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ABSTRACT 

 

Paint application is vital for product durability and aesthetics, whether done manually 

or by precise robotic systems. Manual work is error-prone and risky, while robots offer 

accuracy. However, programming robot trajectories for diverse products is challenging. 

Therefore, developing an autonomous system capable of generating automated paint 

trajectories is desirable. While adequate work has been done to optimize paint trajectories 

for coating thickness on complex free-form surfaces, the investigation of robot energy 

consumption and process time in the context of painting is left unattended. Thus, this study 

focuses on formulation of a hybrid optimization scheme to generate time and energy-

efficient paint trajectories while ensuring optimal coating deposition on a surface. 

Moreover, considerable effort is put into the development of hardware and software for the 

integrated robotic system.  Results for the trajectory optimization of a car door, hood, and 

bumper reveal efficient paint trajectories can be obtained using the proposed optimization 

scheme.  
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 Paint flow rate at point 𝐶ଵ 

𝑄஼మ
 Paint flow rate at point 𝐶ଶ 

𝐴஼భ
 Paint area at point 𝐶ଵ 

𝐴஼మ
 Paint area at point 𝐶ଶ 

𝑑஼భ
 Coating thickness at point 𝐶ଵ 

𝑑஼మ
 Coating thickness at point 𝐶ଶ 

𝐿௦ 
Connection line between the paint gun and a point 𝑠 on the surface of 

the object 

𝒏ഥ Normal vector of the surface at point 𝑠 

𝑀ଵ Tangent plane at point O on the surface 
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𝑀ଶ A parallel plane to 𝑀ଵ intercepting point 𝑠 on the surface 

𝛾 Angle between normal vector 𝒏ഥ and 𝐿௦ 

𝐿ଵ, 𝐿ଶ, 𝐿ଷ Link lengths of the 4 DOF PRRR manipulator 

𝑚ଵ, 𝑚ଶ, 𝑚ଷ Link masses of the 4 DOF PRRR manipulator 

M Link 0 mass (robot base mass) 

𝑀(𝑞) Manipulator inertia matrix 

𝐶(𝑞, 𝑞̇) Manipulator Coriolis and centrifugal acceleration matrix 

𝐻(𝑞, 𝑞̇) Manipulator gravity and friction dynamics matrix 

𝑑 Vertical offset of the robot base 

𝑞 Joint space angles vector 

𝑞̇ Joint space velocity vector 

𝑥̇ Task space velocity vector 

𝑞̈ Joint space acceleration vector 

𝑥̈ Task space acceleration vector 

𝐽 Jacobian in frame {0} 

𝐻 Hessian in frame {0} 

𝜏௡ Torque at joint n 

𝜔௡ Angular velocity of link n 

𝑁௝௢௜௡௧௦ Number of joints in a serial-link manipulator 

𝑃௠௘௖௛ Total mechanical power of a manipulator 

𝐸஺஻ Energy consumed by the manipulator while moving from point A to B 

𝑡஺஻ Time taken by the manipulator while moving from point A to B 

{𝑆𝐹} Slicing coordinate frame 

{𝐸𝐹} Eigen coordinate frame 

𝑣(௜) Speed of the paint gun along a given slicing plane 𝑖 

𝑥(௜) 
The x coordinate of the ellipse used in the coating function at a given 

slicing plane 𝑖 

cos 𝛾(௜) Cosine of angle 𝛾 at a given slicing plane 𝑖 

cos 𝜑௫(௜) Cosine of angle 𝜑௫ at a given slicing plane 𝑖 

ℎ௦(௜) Parameter ℎ௦ at a given slicing plane 𝑖 
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𝑃(௜,௝) 
Trajectory coordinates at a slicing plane 𝑖 and trajectory point 𝑗 

represented in the slicing frame {SF} 

𝜓(௜,௝) 
End-effector orientation vector at a slicing plane 𝑖 and trajectory point 

𝑗 represented in the slicing frame {SF} 

𝒗ഥ(𝒊,𝒋) 
Velocity vector at a slicing plane 𝑖 and trajectory point 𝑗 represented in 

the slicing frame {SF} 

𝑃௣௔௧௖௛ Point cloud of a patch 𝑃௣௔௧௖௛ ∈ ℝ(3, 𝑁𝑝𝑎𝑡𝑐ℎ) 

 𝑁௣௔௧௖௛ Number of points in a patch 

 𝑁௣௧௦ Number of points in a slice 

𝑃௥௢௕௢௧ Trajectory coordinates in the robot frame {0}:  𝑃௥௢௕௢௧ ∈ ℝ(ଷ, ே೟) 

𝜓௥௢௕௢௧ Orientation vectors in the robot frame {0}:  𝜓௥௢௕௢௧ ∈ ℝ(ଷ, ே೟) 

𝑉௥௢௕௢௧ Velocity vectors in the robot frame {0}:  𝑉௥௢௕௢௧ ∈ ℝ(ଷ, ே೟) 

𝑑௜ௗ௘௔௟ Desired coating thickness 

𝑑௦ Coating thickness at a point 𝑠 on the surface 

𝑑௠௘௔௡ Mean coating thickness over a region of surface 

𝑑௦௧ௗ Standard deviation of coating thickness over a region of surface 

𝑁௧ Total trajectory points in a slice 

∆𝑇(௡೟) Time delta between two trajectory points 

𝐽ௗೞ
 Mean squared error coating cost function 

𝐽ௗ೐ೝೝ೚ೝ
 Coating deviation cost function 

𝐽ா  Mean energy cost function. 

𝐽்  Mean trajectory time cost function 

𝐽௧௢௧ Total cost function 

𝜔ଵ Scaling factor for mean squared error cost 

𝜔ଶ Scaling factor for coating deviation cost 

𝜔ଷ Scaling factor for energy cost 

𝜔ସ Scaling factor for time cost 

𝜖 Hyper parameter in the cost function  

𝛿 Slice width 

𝑣௠௜௡  Minimum speed of the spraying gun 
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𝑣௠௔௫ Maximum speed of the spraying gun 

𝑖𝑘௖௙ 
An integer index representing the inverse kinematic configuration when 

converting task space coordinates to joint space 

𝜃 Slicing direction: Rotation angle between frame {EF} and {SF} 

 

CHAPTER 6 

 

 

𝐼௔௩௚ Average current of the robot for the entire trajectory 

𝐸௦௨௠ Total sum of energy across the trajectory points 

𝐸௦௔௩ Percentage of energy savings 

𝑑௠௘௔௡ Mean coating thickness on the entire surface of a point cloud 

𝑑௦௧ௗ 
The standard deviation of the coating thickness on the entire surface 

of a point cloud 

𝑑௘௥௥௢௥ Ratio of 𝑑௦௧ௗ and 𝑑௠௘௔௡ 

𝑟௠ Mutation rate in GA 

𝑐௧௬௣௘ Crossover type in GA 

𝑚௧௬௣௘ Mutation type in GA 

𝑁௣௔௥௘௡௧௦ Number of mating parents in GA 

𝑁௚௘௡ Number of generations in GA 

𝑁௦௢௟ Number of solutions per population in GA 
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Chapter 1. Introduction  

 

1.1 Background and motivation 

Industrial painting has become increasingly important in modern manufacturing 

processes. The application of paint to a product`s surface improves its longevity and 

aesthetics. When paint is applied to a surface, it not only increases the corrosion resistance 

of the surface, but also enhances its heat resistance, electrical insulation, and reactivity to 

harmful chemicals. Robotics play an important role in paint processes since they increase 

the process efficiency, productivity, and quality of the painted surface. Robotic systems 

can work continuously without the need for any breaks thereby, accelerating production 

times and reducing labor costs. According to a survey, vehicle production will increase to 

111.7 million units by the year 2023 [1]. The increase in production rates of vehicles 

demands the automation of paint processes and a need to develop a fully autonomous 

system.  

The process of paint automation is an ongoing topic in both academia and industry. The 

key technology in paint process automation is trajectory planning over the surface of a 

geometric model. Trajectory planning refers to finding an optimal paint gun path and 

velocity vectors while ensuring coating uniformity over the surface of an object. While 

much work has been done to develop trajectory optimization schemes to achieve coating 

uniformity over the finished surface, these methods do not consider the dynamics of the 

robot which leads to suboptimal trajectory planning. This thesis, therefore, focuses on 

formulating a hybrid trajectory optimization scheme utilizing a genetic algorithm by taking 

into consideration the geometry of the object, the dynamics of the spray-painting process, 

and the robot moving the paint gun. 
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1.2 Problem definition and scope of the thesis 

The manual painting process for industrial parts exhibits challenges related to 

variations in coating quality, extended production timelines, heightened environmental 

impact through VOC emissions [2], and compromised worker safety [3]. This thesis seeks 

to investigate and implement specific strategies such as automation, eco-friendly coating 

formulations, and process optimization to rectify these issues. Optimal paint trajectory 

planning requires an accurate model of the geometry of the object, the dynamics of the 

spraying process, and the robot moving the spraying gun. Thus, the scope of the thesis can 

be divided into four folds. First, to obtain the geometry of the object, a 3D scan acquisition 

system is developed to accurately measure the surface profile of the surface to be painted. 

Secondly, the spray paint profile and paint deposition model are established on a complex 

free-form surface and thirdly, an optimization algorithm for the optimal trajectory planning 

of the spray paint process subject to paint spray and robot dynamics is developed. Finally, 

the mathematical formulation of the proposed scheme is implemented in Python 

programming language and the energy consumption is validated experimentally. 

Additionally, a web-based GUI (graphical user interface) is also developed that lets the 

user interact with the integrated system to perform 3D scans on objects, optimally plan 

trajectory on the surface of the object, and execute the trajectory in real-time on the two 

robotic arms installed onboard.  
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1.3 Outline of thesis 

The thesis report is divided into 7 chapters. Chapter (1) describes the background of 

industrial spray paint processes and the motivation to continue this thesis study. It also 

describes the key concepts needed to achieve the goals of the study. Chapter (2) discusses 

the theoretical concepts needed to formulate research methodology by overcoming 

important shortcomings in literature. This includes the investigation of integrated systems 

used for industrial painting, 3D scanning techniques for acquiring the geometries of objects 

and generating signatures of 3D surfaces, trajectory planning, and optimization techniques 

for complex free-form surfaces, and finally, validation techniques for validating the 

uniformity of the deposited paint on the surface and energy consumed by the robot. Chapter 

(3) describes the development of the 3D scan acquisition system in detail. This includes 

the selection of hardware components and the application of software to generate a 

complete 3D scan of a complex free-form surface. Chapter (4) discusses the mathematical 

formulation of the paint spray profile, the paint deposition model on a complex free-form 

surface, and the optimization algorithm for obtaining an optimal trajectory for the paint 

process. Chapter (5) discusses the design and development of an integrated system for 

automating the painting process with details on the web-based GUI and the software 

components used. Chapter (6) discusses the results of the 3D scan acquisition system and 

3D profile signatures for evaluating the accuracy of 3D scans, simulation results for the 

paint surface quality achieved and the energy consumed by the robot to verify the proposed 

optimization scheme, and finally, validation of the optimal trajectory executed online on 

the integrated system. Chapter (7) discusses the conclusions and the future 

recommendations of the thesis study by summarizing all the chapters.   
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Chapter 2. Literature Review 

The problems associated with manual painting could be addressed using an 

integrated robotic system capable of autonomously applying paint over surfaces. Such a 

system must contain all the necessary hardware and software components to achieve the 

desired automation. This includes hardware components such as an industrial robot, a paint 

delivery system, a 3D scanner, and a central processing unit. The software components 

include: a simulation or co-simulation environment for a friendly user interface, an 

algorithm for 3D scanning of the object, a blueprint for trajectory planning and 

optimization, and an execution mechanism for uploading the trajectory to the robot. The 

literature review will discuss in detail the current technologies used for industrial painting; 

the shortcomings associated with them, and finally suggest improvements to make the paint 

process more autonomous and efficient. 

 

2.1 Integrated systems for automated industrial painting 
 

Literature research shows the crucial components in the integrated system design 

are a paint booth, a robotic system, and the required software collection. While designing 

an integrated system for paint automation, researchers focus on improving the coating 

uniformity, process times, and paint waste. An early 1980`s integrated system for painting 

contains a paint booth, a robot apparatus, and a rail mechanism for moving the robots [4]. 

The main goal behind the development of the robotic system was to minimize paint waste 

by using precise robotic movements. 

Similarly, a software and hardware-based prototype of an integrated robotic 

painting system is developed [5]. The software modules contain part designs, process 

planning, trajectory generation of robots, and motion control. The hardware components 

include a work cell controller, motor drives, robotic manipulator, surface scanner, and paint 

delivery units. The scanning interface uses a mechanical probe to get the topography of the 

surface to be painted and converts it into a CAD model. Conversely, a CAD model can 

directly be imported from the CAD library. It is then processed to generate the robot 

trajectories followed by their execution on the work cell controller. 
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Another integrated system developed uses an algorithm to model the spray-painting 

process, and a computer program to simulate a robot for painting curved surfaces [6]. The 

painting program makes it possible to find out the optimum parameters for spray painting 

such as the paint gun velocity, spray distance, and multiple paint paths. The modeling part 

is done using a CAS (computer-assisted software) by two methods. If the part is simple, a 

CAD model is generated in the software otherwise a laser scanner is used to get the 3D 

model. An algorithm is then formulated to perform the paint thickness analysis and the 

paint process is simulated. For the validation of the coating thickness, a flat surface is used. 

The paint is deposited in a single paint stroke and the coating thickness is measured using 

an ELCOMETER. The experimental setup includes a 𝐹𝐴𝑁𝑈𝐶 𝐴𝑟𝑐𝑀𝑎𝑡𝑒𝑟 𝑆𝑟. 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 

robot, a BINKS 95-A spray gun [7], and an ELCOMETER 345 coating thickness gauge 

[8]. A schematic of this integrated system is shown in Fig. 2.1. 

 

Figure 2.1: Integrated system for robotic painting. [6] 

 

An integrated system containing a UR-10 robot with an HP-M2 airbrush [9] and a 

scanner for digitizing the paint intensity is developed [10]. It uses a blueprint to compute 

the coating intensities and then experimentally validates it. A single paint stroke is 

performed to deposit some amount of paint on a surface. After an image of the paint area 

is taken and digitized into color intensities, an image processing pipeline is applied to 

validate the coating thickness at each intensity point. The UR-10 robot with the spray gun 

is shown in Fig. 2.2. 
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Figure 2.2: Integrated system for paint quality validation. [10] 

 

2.2 3D scanning and measurement 
 

3D scanning is important for digitally recreating physical objects which can be 

accomplished using several methods. The most popular methods include CMM 

(Coordinate-measuring machine), laser scanners, and commercial computed tomography 

(CT) scanners [11]. CMM does one measurement at a time and therefore, is time 

consuming and less efficient. It also uses conventional monitoring equipment which makes 

it unsuitable for fast scanning. On the other hand, laser scanners are fast and can quickly 

scan the objects [12, 13, 14]. 3D scanning is also used for generating scenes for movies 

and games. In movies and games, 3D scanning is applied to objects, landscapes, and 

persons. It also finds its use in the screening of historical locations and objects for academic 

research. Upon a full 3D scan of a structure, it helps identify its integrity. 3D scanners can 

measure precise details in an object and captures complex geometries in a point cloud 

format [15, 16, 17, 18]. 3D scanning is utilized for reconstructing historical artifacts [19]. 

The early Aboriginal trackways discovered at the Wallenda Lakes World Heritage Site are 

used as a case study. 3D scanning can be broadly divided into two categories: passive and 

active 3D scanning as shown in Fig. 2.3.  
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Figure 2.3: Classification of 3D scanning and measurement methods. [20] 

 

2.2.1 Passive 3D scanning methods 
 

Passive 3D scanning methods do not need a physical contact of the measuring 

device with the object. These methods use geometrically correct or stochastic markings on 

the surface combined with optical laws to capture the geometry of an object. Light based 

passive sensors work by using the reflected light from the surface of the object [20]. These 

methods are further divided into three categories: Shape from Shading, Object Raster, and 

Classic Photogrammetry. Shape from shading uses a surface image to compute the three-

dimensional model of an object. A novel algorithm for shape from shading with multiple 

input images, realistic camera models, low angles of illumination, and uncertain camera 

positions is developed to capture a three-dimensional view of planetary images [21]. Raster 

scanning is the process of scanning line by line to cover an area. The most important of the 

passive methods is the photogrammetry. It uses overlapping photographs to create a 3D 

representation of an object. A researcher uses target-free photogrammetry to generate dense 

point clouds of different objects [22]. This algorithm uses a Rotation-Free Digital Image 

Correlation (RFDIC) method to improve the matching precision and a coarse-to-fine 

strategy to establish a multi-view geometry. 
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2.2.2 Active 3D scanning methods 
 

Among the active 3D scanning methods, two subcategories are identified including 

contact-based and noncontact-based methods. The contact-based methods, require a 

physical contact between the measuring sensor and the object. A widely used approach is 

CMM which uses a mechanical probe to generate surface topography. CMM is an obsolete 

method and is slow compared to new optical based methods that use the principles of TOF 

(Time of Flight), Triangulation and Interferometry. LIDAR and LASER scanners are the 

prominent technologies when it comes to noncontact-based methods. A LIDAR based 

scanner is commonly used for mapping surroundings due to its long range. A LASER 

scanner on the other hand though limited in range, can capture more details of an object. 

 Kinect Fusion is a real-time mapping system used to capture indoor 3D scenes with 

variable lighting conditions by employing the use of a low-cost depth camera [23]. A per 

vertex Euclidean error and per vertex angle error metrics are used to analyze the accuracy 

of the Kinect Fusion method for 3D scenes [24]. It is observed that the Euclidean error lies 

within 0-15 mm for an office scene and within 0-8 mm for a statue as shown in Fig. 2.4. 

Similarly, a sparse reconstruction-based technique is used to generate a 3D environment 

using a few depth scans [25]. Since most of the surfaces and edges have regularity, this 

makes it possible to achieve high reconstruction accuracy using a limited number of 

measurements of the unknown environment. The results for the 3D reconstruction accuracy 

are shown in Fig. 2.5. 

Another study aims at the comparison of different 3D scanning devices to capture 

a human face in 3D [26]. The accuracy is computed using mean squared error between the 

ground truth CAD model and the generated 3D scan. Such methods are commonly termed 

as surface registration-based techniques dependent on ICP error for accuracy evaluation 

[27]. ICP is an iterative process and uses the entire surface which makes it computationally 

inefficient. On the other hand, feature matching-based methods use mathematical 

transformations to obtain higher dimensional features of the surface for calculating 

accuracy [28]. One such method uses geometric signatures to encode the surface into D1, 

D2, D3, and A3 features [29]. These features are probability distributions of measurements 

taken from the geometric model such as the distance between the centroid and points (D1), 
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the distance between two points (D2), the square root of the area of a triangle formed by 3 

points (D3) and the angle formed by the vertex of 3 points (A3).  

 

Figure 2.4: Euclidean error for a statue and office scene. The point cloud is taken 

via a depth camera and registered in Kinect Fusion. [24] 

 

Figure 2.5: Accuracy comparison of naive, L1diag, CSR, and WT+CT. [25] 
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2.2.3 Integrated systems for 3D scanning 
 

An integrated system for 3D scanning comprises of hardware and software 

components to capture the 3D representation of a physical object. A 3D scanner is an 

important hardware component in realizing the 3D model of an object. It can be placed on 

a stationary mount or a movable mount like a robotic arm. A line profile laser scanner, an 

industrial robot, and a turntable mechanism are used to generate 3D scans of objects and 

convert them to CAD models [30]. A set of curves are defined around the volume along 

which the line profile scanner moves to generate a 3D scan of the object.  

Similarly, 3D scanned models are investigated for contour tracing by designing a 

robotic system [31]. This system uses a 6-DOF robotic arm, a short-range laser scanner 

with 100 to 200 𝑚𝑚 range, a 30 𝜇𝑚 resolution, and a turntable for rotating the work piece 

as shown in Fig. 2.6. The laser scanner can communicate with the computer and the robot 

controller. A similar scanning system for large-scale objects is proposed which uses a laser 

scanner, a turntable mechanism, and a robot for calibration of the system [32]. 

Nevertheless, a robotic system for surface measurement via a 3D scanner uses similar 

components to achieve the scanning task [33]. 

 

Figure 2.6: Integrated system for 3D reconstruction of objects. [31] 
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2.3 Trajectory planning and optimization 
 

Trajectory planning and optimization requires accurate knowledge of the geometry 

of the object on which paint is to be deposited. Geometry is usually available in the form 

of a CAD model or a 3D scan from a sensor device. Once the geometry of the surface is 

acquired, a spraying process model needs to be established to describe the physics of the 

coating thickness on the surface. A trajectory for the paint gun can then be generated to 

cover the entire surface while ensuring paint quality and other objectives. Paint quality can 

be qualitatively described as the uniformity of coating thickness over a painted surface. 

This section of literature review analyzes the techniques used for optimizing trajectories 

over complex free-form surfaces.  

 

2.3.1 Trajectory planning with paint quality optimization 
 

An automated trajectory planning scheme is used to find spray trajectories of 

unknown parts [34]. This method uses a direct 𝑃𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 (Process Oriented 

Feature Detector) based approach to extract elementary geometries from a range sensor 

data. This is done by first removing the skid, calibrating, and separating the part. After this, 

for each segmented part, an edge map and mesh are generated. This approach is limited to 

the detection of two types of geometries: Rib Detection and Cavity Detection. Rib detection 

detects parallel lines representing ribs while cavity detection finds a region lower than the 

neighboring regions using surface normal. 

An incremental approach for trajectory generation of spray-painting robots is 

proposed [35]. This method uses several parameters like a surface model, spray and gun 

model, paint distribution model, spray pattern, and desired coating thickness to generate a 

spray gun trajectory. The geometry of the part is expressed in the form of triangular patches 

using a CAD model. To determine the coating thickness over the surface, a circular paint 

distribution model is employed. Similarly, a functional mapping between the thickness of 

paint applied and important parameters like spray gun radius, the paint flow rate, and paint 
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transfer efficiency are obtained. The velocity of the paint gun and the overlap distance are 

optimized to improve coating distribution over the surface.  

Furthermore, the use of Bezier curves to plan spray painting trajectories is 

investigated [36]. The spraying process is modelled using paint distribution on a circular 

area, while the overlap is assumed constant over the surface. The use of T-Bezier curves in 

trajectory planning ensures computational efficiency. The trajectories are planned along 

the U and V principal directions of the geometry. Results show U direction trajectory gives 

better coating thickness (51.1 𝜇𝑚), and lower process time (82 s) as tabulated in Table 2.1. 

Table 2.1: Trajectory optimization results for U and V direction trajectories. [36] 

 U direction V direction 

Desired (𝝁𝒎) 50.0 50.0 

Average (𝝁𝒎) 51.1 52.2 

Maximum (𝝁𝒎) 56.3 58.3 

Minimum (𝝁𝒎) 45.2 43.1 

Process time (𝒔) 82 99 

 

Recent studies show the use of point cloud slicing technique in conjunction with 

the coating thickness model to generate paint trajectories [37]. These methods are based on 

the geometry of the object obtained via a laser sensor. A coating thickness model is 

established by defining key geometric variables on the free-form surface. Next, a slicing 

technique is used to obtain a particular portion of the point cloud. A grid projection 

algorithm is then used to acquire points within the slice for computing coating thickness 

over them. Finally, a golden section method is used to obtain the optimal slice width, and 

velocity of the paint gun. This process is repeated for all the slices until the entire surface 

is covered. The spraying process model is shown in Fig. 2.7. 
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Figure 2.7: Coating thickness model for a complex free-form surface. [37] 

 

The coating thickness is modelled using a double beta distribution. Using 

equidistant slicing and a desired coating thickness of 23 𝜇𝑚, a mean coating thickness of 

25.947 𝜇𝑚 is obtained over the surface of a motorcycle spoiler. The maximum and 

minimum values are 34.022 𝜇𝑚 and 7.928 𝜇𝑚 respectively. On the contrary, the use of 

non-equidistant slicing scheme improves the mean coating thickness to 22.2669 𝜇𝑚. The 

variation in coating thicknesses is also reduced indicated by the maximal and minimal 

values of 29.795 𝜇𝑚 and 6.971 𝜇𝑚 respectively. The variable overlap distances make the 

paint distribution more uniform and improve the paint quality. 

Another research focuses on optimizing the transitional segment of the trajectory 

points on complex free-form surfaces [38]. The trajectory planning is based on the 

geometry of the surface obtained via the STL (Stereo Lithography) file. An STL file is a 

combination of normal vectors and vertices of the associated triangles of a 3D object. The 

trajectory planning is done by first introducing the slice planes onto the workpiece and then 

offsetting the points by ℎ units along the normal direction. The transitional segments can 

be straight, convex, or concave and are evaluated for a range of beta angles. It is observed 

that for smaller beta angles, the straight trajectory works better while for moderate to large 
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angles, the concave trajectory is better. This holds for both convex and concave-type free-

form surfaces. The paint quality metric (error) is the ratio of std. deviation and mean of the 

coating thickness over the surface. The error is improved from 11.13% to 7.81% when 

transitional segments are used. Results are shown in Fig. 2.8. 

 

Figure 2.8: Coating thickness results for transitional segment opt. [38] 

2.3.2 Trajectory planning with energy optimization 
 

The energy of robotic manipulators can be optimized to generate efficient paint 

trajectories while ensuring coating uniformity. The trajectory planning of manipulators is 

dependent on the task it is performing. While the underlying physics of robot energy 

consumption are similar, the energy optimization mechanism needs to be established for 

each task. Energy optimization of robots include topology optimization to eliminate 

needless densities, selection of optimal path and the use of light wight components, etc. 

[39]. For the paint process, the selection of optimal path is of interest since the components 

of the robots cannot be altered due to industry standards. An optimal path is generated for 

the motion of an industrial ABB robot by investigating the energy consumption of multiple 

trajectories between two points in space [40]. This method uses an SQP (Sequential 

Quadratic Programming) type algorithm to optimize end-effector velocities leading to low 
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energy consumption. The trajectories include a right-angle trajectory, straight-line 

trajectory, an energy-optimal trajectory, a time-optimal trajectory and a trajectory for pick 

and place maneuver. It is observed that that the energy optimal path is a curved one in the 

task space and not the straight line one.  

Another study uses an invasive weed optimization (IWO) technique to find energy 

efficient trajectory for a robot using via points while avoiding obstacles [41]. A cost 

function is established which penalizes redundant joint rotations, and constraints the joint 

angles to generate a cubic trajectory for the two revolute joints of a serial manipulator. 

Similarly, another approach searches for points close to the fly target points that lead to a 

low energy consumption of the robot [42]. The mechanical energy of the robot is computed 

through the dynamic model and a branch and bound algorithm is then used to scan for all 

possible motions to find the energy-optimal trajectory. Results show that the energy 

consumption for a 6 DOF COMAU Racer robot can be reduced to around 41% as tabulated 

in Table 2.2.  

Table 2.2: Energy consumption results for COMAU Racer robot. [42] 

 Pick and Place Passman 

𝑬𝒎𝒆𝒄𝒄 (𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒕𝒓𝒂𝒋. ) 0.285058 0.3861133 

𝑬𝒎𝒆𝒄𝒄,𝒐𝒑𝒕 (𝒐𝒑𝒕. 𝒕𝒓𝒂𝒋. ) 0.21598 (-24.23%) 0.227371 (-41.11%) 

𝑬𝑻𝒐𝒕 (𝒐𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝒕𝒓𝒂𝒋. ) 1.260339 1.637855 

𝑬𝑻𝒐𝒕,𝒐𝒑𝒕 (𝒐𝒑𝒕. 𝒕𝒓𝒂𝒋. ) 1.026233 (-18.57%) 1.1937 (-27.11%) 

 

 

2.4 Trajectory execution in simulation environment 
 

Simulation software plays an important role in the development of science and 

technology. They provide a convenient method for testing the system without developing 

any prototype. Likewise, spray paint simulations can be used to predict the end results of 

the painting without any significant cost. It is also useful for evaluating the paint quality 

by measuring the surface area covered by the paint and the uniformity of the paint thickness 

over the entire surface. A simulation environment usually works with physical objects 
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represented by a CAD model and a physics engine which enables the software to define 

the interactions between the objects in the environment. The physics engine contains 

provision for defining the spray paint methods, spray paint trajectories and dynamics of the 

physics. To execute the paint trajectory in a simulation environment, it is important to 

understand important concepts and terminologies. These are explained one by one.  

 

2.4.1 CAD models  
 

A CAD model stores information about the geometry of an object such as edges, 

corners, and surfaces, and is of great importance because of the information they carry [43]. 

In general, CAD models can be divided into two main categories: tessellated and 

parametric [44]. The tessellated model represents an object by using polygonal meshes 

described by vertices, edges, and faces. A parametric model stores the geometry of an 

object by using analytical equations. For instance, a cylinder can be described by two 

parameters: radius and height. Parametric models are efficient for storing geometries of 

simple shapes and are not suitable for modeling complex shapes. On the other hand, 

tessellated models are convenient, but more prone to errors due to approximations. 

 

2.4.2 Spray-painting methods  
 

Spray-painting methods are techniques used to deposit spray liquids on the surface 

of work pieces. There are multiple spray-painting techniques including Air Atomized 

Spray, HVLP (High Volume Low Pressure), Airless Spray, Air Assisted Airless Spray, 

Heated Spray and Electrostatic Spray painting [45]. The air atomized spray method is the 

most conventional method and is done by mixing air particles of compressed air with the 

paint. The compressed air causes the paint to atomize in the form of droplets on the surface. 

Air-atomized spray painting has great heat transfer capabilities and can be used to cool hot 

metal surfaces too [46]. An improvement of the air-atomized spray method is the HVLP. 

The low pressure and high volume of air can mix more efficiently with paint and with the 

lower impact speed on the surface, the wastage of paint is reduced [47]. Airless spray 
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systems use a high-pressure paint fluid and a nozzle to deposit paint on the surface of an 

object. An improved version of the airless spray method is the air-assisted airless spray 

method. This method leads to an increase in paint efficiency by reducing paint waste. 

Another method is to heat the paint before applying, reducing its viscosity and hence, less 

pressure is required to push it out of the nozzle. The heated paint adheres efficiently to the 

surface thereby, minimizing paint waste [48]. Another method is the use of electrostatic 

principles to deposit paint over the surface of metals. The surface to be painted is grounded 

and the paint particles are charged to allow them to adhere to the surface [49]. This method 

can be used only with metal surfaces, which is its major drawback. 

 

2.4.3 Robot simulation software 
 

Robot simulation software provides a user-friendly experience to test paint 

trajectories and build robot programs. It has a provision of components including a library 

of CAD models of robots, sample objects for testing trajectories, automatic collision 

avoidance systems, axes limit features, and post processors for generating robot programs. 

Some commercial simulators for paint robots include: 𝑅𝑜𝑏𝑜𝐷𝐾, 𝑅𝑜𝑏𝐶𝑎𝑑 𝑝𝑎𝑖𝑛𝑡, 

𝐷𝑒𝑙𝑓𝑜𝑖 𝑃𝑎𝑖𝑛𝑡, 𝑅𝑜𝑏𝑜𝑡𝑆𝑡𝑢𝑑𝑖𝑜 ® Paint 𝑃𝑜𝑤𝑒𝑟𝑃𝑎𝑐, 𝑂𝐿𝑃 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 and 

𝑅𝑜𝑏𝑜𝐺𝑢𝑖𝑑𝑒 𝑃𝑎𝑖𝑛𝑡𝑃𝑅𝑂. 

𝑅𝑜𝑏𝑜𝐷𝐾 is a software developed for offline programming of robots with the 

provision of simulation tools [50]. It has a user-friendly interface but is not able to generate 

automated trajectories based on the geometries. It is useful for research and testing 

purposes. Another simulator is the 𝑅𝑜𝑏𝐶𝑎𝑑 paint by Siemens which is also based on offline 

programming [51]. It has features such as paint databases and paint coverage analysis. Its 

main advantage is the availability of predefined paths which speeds up the development of 

paint simulations. It also reduces processing times and increases manufacturing quality. 

The main disadvantage of this software is restricted access to some robot models and 

libraries. 𝐷𝑒𝑙𝑓𝑜𝑖 𝑃𝑎𝑖𝑛𝑡 is another software developed by 𝐷𝑒𝑙𝑓𝑜𝑖 which provides 

capabilities like analysis of paint thickness, precise smooth surface simulation, conveyor 

tracking, and automatic detection of collision [52]. It also supports post-processors for the 
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programming of industrial robots. 𝑅𝑜𝑏𝑜𝑡𝑆𝑡𝑢𝑑𝑖𝑜® paint 𝑃𝑜𝑤𝑒𝑟𝑃𝑎𝑐 by ABB is yet another 

commercial simulator that provides the ability to generate robot programs for multiple 

robots simultaneously [53]. Its main shortcoming is the ability to generate robot trajectories 

automatically. Some simulation software also provides the ability to generate robot paths. 

OLP Automatic developed by INROPA is a complete integrated system for automatically 

generating robot programs [54]. It uses a LASER scanner to scan the workpiece and 

construct a 3D model of the object, creates a robot path, and then executes it by generating 

an appropriate robot program for the controller. Furthermore, 𝑅𝑜𝑏𝑜𝐺𝑢𝑖𝑑𝑒 

𝑃𝑎𝑖𝑛𝑡𝑃𝑅𝑂 developed by FANUC is another robot simulation software which can generate 

robot paths automatically [55]. A robot path is generated by simply selecting the surface 

area of the object to be painted while specifying the correct options. A summary of robot 

simulation software is given below in Table 2.3. 

Table 2.3: Summary of commercial robot simulation software. 

 
RoboDK 

[50] 

RobCAD 
Paint 
[51] 

Delfoi 
paint 
[52] 

RobotStudio 
Paint Power 

Pac [53] 

OLP 
Automatic 

[54] 

RoboGuide 
Paint PRO 

[55] 

Company RoboDK Siemens Delfoi ABB INROPA FANUC 

Automatic 
Trajectory 
Planning 

No No No No Yes Yes 

Integrated 
System 

No No No No Yes No 

Paint 
Thickness 
Analysis 

N/A N/A Yes N/A N/A N/A 

Post 
Processors 

Yes Yes Yes Yes Yes Yes 

 

2.5 Trajectory execution on industrial painting robots 
 

Trajectory execution on industrial painting robots refers to the process of 

converting trajectories (path and velocity commands) to a robot program that can be 

understood by a robot. Since robot controllers are diverse, each uses its own set of rules to 

construct the programs. This section briefly describes the robots used for industrial painting 

processes and the programs used by them for performing trajectories.  
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2.5.1 Industrial painting robots 
 

Apart from the 3D scanning system and trajectory optimization, it is important to 

consider the experimental setup and validation techniques for the painting process. The 

experimental setup contains a 3D scanning system, an industrial paint robot with a spray-

painting setup, and a robot controller program. Since paint applications have increased 

considerably due to industrial developments, certain companies have specialized robots for 

paint applications. A paint robot, unlike other industrial manipulators, usually has less 

payload capacity, more repeatability, and a hollow wrist for routing the paint lines. A paint 

robot must also be explosion-proof since the paint material can be inflammable. It should 

be certified for ATEX EX II certification [56]. Some of the specialized robots are KR 

AGILUS KR 10 R1100, P-250iB/15, and IRB 5500 Flex Painter. The KR AGILUS KR 10 

R1100 is specialized for paint applications by of 𝐾𝑈𝐾𝐴 and 𝐷𝑢𝑟𝑟 [57]. It has a wrist 

payload capacity of 10 Kg, a maximum reach of 1100 mm, and a total of 6 axes as shown 

in Fig. 2.9. Similarly, the P-250iB/15 developed by FANUC (Fig. 2.10) is one of the largest 

robots for paint applications [58]. It has a maximum reach of 2800 mm, a load capacity of 

15 kg, and a total of 6 axes. It can be attached to walls, and floors, and can also be mounted 

on rails to reach the desired pose under difficult and narrow regions. Another paint robot 

developed by ABB named IRB 5500 Flex Painter (Fig. 2.11) is also capable of industrial 

painting [59]. A summary of robots is tabulated in Table 2.4.  

 

Figure 2.9: KR AGILUS KR 10 R1100. [57] 
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Figure 2.10: P-250iB/15 by FANUC. [58] 

 

Figure 2.11: IRB 5500 Flex Painter by ABB. [59] 
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Table 2.4: Industrial robots for paint applications. 

Robot Name Manufacturer 
Payload 
Capacity 

Maximum 
Reach 

Number of 
Axes 

KR AGILUS KR 10 
R1100 [57] 

KUKA and Durr 10 kg 1100 mm 6 

P-250iB/15 [58] FANUC 15 kg 2800 mm 6 

IRB 5500 Flex 
Painter [59] 

ABB 13 kg 2975  6 

 

 

2.5.2 Robot programs 
 

A robot program is a set of instructions to control the movements of a robot. Every 

robot controller uses its own set of rules for a robot program. A robot program is usually 

in two formats: 

 .LS (List) format  

 .TP (Teach Pendant) format.  

A List file (.LS) is an ASCII based list file which is not compiled and cannot be 

executed directly by the robot controller. A .TP file on the other hand is a binary file which 

is directly executed by a robot controller [60]. To convert a robot trajectory to an LS file, 

simulation software or a programming language like Python can be used [61]. Simulation 

software can directly convert the robot trajectory into a robot program by selecting the 

appropriate post processor. The post processor generates a List file LS that contains robot 

programs line by line. On the other hand, a custom Python script can also be used to convert 

the robot path/trajectory directly into LS file. An LS file can then be uploaded directly to a 

robot controller for execution or can be converted to .TP binary file before upload. For 

conversion to .TP file, tools like 𝑊𝑖𝑛𝑂𝐿𝑃𝐶 can be considered [62]. 
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2.6 Validation of paint quality 
 

For the validation of the paint quality, multiple techniques can be used including 

the calculation of mean and standard deviation of paint thickness on the surface of the work 

piece, a fractional error metric, propriety coating sensors like ELCOMETER 345, and 

image processing pipelines. The mean and standard deviation are obtained from the paint 

deposition model and the accuracy metric outlined by [38]. However, to evaluate the paint 

thickness model in real time after the paint is applied, image processing can be used [63]. 

This image processing pipeline starts by taking the image of the painted through a camera. 

The image is first converted into a binary format using the OPENCV library followed by a 

noise filtering algorithm [64]. Finally, the image is restored again in terms of original pixel 

intensities and the distribution of paint is obtained. The stages of image processing pipeline 

are shown in Fig. 2.12. 

 

Figure 2.12: Image processing pipeline for paint validation. [63] 

 

An experimental system for the validation of a color spray model is proposed by 

[10]. It uses a UR-10 robot, a HP-M2 airbrush and a scanner for digitizing the color 

intensities. The algorithm to convert spray flow rate to the corresponding color intensity 

starts by defining a variable 𝜑(𝑟). This function is called Painting Flow function which 

describes the paint flow rate per unit area. The amount of paint deposited on an incremental 
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surface area is calculated by transforming the color intensities to paint amounts using a 

series of conversions. The paint flow function is approximated using gaussian distribution 

governed by equation 2.1. The radius of the circle is represented by 𝑟, while the parameters 

A and B are obtained experimentally. It is observed that the distribution of the paint 

intensity changes by changing the parameters like paint flow rate, the paint gun velocity, 

and the distance between the spray nozzle and the target surface. The mean coating 

thickness decreases when the paint process time is decreased and vice versa.  

 𝜙(𝑟) = 𝐴𝑒ି஻௥మ
 (2.1) 

 

2.7 Research objectives 
 

The problems associated with manual robotic painting can be mitigated using an 

autonomous robotic system. The literature review highlighted key technologies needed to 

achieve this task. The primary problem in autonomous painting is trajectory planning based 

on the geometry of the surface. While much work has been done to optimize the paint 

quality by searching for an optimal paint trajectory, the optimization of process time and 

robot energy in conjunction with paint quality is left unattended. Thus, this research aims 

to: 

1. Develop a hybrid optimization scheme to optimize paint quality, process time, 

and energy consumption of the trajectory planning process by taking into 

consideration the dynamics of the spraying process and the robot.  

2. Design a mechanism to acquire the 3D geometry of the object under 

investigation for trajectory planning purposes. 

3. Design an automated system to perform the experimental analysis on the 

proposed optimization technique with a user-friendly GUI. 
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Chapter 3. Design of 3D Scanning System 

 

3.1 Introduction 
 

The literature review highlighted multiple techniques that could be used to acquire a 

3D model of an object. These techniques are broadly divided into passive and active 

methods. Active methods use a light source and is independent of the lighting condition of 

the space where the object of interest is situated. Passive methods, however, require the 

surface of the object to be illuminated. To eliminate the need for an active light source 

outside the hardware of the 3D sensor, the solution to 3D scanning problem boils down to 

two sensors. One class of sensors uses LASER beams and includes one point, line, and 

snapshot sensors. These sensors are very expensive and have a very short range typically 

200-500 mm. Another class of sensors uses an RGBD sensor which merges an RGB image 

and a depth image and converts it into a point cloud. These sensors are cheaply available 

and have a measurement range of 250 mm to 10 m. To capture the depth maps of the object, 

Intel Real Sense D435 [65] is used. For locating the online position of the axis of rotation, 

a one-point depth sensor is used [66]. These sensors are shown in Fig. 3.1. The RGB and 

depth sensors of D435 have a resolution of 1920 x 1080@30 fps, and 1280 x 720@90 fps 

respectively. Its measurement range is between 0.3 m and 3 m, while the depth accuracy is 

less than 2% at 2 m. The measurement range of VLX53LoX sensor is 3 cm to 2 m. 

 

Figure 3.1: (left) Intel Real Sense D435 sensor [65], (right) VLX53LoX [66].  
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3.2 Methodology 
 

To establish a 3D scanning system for generating the geometry of the object, a 

rotating turntable mechanism is used. A servo motor [67] for the turntable mechanism can 

be controlled precisely at a resolution of 1o. The D435 sensor [65] is placed at 0.47 m from 

the object. This allows for the inclusion of thicker objects to be scanned since the minimum 

range of the sensor is 0.3 m. The object is then rotated and the RGB and depth images are 

stored for each angular position. An incremental index of 30o is selected to save 

computational resources. These RGB and depth images are then converted into point 

clouds using the camera projection matrix [68]. After the point clouds are obtained, a box 

filter is applied to extract the region of interest. The box filter removes majority of the noisy 

point cloud data, however statistical noise removal is applied to further refine the point 

cloud [69]. Finally, raw alignment is applied to align the 3D scans followed by ICP 

registration to obtain the geometry. A summary of the methodology is shown below in Fig. 

3.2.  

 

Figure 3.2: Methodology for 3D scan acquisition. 
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3.2.1 Mechanism for 3D scan acquisition 
 

To obtain the complete geometric model of the object, a rotating mechanism is 

designed as shown in Fig. 3.3. The object of interest is a car door. It is rotated by a servo 

motor along the axis of rotation. The RGBD sensor is used to capture the depth maps of 

the object in {C} frame. To estimate the online position of the axis of rotation of the object, 

a secondary one-point depth sensor is also installed above the main RGBD camera. Its 

frame of reference {S} is aligned in orientation to the camera frame {C} and is offset by a 

linear transformation 𝑇ௌ
஼ . This sensor gives the online transformation matrix 𝑇ௌభ

ௌ  which can 

be used to raw align the point clouds. Frame {𝑆ଵ} is the offset frame of reference of the 

depth sensor aligned with the axis of rotation. Frame {𝑆ଵ௥} is the rotated {𝑆ଵ} frame that 

rotates along with the object`s axis of rotation. The origin of {cg} frame represents the 

geometric center of the object in {C} frame. The point cloud is termed as 𝑃஼  where C 

signifies the {C} frame. The object is rotated along its axis of rotation and the RGBD 

images are stored for each angular position. The two robots’ base frames are represented 

by {0஺} and {0஻}respectively.  

 

Figure 3.3: Schematic of 3D scan acquisition mechanism. 
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3.2.2 Depth map to point cloud 
 

After the RGBD images are obtained for each angular position, these are then 

converted into point clouds using the camera projection matrix. To do so, we consider a 

schematic of the 2D RGB image and the corresponding depth values for each pixel. This 

is shown in Fig. 3.4. 

 

Figure 3.4: Schematic of 2D pixel image and corresponding depth values. [70] 

The transformation between the pixel coordinates and cartesian coordinates can be 

obtained by the application of the camera projection matrix [68].  
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 (3.1) 

 

Where 𝑢 and 𝑣 are the pixel coordinates, 𝑓௫  𝑎𝑛𝑑 𝑓௬ are the focal lengths of the 

camera sensor in x and y direction and 𝑐௫ 𝑎𝑛𝑑 𝑐௬ are the camera center in the world 

coordinate. S is the skew and is zero when the world frame and camera frames are aligned. 

Using this transformation, the depth images are converted to point clouds. 
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3.2.3 Box Filter to extract region of interest 
 

After the raw point cloud is obtained from the depth fields, the next step is to extract 

the region of interest. This is done by applying a box filter on the raw point cloud. Since 

the location of the axis of rotation is known in the {S} frame, it can be used to construct a 

bounding box around the object. Another reference frame {S2} is defined at the geometric 

center of the box such that its origin can be used as an anchor point for the box filter. Using 

knowledge about the size of the object, 𝑙௫, 𝑙௬ and 𝑙௭ can be selected to filter out the object 

of interest. The box filter is shown in Fig. 3.5. 

 

Figure 3.5: Box Filter on raw point cloud. 

 

 

 



54 
 

3.2.4 Noise removal and raw alignment of point clouds 
 

Once the region of interest is filtered out, statistical noise removal is applied to 

remove noisy points and get a clean version of the object. The noise removal is applied 

using open3d library in Python [69]. A set number of neighbors (700) and a standard 

deviation ratio of 0.60 is selected for the noise removal. After any residual noise is 

removed, the point clouds are raw aligned by rotating them backwards along the axis of 

rotation. Given a point cloud in the camera frame {C}, 𝑃஼(௜), where 𝑖 is the rotational index 

for a rotational angle of 𝜃௬(௜), the point cloud can be represented in frame {S1r} using the 

transformations: 

 𝑃ୗభೝ(௜) = 𝑇 ஼
ୗభೝ 𝑃஼(௜) (3.2) 

𝑇 ஼
ୗభೝ can be obtained using the following expression: 

 𝑇 ஼
ୗభೝ = 𝑇 𝑇 𝑇 େ

ୗ
ୗ

ୗభ
ୗభ

ୗభೝ  (3.3) 

The transformations 𝑇 େ
ୗభ and  𝑇 େ

ୗ can be obtained by using linear offsets along the 

z and y axes of frame {S1} and {S} respectively, while 𝑇 ௌభ

ୗభೝ is obtained using a relative 

rotation matrix along the y-axis such that: 

 𝑇 ௌభ

ୗభೝ = 𝑅௬൫−𝜃௬(௜)൯ (3.4) 

The point cloud in the frame {Sଵ௥} can be represented by combing equation 3.2, 

3.3 and 3.4. 

𝑃ୗభೝ(௜) = 𝑅௬൫−𝜃௬(௜)൯ 𝑇 𝑇 େ
ୗ

ୗ
ୗభ 𝑃஼(௜)   (3.5) 

The aligned point clouds can now be represented in the camera reference frame {C} 

by translating them back along the z and y axes of frame {S1} and {S} respectively. This 

is done by applying the transformation matrix 𝑇 ௌభ

஼ . 

𝑃௔௟௜௚௡௘ௗ
஼(௜)

= 𝑇 ௌభ

஼ 𝑃ୗభೝ(௜) (3.6) 

Equation 3.6 represents the raw aligned point cloud in frame {C} for each rotational angle 

𝜃௬(௜). These point clouds can then be registered into one point cloud using ICP. 
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3.2.5 Fine alignment using ICP 
 

After raw alignment, there is still a possibility of misalignment due to measurement 

errors in the sensor systems. The alignment can be further refined using ICP registration. 

Both point-to-point and point-to-plane ICP are applied in open3d library [69]. The fitness 

values of the two are compared and the best one is chosen. The point-to-point ICP aligns a 

source point cloud 𝑝௜ ∈ 𝑃 into the reference frame of a source point cloud 𝑞௜ ∈ 𝑄 by finding 

an optimal rotation matrix 𝑅 and translational vector 𝑡. If the number of points in the point 

cloud 𝑃 are 𝑁௣௖ௗ, the point-to-point ICP can be established using the following objective 

function [27]. 

𝐸(𝑅, 𝑡) =
1

𝑁௣௖ௗ
෍ ‖𝒒𝒊 − 𝑹𝒑𝒊 − 𝒕‖ଶ

ே೛೎೏

௜ୀଵ

  (3.7) 

Similarly, the point-to-plane ICP tries to minimize the following objective function. 

𝐸(𝑅, 𝑡) =
1

𝑁௣௖ௗ
෍ ฮ(𝒒𝒊 − 𝑹𝒑𝒊 − 𝒕). 𝒏𝒒𝒊

ฮ
ଶ

ே೛೎೏

௜ୀଵ

 (3.8) 

𝑛௤೔
 represents the normal vector at point 𝑞௜ ∈ 𝑄 in the target space. The optimal rotational 

matrix (R) and translational vector (t) are used to align and merge point clouds and get the 

final scan 𝑃௦௖௔௡ 
஼ in the camera reference frame {C}. A schematic of the ICP alignment is 

shown in Fig. 3.6.  

 

Figure 3.6: Schematic of ICP alignment between source and target point cloud. 
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Pseudo code for ICP Fine Alignment 

Input: 𝑃௔௟௜௚௡௘ௗ 
஼(௜)

(Raw aligned point clouds for each index 𝑖). 𝑁 =  ∑ 𝑖 (# of point clouds) 

Output: 𝑃௦௖௔௡ 
஼  (Merged Point cloud in frame {C}) 

Step 1: Assign merged point cloud to the point cloud at index 0. 

 𝑃௦௖௔௡ 
஼ = 𝑃௔௟௜௚௡௘ௗ 

஼(௜)
   

𝑭𝒐𝒓 𝒊 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆 (𝑵 − 𝟏): (Perform step 2 to step 5) 

Step 2:  Apply Point to point ICP and obtain optimal R and t. 

  (𝑅, 𝑡)௣ଶ௣ = 𝑝2𝑝𝐼𝐶𝑃(𝑃𝑠𝑐𝑎𝑛 
𝐶

 , 𝑃𝑎𝑙𝑖𝑔𝑛𝑒𝑑 
𝐶(𝑖+1)

 ) 

Step 3: Apply Point to plane ICP and obtain optimal R and t 

  (𝑅, 𝑡)௣ଶ௣௟௔௡௘ = 𝑝2𝑝𝑙𝑎𝑛𝑒𝐼𝐶𝑃(𝑃𝑠𝑐𝑎𝑛 
𝐶

 , 𝑃𝑎𝑙𝑖𝑔𝑛𝑒𝑑 
𝐶(𝑖+1)

) 

Step 4: Compare fitness scores. 

  𝑖𝑓 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠௣ଶ௣ ≥   𝑓𝑖𝑡𝑛𝑒𝑠𝑠௣ଶ௣௟௔௡௘): 

   (𝑅, 𝑡) =  (𝑅, 𝑡)௣ଶ௣ 

  𝑒𝑙𝑠𝑒 if (𝑓𝑖𝑡𝑛𝑒𝑠𝑠௣ଶ௣ <  𝑓𝑖𝑡𝑛𝑒𝑠𝑠௣ଶ௣௟௔ ): 

   (𝑅, 𝑡) =  (𝑅, 𝑡)௣ଶ௣௟௔௡௘ 

Step 5: Transform the source point cloud to the target and merge. 

  𝑃௦௖௔௡ 
஼ = 𝑚𝑒𝑟𝑔𝑒(𝑃௦௖௔௡ 

஼ , 𝑇(𝑅,𝑡)𝑃௔௟௜௚௡௘ௗ 
஼(௜ାଵ)

) 
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3.2.6 CAD calibration in camera frame 
 

The 3D scanned model can be used for trajectory planning and optimization, 

however, it often has noise and incomplete geometric details. If a CAD model of the object 

of interest is preset, it can be used for trajectory planning instead. The CAD model, 

however, needs to be represented in the camera reference frame to ensure the correct spatial 

location of the object. This can be done by first transforming both the CAD and scan to 

their eigen coordinate system followed by ICP alignment. Once the correct ICP rotation 

matrix and translational vectors are obtained, the CAD is then aligned into the scan Eigen 

reference frame. Finally, the aligned CAD model is translated back to the camera reference 

frame using the eigenvectors and the principal center of the scanned model. More 

specifically, given  𝑃௦௖௔௡ 
஼ and 𝑃஼஺஽ representing the scan point cloud in frame {C} and the 

CAD point cloud in some arbitrary frame, their transformations into the eigen coordinate 

system yield: 

 𝑃௦௖௔௡ 
௘௜௚

= 𝑢௦௖௔௡(𝑃௦௖௔௡ 
஼ − 𝑐௦௖௔௡) (3.9) 

 𝑃஼஺஽ 
௘௜௚

= 𝑢஼஺஽(𝑃஼஺஽ − 𝑐஼஺஽) (3.10) 

 

𝑢௦௖௔௡ and 𝑐௦௖௔௡ represent the eigenvectors and principal center of the scan while 

𝑢஼஺஽ and 𝑐஼஺஽ represent the eigenvectors and principal center of the CAD. Using ICP, 

𝑃௦௖௔௡ 
௘௜௚ and 𝑃஼஺஽ 

௘௜௚ are aligned via the rotation matrix R and translational vector t. This is done 

using the following transformations: 

 𝑃஼஺஽ 
௔௟௜௚௡௘ௗ

= 𝑅 𝑃஼஺஽ 
௘௜௚

+ 𝑡 (3.11) 

The aligned CAD model can now be represented in the camera reference by applying the 

following transformations: 

 𝑃஼஺஽
஼ = 𝑢௦௖௔௡

ିଵ  𝑃஼஺஽ 
௔௟௜௚௡௘ௗ

+ 𝑐௦௖௔௡ (3.12) 
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3.2.7 Evaluating accuracy of the 3D scan 
 

The Iterative closest point (ICP) aligns the 3D scans which are then merged into a 

single 3D model of the object under investigation. It is advisable to develop a pipeline that 

measures the accuracy of the 3D scanning system. Multiple techniques were discussed in 

the literature review. Some of these techniques use deep neural networks (Deep Shape [71]) 

to encode the geometric structure of an object into higher dimensional features, while 

others use simple analytical metrics like 𝐷ଵ, 𝐷ଶ, 𝐷ଷ, and 𝐴ଷ [29]. These features can then 

be used to find a similarity index between the two geometric models. While neural 

networks are more accurate than analytical metrics, they require a lot of data to train and 

are slow to execute. On the other hand, geometric signatures, although not as accurate as 

neural networks, are easy to compute and can be used to assess the accuracy of the 3D 

scanning system. Another approach is to use point-to-point Euclidean errors between the 

CAD and the scan point clouds also termed as ICP error. Thus, using these analytical 

metrics, a pipeline for evaluating the accuracy of the 3D scanning system is developed as 

shown in Fig. 3.7. The analytical metrics are used to compute the density distribution plots 

called geometric signatures along with the ICP error. 

 

Figure 3.7: Pipeline for evaluating accuracy of the 3D scan.  
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The analytical metrics for generating shape signatures work by computing 

distances, areas, and angles between points selected at random in the point cloud. When a 

sufficiently large sample space of these metrics is obtained, it can capture the underlying 

structure of the geometry represented on a histogram or a density plot. The shape of the 

histogram stores information about the underlying structure of the geometry and can be 

used to evaluate the accuracy of the 3D scanning system by comparing it with the signature 

of another geometry. For instance, 𝐷ଵ metric computes the distance of sample points in the 

point cloud with the geometric center of the point cloud. 𝐷ଶ computes distance between 

two random points taken in the point cloud. 𝐷ଷ computes the area of triangle formed by 3 

random points in the point cloud. 𝐴ଷ computes the angle formed by 3 points in the point 

cloud. The pseudo codes for calculating these metrics are outlined below. 

3.2.7.1 Pseudo code for computing D1 metrics 
 

Input: 𝑃 (point cloud), 𝑁௣௖ௗ(# of points in point cloud) 𝑁௦௔௠௣௟௘(# of sample points)  

Output: 𝐷ଵ (An array of size 𝑁௦௔௠௣௟௘) 

Step 1:  Compute the geometric center of the point cloud: 

𝒄 =
∑ 𝑷(𝒊)ே೛೎೏

𝒊ୀ𝟏

𝑁௣௖ௗ
 

Step 2:  Generate random indices of size 𝑁௦௔௠௣௟௘ 

𝑅௦௔௠௣௟௘ = 𝑟𝑎𝑛𝑑൫𝑁௦௔௠௣௟௘൯ 

Step 3: Take random sample from the point cloud. 

𝑃௦௔௠௣௟௘ = 𝑃ൣ𝑅௦௔௠௣௟௘൧  

Step 4:  Compute 𝑫𝟏: 

𝐷ଵ = ට൫𝑃௦௔௠௣௟௘ − 𝑐൯
ଶ

    

 

3.2.7.2 Pseudo code for computing D2 metrics 
 

Input: 𝑃 (point cloud), 𝑁௣௖ௗ(# of points in point cloud) 𝑁௦௔௠௣௟௘(# of sample points)  

Output: 𝐷ଶ (An array of size 𝑁௦௔௠௣௟௘) 
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Step 1:  Generate 2 batches of random indices of size 𝑁௦௔௠௣௟௘ 

ൣ𝑅ଵ௦௔௠௣௟௘ , 𝑅ଶ௦௔௠௣௟௘൧ = 𝑟𝑎𝑛𝑑൫𝑁௦௔௠௣௟௘൯  

Step 2:  Take two samples from the point cloud. 

𝑃ଵ௦௔௠௣ = 𝑃ൣ𝑅ଵ௦௔௠௣ ൧  

𝑃ଶ௦௔௠௣ = 𝑃ൣ𝑅ଶ௦௔௠௣௟௘൧  

Step 3:  Compute 𝑫𝟐: 

𝐷ଶ = ට൫𝑃ଵ௦௔௠௣௟௘ − 𝑃ଶ௦ ൯
ଶ

    

 

3.2.7.3 Pseudo code for computing D3 metrics 
 

Input: 𝑃 (point cloud), 𝑁௣௖ௗ(# of points in point cloud) 𝑁௦௔௠௣௟௘(# of sample points)  

Output: 𝐷ଷ (An array of size 𝑁௦௔௠௣௟௘) 

Step 1:  Generate 3 batches of random indices of size 𝑁௦௔௠௣௟௘ 

ൣ𝑅ଵ௦௔௠௣௟௘ , 𝑅ଶ௦௔௠௣ , 𝑅ଷ௦௔௠௣௟௘൧ = 𝑟𝑎𝑛𝑑൫𝑁௦௔௠௣௟௘൯  

Step 2:  Take three samples from the point cloud. 

𝑃ଵ௦௔௠௣ = 𝑃ൣ𝑅ଵ௦௔௠௣௟௘൧  

𝑃ଶ௦௔௠௣௟௘ = 𝑃ൣ𝑅ଶ௦௔௠௣௟௘൧  

𝑃ଷ௦௔௠௣ = 𝑃ൣ𝑅ଷ௦௔௠௣௟௘൧  

Step 3:  Compute side lengths of the tringles: 

𝑎 = ට൫𝑃ଵ௦௔௠௣௟௘ − 𝑃ଶ௦௔௠௣௟௘൯
ଶ

    

𝑏 = ට൫𝑃ଵ௦௔௠௣ − 𝑃ଷ௦௔௠௣௟௘൯
ଶ
 

𝑐 = ට൫𝑃ଶ௦௔௠௣௟௘ − 𝑃ଷ௦௔௠௣௟௘൯
ଶ
 

𝑠 =
1

2
(𝑎 + 𝑏 + 𝑐) 

Step 4:  Compute 𝑫𝟑: 

𝐷ଷ = ඥ𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐) 
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3.2.7.4 Pseudo code for computing A3 metrics 
 

Input: 𝑃 (point cloud), 𝑁௣௖ௗ(# of points in point cloud) 𝑁௦௔௠௣௟௘(# of sample points)  

Output: 𝐴ଷ (An array of size 𝑁௦௔௠௣௟௘) 

Step 1:  Generate 3 batches of random indices of size 𝑁௦௔௠௣௟௘ 

ൣ𝑅ଵ௦௔௠௣ , 𝑅ଶ௦௔௠௣௟௘ , 𝑅ଷ௦௔௠௣௟௘൧ = 𝑟𝑎𝑛𝑑൫𝑁௦௔௠௣௟௘൯  

Step 2:  Take three samples from the point cloud. 

𝑃ଵ௦௔௠௣௟௘ = 𝑃ൣ𝑅ଵ௦௔௠௣௟௘൧  

𝑃ଶ௦௔௠௣௟௘ = 𝑃ൣ𝑅ଶ௦௔௠௣௟௘൧  

𝑃ଷ௦௔௠௣ = 𝑃ൣ𝑅ଷ௦௔௠௣௟௘൧  

Step 3:  Compute vectors from the 3 points with point 1 at the vertex. 

𝑢ଵ = 𝑃ଶ௦௔௠௣௟௘ − 𝑃ଵ௦௔௠௣௟௘ 

𝑢ଶ = 𝑃ଷ௦௔௠௣௟௘ − 𝑃ଵ௦௔௠௣  

Step 4:  Compute 𝑨𝟑 

𝐴ଷ = cosିଵ ൬
𝒖𝟏. 𝒖𝟐

|𝒖𝟏||𝒖𝟐|
൰  

 

3.2.7.5 Pseudo code for evaluating 3D scan accuracy. 
 

Input: 𝑃௦௖௔௡ , 𝑃஼஺஽ (Scan and CAD point clouds), 𝑁௣௖ௗ: Number of points in point cloud 
and 𝑁௦௔௠௣௟௘: Sample points for computing geometric signatures 

Output: 𝑆  (Similarity index) 

Step 1:  Compute density distribution for 𝐷ଵ metrics: 

   [𝐷ଵ௦௖௔௡ , 𝐷ଵ஼஺஽] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐷ଵ(𝑃௦௖௔௡, 𝑃஼஺஽ , 𝑁௦௔௠௣௟௘) 

𝑆஽ଵ = 1 −  ඨ
∑(𝐷ଵ௦௖௔௡ −  𝐷ଵ஼஺஽)ଶ

𝑁௦௔௠௣௟௘
 

Step 2:  Compute density distribution for 𝐷ଶ metrics: 

[𝐷ଶ௦௖௔௡ , 𝐷ଶ஼஺஽] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐷ଶ(𝑃௦௖௔௡ , 𝑃஼஺஽ , 𝑁௦௔௠௣௟௘) 
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𝑆஽ଶ = 1 −  ඨ
∑(𝐷ଶ௦௖௔ −  𝐷ଶ஼஺஽)ଶ

𝑁௦௔௠௣௟௘
  

Step 3:  Compute density distribution for 𝐷ଷ metrics: 

[𝐷ଷ௦௖௔௡ , 𝐷ଷ஼஺஽] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐷ଷ(𝑃௦௖௔௡ , 𝑃஼஺஽ , 𝑁௦௔௠௣௟௘) 

𝑆஽ଷ = 1 −  ඨ
∑(𝐷ଷ௦௖௔௡ −  𝐷ଷ஼஺஽)ଶ

𝑁௦௔௠௣௟௘
  

Step 4:  Compute density distribution for 𝐴ଷ metrics: 

[𝐴ଷ௦௖௔௡ , 𝐴ଷ஼஺஽] = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝐴ଷ(𝑃௦௖௔௡ , 𝑃஼஺஽ , 𝑁௦௔௠௣௟௘) 

𝑆஺ଷ = 1 −  ඨ
∑(𝐴ଷ௦௖௔௡ −  𝐴ଷ஼஺஽)ଶ

𝑁௦௔௠௣௟௘  
 

Step 5:  Take mean of the Similarity indices: 

𝑺 =
𝑆஽ଵ + 𝑆஽ଶ + 𝑆஽ଷ + 𝑆஺ଷ

4
 

3.3 Conclusion 
 

 This chapter described in detail the development of a 3D scan acquisition system. 

A rotating mechanism is employed to allow the exposure of the object to the 3D scanner at 

multiple rotational indices. An RGBD camera is used to capture the depth maps of the 

object while a one-point depth sensor is used to estimate the location of the axis of rotation. 

The depth maps are then converted into point clouds using the camera projection matrix. 

Once the point clouds are obtained, a box filter is applied to extract the region of interest 

in the point cloud. To remove any residual noise from the point clouds, a statistical noise 

removal algorithm is applied. Then, a series of transformations are applied to align the 

point clouds in the camera reference frame. Further fine alignment is achieved using ICP 

registration. After an acceptable fitness score is achieved by the ICP registration, the point 

clouds are then merged into a single point cloud. This point cloud represents the final 3D 

scan of the object under investigation. Finally, a pipeline for evaluating the accuracy of the 

3D scan acquisition system is also developed using the concept of geometric signatures 

and point to point Euclidean errors. The results and discussion of the 3D scanning system 

are discussed in detail in Chapter (6).  
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Chapter 4. Optimal Paint Trajectory Planning  

 

4.1 Introduction 
 

The optimal trajectory planning for paint spraying requires the establishment of the 

paint spraying model, the coating deposition model, the dynamic model of the robot and 

the optimization scheme for optimizing the slice thickness, the paint gun velocity, the 

slicing direction, and the configuration of the robot to achieve uniform paint coating, less 

process times, and minimal energy consumption. These are described in detail in this 

chapter.  

 

4.2 Methodology 
 

4.2.1 Establishment of spraying process model 
 

The trajectory planning for paint spraying is based on the establishment of the spraying 

process model. The spraying process model defines how the paint is deposited from the 

paint gun onto a surface. The spraying area ejecting paint gun is usually in the form of an 

ellipse and the coating thickness can be modelled using a double beta distribution. 

Although other models exist, including parabolic distribution, normal distribution and beta 

distribution, the double beta distribution model has higher accuracy and practicality [37]. 

Furthermore, it can be converted to a parabolic and a beta distribution by adjusting the 

values of 𝛽௫ and 𝛽௬. The spraying torch model and the corresponding double beta 

distribution for the coating thickness are shown in Fig. 4.1 and Fig. 4.2 respectively. The 

spraying area is elliptical where 𝑎 and 𝑏 represent the longer and shorter side of the ellipse 

while, 𝜑௫ and 𝜑௬ represent the maximum opening angles of the ellipse in the X and Y 

direction respectively.  
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Figure 4.1: Spraying torch model (Elliptical Paint area).  

 

Figure 4.2: Elliptical double beta distribution model of coating thickness on an elliptical 

surface area. 
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4.2.2 Establishment of coating deposition model 
 

Once the spraying process model is defined using the double beta distribution, the 

coating deposition model on a complex free-form surface can now be presented as shown 

in Fig. 4.3. The point 𝑠 represents a point on the free-form surface on which the coating 

deposition is to be computed. A vertical projection line is constructed from the spraying 

gun to the free-form surface. A connection line 𝐿௦ represents the distance from the spraying 

gun to the point 𝑠 which has a normal vector 𝒏ഥ. Two tangent planes 𝑀ଵ and 𝑀ଶ are drawn 

at point 𝑂 and point 𝑠 such that, ℎ and ℎ௦ represent the vertical height of paint area 𝐶ଵ and 

𝐶ଶ from the spraying gun. The angle 𝜑௫ represents the opening angle of the spray cone 

along the X direction of the ellipse. Angle 𝛾 represents the angle between the normal vector 

𝒏ഥ and the connection line 𝐿௦. Since the coating deposition rate of the spraying gun is 

conserved, the amount of paint at 𝐶ଵ and 𝐶ଶ  are equal. The area of paint at 𝐶ଵ and 𝐶ଶ are 

represented by 𝐴஼భ
 and 𝐴஼మ

 respectively. Applying the conservation of paint flow rate, we 

get: 

 𝑄஼భ
= 𝑄஼మ

 (4.1) 

 

 𝑑஼భ
𝐴஼భ

= 𝑑஼మ
𝐴஼మ

 (4.2) 

 

 𝑑஼మ
=

𝐴஼భ

𝐴஼మ

𝑑஼భ
 (4.3) 

 

The area relationship between point 1 and point 2 can be expressed in terms of ℎ and ℎ௦ 

such that: 

 𝐴஼భ

𝐴஼మ

= ൬
ℎ

ℎ௦
൰

ଶ

 (4.4) 

 

Inserting equation 4.4 into equation 4.3 yields: 
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𝑑஼మ
= ൬

ℎ

ℎ௦
൰

ଶ

𝑑஼భ
 (4.5) 

 

Accounting for the curvature of the free-form surface, the coating thickness at point s is 

then expressed as: 

𝑑௦ = ൬
ℎ

ℎ௦
൰

ଶ

൬
cos 𝛾

cos 𝜑௫
൰ 𝑑஼భ

 (4.6) 

 

It should be noted that the coating thickness is zero at point s if the angle 𝛾 ≥ 90௢ . This 

condition is observed when the free-form surface is exactly vertical at point s.  

 

Figure 4.3: Coating deposition model on a complex free-form surface. 

 

The static coating deposition at area 𝐶ଵ for 𝑥 ∈ [−𝑎  𝑎] and 𝑦 ∈ [−𝑏  𝑏] is defined by the 

equation: 

𝑑஼భ
(𝑥, 𝑦) = 𝑑௠௔௫ ቆ1 −

𝑥ଶ

𝑎ଶ
ቇ

ఉೣିଵ

൮1 −
𝑦ଶ

𝑏ଶ ൬1 −
𝑥ଶ

𝑎ଶ൰
൲

ఉ೤ିଵ

 (4.7) 
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𝑑௠௔௫ represents the maximum static coating thickness deposited at the center of the ellipse. 

If the spraying gun is moving with speed 𝑣 in the Y-direction, the time it takes for the 

spraying gun to traverse a point 𝑀 (𝑥ெ, 𝑦ெ) on a planar surface along the shorter side of 

the ellipse can be defined by: 

𝑡ெ =
𝛥𝑦

𝑣
=

2𝑏 ൬1 −
𝑥ଶ

𝑎ଶ൰

ଵ
ଶ

𝑣
 

(4.8) 

 

Similarly, since the spraying gun is moving with speed 𝑣 in the Y-direction, the effective 

y-coordinate of the ellipse can be formulated as: 

𝑦ெ = 𝑏 ቆ1 −
𝑥ெ

ଶ

𝑎ଶ
ቇ

ଵ
ଶ

− 𝑣𝑡 
(4.9) 

 

The dynamic coating deposition model at 𝐶ଵ can thus be expressed by putting the values 

𝑦ெ in the beta distribution model. 𝑘௠௔௫ refers to the dynamic coating thickness (maximum 

coating thickness per unit time). 

𝑑஼భ
(𝑥, 𝑦) = න 𝑘௠௔௫ ቆ1 −

𝑥ெ
ଶ

𝑎ଶ ቇ

ఉೣିଵ

⎝

⎛1 −
൬𝑏(𝑎ଶ − 𝑥ெ

ଶ )
ଵ
ଶ − 𝑎𝑣𝑡൰

ଶ

𝑏ଶ(𝑎ଶ − 𝑥ெ
ଶ )

⎠

⎞

ఉ೤ିଵ

𝑑𝑡
௧ಾ

଴

 (4.10) 

 

The coating thickness at point 𝑠 can finally be represented by adjusting equation 4.10 for 

the curvature of the complex free-form surface. 

𝑑௦(𝑥, 𝑦) = න 𝑘௠௔௫ ቆ1 −
𝑥ெ

ଶ

𝑎ଶ
ቇ

ఉೣିଵ

⎝

⎛1 −
൬𝑏(𝑎ଶ − 𝑥ெ

ଶ )
ଵ
ଶ − 𝑎𝑣𝑡൰

ଶ

𝑏ଶ(𝑎ଶ − 𝑥ெ
ଶ )

⎠

⎞

ఉ೤ିଵ

ቆ
ℎ

ℎ𝑠
ቇ

2

ቆ
cos 𝛾

cos 𝜑𝑥

ቇ 𝑑𝑡
௧ಾ

଴

 (4.11) 
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4.2.3 Manipulator forward kinematics model 
 

The coating thickness model on a complex free-form surface governs the amount 

of coating deposited if the paint gun is moving with a certain velocity. To establish the 

hybrid optimization scheme, it is important to consider the dynamics of the manipulator 

performing the paint trajectory. We consider a 4-DOF redundant PRRR manipulator with 

only position control in the x, y, z direction. The first joint is a prismatic one for extended 

reach, while the rest are revolute. The schematic and DH table of the 4-DOF PRRR 

manipulator are shown in Fig. 4.4 and Table 4.1 respectively. 

 

Figure 4.4: DH Schematic of a 4 DOF PRRR manipulator. 
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Table 4.1: DH Table for 4 DOF PRRR manipulator. 

𝒊 𝜶𝒊ି𝟏 𝒂𝒊ି𝟏 𝒅𝒊 𝜽𝒊 
1 0 0 𝑑 0 
2 0 0 𝐿ଵ 𝑞ଵ 
3 90௢ 0 0 𝑞ଶ 
4 0 𝐿ଶ 0 𝑞ଷ 
5 0 𝐿ଷ 0 0 

 

The transformation matrices between consecutive links are: 

 
𝑇ଵ

଴ =  ൦

1 0 0 0
0 1 0 0
0 0 1 𝑑
0 0 0 1

൪ 

 

(4.12) 

 
𝑇ଷ

ଶ =  ൦

𝑐ଶ −𝑠ଶ 0 0
0 0 −1 0
𝑠ଶ 𝑐ଶ 1 0
0 0 0 1

൪ 

 

(4.13) 

 
𝑇ସ

ଷ =  ൦

𝑐ଷ −𝑠ଷ 0 𝐿ଶ

𝑠ଷ 𝑐ଷ 0 0
0 0 1 0
0 0 0 1

൪ 

 

(4.14) 

 𝑇ହ
ସ =  ൦

1 0 0 𝐿ଷ

0 1 0 0
0 0 1 𝑑
0 0 0 1

൪ (4.15) 

 

Using relative transformations, the transformation matrix between frame {0} and 

frame {5} can be established as: 

 𝑇ହ
଴ = 𝑇ଵ

଴  𝑇ଶ
ଵ  𝑇ଷ

ଶ  𝑇ସ
ଷ  𝑇ହ

ସ  (4.16) 

 

 𝑇ହ
଴ = ൦

𝑟ଵଵ 𝑟ଵଶ 𝑟ଵଷ 𝑐ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ)

𝑟ଶଵ 𝑟ଶଶ 𝑟ଶଷ 𝑠ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ)

𝑟ଷଵ 𝑟ଷଶ 𝑟ଷଷ 𝐿ଵ + 𝑑 +  𝐿ଶ𝑠ଶ +  𝐿ଷ𝑠ଶଷ

0 0 0 1

൪ (4.17) 
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The end effector position in frame {0} can thus be obtained from the last column 

of 𝑇ହ
଴  matrix: 

 𝑝௫ = 𝑐ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ) (4.18) 

 𝑝௬ = 𝑠ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ) (4.19) 

 𝑝௭ = 𝐿ଵ + 𝑑 +  𝐿ଶ𝑠ଶ +  𝐿ଷ𝑠ଶଷ (4.20) 

 

4.2.4 Manipulator inverse kinematics model 
 

The first joint angle is: 

 𝒒𝟏 = 𝒂𝒕𝒂𝒏𝟐(𝒚, 𝒙) (4.21) 

 

The third joint angle is found using the trigonometric relations: 

 𝑐ଷ =
ቀ

ೣ

೎భ
ቁ

మ
ା(௭ି௅భିௗ)మି(௅మ

మା௅య
మ)

ଶ௅మ௅య
 and 𝑠ଷ = ± ඥ1 − 𝑐ଷ

ଶ 

 

(4.22) 

 𝒒𝟑 = 𝒂𝒕𝒂𝒏𝟐(𝒔𝟑, 𝒄𝟑) (4.23) 

 

For extended reach, variable 𝑑 is adjusted. Finally, the second joint angle can be computed 

using Cramer`s Rule.  

 
𝑐ଶ =

อ
ቀ

𝑥
𝑐ଵ

ቁ −𝐿ଷ𝑠ଷ

(𝑧 − 𝐿ଵ − 𝑑) 𝐿ଶ + 𝐿ଷ𝑐ଷ

อ

ฬ
𝐿ଶ + 𝐿ଷ𝑐ଷ −𝐿ଷ𝑠ଷ

𝐿ଷ𝑠ଷ 𝐿ଶ + 𝐿ଷ𝑐ଷ
ฬ

 
(4.24) 

 𝑠ଶ =

อ
𝐿ଶ + 𝐿ଷ𝑐ଷ ቀ

𝑥
𝑐ଵ

ቁ

𝐿ଷ𝑠ଷ (𝑧 − 𝐿ଵ − 𝑑)
อ

ฬ
𝐿ଶ + 𝐿ଷ𝑐ଷ −𝐿ଷ𝑠ଷ

𝐿ଷ𝑠ଷ 𝐿ଶ + 𝐿ଷ𝑐ଷ
ฬ

 

 

(4.25) 

 𝒒𝟐 = 𝒂𝒕𝒂𝒏𝟐(𝒔𝟐, 𝒄𝟐) (4.26) 
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4.2.5 Manipulator velocity analysis and Jacobian 
 

The end effector velocity can be equated to the joint space velocity using the 

Jacobian relationship. This is given by: 

 𝑥̇ =  ൥

𝑣௫

𝑣௬

𝑣௭

൩ = 𝐽𝑞̇ (4.27) 

 

The Jacobian matrix for the 4DOF PRRR configuration can be obtained by finding 

the derivative of the end effector positions w.r.t joint variables such that: 

 𝐽 =
𝛿𝑥

𝛿𝑞
=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝛿𝑥

𝛿𝑑

𝛿𝑥

𝛿𝑞ଵ

𝛿𝑥

𝛿𝑞ଶ

𝛿𝑥

𝛿𝑞ଷ

𝛿𝑦

𝛿𝑑

𝛿𝑦

𝛿𝑞ଵ

𝛿𝑦

𝛿𝑞ଶ

𝛿𝑦

𝛿𝑞ଷ

𝛿𝑧

𝛿𝑑

𝛿𝑧

𝛿𝑞ଵ

𝛿𝑧

𝛿𝑞ଶ

𝛿𝑧

𝛿𝑞ଷ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (4.28) 

 𝐽 = ቎

0 −𝑠ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ) −𝑐ଵ(𝐿ଶ𝑠ଶ + 𝐿ଷ𝑠ଶଷ) −𝑐ଵ𝐿ଷ𝑠ଶଷ

0 𝑐ଵ(𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ) −𝑠ଵ(𝐿ଶ𝑠ଶ + 𝐿ଷ𝑠ଶଷ) −𝑠ଵ𝐿ଷ𝑠ଶଷ

1 0 𝐿ଶ𝑐ଶ + 𝐿ଷ𝑐ଶଷ 𝐿ଷ𝑐ଶଷ

቏  (4.29) 

 

 

4.2.6 Manipulator acceleration analysis and Hessian 
 

Hessian matrix relates the task space acceleration vector to joint space acceleration 

vector governed by: 

 𝑥̈ = ൥

𝑎௫

𝑎௬

𝑎௭

൩ = 𝐽𝑞̈ +  𝐻𝑞̇  (4.30) 

 

The Hessian matrix is the time derivative of the Jacobian matrix. For the PRRR 

configuration, it can be defined as: 

 𝐻 =  𝐽̇ =  ൥

𝐻ଵଵ 𝐻ଵଶ 𝐻ଵଷ 𝐻ଵସ

𝐻ଶଵ 𝐻ଶଶ 𝐻ଶଷ 𝐻ଶସ

𝐻ଷଵ 𝐻ଷଶ 𝐻ଷଷ 𝐻ଷସ

൩   (4.31) 
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The individual terms of the Hessian matrix are: 

 

 𝐻ଵଵ = 0 
 

(4.32) 

 𝐻ଵଶ = −sଵ൫−Lଶsଶq̇ଶ − Lଷsଶଷ(q̇ଶ + q̇ଷ)൯ − cଵq̇ଵ(Lଶcଶ + Lଷcଶଷ)  
 

(4.33) 

 𝐻ଵଷ = cଵ൫−Lଶcଶq̇ଶ − Lଷcଶଷ(q̇ଶ + q̇ଷ)൯ −  sଵq̇ଵ(−Lଶsଶ − Lଷsଶଷ) 
 

(4.34) 

 𝐻ଵସ = cଵ൫−Lଷcଶଷ(q̇ଶ + q̇ଷ)൯ −   sଵq̇ଵ(−Lଷsଶଷ) 
 

(4.35) 

 𝐻ଶଵ = 0 
 

(4.36) 

 𝐻ଶଶ = c1൫−Lଶsଶq̇ଶ −  Lଷsଶଷ(q̇ଶ + q̇ଷ)൯ − sଵq̇ଵ(Lଶcଶ + Lଷcଶଷ) 
 

(4.37) 

 
 

𝐻ଶଷ = sଵ൫−Lଶcଶq̇ଶ − Lଷcଶଷ(q̇ଶ + q̇ଷ)൯ +  cଵq̇ଵ(−Lଶsଶ − Lଷsଶଷ) 
 

(4.38) 

 𝐻ଶସ = sଵ൫−Lଷcଶଷ(q̇ଶ + q̇ଷ)൯ + cଵq̇ଵ(−Lଷsଶଷ)  
 

(4.39) 

 𝐻ଷଵ = 0,     𝐻ଷଶ = 0 
 

(4.40) 

 𝐻ଷଷ = −Lଶsଶq̇ଶ −  Lଷsଶଷ(q̇ଶ + q̇ଷ)  
 

(4.41) 

 𝐻ଷସ = −Lଷsଶଷ(q̇ଶ + q̇ଷ) (4.42) 

 

4.2.7 Manipulator torque and energy model 
 

The dynamics model of a manipulator in closed form can be written in joint space 

as: 

 𝜏 = 𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐻(𝑞, 𝑞̇) 
 

(4.43) 

Where, 𝑀(𝑞) is the inertia matrix dependent on the joint positions, 𝐶(𝑞, 𝑞̇) is the 

normal and centrifugal acceleration matrix and is dependent on the joint positions and 

velocities, while 𝐻(𝑞, 𝑞̇) contain the gravity and friction dynamics. Gravity is dependent 

on joint position while the frictional dynamics can be more complex depending on joint 

positions as well as velocities. In our analysis, the frictional dynamics are excluded to 

simplify the calculations. The vector 𝜏 represents the dynamic torque provided to each 
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joint. The instantaneous power consumption of the manipulator can be found by summing 

the mechanical power of all the links: 

 𝑃௠௘௖௛ = ෍ 𝜏௡

ேೕ೚೔೙೟ೞ

௡ୀଵ

𝜔௡  (4.44) 

𝜏௡ is the individual joint torque while 𝜔௡ is the angular velocity of the 

corresponding link. The average energy consumed by the manipulator while traversing 

through point A and B in a time duration of 𝑡஺஻ in the task space can be calculated using: 

 𝐸஺஻ =
(𝑃{஺} + 𝑃{஻})

2
 𝑡஺஻   (4.45) 

 

4.2.8 Hybrid optimization scheme 
 

Since the coating deposition and the manipulator torque model are established, the 

hybrid optimization scheme can now be presented. The paint gun is assumed to move along 

the local y-axis of the ellipse following the curvature of the surface as shown in Fig. 4.5. 

For each paint stroke, the velocity and the slice thickness must be optimized to achieve a 

uniform coating thickness on the free-form surface. To optimize a given slice bounded by 

two slicing planes (𝑖 and 𝑖 + 1), and separated by a distance 𝛿, a point of interest (𝑠) is 

considered as shown in Fig. 4.6. The spraying gun is assumed to maintain a constant 

perpendicular distance ℎ from the surface. A vertical line is drawn from the spraying gun 

at the slice plane 𝑖 to intersect the surface at point 𝑂ଵ. A connection line 𝐿௦ଵ joins the 

spraying gun with the point s making an angle of 𝜑௫ଵ with the vertical line. The point 𝑠 has 

a surface normal 𝒏ഥ defined by the curvature of the locality. The normal vector 𝒏ഥ makes an 

angle 𝛾ଵ with 𝐿௦ଵ. The effective x coordinate of the elliptical paint area is 𝑥ଵ, joining point 

𝑂ଵ and 𝑠. In a similar way, these geometric variables are defined for the slice 𝑖 + 1. ℎ௦ଵ 

and ℎ௦ଶ represent the perpendicular distance of the paint gun with plane 𝑀ଶ and 𝑀ସ  

respectively. The slicing is performed at an angle 𝜃 with respect to the eigen coordinate 

system and the trajectory is planned in this rotated eigen coordinate system called the 

slicing frame {𝑆𝐹}. The trajectory planning model is shown in Fig. 4.5 and Fig. 4.6 

respectively.  
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Figure 4.5: Slicing model showing the sliced region, the elliptical paint area, and 
the trajectory points.  

 

Figure 4.6: Trajectory planning and coating deposition model on a complex free-

form surface with slice sandwiched between two spraying gun positions. 
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 Using the variables defined in Fig. 4.6, the coating thickness function at an arbitrary 

slice plane 𝑖 can be presented as:  

 𝑑௜(𝑥, 𝑦) = න 𝑘௠௔௫ ቆ1 −
𝑥(௜)

ଶ

𝑎ଶ
ቇ

ఉೣିଵ

⎝

⎜
⎛

1 −

ቆ𝑏൫𝑎ଶ − 𝑥(௜)
ଶ ൯

ଵ
ଶ − 𝑎𝑣(௜)𝑡ቇ

ଶ

𝑏ଶ൫𝑎ଶ − 𝑥(௜)
ଶ ൯

⎠

⎟
⎞

ఉ೤ିଵ

ቆ
ℎ

ℎ𝑠(𝑖)
ቇ

2

൭
cos 𝛾

(𝑖)

cos 𝜑
𝑥(𝑖)

൱ 𝑑𝑡
௧೔

଴

 (4.46) 

 

 The coating thickness at point 𝑠 can be 𝑑ଵ, 𝑑ଶ or 𝑑ଵ + 𝑑ଶ subject to the overlap 

conditions. The overlapping conditions are derived by checking the ellipse opening 

angles 𝜑௫ଵ, 𝜑௫ଶ    and the angles, 𝛾ଵ and 𝛾ଶ. These conditions are outlined below: 

 𝒅𝒔 = ൞

𝒅𝟏        𝑖𝑓  𝜑𝑥1 <  𝜑𝑥
(𝑚𝑎𝑥), 𝛾ଵ < 90𝑜,   𝜑𝑥2 ≥  𝜑𝑥

(𝑚𝑎𝑥) 𝑜𝑟 (𝛾ଶ ≥  90𝑜) 

𝒅𝟏 +  𝒅𝟐   𝑖𝑓  𝜑𝑥1 <  𝜑𝑥
(𝑚𝑎𝑥), 𝛾ଵ < 90𝑜,   𝜑𝑥2 <  𝜑𝑥

(𝑚𝑎𝑥) 𝑎𝑛𝑑 (𝛾ଶ <  90𝑜)

𝒅𝟐        𝑖𝑓   𝜑𝑥2 <  𝜑𝑥
(𝑚𝑎𝑥), 𝛾ଶ < 90𝑜,   𝜑𝑥1 ≥  𝜑𝑥

(𝑚𝑎𝑥) 𝑜𝑟 (𝛾ଵ ≥  90𝑜)

 (4.47) 

 

Here, 𝜑௫
(௠௔௫) represents the maximum opening angle of the ellipse along the X 

direction (longer side) and is computed using the relation: 

 𝜑௫
(௠௔௫)

= tanିଵ ൬
ℎ

𝑎
൰ (4.48) 

The point cloud is sliced at an angle 𝜃 w.r.t the principal z-direction of the eigen 

coordinate frame. The paint gun moves along the immediate y-axis of the ellipse following 

the curvature of the free-form surface to complete a paint stroke. The speed 𝑣(௜) for a given 

slice 𝑖  is assumed constant. The individual slices are then sub-divided into patches with 

each 𝑏 distance apart along the y-axis of frame {SF}. The trajectory point for a patch is 

obtained by displacing the mean position along the normal vector of the patch by ℎ units. 

The number of trajectory points for a slice can be increased by decreasing the vertical 

distance between the patches. Given patch points 𝑃௣௔௧௖௛ ∈ ℝ(3, 𝑁𝑝𝑎𝑡𝑐ℎ) in a portion of slice 

and the corresponding trajectory point 𝑃(௜,௝) ∈ ℝ(3,1), the 𝐿௦(௜) ∈ ℝ(3, 𝑁𝑝𝑎𝑡𝑐ℎ) vector for a can 

be computed using: 

 𝐋𝒔(ଙ)
തതതതതത = 𝑃௣௔௧௖௛ −   𝑃(௜,௝) (4.49) 
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 𝑁௣௔௧௖௛ represents the total number of points in a patch. Using dot product between 

−𝑳𝒔(ଙ)
തതതതതത and the normal vector  𝒏ഥ , angle 𝛾(௜) ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ) can be computed as: 

 cos 𝛾(௜) =
−𝑳𝒔(ଙ) 

തതതതതത.  𝒏ഥ

ห𝑳𝒔(ଙ)തതതതതത ห |𝒏ഥ |
→  𝛾(௜) = cosିଵ

−𝑳𝒔(ଙ) 
തതതതതത.  𝒏ഥ

ห𝑳𝒔(ଙ)തതതതതത ห |𝒏ഥ |
 (4.50) 

Similarly, taking the dot product of 𝑳𝒔(ଙ)
തതതതതത and vector 𝒉ഥ  the angle, 𝜑௫(௜) ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ) 

is computed: 

 cos 𝜑௫(௜) =
𝑳𝒔(ଙ) 
തതതതതത.  𝒉ഥ

ห𝑳𝒔(ଙ)തതതതതത ห ห𝒉ഥ ห
→   𝜑௫(௜) = cosିଵ

𝑳𝒔(ଙ)തതതതതത .  𝒉ഥ

ห𝑳𝒔(ଙ)തതതതതത ห ห𝒉ഥ ห
 (4.51) 

Using 𝜑௫(௜), the term 𝑥(௜) ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ) is calculated: 

 𝑥(௜) = ℎ tan (𝜑௫(௜)) (4.52) 

The ratio 
௛

௛ೞ(೔)
 ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ) can be computed using the law of similar triangles such 

that: 

 ℎ

ℎ௦(௜)
=

ට𝑥(௜)
ଶ + ℎଶ

ห𝑳𝒔(ଙ)
തതതതതതห

 (4.53) 

Finally, the time duration 𝑡(௜) ∈ ℝ(1, 𝑁𝑝𝑎𝑡𝑐ℎ) for each patch point is represented using 

the relationship: 

 
𝑡(௜) =

2𝑏 ඨቆ 1 −
𝑥(௜)

ଶ

𝑎ଶ ቇ

𝑣(௜)
 

(4.54) 

 

Once the essential coating parameters are calculated, the coating thickness can be 

computed as defined by equations 4.46 and 4.47. Next, to compute the dynamic torque of 

the robot, the velocity vector of the end effector is obtained by finding a unit vector in the 

direction of delta of two trajectory points. More specifically, given two consecutive 

trajectory points 𝑃(௜,௝) and 𝑃(௜,௝ାଵ) in the slicing frame {𝑆𝐹} along a paint stroke, the 

velocity vector at a given trajectory point 𝑗 within a slice plane 𝑖 can be defined as: 
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 𝒗ഥ(𝒊,𝒋) =
൫𝑃(௜,௝ାଵ) −   𝑃(௜,௝)൯

‖𝑃(௜,௝ାଵ) −   𝑃(௜,௝)‖ 
 ห𝑣(௜)ห   (4.55) 

The trajectory points and the velocity vector in the robot reference frame can be 

found using the relative transformation matrices between the slicing frame {SF}, eigen 

frame {EF} and the robot base frame {0}.  

  𝑃௥௢௕௢௧ =  𝑇ௌி
଴  𝑃 = 𝑇ாி

଴   𝑇ௌி
ாி  𝑃 (4.56) 

 𝑉௥௢௕௢௧ = 𝑅ௌி
଴  𝑉 =  𝑅ாி

଴   𝑅ௌி
ாி   𝑉 (4.57) 

 

The first three rows of matrix 𝑃 ∈ ℝ(ସ, ே೟) and 𝑉 ∈ ℝ(ଷ, ே೟) represent the trajectory 

points (𝑝௫ , 𝑝௬ , 𝑝௭) and velocity vectors (𝑣௫ , 𝑣௬ , 𝑣௭). Similarly, the orientation 𝜓(௜,௝) of the 

end-effector (i.e., paint gun) at a slicing plane 𝑖 and trajectory point 𝑗 can be computed by 

reversing the direction of normal vector that joins point 𝑂(௜,௝) and 𝑔(௜,௝). The orientation 

matrix 𝜓 ∈ ℝ(3, 𝑁𝑡) can be transformed into the robot frame using the rotation matrix 𝑅ௌி
଴ . 𝑁௧ 

represents the total number of trajectory points in a slice.  

 𝜓(௜,௝) = − 𝒏𝑶𝒈തതതതത =  𝒉ഥ (4.58) 

 𝜓௥௢௕௢௧ =  𝑅ௌி
଴  𝜓 =  𝑅ாி

଴   𝑅 ௌி
ாி 𝜓 (4.59) 

The trajectory points and the velocity vector in the task space are converted to joint 

space positions and velocities using the inverse kinematics and Jacobian defined earlier. 

The task space acceleration (𝑥̈) is assumed zero to simplify the calculations. The RNE 

(Recursive Newton Euler) approach [72] is used to compute the link angular velocities and 

joint torques to compute the mechanical energy consumption and time duration between 

trajectory points. A GA (Genetic Algorithm) [73] is then used to optimize the hybrid cost 

function for a given slice direction (𝜃), slice width (𝛿), speeds (𝑣ଵ, 𝑣ଶ), and the inverse 

kinematic configuration of the manipulator 𝑖𝑘௖௙. The cost function for the coating thickness 

is computed by taking the mean squared error of the coating thickness with the ideal coating 

thickness over 𝑁௣௧௦ points in the slice. 

 𝐽ௗೞ
=

1

𝑁௣௧௦
෍ቀ𝑑௦

(௞)
− 𝑑௜ௗ௘௔௟ቁ

ଶ
ே೛೟ೞ

௞ୀଵ

 (4.60) 
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To minimize the coating deviation error, we penalize the ratio of coating thickness 

standard deviation and mean over a slice.  

𝐽ௗ೐ೝೝ೚ೝ
=

𝑑௦௧ௗ

𝑑௠௘௔௡
 (4.61) 

 

The mean squared error (eq. 4.60) ensures the coating thickness is close to the 

desired value, while the deviation error (eq. 4.61) ensures uniformity. The standard 

deviation and mean of the coating thickness over a slice can be computed using the 

following: 

 𝑑௠௘௔௡ =
1

𝑁௣௧௦
෍ 𝑑௦

(௞)

ே೛೟ೞ

௞ୀଵ

 (4.62) 

 𝑑௦௧ௗ = ඩ
∑ ቀ𝑑௦

(௞)
− 𝑑௠௘௔௡ቁ

ଶே೛೟ೞ

௞ୀଵ  

𝑁௣௧௦
 (4.63) 

 

Similarly, to minimize the energy consumption of the manipulator, the following 

objective function is introduced with ∆𝑇(௡೟) representing the time interval between two 

consecutive trajectory points: 

 𝐽ா =
1

𝑁௧ − 1
  ෍ ൮ቌ ෍

1

2
(𝜏௡

(௡೟)

ேೕ೚೔೙೟ೞ

௡ୀଵ

𝜔௡
(௡೟)

+ 𝜏௡
(௡೟ାଵ)

𝜔௡
(௡೟ାଵ)

)  ቍ ∆𝑇(௡೟)൲

ே೟ିଵ

௡೟ୀଵ

 (4.64) 

 

Finally, to ensure fast trajectories, low velocities can be avoided by penalizing the 

average time between two consecutive trajectory points.  

 𝐽் =
1

𝑁௧ − 1
 ෍ ∆𝑇(௡೟)

ே೟ିଵ

௡೟ୀଵ

 (4.65) 
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The hybrid cost function is the weighted sum of the four cost functions defined in 

equation 4.60, 4.61, 4.64, and 4.65. The scaling factors 𝜔ଵ, 𝜔ଶ, 𝜔ଷ, 𝑎𝑛𝑑 𝜔ସ are adjusted 

to indicate relative importance of penalty functions. It should be noted that the cost 

functions are normalized on a scale of 0 and 1 before computing the hybrid cost function.  

 𝐽௧௢௧ =  𝜔ଵ 𝐽ௗೞ

௡௢௥௠ + 𝜔ଶ 𝐽ௗ೐ೝೝ೚ೝ

௡௢௥௠ + 𝜔ଷ 𝐽ா
௡௢௥௠ +  𝜔ସ 𝐽்

௡௢௥௠  (4.66) 

 

The fitness function for the genetic algorithm is then defined as inverse of the cost 

function and by introducing an 𝜖 term to avoid division by zero.  

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝐽௧௢௧ +  𝜖
 (4.67) 

 

The constraints for the optimization objective are: 

 
𝛿 ∈ [𝑎      2𝑎] 

 
(4.68) 

 
𝑣ଵ, 𝑣ଶ  ∈ [𝑣௠௜௡  𝑣௠௔௫] 

 
(4.69) 

 
𝑖𝑘௖௙  ∈ { 0 𝑜𝑟 1} 

 
(4.70) 

 𝜃 ∈ [0  𝜋] (4.71) 

 

 A schematic of the optimization algorithm is shown in Fig. 4.7. The trajectories 

once optimized, are analyzed based on four criteria including coating distribution error, 

relative coating error, energy consumption, and total trajectory time. The relative error is 

computed by taking the fractional difference of the mean and desired coating thickness 

over the entire surface. 

 𝐽ௗೝ೐೗
=

|𝑑௠௘௔௡ − 𝑑௜ௗ௘௔௟|

𝑑௜ௗ௘௔௟
 (4.72) 
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Figure 4.7: Trajectory planning and optimization algorithm. The input to the 

optimization algorithm is a CAD model while the output is an optimized trajectory for the 

paint robot in task space. The end-effector trajectory includes the x, y, z location, 

orientation, and the velocity vector at a given point in task space. 
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4.3 Conclusion 
 

This chapter discussed the detailed process of optimum trajectory planning for a 

robotic painting process. An elliptic double beta distribution model is employed to model 

the spraying process. A coating deposition model for a complex free-form surface is then 

established based on spraying parameters including: the spray gun height form the surface 

(ℎ), the coating deposition rate of the paint per unit time (𝑘௠௔௫), the width and length of 

the elliptical paint area (𝑎, 𝑏), the beta values for the paint distribution (𝛽௫, 𝛽௬), and the 

curvature (𝛾, 𝜑௫). Once the coating deposition model on a complex free-form surface is 

established, the manipulator kinematic and dynamic model is analytically derived to 

compute the instantaneous joint torques and link velocities at a given trajectory point. A 

point cloud slicing algorithm is then used to slice a point cloud of the complex free-form 

surface for optimization. The trajectory points are assigned along the slicing plane 

following the curvature of the surface while maintaining a constant height (ℎ) from the 

surface. The coating thickness is then computed for all the points in the given slice, while 

the manipulator energy is computed for all the trajectory points within this slice. A hybrid 

cost function is then established to penalize the mean squared error of the coating thickness, 

the coating distribution error, the mean energy consumption, and the mean trajectory time 

for one slice. A GA (genetic algorithm) then minimizes this cost function to achieve the 

optimal slice width (𝛿), slice velocities (𝑣ଵ, 𝑣ଶ), the slicing direction (𝜃) and the inverse 

kinematic configuration (𝑖𝑘௖௙) for all the slices in a point cloud.  
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Chapter 5. Integrated System Development 

 

5.1 Introduction 
 

The practical implementation of the 3D scanning system and the trajectory optimizer 

can be realized by developing an integrated system containing components necessary for 

the automation process. The integrated system consists of hardware and software that work 

together to make an autonomous system for robotic painting. The hardware components 

include sensors and actuators for sensing and controlling the various functions of the 

system. The software allows for smooth integration with the system components. This 

chapter outlines in detail the development process of the integrated system, its core 

hardware components and the software used. It also discusses in detail the development of 

a graphical user interface (GUI) for interacting with the system. The high-level 

representation of the GUI makes it possible for the system to act autonomously with 

minimal user intervention. This is made possible by performing the programming logic at 

the backend while allowing the user to choose macro tasks in the GUI without 

understanding the details behind it. The GUI has functions for instantiating 3D scanning 

sequence, visualizing, and validating the accuracy of the 3D scan, running the optimizer 

for trajectory planning, visualizing the trajectory and uploading the trajectories to the 

robots while also providing a platform for observing critical sensor readings and camera 

feeds.  

 

5.2 Methodology 
 

The methodology provides a macro level overview of the hardware and software 

components needed to develop the autonomous system for robotic painting. The 

autonomous system is broken down into 4 sub-systems. The 3D scanning system contains 

hardware and software responsible for generating a 3D model of the complex free-form 

surface of an object. The trajectory planning system is responsible for generating an 

optimal paint trajectory. The trajectory execution system enables the system to execute the 
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trajectory via the robots installed on board. Finally, the validation system is used to validate 

the 3D scan accuracy of the 3D scanning system, the paint quality and energy consumption 

of the trajectory planning process. These systems are interconnected and share the 

hardware and software components to achieve the desired purpose. The methodology is 

shown schematically in Fig 5.1.  

 

Figure 5.1: Software and hardware development methodology. 
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5.2.1 Hardware development  
 

Table 5.1: Hardware components breakdown with component IDs, descriptions, and the 

corresponding CAD models. 

ID Component Description CAD Model 

1 Aluminum Framing. Used for 

building the structure of the entire 

system. It also contains corner 

brackets, T-brackets, and gantries 

for achieving the smooth linear 

motion. 
 

2 Vertical Sliding mechanism. It 

contains 2 linear actuators, a 

support base for lifting the robots 

and a base mount plate for securing 

the linear actuators. For the 

position feedback, distance sensors 

are installed.  

 

3 Electronics box for keeping the 

electrical components. It contains a 

raspberry pi controller, an Arduino, 

2 motor controllers for the linear 

actuators, a current sensor, and a 

stepper driver for controlling the 

stepper motor.  
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4 Horizontal sliding mechanism. It 

contains a threaded rod, two guide 

rails with linear gantries, bearings 

and bearing supports for the 

threaded rod, a stepper motor for 

driving the mechanism and a 

distance feedback sensor.  

5 Stepper motor for moving the 

horizontal slider [74]. 

 
6 Horizontal slider jockey. It 

contains a lead screw head 

connected to the base plate which is 

then connected to the linear 

gantries for moving along the guide 

rails.  
 

7 Servo rotating mechanism for 3D 

scanning system. The servo [67] is 

connected to the object via a 

gripper that can be tightened and 

loosened. The object is a car door 

as illustrated in the CAD.  

 
8 A downscaled CAD model of a car 

door for 3D scanning and trajectory 

planning.  
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9 Two 3DOF robots for controlling 

the x, y, z location of the end-

effector [75]. The robot combined 

with the vertical sliding mechanism 

gives a total of 4 DOF for executing 

the trajectory over the surface of 

the complex free-form surface 

(e.g., car door) 

 

 

10 Position feedback platform for the 

linear actuators. It has a VLX 

distance sensor mounted on a plate.  

 
11 VL53L0X sensor [66]. It is a time 

of flight (TOF) sensor for 

measuring distance. It has a 

measurement range of 3 𝑐𝑚 𝑡𝑜 2 𝑚 

and an accuracy of ± 1𝑚𝑚.   

12 A limit switch used for 

disconnecting the power from the 

linear actuators [76].  

 
13 3D scanning hardware [65]. It has 

an Intel Real Sense D435 sensor 

and a TOF sensor for calibration of 

the rotation axis of the object. The 

sensors are connected to the system 

via a 3D-printed mounting plate.  
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Figure 5.2: CAD schematic of the Integrated System with component IDs. 

 

 

Figure 5.3: 3D rendered CAD model of the Integrated System (isometric view). 
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Figure 5.4: 3D rendered CAD model of the Integrated System (top and side view). 

 

5.2.2 Software development 
 

After the system is modeled in CAD and fabricated, it is important to devise a software 

mechanism that achieves the desired purpose of the autonomous system. As such, the 

software should be able to communicate with the hardware components and optimize the 

trajectory for the complex free-form surface. Moreover, a GUI (graphical user interface) 

should also be in consideration to allow the user to interact with the system, make changes 

to the settings, and load the CAD and trajectory files. The software breakdown and the GUI 

is shown in Fig. 5.5. The core components of the system are connected via ROS (Robot 

Operating System) ecosystem [77]. ROS allows for easy communication between software 

scripts/nodes via topics and services. The ROS MASTER is the main server running all the 

necessary nodes responsible for trajectory optimization and 3D scanning. Another instance 

of ROS runs on the Raspberry Pi controller which is directly connected to the hardware. 

The hardware includes the horizontal sliding and vertical sliding mechanisms, the servo 

rotation mechanism, the 𝑣𝑙𝑥 sensors for distance monitoring and the D435 sensor for 

acquiring a depth scan of the object. The raspberry pi is programmed to respond to certain 

topics via ROS subscriber and publishers. Thus, any sensor can be read by the MASTER 

node by subscribing to it. Similarly, any change in the actuator state can be published to 

the raspberry pi node and realized in real time. The web-based GUI is connected to ROS 

Master and the two robots via web sockets programmed in JS (JavaScript) [78] . The 
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backbone of the web page is defined by HTML script while the page is styled using CSS 

and JS acquired from Bootstrap and jQuery [79]. ROS ecosystem is tunneled with the JS 

using the 𝑟𝑜𝑠𝑙𝑖𝑏𝑗𝑠 script developed by [80]. The two robots receive trajectory commands 

in the form of x, y, z and  location and a time variable for defining the speed. The 3D 

scanner node is responsible for instantiating a 3D scanning instance on user request from 

the web GUI. After completion, it stores the scan file into the scan directory locally. 

Similarly, the trajectory optimizer node when triggered from the GUI, optimizes the 

trajectory, and stores the results into a NumPy array locally in the 𝑡𝑟𝑎𝑗 folder.  

 

Figure 5.5: Schematic for Software development of the integrated system.  
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5.2.3 Graphical user interface 
 

The GUI is a web-based interface allowing for communication between the user 

and the software components of the system. The main motivation behind the GUI is the 

provision of a user-friendly interface to perform the different functions of the system. 

The web-based GUI has a sidebar navigation menu with interactive buttons for 

communicating with the system. The main buttons are Camera, Sensors, 3D Scanner, 

Optimizer Settings, 𝑇𝑟𝑎𝑗 Optimizer, Upload 𝑇𝑟𝑎𝑗, Stop 𝑇𝑟𝑎𝑗, Validate and Manual 

Control. The top navigation bar has 4 buttons including CAD Files, Scan Files, CAD-

CAL files and 𝑇𝑟𝑎𝑗 Files. These buttons are handled by the JavaScript node and upon 

clicking will execute the required functionality. The GUI interface is shown in Fig. 5.6.  

 

Figure 5.6: Front panel of web-based GUI. 

 

The further breakdown of the GUI interface is shown in Fig. 5.7. The top navigation 

bar is a clickable dropdown menu showing the available file names on the local storage. 

Upon clicking either of these three buttons, the JavaScript handler function sends a ping to 

the JSON handler node at the backend requesting for the File list on the specified 

directories. The backend node responds with the file list which is updated to view on the 

drop-down menu. Further, by clicking a filename, it is selected as the current file source 

for the trajectory planning process. The side bar field, Optimizer Settings, is also a 
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dropdown menu with form inputs for the paint trajectory planning process. These fields are 

inserted, and the update button is then clicked to update the settings to the 

𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠. 𝑗𝑠𝑜𝑛 file.   

 

Figure 5.7: Web GUI Optimizer Settings and File System Handler. 

 

The remaining functionalities of the GUI are shown in Fig. 5.8. The 𝑇𝑟𝑎𝑗 Optimizer 

button is further subdivided into two buttons. One is used for optimizing the trajectory 

while the other is used for viewing the selected trajectory. Before trajectory optimization, 

the CAD/SCAN field of the Optimizer Settings should be selected 0 or 1 if a CAD or SCAN 

is to be used respectively. The selected CAD or SCAN file is then considered by the 

backend for trajectory planning. Similarly, the Upload and Stop 𝑇𝑟𝑎𝑗 buttons are used to 

invoke the trajectory handler node which can start and stop trajectory upload to the robots 

at any given time. The Validate button has 3 sub fields for evaluating the 3D scan accuracy 

of the selected CAD and SCAN files, energy, and paint quality for the selected trajectory 

file. Fig. 5.8 also shows the Camera field dropdown for selecting a given camera feed, the 
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Sensors dropdown for viewing the sensor readings, and the 3D scanner button for starting 

the 3D scan and viewing it.  

 

Figure 5.8: Web GUI miscellaneous buttons and functions. 

The software packages and custom programs (18 Python scripts) are shown below for 

reference. 

 

Figure 5.9: Software packages and custom Python scripts. 
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5.2.4 ROS RQT graph 
 

The ROS RQT graph shows the relationships between the topics, services, and 

nodes running. An RQT graph of the system running with all nodes is shown in Fig. 5.10. 

The topics are represented by the square boxes and the nodes by an oval shape.  

 

Figure 5.10: ROS RQT graph. 

5.3 Conclusion 
 

In this chapter, the hardware and the software development were discussed in detail. 

The major hardware components include two robots for executing the paint trajectory, 

an intel realSenseD435 sensor for depth mapping, and the LINUX server for running 

the software components. A Raspberry Pi controller is also used with its GPIO (General 

purpose input output) pins connected to the sensors, motors, and actuators via electronic 

drivers. The system is integrated to form an autonomous system for trajectory planning 

and optimization of the painting process over complex free-form surfaces. The software 

components include the programs responsible for handling the functionalities of the 

system. A web-based GUI interface that allows for a user-friendly interface with the 

system was also discussed in detail.  
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Chapter 6. Results and Discussions 

 

The results and discussion section will cover the accuracy of the 3D scanning system 

used for acquiring the geometry of the object, the calibration results for the CAD models, 

and the optimization results for the trajectory planning process. The trajectories are 

analyzed based on the coating distribution error, relative coating error, energy consumption 

and time. During the energy computation of the manipulator, the friction model is not 

considered to simplify calculations. Similarly, the end-effector wrench loading vector is 

also assumed zero. To evaluate the energy consumption experimentally, current sensors 

are installed at the power inlets of the robots. The spraying process model and the robot 

dynamic model are implemented in Python including the other functionalities defined in 

chapter 5. Before discussing the results, we define the parameters for the spraying process 

model, the robot model, and the genetic optimizer used in the theoretical and experimental 

analysis.  

 

6.1 Spraying process, robot, and optimizer parameters 
 

The spraying process can be modelled using the parameters 𝑎, 𝑏, 𝛽௫ , 𝛽௬ and 𝑘௠௔௫. 

Since we did not have a spray delivery system, these parameters were chosen based on the 

size of the object and by analyzing the study done by [37]. The robot model contains the 

kinematic and dynamic parameters. The links are considered cylindrical to simplify the 

calculations and the mass moment of inertia are computed for the torque computation. The 

gravity vector is in the negative z-direction of the robot base frame defined in chapter 4. 

Similarly, other parameters such as the minimum and maximum paint gun speeds, the spray 

gun height, and the genetic optimizer settings are also defined in Table 6.1. The GA settings 

are tuned on hit-and-trial by first starting with the default settings in the 𝑝𝑦𝑔𝑎𝑑 [81] library 

in Python. The optimizer speed slows down as the number of generations increases. Thus, 

the settings must be adjusted based on the computational resources available. 
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Table 6.1: List of spraying process, robot, and optimizer parameters used in analysis. 

Parameter Description Value 

 Spraying process parameters  

𝑎 Ellipse longer side for the coating model 15 𝑚𝑚 

𝑏 Ellipse shorter side for the coating model 5.6 𝑚𝑚 

𝛽௫ Coating distribution beta along the X direction of ellipse 2.3 

𝛽௬ Coating distribution beta along the Y direction of ellipse 4.5 

𝑘௠௔௫ Coating deposition rate 50.0 𝜇𝑚/𝑠 

𝑑௜ௗ௘௔௟  Desired coating thickness 20 𝜇𝑚 

𝑣௠௜௡  Minimum speed of the spray gun 3 𝑚𝑚/𝑠 

𝑣௠௔௫ Maximum speed of the spray gun 15 𝑚𝑚/𝑠 

ℎ Spray gun height from the surface 10 𝑚𝑚 

 Robot model parameters  

𝑑௦௧௥௢௞௘  Link 0 stroke length 254 𝑚𝑚 

𝐿ଵ Manipulator Link 1 length 92.54 𝑚𝑚 

𝐿ଶ Manipulator Link 2 length 128.4 𝑚𝑚 

𝐿ଷ Manipulator Link 3 length 144.8 𝑚𝑚 

𝑀 Manipulator Link 0 mass 2.5 𝑘𝑔 

𝑚ଵ Manipulator Link 1 mass 0.5 𝑘𝑔 

𝑚ଶ Manipulator Link 2 mass 0.5 𝑘𝑔 

𝑚ଷ Manipulator Link 3 mass 0.5 𝑘𝑔 

 Optimizer Parameters  

𝜔ଵ Scaling factor for mean squared error 0.40 

𝜔ଶ Scaling factor for coating deviation error  0.20 

𝜔ଷ Scaling factor for mean energy consumption  0.20 

𝜔ସ Scaling factor for mean trajectory time 0.20 

𝜖 Hyper-parameter in the fitness function 1.0 

𝑟௠ Mutation rate in GA 0.1 

𝑐௧௬௣௘ Crossover type in GA Two points 

𝑚௧௬௣௘ Mutation type in GA Random 

𝑁௣௔௥௘௡௧௦ Number of mating parents in GA 2 

𝑁௚௘௡ Number of generations in GA 25 

𝑁௦௢௟  Number of solutions per population in GA 2 
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Figure 6.1: Experimental setup in the laboratory. 
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6.2 3D scanning and CAD calibration results 
 

The 3D scanning system is used to generate surface point clouds of the object under 

investigation. After the point clouds are obtained for each rotational index (30o), they are 

filtered and raw aligned using the transformations defined earlier in Chapter 3. ICP is then 

used to fine-align and transform the point clouds into one common reference frame. 

Additionally, statistical noise removal is applied if the point cloud has any residual noise 

as defined in Chapter 3. Three objects are scanned, and their corresponding CAD models 

are calibrated (transformed) into the camera reference frame {C} for trajectory planning. 

Fig. 6.2 shows selecting a scan file from the file list button in GUI and viewing it by 

clicking the view 3D scan button. Similarly, Fig. 6.3 shows performing the calibration 

using the GUI interface of the system.  Table 6.2 shows the summary of the scanned models 

and their corresponding calibrated CAD in the camera frame {C}. 

 

Figure 6.2: Selecting 3D scan and viewing it in the GUI.  
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Figure 6.3: Calibrating the 3D scan and the corresponding CAD file in the GUI. 

 

Table 6.2: Scanned models and their corresponding CAD calibrated in frame {C}. 

Scanned model in frame {C} Calibrated CAD in frame {C} 
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The accuracy of the scanning process is evaluated using the D1 and D2 metrics defined 

earlier in chapter 3. The D3 and A3 metrics are omitted since their computation depends on 

angles in the point cloud and generates errors in the inverse cosine frequently. The D1 and 

D2 metrics are computed between the scanned models and their corresponding CAD 

models. It is revealed that the car door is captured with 95% accuracy, the car hood with 

93%, and the car bumper with 92% accuracy. The geometric signatures are summarized in 

Table 6.3 while the density plots are shown in Fig. 6.4 to Fig. 6.6. 

Table 6.3: Similarity scores between the 3D scanned models and the corresponding CAD. 

 D1 score D2 score Avg score 

Car door 0.9639 0.9434 0.9536 

Car hood 0.9524 0.9228 0.9376 

Car bumper 0.9488 0.9082 0.9285 

 



100 
 

  

Figure 6.4: D1 and D2 density distributions for car door. 

Figure 6.5: D1 and D2 density distributions for car hood. 

  

Figure 6.6: D1 and D2 density distributions for car bumper. 
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6.3 Optimal paint trajectory planning for a car door 
 

A downscaled version of the car door is considered for trajectory planning and 

optimization. The CAD model is calibrated with the scanned model to ensure the accurate 

position and orientation of the surface in the camera and robot frame as defined in Chapter 

3. The calibrated CAD model is loaded into Python [61] and converted to eigen coordinate 

system by applying PCA. The GA is then run for each slice along the slicing direction of 

the CAD point cloud until no slices are left. The optimizer runs for equidistant slicing (𝛿 =

𝑎) and non-equidistant slicing (𝛿 ∈ [𝑎  2𝑎]) and the results are stored for each slice. For 

ease of analysis, the slicing direction 𝜃 is discretized into 4 values including 0௢, 30௢, 60௢ 

and 90௢. The results include analyzing the mean coating thickness, energy per slice, 

coating distribution error, relative coating error, GA fitness, slice widths, slice speeds, and 

inverse kinematic configurations plotted against slice numbers. Additionally, the planned 

trajectory in the eigenframe and the coating thickness at each patch are visualized using 

color intensities proportional to the value of coating thickness. The coating thickness is 

mapped to color intensities such that the brighter green color represents high coating 

thickness and vice versa. The axes of the frame {EF} are shown by red, green, and blue for 

x, y, and z respectively as shown in Fig. 6.7.  

6.3.1 Results for slicing direction θ= 0o 
 

 

Figure 6.7: Coating thickness and planned trajectory of a car door in {EF} for slicing 

direction 𝜃 = 0௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.8: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car door: 𝜃 = 0௢). 
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6.3.2 Results for slicing direction θ= 30o 
 

 

Figure 6.9: Coating thickness and planned trajectory of a car door in {EF} for slicing 

direction 𝜃 = 30௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.10: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car door: 𝜃 = 30௢). 

6.3.3 Results for slicing direction θ= 60o 
 

 

Figure 6.11: Coating thickness and planned trajectory of a car door in {EF} for slicing 

direction 𝜃 = 60௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.12: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car door: 𝜃 = 60௢). 
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6.3.4 Results for slicing direction θ= 90o 
 

 

Figure 6.13: Coating thickness and planned trajectory of a car door in {EF} for slicing 

direction 𝜃 = 90௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.14: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car door: 𝜃 = 90௢). 

6.3.5 Results discussions 
 

The results indicate that a desired coating thickness on a surface can be achieved 

by specifying the correct spraying parameters and the robot model. The value of the coating 

thickness, however, is subject to the local geometry of the object, the speed of the paint 

gun, the slice width and the slicing direction. Thus, variations in the mean coating 

thicknesses can be seen for both equidistant and non-equidistant slicing. The trajectories 

are evaluated based on four criteria including energy, time, coating distribution, and 

relative coating error. These quantities are plotted against the slicing direction as shown in 

Fig. 6.15. It is observed that the non-equidistant slicing scheme always leads to lower 

energy consumption since the surface can be covered with fewer slices. A similar trend is 

also observed for the trajectory time. As far as the coating distribution is concerned, the 

equidistant slicing scheme gives a more uniform distribution as indicated by the lower 

deviation errors. The relative coating error is generally lower for the non-equidistant slicing 

except at a slicing direction of 60௢, where it is slightly higher. The most energy efficient 
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trajectory is obtained at a slicing direction of 90o and by employing a non-equidistant 

slicing scheme. It consumes a total of 611 J of energy which is 60% lower than the least 

energy-efficient trajectory. The optimal trajectory for the process time is at a slicing 

direction of 30o while using a non-equidistant slicing scheme. This trajectory takes 188 s 

which is 33% lower than the least time-optimal trajectory. The coating distribution is most 

uniform when employing an equidistant slicing scheme at an angle of 30o. It gives an 

average coating distribution error of 18% with a mean coating thickness of 19.21 𝜇𝑚 which 

is considerably close to the desired thickness of 20.0 𝜇𝑚. Finally, the lowest relative 

coating error (14%) is observed for na on-equidistant slicing scheme at an angle of 30o. 

This leads to a mean coating thickness of 18.38 𝜇𝑚. The summary of results is given in 

Table 6.4. 

 

Figure 6.15: Total energy, trajectory time, coating deviation and relative coating error vs 

slicing direction (car door). 

 



109 
 

Table 6.4: Results summary for trajectory planning and optimization of a car door for 

both equidistant and non-equidistant slicing. 

 𝜽 𝒅𝒎𝒆𝒂𝒏(𝝁𝒎) 𝑬𝒔𝒖𝒎 (𝑱) 𝐓𝒔𝒖𝒎 (𝐬) 𝑱𝒅𝒆𝒓𝒓𝒐𝒓
 𝑱𝒅𝒓𝒆𝒍

 

Eq-slicing 0௢ 28.58 1492.94 273.10 0.23 0.54 

 30௢ 19.21 1553.09 207.76 0.18 0.17 

 60௢ 20.56 1320.14 234.55 0.20 0.20 

 90௢ 24.12 775.75 282.17 0.18 0.29 

Non-eq slicing 0௢ 21.91 1092.36 195.47 0.47 0.30 

 30௢ 18.38 1382.48 188.54 0.22 0.14 

 60௢ 22.91 1109.15 233.77 0.32 0.28 

 90௢ 23.34 611.33 244.65 0.29 0.25 
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6.4 Optimal paint trajectory planning for a car hood 
 

6.4.1  Results for slicing direction θ= 0o 
 

 

Figure 6.16: Coating thickness and planned trajectory of a car hood in {EF} for slicing 

direction 𝜃 = 0௢ (left: equidistant slicing, right: non-equidistant slicing). 

 



111 
 

 

 

Figure 6.17: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car hood: 𝜃 = 0௢). 

6.4.2 Results for slicing direction θ= 30o 

 

Figure 6.18: Coating thickness and planned trajectory of a car hood in {EF} for slicing 

direction 𝜃 = 30௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.19: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car hood: 𝜃 = 30௢). 
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6.4.3 Results for slicing direction θ= 60o 
 

 

Figure 6.20: Coating thickness and planned trajectory of a car hood in {EF} for slicing 

direction 𝜃 = 60௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.21: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car hood: 𝜃 = 60௢). 

6.4.4 Results for slicing direction θ= 90o 
 

 

Figure 6.22: Coating thickness and planned trajectory of a car hood in {EF} for slicing 

direction 𝜃 = 90௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.23: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car hood: 𝜃 = 90௢). 



116 
 

6.4.5 Results discussions 
 

The results for the car hood indicate that a desired coating thickness on a surface 

can be achieved by specifying the correct spraying parameters and the robot model. The 

most energy-efficient trajectory is obtained at a slicing direction of 90o and by employing 

a non-equidistant slicing scheme as shown in Fig. 6.24. It consumes a total of 1027 J of 

energy which is 73% lower than the least energy-efficient trajectory. The best time-optimal 

trajectory is observed at an angle of 30o with equidistant slicing scheme. This leads to a 

total trajectory time of 357 s. The coating deviation error achieved using equidistant slicing 

is generally lower than non-equidistant slicing scheme consistent with the results for car 

door. The lowest coating deviation is 18% and is observed at an angle of 60o. The smallest 

relative coating error (21%) is observed at 90o while employing a non-equidistant scheme. 

This leads to a mean coating thickness of 21.02 𝜇𝑚 over the surface of the car hood. A 

summary of the results is described in Table 6.5.  

 

Figure 6.24: Total energy, trajectory time, coating deviation, and relative coating error vs 

slicing direction (car hood). 
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Table 6.5: Results summary for trajectory planning and optimization of a car hood for 

both equidistant and non-equidistant slicing. 

 𝜽 𝒅𝒎𝒆𝒂𝒏(𝝁𝒎) 𝑬𝒔𝒖𝒎 (𝑱) 𝐓𝒔𝒖𝒎 (𝐬) 𝑱𝒅𝒆𝒓𝒓𝒐𝒓
 𝑱𝒅𝒓𝒆𝒍

 

Eq-slicing 0௢ 22.59 3826.96 416.37 0.20 0.35 

 30௢ 19.79 3712.32 357.27 0.19 0.22 

 60௢ 20.20 2397.28 403.69 0.18 0.25 

 90௢ 20.20 1272.48 373.41 0.19 0.29 

Non-eq slicing 0௢ 24.34 3332.79 401.12 0.28 0.39 

 30௢ 22.32 3006.22 418.16 0.34 0.35 

 60௢ 22.91 2137.09 389.37 0.29 0.42 

 90௢ 21.02 1027.1 371.74 0.29 0.21 
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6.5 Optimal paint trajectory planning for a car bumper 
 

6.5.1 Results for slicing direction θ= 0o 
 

 

Figure 6.25: Coating thickness and planned trajectory of a car bumper in {EF} for slicing 

direction 𝜃 = 0௢ (left: equidistant slicing, right: non-equidistant slicing). 

 



119 
 

 

 

Figure 6.26: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 𝜃 = 0௢). 

6.5.2 Results for slicing direction θ= 30o 
 

 

Figure 6.27: Coating thickness and planned trajectory of a car bumper in {EF} for slicing 

direction 𝜃 = 30௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.28: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 𝜃 = 30௢). 
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6.5.3 Results for slicing direction θ= 60o 
 

 

 

Figure 6.29: Coating thickness and planned trajectory of a car bumper in {EF} for slicing 

direction 𝜃 = 60௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.30: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 𝜃 = 60௢). 

6.5.4 Results for slicing direction θ= 90o 
 

 

 

Figure 6.31: Coating thickness and planned trajectory of a car bumper in {EF} for slicing 

direction 𝜃 = 90௢ (left: equidistant slicing, right: non-equidistant slicing). 
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Figure 6.32: Mean coating thickness, energy, coating deviation and relative coating error, 

fitness, slice width, speed, and inverse kinematic configuration (car bumper: 𝜃 = 90௢). 
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6.5.5 Results discussions 
 

The results for the car bumper indicate that a desired coating thickness on a surface 

can be achieved by specifying the correct spraying parameters and the robot model. The 

most energy-efficient trajectory is obtained at a slicing direction of 90o for non-equidistant 

scheme as shown in Fig. 6.33. The total energy savings are 64%. The energy consumption 

decreases with the increase in the slicing direction and is consistent with the results 

obtained for the car door and car hood. The lowest trajectory time is 137 s when using 

equidistant slicing at an angle of 30o. Similarly, consistent with the results of car door and 

hood, the coating deviation error is lower for equidistant slicing scheme with the smallest 

value (28%) observed at an angle of 0o which gives a mean coating thickness of 21.02 𝜇𝑚. 

The relative coating error follows a similar trend with an exception at an angle of 60o. The 

smallest relative coating error is 19% and is observed for equidistant slicing at an angle of 

90o. A summary of the results for the car bumper is given in Table 6.6. 

 

Figure 6.33: Total energy, trajectory time, coating deviation and relative coating error vs 

slicing direction (car bumper). 
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Table 6.6: Results summary for trajectory planning and optimization of a car bumper for 

both equidistant and non-equidistant slicing. 

 𝜽 𝒅𝒎𝒆𝒂𝒏(𝝁𝒎) 𝑬𝒔𝒖𝒎 (𝑱) 𝐓𝒔𝒖𝒎 (𝐬) 𝑱𝒅𝒆𝒓𝒓𝒐𝒓
 𝑱𝒅𝒓𝒆𝒍

 

Eq-slicing 0௢ 21.02 575.59 160.58 0.28 0.36 

 30௢ 16.86 451.24 137.47 0.31 0.25 

 60௢ 19.13 406.39 164.68 0.31 0.38 

 90௢ 17.33 223.84 156.80 0.33 0.19 

Non-eq slicing 0௢ 19.27 509.64 157.04 0.38 0.44 

 30௢ 18.15 383.29 161.19 0.39 0.34 

 60௢ 18.38 354.33 148.73 0.35 0.34 

 90௢ 21.74 203.25 188.07 0.39 0.36 
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6.6 Experimental validation of energy consumption 
 

To assess the validity of the optimization results, the trajectory is executed in real time 

on a PRRR manipulator defined earlier. A current sensor is installed on the power inlet of 

the robot to measure the power drawn as the trajectory is being executed. The idea is to 

compare the energy consumption of the least and most energy-efficient trajectories. For the 

car door, the trajectories with slicing direction of 30o and 90o with equidistant and non-

equidistant slicing schemes are selected respectively. The current measurements at a given 

trajectory point and the time duration between consecutive trajectory points are logged. 

When the energy values are summed across the trajectory points, it is observed that the 

non-equidistant slicing leads to energy savings of 44%. This value is close to the theoretical 

estimation of 60%. In practice, some of the energy is lost by overcoming the friction 

between link joints and the resistance in the electrical circuit. The real-time energy values 

are plotted against the trajectory points as shown in Fig. 6.34. 

 

Figure 6.34: Experimental energy consumption for trajectory optimization of car door. 
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Similarly, the experimental validation of the energy consumption for the car hood 

shows a total energy savings of 51% if non-equidistant slicing is used with a slicing 

direction of 90o. It is compared with equidistant slicing at a slicing direction of 0o as shown 

in Fig. 6.35.  

 

Figure 6.35: Experimental energy consumption for trajectory optimization of car hood. 

Finally, the experimental validation of the energy consumption for the car bumper 

shows a total energy savings of 33% if non-equidistant slicing is used with a slicing 

direction of 90o. It is compared with equidistant slicing at a slicing direction of 0o as shown 

in Fig. 6.36.  

 

Figure 6.36: Experimental energy consumption for trajectory optimization of car bumper. 
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Figure 6.37: Robot executing trajectory on a car door. 

 A summary of theoretical and experimental results is given in Table 6.7. Total 

trajectory energy is 𝐸௦௨௠, while 𝐸௦௨௠ represents the percentage of energy savings 

compared to the reference trajectory.   

Table 6.7: Results summary of experimental validation of energy consumption for 

optimal paint trajectories of car door, car hood and car bumper. 

 Slicing Scheme 𝜽 
Experimental 

 𝑬𝒔𝒖𝒎 

Theoretical 

 𝑬𝒔𝒂𝒗 

Experimental 

 𝑬𝒔𝒂𝒗 

Car door Non-equidistant 90o 2085 J 60% 44% 

 
Equidistant 

(Reference) 
30o 3003 J 0% 0% 

Car hood Non-equidistant 90o 1569 J 73% 51% 

 
Equidistant 

(Reference) 
0o 3212 J 0% 0% 

Car 

bumper 
Non-equidistant 90o 1275 J 64% 33% 

 
Equidistant 

(Reference) 
0o 1894 J 0% 0% 
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6.7 Results comparison with literature 
 

The coating uniformity, trajectory time, and energy consumption in paint application 

are dependent on the geometry of the object, dynamics of the spraying process and the 

robot performing the trajectory. These will vary based on the scenario presented in the 

optimization process. It can be concluded from the analysis of the results that the proposed 

hybrid optimization scheme is able to generate efficient trajectories for the painting 

process. Some trajectories are efficient in terms of coating quality, others lead to lower 

process times, while some are more energy efficient. Thus, a suitable trajectory must be 

selected based on the requirements of the painting. The summary of the results comparison 

is tabulated in Table 6.8.   

Table 6.8: Results comparison summary with literature. 

Article 

U-

direction 

[36] 

V-

direction 

[36] 

Equidistant 

slicing [37] 

Non. eq 

slicing [37] 

Transitional- 

seg opt [38] 

Proposed 

scheme 

Proposed 

scheme 

Proposed 

scheme 

Object of 

interest 

Oval 

Bucket 

Oval 

Bucket 

Motorcycle 

spoiler 

Motorcycle 

spoiler 
Aircraft wing Car door Car hood Car bumper 

Desired coating 

thickness 
50 μm 50 μm 23 μm 23 μm 70 μm 20 μm 20 μm 20 μm 

Mean Coating 

thickness 
51.1 μm 52.2 μm 25.95 𝜇𝑚 22.27 𝜇𝑚 68.7 μm 19.21 μm 21.02 μm 21.02 μm 

Standard 

deviation 
2.775 μm 3.8 μm 6.52 𝜇𝑚 5.71 𝜇𝑚 3.2 μm 3.41 μm 6.51 μm 5.35 μm 

Mean coating 

deviation error 
5.43% 7.60% 25.12% 25.64% 4.60% 17.75% 29.4% 25.4% 

Mean relative 

coating error 
2.2% 4.4% 12.83% 3.17% 1.86% 3.95% 5.1% 5.1% 

Max Time 

savings 
17% 0% N/A N/A N/A 33% 14.18% 27.13% 

Max Energy 

savings 
N/A N/A N/A N/A N/A 60% 73% 64% 

Coating mean-

squared error 

cost 

Yes Yes Yes Yes Yes Yes Yes Yes 

Coating 

deviation cost 
No No No No No Yes Yes Yes 

Energy cost No No No No No Yes Yes Yes 

Process time 

cost 
No No No No No Yes Yes Yes 
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The methods and optimization schemes in the literature do not consider process 

time optimization, coating deviation error, and energy consumption in the cost functions. 

Our novel hybrid optimization scheme introduces these terms into the objective function, 

which then leads to more optimal paint trajectories. The performance of our results is in 

close agreement with the literature analysis as indicated by the proximity of the mean 

coating thickness with the desired requirement, and the standard deviation indicating the 

spread in the distribution of coating over the complex surfaces. These results are presented 

as a summary and should not be used as a direct comparison since the performance indices 

highly depend on the geometry of the complex surfaces, the spraying process, and the robot 

model in general. 
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Chapter 7.  Conclusion and Future Works 

 

The primary goal of the thesis was to develop an integrated system for industrial 

painting capable of generating automated paint trajectories optimized for coating thickness, 

process times, and energy consumption. The literature review highlighted key technologies 

needed to automate the trajectory planning process of a paint robot. The establishment of 

a coating deposition model on a complex `free-form surface and the dynamic model of the 

robot bears key importance in the trajectory planning and optimization process. While 

adequate work has been done to optimize the coating thickness over a complex free-form 

surface, the application of a robot dynamic model to obtain energy efficient paint 

trajectories is left unattended. Therefore, this study focused on developing a hybrid 

optimization technique to ascertain coating uniformity, process times, and energy 

consumption in the trajectory planning process. Moreover, considerable effort was put into 

the development of the integrated system, specifically the web-based GUI and the backend 

programming for interacting with the system. 

The trajectory planning process starts with the acquisition of the 3D model of the 

object. Once the geometry of the object is obtained and calibrated in the camera frame, an 

improved point cloud slicing technique is applied with the provision of a variable slicing 

direction to broaden the optimizer search space. The slicing is performed at an arbitrary 

angle of the eigen coordinate frame. Then, the trajectory points for each slice are obtained 

in discrete steps, and the coating thickness is computed. Similarly, using the robot dynamic 

model, the joint torques, link velocities, and the time delta between trajectory points are 

computed. The individual slice of the point cloud is then optimized using GA (Genetic 

Algorithm) by minimizing a joint cost function. The inclusion of slicing direction and the 

inverse kinematic configuration of the robot among the slice width and slice speeds leads 

to a better optimization of the trajectories in terms of coating uniformity, process times, 

and energy consumption. Using the hybrid optimization scheme and employing a variable 

slicing direction, optimal paint trajectories can be obtained. The literature analysis revealed 

the use of only a single mean squared error objective function to achieve the desired coating 

thickness requirement. Our novel optimization scheme introduced three additional terms 
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into the objective function to account for the coating deviation errors, process times, and 

energy consumption. Experimental results reveal energy savings of 44%, 51% and 33% 

for the paint trajectories of a car door, car hood, and car bumper, respectively, while 

achieving coating uniformity and lower process times. 

 For future works, the paint system can be modeled in a simulation environment like 

Gazebo [82] or MATLAB [83] to analyze the optimized paint trajectories. Gazebo is a 

physics engine and requires the model to be presented in the form of a URDF (Unified 

Robot Description Format), which works in conjunction with the ROS ecosystem. A URDF 

can model the kinematic and dynamic properties of the robot in more detail, leading to 

more accurate calculations of the robot dynamics. On a similar note, the spray delivery 

system can also be modeled, and the coating thickness can be analyzed. The use of a 

simulation environment makes it easy to assess the performance of the system while 

eliminating the need for a physical system.  

Another recommendation for future work would be the use of large 6-axis robots 

with the provision of an HVLP spray gun system. The last 3 axes of the robot can be used 

for orientation control to position the paint gun over the surface of the object. The 

experimental paint application is not possible with a 4 DOF robot since it can only be 

controlled for a position in the three-dimensional cartesian space and not the orientation. 

In the literature review section, industrial robotic systems for paint applications were 

discussed in detail and can be utilized for paint applications more precisely. 

Nevertheless, for industrial applications, where many parts are to be processed 

simultaneously, the hybrid optimization scheme can be implemented on a large scale. The 

optimization function implemented in Python can be converted to a class object, and 

hyperthreading can be utilized to parallelize the execution. A class instance for each object 

can be submitted to a standalone thread, thereby making the execution parallel. Moreover, 

GPU processing can also be investigated to process large batch sizes of objects, and the 

trajectories can be computed. As a final recommendation, the execution scripts can be built 

using docker containers [84] with the required dependencies included on a single image. 

The proposed solution will lead to a smoother distribution of the software resources 

independent of the OS used by the server. 
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Appendices 

A1. Paint system CAD drawings 

 

A2. Robot specifications 
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A3. Intel Real sense D435 specifications 
 

 

 

A4. VL53L0X TOF sensor specifications 
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A5. Linear actuators specifications 
 

 

Stroke length 10" 

Voltage 12 V – 24 V 
Force Delivers 330 lbs of force 
Speed 0.315 in/s at 12v; 0.670 in/s at 24v 
Extras Position feedback, Mounting brackets, Weather resistant, Limit switches 

Limit Switches Included - Automatically stops at end of travel 

Environment IP54 rated (Weather resistant) 

Feedback sensor Hall Effect - Each pulse represents 0.007046 inches (0.17896mm) 

RED wire Motor (+) 

BLACK wire Motor (-) 

GREEN wire Hall Sensor GND 

WHITE wire Hall Sensor POWER 

YELLOW wire Hall Sensor OUTPUT 

 


