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ABSTRACT

Paint application is vital for product durability and aesthetics, whether done manually
or by precise robotic systems. Manual work is error-prone and risky, while robots offer
accuracy. However, programming robot trajectories for diverse products is challenging.
Therefore, developing an autonomous system capable of generating automated paint
trajectories is desirable. While adequate work has been done to optimize paint trajectories
for coating thickness on complex free-form surfaces, the investigation of robot energy
consumption and process time in the context of painting is left unattended. Thus, this study
focuses on formulation of a hybrid optimization scheme to generate time and energy-
efficient paint trajectories while ensuring optimal coating deposition on a surface.
Moreover, considerable effort is put into the development of hardware and software for the
integrated robotic system. Results for the trajectory optimization of a car door, hood, and
bumper reveal efficient paint trajectories can be obtained using the proposed optimization

scheme.
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The maximum opening angle (torch angle) of ellipse in X direction
The maximum opening angle (torch angle) of ellipse in Y direction
Paint flow rate at point C;

Paint flow rate at point C,

Paint area at point C;

Paint area at point C,

Coating thickness at point C;

Coating thickness at point C,

Connection line between the paint gun and a point s on the surface of
the object

Normal vector of the surface at point s

Tangent plane at point O on the surface
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M, A parallel plane to M; intercepting point s on the surface
y Angle between normal vector 1 and L
Ly, Ly, Lg Link lengths of the 4 DOF PRRR manipulator

my, my, ms Link masses of the 4 DOF PRRR manipulator

M Link 0 mass (robot base mass)
M(q) Manipulator inertia matrix
C(q,9) Manipulator Coriolis and centrifugal acceleration matrix
H(q,q) Manipulator gravity and friction dynamics matrix
d Vertical offset of the robot base
q Joint space angles vector
q Joint space velocity vector
X Task space velocity vector
q Joint space acceleration vector
X Task space acceleration vector
Ji Jacobian in frame {0}
H Hessian in frame {0}
Tn Torque at joint n
Wn Angular velocity of link n
Njoints Number of joints in a serial-link manipulator
Prech Total mechanical power of a manipulator
Esp Energy consumed by the manipulator while moving from point A to B
tap Time taken by the manipulator while moving from point A to B
{SF} Slicing coordinate frame
{EF} Eigen coordinate frame
V(i) Speed of the paint gun along a given slicing plane i

The x coordinate of the ellipse used in the coating function at a given
x .
® slicing plane i

COS ¥ (i) Cosine of angle y at a given slicing plane i
COS Py (i) Cosine of angle ¢, at a given slicing plane i
hg iy Parameter hg at a given slicing plane i
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Ppatch

Npatch
Npts

Probot
lprobot

Vrobot

dideal

dmean

dstd

AT ™)

Ja,

]derror

Vmin

Trajectory coordinates at a slicing plane i and trajectory point j
represented in the slicing frame {SF}

End-effector orientation vector at a slicing plane i and trajectory point
j represented in the slicing frame {SF}

Velocity vector at a slicing plane i and trajectory point j represented in
the slicing frame {SF}

Point cloud of a patch Ppqscp € R Npatch)

Number of points in a patch

Number of points in a slice

Trajectory coordinates in the robot frame {0}: PT°P°t ¢ RG Ne)
Orientation vectors in the robot frame {0}: 7Pt € R( Ne)

Velocity vectors in the robot frame {0}: V7°Pt € R Ne)

Desired coating thickness

Coating thickness at a point s on the surface

Mean coating thickness over a region of surface

Standard deviation of coating thickness over a region of surface

Total trajectory points in a slice

Time delta between two trajectory points

Mean squared error coating cost function

Coating deviation cost function

Mean energy cost function.

Mean trajectory time cost function

Total cost function

Scaling factor for mean squared error cost

Scaling factor for coating deviation cost

Scaling factor for energy cost

Scaling factor for time cost

Hyper parameter in the cost function

Slice width

Minimum speed of the spraying gun
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dmean
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Ctype
Mtype
N
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Maximum speed of the spraying gun
An integer index representing the inverse kinematic configuration when
converting task space coordinates to joint space

Slicing direction: Rotation angle between frame {EF} and {SF}

Average current of the robot for the entire trajectory

Total sum of energy across the trajectory points

Percentage of energy savings

Mean coating thickness on the entire surface of a point cloud
The standard deviation of the coating thickness on the entire surface
of a point cloud

Ratio of dsq and dyean

Mutation rate in GA

Crossover type in GA

Mutation type in GA

Number of mating parents in GA

Number of generations in GA

Number of solutions per population in GA
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Chapter 1. Introduction

1.1 Background and motivation

Industrial painting has become increasingly important in modern manufacturing
processes. The application of paint to a product’s surface improves its longevity and
aesthetics. When paint is applied to a surface, it not only increases the corrosion resistance
of the surface, but also enhances its heat resistance, electrical insulation, and reactivity to
harmful chemicals. Robotics play an important role in paint processes since they increase
the process efficiency, productivity, and quality of the painted surface. Robotic systems
can work continuously without the need for any breaks thereby, accelerating production
times and reducing labor costs. According to a survey, vehicle production will increase to
111.7 million units by the year 2023 [1]. The increase in production rates of vehicles
demands the automation of paint processes and a need to develop a fully autonomous

system.

The process of paint automation is an ongoing topic in both academia and industry. The
key technology in paint process automation is trajectory planning over the surface of a
geometric model. Trajectory planning refers to finding an optimal paint gun path and
velocity vectors while ensuring coating uniformity over the surface of an object. While
much work has been done to develop trajectory optimization schemes to achieve coating
uniformity over the finished surface, these methods do not consider the dynamics of the
robot which leads to suboptimal trajectory planning. This thesis, therefore, focuses on
formulating a hybrid trajectory optimization scheme utilizing a genetic algorithm by taking
into consideration the geometry of the object, the dynamics of the spray-painting process,

and the robot moving the paint gun.
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1.2 Problem definition and scope of the thesis

The manual painting process for industrial parts exhibits challenges related to
variations in coating quality, extended production timelines, heightened environmental
impact through VOC emissions [2], and compromised worker safety [3]. This thesis seeks
to investigate and implement specific strategies such as automation, eco-friendly coating
formulations, and process optimization to rectify these issues. Optimal paint trajectory
planning requires an accurate model of the geometry of the object, the dynamics of the
spraying process, and the robot moving the spraying gun. Thus, the scope of the thesis can
be divided into four folds. First, to obtain the geometry of the object, a 3D scan acquisition
system is developed to accurately measure the surface profile of the surface to be painted.
Secondly, the spray paint profile and paint deposition model are established on a complex
free-form surface and thirdly, an optimization algorithm for the optimal trajectory planning
of the spray paint process subject to paint spray and robot dynamics is developed. Finally,
the mathematical formulation of the proposed scheme is implemented in Python
programming language and the energy consumption is validated experimentally.
Additionally, a web-based GUI (graphical user interface) is also developed that lets the
user interact with the integrated system to perform 3D scans on objects, optimally plan
trajectory on the surface of the object, and execute the trajectory in real-time on the two

robotic arms installed onboard.
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1.3 Outline of thesis

The thesis report is divided into 7 chapters. Chapter (1) describes the background of
industrial spray paint processes and the motivation to continue this thesis study. It also
describes the key concepts needed to achieve the goals of the study. Chapter (2) discusses
the theoretical concepts needed to formulate research methodology by overcoming
important shortcomings in literature. This includes the investigation of integrated systems
used for industrial painting, 3D scanning techniques for acquiring the geometries of objects
and generating signatures of 3D surfaces, trajectory planning, and optimization techniques
for complex free-form surfaces, and finally, validation techniques for validating the
uniformity of the deposited paint on the surface and energy consumed by the robot. Chapter
(3) describes the development of the 3D scan acquisition system in detail. This includes
the selection of hardware components and the application of software to generate a
complete 3D scan of a complex free-form surface. Chapter (4) discusses the mathematical
formulation of the paint spray profile, the paint deposition model on a complex free-form
surface, and the optimization algorithm for obtaining an optimal trajectory for the paint
process. Chapter (5) discusses the design and development of an integrated system for
automating the painting process with details on the web-based GUI and the software
components used. Chapter (6) discusses the results of the 3D scan acquisition system and
3D profile signatures for evaluating the accuracy of 3D scans, simulation results for the
paint surface quality achieved and the energy consumed by the robot to verify the proposed
optimization scheme, and finally, validation of the optimal trajectory executed online on
the integrated system. Chapter (7) discusses the conclusions and the future

recommendations of the thesis study by summarizing all the chapters.
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Chapter 2. Literature Review

The problems associated with manual painting could be addressed using an
integrated robotic system capable of autonomously applying paint over surfaces. Such a
system must contain all the necessary hardware and software components to achieve the
desired automation. This includes hardware components such as an industrial robot, a paint
delivery system, a 3D scanner, and a central processing unit. The software components
include: a simulation or co-simulation environment for a friendly user interface, an
algorithm for 3D scanning of the object, a blueprint for trajectory planning and
optimization, and an execution mechanism for uploading the trajectory to the robot. The
literature review will discuss in detail the current technologies used for industrial painting;
the shortcomings associated with them, and finally suggest improvements to make the paint

process more autonomous and efficient.

2.1 Integrated systems for automated industrial painting

Literature research shows the crucial components in the integrated system design
are a paint booth, a robotic system, and the required software collection. While designing
an integrated system for paint automation, researchers focus on improving the coating
uniformity, process times, and paint waste. An early 1980's integrated system for painting
contains a paint booth, a robot apparatus, and a rail mechanism for moving the robots [4].
The main goal behind the development of the robotic system was to minimize paint waste

by using precise robotic movements.

Similarly, a software and hardware-based prototype of an integrated robotic
painting system is developed [5]. The software modules contain part designs, process
planning, trajectory generation of robots, and motion control. The hardware components
include a work cell controller, motor drives, robotic manipulator, surface scanner, and paint
delivery units. The scanning interface uses a mechanical probe to get the topography of the
surface to be painted and converts it into a CAD model. Conversely, a CAD model can
directly be imported from the CAD library. It is then processed to generate the robot

trajectories followed by their execution on the work cell controller.
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Another integrated system developed uses an algorithm to model the spray-painting
process, and a computer program to simulate a robot for painting curved surfaces [6]. The
painting program makes it possible to find out the optimum parameters for spray painting
such as the paint gun velocity, spray distance, and multiple paint paths. The modeling part
is done using a CAS (computer-assisted software) by two methods. If the part is simple, a
CAD model is generated in the software otherwise a laser scanner is used to get the 3D
model. An algorithm is then formulated to perform the paint thickness analysis and the
paint process is simulated. For the validation of the coating thickness, a flat surface is used.
The paint is deposited in a single paint stroke and the coating thickness is measured using
an ELCOMETER. The experimental setup includes a FANUC ArcMater Sr.Industrial
robot, a BINKS 95-A spray gun [7], and an ELCOMETER 345 coating thickness gauge

[8]. A schematic of this integrated system is shown in Fig. 2.1.
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Figure 2.1: Integrated system for robotic painting. [6]

An integrated system containing a UR-10 robot with an HP-M2 airbrush [9] and a
scanner for digitizing the paint intensity is developed [10]. It uses a blueprint to compute
the coating intensities and then experimentally validates it. A single paint stroke is
performed to deposit some amount of paint on a surface. After an image of the paint area
is taken and digitized into color intensities, an image processing pipeline is applied to
validate the coating thickness at each intensity point. The UR-10 robot with the spray gun

is shown in Fig. 2.2.
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Figure 2.2: Integrated system for paint quality validation. [10]

2.2 3D scanning and measurement

3D scanning is important for digitally recreating physical objects which can be
accomplished using several methods. The most popular methods include CMM
(Coordinate-measuring machine), laser scanners, and commercial computed tomography
(CT) scanners [11]. CMM does one measurement at a time and therefore, is time
consuming and less efficient. It also uses conventional monitoring equipment which makes
it unsuitable for fast scanning. On the other hand, laser scanners are fast and can quickly
scan the objects [12, 13, 14]. 3D scanning is also used for generating scenes for movies
and games. In movies and games, 3D scanning is applied to objects, landscapes, and
persons. It also finds its use in the screening of historical locations and objects for academic
research. Upon a full 3D scan of a structure, it helps identify its integrity. 3D scanners can
measure precise details in an object and captures complex geometries in a point cloud
format [15, 16, 17, 18]. 3D scanning is utilized for reconstructing historical artifacts [19].
The early Aboriginal trackways discovered at the Wallenda Lakes World Heritage Site are
used as a case study. 3D scanning can be broadly divided into two categories: passive and

active 3D scanning as shown in Fig. 2.3.
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Figure 2.3: Classification of 3D scanning and measurement methods. [20]

2.2.1 Passive 3D scanning methods

Passive 3D scanning methods do not need a physical contact of the measuring
device with the object. These methods use geometrically correct or stochastic markings on
the surface combined with optical laws to capture the geometry of an object. Light based
passive sensors work by using the reflected light from the surface of the object [20]. These
methods are further divided into three categories: Shape from Shading, Object Raster, and
Classic Photogrammetry. Shape from shading uses a surface image to compute the three-
dimensional model of an object. A novel algorithm for shape from shading with multiple
input images, realistic camera models, low angles of illumination, and uncertain camera
positions is developed to capture a three-dimensional view of planetary images [21]. Raster
scanning is the process of scanning line by line to cover an area. The most important of the
passive methods is the photogrammetry. It uses overlapping photographs to create a 3D
representation of an object. A researcher uses target-free photogrammetry to generate dense
point clouds of different objects [22]. This algorithm uses a Rotation-Free Digital Image
Correlation (RFDIC) method to improve the matching precision and a coarse-to-fine

strategy to establish a multi-view geometry.
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2.2.2 Active 3D scanning methods

Among the active 3D scanning methods, two subcategories are identified including
contact-based and noncontact-based methods. The contact-based methods, require a
physical contact between the measuring sensor and the object. A widely used approach is
CMM which uses a mechanical probe to generate surface topography. CMM is an obsolete
method and is slow compared to new optical based methods that use the principles of TOF
(Time of Flight), Triangulation and Interferometry. LIDAR and LASER scanners are the
prominent technologies when it comes to noncontact-based methods. A LIDAR based
scanner is commonly used for mapping surroundings due to its long range. A LASER

scanner on the other hand though limited in range, can capture more details of an object.

Kinect Fusion is a real-time mapping system used to capture indoor 3D scenes with
variable lighting conditions by employing the use of a low-cost depth camera [23]. A per
vertex Euclidean error and per vertex angle error metrics are used to analyze the accuracy
of the Kinect Fusion method for 3D scenes [24]. It is observed that the Euclidean error lies
within 0-15 mm for an office scene and within 0-8 mm for a statue as shown in Fig. 2.4.
Similarly, a sparse reconstruction-based technique is used to generate a 3D environment
using a few depth scans [25]. Since most of the surfaces and edges have regularity, this
makes it possible to achieve high reconstruction accuracy using a limited number of
measurements of the unknown environment. The results for the 3D reconstruction accuracy

are shown in Fig. 2.5.

Another study aims at the comparison of different 3D scanning devices to capture
a human face in 3D [26]. The accuracy is computed using mean squared error between the
ground truth CAD model and the generated 3D scan. Such methods are commonly termed
as surface registration-based techniques dependent on ICP error for accuracy evaluation
[27]. ICP is an iterative process and uses the entire surface which makes it computationally
inefficient. On the other hand, feature matching-based methods use mathematical
transformations to obtain higher dimensional features of the surface for calculating
accuracy [28]. One such method uses geometric signatures to encode the surface into D,
D», D3, and Aj features [29]. These features are probability distributions of measurements

taken from the geometric model such as the distance between the centroid and points (D1),
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the distance between two points (D2), the square root of the area of a triangle formed by 3

points (D3) and the angle formed by the vertex of 3 points (A3).
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Figure 2.4: Euclidean error for a statue and office scene. The point cloud is taken

via a depth camera and registered in Kinect Fusion. [24]

PSNR (dB) / Time (s)
Name | Method (Percentage of Samples)
0.5% 1% 5% 10%

CSR N/A N/A 2147106 2417865
Alos. | WTHCT N/A N/A  21.9/194 243/195
naive N/A  21.6/0.17 24.7/0.14 26.0/0.22
Lidiag |20.6 /145 21.7/7.02 24.9/3.12 26.4/2.06
CSR N/A N/A 2317119 2537980
A | WTHCT N/A N/A 2507198 26.7/195
naive [21.9/0.15 235/0.16 263/0.17 27.7/0.18
Lldiag |22.5/11.1 23.8/8.86 26.6/3.78 27.8/2.23
CSR N/A N/A 2667100 31.179.11
s WT+CT N/A 2417196 27.7/194 315/ 195
Y | naive |27.6/0.15 27.4/0.16 31.3/0.16 33.3/0.18
Lldiag|27.8/12.1 28.4/105 325/321 33.9/2.06
CSR N/A N/A 2437132 2657110
Dolls | WT+CT N/A  206/195 27.5/19.6 28.2/203
WS 1 naive (2587013 2457016 27.8/0.16 285/ 0.18
Lldiag |26.9/7.07 27.5/549 28.3/224 289/ 3.03
CSR N/A N/A~ 236/119 2617105
Mok | WEFCT N/A  224/193 263/195 276/ 194
OChIUS | Sive [25.7/0.14 24.7/0.16 268 /0.15 27.8/0.18
Lidiag |25.8/691 264/7.03 27.5/290 28.6/2.59
TSR N/A N/A 2317115 250/9.15
Rocks | WI+CT N/A N/A 2327193 256/19.2
® | naive |21.7/015 23.8/0.15 258/0.15 27.2/0.19
Lidiag|22.7/120 24.3/971 259/322 27.3/2.68

Figure 2.5: Accuracy comparison of naive, L1diag, CSR, and WT+CT. [25]
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2.2.3 Integrated systems for 3D scanning

An integrated system for 3D scanning comprises of hardware and software
components to capture the 3D representation of a physical object. A 3D scanner is an
important hardware component in realizing the 3D model of an object. It can be placed on
a stationary mount or a movable mount like a robotic arm. A line profile laser scanner, an
industrial robot, and a turntable mechanism are used to generate 3D scans of objects and
convert them to CAD models [30]. A set of curves are defined around the volume along

which the line profile scanner moves to generate a 3D scan of the object.

Similarly, 3D scanned models are investigated for contour tracing by designing a
robotic system [31]. This system uses a 6-DOF robotic arm, a short-range laser scanner
with 100 to 200 mm range, a 30 um resolution, and a turntable for rotating the work piece
as shown in Fig. 2.6. The laser scanner can communicate with the computer and the robot
controller. A similar scanning system for large-scale objects is proposed which uses a laser
scanner, a turntable mechanism, and a robot for calibration of the system [32].
Nevertheless, a robotic system for surface measurement via a 3D scanner uses similar

components to achieve the scanning task [33].
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Figure 2.6: Integrated system for 3D reconstruction of objects. [31]
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2.3 Trajectory planning and optimization

Trajectory planning and optimization requires accurate knowledge of the geometry
of the object on which paint is to be deposited. Geometry is usually available in the form
of a CAD model or a 3D scan from a sensor device. Once the geometry of the surface is
acquired, a spraying process model needs to be established to describe the physics of the
coating thickness on the surface. A trajectory for the paint gun can then be generated to
cover the entire surface while ensuring paint quality and other objectives. Paint quality can
be qualitatively described as the uniformity of coating thickness over a painted surface.
This section of literature review analyzes the techniques used for optimizing trajectories

over complex free-form surfaces.

2.3.1 Trajectory planning with paint quality optimization

An automated trajectory planning scheme is used to find spray trajectories of
unknown parts [34]. This method uses a direct PFeatureDetector (Process Oriented
Feature Detector) based approach to extract elementary geometries from a range sensor
data. This is done by first removing the skid, calibrating, and separating the part. After this,
for each segmented part, an edge map and mesh are generated. This approach is limited to
the detection of two types of geometries: Rib Detection and Cavity Detection. Rib detection
detects parallel lines representing ribs while cavity detection finds a region lower than the

neighboring regions using surface normal.

An incremental approach for trajectory generation of spray-painting robots is
proposed [35]. This method uses several parameters like a surface model, spray and gun
model, paint distribution model, spray pattern, and desired coating thickness to generate a
spray gun trajectory. The geometry of the part is expressed in the form of triangular patches
using a CAD model. To determine the coating thickness over the surface, a circular paint
distribution model is employed. Similarly, a functional mapping between the thickness of

paint applied and important parameters like spray gun radius, the paint flow rate, and paint
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transfer efficiency are obtained. The velocity of the paint gun and the overlap distance are

optimized to improve coating distribution over the surface.

Furthermore, the use of Bezier curves to plan spray painting trajectories is
investigated [36]. The spraying process is modelled using paint distribution on a circular
area, while the overlap is assumed constant over the surface. The use of T-Bezier curves in
trajectory planning ensures computational efficiency. The trajectories are planned along
the U and V principal directions of the geometry. Results show U direction trajectory gives

better coating thickness (51.1 um), and lower process time (82 s) as tabulated in Table 2.1.

Table 2.1: Trajectory optimization results for U and V direction trajectories. [36]

U direction V direction
Desired (um) 50.0 50.0
Average (um) 51.1 52.2
Maximum (um) 56.3 58.3
Minimum (um) 45.2 43.1
Process time (s) 82 99

Recent studies show the use of point cloud slicing technique in conjunction with
the coating thickness model to generate paint trajectories [37]. These methods are based on
the geometry of the object obtained via a laser sensor. A coating thickness model is
established by defining key geometric variables on the free-form surface. Next, a slicing
technique is used to obtain a particular portion of the point cloud. A grid projection
algorithm is then used to acquire points within the slice for computing coating thickness
over them. Finally, a golden section method is used to obtain the optimal slice width, and
velocity of the paint gun. This process is repeated for all the slices until the entire surface

is covered. The spraying process model is shown in Fig. 2.7.
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Figure 2.7: Coating thickness model for a complex free-form surface. [37]

The coating thickness is modelled using a double beta distribution. Using
equidistant slicing and a desired coating thickness of 23 um, a mean coating thickness of
25.947 um is obtained over the surface of a motorcycle spoiler. The maximum and
minimum values are 34.022 um and 7.928 um respectively. On the contrary, the use of
non-equidistant slicing scheme improves the mean coating thickness to 22.2669 um. The
variation in coating thicknesses is also reduced indicated by the maximal and minimal
values of 29.795 um and 6.971 um respectively. The variable overlap distances make the

paint distribution more uniform and improve the paint quality.

Another research focuses on optimizing the transitional segment of the trajectory
points on complex free-form surfaces [38]. The trajectory planning is based on the
geometry of the surface obtained via the STL (Stereo Lithography) file. An STL file is a
combination of normal vectors and vertices of the associated triangles of a 3D object. The
trajectory planning is done by first introducing the slice planes onto the workpiece and then
offsetting the points by h units along the normal direction. The transitional segments can
be straight, convex, or concave and are evaluated for a range of beta angles. It is observed

that for smaller beta angles, the straight trajectory works better while for moderate to large
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angles, the concave trajectory is better. This holds for both convex and concave-type free-
form surfaces. The paint quality metric (error) is the ratio of std. deviation and mean of the
coating thickness over the surface. The error is improved from 11.13% to 7.81% when

transitional segments are used. Results are shown in Fig. 2.8.

State Approach Location Average paint thickness (xm) Standard deviation (2m) Error (%)
Simulation  Before optimization ~Segment 1 at the middle of workpiece 69.1 6.3 9.1
Segment 2 at the middle of workpiece 723 5.9 8.2
Segment on the left side of workpiece 67.4 74 11.0
Segment on the right side of workpiece 68.4 8.2 12.0
Segment on the top side of workpiece 70.7 8.5 12.0
Segment on the bottom side of workpiece 68.3 6.9 10.1
After optimization ~ Segment 1 at the middle of workpiece 716 27 38
Segment 2 at the middle of workpiece 74.2 3.1 4.2
Segment on the left side of workpiece 7.1 5.6 79
Segment on the right side of workpiece 69.2 6.7 9.7
Segment on the top side of workpiece 67.4 5.8 8.6
Segment on the bottom side of workpiece 67.8 6.1 9.0
Experiment Before optimization Segment 1 at the middle of workpiece 68.8 6.7 98
Segment 2 at the middle of workpiece 714 5.8 8.1
Segment on the left side of workpiece 66.3 6.8 10.2
Segment on the right side of workpiece 67.5 9.1 135
Segment on the top side of workpiece 66.8 73 109
Segment on the bottom side of workpiece 7.2 109 15.3
After optimization ~ Segment 1 at the middle of workpiece 68.7 3.2 46
Segment 2 at the middle of workpiece 69.4 4.7 6.8
Segment on the left side of workpiece 67.4 49 73
Segment on the right side of workpiece 69.3 5.8 8.4
Segment on the top side of workpiece 68.1 5.9 8.7
Segment on the bottom side of workpiece 726 71 9.8

Figure 2.8: Coating thickness results for transitional segment opt. [38]

2.3.2 Trajectory planning with energy optimization

The energy of robotic manipulators can be optimized to generate efficient paint
trajectories while ensuring coating uniformity. The trajectory planning of manipulators is
dependent on the task it is performing. While the underlying physics of robot energy
consumption are similar, the energy optimization mechanism needs to be established for
each task. Energy optimization of robots include topology optimization to eliminate
needless densities, selection of optimal path and the use of light wight components, etc.
[39]. For the paint process, the selection of optimal path is of interest since the components
of the robots cannot be altered due to industry standards. An optimal path is generated for
the motion of an industrial ABB robot by investigating the energy consumption of multiple
trajectories between two points in space [40]. This method uses an SQP (Sequential

Quadratic Programming) type algorithm to optimize end-effector velocities leading to low
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energy consumption. The trajectories include a right-angle trajectory, straight-line
trajectory, an energy-optimal trajectory, a time-optimal trajectory and a trajectory for pick
and place maneuver. It is observed that that the energy optimal path is a curved one in the

task space and not the straight line one.

Another study uses an invasive weed optimization (IWO) technique to find energy
efficient trajectory for a robot using via points while avoiding obstacles [41]. A cost
function is established which penalizes redundant joint rotations, and constraints the joint
angles to generate a cubic trajectory for the two revolute joints of a serial manipulator.
Similarly, another approach searches for points close to the fly target points that lead to a
low energy consumption of the robot [42]. The mechanical energy of the robot is computed
through the dynamic model and a branch and bound algorithm is then used to scan for all
possible motions to find the energy-optimal trajectory. Results show that the energy
consumption for a 6 DOF COMAU Racer robot can be reduced to around 41% as tabulated
in Table 2.2.

Table 2.2: Energy consumption results for COMAU Racer robot. [42]

Pick and Place Passman
Epece (original traj.) 0.285058 0.3861133
Eneccopt (OPL.traj.) 0.21598 (-24.23%) 0.227371 (-41.11%)
Eg, (original traj.) 1.260339 1.637855
E7ot0pe (ODL.tTaj.) 1.026233 (-18.57%) 1.1937 (-27.11%)

2.4 Trajectory execution in simulation environment

Simulation software plays an important role in the development of science and
technology. They provide a convenient method for testing the system without developing
any prototype. Likewise, spray paint simulations can be used to predict the end results of
the painting without any significant cost. It is also useful for evaluating the paint quality
by measuring the surface area covered by the paint and the uniformity of the paint thickness

over the entire surface. A simulation environment usually works with physical objects
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represented by a CAD model and a physics engine which enables the software to define
the interactions between the objects in the environment. The physics engine contains
provision for defining the spray paint methods, spray paint trajectories and dynamics of the
physics. To execute the paint trajectory in a simulation environment, it is important to

understand important concepts and terminologies. These are explained one by one.

2.4.1 CAD models

A CAD model stores information about the geometry of an object such as edges,
corners, and surfaces, and is of great importance because of the information they carry [43].
In general, CAD models can be divided into two main categories: tessellated and
parametric [44]. The tessellated model represents an object by using polygonal meshes
described by vertices, edges, and faces. A parametric model stores the geometry of an
object by using analytical equations. For instance, a cylinder can be described by two
parameters: radius and height. Parametric models are efficient for storing geometries of
simple shapes and are not suitable for modeling complex shapes. On the other hand,

tessellated models are convenient, but more prone to errors due to approximations.

2.4.2 Spray-painting methods

Spray-painting methods are techniques used to deposit spray liquids on the surface
of work pieces. There are multiple spray-painting techniques including Air Atomized
Spray, HVLP (High Volume Low Pressure), Airless Spray, Air Assisted Airless Spray,
Heated Spray and Electrostatic Spray painting [45]. The air atomized spray method is the
most conventional method and is done by mixing air particles of compressed air with the
paint. The compressed air causes the paint to atomize in the form of droplets on the surface.
Air-atomized spray painting has great heat transfer capabilities and can be used to cool hot
metal surfaces too [46]. An improvement of the air-atomized spray method is the HVLP.
The low pressure and high volume of air can mix more efficiently with paint and with the

lower impact speed on the surface, the wastage of paint is reduced [47]. Airless spray
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systems use a high-pressure paint fluid and a nozzle to deposit paint on the surface of an
object. An improved version of the airless spray method is the air-assisted airless spray
method. This method leads to an increase in paint efficiency by reducing paint waste.
Another method is to heat the paint before applying, reducing its viscosity and hence, less
pressure is required to push it out of the nozzle. The heated paint adheres efficiently to the
surface thereby, minimizing paint waste [48]. Another method is the use of electrostatic
principles to deposit paint over the surface of metals. The surface to be painted is grounded
and the paint particles are charged to allow them to adhere to the surface [49]. This method

can be used only with metal surfaces, which is its major drawback.

2.4.3 Robot simulation software

Robot simulation software provides a user-friendly experience to test paint
trajectories and build robot programs. It has a provision of components including a library
of CAD models of robots, sample objects for testing trajectories, automatic collision
avoidance systems, axes limit features, and post processors for generating robot programs.
Some commercial simulators for paint robots include: RoboDK, RobCad paint,
Delfoi Paint, RobotStudio ® Paint PowerPac, OLP Automatic and
RoboGuide PaintPRO.

RoboDK 1is a software developed for offline programming of robots with the
provision of simulation tools [50]. It has a user-friendly interface but is not able to generate
automated trajectories based on the geometries. It is useful for research and testing
purposes. Another simulator is the RobCad paint by Siemens which is also based on offline
programming [51]. It has features such as paint databases and paint coverage analysis. Its
main advantage is the availability of predefined paths which speeds up the development of
paint simulations. It also reduces processing times and increases manufacturing quality.
The main disadvantage of this software is restricted access to some robot models and
libraries. Delfoi Paint is another software developed by Delfoi which provides
capabilities like analysis of paint thickness, precise smooth surface simulation, conveyor

tracking, and automatic detection of collision [52]. It also supports post-processors for the
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programming of industrial robots. RobotStudio® paint PowerPac by ABB is yet another
commercial simulator that provides the ability to generate robot programs for multiple
robots simultaneously [53]. Its main shortcoming is the ability to generate robot trajectories
automatically. Some simulation software also provides the ability to generate robot paths.
OLP Automatic developed by INROPA is a complete integrated system for automatically
generating robot programs [54]. It uses a LASER scanner to scan the workpiece and
construct a 3D model of the object, creates a robot path, and then executes it by generating
an appropriate robot program for the controller. Furthermore, RoboGuide
PaintPRO developed by FANUC is another robot simulation software which can generate
robot paths automatically [55]. A robot path is generated by simply selecting the surface
area of the object to be painted while specifying the correct options. A summary of robot

simulation software is given below in Table 2.3.

Table 2.3: Summary of commercial robot simulation software.

RoboDK RobCAD | Delfoi | RobotStudio OLP RoboGuide
50] Paint paint | Paint Power | Automatic | Paint PRO
[51] [52] Pac [53] [54] [55]
Company | RoboDK | Siemens | Delfoi ABB INROPA FANUC
Automatic
Trajectory No No No No Yes Yes
Planning
Integrated No No No No Yes No
System
Paint
Thickness N/A N/A Yes N/A N/A N/A
Analysis
Post Yes Yes Yes Yes Yes Yes
Processors

2.5 Trajectory execution on industrial painting robots

Trajectory execution on industrial painting robots refers to the process of
converting trajectories (path and velocity commands) to a robot program that can be
understood by a robot. Since robot controllers are diverse, each uses its own set of rules to
construct the programs. This section briefly describes the robots used for industrial painting

processes and the programs used by them for performing trajectories.
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2.5.1 Industrial painting robots

Apart from the 3D scanning system and trajectory optimization, it is important to
consider the experimental setup and validation techniques for the painting process. The
experimental setup contains a 3D scanning system, an industrial paint robot with a spray-
painting setup, and a robot controller program. Since paint applications have increased
considerably due to industrial developments, certain companies have specialized robots for
paint applications. A paint robot, unlike other industrial manipulators, usually has less
payload capacity, more repeatability, and a hollow wrist for routing the paint lines. A paint
robot must also be explosion-proof since the paint material can be inflammable. It should
be certified for ATEX EX II certification [56]. Some of the specialized robots are KR
AGILUS KR 10 R1100, P-250iB/15, and IRB 5500 Flex Painter. The KR AGILUS KR 10
R1100 is specialized for paint applications by of KUKA and Durr [57]. It has a wrist
payload capacity of 10 Kg, a maximum reach of 1100 mm, and a total of 6 axes as shown
in Fig. 2.9. Similarly, the P-250iB/15 developed by FANUC (Fig. 2.10) is one of the largest
robots for paint applications [58]. It has a maximum reach of 2800 mm, a load capacity of
15 kg, and a total of 6 axes. It can be attached to walls, and floors, and can also be mounted
on rails to reach the desired pose under difficult and narrow regions. Another paint robot
developed by ABB named IRB 5500 Flex Painter (Fig. 2.11) is also capable of industrial
painting [59]. A summary of robots is tabulated in Table 2.4.

Figure 2.9: KR AGILUS KR 10 R1100. [57]
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Figure 2.10: P-250iB/15 by FANUC. [58]

Figure 2.11: IRB 5500 Flex Painter by ABB. [59]
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Table 2.4: Industrial robots for paint applications.

Payload Maximum Number of
Robot Name Manufacturer Capacity Reach Axes
KR AGILUS KR 10
R1100 [57] KUKA and Durr 10 kg 1100 mm 6
P-250iB/15 [58] FANUC 15 kg 2800 mm 6
IRB 5500 Flex ABB 13 ke 2975 6

Painter [59]

2.5.2 Robot programs

A robot program is a set of instructions to control the movements of a robot. Every
robot controller uses its own set of rules for a robot program. A robot program is usually

in two formats:

e LS (List) format
e TP (Teach Pendant) format.

A List file (.LS) is an ASCII based list file which is not compiled and cannot be
executed directly by the robot controller. A . TP file on the other hand is a binary file which
is directly executed by a robot controller [60]. To convert a robot trajectory to an LS file,
simulation software or a programming language like Python can be used [61]. Simulation
software can directly convert the robot trajectory into a robot program by selecting the
appropriate post processor. The post processor generates a List file LS that contains robot
programs line by line. On the other hand, a custom Python script can also be used to convert
the robot path/trajectory directly into LS file. An LS file can then be uploaded directly to a
robot controller for execution or can be converted to .TP binary file before upload. For

conversion to . TP file, tools like WinOLPC can be considered [62].
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2.6 Validation of paint quality

For the validation of the paint quality, multiple techniques can be used including
the calculation of mean and standard deviation of paint thickness on the surface of the work
piece, a fractional error metric, propriety coating sensors like ELCOMETER 345, and
image processing pipelines. The mean and standard deviation are obtained from the paint
deposition model and the accuracy metric outlined by [38]. However, to evaluate the paint
thickness model in real time after the paint is applied, image processing can be used [63].
This image processing pipeline starts by taking the image of the painted through a camera.
The image is first converted into a binary format using the OPENCYV library followed by a
noise filtering algorithm [64]. Finally, the image is restored again in terms of original pixel
intensities and the distribution of paint is obtained. The stages of image processing pipeline

are shown in Fig. 2.12.

Figure 2.12: Image processing pipeline for paint validation. [63]

An experimental system for the validation of a color spray model is proposed by
[10]. It uses a UR-10 robot, a HP-M2 airbrush and a scanner for digitizing the color
intensities. The algorithm to convert spray flow rate to the corresponding color intensity
starts by defining a variable ¢ (7). This function is called Painting Flow function which

describes the paint flow rate per unit area. The amount of paint deposited on an incremental
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surface area is calculated by transforming the color intensities to paint amounts using a
series of conversions. The paint flow function is approximated using gaussian distribution
governed by equation 2.1. The radius of the circle is represented by r, while the parameters
A and B are obtained experimentally. It is observed that the distribution of the paint
intensity changes by changing the parameters like paint flow rate, the paint gun velocity,
and the distance between the spray nozzle and the target surface. The mean coating

thickness decreases when the paint process time is decreased and vice versa.

¢(r) = Ae B @.1)

2.7 Research objectives

The problems associated with manual robotic painting can be mitigated using an
autonomous robotic system. The literature review highlighted key technologies needed to
achieve this task. The primary problem in autonomous painting is trajectory planning based
on the geometry of the surface. While much work has been done to optimize the paint
quality by searching for an optimal paint trajectory, the optimization of process time and
robot energy in conjunction with paint quality is left unattended. Thus, this research aims

to:

1. Develop a hybrid optimization scheme to optimize paint quality, process time,
and energy consumption of the trajectory planning process by taking into
consideration the dynamics of the spraying process and the robot.

2. Design a mechanism to acquire the 3D geometry of the object under
investigation for trajectory planning purposes.

3. Design an automated system to perform the experimental analysis on the

proposed optimization technique with a user-friendly GUL
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Chapter 3. Design of 3D Scanning System

3.1 Introduction

The literature review highlighted multiple techniques that could be used to acquire a
3D model of an object. These techniques are broadly divided into passive and active
methods. Active methods use a light source and is independent of the lighting condition of
the space where the object of interest is situated. Passive methods, however, require the
surface of the object to be illuminated. To eliminate the need for an active light source
outside the hardware of the 3D sensor, the solution to 3D scanning problem boils down to
two sensors. One class of sensors uses LASER beams and includes one point, line, and
snapshot sensors. These sensors are very expensive and have a very short range typically
200-500 mm. Another class of sensors uses an RGBD sensor which merges an RGB image
and a depth image and converts it into a point cloud. These sensors are cheaply available
and have a measurement range of 250 mm to 10 m. To capture the depth maps of the object,
Intel Real Sense D435 [65] is used. For locating the online position of the axis of rotation,
a one-point depth sensor is used [66]. These sensors are shown in Fig. 3.1. The RGB and
depth sensors of D435 have a resolution of 1920 x 1080@30 fps, and 1280 x 720@90 fps
respectively. Its measurement range is between 0.3 m and 3 m, while the depth accuracy is

less than 2% at 2 m. The measurement range of VLX53LoX sensor is 3 cm to 2 m.

USB3 Cap

CJUL53LOXV2

IrITy

Glass Lens Mask Aluminus m D430 RGB Heat Sink PCBand Aluminum
Front Module Camponents Back

Figure 3.1: (left) Intel Real Sense D435 sensor [65], (right) VLX53LoX [66].
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3.2 Methodology

To establish a 3D scanning system for generating the geometry of the object, a
rotating turntable mechanism is used. A servo motor [67] for the turntable mechanism can
be controlled precisely at a resolution of 1°. The D435 sensor [65] is placed at 0.47 m from
the object. This allows for the inclusion of thicker objects to be scanned since the minimum
range of the sensor is 0.3 m. The object is then rotated and the RGB and depth images are
stored for each angular position. An incremental index of 30° is selected to save
computational resources. These RGB and depth images are then converted into point
clouds using the camera projection matrix [68]. After the point clouds are obtained, a box
filter is applied to extract the region of interest. The box filter removes majority of the noisy
point cloud data, however statistical noise removal is applied to further refine the point
cloud [69]. Finally, raw alignment is applied to align the 3D scans followed by ICP
registration to obtain the geometry. A summary of the methodology is shown below in Fig.

3.2.

RGBD Depth
camera sensor Raw PCD Box Filtered PCD

—

RGED to [N
PCD
conversion

Box filter

Y
Y.

Raw Alignment
Noise Removal

ICP registration

<

Merged PCD Raw aligned PCD

Figure 3.2: Methodology for 3D scan acquisition.
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3.2.1 Mechanism for 3D scan acquisition

To obtain the complete geometric model of the object, a rotating mechanism is
designed as shown in Fig. 3.3. The object of interest is a car door. It is rotated by a servo
motor along the axis of rotation. The RGBD sensor is used to capture the depth maps of
the object in {C} frame. To estimate the online position of the axis of rotation of the object,
a secondary one-point depth sensor is also installed above the main RGBD camera. Its
frame of reference {S} is aligned in orientation to the camera frame {C} and is offset by a

linear transformation &T. This sensor gives the online transformation matrix ST which can
S S1

be used to raw align the point clouds. Frame {S;} is the offset frame of reference of the
depth sensor aligned with the axis of rotation. Frame {S;,-} is the rotated {S;} frame that
rotates along with the object’s axis of rotation. The origin of {cg} frame represents the
geometric center of the object in {C} frame. The point cloud is termed as P¢ where C
signifies the {C} frame. The object is rotated along its axis of rotation and the RGBD
images are stored for each angular position. The two robots’ base frames are represented

by {04} and {0g }respectively.

axis of rotation

object of interest

Figure 3.3: Schematic of 3D scan acquisition mechanism.



3.2.2 Depth map to point cloud

After the RGBD images are obtained for each angular position, these are then
converted into point clouds using the camera projection matrix. To do so, we consider a
schematic of the 2D RGB image and the corresponding depth values for each pixel. This

is shown in Fig. 3.4.

Pixel 722: (uyv)=(22,20)  (rgb,d)=(70,70,70,5m)

Figure 3.4: Schematic of 2D pixel image and corresponding depth values. [70]
The transformation between the pixel coordinates and cartesian coordinates can be

obtained by the application of the camera projection matrix [68].

i B S Scy—cfy 0
x|k KL A (4]
4 1 Cy [1] 3.1
7 0o — -= 0 (.1
fi fi 1
N P o lEJ
0 0 0 1

Where u and v are the pixel coordinates, f, and f, are the focal lengths of the
camera sensor in x and y direction and ¢, and c,, are the camera center in the world

coordinate. S is the skew and is zero when the world frame and camera frames are aligned.

Using this transformation, the depth images are converted to point clouds.
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3.2.3 Box Filter to extract region of interest

After the raw point cloud is obtained from the depth fields, the next step is to extract
the region of interest. This is done by applying a box filter on the raw point cloud. Since
the location of the axis of rotation is known in the {S} frame, it can be used to construct a
bounding box around the object. Another reference frame {S,} is defined at the geometric
center of the box such that its origin can be used as an anchor point for the box filter. Using
knowledge about the size of the object, I, [, and [, can be selected to filter out the object

of interest. The box filter is shown in Fig. 3.5.
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Figure 3.5: Box Filter on raw point cloud.
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3.2.4 Noise removal and raw alignment of point clouds

Once the region of interest is filtered out, statistical noise removal is applied to
remove noisy points and get a clean version of the object. The noise removal is applied
using open3d library in Python [69]. A set number of neighbors (700) and a standard
deviation ratio of 0.60 is selected for the noise removal. After any residual noise is
removed, the point clouds are raw aligned by rotating them backwards along the axis of
rotation. Given a point cloud in the camera frame {C}, P¢®, where i is the rotational index
for a rotational angle of 6,,(;), the point cloud can be represented in frame {Si:} using the

transformations:

pSir(®) = St pe@) (3.2)

SlgT can be obtained using the following expression:

SuT = SUT T T (3.3)
The transformations SéT and (S;T can be obtained by using linear offsets along the

z and y axes of frame {S:} and {S} respectively, while S;IT is obtained using a relative

rotation matrix along the y-axis such that:

Sir
ST =Ry (=6y) (3.4)
The point cloud in the frame {S;,-} can be represented by combing equation 3.2,

3.3 and 3.4.

. S .
PSw® = R, (—0,,(;)) T &T PC® (3.5)
The aligned point clouds can now be represented in the camera reference frame {C}
by translating them back along the z and y axes of frame {Si} and {S} respectively. This

is done by applying the transformation matrix SfT .

c( i
Piionea = T PSir® (3.6)
Equation 3.6 represents the raw aligned point cloud in frame {C} for each rotational angle

6y (iy- These point clouds can then be registered into one point cloud using ICP.
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3.2.5 Fine alignment using ICP

After raw alignment, there is still a possibility of misalignment due to measurement
errors in the sensor systems. The alignment can be further refined using ICP registration.
Both point-to-point and point-to-plane ICP are applied in open3d library [69]. The fitness
values of the two are compared and the best one is chosen. The point-to-point ICP aligns a
source point cloud p; € P into the reference frame of a source point cloud q; € Q by finding
an optimal rotation matrix R and translational vector t. If the number of points in the point
cloud P are Ny.q4, the point-to-point ICP can be established using the following objective

function [27].

1 Npcd
ERO) =7— ) lla;— Rp; —tI’ (.7)
Npca i=1
Similarly, the point-to-plane ICP tries to minimize the following objective function.
1 Npcd
2
ERO =7— > [~ Rp — 0.1, (3.8)
ped 79

ng, represents the normal vector at point g; € Q in the target space. The optimal rotational
matrix (R) and translational vector (t) are used to align and merge point clouds and get the
final scan P&,y in the camera reference frame {C}. A schematic of the ICP alignment is

shown in Fig. 3.6.

Target Point cloud

(R,t)

ICP alignment

Aligned PCD
Source point cloud

Figure 3.6: Schematic of ICP alignment between source and target point cloud.
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Pseudo code for ICP Fine Alignment

Input: Palf g)n .q (Raw aligned point clouds for each index i). N = ¥ i (# of point clouds)

Output: me (Merged Point cloud in frame {C})

Step 1: Assign merged point cloud to the point cloud at index 0.

c(i
PS(éan = Palgg)ned
Foriinrange (N — 1): (Perform step 2 to step 5)
Step 2: Apply Point to point ICP and obtain optimal R and t.

C +1
(R, )p2p = PZPICP(Pscan , al(llgne)d )

Step 3: Apply Point to plane ICP and obtain optimal R and t

C +1
(R, Dpaptane = p2planelCP(Plyan , Pofiog)

Step 4: Compare fitness scores.
if (fitnessy,p = fitnessyopiane):
(R, ) = (R, t)pzp
else if (fitnessyyy < fitnessyopia ):
(R,t) = (R, )p2piane
Step 5: Transform the source point cloud to the target and merge.

C(i+1
Ps%an = mer.ge(Pchan » Tre Palggne)d )
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3.2.6 CAD calibration in camera frame

The 3D scanned model can be used for trajectory planning and optimization,
however, it often has noise and incomplete geometric details. If a CAD model of the object
of interest is preset, it can be used for trajectory planning instead. The CAD model,
however, needs to be represented in the camera reference frame to ensure the correct spatial
location of the object. This can be done by first transforming both the CAD and scan to
their eigen coordinate system followed by ICP alignment. Once the correct ICP rotation
matrix and translational vectors are obtained, the CAD is then aligned into the scan Eigen
reference frame. Finally, the aligned CAD model is translated back to the camera reference
frame using the eigenvectors and the principal center of the scanned model. More
specifically, given P&, and Pc,p representing the scan point cloud in frame {C} and the

CAD point cloud in some arbitrary frame, their transformations into the eigen coordinate

system yield:
Rsecltign = uscan(Pchan — Cscan) (3.9)
F ce,;% = Ucap(Pcap — Ccap) (3.10)

Uscan and Cgeqp represent the eigenvectors and principal center of the scan while

Ucap and cc4p represent the eigenvectors and principal center of the CAD. Using ICP,

Rsii&qn and Py j% are aligned via the rotation matrix R and translational vector t. This is done

using the following transformations:
aligned __ eig
P..p =RP.,, +t (3.11)

The aligned CAD model can now be represented in the camera reference by applying the

following transformations:

C | aligned
Pcap = Uscan Prap + Cscan (3.12)
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3.2.7 Evaluating accuracy of the 3D scan

The Iterative closest point (ICP) aligns the 3D scans which are then merged into a
single 3D model of the object under investigation. It is advisable to develop a pipeline that
measures the accuracy of the 3D scanning system. Multiple techniques were discussed in
the literature review. Some of these techniques use deep neural networks (Deep Shape [71])
to encode the geometric structure of an object into higher dimensional features, while
others use simple analytical metrics like D;, D,, D5, and A3 [29]. These features can then
be used to find a similarity index between the two geometric models. While neural
networks are more accurate than analytical metrics, they require a lot of data to train and
are slow to execute. On the other hand, geometric signatures, although not as accurate as
neural networks, are easy to compute and can be used to assess the accuracy of the 3D
scanning system. Another approach is to use point-to-point Euclidean errors between the
CAD and the scan point clouds also termed as ICP error. Thus, using these analytical
metrics, a pipeline for evaluating the accuracy of the 3D scanning system is developed as
shown in Fig. 3.7. The analytical metrics are used to compute the density distribution plots

called geometric signatures along with the ICP error.

>

i.-_ Geometric Signatures

3D Scan

Compute D1, D2,
D3, A3

Compute ICP error

(p2p eucl
error)
Compute L2 norm

CAD: Ground Truth b/w scan and CAD

0: No-similarity
@ @ 1: Max similarity

€ J
L 2
Accuracy Metrics

Figure 3.7: Pipeline for evaluating accuracy of the 3D scan.
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The analytical metrics for generating shape signatures work by computing
distances, areas, and angles between points selected at random in the point cloud. When a
sufficiently large sample space of these metrics is obtained, it can capture the underlying
structure of the geometry represented on a histogram or a density plot. The shape of the
histogram stores information about the underlying structure of the geometry and can be
used to evaluate the accuracy of the 3D scanning system by comparing it with the signature
of another geometry. For instance, D; metric computes the distance of sample points in the
point cloud with the geometric center of the point cloud. D, computes distance between
two random points taken in the point cloud. D; computes the area of triangle formed by 3
random points in the point cloud. A; computes the angle formed by 3 points in the point

cloud. The pseudo codes for calculating these metrics are outlined below.

3.2.7.1 Pseudo code for computing D1 metrics

Input: P (point cloud), N4 (# of points in point cloud) Nsgmpe (# of sample points)
Output: D; (An array of size Nsgmpie)

Step 1: Compute the geometric center of the point cloud:

Npcd i
C = Zi=1 P(l)

N pcd
Step 2: Generate random indices of size Nyqpie
Rsample = rand(Nsample)
Step 3:Take random sample from the point cloud.
Psample = P[Rsample]

Step 4: Compute D:

D; = \/(Psample - C)Z

3.2.7.2 Pseudo code for computing D2 metrics

Input: P (point cloud), N4 (# of points in point cloud) Ngmpe (# of sample points)

Output: D, (An array of size Nygmpie)
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Step 1: Generate 2 batches of random indices of size N0

[Rlsample;RZSample] = rand(Nsample)

Step 2: Take two samples from the point cloud.
Plsamp = P[Rlsamp ]

PZsamp = P[RZSample]

Step 3: Compute D,:

D, = \/(Plsample — Py )2

3.2.7.3 Pseudo code for computing D3 metrics

Input: P (point cloud), Np,.q (# of points in point cloud) Ngmpe (# of sample points)
Output: D3 (An array of size Nsgmpie)
Step 1: Generate 3 batches of random indices of size N0
[Rlsample'RZSamp 'R3sample] = rand(Nsample)
Step 2: Take three samples from the point cloud.
Plsamp = P[Rlsample]
PZsample = P[RZSample]

P3samp = P[R3sample]

Step 3: Compute side lengths of the tringles:

2
a= \/(Plsample - PZSample)

b= J(Plsamp - P3sample)2

2
c= \/(PZSample - P3sample)

1
szz(a+b+c)

Step 4: Compute D3:

D; = \/s(s —a)(s—=b)(s—c)
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3.2.7.4 Pseudo code for computing A3 metrics

Input: P (point cloud), Np,.q (# of points in point cloud) Ngmpe (# of sample points)
Output: A3 (An array of size Nsgmpie)
Step 1: Generate 3 batches of random indices of size N0
[Rlsamp 'RZSample'R3sample] = rand(Nsample)

Step 2: Take three samples from the point cloud.

Plsample = P[Rlsample]

PZsample = P[RZSample]

P3samp = P[R3sample]
Step 3: Compute vectors from the 3 points with point 1 at the vertex.

Uy = Prsampie — Pisample

Uy = Pssampie — Pisamp
Step 4: Compute A3

1 U U2
A; = cos™?! (—)

[ ||us|

3.2.7.5 Pseudo code for evaluating 3D scan accuracy.

Input: Pic4n, Pcap (Scan and CAD point clouds), Npcq: Number of points in point cloud
and Nsgmpie: Sample points for computing geometric signatures

Output: S (Similarity index)
Step 1: Compute density distribution for D; metrics:

[Dlscan ) DlCAD] = Compute_Dl (Pscan: PCAD; Nsample)

SD1 —1— \/Z(Dlscan - DlCAD)2

Nsample
Step 2: Compute density distribution for D, metrics:

[DZScan ’ DZCAD] = compute_D,(Pscan, Pcap, Nsample)
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D - D 2
SDZ -1— Z( 2sca 2CAD)
Nsample

Step 3: Compute density distribution for D; metrics:

[D3scan ) D3CAD] = Compute_D3 (Pscan; PCAD: Nsample)

_ Z(D3scan B D3CAD)2
SD3 —_ 1 -
Nsample

Step 4: Compute density distribution for A; metrics:

[A3scan ’ A3CAD] = compute_As(Pscan, Pcap, Nsample)

SA3 —1— Z(A3scan - A3CAD)2
Nsample

Step 5: Take mean of the Similarity indices:

S = Sp1+ Sp2 + Spz + Sas3
4

3.3 Conclusion

This chapter described in detail the development of a 3D scan acquisition system.
A rotating mechanism is employed to allow the exposure of the object to the 3D scanner at
multiple rotational indices. An RGBD camera is used to capture the depth maps of the
object while a one-point depth sensor is used to estimate the location of the axis of rotation.
The depth maps are then converted into point clouds using the camera projection matrix.
Once the point clouds are obtained, a box filter is applied to extract the region of interest
in the point cloud. To remove any residual noise from the point clouds, a statistical noise
removal algorithm is applied. Then, a series of transformations are applied to align the
point clouds in the camera reference frame. Further fine alignment is achieved using ICP
registration. After an acceptable fitness score is achieved by the ICP registration, the point
clouds are then merged into a single point cloud. This point cloud represents the final 3D
scan of the object under investigation. Finally, a pipeline for evaluating the accuracy of the
3D scan acquisition system is also developed using the concept of geometric signatures
and point to point Euclidean errors. The results and discussion of the 3D scanning system

are discussed in detail in Chapter (6).
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Chapter 4. Optimal Paint Trajectory Planning

4.1 Introduction

The optimal trajectory planning for paint spraying requires the establishment of the
paint spraying model, the coating deposition model, the dynamic model of the robot and
the optimization scheme for optimizing the slice thickness, the paint gun velocity, the
slicing direction, and the configuration of the robot to achieve uniform paint coating, less
process times, and minimal energy consumption. These are described in detail in this

chapter.

4.2 Methodology

4.2.1 Establishment of spraying process model

The trajectory planning for paint spraying is based on the establishment of the spraying
process model. The spraying process model defines how the paint is deposited from the
paint gun onto a surface. The spraying area ejecting paint gun is usually in the form of an
ellipse and the coating thickness can be modelled using a double beta distribution.
Although other models exist, including parabolic distribution, normal distribution and beta
distribution, the double beta distribution model has higher accuracy and practicality [37].
Furthermore, it can be converted to a parabolic and a beta distribution by adjusting the
values of B, and B,. The spraying torch model and the corresponding double beta
distribution for the coating thickness are shown in Fig. 4.1 and Fig. 4.2 respectively. The
spraying area is elliptical where a and b represent the longer and shorter side of the ellipse

while, ¢, and @, represent the maximum opening angles of the ellipse in the X and Y

direction respectively.
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Spraying area

Figure 4.1: Spraying torch model (Elliptical Paint area).
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Figure 4.2: Elliptical double beta distribution model of coating thickness on an elliptical

surface area.

64



4.2.2 Establishment of coating deposition model

Once the spraying process model is defined using the double beta distribution, the
coating deposition model on a complex free-form surface can now be presented as shown
in Fig. 4.3. The point s represents a point on the free-form surface on which the coating
deposition is to be computed. A vertical projection line is constructed from the spraying
gun to the free-form surface. A connection line L represents the distance from the spraying
gun to the point s which has a normal vector m. Two tangent planes M, and M, are drawn
at point O and point s such that, h and hg represent the vertical height of paint area C; and
C, from the spraying gun. The angle ¢, represents the opening angle of the spray cone
along the X direction of the ellipse. Angle y represents the angle between the normal vector
n and the connection line Lg. Since the coating deposition rate of the spraying gun is
conserved, the amount of paint at C; and C, are equal. The area of paint at C; and C, are

represented by A, and Ac, respectively. Applying the conservation of paint flow rate, we

get:
Qc, = CQc, (4.1)
dClAcl = dCZACZ (42)
Ac
de, = 52 g, (4.3)
Cz

The area relationship between point 1 and point 2 can be expressed in terms of h and h,

such that:
2
Acy _ (E) (4.4)
A, hg

Inserting equation 4.4 into equation 4.3 yields:
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d = (ﬁ)z . 4.5)

Accounting for the curvature of the free-form surface, the coating thickness at point s is

then expressed as:

h\2 cosy (4.6)
ds = (h:) (cos <px> de,

It should be noted that the coating thickness is zero at point s if the angle y = 90°. This

condition is observed when the free-form surface is exactly vertical at point s.

Slicing Plane

Figure 4.3: Coating deposition model on a complex free-form surface.

The static coating deposition at area C; for x € [—a a] and y € [—b b] is defined by the

equation:
ﬁy_ 1

x2\7 y 47
a bz(
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dmax TEPresents the maximum static coating thickness deposited at the center of the ellipse.
If the spraying gun is moving with speed v in the Y-direction, the time it takes for the
spraying gun to traverse a point M (x,, ¥j;) on a planar surface along the shorter side of

the ellipse can be defined by:

2b (1 —x—> (4.8)

Similarly, since the spraying gun is moving with speed v in the Y-direction, the effective

y-coordinate of the ellipse can be formulated as:
o\t
_ X |2 (4.9)
Ym —b<1—¥> — vt

The dynamic coating deposition model at C; can thus be expressed by putting the values
yu in the beta distribution model. k,,,, refers to the dynamic coating thickness (maximum

coating thickness per unit time).

2 By—1

1
— 2 _ A2Y\5 _
th . x\Pe! ) (b(a Xi1)2 avt) ] (4.10)

max - bz(az—xﬁ,) t

dCl(x' }’) =

2
0 a

The coating thickness at point s can finally be represented by adjusting equation 4.10 for

the curvature of the complex free-form surface.

By-1

2
(g) (cosy)dt .11
hs) \cosg,

1 2
tm X2 Bx-1 / (b(a2 —x3)z — avt)
ds(x' y) = kmax (1 > 1-

az \ b2(a? — xz,) )

2
0 a
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4.2.3 Manipulator forward kinematics model

The coating thickness model on a complex free-form surface governs the amount
of coating deposited if the paint gun is moving with a certain velocity. To establish the
hybrid optimization scheme, it is important to consider the dynamics of the manipulator
performing the paint trajectory. We consider a 4-DOF redundant PRRR manipulator with
only position control in the X, y, z direction. The first joint is a prismatic one for extended
reach, while the rest are revolute. The schematic and DH table of the 4-DOF PRRR

manipulator are shown in Fig. 4.4 and Table 4.1 respectively.

End effector

DX pPY.pZ)

[w 1)/
N
* X1
d: z0
I
—
x0

Figure 4.4: DH Schematic of a 4 DOF PRRR manipulator.
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Table 4.1: DH Table for 4 DOF PRRR manipulator.

i ai_q a1 d; 0;
1 0 0 d 0
2 0 0 Ly q1
3 90° 0 0 q-
4 0 L, 0 qs
5 0 Ls 0 0

The transformation matrices between consecutive links are:

10 0 0

op_ |01 00

! 0 01 d (4.12)
00 0 1
c; —s, 0 0

2p_ |0 0 -10

3 s, ¢ 1 0 (4.13)
0 0 0 1
C3 _S3 O L2

3p — |53 C3 0 O

4 0 0 1 0 (4.14)
0 0 0 1
1 0 0 I

am_ [0 1 0 O

T=10 0 1 4 (4.15)
0 00 1

Using relative transformations, the transformation matrix between frame {0} and

frame {5} can be established as:

3T =TT ITIT 4T (4.16)
1 Tz T3 c1(Lycy + Licy3)
O = 21 T2z Tus s1(LaCy + L3cas) 4.17)
T3y T3y T3 Li+d+ Lys,+ L3sys
0 0 0 1
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The end effector position in frame {0} can thus be obtained from the last column

of T matrix:

Px = ¢1(Lycy + L3cy3) (4.18)
py = S1(Lycy + L3cy3) (4.19)
pZ == Ll + d + LZSZ + L3523 (4'20)

4.2.4 Manipulator inverse kinematics model

The first joint angle is:

q, = atan2(y, x) (4.21)

The third joint angle is found using the trigonometric relations:

(i)2+(z—L1—d)2—(L§+L§)

3 =-2 L, and s; = +/1—c2 (4.22)

qs = atan2(s3, c3) (4.23)

For extended reach, variable d is adjusted. Finally, the second joint angle can be computed

using Cramer's Rule.

(Cil) —L3s;3
.= (z—=Ly—d) L,+Lscs (4.24)
27 Ly +Lzc;  —L3sg
L3s3 L, + Lics
X
Lz + L3C3 (C_l)
_ 1 L3s3 (z—L, —d) 4.25
SZ - LZ + L3C3 _L3S3 ( . )

L3s; L, + Ljcg

q. = atan2(s,, c;) (4.26)
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4.2.5 Manipulator velocity analysis and Jacobian

The end effector velocity can be equated to the joint space velocity using the

Jacobian relationship. This is given by:

vx

Uy

The Jacobian matrix for the 4DOF PRRR configuration can be obtained by finding
the derivative of the end effector positions w.r.t joint variables such that:
[6x O0x Ox  O0x
6d 6q; 8q; 6q3
_b6x 16y by by by (4.28)

/=547 |5d 540 54; 5as
6z 6z 6z bz
[6d 6q1 6q, 6qs3l
0 —s1(Lycy + L3cyz) —cq(Lasy + L3syz) —cqLl3Sys
J =0 c1(Lycy+ L3cyz)  —s1(LpSy + L3Sy3)  —s1L3sys (4.29)
1 0 Lycy + Licys L3cys

4.2.6 Manipulator acceleration analysis and Hessian

Hessian matrix relates the task space acceleration vector to joint space acceleration

vector governed by:

Ay
X = [ay] =J§+ Hq (4.30)
az

The Hessian matrix is the time derivative of the Jacobian matrix. For the PRRR
configuration, it can be defined as:
Hyy Hy; Hyz Hyg

H21 HZZ H23 H24
H31 H32 H33 H34

H=j= 4.31)
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The individual terms of the Hessian matrix are:

Hi; =0
Hip = _51(_L252QZ — L3sp3(q, + %)) — €141 (Lacy + Lzcy3)
Hiz3 = C1(—L2CZQZ — L3cz3(qz + C'13)) — 5191(—Lasz — L3sz3)
His = c1(—Lscz3(dz + d3)) — 5141 (—L3sz3)
Hy,; =0

Hy, = Cl(_LZSZQZ — L3sy3(qz + %)) — 5141 (Lacy + Lzcy3)

Hy3 = 51(—L2CZQZ — L3cz3(qz + C'13)) + ¢191(—Lasz — Lssy3)
Hy, = 51(_L3C23(Q2 + %)) + ¢141(—L3S23)
H3;; =0, H;; =0
Hs3 = —L;8,0; — L3S23(q2 + q3)

H34 = —L3s53(q2 + q3)

4.2.7 Manipulator torque and energy model

(4.32)
(4.33)
(4.34)
(4.35)
(4.36)

(4.37)

(4.38)

(4.39)
(4.40)

(4.41)
(4.42)

The dynamics model of a manipulator in closed form can be written in joint space

as:

T=M(q)§+C(q,9)q+ H(q,q)

(4.43)

Where, M(q) is the inertia matrix dependent on the joint positions, C(q, ¢) is the

normal and centrifugal acceleration matrix and is dependent on the joint positions and

velocities, while H(q, ¢) contain the gravity and friction dynamics. Gravity is dependent

on joint position while the frictional dynamics can be more complex depending on joint

positions as well as velocities. In our analysis, the frictional dynamics are excluded to

simplify the calculations. The vector t represents the dynamic torque provided to each
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joint. The instantaneous power consumption of the manipulator can be found by summing

the mechanical power of all the links:

Njoints

4.44
Prech = Z Tp Wy ( )

n=1
T, is the individual joint torque while w, is the angular velocity of the

corresponding link. The average energy consumed by the manipulator while traversing
through point A and B in a time duration of t,5 in the task space can be calculated using:

(p{A} + p{B})

Exp = — tap (4.45)

4.2.8 Hybrid optimization scheme

Since the coating deposition and the manipulator torque model are established, the
hybrid optimization scheme can now be presented. The paint gun is assumed to move along
the local y-axis of the ellipse following the curvature of the surface as shown in Fig. 4.5.
For each paint stroke, the velocity and the slice thickness must be optimized to achieve a
uniform coating thickness on the free-form surface. To optimize a given slice bounded by
two slicing planes (i and i + 1), and separated by a distance §, a point of interest (s) is
considered as shown in Fig. 4.6. The spraying gun is assumed to maintain a constant
perpendicular distance h from the surface. A vertical line is drawn from the spraying gun
at the slice plane i to intersect the surface at point O;. A connection line Ly; joins the
spraying gun with the point s making an angle of ¢,; with the vertical line. The point s has
a surface normal n defined by the curvature of the locality. The normal vector m makes an
angle y; with Lg;. The effective x coordinate of the elliptical paint area is x;, joining point
0, and s. In a similar way, these geometric variables are defined for the slice i + 1. hg,
and h,, represent the perpendicular distance of the paint gun with plane M, and M,
respectively. The slicing is performed at an angle 8 with respect to the eigen coordinate
system and the trajectory is planned in this rotated eigen coordinate system called the
slicing frame {SF}. The trajectory planning model is shown in Fig. 4.5 and Fig. 4.6

respectively.
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Slice width

5
S : i+1,j
, ! ' . P ( ]) Trajectory Points
: : at slici_ng plane
pii+Dg@ | @ pU+lj+D) {i+1}

Trajectory Points
at slicing plane {i}

e SIS !

Slicing Plane {i} Slicing Plane {i+1}

Figure 4.5: Slicing model showing the sliced region, the elliptical paint area, and
the trajectory points.

Free-form surface

{Slicing Frame}
{SF}

! Slice Width

64 S, X slicing Plane {i} slicing Plane {i+1}

Figure 4.6: Trajectory planning and coating deposition model on a complex free-

form surface with slice sandwiched between two spraying gun positions.

74



Using the variables defined in Fig. 4.6, the coating thickness function at an arbitrary

slice plane i can be presented as:

1 2y By—1
_ Br—1 b(a? — x? E—av't> 2
awy =k (1 in’)) ! —< o < : ) ) 4
i(x, , [max a2 bz(a2 - x(zl)) hS(i) COS Py

The coating thickness at point s can be d;, d, or d; + d, subject to the overlap
conditions. The overlapping conditions are derived by checking the ellipse opening
angles ,1, @5, and the angles, y; and y,. These conditions are outlined below:

dy if 9 < @My, <90°% @, = @M or (y, = 90%)

dy={d,+ d, if ;< @My, <90°, ¢, < ¢ and (y, < 90°) (4.47)
dy if @, < @y, <90°% @ = @M or (y; = 90°)

Here, (pfcmax) represents the maximum opening angle of the ellipse along the X

direction (longer side) and is computed using the relation:

o) _ tan-1 (S) (4.48)

The point cloud is sliced at an angle 8 w.r.t the principal z-direction of the eigen
coordinate frame. The paint gun moves along the immediate y-axis of the ellipse following
the curvature of the free-form surface to complete a paint stroke. The speed v(;) for a given
slice i is assumed constant. The individual slices are then sub-divided into patches with
each b distance apart along the y-axis of frame {SF}. The trajectory point for a patch is
obtained by displacing the mean position along the normal vector of the patch by h units.
The number of trajectory points for a slice can be increased by decreasing the vertical

distance between the patches. Given patch points Ppgeen € R® Vrater) in a portion of slice
and the corresponding trajectory point P € R®P), the Ly € R® raret) vector for a can

be computed using:

LS(l) = Ppatch — p&h (4.49)
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Ny qtcn represents the total number of points in a patch. Using dot product between

T N

—Lg(,y and the normal vector m, angle y(;) € R pach) can be computed as:

_Ls(L)- n 1 _Ls(l)- n

.= — Y@u = cos — 4.50
|LS(1) | 7| ® |Ls(1) | |7 | ( )

COSs ]/(l) =

Similarly, taking the dot product of L,y and vector b the angle, @) € R Vpaer)

is computed:

Ls(l)- h 1 Ls(l) . h
COS Py(i) = == @Px(i) = COS™ " == (4.51)
0 |LS(l) | |h| 0 |LS(1) | |h |
Using @,;), the term x(;y € R Mpaten) g calculated:
X(i) = htan ((px(l)) (452)

h
s()

The ratio

€ R Nparew) can be computed using the law of similar triangles such

that:

’xz. + h?
h ® (4.53)

hsiy  |Lsw)

N

Finally, the time duration t¢;y € R vact) for each patch point is represented using

the relationship:

W0
l
2b (1 ?) (4.54)

V@)

Loy =

Once the essential coating parameters are calculated, the coating thickness can be
computed as defined by equations 4.46 and 4.47. Next, to compute the dynamic torque of
the robot, the velocity vector of the end effector is obtained by finding a unit vector in the
direction of delta of two trajectory points. More specifically, given two consecutive
trajectory points P() and P+ in the slicing frame {SF} along a paint stroke, the

velocity vector at a given trajectory point j within a slice plane i can be defined as:
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(PGI*D — plip)
|PGIHD — pah)|| |v(i)|

HN) = (4.55)

The trajectory points and the velocity vector in the robot reference frame can be
found using the relative transformation matrices between the slicing frame {SF}, eigen

frame {EF} and the robot base frame {0}.

probot = AT P = ppT SiT P (4.56)
yrobot = QRV = gpR SRV (4.57)

The first three rows of matrix P € R4 Vo) and V € R(G Mo represent the trajectory
points (py, Py, P;) and velocity vectors (v, v, V). Similarly, the orientation P& of the
end-effector (i.e., paint gun) at a slicing plane i and trajectory point j can be computed by
reversing the direction of normal vector that joins point 0+ and g(*/). The orientation
matrix Y € R® V9 can be transformed into the robot frame using the rotation matrix ¢2R. N,

represents the total number of trajectory points in a slice.

Pp&) = — Tig, = h (4.58)

Yrovot = R = ppR SERY (4.59)
The trajectory points and the velocity vector in the task space are converted to joint
space positions and velocities using the inverse kinematics and Jacobian defined earlier.
The task space acceleration (¥) is assumed zero to simplify the calculations. The RNE
(Recursive Newton Euler) approach [72] is used to compute the link angular velocities and
joint torques to compute the mechanical energy consumption and time duration between
trajectory points. A GA (Genetic Algorithm) [73] is then used to optimize the hybrid cost
function for a given slice direction (6), slice width (§), speeds (v4,v,), and the inverse
kinematic configuration of the manipulator ik . The cost function for the coating thickness
is computed by taking the mean squared error of the coating thickness with the ideal coating

thickness over Ny points in the slice.

Npts

1 2
]ds = N Z (d.gk) - dideal) (4.60)
pts £=1
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To minimize the coating deviation error, we penalize the ratio of coating thickness

standard deviation and mean over a slice.

d
Jdorrar = T (4.61)

dmean

The mean squared error (eq. 4.60) ensures the coating thickness is close to the
desired value, while the deviation error (eq. 4.61) ensures uniformity. The standard
deviation and mean of the coating thickness over a slice can be computed using the

following:

Npts

1 k
doan = Z 4% (4.62)
ts =1

Ny

k=1 S
Npts

Npts( (k) _ 2
(d dmea") (4.63)

dseq =

Similarly, to minimize the energy consumption of the manipulator, the following
objective function is introduced with AT (™) representing the time interval between two

consecutive trajectory points:

1 N¢—1 Njoints 1
e S L ugo sty Yoo | oo
N, —1 2
nt=1 n=1

Finally, to ensure fast trajectories, low velocities can be avoided by penalizing the

average time between two consecutive trajectory points.

Ne—1

1 (no)

Jr=— ZAT r (4.65)
t nt=1
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The hybrid cost function is the weighted sum of the four cost functions defined in
equation 4.60, 4.61, 4.64, and 4.65. The scaling factors w4, w,, ws, and w, are adjusted
to indicate relative importance of penalty functions. It should be noted that the cost

functions are normalized on a scale of 0 and 1 before computing the hybrid cost function.

Jtot = w1 Jg." "+ @z Jao + w3 JETTT A+ wy JTOT (4.66)

The fitness function for the genetic algorithm is then defined as inverse of the cost

function and by introducing an € term to avoid division by zero.

1
fitness = (4.67)
tor T €
The constraints for the optimization objective are:
6 €Ela 2a]
(4.68)
V1,V € [vmin vmax] (4.69)
ik;y € {0o0r1}
(4.70)
6 €[0 m] 4.71)

A schematic of the optimization algorithm is shown in Fig. 4.7. The trajectories
once optimized, are analyzed based on four criteria including coating distribution error,
relative coating error, energy consumption, and total trajectory time. The relative error is
computed by taking the fractional difference of the mean and desired coating thickness

over the entire surface.

Idmean - dideall

Sy = (4.72)

dideal
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Figure 4.7: Trajectory planning and optimization algorithm. The input to the

optimization algorithm is a CAD model while the output is an optimized trajectory for the

paint robot in task space. The end-effector trajectory includes the x, y, z location,

orientation, and the velocity vector at a given point in task space.
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4.3 Conclusion

This chapter discussed the detailed process of optimum trajectory planning for a
robotic painting process. An elliptic double beta distribution model is employed to model
the spraying process. A coating deposition model for a complex free-form surface is then
established based on spraying parameters including: the spray gun height form the surface
(h), the coating deposition rate of the paint per unit time (k,,4y), the width and length of

the elliptical paint area (a, b), the beta values for the paint distribution (B, B, ), and the

curvature (y, ¢,). Once the coating deposition model on a complex free-form surface is
established, the manipulator kinematic and dynamic model is analytically derived to
compute the instantaneous joint torques and link velocities at a given trajectory point. A
point cloud slicing algorithm is then used to slice a point cloud of the complex free-form
surface for optimization. The trajectory points are assigned along the slicing plane
following the curvature of the surface while maintaining a constant height (h) from the
surface. The coating thickness is then computed for all the points in the given slice, while
the manipulator energy is computed for all the trajectory points within this slice. A hybrid
cost function is then established to penalize the mean squared error of the coating thickness,
the coating distribution error, the mean energy consumption, and the mean trajectory time
for one slice. A GA (genetic algorithm) then minimizes this cost function to achieve the
optimal slice width (&), slice velocities (v4, v,), the slicing direction (6) and the inverse

kinematic configuration (ik.f) for all the slices in a point cloud.
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Chapter 5. Integrated System Development

5.1 Introduction

The practical implementation of the 3D scanning system and the trajectory optimizer
can be realized by developing an integrated system containing components necessary for
the automation process. The integrated system consists of hardware and software that work
together to make an autonomous system for robotic painting. The hardware components
include sensors and actuators for sensing and controlling the various functions of the
system. The software allows for smooth integration with the system components. This
chapter outlines in detail the development process of the integrated system, its core
hardware components and the software used. It also discusses in detail the development of
a graphical user interface (GUI) for interacting with the system. The high-level
representation of the GUI makes it possible for the system to act autonomously with
minimal user intervention. This is made possible by performing the programming logic at
the backend while allowing the user to choose macro tasks in the GUI without
understanding the details behind it. The GUI has functions for instantiating 3D scanning
sequence, visualizing, and validating the accuracy of the 3D scan, running the optimizer
for trajectory planning, visualizing the trajectory and uploading the trajectories to the
robots while also providing a platform for observing critical sensor readings and camera

feeds.

5.2 Methodology

The methodology provides a macro level overview of the hardware and software
components needed to develop the autonomous system for robotic painting. The
autonomous system is broken down into 4 sub-systems. The 3D scanning system contains
hardware and software responsible for generating a 3D model of the complex free-form
surface of an object. The trajectory planning system is responsible for generating an

optimal paint trajectory. The trajectory execution system enables the system to execute the

82



trajectory via the robots installed on board. Finally, the validation system is used to validate
the 3D scan accuracy of the 3D scanning system, the paint quality and energy consumption
of the trajectory planning process. These systems are interconnected and share the
hardware and software components to achieve the desired purpose. The methodology is

shown schematically in Fig 5.1.

Software Hardware
Autonomous System for Robotic Painting

v

Python, open3d, sklearn
Box Filtering, noise removal

Servo rotating mechanism
Horizontal slider

« ICP registration 3D Scanning System “| e Calibration sensor
+ ROS echosystem + RGBD sensor
, v
« Python, open3d, numpy
« Genetic Algorithm
« Paint thickness model . . N i
« Robot dynamic Model Trajectory Planning System » o Calibration sensor
« Point Cloud slicer
* ROS echosystem
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Figure 5.1: Software and hardware development methodology.
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5.2.1 Hardware development

Table 5.1: Hardware components breakdown with component IDs, descriptions, and the

corresponding CAD models.

ID Component Description CAD Model

1 Aluminum Framing. Used for
building the structure of the entire
system. It also contains corner
brackets, T-brackets, and gantries
for achieving the smooth linear

motion.

2 Vertical Sliding mechanism. It
contains 2 linear actuators, a
support base for lifting the robots
and a base mount plate for securing
the linear actuators. For the
position feedback, distance sensors

are installed.

3 Electronics box for keeping the
electrical components. It contains a
raspberry pi controller, an Arduino,

2 motor controllers for the linear

actuators, a current sensor, and a
stepper driver for controlling the

stepper motor.
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Horizontal sliding mechanism. It
contains a threaded rod, two guide
rails with linear gantries, bearings
and bearing supports for the
threaded rod, a stepper motor for
driving the mechanism and a

distance feedback sensor.

Stepper motor for moving the

horizontal slider [74].

Horizontal slider jockey. It
contains a lead screw head
connected to the base plate which is
then connected to the linear
gantries for moving along the guide

rails.

Servo rotating mechanism for 3D
scanning system. The servo [67] is
connected to the object via a
gripper that can be tightened and
loosened. The object is a car door

as illustrated in the CAD.

A downscaled CAD model of a car
door for 3D scanning and trajectory

planning.
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Two 3DOF robots for controlling
the x, y, z location of the end-
effector [75]. The robot combined
with the vertical sliding mechanism
gives a total of 4 DOF for executing
the trajectory over the surface of
the complex free-form surface

(e.g., car door)

10

Position feedback platform for the
linear actuators. It has a VLX

distance sensor mounted on a plate.

11

VL53L0X sensor [66]. It is a time
of flight (TOF) sensor for
measuring distance. It has a
measurement range of 3cmto 2 m

and an accuracy of + 1mm.

12

A limit switch used for
disconnecting the power from the

linear actuators [76].

13

3D scanning hardware [65]. It has
an Intel Real Sense D435 sensor
and a TOF sensor for calibration of
the rotation axis of the object. The
sensors are connected to the system

via a 3D-printed mounting plate.
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Figure 5.3: 3D rendered CAD model of the Integrated System (isometric view).
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Figure 5.4: 3D rendered CAD model of the Integrated System (top and side view).

5.2.2 Software development

After the system is modeled in CAD and fabricated, it is important to devise a software
mechanism that achieves the desired purpose of the autonomous system. As such, the
software should be able to communicate with the hardware components and optimize the
trajectory for the complex free-form surface. Moreover, a GUI (graphical user interface)
should also be in consideration to allow the user to interact with the system, make changes
to the settings, and load the CAD and trajectory files. The software breakdown and the GUI
is shown in Fig. 5.5. The core components of the system are connected via ROS (Robot
Operating System) ecosystem [77]. ROS allows for easy communication between software
scripts/nodes via topics and services. The ROS MASTER is the main server running all the
necessary nodes responsible for trajectory optimization and 3D scanning. Another instance
of ROS runs on the Raspberry Pi controller which is directly connected to the hardware.
The hardware includes the horizontal sliding and vertical sliding mechanisms, the servo
rotation mechanism, the vilx sensors for distance monitoring and the D435 sensor for
acquiring a depth scan of the object. The raspberry pi is programmed to respond to certain
topics via ROS subscriber and publishers. Thus, any sensor can be read by the MASTER
node by subscribing to it. Similarly, any change in the actuator state can be published to
the raspberry pi node and realized in real time. The web-based GUI is connected to ROS
Master and the two robots via web sockets programmed in JS (JavaScript) [78] . The
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backbone of the web page is defined by HTML script while the page is styled using CSS

and JS acquired from Bootstrap and jQuery [79]. ROS ecosystem is tunneled with the JS

using the roslibjs script developed by [80]. The two robots receive trajectory commands

in the form of x, y, z and location and a time variable for defining the speed. The 3D

scanner node is responsible for instantiating a 3D scanning instance on user request from

the web GUI. After completion, it stores the scan file into the scan directory locally.

Similarly, the trajectory optimizer node when triggered from the GUI, optimizes the

trajectory, and stores the results into a NumPy array locally in the traj folder.

Main Control
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|
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Figure 5.5: Schematic for Software development of the integrated system.
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5.2.3 Graphical user interface

The GUI is a web-based interface allowing for communication between the user
and the software components of the system. The main motivation behind the GUI is the
provision of a user-friendly interface to perform the different functions of the system.
The web-based GUI has a sidebar navigation menu with interactive buttons for
communicating with the system. The main buttons are Camera, Sensors, 3D Scanner,
Optimizer Settings, Traj Optimizer, Upload Traj, Stop Traj, Validate and Manual
Control. The top navigation bar has 4 buttons including CAD Files, Scan Files, CAD-
CAL files and Traj Files. These buttons are handled by the JavaScript node and upon

clicking will execute the required functionality. The GUI interface is shown in Fig. 5.6.

Main Control

Camera
feeds
Camera v
Sensors
Sensors 2 Feedback

3D Scanner

Optimizer Settings -

o L iclin? " Update
Traj Optimizer
Upload Traj -

Stop Traj =} |Handlers
Validate v

alidation
Manual Control handler
anual control
of system

camera' feed
container

Figure 5.6: Front panel of web-based GUI.

The further breakdown of the GUI interface is shown in Fig. 5.7. The top navigation
bar is a clickable dropdown menu showing the available file names on the local storage.
Upon clicking either of these three buttons, the JavaScript handler function sends a ping to
the JSON handler node at the backend requesting for the File list on the specified
directories. The backend node responds with the file list which is updated to view on the
drop-down menu. Further, by clicking a filename, it is selected as the current file source

for the trajectory planning process. The side bar field, Optimizer Settings, is also a
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dropdown menu with form inputs for the paint trajectory planning process. These fields are
inserted, and the update button is then clicked to update the settings to the

settings. json file.

»| File List dropdown with
on-click Functionaity

' 4

1
- | :
Main Control : !
' :
1

plate.STL

carbonnet.STL
cardoor.STL

Clikable file name

I Form Fields for settings 1
jsonHandler_node=> settings.json read

Update

Figure 5.7: Web GUI Optimizer Settings and File System Handler.

The remaining functionalities of the GUI are shown in Fig. 5.8. The Traj Optimizer
button is further subdivided into two buttons. One is used for optimizing the trajectory
while the other is used for viewing the selected trajectory. Before trajectory optimization,
the CAD/SCAN field of the Optimizer Settings should be selected 0 or 1 ifa CAD or SCAN
is to be used respectively. The selected CAD or SCAN file is then considered by the
backend for trajectory planning. Similarly, the Upload and Stop Traj buttons are used to
invoke the trajectory handler node which can start and stop trajectory upload to the robots
at any given time. The Validate button has 3 sub fields for evaluating the 3D scan accuracy
of the selected CAD and SCAN files, energy, and paint quality for the selected trajectory

file. Fig. 5.8 also shows the Camera field dropdown for selecting a given camera feed, the
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Sensors dropdown for viewing the sensor readings, and the 3D scanner button for starting

the 3D scan and viewing it.

Main Control Camera
v :
' usb cam 1
' '
1
Camera ' Realsense RGB :
1
1 :
Sensors : Realsense Depth '
1 :
3D Scanner H Robot A '
Camera Feeds ' :
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Optimizer Settings pd ; Robot B 4
' '
L Ml Sensors !
Traj Optimizer ' '
. -
&
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1
1
Plan & Opt Traj optimize Trajecotry ' vix2: 232 mm
and View it Distance Sensors 1_,—:
View Traj feedback ' vix3: 245 mm
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; Power feedback r
Upload Traj from current sensors ‘L PowerA: 5.52 W
Upload selected traj -
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Starts the 3D
Robot B
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Stop Trajectory upload

Robot A

Robot B

3D Scan Accuracy: nan

Energy

process at anytime

Validate button

Views the selected
3D scan

Valibrate CAD with initial Euler XYZ

Calibrate CAD

View Calibrated CAD

Figure 5.8: Web GUI miscellaneous buttons and functions.

The software packages and custom programs (18 Python scripts) are shown below for

reference.
o | 6 | N
packages async_web_  CMakeLists irsip irsip.zip paintrobot rosserial  rplidar_ros web_video_
server_cpp Jbxt server
BBl o -~ & ¢ (& & @
data __pycache_ web_v2 settings. calibration. coating_ exec_traj_ exec_traj_ joint_opt. json_
_ json Py essentials. Apy B.py Py handler.py
py
Custom =
gustom | [@ @ - e o e @ - - o
paths.py robot_ rviz_ scanner.py sim_ traj_ Transforms  usb_cam_ validate _ view_
model.py visualizatio indices.py planner.py py pub.py 3Dscan.py 3dscan.py
n.rviz
@ @ @
view_ view_ view_traj.
cadcal.py coating.py Py
[

Figure 5.9: Software packages and custom Python scripts.

92



5.2.4 ROS RQT graph

The ROS RQT graph shows the relationships between the topics, services, and
nodes running. An RQT graph of the system running with all nodes is shown in Fig. 5.10.

The topics are represented by the square boxes and the nodes by an oval shape.

Figure 5.10: ROS RQT graph.

5.3 Conclusion

In this chapter, the hardware and the software development were discussed in detail.
The major hardware components include two robots for executing the paint trajectory,
an intel realSenseD435 sensor for depth mapping, and the LINUX server for running
the software components. A Raspberry Pi controller is also used with its GPIO (General
purpose input output) pins connected to the sensors, motors, and actuators via electronic
drivers. The system is integrated to form an autonomous system for trajectory planning
and optimization of the painting process over complex free-form surfaces. The software
components include the programs responsible for handling the functionalities of the
system. A web-based GUI interface that allows for a user-friendly interface with the

system was also discussed in detail.
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Chapter 6. Results and Discussions

The results and discussion section will cover the accuracy of the 3D scanning system
used for acquiring the geometry of the object, the calibration results for the CAD models,
and the optimization results for the trajectory planning process. The trajectories are
analyzed based on the coating distribution error, relative coating error, energy consumption
and time. During the energy computation of the manipulator, the friction model is not
considered to simplify calculations. Similarly, the end-effector wrench loading vector is
also assumed zero. To evaluate the energy consumption experimentally, current sensors
are installed at the power inlets of the robots. The spraying process model and the robot
dynamic model are implemented in Python including the other functionalities defined in
chapter 5. Before discussing the results, we define the parameters for the spraying process
model, the robot model, and the genetic optimizer used in the theoretical and experimental

analysis.

6.1 Spraying process, robot, and optimizer parameters

The spraying process can be modelled using the parameters a, b, By, By and Kpqy.
Since we did not have a spray delivery system, these parameters were chosen based on the
size of the object and by analyzing the study done by [37]. The robot model contains the
kinematic and dynamic parameters. The links are considered cylindrical to simplify the
calculations and the mass moment of inertia are computed for the torque computation. The
gravity vector is in the negative z-direction of the robot base frame defined in chapter 4.
Similarly, other parameters such as the minimum and maximum paint gun speeds, the spray
gun height, and the genetic optimizer settings are also defined in Table 6.1. The GA settings
are tuned on hit-and-trial by first starting with the default settings in the pygad [81] library
in Python. The optimizer speed slows down as the number of generations increases. Thus,

the settings must be adjusted based on the computational resources available.
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Table 6.1: List of spraying process, robot, and optimizer parameters used in analysis.

Parameter Description Value
Spraying process parameters
a Ellipse longer side for the coating model 15 mm
b Ellipse shorter side for the coating model 5.6 mm
Bx Coating distribution beta along the X direction of ellipse 2.3
By Coating distribution beta along the Y direction of ellipse 4.5
Kimax Coating deposition rate 50.0 um/s
digeal Desired coating thickness 20 um
Vmin Minimum speed of the spray gun 3mm/s
VUmax Maximum speed of the spray gun 15mm/s
h Spray gun height from the surface 10 mm
Robot model parameters
dstroke Link 0 stroke length 254 mm
Ly Manipulator Link 1 length 92.54 mm
L, Manipulator Link 2 length 128.4 mm
L3 Manipulator Link 3 length 144.8 mm
M Manipulator Link 0 mass 25kg
my Manipulator Link 1 mass 0.5kg
m, Manipulator Link 2 mass 0.5kg
ms Manipulator Link 3 mass 0.5kg
Optimizer Parameters
w4 Scaling factor for mean squared error 0.40
W, Scaling factor for coating deviation error 0.20
w3 Scaling factor for mean energy consumption 0.20
Wy Scaling factor for mean trajectory time 0.20
€ Hyper-parameter in the fitness function 1.0
T Mutation rate in GA 0.1
Ctype Crossover type in GA Two points
Miype Mutation type in GA Random
Nparents Number of mating parents in GA 2
Ngen Number of generations in GA 25
Ngoy Number of solutions per population in GA 2
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Figure 6.1: Experimental setup in the laboratory.
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6.2 3D scanning and CAD calibration results

The 3D scanning system is used to generate surface point clouds of the object under
investigation. After the point clouds are obtained for each rotational index (30°), they are
filtered and raw aligned using the transformations defined earlier in Chapter 3. ICP is then
used to fine-align and transform the point clouds into one common reference frame.
Additionally, statistical noise removal is applied if the point cloud has any residual noise
as defined in Chapter 3. Three objects are scanned, and their corresponding CAD models
are calibrated (transformed) into the camera reference frame {C} for trajectory planning.
Fig. 6.2 shows selecting a scan file from the file list button in GUI and viewing it by
clicking the view 3D scan button. Similarly, Fig. 6.3 shows performing the calibration
using the GUI interface of the system. Table 6.2 shows the summary of the scanned models
and their corresponding calibrated CAD in the camera frame {C}.

CAD Files Scan Files CAD-CAL Files Traj Files
Main Control EEs R ST B

temp

cardoor-scan.npy

Camera carbumper-scan.npy

carbonnet-scan.npy

Sensors

—

3D Scanner 3D Scan in Frame {C}

Generate 3D Scan
View 3D Scan

Update initial Align

Calibrate CAD

View Calibrated CAD

Optimizer Settings

Traj Optimizer

Upload Traj
Stop Traj

Validate

Manual Control

Figure 6.2: Selecting 3D scan and viewing it in the GUIL.
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Camera
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Generate 3D Scan
View 3D Scan

I on OB

Update initial Align

View Calibrated CAD

Optimizer Settings
Traj Optimizer
Uplosd i) calibration_node=> Calibrating CAD and SCAN
Stop Traj

Validate

Manual Control

Figure 6.3: Calibrating the 3D scan and the corresponding CAD file in the GUI.

Table 6.2: Scanned models and their corresponding CAD calibrated in frame {C}.

Scanned model in frame {C} Calibrated CAD in frame {C}
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The accuracy of the scanning process is evaluated using the D1 and D, metrics defined

earlier in chapter 3. The D3 and A3 metrics are omitted since their computation depends on
angles in the point cloud and generates errors in the inverse cosine frequently. The D and
D> metrics are computed between the scanned models and their corresponding CAD
models. It is revealed that the car door is captured with 95% accuracy, the car hood with
93%, and the car bumper with 92% accuracy. The geometric signatures are summarized in

Table 6.3 while the density plots are shown in Fig. 6.4 to Fig. 6.6.

Table 6.3: Similarity scores between the 3D scanned models and the corresponding CAD.

D1 score D2 score Avg score
Car door 0.9639 0.9434 0.9536
Car hood 0.9524 0.9228 0.9376
Car bumper 0.9488 0.9082 0.9285
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6.3 Optimal paint trajectory planning for a car door

A downscaled version of the car door is considered for trajectory planning and
optimization. The CAD model is calibrated with the scanned model to ensure the accurate
position and orientation of the surface in the camera and robot frame as defined in Chapter
3. The calibrated CAD model is loaded into Python [61] and converted to eigen coordinate
system by applying PCA. The GA is then run for each slice along the slicing direction of
the CAD point cloud until no slices are left. The optimizer runs for equidistant slicing (6 =
a) and non-equidistant slicing (6 € [a 2a]) and the results are stored for each slice. For
ease of analysis, the slicing direction 8 is discretized into 4 values including 0°, 30°, 60°
and 90°. The results include analyzing the mean coating thickness, energy per slice,
coating distribution error, relative coating error, GA fitness, slice widths, slice speeds, and
inverse kinematic configurations plotted against slice numbers. Additionally, the planned
trajectory in the eigenframe and the coating thickness at each patch are visualized using
color intensities proportional to the value of coating thickness. The coating thickness is
mapped to color intensities such that the brighter green color represents high coating
thickness and vice versa. The axes of the frame {EF} are shown by red, green, and blue for

X, y, and z respectively as shown in Fig. 6.7.

6.3.1 Results for slicing direction 0= 0°

Figure 6.7: Coating thickness and planned trajectory of a car door in {EF} for slicing

direction 8 = 0° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.8: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car door: 8 = 0°).
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6.3.2 Results for slicing direction 0= 30°

Figure 6.9: Coating thickness and planned trajectory of a car door in {EF} for slicing

direction 8 = 30° (left: equidistant slicing, right: non-equidistant slicing).
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6.3.3 Results for slicing direction 0= 60°

Figure 6.11: Coating thickness and planned trajectory of a car door in {EF} for slicing

direction 8 = 60° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.12: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car door: 8 = 60°).
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6.3.4 Results for slicing direction 0= 90°

Figure 6.13: Coating thickness and planned trajectory of a car door in {EF} for slicing

direction 8 = 90° (left: equidistant slicing, right: non-equidistant slicing).

Mean coating thickness (6=90)

—t gy slicing

—& _ non-eq slidng

\ —e—ideal
30 N

um

10

Slice Number

Coating deviation error (6=90)

\ —a— oq slicing
—&— non-eq slidng
\

1=]
- -
B 0 n

2
%

il
Lo
|~

std/mean
g

s B
= O

=
o &

o 2 4 & B8 10 12 14 pL3

Slice Number

Joules

relative coating error

106

100

Total energy per slice (6=90)

—& gq slicing

s i 01-£q slicing

\

\

4 (3 8 10 12 14 16

Slice Number

Relative coating error (#=90)

—8— gq slicing

—s— non-eq slicing

4 6 B 10 12 14 16

Slice Number



GA fitness (6=90) Slice width (8=90)

—8—eq slidng

—e—non-eq slidng

E
' E —&— eq slicing

~+— non-eq shicing

2 1 12
10 12 12 16 o 2 4 6 8 10 12 14 16

6 8
Slice Number Slice Number

Slice speed (6=90) Manipulator Inverse Kinematic Configuration (6=90)

—8—eq slicing

& non-eq slicing

—8— eq slicing 0.4

—&— non-eq slicing

4] 2 4 6 1 10 12 14 16 0 2 4 6 8 10 12 14 16

Slice Number Slice Number

Figure 6.14: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car door: 8 = 90°).

6.3.5 Results discussions

The results indicate that a desired coating thickness on a surface can be achieved
by specifying the correct spraying parameters and the robot model. The value of the coating
thickness, however, is subject to the local geometry of the object, the speed of the paint
gun, the slice width and the slicing direction. Thus, variations in the mean coating
thicknesses can be seen for both equidistant and non-equidistant slicing. The trajectories
are evaluated based on four criteria including energy, time, coating distribution, and
relative coating error. These quantities are plotted against the slicing direction as shown in
Fig. 6.15. It is observed that the non-equidistant slicing scheme always leads to lower
energy consumption since the surface can be covered with fewer slices. A similar trend is
also observed for the trajectory time. As far as the coating distribution is concerned, the
equidistant slicing scheme gives a more uniform distribution as indicated by the lower
deviation errors. The relative coating error is generally lower for the non-equidistant slicing

except at a slicing direction of 60°, where it is slightly higher. The most energy efficient
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trajectory is obtained at a slicing direction of 90° and by employing a non-equidistant
slicing scheme. It consumes a total of 611 J of energy which is 60% lower than the least
energy-efficient trajectory. The optimal trajectory for the process time is at a slicing
direction of 30° while using a non-equidistant slicing scheme. This trajectory takes 188 s
which is 33% lower than the least time-optimal trajectory. The coating distribution is most
uniform when employing an equidistant slicing scheme at an angle of 30°. It gives an
average coating distribution error of 18% with a mean coating thickness of 19.21 um which
is considerably close to the desired thickness of 20.0 um. Finally, the lowest relative
coating error (14%) is observed for na on-equidistant slicing scheme at an angle of 30°.
This leads to a mean coating thickness of 18.38 um. The summary of results is given in

Table 6.4.
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Figure 6.15: Total energy, trajectory time, coating deviation and relative coating error vs

slicing direction (car door).

108



Table 6.4: Results summary for trajectory planning and optimization of a car door for

both equidistant and non-equidistant slicing.

6 Amean(m) | Esum () | Toum (8) | Jderror | Jdyer

Eq-slicing 0° 28.58 1492.94 273.10 0.23 0.54
30° 19.21 1553.09 207.76 0.18 0.17

60° 20.56 1320.14 234.55 0.20 0.20

90° 24.12 775.75 282.17 0.18 0.29

Non-eq slicing 0° 2191 1092.36 195.47 0.47 0.30
30° 18.38 1382.48 188.54 0.22 0.14

60° 2291 1109.15 233.77 0.32 0.28

90° 23.34 611.33 244.65 0.29 0.25
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6.4 Optimal paint trajectory planning for a car hood

6.4.1 Results for slicing direction = 0°

Figure 6.16: Coating thickness and planned trajectory of a car hood in {EF} for slicing

direction 8 = 0° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.17: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car hood: 8 = 0°).

6.4.2 Results for slicing direction 0= 30°

Figure 6.18: Coating thickness and planned trajectory of a car hood in {EF} for slicing

direction 8 = 30° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.19: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car hood: 8 = 30°).
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6.4.3 Results for slicing direction 0= 60°

Figure 6.20: Coating thickness and planned trajectory of a car hood in {EF} for slicing

direction 8 = 60° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.21: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car hood: 8 = 60°).

6.4.4 Results for slicing direction 0= 90°

Figure 6.22: Coating thickness and planned trajectory of a car hood in {EF} for slicing

direction 8 = 90° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.23: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car hood: 8 = 90°).
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6.4.5 Results discussions

The results for the car hood indicate that a desired coating thickness on a surface
can be achieved by specifying the correct spraying parameters and the robot model. The
most energy-efficient trajectory is obtained at a slicing direction of 90° and by employing
a non-equidistant slicing scheme as shown in Fig. 6.24. It consumes a total of 1027 J of
energy which is 73% lower than the least energy-efficient trajectory. The best time-optimal
trajectory is observed at an angle of 30° with equidistant slicing scheme. This leads to a
total trajectory time of 357 s. The coating deviation error achieved using equidistant slicing
is generally lower than non-equidistant slicing scheme consistent with the results for car
door. The lowest coating deviation is 18% and is observed at an angle of 60°. The smallest
relative coating error (21%) is observed at 90° while employing a non-equidistant scheme.
This leads to a mean coating thickness of 21.02 um over the surface of the car hood. A

summary of the results is described in Table 6.5.
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Figure 6.24: Total energy, trajectory time, coating deviation, and relative coating error vs

slicing direction (car hood).
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Table 6.5: Results summary for trajectory planning and optimization of a car hood for

both equidistant and non-equidistant slicing.

0 | dpean(tm) | Equn () | Toum (8) | Jderyor | Jrer

Eq-slicing 0° 22.59 3826.96 416.37 0.20 0.35
30° 19.79 3712.32 357.27 0.19 0.22

60° 20.20 2397.28 403.69 0.18 0.25

90° 20.20 1272.48 373.41 0.19 0.29

Non-eq slicing | 0° 24.34 3332.79 401.12 0.28 0.39
30° 22.32 3006.22 418.16 0.34 0.35

60° 2291 2137.09 389.37 0.29 0.42

90° 21.02 1027.1 371.74 0.29 0.21
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6.5 Optimal paint trajectory planning for a car bumper

6.5.1 Results for slicing direction 0= 0°

Figure 6.25: Coating thickness and planned trajectory of a car bumper in {EF} for slicing

direction 8 = 0° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.26: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 8 = 0°).

6.5.2 Results for slicing direction 0= 30°

Figure 6.27: Coating thickness and planned trajectory of a car bumper in {EF} for slicing

direction 8 = 30° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.28: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 8 = 30°).
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6.5.3 Results for slicing direction 0= 60°

Figure 6.29: Coating thickness and planned trajectory of a car bumper in {EF} for slicing

direction 8 = 60° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.30: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 6 = 60°).

6.5.4 Results for slicing direction 0= 90°

Figure 6.31: Coating thickness and planned trajectory of a car bumper in {EF} for slicing

direction 8 = 90° (left: equidistant slicing, right: non-equidistant slicing).
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Figure 6.32: Mean coating thickness, energy, coating deviation and relative coating error,

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 6 = 90°).
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6.5.5 Results discussions

The results for the car bumper indicate that a desired coating thickness on a surface
can be achieved by specifying the correct spraying parameters and the robot model. The
most energy-efficient trajectory is obtained at a slicing direction of 90° for non-equidistant
scheme as shown in Fig. 6.33. The total energy savings are 64%. The energy consumption
decreases with the increase in the slicing direction and is consistent with the results
obtained for the car door and car hood. The lowest trajectory time is 137 s when using
equidistant slicing at an angle of 30°. Similarly, consistent with the results of car door and
hood, the coating deviation error is lower for equidistant slicing scheme with the smallest
value (28%) observed at an angle of 0° which gives a mean coating thickness of 21.02 um.
The relative coating error follows a similar trend with an exception at an angle of 60°. The
smallest relative coating error is 19% and is observed for equidistant slicing at an angle of

90°. A summary of the results for the car bumper is given in Table 6.6.
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Figure 6.33: Total energy, trajectory time, coating deviation and relative coating error vs
slicing direction (car bumper).
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Table 6.6: Results summary for trajectory planning and optimization of a car bumper for

both equidistant and non-equidistant slicing.

0 | dpean(um) | Eqym (J) | Toum (S) | Jderror | Jarer
Eg-slicing 0° |21.02 575.59 160.58 0.28 0.36
30° | 16.86 451.24 137.47 0.31 0.25
60° | 19.13 406.39 164.68 0.31 0.38
90° | 17.33 223.84 156.80 0.33 0.19
Non-eq slicing | 0° | 19.27 509.64 157.04 0.38 0.44
30° | 18.15 383.29 161.19 0.39 0.34
60° | 18.38 354.33 148.73 0.35 0.34
90° | 21.74 203.25 188.07 0.39 0.36
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6.6 Experimental validation of energy consumption

To assess the validity of the optimization results, the trajectory is executed in real time
on a PRRR manipulator defined earlier. A current sensor is installed on the power inlet of
the robot to measure the power drawn as the trajectory is being executed. The idea is to
compare the energy consumption of the least and most energy-efficient trajectories. For the
car door, the trajectories with slicing direction of 30° and 90° with equidistant and non-
equidistant slicing schemes are selected respectively. The current measurements at a given
trajectory point and the time duration between consecutive trajectory points are logged.
When the energy values are summed across the trajectory points, it is observed that the
non-equidistant slicing leads to energy savings of 44%. This value is close to the theoretical
estimation of 60%. In practice, some of the energy is lost by overcoming the friction
between link joints and the resistance in the electrical circuit. The real-time energy values

are plotted against the trajectory points as shown in Fig. 6.34.
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Figure 6.34: Experimental energy consumption for trajectory optimization of car door.
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Similarly, the experimental validation of the energy consumption for the car hood

shows a total energy savings of 51% if non-equidistant slicing is used with a slicing

direction of 90°. It is compared with equidistant slicing at a slicing direction of 0° as shown

in Fig. 6.35.
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Figure 6.35: Experimental energy consumption for trajectory optimization of car hood.

Finally, the experimental validation of the energy consumption for the car bumper

shows a total energy savings of 33% if non-equidistant slicing is used with a slicing

direction of 90°. It is compared with equidistant slicing at a slicing direction of 0° as shown

in Fig. 6.36.
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Figure 6.36: Experimental energy consumption for trajectory optimization of car bumper.
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Figure 6.37: Robot executing trajectory on a car door.

A summary of theoretical and experimental results is given in Table 6.7. Total
trajectory energy is Eg,.,, while E,,, represents the percentage of energy savings

compared to the reference trajectory.

Table 6.7: Results summary of experimental validation of energy consumption for

optimal paint trajectories of car door, car hood and car bumper.

Experimental Theoretical Experimental
Slicing Scheme (7]
Esum Esav Esav
Car door | Non-equidistant | 90° 2085 J 60% 44%
Equidistant
30° 3003J 0% 0%
(Reference)
Car hood | Non-equidistant | 90° 1569 ] 73% 51%
Equidistant
0° 32127 0% 0%
(Reference)
Car
Non-equidistant | 90° 1275 ] 64% 33%
bumper
Equidistant 00 00, 0%
(Reference) 18947 ° °
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6.7 Results comparison with literature

The coating uniformity, trajectory time, and energy consumption in paint application

are dependent on the geometry of the object, dynamics of the spraying process and the

robot performing the trajectory. These will vary based on the scenario presented in the

optimization process. It can be concluded from the analysis of the results that the proposed

hybrid optimization scheme is able to generate efficient trajectories for the painting

process. Some trajectories are efficient in terms of coating quality, others lead to lower

process times, while some are more energy efficient. Thus, a suitable trajectory must be

selected based on the requirements of the painting. The summary of the results comparison

1s tabulated in Table 6.8.

Table 6.8: Results comparison summary with literature.

cost

U- V-
Equidistant Non. eq Transitional- | Proposed | Proposed Proposed
Article direction direction
slicing [37] slicing [37] seg opt [38] scheme scheme scheme
[36] [36]
Object of Oval Oval Motorcycle Motorcycle ) .
) ) ) Aircraft wing Car door Carhood | Car bumper
interest Bucket Bucket spoiler spoiler
Desired coating
50 pm 50 pm 23 pm 23 um 70 um 20 pm 20 pm 20 pm
thickness
Mean Coating
51.1 pm 52.2 pm 2595 um 22.27 ym 68.7 um 19.21pum | 21.02pm | 21.02 um
thickness
Standard
2.775 um 3.8 um 6.52 um 571 um 3.2 um 3.41 pm 6.51 pm 5.35 pm
deviation
Mean coating
5.43% 7.60% 25.12% 25.64% 4.60% 17.75% 29.4% 25.4%
deviation error
Mean relative
2.2% 4.4% 12.83% 3.17% 1.86% 3.95% 5.1% 5.1%
coating error
Max Time
. 17% 0% N/A N/A N/A 33% 14.18% 27.13%
savings
Max Energy
. N/A N/A N/A N/A N/A 60% 73% 64%
savings
Coating mean-
squared error Yes Yes Yes Yes Yes Yes Yes Yes
cost
Coating
o No No No No No Yes Yes Yes
deviation cost
Energy cost No No No No No Yes Yes Yes
Process time
No No No No No Yes Yes Yes
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The methods and optimization schemes in the literature do not consider process
time optimization, coating deviation error, and energy consumption in the cost functions.
Our novel hybrid optimization scheme introduces these terms into the objective function,
which then leads to more optimal paint trajectories. The performance of our results is in
close agreement with the literature analysis as indicated by the proximity of the mean
coating thickness with the desired requirement, and the standard deviation indicating the
spread in the distribution of coating over the complex surfaces. These results are presented
as a summary and should not be used as a direct comparison since the performance indices
highly depend on the geometry of the complex surfaces, the spraying process, and the robot

model in general.
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Chapter 7. Conclusion and Future Works

The primary goal of the thesis was to develop an integrated system for industrial
painting capable of generating automated paint trajectories optimized for coating thickness,
process times, and energy consumption. The literature review highlighted key technologies
needed to automate the trajectory planning process of a paint robot. The establishment of
a coating deposition model on a complex free-form surface and the dynamic model of the
robot bears key importance in the trajectory planning and optimization process. While
adequate work has been done to optimize the coating thickness over a complex free-form
surface, the application of a robot dynamic model to obtain energy efficient paint
trajectories is left unattended. Therefore, this study focused on developing a hybrid
optimization technique to ascertain coating uniformity, process times, and energy
consumption in the trajectory planning process. Moreover, considerable effort was put into
the development of the integrated system, specifically the web-based GUI and the backend

programming for interacting with the system.

The trajectory planning process starts with the acquisition of the 3D model of the
object. Once the geometry of the object is obtained and calibrated in the camera frame, an
improved point cloud slicing technique is applied with the provision of a variable slicing
direction to broaden the optimizer search space. The slicing is performed at an arbitrary
angle of the eigen coordinate frame. Then, the trajectory points for each slice are obtained
in discrete steps, and the coating thickness is computed. Similarly, using the robot dynamic
model, the joint torques, link velocities, and the time delta between trajectory points are
computed. The individual slice of the point cloud is then optimized using GA (Genetic
Algorithm) by minimizing a joint cost function. The inclusion of slicing direction and the
inverse kinematic configuration of the robot among the slice width and slice speeds leads
to a better optimization of the trajectories in terms of coating uniformity, process times,
and energy consumption. Using the hybrid optimization scheme and employing a variable
slicing direction, optimal paint trajectories can be obtained. The literature analysis revealed
the use of only a single mean squared error objective function to achieve the desired coating

thickness requirement. Our novel optimization scheme introduced three additional terms
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into the objective function to account for the coating deviation errors, process times, and
energy consumption. Experimental results reveal energy savings of 44%, 51% and 33%
for the paint trajectories of a car door, car hood, and car bumper, respectively, while

achieving coating uniformity and lower process times.

For future works, the paint system can be modeled in a simulation environment like
Gazebo [82] or MATLAB [83] to analyze the optimized paint trajectories. Gazebo is a
physics engine and requires the model to be presented in the form of a URDF (Unified
Robot Description Format), which works in conjunction with the ROS ecosystem. A URDF
can model the kinematic and dynamic properties of the robot in more detail, leading to
more accurate calculations of the robot dynamics. On a similar note, the spray delivery
system can also be modeled, and the coating thickness can be analyzed. The use of a
simulation environment makes it easy to assess the performance of the system while

eliminating the need for a physical system.

Another recommendation for future work would be the use of large 6-axis robots
with the provision of an HVLP spray gun system. The last 3 axes of the robot can be used
for orientation control to position the paint gun over the surface of the object. The
experimental paint application is not possible with a 4 DOF robot since it can only be
controlled for a position in the three-dimensional cartesian space and not the orientation.
In the literature review section, industrial robotic systems for paint applications were

discussed in detail and can be utilized for paint applications more precisely.

Nevertheless, for industrial applications, where many parts are to be processed
simultaneously, the hybrid optimization scheme can be implemented on a large scale. The
optimization function implemented in Python can be converted to a class object, and
hyperthreading can be utilized to parallelize the execution. A class instance for each object
can be submitted to a standalone thread, thereby making the execution parallel. Moreover,
GPU processing can also be investigated to process large batch sizes of objects, and the
trajectories can be computed. As a final recommendation, the execution scripts can be built
using docker containers [84] with the required dependencies included on a single image.
The proposed solution will lead to a smoother distribution of the software resources

independent of the OS used by the server.
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Appendices

Al. Paint system CAD drawings

i [}

A2. Robot specifications

— 87mm— Axis: 4+1

Dimension: 450*160*260mm
Weight(Only JetMax): 1.6kg

Payload: Max.450g
Ambient Temperature: 0 °C ~ 45 °C

Material: Aluminum, Fiberglass
Reach: R104~R289 x 240°
Repeatabil lty: =1mm
. Joint Speed: Max. 0.20sec/60°
' End Effector: Suction Cup, Small Gripper, Big Gripper
4 8 i Power Supply: 12V 5A DC Adapter
Tl @ Connectivity: USB/Wi-Fi/Ethemet
x I Controller: Jetson Nano BO1
Storage: 32G Class 10 TF

Programming Tools: Python/C/C++/JavaScript

Control Methods: Computer/ Phone/
Wireless Handle/ Mouse
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A3. Intel Real sense D435 specifications

Metric

D410/D415

<= 2 Meters and
80% ROI, HD
Resolution)

D430/D435/
D435i/D435f/D435if

(<= 2 Meters and

D450/D455/
D455f

<= 4 Meters and

D401/D405

(<= 0.5 Meters
and 80% ROI, HD
Resolution)

80% ROI, HD
Resolution)

80% ROI, HD
Resolution)

Z-accuracy {or

Absolute Error) * 2% £ 2% + 2% £ 2%
Fill rate = 99% = 99% = 99% = 99.5%
ggii;r:';ég; < 2% < 2% < 2% < 1%
Temporal Noise = 1% = 1% = 1% = 0.5%
Lifetime 4 years 5 years 5 years 5 years
Color IMU
Color (RGB Camera) D435i/D435if/ D455/
Depth Imager (Left Imager) D415/D435/D435i/ D455f
D410 D435f/D435if/
D450/D455 /D455f
Z16 Y8 Gyro & Accelerometer
Z16 uyvy Gyro & Accelerometer
Z16 Y8 YUY2 Gyro & Accelerometer
Z16 YUuy2 Gyro & Accelerometer

A4. VLS3L0X TOF sensor specifications

Target reflectance level Confibans Indoor Outdoor overcast
(full FOV) (2) (2)
Typical 200em+ (1) 80 cm
White target (88%)
Minimum 120 cm 60 cm
Typical 80 cm 50 cm
Grey target (17%)
Minimum 70 cm 40 cm
Range profile Range timing budget Typical performance Typical application
Default mode 30 ms By HEnnECH =N P Standard
Table 12
High accuracy 200 ms 1.2 m, accuracy < +/- 3% | Precise measurement
2 m, accuracy as per Long ranging, only for
Lang winge Sl Table 12 dark coriditions (no IR)
High speed 20 ms 1.2 m, accuracy +/- 5% Figh sp‘eed whelre‘
accuracy is not priority
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AS. Linear actuators specifications

Stroke length 10
Voltage 12V-24V
Force Delivers 330 Ibs of force
Speed 0.315 in/s at 12v; 0.670 in/s at 24v
Extras Position feedback, Mounting brackets, Weather resistant, Limit switches

Limit Switches

Included - Automatically stops at end of travel

Environment

IP54 rated (Weather resistant)

Feedback sensor

Hall Effect - Each pulse represents 0.007046 inches (0.17896mm)

RED wire Motor (+)
BLACK wire Motor (-)
GREEN wire Hall Sensor GND
WHITE wire Hall Sensor POWER

YELLOW wire

Hall Sensor OUTPUT
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