, the

software should be able to communicate with the hardware components and optimize the

trajectory for the complex free-form surface. Moreover, a GUI (graphical user interface)

should also be in consideration to allow the user to interact with the system, make changes

to the settings, and load the CAD and trajectory files. The software breakdown and the GUI

is shown in Fig. 5.5. The core components of the system are connected via ROS (Robot

Operating System) ecosystem [77]. ROS allows for easy communication between software

scripts/nodes via topics and services. The ROS MASTER is the main server running all the

necessary nodes responsible for trajectory optimization and 3D scanning. Another instance

of ROS runs on the Raspberry Pi controller which is directly connected to the hardware.

The hardware includes the horizontal sliding and vertical sliding mechanisms, the servo

rotation mechanism, the 𝑣𝑙𝑥 sensors for distance monitoring and the D435 sensor for

acquiring a depth scan of the object. The raspberry pi is programmed to respond to certain

topics via ROS subscriber and publishers. Thus, any sensor can be read by the MASTER

node by subscribing to it. Similarly, any change in the actuator state can be published to

the raspberry pi node and realized in real time. The web-based GUI is connected to ROS

Master and the two robots via web sockets programmed in JS (JavaScript) [78] . The

89

backbone of the web page is defined by HTML script while the page is styled using CSS

and JS acquired from Bootstrap and jQuery [79]. ROS ecosystem is tunneled with the JS

using the 𝑟𝑜𝑠𝑙𝑖𝑏𝑗𝑠 script developed by [80]. The two robots receive trajectory commands

in the form of x, y, z and location and a time variable for defining the speed. The 3D

scanner node is responsible for instantiating a 3D scanning instance on user request from

the web GUI. After completion, it stores the scan file into the scan directory locally.

Similarly, the trajectory optimizer node when triggered from the GUI, optimizes the

trajectory, and stores the results into a NumPy array locally in the 𝑡𝑟𝑎𝑗 folder.

Figure 5.5: Schematic for Software development of the integrated system.

90

5.2.3 Graphical user interface

The GUI is a web-based interface allowing for communication between the user

and the software components of the system. The main motivation behind the GUI is the

provision of a user-friendly interface to perform the different functions of the system.

The web-based GUI has a sidebar navigation menu with interactive buttons for

communicating with the system. The main buttons are Camera, Sensors, 3D Scanner,

Optimizer Settings, 𝑇𝑟𝑎𝑗 Optimizer, Upload 𝑇𝑟𝑎𝑗, Stop 𝑇𝑟𝑎𝑗, Validate and Manual

Control. The top navigation bar has 4 buttons including CAD Files, Scan Files, CAD-

CAL files and 𝑇𝑟𝑎𝑗 Files. These buttons are handled by the JavaScript node and upon

clicking will execute the required functionality. The GUI interface is shown in Fig. 5.6.

Figure 5.6: Front panel of web-based GUI.

The further breakdown of the GUI interface is shown in Fig. 5.7. The top navigation

bar is a clickable dropdown menu showing the available file names on the local storage.

Upon clicking either of these three buttons, the JavaScript handler function sends a ping to

the JSON handler node at the backend requesting for the File list on the specified

directories. The backend node responds with the file list which is updated to view on the

drop-down menu. Further, by clicking a filename, it is selected as the current file source

for the trajectory planning process. The side bar field, Optimizer Settings, is also a

91

dropdown menu with form inputs for the paint trajectory planning process. These fields are

inserted, and the update button is then clicked to update the settings to the

𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠. 𝑗𝑠𝑜𝑛 file.

Figure 5.7: Web GUI Optimizer Settings and File System Handler.

The remaining functionalities of the GUI are shown in Fig. 5.8. The 𝑇𝑟𝑎𝑗 Optimizer

button is further subdivided into two buttons. One is used for optimizing the trajectory

while the other is used for viewing the selected trajectory. Before trajectory optimization,

the CAD/SCAN field of the Optimizer Settings should be selected 0 or 1 if a CAD or SCAN

is to be used respectively. The selected CAD or SCAN file is then considered by the

backend for trajectory planning. Similarly, the Upload and Stop 𝑇𝑟𝑎𝑗 buttons are used to

invoke the trajectory handler node which can start and stop trajectory upload to the robots

at any given time. The Validate button has 3 sub fields for evaluating the 3D scan accuracy

of the selected CAD and SCAN files, energy, and paint quality for the selected trajectory

file. Fig. 5.8 also shows the Camera field dropdown for selecting a given camera feed, the

92

Sensors dropdown for viewing the sensor readings, and the 3D scanner button for starting

the 3D scan and viewing it.

Figure 5.8: Web GUI miscellaneous buttons and functions.

The software packages and custom programs (18 Python scripts) are shown below for

reference.

Figure 5.9: Software packages and custom Python scripts.

93

5.2.4 ROS RQT graph

The ROS RQT graph shows the relationships between the topics, services, and

nodes running. An RQT graph of the system running with all nodes is shown in Fig. 5.10.

The topics are represented by the square boxes and the nodes by an oval shape.

Figure 5.10: ROS RQT graph.

5.3 Conclusion

In this chapter, the hardware and the software development were discussed in detail.

The major hardware components include two robots for executing the paint trajectory,

an intel realSenseD435 sensor for depth mapping, and the LINUX server for running

the software components. A Raspberry Pi controller is also used with its GPIO (General

purpose input output) pins connected to the sensors, motors, and actuators via electronic

drivers. The system is integrated to form an autonomous system for trajectory planning

and optimization of the painting process over complex free-form surfaces. The software

components include the programs responsible for handling the functionalities of the

system. A web-based GUI interface that allows for a user-friendly interface with the

system was also discussed in detail.

94

Chapter 6. Results and Discussions

The results and discussion section will cover the accuracy of the 3D scanning system

used for acquiring the geometry of the object, the calibration results for the CAD models,

and the optimization results for the trajectory planning process. The trajectories are

analyzed based on the coating distribution error, relative coating error, energy consumption

and time. During the energy computation of the manipulator, the friction model is not

considered to simplify calculations. Similarly, the end-effector wrench loading vector is

also assumed zero. To evaluate the energy consumption experimentally, current sensors

are installed at the power inlets of the robots. The spraying process model and the robot

dynamic model are implemented in Python including the other functionalities defined in

chapter 5. Before discussing the results, we define the parameters for the spraying process

model, the robot model, and the genetic optimizer used in the theoretical and experimental

analysis.

6.1 Spraying process, robot, and optimizer parameters

The spraying process can be modelled using the parameters 𝑎, 𝑏, 𝛽௫ , 𝛽௬ and 𝑘௠௔௫.

Since we did not have a spray delivery system, these parameters were chosen based on the

size of the object and by analyzing the study done by [37]. The robot model contains the

kinematic and dynamic parameters. The links are considered cylindrical to simplify the

calculations and the mass moment of inertia are computed for the torque computation. The

gravity vector is in the negative z-direction of the robot base frame defined in chapter 4.

Similarly, other parameters such as the minimum and maximum paint gun speeds, the spray

gun height, and the genetic optimizer settings are also defined in Table 6.1. The GA settings

are tuned on hit-and-trial by first starting with the default settings in the 𝑝𝑦𝑔𝑎𝑑 [81] library

in Python. The optimizer speed slows down as the number of generations increases. Thus,

the settings must be adjusted based on the computational resources available.

95

Table 6.1: List of spraying process, robot, and optimizer parameters used in analysis.

Parameter Description Value

 Spraying process parameters

𝑎 Ellipse longer side for the coating model 15 𝑚𝑚

𝑏 Ellipse shorter side for the coating model 5.6 𝑚𝑚

𝛽௫ Coating distribution beta along the X direction of ellipse 2.3

𝛽௬ Coating distribution beta along the Y direction of ellipse 4.5

𝑘௠௔௫ Coating deposition rate 50.0 𝜇𝑚/𝑠

𝑑௜ௗ௘௔௟ Desired coating thickness 20 𝜇𝑚

𝑣௠௜௡ Minimum speed of the spray gun 3 𝑚𝑚/𝑠

𝑣௠௔௫ Maximum speed of the spray gun 15 𝑚𝑚/𝑠

ℎ Spray gun height from the surface 10 𝑚𝑚

 Robot model parameters

𝑑௦௧௥௢௞௘ Link 0 stroke length 254 𝑚𝑚

𝐿ଵ Manipulator Link 1 length 92.54 𝑚𝑚

𝐿ଶ Manipulator Link 2 length 128.4 𝑚𝑚

𝐿ଷ Manipulator Link 3 length 144.8 𝑚𝑚

𝑀 Manipulator Link 0 mass 2.5 𝑘𝑔

𝑚ଵ Manipulator Link 1 mass 0.5 𝑘𝑔

𝑚ଶ Manipulator Link 2 mass 0.5 𝑘𝑔

𝑚ଷ Manipulator Link 3 mass 0.5 𝑘𝑔

 Optimizer Parameters

𝜔ଵ Scaling factor for mean squared error 0.40

𝜔ଶ Scaling factor for coating deviation error 0.20

𝜔ଷ Scaling factor for mean energy consumption 0.20

𝜔ସ Scaling factor for mean trajectory time 0.20

𝜖 Hyper-parameter in the fitness function 1.0

𝑟௠ Mutation rate in GA 0.1

𝑐௧௬௣௘ Crossover type in GA Two points

𝑚௧௬௣௘ Mutation type in GA Random

𝑁௣௔௥௘௡௧௦ Number of mating parents in GA 2

𝑁௚௘௡ Number of generations in GA 25

𝑁௦௢௟ Number of solutions per population in GA 2

96

Figure 6.1: Experimental setup in the laboratory.

97

6.2 3D scanning and CAD calibration results

The 3D scanning system is used to generate surface point clouds of the object under

investigation. After the point clouds are obtained for each rotational index (30o), they are

filtered and raw aligned using the transformations defined earlier in Chapter 3. ICP is then

used to fine-align and transform the point clouds into one common reference frame.

Additionally, statistical noise removal is applied if the point cloud has any residual noise

as defined in Chapter 3. Three objects are scanned, and their corresponding CAD models

are calibrated (transformed) into the camera reference frame {C} for trajectory planning.

Fig. 6.2 shows selecting a scan file from the file list button in GUI and viewing it by

clicking the view 3D scan button. Similarly, Fig. 6.3 shows performing the calibration

using the GUI interface of the system. Table 6.2 shows the summary of the scanned models

and their corresponding calibrated CAD in the camera frame {C}.

Figure 6.2: Selecting 3D scan and viewing it in the GUI.

98

Figure 6.3: Calibrating the 3D scan and the corresponding CAD file in the GUI.

Table 6.2: Scanned models and their corresponding CAD calibrated in frame {C}.

Scanned model in frame {C} Calibrated CAD in frame {C}

99

The accuracy of the scanning process is evaluated using the D1 and D2 metrics defined

earlier in chapter 3. The D3 and A3 metrics are omitted since their computation depends on

angles in the point cloud and generates errors in the inverse cosine frequently. The D1 and

D2 metrics are computed between the scanned models and their corresponding CAD

models. It is revealed that the car door is captured with 95% accuracy, the car hood with

93%, and the car bumper with 92% accuracy. The geometric signatures are summarized in

Table 6.3 while the density plots are shown in Fig. 6.4 to Fig. 6.6.

Table 6.3: Similarity scores between the 3D scanned models and the corresponding CAD.

 D1 score D2 score Avg score

Car door 0.9639 0.9434 0.9536

Car hood 0.9524 0.9228 0.9376

Car bumper 0.9488 0.9082 0.9285

100

Figure 6.4: D1 and D2 density distributions for car door.

Figure 6.5: D1 and D2 density distributions for car hood.

Figure 6.6: D1 and D2 density distributions for car bumper.

101

6.3 Optimal paint trajectory planning for a car door

A downscaled version of the car door is considered for trajectory planning and

optimization. The CAD model is calibrated with the scanned model to ensure the accurate

position and orientation of the surface in the camera and robot frame as defined in Chapter

3. The calibrated CAD model is loaded into Python [61] and converted to eigen coordinate

system by applying PCA. The GA is then run for each slice along the slicing direction of

the CAD point cloud until no slices are left. The optimizer runs for equidistant slicing (𝛿 =

𝑎) and non-equidistant slicing (𝛿 ∈ [𝑎 2𝑎]) and the results are stored for each slice. For

ease of analysis, the slicing direction 𝜃 is discretized into 4 values including 0௢, 30௢, 60௢

and 90௢. The results include analyzing the mean coating thickness, energy per slice,

coating distribution error, relative coating error, GA fitness, slice widths, slice speeds, and

inverse kinematic configurations plotted against slice numbers. Additionally, the planned

trajectory in the eigenframe and the coating thickness at each patch are visualized using

color intensities proportional to the value of coating thickness. The coating thickness is

mapped to color intensities such that the brighter green color represents high coating

thickness and vice versa. The axes of the frame {EF} are shown by red, green, and blue for

x, y, and z respectively as shown in Fig. 6.7.

6.3.1 Results for slicing direction θ= 0o

Figure 6.7: Coating thickness and planned trajectory of a car door in {EF} for slicing

direction 𝜃 = 0௢ (left: equidistant slicing, right: non-equidistant slicing).

102

Figure 6.8: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car door: 𝜃 = 0௢).

103

6.3.2 Results for slicing direction θ= 30o

Figure 6.9: Coating thickness and planned trajectory of a car door in {EF} for slicing

direction 𝜃 = 30௢ (left: equidistant slicing, right: non-equidistant slicing).

104

Figure 6.10: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car door: 𝜃 = 30௢).

6.3.3 Results for slicing direction θ= 60o

Figure 6.11: Coating thickness and planned trajectory of a car door in {EF} for slicing

direction 𝜃 = 60௢ (left: equidistant slicing, right: non-equidistant slicing).

105

Figure 6.12: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car door: 𝜃 = 60௢).

106

6.3.4 Results for slicing direction θ= 90o

Figure 6.13: Coating thickness and planned trajectory of a car door in {EF} for slicing

direction 𝜃 = 90௢ (left: equidistant slicing, right: non-equidistant slicing).

107

Figure 6.14: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car door: 𝜃 = 90௢).

6.3.5 Results discussions

The results indicate that a desired coating thickness on a surface can be achieved

by specifying the correct spraying parameters and the robot model. The value of the coating

thickness, however, is subject to the local geometry of the object, the speed of the paint

gun, the slice width and the slicing direction. Thus, variations in the mean coating

thicknesses can be seen for both equidistant and non-equidistant slicing. The trajectories

are evaluated based on four criteria including energy, time, coating distribution, and

relative coating error. These quantities are plotted against the slicing direction as shown in

Fig. 6.15. It is observed that the non-equidistant slicing scheme always leads to lower

energy consumption since the surface can be covered with fewer slices. A similar trend is

also observed for the trajectory time. As far as the coating distribution is concerned, the

equidistant slicing scheme gives a more uniform distribution as indicated by the lower

deviation errors. The relative coating error is generally lower for the non-equidistant slicing

except at a slicing direction of 60௢, where it is slightly higher. The most energy efficient

108

trajectory is obtained at a slicing direction of 90o and by employing a non-equidistant

slicing scheme. It consumes a total of 611 J of energy which is 60% lower than the least

energy-efficient trajectory. The optimal trajectory for the process time is at a slicing

direction of 30o while using a non-equidistant slicing scheme. This trajectory takes 188 s

which is 33% lower than the least time-optimal trajectory. The coating distribution is most

uniform when employing an equidistant slicing scheme at an angle of 30o. It gives an

average coating distribution error of 18% with a mean coating thickness of 19.21 𝜇𝑚 which

is considerably close to the desired thickness of 20.0 𝜇𝑚. Finally, the lowest relative

coating error (14%) is observed for na on-equidistant slicing scheme at an angle of 30o.

This leads to a mean coating thickness of 18.38 𝜇𝑚. The summary of results is given in

Table 6.4.

Figure 6.15: Total energy, trajectory time, coating deviation and relative coating error vs

slicing direction (car door).

109

Table 6.4: Results summary for trajectory planning and optimization of a car door for

both equidistant and non-equidistant slicing.

 𝜽 𝒅𝒎𝒆𝒂𝒏(𝝁𝒎) 𝑬𝒔𝒖𝒎 (𝑱) 𝐓𝒔𝒖𝒎 (𝐬) 𝑱𝒅𝒆𝒓𝒓𝒐𝒓
 𝑱𝒅𝒓𝒆𝒍

Eq-slicing 0௢ 28.58 1492.94 273.10 0.23 0.54

 30௢ 19.21 1553.09 207.76 0.18 0.17

 60௢ 20.56 1320.14 234.55 0.20 0.20

 90௢ 24.12 775.75 282.17 0.18 0.29

Non-eq slicing 0௢ 21.91 1092.36 195.47 0.47 0.30

 30௢ 18.38 1382.48 188.54 0.22 0.14

 60௢ 22.91 1109.15 233.77 0.32 0.28

 90௢ 23.34 611.33 244.65 0.29 0.25

110

6.4 Optimal paint trajectory planning for a car hood

6.4.1 Results for slicing direction θ= 0o

Figure 6.16: Coating thickness and planned trajectory of a car hood in {EF} for slicing

direction 𝜃 = 0௢ (left: equidistant slicing, right: non-equidistant slicing).

111

Figure 6.17: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car hood: 𝜃 = 0௢).

6.4.2 Results for slicing direction θ= 30o

Figure 6.18: Coating thickness and planned trajectory of a car hood in {EF} for slicing

direction 𝜃 = 30௢ (left: equidistant slicing, right: non-equidistant slicing).

112

Figure 6.19: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car hood: 𝜃 = 30௢).

113

6.4.3 Results for slicing direction θ= 60o

Figure 6.20: Coating thickness and planned trajectory of a car hood in {EF} for slicing

direction 𝜃 = 60௢ (left: equidistant slicing, right: non-equidistant slicing).

114

Figure 6.21: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car hood: 𝜃 = 60௢).

6.4.4 Results for slicing direction θ= 90o

Figure 6.22: Coating thickness and planned trajectory of a car hood in {EF} for slicing

direction 𝜃 = 90௢ (left: equidistant slicing, right: non-equidistant slicing).

115

Figure 6.23: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car hood: 𝜃 = 90௢).

116

6.4.5 Results discussions

The results for the car hood indicate that a desired coating thickness on a surface

can be achieved by specifying the correct spraying parameters and the robot model. The

most energy-efficient trajectory is obtained at a slicing direction of 90o and by employing

a non-equidistant slicing scheme as shown in Fig. 6.24. It consumes a total of 1027 J of

energy which is 73% lower than the least energy-efficient trajectory. The best time-optimal

trajectory is observed at an angle of 30o with equidistant slicing scheme. This leads to a

total trajectory time of 357 s. The coating deviation error achieved using equidistant slicing

is generally lower than non-equidistant slicing scheme consistent with the results for car

door. The lowest coating deviation is 18% and is observed at an angle of 60o. The smallest

relative coating error (21%) is observed at 90o while employing a non-equidistant scheme.

This leads to a mean coating thickness of 21.02 𝜇𝑚 over the surface of the car hood. A

summary of the results is described in Table 6.5.

Figure 6.24: Total energy, trajectory time, coating deviation, and relative coating error vs

slicing direction (car hood).

117

Table 6.5: Results summary for trajectory planning and optimization of a car hood for

both equidistant and non-equidistant slicing.

 𝜽 𝒅𝒎𝒆𝒂𝒏(𝝁𝒎) 𝑬𝒔𝒖𝒎 (𝑱) 𝐓𝒔𝒖𝒎 (𝐬) 𝑱𝒅𝒆𝒓𝒓𝒐𝒓
 𝑱𝒅𝒓𝒆𝒍

Eq-slicing 0௢ 22.59 3826.96 416.37 0.20 0.35

 30௢ 19.79 3712.32 357.27 0.19 0.22

 60௢ 20.20 2397.28 403.69 0.18 0.25

 90௢ 20.20 1272.48 373.41 0.19 0.29

Non-eq slicing 0௢ 24.34 3332.79 401.12 0.28 0.39

 30௢ 22.32 3006.22 418.16 0.34 0.35

 60௢ 22.91 2137.09 389.37 0.29 0.42

 90௢ 21.02 1027.1 371.74 0.29 0.21

118

6.5 Optimal paint trajectory planning for a car bumper

6.5.1 Results for slicing direction θ= 0o

Figure 6.25: Coating thickness and planned trajectory of a car bumper in {EF} for slicing

direction 𝜃 = 0௢ (left: equidistant slicing, right: non-equidistant slicing).

119

Figure 6.26: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 𝜃 = 0௢).

6.5.2 Results for slicing direction θ= 30o

Figure 6.27: Coating thickness and planned trajectory of a car bumper in {EF} for slicing

direction 𝜃 = 30௢ (left: equidistant slicing, right: non-equidistant slicing).

120

Figure 6.28: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 𝜃 = 30௢).

121

6.5.3 Results for slicing direction θ= 60o

Figure 6.29: Coating thickness and planned trajectory of a car bumper in {EF} for slicing

direction 𝜃 = 60௢ (left: equidistant slicing, right: non-equidistant slicing).

122

Figure 6.30: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 𝜃 = 60௢).

6.5.4 Results for slicing direction θ= 90o

Figure 6.31: Coating thickness and planned trajectory of a car bumper in {EF} for slicing

direction 𝜃 = 90௢ (left: equidistant slicing, right: non-equidistant slicing).

123

Figure 6.32: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 𝜃 = 90௢).

124

6.5.5 Results discussions

The results for the car bumper indicate that a desired coating thickness on a surface

can be achieved by specifying the correct spraying parameters and the robot model. The

most energy-efficient trajectory is obtained at a slicing direction of 90o for non-equidistant

scheme as shown in Fig. 6.33. The total energy savings are 64%. The energy consumption

decreases with the increase in the slicing direction and is consistent with the results

obtained for the car door and car hood. The lowest trajectory time is 137 s when using

equidistant slicing at an angle of 30o. Similarly, consistent with the results of car door and

hood, the coating deviation error is lower for equidistant slicing scheme with the smallest

value (28%) observed at an angle of 0o which gives a mean coating thickness of 21.02 𝜇𝑚.

The relative coating error follows a similar trend with an exception at an angle of 60o. The

smallest relative coating error is 19% and is observed for equidistant slicing at an angle of

90o. A summary of the results for the car bumper is given in Table 6.6.

Figure 6.33: Total energy, trajectory time, coating deviation and relative coating error vs

slicing direction (car bumper).

125

Table 6.6: Results summary for trajectory planning and optimization of a car bumper for

both equidistant and non-equidistant slicing.

 𝜽 𝒅𝒎𝒆𝒂𝒏(𝝁𝒎) 𝑬𝒔𝒖𝒎 (𝑱) 𝐓𝒔𝒖𝒎 (𝐬) 𝑱𝒅𝒆𝒓𝒓𝒐𝒓
 𝑱𝒅𝒓𝒆𝒍

Eq-slicing 0௢ 21.02 575.59 160.58 0.28 0.36

 30௢ 16.86 451.24 137.47 0.31 0.25

 60௢ 19.13 406.39 164.68 0.31 0.38

 90௢ 17.33 223.84 156.80 0.33 0.19

Non-eq slicing 0௢ 19.27 509.64 157.04 0.38 0.44

 30௢ 18.15 383.29 161.19 0.39 0.34

 60௢ 18.38 354.33 148.73 0.35 0.34

 90௢ 21.74 203.25 188.07 0.39 0.36

126

6.6 Experimental validation of energy consumption

To assess the validity of the optimization results, the trajectory is executed in real time

on a PRRR manipulator defined earlier. A current sensor is installed on the power inlet of

the robot to measure the power drawn as the trajectory is being executed. The idea is to

compare the energy consumption of the least and most energy-efficient trajectories. For the

car door, the trajectories with slicing direction of 30o and 90o with equidistant and non-

equidistant slicing schemes are selected respectively. The current measurements at a given

trajectory point and the time duration between consecutive trajectory points are logged.

When the energy values are summed across the trajectory points, it is observed that the

non-equidistant slicing leads to energy savings of 44%. This value is close to the theoretical

estimation of 60%. In practice, some of the energy is lost by overcoming the friction

between link joints and the resistance in the electrical circuit. The real-time energy values

are plotted against the trajectory points as shown in Fig. 6.34.

Figure 6.34: Experimental energy consumption for trajectory optimization of car door.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400

Jo
ul

es

Trajectory points

Experimental energy consumption (Car Door)

non.eq, th=90

eq, th=30

127

Similarly, the experimental validation of the energy consumption for the car hood

shows a total energy savings of 51% if non-equidistant slicing is used with a slicing

direction of 90o. It is compared with equidistant slicing at a slicing direction of 0o as shown

in Fig. 6.35.

Figure 6.35: Experimental energy consumption for trajectory optimization of car hood.

Finally, the experimental validation of the energy consumption for the car bumper

shows a total energy savings of 33% if non-equidistant slicing is used with a slicing

direction of 90o. It is compared with equidistant slicing at a slicing direction of 0o as shown

in Fig. 6.36.

Figure 6.36: Experimental energy consumption for trajectory optimization of car bumper.

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500 600 700

Jo
ul

es

Trajectory Points

Experimental Energy Consumption (Car Hood)

eq, th=0
non.eq, th=90

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

Jo
ul

es

Trajectory Points

Experimental energy consumption (Car bumper)

eq, th=0

non.eq, th=90

128

Figure 6.37: Robot executing trajectory on a car door.

 A summary of theoretical and experimental results is given in Table 6.7. Total

trajectory energy is 𝐸௦௨௠, while 𝐸௦௨௠ represents the percentage of energy savings

compared to the reference trajectory.

Table 6.7: Results summary of experimental validation of energy consumption for

optimal paint trajectories of car door, car hood and car bumper.

 Slicing Scheme 𝜽
Experimental

 𝑬𝒔𝒖𝒎

Theoretical

 𝑬𝒔𝒂𝒗

Experimental

 𝑬𝒔𝒂𝒗

Car door Non-equidistant 90o 2085 J 60% 44%

Equidistant

(Reference)
30o 3003 J 0% 0%

Car hood Non-equidistant 90o 1569 J 73% 51%

Equidistant

(Reference)
0o 3212 J 0% 0%

Car

bumper
Non-equidistant 90o 1275 J 64% 33%

Equidistant

(Reference)
0o 1894 J 0% 0%

129

6.7 Results comparison with literature

The coating uniformity, trajectory time, and energy consumption in paint application

are dependent on the geometry of the object, dynamics of the spraying process and the

robot performing the trajectory. These will vary based on the scenario presented in the

optimization process. It can be concluded from the analysis of the results that the proposed

hybrid optimization scheme is able to generate efficient trajectories for the painting

process. Some trajectories are efficient in terms of coating quality, others lead to lower

process times, while some are more energy efficient. Thus, a suitable trajectory must be

selected based on the requirements of the painting. The summary of the results comparison

is tabulated in Table 6.8.

Table 6.8: Results comparison summary with literature.

Article

U-

direction

[36]

V-

direction

[36]

Equidistant

slicing [37]

Non. eq

slicing [37]

Transitional-

seg opt [38]

Proposed

scheme

Proposed

scheme

Proposed

scheme

Object of

interest

Oval

Bucket

Oval

Bucket

Motorcycle

spoiler

Motorcycle

spoiler
Aircraft wing Car door Car hood Car bumper

Desired coating

thickness
50 μm 50 μm 23 μm 23 μm 70 μm 20 μm 20 μm 20 μm

Mean Coating

thickness
51.1 μm 52.2 μm 25.95 𝜇𝑚 22.27 𝜇𝑚 68.7 μm 19.21 μm 21.02 μm 21.02 μm

Standard

deviation
2.775 μm 3.8 μm 6.52 𝜇𝑚 5.71 𝜇𝑚 3.2 μm 3.41 μm 6.51 μm 5.35 μm

Mean coating

deviation error
5.43% 7.60% 25.12% 25.64% 4.60% 17.75% 29.4% 25.4%

Mean relative

coating error
2.2% 4.4% 12.83% 3.17% 1.86% 3.95% 5.1% 5.1%

Max Time

savings
17% 0% N/A N/A N/A 33% 14.18% 27.13%

Max Energy

savings
N/A N/A N/A N/A N/A 60% 73% 64%

Coating mean-

squared error

cost

Yes Yes Yes Yes Yes Yes Yes Yes

Coating

deviation cost
No No No No No Yes Yes Yes

Energy cost No No No No No Yes Yes Yes

Process time

cost
No No No No No Yes Yes Yes

130

The methods and optimization schemes in the literature do not consider process

time optimization, coating deviation error, and energy consumption in the cost functions.

Our novel hybrid optimization scheme introduces these terms into the objective function,

which then leads to more optimal paint trajectories. The performance of our results is in

close agreement with the literature analysis as indicated by the proximity of the mean

coating thickness with the desired requirement, and the standard deviation indicating the

spread in the distribution of coating over the complex surfaces. These results are presented

as a summary and should not be used as a direct comparison since the performance indices

highly depend on the geometry of the complex surfaces, the spraying process, and the robot

model in general.

131

Chapter 7. Conclusion and Future Works

The primary goal of the thesis was to develop an integrated system for industrial

painting capable of generating automated paint trajectories optimized for coating thickness,

process times, and energy consumption. The literature review highlighted key technologies

needed to automate the trajectory planning process of a paint robot. The establishment of

a coating deposition model on a complex `free-form surface and the dynamic model of the

robot bears key importance in the trajectory planning and optimization process. While

adequate work has been done to optimize the coating thickness over a complex free-form

surface, the application of a robot dynamic model to obtain energy efficient paint

trajectories is left unattended. Therefore, this study focused on developing a hybrid

optimization technique to ascertain coating uniformity, process times, and energy

consumption in the trajectory planning process. Moreover, considerable effort was put into

the development of the integrated system, specifically the web-based GUI and the backend

programming for interacting with the system.

The trajectory planning process starts with the acquisition of the 3D model of the

object. Once the geometry of the object is obtained and calibrated in the camera frame, an

improved point cloud slicing technique is applied with the provision of a variable slicing

direction to broaden the optimizer search space. The slicing is performed at an arbitrary

angle of the eigen coordinate frame. Then, the trajectory points for each slice are obtained

in discrete steps, and the coating thickness is computed. Similarly, using the robot dynamic

model, the joint torques, link velocities, and the time delta between trajectory points are

computed. The individual slice of the point cloud is then optimized using GA (Genetic

Algorithm) by minimizing a joint cost function. The inclusion of slicing direction and the

inverse kinematic configuration of the robot among the slice width and slice speeds leads

to a better optimization of the trajectories in terms of coating uniformity, process times,

and energy consumption. Using the hybrid optimization scheme and employing a variable

slicing direction, optimal paint trajectories can be obtained. The literature analysis revealed

the use of only a single mean squared error objective function to achieve the desired coating

thickness requirement. Our novel optimization scheme introduced three additional terms

132

into the objective function to account for the coating deviation errors, process times, and

energy consumption. Experimental results reveal energy savings of 44%, 51% and 33%

for the paint trajectories of a car door, car hood, and car bumper, respectively, while

achieving coating uniformity and lower process times.

 For future works, the paint system can be modeled in a simulation environment like

Gazebo [82] or MATLAB [83] to analyze the optimized paint trajectories. Gazebo is a

physics engine and requires the model to be presented in the form of a URDF (Unified

Robot Description Format), which works in conjunction with the ROS ecosystem. A URDF

can model the kinematic and dynamic properties of the robot in more detail, leading to

more accurate calculations of the robot dynamics. On a similar note, the spray delivery

system can also be modeled, and the coating thickness can be analyzed. The use of a

simulation environment makes it easy to assess the performance of the system while

eliminating the need for a physical system.

Another recommendation for future work would be the use of large 6-axis robots

with the provision of an HVLP spray gun system. The last 3 axes of the robot can be used

for orientation control to position the paint gun over the surface of the object. The

experimental paint application is not possible with a 4 DOF robot since it can only be

controlled for a position in the three-dimensional cartesian space and not the orientation.

In the literature review section, industrial robotic systems for paint applications were

discussed in detail and can be utilized for paint applications more precisely.

Nevertheless, for industrial applications, where many parts are to be processed

simultaneously, the hybrid optimization scheme can be implemented on a large scale. The

optimization function implemented in Python can be converted to a class object, and

hyperthreading can be utilized to parallelize the execution. A class instance for each object

can be submitted to a standalone thread, thereby making the execution parallel. Moreover,

GPU processing can also be investigated to process large batch sizes of objects, and the

trajectories can be computed. As a final recommendation, the execution scripts can be built

using docker containers [84] with the required dependencies included on a single image.

The proposed solution will lead to a smoother distribution of the software resources

independent of the OS used by the server.

133

References

[1] "Global automotive executive survey Tech. Rep.," KPMG, 2017.

[2] "Volatile Organic Compounds' Impact on Indoor Air Quality," United States
Environmental Protection Agency, [Online]. Available: https://shorturl.at/ekpR4..

[3] "Gone to waste: exploring the environmental consequences of industrial paint pollution,"
qlayers, [Online]. Available: https://shorturl.at/CGS16.

[4] G. J. Bambousek, Algonac, D. S. Bartlett and T. D. Schmidt, "SPRAY PAINT SYSTEM
INCLUDING PAINT BOOTH, PAINT ROBOT APPARATUS MOVABLE THEREN
AND RAIL MECHANISM FOR SUPPORTING THE APPARATUS THEREOUT". US
Patent 4,630,567, 23 Dec 1986.

[5] S.-S. Suh, J.-J. Lee, Y.-J. Choi and S.-K. Lee, "A Prototype Integrated Robotic Painting
System: Software and Hardware Development," in Proceedings of the 1993 IEE4RSJ
International Conferenceon Intelligent Robots and Systems, Yokohama, Japan, 1993.

[6] M. A. S. Arıkan and T. Balkan, "Process Modeling, Simulation, and Paint Thickness
Measurement for Robotic Spray Painting," Journal of Field Robotics, vol. 17, no. 9, pp.
479-494, 2000.

[7] "Model 95A & 95AR Automatic Spray Gun," Carlisleft, [Online]. Available:
https://carlisleft.com/en/product/model-95-automatic-spray-gun/.

[8] Elcometer, "Elcometer 345 Coating Thickness Gauge," [Online]. Available:
https://www.mltest.com/images/stories/elco_345.pdf.

[9] "Iwata Revolution HP-M2 Gravity Feed Single Action Airbrush," Iwata, [Online].
Available: https://www.iwata-airbrush.com/revolution-mini-hp-m2.html.

[10] L. Scalera, E. Mazzon, P. Gallina and A. Gasparetto, "Airbrush Robotic Painting
System: Experimental Validation of a Colour Spray Model," in International Conference
on Robotics in Alpe-Adria Danube Region: Advances in Service and Industrial Robotics,
Danube, July 2017.

[11] M. Javaid, A. Haleem, S. Pratap and R. Suman, "Industrial perspectives of 3D scanning:
Features, roles and it's analytical applications," Sensors International , vol. 2, 2021.

[12] L. Du, Y. Lai, C. Luo, Y. Zhang, J. Zheng, X. Ge and Y. Liu, "E-quality Control in
Dental Metal Additive Manufacturing Inspection Using 3D Scanning and 3D
Measurement," Frontiers in Bioengineering and Biotechnology, vol. 8, 2020.

134

[13] C. E Dombroski, M. ER Balsdon and A. Froats, "The use of a low cost 3D scanning and
printing tool in the manufacture of custom-made foot orthoses: a preliminary study,"
BMC Research Notes, London, ON, Canada, Dec 2014.

[14] W. L. Y. A, "Applications of 3D scanning and reverse engineering techniques for quality
control of quick response products," Int J Adv Manuf Technol, vol. 26, p. 1284–1288,
2005.

[15] W. K. K, D. P. M, E. C. M, B. P, L. C and B. R, "Uncertainty studies of topographical
measurements on steel surface corrosion by 3D scanning electron microscopy," Micron
43, pp. 387-395, 2012.

[16] J.-F. Larue, D. Brown and M. Viala, "How optical CMMs and 3D scanning will
Revolutionize the 3D Metrology World," in Integrated Imaging and Vision Techniques
for Industrial Inspection, London, Springer, 2015, pp. 141-176.

[17] O. Esaias, G. W. Noonan, S. Everist, M. Roberts, C. Thompson and M. N. Krosch,
"Improved Area of Origin Estimation for Bloodstain Pattern Analysis Using 3D
Scanning," J Forensic Sci, vol. 65, no. 3, pp. 722-728, May 2020.

[18] K. Panjvani, A. V. Dinh and K. A. Wahid, "LiDARPheno – A Low-Cost LiDAR-Based
3D Scanning System for Leaf Morphological Trait Extraction," frontiers in Plant
Science, vol. 10, Feb 2019.

[19] C. Little, D. Patterson, B. Moyle and A. Bec, "Every footprint tells a story: 3D scanning
of heritage artifacts as an interactive experience," in Proceedings of the Australasian
Computer Science Week Multiconference, 2018.

[20] Z. Stojkic, E. Culjak and L. Saravanja, "3D MEASUREMENT - COMPARISON OF
CMM AND 3D SCANNER," in 31ST DAAAM INTERNATIONAL SYMPOSIUM ON
INTELLIGENT MANUFACTURING AND AUTOMATION, 2020.

[21] O. Alexandrov and R. A. Beyer, "Multiview Shape‐From‐Shading for Planetary
Images," Eath and Space Science, vol. 5, pp. 652-666, 2018.

[22] N. Ye, H. Zhu, M. Wei and L. Zhang, "Accurate and dense point cloud generation for
industrial Measurement via target-free photogrammetry," Optics and Lasers in
Engineering, vol. 140, 2021.

[23] R. A. Newcombe, S. Izadi, O. Hilliges and D. Molyneaux, "KinectFusion: Real-Time
Dense Surface Mapping and Tracking," in 10th IEEE International Symposium on Mixed
and Augmented Reality, Basel, Switzerland, 2011.

135

[24] S. Meister, S. Izadi, P. Kohli, M. Hammerle, C. Rother and D. Kondermann, "When Can
We Use KinectFusion for Ground Truth Acquisition?," in Proc. Workshop on Color-
Depth Camera Fusion in Robotics, 2012.

[25] F. Ma, L. Carlone, U. Ayaz and S. Karaman, "Sparse depth sensing for resource-
constrained robots," The International Journal of Robotics Research., vol. 38, no. 8, pp.
935-980, 2019.

[26] C. Boehnen and P. Flynn, "Accuracy of 3D Scanning Technologies in a Face Scanning
Scenario," in Fifth International Conference on 3-D Digital Imaging and Modeling,
Ottawa, ON, Canada, 2005.

[27] P. Besl and N. D. McKay, "A method for registration of 3-d shapes," IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vols. 14,, no. 2, p. 239–256, Feb, 1992.

[28] Y. Lei, M. Bennamoun, M. Hayat and Y. Guo, "An efficient 3D face recognition
approach using local geometrical signatures," Pattern Recognition, vol. 47, no. 2, pp.
509-524, February 2014.

[29] R. Osada, T. Funkhouser, B. Chazelle and D. Dobkin, "Matching 3D models with shape
distributions," in Proceedings International Conference on Shape Modeling and
Applications, Genova, Italy, pp. 154-166, 2001.

[30] S. Larsson and J. A. ,. Kjellander, "Motion control and data capturing for laser scanning
with an industrial robot," Robotics and Autonomous Systems, vol. 54 , p. 453–460, 2006.

[31] T. Borangiu and A. Dumitrache, Robot arms with 3D vision capabilities, Romania, 2010.

[32] J. Li, M. Chen, X. Jin, Y. Chen, Z. Dai, Z. Ou and Q. Tang, "Calibration of a multiple
axes 3-D laser scanning system consisting of robot, portable laser scanner and turntable,"
Optik, vol. 122, no. 4, pp. 324-329, February 2011.

[33] C. Shen and S. Zhu, "A Robotic System for Surface Measurement Via 3D Laser
Scanner," in The 2nd International Conference on Computer Application and System
Modeling, 2012.

[34] A. Pichler, h. Viiicze, H. Andersen and O. hladseii, "A Method for Automatic Spray
Painting of Unknown Parts," in International Conference on Robotics &Automation,
Washington, DC, May 2002.

[35] M. V. Andulkar and S. S. Chiddarwar, "Incremental approach for trajectory generation
of spray painting robot," Industrial Robot: An International Journal, vol. 42, no. 3, pp.
228-241, 2015.

136

[36] W. Chen, Y. Tang and Q. Zhao, "A novel trajectory planning scheme for spray painting
robot with Bézier curves," in Chinese Control and Decision Conference (CCDC,
Yinchuan, China, 6746-6750, 2016.

[37] X. Yu, Z. Cheng, Y. Zhang and L. Ou, "Point cloud modeling and slicing algorithm for
trajectory planning of spray painting robot," Robotica, vol. 39, p. 2246–2267, 2021.

[38] L. Guan and L. Chen, "Trajectory planning method based on transitional segment
optimization of spray transitional segment optimization of spray," Industrial Robot: the
international journal of robotics research and application, vol. 46, no. 1, pp. 31-43,
2019.

[39] G. L. Srinivas and A. Javed, "Optimization approaches of industrial serial manipulators
to improve energy efficiency: A review," in 3rd International Conference on Advances
in Mechanical Engineering (ICAME), 2020.

[40] K. Paes, W. Dewulf, K. V. Elst, K. Kellens and P. Slaets, "Energy efficient trajectories
for an industrial ABB robot," in 21st CIRP Conference on Life Cycle Engineering, 2014.

[41] A. Sengupta, T. Chakraborti, A. Konar and A. Nagar, "Energy Efficient Trajectory
Planning by a Robot Arm using Invasive Weed," in Third World Congress on Nature
and Biologically Inspired Computing, Salamanca, Spain, 2011.

[42] A. Fenucci, M. Indri and F. Romanelli, "An off-line robot motion planning approach for
the reduction of the energy consumption," in IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 2016.

[43] J. N. Pires, T. Godinho and P. Ferreira, "CAD interface for automatic robot welding
programming," The Industrial Robot, vol. 31, no. 1, pp. 71-76, 2004.

[44] H. Chen, T. Fuhlbrigge and X. Li, "A review of CAD-based robot path planning for
spray painting.," Industrial Robot, vol. 36, no. 1, p. 45–50, 2009.

[45] N. R. Whitehouse, "Shreir's Corrosion || Paint Application," 2010.

[46] S. V. Ravikumar, J. M. Jha, I. Sarkar, S. K. Pal and S. Chakrabortya, "Enhancement of
heat transfer rate in air-atomized spray cooling of a hot steel plate by using an aqueous
solution of non-ionic surfactant and ethanol," Applied Thermal Engineering, vol. 64, no.
1–2, pp. 64-75, March 2014.

[47] S. Poozesh, N. Akafuah and K. Saito, "Effects of automotive paint spray technology on
the paint transfer efficiency – a review," Journal of Automotive Engineering, vol. 232,
no. 2, p. 282–301, 2018.

137

[48] J. Casanova, J. Lima and P. Costa, "A Simulation Tool for Optimizing a 3D Spray
Painting System," in International Conference on Optimization, Learning Algorithms
and Applications OL2A, Springer, Cham, Jan 2022.

[49] J. Rupp, E. Guffey and G. Jacobsen, "Electrostatic spray processes," Metal Finishing,
vol. 108, no. 11-12, p. 150–163, Dec 2010.

[50] RoboDK, "Simulate Robot Applications," RoboDK, [Online]. Available:
https://robodk.com/examples%7B#}examples-painting.

[51] "Robotic and automated workcell simulation, validation and offline programming,"
[Online]. Available: www.geoplm.com/knowledge-base-resources/GEOPLM-Siemens-
PLM-Tecnomatix-Robcad.pdf.

[52] "Delfoi PAINT," Delfoi, [Online]. Available: https://www.delfoi.com/delfoi-
robotics/delfoi-paint/.

[53] "RobotStudio® Painting PowerPac," ABB, [Online]. Available:
https://new.abb.com/products/robotics/application-software/painting-
software/robotstudio-painting-powerpac.

[54] "Inropa™ OLP Automatic," [Online]. Available:
https://www.inropa.com/fileadmin/Arkiv/Dokumenter/Produktblade/OLP_automatic.pdf.

[55] "FANUC ROBOGUIDE PAINTPRO," FANUC, [Online]. Available:
https://www.fanucamerica.com/support/training/robot/elearn/fanuc-roboguide-paintpro.

[56] MMC, "ATEX Codes Simplified," MeasureMonitorControl, [Online]. Available:
https://www.measuremonitorcontrol.com/resources/atex/atex-codes.

[57] KUKA, "KUKA ready2_spray," KUKA, [Online]. Available:
pdf.directindustry.com/pdf/kuka-ag/kuka-ready2-spray/17587-748199.html.

[58] FANUC, "FANUC P-250iB Paint Robot," FANUC, [Online]. Available:
https://www.fanucamerica.com/products/robots/series/paint/p-250ib-paint-robot.

[59] ABB, "IRB 5500-22/23," ABB, [Online]. Available:
https://new.abb.com/products/robotics/industrial-robots/irb-5500-22.

[60] "Program Compilation (LS vs. TP)," RoboDK, [Online]. Available:
https://robodk.com/doc/en/Robots-Fanuc-Program-Compilation-LS-vs-TP.html.

[61] G. v. Rossum, "python," python, [Online]. Available: https://www.python.org/.

[62] "WinOLPC Software," FANUC, [Online]. Available: https://www.industry-
plaza.com/winolpc-software-p27618.html.

138

[63] J. M. Casanova, "Simulation and Planning of a 3D Spray Simulation and Planning of a
3D Spray," Mestrado Integrado em Engenharia Eletrotécnica e de Computadores, July
2021.

[64] opencv, "Open source computer vision library," https://github.com/opencv/opencv.

[65] "Depth Camera D435," intelrealsense, [Online]. Available:
https://www.intelrealsense.com/depth-camera-d435/.

[66] "VL53L0X Time Of Flight Distance Sensor," ESPHome, [Online]. Available:
https://esphome.io/components/sensor/vl53l0x.html.

[67] "SG90 Digital," TowerPro, [Online]. Available:
https://www.towerpro.com.tw/product/sg90-7/.

[68] E. R. DAVIES, Machine Vision Theory, Algorithms, Practicalities, Elsevier Inc, 2005.

[69] Q.-Y. Zhou, J. Park and V. Koltun, "Open3D: A Modern Library for 3D Data
Processing," Computer Vision and Pattern Recognition, 2018.

[70] "From depth map to point cloud," medium, [Online]. Available:
https://medium.com/yodayoda/from-depth-map-to-point-cloud-7473721d3f.

[71] J. Xie, Y. Fang, F. Zhu and E. Wong, "DeepShape: Deep Learned Shape Descriptor for
3D Shape Matching and Retrieval," Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition CVPR, pp. 1275-1283, 2015.

[72] J. J. Craig, "Manipulator Dynamics," in Introduction to Robotics Mechanics and
Control, Pearson Education International, 2004, pp. 173-176.

[73] S. Mirjalili, "Genetic Algorithm," in Evolutionary Algorithms and Neural Networks.
Studies in Computational Intelligence, vol 780. , Cham, Springer, 2019.

[74] "Nema 23 Stepper Motor Bipolar 1.8 Degree 2.8A," amazon, [Online]. Available:
https://shorturl.at/xyCM6.

[75] "Jetmax Jetson nano," Hiwonder, [Online]. Available:
https://www.hiwonder.com/products/jetmax?variant=39645677125719.

[76] "Electrical Buddy Adjustable Rod Lever Arm Momentary Limit Switch," amazon,
[Online]. Available: https://www.amazon.ca/Electrical-Buddy-Adjustable-Momentary-
Me-8107/dp/B07Y7C9188.

[77] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler
and A. Ng, "ROS: an open-source Robot Operating System," in ICRA workshop on open
source software, 2009.

139

[78] "JavaScript," Pluralsight, [Online]. Available: https://www.javascript.com/.

[79] "Bootstrap," Bootstrap, [Online]. Available: https://getbootstrap.com/docs/4.2/getting-
started/introduction/.

[80] "The Standard ROS JavaScript Library," ROS.org, [Online]. Available:
https://wiki.ros.org/roslibjs.

[81] "PyGAD - Python Genetic Algorithm!," pygad, [Online]. Available:
https://pygad.readthedocs.io/en/latest/.

[82] "Simulate before you build," GAZEBO, [Online]. Available:
https://gazebosim.org/home.

[83] "MATLAB," MathWorks, [Online]. Available:
https://www.mathworks.com/products/matlab.html.

[84] "Develop faster. Run anywhere.," Docker, [Online]. Available:
https://www.docker.com/.

140

Appendices

A1. Paint system CAD drawings

A2. Robot specifications

141

A3. Intel Real sense D435 specifications

A4. VL53L0X TOF sensor specifications

142

A5. Linear actuators specifications

Stroke length 10"

Voltage 12 V – 24 V
Force Delivers 330 lbs of force
Speed 0.315 in/s at 12v; 0.670 in/s at 24v
Extras Position feedback, Mounting brackets, Weather resistant, Limit switches

Limit Switches Included - Automatically stops at end of travel

Environment IP54 rated (Weather resistant)

Feedback sensor Hall Effect - Each pulse represents 0.007046 inches (0.17896mm)

RED wire Motor (+)

BLACK wire Motor (-)

GREEN wire Hall Sensor GND

WHITE wire Hall Sensor POWER

YELLOW wire Hall Sensor OUTPUT

