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Abstract

In recent years, center-based sampling has demonstrated impressive results to enhance

the efficiency and effectiveness of meta-heuristic algorithms. The strategy of center-based

sampling can be utilized at either the operation and/or population levels. Despite the

overall efficiency of the center-based sampling in population-based algorithms, utilization

at the operation level requires customizing the strategy for a specific algorithm which

degrades the scheme’s generalization. This study proposes a center-based sampling at the

population level, which is operation-independent and correspondingly can be embedded

in any population-based optimization algorithm. In classic mutation and crossover oper-

ators, the number of parents involved is a few, causing ineffective exploration; however,

the current proposed center-based sampling uses a multi-parent approach, which results

in multiple center-based solutions. In this thesis, two proposed schemes, namely, 1) Clus-

tering center-based sampling and 2) Average ranking center-based sampling, are applied

to enhance population-based single- and multi-objective optimization algorithms, respec-

tively, in order to enhance their exploration and exploitation capabilities. The conducted

comprehensive center-based experiments are a novel strategy to enhance population-

based mechanistic algorithms. In order to assess the performance of proposed schemes,

the proposed strategy is applied to single- and multi-objective optimization problems

and experimented with CEC-2017 benchmark functions. The experimental outcomes

confirm that the proposed clustering center-based and ranking center-based samplings

have a crucial positive impact on convergence rate of various families of optimization

algorithms.

Keywords: Center-based Sampling; Population-based Algorithms; Single-objective

Optimization; Multi-objective Optimization; Meta-heuristic Algorithms;
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Chapter 1

Introduction

Many real-world problems can be modeled and solved as optimization problems using

robust algorithms. Therefore, the development of effective and efficient algorithms is

essentially necessary for solving these problems. For the last decade, meta-heuristic al-

gorithms such as Genetic Algorithms (GA), Differential Evolution (DE), Particle Swarm

Optimization (PSO), Ant Colony Optimization (ACO), and Artificial Bee Colony (ABC)

have shown their superiority in solving a variety of real-world large-scale optimization

problems in engineering and science fields. Despite the capabilities of these algorithms,

they have some weaknesses; for instance, the computational time of Evolutionary Algo-

rithms (EA) refers to the fact that EAs can be computationally expensive, especially

when dealing with complex and high-dimensional optimization problems. On the other

hand, the gradient-based approaches are single-solution-based algorithms that are prone

to fall into local optima, resulting in sub-optimal solutions. In order to tackle these issues,

researchers used population-based evolutionary algorithms to utilize some stochastic op-

erators that can be employed to solve black-box real-world problems. These algorithms

aim to search globally into the search space and find the desirable solution(s).

The center-based sampling strategy was first proposed by Rahnamayan and Wang

in 2009 [6]. They discovered a strange superiority of a golden region for a center-based

1



Chapter 1. Introduction 2

sampling over high-dimensional search spaces. For the first time, the uniform random

sampling strategy was seriously questioned for an efficiently distributed sampling strat-

egy for the optimization of black-box problems. The center-based sampling has been

a leading idea for several studies to improve the performance of population-based and

single-solution-based meta-heuristic algorithms in various aspects. So far, researchers

have utilized this strategy in their studies on the DE algorithm and its variants.

1.1 Motivation

Recently, many researchers have focused on improving population-based operators such

as mutation and crossover. However, the modification of operators makes their proposed

scheme a tailored one, which is not applicable to other similar algorithms since they are

operation-oriented. To avoid this universality limitation, a novel technique, center-based

sampling, which can be applied to various population-based algorithms, is proposed in

this thesis. Center-based sampling theory has been introduced and investigated in its

general form using mathematical methods and Monte-Carlo simulation by Rahnamayan

and Wang [6], and they investigated the likelihood of closeness to the center of a couple

of solutions in a black-box problem by using Monte-Carlo simulation. In comparison

to randomly produced points, they found that the chance of points being closer to an

unidentified answer is dramatically higher in the center of the search area.

Therefore, in this work, a new case of utilizing the center-based sampling strategy

is proposed at population level to accelerate over the generations. Previously, a novel

center-based differential evolution algorithm was proposed in the same direction [7]. They

generated a single center-based solution by using the top 10% of population members.

Although there was only one center-based candidate solution in the population, they

showed that it can enhance the performance of the parent algorithm. Frequently, the

center-based solution was better than the best solution in the population. Since this pro-
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posed scheme showed effectiveness, it motivated us to inject more center-based solutions

in the current population of some population-based algorithms, such as DE, GA, PSO,

and their variants. Furthermore, the extended multi-objective version of the scheme is

proposed in this thesis. In the literature, a center-based sampling scheme that uses a clus-

tering algorithm to cluster population during optimization is the first attempt to boost

the acceleration of population-based algorithms; however, researchers have utilized other

center-based sampling schemes for different stages such as population initialization and

mutation where they are specially designed to solve large-scale optimization problems.

The main goals of this thesis are as follows:

1. Detailed investigation on properties of problems and population-based algorithms.

2. Detailed study on the backbone of center-based strategy.

3. Proposing center-based sampling scheme with clustering algorithm for population-

based algorithms, for single-, multi-, and many-objective optimization.

4. Conducting comprehensive case studies in single-, multi-, and many-objective op-

timization algorithms selected from various algorithm families for the proposed

center-based sampling strategy.

5. Investigating parameter settings sensitivity for the proposed algorithm.

The study focuses on ”how” and ”when” to utilize population-level-based center-based

sampling on single- and multi-objective optimization algorithms.

1.2 Objectives

The thesis aims to utilize the center-based sampling concept to enhance population-

based single-, multi-, and many-objective optimization algorithms. In this direction,

the proposed schemes would be at the population level, which means they should be
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search component/operation independent. Further, working on decision space is hard as

it can be increased exponentially, and the objective of this thesis is to avoid clustering in

large-scale dimensions and do it on objective space, which is limited. To this end, this

method would be applicable to any large-scale dimensional problem with single or many

objectives.

1.3 Thesis Outline

This thesis consists of five chapters and appendices, which are organized as follows:

Chapter 2 presents a background review that has relevance to the research, includ-

ing the concept of center-based sampling and enhanced optimization algorithms by the

center-based sampling strategies in various novel ways. In addition, this chapter pro-

vides an introduction and background review of single-objective population-based algo-

rithms such as the Differential Evolution (DE), Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), Artificial Bee Colony (ABC), and Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) algorithms. In addition, this chapter provides an introduc-

tion to the multi-objective population-based algorithms, namely, Non-dominated Sorting

Genetic Algorithm II (NSGA-II) and III (NSGA-III), Multiobjective Evolutionary Al-

gorithm based on Decomposition (MOEA/D), Strength Pareto Evolutionary Algorithm

2 (SPEA2), Multi-objective Particle Swarm Optimization (MOPSO), and Generalized

Differential Evolution 3 (GDE3).

Chapter 4 proposes a novel center-based sampling strategy for single-objective op-

timization algorithms and investigates its effectiveness through a series of experimental

analyses.

Chapter 5 proposes a novel center-based sampling strategy for multi- and many-

objective optimization algorithms and investigates its effectiveness through a series of

comprehensive experimental analyses.
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Chapter 6 outlines the contribution of the thesis and suggests future research di-

rections. Finally, a specification of the benchmark functions used in the experiments is

provided in the appendices.



Chapter 2

Background Review

2.1 Meta-heuristic Algorithms

Meta-heuristic algorithms are a class of optimization algorithms that are designed to

find good solutions to complex optimization problems, particularly when traditional op-

timization techniques may not be effective or efficient. These algorithms are not problem-

specific but general-purpose, meaning they can be applied to a wide range of optimization

problems.

Extensive search is impracticable when the problem size grows exponentially in the

search space [8]. Traditional optimization algorithms, such as greedy algorithms, necessi-

tate a number of assumptions that are difficult to verify in many circumstances. In order

to address these limitations, a set of more versatile and elastic algorithms, called meta-

heuristic algorithms, has been proposed recently. Meta-heuristic algorithms are often in-

spired by natural phenomena, where a population of candidate solutions evolves towards

finding an optimal solution through iterative processes. In the literature, meta-heuristic

search algorithms with population-based frameworks have demonstrated adequate ability

to solve high-dimensional optimization problems, including Genetic Algorithm (GA) [9],

Ant Colony Optimization (ACO) [10], Particle Swarm Optimization (PSO) [11], Arti-

6
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ficial Bee Colony (ABC) [12], Differential Evolution (DE) [13], Imperialist Competitive

Algorithm (ICA) [14], and Gravitational Search Algorithm (GSA) [15].

2.2 Center-based Sampling

Sampling candidate solutions over the problem landscape is a common strategy in opti-

mization and search algorithms, particularly in the context of meta-heuristic algorithms.

This process involves generating a set of potential solutions to an optimization problem

from different regions or points in the solution space. In other words, sampling is a fun-

damental component of search and optimization algorithms that guarantees the search

process is not limited to a specific area but rather covers a wider range of possibilities.

Finding good or optimal solutions requires exploring many regions of the solution space,

which is especially important in high-dimensional and difficult optimization issues.

Rahnamayan and Wang [6] proposed a center-based sampling strategy to investigate

the probability of closeness to an unknown solution for a center point and a uniform

random point. By using Monte-Carlo simulation, they measured the Euclidean distances

of the points to the unknown solution for dimensions D = 1, 2, ..., and 1000 [16]. On

the hypercube diagonal, they generated uniform distributed points with 10−3 step-size

to compute the probability of closeness to an unknown optimum solution in a black-box

problem. For each dimension Di = 1, 2, ..., D, they measured the Euclidean distance of

the fixed-point x and the generated uniform random point called a solution. After updat-

ing the acceptable distance variable based on the smallest distance value for calculating

the probability of closeness and the average distance, they discovered an increment in

the probability of closer points to an unknown solution towards the center of the search

space, but as an opposite way, when it is compared to a uniformly generated random

point, this probability decreases.

To formulate the center of interval [a, b] for D = 1 dimension , the following equation
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Figure 2.1: The visualization of uniform-random point x and the unknown solution s in
the interval [a, b] where c indicates corresponding the center of search space as c = (a+b)

2

on dimension D = 1.

Figure 2.2: The visualization of a random point is closer to the unknown solution than
x and x̂. The k1 and k2 are the centers of intervals [x/x̂, r] and [r, x/x̂.

is used:

For D = 1:

c =
(a+ b)

2
(2.1)

And, Figure 2.1 simulates the location of points in dimension D = 1 space.

For D = n:

ci =
(ai + bi)

2
(2.2)

Where i = 1, ..., n and D is the dimension of the problem’s search space.

Their simulation findings showed that the chance of the center point being near an

unknown solution grows significantly as the dimension increases. The fascinating fact is

that the likelihood of being close to the answer grows as the problem’s size increases,

approaching virtually one for the higher dimensions as demonstrated in Figure 2.3.

Rahnamayan et al. [17] provided an understandable explanation of why the opposite

of a candidate solution based on the search space’s center outperforms a random point

in terms of proximity to an unidentified solution. They considered the interval for one-

dimensional space, which is bounded by [a, b] and has a center point c, as seen in Figure

??. By assuming the random solution x ∈ [a, c], and its opposite solution x̂ ∈ [c, b] the

average values of x and the opposite, x̂ are located in the center of the sub-intervals [a, c]
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Figure 2.3: The graphs of Monte-Carlo simulations which present the probability of
closeness of candidate-solution to an unknown solution in the interval [a,b], for different
dimensions [6]

and [c, b], respectively. The average of both random guesses will be located at r̂ = c. As

a result of considering these mean values, they confirmed that a uniformly distributed

solution s ∈ [a, b] will (on average) be closer to the independent randomly generated

points within the region [k1, k2], where k1 and k2 are the centers of intervals x/x̂, r and

[r, x̂/x]. In fact, they explained the power of opposition-based searching resulted from

the power of center-based sampling.

Regardless of the type of distance measurement, the probability of closeness of a ran-

domly selected candidate solution in the shrunk region to an unknown solution increases

compared to a candidate solution in the whole space. For instance, Fig. 2.4a a shows

the probability of dimension 50 reaching one from the starting point 0.30 of the region

for the Euclidean distance. On the other hand, the probability of dimension 50 reaches

one from the starting point 0.52 and 0.36 of the region for Manhattan distance 2.4b and

Cosine dissimilarity Figure 2.4c; respectively. Therefore, the probability of the Euclidean
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(a) Euclidean distance (b) Manhattan distance (c) Cosine distance

Figure 2.4: The graphs of Monte-Carlo simulations present the probability of closeness
of candidate-solution in a region around the center with different sizes to an unknown
solution and three various distance measures.

distance rises faster in comparison with the Manhattan distance and Cosine dissimilarity

[1].

The previously mentioned cases can be extended to worse cases when the solution is

located: 1) on the border or 2) on the corner of the search space. They realized that the

probability of center-point closeness to the solution on the corner of the search space can

be increased exponentially as the dimensions increase linearly. This means that centroids

are beneficial to be included when the size of the search space is immense. Further to this

theory, they provided a Monte-Carlo simulation which shows the probability of candidate

solution closeness to centroid region with different sizes to the solution that is located on

the corner in Figure 2.5.

2.2.1 Center-based Sampling in Mutation Operation

Many papers have recently concentrated on improving the mutation and crossover oper-

ations of evolutionary algorithms. Center-based sampling is a novel technique that can

be utilized in various evolutionary algorithms (e.g., GA, DE, PSO, etc). Tsutsui and

Ghosh [18] proposed a center of mass crossover operator (CMX) in 1998. The study

investigates the impact of multi-parent recombination in real-coded genetic algorithms.

Real-coded genetic algorithms are optimization methods that use real-valued variables

to represent candidate solutions. To produce new offspring, genetic algorithms often use
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Figure 2.5: The graphs of Monte-Carlo simulations present the probability of closeness
of candidate-solution in a region around the center with different sizes to the worst-case
solution in the corner, in different dimensions.

two-parent crossover operators. However, this study introduces and explores multi-parent

recombination operators, which involve more than two parents in the breeding process.

In another study, Fan et al. created a new mutation operation which is Trigonometric

Mutation Operation (TMO) algorithm. The base vector in the mutation operator is the

center point of the geometric triangle. Thus, the mutation operation is defined as:

Vi,G+1 =

(
xr1,G + xr2,G + xr3,G

3

)
+

(p2 − p1) · (xr1,G − xr2,G)+

(p3 − p2) · (xr2,G − xr3,G)+

(p1 − p3) · (xr3,G − xr1,G)

(2.3)
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where r1 ̸= r2 ̸= r3 ̸= i and the parameters p1, p2, p3 are defined as follows:

p1 =
|f(xr1 , G)|

p′

p2 =
|f(xr2 , G)|

p′

p3 =
|f(xr3 , G)|

p′

p
′
= |f(xr1 , G)|+ |f(xr1 , G)|+ |f(xr1 , G)|

(2.4)

In another study, Sharma et al. proposed a geometric centroid-based mutation for

the Shuffled Frog-Leaping Algorithm (CM-SFLA) [19]. With a probability parameter of

CM, this technique uses a geometric centroid mutation (GCM). If the probability CM

becomes greater than the random number in the range of 0 and 1, the basic frog position

is calculated; otherwise, the new frog position is calculated by the following equation:

Di,G =

(
Xmin,G +Xr1,G +Xr2,G

3

)
+ rand(0, 1) · (Xb,G −Xw,G) (2.5)

where Xr1,G, Xr2,G are random frogs distinct and different from best and current frogs,

and Xmin,G is the best frog with respect to fitness value.

The DE algorithm is a successful evolutionary algorithm used to solve large-scale

optimization problems. In recent years, a number of substantial improvements to the

DE have been put forth, one of which is a variation with modified main operators (i.e.,

mutation and crossover). Despite the success of center-based sampling, the mutation

operator in DE was enhanced in terms of convergence rate and solution accuracy. In

2017, Hanan et al. [20] proposed a mutation scheme by replacing a randomly selected

solution as the base vector with the center of three randomly selected solutions. First,

the average of three randomly selected solutions for each dimension j are computed as

follows:

µ =
xi1 + xi2 + xi3

3
(2.6)
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Then, the standard deviation σ for each dimension j is computed as follows:

σ =
maxj −minj

6
(2.7)

where maxj and minj are maximum and minimum values in the current population for

dimension j.

The following equation shows the proposed center-based mutation function:

vi = N (µ, σ) + F · (xi4 − xi5) (2.8)

where N (µ, σ) shows the sampled solution from normal distribution by µ and σ variables.

They showed impressive results against the classic DE on CEC-2013 Large-Scale Op-

timization Problems (LSGO) for dimension D=1000 by winning all 15 functions.

Later, in 2009, Hanan et al. [21] proposed five dynamic versions of the previously

proposed center-based mutation scheme. The common proposed idea is dynamically

changing the size of participants in the generation of center-based base vector over the

optimization. Based on the provided results on CEC-2013 LSGO benchmark functions,

the best scheme is Scheme 1, winning 14 out of 15 functions, which is described by apply-

ing 100% of the population at the beginning of optimization to be decreased gradually

in the size of participants from the population based on the following equation:

DEcpop = NP − round(
iter

MAXNFC

×NP ) (2.9)

where DEcpop is the size of randomly selected population members for center-based base

vector computation.

In addition, Hanan et al. [22] tried utilization of center-based base vector in the

Success-History Based parameter Adaptation Differential Evolution (SHADE) algorithm,

which is the winning scheme in the CEC-2013 LSGO competition. They evaluated their
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proposed Center-based SHADE (CSHADE), resulting in 15 out of 20 wins on CEC-2010

and 10 out of 15 wins on CEC-2013 benchmark functions against the SHADE algorithm

for D = 1000 dimensions.

In the literature, the center-based sampling was primarily conducted in multi-objective

optimization problems by Hanan et al. [23]. They proposed a new mutation operator

based on center-based sampling for the Generalized Differential Evolution 3 (GDE3)

algorithm to solve multi-objective problems. Their presented experimental results on

IGD measurements for the comparisons between GDE3 and the proposed Center-based

GDE3 (CGDE3) on the CEC-2017 MaF benchmark problems show an acceptable study

in multi-objective problems. Specifically, when the dimensions in multi-objective opti-

mization increase exponentially, the proposed center-based mutation scheme increases

the convergence rate in a limited function call budget.

In summary, the center-based mutation utilized in population-based algorithms in-

creases the opportunity to explore more promising regions in large-scale problems regard-

less of whether the objectives are single or multiple.

2.2.2 Center-based Sampling at Population Level

In this section, center-based sampling is investigated at the population level. The

centroid-based population initialization for the DE algorithm’s micro version was pro-

posed by Salehinejad and Rahnamayan [24]. With this technique, they started the popu-

lation inside a center percentile of the boundaries a and b. In Figure 2.6, a centroid region

of selected boundaries in a 2D search space (light grey square) is highlighted by a dark

grey square showing the reduced search space to enhance DE algorithm for large-scale

problems. Two terms x̄min
d and x̄max

d represent the lower and upper boundaries of the

centroid interval which are calculated as:

x̄min
d = x̄min

d +
1− C

2
(xmax

d − xmin
d ) (2.10)
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and

x̄max
d = x̄max

d − 1− C

2
(xmax

d − xmin
d ) (2.11)

where C is the chosen centroid segment from the entire interval (0, 1). They declared a

center-based population in a small size to enhance the performance of the classical DE

algorithm for large-scale problems.

Figure 2.6: On a two-dimensional search space, centroid boundaries. D1 and D2 stand
for dimensions. The initial boundaries of the dimensions are indicated by the light grey
square that represents the original search space. The centroid region refers to the centroid
bounds of the dimensions (dark grey square). [24]

Mousavirad et al. proposed a center-based Latin Hypercube Sampling (LHS) initial-

ization of the population using Opposition-Based Learning (OBL) DE [7]; the aim was to

tackle deceptive optimization problems. LHS is a statistical technique for producing ran-

dom samples from a multivariate distribution. In order to combat landscape deception,

this research combines a modified LHS and OBL with a differential evolution method.

The outcomes attest to the proposed algorithm’s higher performance than the classical

DE.

In another similar work on PSO proposed by Mousavirad and Rahnamayan [25],

a new component was added to the velocity operation, which is called the center of
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gravity factor. The new factor improves both exploration and exploitation at the same

time since it is based on the center of some randomly chosen candidate solutions in the

present population.

A hybridization technique on local search center-based sampling was applied to the

DE algorithm by Xu et al. [26]. They calculated the centroid of top Q individuals from

the sorted population of size NP as:

XC =

Q∑
i=1

Xi

Q
(2.12)

The difference between NP and Q was then calculated as (NP − Q), which produced

the new individuals. The initial population for the DE method was created by merging

the NP −Q and top Q individuals. This work motivated Khanum et al. [27] to propose

a centroid population initialization in which 3 × NP (i.e., population size) number of

individuals are generated randomly, and then a new population is created based on an

average of three individuals as the initial population.

Furthermore, Mousavirad and Rahnamayan [28] proposed a method to employ center-

based sampling at the population level of DE. They used the center of the entire popu-

lation as a new individual to inject into the population at the end of each iteration. The

experiments represent that the center-point could effectively direct the whole population

towards better candidate solutions.

2.3 Single-objective Population-based Algorithms

2.3.1 Differential Evolution Algorithm

The Differential Evolution (DE) algorithm is regarded as an effective method for solving

challenging optimization problems. In 1995, Price and Storn proposed DE as a robust

stochastic population-based evolutionary algorithm in which its efficiency has been tested
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Figure 2.7: The flowchart shows how Center-based sampling has contributed to evolu-
tionary algorithms in the literature.

on various large-scale and real-world problems [29]. Briefly, DE has three control parame-

ters; population size NP , mutation scale factor F , and crossover rate CR, which directly

impact the performance of the algorithm, and their optimal values are problem oriented.

The initial stage of DE begins with uniform random population initialization. Following

that, the main iterative optimization procedure starts with mutation and crossover oper-

ators to generate new candidate offspring solutions based on parents. Then, the greedy

selection operator compares the parent and the candidate offspring solution to select the

surviving individual for the next generation. After reaching the maximum number of

function evaluations, DE returns the best solution found based on objective value.

2.3.2 Genetic Algorithm

Genetic algorithm (GA) is a meta-heuristic method inspired by natural evaluation theory

commonly used to search for the optimal solution using an iterative process to discover

the best solution. It falls under the broader category of evolutionary algorithms, which

mimic the process of natural selection to search for optimal solutions. Originally intro-

duced by John Holland [30] in the 1970s and further developed by other researchers,
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Genetic Algorithm has found applications in various fields, including engineering, com-

puter science, finance, biology, and more [9].

The fundamental principles of Genetic Algorithm are rooted in the concepts of evolu-

tion, inheritance, and selection. The algorithm emulates the process of evolution through

a population of potential solutions to a given problem. These solutions, often represented

as individuals or chromosomes, are analogous to the genetic makeup of living organisms.

In Genetic Algorithm, each potential solution to the problem is encoded as a chromosome

composed of genes, which can take various forms depending on the nature of the prob-

lem. Common representations include binary strings, real-valued vectors, permutations,

or any other suitable data structure. The choice of encoding has a significant impact on

the algorithm’s efficiency and the quality of the results.

The optimization process begins with the creation of an initial population. An initial

population includes candidate solutions, which are represented as chromosomes. The

individuals are initially generated using random permutations representing a potential

order of features. A fitness function then evaluates the corresponding chromosomes to

determine how well the solution meets specified conditions in the optimization problem.

The better an individual’s fitness value, the more favorable it is considered over the gen-

eration to be utilized as the parent. The core principle of natural selection, survival of

the fittest, guides the selection process in Genetic Algorithm. Individuals with higher fit-

ness values are more likely to be selected for reproduction, which increases their chances

of passing their genetic genes (i.e., decision variables) to the next generation [31]. The

parents are chosen by the “rank selection” or “tournament selection” method. Rank

selection sorts the population according to fitness values and finds their ranks. Subse-

quently, according to the rank, each chromosome receives a selection probability, which

is used to choose the parents. Pairs of selected individuals are chosen to create offspring

by combining their genetic information. Crossover operators are applied to exchange

genetic material between parents, producing one or more offspring. The goal is to create
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offspring with traits inherited from their parents. Some individuals in the new generation

undergo random changes in their genetic information, mimicking genetic mutations in

biological evolution. Mutation introduces diversity into the population and helps prevent

convergence to suboptimal solutions.

Genetic Algorithms possess several advantages, including their ability to handle com-

plex and multimodal problems, their adaptability to various problem domains, and their

parallelizable nature, allowing for efficient implementations on modern computing archi-

tectures. The algorithm finds applications in numerous fields, such as parameter opti-

mization, scheduling, engineering design, financial modeling, data mining, and machine

learning, among others. It has been successfully employed in real-world scenarios where

traditional optimization methods face challenges or are infeasible to be utilized.

2.3.3 Particle Swarm Algorithm

In contrast to evolutionary computation techniques, Kennedy and Eberhart [11] designed

a novel algorithm by simulating social behavior called the Particle Swarm Optimization

(PSO) algorithm that resembles a school of fish or flying birds in 1995. This method

iteratively improves a population of candidate solutions (i.e., particles) by moving around

the search space based on the particle’s position and velocity. PSO is a gradient-free

optimization algorithm, which gives the ability to search very large spaces and makes

it robust not to be stuck in local optima. Particles are able to share information with

each other by using an embedded mechanism called velocity. Each particle remembers its

best-known position (i.e., Pbest) in its memory as well as the entire best-known particle

position (i.e., Gbest) saved in the shared memory for all particles. The velocity of each

particle is randomly initialized and updated based on two vectors, Pbest and Gbest,

during optimization as follows:

vit+1 = ω × vit+1 + c1 × r1(Pbestit − xi
t) + c2 × r2(Gbestt − xi

t) (2.13)
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where t represents the current iteration, xi
t is the position of i-th particle in the t-th

iteration, Pbestit shows the Pbest for the i-th particle and Gbestt is the Gbest in the t-th

iteration. The two terms, r1 and r2, are randomly generated vectors in the interval of

[0, 1], and c1 and c2 are two learning coefficients which are called “self-cognitive” and

“social-learning parameters”, respectively. Another term to balance the global and local

search is inertia weight ω proposed by Shi and Eberhart [32] to enhance the initial version

of PSO in 1998.

A new position of particles is updated based on the updated velocity as follows:

xi
t+1 = xi

t + vit+1 (2.14)

Figure 2.8 illustrates updating particle positions based on mentioned equations.

Figure 2.8: Vector-based view of particle position updating in PSO algorithm. The
inertia factor is the first part to the right of Eq. 2.13, and the second and third part to
the right of Eq. 2.14 is called cognitive factor and social factor, respectively.

2.3.4 Artificial Bee Colony Algorithm

A well-known meta-heuristic method called the Artificial Bee Colony (ABC) optimization

algorithm was motivated by the foraging habits of honey bees. ABC belongs to swarm

intelligence algorithms and was presented by Karaboga in 2005 [12].



Chapter 2. Background Review 21

ABC algorithm simulates the foraging behavior of bees, where bees search for food

sources and transfer their findings to other bees within the same colony. The algorithm

maintains a population of artificial bees, which represents potential solutions to the

optimization problem. These artificial bees explore the search space and update their

positions based on their fitness values.

The ABC consists of three main entities as follows: employed bees, onlooker bees, and

scout bees. Firstly, a uniform randomly generated population of employed bees is created.

Each employed bee explores a solution in the search space by exploiting the information

from the current best solutions. Then, the employed bees communicate their findings to

the onlooker bees. The onlooker bees are responsible for selecting a solution with respect

to the probability proportional to its fitness value. After evaluating the selected solution,

ABC decides to update its position if the fitness is improved. In another explanation,

this process allows the algorithm to concentrate on promising regions in the search space.

Lastly, if the neighborhood of food source has been explored enough, it is abandoned,

meaning the bee exceeds a predefined number of iterations without improvement; it

becomes a scout bee and explores new solutions random. Until the optimization reaches

the maximum number of function calls, the ABC dynamically balances exploration and

exploitation to efficiently search the search space.

2.3.5 Covariance Matrix Adaptation Evolution Strategy

A novel evolutionary algorithm optimization motivated by derandomized evolution strat-

egy is Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [33, 34]. This algo-

rithm optimizes an objective function by sampling λ candidate solutions from a multi-

variate normal distribution [35]. This strategy derives µ solutions from the λ solutions

to adaptively predict the local covariance matrix of the objective function, resulting in a

higher engagement chance of successful samples in further iterations. At iteration t, the

CMA-ES algorithm generates new λ candidate solutions by adding a random Gaussian
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mutation defined by a covariance matrix Ct according to

xt+1
k = N (mt, σt2Ct) = mt + σt · N (0, Ct), (2.15)

where mt denotes the mean of sampled random normal distribution, σt is the mutation

factor [36]. The λ samples are evaluated based on the objective function and ranked. In

the next step, the weighted mean m is updated according to the following equation

mt+1
i = mt

i +
1

λ

λ∑
i=1

(xt+1
k −mt

i), (2.16)

and, the next generation of evolution route Rc is updated according to the following

equation:

Rt+1
c = (1− oc)R

t
c +

√
oc(2− oc)µef

σt
(mt+1 −mt), (2.17)

where oc is a weight coefficient in the range of [0,1], µef is the variance efficient, and σ is

the step size, and the covariance matrix C is updated as follows:

Ct+1 = (1− o1 − oµ)C
t + o1R

t+1
c (Rt+1

c )T + oµ

λ∑
i=1

ωjy
t+1
j (yt+1

j )T (2.18)

where o1 and oµ are the covariane matrix learning rates in rank-1 and rank-µ, respectively.

ωi is the weight coefficient for individual xi, and yt+1
j =

(zt+1
j −mt)

σt is variation step size

[37]. Furthermore, the evolution route Rσ and global step size σ are updated according

to following equations:

Rt+1
σ = (1− oσ)R

t
σ +

√
oc(2− oc)µef

σt
· (Ct)−

1
2 · (mt+1 −mt) (2.19)

σt+1 = σt · e
oσ ·R

σt+1
dσ ·EN (0,I)

− oσ
dσ (2.20)



Chapter 2. Background Review 23

where oσ is the learning rate of Rσ, dσ is the damping parameter, and EN (0, I) is the

Euclidean parametric expectation of a random vector that follows normal distribution

N (0, I).

2.4 Multi-objective Population-based Algorithms

2.4.1 Non-dominated Sorting Genetic Algorithm II

The NSGA-II algorithm modified the Non-dominated Sorting Genetic Algorithm (NSGA)

that is inspired by the GA algorithm to solve multi-objective problems. NSGA-II was

introduced by Deb et al. [38] to address its predecessor, NSGA, limitation by a crowding

distance sorting mechanism to maintain diversity and improve convergence. This mecha-

nism ensures that candidate solutions from crowded regions are less likely to be selected.

Similar to GA, NSGA-II has its own crossover and mutation operators. The simulated

binary crossover and polynomial mutation generate new offspring, and then the tourna-

ment is used as the selection operation to choose the next surviving individuals for the

next generation. The simulated binary crossover (SBX) combines the decision variables

of two parent solutions to produce a new offspring solution using a probability ratio. SBX

takes a single randomly selected point to crossover between each decision variable and

generates two offspring solutions based on the distance between the parent solutions at

that variable. With the help of probability distribution, generating the offspring solutions

depends on a parameter called the distribution index, which controls the spread of the

solutions. The effect of high distribution indexes is to have more diverse solutions from

the parent solutions, and low distribution indexes can close the gap between offspring

and parent solutions. In general, SBX is designed to make a balance in exploration and

exploitation in search space and maintain diversity in the population. The polynomial

mutation operator is like the mutation operator in GA, which is designed to perturb the

decision variables with a small change to maintain the feasibility of the solution. Polyno-
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mial mutation works by randomly selecting and perturbing a decision variable based on

a polynomial distribution which is controlled by a perturbation magnitude index. The

mutation index can help optimization algorithms converge faster if it sets to a low value,

whereas a high value can increase the effectiveness of exploration in the search space.

Finally, the tournament selection is used to pick N individuals from the population. The

tournament is meant to make a competition between two individuals based on the front

rank. If two individuals share the same rank, the individual with the higher crowding

distance is selected.

2.4.2 Non-dominated Sorting Genetic Algorithm III

In this section, an extension of the previous study, NSGA-II, is discussed for solving

multi-objective optimization problems. Whereas NSGA-II was a successful algorithm for

addressing multi-objective problems, it shows drawbacks when the number of objectives

increases to 5 or higher. To address this issue, Deb and Jain proposed the third version of

NSGA, known as NSGA-III, in 2014 [39]. The fundamental components, such as crossover

and mutation operators of the NSGA-III, are similar to the NSGA-II algorithm; however,

the selection operator improved and became more practical. After generating the new

population Pt from the last population Qt by crossover and mutation operators, the

selection mechanism is invoked to find the best members from the combined population

Rt = Pt ∪ Qt based on non-dominated sorting algorithm. Considering St is the selected

population by a non-dominated sorting algorithm. If the size of St is greater than the

number of population NP , NSGA-III uses reference points that are used to select the

Pareto front Fl. In the original NSGA-III, they studied Das and Dennis’ [40] algorithm

to generate these reference points.

The proposed selection mechanism modifies the last step in the selection operator

in the NSGA-II, which finds the solutions that have the largest crowding distance to

remove extra members. Primarily, the calculated objective values for each member are
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adaptively normalized based on members in St set. Secondly, each reference point on the

hyper-plane is connected to other reference points to create reference lines. Thirdly, all

population members of St and Fl are associated with a reference point whose reference

line is shorter to a member than other lines. Then, the number of associated members

that are associated with each reference point is counted. If any of the reference points

remain non-associated with members, then the solution with the smallest perpendicular

distance (Euclidean) in the normalized objective space survives. On the other hand, if all

the reference points are associated with at least one of the members in Fl, the selection

of remaining members is done randomly. Until the target population number is attained,

this process is repeated.

2.4.3 Multi-objective Evolutionary Algorithm based on Decom-

position

In this section, the MOEA/D algorithm is reviewed, which was proposed by Zhang and Li

in 2007 [41]. Decomposition is a basic strategy that breaks down M -objective optimiza-

tion problem into µ single-objective optimization sub-problems using a set of uniformly

distributed weight vectors W = {W 1, ...,W µ} and optimizes them simultaneously. The

fundamental operators to generate a new child is similar to other evolutionary algorithms

such as GA where a child is generated by crossing two parents and mutating if necessary.

The selection is performed to replace the population members and offspring to find a

new optimal set. A predefined scalarizing function g is calculated to give each solution a

value. If an individual xj is compared with child ui according to g based on the weight

vector wj and the child ui has better g, xj is replaced by ui. Although there are several

scalarizing functions that were studied in MOEA/D, in this study the PBI function as

gPBI is investigated, which is defined as follows:

gPBI(x|w, z∗) = d1 + θd2, (2.21)
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where d1 equals to:

d1 =
∥(f(x)− z∗)Tw∥

∥w∥
, (2.22)

and d2 equals:

d2 = ∥f(x)− (z∗ + d1
w

∥w∥
)∥, (2.23)

The scalarizing function gPBI should be minimized to find better solutions in terms

of z∗ = (z∗1 , ..., z
∗
M)T , which is the ideal point. Due to it being difficult to find the exact

ideal point z∗ of a given MOP, its approximated point, which consists of the minimal

function value for each objective fi(i ∈ {1, ...,M}), determined throughout the search

process, is typically utilized for the calculation of the scalarizing function gPBI . In Eq.

(2.22) and (2.23), the terms d1 and d2 refer to the perpendicular distance between the

objective function vector f(x) and w, respectively. The product of d1 and d2 is the

value of the PBI function determined by Equation (2.21). The balance between the

population’s diversity (d2) and convergence (d1) is controlled by the penalty parameter

θ > 0. A significant number highlights the value of population variety, whereas a lower

value promotes convergence toward the PF [42].

2.4.4 Strength Pareto Evolutionary Algorithm 2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is a multi-objective optimization

algorithm widely used to solve complex optimization problems with multiple conflicting

objectives. It is an improved version of the original SPEA algorithm [43]. Like other

MOO algorithms, the main goal of SPEA2 algorithm is to find a set of solutions that

results in the Pareto-optimal front. In other words, it seeks to find a set of solutions

that achieve a good trade-off between the different objectives. The main components of

SPEA2 are motivated by genetic algorithms to generate new candidate solutions such

as selection, crossover, and mutation. The selection process is based on the concept of

”strength.” The term strength measures how well a solution performs compared to other
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solutions in the population. If a solution gets stronger, there is a higher probability of be-

ing selected as a candidate for the next generation. By generating new solutions, SPEA2

needs to evaluate the quality of each solution by considering both the objective values

and the density of the solution in the objective space. In other words, solutions with

better objective values and a lower density of neighboring solutions are assigned higher

quality scores. In addition, SPEA2 employs an archive mechanism to maintain diversity

in the population which results in effective exploration in space. The archive maintains

the algorithm’s greatest discoveries made during the optimization phase by storing the

non-dominated solutions so far discovered. By iteratively repeating the process of gener-

ating new solutions, evaluating their fitness, and updating the archive, SPEA2 gradually

improves the quality of the solutions and converges towards the Pareto-optimal front.

In conclusion, SPEA2 is a multi-objective optimization algorithm that uses fitness as-

signment, genetic operators, and an archive mechanism to identify a group of solutions

that reflect the Pareto-optimal front. It gives a wide range of solutions for making deci-

sions in complex optimization problems while balancing the trade-off between competing

objectives.

2.4.5 Multi-objective Particle Swarm Optimization

The concept of MOPSO is similar to the PSO algorithm used in solving single-objective

optimization problems. It works by initializing a population of particles, where each par-

ticle represents a potential solution in the problem space. These particles move through

the search space by adjusting their positions and velocities based on their own experiences

and the experiences of their neighboring particles. The velocity update is influenced by

the personal best position (Pbest) of each particle and the best position (Gbest) among

all particles in the population. Since the problem has several objectives where all need

to be optimized simultaneously, Coello Coello and Lechuga [44] proposed the idea of

Pareto dominance to decide a particle’s flight path, and it preserves previously discov-
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ered non-dominated vectors in a global repository that is subsequently used by other

particles to influence their own flight. Particles search the search space as the iterations

go on and move closer to the Pareto front. Through the course of optimization, the

algorithm strives to keep a diverse set of non-dominated solutions. This is accomplished

by employing strategies like crowding distance, which assesses the density of solutions in

the objective space and directs particle motion toward uncharted territory.

2.4.6 Generalized Differential Evolution 3

Generalized Differential Evolution 3 (GDE3) is an evolutionary algorithm used for global

optimization problems. This algorithm is an extension of the popular Differential Evo-

lution (DE) algorithm with M objectives and K constraints, which was designed by

Kukkonen and Lampinen to solve multi-objective optimization problems in 2005 [23]. As

GDE3 is extended from DE, the fundamental evolutionary components of the algorithm

are similar. The selection strategy is similar to the previous version GDE2 except in the

following: 1) Applying constraints amid the selection process; 2) None of the solutions

can dominate the other. Therefore, the selection in GDE3 obeys the following conditions:

The new vector is chosen if it dominates the old vector in the space of constraint vio-

lations, and the old vector is chosen if both are infeasible solutions. The feasible vector

is chosen if only one of them is a viable option. The dominant vector is chosen for the

following generation if both are practical. The non-dominating situation chooses both

vectors. Exceptionally, the number of generated population exceeds the previous gen-

eration’s population, which needs domination. In this case, a similar selection strategy

to the NSGA-II algorithm is conducted using the non-dominated sorting algorithm and

crowding distance measurement.
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In this section, first, the proposed Clustering Center-based Sampling for single-objective

is presented and explained in detail. Secondly, the CEC-2017 benchmark problems are

reviewed and provided with their parameter setting. Thirdly, five case studies of five

meta-heuristic population-based algorithms are tested to enhance the comparing algo-

rithm. In the first case, the clustering center-based DE algorithm is proposed to indicate

the effectiveness and efficiency of the proposed center-based sampling at the population

level. In the second case, enhancing the PSO algorithm, another successful population-

based algorithm with the proposed center-based strategy is proposed. In the third case,

the oldest and foremost version of population-based algorithms, the GA, is investigated.

In the fourth case, clustering center-based in the ABC algorithm is examined. Finally,

the combination of center-based sampling strategy and CMA-ES algorithm is examined

for the first time.

3.1 Introduction

Single-objective population-based algorithms are widely recognized as effective optimiza-

tion methodologies that have demonstrated success in tackling a range of practical op-

timization challenges. These algorithms predominantly function as meta-heuristic tech-

niques designed to navigate intricate search spaces. Their principal objective revolves

around the efficient exploration of the search space, aimed at identifying optimal solutions

within predefined temporal constraints. The primary challenges associated with single-

objective population-based algorithms encompass the tendency to prematurely converge

towards local optima due to a depletion of population diversity during initial optimization

stages ??, coupled with their characteristic gradual convergence rate.

Real-world single-objective problems refer to practical optimization challenges that

involve the quest for a single optimal solution within a given context. These problems

arise in various domains, such as engineering, finance, logistics, and beyond [45, 46].
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In general, the objective of a problem is to maximize or minimize a single measurable

parameter, often representing a desired outcome or performance metric. The goal is

to find the best configuration or arrangement of variables, parameters, or resources to

achieve the desired outcome while considering real-world constraints, limitations, and

complexities. Solving real-world single-objective problems entails identifying the most

favorable solution from a multitude of possibilities, taking into account the intricacies

and intricacies specific to the domain and problem at hand [47].

3.2 Proposed Clustering Center-based Sampling in

Single-objective Population-based Algorithms

In this section, a center-based sampling mechanism is proposed for the population-based

algorithms to improve the exploration and exploitation capabilities. The idea of center-

based sampling is used to generate new individuals and correspondingly improve the

quality of the population in each generation. In the direction of objective values, the

algorithm finds a fixed number of clusters NC from the current population or recently

generated offspring based on fitness values F . In other words, the new center-based solu-

tions are the center of candidate solution variables X in clusters on D dimensions. This

technique has a benefit on clustering since it can be extended into the entire population

based on a single metric rather than the entire search space with D dimensions. Ac-

cordingly, the proposed sampling strategy divides the population into a constant number

of smaller clusters where the distance of candidate solutions in a cluster is the shortest

based on their fitness value. There are many clustering techniques that could find the

samples closest to each other such as K-means algorithm; however, a much more basic

strategy could be done, which is discussed as follows.

Taking into account there is a given parameter, NC, as the number of clusters (or

center-based solutions) in a population with NP number of individuals, whereas NC
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Figure 3.1: Illustrating an example of generating the clusters after sorting candidate
solutions based on their fitness value in the population.

must be smaller than NP (NC < NP ). The population is only generated by uniform

randomly generated NP −NC candidates in D search space dimensions. The next step

is to augment the population to build NP by adding NC candidate solutions which are

the gravity centers of the NC clusters. Before the clustering, the population is sorted

based on their single fitness values in ascending order. The sorted order of individuals

needs to be saved in the population, similar to the ranking selection operator in GA.

In this direction, NC number of clusters with equal size of individuals are recognized.

Specifically, a cluster would consist of SC =
⌈
NP−NC

NC

⌉
number of individuals so that

the first cluster consists of SC top-rank candidate solutions. Each cluster is in charge

of injecting a new individual into the current population. Hence, the center of the ith

cluster (i.e., xCi
) is calculated as follows to be considered as a new individual.

−→xCi
=

∑SC

n=1
−→xn

SC

(3.1)

where −→xn is the nth member of cluster ith. More precisely, the gravity center of all

cluster members is computed to be considered as the variable of xCi
. Fig. 3.1 illustrates

the process of clustering and center-based sampling.

Then, the new cluster centroid-based samples are injected into the population as

the last NC candidates. In each iteration, all candidates in the current population,

except the last NC members, are updated using the crossover, mutation, and selection

operators, the same as the classic DE. However, by sorting the population, the best

generated center-based samples participate in the evolution process as the parents in

the next generation. In fact, the sorting leads to a shuffling of the population and,
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consequently for the center-based samples to participate in the generative operators, as

well, as the members of population and also potentially as the parents (target vectors)

in the next generation.

Algorithm 1 represents the conceptual pseudo-code of the proposed clustering center-

based sampling algorithm on a single-objective population-based algorithm.

Algorithm 1: Conceptual algorithmic description of clustering center-based
sampling on a population-based algorithm

Input : D: Dimension of problem, MaxNFC : Maximum number of function
calls, NP : Population size, NC: Number of clusters, Fobj: Objective
function , F : Scaling factor , CR: Crossover rate

Output: x∗ : Best candidate solution

Initialize NP population Pop using uniform distribution;
Calculate objective values, Fits, for population Pop;
NFC = NP ;

SC =
⌈
NP−NC

NC

⌉
;

while NFC < MaxNFC do
Generate NP −NC offspring by the parent algorithm from the current
population Pop in size of NP ;
Calculate objective values, Fits, for population in size of NP −NC;
NFC = NFC + (NP −NC);
Sort the NP −NC population based on Fits in ascending order ;
for i← 1 to NC do

start← ((i− 1) ∗ SC) + 1;
end← i ∗ SC ;

xci =

∑end
j=start xj

SC

;

Pop(i+ (NP −NC)) = xci ;
Fits(i+ (NP −NC)) = Fobj(xci);

end
NFC = NFC +NC;

end

Embedding the center-based sampling into any population-based algorithm enables

the population to re-center their clusters by using the advantages of center-based candi-

dates to get closer to the global solution. This study builds clusters of the population

based on the fitness values of its individuals; therefore, the generated clusters are bal-

anced in terms of population size. Accordingly, several scenarios are imaginable regarding
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Figure 3.2: A case of solutions placement when the global optimal is inside of the cluster
clouds, and the center-based solutions are placed close to the center of gravity.

the relationship between the fitness-based clusters of the population and actual clusters

of candidate solutions in the search space. Indeed, it is not possible to have any kind

of assumption about the correlation between the individuals’ fitness distance and their

Euclidean distance in the search space as it is a problem and optimization stage-oriented

factor. However, their extreme cases can be categorized as follows:

• Let us assume the clusters based on fitness values are the same as the clusters of

candidate solutions in the search space. For this case, the population is divided into

some sub-populations (K sub-clouds), in which their centroids are located inside

their own cluster’s convex hull thus,

a) if the solution is inside this sub-cloud, then its centroid point will be in a better

position to this solution compared to other edge-side members as visualized in

Figure 3.2,

b) if the solution is outside of this sub-cloud’s convex hull, then again, the centroid
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Figure 3.3: A case of solutions placement when the global optimal is outside of the cluster
clouds, and the center-based solutions are placed close to the center of gravity.

point would be in a better position compared to members of the sub-cloud which

are in the opposite side (tail members) of the moving direction of the cloud toward

the solution as shown in Figure 3.3.

• Let us assume the clusters based on fitness values are very weak correlated with the

clusters of candidate solutions in the search space. In this case, the centroid of the

clusters would be in arbitrary positions (not necessarily inside of the determined

clusters’ convex-hull); this will increase the algorithm’s exploration capability to

discover other new promising regions in the search space, which are hard to be

visited if the algorithms’ ordinary operations are applied 3.4.

It is worth mentioning that the proposed algorithm does not require extra fitness

calls compared to the original algorithm. As a result, the proposed method possesses the

power of DE generative operators while it is enriched by the utilization of center-based

sampling. Moreover, generating center-based samples results in multi-parent crossover

[28], [48], which means the new individual is the output of the collective collaboration of
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Figure 3.4: A case of solutions placement when the global optimal is outside of the cluster
clouds, and the center-based solutions are placed inside of cluster clouds but much closer
to the global optimal than other solutions.
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a number of parents (i.e., members of a cluster).

3.3 CEC-2017 Single-objective Benchmark Functions

The CEC-2017 [49] offers 30 benchmark functions; however, the second function (F2) is

deprecated according to [49]. The properties of the functions are as follows: 1) Unimodal

functions: F1 and F3, 2) Simple multi-modal functions: F4 −F10, 3) Hybrid functions:

F11 - F20, and 4) Composite functions: F21 − F30.

Each optimization algorithm has a limited budget to call the fitness function, which

is set as MaxNFC = 3× 105. In the provided results, the mean and standard deviation

of the function error value f(−→x ) − f(−→x ∗) are calculated over 31 independent runs for

each test function, where −→x is the best solution in the population when the algorithm

terminates and −→x ∗ is the global optimal solution.

The non-parametric Wilcoxon rank-sum statistical test with a 95% confidence interval

is performed to prove the statistical significance of the experimental results among each

method. In the last two rows of each result table, w/t/l indicates that the proposed

scheme wins in w functions, ties in t functions, and loses in l functions based on Wilcoxon

rank-sum test results regarding the best and average fitness values of the population when

the algorithm terminates.

3.4 Case Study One: Clustering Center-based Dif-

ferential Evolution Algorithm

A Clustering Center-based DE (CCDE) technique is suggested in this thesis to enhance

the DE’s capabilities for exploitation and exploration [2].

Experimental Results:
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In order to assess the performance of the proposed scheme, a series of experiments

are conducted on CEC-2017 benchmark functions [49] on dimensions 30, 50, and 100.

The control parameters are set as follows:

• Population size: NP = 100

• Mutation scale factor: F = 0.8

• Crossover rate: CR = 0.9

• Strategy [13]: DE/rand/1/bin

It should be noted that “ ‡ ” signifies that the proposed method under consideration

is better than the classic DE, “ † ” means the opposite, and “ ≈ ” means the same

statistical results as equivalent to each other.

To demonstrate the improvement of the proposed algorithm compared to the classi-

cal DE, the Improved Accuracy Rate (IAR) is provided. This measure calculates the

difference ratio of results from both algorithms as follows:

IAR =
Error of DE

Error of CCDE (3.2)

where the error of algorithm is calculated as f(−→x )− f(−→x ∗).

Tables 3.1, 3.2, and 3.3 represent the results of the CCDE and DE on dimensions

30, 50, and 100, respectively. Each column of CCDE shows the results for a specific

number of clusters (i.e., NC). The IAR metric shows the ratio of the classic DE error

and the CCDE with NC = 10 (as the winner scheme) error to evaluate the performance

of the algorithms in reaching the global optimal solution. If IAR > 1 indicates that the

proposed method with the related NC value outperforms the classic DE as it is able to

reach less error. From Tables 3.1, 3.2, and 3.3, it is seen that the calculated IAR value

for each function is greater than one, which proves that the proposed algorithm achieves
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significantly better results compared to the classic DE.

The comparison is provided based on the following: 1) Wilcoxon rank-sum test on

best fitness values, and 2) Wilcoxon rank-sum test on average fitness values of the whole

population when the algorithm terminates. The improvement in average fitness values

is an indicator of the overall quality of the whole population rather than the only best

candidate solution, which is achieved by center-based sampling. From Table 3.1, the

best candidate solution resulting from CCDE has a better fitness value than the classic

DE on all benchmark functions for dimension D = 30. In terms of the average value of

population, CCDE outperforms the classic DE on all of the functions. In most of the

functions, IAR is a large number; for instance, on D = 30, CCDE on F3 could find a

candidate solution that is 6.97E07 times better amount than the amount obtained by the

classic DE. In addition to F3, IAR value for F1 is a result of division by zero error value

since the CCDE could find the best global candidate solution before 1
3
of MAXNFC .

In addition to the comparison between CCDE and DE, the sum of errors (i.e., SE)

values from Table 3.4 represents the best-recommended value for number of clusters which

is an important parameter for the proposed algorithm. According to Table 3.1, CCDE

with NC = 10 offers more winners compared to NC = 5 and NC = 20. Obviously,

increasing the number of injected center-based samples improves the performance of the

algorithm compared to the original algorithm, but a high value for the number of clusters

can negatively affect the diversity of the population. This could be the reason behind

the superiority of 10 clusters.

Similar results are obtained on D = 50 and D = 100 dimensions. As seen in Table

3.2, the CCDE achieved better results than the DE on all functions for D = 50 as IAR

represents a value higher than one. Similarly, the best cluster number for the CCDE is

NC = 10, where it could get the best performance. Finally, Table 3.3 represents the

results on dimension D = 100. The best candidate solution resulting from the proposed

method has a significantly smaller fitness value than the classic DE, and NC = 10 is
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the best value for the number of injected center-based samples into the population. The

difference between these two algorithms is mainly significant as the high values of IAR

reveal. For instance, looking at Table 3.3, for F30 function on D = 100, the CCDE

was able to reach a candidate solution that is 3.38E06 times better than the candidate

solution found by the classic DE.

In order to investigate the best value for NC, the sum of errors is calculated to

compare all schemes. This metric is suggested in [49] and computed as follows:

SE = 0.2×
29∑
i=1

ef30D + 0.3×
29∑
i=1

ef50D + 0.5×
29∑
i=1

ef100D (3.3)

where ef30D, ef50D, and ef100D are the error of functions on dimensions 30, 50, and

100, respectively. Table 3.4 shows the sum of error values for each value of NC where

NC = 10 achieved the least error value overall.

In addition to numerical results, the performance plots for three sample benchmark

functions are illustrated in Figure 3.5 to reveal the performance of CCDE versus the

classic DE. The performance plots indicate that the CCDE decreases the fitness values

of the best candidate very sharply compared to the classic DE. As it is presented in the

figure, even before the optimizer consumes half of MaxNFC , it would be able to find a

significantly better solution. These plots clearly indicate the exploration power of the

proposed method. Furthermore, Figure 3.6 represents the performance plots with 1
6
of the

function call budget to show the capability of the proposed method to make a significant

difference with the classic DE even with having a low number of function calls budget.

As a result, the algorithm can easily tackle the expensive optimization problems which

do not afford a high value of fitness calls.
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Table 3.1: Results of the algorithms on CEC-2017 benchmark functions on D = 30 with
MaxNFC budget. IAR is for comparison between the winner NC and the classic DE.
The symbols “‡”, “dagger”, and “≈” indicate that the CCDE algorithm performs either
better than, worse than, or similarly to the comparable algorithm (DE), respectively.

30D CCDE DE IAR
Fn NC = 5 NC = 10 NC = 20 Classic NC = 10

F1
Mean 0.00E+00‡ 0.00E+00‡ 2.00E-06‡ 1.72E+10 1.72E+10

0
= inf

Std 0.00E+00 0.00E+00 9.00E-06 7.46E+09

F3
Mean 3.10E-07‡ 6.93E-03‡ 2.34E+02‡ 4.83E+05 6.97E+07
Std 1.10E-06 3.04E-02 3.94E+02 3.01E+05

F4
Mean 6.65E+00‡ 1.60E+01‡ 5.92E+01‡ 1.90E+02 1.19E+01
Std 1.24E+01 2.19E+01 2.71E+01 6.19E+01

F5
Mean 7.32E+01‡ 6.55E+01‡ 9.37E+01‡ 2.69E+02 4.11E+00
Std 5.83E+01 3.09E+01 1.97E+01 1.67E+01

F6
Mean 4.72E+00‡ 1.06E+01‡ 1.86E+01‡ 5.64E+01 5.34E+00
Std 3.23E+00 4.77E+00 6.83E+00 1.10E+01

F7
Mean 1.14E+02‡ 8.15E+01‡ 1.31E+02‡ 3.11E+02 3.81E+00
Std 6.05E+01 2.76E+01 3.21E+01 2.17E+01

F8
Mean 7.83E+01‡ 5.86E+01‡ 7.41E+01‡ 2.69E+02 4.58E+00
Std 5.71E+01 2.67E+01 1.64E+01 1.49E+01

F9
Mean 2.12E+01‡ 7.33E+01‡ 2.68E+02‡ 3.37E+03 4.59E+01
Std 4.19E+01 8.91E+01 2.31E+02 1.02E+03

F10
Mean 6.41E+03‡ 4.06E+03‡ 4.40E+03‡ 8.50E+03 2.09E+00
Std 1.50E+03 2.10E+03 1.27E+03 3.27E+02

F11
Mean 5.27E+01‡ 8.53E+01‡ 8.77E+01‡ 9.08E+02 1.06E+01
Std 2.73E+01 3.60E+01 2.81E+01 4.06E+02

F12
Mean 1.61E+04‡ 9.12E+03‡ 3.32E+04‡ 5.13E+09 5.62E+05
Std 1.86E+04 6.01E+03 2.21E+04 1.48E+09

F13
Mean 5.94E+02‡ 5.29E+02‡ 1.32E+04‡ 7.75E+08 1.46E+06
Std 1.99E+03 1.14E+03 1.13E+04 2.47E+08

F14
Mean 1.05E+02‡ 2.15E+02‡ 2.99E+02‡ 5.42E+04 2.53E+02
Std 6.98E+01 9.75E+01 1.61E+02 2.00E+04

F15
Mean 5.01E+01‡ 1.90E+02‡ 1.13E+03‡ 4.71E+07 2.48E+05
Std 5.03E+01 4.54E+02 1.21E+03 1.17E+07

F16
Mean 3.01E+02‡ 3.87E+02‡ 8.78E+02‡ 2.60E+03 6.71E+00
Std 2.15E+02 2.57E+02 3.82E+02 2.41E+02

F17
Mean 5.59E+01‡ 8.69E+01‡ 1.87E+02‡ 1.31E+03 1.51E+01
Std 3.45E+01 5.82E+01 1.64E+02 2.92E+02

F18
Mean 2.02E+03‡ 9.00E+03‡ 4.36E+04‡ 1.60E+06 1.78E+02
Std 3.73E+03 8.90E+03 4.68E+04 5.77E+05

F19
Mean 2.47E+01‡ 2.93E+01‡ 1.40E+03‡ 4.69E+04 1.60E+03
Std 2.64E+01 1.77E+01 2.95E+03 2.63E+04

F20
Mean 6.66E+01‡ 8.77E+01‡ 2.88E+02‡ 9.41E+02 1.07E+01
Std 5.23E+01 7.71E+01 2.10E+02 3.33E+02

F21
Mean 2.57E+02‡ 2.47E+02‡ 2.68E+02‡ 4.68E+02 1.90E+00
Std 5.15E+01 2.39E+01 1.44E+01 1.50E+01

F22
Mean 1.58E+03‡ 5.91E+02‡ 8.51E+02‡ 8.49E+03 1.44E+01
Std 2.75E+03 1.65E+03 1.70E+03 3.66E+02

F23
Mean 4.18E+02‡ 4.22E+02‡ 4.46E+02‡ 6.25E+02 1.48E+00
Std 5.13E+01 2.57E+01 2.42E+01 1.84E+01

F24
Mean 4.79E+02‡ 4.96E+02‡ 5.22E+02‡ 7.09E+02 1.43E+00
Std 3.32E+01 2.01E+01 2.43E+01 1.94E+01

F25
Mean 3.79E+02‡ 3.80E+02‡ 3.85E+02‡ 4.62E+02 1.22E+00
Std 3.68E+00 1.06E+01 1.62E+01 2.24E+01

F26
Mean 1.68E+03‡ 1.84E+03‡ 2.26E+03‡ 3.43E+03 1.86E+00
Std 3.71E+02 3.88E+02 5.44E+02 1.82E+02

F27
Mean 5.00E+02‡ 5.00E+02‡ 5.00E+02‡ 5.00E+02 1.00E+00
Std 2.16E-04 3.86E-04 2.67E-04 6.98E-05

F28
Mean 5.00E+02‡ 5.00E+02‡ 4.94E+02‡ 5.00E+02 1.00E+00
Std 1.75E-04 3.74E-04 3.53E+01 7.39E-05

F29
Mean 4.47E+02‡ 3.98E+02‡ 6.08E+02‡ 2.21E+03 5.55E+00
Std 1.14E+02 1.03E+02 1.47E+02 2.07E+02

F30
Mean 2.40E+02‡ 2.74E+02‡ 1.32E+03‡ 5.66E+06 2.07E+04
Std 3.43E+01 5.43E+01 2.06E+03 4.54E+06

WRS Sum 1.958E+02 1.960E+02 1.951E+02
Mean IAR = 2.57E+06 (*without F1)Best w/t/l 29/0/0 29/0/0 29/0/0

Ave w/t/l 29/0/0 29/0/0 29/0/0
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Table 3.2: Results of the algorithms on CEC-2017 benchmark functions on D = 50
with MaxNFC budget. The IAR indicates an improved accuracy rate which shows the
relative improvement and compares the winner NC and the classic DE. The symbols
“‡”, “dagger”, and “≈” indicate that the CCDE algorithm performs either better than,
worse than, or similarly to the comparable algorithm (DE), respectively.

50D CCDE DE IAR
Fn NC = 5 NC = 10 NC = 20 Classic NC = 10

F1
Mean 3.90E+01‡ 2.06E+03‡ 2.13E+03‡ 1.14E+11 5.56E+07
Std 1.36E+02 4.02E+03 2.08E+03 3.81E+10

F3
Mean 1.62E+04‡ 2.55E+04‡ 4.49E+04‡ 1.36E+06 5.32E+01
Std 6.25E+03 7.97E+03 1.03E+04 8.28E+05

F4
Mean 5.09E+01‡ 6.45E+01‡ 9.52E+01‡ 1.62E+03 2.51E+01
Std 3.28E+01 4.61E+01 4.43E+01 5.92E+02

F5
Mean 1.32E+02‡ 1.47E+02‡ 2.02E+02‡ 5.17E+02 3.53E+00
Std 7.77E+01 3.55E+01 3.08E+01 3.58E+01

F6
Mean 1.48E+01‡ 3.99E+00‡ 4.32E+00‡ 8.29E+01 2.08E+01
Std 4.52E+00 2.04E+00 1.91E+00 1.33E+01

F7
Mean 2.33E+02‡ 3.26E+02‡ 3.16E+02‡ 7.53E+02 2.31E+00
Std 1.06E+02 1.29E+02 1.50E+02 8.54E+01

F8
Mean 1.19E+02‡ 1.73E+02‡ 1.96E+02‡ 5.24E+02 3.04E+00
Std 4.36E+01 4.55E+01 3.01E+01 3.38E+01

F9
Mean 3.68E+02‡ 9.51E+02‡ 3.79E+03‡ 1.78E+04 1.87E+01
Std 3.15E+02 7.55E+02 2.95E+03 4.83E+03

F10
Mean 1.27E+04‡ 8.97E+03‡ 7.38E+03‡ 1.53E+04 1.70E+00
Std 1.90E+03 3.85E+03 1.98E+03 3.75E+02

F11
Mean 1.09E+02‡ 1.36E+02‡ 1.92E+02‡ 1.26E+04 9.28E+01
Std 4.08E+01 3.90E+01 5.74E+01 5.56E+03

F12
Mean 1.32E+05‡ 1.47E+05‡ 4.99E+05‡ 1.20E+11 8.17E+05
Std 1.01E+05 8.11E+04 4.87E+05 3.34E+10

F13
Mean 3.92E+03‡ 2.31E+03‡ 4.66E+03‡ 1.44E+10 6.24E+06
Std 5.71E+03 3.04E+03 4.34E+03 4.60E+09

F14
Mean 2.60E+03‡ 5.22E+03‡ 3.13E+04‡ 1.46E+06 2.80E+02
Std 2.16E+03 7.63E+03 3.33E+04 4.71E+05

F15
Mean 1.03E+04‡ 9.93E+03‡ 7.82E+03‡ 1.39E+09 1.40E+05
Std 8.53E+03 9.62E+03 5.87E+03 5.43E+08

F16
Mean 9.75E+02‡ 1.02E+03‡ 1.41E+03‡ 5.39E+03 5.26E+00
Std 6.21E+02 4.72E+02 3.89E+02 3.65E+02

F17
Mean 6.63E+02‡ 8.00E+02‡ 1.16E+03‡ 4.41E+03 5.52E+00
Std 3.19E+02 2.77E+02 3.31E+02 3.67E+02

F18
Mean 4.36E+04‡ 5.36E+04‡ 3.06E+05‡ 2.88E+07 5.37E+02
Std 3.75E+04 4.93E+04 2.48E+05 8.93E+06

F19
Mean 2.79E+02‡ 5.14E+03‡ 1.48E+04‡ 1.82E+08 3.54E+04
Std 9.43E+02 7.02E+03 8.29E+03 7.96E+07

F20
Mean 2.97E+02‡ 4.30E+02‡ 1.01E+03‡ 2.72E+03 6.33E+00
Std 2.70E+02 2.36E+02 3.99E+02 2.43E+02

F21
Mean 3.35E+02‡ 3.28E+02‡ 3.83E+02‡ 7.16E+02 2.18E+00
Std 9.46E+01 2.94E+01 3.07E+01 2.00E+01

F22
Mean 1.31E+04‡ 1.05E+04‡ 8.80E+03‡ 1.56E+04 1.48E+00
Std 2.10E+03 4.32E+03 3.02E+03 3.78E+02

F23
Mean 5.68E+02‡ 6.14E+02‡ 6.68E+02‡ 9.71E+02 1.58E+00
Std 5.87E+01 5.92E+01 5.40E+01 4.38E+01

F24
Mean 6.61E+02‡ 7.11E+02‡ 7.79E+02‡ 1.07E+03 1.51E+00
Std 6.35E+01 4.39E+01 6.84E+01 4.06E+01

F25
Mean 4.56E+02‡ 4.57E+02‡ 4.70E+02‡ 1.55E+03 3.39E+00
Std 2.35E+01 2.82E+01 3.88E+01 3.76E+02

F26
Mean 2.86E+03‡ 3.58E+03‡ 4.99E+03‡ 6.18E+03 1.73E+00
Std 5.71E+02 6.65E+02 8.55E+02 4.63E+02

F27
Mean 5.00E+02‡ 5.00E+02‡ 5.00E+02‡ 5.00E+02 1.00E+00
Std 1.58E-04 3.10E-04 2.14E-04 3.13E-05

F28
Mean 5.00E+02‡ 5.00E+02‡ 5.00E+02≈ 5.00E+02 1.00E+00
Std 1.50E-04 3.28E-04 1.70E-05 2.72E-05

F29
Mean 8.74E+02‡ 6.77E+02‡ 1.14E+03‡ 1.30E+04 1.92E+01
Std 4.51E+02 1.90E+02 2.61E+02 4.09E+03

F30
Mean 1.42E+03‡ 1.06E+03‡ 2.82E+03‡ 3.98E+09 3.77E+06
Std 1.53E+03 1.52E+03 2.38E+03 1.40E+09

WRS Sum 1.950E+02 1.961E+02 1.866E+02
Mean IAR = 2.30E+06Best w/t/l 29/0/0 29/0/0 28/1/0

Ave w/t/l 28/1/0 29/0/0 28/0/1
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Table 3.3: Results of the algorithms on CEC-2017 benchmark functions on D = 100
with MaxNFC budget. The IAR indicates an improved accuracy rate, which shows the
relative improvement and compares the winner NC and the classic DE. The symbols
“‡”, “dagger”, and “≈” indicate that the CCDE algorithm performs either better than,
worse than, or similarly to the comparable algorithm (DE), respectively.

100D CCDE DE IAR
Fn NC = 5 NC = 10 NC = 20 Classic NC = 10

F1
Mean 5.75E+03‡ 5.41E+03‡ 1.25E+06‡ 9.82E+11 1.81E+08
Std 7.41E+03 7.26E+03 6.27E+06 1.79E+11

F3
Mean 2.30E+05‡ 2.25E+05‡ 2.46E+05‡ 7.09E+06 3.15E+01
Std 2.12E+04 2.58E+04 2.11E+04 5.25E+06

F4
Mean 2.10E+02‡ 2.57E+02‡ 3.05E+02‡ 1.70E+04 6.62E+01
Std 3.89E+01 5.45E+01 5.13E+01 5.87E+03

F5
Mean 3.96E+02‡ 4.69E+02‡ 5.66E+02‡ 1.30E+03 2.76E+00
Std 7.60E+01 7.75E+01 5.42E+01 7.38E+01

F6
Mean 3.72E+01‡ 4.48E+01‡ 5.50E+01‡ 1.08E+02 2.40E+00
Std 5.59E+00 4.78E+00 4.72E+00 9.48E+00

F7
Mean 6.49E+02‡ 9.13E+02‡ 1.25E+03‡ 4.57E+03 5.00E+00
Std 1.26E+02 1.50E+02 1.76E+02 1.42E+03

F8
Mean 4.27E+02‡ 5.10E+02‡ 6.49E+02‡ 1.29E+03 2.53E+00
Std 1.33E+02 7.90E+01 7.32E+01 6.59E+01

F9
Mean 7.26E+03‡ 1.17E+04‡ 2.17E+04‡ 7.38E+04 6.33E+00
Std 5.07E+03 6.72E+03 1.13E+04 1.44E+04

F10
Mean 2.61E+04‡ 1.74E+04‡ 1.62E+04‡ 3.31E+04 1.91E+00
Std 7.34E+03 8.23E+03 5.06E+03 5.47E+02

F11
Mean 5.27E+02‡ 7.67E+02‡ 1.18E+03‡ 1.31E+06 1.71E+03
Std 1.44E+02 1.86E+02 4.10E+02 8.66E+05

F12
Mean 1.85E+06‡ 3.20E+06‡ 9.36E+06‡ 2.30E+11 7.19E+04
Std 1.11E+06 1.61E+06 4.06E+06 6.30E+10

F13
Mean 6.35E+03‡ 7.32E+03‡ 8.71E+03‡ 1.93E+10 2.63E+06
Std 5.28E+03 6.25E+03 6.42E+03 8.41E+09

F14
Mean 5.04E+04‡ 7.08E+04‡ 2.95E+05‡ 4.52E+07 6.39E+02
Std 3.05E+04 4.65E+04 1.02E+05 1.12E+07

F15
Mean 1.87E+03‡ 2.20E+03‡ 1.32E+03‡ 1.08E+10 4.92E+06
Std 1.97E+03 2.93E+03 1.22E+03 5.43E+09

F16
Mean 3.66E+03‡ 3.34E+03‡ 3.67E+03‡ 1.24E+04 3.71E+00
Std 1.55E+03 7.52E+02 8.71E+02 6.21E+02

F17
Mean 2.96E+03‡ 2.64E+03‡ 3.12E+03‡ 8.63E+04 3.27E+01
Std 1.09E+03 7.36E+02 5.68E+02 4.60E+04

F18
Mean 1.85E+05‡ 2.99E+05‡ 1.13E+06‡ 2.85E+08 9.55E+02
Std 7.41E+04 1.27E+05 4.44E+05 7.26E+07

F19
Mean 1.85E+03‡ 2.38E+03‡ 1.47E+03‡ 6.54E+09 2.74E+06
Std 2.16E+03 2.30E+03 1.34E+03 5.23E+09

F20
Mean 2.53E+03‡ 1.96E+03‡ 3.36E+03‡ 6.59E+03 3.36E+00
Std 1.15E+03 7.66E+02 1.19E+03 2.49E+02

F21
Mean 6.11E+02‡ 6.74E+02‡ 7.98E+02‡ 1.57E+03 2.33E+00
Std 1.19E+02 8.82E+01 8.55E+01 9.19E+01

F22
Mean 3.09E+04‡ 2.69E+04‡ 2.16E+04‡ 3.44E+04 1.28E+00
Std 3.68E+03 7.22E+03 5.30E+03 4.69E+02

F23
Mean 1.02E+03‡ 1.12E+03‡ 1.30E+03‡ 2.04E+03 1.83E+00
Std 1.19E+02 8.16E+01 9.48E+01 1.14E+02

F24
Mean 1.57E+03‡ 1.77E+03‡ 2.04E+03‡ 2.86E+03 1.61E+00
Std 1.68E+02 1.65E+02 1.59E+02 1.68E+02

F25
Mean 7.70E+02‡ 7.94E+02‡ 8.42E+02‡ 1.24E+04 1.56E+01
Std 5.41E+01 5.67E+01 4.43E+01 2.38E+03

F26
Mean 1.05E+04‡ 1.31E+04‡ 1.64E+04‡ 2.34E+04 1.79E+00
Std 1.18E+03 1.74E+03 2.27E+03 1.81E+03

F27
Mean 5.00E+02‡ 5.00E+02‡ 5.00E+02‡ 5.00E+02 1.00E+00
Std 1.32E-04 3.93E-04 3.16E-04 3.15E-05

F28
Mean 5.00E+02‡ 5.04E+02‡ 5.58E+02≈ 5.00E+02 9.92E-01
Std 1.62E-04 2.32E+01 6.12E+01 4.91E-05

F29
Mean 3.15E+03‡ 2.80E+03‡ 3.40E+03‡ 1.54E+05 5.50E+01
Std 1.35E+03 8.24E+02 5.12E+02 5.57E+04

F30
Mean 4.28E+03‡ 3.52E+03‡ 1.12E+04‡ 1.19E+10 3.38E+06
Std 7.14E+03 4.52E+03 1.87E+04 5.21E+09

WRS Sum 1.914E+02 1.951E+02 1.885E+02
Mean IAR = 6.73E+06Best w/t/l 29/0/0 29/0/0 28/1/0

Ave w/t/l 28/0/1 29/0/0 28/1/0
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(a) F1, D=30

(b) F20, D=50

(c) F10, D=100

Figure 3.5: The performance plots for the best candidate solution resulted from the
proposed method for three sample benchmark functions on full function call budget on
various numbers of clusters (NC).



Chapter 3.
Proposed Clustering Center-based Sampling for Single-objective

Population-based Algorithms
45

(a) F1, D=30

(b) F20, D=50

(c) F10, D=100

Figure 3.6: The performance plots for the best candidate solution resulted from the
proposed method for three sample benchmark functions with 1

6
of the function call budget

on various number of clusters (NC).
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3.5 Case Study Two: Clustering Center-based Ge-

netic Algorithm

In this section, Clustering Center-based Genetic Algorithm (CCGA) is tested to solve

single-objective optimization problems efficiently. Usually, GA is used to address prob-

lems, such as timetabling and scheduling issues, that seem particularly suitable for a

solution by GA. Thus, the effectiveness of GA in large-scale problems would be ques-

tionable since premature convergence happens. Premature convergence is when GA gets

stuck in a local optimum and fails to explore other, potentially better, regions of the

search space. Furthermore, GA has difficulty in maintaining diversity as it ensures ex-

ploration of different regions in the solution space. One of the ways to address GA’s

issues is to utilize center-based sampling by computing the center of gravity in popu-

lation members. As it is proposed in this thesis, the population in GA is initialized

with NP randomly generated solutions. In each generation, a new set of NP offspring

solutions are generated from the parents selected. In this proposed CCGA, the size of

offspring solutions is decreased to NP−NC solutions where NC is the number of center-

based solutions. The number of center-based solutions must equal the size of clusters in

the population. Therefore, the individuals are clustered into NC clusters with equally

shaped. In the study for GA, offspring solutions are considered as the candidates to be

clustered and sampled. In order to select the best population out of the combination

of the last population and new offspring, the selection operator in GA is applied after

Table 3.4: Comparison between number of clusters (NC) setting effect in clustering
analyzed on CEC-2017 benchmark functions over all three dimensions 30, 50, and 100

Algorithm Sum of Errors (SE)
Classic DE 3.55E+12

CCDE - NC = 5 1.61E+11
CCDE - NC = 10 1.45E+11
CCDE - NC = 20 1.69E+11
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appending center-based solutions. This procedure is repeated until the optimizer reaches

the MaxNFE budget.

Experimental Results:

To verify the effectiveness and efficiency of the proposed center-based sampling strat-

egy in GA, a series of experiments are presented in this section. The tests are applied

to CEC 2017 single-objective benchmark problems with D = 30, 50, and 100 dimen-

sions. The CEC 2017 benchmark consists of 29 functions (F1−F30 except F2). To begin

analyzing the performance, Table 3.5 shows the results of proposed CCGA and GA for

dimension D = 30. In summary, the number of losses is greater than wins against the

classical GA by 19, sharing 72% of problems. Clearly, the obtained results show the

proposed CCGA is not robust on D = 30. The functions that are outperformed by the

proposed algorithm are F3 and F9. Only in six functions, including F6, F10, F21, F24, F26,

and F27, the proposed CCGA against its classic GA is tied based on the Wilcoxon test.

However, increasing the problems’ dimension will show the effectiveness of center-based

solutions in the optimizer’s exploration. Looking at Table 3.6, the proposed CCGA, in

close competition, surpassed the GA in 11 functions and lost 9 functions. In detail, 80%

of the simple multi-modal functions and 40% of composition functions were outperformed

by the proposed CCGA. Furthermore, Table 3.7 shows comparative results on D = 100

dimensions. In this table, the number of wins for the proposed CCGA is increased to 18,

but the number of losses is stayed at 9. More profoundly, all of the unimodal and simple

multi-modal functions were outperformed by the proposed CCGA. In addition, CCGA

was successful in 80% of composition functions with D = 100 dimensions.

In summary, the proposed center-based sampling could enhance the GA optimizer

where the search space dimension is exponentially large. In other words, center-based

solutions cover GA’s randomly generated offspring solutions and remove immature indi-

viduals.
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Table 3.5: Results of the proposed CC-GA and GA algorithms on CEC-2017 benchmark
functions on D = 30. Each cell in the table represents the mean and standard deviation
(inside parentheses) of 31 runs. The symbols “+”, “−”, and “=” indicate that the CC-
GA algorithm performs either better than, worse than, or similarly to the comparable
algorithm (GA), respectively.

Fn CC-GA GA
F1 4.0117e+11 (1.4825e+10) - 3.7928e+11 (1.7200e+10)
F3 1.7477e+17 (4.3930e+15) + 1.7985e+17 (8.2887e+15)
F4 3.9611e+07 (3.0845e+05) - 3.9443e+07 (3.7378e+05)
F5 2.6116e+04 (7.5252e+01) - 2.6038e+04 (1.1217e+02)
F6 1.5587e+03 (3.8085e+01) = 1.5670e+03 (3.9768e+01)
F7 3.6677e+05 (6.9984e+02) - 3.6621e+05 (9.9424e+02)
F8 4.8647e+04 (8.2751e+01) - 4.8555e+04 (1.2433e+02)
F9 2.7619e+06 (1.6519e+05) + 2.9071e+06 (2.0974e+05)
F10 2.3566e+04 (5.7982e+02) = 2.3632e+04 (5.6101e+02)
F11 1.8665e+15 (9.2380e+11) - 1.8657e+15 (8.0006e+11)
F12 1.4738e+14 (8.4533e+10) - 1.4722e+14 (8.4047e+10)
F13 1.7486e+14 (2.7012e+10) - 1.7482e+14 (2.6179e+10)
F14 1.7846e+12 (3.6322e+08) - 1.7842e+12 (2.6799e+08)
F15 3.2138e+14 (4.1251e+10) - 3.2132e+14 (2.3314e+10)
F16 7.0312e+09 (2.9382e+06) - 7.0279e+09 (2.7741e+06)
F17 1.6727e+18 (7.5216e+14) - 1.6719e+18 (5.1593e+14)
F18 9.9940e+12 (3.3489e+09) - 9.9893e+12 (5.5352e+09)
F19 8.3993e+18 (3.4188e+15) - 8.3974e+18 (3.4112e+15)
F20 1.0368e+05 (4.2231e+02) - 1.0331e+05 (2.6018e+02)
F21 1.4601e+10 (1.2806e+07) = 1.4602e+10 (1.8260e+07)
F22 5.7075e+06 (2.9738e+03) - 5.7050e+06 (4.6606e+03)
F23 1.2589e+10 (1.5434e+07) - 1.2578e+10 (1.5309e+07)
F24 7.2603e+06 (4.9216e+03) = 7.2591e+06 (4.9743e+03)
F25 1.1286e+10 (1.1274e+07) - 1.1278e+10 (1.3103e+07)
F26 3.4493e+10 (3.3683e+07) = 3.4476e+10 (5.1661e+07)
F27 5.6204e+06 (2.7831e+03) = 5.6194e+06 (3.6598e+03)
F28 3.4454e+10 (2.8397e+07) - 3.4433e+10 (3.8137e+07)
F29 5.3881e+18 (5.9294e+15) - 5.3823e+18 (4.5540e+15)
F30 1.4576e+19 (3.9018e+15) - 1.4573e+19 (3.3802e+15)
w/t/l 2/6/21



Chapter 3.
Proposed Clustering Center-based Sampling for Single-objective

Population-based Algorithms
49

Table 3.6: Results of the proposed CC-GA and GA algorithms on CEC-2017 benchmark
functions on D = 50. Each cell in the table represents the mean and standard deviation
(inside parentheses) of 31 runs. The symbols “+”, “−”, and “=” indicate that the CC-
GA algorithm performs either better than, worse than, or similarly to the comparable
algorithm (GA), respectively.

Fn CC-GA GA
F1 9.4261e+11 (5.2701e+10) = 9.2017e+11 (6.2834e+10)
F3 7.3818e+06 (1.3931e+05) = 7.3866e+06 (2.6004e+05)
F4 5.9872e+07 (8.6697e+05) + 6.0275e+07 (8.4570e+05)
F5 4.3603e+04 (1.5447e+02) + 4.3765e+04 (3.0681e+02)
F6 1.7653e+03 (4.0456e+01) + 1.8727e+03 (5.7812e+01)
F7 6.6249e+05 (2.1769e+03) + 6.6877e+05 (4.0618e+03)
F8 1.1723e+05 (3.5122e+02) + 1.1776e+05 (3.7253e+02)
F9 7.8278e+06 (4.8696e+05) + 8.3511e+06 (4.7986e+05)
F10 2.6574e+04 (8.4738e+02) + 2.7750e+04 (7.0650e+02)
F11 6.1812e+08 (3.9027e+06) + 6.2585e+08 (5.6023e+06)
F12 5.6823e+14 (4.5597e+11) - 5.6746e+14 (3.8949e+11)
F13 3.9827e+14 (1.6421e+11) - 3.9789e+14 (1.4136e+11)
F14 8.5574e+11 (6.4610e+08) - 8.5471e+11 (5.9750e+08)
F15 4.4455e+14 (6.2558e+10) - 4.4432e+14 (6.1130e+10)
F16 2.3410e+09 (1.9605e+06) - 2.3378e+09 (1.6011e+06)
F17 3.9593e+19 (2.6687e+16) - 3.9528e+19 (2.1162e+16)
F18 1.2157e+13 (3.9231e+09) - 1.2149e+13 (3.3278e+09)
F19 7.3907e+17 (5.6517e+14) - 7.3841e+17 (3.5777e+14)
F20 3.7688e+05 (6.9708e+02) = 3.7680e+05 (6.9699e+02)
F21 2.1846e+10 (3.7011e+07) = 2.1868e+10 (5.4789e+07)
F22 1.0629e+07 (9.1170e+03) + 1.0639e+07 (1.3734e+04)
F23 5.0011e+10 (6.2909e+07) = 4.9993e+10 (7.4680e+07)
F24 1.0870e+07 (7.8108e+03) + 1.0882e+07 (1.2673e+04)
F25 3.4592e+10 (4.1033e+07) + 3.4623e+10 (5.7896e+07)
F26 5.4412e+10 (6.0200e+07) = 5.4424e+10 (6.8305e+07)
F27 1.9060e+07 (1.1712e+04) = 1.9065e+07 (2.1142e+04)
F28 3.9070e+10 (4.9828e+07) = 3.9091e+10 (5.3359e+07)
F29 1.8920e+20 (1.0077e+17) = 1.8916e+20 (1.0209e+17)
F30 6.6225e+20 (9.0034e+17) - 6.6093e+20 (7.1943e+17)
w/t/l 11/9/9
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Table 3.7: Results of the proposed CC-GA and GA algorithms on CEC-2017 benchmark
functions on D = 100. Each cell in the table represents the mean and standard deviation
(inside parentheses) of 31 runs. The symbols “+”, “−”, and “=” indicate that the CC-
GA algorithm performs either better than, worse than, or similarly to the comparable
algorithm (GA), respectively.

Fn CC-GA GA
F1 4.5735e+12 (2.1921e+11) + 4.8975e+12 (2.3956e+11)
F3 2.0941e+17 (1.4000e+17) + 4.7000e+17 (2.6552e+17)
F4 2.1144e+08 (2.6436e+06) + 2.1577e+08 (3.6503e+06)
F5 8.4939e+04 (5.3143e+02) + 8.6621e+04 (7.1521e+02)
F6 1.7903e+03 (3.6824e+01) + 2.0139e+03 (3.7325e+01)
F7 1.4663e+06 (5.2951e+03) + 1.4960e+06 (8.6346e+03)
F8 2.2456e+05 (8.0952e+02) + 2.2713e+05 (1.2174e+03)
F9 2.4441e+07 (1.4433e+06) + 2.5442e+07 (1.3717e+06)
F10 3.9855e+04 (2.3450e+03) + 4.5135e+04 (9.0650e+02)
F11 2.2741e+18 (1.2869e+16) - 2.2573e+18 (1.2404e+16)
F12 1.1209e+15 (1.6165e+12) = 1.1217e+15 (1.9058e+12)
F13 4.3878e+14 (5.0916e+11) - 4.3841e+14 (5.4409e+11)
F14 1.0032e+12 (2.4432e+09) - 1.0002e+12 (2.5016e+09)
F15 3.8511e+14 (2.1229e+11) - 3.8456e+14 (1.7339e+11)
F16 6.9273e+09 (9.0933e+06) - 6.9157e+09 (1.3929e+07)
F17 2.7041e+19 (6.6537e+16) - 2.6949e+19 (6.7169e+16)
F18 5.0833e+11 (1.7513e+09) = 5.0773e+11 (3.1876e+09)
F19 8.2979e+18 (1.3549e+16) - 8.2723e+18 (1.3494e+16)
F20 4.0691e+05 (7.1001e+02) + 4.0986e+05 (1.3169e+03)
F21 6.0418e+10 (1.3970e+08) + 6.0780e+10 (1.6582e+08)
F22 2.0656e+07 (2.1795e+04) + 2.0750e+07 (3.3080e+04)
F23 1.9491e+10 (3.4714e+07) + 1.9633e+10 (5.4478e+07)
F24 4.2448e+07 (4.9529e+04) + 4.2556e+07 (6.5761e+04)
F25 1.1082e+11 (1.7179e+08) + 1.1121e+11 (2.3637e+08)
F26 1.1337e+11 (2.2413e+08) + 1.1393e+11 (2.5612e+08)
F27 2.1653e+07 (1.8426e+04) + 2.1711e+07 (2.7499e+04)
F28 1.0994e+11 (1.9696e+08) + 1.1023e+11 (2.5334e+08)
F29 3.7198e+20 (4.8191e+17) - 3.7158e+20 (6.2718e+17)
F30 9.7594e+20 (1.3329e+18) - 9.7504e+20 (1.1479e+18)
w/t/l 18/2/9
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3.6 Case Study Three: Clustering Center-based Par-

ticle Swarm Optimization

In this section, a clustering center-based sampling on the particles in the PSO algorithm

is tested, called CCPSO. In the proposed algorithm, the aim is to calculate the centroid

solutions on a number of clusters of solutions. Although the proposed algorithm is similar

to the previous case studies, the way of finding suitable candidate solutions may vary.

The proposed strategy starts with NP candidate particles and updates the velocity and

position of NP −NC particles. The reason behind the NP −NC is the proposed strat-

egy is unwilling to use the extra function call budget in every iteration. After selecting

the best solutions and updating Pbest set, the center-based sampling could improve the

best solutions in the search space. The improvement could help to fill the gap between

the particles and explore other regions in search space. As before, a constant number of

clusters NC divides the Pbest particles based on their fitness values. The strategy sorts

the particles based on fitness values and finds closer solutions. Each cluster of particles

is averaged on their parameters to find the center of gravity. Thus, NC clusters of par-

ticles result in NC center-based solutions. To take advantage of the NC center-based

solutions, they are added to the NP −NC population of Pbest particles. Furthermore,

having NC center-based solution will lead the optimization to promising regions that

help to closer positions to global optima.

Experimental Results

The mean and the standard deviation of obtained error values by the proposed

CCPSO and classic PSO algorithms with D = 30, 50, and 100 dimensions on CEC-2017

benchmark functions are provided in Tables 3.8, 3.9, and 3.10, respectively. Looking at

all tables, it can be understood from the w/t/l counts in the last rows that the pro-
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Table 3.8: Results of the proposed CCPSO and PSO algorithms on CEC-2017 benchmark
functions on D = 30. Each cell in the table represents the mean and standard deviation
(inside parentheses) of 31 runs. The symbols “+”, “−”, and “=” indicate that the
CCPSO algorithm performs either better than, worse than, or similarly to the comparable
algorithm (PSO), respectively.

Fn CCPSO PSO
F1 4.1774e+08 (2.6698e+08) + 1.3989e+11 (3.9032e+10)
F3 5.4266e+04 (1.4905e+04) + 7.7990e+04 (2.3308e+04)
F4 1.0285e+02 (3.0612e+01) + 1.8832e+03 (9.9411e+02)
F5 1.0913e+02 (2.0035e+01) + 2.0097e+02 (3.5519e+01)
F6 3.2163e+01 (1.0947e+01) + 6.1137e+01 (1.0082e+01)
F7 1.4607e+02 (4.0146e+01) + 4.6902e+02 (9.0951e+01)
F8 9.3077e+01 (2.2046e+01) + 1.6852e+02 (2.7464e+01)
F9 1.2518e+03 (6.8188e+02) + 3.7992e+03 (1.4042e+03)
F10 3.7582e+03 (5.2609e+02) + 4.2237e+03 (7.4168e+02)
F11 1.6970e+02 (4.4907e+01) + 8.2771e+02 (4.0388e+02)
F12 2.9738e+07 (2.9809e+07) + 2.8323e+09 (1.5947e+09)
F13 1.0026e+05 (1.0622e+05) + 1.0769e+07 (3.0097e+07)
F14 1.1877e+05 (1.0265e+05) + 4.8278e+05 (5.2583e+05)
F15 3.5531e+04 (1.9454e+04) + 8.2080e+04 (6.6853e+04)
F16 9.8331e+02 (2.7311e+02) + 1.4007e+03 (2.9620e+02)
F17 4.8777e+02 (2.3807e+02) + 6.9160e+02 (2.6627e+02)
F18 6.3674e+05 (4.5322e+05) + 2.9595e+06 (5.2099e+06)
F19 3.0843e+05 (5.8391e+05) + 2.1816e+07 (3.0474e+07)
F20 4.5438e+02 (1.9217e+02) + 5.5244e+02 (1.6955e+02)
F21 2.9857e+02 (2.4353e+01) + 3.9263e+02 (3.9132e+01)
F22 1.7462e+03 (1.9608e+03) + 3.8785e+03 (1.3569e+03)
F23 5.2655e+02 (3.9411e+01) + 6.9719e+02 (7.4414e+01)
F24 5.9981e+02 (5.8117e+01) + 7.6408e+02 (9.0726e+01)
F25 4.2522e+02 (3.1213e+01) + 1.0005e+03 (1.9525e+02)
F26 2.6404e+03 (9.6947e+02) + 4.4721e+03 (9.3991e+02)
F27 4.8713e+02 (1.0612e+01) + 6.2811e+02 (6.8716e+01)
F28 5.0123e+02 (3.7276e+01) + 1.6971e+03 (5.0597e+02)
F29 1.0139e+03 (1.8505e+02) + 1.7494e+03 (3.9787e+02)
F30 2.0281e+06 (2.0229e+06) + 7.3062e+07 (1.0543e+08)
w/t/l 29/0/0
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Table 3.9: Results of the proposed CCPSO and PSO algorithms on CEC-2017 benchmark
functions on D = 50. Each cell in the table represents the mean and standard deviation
(inside parentheses) of 31 runs. The symbols “+”, “−”, and “=” indicate that the
CCPSO algorithm performs either better than, worse than, or similarly to the comparable
algorithm (PSO), respectively.

Fn CCPSO PSO
F1 4.3784e+09 (1.5480e+09) + 5.7880e+11 (9.9671e+10)
F3 1.6360e+05 (3.3586e+04) + 1.8851e+05 (4.7309e+04)
F4 3.1006e+02 (6.2846e+01) + 1.0467e+04 (3.4600e+03)
F5 2.3333e+02 (3.4473e+01) + 4.5294e+02 (5.3294e+01)
F6 5.4234e+01 (1.2593e+01) + 8.4178e+01 (1.2614e+01)
F7 3.7633e+02 (1.0334e+02) + 1.3288e+03 (1.7957e+02)
F8 2.2370e+02 (3.3111e+01) + 4.4785e+02 (4.9772e+01)
F9 8.0355e+03 (2.2349e+03) + 1.2434e+04 (3.3323e+03)
F10 6.9300e+03 (8.8820e+02) + 7.7032e+03 (8.7835e+02)
F11 7.9963e+02 (2.9398e+02) + 7.3396e+03 (4.1698e+03)
F12 5.0427e+08 (2.7337e+08) + 7.4543e+10 (3.7339e+10)
F13 1.1090e+05 (6.8470e+04) + 1.3709e+10 (1.4983e+10)
F14 5.9931e+05 (4.6861e+05) + 5.6934e+06 (9.0970e+06)
F15 4.8012e+04 (3.4598e+04) + 1.8622e+08 (7.7388e+08)
F16 1.9389e+03 (4.2373e+02) + 2.8058e+03 (4.7062e+02)
F17 1.4589e+03 (3.8524e+02) + 2.0815e+03 (4.0878e+02)
F18 2.4341e+06 (1.5662e+06) + 1.8533e+07 (1.3895e+07)
F19 1.9221e+06 (2.3810e+06) + 3.8944e+07 (3.3788e+07)
F20 1.0594e+03 (2.9750e+02) + 1.3384e+03 (3.7497e+02)
F21 4.2260e+02 (4.2990e+01) + 6.9252e+02 (5.9549e+01)
F22 6.9549e+03 (1.5080e+03) + 8.6789e+03 (9.2593e+02)
F23 8.3205e+02 (9.1481e+01) + 1.3089e+03 (1.3024e+02)
F24 9.6610e+02 (8.5361e+01) + 1.3878e+03 (1.7198e+02)
F25 6.9594e+02 (5.9784e+01) + 6.7658e+03 (1.5695e+03)
F26 5.6147e+03 (9.3668e+02) + 1.0249e+04 (1.3171e+03)
F27 5.8531e+02 (1.3273e+02) + 1.5090e+03 (2.8062e+02)
F28 7.8876e+02 (2.5770e+02) + 5.4222e+03 (1.1041e+03)
F29 2.1062e+03 (5.3692e+02) + 4.9238e+03 (1.5348e+03)
F30 4.7206e+07 (4.1088e+07) + 6.1098e+08 (4.1649e+08)
w/t/l 29/0/0
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Table 3.10: Results of the proposed CCPSO and PSO algorithms on CEC-2017 bench-
mark functions on D = 100. Each cell in the table represents the mean and standard
deviation (inside parentheses) of 31 runs. The symbols “+”, “−”, and “=” indicate that
the CCPSO algorithm performs either better than, worse than, or similarly to the com-
parable algorithm (PSO), respectively.

Fn CCPSO PSO
F1 1.1668e+11 (3.7582e+10) + 2.2191e+12 (2.8621e+11)
F3 4.4064e+05 (6.2046e+04) + 5.3222e+05 (9.3243e+04)
F4 1.8427e+03 (4.1760e+02) + 4.9485e+04 (9.6772e+03)
F5 6.6735e+02 (6.8322e+01) + 1.2746e+03 (7.8412e+01)
F6 6.9694e+01 (9.5429e+00) + 9.4808e+01 (4.5368e+00)
F7 1.4822e+03 (1.5672e+02) + 4.1867e+03 (3.4492e+02)
F8 7.1507e+02 (9.9736e+01) + 1.3831e+03 (1.0544e+02)
F9 2.7170e+04 (3.5443e+03) + 3.8789e+04 (5.6042e+03)
F10 1.5810e+04 (1.5102e+03) + 1.9382e+04 (1.5368e+03)
F11 7.1211e+04 (2.0821e+04) + 1.3262e+05 (3.0453e+04)
F12 9.4281e+09 (3.9423e+09) + 6.5513e+11 (1.6495e+11)
F13 1.5145e+08 (1.8641e+08) + 1.1731e+11 (3.4725e+10)
F14 4.0986e+06 (1.5344e+06) + 2.3569e+07 (1.1604e+07)
F15 5.1387e+04 (2.8109e+04) + 2.3721e+10 (1.1403e+10)
F16 4.7035e+03 (8.0663e+02) + 9.1791e+03 (9.8834e+02)
F17 3.8709e+03 (5.2445e+02) + 1.8712e+04 (1.0400e+04)
F18 4.6518e+06 (2.4655e+06) + 3.3712e+07 (2.2607e+07)
F19 1.6727e+07 (1.2954e+07) + 2.0759e+10 (1.3821e+10)
F20 3.1168e+03 (4.4298e+02) + 3.4369e+03 (4.4932e+02)
F21 1.0526e+03 (8.3924e+01) + 1.8919e+03 (1.3097e+02)
F22 1.8281e+04 (1.4940e+03) + 2.1059e+04 (1.1641e+03)
F23 1.8793e+03 (2.3063e+02) + 2.7565e+03 (2.4418e+02)
F24 2.6351e+03 (2.3397e+02) + 4.4597e+03 (3.3313e+02)
F25 2.0191e+03 (3.0835e+02) + 2.2702e+04 (3.1645e+03)
F26 2.0153e+04 (2.4175e+03) + 3.7325e+04 (3.4084e+03)
F27 1.3800e+03 (3.3108e+02) + 3.9004e+03 (5.7825e+02)
F28 3.3602e+03 (6.3061e+02) + 2.4080e+04 (3.5312e+03)
F29 6.1527e+03 (1.0175e+03) + 2.2577e+04 (1.1519e+04)
F30 4.3799e+08 (2.4832e+08) + 5.3261e+10 (2.6337e+10)
w/t/l 29/0/0
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posed CCPSO won 29 out of 29 problems for the experimented dimensions set. In other

words, CCPSO method has outperformed the classic PSO algorithm in all extensive

single-objective optimization benchmark problems proposed in CEC 2017 regardless of

the search space’s complexity. This result verifies that the proposed center-based sam-

pling can allegedly make PSO algorithm more robust in any condition of optimization

problems by exploring the center of batches of solutions.
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3.7 Case Study Four: Clustering Center-based Arti-

ficial Bee Colony Algorithm

In this algorithm, the tested center-based strategy is added to the ABC algorithm in

a similar way. Although the proposed scheme does not cost extra budget for function

evaluation, the candidate solutions are selected from the population in size of NP −NC

to retain the dedicated budget in every generation. First, the population is initialized

randomly. Secondly, the employed bees and onlooker bees are generated to be replaced

if their fitness value is improved from the previous generation. After the replacement,

the proposed center-based sampling is added to the algorithm to augment the NP −NC

population with NC center-based solutions. In the next generation, a population in

size of NP is again used to generate new samples; however, the dedicated budget must

not exceed. In order to keep the NP − NC function calls for generating new samples

by ABC operators, it is necessary to find the potential individuals that could lead the

optimization faster. In this direction, the NP population is sorted based on their fit-

ness value, and the worst solutions are removed from the population. This technique

will benefit the algorithm not to waste energy and memory by keeping a fixed number of

bad solutions from the population which could harm the optimization in the further steps.

Experimental Results:

To be able to assess the performance of the proposed center-based strategy at popula-

tion level of ABC algorithm, CEC-2017 series of benchmark functions are tested on three

types of dimensions, 30, 50, and 100. In this investigation, it is seen that the majority of

problems were outperformed by the proposed algorithm indicating definite acceptance.

Looking at Table 3.11, it can be seen that 20 functions were won by the CC-ABC

algorithm against its classic parent ABC algorithm on dimensions 30. Although the

rest is split into 5 losses and 4 ties, the strength of the proposed CC-ABC algorithm is
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admitted by 68% of wins over 29 benchmark problems.

In the latter, from Tables 3.12 and 3.13, it can be understood that the proposed

CC-ABC algorithm gained more strength on the convergence of optimization into the

promising region when the dimensions increased to 50 and 100, respectively. This demon-

strates that, as the dimension of search space increases, the harder ABC algorithm finds

to converge; however, utilization of the proposed center-based strategy can mitigate the

large dimensions.

In sum, the influence of the proposed center-based sampling on the ABC algorithm

for solving single-objective optimization problems was studied. All extensive experiments

were performed on CEC 2017 single objective optimization benchmark functions, which

were outperformed by the proposed CC-ABC algorithm against its classic version for

dimensions 30, 50, and 100. The experiments confirmed that the proposed center-based

sampling at the population level of ABC algorithm has more than a 68% success ratio.
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Table 3.11: Results of the proposed CC-ABC and ABC algorithms on CEC-2017 bench-
mark functions on D = 30. The symbols “+”, “−”, and “=” indicate that the CC-ABC
algorithm performs either better than, worse than, or similarly to the comparable algo-
rithm (ABC), respectively.

Fn CC-ABC ABC
F1 3.3784e+3 (2.66e+3) = 5.9799e+3 (6.16e+3)
F3 1.2828e+4 (3.76e+3) + 2.4697e+5 (4.88e+4)
F4 7.5462e+1 (2.79e+1) + 8.7654e+1 (1.41e-1)
F5 7.1509e+1 (1.40e+1) + 2.6947e+2 (2.42e+1)
F6 4.8276e-1 (5.69e-1) - 1.2116e-1 (5.50e-2)
F7 1.1527e+2 (2.18e+1) + 3.4209e+2 (2.21e+1)
F8 5.3310e+1 (1.08e+1) + 2.8485e+2 (1.45e+1)
F9 1.5734e+2 (9.51e+1) - 3.2662e+1 (2.73e+1)
F10 2.4561e+3 (4.81e+2) + 8.6085e+3 (3.89e+2)
F11 6.8654e+1 (2.82e+1) + 1.0398e+3 (4.43e+3)
F12 1.5166e+5 (8.83e+4) + 6.8869e+5 (6.06e+5)
F13 1.1072e+4 (8.45e+3) = 1.4954e+4 (1.62e+4)
F14 6.9874e+3 (7.07e+3) + 7.2003e+4 (6.26e+4)
F15 1.1618e+3 (1.21e+3) + 6.5473e+3 (8.37e+3)
F16 7.4386e+2 (2.74e+2) + 2.0200e+3 (2.49e+2)
F17 2.9758e+2 (1.58e+2) + 1.0552e+3 (2.08e+2)
F18 1.0103e+5 (4.26e+4) + 1.4709e+6 (1.87e+6)
F19 4.5552e+3 (2.33e+3) + 1.4764e+4 (1.83e+4)
F20 2.4247e+2 (1.20e+2) + 1.1618e+3 (2.54e+2)
F21 2.5191e+2 (1.13e+1) + 4.6395e+2 (1.46e+1)
F22 1.0042e+2 (1.12e+0) - 1.0000e+2 (4.37e-3)
F23 4.0981e+2 (1.88e+1) + 6.0338e+2 (1.78e+1)
F24 4.7510e+2 (1.62e+1) + 6.6473e+2 (2.04e+1)
F25 4.0803e+2 (1.89e+1) - 3.8719e+2 (7.11e-2)
F26 2.1800e+3 (6.93e+2) + 3.6658e+3 (2.20e+2)
F27 5.3616e+2 (9.95e+0) - 5.0999e+2 (6.67e+0)
F28 3.9768e+2 (7.70e+0) + 4.3586e+2 (2.31e+1)
F29 7.5742e+2 (2.04e+2) = 7.5523e+2 (1.18e+2)
F30 4.0572e+3 (9.69e+2) = 6.1463e+3 (3.92e+3)
w/t/l 20/4/5
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Table 3.12: Results of the proposed CC-ABC and ABC algorithms on CEC-2017 bench-
mark functions on D = 50. The symbols “+”, “−”, and “=” indicate that the CC-ABC
algorithm performs either better than, worse than, or similarly to the comparable algo-
rithm (ABC), respectively.

Fn CC-ABC ABC
F1 6.5024e+2 (8.31e+2) + 1.0260e+10 (3.44e+9)
F3 7.2237e+4 (9.12e+3) + 4.9094e+5 (1.12e+5)
F4 9.3889e+1 (5.09e+1) + 1.0374e+3 (2.60e+2)
F5 1.6802e+2 (2.41e+1) + 5.6787e+2 (2.28e+1)
F6 4.8488e+0 (2.65e+0) + 3.6685e+1 (5.31e+0)
F7 3.0212e+2 (5.50e+1) + 1.2410e+3 (1.31e+2)
F8 1.7043e+2 (2.50e+1) + 5.6212e+2 (2.63e+1)
F9 1.7446e+3 (5.62e+2) + 9.1563e+3 (1.76e+3)
F10 5.0558e+3 (5.38e+2) + 1.5520e+4 (4.87e+2)
F11 1.1893e+2 (2.44e+1) + 3.3645e+4 (8.78e+3)
F12 9.5859e+5 (3.86e+5) + 1.1864e+8 (8.83e+7)
F13 1.5757e+3 (1.51e+3) + 8.5403e+3 (8.96e+3)
F14 6.9042e+4 (4.05e+4) + 2.5127e+5 (1.81e+5)
F15 8.4177e+3 (4.77e+3) = 8.0090e+3 (5.88e+3)
F16 1.2533e+3 (3.43e+2) + 4.2801e+3 (2.91e+2)
F17 1.0792e+3 (2.54e+2) + 2.7754e+3 (2.26e+2)
F18 3.5597e+5 (1.40e+5) + 4.1360e+6 (2.74e+6)
F19 1.5716e+4 (4.76e+3) = 1.4581e+4 (1.17e+4)
F20 6.3307e+2 (2.60e+2) + 2.7142e+3 (2.04e+2)
F21 3.2730e+2 (2.24e+1) + 7.6242e+2 (2.63e+1)
F22 4.1196e+3 (2.87e+3) + 1.5712e+4 (5.74e+2)
F23 5.9604e+2 (4.31e+1) + 9.6727e+2 (2.49e+1)
F24 6.5153e+2 (3.62e+1) + 9.8849e+2 (2.61e+1)
F25 5.8829e+2 (1.63e+1) + 1.3579e+3 (1.93e+2)
F26 5.2622e+3 (8.82e+2) + 6.6006e+3 (2.30e+2)
F27 7.8295e+2 (7.13e+1) - 5.6462e+2 (5.11e+1)
F28 5.3313e+2 (2.48e+1) + 7.5822e+2 (8.50e+1)
F29 1.2855e+3 (3.22e+2) + 2.8527e+3 (2.85e+2)
F30 8.7076e+5 (8.95e+4) + 9.9632e+5 (2.43e+5)
w/t/l 26/2/1
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Table 3.13: Results of the proposed CC-ABC and ABC algorithms on CEC-2017 bench-
mark functions on D = 100. The symbols “+”, “−”, and “=” indicate that the CC-ABC
algorithm performs either better than, worse than, or similarly to the comparable algo-
rithm (ABC), respectively.

Fn CC-ABC ABC
F1 4.7643e+3 (2.85e+3) + 1.3418e+11 (1.39e+10)
F3 2.6769e+5 (1.84e+4) + 2.2708e+6 (3.72e+6)
F4 3.0108e+2 (5.30e+1) + 1.4520e+4 (2.80e+3)
F5 5.2376e+2 (4.62e+1) + 1.4214e+3 (5.76e+1)
F6 2.6622e+1 (4.64e+0) + 8.1157e+1 (4.42e+0)
F7 1.1882e+3 (1.69e+2) + 6.5789e+3 (6.88e+2)
F8 5.5172e+2 (5.82e+1) + 1.4145e+3 (5.07e+1)
F9 1.0398e+4 (1.28e+3) + 5.9740e+4 (5.82e+3)
F10 1.2022e+4 (1.06e+3) + 3.3358e+4 (7.97e+2)
F11 3.3279e+3 (1.62e+3) + 5.1846e+5 (8.72e+4)
F12 5.9321e+6 (1.77e+6) + 1.5039e+10 (4.08e+9)
F13 3.6977e+3 (1.81e+3) + 2.4789e+4 (8.98e+3)
F14 8.0183e+5 (1.80e+5) + 5.8820e+6 (2.72e+6)
F15 1.0261e+3 (9.26e+2) + 5.8419e+3 (3.28e+3)
F16 3.9472e+3 (5.26e+2) + 1.0524e+4 (5.03e+2)
F17 2.9766e+3 (4.34e+2) + 7.2291e+3 (4.26e+2)
F18 7.3148e+5 (2.07e+5) + 6.0967e+7 (2.45e+7)
F19 1.4621e+3 (1.23e+3) + 1.6553e+4 (1.00e+4)
F20 2.2495e+3 (3.99e+2) + 6.5769e+3 (3.83e+2)
F21 6.1410e+2 (6.16e+1) + 1.6686e+3 (4.75e+1)
F22 1.4589e+4 (1.17e+3) + 3.4163e+4 (8.66e+2)
F23 9.5034e+2 (6.04e+1) + 1.7764e+3 (3.29e+1)
F24 1.5224e+3 (1.14e+2) + 2.1813e+3 (3.98e+1)
F25 8.6667e+2 (4.62e+1) + 2.0023e+4 (2.28e+3)
F26 1.7162e+4 (1.69e+3) = 1.7068e+4 (4.69e+2)
F27 1.1311e+3 (9.98e+1) - 8.5976e+2 (5.38e+1)
F28 6.9973e+2 (2.54e+1) + 1.0198e+4 (2.75e+3)
F29 3.6560e+3 (5.15e+2) + 8.8885e+3 (4.95e+2)
F30 9.1108e+3 (4.20e+3) + 4.8259e+6 (2.17e+6)
w/t/l 27/1/1
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3.8 Case Study Five: Clustering Center-based CMA-

ES

In the final, the tested center-based strategy in population is experimented on CMA-ES

algorithm, which has a slight difference mechanism than the previous population-based

algorithms. CMA-ES tries to extend and shrink the occupied search space by its indi-

viduals over several generations. When the distribution of the population changes, the

space between solutions would be a golden region to reach the global optima. A fast

and promising way to search inside the gap is by utilizing center-based solutions based

on current individuals. As seen from the Monte Carlo simulation, it is proven that the

center-based solution could increase the exploitation and exploration, resulting in accel-

erating the convergence of optimization. After sampling solutions in size of NP − NC

by the multivariate normal distribution, the proposed clustering approach is used to find

clusters. In the next step, the centroid of each cluster is calculated, and the total NC

number of center-based solutions is added to the population to locate NP individuals.

Experimental Results:

In order to investigate the performance of the proposed Clustering Center-based

CMA-ES algorithm versus CMA-ES, a comprehensive experiment was conducted. The

proposed CC-CMA-ES algorithm was applied and tested on CEC 2017 single objective

benchmark functions with three types of dimensions, namely, 30, 50, and 100. The results

of CMA-ES and CC-CMA-ES on CEC 2017 benchmark with 29 single objective functions

are summarized in Tables 3.14, 3.15, and 3.16. As it can be seen from Table 3.14, all of the

functions were outperformed by the proposed CC-CMA-ES. In some cases, the improved

accuracy rate (IAR) shows the significance of superiority. For instance, CC-CMA-ES

resulted in 1.19e+4 times better fitness value than the parent algorithm on F15. Besides,

as it is revealed from the mentioned tables above, the standard deviation (STD) values
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Figure 3.7: Illustration of an actual optimization run with covariance matrix adaptation
on a simple two-dimensional problem. The population (dots) is much larger than neces-
sary but clearly shows how the population distribution (dotted line) changes during the
optimization. [50]
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of the proposed algorithm compared to classical DE for the winner schemes are much

less than the parent algorithm. The latter shows higher robustness and effectiveness that

occurs from contribution of NC center-based solutions in population.

Table 3.15 shows the results obtained from the same proposed center-based strategy

on CMA-ES algorithm and its classic scheme on CEC 2017 with dimension 50. Similar to

the results on dimensions 30, it can be seen that the algorithm demonstrates 28 wins out

of 29 functions meaning only one of the functions, F9, was challenging since the tie was

declared. This table clearly shows evidence for the superiority of proposed center-based

strategy on the population-based algorithms.

The last Table 3.16, provided the last set of experiments on CMA-ES. As the number

of dimensions increases, the search space extends exponentially and causes the optimiza-

tion harder to find promising regions. Based on the w/t/l numbers in the last row, the

proposed algorithm loses 10 functions and wins 12 functions concluding the experiments.

Furthermore, it is noticeable that the difference between CC-CMA-ES results is very

close to the CMA-ES for those losing functions such as F6, F7, F16, F17, F20, F21, F23,

and F24.

In overall, the proposed CC-CMA-ES performs better on almost all functions on

dimensions 30 and 50, where it won 12 out of 29 functions on dimensions 100 for CEC

2017 single objective benchmark functions. As can be observed, the proposed center-

based strategy accelerates the convergence speed into promising regions on search space

for CMA-ES algorithm.
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Table 3.14: Results of the proposed CC-CMA-ES and CMA-ES algorithms on CEC-
2017 benchmark functions on D = 30. The symbols “+”, “−”, and “=” indicate that
the CC-CMA-ES algorithm performs either better than, worse than, or similarly to the
comparable algorithm (CMA-ES), respectively.

Fn CC-CMA-ES CMA-ES
F1 1.9299e+8 (4.93e+8) + 1.6649e+11 (2.28e+9)
F3 6.7819e+4 (1.18e+4) + 3.3459e+7 (9.01e+7)
F4 1.3530e+2 (3.68e+1) + 4.3533e+4 (1.16e+4)
F5 1.9146e+2 (1.14e+1) + 8.2760e+2 (1.14e+1)
F6 5.7427e+0 (6.00e+0) + 9.6149e+1 (6.75e+1)
F7 1.9583e+2 (1.29e+1) + 2.6698e+2 (2.00e+1)
F8 1.9102e+2 (1.24e+1) + 7.5060e+2 (7.20e+0)
F9 7.9416e+0 (2.51e+1) + 4.3922e+3 (1.36e+4)
F10 6.8034e+3 (3.68e+2) + 7.5160e+3 (3.80e+2)
F11 3.0958e+3 (1.94e+3) + 5.4331e+4 (2.35e+3)
F12 8.9281e+7 (8.61e+7) + 4.2999e+10 (7.80e+8)
F13 2.6710e+7 (2.98e+7) + 4.9794e+10 (3.09e+9)
F14 4.7263e+5 (9.42e+5) + 1.8178e+8 (6.68e+7)
F15 2.1872e+6 (1.82e+6) + 2.6050e+10 (1.56e+4)
F16 1.4870e+3 (2.41e+2) + 5.2545e+3 (3.13e+2)
F17 7.0761e+2 (2.02e+2) + 1.5323e+6 (2.95e+1)
F18 3.3264e+6 (3.01e+6) + 3.0377e+8 (1.28e+8)
F19 9.1080e+6 (1.05e+7) + 3.7958e+10 (1.20e+8)
F20 6.5958e+2 (1.75e+2) + 1.6558e+3 (1.01e+2)
F21 3.8556e+2 (1.29e+1) + 9.0713e+2 (1.37e+1)
F22 6.0996e+3 (2.36e+3) + 8.1988e+3 (1.56e+3)
F23 5.7494e+2 (1.41e+1) + 1.0247e+3 (3.81e+0)
F24 6.4386e+2 (1.55e+1) + 8.8755e+2 (1.59e+1)
F25 4.1250e+2 (1.37e+1) + 2.0608e+4 (1.11e+3)
F26 3.0520e+3 (6.71e+2) + 8.6111e+3 (6.84e+1)
F27 5.6736e+2 (2.60e+1) + 8.0302e+2 (4.52e+1)
F28 6.7144e+2 (8.71e+1) + 5.1085e+3 (7.55e+2)
F29 1.1962e+3 (2.61e+2) + 8.0273e+3 (1.29e+4)
F30 8.5519e+6 (5.70e+6) + 8.3670e+9 (1.05e+9)
w/t/l 29/0/0
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Table 3.15: Results of the proposed CC-CMA-ES and CMA-ES algorithms on CEC-
2017 benchmark functions on D = 50. The symbols “+”, “−”, and “=” indicate that
the CC-CMA-ES algorithm performs either better than, worse than, or similarly to the
comparable algorithm (CMA-ES), respectively.

Fn CC-CMA-ES CMA-ES
F1 4.4566e+8 (4.92e+8) + 2.6405e+11 (5.44e+10)
F3 1.7588e+5 (2.50e+4) + 1.1814e+9 (5.38e+9)
F4 2.8782e+2 (9.83e+1) + 1.0374e+5 (1.76e+4)
F5 3.5183e+2 (1.55e+1) + 1.3772e+3 (2.67e+2)
F6 2.2149e+0 (1.96e+0) + 1.1067e+2 (6.09e+1)
F7 3.9375e+2 (1.34e+1) + 4.3765e+2 (1.25e+2)
F8 3.5624e+2 (1.52e+1) + 1.3744e+3 (1.69e+2)
F9 6.8415e+2 (1.46e+3) = 4.2942e+4 (4.47e+4)
F10 1.1529e+4 (1.69e+3) + 1.3519e+4 (7.96e+2)
F11 1.2629e+4 (4.26e+3) + 1.4023e+5 (9.76e+4)
F12 6.0674e+8 (5.17e+8) + 1.1889e+11 (7.05e+9)
F13 1.6795e+8 (1.81e+8) + 9.0378e+10 (1.20e+10)
F14 2.8330e+6 (3.65e+6) + 2.9077e+8 (1.28e+8)
F15 1.7335e+7 (2.71e+7) + 6.8913e+10 (1.63e+4)
F16 2.4039e+3 (3.99e+2) + 1.2461e+4 (3.75e+2)
F17 1.8831e+3 (3.75e+2) + 5.9680e+7 (3.21e+2)
F18 8.7793e+6 (1.00e+7) + 7.9405e+8 (3.71e+8)
F19 9.1379e+6 (1.41e+7) + 2.2754e+10 (7.84e+1)
F20 1.5143e+3 (2.07e+2) + 3.2973e+3 (2.16e+2)
F21 5.6211e+2 (2.24e+1) + 1.3573e+3 (2.14e+2)
F22 1.1666e+4 (2.24e+3) + 1.4018e+4 (7.29e+2)
F23 8.2473e+2 (2.45e+1) + 1.5983e+3 (4.99e+1)
F24 9.0262e+2 (2.31e+1) + 1.2878e+3 (3.23e+1)
F25 5.6312e+2 (3.50e+1) + 9.4968e+4 (7.95e+3)
F26 5.1050e+3 (9.25e+2) + 1.3010e+4 (8.45e+2)
F27 7.9773e+2 (9.37e+1) + 1.2598e+3 (1.25e+2)
F28 1.6466e+3 (1.96e+3) + 7.5020e+3 (8.65e+2)
F29 2.1114e+3 (4.14e+2) + 1.0903e+6 (1.34e+6)
F30 5.8032e+7 (5.37e+7) + 3.2270e+10 (1.45e+8)
w/t/l 28/1/0
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Table 3.16: Results of the proposed CC-CMA-ES and CMA-ES algorithms on CEC-
2017 benchmark functions on D = 100. The symbols “+”, “−”, and “=” indicate that
the CC-CMA-ES algorithm performs either better than, worse than, or similarly to the
comparable algorithm (CMA-ES), respectively.

Fn CC-CMA-ES CMA-ES
F1 5.3794e+9 (5.05e+9) = 5.0328e+9 (2.70e+9)
F3 8.5460e+5 (1.41e+5) + 9.2876e+7 (3.10e+8)
F4 5.6262e+2 (2.27e+2) = 5.3686e+2 (1.08e+2)
F5 5.4971e+2 (3.16e+2) - 8.8992e+1 (2.11e+1)
F6 1.9644e+0 (1.56e+0) - 7.5912e-1 (8.05e-1)
F7 8.6676e+2 (1.31e+2) - 1.4656e+2 (6.43e+0)
F8 5.4162e+2 (3.00e+2) - 9.4790e+1 (1.48e+1)
F9 1.6037e+3 (1.27e+3) + 1.2188e+4 (4.32e+4)
F10 1.2376e+4 (4.17e+3) = 1.4191e+4 (1.11e+4)
F11 3.2639e+5 (9.83e+4) + 1.1709e+6 (2.19e+6)
F12 1.6999e+9 (1.33e+9) + 3.2312e+10 (6.76e+10)
F13 3.3946e+8 (2.47e+8) + 3.8680e+9 (8.22e+9)
F14 1.0878e+7 (9.03e+6) + 4.9450e+8 (2.12e+8)
F15 3.6138e+7 (6.34e+7) + 8.8839e+9 (1.41e+10)
F16 3.0336e+3 (9.48e+2) - 1.9018e+3 (8.33e+2)
F17 2.8869e+3 (6.93e+2) - 2.3247e+3 (6.77e+2)
F18 1.1320e+7 (8.19e+6) + 6.6448e+8 (3.55e+8)
F19 9.0596e+7 (1.22e+8) + 2.7047e+9 (5.47e+9)
F20 3.4498e+3 (7.66e+2) - 1.4926e+3 (4.99e+2)
F21 6.7092e+2 (3.12e+2) - 3.5171e+2 (3.00e+1)
F22 1.3557e+4 (5.35e+3) = 1.6473e+4 (1.11e+4)
F23 9.4345e+2 (8.51e+1) - 8.9213e+2 (4.88e+1)
F24 1.4242e+3 (1.69e+2) - 1.3226e+3 (6.43e+1)
F25 9.6638e+2 (1.44e+2) = 9.3809e+2 (8.55e+1)
F26 7.6362e+3 (1.84e+3) = 7.7060e+3 (7.42e+2)
F27 8.1814e+2 (7.31e+1) + 9.8794e+2 (5.02e+2)
F28 3.2809e+3 (2.78e+3) = 4.8302e+3 (5.51e+3)
F29 3.3283e+3 (7.06e+2) + 3.8916e+3 (5.70e+3)
F30 1.9190e+8 (2.82e+8) + 3.8938e+10 (2.51e+10)
w/t/l 12/7/10
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3.9 Summary

Table 3.17: Summary of win, tie, and lose ratio collected from all tables for CEC-2017
benchmark problems on D = 30, D = 50, and D = 100 dimensions. The symbols w
show wins, t shows ties, and l shows losses of the ratio of the proposed algorithm against
its parent algorithm.

Dimensions D=30 D=50 D=100 Sum
Algorithms w t l w t l w t l w t l

CCDE vs. DE 29 0 0 29 0 0 29 0 0 87 0 0
CCGA vs. GA 2 6 21 11 9 9 18 2 9 31 17 39
CCPSO vs. PSO 29 0 0 29 0 0 29 0 0 87 0 0
CC-ABC vs. ABC 20 4 5 26 2 1 27 1 1 73 7 7

CC-CMA-ES vs. CMA-ES 29 0 0 28 1 0 12 7 10 69 8 10

In this chapter, five population-based algorithms are studied, and the proposed scheme,

Clustering Center-based sampling at the population level, is applied to all the algorithms

to solve CEC-2017 single-objective benchmark problems. To summarize the results, Ta-

bles 3.17 provide a comprehensive outlook on the w/t/l ratio. By looking at Table 3.17,

one can understand that center-based sampling involved in any kind of single-objective

population-based optimization algorithm could enhance the exploration and exploitation.

In general, DE and PSO are global optimization algorithms meaning they aim to find the

global optimum of a function, rather than getting stuck in local optima. However, some

landscapes are harder to reach the global optimum when the population is converged

into a far region. In this thesis, the proposed technique is added to population-based al-

gorithms to solve black-box problems which use no extra budget to find the closer region

to global optima. On the performance, it is deniable to see the effect on every prob-

lem in the CEC-2017 benchmark. For instance, the proposed Clustering Center-based

sampling on DE and PSO algorithms could outperform the parent algorithms on all of

the problems. Furthermore, center-based sampling of GA’s population could result in

better fitness values when the dimension is D = 100. Regardless of the population-based

algorithm’s operators, the proposed Clustering Center-based sampling could improve the
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ABC algorithm by resulting in more accuracy in a range of 70% and 93%. The last

algorithm approved the impact of center-based solution by winning all problems with

D = 30 and D = 50 dimensions search space.

Overall, the conducted experiments show that the proposed Clustering Center-based

sampling on single-objective optimization problems was successful, where more than 90%

of CEC-2017 benchmark problems were outperformed on average.
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In this section, the proposed Ranking Center-based Sampling for multi-objectives is

presented and explained in detail. Then, the CEC-2017 many-objective benchmark prob-

lems are then examined, and their parameter settings are given. Finally, five case studies

of five meta-heuristic population-based algorithms are tested to enhance the comparing

algorithm. In the first case, the proposed center-based sampling is tested on the NSGA-II

algorithm with two clustering techniques, namely, K-Means and Average Ranking. To

indicate their effectiveness and efficiency, the two schemes are tested in a fair condition.

The winner scheme is applied to other case studies such as NSGA-III, MOEA/D, SPEA2,

MOPSO, and GDE3 algorithms. A summary of the overall experiment results is given in

the final part so that you can quickly assess how well the suggested method is working.

4.1 Introduction

Multi-objective population-based algorithms have gained prominence as renowned op-

timization methodologies that have demonstrated efficacy in addressing a multitude of

real-world optimization challenges. These algorithms predominantly function as meta-

heuristic strategies tailored for navigating intricate search spaces. Their primary ob-

jective centers around efficiently exploring the search space to identify optimal solutions

within prescribed temporal constraints. The principal challenges faced by multi-objective

population-based algorithms encompass an early convergence towards local optima due

to the degradation of population diversity during initial optimization stages, coupled

with a typically gradual convergence rate.

Real-world multi-objective problems are complex optimization scenarios encountered

in various domains, spanning from engineering and manufacturing to finance and urban

planning. These problems involve the simultaneous optimization of multiple, often con-

flicting objectives, where the number of objectives can be substantial, exceeding ten or

even reaching the hundreds. Each objective represents a distinct and relevant perfor-
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mance metric, ranging from cost and efficiency to environmental impact and safety. The

challenge lies in identifying a set of solutions that collectively represent a trade-off among

these objectives, known as the Pareto front, where improving one objective may lead to

the degradation of another. Handling multi-objective problems with numerous objec-

tives requires advanced techniques that consider the intricate interplay between diverse

objectives while accommodating real-world constraints, fostering a deeper understanding

of the complex trade-offs and yielding well-informed decisions for practical applications.

4.2 Proposed Ranking Center-based Sampling in Multi-

objective Population-based Algorithms

In this section, a center-based sampling is proposed utilizing the Objective-wise Average

Rank Clustering algorithm to enhance multi-objective evolutionary algorithms’ weakness

in solving multi- and many-objective optimization problems. Several population-based al-

gorithms, including PSO, DE, SHADE, LSHADE [51, 7, 1], have utilized the center-based

sampling strategy to generate centroid points, either during population initialization or

throughout the iterative optimization process. This study is inspired by the proposed

center-based sampling strategy that successfully passed experiments on single-objective

optimization problems described in the previous chapter. The proposed scheme would

be at the population level, so, it could be utilized in a wide range of population-based

optimization algorithms.

In this direction, this thesis proposes an Objective-wise Average Rank Clustering

Center-based (OW-ARCC) approach by having a number of clusters NC from the can-

didate solutions for center-based sampling. This parameter can be translated to the

aimed number of center-based solutions that are generated based on two or more in-

dividuals from the population. The proposed scheme considers not only the quality of

candidate solutions but also their distribution in generating center-based solutions. This
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approach is pivotal in filling gaps in sparse regions of the objective space, which is a key

advantage of the scheme. Although the quantity of participated solutions in calculating

center-based solutions is not the main reason to increase exploration and exploitation,

the distance between solutions is more important. Accordingly, the divided NC clusters

are considered a potential neighborhood to find accelerator solutions by the center-based

strategy.

In classic population-based algorithms, the generation of offspring by the crossover

and mutation operators is set to be the same size as the initial population. In the

proposed strategy, the offspring size is limited by NP − NC to allocate enough space

and budget for NC center-based solutions for each generation.

Contrary to the proposed clustering center-based sampling, which is for single-objective

optimization, the aim is to cluster the solutions based on multi-objective values. There-

fore, a simple average rank clustering approach divides individuals into clusters. The

“average rank” term refers to a sorting-based ranking of candidate solutions based on

multi-objective values. In other words, the candidate solutions are sorted based on the

average of their ranks per objective in ascending order and separated into equal sizes of

clusters. The detail of the proposed average ranking center-based sampling approach is

explained in Algorithm 2.

Choosing a set of candidate solutions to generate high-quality center-based samples

is challenging. In the following sections, the search for rightful candidate solutions that

could result in more valuable solutions by center-based sampling will be discussed.

It is assumed that the centroid of individuals’ decision variables could fill the gaps

between the Pareto front set. Another advantage of using this strategy is to improve the

quality of future population generations since the center-based solutions are injected into

the offspring sets. Increasing the problem dimension, the probability of the center-based

solution’s closeness to the golden region could be increased [1]. In other words, the golden

region guarantees the located solutions in this area have a better advantage to be closer
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to the optimal Pareto-front.

4.3 CEC-2017 Many-objective Benchmark Functions

Extensive experiments have been carried out to examine how the suggested algorithm

performs when compared to its parent algorithm, NSGA-II. A series of MaF benchmark

functions were proposed for solving Many-Objective Problems (MaOPs) in the CEC-

2017 competition [52]. The benchmark suite offers 15 mainly scalable functions MaF1-

MaF15 on M=5, M=10, and M=15 number of objectives tailored for experimental and

comparative studies of evolutionary many-objective optimization (EMaO) algorithms

[52].

In the experiments, M=2 and M=3 objectives are additionally added to the experi-

mental plan to mitigate the multi-objective optimization along with many-objective cases.

Because of benchmark design, MaF8, MaF9, and MaF13 are excluded in M = 2 ob-

jective problems; because they do not accommodate bi-objective cases. Several scalable

continuous benchmark suites, such as DTLZ [53] and WFG [54], have been commonly

used in many-objective optimization, and they utilized a baseline for the MaF functions

development. The non-parametric Wilcoxon rank-sum statistical test with a 95% confi-

dence interval is performed to prove the statistical significance of the experimental results.

In the last row of each provided numerical table, +/ − / = indicates that the proposed

schemes win in + number of functions, lose in − functions, and tie in = function with

respect to the Wilcoxon rank-sum test. Separate comparisons against the parent method,

NSGA-II, are presented for each proposed scheme. The best result for each problem is

highlighted in boldface. The control parameters in this study are set as follows:

• Population size: NP = 100,

• Maximum number of function evaluations: MaxNFE = max{100000, 10000×M},
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Algorithm 2: Pseudo-code for the proposed center-based NSGA-II using
objective-wise average rank clustering scheme. This algorithm works on two
candidate solution sets, namely, offspring or Pareto-front. ArgSort is a function
that returns sorted indices explained in Algorithm 3

Input : MaxNFE: Maximum number of function calls, NP : Population size,
NC: Number of Clusters, Fobj: Objective function , M : Number of
Objectives,

Output: Pareto : Pareto Front set

Initialize population P in size NP using uniform random distribution;
Calculate objective values, Pobj, for population P ;
NFE = NP ;

SC =
⌈
NP−NC

NC

⌉
;

while NFE < MaxNFE do
// Offspring generation

Create an empty Q offspring population;
while Q.size == NP −NC do

Select parents from P using tournament selection;
Apply crossover and mutation operators to create a child solution Child;
Evaluate objectives for the Child solution;
Add Child solution to Q list;

end
// Center-based sampling

AveRank =
∑M

m=1 ArgSort(ArgSort(Qobj(m))

M
;

for i← 1 to NC do
start← ((i− 1) ∗ SC) + 1;
end← i ∗ SC ;

Xci =

∑end
j=start xj

SC

;

Add Xci solution to Q list;
Evaluate objectives for the Xci solution;

end
NFE = NFE +NP ;
Combine populations P and Q into R;
// Selection operation

Perform non-dominated sorting on R to classify solutions into Pareto fronts;
Calculate crowding distance for solutions in each Pareto front;

Create a new population P
′
by selecting solutions based on Pareto fronts and

crowding distance;

P ←P
′
;

end
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Algorithm 3: Pseudo-code for ArgSort function used in Algorithm 2.

indices← [0, 1, 2, . . . , len(arr)− 1] ▷ Create a list of indices
for i← 0 to len(arr)− 1 do

for j ← i+ 1 to len(arr)− 1 do
if arr[indices[j]] < arr[indices[i]] then

swap(indices[i], indices[j]) ▷ Swap indices if elements are out of order
end

end

end
return indices;

• Number of center-based solutions: NC = 10

Each proposed method was run 31 times independently. Table C.1 lists and explains

the fundamental characteristics of functions.

In order to evaluate the performance of the proposed algorithm, the inverse genera-

tional distance (IGD) is a metric used in multi-objective optimization problems. Multi-

objective optimization involves optimizing multiple conflicting objectives simultaneously,

typically with no single solution that can optimize all objectives perfectly. Instead,

the goal is to find a set of solutions that represents a trade-off between the objectives

[55, 56, 57]. IGD metric is computed as the following equation:

IGD =

√∑n
i=1 di
n

(4.1)

where n is the number of solutions in the Pareto-optimal set. The Pareto-optimal set

represents the set of all solutions that cannot be improved in one objective without

degrading at least one of the other objectives. Technically, IGD measures the convergence

and distribution of PF solutions simultaneously. The smaller the IGD value, the better

the approximation set is.
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4.4 Case Study One: Ranking Center-based Non-

dominated Sorting Genetic Algorithm II

In this section, one of the oldest population-based multi-objective algorithms is studied

to investigate the proposed scheme. NSGA-II algorithm provides a population in size

of NP , which generates offspring as the same size NP solutions to be replaced by the

combination of whole 2×NP solutions. There is great potential to utilize center-based

sampling in NSGA-II algorithm. The previously proposed center-based strategies were

worked on the mutation operators (i.e., operation-level), such as GDE3. Unlike NSGA-II

and other evolutionary algorithms, the mutation operators do not have a mathematical

structure. To address this issue, the entire population that is generated by the NSGA-II

could be used in a way that maximizes performance. In this study, the proposed two

schemes for center-based sampling by using two various sets of candidate solutions to

generate the center-based samples, namely, offspring and Pareto front. The “Offspring”

set is the freshly generated solutions by NSGA-II operators, and the “Pareto front” set is

the selected solutions from the collection of the previous population and fresh offspring

based on the employed non-dominated sorting algorithm employed in NSGA-II. The

experimenting proposed ranking center-based sampling on NSGA-II algorithm begins

with population initialization followed by objective function computation. The iterative

optimization loop is the main component of NSGA-II method, where the tournament

selection, crossover, and mutation operators sequentially run to generate new offspring

solutions. The proposed strategy is placed in this algorithm’s flow after having new

NP −NC offspring solutions by the mentioned operators.

Similar to the single-objective optimization case study, the proposed idea is to find

groups of candidate solutions. In the literature, there are many unsupervised ways to

cluster data that have no labels. Let’s consider there is no prior knowledge of which

groups of candidate solutions would result in more effective center-based solutions. In
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this study, it is assumed solutions that have the closest distance with respect to their

objective values, with a high probability, will result in solutions closer to optimal Pareto-

front.

In order to begin from simple steps, two clustering algorithms are studied as follows:

1) K-Means clustering: K-Means is one of the well-known techniques that aims to parti-

tion a given M dimensional data into K clusters, where each data point belongs to the

cluster with the nearest mean, commonly known as the centroid. and 2) Average Rank-

ing clustering: This method calculates the average of solutions ranks in each objective

criterion. It is an extended version of the proposed clustering center-based strategy for

single-objective optimization. More information is explained in Section 4.2.

After predicting NC numbers of groups of NP −NC candidate solutions, the center-

based sampling strategy is used to calculate the centroid of each cluster. After adding

new center-based candidate solutions into the remaining NC places in offspring to fill

the NP members, the non-dominated sorting operator in NSGA-II is invoked to find

Pareto-front set.

Experimental Results:

There are four schemes to be evaluated in this case study which are explained as

follows:

1. Average Ranking clustering on Offspring solutions.

2. Average Ranking clustering on Pareto-front solutions.

3. K-Means clustering on Offspring solutions.

4. K-Means clustering on Pareto-front solutions.

By this end, one can understand which proposed scheme is the most successful in

terms of statistical tests carried out by the Wilcoxon rank-sum algorithm.
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The first stage of experiments is applied to CEC-2017 MaF benchmark functions with

their original dimensions, which could change based on the number of objectives. Tables

A.1, A.2, A.3, A.4, and A.5 in Appendix show the provided results on the five various

objectives M = 2, M = 3, M = 5, M = 10, and M = 15, respectively.

Table 4.1: Accumulative comparison of each proposed scheme on original dimensions
over all M = 2, M = 3, M = 5, M = 10, and M = 15 objective numbers.

Scheme
M=2 M=3 M=5 M=10 M=15 Sum

w l t w l t w l t w l t w l t w l t
AveRank on Offspring 4 1 7 6 3 6 6 2 7 9 1 5 8 1 6 33 8 31

AveRank on ParetoFront 5 0 7 4 4 7 6 2 7 8 1 6 6 2 7 29 9 34
K-means on Offspring 5 1 6 2 3 10 4 2 9 7 1 7 7 2 6 25 9 38

K-means on ParetoFront 4 2 6 1 5 9 6 3 6 6 3 6 6 1 8 23 14 35

To summarize, Table 4.1 represents the accumulative comparison of the mentioned

scheme in a single table based on the win, tie, and lose ratio. From this table, one can

understand that the most promising scheme is the Average Ranking clustering technique

on Offspring solutions resulting in 33 wins out of 72 functions and leading the compe-

tition by 4 functions than the second-ranked scheme, which has its clustering technique

but used Pareto-front candidate solutions. This means the center-based solutions that

are calculated from a set of selected solutions would not necessarily give the optimal

performance. As can be seen from Table 4.1, the winning scheme is “Average Ranking

on Offspring”, it is decided to continue with this strategy for the rest of the experiments

and label the proposed strategies as Ranking Center-based NSGA-II (RC-NSGA-II).

The second stage of experiments is applied to CEC-2017 MaF benchmark functions

with constantly set D = 1000 dimensions, known as large-scale global optimization prob-

lems. Tables A.6, A.7, A.8, A.9, and A.10 in Appendix show the provided results on the

five various objectives M = 2, M = 3, M = 5, M = 10, and M = 15, respectively.

To summarize, Table 4.2 represents the accumulative comparison of the mentioned

scheme in a single table based on the win, tie, and lose ratio. From this table, one can

understand that the most promising scheme is the Average Ranking clustering technique
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Table 4.2: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-NSGA-II (Average
Ranking on Offspring) scheme on D = 1000 dimensions over M = 2, M = 3, M = 5,
M = 10, and M = 15 objective numbers.

Scheme
M=2 M=3 M=5 M=10 M=15

w l t w l t w l t w l t w l t
RC-NSGA-II 9 2 1 11 1 1 10 0 3 9 3 1 8 3 2

on Offspring solutions resulting in 33 wins out of 72 functions and leading the compe-

tition by 4 functions than the second-ranked scheme, which has its clustering technique

but used Pareto-front candidate solutions. This means the center-based solutions that

are calculated from a set of selected solutions would not necessarily give the optimal

performance.

In conclusion, the NSGA-II has been studied for four different applications of center-

based sampling. Overall, the well-performed center-based scheme at the population level

is Average Ranking clustering on Offspring solutions. This experiment gives valuable

insight into further studies for other population-based algorithms.

4.5 Case Study Two: Ranking Center-based Non-

dominated Sorting Genetic Algorithm III

In this section, the experiment center-based sampling strategy for multi-objective opti-

mization is added to the NSGA-III algorithm. The center-based sampling is known to

be a good solution for large-scale optimization problems to find an unknown solution

searching on the centroid of search space. NSGA-III is designed to solve optimization

problems with more than two conflicting objectives. In such problems, the goal is to find

a set of solutions that simultaneously optimize multiple objectives, where improving one

objective often leads to the degradation of others. This is known as the Pareto opti-

mization. By taking this advantage, NSGA-III could outperform benchmark problems;

however, it finds difficulty when the number of solution parameters increases naturally.
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This is a normal reaction to large-scale optimization problems since many solutions must

be tuned.

To address the issue efficiently and efficiently, a novel ranking multi-objective center-

based sampling can provide solutions closer to golden regions. The suggested approach is

the same one that was researched for the NSGA-II algorithm. The algorithm starts with

an initial population that has NP candidate solutions. It is desired to have NC% of the

population as center-based solutions. After generating the NP −NC offspring solutions

from the NP population, the ranking multi-objective center-based sampling approach

takes the offspring solutions into calculating centroids based on derived groups. As the

budget in each generation should be controlled equal to NP , the selection operator finds

NP − NC offspring generated by NSGA-III operators and NC center-based solutions

accounting as NP for the population size. Similar to the research done on NSGA-II, the

center-based solutions are calculated and added to the population to speed up NSGA-

III’s performance on issues involving numerous objectives. As the NSGA-III matches

the solutions to the reference points, the center-based sampling potentially fills the gaps

between the reference points that are not associated with any solutions.

Experimental Results:

In order to investigate the performance of the proposed algorithm versus NSGA-III,

comprehensive experiments have been conducted. The proposed ranking multi-objective

center-based NSGA-III was applied and tested on MaF benchmark functions proposed

in the CEC-2017 multi-objective competition with M=2, 3, 5, 10, and 15 objectives.

Firstly, the originally proposed dimension setting for MaF problems will be analyzed.

Looking at Tables A.11, A.12, A.13, A.14, and A.15, it can be seen that the proposed

Ranking Center-based NSGA-III won 5, 6, 7, 4 problems out of 15 problems, respectively.

To be fair, it needs more experiments to evaluate the performance of the proposed center-

based scheme on NSGA-III.
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Table 4.3: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-NSGA-III scheme
on original dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10 M=15

w l t w l t w l t w l t w l t
RC-NSGA-III 5 5 3 6 6 3 7 4 4 4 6 5 0 12 3

Table 4.4: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-NSGA-III scheme
on D = 1000 dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10 M=15

w l t w l t w l t w l t w l t
RC-NSGA-III 9 2 1 12 0 1 10 0 3 8 1 4 0 5 8

To consolidate, Table 4.3 shows the win, tie, lose ratio gathered from Tables A.11,

A.12, A.13, A.14, and A.15.

In the second part, the MaF benchmark with all fixed 1000D dimensions will be

analyzed. The purpose of this study is to show how the NSGA-III algorithm could handle

large-scale many-objective problems. Looking at Table A.16 for M=2, the number of

wins for the proposed scheme on NSGA-III rose to 9 whereas in Table A.11 was 5. This

result clearly shows the effectiveness of a center-based scheme on large-scale optimization

problems as it has been proven before. On the other sets of objectives such as M =3,

5, and 10, it can be seen in Tables A.16, A.17, A.18, and A.19 that number of wins

increased significantly by 6, 3, and 4, respectively. Only on M=15 number of objectives

in Table A.20, the proposed scheme did not change the results after increasing the D to

1000.

To consolidate, Table 4.4 shows the win, tie, lose ratio gathered from Tables A.16,

A.17, A.18, and A.19, and A.20. The comparison between the results obtained from MaF

benchmark optimization on large-scale and original dimensions shows that the proposed

algorithm wins more than 50% of problems. The best result can be seen on M = 5

objectives, where the number of wins is 12 out of 13 problems meaning almost every

functions where outperformed by the proposed scheme on NSGA-III algorithm.
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4.6 Case Study Three: Ranking Center-based Multi-

objective Evolutionary Algorithm based on De-

composition

In this section, MOEA/D algorithm is studied to analyze the impact of adding center-

based solutions to its population. Each generation of MOEA/D consists of applying two

parts, namely, generation and replacement of offspring solutions with the parents in the

population. Considering the optimized population as a suitable source to find clusters,

multiple center-based solutions from the internal clusters can be calculated. The pro-

posed ranking multi-objective approach would be one of the ways to divide the population

into NC clusters. In contrast to previous studies such as NSGA-II and NSGA-III, the

selection operations are applied immediately after each offspring is generated. Therefore,

the selected and center-based solutions construct the whole population.

Experimental Results:

By looking at Tables A.21 and A.22, one can say that the proposed concept almost

failed on theM=2 andM=3 objectives. When the dimensions of solutions in the problem

increase to 1000, it is harder to find the optimal Pareto front. By looking at Tables A.26

and A.27, it can be seen that the number of wins over the MOEA/D by the proposed

ranking center-based MOEA/D are increased to 9 and 8 for M=2 and M=3, respectively.

In a further analysis of the higher number of objectives, such as M=5, M=10,

and M=15, one can see a similar pattern in the performance of Ranking Center-based

MOEAD. As a macro analysis, by looking at Tables A.23, A.24, and A.25, the number

of wins over the parent algorithm, MOEAD, was 3 for M=5 and M=10 and 4 for M=15

which shows poor performance.

To recapitulate, an accumulative Table 4.5 is provided to show the win, tie, and
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Table 4.5: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-MOEA/D scheme
on original dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10 M=15

w l t w l t w l t w l t w l t
RC-MOEA/D 0 5 8 2 9 4 3 8 4 3 5 7 4 6 5

Table 4.6: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-MOEA/D scheme
on D = 1000 dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10 M=15

w l t w l t w l t w l t w l t
RC-MOEA/D 9 1 5 8 3 2 6 6 1 4 4 5 5 6 2

lose counts from Tables A.21, A.22, A.23, A.24, and A.25 which are showing IGD re-

sults on the MaF benchmark problems with original dimensions. In addition, another

accumulative Table 4.6 shows the IGD results on the MaF benchmark problems with

D = 1000 dimensions. By comparing both tables, it can be understood that the pro-

posed scheme has done much more better on large-scale search spaces. For instance, the

proposed RC-MOEA/D resulted better than MOEA/D statistically on 9 problems with

large dimensions of solutions, whereas it could not beat the MOEA/D on the original

dimensions. It proves that center-based sampling enhanced the convergence speed of the

MOEA/D algorithm and improved its exploration capability.

On the other similar tests on D=1000, the large-scale dimensionality could be ad-

dressed by center-based solutions. The total number of wins for M=5 is 6 in the contest

against the parent algorithm shown in Table A.28.
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4.7 Case Study Four: Ranking Center-based Strength

Pareto Evolutionary Algorithm 2

This section proposes the Ranking Center-based SPEA2 (RC-SPEA2) algorithm for solv-

ing many-objective optimization benchmark problems. The proposed strategy is applied

at the offspring generation stage, where the mating parents produce offspring. In order

to keep the function evaluation budget for every generation, the offspring generation

size must be controlled. To do that, the SPEA2’s operators are controlled to generate

NP − NC solutions. Following that, the proposed ranking center-based approach is

applied to the recently generated NP − NC solutions. The ranking strategy finds the

possible fixed-size NC clusters that could calculate the NC center-based solutions in the

regions. Afterwards, the NP − NC offspring solutions in addition to NC center-based

solutions, create NP offspring solutions equal to the size of the population. At the end

of each generation, the specific selection operator in SPEA2 algorithm is used to find the

best NP population from 2×NP solutions as the combination of offspring and previous

population sets. The key is to keep everything in the algorithm as simple as possible.

Considering the simplicity, the performance of the proposed strategy has to be analyzed

in order to find effectiveness.

Experimental Results:

The proposed algorithm was evaluated on CEC-2017 MaF benchmark problems with

the originally proposed dimensions and the large-scale dimension of 1000. Five series of

experiments have been conducted to compare the proposed schemes against the classical

SPEA2. The main difference between these five experiments is the number of function

objectives. As can be seen from Table A.31, the proposed scheme for SPEA2 algorithm

outperforms the classical SPEA2 on M=2 objectives in five functions when the dimen-

sions are in the original format. Despite the number of losses, the proposed strategy only
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Table 4.7: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-SPEA2 scheme
on original dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10

w l t w l t w l t w l t
RC-SPEA2 5 7 1 5 9 1 3 10 2 4 10 1

Table 4.8: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-SPEA2 scheme
on D = 1000 dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10

w l t w l t w l t w l t
RC-SPEA2 10 1 1 11 0 2 8 3 2 10 2 1

lost the competition against SPEA2 in function MaF7 once. Considering the dimensions

increase to 1000, Table A.35 shows that the number of wins rose to 10, resulting in proof

of the effectiveness of the proposed algorithm on large-scale optimization problems. Sim-

ilar to the experiments on original dimensions, the function MaF7 is likewise lost by the

proposed ranking center-based SPEA2 against its parent algorithm.

Similar steps were taken for M = 3, M = 5, and M = 10 objectives where the

proposed algorithm performed better on large-scale dimensions. Looking at Tables A.32,

A.33, and A.34, the number of outperformed functions for the proposed ranking center-

based SPEA2 against SPEA2 algorithm were 5, 3, and 4, respectively. Having the same

order of number of objectives, one can see that the functions that were tied in the

original dimensions are won in the dimension D = 1000. For instance, looking at Table

A.36, on M = 3, the previously tied problems MaF1, MaF3-6, and MaF10-13 were won

by the proposed ranking center-based SPEA2 algorithm in the contest against SPEA2

algorithm on D = 1000 dimensions. In the other Tables A.37 and A.38, the number of

wins are shown as 8 and 10 out of 13 numbers of total functions, resulting in 5 and 6

improvements in the performance of the proposed RCSPEA2 against its parent SPEA2

algorithm, respectively.

To encapsulate the tables in the Appendix for the comparison between RC-SPEA2



Chapter 4.
Proposed Ranking Center-based for Multi-objective Population-based

Algorithms
86

and SPEA2, two accumulative Tables 4.8 and 4.7 are provided. The number of wins

is doubled by leveraging the number of dimensions in the solutions of MaF benchmark

problems. For instance, the proposed RC-SPEA2 won 10 times out of 13 problems from

MaF benchmark problems, resulting in a 77% win ratio.

4.8 Case Study Five: Ranking Center-based Multi-

objective Particle Swarm Optimization

This section studies the famous PSO algorithm on many-objective optimization problems

for the proposed center-based strategy. Prior to the previous knowledge on operators in

PSO, one knows that other than the population of particles, there are Pbest particles

that are the best particles from each generation. Thus, there is a great opportunity to

get the most advantage from these selected solutions to calculate center-based solutions.

All that is needed is a technique to find clusters that could find well-separated solu-

tions based on objective values. In this direction, the simple proposed ranking clustering

method is applied to the Pbest solutions to find NC clusters. The proposed Ranking

Center-based MOPSO begins with a randomly initialized Population. The algorithm is

designed to generate exactly NP number of particles in each generation. In order to

keep the size NP , the PSO’s operators are controlled to generate NP − NC number

of particles. Later, the Pbest set is selected from the top NP − NC Pbest set and

NP − NC newly generated particles, resulting in NP − NC number of solutions. The

top NP − NC Pbest set is found by the proposed average ranking technique used to

cluster the solutions. In the next stage, the Pbest solutions are used to be ranked by the

proposed ranking strategy. The sorted order of particles in Pbest set will provide NC

clusters. Each cluster is considered to find its center-based solution by the simple average

calculation of the variables. After gathering NC center-based solutions and appending

them to Pbest solutions, a second average ranking-based selection process is necessary to
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Table 4.9: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-MOPSO scheme
on original dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10

w l t w l t w l t w l t
RC-MOPSO 7 5 1 10 5 0 8 4 3 7 4 4

sort Pbest solutions. In summary, the key here is to infuse the MOPSO algorithm with

center-based solutions to enhance the quality and closeness of solutions to the optimal

Pareto-front in any black-box optimization problems.

Experimental Results:

The effectiveness of the proposed RC-MOPSO algorithm is analyzed with comprehen-

sive experiments on CEC-2017 MaF benchmark problems with the originally proposed

dimensions and the large-scale dimension of 1000. Four sets of tests have been run to

compare the proposed methods to the traditional MOPSO. The number of function ob-

jectives is the main distinction between these four experiments. Looking at Table A.39,

for M=2, RC-MOPSO outperforms MOPSO algorithm for 7 functions (MaF3, MaF5,

MaF6-MaF10, MaF14-15). While, for large-scale optimization, four more functions were

won by the proposed algorithm resulting in 11 wins in 12 MaF functions (MaF1-MaF12,

and MaF15). In general, one can see from the Tables A.40, A.41 and A.42 that the

number of outperformed functions by the proposed RC-MOPSO algorithm is 10, 8, and

7 for M=3, M=5, and M=10 objectives, respectively. The intersection between them is

5 functions namely, MaF1, MaF6-8, and MaF14.

On the larger scale of dimensions, acceptable results are shown for M=2, 3, 5, and

10 objectives. To be specific, on M=3 objectives shown in Table A.44, it indicates that

RC-MOPSO has a better result than the MOPSO algorithm on eight functions (MaF1-3,

MaF5-7, MaF12, and MaF15). In summary, Tables A.45 and A.46 the number of wins for

M=5 and M=10 is 6 which share the identical functions (MaF1, MaF5, MaF13-MaF15).
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Table 4.10: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-MOPSO scheme
on D = 1000 dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10

w l t w l t w l t w l t
RC-MOPSO 11 1 0 8 3 2 6 0 7 6 1 6

4.9 Case Study Six: Ranking Center-based General-

ized Differential Evolution 3

Within the context of population-based algorithms, it is impossible to skip the differential

evolution algorithm, which has been successfully studied on large-scale single-objective

optimization problems. This last section evaluates the proposed ranking center-based

strategy using the Generalized Differential Evolution 3 algorithm. The proposed RC-

GDE3 algorithm is designed to have a similar process to the previously proposed ranking

center-based evolutionary algorithms such as NSGA-II and NSGA-III. In this scheme,

the GDE3 begins the optimization by population initialization. The specialized DE op-

erators for multi-objective optimization are responsible for generating offspring solutions

from the current population. Before the greedy selection in GDE3, there was an excel-

lent possibility of augmenting offspring solutions with center-based solutions. Sometimes,

newly generated offspring solutions are placed in the out-of-population region, resulting

in a broader search for space. Although they might be dominated by the non-dominated

sorting and crowding distance methods, it is a must to take advantage of them. If a gap

between solutions or a part of the solutions is generated close to each other, the center of

regions should be investigated. One possible convenient and less expansive investigation

method is the center-based strategy. Therefore, the offspring solutions are used to apply

the proposed ranking center-based strategy. The ranking clustering approach is designed

to sort the average of the solutions’ ranks on every objective. The clusters are organized

in equal sizes with a set of sorted solutions. In this study, the number of clusters is set as
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Table 4.11: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-GDE3 scheme
on original dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10

w l t w l t w l t w l t
RC-GDE3 8 4 1 8 5 2 7 8 0 2 12 1

NC=10, meaning the aimed number of center-based solutions. Each cluster represents

its center-based solution by calculating the average of consisting solutions. The simplic-

ity makes the implementation fast and the cost even cheaper than the operators in the

evolutionary algorithm.

Experimental Results:

This section provides a comprehensive analysis of the performance of the proposed

RC-GDE3 algorithm compared to the GDE3 algorithm. The experiments were carried

out on many-objective CEC-2017 MaF benchmark problems, which have 15 problems

with five different objectives M = 2, 3, 5, 10, and 15. Although the MaF benchmark dy-

namically changes the dimension of the solution based on the given number of objectives,

this thesis has investigated another series of problems with constant dimensions for the

sake of large-scale global optimization. Therefore, the experiments consist of two parts

as follows: 1) Original dimensions and 2) D = 1000 dimensions.

Starting with the originally proposed dimensions, Table 4.11 provides an accumula-

tive win/tie/lose ratio over all the objectives. The results clearly demonstrate that the

proposed RC-GDE3 algorithm has won more than 50% of the problems. Only in M = 10

objectives did the proposed RC-GDE3 show no significant improvement over the parent

algorithm in 12 out of 15 problems. For more information on the details of separate prob-

lems results, Tables A.47, A.48, A.49, and A.50 presents mean and standard deviation

of IGD values over 31 independent runs.

In the second part, the proposed RC-GDE3 and GDE3 algorithms are evaluated on
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Table 4.12: Accumulative win (w), tie (t), lose (l) ratio of proposed RC-GDE3 scheme
on D = 1000 dimensions over M = 2, M = 3, M = 5, M = 10, and M = 15 objective
numbers.

Scheme
M=2 M=3 M=5 M=10

w l t w l t w l t w l t
RC-GDE3 7 4 1 8 5 0 6 7 0 5 5 3

large-scale MaF optimization problems with D = 1000. The center-based sampling at

population level shows enhancement when it is applied to large-scale problems. In this

case study, Table 4.12 declares that the proposed RC-GDE3 successfully addressed its

weaknesses on M = 10 objectives by decreasing the number of losses to 5 from 12 and

increasing the number of wins to 5 from 2 against the GDE3 algorithm. The experiments

carried out on other objectives show slight changes but no significance. Overall, the

proposed RC-GDE3 won exactly 50% of problems on the larger scale of many-objective

optimization problems where the dimension of solutions is D = 1000.

4.10 Summary

In this chapter, six population-based algorithms are studied, and the proposed scheme is

applied to all the algorithms to solve CEC-2017 MaF benchmark problems. To summarize

the results, Tables 4.13 and 4.14 provide a comprehensive outlook on the w/t/l ratio.

Table 4.13: Summary of win, tie, and lose ratio collected from all tables for CEC-2017
MaF benchmark problems on D = 1000 dimensions.

Dimensions M=2 M=3 M=5 M=10 M=15 Sum
Algorithms w t l w t l w t l w t l w t l w t l

RC-NSGA-II vs. NSGA-II 4 7 1 6 6 3 6 7 2 9 5 1 8 6 1 33 31 8
RC-NSGA-III vs. NSGA-III 5 5 3 6 6 3 7 4 4 4 6 5 0 12 3 22 33 18
RC-MOEA/D vs. MOEA/D 0 5 8 2 9 4 3 8 4 3 5 7 4 6 5 12 33 28

RC-SPEA2 vs. SPEA2 5 7 1 5 9 1 3 10 2 4 10 1 3 10 2 20 46 7
RC-MOPSO vs. MOPSO 7 5 1 10 5 0 8 4 3 7 4 4 8 2 5 40 20 13
RC-GDE3 vs. GDE3 8 4 1 8 5 1 7 8 0 2 12 1 2 13 0 27 42 3

From Table 4.13, one can understand that the proposed scheme was successful with

30 problems out of 72 problems (40%) on average for original dimensions. The most suc-
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cessful algorithm is RC-MOPSO, with 40 wins and 13 losses, and the bottom-performing

algorithm is RC-MOEA/D, with 12 wins and 28 losses out of 72 problems.

Table 4.14: Summary of win, tie, and lose ratio collected from all tables for CEC-2017
MaF benchmark problems on D = 1000 dimensions.

Dimensions M=2 M=3 M=5 M=10 M=15 Sum
Algorithms w t l w t l w t l w t l w t l w t l

RC-NSGA-II vs. NSGA-II 9 2 1 11 1 1 10 0 3 9 3 1 8 3 2 47 9 8
RC-NSGA-III vs. NSGA-III 9 2 1 12 0 1 10 0 3 8 1 4 0 5 8 39 8 17
RC-MOEA/D vs. MOEA/D 7 0 5 8 3 2 6 6 1 4 4 5 5 6 2 30 19 15

RC-SPEA2 vs. SPEA2 10 1 1 11 0 2 8 3 2 10 2 1 – – – 39 6 6
RC-MOPSO vs. MOPSO 11 1 0 8 3 2 6 0 7 6 1 6 – – – 31 5 15
RC-GDE3 vs. GDE3 7 4 1 8 5 0 6 7 0 5 5 3 – – – 26 21 4

On the other condition, when the dimensions are set to D = 1000, different pat-

terns can be seen from Table 4.14. In this case, the proposed RC-NSGA-II showed a

significantly better winning ratio in comparison to the tests on the original dimensions.

In conclusion, the proposed Ranking Center-based Sampling at the population level

on multi- and many-objective optimization could outperform the classic population-based

algorithm.
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Conclusion and Future Direction

5.1 Conclusion Remarks

Several works have investigated the importance of center-based sampling in the search

space of black-box problems. This is because center-based solutions generally are closer

to optimal solutions compared to randomly generated points. These characteristics make

them valuable to be utilized in the optimization process. This thesis introduced an inves-

tigation into the utilization of center-based sampling at the population level. The center-

based concept has shown to be promising in solving both single- and many-objective op-

timization problems. According to the fact that the advantage of center-based sampling

was investigated previously, this thesis represents a comprehensive experimental investi-

gation. The main contribution of this thesis was two proposed center-based schemes for

both single- and many-objective population-based optimization algorithms.

For single-objective optimization, the Clustering Center-based strategy was proposed

and tested in five different case studies, namely, the DE, GA, PSO, ABC, and CMA-ES.

A single hyper-parameter is used for clustering center-based sampling to control number

of center-based solutions NC injected into the population at each generation. Three

NC values (i.e., 5, 10, 20) are investigated by the conducted experiments on the DE
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algorithm. Overall, the proposed algorithm showed close performances based on the

win/tie/lose ratio. However, the error in NC = 20 was the highest. This stems from the

smaller clusters, which aim to search the smaller regions similar to local search strategies.

On the contrary, the NC = 5 center-based solutions do the global search since the size of

clusters is five times smaller but could not beat the NC = 10 performance. Although the

structure in the search space of the problem is inevitable, the average number of center-

based solutions NC = 10 has an average performance on all the problems concluding

based on experiments. Therefore, for the rest of the experiments, the parameter NC is

set to 10, and crucial improvements were successfully achieved. In brief, the proposed

algorithm outperformed the classical algorithms, such as DE and PSO, in almost all

tests regarding solution accuracy on CEC 2017 benchmark functions, which consist of 29

functions with three dimensions D = 30, 50, and 100.

For many-objective optimization, the average Ranking Center-based sampling was

proposed on six well-known specially designed optimization algorithms such as NSGA-II

and NSGA-III, MOEA/D, SPEA2, MOPSO, and GDE3. The proposed average ranking

algorithm was tested on the mentioned optimization algorithm and compared based on

CEC-2017 many-objective optimization benchmark functions (MaF). Two series of exper-

iments are carried out to analyze the performance of center-based sampling on the original

dimensions proposed by benchmark and large-scale D = 1000 dimensions. In addition,

each series was tested on five objectives to investigate different levels of hardness. The

experimental results confirmed that the proposed center-based sampling scheme could

significantly improve the performance of the classical algorithms. It is interesting to see

these results indicate that utilizing center-based scheme at population level is promising

when the dimension of solutions is large. Although large-scale problems can challenge

the scalability of optimization algorithms, the proposed approach is applicable to any

problem and performs efficiently regardless of degrading factors such as D dimensions

and M objectives. This arises from the clustering technique that is specially designed
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for grouping solutions in objective space. Since the number of objectives is small (i.e.,

M ≤ 15), the complexity and accuracy of clustering in this space are more effortless than

in the decision space.

Overall, the presented findings demonstrated the effectiveness and even greater ac-

complishment of the suggested clustering center-based and average ranking center-based

in the exploration and exploitation stages of the optimization process.

5.2 Future Direction

Although this thesis proposed several center-based sampling schemes at the population

level, meta-heuristic optimization techniques still have a lot of room for development. In

this thesis, the intention is to show the effectiveness of utilizing center-based solutions in

the population directly by solving various problems. Mainly, the proposed algorithms in

this thesis experimented on real-world mathematical benchmark optimization problems,

and it has been successful. Due to the fact that meta-heuristic algorithms have shown

good performance in a wide range of problems, such as neural network training, data

mining, and pattern recognition, one can solve them utilizing the proposed center-based

sampling at the population level in meta-heuristic algorithms.

Furthermore, there are other ways to generate center-based solutions efficiently and

effectively to fill the gaps in the exploration and eliminate solutions stuck in local optima

at the population level in the exploitation. Recommended approaches to try are as

follows:

• It would be interesting to investigate the distance between solutions in a center-

based infused and a classic optimizer. By this end, one can analyze the spread and

spacing in the benefit of reaching closer to global optima in the search space.

• During optimization stages, the number of center-based solutions NC or size of

clusters SC parameter can be changed adaptively based on convergence rate. This
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will control the algorithm to switch the trade-off between global search (exploration)

and local search (exploitation).

• There are many unsupervised clustering techniques to group unlabeled data us-

ing distance or any relational metrics. Inspired by them, one can utilize them in

grouping individuals in a population for center-based sampling.

• A new adaptive parameter setting for algorithms to solve any black-box problem

could be proposed by center-based sampling.
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Table A.1: Comparison of IGD results on RC-NSGA-II, KC-NSGA-II and NSGA-II
algorithms on CEC-2017 MaF benchmark problems for M = 2 number of objectives
and original dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-
II algorithm performs either better than, worse than, or similarly to the comparable
algorithm (NSGA-II), respectively.

Problem AveRank on Offspring AveRank on ParetoFront K-means on Offspring K-means on ParetoFront NSGAII
MaF1 4.6006e-3 (2.53e-4) = 4.5773e-3 (1.91e-4) = 4.6430e-3 (2.28e-4) = 4.5372e-3 (1.39e-4) = 4.6029e-3 (1.48e-4)
MaF2 2.6921e-3 (1.12e-4) + 2.6714e-3 (1.02e-4) + 2.6553e-3 (8.18e-5) + 2.6452e-3 (9.62e-5) + 2.7827e-3 (1.30e-4)
MaF3 2.4039e+0 (2.56e+0) = 3.1494e+0 (4.72e+0) = 4.1489e+0 (6.38e+0) = 2.2373e+0 (3.74e+0) + 5.8957e+0 (1.11e+1)
MaF4 7.1986e-1 (7.71e-1) = 8.6758e-1 (9.40e-1) = 7.7644e-1 (8.45e-1) = 9.1410e-1 (1.22e+0) = 6.9684e-1 (8.75e-1)
MaF5 7.8679e-1 (9.87e-1) = 2.7255e-1 (6.79e-1) + 3.3704e-1 (7.45e-1) = 5.2979e-1 (8.86e-1) = 4.6567e-1 (8.47e-1)
MaF6 4.9647e-3 (1.50e-4) = 4.9963e-3 (2.12e-4) = 4.9934e-3 (1.50e-4) = 4.9980e-3 (1.77e-4) = 4.9847e-3 (1.46e-4)
MaF7 5.3882e-3 (2.02e-4) = 5.3952e-3 (2.30e-4) = 5.4558e-3 (1.71e-4) + 2.0060e-2 (7.86e-2) - 1.9443e-2 (7.87e-2)
MaF10 1.4583e-1 (4.49e-2) - 1.3205e-1 (2.69e-2) = 1.5318e-1 (6.24e-2) - 1.2292e-1 (2.42e-2) = 1.2071e-1 (2.61e-2)
MaF11 1.3546e-2 (7.02e-4) = 2.0605e-2 (3.58e-2) = 1.3733e-2 (8.13e-4) = 2.2484e-2 (3.54e-2) - 1.3755e-2 (9.16e-4)
MaF12 2.3692e-2 (2.06e-3) + 2.3621e-2 (1.71e-3) + 2.3420e-2 (2.10e-3) + 2.3279e-2 (1.99e-3) + 3.8873e-2 (5.04e-2)
MaF14 2.4873e+0 (1.14e+0) + 2.6747e+0 (1.02e+0) + 3.4743e+0 (1.30e+0) + 4.7528e+0 (1.73e+0) = 4.9265e+0 (2.19e+0)
MaF15 1.0273e-1 (1.66e-2) + 1.2087e-1 (2.07e-2) + 1.0568e-1 (1.97e-2) + 1.5625e-1 (5.88e-2) + 3.4540e-1 (6.80e-2)
+/-/= 4/1/7 5/0/7 5/1/6 4/2/6

Table A.2: Comparison of IGD results on RC-NSGA-II, KC-NSGA-II and NSGA-II
algorithms on CEC-2017 MaF benchmark problems for M = 3 number of objectives
and original dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-
II algorithm performs either better than, worse than, or similarly to the comparable
algorithm (NSGA-II), respectively.

Problem AveRank on Offspring AveRank on ParetoFront K-means on Offspring K-means on ParetoFront NSGAII
MaF1 5.4298e-2 (1.91e-3) + 5.5980e-2 (1.73e-3) + 5.7157e-2 (3.48e-3) = 5.8115e-2 (3.39e-3) = 5.7089e-2 (1.96e-3)
MaF2 4.2579e-2 (1.88e-3) + 4.2808e-2 (2.01e-3) + 4.6777e-2 (3.96e-3) = 4.7838e-2 (3.68e-3) = 4.7556e-2 (4.67e-3)
MaF3 3.8963e+0 (4.60e+0) = 4.8822e+0 (5.47e+0) - 3.3354e+0 (5.30e+0) = 3.5522e+0 (6.21e+0) = 1.5844e+0 (2.41e+0)
MaF4 1.1806e+0 (1.27e+0) = 1.4204e+0 (1.63e+0) = 1.5858e+0 (1.85e+0) = 1.2786e+0 (1.78e+0) = 1.0877e+0 (1.53e+0)
MaF5 8.8531e-1 (1.57e+0) = 4.4365e-1 (8.25e-1) = 5.9507e-1 (1.15e+0) = 6.0021e-1 (1.14e+0) = 4.4933e-1 (8.24e-1)
MaF6 5.2832e-3 (2.44e-4) = 5.2118e-3 (2.24e-4) = 5.1325e-3 (1.91e-4) = 5.2215e-3 (2.79e-4) = 5.2069e-3 (2.48e-4)
MaF7 1.0632e-1 (8.15e-2) - 9.8681e-2 (6.72e-2) - 8.6682e-2 (5.71e-3) - 1.0260e-1 (6.90e-2) - 8.4633e-2 (4.93e-2)
MaF8 8.8368e-2 (3.21e-3) + 8.7842e-2 (3.39e-3) + 9.5217e-2 (5.16e-3) + 1.0517e-1 (1.84e-2) = 1.0281e-1 (1.08e-2)
MaF9 2.5958e-1 (1.91e-1) + 2.9334e-1 (8.09e-2) = 3.2258e-1 (1.80e-1) = 3.3981e+0 (1.34e+1) - 3.2066e-1 (2.04e-1)
MaF10 2.4504e-1 (2.89e-2) - 2.4631e-1 (2.61e-2) - 2.3712e-1 (2.08e-2) - 2.3780e-1 (1.81e-2) - 2.2783e-1 (2.14e-2)
MaF11 2.1751e-1 (1.02e-2) = 2.1782e-1 (1.11e-2) = 2.2174e-1 (1.24e-2) = 2.2277e-1 (1.46e-2) = 2.1979e-1 (9.46e-3)
MaF12 2.7844e-1 (1.48e-2) = 2.7786e-1 (1.14e-2) = 2.8074e-1 (1.71e-2) = 2.8080e-1 (1.54e-2) = 2.8001e-1 (2.13e-2)
MaF13 1.1704e-1 (1.03e-2) + 1.1815e-1 (8.67e-3) = 1.1787e-1 (1.20e-2) = 1.3805e-1 (1.89e-2) - 1.2344e-1 (1.35e-2)
MaF14 2.3374e+0 (6.98e-1) - 2.6762e+0 (6.75e-1) - 2.7332e+0 (7.41e-1) - 3.4652e+0 (1.03e+0) - 1.3536e+0 (3.80e-1)
MaF15 4.8155e-1 (1.00e-1) + 4.5533e-1 (1.09e-1) + 5.8311e-1 (1.12e-1) + 6.9501e-1 (1.13e-1) + 1.0726e+0 (2.25e-1)
+/-/= 6/3/6 4/4/7 2/3/10 1/5/9

A.2 Non-dominated Sorting Genetic Algorithm III

(NSGA-III)
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Table A.3: Comparison of IGD results on RC-NSGA-II, KC-NSGA-II and NSGA-II
algorithms on CEC-2017 MaF benchmark problems for M = 5 number of objectives
and original dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-
II algorithm performs either better than, worse than, or similarly to the comparable
algorithm (NSGA-II), respectively.

Problem AveRank on Offspring AveRank on ParetoFront K-means on Offspring K-means on ParetoFront NSGAII
MaF1 1.6654e-1 (5.61e-3) + 1.6779e-1 (3.49e-3) + 1.6968e-1 (5.16e-3) + 1.6840e-1 (6.15e-3) + 1.7819e-1 (6.30e-3)
MaF2 1.3749e-1 (5.23e-3) + 1.3955e-1 (5.06e-3) + 1.5036e-1 (6.41e-3) = 1.4944e-1 (8.31e-3) = 1.5250e-1 (5.42e-3)
MaF3 3.6171e+1 (3.36e+1) = 2.8817e+1 (2.90e+1) = 3.7225e+1 (4.96e+1) = 6.1243e+1 (1.21e+2) = 5.3593e+1 (5.89e+1)
MaF4 5.8642e+0 (9.57e+0) = 4.9291e+0 (6.57e+0) = 3.5524e+0 (3.73e+0) = 3.7017e+0 (4.09e+0) = 3.8481e+0 (5.77e+0)
MaF5 2.3913e+0 (8.68e-2) = 2.4024e+0 (7.54e-2) = 2.3790e+0 (7.66e-2) = 2.3845e+0 (8.98e-2) = 2.4148e+0 (8.27e-2)
MaF6 5.9207e-3 (3.97e-4) = 5.9053e-3 (3.42e-4) = 5.9463e-3 (4.17e-4) = 5.6865e-3 (3.90e-4) + 6.0225e-3 (4.72e-4)
MaF7 4.9028e-1 (5.20e-2) - 4.9707e-1 (6.73e-2) - 6.3081e-1 (9.11e-2) - 6.5540e-1 (9.49e-2) - 3.9726e-1 (1.96e-2)
MaF8 1.6034e-1 (7.47e-3) + 1.5768e-1 (7.45e-3) + 1.6680e-1 (9.44e-3) = 1.7201e-1 (1.27e-2) = 1.6674e-1 (8.20e-3)
MaF9 2.1180e-1 (2.21e-2) + 2.5939e-1 (3.68e-2) + 6.1725e-1 (2.30e-1) = 3.2270e-1 (5.63e-2) + 7.4073e-1 (2.70e-1)
MaF10 8.5562e-1 (6.41e-2) = 8.4580e-1 (4.60e-2) = 8.6592e-1 (5.56e-2) = 8.8994e-1 (4.83e-2) = 8.7033e-1 (5.13e-2)
MaF11 8.9631e-1 (7.01e-2) = 9.1964e-1 (8.89e-2) = 8.7463e-1 (8.74e-2) + 8.4443e-1 (6.51e-2) + 9.0834e-1 (7.19e-2)
MaF12 1.3427e+0 (6.08e-2) + 1.3328e+0 (2.71e-2) + 1.3341e+0 (4.67e-2) + 1.3504e+0 (5.16e-2) + 1.3892e+0 (5.78e-2)
MaF13 2.1151e-1 (3.48e-2) = 2.1021e-1 (2.71e-2) = 2.1234e-1 (3.18e-2) = 2.1939e-1 (2.75e-2) - 2.0556e-1 (3.07e-2)
MaF14 7.1105e+0 (2.41e+0) - 7.0370e+0 (2.30e+0) - 8.3346e+0 (1.95e+0) - 7.7027e+0 (2.24e+0) - 5.4603e+0 (1.87e+0)
MaF15 5.1320e+0 (1.82e+0) + 4.6470e+0 (9.15e-1) + 6.0906e+0 (1.57e+0) + 5.0719e+0 (1.67e+0) + 2.0693e+1 (4.21e+0)
+/-/= 6/2/7 6/2/7 4/2/9 6/3/6

Table A.4: Comparison of IGD results on RC-NSGA-II, KC-NSGA-II and NSGA-II
algorithms on CEC-2017 MaF benchmark problems for M = 10 number of objectives
and original dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-
II algorithm performs either better than, worse than, or similarly to the comparable
algorithm (NSGA-II), respectively.

Problem AveRank on Offspring AveRank on ParetoFront K-means on Offspring K-means on ParetoFront NSGAII
MaF1 2.8978e-1 (7.60e-3) + 2.9450e-1 (8.94e-3) + 3.0719e-1 (1.08e-2) + 3.0822e-1 (1.22e-2) + 3.4261e-1 (1.21e-2)
MaF2 1.8768e-1 (2.39e-3) + 1.8966e-1 (2.59e-3) + 1.8801e-1 (2.76e-3) + 1.8753e-1 (2.81e-3) + 1.9520e-1 (2.96e-3)
MaF3 9.3789e+6 (4.39e+7) = 2.1858e+8 (1.21e+9) = 3.2792e+8 (1.81e+9) = 1.5480e+6 (1.48e+6) = 2.5229e+6 (5.96e+6)
MaF4 7.5158e+1 (4.27e+0) + 7.4916e+1 (4.43e+0) + 7.8650e+1 (5.77e+0) + 8.0248e+1 (5.00e+0) = 8.1850e+1 (5.01e+0)
MaF5 1.1843e+2 (9.05e+0) = 1.2038e+2 (9.35e+0) = 1.2206e+2 (9.93e+0) = 1.2155e+2 (1.05e+1) = 1.2179e+2 (9.58e+0)
MaF6 7.0861e-3 (8.44e-4) + 6.9623e-3 (6.24e-4) + 6.8638e-3 (5.57e-4) + 7.0511e-3 (7.10e-4) + 3.5678e-1 (1.55e-2)
MaF7 6.8394e+0 (2.39e+0) - 6.8830e+0 (2.34e+0) - 7.6721e+0 (2.22e+0) - 8.6273e+0 (2.44e+0) - 2.4023e+0 (4.58e-1)
MaF8 2.4413e-1 (1.02e-2) + 2.3831e-1 (9.30e-3) + 2.5331e-1 (1.44e-2) = 2.6509e-1 (1.80e-2) - 2.5670e-1 (1.12e-2)
MaF9 4.2301e+1 (5.02e+1) + 2.2772e+1 (3.17e+1) + 8.6968e+1 (7.91e+1) = 9.5329e+1 (1.04e+2) = 1.0536e+2 (1.00e+2)
MaF10 1.8777e+0 (1.22e-1) = 1.8954e+0 (8.15e-2) = 1.9150e+0 (9.50e-2) = 1.9166e+0 (1.06e-1) = 1.8863e+0 (1.07e-1)
MaF11 1.8623e+0 (1.15e-1) + 1.9035e+0 (1.30e-1) + 1.8507e+0 (1.07e-1) + 1.8031e+0 (8.83e-2) + 1.9720e+0 (1.10e-1)
MaF12 5.5200e+0 (9.94e-2) = 5.5335e+0 (8.51e-2) = 5.5047e+0 (8.81e-2) = 5.5142e+0 (8.29e-2) = 5.5357e+0 (6.62e-2)
MaF13 2.9349e-1 (1.24e-1) = 2.9241e-1 (1.32e-1) = 3.0300e-1 (2.46e-1) = 2.8988e-1 (8.28e-2) - 2.6596e-1 (7.62e-2)
MaF14 1.0936e+1 (2.53e+0) + 1.2281e+1 (2.39e+0) = 1.0440e+1 (2.88e+0) + 9.7060e+0 (2.62e+0) + 1.2212e+1 (2.91e+0)
MaF15 2.1830e+1 (4.85e+0) + 1.9717e+1 (5.70e+0) + 2.1727e+1 (4.32e+0) + 1.8749e+1 (4.67e+0) + 7.0761e+1 (9.91e+0)
+/-/= 9/1/5 8/1/6 7/1/7 6/3/6

A.3 Multi-objective Evolutionary Algorithm based

on Decomposition (MOEA/D)
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Table A.5: Comparison of IGD results on RC-NSGA-II, KC-NSGA-II and NSGA-II
algorithms on CEC-2017 MaF benchmark problems for M = 15 number of objectives
and original dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-
II algorithm performs either better than, worse than, or similarly to the comparable
algorithm (NSGA-II), respectively.

Problem AveRank on Offspring AveRank on ParetoFront K-means on Offspring K-means on ParetoFront NSGAII
MaF1 3.3370e-1 (7.78e-3) + 3.3302e-1 (6.96e-3) + 3.4027e-1 (1.31e-2) + 3.4033e-1 (1.44e-2) + 4.0515e-1 (1.58e-2)
MaF2 1.8986e-1 (2.36e-3) + 1.9179e-1 (3.80e-3) + 1.8893e-1 (3.42e-3) + 1.8844e-1 (3.69e-3) + 1.9787e-1 (2.76e-3)
MaF3 2.1180e+6 (1.61e+6) = 3.2604e+7 (1.62e+8) = 1.7872e+6 (1.15e+6) + 1.0065e+7 (4.31e+7) = 2.8972e+6 (1.64e+6)
MaF4 2.2072e+3 (3.04e+2) + 3.2923e+3 (5.71e+3) - 2.6193e+3 (2.38e+3) - 2.3213e+3 (2.61e+2) + 2.5007e+3 (3.52e+2)
MaF5 2.6249e+3 (3.13e+2) = 2.7117e+3 (2.72e+2) = 2.6995e+3 (2.61e+2) = 2.7069e+3 (3.46e+2) = 2.7484e+3 (3.20e+2)
MaF6 1.2154e-1 (1.68e-1) + 5.6952e-2 (1.31e-1) + 1.4282e-1 (2.12e-1) + 1.4654e-1 (1.81e-1) + 5.0288e-1 (1.89e-1)
MaF7 1.5122e+1 (3.59e+0) - 1.4302e+1 (3.78e+0) - 1.6887e+1 (4.98e+0) - 1.7289e+1 (4.03e+0) - 8.0516e+0 (2.83e+0)
MaF8 3.0149e-1 (1.19e-2) + 2.9987e-1 (1.47e-2) + 3.1180e-1 (1.62e-2) = 3.2110e-1 (1.89e-2) = 3.1290e-1 (1.66e-2)
MaF9 3.6951e+0 (1.83e+0) + 1.2195e+0 (4.10e-1) + 7.0037e+0 (3.88e+0) + 1.8834e+0 (5.33e-1) + 1.6678e+1 (1.05e+1)
MaF10 2.5309e+0 (1.41e-1) = 2.5398e+0 (1.41e-1) = 2.4855e+0 (1.26e-1) + 2.5137e+0 (1.27e-1) = 2.5480e+0 (1.38e-1)
MaF11 2.5714e+0 (3.57e-1) + 2.8012e+0 (6.09e-1) = 2.6941e+0 (4.17e-1) = 2.7315e+0 (5.69e-1) = 2.7283e+0 (4.27e-1)
MaF12 9.5840e+0 (1.14e-1) = 9.5777e+0 (1.57e-1) = 9.5228e+0 (1.37e-1) = 9.5788e+0 (1.30e-1) = 9.5490e+0 (1.70e-1)
MaF13 3.5026e-1 (1.74e-1) = 2.9421e-1 (8.91e-2) = 3.0981e-1 (8.22e-2) = 3.7247e-1 (1.45e-1) = 3.7861e-1 (2.89e-1)
MaF14 8.7388e+0 (6.90e+0) = 1.0519e+1 (6.45e+0) = 1.0115e+1 (6.54e+0) = 9.5058e+0 (6.65e+0) = 1.1906e+1 (7.02e+0)
MaF15 4.0312e+1 (1.36e+1) + 4.0166e+1 (1.44e+1) + 4.0132e+1 (1.21e+1) + 3.5798e+1 (9.72e+0) + 9.3157e+1 (1.29e+1)
+/-/= 8/1/6 6/2/7 7/2/6 6/1/8

A.4 Strength Pareto Evolutionary Algorithm 2 (SPEA2)
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Table A.6: Comparison of IGD results on RC-NSGA-II and NSGA-II algorithms on
CEC-2017 MaF benchmark problems for M = 2 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-II algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
II), respectively.

Problem M D RC-NSGA-II NSGA-II
MaF1 2 1000 1.3873e+0 (1.50e-1) + 1.0350e+1 (4.64e-1)
MaF2 2 1000 2.1300e-1 (2.46e-2) + 2.2239e+0 (1.43e-1)
MaF3 2 1000 1.0613e+9 (1.29e+8) + 2.4893e+9 (3.25e+8)
MaF4 2 1000 4.5697e+4 (2.58e+3) + 6.8504e+4 (2.28e+3)
MaF5 2 1000 1.0260e+1 (3.26e+0) + 3.8632e+1 (1.35e+1)
MaF6 2 1000 1.8951e+2 (2.40e+1) + 1.4675e+3 (6.88e+1)
MaF7 2 1000 3.7129e+0 (1.65e-1) - 2.5756e+0 (9.52e-2)
MaF10 2 1000 1.3623e+0 (3.46e-2) = 1.3479e+0 (2.07e-2)
MaF11 2 1001 2.2327e-1 (3.56e-3) + 3.2537e-1 (8.06e-3)
MaF12 2 1000 9.0117e-2 (5.77e-3) + 3.5236e-1 (1.04e-2)
MaF14 2 1000 2.7853e+1 (4.82e-1) = 2.7323e+1 (1.31e+0)
MaF15 2 1000 1.3515e+0 (5.67e-2) + 2.4780e+0 (1.06e-1)

+/=/- 9/2/1

Table A.7: Comparison of IGD results on RC-NSGA-II and NSGA-II algorithms on
CEC-2017 MaF benchmark problems for M = 3 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-II algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
II), respectively.

Problem M D RC-NSGA-II NSGA-II
MaF1 3 1000 2.2264e+0 (2.99e-1) + 2.0563e+1 (1.21e+0)
MaF2 3 1000 1.8572e-1 (1.46e-2) + 2.5648e+0 (2.10e-1)
MaF3 3 1000 2.1618e+9 (1.73e+8) + 3.3773e+9 (2.88e+8)
MaF4 3 1000 1.6755e+5 (7.27e+3) + 2.0571e+5 (4.59e+3)
MaF5 3 1000 1.4398e+1 (6.68e+0) + 4.2596e+1 (6.73e+0)
MaF6 3 1000 3.4094e+2 (4.20e+1) + 1.8029e+3 (1.00e+2)
MaF7 3 1000 7.3090e+0 (2.70e-1) - 3.6533e+0 (1.51e-1)
MaF10 3 1000 1.5005e+0 (1.06e-2) = 1.5033e+0 (7.95e-3)
MaF11 3 1000 3.7965e-1 (1.26e-2) + 5.5835e-1 (1.12e-2)
MaF12 3 1000 3.0921e-1 (1.15e-2) + 8.7457e-1 (2.52e-2)
MaF13 3 1000 5.1282e-1 (8.84e-3) + 1.3187e+0 (9.34e-2)
MaF14 3 1000 1.5115e+1 (4.75e+0) + 2.3240e+1 (4.81e+0)
MaF15 3 1000 3.2435e+0 (3.68e-1) + 8.6008e+0 (1.01e+0)

+/=/- 11/1/1
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Table A.8: Comparison of IGD results on RC-NSGA-II and NSGA-II algorithms on
CEC-2017 MaF benchmark problems for M = 5 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-II algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
II), respectively.

Problem M D RC-NSGA-II NSGA-II
MaF1 5 1000 3.3294e+0 (4.00e-1) + 5.5508e+1 (4.26e+0)
MaF2 5 1000 2.4174e-1 (3.04e-2) + 1.6747e+0 (7.10e-2)
MaF3 5 1000 3.3863e+12 (5.27e+12) + 1.1283e+13 (1.51e+13)
MaF4 5 1000 9.0179e+5 (3.65e+4) - 7.3745e+5 (3.94e+4)
MaF5 5 1000 1.9528e+1 (4.60e+0) + 5.0608e+1 (2.11e+1)
MaF6 5 1000 4.3166e+2 (8.97e+1) + 2.0024e+3 (8.88e+1)
MaF7 5 1000 9.5225e+0 (4.04e-1) - 6.4213e+0 (3.47e-1)
MaF10 5 1000 1.9472e+0 (4.15e-3) + 1.9584e+0 (6.37e-3)
MaF11 5 1000 7.3703e-1 (2.89e-1) + 7.9379e-1 (1.49e-1)
MaF12 5 1000 1.2084e+0 (7.42e-3) + 1.4752e+0 (2.67e-2)
MaF13 5 1000 7.9862e-1 (3.49e-2) + 3.4268e+0 (2.82e-1)
MaF14 5 1000 1.6776e+1 (1.60e+1) - 1.5897e+1 (3.33e+0)
MaF15 5 1000 5.0806e+0 (3.32e-1) + 1.4463e+1 (2.08e+0)
+/=/- 10/0/3

Table A.9: Comparison of IGD results on RC-NSGA-II and NSGA-II algorithms on
CEC-2017 MaF benchmark problems for M = 10 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-II algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
II), respectively.

Problem M D RC-NSGA-II NSGA-II
MaF1 10 1000 3.8474e+0 (4.29e-1) + 6.5791e+1 (4.52e+0)
MaF2 10 1000 6.5815e-1 (6.78e-2) + 2.0970e+0 (1.16e-1)
MaF3 10 1000 3.3061e+14 (1.84e+15) = 8.2314e+13 (4.41e+14)
MaF4 10 1000 2.7978e+7 (2.90e+6) = 2.7237e+7 (2.69e+6)
MaF5 10 1000 3.8233e+2 (1.06e+1) + 3.8696e+2 (1.33e+1)
MaF6 10 1000 4.4348e+3 (8.05e+2) + 7.9249e+3 (2.57e+2)
MaF7 10 1000 3.4362e+1 (5.36e-1) - 3.1959e+1 (5.75e-1)
MaF10 10 1000 3.0655e+0 (6.95e-2) = 3.0961e+0 (7.06e-2)
MaF11 10 1001 1.8205e+0 (1.14e-1) + 2.1604e+0 (1.46e-1)
MaF12 10 1000 5.4633e+0 (1.20e-1) + 5.6223e+0 (7.69e-2)
MaF13 10 1000 8.8884e-1 (3.80e-2) + 3.8839e+0 (4.16e-1)
MaF14 10 1000 2.0860e+1 (1.83e+0) + 2.2129e+1 (2.86e+0)
MaF15 10 1000 1.1830e+1 (1.34e+0) + 6.6779e+1 (4.99e+0)

+/=/- 9/3/1
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Table A.10: Comparison of IGD results on RC-NSGA-II and SPEA2 algorithms on
CEC-2017 MaF benchmark problems for M = 15 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-II algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
II), respectively.

Problem M D RC-NSGA-II NSGA-II
MaF1 15 1000 4.9303e+0 (5.75e-1) + 9.0813e+1 (7.02e+0)
MaF2 15 1000 6.2637e-1 (7.77e-2) + 1.5123e+0 (7.10e-2)
MaF3 15 1000 1.4595e+15 (7.50e+15) = 2.0363e+14 (7.10e+14)
MaF4 15 1000 9.4763e+8 (1.11e+8) - 8.4856e+8 (8.64e+7)
MaF5 15 1000 7.1027e+3 (4.88e+2) = 7.0953e+3 (4.71e+2)
MaF6 15 1000 5.3666e+3 (8.94e+2) + 7.8544e+3 (2.55e+2)
MaF7 15 1000 5.3734e+1 (6.98e-1) - 5.2127e+1 (1.05e+0)
MaF10 15 1000 3.9940e+0 (7.58e-2) = 4.0229e+0 (7.88e-2)
MaF11 15 1000 2.4307e+0 (1.09e-1) + 2.8250e+0 (1.32e-1)
MaF12 15 1000 9.4494e+0 (1.31e-1) + 9.5569e+0 (1.85e-1)

v MaF13 15 1000 9.9446e-1 (4.42e-2) + 4.7838e+0 (4.61e-1)
MaF14 15 1000 2.3751e+1 (1.75e+0) + 2.5181e+1 (1.54e+0)
MaF15 15 1000 1.7431e+1 (2.35e+0) + 9.0426e+1 (5.13e+0)

+/=/- 8/3/2

Table A.11: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms
on CEC-2017 MaF benchmark problems for M = 2 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem RC-NSGA-III NSGA-III

MaF1 3.5728e-3 (1.78e-6) + 3.5742e-3 (4.11e-6)

MaF2 2.0222e-3 (1.58e-5) + 2.0375e-3 (2.41e-5)

MaF3 6.8441e+0 (1.05e+1) = 9.8601e+0 (1.87e+1)

MaF4 1.0488e+0 (9.75e-1) = 1.3028e+0 (1.24e+0)

MaF5 4.6298e-1 (8.48e-1) = 3.3421e-1 (7.46e-1)

MaF6 4.0544e-3 (5.06e-5) = 4.0716e-3 (5.73e-5)

MaF7 5.2873e-3 (1.16e-4) − 5.1317e-3 (9.65e-5)

MaF10 2.4242e-1 (8.31e-2) − 2.0137e-1 (6.95e-2)

MaF11 1.6261e-2 (1.16e-3) − 1.5135e-2 (7.18e-4)

MaF12 2.2496e-2 (2.25e-3) + 2.4027e-2 (2.47e-3)

MaF13 9.3026e-2 (7.81e-3) = 9.3280e-2 (7.62e-3)

MaF14 3.0007e+0 (7.41e-1) + 6.5509e+0 (2.35e+0)

MaF15 1.4985e-1 (2.01e-2) + 3.2177e-1 (8.12e-2)

+/ = /− 5/5/3
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Table A.12: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms
on CEC-2017 MaF benchmark problems for M = 3 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem RC-NSGA-III NSGA-III

MaF1 5.8947e-2 (1.38e-3) + 6.1022e-2 (2.01e-3)

MaF2 3.5235e-2 (6.98e-4) + 3.6081e-2 (6.59e-4)

MaF3 1.0151e+0 (1.79e+0) = 8.1175e-1 (1.59e+0)

MaF4 1.8959e+0 (2.10e+0) = 1.4368e+0 (1.94e+0)

MaF5 9.5065e-1 (1.05e+0) − 3.5668e-1 (3.81e-1)

MaF6 1.3195e-2 (1.15e-3) + 1.4793e-2 (1.39e-3)

MaF7 9.9779e-2 (7.83e-2) − 8.6662e-2 (5.11e-2)

MaF8 1.0099e-1 (4.32e-3) + 1.2599e-1 (2.16e-2)

MaF9 6.4110e-2 (3.33e-3) + 7.6340e-2 (1.99e-2)

MaF10 2.3655e-1 (2.55e-2) = 2.2374e-1 (2.65e-2)

MaF11 1.6300e-1 (1.14e-3) = 1.6287e-1 (1.45e-3)

MaF12 2.2346e-1 (1.40e-3) = 2.2398e-1 (1.93e-3)

MaF13 9.3026e-2 (7.81e-3) = 9.3280e-2 (7.62e-3)

MaF14 2.3541e+0 (8.31e-1) − 1.0401e+0 (2.39e-1)

MaF15 5.4750e-1 (9.42e-2) + 6.5509e-1 (1.46e-1)

+/ = /− 6/6/3

A.5 Multi-objective Particle Swarm Optimization (MOPSO)
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Table A.13: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms
on CEC-2017 MaF benchmark problems for M = 5 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem RC-NSGA-III NSGA-III
MaF1 1.8327e-1 (1.08e-2) + 2.2942e-1 (2.00e-2)
MaF2 1.3315e-1 (3.46e-3) + 1.4139e-1 (4.09e-3)
MaF3 2.5176e-1 (4.62e-1) + 1.6734e+0 (3.28e+0)
MaF4 6.0323e+0 (9.00e+0) = 4.4369e+0 (1.84e+0)
MaF5 2.8422e+0 (9.77e-1) = 2.6496e+0 (9.07e-1)
MaF6 4.8674e-2 (1.56e-2) + 6.0712e-2 (1.43e-2)
MaF7 3.9670e-1 (1.76e-2) - 3.8623e-1 (1.31e-2)
MaF8 2.3958e-1 (2.43e-2) + 2.5596e-1 (2.63e-2)
MaF9 5.3264e-1 (1.96e-1) = 5.9856e-1 (2.33e-1)
MaF10 4.9395e-1 (2.09e-2) - 4.8215e-1 (1.77e-2)
MaF11 4.9907e-1 (3.58e-3) + 5.0150e-1 (3.59e-3)
MaF12 1.1982e+0 (3.38e-3) = 1.2018e+0 (7.77e-3)
MaF13 2.7021e-1 (3.25e-2) + 3.0315e-1 (5.40e-2)
MaF14 1.1064e+1 (1.39e+1) - 3.8482e+0 (1.79e+0)
MaF15 1.9450e+0 (4.02e-1) - 1.3665e+0 (2.13e-1)
+/=/- 7/4/4

Table A.14: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms on
CEC-2017 MaF benchmark problems for M = 10 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem RC-NSGA-III NSGA-III
MaF1 3.3121e-1 (7.01e-3) - 3.1789e-1 (6.59e-3)
MaF2 2.8549e-1 (2.89e-2) = 2.7148e-1 (2.41e-2)
MaF3 2.3430e+2 (3.69e+2) - 1.0904e+2 (2.95e+2)
MaF4 1.5698e+2 (1.54e+1) = 1.5261e+2 (1.52e+1)
MaF5 1.3390e+2 (6.41e+0) + 1.3631e+2 (1.95e+0)
MaF6 6.9977e-2 (3.59e-2) + 2.9861e-1 (1.22e-1)
MaF7 1.8147e+0 (3.14e-1) - 1.6787e+0 (3.84e-1)
MaF8 5.5985e-1 (1.08e-1) - 4.6350e-1 (7.85e-2)
MaF9 1.1120e+0 (3.82e-1) = 2.1575e+0 (2.19e+0)
MaF10 1.5092e+0 (2.01e-1) = 1.4887e+0 (1.48e-1)
MaF11 1.3994e+0 (7.17e-2) + 1.4854e+0 (1.06e-1)
MaF12 5.7891e+0 (1.24e-1) = 5.8117e+0 (1.07e-1)
MaF13 3.6210e-1 (4.79e-2) + 4.8659e-1 (1.11e-1)
MaF14 9.6251e+0 (4.34e+0) = 1.0541e+1 (5.52e+0)
MaF15 3.6923e+0 (7.53e-1) - 2.3534e+0 (1.34e+0)
+/=/- 4/6/5
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Table A.15: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms on
CEC-2017 MaF benchmark problems for M = 15 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem RC-NSGA-III NSGA-III
MaF1 3.6804e-1 (9.56e-3) = 3.7197e-1 (8.87e-3)
MaF2 3.2556e-1 (5.81e-2) = 3.1535e-1 (4.63e-2)
MaF3 1.3371e+2 (3.20e+2) - 9.5378e+0 (2.07e+1)
MaF4 5.6781e+3 (4.82e+2) = 5.6120e+3 (3.23e+2)
MaF5 4.7883e+3 (3.43e+1) = 4.7518e+3 (1.95e+2)
MaF6 4.1976e-1 (1.80e-1) = 4.5611e-1 (1.76e-1)
MaF7 5.7169e+0 (6.59e-1) = 5.8233e+0 (6.20e-1)
MaF8 9.2279e-1 (1.39e-1) - 8.1734e-1 (1.25e-1)
MaF9 1.4823e+0 (4.37e-1) = 1.7047e+0 (2.27e+0)
MaF10 2.0779e+0 (1.38e-1) = 2.1125e+0 (1.92e-1)
MaF11 2.8588e+0 (5.61e-1) = 2.5945e+0 (6.05e-1)
MaF12 1.1589e+1 (2.49e-1) = 1.1620e+1 (2.73e-1)
MaF13 8.4357e-1 (1.87e-1) = 8.7011e-1 (2.14e-1)
MaF14 8.9352e+0 (9.55e+0) - 4.9105e+0 (5.20e+0)
MaF15 1.4825e+1 (2.30e+1) = 2.8090e+1 (3.19e+1)
+/=/- 0/12/3

Table A.16: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms on
CEC-2017 MaF benchmark problems for M = 2 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem M D RC-NSGA-III NSGA-III
MaF1 2 1000 1.3873e+0 (1.50e-1) + 1.0350e+1 (4.64e-1)
MaF2 2 1000 2.1300e-1 (2.46e-2) + 2.2239e+0 (1.43e-1)
MaF3 2 1000 1.0613e+9 (1.29e+8) + 2.4893e+9 (3.25e+8)
MaF4 2 1000 4.5697e+4 (2.58e+3) + 6.8504e+4 (2.28e+3)
MaF5 2 1000 1.0260e+1 (3.26e+0) + 3.8632e+1 (1.35e+1)
MaF6 2 1000 1.8951e+2 (2.40e+1) + 1.4675e+3 (6.88e+1)
MaF7 2 1000 3.7129e+0 (1.65e-1) - 2.5756e+0 (9.52e-2)
MaF10 2 1000 1.3623e+0 (3.46e-2) = 1.3479e+0 (2.07e-2)
MaF11 2 1001 2.2327e-1 (3.56e-3) + 3.2537e-1 (8.06e-3)
MaF12 2 1000 9.0117e-2 (5.77e-3) + 3.5236e-1 (1.04e-2)
MaF14 2 1000 2.7853e+1 (4.82e-1) = 2.7323e+1 (1.31e+0)
MaF15 2 1000 1.3515e+0 (5.67e-2) + 2.4780e+0 (1.06e-1)

+/=/- 9/2/1

A.6 Generalized Differential Evolution 3 (GDE3)
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Table A.17: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms on
CEC-2017 MaF benchmark problems for M = 3 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem RC-NSGA-III NSGA-III
MaF1 2.1262e+0 (1.70e-1) + 1.9255e+1 (9.34e-1)
MaF2 1.8700e-1 (1.48e-2) + 1.7412e+0 (1.10e-1)
MaF3 3.0379e+11 (5.55e+11) + 1.7226e+12 (3.19e+12)
MaF4 1.4455e+5 (8.00e+3) + 1.8739e+5 (6.51e+3)
MaF5 1.1609e+1 (3.72e+0) + 3.6955e+1 (7.11e+0)
MaF6 2.8555e+2 (2.98e+1) + 1.5395e+3 (8.39e+1)
MaF7 6.6946e+0 (2.74e-1) - 4.0173e+0 (1.58e-1)
MaF10 1.4855e+0 (6.21e-3) + 1.4948e+0 (5.66e-3)
MaF11 3.2629e-1 (5.46e-2) + 5.0494e-1 (5.07e-2)
MaF12 2.5230e-1 (7.09e-3) + 7.1521e-1 (1.99e-2)
MaF13 5.5390e-1 (1.16e-2) + 1.0874e+0 (6.20e-2)
MaF14 9.4600e+0 (3.96e-1) + 1.4111e+1 (5.74e-1)
MaF15 2.4452e+0 (2.28e-1) + 5.7141e+0 (4.17e-1)
+/=/- 12/0/1

Table A.18: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms on
CEC-2017 MaF benchmark problems for M = 5 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem RC-NSGA-III NSGA-III
MaF1 3.3294e+0 (4.00e-1) + 5.5508e+1 (4.26e+0)
MaF2 2.4174e-1 (3.04e-2) + 1.6747e+0 (7.10e-2)
MaF3 3.3863e+12 (5.27e+12) + 1.1283e+13 (1.51e+13)
MaF4 9.0179e+5 (3.65e+4) - 7.3745e+5 (3.94e+4)
MaF5 1.9528e+1 (4.60e+0) + 5.0608e+1 (2.11e+1)
MaF6 4.3166e+2 (8.97e+1) + 2.0024e+3 (8.88e+1)
MaF7 9.5225e+0 (4.04e-1) - 6.4213e+0 (3.47e-1)
MaF10 1.9472e+0 (4.15e-3) + 1.9584e+0 (6.37e-3)
MaF11 7.3703e-1 (2.89e-1) + 7.9379e-1 (1.49e-1)
MaF12 1.2084e+0 (7.42e-3) + 1.4752e+0 (2.67e-2)
MaF13 7.9862e-1 (3.49e-2) + 3.4268e+0 (2.82e-1)
MaF14 1.6776e+1 (1.60e+1) - 1.5897e+1 (3.33e+0)
MaF15 5.0806e+0 (3.32e-1) + 1.4463e+1 (2.08e+0)
+/=/- 10/0/3
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Table A.19: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms on
CEC-2017 MaF benchmark problems for M = 10 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem RC-NSGA-III NSGA-III
MaF1 2.6062e+0 (6.14e-1) + 6.1401e+1 (1.05e+1)
MaF2 3.7468e-1 (8.69e-2) + 9.7274e-1 (9.98e-2)
MaF3 8.2266e+13 (4.55e+14) + 2.2717e+16 (7.78e+16)
MaF4 1.6419e+7 (5.50e+6) - 1.3636e+7 (1.92e+6)
MaF5 2.0572e+2 (2.66e+1) + 2.9441e+2 (1.69e+1)
MaF6 7.0629e+2 (1.48e+2) + 3.2723e+3 (6.26e+2)
MaF7 2.2101e+1 (1.14e+0) - 1.9547e+1 (1.88e+0)
MaF10 3.0414e+0 (2.31e-1) = 3.0853e+0 (3.77e-1)
MaF11 3.3883e+0 (1.19e+0) - 1.8178e+0 (4.24e-1)
MaF12 5.7813e+0 (4.70e-2) - 5.7220e+0 (3.16e-2)
MaF13 1.0560e+0 (1.26e-1) + 3.2901e+0 (3.37e-1)
MaF14 1.4385e+1 (1.21e+0) + 2.1146e+1 (4.23e+0)
MaF15 1.0559e+1 (2.25e+0) + 3.9101e+1 (7.79e+0)
+/=/- 8/1/4

Table A.20: Comparison of IGD results on RC-NSGA-III and NSGA-III algorithms on
CEC-2017 MaF benchmark problems for M = 15 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-NSGA-III algorithm
performs either better than, worse than, or similarly to the comparable algorithm (NSGA-
III), respectively.

Problem RC-NSGA-III NSGA-III
MaF1 8.5229e+1 (9.95e+0) - 6.0962e+1 (1.27e+1)
MaF2 7.3751e-1 (7.95e-2) - 6.8342e-1 (7.28e-2)
MaF3 1.0909e+12 (1.41e+12) = 6.0527e+11 (4.87e+11)
MaF4 6.6522e+8 (1.09e+8) - 5.3115e+8 (6.84e+7)
MaF5 6.9526e+3 (7.00e+2) = 7.0519e+3 (4.38e+2)
MaF6 4.4805e+3 (2.58e+2) - 4.0161e+3 (3.01e+2)
MaF7 4.4521e+1 (1.64e+0) - 3.9952e+1 (1.31e+0)
MaF10 5.4024e+0 (8.23e-1) - 4.9576e+0 (5.65e-1)
MaF11 5.4818e+0 (1.92e+0) = 4.7734e+0 (2.28e+0)
MaF12 1.1653e+1 (3.59e-1) = 1.1517e+1 (2.80e-1)
MaF13 8.7234e+0 (6.06e-1) - 5.1461e+0 (4.54e-1)
MaF14 2.8487e+1 (4.65e+0) - 2.6622e+1 (8.93e+0)
MaF15 7.5185e+1 (1.28e+1) = 7.8864e+1 (1.34e+1)
+/=/- 0/5/8
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Table A.21: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms
on CEC-2017 MaF benchmark problems for M = 2 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem RC-MOEA/D MOEA/D

MaF1 1.1524e-2 (1.11e-3) − 3.5736e-3 (1.55e-6)

MaF2 6.6455e-3 (9.03e-4) − 2.9070e-3 (1.80e-4)

MaF3 4.9682e+0 (6.30e+0) = 4.1499e+0 (5.38e+0)

MaF4 2.7700e+0 (2.41e+0) = 2.0166e+0 (1.33e+0)

MaF5 6.8516e-1 (9.28e-1) − 4.6397e-1 (8.48e-1)

MaF6 1.2742e-1 (1.50e-1) − 4.3348e-3 (1.92e-4)

MaF7 2.5575e-1 (2.24e-1) − 1.5509e-1 (2.05e-1)

MaF10 2.8585e-1 (5.81e-2) = 2.6940e-1 (6.01e-2)

MaF11 1.3431e-1 (8.28e-2) − 8.3345e-2 (4.35e-2)

MaF12 8.5296e-2 (6.01e-2) = 7.0799e-2 (3.30e-2)

MaF13 1.2549e-1 (3.59e-2) − 1.1744e-1 (3.98e-2)

MaF14 6.8495e-1 (8.32e-2) = 6.6155e-1 (8.86e-2)

MaF15 1.5319e-1 (1.59e-2) − 1.4513e-1 (1.53e-2)

+/ = /− 0/5/8
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Table A.22: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms
on CEC-2017 MaF benchmark problems for M = 3 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem RC-MOEA/D MOEA/D

MaF1 6.4846e-2 (7.79e-4) + 7.0476e-2 (7.00e-6)

MaF2 4.0335e-2 (1.20e-3) = 4.0797e-2 (8.53e-4)

MaF3 3.2067e-1 (6.55e-1) − 1.3748e-1 (3.95e-1)

MaF4 1.6449e+0 (4.45e-1) = 1.5557e+0 (4.53e-1)

MaF5 1.9710e+0 (1.81e+0) − 1.2008e+0 (1.57e+0)

MaF6 8.3431e-2 (1.58e-1) + 9.1596e-2 (1.18e-1)

MaF7 1.8964e-1 (1.64e-1) − 1.5502e-1 (2.50e-3)

MaF8 2.6376e-1 (1.56e-1) = 2.3413e-1 (1.25e-1)

MaF9 1.6573e-1 (7.52e-2) = 1.4906e-1 (6.68e-2)

MaF10 3.2812e-1 (3.15e-2) = 3.2742e-1 (2.76e-2)

MaF11 2.5312e-1 (1.61e-2) = 2.4869e-1 (1.63e-2)

MaF12 2.9859e-1 (4.59e-2) = 3.0318e-1 (4.50e-2)

MaF13 1.2549e-1 (3.59e-2) − 1.1744e-1 (3.98e-2)

MaF14 6.1416e-1 (1.28e-1) = 6.2941e-1 (1.55e-1)

MaF15 4.5353e-1 (1.43e-1) = 4.2397e-1 (1.30e-1)

+/ = /− 2/9/4

Table A.23: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms
on CEC-2017 MaF benchmark problems for M = 5 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem M D RC-MOEA/D MOEAD
MaF1 5 14 2.3646e-1 (3.88e-2) = 2.3812e-1 (2.76e-2)
MaF2 5 14 1.2479e-1 (1.10e-3) + 1.3462e-1 (1.36e-3)
MaF3 5 14 1.3039e-1 (6.50e-3) - 1.2699e-1 (7.51e-3)
MaF4 5 14 1.1846e+1 (1.05e+0) = 1.1568e+1 (1.16e+0)
MaF5 5 14 7.7119e+0 (1.35e+0) + 9.6627e+0 (1.52e+0)
MaF6 5 14 2.1159e-1 (2.03e-1) = 1.4620e-1 (1.97e-1)
MaF7 5 24 9.0907e-1 (2.25e-1) + 1.0422e+0 (1.78e-1)
MaF8 5 2 4.0731e-1 (7.42e-2) - 3.7369e-1 (5.40e-2)
MaF9 5 2 2.0607e-1 (5.46e-2) - 1.8614e-1 (6.06e-2)
MaF10 5 14 8.3150e-1 (4.08e-2) = 8.2719e-1 (1.60e-2)
MaF11 5 14 8.2200e-1 (2.50e-2) = 8.1327e-1 (1.87e-2)
MaF12 5 14 1.9697e+0 (1.77e-1) = 1.9980e+0 (1.70e-1)
MaF13 5 5 2.3384e-1 (1.25e-1) = 2.3083e-1 (1.07e-1)
MaF14 5 100 8.2872e-1 (1.85e-1) = 8.1190e-1 (1.89e-1)
MaF15 5 100 7.6294e-1 (8.00e-2) - 7.0407e-1 (9.18e-2)

+/=/- 3/8/4
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Table A.24: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms
on CEC-2017 MaF benchmark problems for M = 3 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem M D RC-MOEA/D MOEAD
MaF1 10 19 5.2465e-1 (2.74e-3) + 5.3479e-1 (6.40e-4)
MaF2 10 19 4.4124e-1 (7.23e-3) - 3.7645e-1 (4.62e-3)
MaF3 10 19 1.5775e-1 (7.66e-4) - 1.4044e-1 (5.57e-4)
MaF4 10 19 4.5325e+2 (1.89e+1) = 4.5450e+2 (1.92e+1)
MaF5 10 19 2.4851e+2 (3.92e+1) + 3.0350e+2 (1.57e+0)
MaF6 10 19 4.7652e-1 (2.70e-1) = 3.1253e-1 (2.67e-1)
MaF7 10 29 1.9830e+0 (1.95e-1) = 1.9868e+0 (2.41e-1)
MaF8 10 2 1.1703e+0 (5.15e-2) - 1.1324e+0 (2.47e-2)
MaF9 10 2 8.5429e-1 (4.13e-2) + 8.9088e-1 (5.45e-1)
MaF10 10 19 1.7426e+0 (5.59e-2) - 1.6973e+0 (7.15e-2)
MaF11 10 19 1.9109e+0 (1.74e-2) - 1.8525e+0 (1.78e-2)
MaF12 10 19 9.7714e+0 (6.00e-1) = 9.5376e+0 (4.25e-1)
MaF13 10 5 1.0730e+0 (1.37e-1) - 9.6296e-1 (1.47e-1)
MaF14 10 200 7.3506e-1 (1.24e-1) = 7.0554e-1 (1.48e-1)
MaF15 10 200 1.0598e+0 (4.98e-2) - 1.0351e+0 (4.21e-2)

+/=/- 3/5/7

Table A.25: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms on
CEC-2017 MaF benchmark problems for M = 15 number of objectives and original
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem M D RC-MOEA/D MOEAD
MaF1 15 24 6.4385e-1 (5.06e-3) + 6.4951e-1 (7.45e-3)
MaF2 15 24 5.6430e-1 (3.59e-2) = 5.7466e-1 (3.00e-2)
MaF3 15 24 1.3938e-1 (3.27e-4) - 1.3657e-1 (5.01e-4)
MaF4 15 24 1.5941e+4 (9.55e+1) = 1.5970e+4 (7.68e+1)
MaF5 15 24 6.6127e+3 (8.39e+2) + 7.3258e+3 (1.26e-1)
MaF6 15 24 6.7053e-1 (1.52e-1) - 5.3000e-1 (2.40e-1)
MaF7 15 34 6.2269e+0 (8.55e-1) = 6.1873e+0 (8.04e-1)
MaF8 15 2 1.6398e+0 (5.02e-2) - 1.6116e+0 (3.02e-2)
MaF9 15 2 4.0891e+0 (3.98e+0) - 3.1558e+0 (3.91e+0)
MaF10 15 24 2.2771e+0 (5.93e-2) = 2.3365e+0 (1.25e-1)
MaF11 15 24 2.4499e+0 (1.69e-2) - 2.4397e+0 (1.85e-2)
MaF12 15 24 1.4546e+1 (2.19e+0) + 1.6258e+1 (1.30e+0)
MaF13 15 5 1.3886e+0 (2.20e-1) = 1.3458e+0 (2.22e-1)
MaF14 15 300 8.8822e-1 (1.99e-1) = 8.6211e-1 (2.31e-1)
MaF15 15 300 1.1900e+0 (2.11e-2) + 1.2095e+0 (2.60e-2)

+/=/- 4/6/5
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Table A.26: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms on
CEC-2017 MaF benchmark problems for M = 2 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem M D RC-MOEA/D MOEA/D
MaF1 2 1000 1.3360e+1 (4.21e+0) + 2.4576e+1 (2.34e+0)
MaF2 2 1000 2.6920e+0 (5.81e-1) + 5.1483e+0 (3.22e-1)
MaF3 2 1000 1.7917e+9 (7.47e+8) = 1.6699e+9 (6.10e+8)
MaF4 2 1000 5.8955e+4 (2.10e+3) = 5.8258e+4 (2.02e+3)
MaF5 2 1000 8.9892e+1 (4.07e+1) + 1.1031e+2 (2.99e+1)
MaF6 2 1000 1.9415e+3 (5.43e+2) + 3.3956e+3 (2.65e+2)
MaF7 2 1000 6.4388e+0 (2.88e-1) = 6.4829e+0 (2.92e-1)
MaF10 2 1000 1.9716e+0 (1.94e-1) = 1.8581e+0 (2.90e-1)
MaF11 2 1001 5.0395e-1 (5.02e-2) + 5.9681e-1 (5.13e-2)
MaF12 2 1000 5.1728e-1 (7.58e-2) + 7.5062e-1 (2.62e-2)
MaF14 2 1000 2.8885e+1 (1.87e+1) = 2.9967e+1 (1.57e+1)
MaF15 2 1000 2.9174e+0 (4.70e-1) + 3.8549e+0 (5.31e-1)

+/=/- 7/0/5

Table A.27: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms on
CEC-2017 MaF benchmark problems for M = 3 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem M D RC-MOEA/D MOEAD
MaF1 3 1000 1.3205e+1 (3.67e+0) + 2.6700e+1 (2.21e+0)
MaF2 3 1000 1.5590e+0 (4.02e-1) + 2.9583e+0 (2.68e-1)
MaF3 3 1000 9.0238e+8 (5.53e+8) = 8.6429e+8 (4.40e+8)
MaF4 3 1000 1.1024e+5 (6.74e+3) - 9.8174e+4 (4.27e+3)
MaF5 3 1000 7.4704e+1 (3.40e+1) + 9.9528e+1 (3.08e+1)
MaF6 3 1000 1.5631e+3 (3.94e+2) + 2.1619e+3 (2.24e+2)
MaF7 3 1000 6.9541e+0 (3.66e-1) - 6.4942e+0 (2.76e-1)
MaF10 3 1000 1.5944e+0 (2.37e-1) = 1.5119e+0 (9.38e-2)
MaF11 3 1000 6.1485e-1 (6.96e-2) + 7.3902e-1 (1.26e-1)
MaF12 3 1000 5.9797e-1 (7.16e-2) + 9.0155e-1 (4.27e-2)
MaF13 3 1000 1.6687e+0 (4.67e-1) + 2.3600e+0 (2.30e-1)
MaF14 3 1000 1.8176e+1 (1.52e+1) = 1.7325e+1 (9.81e+0)
MaF15 3 1000 3.4593e+0 (9.86e-1) + 4.8576e+0 (5.61e-1)

+/=/- 8/3/2
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Table A.28: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms on
CEC-2017 MaF benchmark problems for M = 5 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem M D RC-MOEA/D MOEAD
MaF1 5 1000 4.4803e+0 (2.61e+0) + 3.8720e+1 (7.46e+0)
MaF2 5 1000 5.2685e-1 (1.12e-1) + 8.8446e-1 (1.99e-1)
MaF3 5 1000 2.5833e+8 (1.20e+8) = 2.4383e+8 (8.77e+7)
MaF4 5 1000 1.9758e+5 (1.45e+4) = 1.9777e+5 (8.93e+3)
MaF5 5 1000 3.7363e+1 (2.88e+1) = 3.8446e+1 (3.01e+1)
MaF6 5 1000 9.4145e+2 (2.63e+2) + 1.8145e+3 (1.48e+2)
MaF7 5 1000 1.1777e+1 (5.58e-1) - 1.0741e+1 (4.80e-1)
MaF10 5 1000 1.9091e+0 (2.63e-2) = 1.9189e+0 (2.87e-2)
MaF11 5 1000 1.1502e+0 (2.90e-1) + 1.3005e+0 (3.60e-1)
MaF12 5 1000 2.1178e+0 (1.70e-1) = 2.0542e+0 (1.58e-1)
MaF13 5 1000 1.4990e+0 (2.08e-1) + 1.5988e+0 (9.16e-2)
MaF14 5 1000 9.5632e+0 (3.88e+0) = 8.0477e+0 (3.03e+0)
MaF15 5 1000 2.0296e+0 (7.27e-1) + 4.7496e+0 (7.35e-1)

+/=/- 6/6/1

Table A.29: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms on
CEC-2017 MaF benchmark problems for M = 10 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem M D RC-MOEA/D MOEAD
MaF1 10 1000 1.7874e+0 (1.49e+0) + 3.4998e+0 (1.21e+0)
MaF2 10 1000 8.1769e-1 (2.27e-2) = 8.1316e-1 (2.65e-2)
MaF3 10 1000 5.2618e+7 (9.62e+6) + 6.5265e+7 (8.69e+6)
MaF4 10 1000 3.4443e+6 (4.18e+5) = 3.6668e+6 (9.71e+4)
MaF5 10 1000 3.2126e+2 (1.02e+2) - 3.0463e+2 (5.19e+0)
MaF6 10 1000 2.7649e+2 (1.52e+2) + 2.1398e+3 (2.80e+2)
MaF7 10 1000 8.6216e+0 (1.92e+0) - 5.0190e+0 (1.31e+0)
MaF10 10 1000 2.4539e+0 (5.30e-2) + 2.6150e+0 (3.48e-2)
MaF11 10 1001 2.7092e+0 (9.28e-1) - 2.5938e+0 (9.63e-1)
MaF12 10 1000 1.0153e+1 (5.49e-1) = 1.0031e+1 (9.53e-1)
MaF13 10 1000 1.4505e+0 (1.47e-1) - 1.3874e+0 (1.31e-1)
MaF14 10 1000 1.8216e+0 (5.88e-1) - 1.5233e+0 (2.46e-1)
MaF15 10 1000 1.1485e+0 (5.57e-2) = 1.1188e+0 (6.70e-2)

+/=/- 4/4/5
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Table A.30: Comparison of IGD results on RC-MOEA/D and MOEA/D algorithms on
CEC-2017 MaF benchmark problems for M = 15 number of objectives and D = 1000
dimensions. The symbols “+”, “−”, and “=” indicate that the RC-MOEA/D algo-
rithm performs either better than, worse than, or similarly to the comparable algorithm
(MOEA/D), respectively.

Problem M D RC-MOEA/D MOEAD
MaF1 15 1000 3.4694e+1 (2.59e+1) + 8.6747e+1 (5.38e+1)
MaF2 15 1000 8.4299e-1 (3.55e-2) = 8.4345e-1 (2.73e-2)
MaF3 15 1000 4.8227e+7 (9.82e+6) + 5.4048e+7 (4.40e+6)
MaF4 15 1000 1.0788e+8 (1.24e+7) + 1.1467e+8 (3.48e+6)
MaF5 15 1000 7.3275e+3 (8.96e+0) = 7.3266e+3 (2.09e+0)
MaF6 15 1000 3.0354e+0 (6.54e-1) + 5.8734e+0 (1.28e+0)
MaF7 15 1000 3.2694e+1 (1.82e+0) - 2.9713e+1 (1.95e+0)
MaF10 15 1000 3.4555e+0 (6.02e-2) + 3.5424e+0 (3.80e-2)
MaF11 15 1001 4.4059e+0 (2.37e+0) = 5.7150e+0 (3.61e+0)
MaF12 15 1000 1.3465e+1 (2.50e+0) = 1.2743e+1 (2.40e+0)
MaF13 15 1000 1.4893e+0 (3.33e-1) = 1.4009e+0 (3.19e-1)
MaF14 15 1000 1.4892e+0 (3.30e-1) - 1.3249e+0 (2.72e-1)
MaF15 15 1000 1.2598e+0 (2.41e-2) = 1.2616e+0 (3.20e-2)

+/=/- 5/6/2

Table A.31: Comparison of IGD results on RC-SPEA2 and MOPSO algorithms on CEC-
2017 MaF benchmark problems for M = 2 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-SPEA2 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (SPEA2), respectively.

Problem RC-SPEA2 SPEA2

MaF1 3.7977e-3 (4.25e-5) + 3.8295e-3 (4.52e-5)

MaF2 2.1550e-3 (3.02e-5) + 2.1950e-3 (3.59e-5)

MaF3 5.3834e+0 (5.51e+0) = 2.0737e+0 (2.80e+0)

MaF4 1.1552e+0 (9.55e-1) = 9.0401e-1 (1.04e+0)

MaF5 5.9218e-1 (9.21e-1) = 3.3469e-1 (7.46e-1)

MaF6 4.1443e-3 (4.40e-5) = 4.1740e-3 (7.67e-5)

MaF7 1.9149e-2 (7.88e-2) − 4.8035e-3 (9.78e-5)

MaF10 1.4519e-1 (3.44e-2) = 1.4149e-1 (4.51e-2)

MaF11 1.2544e-2 (7.53e-4) + 1.8574e-2 (3.60e-2)

MaF12 2.1863e-2 (1.58e-3) + 2.3216e-2 (1.64e-3)

MaF13 8.5291e-2 (5.21e-3) = 8.3602e-2 (5.62e-3)

MaF14 4.3286e+0 (1.93e+0) = 4.0719e+0 (1.45e+0)

MaF15 8.6889e-2 (1.34e-2) + 3.0780e-1 (4.78e-2)

+/ = /− 5/7/1
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Table A.32: Comparison of IGD results on RC-SPEA2 and SPEA2 algorithms on CEC-
2017 MaF benchmark problems for M = 3 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-SPEA2 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (SPEA2), respectively.

Problem RC-SPEA2 SPEA2

MaF1 4.1801e-2 (4.87e-4) = 4.1889e-2 (4.60e-4)

MaF2 3.1347e-2 (1.41e-3) + 3.2230e-2 (1.25e-3)

MaF3 2.8111e+0 (9.15e+0) = 1.0041e+0 (2.21e+0)

MaF4 1.7216e+0 (2.41e+0) = 7.8970e-1 (9.23e-1)

MaF5 9.6332e-1 (1.04e+0) = 8.8772e-1 (7.87e-1)

MaF6 4.1167e-3 (3.66e-5) = 4.0952e-3 (3.38e-5)

MaF7 6.1097e-2 (1.38e-3) + 6.9384e-2 (5.15e-2)

MaF8 6.6176e-2 (9.82e-4) + 7.1633e-2 (1.81e-2)

MaF9 9.7080e-1 (8.45e-1) + 1.2472e+0 (5.71e-1)

MaF10 1.6839e-1 (1.53e-2) = 1.6500e-1 (1.66e-2)

MaF11 1.7062e-1 (5.14e-3) = 1.7109e-1 (3.54e-3)

MaF12 2.1689e-1 (3.18e-3) = 2.1818e-1 (4.55e-3)

MaF13 8.5291e-2 (5.21e-3) = 8.3602e-2 (5.62e-3)

MaF14 2.1181e+0 (6.24e-1) − 1.1545e+0 (3.62e-1)

MaF15 3.5755e-1 (6.88e-2) + 5.7638e-1 (1.83e-1)

+/ = /− 5/9/1

Table A.33: Comparison of IGD results on RC-SPEA2 and SPEA2 algorithms on CEC-
2017 MaF benchmark problems for M = 5 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-SPEA2 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (SPEA2), respectively.

Problem M D RC-SPEA2 SPEA2
MaF1 5 14 1.4218e-1 (1.82e-3) = 1.4302e-1 (2.07e-3)
MaF2 5 14 1.2603e-1 (2.61e-3) + 1.3005e-1 (2.92e-3)
MaF3 5 14 2.3405e+1 (4.11e+1) = 3.3617e+1 (5.76e+1)
MaF4 5 14 5.0269e+0 (6.92e+0) + 7.4914e+0 (9.38e+0)
MaF5 5 14 2.8521e+0 (1.52e+0) = 2.4214e+0 (6.59e-1)
MaF6 5 14 4.1231e-3 (3.44e-5) - 4.0862e-3 (2.66e-5)
MaF7 5 24 3.0652e-1 (8.53e-3) = 3.0413e-1 (8.53e-3)
MaF8 5 2 1.1248e-1 (1.34e-3) = 1.1193e-1 (1.38e-3)
MaF9 5 2 1.5639e-1 (9.44e-3) = 1.6724e-1 (5.14e-2)
MaF10 5 14 6.2722e-1 (4.91e-2) = 6.2077e-1 (2.41e-2)
MaF11 5 14 7.9526e-1 (4.38e-2) = 7.9592e-1 (2.48e-2)
MaF12 5 14 1.1523e+0 (2.01e-2) = 1.1561e+0 (1.95e-2)
MaF13 5 5 3.6954e-1 (3.19e-1) = 3.7244e-1 (3.43e-1)
MaF14 5 100 2.7398e+1 (1.94e+1) - 2.1048e+1 (4.39e+1)
MaF15 5 100 1.5371e+1 (6.30e+0) + 2.6145e+1 (5.13e+0)

+/=/- 3/10/2
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Table A.34: Comparison of IGD results on RC-SPEA2 and SPEA2 algorithms on CEC-
2017 MaF benchmark problems forM = 10 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-SPEA2 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (SPEA2), respectively.

Problem M D RC-SPEA2 SPEA2
MaF1 10 14 3.3290e-1 (1.09e-2) + 3.4733e-1 (8.29e-3)
MaF2 10 14 1.9436e-1 (4.36e-3) = 1.9608e-1 (5.23e-3)
MaF3 10 14 3.0189e+12 (6.70e+11) = 2.7884e+12 (6.35e+11)
MaF4 10 14 8.4517e+1 (3.36e+1) = 8.7940e+1 (4.84e+1)
MaF5 10 14 2.3882e+2 (4.19e+1) = 2.3544e+2 (2.69e+1)
MaF6 10 14 3.0326e-2 (1.46e-1) + 1.7760e+2 (8.64e+1)
MaF7 10 24 1.7838e+0 (7.61e-2) = 1.8256e+0 (9.76e-2)
MaF8 10 2 1.7286e-1 (2.09e-3) - 1.7131e-1 (2.07e-3)
MaF9 10 2 3.7749e+0 (2.50e+0) = 2.8577e+0 (1.94e+0)
MaF10 10 14 1.9541e+0 (1.03e-1) = 1.9631e+0 (1.36e-1)
MaF11 10 14 3.0215e+0 (4.23e-1) + 3.2644e+0 (3.37e-1)
MaF12 10 14 5.0735e+0 (8.78e-2) = 5.0802e+0 (8.47e-2)
MaF13 10 5 9.3101e-1 (6.56e-1) = 9.2233e-1 (6.04e-1)
MaF14 10 100 6.6798e+4 (4.34e+4) = 6.4511e+4 (4.33e+4)
MaF15 10 100 1.2673e+2 (9.20e+1) + 2.0496e+2 (6.37e+1)

+/=/- 4/10/1

Table A.35: Comparison of IGD results on RC-SPEA2 and SPEA2 algorithms on CEC-
2017 MaF benchmark problems for M = 2 number of objectives and D = 1000 dimen-
sions. The symbols “+”, “−”, and “=” indicate that the RC-SPEA2 algorithm performs
either better than, worse than, or similarly to the comparable algorithm (SPEA2), re-
spectively.

Problem M D RC-SPEA2 SPEA2
MaF1 2 1000 1.7635e+0 (2.46e-1) + 1.2474e+1 (7.77e-1)
MaF2 2 1000 2.4410e-1 (2.53e-2) + 2.7098e+0 (1.83e-1)
MaF3 2 1000 8.3433e+8 (8.32e+7) + 1.3073e+9 (9.15e+7)
MaF4 2 1000 4.4902e+4 (3.22e+3) + 6.2905e+4 (3.03e+3)
MaF5 2 1000 8.5532e+0 (2.67e+0) + 4.3527e+1 (3.01e+0)
MaF6 2 1000 2.3846e+2 (2.54e+1) + 1.8728e+3 (1.33e+2)
MaF7 2 1000 3.7760e+0 (1.47e-1) - 3.1414e+0 (1.45e-1)
MaF10 2 1000 1.2899e+0 (1.64e-2) = 1.2856e+0 (1.67e-2)
MaF11 2 1001 2.3601e-1 (3.56e-2) + 3.3775e-1 (3.88e-2)
MaF12 2 1000 1.0184e-1 (5.93e-3) + 3.5605e-1 (1.24e-2)
MaF14 2 1000 2.7650e+1 (5.97e-1) + 3.2533e+1 (1.26e+0)
MaF15 2 1000 1.4547e+0 (7.63e-2) + 2.9667e+0 (1.45e-1)

+/=/- 10/1/1
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Table A.36: Comparison of IGD results on RC-SPEA2 and SPEA2 algorithms on CEC-
2017 MaF benchmark problems for M = 3 number of objectives and D = 1000 dimen-
sions. The symbols “+”, “−”, and “=” indicate that the RC-SPEA2 algorithm performs
either better than, worse than, or similarly to the comparable algorithm (SPEA2), re-
spectively.

Problem M D RC-SPEA2 SPEA2
MaF1 3 1000 2.5137e+0 (4.39e-1) + 1.8652e+1 (1.05e+0)
MaF2 3 1000 1.9217e-1 (1.49e-2) + 1.8010e+0 (1.03e-1)
MaF3 3 1000 2.7209e+16 (4.07e+16) + 5.6525e+16 (8.62e+16)
MaF4 3 1000 1.8226e+5 (6.27e+3) + 2.1653e+5 (6.23e+3)
MaF5 3 1000 1.2729e+1 (6.10e+0) + 5.3260e+1 (3.33e+1)
MaF6 3 1000 3.4998e+2 (4.15e+1) + 1.6997e+3 (1.11e+2)
MaF7 3 1000 5.1275e+0 (2.10e-1) - 4.0809e+0 (1.89e-1)
MaF10 3 1000 1.4876e+0 (4.64e-3) + 1.4993e+0 (4.33e-3)
MaF11 3 1000 3.4249e-1 (5.58e-2) + 5.2015e-1 (6.81e-2)
MaF12 3 1000 2.4616e-1 (9.63e-3) + 8.2833e-1 (1.92e-2)
MaF13 3 1000 5.0025e-1 (9.37e-3) + 1.3041e+0 (7.17e-2)
MaF14 3 1000 7.6447e+1 (2.90e+1) - 6.1018e+1 (3.45e+1)
MaF15 3 1000 3.5639e+0 (3.84e-1) + 7.5624e+0 (4.71e-1)

+/=/- 11/0/2

Table A.37: Comparison of IGD results on RC-SPEA2 and SPEA2 algorithms on CEC-
2017 MaF benchmark problems for M = 5 number of objectives and D = 1000 dimen-
sions. The symbols “+”, “−”, and “=” indicate that the RC-SPEA2 algorithm performs
either better than, worse than, or similarly to the comparable algorithm (SPEA2), re-
spectively.

Problem M D RC-SPEA2 SPEA2
MaF1 5 1000 3.2532e+0 (5.04e-1) + 3.6792e+1 (1.82e+0)
MaF2 5 1000 3.4570e-1 (5.13e-2) + 3.1315e+0 (2.01e-1)
MaF3 5 1000 3.0219e+18 (8.32e+17) - 1.4337e+18 (6.73e+17)
MaF4 5 1000 1.0396e+6 (4.11e+4) = 1.0500e+6 (3.78e+4)
MaF5 5 1000 2.5859e+1 (1.04e+1) + 1.1560e+2 (1.88e+1)
MaF6 5 1000 6.5690e+3 (9.91e+2) + 9.3592e+3 (2.93e+2)
MaF7 5 1000 1.0699e+1 (2.69e-1) - 9.6472e+0 (4.04e-1)
MaF10 5 1000 2.0630e+0 (3.02e-2) = 2.0715e+0 (4.11e-2)
MaF11 5 1000 1.0026e+0 (4.65e-2) + 1.1244e+0 (1.18e-1)
MaF12 5 1000 1.1669e+0 (1.06e-2) + 1.5834e+0 (2.06e-2)
MaF13 5 1000 8.2947e-1 (4.63e-2) + 3.7060e+0 (3.87e-1)
MaF14 5 1000 3.0809e+2 (5.67e+2) = 1.5144e+3 (2.49e+3)
MaF15 5 1000 1.4326e+1 (4.37e+0) + 3.6475e+1 (4.01e+0)

+/=/- 8/3/2
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Table A.38: Comparison of IGD results on RC-SPEA2 and SPEA2 algorithms on CEC-
2017 MaF benchmark problems for M = 10 number of objectives and D = 1000 dimen-
sions. The symbols “+”, “−”, and “=” indicate that the RC-SPEA2 algorithm performs
either better than, worse than, or similarly to the comparable algorithm (SPEA2), re-
spectively.

Problem M D RC-SPEA2 SPEA2
MaF1 10 1000 3.8365e+0 (6.00e-1) + 6.8807e+1 (4.16e+0)
MaF2 10 1000 1.5377e+0 (1.78e-1) + 2.8231e+0 (1.17e-1)
MaF3 10 1000 1.6325e+20 (3.17e+19) + 1.8728e+20 (1.52e+19)
MaF4 10 1000 3.2986e+7 (1.94e+6) - 3.1575e+7 (1.50e+6)
MaF5 10 1000 6.6461e+3 (2.91e+3) = 5.3764e+3 (2.75e+3)
MaF6 10 1000 1.4538e+4 (3.16e+2) + 1.4889e+4 (3.56e+2)
MaF7 10 1000 3.0859e+1 (8.70e-1) + 3.1989e+1 (7.54e-1)
MaF10 10 1000 3.3794e+0 (1.44e-1) = 3.3647e+0 (1.27e-1)
MaF11 10 1000 3.4387e+0 (4.62e-1) + 3.6988e+0 (3.15e-1)
MaF12 10 1000 4.9618e+0 (9.30e-2) + 5.1058e+0 (6.53e-2)
MaF13 10 1000 9.6429e-1 (3.67e-2) + 3.7154e+0 (3.45e-1)
MaF14 10 1000 3.3601e+4 (2.56e+4) + 5.7447e+4 (3.03e+4)
MaF15 10 1000 4.4473e+1 (1.62e+1) + 1.2074e+2 (4.23e+1)

+/=/- 10/2/1

Table A.39: Comparison of IGD results on RC-MOPSO and MOPSO algorithms on CEC-
2017 MaF benchmark problems for M = 2 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-MOPSO algorithm performs either
better than, worse than, or similarly to the comparable algorithm (MOPSO), respectively.

Problem RC-MOPSO MOPSO

MaF1 8.6902e-3 (1.45e-3) = 8.2694e-3 (1.58e-3)

MaF2 4.7510e-3 (3.34e-4) = 4.7382e-3 (4.59e-4)

MaF3 6.6385e+3 (1.74e+4) + 9.5149e+3 (2.66e+4)

MaF4 3.8629e+1 (5.71e+1) − 3.1318e+1 (1.89e+1)

MaF5 8.7338e-1 (9.81e-1) + 1.4524e+0 (9.07e-1)

MaF6 2.4239e-2 (1.96e-2) + 1.0304e-1 (1.09e-1)

MaF7 2.9061e+0 (5.39e-1) + 4.0847e+0 (4.45e-1)

MaF10 9.6040e-1 (1.25e-1) + 1.2524e+0 (1.56e-1)

MaF11 9.1455e-2 (1.69e-2) = 8.3040e-2 (1.78e-2)

MaF12 5.0208e-2 (6.84e-3) = 5.0843e-2 (8.75e-3)

MaF13 1.6083e-1 (5.96e-2) = 1.4642e-1 (2.90e-2)

MaF14 1.5673e+1 (3.64e+0) + 1.9885e+1 (5.04e+0)

MaF15 5.7587e-1 (8.56e-2) + 6.4320e-1 (1.04e-1)

+/ = /− 7/5/1
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Table A.40: Comparison of IGD results on RC-MOPSO and MOPSO algorithms on CEC-
2017 MaF benchmark problems for M = 3 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-MOPSO algorithm performs either
better than, worse than, or similarly to the comparable algorithm (MOPSO), respectively.

Problem RC-MOPSO MOPSO

MaF1 5.9444e-2 (6.09e-3) + 7.9482e-2 (1.87e-2)

MaF2 4.0361e-2 (3.41e-3) + 5.9361e-2 (1.69e-2)

MaF3 2.0606e+4 (3.38e+4) = 1.8946e+4 (2.30e+4)

MaF4 7.1533e+1 (1.34e+2) + 1.0122e+2 (5.59e+1)

MaF5 9.6353e-1 (1.33e+0) = 8.6677e-1 (1.09e+0)

MaF6 2.5944e-2 (1.73e-2) + 1.5408e-1 (1.34e-1)

MaF7 5.6061e+0 (9.46e-1) + 6.4942e+0 (6.65e-1)

MaF8 8.1866e-2 (6.09e-3) + 9.6739e-2 (1.86e-2)

MaF9 8.9934e-2 (1.43e-2) + 1.2058e-1 (8.01e-2)

MaF10 1.6066e+0 (1.41e-1) = 1.6115e+0 (1.10e-1)

MaF11 2.5312e-1 (1.66e-2) = 2.4529e-1 (1.78e-2)

MaF12 4.2339e-1 (7.03e-2) + 5.7131e-1 (1.27e-1)

MaF13 1.6083e-1 (5.96e-2) = 1.4642e-1 (2.90e-2)

MaF14 1.3628e+1 (5.06e+0) + 3.3400e+1 (3.81e+1)

MaF15 1.3870e+0 (1.83e-1) + 2.2687e+0 (6.14e-1)

+/ = /− 10/5/0

Table A.41: Comparison of IGD results on RC-MOPSO and MOPSO algorithms on CEC-
2017 MaF benchmark problems for M = 5 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-MOPSO algorithm performs either
better than, worse than, or similarly to the comparable algorithm (MOPSO), respectively.

Problem M D RC-MOPSO MOPSO
MaF1 5 14 4.0535e-1 (1.27e-2) + 4.5129e-1 (1.65e-2)
MaF2 5 14 3.4662e-1 (1.58e-2) - 3.0349e-1 (5.35e-3)
MaF3 5 14 3.5907e+11 (1.55e+11) + 5.0637e+11 (2.56e+11)
MaF4 5 14 4.3047e+2 (6.08e+2) = 3.2909e+2 (3.02e+2)
MaF5 5 14 3.8821e+0 (3.73e-1) + 1.0240e+1 (5.93e+0)
MaF6 5 14 1.9506e-2 (8.75e-3) + 8.5333e-2 (6.60e-2)
MaF7 5 24 1.9820e+1 (6.75e-1) + 2.0793e+1 (5.92e-1)
MaF8 5 2 6.3886e-1 (1.06e-1) + 9.3616e-1 (2.85e-2)
MaF9 5 2 3.7211e-1 (1.15e-1) = 4.7598e-1 (3.75e-1)
MaF10 5 14 2.3121e+0 (2.23e-1) = 2.2975e+0 (1.10e-1)
MaF11 5 14 5.7624e+0 (1.68e+0) - 4.1164e+0 (1.00e+0)
MaF12 5 14 4.8846e+0 (3.89e-1) - 4.4684e+0 (1.54e-1)
MaF13 5 5 2.6649e-1 (4.94e-2) = 2.5772e-1 (6.39e-2)
MaF14 5 100 4.3861e+2 (2.85e+2) + 9.6716e+2 (8.38e+2)
MaF15 5 100 5.1673e+0 (1.14e+0) + 8.5343e+0 (2.10e+0)

+/=/- 8/4/3
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Table A.42: Comparison of IGD results on RC-MOPSO and MOPSO algorithms on CEC-
2017 MaF benchmark problems forM = 10 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-MOPSO algorithm performs either
better than, worse than, or similarly to the comparable algorithm (MOPSO), respectively.

Problem M D RC-MOPSO MOPSO
MaF1 10 19 5.3785e-1 (1.61e-2) + 5.6910e-1 (1.65e-2)
MaF2 10 19 6.4254e-1 (2.22e-2) - 5.4494e-1 (1.87e-2)
MaF3 10 19 6.0966e+10 (7.52e+10) = 4.6344e+10 (4.35e+10)
MaF4 10 19 7.4302e+3 (4.79e+3) + 1.0455e+4 (5.00e+3)
MaF5 10 19 7.2283e+2 (1.59e+2) + 8.6376e+2 (6.71e+1)
MaF6 10 19 1.8996e-2 (9.78e-3) + 6.5784e-2 (4.28e-2)
MaF7 10 29 4.7462e+1 (1.08e+0) + 5.0241e+1 (7.70e-1)
MaF8 10 2 1.3669e+0 (1.24e-1) + 1.4890e+0 (7.01e-2)
MaF9 10 2 8.3462e+1 (9.16e+1) = 1.0528e+2 (1.16e+2)
MaF10 10 19 4.3612e+0 (6.87e-1) - 3.4327e+0 (2.78e-1)
MaF11 10 19 1.3712e+1 (2.43e+0) - 9.6330e+0 (1.12e+0)
MaF12 10 19 1.2424e+1 (1.41e+0) - 1.1103e+1 (8.22e-1)
MaF13 10 5 3.2755e-1 (7.71e-2) = 3.1933e-1 (7.50e-2)
MaF14 10 200 1.7504e+3 (1.33e+3) + 5.9574e+3 (3.98e+3)
MaF15 10 200 1.1191e+1 (3.56e+0) = 1.3388e+1 (4.60e+0)

+/=/- 7/4/4

Table A.43: Comparison of IGD results on RC-MOPSO and MOPSO algorithms on
CEC-2017 MaF benchmark problems for M = 2 number of objectives and D = 1000 di-
mensions. The symbols “+”, “−”, and “=” indicate that the RC-MOPSO algorithm per-
forms either better than, worse than, or similarly to the comparable algorithm (MOPSO),
respectively.

Problem M D RC-MOPSO MOPSO
MaF1 2 1000 1.7645e+0 (2.58e-1) + 2.9700e+0 (3.25e-1)
MaF2 2 1000 3.4276e-1 (4.07e-2) + 5.4728e-1 (4.60e-2)
MaF3 2 1000 9.3880e+16 (2.19e+17) + 3.8386e+17 (4.76e+17)
MaF4 2 1000 9.6827e+4 (1.41e+3) + 1.0077e+5 (1.70e+3)
MaF5 2 1000 2.2912e+1 (1.20e+1) + 3.4582e+1 (1.05e+1)
MaF6 2 1000 2.5405e+2 (4.09e+1) + 4.3670e+2 (4.14e+1)
MaF7 2 1000 7.3584e+0 (6.14e-2) + 7.4859e+0 (6.76e-2)
MaF10 2 1000 1.5214e+0 (4.80e-2) + 1.7313e+0 (1.23e-1)
MaF11 2 1001 2.6066e-1 (6.33e-3) + 2.6683e-1 (6.72e-3)
MaF12 2 1000 1.3424e-1 (9.02e-3) + 1.4287e-1 (9.08e-3)
MaF14 2 1000 3.0401e+1 (3.12e+0) = 3.5691e+1 (1.60e+1)
MaF15 2 1000 1.6188e+0 (7.78e-2) + 1.7689e+0 (1.00e-1)

+/=/- 11/1/0
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Table A.44: Comparison of IGD results on RC-MOPSO and MOPSO algorithms on
CEC-2017 MaF benchmark problems for M = 3 number of objectives and D = 1000 di-
mensions. The symbols “+”, “−”, and “=” indicate that the RC-MOPSO algorithm per-
forms either better than, worse than, or similarly to the comparable algorithm (MOPSO),
respectively.

Problem M D RC-MOPSO MOPSO
MaF1 3 1000 2.0684e+0 (1.76e-1) + 3.6650e+0 (4.83e-1)
MaF2 3 1000 1.7361e-1 (1.23e-2) + 2.0247e-1 (1.73e-2)
MaF3 3 1000 2.2304e+18 (2.32e+18) + 6.1993e+18 (3.84e+18)
MaF4 3 1000 2.8539e+5 (6.10e+3) = 2.9232e+5 (2.06e+4)
MaF5 3 1000 1.7305e+1 (4.00e+0) + 2.1470e+1 (7.24e+0)
MaF6 3 1000 1.7992e+2 (2.04e+1) + 2.9500e+2 (2.30e+1)
MaF7 3 1000 1.1077e+1 (1.54e-1) + 1.1352e+1 (2.05e-1)
MaF10 3 1000 2.1056e+0 (2.02e-1) - 1.7753e+0 (8.35e-2)
MaF11 3 1000 3.8001e-1 (8.39e-3) - 3.7264e-1 (8.50e-3)
MaF12 3 1000 4.0975e-1 (5.00e-2) + 6.1179e-1 (1.29e-1)
MaF13 3 1000 5.6510e-1 (2.25e-2) = 5.6375e-1 (1.99e-2)
MaF14 3 1000 1.7862e+1 (5.86e+0) = 3.6619e+1 (5.65e+1)
MaF15 3 1000 2.3983e+0 (1.89e-1) + 4.1514e+0 (8.68e-1)

+/=/- 8/3/2

Table A.45: Comparison of IGD results on RC-MOPSO and MOPSO algorithms on
CEC-2017 MaF benchmark problems for M = 5 number of objectives and D = 1000 di-
mensions. The symbols “+”, “−”, and “=” indicate that the RC-MOPSO algorithm per-
forms either better than, worse than, or similarly to the comparable algorithm (MOPSO),
respectively.

Problem M D RC-MOPSO MOPSO
MaF1 5 1000 2.8682e+0 (1.85e-1) + 5.1509e+0 (9.38e-1)
MaF2 5 1000 4.4610e-1 (5.13e-2) - 3.4719e-1 (3.39e-2)
MaF3 5 1000 1.1870e+19 (4.15e+18) - 8.6921e+18 (1.10e+18)
MaF4 5 1000 1.7385e+6 (1.39e+5) - 1.4029e+6 (9.19e+4)
MaF5 5 1000 2.7598e+1 (2.49e+0) + 3.1525e+1 (3.21e+0)
MaF6 5 1000 2.1625e+2 (4.91e+1) + 2.7349e+2 (5.18e+1)
MaF7 5 1000 2.3884e+1 (1.93e-1) - 2.3732e+1 (2.28e-1)
MaF10 5 1000 2.8291e+0 (2.96e-1) - 2.4151e+0 (8.42e-2)
MaF11 5 1000 5.3384e+0 (1.95e+0) - 4.0948e+0 (9.64e-1)
MaF12 5 1000 5.0417e+0 (8.03e-1) - 4.4366e+0 (1.52e-1)
MaF13 5 1000 1.0855e+0 (1.01e-1) + 1.2823e+0 (1.60e-1)
MaF14 5 1000 8.0667e+2 (5.29e+2) + 2.1873e+3 (1.24e+3)
MaF15 5 1000 6.2592e+0 (5.18e-1) + 7.7721e+0 (1.04e+0)

+/=/- 6/0/7
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Table A.46: Comparison of IGD results on RC-MOPSO and MOPSO algorithms on
CEC-2017 MaF benchmark problems for M = 10 number of objectives and D = 1000 di-
mensions. The symbols “+”, “−”, and “=” indicate that the RC-MOPSO algorithm per-
forms either better than, worse than, or similarly to the comparable algorithm (MOPSO),
respectively.

Problem M D RC-MOPSO MOPSO
MaF1 10 1000 4.5886e+0 (2.59e-1) + 8.2858e+0 (1.32e+0)
MaF2 10 1000 7.5751e-1 (2.88e-2) - 6.2877e-1 (2.65e-2)
MaF3 10 1000 1.1142e+19 (4.22e+18) - 7.1314e+18 (1.54e+18)
MaF4 10 1000 5.1034e+7 (3.88e+6) - 4.1998e+7 (2.67e+6)
MaF5 10 1000 8.7883e+3 (4.17e+3) + 1.2657e+4 (5.11e+3)
MaF6 10 1000 2.7009e+2 (5.18e+1) = 2.5158e+2 (3.94e+1)
MaF7 10 1000 4.9495e+1 (4.54e-1) + 5.0802e+1 (2.61e-1)
MaF10 10 1000 5.0126e+0 (5.87e-1) - 3.4709e+0 (1.63e-1)
MaF11 10 1000 1.3860e+1 (1.60e+0) - 1.1319e+1 (1.53e+0)
MaF12 10 1000 1.1351e+1 (1.92e+0) - 1.0489e+1 (6.17e-1)
MaF13 10 1000 1.6369e+0 (1.83e-1) + 2.0324e+0 (3.34e-1)
MaF14 10 1000 2.4281e+3 (1.62e+3) + 8.9894e+3 (3.65e+3)
MaF15 10 1000 1.1421e+1 (1.54e+0) + 1.3063e+1 (2.38e+0)

+/=/- 6/1/6

Table A.47: Comparison of IGD results on RC-GDE3 and GDE3 algorithms on CEC-
2017 MaF benchmark problems for M = 2 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-GDE3 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (GDE3), respectively.

Problem RC-GDE3 GDE3

MaF1 4.2901e-3 (8.04e-5) + 5.0630e-3 (2.11e-4)

MaF2 2.3635e-3 (3.68e-5) + 2.7615e-3 (8.38e-5)

MaF3 8.0533e+3 (6.08e+3) = 7.1398e+3 (7.07e+3)

MaF4 5.2575e+1 (3.27e+1) = 4.0938e+1 (3.03e+1)

MaF5 1.4405e-2 (5.42e-4) + 1.6247e-2 (6.89e-4)

MaF6 4.7255e-3 (1.33e-4) + 5.8279e-3 (4.22e-4)

MaF7 9.1897e-1 (2.35e-1) = 1.0283e+0 (2.51e-1)

MaF10 1.3106e+0 (4.37e-2) + 1.3467e+0 (3.91e-2)

MaF11 2.2864e-2 (4.00e-3) + 3.7777e-2 (5.11e-3)

MaF12 3.1524e-2 (2.10e-3) + 1.0299e-1 (9.71e-2)

MaF13 1.2315e-1 (1.57e-2) = 1.2389e-1 (1.55e-2)

MaF14 4.4379e+0 (2.52e+0) − 2.6668e+0 (2.11e+0)

MaF15 2.6935e-2 (1.89e-3) + 2.8322e-2 (1.81e-3)

+/ = /− 8/4/1
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Table A.48: Comparison of IGD results on RC-GDE3 and GDE3 algorithms on CEC-
2017 MaF benchmark problems for M = 3 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-GDE3 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (GDE3), respectively

Problem RC-GDE3 GDE3

MaF1 6.4515e-2 (2.26e-3) + 7.5869e-2 (3.57e-3)

MaF2 5.8721e-2 (3.16e-3) + 6.5899e-2 (2.67e-3)

MaF3 4.8997e+3 (5.74e+3) = 6.3701e+3 (6.30e+3)

MaF4 9.0046e+1 (7.27e+1) = 6.2537e+1 (6.53e+1)

MaF5 3.0958e-1 (1.31e-2) + 3.4269e-1 (1.45e-2)

MaF6 4.7886e-3 (1.01e-4) + 5.0841e-3 (2.07e-4)

MaF7 1.0009e+0 (3.49e-1) − 8.1425e-1 (2.94e-1)

MaF8 7.6660e-2 (1.97e-3) + 7.8002e-2 (2.79e-3)

MaF9 8.5672e-2 (9.47e-3) = 8.3060e-2 (8.12e-3)

MaF10 1.5626e+0 (3.82e-2) + 1.5927e+0 (4.40e-2)

MaF11 2.2448e-1 (6.27e-3) + 2.4387e-1 (1.13e-2)

MaF12 2.6774e-1 (6.66e-3) + 3.8429e-1 (4.06e-2)

MaF13 1.2315e-1 (1.57e-2) = 1.2389e-1 (1.55e-2)

MaF14 7.4042e+0 (1.91e+0) − 4.4196e+0 (2.21e+0)

MaF15 3.3073e-1 (2.24e-1) = 2.7005e-1 (4.58e-2)

+/ = /− 8/5/2

Table A.49: Comparison of IGD results on RC-GDE3 and GDE3 algorithms on CEC-
2017 MaF benchmark problems for M = 5 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-GDE3 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (GDE3), respectively.

Problem M D RC-GDE3 GDE3
MaF1 5 14 2.1035e-1 (1.14e-2) + 2.2842e-1 (9.86e-3)
MaF2 5 14 1.6075e-1 (7.47e-3) = 1.6515e-1 (9.28e-3)
MaF3 5 14 4.3490e+4 (1.32e+4) = 3.9986e+4 (1.16e+4)
MaF4 5 14 4.2054e+2 (4.62e+2) = 3.1606e+2 (3.29e+2)
MaF5 5 14 4.2222e+0 (3.49e-1) = 4.2400e+0 (2.88e-1)
MaF6 5 14 5.2849e-3 (1.59e-4) + 5.6485e-3 (6.60e-4)
MaF7 5 24 9.9285e-1 (1.33e-1) = 9.9572e-1 (1.77e-1)
MaF8 5 2 1.4765e-1 (5.38e-3) + 1.5198e-1 (7.55e-3)
MaF9 5 2 1.8546e-1 (1.94e-2) + 3.5075e-1 (1.22e-1)
MaF10 5 14 2.1271e+0 (5.93e-2) = 2.1063e+0 (4.32e-2)
MaF11 5 14 9.7606e-1 (6.94e-2) + 1.0567e+0 (9.77e-2)
MaF12 5 14 1.5174e+0 (3.13e-2) + 1.6583e+0 (6.46e-2)
MaF13 5 5 2.2977e-1 (3.40e-2) = 2.3894e-1 (4.23e-2)
MaF14 5 100 9.5883e-1 (4.51e-16) = 9.5883e-1 (4.51e-16)
MaF15 5 100 4.8889e+0 (1.55e+0) + 1.5811e+1 (4.26e+0)

+/=/- 7/8/0
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Table A.50: Comparison of IGD results on RC-GDE3 and GDE3 algorithms on CEC-
2017 MaF benchmark problems forM = 10 number of objectives and original dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-GDE3 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (GDE3), respectively.

Problem M D RC-GDE3 GDE3
MaF1 10 19 3.6415e-1 (2.07e-2) = 3.6904e-1 (1.83e-2)
MaF2 10 19 1.9992e-1 (4.64e-3) = 1.9941e-1 (2.96e-3)
MaF3 10 19 1.4340e+5 (3.06e+5) = 1.6499e+5 (3.34e+5)
MaF4 10 19 1.0473e+4 (9.79e+3) = 9.2835e+3 (7.42e+3)
MaF5 10 19 1.4266e+2 (1.72e+1) = 1.3681e+2 (1.47e+1)
MaF6 10 19 4.8117e-1 (1.79e-1) = 5.2178e-1 (3.18e-1)
MaF7 10 29 2.0668e+0 (1.23e-1) = 2.0901e+0 (1.42e-1)
MaF8 10 2 2.2801e-1 (7.30e-3) = 2.2646e-1 (7.32e-3)
MaF9 10 2 7.4091e+1 (1.01e+2) + 1.3596e+2 (1.21e+2)
MaF10 10 19 3.1243e+0 (7.68e-2) = 3.1376e+0 (8.28e-2)
MaF11 10 19 2.5799e+0 (1.87e-1) = 2.5401e+0 (2.12e-1)
MaF12 10 19 5.6659e+0 (6.69e-2) = 5.6574e+0 (7.15e-2)
MaF13 10 5 3.5884e-1 (1.05e-1) - 3.0243e-1 (6.57e-2)
MaF14 10 200 1.9142e+1 (4.15e+0) = 1.9065e+1 (6.02e+0)
MaF15 10 200 1.1517e+1 (3.20e+0) + 3.3877e+1 (9.01e+0)

+/=/- 2/12/1

Table A.51: Comparison of IGD results on RC-GDE3 and GDE3 algorithms on CEC-2017
MaF benchmark problems for M = 2 number of objectives and D = 1000 dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-GDE3 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (GDE3), respectively.

Problem M D RC-GDE3 GDE3
MaF1 2 1000 7.7968e-1 (5.83e-2) + 2.2609e+0 (3.45e-1)
MaF2 2 1000 1.2616e-1 (1.06e-2) + 3.4146e-1 (4.03e-2)
MaF3 2 1000 1.3994e+8 (9.55e+7) = 1.5280e+8 (7.44e+7)
MaF4 2 1000 1.3048e+4 (6.48e+3) = 1.4790e+4 (5.14e+3)
MaF5 2 1000 7.2008e+0 (6.58e-1) + 1.5025e+1 (1.94e+0)
MaF6 2 1000 1.0307e+2 (6.83e+0) + 2.9063e+2 (3.52e+1)
MaF7 2 1000 7.1154e+0 (6.17e-2) - 7.0222e+0 (8.83e-2)
MaF10 2 1000 1.5653e+0 (3.13e-2) = 1.5631e+0 (2.70e-2)
MaF11 2 1001 2.3813e-1 (6.72e-3) + 2.8230e-1 (1.03e-2)
MaF12 2 1000 8.5283e-2 (9.58e-3) + 1.3110e-1 (3.21e-2)
MaF14 2 1000 2.7677e+1 (4.54e-1) = 2.7656e+1 (6.28e-1)
MaF15 2 1000 1.4631e+0 (4.89e-2) + 1.8226e+0 (9.66e-2)

+/=/- 7/4/1
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Table A.52: Comparison of IGD results on RC-GDE3 and GDE3 algorithms on CEC-2017
MaF benchmark problems for M = 3 number of objectives and D = 1000 dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-GDE3 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (GDE3), respectively.

Problem M D RC-GDE3 GDE3
MaF1 3 1000 1.3233e+0 (8.12e-2) + 3.9565e+0 (5.16e-1)
MaF2 3 1000 1.6223e-1 (1.29e-2) + 3.6489e-1 (3.78e-2)
MaF3 3 1000 3.8450e+8 (2.80e+8) = 2.8673e+8 (2.61e+8)
MaF4 3 1000 2.2289e+4 (2.06e+4) = 2.3811e+4 (2.22e+4)
MaF5 3 1000 1.9629e+1 (4.05e+0) + 2.9367e+1 (7.79e+0)
MaF6 3 1000 1.6011e+2 (2.20e+1) + 3.5490e+2 (5.29e+1)
MaF7 3 1000 1.0044e+1 (1.56e-1) = 1.0001e+1 (2.13e-1)
MaF10 3 1000 1.6545e+0 (1.99e-2) = 1.6522e+0 (2.14e-2)
MaF11 3 1000 3.9939e-1 (1.29e-2) + 4.5679e-1 (1.28e-2)
MaF12 3 1000 3.2982e-1 (1.45e-2) + 4.1100e-1 (4.30e-2)
MaF13 3 1000 5.0712e-1 (9.17e-3) + 5.5401e-1 (2.71e-2)
MaF14 3 1000 1.2288e+1 (1.19e+0) = 1.3275e+1 (2.63e+0)
MaF15 3 1000 3.2098e+0 (3.05e-1) + 6.4576e+0 (6.31e-1)

+/=/- 8/5/0

Table A.53: Comparison of IGD results on RC-GDE3 and GDE3 algorithms on CEC-2017
MaF benchmark problems for M = 5 number of objectives and D = 1000 dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-GDE3 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (GDE3), respectively.

Problem M D RC-GDE3 GDE3
MaF1 5 1000 1.9912e+0 (1.62e-1) + 7.2690e+0 (1.04e+0)
MaF2 5 1000 3.2403e-1 (3.44e-2) + 5.6046e-1 (5.38e-2)
MaF3 5 1000 5.9043e+8 (1.08e+8) = 6.1131e+8 (3.65e+7)
MaF4 5 1000 1.0350e+5 (9.86e+4) = 7.3643e+4 (7.99e+4)
MaF5 5 1000 1.3944e+2 (3.97e+1) = 1.5961e+2 (3.84e+1)
MaF6 5 1000 2.3333e+3 (9.59e+2) = 2.5913e+3 (1.20e+3)
MaF7 5 1000 1.6597e+1 (3.15e-1) = 1.6411e+1 (4.00e-1)
MaF10 5 1000 2.1797e+0 (3.45e-2) = 2.1772e+0 (3.36e-2)
MaF11 5 1000 1.1662e+0 (6.58e-2) + 1.3709e+0 (1.17e-1)
MaF12 5 1000 1.5692e+0 (7.73e-2) + 1.7232e+0 (1.03e-1)
MaF13 5 1000 8.7027e-1 (5.46e-2) + 1.0047e+0 (7.07e-2)
MaF14 5 1000 2.9559e+1 (3.78e+0) = 3.0207e+1 (2.26e+0)
MaF15 5 1000 6.5588e+0 (8.69e-1) + 1.6044e+1 (2.90e+0)

+/=/- 6/7/0
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Table A.54: Comparison of IGD results on RC-GDE3 and GDE3 algorithms on CEC-2017
MaF benchmark problems for M = 10 number of objectives and D = 1000 dimensions.
The symbols “+”, “−”, and “=” indicate that the RC-GDE3 algorithm performs either
better than, worse than, or similarly to the comparable algorithm (GDE3), respectively.

Problem M D RC-GDE3 GDE3
MaF1 10 1000 2.9761e+0 (3.00e-1) + 1.1021e+1 (1.47e+0)
MaF2 10 1000 5.5679e-1 (5.38e-2) + 7.8419e-1 (8.34e-2)
MaF3 10 1000 1.1043e+9 (1.58e+9) = 7.7763e+8 (4.04e+8)
MaF4 10 1000 7.0026e+6 (6.20e+6) - 4.3496e+6 (1.71e+6)
MaF5 10 1000 4.1996e+2 (4.93e+1) = 4.2801e+2 (6.61e+1)
MaF6 10 1000 2.6267e+3 (1.33e+3) - 1.9944e+3 (1.66e+3)
MaF7 10 1000 3.3213e+1 (1.02e+0) - 3.2642e+1 (8.11e-1)
MaF10 10 1000 3.2264e+0 (4.23e-2) = 3.2146e+0 (4.27e-2)
MaF11 10 1001 2.7525e+0 (1.33e-1) = 2.7593e+0 (1.40e-1)
MaF12 10 1000 5.6127e+0 (6.27e-2) + 5.6784e+0 (5.40e-2)
MaF13 10 1000 1.1019e+0 (6.19e-2) + 1.4002e+0 (1.20e-1)
MaF14 10 1000 2.9133e+1 (3.00e+0) = 2.9566e+1 (2.99e+0)
MaF15 10 1000 1.0016e+1 (8.90e-1) + 2.1527e+1 (3.62e+0)

+/=/- 5/5/3
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Table B.1: Summary of the CEC’17 test functions. HyF is an abbreviation of Hybrid
Functions.

No. Functions Fi*=F;(x*)

Unimodal
1 Shifted and Rotated Bent Cigar Function 100
2 Shifted and Rotated Zakharov Function 200

Simple
Multimodal
Functions

3 Shifted and Rotated Rosenbrock’s Function 300
4 Shifted and Rotated Rastrigin’s Function 400
5 Shifted and Rotated Expanded Scaffer’s F6 Function 500
6 Shifted and Rotated Lunacek Bi Rastrigin Function 600
7 Shifted and Rotated Non-Continuous Rastrigin’s Function 700
8 Shifted and Rotated Levy Function 800
9 Shifted and Rotated Schwefel’s Function 900

Hybrid
Functions

10 Hybrid Function I (f3, f4, and f5) 1000
11 Hybrid Function 2 (f11, f10, and f1) 1100
12 Hybrid Function 3 (f1, f4, and f7) 1200
13 Hybrid Function 4 (f11, f13, f20, and f5) 1300
14 Hybrid Function 5 (f1, f18, f5, and f4) 1400
15 Hybrid Function 6 (f6, f18, f4, and f10) 1500
16 Hybrid Function 7 (f16, f13, f19, f10, and f5) 1600
17 Hybrid Function 8 (f1, f13, f5, f18, and f12) 1700
18 Hybrid Function 9 (f1, f5, f19, f14, and f6) 1800
19 Hybrid Function 10 (f17, f16, f13, f5, f10, and f20) 1900

Composition
Functions

20 Composition Function 1 (f4, f11, and f4) 2000
21 Composition Function 2 (f5, f15, and f10) 2100
22 Composition Function 3 (f4, f13, f13, and f5) 2200
23 Composition Function 4 (f13, f11, f15, and f5) 2300
24 Composition Function 5 (f5, f17, f13, f12, and f4) 2400
25 Composition Function 6 (f6, f10, f15, f4, and f5) 2500
26 Composition Function 7 (f18, f5, f10, f11, f10, and f4) 2600
27 Composition Function 8 (f13, f15, f12, f4, f17, and f6) 2700
28 Composition Function 9 (HyF 5, HyF 6 and HyF 7) 2800
29 Composition Function 10 (HyF 5, HyF 8 and HyF 9) 2900

Search Range: [-100,100]D

All test functions are minimization problems defined as follows:

Minf(x), x = [x1, x2, ..., xD]
T

D: Dimensions 30, 50, and 100.

Search range: [−100, 100]D
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Mi: rotation matrix. Different rotation matrices are assigned to each function and each

basic function.

MaxFES: 10000×D. For simplicity, the D is always considered 30 and MaxFES=300,000

Definitions of the Basic Functions:

1. Bent Cigar Function

f1(x) = x2
1 + 106

D∑
i=2

x2
i (B.1)

2. Zakharov Function

f3(x) =
D∑
i=1

x2
i +

(
D∑
i=1

0.5xi

)2

+

(
D∑
i=1

0.5xi

)4

(B.2)

3. Rosenbrock’s Function

f4(x) =
D−1∑
i=1

(
100

(
x2
i − xi+1

)2
+ (xi − 1)2

)
(B.3)

4. Rastrigin’s Function

f5(x) =
D∑
i=1

(
x2
i − 10 cos (2πxi) + 10

)
(B.4)

5. Expanded Schaffer’s F6 Function

Schaffer’s F6 Function: g(x, y) = 0.5 +

(
sin2

(√
x2+y2

)
−0.5

)
(1+0.001(x2+y2))2

f6(x) = g (x1, x2) + g (x2, x3) + . . .+ g (xD−1, xD) + g (xD, x1) (B.5)

6. Lunacek bi-Rastrigin Function
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f8(x) =
D∑
i=1

(
z2i − 10 cos (2πzi) + 10

)
+ f13∗

f = M1
5.12(x− o)

100
, yi =

 xi if |xi| ≤ 0.5

round (2xi) /2 if |xi| > 0.5
for i = 1, 2, . . . , D

z = M1Λ
10M2T

0.2
ayy (Tasz(y))

Where Λα : a diagonal matrix in D dimensions with the ith diagonal element as

λii = α
i−1

2(D−1) i = 1, 2, . . . , D.

T β
asy : if xi > 0, xi = x

1+β i−1
D−1

√
xi

i , for i = 1, . . . , D

Tasz : for xi = sign (xi) exp (x̂i + 0.049 (sin (c1x̂i) + sin (c2x̂i))) , for i = 1 and D[4]

where x̂i =


log (|xi|) if xi ̸= 0

0 otherwise
, sign (xi) =


−1 if xi < 0

0 if xi = 0

1 otherwise

c1 =

 10 if xi > 0

5.5 otherwise
, and c2 =

 7.9 if xi > 0

3.1 otherwise

7. Non-continuous Rotated Rastrigin’s Function

f9(x) = sin2 (πw1)+
D−1∑
i=1

(wi − 1)2
[
1 + 10 sin2 (πwi + 1)

]
+(wD − 1)2

[
1 + sin2 (2πwD)

]
(B.6)

Where wi = 1 + xi−1
4

,∀i = 1, . . . , D
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8. Levy Function

f10(x) = 418.9829×D −
D∑
i=1

g (zi) , zi = xi + 4.209687462275036e + 002

g (zi) =


zi sin

(
|zi|1/2

)
if |zi| ≤ 500

(500− mod (zi, 500)) sin
(√
|500− mod (zi, 500)|

)
− (zi−500)2

10000D
if zi > 500

(mod (|zi| , 500)− 500) sin
(√
|mod (|zi| , 500)− 500|

)
− (zi+500)2

10000D
if zi < −500

(B.7)

9. Modified Schwefel’s Function

f11(x) =
D∑
i=1

(
106
) i−1

D−1 x2
i (B.8)

10. High Conditioned Elliptic Function

f12(x) = 106x2
1 +

D∑
i=2

x2
i (B.9)

11. Discus Function

f13(x) = −20 exp

−0.2
√√√√ 1

D

D∑
i=1

x2
i

− exp

(
1

D

D∑
i=1

cos (2πxi)

)
+ 20 + e (B.10)

12. Ackley’s Function

f1(x) = x2
1 + 106

D∑
i=2

x2
i (B.11)
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13. Weierstrass Function

f14(x) =
D∑
i=1

(
kmax∑
k=0

[
ak cos

(
2πbk (xi + 0.5)

)])
−D

kmax∑
k=0

[
ak cos

(
2πbk · 0.5

)]
a = 0.5, b = 3, kmax = 20

(B.12)

14. Griewank’s Function

f15(x) =
D∑
i=1

x2
i

4000
−

D∏
i=1

cos

(
xi√
i

)
+ 1 (B.13)

15. Katsuura Function

f16(x) =
10

D2

D∏
i=1

(
1 + i

32∑
j=1

|2jxi − round (2jxi)|
2j

) 10
D12

− 10

D2
(B.14)

16. HappyCat Function

f17(x) =

∣∣∣∣∣
D∑
i=1

x2
i −D

∣∣∣∣∣
1/4

+

(
0.5

D∑
i=1

x2
i +

D∑
i=1

xi

)
/D + 0.5 (B.15)

17. HGBat Function

f18(x) =

∣∣∣∣∣∣
(

D∑
i=1

x2
i

)2

−

(
D∑
i=1

xi

)2
∣∣∣∣∣∣
1/2

+

(
0.5

D∑
i=1

x2
i +

D∑
i=1

xi

)
/D + 0.5 (B.16)

18. Expanded Griewank’s plus Rosenbrock’s Function

f19(x) = f7 (f4 (x1, x2)) + f7 (f4 (x2, x3)) + . . .+ f7 (f4 (xD−1, xD)) + f7 (f4 (xD, x1))

(B.17)
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19. Schaffer’s F7 Function

f20(x) =

[
1

D − 1

D−1∑
i=1

(√
si ·
(
sin
(
50.0s0.2i

)
+ 1
))]2

, si =
√

x2
i + x2

i+1 (B.18)



Appendix C

CEC-2017 Many-Objective

Optimization Benchmark Functions

Table C.1: The CEC-2017 MAOPs (MaF) benchmark function suite properties.

Problem Definitions Properties
MaF1 Modified inverted DTLZ1 Linear
MaF2 DTLZ2BZ Concave
MaF3 Convex DTLZ3 Convex, multimodal
MaF4 Inverted badly-scaled DTLZ3 Concave, multimodal
MaF5 Convex badly-scaled DTLZ4 Convex, biased
MaF6 DTLZ5(I,M) Concave, degenerate

MaF7 DTLZ7
Mixed, disconnected,
multimodal

MaF8 Multi-Point Distance Minimization Problem Linear, degenerate
MaF9 Multi-Line Distance Minimization Problem Linear, degenerate
MaF10 WFG1 Mixed, biased

MaF11 WFG2
Convex, disconnected,
nonseparable

MaF12 WFG9
Concave, nonseparable,
biased, deceptive

MaF13 PF7
Concave, unimodal,
nonseparable, degenerate

MaF14 LSMOP3
Linear, partially separable,
large scale

MaF15 Inverted LSMOP8
Convex, partially separable,
large scale

142
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Maximum Number of Fitness Evaluations (FEs): max{100000, 10000 × D}

Number of Independent Runs: 31


