
Predicting Multi-Person Dynamics

by

Chirag Karia

A thesis submitted to the
School of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Faculty of Science
University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada
December 2023

© Chirag Karia 2023



Thesis Examination Information

Submitted by: Chirag Karia

Master of Science in Computer Science

Thesis Title: Predicting Multi-Person Dynamics

An oral defense of this thesis took place on December 07, 2023 in front of the following
examining committee.

Examining Committee:

Chair of Examining Committee Dr. Alvaro Quevedo

Research Supervisor Dr. Faisal Qureshi

Research Co-supervisor Dr. Kosta Derpanis, York University

Examining Committee Member Dr. Ken Pu

Thesis Examiner Dr. Bill Kapralos

The above committee determined that the thesis is acceptable in form and content and
that a satisfactory knowledge of the field covered by the thesis was demonstrated by the
candidate during an oral examination. A signed copy of the Certificate of Approval is
available from the School of Graduate and Postdoctoral Studies.

ii



Abstract

Humans unconsciously model the dynamics of the world around them; for example, we

predict the movement of surrounding traffic and pedestrians while driving, or forecast

player positions in a game of soccer. Our work builds towards enabling computers with

a facet of this ability. Given a video and corresponding bounding box tracks, we pro-

pose various methods to predict the future shape, pose, and position of people in unseen

frames. Other works that also tackle video-based mesh prediction of humans focus on pre-

dicting the shape and pose, ignoring the position of the person in the scene. Additionally,

they focus on predicting the future states of each individual in isolation, neglecting how

interactions between individuals in a scene can inform their future actions. We present

methods to address both of these limitations, and when evaluated on the Human3.6M

and 3DPW datasets, we show favorable results to inform future directions of research.

Keywords: human mesh recovery; human mesh prediction; deterministic human mo-

tion prediction; multi-person motion prediction
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Chapter 1

Introduction

With the proliferation of technology that physically operates alongside people, we are

seeing a greater need to build machines that can accurately perceive and model human

motion. This is something that we take for granted; from a cheetah pouncing on its prey

in the final moments of a chase, to a person weaving through a crowd, the ability to

model motion and dynamics is a trait that is innate to many living things. If our goal

as engineers and scientists is to create robots that can tangibly interact with us, we need

to ensure that we instill within them the ability to make sense of us. Be it a self-driving

car that shares the streets with pedestrians or a robotic arm working in tandem with an

individual on an assembly line, safe operation is contingent on how well these machines

can anticipate the actions of the people around them [1, 2].

Generally speaking, there are two parallel streams of research that pertain to mod-

elling human motion. The first stream focuses on parsing video frames and regressing

a representation that parameterizes the state of any individuals found. These represen-

tations offer different levels of expressiveness and include bounding boxes [3, 4], 2D and

3D keypoints [5, 6], or 3D meshes [7, 8]. The second stream focuses on predicting future

human dynamics given a sequence of already parsed data; for example given a stream

of past 3D poses, model how the pose changes into the future [9, 10]. Our research lies

1



Chapter 1. Introduction 2

at the intersection of these two kindred problems. To this end we introduce a family

of methods that aim to first reconstruct the 3D mesh of each individual observed in an

input video, and then subsequently predict their future states.

The implications of a method that can reconstruct and then predict 3D representa-

tions of individuals in scene given a sequence of frames is many fold. A self-driving vehicle

equipped with this ability could predict pedestrian behaviour and use this information in

route planning or collision avoidance. In the case of manufacturing, an industrial robot

can leverage the motion information of surrounding personnel to engage emergency shut-

down procedures before someone comes into harm’s way. Finally, in the virtual reality

space it can be used to imbibe non-player characters with the ability to preemptively

forecast player actions and react in a more life-like manner.

Our primary contribution is an emphasis on leveraging the intrinsic information avail-

able in a person’s interactions with those around them. For example, a person moving

through a crowd will likely travel a route that offers the best balance between a straight

path to their destination, and the path of least resistance [11]. Alternatively, when two

individuals are coming together for a hand shake, the position of the initiating party’s

hand can tell us where the hand of the other individual will be in the following moments.

Existing works that focus on human mesh prediction are either only interested in mod-

elling scenes with a single person [12, 13] or treat multiple people as an afterthought,

predicting the future motion of each individual in isolation [14, 15]. We posit that rep-

resentations computed in the latter manner are fragmented; by ignoring the interplay

between multiple individuals in a scene valuable information is left on the table.

1.1 Contributions

To investigate the concepts described above, we start with an existing single person mesh

prediction method, the Predicting Human Dynamics (PHD) model [12] and iteratively



Chapter 1. Introduction 3

Figure 1.1: Our Models vs the Original PHD Model. The existing Predicting
Human Dynamics model (bottom) can effectively predict the future shape and pose of
an individual given a set of input frames and corresponding bounding boxes; it falls short
at estimating the location of an individual in the scene as a whole, instead focusing only
on how the limbs move with respect to a static pelvis. The collection of models we
propose in this work (top) build on PHD by additionally estimating the translation of
an individual, greatly increasing the applicability of these models in the human-robot
interaction space.

add to it to formulate a model that can tackle our specific goal of deterministic multi-

person mesh prediction. Our contributions include:

1. Predicting Human Dynamics and Translation (PHD+T): The original

PHD architecture does not model the locomotion of an individual; it assumes the

pelvis is fixed in place and focuses only on predicting the shape and pose of future

meshes. Our baseline is therefore a modified version of PHD where we also predict

the mesh translation, as shown in Figure 1.1.

2. Joint-Aware Transformer (JAT): As an alternative to the Temporal Convolu-

tion Networks [16, 17] that both PHD and PHD+T use, we propose a transformer

model that uses GPT-3 [18] style layers augmented with our novel Joint-Aware

Bias. The bias allows us inject 3D joint and pose information directly into the

computation of the attention weights.
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3. Multi-Person Joint-Aware Transformer (MPJAT): Our final model extends

JAT by contextualizing the reconstructions and predictions of all individuals with

respect to each other. We additionally include the interpenetration loss from [19]

to explicitly penalize the model for mesh intersection.

1.2 Thesis Outline

The rest of this thesis is organized as follows:

In Chapter 2 we discuss the current state of human motion modelling based on

input RGB video and then cover the research that exists regarding the prediction of

future human dynamics given past context.

Chapter 3 provides a background of the constituent elements of our proposed models.

Here we introduce the Skinned Multi-Person Linear (SMPL) body model [20], review

the HMR head [21] that is responsible for generating mesh parameters from a latent

representation, and discuss various neural network architectures for modelling temporal

data.

In Chapter 4 we describe the methods we are proposing. Here we first discuss our

modifications to prior work so that the future mesh and trajectory of an individual can

be estimated. We then introduce alternative approaches to model the future dynamics

of multiple people.

Chapter 5 covers the experiments we ran to evaluate the validity of our contributions.

We show quantitative results of our work and also visualize samples from our models.

With Chapter 6 we review and summarize our work and discuss future directions of

research that can stem from our work. Finally we discuss the impact our work, and 3D

human mesh reconstruction at large, can have on society as a whole.



Chapter 2

Related Works

In this chapter we outline prior work done towards the two sub-problems we are attempt-

ing. We start by looking at methods that regress 3D meshes of individuals in monocular

video and then cover research into deterministic and stochastic methods of modelling

future motion.

2.1 Reconstructing 3D Human Meshes

A fundamental approach to human mesh reconstruction from video would entail 3D re-

construction of individuals in each frame and then association of individuals across time

[22, 23]. The opposite approach would first associate individuals through time, poten-

tially using bounding box based trackers like [3, 4], and then aggregate the information

for each individual to produce temporally informed representations [7, 8, 12]. These

temporal representations can then be used to construct the 3D meshes of every person

where they would be conditioned on relevant data from other frames. Since image based

reconstruction is the foundation of the first approach and ideas pertaining to 3D re-

construction from images influence the mesh estimation stage of the latter approach we

first provide an overview of image based 3D reconstruction techniques before outlining

existing research into 3D mesh reconstruction of humans from monocular video.

5
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2.1.1 Reconstructing 3D Meshes from Images

The first method that could produce a 3D mesh of an individual solely from a single

RGB image was SMPLify [24]; it leverages a pretrained 2D joint regressor [25] that

estimates 2D keypoints and fits a mesh parameterized using the Skinned Multi-Person

Linear (SMPL) body model through an iterative optimization routine. Seminal work

in this area is the development of the Human Mesh Recovery (HMR) model [21] by

Kanazawa et al. Previous methods [26, 27] were bottom-up, and required joint positions

be estimated first so that the SMPL model can be fit to them; HMR is a top-down

approach that directly estimates SMPL parameters given latent image features and uses

an adversarial prior to ensure realistic predictions.

HMR has since become the foundation of many 3D mesh estimation techniques. For

example, [28] investigates a synergistic method between HMR and SMPLify, [29] proposes

a probabilistic approach for HMR based on latent-flow models, [30, 31] augment HMR

with physical constraints like self penetration and floor penetration, and [15] swaps out

the CNN backbone with a Vision Transformer [32]. Most relevant to our work are [19,

33, 34, 35] that investigate approaches to reconstruct multiple people. These methods

propose techniques that limit collision between individuals and introduce strategies to

localize the 3D position of subjects in the scene with respect to the camera.

2.1.2 Reconstructing 3D Meshes from Video

Early work that estimates 3D meshes from monocular video in a markerless manner re-

quired multi-camera setups to leverage pixel-wise correspondences [22, 36], however the

requirement for multiple cameras makes it difficult to use outside of well formed envi-

ronments like motion capture studios. One of the first approaches to reconstruct meshes

from a single camera video, [23], reconstructs meshes per-frame and then further opti-

mizes both mesh and pose by introducing a bundle adjustment algorithm that smooths
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jitter arising from temporal inconsistencies.

The Human Mesh and Motion Recovery (HMMR) model [7] introduced by Kanazawa

et al. uses Temporal Convolution Networks to contextualize the image features on both

past and future frames before using the HMR head to predict the SMPL mesh parameters.

VIBE [8] proposes a recurrent model for video mesh estimation with a novel adversarial

loss that evaluates for valid transitions between poses, leading to a stronger emphasis on

motion dynamics while training. Despite these attempts to leverage temporal informa-

tion, Choi et al. [37] argue that both previous methods are overly dependent on static

features corresponding to the specific frame being reconstructed. They blame the resid-

ual connection that each of the methods use to merge the temporally aggregated feature

with the static feature of the corresponding frame and highlight alternate methods to

build temporal representations. More recent research has placed focus on various aspects

of the 3D reconstruction pipeline. [38, 39] for example leverage physics simulators and

ground plane estimation to model the forces at play in an environment, including gravity,

while [40, 41, 42, 43] consider approaches that better account for dynamic cameras and

the inevitable occlusions that come about as a result. Other works focus more on down-

stream applications, [44, 14, 15] are all methods that successively build on each other

towards the end goal of a person tracker.

Our work explores how to capture interactions between individuals and use them

to construct spatio-temporal representations. Existing research that deals with more

than one person generally treats them independently [14, 15, 43], performs a global

optimization process after computing separate initial estimates [41, 42], or explicitly

negates the spatio-temporal dependencies between individuals [44]. Closest to our own

approach is PSVT [45] which also proposes a spatio-temporal framework to reconstruct

multiple people from video; while we start with pre-computed bounding box tracks,

they disambiguate individuals by using the initial queries of the first decoder layer as

slots that their model can assign different people to, similar to object queries in the
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Detection Transformer [46]. Another key difference between our approaches is that PSVT

splits temporal and spatial conditioning; during attention computation, we allow features

corresponding to person A in some frame j to influence the features of another person

B in frame t, where j ≤ t. PSVT on the other hand, constrains temporal conditioning

to an individual’s own past and performs spatial conditioning only on features from the

same frame.

2.2 Modelling Future Human Motion

The prediction of future human motion can generally be separated into deterministic

and stochastic methods. Deterministic methods predict a single most likely sequence of

events given an input sequence while stochastic methods model distributions, that is they

parameterize a multitude of possible futures that can stem from the input. While the work

we are proposing in this thesis is deterministic, we outline research on both to provide

a comprehensive view of the field. We acknowledge that human behavior is inherently

stochastic and deterministic methods of human motion prediction tend to suffer from the

regression-to-the-mean problem, where they predict a sequence that averages the many

possibilities [47]. We contend however that deterministic approaches are a salient way to

test new ideas before developing them to generate predictions stochastically.

2.2.1 Deterministic Methods

Early methods that worked on deterministic prediction of human pose focused on 2D

[48], or 3D [49] pose prediction with the use of recurrent models. These methods how-

ever are prone to suffering from first-frame discontinuity issues (large jump between last

input and first prediction) and error accumulation during inference. Martinez et al. [50]

show that the first issue can be alleviated with the use of residual connections and the

second can be addressed by doing away with teacher forcing [51] or scheduled sampling
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[52] by allowing the model to predict autoregressively during training, in the same way

it would during inference. To tackle the same issue, Mao et al. [53] propose re-evaluating

how the input poses are represented. Generally, pose prediction models use joint posi-

tions or joint rotations to parameterize an individual’s state; the authors instead suggest

using a Discrete Cosine Transformation to compute a representation for each joint in the

frequency space and then predict future DCT coefficients to model future human pose,

an approach that has since been adopted by many recent models [54, 55, 56, 57].

The methods discussed up to this point all focus on modelling the 3D pose of a single

individual and assume a static pelvis, ignoring their motion around the scene at large.

This formulation however is unsuitable when building models that aim to predict the

motion of multiple people; the spatial location of different individuals is inextricably

linked to how they interact with those around them [58, 59, 60]. Methods aiming to

predict the future pose of multiple people either situate them in world coordinates [10,

61, 62] or use relative coordinates with one individual located at the origin [63]. Closest

to our own method is the TBIFormer [10]. While TBIFormer takes 3D pose as an input

and not RGB images, they propose a bias on their attention mechanism that is similar

in principal to our own. TBIFormer uses Dynamic Time Warping to compute distances

between the trajectories of different individuals and maps this to the bias in a non-

parametric manner. Our approach (described in Section 4.3.2) instead computes the

relative joint positions and relative rotations between two poses and lets an MLP learn

the mapping to the bias value. The key difference in these approaches is that TBIFormer

specifically zeros out any instances in the bias matrix where a query is attending to a

key from the same individual, regardless of them being from the same frame or not.

We however recognize that there is important spatial and temporal information in the

historical motion of a person that can help model their future motion.

Most existing methods that predict future 3D meshes from image data are determin-

istic as well. The antecedent of our own work is the Predicting Human Dynamics (PHD)
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model [12], which takes as input image crops of an individual and predicts their future

pose. The key issue with PHD is that similar to previous single-person pose prediction

work, it only models a single person with a static pelvis. [14, 15] both extend PHD and

propose a prediction methodology that also accounts for movement in a 3D scene. How-

ever, the primary purpose of their work is building a person tracking system and they do

not evaluate for prediction performance in their experiments. They use prediction as an

additional means to ascertain association; each individual is considered in isolation and

the focus is on predicting pose one frame into the future, then assigning identity based

on similarity of pose and position when that frame is actually captured.

2.2.2 Stochastic Methods

Initial approaches to stochastic human motion forecasting focused on the prediction of

trajectories. While there exists much work in this area, most relevant to us are the recent

methods that model multi-agent trajectories. [58, 59] leverage a recurrent model with

a pooling module that aggregates the hidden-state of an individual with those of their

neighbours within a certain distance. They then use it to predict future trajectories;

[59] includes a Generative Adversarial Network (GAN) to encourage socially realistic

trajectories involving multiple people. [64] drops the distance constraint and adds an

attention mechanism [65] over the hidden states of a recurrent model to capture multi-

person interactions instead. These approaches however segregate spatial and temporal

information where spatial conditioning occurs within independent time steps and tem-

poral conditioning only aggregates the signals of a single individual. AgentFormer [66]

introduces a novel attention mechanism, Agent-Aware attention, which imbibes within

their transformer the ability to model dependencies between multiple people across space

and time simultaneously. This method is the foundation of our own proposed model for

capturing multi-person scenes.

Works that explicitly focus on stochastic prediction of human pose [67, 47, 68] learn
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a conditional distribution p(X|z,C) where X represents a sequence of future poses, z is

a latent variable sampled from a Gaussian prior distribution p(z), and C is a sequence

of past poses. Yuan et al. [69] posit that this approach will constrain the diversity of

predicted pose sequences X as random sampling from p(z) will result in predictions

congregating around the modes of the data distribution that are better represented by

the training data. To tackle this issue, they propose an inference scheme that involves

first sampling a random variable ϵ from a Gaussian distribution p(ϵ) and then warping

it with a set of K mapping functions based on the past poses C to produce a diverse

set of K latent variables that can then be used for generation. This idea is leveraged by

both [70, 13] to predict future 3D human meshes where [13] is of particular interest to us

as it currently appears to be the only work that stochastically predicts future 3D human

meshes conditioned on RGB video data.

There has also been much research into combining input modalities to generate more

relevant future pose predictions. For example, [71] receives as input SMPL parameters

that capture an individual dancing and a corresponding music clip; the model subse-

quently generates future dance moves that matches the music. Alternatively [72, 73, 74],

obtain SMPL parameters and action labels as input where the action labels prime the

models’ output to enact the given action. Building on the idea of multi-modal inputs,

work has been done to predict future human motion with respect to the underlying en-

vironment. [9, 75, 76] all are given a scene representation as a 2D image or as a 3D scan;

[9, 76] additionally have access to pose history, either as 2D joint positions or as full 3D

SMPL parameters. The goal of all three models is to first estimate valid goal locations,

plot a valid trajectory to that position, and then finally predict the set of poses that

would result in the individual there.



Chapter 3

Technical Preliminaries

3.1 The SMPL Body Model

The Skinned Multi-Person Linear (SMPL) body model [20] is a data driven mapping

from a parameterized representation space to a 3D human body mesh. Using parameters

that capture the shape and pose of an individual, SMPL can generate a triangular mesh

that corresponds to the current state of a body in a fully differentiable manner. The

primary goal of the authors of SMPL was to learn a model that can realistically produce

a body mesh that can be posed, capture soft-tissue dynamics, and be representative of

the spectrum of human body shapes and sizes. Finally, they wanted to ensure it can be

used efficiently with existing graphics pipelines.

3.1.1 SMPL Parameters

The SMPL model is parameterized by the pose, shape, and location of the body in

the coordinate space. These are referred to as the theta θ, beta β, and translation γ

respectively.

12
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Figure 3.1: SMPL Kinematic Tree. The SMPL kinematic tree consists of 24 joints
with the pelvis, shown in white, representing the root of the tree. As the root joint, the
orientation of the pelvis dictates the global orientation of the entire body with respect
to the coordinate frame within which it exists.

Pose Parameters

The theta parameters θ ∈ R216 determine the pose of the person and parameterizes the

kinematic tree shown in Figure 3.1. The first 9 elements of θ are a 3×3 rotation matrix

corresponding to the global orientation of the pelvis. The remaining 207 elements each

capture the rotations of 23 joints of the body with respect to a template pose, also as

3× 3 rotation matrices.

Shape Parameters

The beta parameters β ∈ R10 represent the overall size and shape of the individual in

question. Each of the scalar values of the beta parameters represents an eigenvalue that

corresponds to a set of eigenvectors determined through Principal Component Analysis
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Figure 3.2: Visualizing the SMPL Shape Parameters. The center most mesh is a
rendering of an SMPL model where all principal components are 0 (β = 0). The left
and right meshes show the effect of setting the first principal component to -2 and +2
respectively. Similarly, the top and bottom meshes show the effect of setting the second
principal component to -2 and +2 respectively. It can be observed that the first principal
component is primarily influencing the height of the individual, while the second principal
component affects the girth of the individual.

and a β with all values set to 0 constitutes the shape of the average person. Figure 3.2

shows the effect of changing the coefficient of the first two principal components which

roughly correspond to an individual’s height and circumference at the waist.

Translation

The translation γ ∈ R3 refers to the displacement of the pelvis from the origin in me-

ters. If using world coordinates the translation represents the position of the individual

with respect to a predefined location, while in camera coordinates the translation is the
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position of the individual with respect to the camera.

3.1.2 Mesh Generation and Joint Estimation

The SMPL model maps the above parameters to a set of vertices V ∈ R6890×3 and we

denote the model as the function

fSMPL : {θ, β, γ} 7→ V . (3.1)

To compute the 3D spatial positions of joints J ∈ R24×3 we use a pretrained joint regressor

such that

J = WJV , (3.2)

where WJ ∈ R24×6890. Typically the spatial positions of a set of joints are computed using

forward kinematics. Regressing them directly from the mesh vertices however allows for

the use of a various collection of joints, making it much easier to use a multitude of

datasets where the 3D and 2D joint definitions are not identically defined.

3.2 Human Mesh Recovery

In lieu of directly regressing the vertices of a human mesh it is convenient to instead

regress SMPL parameters. With the SMPL model being fully differentiable, gradients

from the parameterized mesh can flow backwards to earlier weights during the optimiza-

tion step [20]. Furthermore by regressing the pose and shape first, adversarial losses and

priors can be applied on the pose space without the need for an intermediate step to

elicit the pose from methods that directly estimate mesh vertices.

The standard architecture used to estimate SMPL parameters from image data is the

HMR head, proposed in End-to-End Recovery of Human Shape and Pose [21]. The HMR
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head maps some latent image representation ϕ ∈ R2048 to the mesh pose θ, mesh shape

β, and local camera parameters π

fHMR : ϕ 7→ {θ, β, π}. (3.3)

Generally, the latent image features ϕ are extracted by cropping the region around

a person of interest and then passing the RGB data through 2D convolutional layers.

When regressing the pose, HMR opts to use axis-angle representation θ ∈ R72 where the

first 3 elements represent the global orientation of the pelvis, while the remaining 23× 3

elements represent joint rotations. Instead of directly regressing the mesh translation γ,

the HMR head estimates the local camera parameters π ∈ R3 = [s, x, y]⊤ which are

used in combination with the corresponding bounding box to estimate the translation.

The local camera parameters capture the scale s of the mesh relative to the size of the

bounding box and 2D x, y offset of the pelvis with respect to the bounding box center.

3.2.1 HMR Head Architecture

The HMR head leverages iterative error feedback [77] to progressively refine predictions.

The initial input to the HMR head consists of the image features ϕ ∈ R2048 and the

precomputed mean SMPL parameters Θ0 ∈ R85 = [θ̄⊤, β̄⊤, π̄⊤]⊤. The mean SMPL

parameters θ̄, β̄ are derived by averaging the respective parameters across the SMPL

pseudo-GT of the Human3.6M training set (computed by applying MoSh [78] to motion

capture marker data) while the initial local camera parameters π̄ are set to s = 0.9 and

x, y = 0.

The image features ϕ and mean SMPL parameters Θ0 are concatenated together to

form Ω0 ∈ R2133 = [ϕ⊤, Θ⊤
0 ]

⊤. The HMR head uses Ω0 to estimate a residual ∆Θ0 that

is added to Θ0 to produce Θ1. Then Ω1 = [ϕ⊤, Θ⊤
1 ]

⊤ is passed through the head again.

This process is repeated I times where Θi = Θi−1⊕∆Θi−1 with ⊕ denoting elementwise
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Figure 3.3: HMR Head Architecture. Overview of the HMR head. Given an input
ϕ, the HMR head iteratively estimates updates to the initial mean SMPL parameters
Θ0 before outputting the final prediction Θ̂. There are a total of I = 3 iterations, and
for each one, the image features are concatenated with the current SMPL estimate Θi

to produce [ϕ⊤, Θ⊤
i ]

⊤. This concatenated vector is passed through an MLP and then
to dedicated decoders to estimate updates for each of the SMPL parameters. The newly
updated SMPL parameters are then used to for the next iteration.

addition. The HMR head consists of a Multi-Layer Perceptron and dedicated decoders

for θ, β, and π as shown in Figure 3.3. The MLP uses two linear layers with weights

W0 ∈ R1024×2133, W1 ∈ R1024×1024 and the ReLU activation function σ to map the input

Ωi−1 to zi−1 ∈ R1024 where

zi−1 = σ(W1σ(W0Ωi−1)). (3.4)

The three dedicated decoders are linear layers with weights Wθ ∈ R72×1024, Wβ ∈

R10×1024, Wπ ∈ R3×1024 that take zi−1 and predict the corresponding residuals ∆θi−1,
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∆βi−1, ∆πi−1. These are then concatenated together to form ∆Θi−1. The final output

Θ̂I is computed by adding the residual ∆ΘI−1 to ΘI−1. At this point rotation matrices

for the pose θ are computed from the axis-angle representation using Rodrigues’ rotation

formula before being fed to the SMPL model.

3.2.2 Perspective Projection with Local Camera Parameters

To render the predicted mesh on an image, the 3D mesh must be projected onto a 2D

image plane. This can be done by using the local camera parameters π to perform a

weak perspective projection [21, 7, 12] or by using them to estimate the camera-coordinate

translation of the mesh and then perform a full perspective projection.

Full Perspective Projection

Jiang et al. [19] propose a method to predict the 3D translation γ ∈ R3 of the mesh in the

camera coordinate space given a bounding box, the predicted local camera parameters

π, and ground truth intrinsic camera parameters K, where

K =


Fx 0 W

2

0 Fy
H
2

0 0 1

 . (3.5)

With the estimated γ, we can project the mesh to the image plane with full perspective

projection as described in Appendix A. The advantage of a full perspective projection

over weak-perspective projection is that by necessity a good estimate of γ is required

to place the mesh correctly on the 2D image plane [79]. This means that the resulting

prediction of γ can reasonably be used for down-stream decision making for applications

such as human-robot interaction.

To predict the mesh translation γ = [γx, γy, γz]
⊤ it is first necessary to calculate the

depth of the mesh
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γz =
2F

sb
, (3.6)

with b = max(h,w) being the longest edge of a bounding box of height h and width w,

the scale parameter s is from π, and F is the focal length of the dimension corresponding

to b from K, i.e.,

F =


Fy, if h > w

Fx otherwise.
(3.7)

The x and y components γx, γy can then be computed using γz where

γx =
γz(xw + cx − W

2
)

F
, and

γy =
γz(yh+ cy − H

2
)

F
.

(3.8)

Here x, y from π are the bounding box offsets, W , H represent the width and height of

the full image, and cx, cy represent the center of the bounding box with respect to the

top left corner of the whole image.

3.2.3 Rotation Representations

The original HMR model [21] and its derivatives [12, 7] estimate the pose and calculate

rotation losses in axis-angle form but convert the pose to rotation matrices before passing

them to the SMPL model. Other methods have investigated rotation representations

more amenable to gradient based learning. HumanShape [27] and UP-3D [26] for example

stick to pose estimation using axis-angle, but convert them to rotation matrices when

calculating losses, GraphCMR [80] on the other hand estimates the pose by directly

regressing the 3 × 3 rotation matrix for each joint and calculates pose loss with this.
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Each of these shows that computing losses on the rotation matrix instead of axis-angle

leads to better performance.

Zhou et al. [81] empirically show that a 3D rotation matrix M ∈ SO(3) parame-

terized with 4 or less dimensions lead to discontinuous representations. In this context

discontinuity refers to a many-to-one mapping between a rotation representation (i.e.

axis-angle) and its corresponding matrix M . Axis-angle rotation defines a rotation of

angle r around some axis of rotation v = [x, y, z]⊤. When v is a unit vector ∥v∥2 = 1,

the axis-angle rotation can be represented as u = [rx, ry, rz, ]⊤ where r = ∥u∥2 and

v = u
r
. The primary issue with using axis-angle rotations is the discontinuity that occurs

at r = 0 and r = 2π. Specifically u = [0, 0, 0]⊤ and any u = [2πx, 2πy, 2πz]⊤ can

simultaneously be mapped to the identity rotation I(3).

To tackle this notion of discontinuity Zhou et al. [81] propose a continuous 6D rep-

resentation for rotation. Described further in Appendix B, this 6D representation

provides a smaller memory footprint with respect to the full 3× 3 rotation matrix while

also leading to faster convergence of models tasked with regressing rotation [28]. The idea

is that the 6D parameterization be used by the network to estimate rotations, then be

mapped back to the full rotation matrix when computing losses. Alternatively, estimat-

ing the rotation matrix directly can circumvent the need to use the 6D representation but

[81] quantitatively shows that this leads to higher error. Following this research, many

SMPL based mesh regression methods [14, 19, 8] have adopted the 6D representation

with great success.

3.2.4 Losses

The HMR model applies various losses to ensure smooth predictions. They can be bro-

ken down into the 3D losses, which influence the model to output predictions that are

consistent with the 3D ground truth, a 2D loss which helps guide the prediction of π to

ensure that the projection to the 2D image plane is satisfactory, and finally an adversarial



Chapter 3. Technical Preliminaries 21

loss that ensures that the output meshes are on the manifold of realistic human poses.

3D Losses

There are three different 3D losses that are applied to the HMR model. First there is

an MSE loss applied on the estimated joint rotations θ̂ (in axis-angle or as a rotation

matrix), another MSE loss on the estimated shape parameters β̂, and a final MSE loss

on the estimated 3D joints Ĵ extracted from the SMPL mesh with the joint regressor

(Equation 3.2). All together, the 3D loss is

L3D = λpose∥θ − θ̂∥22 + λshape∥β − β̂∥22 + λjoints∥J − Ĵ∥22. (3.9)

Here θ, β, and J are the target values and λpose, λshape, λjoints are hyperparameters that

denote the corresponding loss weights.

2D Loss

The 2D loss is applied to the projected joints, be it via full perspective or weak perspective

projection. Assuming fproj is the projection function of choice, L2D is

L2D = λ2D∥j − fproj( Ĵ )∥11, (3.10)

which is the MAE between the ground truth 2D keypoints j and the predicted 3D joints

Ĵ projected to the image plane.

Adversarial Loss

The final loss the HMR model applies is an adversarial loss, which constrains the mesh

to a realistic output space. Without an adversarial loss the model would generate a mesh

that minimizes the above defined losses, but with potentially invalid joint rotations [21].

The advantage of a parametric mesh model like SMPL is that a set of discriminators
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can be trained directly on its input space, meaning that datasets that provide SMPL

parameters can be sampled from to learn the distribution of valid joint rotations and

shape parameters.

Inspired by Adversarial Inverse Graphics Networks [82], the authors refer to the set

of discriminators as an adversarial prior; the discriminators consist of 23 total joint

discriminators that each consider the validity of a single joint (excluding the global ori-

entation/pelvis), a shape discriminator that evaluates the β parameters, and a full pose

discriminator that looks at the collection of joints as a whole. Each discriminator Di

from the set of 25 discriminators is trained using the least squares GAN loss [83]

min
Di

LDisc(Di) = EΘ∼pdata

[
(Di(Θ)− 1)2

]
+ EΘ∼pgen

[
(Di(G(ϕ))2

]
, (3.11)

where the first term encourages the discriminators to output a value of 1 if a sample is

from the data distribution and the second term encourages the discriminators to output

a value of 0 if the sample is generated by the HMR model given some image features ϕ.

The adversarial loss LAdv is applied to the HMR model itself and it quantifies how

well the generated samples match the data distribution with

LAdv = λAdv

25∑
i=1

EΘ∼pgen

[
(Di(G(ϕ))− 1)2

]
. (3.12)

This influences the HMR model to maximize the belief of each discriminator that the

generated sample is from the true data distribution. While training, both the adversarial

prior and the HMR model are trained jointly. The gradients from the discriminator loss

LDisc are used to update the parameters of the discriminators, while the gradients from

the adversarial loss LAdv update the parameters of the HMR model.
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3.3 Temporal Convolution Networks

Temporal convolution networks (TCNs) describe a broad approach to sequence modelling

using 1D convolution. First introduced by van den Oord et al. [16] for generative speech

synthesis and then further refined by Lea et al. to tackle action segmentation and detec-

tion [17], TCNs have been applied with success in the human mesh reconstruction space

to regress and smooth human meshes from RGB video [7] and to predict the dynamics

of mesh pose from RGB video [12].

3.3.1 1D Causal Convolutions

Given a sequence of input vectors [x1, · · · ,xT ]
⊤ ∈ RT×cin , a 1D causal convolution oper-

ation applies 1D convolution such that any output vector zt ∈ Rcout is conditioned solely

on information up to and including xt. With a filter W ∈ Rcout×k×cin and a bias vector

b ∈ Rcout the response at channel a of an output vector zt can be calculated as

zt,a =
k∑

i=1

cin∑
j=1

(
Wa ⊗

[
xt−(k−1), · · · , xt

]⊤)
i,j

+ ba (3.13)

where [xt−(k−1), · · · ,xt]
⊤ ∈ Rk×cin is a k length slice from the input sequence and ⊗ refers

to elementwise multiplication. By top padding the whole input sequence k−1 times with

the first element x1 before convolution, we can ensure that causality is enforced and the

output sequence [z1, · · · , zT ]
⊤ is of the same length T as the input sequence.

3.3.2 Temporal Convolution Network

Temporal convolution blocks are stacks of multiple 1D convolutional layers interleaved

with residual connections, normalization layers, and activation functions. Following the

architecture in [7], Figure 3.4a shows one possible realization of a temporal convolution

block. These temporal convolution blocks are in turn stacked multiple times to form a
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(a) Temporal Convo-
lution Block

(b) Temporal Convo-
lution Network

Figure 3.4: (a) A temporal convolution block; the inputs to all 1D conv layers are top
padded with k− 1 duplicates of the first element of the sequence. (b) A TCN consisting
of L blocks. The first r − 1 elements are dropped from the final output as they are not
conditioned on r elements.

Temporal Convolution Network (TCN), where L consecutive temporal convolution blocks

induce a total receptive field of

r = L(2k − 2) + 1. (3.14)

This results in every output zt aggregating the information of r total inputs; a temporal

convolution network can therefore be treated as the function

fTCN :

[
xt−(r−1), · · · , xt

]⊤
7→ zt, (3.15)

which summarizes a sequence of r vectors into a single output vector. To ensure that

each output zt of the temporal convolution network is fully conditioned on r inputs, the

first r− 1 outputs of the final temporal convolution block are dropped since any zt with
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t < r does not have access to data before the start of the sequence.

Finally, it is worth noting that while fTCN is defined as a mapping from a se-

quence of vectors to a single vector, the model can in fact compute the output sequence

[zr, · · · , zT ]
⊤ from the full input sequence in one forward pass as shown in Figure 3.4b.

This concurrency is due to convolution operations being embarrassingly parallel, resulting

in each 1D convolution layer being dependent only on the outputs of the preceding layers.

In other words, unlike recurrent neural networks there is no requirement to compute the

output element by element.

3.4 Transformers

Transformers are the most recent approach to modelling sequence information. First

developed to tackle language translation [65], they have since been applied to a wide

variety of tasks including image classification [32], object detection [46], and long-term

human motion prediction [9]. The key to the transformer architecture is in its use of

the attention mechanism. Similar to 1D causal convolution, the attention mechanism

provides a means to aggregate sequence information; they differ in the locality of the

information they can model. A single 1D convolution layer can only generate outputs

that are a function of k consecutive elements (its filter size). To increase the number

of elements that an output is conditioned on, you must either increase the filter size,

or stack multiple 1D convolution layers. The attention mechanism on the other hand

can simultaneously contextualize an entire sequence at once and effectively model the

dependencies between the elements of a sequence.

3.4.1 Scaled Dot-Product Attention

Illustrated in Figure 3.5, scaled dot-product attention projects the input sequence X ∈

RT×cin = [x1, · · · ,xT ]
⊤ to three different representation spaces referred to as the query
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Figure 3.5: Scaled Dot-Product Attention. A visual representation of how the at-
tention mechanism uses the Q, K, and V matrices to construct the output sequence
Z. With ⊙ referring to matrix multiplication and ⊕ referring to elementwise addition,
the result of softmax(QK⊤ ⊕ M ) is the masked attention matrix α. These attention
weights can then be used to linearly combine the vectors in V where αt,j prescribes the
contribution of vj when computing zt.

Q ∈ RT×dk , key K ∈ RT×dk , and value V ∈ RT×dv matrices. These matrices are linear

projections of X with

Q = XWQ, K = XWK , V = XWV . (3.16)

Here, the learned weights are WQ ∈ Rcin×dk , WK ∈ Rcin×dk , and WV ∈ Rcin×dv .

Loosely speaking a query vector qt from Q represents an element of interest t for

which we want to generate an output zt, a key vector kj from K represents the “meta"

data used to evaluate how well j responds to the query, and a value vector vj from V
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represents the information from j that is most relevant to constructing zt. The essence

of attention lies in the attention matrix α ∈ RT×T which encodes pairwise relationships

between some qt, kj and is computed in parallel for all pairs of q and k with

A =
QK⊤
√
dk

,

α = softmax (A⊕M ) ,

(3.17)

where M refers to an optional masking matrix and softmax is applied to each row of the

matrix. Ultimately, row t, column j of α captures how well the key kj matches a query

qt. In certain cases it is necessary to prevent a query from attending to all available keys

(e.g temporal data) and is accomplished with the masking matrix M ; to ensure causality

for example, any Mt,j where j > t is set to −∞. When the masking matrix M is added

to A and followed by a softmax, any element in A⊕M equal to −∞ will become 0 in

α, as shown in Figure 3.6.

The final contextualized output is constructed by taking the matrix product of α and

V and using WO ∈ Rdv×cout to project the result to the output representation space

Z ∈ RT×cout = [z1, · · · , zT ]
⊤ with

Z = αV WO. (3.18)

3.4.2 The Transformer Model

Encoder-Decoder Transformers

The original transformer model [65] is proposed with an encoder-decoder architecture.

As shown in Figure 3.7 the encoder maps the input sequence to a latent representation



Chapter 3. Technical Preliminaries 28

Figure 3.6: Causally Masked Attention Weights. Representation of attention
weights α after replacing every At,j where j > t with −∞. After row-wise applica-
tion of the softmax function every −∞ in A reduces to 0 in α meaning that element vj

has no contribution in the final computation of zt.

using self-attention while the decoder maps the latent representation and decoder inputs

to the next output element with cross-attention. Cross-attention is simply an extension of

the self-attention mechanism where the query, key, and value matrices are generated from

two different representation spaces instead of the same one. In the case of cross-attention

in the decoder, the K and V matrices are generated using the latent representation from

the encoder and the Q matrix is generated from the input to the decoder block after

passing through a masked self-attention layer.

To efficiently train transformer models, teacher forcing is required. With teacher

forcing, while a model is being trained the model has access to the entire input sequence,

including the elements it is trying to predict. In this case, the transformer receives the

target sequence right-shifted as input to the decoder block. Since the model already has

access to any xj with j > t within the decoder’s input, future elements must be masked

when computing x̂t.

Decoder Only Transformers

Liu et al. [84] introduce the idea of decoder only transformer networks where the encoder

and the cross attention layer in the decoder are removed, resulting in there being no

distinction between input elements and output elements within the model itself. These

models are referred to as decoder only is because the masking process on the self-attention
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Figure 3.7: The Transformer Architecture. The transformer is composed of N stacks
of encoder blocks and N stacks of decoders blocks. The output of the final encoder block
is used to generate the keys K and values V for the cross attention layer of every decoder
block. The queries Q are computed from the input of the decoder block. While training,
the input to the first decoder block is the ground truth target sequence, shifted right
where ∅ is a padding element. During inference, the output of the decoder is fed back as
its own input and predictions are made autoregressively.

layer of the original transformer decoder is preserved.

Generative Pre-trained Transformers (GPTs) are a collection of large language models

[85, 86, 18] developed by OpenAI that also leverage the decoder only framework proposed

by Liu et al. GPT models can generate long and coherent documents, perform translation,

and answer questions [18] given some initial context. What’s most interesting is all of

these tasks are done using the token prediction paradigm where the model is given an

input sequence and simply predicts the subsequent word representations autoregressively.

Where the GPT models differ from Liu et al. is that instead of predicting the next
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Figure 3.8: GPT Architecture. The GPT model drops the transformer encoder and the
cross attention layer, instead using just the decoder block. Like the original transformer,
GPT is trained using teacher forcing, meaning it receives the entire sequence as input
with future elements being masked out in the attention layer. During inference, the GPT
model also performs prediction autoregressively with the output being used as input for
subsequent steps.

token for every single element in the input, the first element in the output sequence resides

after the last element of the input. That is, given some ground truth sequence X =

[x1, · · · ,xT+H ]
⊤ the input is [x1, · · · ,xT ]

⊤ and the output is [x̂T+1, · · · , x̂T+H ]
⊤. The

authors formulate GPT as an auto-regressive network that models the joint probability

of a sequence as a product of the conditional probabilities of the past, denoted as

p(X) =
T+H∏
t=T+1

p(xt|x1, · · · ,xt−1). (3.19)
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Positional Encoding

While masking future elements ensures that information does not travel backwards with

respect to time, the attention mechanism is inherently permutation invariant [65] and

has no information regarding the ordering of unmasked elements in the sequence. To

alleviate this, the authors of the original paper suggest adding a positional encoding to

embed order into the each element of the sequence. Some possible options for positional

encoding include a sinusoidal positional encoding, a learned positional encoding, and a

relative positional encoding [87].

Given an input sequence X the positional encoding pt for element xt when using

sinusoidal embeddings is computed as

pt,2i = sin

(
t

100002i/cin

)
,

pt,2i+1 = cos

(
t

100002i/cin

) (3.20)

where i ∈ {0, · · · , 1
2
cin} and pt,j represents the value at element t, column j of P ∈ RT×cin .

The input to the transformer model then becomes

X ′ = X ⊕ P , (3.21)

where ⊕ is elementwise addition. Alternatively, instead of adding the positional encoding,

some transformer based models [66] suggest passing X through an MLP where P is

concatenated to an intermediate representation then projected again, as described by

X ′ = σ ([σ(XW1), P ]W2) . (3.22)

Here σ refers to the ReLU activation function, and the MLP consists of weights W1 ∈

Rcin×cin and W2 ∈ R2cin×cin .
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Methodology

This work investigates the viability of using autoregressive models to generate plausible

human motion in the short-term future given some initial video footage. Pointedly, we

are interested in evaluating whether contextualizing the interactions between individuals

can lead to better results relative to models that condition on people individually. In this

section we first formalize the problem we are considering, illustrate a baseline model that

can be applied to it, and then introduce our Joint-Aware Transformer and Multi-Person

Joint-Aware Transformer.

4.1 Problem Setup

Given an input video and a set of bounding box tracks, the aim is to autoregressively

generate the future mesh of each person in the observed frames up to some predefined time

horizon. Concretely, the input consists of an RGB video F ∈ RT×H×W×3 with T = 25

frames and bounding boxes B ∈ RT×N×4 where N denotes the number of individuals in

the video with valid bounding box tracks. The goal is then to model the function

{F ,B} 7→ {Θn
T+1, · · · ,Θn

T+H}Nn=1, (4.1)

32
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with H denoting the horizon for generation and Θn
t = {θn

t , βn
t , γn

t } representing the

SMPL parameters (Section 3.1.1) for each person n in frame t.

4.2 Predicting Human Dynamics and Translation

The model proposed in Predicting 3D Human Dynamics from Video [12] serves as the

foundation of our work and thus an extension of it is one of our baselines. The original

PHD model does not predict the translation parameter γ of future meshes; the focus is

on modelling only the future pose and shape of an individual. Nor does it contextualize

information between multiple individuals in the same video, instead predicting the future

dynamics of each individual separately.

The objective of our work is to develop a model for future shape, pose, and location

of multiple people conditioned on past frames. As shown in Figure 1.1 we extend the

PHD model so that it predicts the future mesh translation, but maintain the isolation

between each person. We refer to this as the PHD+T model. Additionally, the original

PHD model uses a weak-perspective camera model similar to HMR [21]; since we wish

to model the human meshes with realistic distances we opt to use the full-perspective

camera model. Finally, we use the 6D rotation representation described in Appendix

B as it has shown to improve performance.

4.2.1 Model Architecture

The overall architecture of our PHD+T model can be seen in Figure 4.1. Given an

input video F = {I1, · · · , IT}, for each frame t and individual n we first crop out the

regions contained by the bounding boxes Bn
t and resize them to images of size 224×224.

We then pass each crop through a pretrained backbone for feature extraction and the

final output feature map is average pooled along the spatial dimensions to produce the

per-bbox image features vector ϕn
t ∈ R2048.
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Figure 4.1: Predicting Human Dynamics and Translation Architecture. This
figure depicts a single forward pass of the PHD+T baseline where both fmovie and fAR

have a receptive field of r = 13; as the model operates on individuals independently, we
drop the person index n for compactness. The first TCN fmovie aggregates the informa-
tion from the image features ϕ into a set of vectors Φ̂ where each vector summarizes
information from the 12 preceding frames and the corresponding frame itself. These are
concatenated with the encoded joint information Γ̂ and then passed to fAR to produce
Φ̃T+1 and Γ̃T+1 which are used to estimate the future SMPL parameters. Generating
multiple time steps into the future is done autoregressively where the output of fAR is
fed back to itself as input.
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To build a richer latent representation space for modelling dynamics, the image fea-

tures ϕn
t for each individual are aggregated using a temporal convolution network fmovie.

Consisting of three temporal convolution blocks with each 1D convolution layer having

a kernel size of k = 3, fmovie has a total receptive field of r = 13. The goal of fmovie is to

summarize the information from a contiguous set of r frames into a single latent vector

Φ̂n
t ∈ R2048; fmovie therefore models the function

fmovie :

[
ϕn

t−(r−1), · · · , ϕn
t

]⊤
7→ Φ̂n

t . (4.2)

These temporally aggregated features Φ̂n
t can then be used to estimate the SMPL pa-

rameters of individual n in frame t with

fHMR : Φ̂n
t 7→ Θ̂n

t , (4.3)

where fHMR follows the HMR head architecture described in Section 3.2.1. To compute

the translation component γ̂n
t of Θ̂n

t we leverage the estimated local camera π̂n
t and input

bounding box Bn
t to use the method proposed by Jiang et al. [19] as described in Section

3.2.2.

The crux of the original PHD model is that once fmovie and fHMR can estimate

accurate SMPL parameters, the temporally aggregated features Φ̂n
t become a promising

representation to use as a basis for prediction of future human meshes. By training an

additional TCN fAR to estimate Φ̃n
t+1, fHMR can extract the future pose θ̃n

t+1 and shape

β̃n
t+1. Formulating fAR as a TCN with the same architecture as fmovie, we can train it to

model

fAR :

[
Φ̂n

t−(r−1), · · · , Φ̂n
t

]⊤
7→ Φ̃n

t+1. (4.4)

The above approach works if only the future pose and shape are of interest. Estimating

the translation γ̂n
t requires both the estimated local camera parameters π̂n

t and the
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corresponding bounding box Bn
t . Any future γ̃n

j where j > T cannot be directly extracted

from Φ̃n
j because we do not have access to future bounding box information. We build on

the original PHD model by leveraging the 3D joint information Ĵn
t ∈ R24×3 that can be

extracted from the estimated SMPL mesh vertices V̂ n
t through Equation 3.2 to predict

future translation. First we create a joint encoder

fJE : Ĵn
t 7→ Γ̂n

t , (4.5)

which maps the joints Ĵn
t to a latent representation Γ̂n

t ∈ R128. Then fAR is modified to

model future Φ̃n
t+1 and Γ̃n

t+1 concatenated together; i.e.,

fAR :

 Φ̂n
t−(r−1)

Γ̂n
t−(r−1)

, · · · ,
Φ̂n

t

Γ̂n
t


⊤

7→

 Φ̃n
t+1

Γ̃n
t+1

 . (4.6)

To predict the translation itself, we use a translation head ftransl which maps

ftransl : Γ̃
n
t+1 7→ ∆γ̃n

t+1, (4.7)

where ∆γ̃n
t+1 is used to estimate γ̃n

t+1 with

γ̃n
t+1 = γ̃n

t +∆γ̃n
t+1. (4.8)

This formulation then allows us to predict all necessary SMPL parameters to generate

future meshes.

To generate meshes further than one frame into the future, the model is run autore-

gressively. To estimate the parameters for Θ̃n
T+2 for example, we first extract the joint

embedding for Γ̃n
T+1 from the SMPL parameters for the previous time step Θ̃n

T+1. The

input to fAR then consists of the joint embedding sequence [Γ̂n
T−(r−1)+1, · · · , Γ̃n

T+1]
⊤ and

the temporal sequence [Φ̂n
T−(r−1)+1, · · · , Φ̃n

T+1]
⊤. The output of fAR is the prediction of

the next Φ̃n
T+2 and Γ̃n

T+2 which are used as described previously to estimate the corre-
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sponding SMPL parameters Θ̃n
T+2. Therefore fAR is used a total of i times to generate

mesh parameters T + i steps into the future where each forward pass is increasingly

conditioned on the previous outputs of fAR itself.

4.2.2 Training and Model Losses

Training our proposed PHD+T baseline follows a two-step training procedure similar to

the original PHD model [12]. First fmovie and fHMR are trained together to estimate the

SMPL parameters of input frames. We feed fmovie all bounding boxes for every frame

from I1 to IT+H and get Φ̂n
r to Φ̂n

T+H . The output head, fHMR then estimates the meshes

for every individual in frame Ir to frame IT+H using the estimated temporal features.

Once the results converge, we freeze the weights of fmovie & fHMR and subsequently train

fAR to predict the future meshes in frames IT+1 to IT+H using the temporal features from

frames Ir to IT .

Following the original PHD model [12] this model leverages the losses used by the

HMR model [21], as well as losses more suited to optimizing over temporal data. As we

consider each individual in the scene independently, we drop the person index n when

describing the losses. The total loss applied to the meshes that are computed using fmovie

is

Lmovie =
T+H∑
t=r

[
Lt +

∑
∆t

Lt+∆t

]
+ λconst

T+(H−1)∑
t=r

∥β̂t − β̂t+1∥22. (4.9)

Here Lt corresponds to

Lt = L3D + L2D + LAdv + Lreg, (4.10)

which consists of the losses described in Section 3.2.4 with the addition of a shape

regularizer Lreg. Since the shape parameter of the SMPL model is zero mean by design,

the shape regularizer helps to ensure that values don’t stray too far from the shape of



Chapter 4. Methodology 38

the average person with

Lreg = λreg∥β̂t∥22. (4.11)

The
∑

∆t Lt+∆t term in Equation 4.9 encourages the model to embed temporal infor-

mation by using Φ̂n
t to estimate the mesh parameters ∆t frames into the past where

∆t ∈ {−5,−10}. This is accomplished with additional HMR heads (referred to as the

delta predictors) that are tasked with estimating mesh parameters specific to a corre-

sponding offset from frame t; a given Φ̂n
t must therefore embed relevant information to

reconstruct the mesh in frame t itself along with frames t−5 and t−10 where the loss for

estimated meshes from all three frames are computed using Equation 4.10. The final

term in Equation 4.9 is the shape consistency loss that ensures the predicted shape

parameters β̂ are similar across frames by directly penalizing the model for the distance

between two consecutive shape predictions.

To train fAR, we use

LAR =
T+H∑
t=T+1

[
Lt + λtemp∥Φ̃t − Φ̂t∥22+λtransl∥γ̃t − γ̂t∥22

]

+λconst

T+(H−1)∑
t=T+1

∥β̃t − β̃t+1∥22,

(4.12)

which is similar to the original fAR loss proposed by the PHD model with the primary

difference being the introduction of the ∥γ̃t − γ̂t∥22 term. Here, Lt will guide the meshes

estimated through fAR towards the groundtruth SMPL parameters, ∥Φ̃t − Φ̂t∥22 encour-

ages fAR to predict a temporal representation similar to fmovie, ∥γ̃t− γ̂t∥22 exists to guide

the model’s estimates of γ̃n
t , and the last term is the same shape consistency loss from

Lmovie.
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4.3 Joint-Aware Transformer

Our next model is an autoregressive transformer that makes use of the GPT-3 [18] ar-

chitecture for both fmovie and fAR. While this model also operates on each individual

independently, it contrasts with PHD+T by leveraging additional 3D information made

available by fmovie to inform our future predictions in the form of a Joint-Aware Bias.

This proposed modification to our transformer’s self-attention layer serves as an induc-

tive bias by injecting egocentric information into the attention weights used to calculate

the outputs.

4.3.1 Model Architecture

The architecture for JAT can be seen in Figure 4.2. It has analogous fmovie and fAR

layers that are responsible for conditioning on input frames and predicting future meshes

respectively. One of the key limitations of PHD+T is the receptive field size of r = 13

for fAR. A Temporal Convolution Network based fmovie must embed the image features

[ϕn
1 , · · · ,ϕn

25]
⊤ ∈ RT×2048 into the temporal representations [Φ̂n

13, · · · , Φ̂n
25]

⊤ ∈ Rr×2048 to

ensure information from all frames can be communicated to fAR. In a TCN the receptive

field is a function of the number of 1D convolution layers and their corresponding kernel

sizes, with transformers however the receptive field is based on predefined hyperparam-

eters that limit how far back the attention mechanism can peer and is not inherently

determined by architecture. We take advantage of this by training our transformer based

fAR so that it can attend to every frame in the input sequence to inform its predictions

of future meshes.

The general process is the same as PHD+T where the image features ϕn
t are computed

by extracting bounding box tracks for each individual in the input sequence then passing

the crops through a pretrained backbone and an average pooling layer. These image

features ϕn
t ∈ R2048 are concatenated with normalized bounding box features Bn

t ∈ R4
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Figure 4.2: The Joint-Aware Transformer Architecture. Instead of using TCN
layers, JAT uses GPT-style layers, allowing us to make use of our dynamic Joint-Aware
Bias to embed the relationships between the joints and poses of different frames directly
into the attention weights of fAR. The model first passes the image features ϕ and
bounding boxes B of the input frames to fmovie which contextualizes information from
all frames into the temporal features Φ̂. We can then use fHMR to estimate the mesh
Θ̂ from which we extract the joints Ĵ and poses θ̂. The joint encoder produces the
latent joint features Γ̂ which is concatenated with the temporal features Φ̂ and passed
to fAR. Simultaneously, the canonicalized joints and poses are also passed to fAR so that
the Joint-Aware Bias encoder can estimate the bias that will be applied to the attention
weights of the AR head. Finally, the output of AR head can be used to predict the future
Θ̃ where fAR is applied autoregressively to predict meshes more than one frame into the
future.
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to form our input sequence Xn ∈ Rt×2052 where

Xn =

 ϕn
1

Bn
1

, · · · ,
ϕn

t

Bn
t


⊤

. (4.13)

This sequence of vectors is passed to fmovie which learns the causal mapping

fmovie : X
n 7→ Φ̂n

t , (4.14)

with fmovie parameterized as a GPT layer and Φ̂n
t ∈ R512 being the temporal representa-

tion used downstream by fHMR to estimate the SMPL parameters Θ̂n
t . To simultaneously

decrease the dimensionality and embed the positional encoding, the input to fmovie is first

passed through an input encoder which computes the sequence En ∈ Rt×512 with

En = σ ([σ(XnW1), P ]W2) . (4.15)

The encoder consists of weights W1 ∈ R2052×512 and W2 ∈ R1024×512, P ∈ Rt×512 is

the positional embedding calculated using Equation 3.20, and σ refers to the Gaussian

Error Linear Unit (GELU) activation function [88]. The encoded sequence is passed to

the transformer, which consists of a single GPT-layer (Figure 3.8) with one attention

head, and yields a causal representation Φ̂n
t for every frame t conditioned on all En

j

with j ≤ t. Since we compute the temporal representation Φ̂n
t for all frames in a single

forward pass of fmovie, we ensure causality by applying a mask M ∈ Rt×t to the attention

mechanism of fmovie as shown in Figure 3.5. To predict future SMPL parameters Θ̃n
t+1

we use a GPT layer again, this time however we augment it with a dynamic bias which

we describe next.
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4.3.2 Predicting the Future with a Joint-Aware Bias

When predicting future SMPL parameters Θ̃n
t+1, it is essential to consider the relation-

ships between different parts of the body across time. For example, the position of

one joint in earlier frames will influence the position of neighboring joints in subsequent

frames. While the attention mechanism in a transformer does this innately, it lacks an

inductive bias that could aid with modelling information in 3D space. To this end we

augment the attention mechanism of fAR with our proposed Joint-Aware Bias.

We draw inspiration from the approach proposed in [89] by using canonicalized joint

and pose features to estimate a bias term used to compute the attention map α. Canoni-

calization in this context refers to transforming the joints and poses to a similar reference

frame; in our case we adopt an egocentric reference frame where the global pose and lo-

cation of the individual in the latest frame (the query) forms the root of the reference

frame, a natural extension to works in the 2D trajectory prediction space that leverage

varying degrees of egocentric representations [66, 90, 64].

The primary input to the fAR layer of the JAT model is

X̂n =

 Φ̂n
w

Γ̂n
w

, · · · ,
Φ̂n

t

Γ̂n
t


⊤

, (4.16)

with X̂n ∈ R(t−w+1)×640. Here t refers to the query frame and w is the first index of the

input, computed using the predetermined receptive field r = 46 of fAR where

w =


1 if t ≤ r,

t− r + 1 otherwise.
(4.17)

The matrix X̂n is principally the same as the input to the fAR of the PHD+T model;

the latent joint representation Γ̂n
t ∈ R128 is computed with the use of a joint encoder as

described in Equation 4.5, and the main difference is that the transformer based model
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uses a smaller temporal representation space where Φ̂n
t ∈ R512. We additionally pass

to fAR a sequence of estimated joints Ĵn ∈ R(t−w+1)×24×3 with Ĵn =
{
Ĵn
w, · · · , Ĵn

t

}
and estimated poses θ̂n ∈ R(t−w+1)×24×3×3 where θ̂n =

{
θ̂n
w, · · · , θ̂n

t

}
. Ultimately, fAR

models the function

fAR :

{
X̂n, Ĵn, θ̂n

}
7→

 Φ̃n
t+1

Γ̃n
t+1

 . (4.18)

The matrix X̂n is the main input for the transformer of fAR and thus its downstream

representation is used to compute the query, key, and value matrices within the attention

mechanism. To this end we first use an input encoder to produce our positionally encoded

inputs Ên ∈ R(t−w+1)×640 with

Ên = σ
([

σ(X̂nW1), P
]
W2

)
. (4.19)

Here the encoder consists of weights W1 ∈ R640×640, W2 ∈ R1280×640, the GELU activation

function σ, and the positional encoding matrix itself P ∈ R(t−w+1)×640. After the input

encoder produces Ên, it undergoes layer normalization and is passed to the attention

mechanism of fAR.

As the goal is to predict the future temporal representation Φ̃n
t+1 and future latent

joint representation Γ̃n
t+1, our query matrix Q is computed using only the information

pertaining to the most recent time step t. That is, given Ên
t ∈ R1×640 and WQ ∈ R640×640,

we calculate Q ∈ R1×640 with

Q = Ên
t WQ. (4.20)

The keys K ∈ R(t−w+1)×640 and values V ∈ R(t−w+1)×640 on the other hand are computed

using all available elements in Ên. The attention matrix α is then computed with
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Figure 4.3: Self Attention with the Joint-Aware Bias. This figure depicts our
proposed modification to the self-attention layer of fAR. The query matrix Q is formed
using only frame t, the most recent time step (in this case T ), while the keys K and
values V are formed from the (t − w + 1) most recent time steps. To compute the
Joint-Aware Bias, we canonicalize the joints and poses of every step j with respect to
the joints and poses of step t. The Joint-Aware Bias encoder, fJAB, independently maps
the canonicalized joints (Ĵn

t→j) and canonicalized pose (θ̂n
t→j) of each frame j to cj, a

scalar. The sequence of all cj forms C ∈ R(t−w+1), which acts as a bias on the attention
weights. The pre-softmax attention matrix is computed by taking the dot-product (⊙) of
qt and every kj to which the bias cj is added and the result is passed through a softmax

function to compute the attention weights α ∈ R1×(t−w+1). Finally the output matrix Z
is computed in the same manner as traditional attention.

A =
QK⊤ ⊕C⊤

√
dk

and

α = softmax (A) ,

(4.21)

where A ∈ R1×(t−w+1) is the pre-softmax attention weights, C ∈ R(t−w+1) is our Joint-

Aware Bias, and ⊕ represents elementwise addition. We illustrate this process in Figure

4.3.
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(a) Meshes from camera perspective (b) Canonicalized meshes

Figure 4.4: (a) The meshes Θ̂n
t and Θ̂n

t projected to the image plane with Ĥn
t and Ĥn

j

representing the corresponding transformation matrices that place them in the camera
coordinate system. (b) A top-down view of the same meshes in the coordinate system
defined by (Ĥn

t )
−1, resulting in the pelvis of Θ̂n

t being located at the origin and Θ̂n
j being

placed relative to it.

The Joint-Aware Bias, C, is computed using the sequence of joints Ĵn and poses θ̂n

passed to fAR. Given j such that w ≤ j ≤ t, we canonicalize the joints to produce

Ĵn
t→j ∈ R24×3. This represents the joints of person n at frame j relative to the pelvis

of person n at frame t. Similarly, the canonicalized pose θ̂n
t→j ∈ R24×3×3 represents the

relative rotation of the joints of person n in frame j with respect to the corresponding

joints of person n in frame t. We use the Joint-Aware Bias encoder, fJAB, to map the

canonicalized joints and pose for frame j to the corresponding bias value with

fJAB :
{
Ĵn
t→j, θ̂n

t→j

}
7→ Cj. (4.22)

Joint Canonicalization

In Figure 4.4 we show the effect of canonicalizing the meshes Θ̂n
j and Θ̂n

t with respect

to the mesh from time t. While the Joint-Aware Bias uses canonicalized joints, we show
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canonicalized meshes to make the result of the transformation more evident.

To compute the canonicalized joints Ĵn
t→j we first determine the SE(3) transforma-

tion matrix Ĥn
t ∈ R4×4 using the global orientation of the pelvis joint in θ̂n

t and the

global translation γ̂n
t . This matrix captures the Euclidean transformation that places

the mesh Θ̂n
t in the camera coordinate system. The inverse of this matrix will undo the

transformation and result in a mesh with the same pose θ̂n
t and shape β̂n

t but with the

pelvis located at the origin and aligned with the z-axis. We can then use the inverse

transformation matrix
(
Ĥn

t

)−1

to find the relative joints Ĵn
t→j with

[
Ĵn
t→j 1

]⊤
=
(
Ĥn

t

)−1 [
Ĵn
j 1
]⊤

, (4.23)

where
[
Ĵn
j 1
]⊤

∈ R4×24 is the joints for frame j converted to homogeneous coordinates

then transposed. To extract Ĵn
t→j ∈ R24×3 from the final product, we simply transpose

the output matrix and drop the last column.

Pose Canonicalization

In addition to the canonicalized joints described above, we also compute the canonicalized

pose θ̂n
t→j to capture the relative rotation between each joint in the query pose θ̂n

t and

key pose θ̂n
j , as shown in Figure 4.5. Letting Rn

t and Rn
j represent the 3 × 3 rotation

matrix of the same arbitrary joint for person n in frame t and frame j, we wish to find

Rn
t→j such that

Rn
j = Rn

t→jR
n
t , (4.24)

where Rn
t→j captures the rotation that needs to be applied to Rn

t to get Rn
j . Considering

that we have access to Rn
t and Rn

j , we can simply rearrange Equation 4.24 for Rn
t→j,

giving us
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Query PoseKey Pose

Query Relative
Key Pose

Template Pose 

Figure 4.5: Pose Canonicalization. When dealing with pose, a rotation matrix pa-
rameterizes the rotation of some arbitrary joint with respect to a template pose. Here
we show the template pose at the top, the key pose Rj on the left and the query pose Rt

on the right representing two different rotations of the right shoulder joint. If we wish to
canonicalize the key pose with respect to the query pose we need to compute Rt→j, which
is simply the matrix product of the key pose and the inverse query pose. We can then
use Rt as our new template pose meaning that we can compute Rj as Rj = Rt→jRt.

Rn
t→j = Rn

j (R
n
t )

−1 . (4.25)

This relative rotation is computed for all 24 joints in θ̂n
j , resulting in θ̂n

t→j ∈ R24×3×3.

Joint-Aware Bias Encoder

Once we have computed the relative joints Ĵn
t→j and the relative pose θ̂n

t→j for the entire

input sequence, we flatten and concatenate the relative joints and poses for corresponding

frames together to form Λ ∈ R(t−w+1)×288 where
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Λ =

 flat(Ĵn
t→w)

flat(θ̂n
t→w)

, · · · ,
f lat(Ĵn

t→t)

flat(θ̂n
t→t)


⊤

. (4.26)

This is the input to our Joint-Aware Bias encoder, which is parameterized as an MLP.

The Joint Aware Bias for every j such that w ≤ j ≤ t is then computed at once with

C = σ (ΛW1)W2, (4.27)

which consists of weights W1 ∈ R288×576, W2 ∈ R576×1, and σ represents the GELU

activation function. Notably, the activation is applied only after the first linear layer,

this is to ensure that the final output bias can positively or negatively influence the final

attention weights. Once this bias is computed, we use C ∈ R(t−w+1) as described in

Equation 4.21.

Autoregressive Prediction

Similar to PHD+T, predicting meshes more than a single frame into the future requires

the model to run autoregressively. As described in Equation 4.17 and Equation 4.18,

fAR will use data from step w to t to predict the mesh parameters for the next time step;

t refers to the most recent time step and w is computed based on the size of the receptive

field. For the first iteration fAR uses information gleaned from frames 1 to T = 25 to

estimate the future temporal representation Φ̃n
T+1 and latent joint representation Γ̃n

T+1;

we use these to generate the future SMPL parameters Θ̃n
T+1 from which we extract

the joints J̃n
T+1, poses θ̃n

T+1, and a new latent joint representation Γ̃n
T+1. These newly

extracted features are combined with the existing input for the next iteration of fAR

(where t now represents T + 1) to predict features for T + 2.
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4.3.3 Training and Model Losses

Training this model follows the same two-step training procedure used by the original

PHD model and our own PHD+T model. The first stage consists of training fmovie and

fHMR to produce accurate and consistent meshes based on observed frames. As this

model also operates on each individual separately, we drop the person index n when

describing the loss. The objective used to train both fmovie and fHMR is

Lmovie =
T+H∑
t=1

Lt + λconst

T+(H−1)∑
t=1

∥β̂t − β̂t+1∥22, (4.28)

which is effectively the loss used to train fmovie in PHD+T (Equation 4.9) without the

delta predictors term. After the performance of fmovie and fHMR has converged, fAR is

trained using the exact same loss that was used to train the corresponding prediction

head in PHD+T, namely Equation 4.12.

One key distinction in training fAR that contrasts with traditional transformer based

autoregressive models [65, 18] is that we eschew the use of teacher forcing [51]. Teacher

forcing largely exists to allow for efficient training of large sequence models in a paral-

lel fashion; it works by using ground-truth data as the input for all time steps of the

sequence model while training. In contrast, when a trained model is used for inference,

output predictions from the model are fed back as input to generate the next prediction

autoregressively. This disconnect between training and inference is referred to as expo-

sure bias [91] and it leads to errors accumulating in longer term predictions as the model

has only seen relatively ideal data while training, as opposed to its own outputs that are

likely much noisier [50]. Since fAR is a fairly small transformer model with a single layer

and one attention head, we decided to train it autoregressively in the hopes of mitigating

the issue of error accumulation.
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4.4 Multi-Person Joint-Aware Transformer

Our final model, the Multi-Person Joint-Aware Transformer (MPJAT), is an extension

of the previous Joint-Aware Transformer (JAT); we build on it by designing it to model

multiple people simultaneously and augmenting it with an additional loss that penal-

izes interpenetration of mesh vertices between different individuals. Inspired by the

AgentFormer architecture [66], we modify the attention mechanism to contextualize the

interactions of all individuals in a scene; we refer to this modified GPT layer as Agent-

GPT. Since the goal of our work is to predict the future states of individuals in a video,

leveraging the information available in the interactions between people is the intuitive

next step to try and improve prediction performance.

4.4.1 Model Architecture

The fundamental difference in the architecture of the MPJAT and the JAT is that we

swap out the attention mechanism in both fmovie and fAR with the Agent-Aware attention

mechanism proposed by Yuan et al. As shown in Figure 4.6, this allows us to feed the

cropped image features ϕn
t and the bounding box information Bn

t of all N individuals to

fmovie at once. We denote this conglomerate input to fmovie as X ∈ RNt×2052 such that

X =


X1

· · ·

XN

 , (4.29)

with Xn defined as specified in Equation 4.13. Thus fmovie is a causal model that

learns the function

fmovie : X 7→
[
Φ̂1

t , · · · , Φ̂N
t

]⊤
, (4.30)

where
[
Φ̂1

t , · · · , Φ̂N
t

]⊤
∈ RN×512 and Φ̂n

t again denotes the temporal representation for
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Figure 4.6: The Multi-Person Joint-Aware Transformer Architecture. MPJAT
leverages Agent-Aware attention to simultaneously condition on and predict multiple
people. In the same vein as our previous models there is a dedicated layer for building a
temporal representation based on input frames, and a dedicated layer for prediction.

person n at frame t.

The inputs to fmovie are first positionally encoded and compressed in the same manner

as they were in JAT; each individual n has the positional encoding applied to their

corresponding input features independently as described by Equation 4.15. Since we

use the positional encoding as a means to embed timestamps into the features, we apply

them separately for each person to ensure that corresponding frames across different

individuals are correlated. The encoded features for all N individuals are subsequently

stacked in the same manner as X, resulting in E ∈ RNt×512. These encoded features

are passed to an AgentGPT layer to compute the temporal representations. Once the

temporal representation Φ̂n
t for every person and frame is estimated by fmovie, we use
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fHMR to estimate the SMPL parameters Θ̂n
t and the joint encoder fJE to compute the

latent joint representation Γ̂n
t .

The AR head, fAR, is also parameterized with an AgentGPT layer. In the same vein

as the JAT, the primary input to fAR for the MPJAT is the stacked sequences of con-

catenated temporal features Φ̂n and latent joint representations Γ̂n of every individual.

We denote this input as X̂ ∈ RN(t−w+1)×640 where

X̂ =


X̂1

· · ·

X̂N

 , (4.31)

and X̂n is structured as shown in Equation 4.16. Additionally, fAR takes as input

the 3D joint positions Ĵ ∈ RN(t−w+1)×24×3 and rotations θ̂ ∈ RN(t−w+1)×24×3×3 of all

individuals combined in the same manner as X̂. Given these inputs, fAR models the

future temporal representation Φ̃n
t+1 and latent joint representation Γ̃n

t+1 for every person

as

fAR :

{
X̂ , Ĵ , θ̂

}
7→

 Φ̃1
t+1

Γ̃1
t+1

, · · · ,
Φ̃N

t+1

Γ̃N
t+1


⊤

. (4.32)

Before passing X̂ to the AgentGPT layer of fAR, we encode each X̂n individually;

for each person n we use Equation 4.19 to compute the encoded features Ên and then

stack them to produce

Ê =


Ê1

· · ·

ÊN

 , (4.33)

where Ê ∈ RN(t−w+1)×640. The additional inputs Ĵ and θ̂ are used to compute the

canonicalized joints Ĵn→o
t→j and canonicalized poses θ̂n→o

t→j . These canonicalized inputs are
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(a) Agent-Aware Attention - Self (b) Agent-Aware Attention - Other

Figure 4.7: Computation of the attention weights in Agent-Aware attention is split into
two different sets of query and key matrices where ⊙ refers to matrix multiplication, ⊗
is elementwise multiplication, and orange elements denote masked out values. (a) Aself

is computed using only queries and keys that refer to the same individual. (b) Aother

consists only of query-key pairs where the queries and keys do not stem from the same
individual.

in turn used to compute our Joint-Aware Bias, which we generalize to the multi-person

case. In the next section we describe Agent-Aware attention, and in the subsequent

section we expand on how it would be combined with our Joint-Aware Bias.

4.4.2 Agent-Aware Attention

Our primary interest in exploring a multi-person transformer is to model the interactions

between individuals and use this to inform our predictions. For example, when using

fmovie to compute our temporal representation Φ̂n
t we want to consider all input fea-

tures Xn specific to individual n and simultaneously we want to account for the salient

information available in the input features of any other individual o embedded in Xo.

The Agent-Aware attention mechanism proposed by Yuan et al. [66] does exactly that by

modelling both spatial and temporal information in the input features concurrently. It

does so by learning two different sets of query and key matrices, as seen in Figure 4.7.
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The first set of query and key matrices, denoted as Qself and Kself , are computed

using only the frames from a person of interest n. The second set of query and key

matrices, denoted as Qother and Kother, are computed using only the frames from every

other individual o such that o ̸= n. These matrices are computed over the entire set

of inputs in the same manner as described in Equation 3.16, where Qself ∈ RNt×dk ,

Kself ∈ RNt×dk and the corresponding Qother, Kother are of the same shape. The purpose

of the extra set of queries and keys is to better disambiguate the entries in α ∈ RNt×Nt

that correspond to an individual attending to their own past v.s. the entries where they’re

attending to another person’s past. The final attention weights α can be calculated with

Aself = 1self ⊗
QselfK

⊤
self√

dk
,

Aother = 1other ⊗
QotherK

⊤
other√

dk
,

α = softmax (Aself ⊕Aother ⊕M) ,

(4.34)

where ⊗ refers to elementwise multiplication, ⊕ is elementwise addition, and 1self , 1other

are indicator functions that denote which elements of the attention weights correspond

to the ‘self’ matrices and which ones correspond to the ‘other’ matrices. Letting i, j

represent the row and column index of 1self respectively with i, j ∈ {1 · · ·Nt}, we can

compute 1self as

(1self )i,j =


1 if ⌊ i−1

t
⌋ = ⌊ j−1

t
⌋,

0 otherwise.
(4.35)

The indicator function for the ‘other’ attention weights, 1other, is simply the opposite of

the above where

(1other)i,j = 1− (1self )i,j. (4.36)
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Figure 4.8: Agent-Aware Attention Weights The final attention weights α computed
using Agent-Aware attention after causal masking where N = 2 and t = 3. The top left
and bottom right t×t quadrants in white encode the relationships between an individual’s
own features, for example the top left captures the temporal dependencies of person one’s
own features across time. Similarly, the top right and bottom left quadrants in gray
encode how the individuals in the scene influence each other.

Finally, a causal mask M ∈ RNt×Nt is applied to the pre-softmax attention weights to

ensure future information is blocked out from both the ‘self’ and ‘other’ components; it is

constructed by tiling the standard t× t mask N times in both directions. The structure

of the final attention weights α after application of softmax can be seen in Figure 4.8.

Computing the final output then proceeds the same as always as there is only a single

value matrix V and the rest of the process is unchanged.

4.4.3 Agent-Aware Attention and our Joint-Aware Bias

While Agent-Aware attention as we described above is sufficient enough to communicate

how fmovie leverages it to generate our temporal representation Φ̂n
t , we need to make some

minor modifications so we can use it alongside our Joint-Aware Bias to predict future

meshes with fAR. We build on the idea of having separate query and key matrices for
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quantifying the dependency between the same and distinct individuals by additionally

training separate Joint-Aware Bias encoders for computing the bias between the relative

poses of the same individual and different individuals. First, we reformulate Equation

4.23 as

[
Ĵn→o
t→j 1

]⊤
=
(
Ĥn

t

)−1 [
Ĵo
j 1
]⊤

, (4.37)

where Ĵn→o
t→j represents the joints of person o at frame j in the coordinate space of person

n at frame t. Similarly, Equation 4.24 becomes

Rn→o
t→j = Ro

j (R
n
t )

−1 , (4.38)

with Rn→o
t→j corresponding to the relative rotation of some arbitrary joint of person o

at frame j with respect to the same joint of person n at frame t. These are used to

simultaneously compute two Joint-Aware Biases, Cself ∈ RN×N(t−w+1) and Cother ∈

RN×N(t−w+1). We compute Cself using the Joint-Aware Bias encoder fJABS, it maps

fJABS :
{
Ĵn→o
t→j , θ̂n→o

t→j

}
7→ (Cself )n,g, (4.39)

with n corresponding to the row and g =
(
(o−1)×(t−w+1)

)
+j representing the column

index. Similarly, we compute Cother in the same manner using another Joint-Aware Bias

encoder we denote fJABO; both encoders follow the one described in Equation 4.27,

but have their own dedicated set of weights. Once we compute the specified biases, we

can calculate the final attention weights with
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Aself = 1self ⊗
QselfK

⊤
self ⊕Cself√
dk

,

Aother = 1other ⊗
QotherK

⊤
other ⊕Cother√
dk

,

α = softmax (Aself ⊕Aother) ,

(4.40)

where the indicator functions 1self , 1other will again gate the irrelevant portions of Cself

and Cother. The attention weights are α ∈ RN×N(t−w+1) where we have N rows as our

queries consist only of latest frame t for each person n (see Section 4.3.2).

4.4.4 Training and Model Losses

Training the MPJAT model is virtually identical to training the JAT model; the model

we just put forth is also trained autoregressively as described in Section 4.3.3. The

primary difference is that we now include the interpenetration loss described in [19].

This loss serves to ensure that two individuals cannot occupy the same physical space

simultaneously. It is computed by generating a signed distance field for each person n in

frame t where

ρnt (x, y, z) = −min(SDF(x, y, z), 0), (4.41)

will return 0 if some 3D point (x, y, z) exists outside the mesh, or it will return a positive

value relative to how far into the mesh of person n the point lies. We denote the total

interpenetration loss for frame t as

Pt =
N∑

n=1

N∑
o=1,o ̸=n

∑
v∈V o

t

ρnt (v) (4.42)

where v ∈ V o
t corresponds to the vertices sampled from the mesh of individual o at frame

t. We sum this loss over all possible n and o, including the cases where the individuals
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have just switched indexes. With this addition, the loss we use to train fmovie is now

Lmovie =
T+H∑
t=1

[Lt + Pt] + λconst

T+(H−1)∑
t=1

∥β̂t − β̂t+1∥22, (4.43)

and similarly, the loss for fAR becomes

LAR =
T+H∑
t=T+1

[
Lt + Pt + λtemp∥Φ̃t − Φ̂t∥22+λtransl∥γ̃t − γ̂t∥22

]

+λconst

T+(H−1)∑
t=T+1

∥β̃t − β̃t+1∥22.

(4.44)
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Experiments

In this section we discuss our experiments to evaluate the efficacy of our proposed ideas.

We start by discussing the datasets we chose, describe our evaluation methodology, and

finally provide our results.

5.1 Datasets

We train and evaluate the performance of our proposed models on Human3.6M [92] and

3DPW [93], two standard datasets in the human pose estimation space. In Table 5.1 we

describe the sample counts for the train, validation, and test splits of both datasets after

pre-processing. Since the test split of 3DPW is almost twice the size of its train split and

it has almost 3 times the number of multi-person samples, we switch them. That is, only

for 3DPW, we train on the test split and test on the train split.

Human3.6M

Human3.6M [92] is a large scale, single-person, video dataset consisting of RGB video.

This dataset has seven different subjects, each of them independently recorded enacting

30 different scenes in a motion capture system with four different camera views. It

provides 2D & 3D poses, bounding boxes, and depth maps. However, Human3.6M does

59
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Datasets

Dataset Split Num Single Person Num Multi-Person Num Total

H3.6M
train 134,722 0 134,722

val 47,010 0 47,010
test 63,652 0 63,652

3DPW
train 12,042 4,635 16,677

val 5,346 1,970 7,316
test 12,842 11,254 24,096

Table 5.1: Datasets. The total number of samples for the train,validation, and test
splits of both datasets we are using in this work. Due to the limited size of the train split
of 3DPW we use train on the test split and test on train split.

not include SMPL parameters, so we first generate pseudo-groundtruth SMPL parameters

with a version of SMPLify that is modified to fit a mesh to 3D keypoints [19]. Following

previous work [21, 7, 19] we use protocol 2 to define our train and test splits; we use

only the main camera view and subjects S1, S6, S7, S8 form our train split, S5 is our

validation split, and S9, S11 are our test split.

3DPW

3D Poses in the Wild (3DPW) [93] is a dataset consisting of various outdoor and indoor

scenes containing up to two people captured with a dynamic camera and inertial mea-

surement units strapped to individuals’ limbs; after capturing the initial data the mesh

parameters and extrinsic camera matrix were computed through the use of a continuous

optimization framework. Due to the dynamic camera, the dataset provides the SMPL

parameters and the 3D keypoints in the world coordinate frame. Our models however

perform estimation and prediction in the camera coordinate frame. This, in addition to

the fact that the dataset lacks groundtruth bounding boxes and parameterizes 2D key-

points using a different set of joints than the 3D keypoints, requires us to preprocess the

dataset before use. This preprocessing entails transforming the 3D mesh parameters and

3D keypoints from the world coordinate frame to the camera coordinate frame, projecting
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the 3D keypoints to the image plane to compute corresponding 2D keypoints, and then

using the 2D keypoints to generate bounding boxes. We primarily use 3DPW to quantify

how well MPJAT performs on multiple people when compared against our single-person

methods. As evidenced by Table 5.1 the training split not only has a limited amount of

multi-person samples, but it has less samples over all than the test split. For this reason

we switch the two splits.

5.2 Implementation Details

For all of our models, we follow the work in PHD and use a ResNet-50 backbone [94]

initialized with the learned weights from HMR. The backbone for every model is frozen

during all stages of training. We first train PHD+T and JAT on the Human3.6M dataset

for conditioning. After convergence we freeze the weights of the temporal conditioning

model fmovie and the HMR head fHMR before proceeding to train on the prediction task

for Human3.6M.

When we train on 3DPW we follow the same process where we first train on con-

ditioning, then prediction. When training for the conditioning task we bootstrap the

models with the fmovie and fHMR weights from the corresponding Human3.6M model;

in the case of MPJAT we use JAT’s weights and duplicate the necessary sub-models for

Agent-Aware attention. After all three models have been finetuned on 3DPW for condi-

tioning, we freeze the relevant parts and load in the fAR weights from the corresponding

Human3.6M models to train for prediction.

To increase data variety, we leverage data augmentation while training. Our data

augmentation pipeline follows HMMR [7] and PHD [12]; it consists of jittering the input

bounding boxes to simulate noisy tracking models, and randomly flipping the entire

input video. All models are trained with a batch size of 32 on a single NVIDIA V100

GPU. The largest bottleneck in our data-loading pipeline is the cropping performed for
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each bounding box. Similarly, a large part of GPU memory is dedicated to storing

the backbone weights and corresponding backbone features. Since all of our models

share a common frozen backbone, we precompute the backbone features for all crops,

eliminating the need to crop and compute features during training. All together, we

jitter the bounding boxes, perform the random flip, crop out the bounding boxes, and

then pass the crop to the backbone and store the backbone outputs on disk. To maintain

data variety, we cache eight epochs worth of data and randomly sample from it during

training.

Finally, we present the hyperparameters we used for training in Appendix C. We use

the Hyperband [95] algorithm to find the best performing hyperparameters for PHD+T

and JAT on the conditioning and prediction tasks of Human3.6M. We then use the same

hyperparameters when we train on 3DPW, where we reuse the tuned hyperparameters

for JAT on the MPJAT model.

5.3 Evaluation

In this section we first provide an overview of our evaluation process, describe the metrics

we are using, and then share and discuss our results. We evaluate the models for both

conditioning and prediction, where we refer to conditioning as the process through which

the model reconstructs the observed input frames and refer to prediction as the stage

where it estimates the 3D meshes of future unseen frames.

For the conditioning stage, since the PHD+T model cannot reconstruct the first 12

frames (due to its receptive field of r = 13), while the transformer based models can,

we evaluate conditioning strictly on the frames that are reconstructed by all methods.

For the prediction stage, we follow the original PHD [12] work in our evaluation process.

While training, every model is fed T = 25 input frames and predicts the next 25 future

frames. When we test our models, we again feed them T = 25 input frames, but now
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we make them predict 30 frames to evaluate how well it can predict frames over the

sequence length seen during training. As an additional baseline to evaluate prediction

performance, we introduce the ZeroMotion baseline. The ZeroMotion baseline simply

repeats the estimated meshes of the last observed frame for all future frames. These

meshes are estimated using fmovie and fHMR from the PHD + T model.

5.3.1 Metrics

We evaluate on three common metrics in the 3D mesh estimation space, described below.

Mean Per Joint Position Error (MPJPE): This metric measures the average 3D

distance in millimeters (mm) between corresponding joints of the predicted and

groundtruth poses after aligning the root joint. The closer this measure is to zero,

the more similar the two poses are.

Procrustes Aligned Mean Per Joint Position Error (PA-MPJPE): Like above,

this metric measures the 3D distance between corresponding joints in millimeters.

The difference is that after aligning the root joint, the poses are also aligned using

Procrustes Analysis [96] which scales and rigidly rotates the prediction to best

match the groundtruth. This metric strictly focuses on pose similarity while the

prior metric also accounts for global rotation and size of the mesh. Similar to

MPJPE, the closer this measure is to zero, the more similar the two poses are.

Percent Correct Keypoints (PCK): The final metric quantifies how similar the pre-

dicted and groundtruth poses are after being projected to the 2D image plane.

After computing the pixel distance between the corresponding joints, we find the

percent of predicted joints that are within α×max(h,w) pixels of the groundtruth,

where α = 0.05 and h, w represent the height and width of the bounding box re-

spectively. While previous measures align at the pelvis, this one does not, meaning
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Human3.6M - Conditioning

Arch. PA-MPJPE ↓ MPJPE ↓ PCK ↑
PHD+T 61.9 88.8 81.0
JAT 61.7 86.6 81.8

Table 5.2: Conditioning Performance on Human3.6M. For all metrics the JAT
performs slightly better than PHD+T. At this point, the primary difference is in the use
of the transformer model for fmovie, meaning it potentially offers a better approach to
temporal aggregation.

that the predicted location of the body in the scene will affect this score. The closer

this measure is to 100, the more similar the prediction is to the groundtruth.

5.3.2 Performance on Human3.6M

We start by discussing results on the Human3.6M dataset. In Appendix D.1 we show

the predictions of the PHD+T and JAT models on samples from the Human3.6M test

set. Since Human3.6M consists of samples recorded in a motion capture studio with a

static camera, it represents a fairly elementary challenge. The background is easy to

disentangle from the individual being captured and the lack of a moving camera means

that all motion can be directly attributed to movement of the person around the scene.

Conditioning

Table 5.2 showcases how the PHD+T and JAT models perform on Human3.6M for

conditioning. It can be seen that our proposed JAT model performs slightly better than

PHD+T across the board. As this is only the conditioning stage, the Joint-Aware Bias is

not yet relevant; these results only tell us that using a standard GPT-3 style transformer

in lieu of a TCN can beget positive results on the conditioning task.

We performed an ablation on the 6D rotation representation for PHD+T to quantify

the difference between it and axis-angle rotations, which we show in Table 5.3. Both

transformer models we propose make use of the 6D rotation representation, described in



Chapter 5. Experiments 65

Human3.6M - Conditioning

Arch. 6D PA-MPJPE ↓ MPJPE ↓ PCK ↑
PHD+T - 66.7 106.1 74.7
PHD+T ✓ 61.9 88.8 81.0

Table 5.3: Ablation on 6D Rotation Representation. We run an ablative experi-
ment on the conditioning task of Human3.6M to measure the difference in performance
between axis-angle and the 6D rotation representation for the PHD+T architecture. As
described in Section 3.2.3 this disparity in performance is primarily due to there being
a many-to-one mapping between axis-angle rotations and equivalent rotation matrices,
resulting in axis-angle being a noisy parameterization to regress.

Human3.6M - Prediction

PA-MPJPE ↓ MPJPE ↓ PCK ↑
Arch. 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30

ZeroMot 63.7 75.2 88.4 100.9 103.0 90.8 105.0 124.8 153.1 171.5 79.3 65.2 52.5 40.5 34.7
PHD+T 63.0 71.5 84.1 99.2 109.6 89.8 100.0 118.6 149.9 173.4 79.6 69.7 56.8 38.7 29.7
JAT 61.5 69.9 78.1 89.0 97.8 87.0 100.2 115.0 137.8 157.0 76.6 66.7 56.7 42.8 30.8

Table 5.4: Prediction Performance on Human3.6M. Performance metrics for both
models and the ZeroMotion baseline averaged over specified future frames. JAT has
the lowest PA-MPJPE and MPJPE, telling us that it can most accurately predict pose.
Conversely, PHD+T has the highest PCK measure in the short term with JAT performing
best on PCK at 20 frames into the future and ZeroMotion performing best on PCK at
30 frames into the future.

Appendix B. The original PHD model however uses axis-angle as its rotation repre-

sentation. It can be seen that the use of the 6D rotation representation has an outsized

effect on model performance. For this reason, we use the 6D rotation representation in

our PHD+T model to ensure a valid comparison between the transformer models and

PHD+T. This ensures that any difference in performance is directly due to how temporal

information is modelled and not because of an ineffective rotation parameterization.

Prediction

Table 5.4 displays the performance of our proposed models at the prediction task on

Human3.6M. We also plot these results in Figure 5.1 to make the results easier to parse.

From these results, the JAT model plainly performs best in regards to PA-MPJPE and
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Figure 5.1: Human3.6M Prediction Performance Plot. Plots of prediction per-
formance on Human3.6M averaged over specific future frames for each metric. For PA-
MPJPE and MPJPE lower values indicate better performance, for PCK higher values
indicate better performance. JAT outperforms PHD+T and the ZeroMotion baseline on
PA-MPJPE and MPJPE across almost all future frames but PHD+T performs best early
on for PCK while ZeroMot dominates PCK performance at 30 frames into the future.

MPJPE; for PCK however, PHD+T is more accurate in the short-term while JAT is

more accurate further into the future with the ZeroMotion baseline performing the best

at 30 frames into the future. These results indicate that JAT predicts the pose dynamics

and long term location more accurately than PHD+T.

As an ablation to validate the effectiveness of the Joint-Aware Bias, we train a version

of JAT without the bias and show the results in Table 5.5. It quickly becomes evident

that using our proposed Joint-Aware Bias is beneficial as it improves performance on

all metrics with respect to a transformer model without the Joint-Aware Bias. This can

potentially be due to the ego-centric representation used by the Joint-Aware Bias helping

to better model trajectory, since the largest improvement is in PCK.

5.3.3 Performance on 3DPW

We now discuss the results of our models on the 3DPW dataset, which is a significantly

more difficult dataset compared to Human3.6M. The 3DPW dataset consists of in-the-

wild samples with a dynamic camera; all of our models predict the location of each



Chapter 5. Experiments 67

Human3.6M - Prediction

PA-MPJPE ↓ MPJPE ↓ PCK ↑
Arch. J-Bias 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30

JAT - 61.8 70.2 78.9 90.2 98.5 87.1 100.4 116.2 140.1 158.5 75.4 63.5 53.2 40.8 27.8
JAT ✓ 61.5 69.9 78.1 89.0 97.8 87.0 100.2 115.0 137.8 157.0 76.6 66.7 56.7 42.8 30.8

Table 5.5: Ablation on Joint-Aware Bias. Our proposed Joint-Aware Bias improves
performance of the transformer model across all metrics. The largest improvement can
be seen in the PCK measure, indicating that our Joint-Aware bias helps to better predict
the trajectory of the individual in question.

individual in the camera coordinate frame. This means that for scenes with significant

camera motion, the models must jointly predict the camera motion and the individuals’

trajectories. A better approach would be to estimate the camera motion independently,

and then use it to predict each individuals’ trajectories in world coordinates, but we leave

this as future work.

In Appendix D.2 we show our model predictions on 3DPW samples. With 3DPW

we are primarily interested in evaluating how our models perform at predicting human

motion in scenes with more than one person. As such, the results we present here are

computed using only samples from our test split (3DPW’s train split) that contain two

individuals, since 3DPW does not have any scenes with more than two people. For the

sake of completeness however, we discuss results over all test samples in Section 5.4.

Conditioning

In Table 5.6 we present how well our models perform at reconstructing observed meshes

on our 3DPW test set. We can see that all three models perform roughly the same with

PHD+T having the best performance on the PA-MPJPE and MPJPE, which tells us that

the PHD+T model is slightly more accurate at predicting the pose of observed people.

On the other hand, MPJAT has a slightly higher PCK score meaning that it might be

doing a better job of modelling the trajectories of observed individuals.

As an ablation experiment, we evaluate the effectiveness of the interpenetration loss
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3DPW - Conditioning (Multi-Person Samples)

Arch. PA-MPJPE ↓ MPJPE ↓ PCK ↑
PHD+T 81.1 121.0 66.6
JAT 85.5 125.3 67.0
MPJAT 84.0 123.9 67.5

Table 5.6: Conditioning Performance on 3DPW (Multi-Person Samples). When
it comes to PA-MPJPE and MPJPE, all models perform relatively the same with there be-
ing about a 4 mm difference between the best performing model (PHD+T) and the worst
performing model (JAT). When considering PCK, MPJAT similarly performs roughly
1% better than PHD+T with JAT being in the middle.

3DPW - Conditioning (Multi-Person Samples)

Arch. Pt PA-MPJPE ↓ MPJPE ↓ PCK ↑
JAT - 85.5 125.3 67.0
JAT ✓ 82.5 124.8 64.3
MPJAT - 86.4 128.4 65.8
MPJAT ✓ 84.0 123.9 67.5

Table 5.7: Ablation on Pt for Conditioning (Multi-Person Samples). We train
our proposed single-person JAT model with the interpenetration loss Pt and the multi-
person MPJAT model without as an ablative experiment to quantify the usefulness of
Pt. Using the loss improves PA-MPJPE and MPJPE for JAT but leads to degenerate
PCK performance. MPJAT however improves performance for all metrics with Pt.

Pt (Equation 4.42). We specifically propose Pt for the multi-person model, MPJAT. We

evaluate both, disabling Pt for MPJAT and training the single-person transformer model,

JAT, with it. We attempted to train PHD+T with the interpenetration loss as well, but

the time-per-iteration was too high, ultimately making it intractable. We can see in

Table 5.7 that compared to training JAT without Pt, training JAT with it improves

performance on PA-MPJPE and MPJPE, but compromises performance on PCK. MP-

JAT with Pt however shows improved performance for all metrics when compared against

the same model without Pt. This can potentially be due to the Agent-Aware attention

mechanism allowing MPJAT to better model occupancy of multiple people simultane-

ously. During training, the signal from the interpenetration loss encourages MPJAT to

arrange the people in a manner that best fits the observation without leading to inter-
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Figure 5.2: 3DPW Multi-Person Prediction Performance Plot. Plots of prediction
performance on 3DPW averaged over specific future frames for each metric. Generally
speaking, MPJAT performs best on PA-MPJPE with JAT and ZeroMotion closely fol-
lowing while the three models have comparable performance on MPJPE. In regards to
PCK, MPJAT and ZeroMotion perform roughly the same up until 30 frames into the
future where ZeroMotion is best.

sections of the meshes, JAT on the other hand has no way to corroborate the location of

other meshes in the scene.

Prediction

Figure 5.2 plots the prediction performance of our models with Table 5.8 being the

corresponding table. From these we can see that MPJAT and the ZeroMotion baseline

have the highest PCK scores. The two of them are fairly comparable for PCK perfor-

mance until 30 frames into the future, where the ZeroMotion baseline performs best.

This indicates that when it comes to the multi-person subset of the 3DPW dataset, MP-

JAT and ZeroMotion can model the trajectories of each person significantly better than

PHD+T and the single-person transformer model, JAT. When looking at PA-MPJPE

and MPJPE we can see that the ZeroMotion baseline performs better on earlier frames

while on later frames MPJAT scores higher on PA-MPJPE and JAT scores higher on PA-

MPJPE. This implies that both MPJAT and JAT can model long-term pose dynamics

better in the multi-person case.
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3DPW - Prediction (Multi-Person Samples)

PA-MPJPE ↓ MPJPE ↓ PCK ↑
Arch. 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30

ZeroMot 82.5 87.0 92.8 99.9 102.8 124.0 131.7 141.6 155.4 163.0 65.0 58.5 51.2 41.8 36.3
PHD+T 82.6 88.1 95.9 103.7 105.2 124.0 131.7 143.7 160.8 168.7 65.1 56.8 46.7 35.2 29.7
JAT 83.2 88.5 94.9 98.8 100.9 124.8 132.8 142.5 154.1 162.2 65.3 57.5 50.7 37.8 23.8
MPJAT 83.9 87.5 92.6 98.0 100.9 125.7 134.3 143.0 154.6 163.4 65.6 57.7 51.7 41.4 32.8

Table 5.8: Prediction Performance on 3DPW (Multi-Person Samples). With
respect to PA-MPJPE, the ZeroMotion baseline predicts more accurate poses in the
short term and MPJAT predicts more accurate poses in the long-term. Similarly, we can
see that when considering MPJPE, that JAT has the best long-term performance. With
PCK both the ZeroMotion baseline and MPJAT are comparable up until 30 frames into
the future where ZeroMotion performs significantly better than the rest of the models.

3DPW - Prediction (Multi-Person Samples)

PA-MPJPE ↓ MPJPE ↓ PCK ↑
Arch. Pt 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30

JAT - 83.2 88.5 94.9 98.8 100.9 124.8 132.8 142.5 154.1 162.2 65.3 57.5 50.7 37.8 23.8
JAT ✓ 81.0 84.9 89.7 96.0 99.7 124.8 131.5 140.1 152.9 161.7 63.2 55.4 48.9 36.6 24.2
MPJAT - 83.4 87.6 93.2 97.7 100.4 125.0 132.6 141.6 153.7 163.0 65.8 58.0 51.3 40.2 27.5
MPJAT ✓ 83.9 87.5 92.6 98.0 100.9 125.7 134.3 143.0 154.6 163.4 65.6 57.7 51.7 41.4 32.8

Table 5.9: Ablation on Pt for Prediction (Multi-Person Samples). JAT combined
with the interpenetration loss Pt achieves the lowest PA-MPJPE and MPJPE of all
transformer models, but it also leads to a reduction in PCK. Both MPJAT models with
and without Pt have comparable PA-MPJPE/MPJPE and score higher on PCK than the
JAT models, but including the interpenetration loss leads to best PCK performance.

We again run the ablation on Pt to see how the interpenetration loss affects the

prediction results. We can see in Table 5.9 that adding Pt to JAT begets a lower PA-

MPJPE and MPJPE, but also results in a worse PCK measure (except for specifically

30 frames into the future). Conversely, removing Pt from the MPJAT model results in a

lower PA-MPJPE and MPJPE but also reduces the longer-term PCK scores. Both with

or without Pt, MPJAT scores better on PCK than the JAT models; when comparing the

two MPJAT models against each other it can be seen that using the Pt loss increases

the PCK score at 30 frames into the future by more than 5%. From this we can surmise

that pairing the Agent-Aware attention mechanism with the interpenetration loss leads

to the best long-term performance in PCK.
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3DPW - Conditioning (All Samples)

Arch. PA-MPJPE ↓ MPJPE ↓ PCK ↑
PHD+T 88.9 131.0 66.9
JAT 95.8 140.4 65.4
MPJAT 94.9 141.1 65.5

Table 5.10: Conditioning Performance on 3DPW (All Samples). When evaluating
on all samples of our 3DPW test split, PHD+T has the best conditioning performance
with there being very little difference between JAT and MPJAT.

3DPW - Prediction (All Samples)

PA-MPJPE ↓ MPJPE ↓ PCK ↑
Arch. 1 5 10 20 30 1 5 10 20 30 1 5 10 20 30

ZeroMot 90.3 96.8 104.5 112.7 118.3 133.9 145.1 159.3 179.3 193.0 65.6 56.9 47.8 36.7 30.4
PHD+T 90.6 98.7 109.2 120.8 125.7 134.1 146.2 162.8 187.6 203.5 65.5 55.5 43.7 30.8 24.5
JAT 93.6 101.0 109.3 114.9 118.2 139.0 151.1 165.0 182.3 196.0 64.0 53.4 44.8 32.0 19.0
MPJAT 94.2 100.6 107.1 114.0 117.9 141.8 155.2 167.8 185.1 199.6 63.0 51.8 44.2 33.1 25.3

Table 5.11: Prediction Performance on 3DPW (All Samples). When evaluating
for prediction for all samples of our 3DPW test split, we see that PHD+T shows better
performance for all metrics in near-term prediction with MPJAT still achieving the best
PA-MPJPE and PCK in the long-term.

5.4 Discussion

In this chapter we presented the quantitative experiments we undertook to evaluate the

models we are proposing. We started by outlining details about the training process, we

then described the datasets we used for our evaluation, and finally provided the results we

collected on the performance of our models and the ablative experiments we conducted

to measure the contributions of our additions.

Our results show that there is merit to both the Joint-Aware Transformer and the

Multi-Person Joint-Aware Transformer. Specifically, we can see that when evaluated on

a large dataset with uncomplicated scenes like Human3.6M, our JAT model can predict

more accurate future poses than both the ZeroMotion baseline and the PHD+T model

when measured by PA-MPJPE and MPJPE. JAT additionally offers the best trade-off

between long-term and short-term performance on PCK for the Human3.6M dataset.
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Similarly, when we strictly look at the multi-person samples of our 3DPW test set,

we see that our MPJAT model achieves the best PA-MPJPE scores while performing

almost as well as the ZeroMotion baseline at long-term prediction when measured by

PCK. Further, our ablation experiment in Table 5.9 shows that the both Agent-Aware

attention and the interpenetration loss Pt are required to achieve good performance when

measured by PCK. From this we can infer that our MPJAT model can implicitly model

multi-person interactions to better predict future poses.

Considering all samples from our 3DPW test split however, paints a different picture.

In Table 5.10 we see that the PHD+T model has the best performance across all metrics

on the conditioning task when evaluated on the entire 3DPW test split (both single-person

and multi-person samples). In Table 5.11 we show prediction results on the same split.

Here we can see that in contrast to the multi-person only results in Table 5.8, when

evaluated on all samples the ZeroMotion baseline performs best on all metrics.

We hypothesize that the better performance of the ZeroMotion baseline when includ-

ing single-person samples in our 3DPW test set can be attributed to two main factors.

First, the 3D metrics we use to evaluate pose (MPJPE and PA-MPJPE) present an in-

complete picture. Both metrics compute the joint distances with the root joint located

at the same position, meaning the pelvis position is ignored when calculating the error.

This results in the predicted future translation of the meshes being ignored when the

models are evaluated on these metrics. This benefits the ZeroMotion baseline as it does

not predict future translation, it simply repeats the last observed mesh for all future pre-

dictions and has no movement around the scene. In future work it is worth investigating

other metrics that take into account this translation when evaluating joint error.

The second factor is that the 3DPW dataset was captured using a dynamic, moving

camera. Here, the camera operator continuously orients the camera such that the subject

in the scene is always close to the center of the shot. By repeating meshes that exist

close to the center of the frame, ZeroMotion results are likely to be performant on PCK.
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Conversely, the models we propose predict translation in the camera coordinate frame.

They must now implicitly predict camera motion along with subject motion due to the

dynamic camera. This can quickly lead to compounding errors if the proposed models

are incorrect about camera movement.

5.4.1 Failure Modes

In the course of evaluating the results of our experiments, we came across two primary

failure modes that our models exhibit. The first, exemplified in Figure D.5, occurs

when the input bounding boxes have significant overlap. In these cases multiple people

exist within overlapping bounding boxes, and it can be ambiguous which bounding box

corresponds to which person, leading to the models potentially reconstructing the same

individual twice. The MPJAT model has shown some capability to better disentangle

the individuals than the PHD+T and JAT models as seen in Figure D.4, but it still

suffers from this issue. Recent approaches that focus on multi-person reconstruction

[44, 14] have found that providing segmentation masks for each individual can alleviate

this issue.

The second failure mode we came across is that the output predictions of all models’

would occasionally be static or consist of small motion, as shown in Figure D.3 and

Figure D.6. This is most likely due to the fact that our predictions are deterministic,

and as such the models are predicting a sequence that minimizes error among a diverse

set of future possibilities [47]. Here, the best approach would be to switch to a stochastic

prediction paradigm, but we leave that as future work.
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Conclusion

With this thesis we proposed an iterative set of modifications to the Predicting Human

Dynamics (PHD) model that results in a method that can jointly predict the trajectory

and pose of multiple people in a scene. We started by describing an approach to extend

the original PHD model by predicting the trajectory of an individual. We dubbed this

the PHD+T model, and treat it as our baseline. We then present our novel Joint-Aware

Bias, an approach to inject egocentric information into a transformer’s attention weights.

Calling this model the Joint-Aware Transformer (JAT), we show that in unambiguous

scenes like those in Human3.6M, this proposed approach is advantageous. Finally we

introduced our Multi-Person Joint-Aware Transformer (MPJAT), an extension of the

previous method that can simultaneously model multiple people. We show that when

evaluated on samples consisting of multiple individuals, the MPJAT model outperforms

repeated application of the PHD+T and JAT models on each individual independently.

However, greater work is required to create a method that strongly outperforms the naive

ZeroMotion baseline.

74
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6.1 Limitations and Future Work

One key limitation that affects all of our proposed methods is the cropping step performed

in the process of computing image features. While we can compute the spatial location

of the individual in the scene using the bounding box coordinates, we lose the struc-

ture of the surrounding regions leading to a lack of global scene information. This can

be addressed by implicitly modelling scene context following [9] or explicitly capturing

interactions with objects in the environment as proposed in [97].

Another limitation is the deterministic prediction paradigm leveraged by our proposed

methods. Given some input frames, the models will produce a single future outcome

informed by the models’ belief of what is most likely to happen next. Reality however

does not guarantee that the future consists of only one possible trajectory and there

are a multitude of ways that the future can unfurl from the same set of observations.

Modelling this uncertainty is the next step in improving upon the models that we propose

here. A stochastic approach can parameterize a distribution of possible futures and

alleviate the regression-to-the-mean issue our work faces [47, 69, 70]. Further, in an online

inference setting, stochastic models can be used to approximate prediction confidence;

multiple future outcomes can be generated and poses from recently observed frames can

be compared against these predictions to inform which future trajectories are more likely.

There exist other avenues of research that can also improve the applicability of our

work. Examples include the introduction of a temporal discriminator to help ensure

predictions of future meshes are consistent with respect to time (similar to the work done

in [8]), swapping out the ResNet based backbone from HMR [21] with something that

leverages a Vision Transformer like [15], or investigating approaches that better tackle

issues of occlusion following [41, 98]. In addition to the items already addressed, training

the models proposed here on a larger multitude of datasets with significantly more in the

wild and multi-person samples has the potential to greatly improve performance.
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6.2 Societal Impact

This thesis aims to propose a set of models that can directly infer future human motion

based on data from a camera feed. Veritable success in this domain can have a far

reaching affect on any technology that interacts with people in our tangible world; self-

driving cars that can accurately predict pedestrian trajectories, industrial robotics that

are built with proactive safety mechanisms, or domestic robots that can help the elderly

and those in need of assistance around the house are all examples where the ability to

forecast human behavior is crucial.

Like most technology, models that attempt to predict human behavior can just as

much be a curse on society as they can be a boon. In an increasingly connected world,

mass surveillance is becoming an ubiquitous fact of life. Large camera networks that

leverage this technology to monitor a populace can have potentially life threatening

outcomes for a community. Autocratic regimes or heavy handed agencies of well meaning

governments can use the ideas discussed here to monitor for behavior that may progress

into actions they deem unsavory; to say nothing of the privacy concerns this raises, a

system that incorrectly predicts unwanted conduct can result in an innocent individual

becoming a ceaseless fixation of authority. Even more hair-raising is the idea of automated

weapon systems that can accurately model an individual’s motion. While killer robots á

la Terminator seem far-fetched, drone warfare is a very much a reality.

Addressing these considerations is a difficult task. Due to the relatively open nature

of machine learning research most of the knowledge and technology required to build

these systems is freely available. At this stage the only approach to prevent abuse is

legislation. However much like internet legislation, threading the needle between over and

under legislation of AI research is a balancing act that must be approached with nuance.

Restricting research into the weaponization of AI in a similar vein as the Biological

Weapons Convention, makes sense. Imposing limits on AI research as a whole however is

questionable. Current machine learning research is already skewing towards groups with
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large enough funds to throw data and computing resources at a problem, leaving smaller

companies and academic groups to focus on niche problems or develop solutions with

more modest resource requirements. Further constraining this by granting authority to

conduct all AI research to a limited number of outfits can compound issues regarding

bias in data and algorithms due to the stifling of new perspectives that can arise from

having many sets of eyes on the same problem.
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Appendix A

Full Perspective Projection

Full perspective projection maps a 3D point in camera coordinate space to a 2D point

on the image plane, where the image plane represents the picture captured by a camera

[99]. Perspective projection can be performed by simply right-multiplying the camera’s

intrinsic matrix K ∈ R3×3 with a 3D point of interest P ∈ R3. The intrinsic camera

matrix captures the internal properties of the camera where

K =


Fx 0 W

2

0 Fy
H
2

0 0 1

 , (A.1)

consists of the focal length in the x and y dimension, as well as the principal offset(
W
2
, H

2

)
which encodes where the principal point lies on the image plane. Given the

intrinsic camera matrix, we can project a 3D point P with

λ


px

py

1

 =


Fx 0 W

2

0 Fy
H
2

0 0 1




Px

Py

Pz

 (A.2)

where p ∈ R2 = [px py]
⊤ represents the 2D location of the point on the image plane.
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Appendix B

6D Rotation Representation

Given a rotation matrix M ∈ SO(3) where

M =


∣∣∣ ∣∣∣ ∣∣∣

m1 m2 m3∣∣∣ ∣∣∣ ∣∣∣

 , (B.1)

the 6D rotation representation R is computed by simply dropping the last column m3,

i.e.,

R =


∣∣∣ ∣∣∣

m1 m2∣∣∣ ∣∣∣

 . (B.2)

To compute the rotation matrix M given some 6D representation R the process is
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R =


∣∣∣ ∣∣∣

m1 m2∣∣∣ ∣∣∣

 ,

b1 = N(m1),

b2 = N(m2 − (b1 ·m2)b1),

b3 = b1 × b2,

M =


∣∣∣ ∣∣∣ ∣∣∣
b1 b2 b3∣∣∣ ∣∣∣ ∣∣∣

 .

(B.3)

Here × refers to the cross product and

N(x) =
x

∥x∥2
. (B.4)



Appendix C

Hyperparameters

C.1 PHD+T

PHD+T Hyperparameters
Φ Num Channels 2048
Γ Num Channels 128

fmovie

Kernel Size 3
Num Temporal Convolution Blocks 3
Num Group Norm Groups 16
Receptive Field 13

fAR

Kernel Size 3
Num Temporal Convolution Blocks 3
Num Group Norm Groups 17
Receptive Field 13

Table C.1: PHD+T Model Hyperparameters.

PHD+T Learning Rates (Conditioning)
LR Schedule None
fmovie 2.0× 10−5

fHMR 2.0× 10−5

discriminator 2.0× 10−4

Table C.2: PHD+T Learning Rates for Conditioning.
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PHD+T Learning Rates (Prediction)
LR Schedule None
fAR 2.3× 10−6

fJE 6.8× 10−4

discriminator 1.9× 10−3

Table C.3: PHD+T Learning Rates for Prediction.

C.2 JAT/MPJAT

JAT/MPJAT Hyperparameters
Φ Num Channels 512
Γ Num Channels 128

fmovie

Num Layers 1
Num Attention Heads 1
Max Receptive Field 43

fAR

Num Layers 1
Num Attention Heads 1
Max Receptive Field 46

Table C.4: JAT/MPJAT Model Hyperparameters.
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JAT/MPJAT Learning Rates (Conditioning)

LR Schedule

Warmup Type Linear
Initial LR Ratio 0.31
Num Warmup Epochs 44
Decay Type Cosine
Num Decay Epochs 13
Final LR Ratio 0.06

Peak LR
fmovie 6.1× 10−4

fHMR 1.0× 10−4

Discriminator 3.2× 10−4

Table C.5: JAT/MPJAT Learning Rates for Conditioning.

JAT/MPJAT Learning Rates (Prediction)

LR Schedule

Warmup Type Linear
Initial LR Ratio 0.16
Num Warmup Epochs 21
Decay Type Cosine
Num Decay Epochs 8
Final LR Ratio 0.07

Peak LR
fAR 2.4× 10−5

fJE 3.1× 10−5

Discriminator 2.0× 10−3

Table C.6: JAT/MPJAT Learning Rates for Prediction.
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Model Outputs

D.1 Human3.6M Samples

Figure D.1: Visualization of Model Predictions on Human3.6M Sample 1.
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Figure D.2: Visualization of Model Predictions on Human3.6M Sample 2.
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Figure D.3: Visualization of Model Predictions on Human3.6M Sample 3.
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D.2 3DPW Samples

Figure D.4: Visualization of Model Predictions on 3DPW Sample 1.
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Figure D.5: Visualization of Model Predictions on 3DPW Sample 2.
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Figure D.6: Visualization of Model Predictions on 3DPW Sample 3
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