
Design and Development of Reusable Feature-based Next-Generation
Embedded Software

by

Md Al Maruf

A thesis submitted to the

School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy (Ph.D.) in Electrical and Computer Engineering

Department of Electrical, Computer and Software Engineering

Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

December 2023

© Md Al Maruf, 2023

Thesis Examination Information
Submitted by: Md Al Maruf

Doctor of Philosophy in Electrical and Computer Engineering

Thesis Title: Design and Development of Reusable Feature-based Next-Generation
Embedded Software

An oral defense of this thesis took place on November 16, 2023 in front of the following examining

committee:

Examining Committee:

Research Supervisor: Dr. Akramul Azim

Committee Member: Dr. Qusay H. Mahmoud

Committee Member: Dr. Sanaa Alwidian

University Examiner: Dr. Mohamed El-Darieby

External Examiner: Dr. Andriy Miranskyy

Chair of Examining Committee: Dr. Ramiro Liscano

The above committee determined that the thesis is acceptable in form and content and that a sat-

isfactory knowledge of the field covered by the thesis was demonstrated by the candidate during

an oral examination. A signed copy of the Certificate of Approval is available from the School of

Graduate and Postdoctoral Studies.

ii

Abstract

The emergence of next-generation embedded systems, emphasized by their shortened life cycles,

necessitates an urgent shift towards agile software design and development. The objective is to

achieve timely product delivery while maintaining safety and quality standards. Anticipating that

next-generation software will interconnect numerous devices, an efficient architecture supporting

advanced functionalities or features becomes essential. Fog and edge computing emerge as promis-

ing computing paradigms for next-generation embedded applications. These platforms are particu-

larly pertinent for safety-critical and time-sensitive systems, such as autonomous vehicles. However,

integrating these platforms into embedded systems presents challenges in designing and developing

software supporting future demands like mobility and machine learning (ML) model training.

This research focuses on identifying the reusable features through static analysis from legacy

embedded software to improve code reuse for faster development and create a feature model for

understanding features and their requirements. The feature model displays embedded software’s

integrated variants and constraints details to reduce the feature verification and validation effort.

It supports reusability, significantly easing key development phases such as requirement analysis,

which is often a major bottleneck in the timely release of embedded software, even with agile

methodologies. Further, the study emphasizes designing fog computing architecture that benefits

embedded applications like over-the-air (OTA) software updates and improves the performance of

large ML model training by efficient model partitioning across edge devices. Our research presents

a feature-based embedded software development approach that incorporates the advanced features

in the feature model and streamlines the entire development cycle from design to deployment. A

Python tool is developed to automatically extract reusable features from publicly available GitHub

embedded software projects, showcasing the practical applicability of our research in real-world

scenarios.

Keywords— Embedded Software Design and Development, Software Reuse, Feature and Requirements

Identification, Feature Model, Fog and Edge Computing, Machine Learning Model Parallelism

iii

Author’s Declaration

I hereby declare that this thesis consists of original work of which I have authored. This is a true copy

of the thesis, including any required final revisions, as accepted by my examiners. I authorize the University

of Ontario Institute of Technology (Ontario Tech University) to lend this thesis to other institutions or individ-

uals for the purpose of scholarly research. I further authorize University of Ontario Institute of Technology

(Ontario Tech University) to reproduce this thesis by photocopying or by other means, in total or in part, at

the request of other institutions or individuals for the purpose of scholarly research. I understand that my

thesis will be made electronically available to the public.

Md Al Maruf

iv

Statement of Contributions

The research topic and the work described in this thesis have been published to the following events:

a. Feature-based Reusable Embedded Software Design:

1. Conference: Al Maruf, M., & Azim, A. “WiP: Automated Features and Requirements Identifica-

tion for Improving CPS Software Reuse using Topic Modeling” Proceedings of the 14th ACM/IEEE

International Conference on Cyber-Physical Systems (ICCPS), San Antinio, Texas, USA. (2023)

2. Journal: Al Maruf, M., & Azim, A. “Facilitating Reuse of Functions in Embedded Software” IEEE

Access 10 : 88595-88605. (2022)

b. Next-Generation Embedded Applications Design:

3. Conference: Al Maruf, M., & Azim, A. “Towards Safe Online Machine Learning Model Training

and Inference on Edge Networks” IEEE 22nd International Conference on Machine Learning and

Applications (ICMLA), Jacksonville, Florida, USA. (2023)

4. Conference: Al Maruf, M., & Azim, A. “Optimizing DNNs Model Partitioning for Enhanced Perfor-

mance on Edge Devices” Proceedings of the 36th Canadian Conference Artificial Intelligence (Cana-

dian AI), Montreal, Canada. (2023)

5. Book Chapter: Azim, A., & Al Maruf, M. “Cognitive Mobile Computing for Cyber-Physical Sys-

tems (CPS)” Towards a Wireless Connected World: Achievements and New Technologies. Springer

International Publishing (pp. 203–222). (2022)

6. Journal: Al Maruf, M., Singh, A., Azim, A., & Auluck, N. “Faster Fog Computing based Over-the-

air Vehicular Updates: A Transfer Learning Approach.” IEEE Transactions on Services Computing

(TSC), IF: 11.019. (2021).

7. Conference: Al Maruf, M., Singh, A., Azim, A., & Auluck, N. “Resource efficient allocation of fog

nodes for faster vehicular OTA updates.” IEEE International Symposium on Networks, Computers and

Communications (ISNCC) (pp. 1-6), Montreal, Canada. (2020).

I hereby certify that I am the main author of this thesis. I have used standard referencing practices

to acknowledge ideas, research techniques, or other materials that belong to others. Furthermore, I hereby

certify that I am the sole source of the creative works and/or inventive knowledge described in this thesis.

v

Acknowledgements

I would like to begin by expressing my deepest gratitude to the Almighty Allah for granting me the strength

and perseverance to complete this PhD thesis.

I am profoundly grateful to my supervisor, Dr. Akramul Azim, for his invaluable guidance, support, and

constant encouragement throughout the research and writing process of this thesis. Dr. Azim’s insightful

comments, suggestions, and unwavering belief in my abilities have been instrumental in my academic jour-

ney. His office door was always open, and he provided the right direction whenever I faced challenges in my

research. I am also grateful to the faculty members and staff of Ontario Tech University for their assistance

and guidance. Their support, including the generous financial support provided by the university, has played

an essential role in my academic success. I would also like to thank all the RTEMSOFT and SIRC-3340

research lab members, who have offered their support, constructive criticism, and thoughts to help improve

my work.

Finally, I must extend my deepest and most heartfelt gratitude to my family for their support and encour-

agement throughout my years of study. To my beloved mother, Mahfuza Begum, father Motalleb Hossain,

whose unconditional love and prayer have been my anchor. To my sister Khairun Nesa, brother Naim Ali,

and brother-in-law Sulaiman Sumon for their enduring support and belief in me. This achievement is as

much theirs as it is mine. I dearly wish my grandparents were here today to see this achievement; their

memory remains a constant source of inspiration. To my in-laws and loving wife, Rezwana Mamata, words

cannot express my gratitude for your continuous support, love, and understanding throughout this journey.

Rezwana, your constant encouragement and faith in me have been a source of strength, helping me overcome

my challenges during my Ph.D. Thank you.

I would also like to acknowledge the support of my friends, colleagues, and relatives who have always

motivated and encouraged me throughout this journey. Your belief in me and your uplifting words have truly

made a difference in my life.

vi

Table of Contents

Thesis Examination Information ii

Abstract iii

Author’s Declaration iv

Statement of Contributions v

Acknowledgements vi

Table of Contents vii

List of Tables x

List of Figures xi

List of Abbreviations xii

Chapter1: INTRODUCTION 1
1.1 Motivation . 6
1.2 Problem Statement . 8
1.3 Research Questions . 9
1.4 Contributions . 9
1.5 Scope of the Research . 11
1.6 Organization of the Thesis . 12

Chapter2: BACKGROUND AND RELATED WORK 15
2.1 Background . 15

2.1.1 Reverse Engineering . 16
2.1.2 Static Code Analysis . 16
2.1.3 Software Product Line . 18
2.1.4 Decentralized Computing for Embedded Systems 20
2.1.5 Parallel Computing for Machine Learning in Embedded Systems 20

2.2 Related Work . 23
2.2.1 Traditional Approaches for Features Identification from Source Code 24
2.2.2 Advanced Methodologies in Feature Identification and Traceability 25
2.2.3 Fog Enabled Distributed Computing for Embedded Systems 28
2.2.4 Distributed Machine Learning on Fog/Edge-Enhanced Embedded Systems 30

vii

2.3 Summary . 33

Chapter3: FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 35
3.1 Introduction . 35
3.2 System Architecture for Next-Gen Embedded Design . 36
3.3 Methodologies for Legacy Code Reuse . 39

3.3.1 Base Approach for Reusable Function Identification and Feature Model Construction 39
3.3.2 Enhancing Feature and Requirements Identification using Topic Modeling and BERT 48
3.3.3 Feature Model Construction . 54

3.4 Evaluation of Automated Feature and Requirements Extraction 58
3.4.1 Feature and Requirement Identification . 58
3.4.2 Comparative Analysis with Other Approaches . 62

3.5 Summary . 64

Chapter4: NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 65
4.1 Introduction . 65
4.2 Enabling Fog Computing Architecture for Next-generation Embedded Applications 68

4.2.1 Fog Computing for Time-Sensitive Embedded Applications 68
4.2.2 System Model and Key Assumptions . 71
4.2.3 Proposed Fog-Assisted OTA Update Approach for Vehicular Networks 74
4.2.4 Evaluation of Fog-Assisted OTA Software Update Approach 84

4.3 ML-based Fog-Assisted Embedded Applications Development Framework 97
4.3.1 Resource-intensive ML-based Next-Gen Embedded Applications 97
4.3.2 Need for Parallelizing ML Model Training on Embedded Architectures 98
4.3.3 Challenges in Model Parallelism and Performance Metrics 98
4.3.4 Problem Formulation and Optimization . 101
4.3.5 System Architecture and Assumptions . 102
4.3.6 Proposed Solutions for Model Partitioning and Pipeline Execution 103
4.3.7 Evaluation of Proposed Model Partitioning Framework 108

4.4 Safe Online ML Model Training and Inference . 110
4.4.1 Current Landscape and Limitations . 111
4.4.2 Safety Constraints Integration for Safe Online Model Training 111
4.4.3 Proposed Safe ML Model Training Framework for Edge Networks 114
4.4.4 Evaluation of the Proposed Safe Online Model Training 119

4.5 Summary . 125

Chapter5: FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 127
5.1 Introduction . 127
5.2 FeaMod: A Framework for Enhancing Modularity, Adaptability and Code Reuse 128
5.3 FeaMod Framework: System Model and Assumptions . 129
5.4 Detailed Methodology of the FeaMod Framework . 131

5.4.1 From Non-Modular Code to Modular Code: The Process of Modularization 131
5.4.2 Techniques for Feature Identification and Requirements Extraction 135
5.4.3 Building an Adaptive Feature Model . 137

5.5 Evaluation of the FeaMod Framework . 138
5.6 Summary . 140

Chapter6: RESULTS ANALYSIS AND DISCUSSION 142
6.1 Introduction . 142

viii

6.2 Investigate Legacy Software for Design and Development Embedded Software 143
6.3 Integrating Fog Architecture for Next-generation Embedded Application 145

6.3.1 Design and Implementation of a Testbed for Fog-enabled OTA Update Algorithm . 145
6.3.2 Optimal ML Model Partitioning for Accelerated Performance 148

6.4 Threats to Validity . 151
6.4.1 Embedded Software Reuse . 151
6.4.2 ML-based Fog Assisted Embedded Software Development 153

6.5 Clarifying Research Questions . 153
6.6 Summary . 156

Chapter7: CONCLUSION AND FUTURE WORK 158
7.1 Research Outcomes . 158
7.2 Implications and Recommendations . 159
7.3 Future Work . 160

Appendices 180

AppendixA:List of Symbols 181

AppendixB:Extracted Features of Software Car Controller 185

ix

List of Tables

2.1 Comparison of wireless technologies in fog computing [41] 21

2.2 Comparison of different reverse engineering approaches for identifying features 25

2.3 Comparison of advanced methodologies in feature identification 26

2.4 Comparison of different evaluation factors in the fog computing architecture 30

3.1 Feature and requirement identification results . 58

3.2 Evaluation of selected features for electric water heater . 60

4.1 Symbol description . 71

4.2 Mininet-WiFi network parameters . 92

4.3 Effect on OTA update time for increasing number of vehicles 95

4.4 FLOPs calculation for AlexNet . 100

4.5 Execution time of AlexNet layers on different edge devices 106

4.6 Optimal partitioning of AlexNet DNN model over four distinct edge devices 106

4.7 Pipelined model parallelism performance for different CNN networks 109

5.1 Feature model statistics for face detection . 138

6.1 Comparing DNN model (AlexNet) parallel training for different numbers of splits (epochs

= 100, batch size = 128) . 149

B.1 Extracted features from GitHub project “Software Controller for Vehicles” [152]. 186

x

List of Figures

1.1 Workflow of our proposed feature-based embedded software design and development . . . 5

2.1 Forward vs reverse engineering . 16

2.2 BERT model architecture [33] . 18

2.3 Architecture of multiprocessor systems for DNN applications 21

3.1 System architecture for next-generation embedded software design 37

3.2 Feature types and relationships . 42

3.3 Simplification of function relationships for feature model. 44

3.4 An implementation concept of feature model construction. 45

3.5 Workflow of feature identification, transitioning from source code artifacts to potential fea-

ture extraction . 52

3.6 Feature model for electric water heater . 57

3.7 Feature coherence evaluation for electric water heater and microwave using LDA+TF-IDF

on GitHub projects . 59

3.8 Cosine similarities between Features and requirements for electric heater 60

3.9 Comparison of BERT and LDA based on different metrics 60

3.10 Features and requirements mapping for AVS . 62

3.11 Comparison of BERT with Rule-based approach . 62

3.12 Feature model for object detection . 63

4.1 Next-generation embedded applications computing architecture 67

4.2 Fog computing enabled system architecture . 69

4.3 Transfer learning model . 75

4.4 Clustering to find the traffic pattern and the number of vehicles 83

xi

4.5 Range and size of each cluster . 86

4.6 Fog nodes distribution using Algorithm 2 and resource utilization calculation in different

clusters . 86

4.7 Propagation delay prediction using transfer learning . 88

4.8 Propagation delay prediction using 5G dataset [125] . 88

4.9 Propagation delay prediction with Transfer Learning and Neural Network on 5G dataset . . 89

4.10 Transfer learning performance on training time . 90

4.11 Mininet-WiFi network architecture for cluster 3 . 91

4.12 Signal strength of each car over the time . 92

4.13 OTA update time and handover delay . 93

4.14 Effect on throughput for increasing number of vehicles and software sizes 96

4.15 Actual communication delay comparison with predicted delay using Transfer Learning . . 96

4.16 Design overview for DNN model execution on edge devices 103

4.17 Pipelined model parallelism on edge devices . 107

4.18 Comparison of training time and communication time for model partitioning 109

4.19 Machine learning-enabled edge networks . 114

4.20 Proposed framework for ML model partitioning . 115

4.21 SVM model partition for parallel computing . 118

4.22 RF model partition for parallel computing . 118

4.23 Training accuracy for online model training with input size 200 120

4.24 Training time for different training instances . 120

4.25 Inference time for different training instances . 120

4.26 Training time for different number of model splits . 121

4.27 Comm. time and TMR overhead for different numbers of splits 121

4.28 CPU and memory usage (%) for SVM model training . 123

5.1 System model architecture (Feature-based vs Traditional software development approach) . 130

5.2 Proposed FeaMod framework . 131

5.3 Features and requirements map for face detection . 136

5.4 Comparison of BERT with Rule-based approach . 136

5.5 Adaptive feature model for face detection . 138

xii

5.6 Execution time compare for different attributes using FeaMod 140

6.1 Feature model creation from GitHub project “Software Controller for Vehicles” [152] . . . 143

6.2 Search time comparison for finding a feature (deepest leaf node) among different GitHub

embedded systems projects . 144

6.3 Our experimental testbed design for faster OTA updates 145

6.4 OTA updates for three fog nodes and eight cars in our experimental testbed 146

6.5 OTA update time and delay comparison for various software and traffic sizes 147

6.6 Training and validation accuracy for AlexNet pipeline model parallelization 149

6.7 Average execution time and communication latency comparison for splitting AlexNet . . . 150

xiii

List of Abbreviations

CPS Cyber-Physical Systems

ML Machine Learning

DNN Deep Neural Network

CNN Convolutional Neural Network

BERT Bidirectional Encoder Representations from Transformers

ECU Electronic Control Unit

FCA Fiat Chrysler Automobiles

ISR Interrupt Service Routines

OTA Over-the-Air

FM Feature Model

SPL Software Product Line

RSUs Road Side Units

SVM Support Vector Machine

RF Random Forest

TMR Tripple Modular Redundancy

AST Abstract Syntax Trees

DAC Data Abstraction Coupling

IoT Internet of Things

CBO Coupling Between Object

AFM Adaptive Feature Model

FIG Feature Interaction Graph

LDA Latent Dirichlet Allocation

TF-IDF Term Frequency - Inverse Document Frequency

xii

1

Chapter 1

INTRODUCTION

The demand for next-generation embedded software solutions, especially in Cyber-Physical Systems (CPS),

is rapidly growing [1]. Examples of such solutions include automotive electronic control unit (ECU) soft-

ware, networked systems for medical devices, and industrial control systems. Modern embedded systems

are software-intensive, integrating sensors, logic, power systems, operating systems, resource managers, and

communication networks to serve various applications. For instance, next-generation embedded software in

autonomous vehicles demonstrates the potential for enabling new computing paradigms (e.g., fog or edge

computing) to enhance control, computation, and communication technologies. Furthermore, these systems

must satisfy numerous constraints to ensure service safety and quality.

As the landscape of embedded software expands and evolves, traditional manufacturers are in a race

against time. The competition in the software market is intense, with every entity striving to release products

before their rivals. With ever-changing embedded software requirements, manufacturers need to update and

produce new software frequently. Any delay or misstep in designing and developing according to the new

requirements could cause the software to become obsolete. This competition intensifies with the integration

of advanced functionalities into next-generation embedded systems, including machine learning-based ap-

plications, Over-the-Air (OTA) software updates, and faster computing services. The requirements of these

advanced functionalities in this context refer to the demands for higher performance (e.g., faster computa-

tion), automation, security, interconnectivity, and adaptability in embedded software, lead to new challenges.

These challenges manifest in the form of implementing constraints related to time, resources, and design.

Unlike traditional software, embedded software has its nuances, such as interrupt handling using interrupt

service routines (ISR), task scheduling, and language dependence. It has been found that over 80% of all

Chapter 1. INTRODUCTION 2

embedded systems are developed using the C procedural and function-oriented language [2]. In many cases,

other languages are considered memory or resource-intensive for effective deployment in bare-metal devel-

opment. Building embedded software from scratch is time-consuming and requires skilled developers who

can understand the necessary requirements for implementing software functionalities. Each software feature

undergoes extensive testing to verify its functionalities.

Yet, amidst these challenges lies an opportunity: many next-generation embedded software share features

with legacy software. Reusing these features could potentially reduce implementation and testing time, which

are major bottlenecks in software release. Additionally, software reusability can increase productivity, accel-

erate development, and decrease operational costs. Generally, software practitioners reuse code to shorten

development time when implementing required functionalities. Nevertheless, large-scale code reuse remains

scarce in embedded software development due to its complex constraints. Furthermore, much of the publicly

available embedded software source code lack proper documentation, making it difficult for developers to

understand system features and their requirements for reuse. As a result, developers often hesitate to reuse

legacy embedded software code found in public repositories, such as GitHub.

In this dissertation, a feature is defined as a reusable distinct unit of functionality that can be encapsulated

within a computational unit or a function [3] to satisfy any application-specific task [4], [5]. In a broader

perspective, features can be functional (representing a specific behavior or service the system provides), or

non-functional (relating to the system’s properties or quality, such as performance or security).

In recent years, numerous software engineering techniques, such as programming language constructs

and software product line visualization, have employed object-oriented structures for software development.

However, embedded software typically executes specialized tasks as functions [6] that frequently interact

with other computational units [7]. For example, the adaptive cruise control function of automotive embedded

systems is distributed across multiple Electronic Control Units (ECUs) and repeatedly interacts with other

functions dispersed throughout numerous ECUs [8]. Identifying these reusable functions is challenging when

they are located in different parts of the code without adhering to proper coding practices. Recent software

reuse studies [9], [10] recognize these functions as potential features for reuse aligning with the requirements.

However, approaches that automatically extract features and requirements from embedded source code are

relatively few and far between.

Current techniques for feature and requirements extraction often resort to manual methods, which are

time-consuming and prone to errors [11]–[14]. While Software Product Line (SPL) [10] approaches offer

Chapter 1. INTRODUCTION 3

promise in developing applications using reusable assets, many of these methods lean towards object-oriented

code and neglect legacy C-based embedded software. This trend has led to gaps in understanding the potential

of reusable components within source codes and generating feature models tailored for embedded systems.

Furthermore, developers face challenges in determining configurations of reusable features from given source

code for developing a specific application. However, with the advent of technologies like BERT and topic

modeling for static analysis [15], [16], there is potential to revolutionize this process. The Bidirectional

Encoder Representations from Transformers (BERT) [17] model assists in discerning semantic distinction

in code and associated documentation, while the topic modeling procedure captures the structural essence

within the codebase [18]. These technologies could vastly improve feature and requirement extraction from

legacy codes, bringing clarity to software’s variability and aiding its design and development.

There is untapped potential in reusing legacy software to develop next-generation embedded software,

which can lead to reduced development time and increased reliability. While inherent constraints and the

lack of legacy code documentation have deterred extensive reuse in the past, publicly available reposito-

ries, such as GitHub, hold promise in this domain. Therefore, in this research, we introduce an approach to

automatically identify reusable functions, potential features and requirements, vital for the evolution of next-

generation embedded software. Building on the foundational use of a function call graph, our method ranks

program functions and extracts calling relationships between subroutines, encapsulating function dependen-

cies and constraints [19], [20]. Our strategy enhances this method by integrating state-of-the-art deep learning

techniques, particularly CodeBERT [16], and topic modeling, aiming for greater granularity in identifying

software features and requirements.

Automatically identifying reusable features and their requirements can significantly facilitate a better

understanding of software systems. This approach not only assists in comprehending the complexities of

software requirements but also supports faster development, potentially minimizing risks compared to de-

veloping software entirely from scratch. However, it is essential to acknowledge that the effectiveness and

applicability of reusing these features also depend on specific project requirements, system compatibility, and

the quality of the existing codebase. Since the identified features have already been tested in a legacy appli-

cation, they will likely be less error-prone than newly developed versions. Their streamlined representation

further highlights the clarity of software requirements when mapped onto a feature model. The feature model,

expressed through a feature diagram, clarifies features and their intricate inter-dependencies in a hierarchical

Chapter 1. INTRODUCTION 4

tree structure [19], [20]. This model-centric approach to software development simplifies visualizing im-

perative features, encompassing aspects like testability, traceability, reusability, testing workflow, constraint

verification, and validation. The feature model enables feature-to-artifact mappings to illustrate how system

functions are implemented in terms of relationships, dependencies, behaviors, and constraints [21].

Next-generation embedded software: Next-generation embedded software represents the evolution of

traditional embedded software, marking a significant transition in its capabilities, functionalities, and appli-

cations. It is characterized by its software-centric approach, incorporating advanced technologies such as

artificial intelligence, connectivity, and advanced computing paradigms like fog and edge computing. These

systems are distinct from traditional ones due to their ability to process complex tasks, adapt to rapidly

changing technologies, and meet strict safety and real-time performance requirements. An example of next-

generation embedded software is found in autonomous vehicles. These vehicles integrate complex AI algo-

rithms for navigation and decision-making, process vast amounts of data in real time through edge computing,

and require high levels of safety and reliability.

Additionally, with the increasing complexity of advanced features in next-generation embedded software,

a feature-based modular embedded software design and development approach becomes vital to facilitate the

integration of diverse applications seamlessly. This approach is particularly important in the creation of

efficient computing architectures. For instance, autonomous vehicles incorporate diverse machine learning-

based applications (e.g., video processing) that demand faster computation for making real-time decisions. As

these machine learning models grow in complexity, there is a limitation in training them on resource-scarce

embedded systems. Thus, the demand for a parallel and distributed framework to support these ML models

arises, aiming to boost the training speed and process large chunks of data in real-time [22]. Furthermore,

to address the concern for safe online training and inference, which is crucial in safety-critical systems, the

Triple Modular Redundancy (TMR) technique is introduced. TMR ensures reliability and fault-tolerance in

the system, as it takes three identical copies of a processor, and their outputs are then voted upon to produce

a single output. This redundancy mechanism’s primary benefit is detecting and correcting faults, adding an

extra layer of reliability to the system.

Embedded systems, evident in technologies like autonomous driving and smart homes, are now integral to

our lives. The call to merge these devices into a cohesive network has led to the rise of fog computing, which

Chapter 1. INTRODUCTION 5

uses edge devices to process data closer to its source. This shift promises efficiency and real-time decision-

making. Research highlights fog computing’s aptness for supporting mobility, time-sensitive, and resource-

heavy applications [23]. It offers better network reliability and reduced delays compared to traditional cloud

models, marking a significant stride in the evolution of embedded systems. As fog computing becomes

foundational for future software, this research emphasizes its crucial role for developers keen on staying

updated with technological advancements [23].

The primary objective of this research is to address the identified gaps and establish a methodology that

enables legacy embedded software code reuse, guarantees the integrity of configurations, and boosts appli-

cation performance by channeling computations closer to data sources — the fog and edge networks. We

are not just focusing on technical advancements but envisioning a paradigm shift. We propose a feature-

driven approach to embedded software design to integrate state-of-the-art functionalities into the core soft-

ware framework seamlessly.

Figure 1.1: Workflow of our proposed feature-based embedded software design and development

To visualize our research’s overall goals, we present an abstract representation of our workflow for

Chapter 1. INTRODUCTION 6

feature-based embedded software design and development, showcased in Figure 1.1. This workflow out-

lines the systematic process our proposed system undergoes. Initially, relevant features and requirements are

extracted from the existing codebase. Using this extracted information, we then formulate a comprehensive

feature model, which is useful in analyzing and understanding the configurations of these features. In the

subsequent phases, we design next-generation embedded applications like machine learning and OTA soft-

ware updates. All of these advanced functionalities, treated as distinct features, come to life in a fog-enabled

environment, ensuring fast and efficient management of advanced features.

1.1 Motivation

The complexity of next-generation embedded software continues to increase due to high variability, which is

expected to grow further with the extensive integration of sensors, computing platforms, and constraints for

ensuring safety, security, and quality. Consequently, the design and development cycles of such software take

longer than usual to verify and validate its features. Embedded software manufacturing companies face the

challenge of bringing products to market quickly to remain competitive.

This necessitates reducing design and development cycles by reusing legacy embedded software. How-

ever, developers face challenges in reusing code because embedded software possesses different characteris-

tics than typical software products. As a result, developers often avoid reusing legacy embedded software,

finding it hard to understand the required features and constraints without domain expertise. Numerous

embedded software repositories are publicly available and hold potential for reuse in developing new appli-

cations.

One significant challenge is understanding the necessary features and their requirements due to a lack of

domain knowledge and often insufficient documentation. Furthermore, designing next-generation machine

learning applications brings its own set of challenges. These applications often come with unique require-

ments and are frequently structured in a non-modular manner. Such attributes compound the challenges of

parallel and distributed computation, posing difficulties for seamless integration into existing systems. Tran-

sitioning to a feature-based embedded software design can be a solution, promoting a more structured and

efficient development process.

Extracting information from existing or legacy embedded software will help developers visualize the

software design and speed up the development process. This study aims to find a way to design and develop

next-generation embedded software where developers can extract the required information for faster software

Chapter 1. INTRODUCTION 7

development. Moreover, next-generation embedded applications demand comprehensive support to process

large volumes of sensor data and machine learning model training to meet application constraints. This

motivates the integration of a fog-enabled architecture to simplify the computing process and manage next-

generation embedded applications more effectively.

In our ongoing endeavor to find a robust computing solution for next-generation embedded applications,

we examine the prospects of fog and edge computing architectures. These architectures can benefit next-

generation embedded software, enhancing mobility and response times by processing data closer to devices.

Unlike cloud computing, fog, and edge computing reduce latency for real-time applications and supports

dynamic environments where fast decision-making is critical. By decentralizing computation and networking,

fog, and edge computing can meet the advanced demands of next-generation embedded systems, ensuring

rapid, scalable, and efficient operation. A primary challenge in achieving this goal is seamlessly integrating

ML-based embedded applications, like deep neural networks (DNNs), into embedded devices, which is made

more difficult by the large size and complexity of DNN models. The conventional approach to adapting

these large models in resource-constrained environments often needs to catch up, encouraging us towards

innovative solutions like machine learning model splitting, a strategy that promises to accelerate performance

substantially by distributing the computational load more evenly and efficiently across available resources.

The next-generation applications, characterized by their mobile and distributed computing nature, will be

connected to multiple of computing devices, necessitating a seamless and efficient update mechanism. OTA

updates are critical in this context as they enable remote software updating without the need for physical

access to the devices. This method works by the application or device periodically checking for updates from

a centralized server and, upon availability, downloading and installing these updates wirelessly.

During our investigation, we discover that FCA’s automotive brands, such as Chrysler, Dodge, Jeep, and

Ram, have received feedback from customers about serious glitches and long delays in the software update

process [24]. As a result, we present a case study of OTA software update time estimation to help auto

manufacturers and car owners decide on the best strategy. Although OTA software update frameworks are

still in the early stages of development, automobile manufacturers need to be more proactive in finding an

efficient OTA update framework to provide the best user experience for their customers.

Chapter 1. INTRODUCTION 8

1.2 Problem Statement

Developing next-generation embedded software from scratch is challenging due to the increased complexity

and the need for a deep understanding of system input, output, architecture, and configurations of required

features. To address this issue, our research focuses on the following key problems:

a) Reusable Features and Requirements Identification

• Identifying and extracting reusable features from legacy embedded software source code, which can

be potentially repurposed for new applications, reducing development time and cost.

• Analyzing the relationships and requirements among reusable features to ensure that they can be

effectively integrated and configured in a new system while maintaining the desired functionality.

b) Feature Model Creation

• Building a feature model with valid configurations to represent the extracted features and their

relationships, aiding in the design and development process of new embedded system applications.

c) Designing a Fog and Edge-assisted Architecture for Satisfying Software Requirements

• Enabling a fog and edge computing architecture to meet the requirements of next-generation em-

bedded applications, such as the need to execute resource-intensive machine learning algorithms

and ensure faster OTA software update for real-time decision making.

d) Designing and Developing Feature-based Next-generation Embedded Software

• Transforming non-modular code to a feature-based modular structure to facilitate the seamless in-

tegration of advanced features in next-generation embedded systems, enhancing the efficiency and

adaptability of the software.

Therefore, our research focuses on designing and developing feature-based next-generation embedded

software to address the above problems, ensuring that the resulting systems are efficient, reliable, and capable

of meeting the increasing demands of modern applications.

Chapter 1. INTRODUCTION 9

1.3 Research Questions

To enhance the reuse of code for designing and developing next-generation software, we need to minimize

the uncertainty of our approach in satisfying application requirements (e.g., design, functional, and non-

functional). Existing methods implemented by software engineering tools do not benefit developers in iden-

tifying requirements automatically from the embedded source code. Thus, our research will benefit from

managing the complexity of different functionalities when developing embedded applications. To an extent,

our study demonstrates the suitability of feature-based embedded software in fog computing architecture

supporting advanced functionalities. To address the above objectives, we formulate the following research

questions:

• RQ1: What are the essential criteria and information needed to identify reusable features from legacy

embedded software?

• RQ2: What method can assist in reusing identified features, along with the creation of a feature model

expedite the development process of next-generation embedded software?

• RQ3: What is the efficacy of BERT and topic modeling techniques in identifying and extracting fea-

tures and requirements from embedded software’s source code?

• RQ4: Is fog computing architecture effective in enhancing performance and satisfying the constraints

of next-generation embedded applications?

• RQ5: What strategies facilitate the optimal training of large machine learning models for next-generation

embedded applications, and what approaches ensure the safety of online model training during this

process?

By addressing these research questions, we aim to contribute to the body of knowledge in the domain

of next-generation embedded software and provide practical solutions for the design and development of

feature-based next-generation embedded systems.

1.4 Contributions

The proposed framework for building feature-based next-generation software enables application developers

to focus on reusing functionalities and addresses application requirements in the underlying computational

Chapter 1. INTRODUCTION 10

fog infrastructure. To answer the research question RQ1, we extract information from function call graphs

and source code using topic modeling and BERT to identify functional requirements. We also parse infor-

mation from available documents such as developer comments, requirement specifications, and readme.md

files to identify non-functional requirements. Addressing RQ2, we use the feature modeling process of the

software product line method to reuse the identified features from legacy embedded software, which have

already been tested or verified, thereby facilitating faster software development. Moreover, we compare our

automatic feature identification with the manual and rule-based approaches to ensure its efficiency. For RQ3,

we evaluate the efficacy of BERT and topic modeling techniques in extracting features and requirements from

the source code of embedded software, comparing with manual and rule-based approaches.

To address RQ4, we implement an OTA software update case study utilizing fog architecture in esti-

mating update time, showcasing the substantial reduction in update time under a fog computing architecture

essential in supporting future real-time decision-making requirements. To tackle RQ5, we explore strate-

gies like model parallelism and find optimal partitions for efficiently training large machine learning models

utilizing available edge device resources. To ensure the safety of online model training, we use the TMR

technique, thereby enhancing overall safe execution.

The main contributions of this research work are:

a) Feature Identification and Model Construction for Improving Embedded Software Reuse

• Employed Topic Modeling and BERT for identifying reusable features from legacy code and ana-

lyzed functional and non-functional requirements.

• Developed a systematic approach to build, validate, and visualize relationships between features

in a comprehensive feature model. This model aids in visualizing and understanding the various

software requirements.

b) Design and Development of Modern Performance Features for Embedded Applications

• Designed and developed a fog-enabled architecture to minimize latency in real-time applications

and enhance overall performance,

• Implemented a real-world testbed architecture to integrate next-generation embedded application

requirements, demonstrated through a case study on OTA software updates.

• Developed techniques for efficient large machine learning model training on embedded systems.

Chapter 1. INTRODUCTION 11

c) Feature-Based Approach for Next-Generation Embedded Software Development

• Enabled the transformation of advanced applications from a non-modular to a modular structure,

enabling their reuse in feature-based software development.

1.5 Scope of the Research

In this research, we mainly concentrate on the publicly accessible legacy software that is written using C

procedural and function-oriented language. The rationale behind this scoping is that our study primarily

targets families of embedded systems that evolve from their ancestral legacy systems, which predominantly

utilized the C language. The existing analyses show that most embedded legacy systems are written using C

language because of the advantage of low-level implementation. Although we limit our approach to C-based

software, this idea can be extended to other languages as we have used a function call graph for extract-

ing reusable features. In addition, we make a necessary ground truth assumption for feature identification:

the manual analysis of legacy code serves as the benchmark for determining the features in the embedded

systems, forming the basis for evaluating our automated feature extraction methods.

To exhibit the versatility and applicability of the feature-based embedded software development approach

in accommodating advanced features, we extend our considerations to non-structured Python programs. Here,

we undertake the initiative to modularize these programs, promoting reusability and facilitating the creation

of a feature model that effectively integrates advanced functionalities.

In this research, our primary focus is on embedded applications that necessitate rapid decision-making,

especially in scenarios where latency plays a pivotal role. It is essential to acknowledge the inherent latency

associated with cloud computing, which can introduce delays, potentially compromising the real-time re-

sponse and efficiency of the system. Consequently, for the specific scope of our study, we have consciously

chosen to prioritize fog and edge computing over cloud computing. By leveraging the capabilities of fog

and edge computing, we aim to capitalize on their proximity to data sources, thus minimizing latency and

ensuring faster data processing, which is paramount for the applications under consideration.

Furthermore, we envision fog computing as a promising infrastructure that addresses the prerequisites of

advanced applications, including mobility support and ML-based computations. This foresight emphasizes

the role of fog computing in enabling advancements in next-generation embedded software. An essential

requirement, envisioned to become indispensable in forthcoming embedded software iterations, is the OTA

Chapter 1. INTRODUCTION 12

update. Our exploration investigates the intricacies of OTA updates, aiming to seamlessly integrate them

within the fog computing framework, emphasizing the importance of real-time updates and system efficiency

enhancement.

1.6 Organization of the Thesis

The structure of this thesis is outlined into seven chapters, offering a comprehensive insight into the method-

ologies, applications, and evaluations undertaken. The evaluations of our proposed methodologies are pre-

sented separately within each chapter to enhance clarity and comprehension. This approach allows for tar-

geted and contextual analysis of our proposed methodologies and simplifies understanding of complex con-

cepts, making the thesis more accessible and impactful for readers.

• Chapter 1: Introduction

This chapter introduces the foundational aspects of the research, highlighting the research questions

and objectives. It also offers a brief overview of the subsequent chapters in the thesis.

• Chapter 2: Background and Related Works

A detailed literature review is undertaken in this chapter, exploring the existing methodologies, chal-

lenges, and advancements relevant to embedded software, software reuse, and fog computing. This

chapter sets the theoretical backdrop for the ensuing research chapters.

• Chapter 3: Feature-based Reusable Embedded Software Design

This chapter focuses on our proposed methodologies for extracting reusable features and requirements

from legacy embedded software. It delves into the use of advanced NLP techniques like BERT and

topic modeling, essential for modern software reuse practices. It is divided into two sections:

– Feature and Requirements Extraction: Techniques utilizing BERT and topic modeling to extract

and analyze features from legacy code are elaborated upon, emphasizing the role of these insights

in software reuse.

– Feature Model Construction and Validation: The section focuses on the construction of a feature

model tailored for embedded systems and its subsequent validation.

Chapter 1. INTRODUCTION 13

• Chapter 4: Next-Generation Embedded Applications Design

This chapter, segmented into three primary sections, dives deep into the integration of advanced tech-

nological facets into embedded software:

– Enable Fog Computing Architecture for Next-Gen Embedded Software: Focuses on deploying

the fog-enabled software and its performance evaluation, with special emphasis on OTA software

updates.

– ML-based Fog/Edge Assisted Software Development: Discusses the integration of machine learn-

ing application and conceptualization of a parallel model geared towards enhanced training and

inference.

– Safe Online Model Training: Introduces the TMR technique, underscoring its significance in

ensuring online model training’s safety.

• Chapter 5: Feature-based Next-Generation Embedded Software Development

This chapter explores how the advanced applications (e.g., machine learning)) code can be reused in

the form of feature tree structures. The emphasis is on the structured development and integration of

these features in a feature model, facilitating enhanced system performance.

• Chapter 6: Results Analysis and Discussion

It presents the additional results from experiments conducted following our proposed methodologies

and clarifies our research questions for this study.

• Chapter 7: Conclusion

Provides a summative discussion on the research findings, concluding remarks, and potential avenues

for future research.

Mapping Chapters to Associated Publications: The list of associated publications of the following

chapters, demonstrating the research journey and its dissemination through academic channels:

• Chapter 3:

- WiP ICCPS 2023 [25]: Highlighted automated feature identification for Cyber-Physical Systems

using topic modeling.

- IEEE Access 2022 [3]: Discussed how to improve the reuse of functions in embedded software.

Chapter 1. INTRODUCTION 14

• Chapter 4:

- IEEE ICMLA 2023 [26]: Discussed safe online ML model training and inference on edge net-

works.

- Canadian AI 2023 [27]: Focused on optimizing DNN model partitioning for enhanced perfor-

mance.

- Book Chapter Springer 2022 [28]: Covered cognitive mobile computing and communication

technologies for Cyber-Physical Systems.

- IEEE TSC 2021 [29]: Demonstrated faster fog computing based OTA vehicular updates.

- IEEE ISNCC 2020 [30]: Addressed resource-efficient allocation of fog nodes.

15

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Background

Next-generation embedded systems are increasingly software-intensive to meet advanced customer require-

ments. They demand high processing and storage capabilities to support low latency, real-time embedded

applications. Furthermore, embedded system applications are becoming more distributed, heterogeneous,

and complex. This necessitates designing decentralized variability management solutions using Cloud-Fog-

Edge computing architecture. To assist in designing and developing next-generation embedded software, our

research focuses on two important issues that need to be addressed with high priority.

The research identifies gaps in existing software design and development mechanisms:

• Identifying the complex requirements of various needed functionalities for accelerated application

development.

• Addressing the high-level dependability requirements of any computing architecture to meet applica-

tion requirements (e.g., real-time processing).

In software engineering, the systematic steps required for software development follow as i) require-

ments analysis, ii) design, iii) construction, iv) testing, and v) maintenance. Therefore, software development

becomes time-consuming when essential information is unclear or absent for software designers and de-

velopers. In particular, embedded software development is more challenging than traditional development

due to the lack of domain knowledge and additional constraints. Thus, we analyze existing studies to reuse

legacy software for faster development with the necessary functionality. We find software product line and

Chapter 2. BACKGROUND AND RELATED WORK 16

reverse engineering approaches as potential solutions for quicker development and management of embed-

ded software. Along with this, we need to identify an efficient architecture for managing the computational

requirements of embedded applications. We investigate cloud and fog computing architectures to better fit

the requirements of next-generation embedded software. In this section, we discuss the basic terminologies

and related works to understand our investigations in developing next-generation embedded systems.

2.1.1 Reverse Engineering

The traditional development process follows forward engineering, a method for constructing an application

based on specified requirements. This approach can be costly due to the high proficiency skill requirements

and time-consuming nature of testing new applications.

In contrast, reverse engineering [31] is the opposite process of application development, where an existing

application (e.g., source code) is analyzed to extract knowledge or understand its architecture. This method

takes less time to develop an application and minimizes potential risks associated with writing software from

scratch. Since the extracted features have already been tested for a given application, they are likely to be less

error-prone than newly developed versions. As a result, the development of embedded system applications

can be accelerated by employing reverse engineering techniques. Figure 2.1 shows the difference between

forward and reverse engineering process.

Figure 2.1: Forward vs reverse engineering

2.1.2 Static Code Analysis

Static code analysis refers to the technique of evaluating a program’s source code without executing it. This

method is primarily used to uncover potential vulnerabilities, bugs, or violations of programming conven-

tions in the code. In the context of embedded software, through static code analysis, we extract program

Chapter 2. BACKGROUND AND RELATED WORK 17

information to understand the system design constraints and real-time requirements accurately.

The cflow Utility:

The cflow utility is a classic tool used in static analysis to visualize a program’s control flow. By generat-

ing a call graph that outlines function calls and their hierarchy, cflow provides a snapshot of how different

embedded software modules interact.

Topic Modeling

Topic Modeling is a type of statistical model used to uncover abstract topics within a collection of documents.

In the context of static code analysis, these “documents” can be perceived as different source files, modules,

or code artifacts of the software. Topic modeling shows immense promise in the semantic analysis of code.

By identifying patterns and recurring topics within the code, it can highlight areas of the software that handle

specific functionalities. This becomes invaluable when trying to understand or modify features in a large or

unfamiliar codebase.

TF-IDF: Term Frequency-Inverse Document Frequency (TF-IDF) is a numerical statistic that reflects

how important a term is to a document within a collection. It considers both the frequency of the term in a

particular document and its frequency across all documents.

LDA: Latent Dirichlet Allocation (LDA) is a popular method for topic modeling. It assumes each doc-

ument is a mix of topics, and a topic is a mix of words. By analyzing the distribution of words across

documents, LDA can deduce the topics present in a corpus. By employing tools like TF-IDF and LDA, one

can understand the primary functionalities of different software parts, which becomes especially useful when

dealing with expansive codebases or when trying to decode legacy code.

BERT Model

Bidirectional Encoder Representations from Transformers (BERT) [32] is a deep learning model designed to

understand the context of words in a sentence. It is pre-trained on a large corpus of text and can generate

embeddings for given input text. Unlike traditional models that analyze words in a sequence either from left

to right or right to left, BERT considers both directions, capturing each word’s context more holistically.

Embeddings: In natural language processing (NLP), embeddings are dense vector representations of

Chapter 2. BACKGROUND AND RELATED WORK 18

Figure 2.2: BERT model architecture [33]

words, sentences, or even paragraphs. They capture the semantic information, meaning that similar words or

phrases will have embeddings that are close to each other in the vector space.

For static code analysis, CodeBERT or CodeBERTScore (extension of BERT) shines in its ability to

understand the semantic nuances of the code. When analyzing function calls or variable assignments, BERT’s

contextual grasp can be used to understand constraints or intricate functionalities. Its strength lies in its

bidirectional nature, which allows for a deep understanding of the relationships and dependencies within the

code.

• Impact of CodeBERT on embedded software source code analysis: CodeBERT’s contextual ca-

pabilities can lead to nuanced insights, enabling developers to identify hidden dependencies, predict

potential issues, and understand intricate code functionalities.

• Impact of Topic Modeling on embedded software source code analysis: Topic Modeling can illu-

minate areas of the code that are dedicated to specific functionalities, helping in modular understanding

and efficient feature addition or modification.

2.1.3 Software Product Line

A software product line (SPL) [34] refers to a systematic approach for designing and developing new software

systems by reusing legacy software assets. It aids in increasing productivity and software quality, as it reuses

Chapter 2. BACKGROUND AND RELATED WORK 19

already implemented legacy software features. Consequently, the time for feature verification and validation

is reduced. The product line approach presents a feature model representing feature commonalities and

variabilities. However, due to the rapid growth of advanced features and their evolution, the feature model

frequently changes. Therefore, a reverse engineering process is needed to maintain consistency between

available feature configurations and generated feature models. Software product line development is divided

into two phases [35]:

• Domain engineering: This phase specifies software requirements such as the required feature list,

feature relationships, feature constraints, and so on. The outcome of this phase includes extracted

information for developing software from reusable assets, such as required features, software architec-

ture, feature model, and software components.

• Application Engineering: In this approach, engineers select the required features to build a new appli-

cation with different requirements.

Feature Model for Requirements Analysis

The Feature Model (FM) is a fundamental artifact of the Software Product Line (SPL) [36]. It organizes

features in a tree where features are represented in parent-child relations to define the concept of an appli-

cation family. The parent features are linked to child features using edges, which represent containment

relationships [35].

• In a feature model, features can be categorized into two types:

– Mandatory: A mandatory feature must be present in all applications of the product line.

– OR: The OR feature group selects at least one feature from its child feature list. The selection

cardinality is (1 to k), where k is the group size.

• When features are represented in a group, the feature model defines two feature groups [37]:

– Alternative (XOR): In XOR, features are selected from the set of child features following the

cardinality constraint. For example, one parent feature selects any one child feature (1 to 1).

– OR: The OR feature group selects at least one feature from its child feature list. The selection

cardinality is (1 to k), where k is the group size.

Chapter 2. BACKGROUND AND RELATED WORK 20

• A feature model also illustrates two types of constraints in feature selections for valid configurations.

– Requires: The requires constraint means that if a feature f1 is selected, another feature f2 must

be selected.

– Excludes: Conversely, the excludes constraint states that if the feature f1 is selected, then the

feature f2 cannot be selected.

2.1.4 Decentralized Computing for Embedded Systems

Next-generation embedded systems rely on decentralized computing infrastructure, as they require collecting

and processing massive amounts of sensor data. Decentralized computing implies that computing resources

are located between the data source and the cloud/fog/edge or other data centers. Modern embedded system

applications can leverage cloud-based solutions to support resource management [38], data storage, security,

and access to various software applications. However, cloud-based approaches are not always feasible for

applications with constraints such as response time and cost. Moreover, cloud service is not always the

preferred solution considering downtime, communication delay, privacy, limited control, and flexibility [39].

Therefore, fog computing may be advantageous for running time-sensitive applications on the nearest

computing platforms (e.g., vehicular fog computing, roadside units (RSUs)), providing better performance.

Furthermore, several issues need to be investigated for these fog computing platforms, such as hardware

architectures, run time, communication mechanisms, wireless networking, and application development on

constrained devices. These investigations will help applications run seamlessly across diverse platforms [40].

Wireless Communication Technologies: For next-generation embedded software, wireless network

communication technologies are becoming popular due to their improved usability in managing large net-

works. To visualize the differences among common wireless technologies, a comparison table can be pre-

sented (Table 2.1). This table compares various metrics such as standard, data rate, frequency, operating

range, latency, and application area.

2.1.5 Parallel Computing for Machine Learning in Embedded Systems

The current software design for embedded systems requires the adoption of parallel computing to benefit

from the presence of multiple processors. Traditionally, machine learning-based embedded applications were

executed on a single-core processor with sequential execution of tasks [42]. However, this approach is no

Chapter 2. BACKGROUND AND RELATED WORK 21

Table 2.1: Comparison of wireless technologies in fog computing [41]

Technology Standard Max Operating
Range Data Rate Latency Frequency Potential Use Cases

Zigbee IEEE 802.15 100m 250Kbps <140ms 2.4GHz
Wireless Sensors

(Monitoring)

Bluetooth IEEE 802.15 200m 1 to 3Mbps 100ms 2.4-2.5GHz
Wireless Sensors

(Monitoring, Control)
WiFi IEEE 802.11 70-250m Upto 600Mbps <1ms 2.4-5GHz Mobile Internet
4G IEEE 802.16e 10 miles Upto 1Gbps 10ms <6GHz Streaming Video
5G 3GPP 1500 feet Upto 20Gbps <1ms 30-300GHz IoT, VR

DSRC IEEE 802.11p <100m 27Mbps 150ms <6GHz Vehicular networks
Real-time

WiFi
IEEE 802.11 b/g/n 70-250m 150Mbps <4.2ms 2.4GHz Wireless control systems

C-V2X C-V2X Rel. 16 107m 4 to 50Mpps <50ms <6GHz Vehicular networks

Figure 2.3: Architecture of multiprocessor systems for DNN applications

longer entertained due to the increasing demand for faster computations in various modern applications. To

take advantage of the multiprocessor devices or general-purpose computing systems (CPUs) [43] in these

systems, the applications must possess adequate parallelism characteristics that enable their computation

across different processors or devices. In the industry, the next generation of embedded systems must improve

their performance by parallelizing the ML model to achieve faster training and response times. Therefore,

we see an opportunity to partition the ML model, such as a DNN, across multiple processors for faster

computations.

DNN Application on Multiple Cores:

In conventional embedded software design, the execution of ML application tasks typically runs sequen-

tially unless specifically designed for parallel processing. As a result, available computing processors or

Chapter 2. BACKGROUND AND RELATED WORK 22

cores remain underutilized, while modern ML applications could benefit from parallel execution on multi-

core processors. Figure 2.3 illustrates the difference between single-core and multi-core processor execution

for deep neural network (DNN) applications. With regards to embedded systems design, Electric Control

Units (ECUs) are increasingly adopting many-core processors to accommodate a growing number of func-

tionalities. However, partitioning the application’s tasks, such as the ML model or workload, can significantly

decrease execution time and enhance overall resource utilization. Model parallelism has a substantial impact

on the acceleration of parallel execution.

AlexNet: AlexNet is one of the famous CNN architectures in DNN. Alex Krizhevsky et al. [44] designed

this network, which dramatically impacts parallel computation in the field of deep learning applications.

The proposed network includes five convolutional layers following max-pooling operations and three fully-

connected layers. The architecture adds a dropout layer after each dense or fully connected layer. In addition,

the use of rectified linear unit (ReLu) activation function after each convolution and dense layer controls the

exponential increase of computation. However, the output layer runs the softmax activation to predict the

output classes’ probability distribution. The CNN model input image size is 227 × 227 × 3. The AlexNet

architecture processes around 1.1 billion computation units in a forward pass for 62.3 million parameters [45].

Although the convolution layers hold only 6% of all parameters, they consume 95% of the total computation.

Data Parallelism: Data parallelism is one way of performing parallel execution of different tasks across

multiple processors. In this approach, a machine-learning model will be replicated on different computing

nodes. Then, the input data is split into different batch sizes for concurrent execution. Each worker node

must synchronize all the model parameters or gradients to ensure consistent model training. This approach is

efficient when the computation of each weight becomes high and the training time increases for processing

the larger dataset [46].

Model Parallelism: Model parallelism occurs across the model dimensions where different workers

compute distinct parts of the model concurrently. To implement model parallelism, the partitioned layers

must perform independent tasks, and the workers need to synchronize their executions. Traditionally, model

parallelism is suggested when a single processor can not run a large ML model due to memory constraints.

This approach is beneficial when the computation per neuron becomes high [46]. As a result, the model gets

split to fit the model’s parameters in memory. However, this approach has a complex implementation, as

there need to be optimal splits with correct resource assignment.

Pipeline Model Parallelism: Although model parallelism is used to partition the larger model into

Chapter 2. BACKGROUND AND RELATED WORK 23

different computing processors, it might suffer from resource underutilization when processors depend on

each other for their inputs. As a result, processors remain idle. In such a situation, pipeline model parallelism

splits the input data into multiple batches and makes a synchronous pipeline execution so that all the processes

can continue training with the subsequent available input batches. A Gpipe [47] pipeline concept is introduced

by training large-scale neural network layers on separate accelerators.

Current Deep Learning Frameworks: To support the DNN model training, we find different deep

learning frameworks that use data and model parallelism techniques for faster computation. For example,

TensorFlow, PyTorch, MxNet, and Caffe are the most popular distributed frameworks in recent time [48].

Although Tensorflow supports both data and model parallelism, it lacks in running the different numbers of

workers on particular devices for implementing communication scheduling. PyTorch is a successor of the

Caffe framework and provides high-speed computation by using a dynamic computation graph. The recent

DNN applications can be benefitted by using its model parallelism feature. However, the framework is still a

work in progress [49].

The landscape of software engineering has witnessed considerable advancements in areas like feature

identification, traceability, deep learning, and topic modeling. Each of these domains, while diverse, offers

unique perspectives and methodologies. In this section, we investigate the complexities of these areas, paying

particular attention to the evolving connection between fog computing architecture and machine learning

applications. Additionally, we examine the implications of software modularity, adaptive feature modeling,

feature extraction, and the pivotal role of security in the realm of embedded software development. This

section provides a comparative overview of related work in these domains, emphasizing methodologies and

the challenges they address.

2.2 Related Work

Feature identification, traceability, deep learning, and topic modeling have been extensively studied in soft-

ware engineering, often with different goals and approaches in mind. This section provides a comparative

overview of related works in these domains, emphasizing methodologies and the challenges they address.

Chapter 2. BACKGROUND AND RELATED WORK 24

2.2.1 Traditional Approaches for Features Identification from Source Code

Legacy Techniques and Their Limitations: Many software engineering techniques have been extensively

used for identifying reusable units and requirements for developing an application from legacy code. How-

ever, these techniques often require requirements to be provided upfront or manually specified by users [5],

[50].

Clone and Own Approach: Stefan Fischer et al. [51] present an Eclipse-based framework that supports

the “clone and own” practice by automatically extracting reusable features from Java applications. The clone

and own process consists of three steps: extraction, composition, and compilation. The authors propose

automated extraction and composition to assist developers in identifying potential artifacts from previously

developed products, mapping relationships among those artifacts, and storing this information in a database

for composing a new product.

Reverse Engineering with Algorithmic Identification: In [12], a three-step process is introduced to

identify features from the source code of product variants using reverse engineering. First, the product model

is reverse-engineered from the source code to reduce noise caused by different implementations of the same

feature. Then, each product model is divided into a set of smaller pieces. In the second step, an algorithm is

implemented to identify identical features. In the final step, non-relevant candidates are manually eliminated,

and missing features are added if necessary.

Concern-Driven Software Development: In another work, Omar Alam et al. propose [52] a concern-

driven software development approach in which they create a feature model considering the variability of the

interfaces of the concerns (e.g., units of modularization) instead of focusing on the functional definition of

any component.

Model-based Adaptive Development: The authors of paper [53] present a context feature model-based

adaptation logic architecture, simplifying self-adapting system development. The method integrates knowl-

edge of system state and operating context, allowing more accessible analysis and planning of reconfigura-

tions. The work is validated via application to the Tasklet system for mobile code offloading. In another work,

S. Umair et al. [54] propose a novel Model Driven Reverse Engineering (MDRE) framework called Src2MoF

to generate Unified Modeling Language (UML) structural and behavioral diagrams from Java source code.

Moreover, In a paper [55], Eunsuk et al. introduce a model-based framework for analyzing security con-

figurations in systems with complex structures, recognizing misconfiguration as a leading cause of security

failures. This framework is founded on a three-fold approach, involving the collection and representation of

Chapter 2. BACKGROUND AND RELATED WORK 25

domain knowledge by an expert, security property specification by the end user, and an analysis by a test

engineer.

Extending Feature Models: Jessie et al. [56] highlight the limitations of basic feature models, also

called boolean feature models, which only represent boolean features. This means they only identify if a

characteristic is present or not in a software system. The authors propose an extension of the existing boolean

variability model that considers multivalued attributes or UML-like cardinalities to support variability mod-

eling in complex product lines.

Table 2.2: Comparison of different reverse engineering approaches for identifying features

Paper Idea Techniques Inputs Output Language Tools Used Use Code
Repository?

Case Study

[12] Semi-automated fea-
ture identification
from source code

Product Line Engi-
neering

Source code Feature model Object Oriented
(e.g., Java)

ExtractorPL No Banking Software
Systems

[57] Extracting features
from models for SPL

Model-driven
(MoVa2PL)

Set of model
variants

Feature, Feature
model

Object Oriented
(e.g., Java)

ArgoUML No Entertainment sys-
tem

[9] Domain features iden-
tification

Natural Language Pro-
cessing (TDM)

Source code,
query input
(e.g., Term)

Features C Fex, grep Yes Tools written in C
(e.g., inotify-tools)

[54] Generating high level
UML models

Model Driven
(MDRE), Text-to-
Model (T2M)

Source code UML model Object Oriented
(e.g., Java)

UML gener-
ator

No ATM, Amadeus
Hospitality

[58] Feature Mining from
legacy software

Conditional Probabil-
ity

Feature model,
Source code

AST Object Oriented
(e.g., Java)

Loong Yes Prevayler2, Mo-
bileMedia

Our
Approach

Extracts highly
reusable features

Function Call graph,
Static Analysis

Source code Reusable func-
tion, Feature
Model

C cflow, pyc-
parser

Yes Software controller
for vehicles, Eleva-
tor system, Health
monitoring

Feature Extraction from Source Code: To compare our proposed approach with existing related works,

we present a comparison table (Table 2.2) specifying the research idea, input, output, techniques, language

dependency, and application domain. We find that most related works focus on object-oriented software (e.g.,

Java), but P. Muller et al. [9] demonstrate how to extract features from C source code against a user-given

query input (e.g., related term) employing natural language processing.

2.2.2 Advanced Methodologies in Feature Identification and Traceability

Topic Modeling in Software Traceability: A standout work by Asuncion et al. [59] highlighted the applica-

tion of topic modeling in enhancing software traceability. Their approach, which relied on integrating topic

modeling with both retrospective and prospective traceability, has proven to be effective, especially in the

ArchStudio 4 software project.

Semi-Automated Feature Traceability: Another significant contribution in this domain is by Abukwaik

et al. [61], which introduced a semi-automated feature traceability approach. By ingeniously combining

Chapter 2. BACKGROUND AND RELATED WORK 26

Table 2.3: Comparison of advanced methodologies in feature identification

Paper Problem Ad-
dressed

Limitation Ad-
dressed

Proposed Method Technique/Algorithm
Used

Domain/Area Evaluation Method

[12] Feature identifi-
cation in product
variants

Tedious manual
identification

Three-step approach:
reverse engineering, al-
gorithmic identification,
manual pruning

Algorithm based on
identifying identical
components

Software
Product
Lines

Three experiments: Toy
Banking, GPL and Ar-
goUML

[5] Locating specific
features in source
code

Poor documenta-
tion and under-
standing of fea-
ture implementa-
tion

Semi-automatic technique
combining dynamic and
static analyses

Concept Analysis Software
Maintenance
and Program
Comprehen-
sion

Two case studies: web
browser and commercial
system

[59] Enhancing soft-
ware traceability

Difficulty in trac-
ing links across
heterogeneous ar-
tifacts

Integration of topic model-
ing with retrospective and
prospective traceability

Latent Dirichlet
Allocation, ACTS
(Automated Compo-
nent Trace capture
System)

Software
Engineering,
Traceability

Case study on ArchStu-
dio 4, feature comparison,
timing and accuracy re-
sults for LDA

[60] Locating features
in software mod-
els

Difficulty in
software main-
tenance and
evolution in
MDE

Integration of topic mod-
eling into a genetic algo-
rithm

Latent Dirichlet Allo-
cation (LDA)

Model-
Driven
Engineering
(MDE)

Two industrial case studies
in railway and video game
domains, compared with
LSI baseline and Random
Search sanity check

[61] Tracing features
in source code
through embed-
ded annotations

Manual tracing of
feature locations
in codebase

Semi-automated system
using machine learning for
feature traceability with
embedded annotations

k-Nearest Neighbor
(kNN), Support Vec-
tor Machine (SVM),
Decision Tree (DT)

Software En-
gineering

Experiment with Clafer
tools up to release 0.3.5,
measuring performance in
terms of precision, recall,
and F-measure

[62] Automated fea-
ture extraction
from SRS docu-
ments for SPL

Time-consuming
and error-prone
manual feature
extraction

Text preprocessing fol-
lowed by NLP techniques
to extract requirement
sentences

POS tagging patterns
and word dependency
parsing rules using
SpaCy

Software
Product
Lines (SPL)

Precision and recall met-
rics based on TP, FP, and
FN counts

[63] Timing analysis
of embedded
software updates

Lack of timing
analysis

Update mechanisms anal-
ysis

Timing analysis tech-
niques

Embedded
Systems

Accuracy, performance

[64] Onboarding chal-
lenges in SPLs

Lack of tools and
documentation
for newcomers

Interactive Concept Maps Visual representation
with interactive navi-
gation

Software
Product
Lines

Online survey with Lik-
ert scale rated questions
and the Technology Ac-
ceptance Model

[65] Enhancing
creativity in
Requirements
Engineering

Limited creativ-
ity approaches
focused on ex-
ploring known
possibilities

Automated framework for
generating innovative re-
quirements through com-
binational creativity

Social network anal-
ysis, Latent Dirichlet
Allocation (LDA),
part-of-speech tag-
ging

Software
Systems (Re-
quirements
Engineering)

Application on two open-
source software systems
(Firefox and Mylyn), Hu-
man subject evaluation

[66] Manual feature
location

Time-consuming,
error-prone

Survey N/A Software
Variability

N/A

[67] Creation of high-
quality, large-
scale source code
dataset

Privacy concerns
due to the pres-
ence of PII in
code

development of ‘StarEn-
coder’ to detect and redact
PII in code

Bi-directionally
self-attentive Trans-
formers

Code Analy-
sis

Evaluation of recall and
precision for PII detection,
comparison against regex
baseline

Our Ap-
proach

Identification of
CPS software
features and
requirements

Lack of complete
documentation
and domain
knowledge in
legacy software

Integration of BERT with
topic modeling

BERT (specifically,
CodeBERT), TF-IDF,
Latent Dirichlet Allo-
cation (LDA)

Cyber-
Physical
Systems
(CPS)

Precision, recall, F1-score,
execution time, sensitivity
analysis

annotations in source code with machine learning techniques such as k-Nearest Neighbor (kNN), Support

Vector Machine (SVM), and Decision Tree (DT), they managed to demonstrate impressive precision, recall,

and F-measure results.

Morever, software modularity and feature extraction are foundational aspects of our work. One partic-

ularly relevant research is by Nadi et al. [68], where they mined configuration constraints for variability in

Chapter 2. BACKGROUND AND RELATED WORK 27

Linux build systems. While their work substantially contributes to understanding the variability in a large-

scale system, it does not cater to automatic feature extraction from existing codebases, a gap addressed by

our proposed framework. In another work, Paulius et al. [69] introduce a novel approach for automatically

extracting features and generating feature models directly from Java programs. By using static code analysis

and machine learning techniques, this method effectively identifies and models software features, thereby

facilitating a more accurate understanding of the software and its variability. However, it does not account

for security considerations, which could be a potential area for future research. The paper’s contribution lies

in the automation of a significant part of the feature modeling process, potentially boosting the productivity

of software engineers and the overall efficiency of the software development process.

NLP for Requirements Extraction: Furthermore, Haris et al. [62] tackled the challenge of extracting

features directly from Software Requirements Specification (SRS) documents, emphasizing that SRSs are

more reliable for feature extraction. Their methodology, which heavily relied on Natural Language Processing

techniques, showed significant success in extracting relevant features from SRS documents, especially given

their high precision and recall values.

Topic Modeling and Feature Location: Perez et al. [60] delved into the domain of model-driven en-

gineering (MDE), investigating the application of topic modeling for locating features in software models.

Their method’s robustness was demonstrated through the integration of Latent Dirichlet Allocation (LDA)

with a genetic algorithm and evaluation using two industrial case studies.

Modern Tools and Datasets for Code Analysis:

Creation of the BigCode Dataset: In the context of creating datasets, the work titled “StarCoder: May

The Source Be With You!” by Li et al. [67] takes center stage. The authors constructed the ‘BigCode’ dataset

by harnessing source code from various public repositories and meticulously ensuring its quality.

Timing Aspects in Embedded Software: In another paper [63], the authors analyze the timing aspects of

updating embedded software. It is particularly relevant to CPS as many CPS involve embedded software.

While not directly linked to feature identification, understanding timing aspects is important for compre-

hending the non-functional requirements and constraints in CPS software.

Comparative Analysis:

When contrasting these methodologies, there’s a clear presentation between works that focus on feature

extraction from source code, such as Ziadi et al.[12] and Eisenbarth et al.[5], and those that emphasize

traceability, like Asuncion et al.[59] and Abukwaik et al.[61]. Furthermore, while some research leverages

Chapter 2. BACKGROUND AND RELATED WORK 28

topic modeling as a core methodology, such as Perez et al.[60] and Bhowmik et al.[65], others prioritize

Natural Language Processing techniques, as exemplified by Haris et al.[62].

In summary, while there are a lot of methodologies and tools available in the literature to address feature

identification and software traceability, our approach is unique in its emphasis on CPS software reuse. By

seamlessly integrating static code analysis with topic modeling, we aim to comprehensively address the

challenges inherent in this domain. Table 2.3 provides a comparative analysis of the discussed methodologies

based on their core techniques, evaluation metrics, and main contributions.

2.2.3 Fog Enabled Distributed Computing for Embedded Systems

The increasing adoption of distributed processing devices is driving the growing demand for next-generation

embedded software solutions. Many researchers and automotive industries are exploring various architec-

tures to find solutions for next-generation embedded software, such as OTA updates. For example, Steger

et al. [70] propose a framework for efficient and secure automotive wireless software updates in electronic

control units. The framework employs IEEE 802.11s for vehicle-to-vehicle wireless communication and con-

siders the entire life span of a vehicle, including development, assembly, maintenance, and service centers.

To accelerate the software update process, the framework introduces parallel processing, allowing vehicles

to update simultaneously, and partial software updates, where only the new part of the software is installed.

Authentication and encryption are used for secure wireless software updates and data transfer. This frame-

work primarily deals with software updates performed within a local network. However, autonomous/smart

vehicles may also require substantial updates from remote data centers. The performance of this framework

is assessed through real-world experiments using the Volvo ECU. Experimental results show that the required

update times vary for different software sizes, ranging from 6.77s to 33.19s for software sizes between 67KB

and 375KB.

Mirfakhraie et al. [71] propose a firmware update process for electronic control units based on firmware-

over-the-air (FOTA) technology for commercial vehicles. FOTA is an innovative mobile software manage-

ment technology developed by the telecommunications industry for remotely updating systems. Cellular

devices use FOTA to update their products and fix bugs. Using cellular wireless technology, firmware up-

dates are downloaded from remote data centers to the vehicle connectivity module. This approach helps

avoid annual vehicle recalls, as updates are done periodically, reducing costs for customers, manufacturers,

and dealers. Before provisioning a remote software update, this framework utilizes the MCC fleet tracker for

Chapter 2. BACKGROUND AND RELATED WORK 29

information such as vehicle location, speed, and signal strength.

The OTA framework enables remote software updates but also exposes vehicle systems’ vulnerabilities to

the world. Tesla’s Autopilot [72] assists in navigation and transportation by combining artificial intelligence

and hardware technology. Tesla Autopilot aims to reduce driver fatigue and potential accidents on the road,

requiring continuous remote updates for various software. Shantanu Ingle et al. [73] discuss different pitfalls

of OTA updates and propose ways to make them safer.

Jan Bauwens et al. evaluate the overall feasibility of OTA updates, focusing on security, bug fixes,

and software extensions [74]. A step-by-step approach is proposed to integrate software updates and assess

the energy cost of each step. We also observe the use of Deep Neural networks in fog resource manage-

ment [75], communication delay prediction, and other aspects of vehicular fog computing. For example,

Salman Memon [76] et al. propose a machine learning algorithm to minimize the number of handovers in

fog computing. The algorithm combines long short-term memory (LSTM) cells capable of learning the laten-

cy/cost associated with fog service requests. A machine learning-based cost predictor is employed to select

the best-serving fog node in terms of cost and location. Additionally, Shen Wang et al. [77] present a trans-

fer learning-based smart software-defined security (SSDS) mechanism, addressing the complex and dynamic

security update problems in vehicle-to-grid (V2G) computing. Software-defined network (SDN) technology

is adopted to implement the dynamic architecture for V2Gs.

While the majority of existing works primarily focus on maximizing network energy efficiency, our

research investigates optimal resource allocation for fog nodes with the aim of minimizing software update

time. Additionally, we employ transfer learning to predict network communication delay and demonstrate the

impact of propagation and handover delay on OTA update time. Our approach utilizes machine learning to

optimally distribute fog nodes within a cluster and leverages transfer learning to predict the communication

delay between vehicles and fog nodes. We compare the predicted delays across two datasets: WiFi hotspot

and 5G network datasets. A handover optimization algorithm is also proposed.

In compare to others, Our overall approach is implemented through a case study simulation in Mininet-

WiFi [88]. To gauge the real-world implications of our proposed method, we design and implement a testbed

platform that models a realistic environment. Our prototype employs QEMU and Uptane frameworks [89] to

assess the feasibility of our approach in an actual setting. Furthermore, we compare recent works in Table 2.4

to better understand the current frameworks supporting next-generation applications.

Chapter 2. BACKGROUND AND RELATED WORK 30

Table 2.4: Comparison of different evaluation factors in the fog computing architecture

Work Description Communication
Delay

Resource
Provisioning Mobility Scalability Technologies

Deze Zeng et al. [78]
Design an efficient task scheduling
and resource management strategy
with minimized task completion time

✓ ✓ ✗ ✗ SDN

Tuli et al. [79]
It facilitates to IoT-Fog-Edge-Cloud
integration offering execution of
embedded applications at a time.

✓ ✗ ✗ ✓

Raspberry Pi,
Blockchain,
Wi-Fi

Maheswaran et al. [80]
Proposed a framework based on
fog computing to implement
autonomous driving.

✗ ✗ ✓ ✓
JAMScript,
5G Network

A A Khan et al. [81]
Present next-generation VANETs
architecture analyzing delay, throughput,
overhead.

✓ ✗ ✓ ✗
SDN, C-RAN,
5G

R Mahmud et al. [82]
A simulator to develop models for service
migration, distributor cluster, microservice
orchestration for Edge/Fog computing.

✓ ✓ ✓ ✓ iFogSim2

Andrei et al. [83]
A VANET system based on
multilevel mobile edge computing that
proposes latency-aware data offloading.

✓ ✗ ✓ ✗ SDN, 5G

J Zhu et al. [84]
A fog computing framework named PEN
(Phone+Embedded board+Neural compute
stick) for the guide dog robot system.

✓ ✗ ✓ ✗

Raspberry Pi,
Image Processing,
Neural Network

Suryadevara et al. [85]
A fog-based ubiquitous recognition model
to assist adults suffering from dementia.

✓ ✗ ✗ ✗
OpenHAB,
Raspberry Pi, WSN

Jha et al. [86]
Present a simulator to model the behaviour
of heterogeneous IoT and edge computing
architecture

✓ ✓ ✓ ✓

IoTSim-Edge/
CloudSim simulator,
5G

G. Kim al. [87]
Design architecture on data and service
integrity for over-the-air updates

✗ ✗ ✗ ✓
Blockchain, LTE, 4G,
Wi-Fi

Mirfakhraie et al. [71]
Propose a firmware update process for an
electronic control unit

✓ ✗ ✗ ✗
FOTA,
cellular

2.2.4 Distributed Machine Learning on Fog/Edge-Enhanced Embedded Systems

There is an increasing demand to integrate capabilities like machine learning to unleash the full potential

of advanced features in embedded systems. However, such sophisticated features often demand parallel or

distributed computing architectures to achieve optimal performance. The Fog/Edge computing paradigm has

emerged as a promising solution to serve these needs, providing a distributed environment closer to data

sources. Within this context, several strategies have been explored to accelerate the training of deep neural

network models in distributed settings.

In recent years, various pipeline-based model parallelism techniques have been proposed to accelerate the

training of Deep Neural Network (DNN) models. Examples of such techniques are PipeDream-2BW [90],

PipeDream [91], and GPipe [47]. These techniques investigate splitting large DNN models across multiple

machines for efficient computation. PipeDream partitions the DNN layers into different stages and executes

them on the set of interconnected computing devices. It follows the async pipeline mechanism for which the

Chapter 2. BACKGROUND AND RELATED WORK 31

process requires large memory to store the intermediate model parameters. This process pipelines the execu-

tion of forward passes and distributes them with backward passes asynchronously. GPipe, on the other hand,

splits the minibatch of input data into multiple micro-batches. After that, it executes these micro-batches

using a pipeline strategy across various devices. Finally, gradients are synchronously updated during back-

ward passes. It holds a single-weight version and flushes some results to free the memory. However, this

approach may suffer from increased computation overhead due to the need to recompute intermediate results

for backward propagation. PipeDream-2BW presents a double-weight update mechanism to reduce the mem-

ory footprint but still experiences parameter staleness issues [92] and computation convergence dependent on

the GPU platform.

While PipeDream, PipeDream-2BW, and GPipe have demonstrated improved results in terms of time-

to-accuracy, it is important to mention that the architectures they propose are distinct from the architecture

we introduce in our paper. The approaches above primarily target large-scale clusters with multiple GPUs or

accelerators, whereas our architecture is designed for edge and embedded systems. Our primary focus is to

explore the splitting of large DNN models in the context of our architecture to enhance their performance,

specifically concerning model training time. Our method can be seen as complementary to the approaches

presented in PipeDream-2BW, PipeDream, and GPipe, as it addresses a different aspect of optimizing large-

scale DNNs. Combining our method with the techniques proposed in these studies may lead to further

improvements in both model training time and time-to-accuracy by leveraging the strengths of each method

within their respective architectures.

In study [93], the authors design an accelerator to reduce the computational requirements of CNNs

by avoiding useless operations in sparse architectures. Their design aimed to improve performance and

lower energy consumption in resource-limited embedded systems. The evaluation was carried out on Field-

Programmable Gate Arrays (FPGAs) that support the sparsity of DNN models. Model pruning techniques,

which are currently popular for data compression and reducing the number of Multiplication and Accumula-

tion (MAC) operations by setting many parameters to zero, have been used in the field. However, this sparsity

can lead to random memory access issues that can negatively impact performance in parallel architectures.

In some cases, the data parallelism technique does not offer much benefit, due to large deep learning

model execution on resource-constraint devices. Therefore, model splitting is a potential option to achieve

the parallel execution of large DNN models. The authors in [94] propose a layer partitioning approach that

splits the neural network into multiple sub-networks, and distributes the partitions on edge devices for faster

Chapter 2. BACKGROUND AND RELATED WORK 32

execution. To obtain the splitting point of a model, the proposed approach finds the areas with the largest

differences in the consecutive layers at runtime. Moreover, the method maintains a model manager to make

an early exit from training by calculating the model’s confidence, which is then compared with an entropy

threshold.

In another work [95], Li Zhou et al. propose a runtime adaptive CNN acceleration framework for deploy-

ing ML models on different devices. This approach suggests partitioning the workload into different devices,

considering the devices’ capabilities and network latency. In addition, it introduces two different strategies:

layer-wise and fused-layer, for parallelizing CNNs in IoT devices. The layer-wise parallelization strategy

executes a part of the model on edge devices where all the outputs of the sub-modules need to be merged

before the subsequent output. This technique has a larger communication delay for distributed computation.

On the other hand, the fused-layer strategy directly sends the result of one layer to the next layer, instead of

merging the results before the next layer. The framework predicts the execution time of each layer, and the

communication latency to select the best partition point. The experimental results offer a speed up between

1.9 to 3.7, using eight devices, for three CNN models (e.g., VGG-16 and YOLOv2).

Recent works on pipeline model parallelism show the need for model parallelism as large DNNs are

not likely to fit in the local memory of a single machine [47], [96]–[98]. However, parallelizing them

into different devices is still challenging, as the process introduces various performance issues, including

implementation complexity. For example, PipeDream focuses on maximum throughput discarding the syn-

chronous operations, which leads to large memory demand. This implementation will be a challenge con-

sidering the memory constraints of embedded systems. However, researchers have also investigated different

memory-efficient model parallelism approaches without compromising the model performance. For exam-

ple, PipeMare [98] and PipeDream-2BW [90] offer more memory-efficient approaches than PipeDream. In

addition, DAPPLE [97] offers improved experimental results in terms of memory, speed up, and conver-

gence compared to GPipe [47]. Regardless, finding the optimal splits based on available resources, which we

present in this work, can be a potential solution for leveraging a parallel computing framework to improve

embedded applications’ performance.

Over the years, numerous task-scheduling algorithms have been studied to effectively allocate resources

in both homogeneous and heterogeneous multiprocessing systems [99]. Wu et al. [100] propose a pipeline-

based scheduler to optimize latency for CNN inference on heterogeneous multi-core systems, aiming to min-

imize feature-map data movement. The scheduler comprises two phases: the pipeline-configuration phase,

Chapter 2. BACKGROUND AND RELATED WORK 33

which groups CPU cores into computing stages, and the layer-to-stage allocation phase, which maps seg-

ments of the CNN model to the pipeline stages. By employing this approach, the authors achieve a 73%

performance improvement in throughput compared to existing multi-thread schedulers. With the growing

demand for compute intensive deep learning applications, systems equipped with heterogeneous processors,

such as multicore CPUs, GPUs, and NPUs, are becoming increasingly prevalent [101]. These applications

often require concurrent execution of tasks with various constraints, leading to a growing interest in inter

process communication (IPC) conscious scheduling to minimize the overall execution time through parallel

implementations. In particular, cluster scheduling, which divides tasks and processing cores into multiple

clusters, is becoming popular as it enables the migration of tasks within their groups [102].

While these studies have demonstrated improved results in terms of time-to-accuracy, our work’s primary

focus is to explore the partitioning of large DNN models to enhance their performance, specifically in terms

of model training time on embedded devices. We addresses the design challenges of implementing pipeline

model parallelization by determining optimal splits for a given DNN model and computing resources.

2.3 Summary

This chapter serves as a gateway into the intricate world of next-generation embedded software development,

offering insights into the methodologies and challenges faced in feature identification, traceability, and the

integration of advanced computational paradigms. The journey begins with exploring reverse engineering

and its advantages in reusing existing applications for faster and less error-prone development. The role of

static code analysis, particularly through tools like cflow and pycparser, emerges as a crucial component in

understanding system design constraints and real-time requirements accurately.

The narrative then shifts to the landscape of software product lines, illustrating how they contribute to

the efficient management and reuse of legacy software assets. This section underscores the importance of

feature models in representing the variability and commonalities of application families, a concept crucial

for managing change and evolution in software product lines. The chapter also investigates decentralized

computing for embedded systems, emphasizing the need for distributed computing resources in process-

ing massive amounts of sensor data. The discussion includes comparing wireless technologies that play a

significant role in fog computing architecture, highlighting their applicability in different use cases. A sig-

nificant portion of the chapter is devoted to parallel computing for machine learning in embedded systems.

It explores various aspects, including data parallelism, model parallelism, and pipeline model parallelism,

Chapter 2. BACKGROUND AND RELATED WORK 34

detailing their respective advantages and implementation challenges. The discussion extends to modern deep

learning frameworks, emphasizing their role in supporting DNN model training and highlighting the unique

challenges they address in the context of embedded systems.

In summarizing the related works, the chapter presents a comparative analysis of different software en-

gineering methodologies used for feature identification and traceability. It highlights the advancements in

topic modeling, NLP techniques for requirements extraction, and the various approaches used for feature

location and extraction from source code. The comparison explains the diverse techniques and tools em-

ployed in different studies, offering a broad perspective on this field’s state of the art. The chapter concludes

by emphasizing the unique approach of our research in addressing the challenges inherent in CPS software

reuse. By integrating static code analysis with topic modeling and leveraging advanced NLP techniques, our

methodology aims to provide a comprehensive solution for identifying reusable features and requirements,

thereby facilitating faster and more efficient development of next-generation embedded software.

35

Chapter 3

FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN

3.1 Introduction

Embedded systems and Cyber-Physical Systems (CPS) are at the forefront of technological advancements,

playing pivotal roles in various sectors, including healthcare, automotive, aerospace, and smart cities [103],

[104]. By integrating computational processes with physical systems, embedded systems offers intelligent

functionalities and interacts dynamically with its environment. Despite the promising potential, the develop-

ment of embedded software is filled with complexities. Ensuring safety, performance, and security remains

a significant challenge, especially under unpredictable operating conditions. This complexity is heightened

by the multidisciplinary nature of embedded systems, demanding a mix of expertise, rigorous testing, and

quality assurance measures.

An effective strategy to alleviate these challenges lies in software reuse. Reusing software assets across

different projects offers advantages such as reduced development time, cost savings, and minimized risks

associated with creating new modules. However, the adoption of software reuse in embedded systems, is

limited due to the difficulties in identifying reusable features from legacy repositories [3], [105]. Often, these

repositories, like GitHub, lack comprehensive documentation, making manual feature extraction tedious and

error-prone.

Recent automation techniques, utilizing code analysis combined with machine learning, present promis-

ing solutions to address these challenges [106], [107]. Specifically, topic modeling techniques such as Latent

Dirichlet Allocation (LDA) can filter latent topics from large text collections, potentially identifying features

and requirements [108]. When paired with cutting-edge deep learning models like the Bidirectional Encoder

Representations from Transformers (BERT), a sound understanding of software behavior can be achieved,

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 36

paving the way for effective software reuse [32].

In light of these considerations, this chapter introduces an innovative automated methodology that com-

bines static code analysis, BERT’s semantic understanding, and topic modeling. The central aim is to revolu-

tionize the software reuse process, thereby optimizing embedded software design, development, and overall

efficiency. The key contributions of this chapter enclose:

• The introduction of a holistic methodology that combines static code analysis, BERT-based semantic

analysis, and topic modeling with the innovative use of call graphs to extract feature and Requirements

in embedded software.

• The development of an embedded software feature model that presents relationships among reusable

functions, supporting the feature-to-artifact mapping and enhancing the understanding of software

requirements.

• A thorough evaluation of the introduced methodologies against existing manual and rule-based meth-

ods, highlighting their real-world robustness and potential to streamline embedded software develop-

ment.

3.2 System Architecture for Next-Gen Embedded Design

Our proposed architecture for automated identification of features and requirements in embedded software is

constructed through a series of stages. These include static analysis, preprocessing, topic modeling, BERT-

based deep semantic analysis, and the strategic mapping of identified features to their related functional and

non-functional requirements. A visual representation of this architecture can be found in Fig. 3.1.

Artifact: An artifact refers to a distinct and self-contained segment of source code, often represent-

ing a functional or structural unit, which can be analyzed to extract particular features or attributes. This

can encompass functions, classes, modules, or even entire applications, depending on the granularity of the

analysis.

Static Analysis Module

This stage ensures the systematic breakdown of input sources, enabling the extraction of essential artifacts

and preparing the entire codebase for deeper analysis. As an example, it extracts code artifacts, such as

the longest common units from the function call graph that is generated using the cflow. It reveals software

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 37

Figure 3.1: System architecture for next-generation embedded software design

functions, their interactions, and dependencies. For a given code segment, represented byX , the function call

graph can be defined as G(X) = ϕ1(X), ϕ2(X), ..., ϕn(X) where each ϕi(X) denotes a specific function

and its interactions within the code snippet X .

Topic Modeling Module

After preprocessing, the topic modeling module steps in to mine the codebase’s structure. Using different

methods such as TF-IDF and LDA, this module discerns topic-based insights to extract both features and

requirements.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 38

BERT-Based Semantic Analysis Module

This module leverages the fine-tuned BERT model to parse the source code and associated documentation,

especially focusing on identifying non-functional requirements and providing a deeper semantic understand-

ing of potential features. The results from BERT and the topic modeling module are then integrated to form a

refined list of features and requirements. To formalize this, the features and requirements of a code segment,

denoted as X , are represented as vectors F (X) = f1, f2, ..., fk and R(X) = ⊕rf1,⊕rf2,⊗rnf1,⊗rnf2, ...,

respectively. The⊕ symbol represents functional requirements, while the⊗ symbol represents non-functional

requirements.

Features to Requirements Mapping Module

Informed by insights from both static analysis and the combined BERT and topic modeling results, this

module systematically assigns features to their corresponding requirements. Requirements are categorized

into functional (Rf) and non-functional (Rnf) types. The mapping from features to functional require-

ments is represented as M(F) = Rf1, Rf2, ..., Rfn, and to non-functional requirements as M ′(F) =

Rnf1, Rnf2, ..., Rnfm. These mappings explain the relationships between particular features and their re-

lated requirements, promoting effective software reuse.

Feature Model

The insights gained from the static code analysis, BERT-based analysis, and topic modeling modules are

integrated to create a comprehensive set of features and requirements. This data is then used to construct

a feature model that can facilitate software reuse in embedded system development. This inventory subse-

quently informs the design of a feature model, detailing relationships (mandatory, optional, OR, XOR, Re-

quires, Excludes) between features, thus supporting software reuse in CPS particularly in embedded system

development.

Assumptions

The following assumptions are made in the proposed system model:

• The source code is sufficiently complex and rich in semantics to enable the extraction of meaningful

features and requirements.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 39

• The combined prowess of topic modeling and BERT-based analysis can effectively identify latent

topics and semantic intricacies resonating with features and requirements.

3.3 Methodologies for Legacy Code Reuse

This section explains the methodologies for facilitating the reuse of legacy embedded software, detailing a

comprehensive approach that evolves from foundational static code analysis to incorporating advanced tech-

niques like topic modeling and BERT embeddings. Our journey begins with the basic principles of reusable

function identification utilizing static analysis, laying the groundwork for understanding and extracting key

features from legacy code. We then progress to more advanced methods, enhancing our ability to deter-

mine features and requirements integral to modern embedded systems. The proposed approach combines

established practices and innovative strategies to construct the feature model.

3.3.1 Base Approach for Reusable Function Identification and Feature Model Construction

This base proposed approach finds reusable functions and presents them in a feature model using the follow-

ing steps:

• Identifying the reusable functions: It identifies the reusable functions from legacy embedded software

code.

• Identifying the function relationships: It determines the function type and dependencies.

• Feature model construction: A new level-based feature model construction algorithm is described to

map all the reusable functions as features in the feature model.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 40

Listing 3.1: C Code 1

1 void navigate (int rotate) {

2 set direction (rotate) ;

3 fly normal () ;

4 }

5 void takeoff (float sp , float alt) {

6 if (sp>0){

7 navigate (rotate) ;

8 }

9 gps tracker () ;

10 }

11 void landing (float distance) {

12 safe return (distance) ;

13 gps tracker () ;

14 }

15 float cal altitude () {

16 return gps tracker () ;

17 }

18 void controller (int mode) {

19 switch(mode) {

20 case 1:

21 takeoff () ;

22 break;

23 case 2:

24 landing () ;

25 break;

26 default :

27 fly normal () ;

28 break;

29 }

30 }

Listing 3.2: C Code 2

33 void navigate (int rotate) {

34 if (rotate != NULL)

35 set direction (rotate) ;

36 else

37 fly normal () ;

38 }

39 /*sp = speed, alt = altitude */

40 void takeoff (float sp , float alt) {

41 if (sp>0){

42 navigate (rotate) ;

43 }

44 gps tracker () ;

45 }

46 void landing (float distance) {

47 safe return (distance) ;

48 gps tracker () ;

49 }

50 float gps tracker () {

51 return get coordinate () ;

52 }

53 float get coordinate () {}

54 int main(){

55 while(get connect){

56 /*use controller to change mode*/

57 controller (mode);

58 }

59 landing () ; /*upon battery charge */

60 }

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 41

Identifying the Reusable Functions

In the context of identifying reusable functions in embedded software, a function call graph is generated from

a given legacy embedded software using GNU’s cflow graph generator [109]. This control flow graph captures

the invocation relationships and subroutine information of the program. Subsequently, various attributes, such

as the number of functions, the signature of each function, the function’s definition, its location, and the depth

of function calls, are retrieved by modifying the pycparser python library [110]. Due to the potential for long

sequences of function calls, including recursive function calls, flow graphs can be expansive. Therefore, to

handle the recursive function as a typical function call, we place an extra ‘R’ symbol beside the function’s

name.

• Reusable function identification: Functions are identified as reusable if they appear more than a spec-

ified threshold number within a program. An optional threshold value is set, allowing developers

to modify this value and limit the function list for visualization at different abstraction levels. The

process:

– Retrieves the list of functions, encompassing their parameters, variables, and constants. A func-

tion is mapped in the standard form of fi → fj , correlating directly with the source code.

– Identifies constraints by analyzing various conditional statements, such as if-else, while loops,

and switch conditions, from both the code and developers’ comments.

Two C code samples are provided, as seen in Listing 3.1 and 3.2, to explain how highly reused functions

are considered as potential features. In these examples, the assumption is made that any function called more

than once is selected a potential reusable feature. Therefore, in this context, functions like navigate() and

gps tracker() are identified as features due to their multiple invocations. Additionally, constraints related

to functions like takeoff() and landing() are also extracted. Variables such as sp, mode, and rotate

are implicated in determining certain constraints through their utilization in if-else or switch statements for

calling other sub-features. Only user-defined functions are considered, while library functions are excluded

based on their function definitions, streamlining the approach. If no threshold value is set by developers, by

default, all available functions are retrieved as features.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 42

Figure 3.2: Feature types and relationships

Identifying the Function Relationships

In this step, the proposed approach defines different types of functions and their relationships. The process

transforms the corresponding functions into features in the feature model of an embedded software. We

demonstrate the relationships in Figure 3.2 for better visualization.

• Mandatory: A function is called a mandatory feature if and only if its parent node requires to execute

it all the time. All its mandatory child features must also be included (n from n) in a parent feature. As

an example, set direction() and fly normal() is a mandatory feature for navigate() in Listing 3.1

where gps tracker() and safe return() are two mandatory sub-features under landing().

• Optional: A function is an optional feature if it is selected with other available functions. It means

an optional feature can frequently appear along with a particular feature, but it may appear with other

features too. Any number of features can be added (m from n, 0≤ m ≤ n) under a parent feature. For

example, fly normal() is an optional feature to set direction() which is shown in Figure 3.2.

• Alternative (XOR): A function is in alternative (XOR) feature group if it only gets selected among

other functions based on certain conditions. In the case of alternative/XOR relationship, exactly one

feature must be selected from a group of alternative features (1 from n). Thus, features takeoff(),

landing(), and fly normal of Listing 3.1 are in XOR relationship (because of the switch statement).

• OR: A function is in OR relationship if its parent function selects at least one function out of mul-

tiple functions (m from n, m>1). Thus, navigate() and gps tracker() are in OR relationship in

takeoff().

• Exclude: If a particular function is selected from a group, other functions from the same group cannot

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 43

be selected. In this relation, one function eliminates another function for selection.

• Requires: A requires relation indicates the dependency of one function (source) to another (target)

function.

Moreover, we reorder the function relationships to make them more manageable for adapting to a feature

model. For example, Listing 3.1 and 3.2 show that navigate() is a reusable feature and it is connected with

other mandatory (e.g., set direction()) and optional features (e.g., fly normal()). Therefore, the partial

feature model is as follow:

F ′ = (navigate()← set direction() ∧ fly normal())∨

(navigate()← set direction() ∧ ¬fly normal())

Let us consider a case where fly normal() is considered as optional feature. In Listing 3.1, it is shown that

fly normal() appears with a mandatory feature set direction() but with XOR relation in Listing 3.2. Thus,

we define fly normal() as an optional sub feature of set direction().

While both navigate() and takeoff() features show the possibility of reuse as combined or in an alter-

native to each other, we define them with a OR relationship. To define a OR relation, we assign the features

under its parent feature, which is shown in the following partial model.

F ′ = takeoff()← (navigate() ∨ ¬navigate()) ∧ gps tracker())

Furthermore, the dependencies among the features are simplified in tree-structured child-parent relation-

ships. As an example, Figure 3.3(i) shows that feature main() has two mandatory features controller() and

landing() where feature landing() is also a mandatory feature of controller(). Therefore, we define the

tree as main()→ controller()→ landing().

However, a combination of multiple independent features can form another new feature. We define them

as sub-features of the new feature in a sub-tree. In such a case, we assign the relation of that independent

feature with the new feature using Requires. In Figure 3.3(ii), cal altitude() is identified as an independent

feature of a sub-tree where feature gps tracker() is a part of the main tree. When the feature cal altitude()

calls gps tracker(), it gets connected with Requires relationship.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 44

landing controller

controller

main

gps_
tracker

=
=

(i) (ii)

main main

landing

cal_
altitude

landing controller

cal_
altitude

gps_
tracker

gps_
tracker

controller

landing

gps_
tracker

main

Figure 3.3: Simplification of function relationships for feature model.

Feature Model Construction using a Level-based Algorithm

To construct the feature model, we propose a level-based algorithm that shows how the features are placed into

different levels and what information is required for implementing a particular application. We implement

a python tool for automating the proposed level-based feature model construction algorithm where a list of

features is distributed with their associate feature types and constraints. At the beginning of this process, we

determine the level of each feature using the call graph. Thus, features are mapped at each level based on

the number of incoming function calls in the program. The hierarchy of function calls specifies the parent

and child relationship. This relationship is identified from the caller and callee function list of the call graph.

To find out the number of incoming function calls of each feature, we define a matrix named F in. As an

example, the matrix F in represents a n-by-n matrix where n is the number of features. The degree of

incoming function calls of each feature from every other feature is denoted by dij . It stores the corresponding

degree of incoming function calls to feature fi from fj . To simplify the feature model, we set the number of

incoming calls to equal one for any recursive function.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 45

F in =

1 2 3 .. n

1 d11 d12 d13 .. d1n

2 d21 d22 d23 .. d2n

3 d31 d32 d33 .. d3n

..

n dn1 dn2 dn3 .. dnn

Features

Features

After that, we count the total incoming calls of each feature, adding all the corresponding row values

using Equation 3.1.

f ini =

n∑
j=1

dij ;where dij =

x, if x ≥ 1

0, otherwise
(3.1)

f1 ()

f2 () fx ()f3 ()

... f'x ()

Level 0

Level 1

...

Level L ... f4 ()

...

f'4 () f'2 ()
Dummy
Feature

XOROR

Dummy
Feature

Mandatory
Feature

Dummy feature that is
assigned as optional to

others

Figure 3.4: An implementation concept of feature model construction.

Finally, we use the following steps to construct the feature model in a tree structure.

• First, we assign the function as a root feature that has a minimum incoming or maximum outgoing

function calls in the program and does not have any parent.

• Second, we place all the features at different levels according to the number of incoming calls. There-

fore, the root feature is placed at level 0, intermediate features are between level 0 to L, and the leaf

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 46

Algorithm 1: Find the Levels of Reusable Functions and Their Parent-Child List
Input : Source code of embedded software
Output: Features levels including parent-child information
/* functions of embedded software */

1 featureList []= Extract functions from call graph
2 G = nx.DiGraph() /* call graph */
3 fm = nx.DiGraph() /* feature model */
/* finds the levels of features */

4 level list[][] = List of features at each level
5 for each feature i in range(len(featureList)) do
6 s=featureList[i];

/* finds the level of a feature */
7 k=int(re.search(r′ \ d+′, s).group())
8 level list.append(k)
9 end
/* finds the parents of features */

10 pr = [[] for x in range(len(featureList))]
11 for each feature i in range(len(featureList)) do

/* check the parent of a feature */
12 nd = [x for x,y in G.nodes(data=True) if y[′value′]==featureList[i]];
13 for j in range(len(nd)) do
14 for k in G.predecessors(nd[j]) do
15 pr[i].append(G.nodes[k][′value′])
16 end
17 end
18 end

/* finds the child of features */
19 ch = [[] for x in range(len(featureList))]
20 for each feature i in range(len(featureList)) do
21 nd = [x for x,y in G.nodes(data=True) if y[′value′]==featureList[i];
22 for j in range(len(nd)) do
23 for k in G.successors(nd[j]) do
24 ch[i].append(G.nodes[k][′value′])
25 end
26 end
27 end
28 buildFeatureModel(featureList, level list, ch, pr);

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 47

Algorithm 2: Feature Model Construction
Input : featureList [], level list[][], ch[], pr[], G, fm
Output: Feature model

1 Function buildFeatureModel(Input)
2 for each level l in range(len(level list)) do
3 for each feature i in level l do
4 G.add node(i,value=level list[l][i])
5 if level (l − 1) finds child in list ch then
6 fm.add node(level list[l][i])
7 fm.add edge(i,level list[l-1][i])
8 else
9 fm.add node(i,level list[l][i])

10 end
11 end
12 end
13 for i in fm.edges.data() do

/* return relation type */

14 k=find relation(i[0],i[1])
/* return constraints if any */

15 c=find constraint(i[0],i[1])
16 fm.edges[i[0],i[1]][′relation′]=k
17 fm.edges[i[0],i[1]][′constraint′]=c
18 end

/* display feature graph */

19 drawNetwork(fm);
20 return

features with maximum incoming calls are placed into the last level L.

• Third, if any child feature is mandatory and located at a different level than the subsequent level of

its parent, we can not include it in an alternative (XOR) relationship. We set the feature as a dummy

feature for XOR relation under its parent feature. In Figure 3.4, we present an example for creating a

dummy feature f
′

2() that replicates the mandatory feature f2() at Level L.

• Fourth, if any feature is in OR relationship, we can not put it under the XOR relationship in a different

place. To combine it with the XOR relationship, we define it as a dummy feature that replicates the

original feature. The created dummy feature f
′

4() with an XOR relation is shown in Figure 3.4.

• Fifth, if we create a dummy feature to build an OR/XOR relationship, we introduce their parent as

dummy and make it as an optional feature to other features.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 48

During the feature model construction, we traverse all the features from the lowest level L to the highest

level 0. The distinct features of the lowest levels are considered leaf nodes in the feature model. We gradually

decrease the level value to find the corresponding features mapped with its child features (callee function).

The relation of each child feature is characterized by considering the feature types. Moreover, the requires and

excludes relationships are identified from the sub-feature model relation. A feature is connected with requires

relation if the feature is a mandatory feature at any level but also appears as a mandatory to a different level

of another feature. On the other hand, the excludes relation identifies the feature that never appears with a

specific feature that likely appears with all the common features.

The overall process of the level-based feature modeling is demonstrated in Algorithm 1 and 2. Algo-

rithm 1 extracts the reusable functions as features through the call graph and then identifies each feature’s

level from the call graph. The parent and child feature list is classified considering the caller and callee rela-

tionship. After that, we add the feature relation and constraints to build the valid configurations in the feature

model. Finally, Algorithm 2 builds the feature model in a tree format.

In summary, the above base methodologies form the foundation of our approach to feature identification.

By establishing a solid foundation with function call graphs and level-based feature modeling, we create a

robust framework for understanding the intricate relationships within legacy software. This groundwork leads

the way for integrating more advanced techniques, setting the stage for a more in-depth exploration of feature

extraction.

3.3.2 Enhancing Feature and Requirements Identification using Topic Modeling and BERT

Building upon the foundational techniques of reusable function identification and feature model construc-

tion, we now focus on further enhancing the feature and requirements identification process. Recognizing the

need to avoid the pitfalls of over-granularity in function-based features, we introduce advanced methodolo-

gies such as Topic Modeling and BERT. These methods extend our analysis and extraction of features and

requirements from embedded software by moving beyond structural relationships to find semantic intercon-

nections within the software’s codebase. This subsection explores how Topic Modeling and BERT facilitate

a more refined and comprehensive understanding of software features and requirements. It ensures a robust

analysis, enabling a more holistic and effective identification of important features. A comprehensive ex-

ploration of each phase can be found in the ensuing subsections, while visualization of the methodology is

captured in Algorithm 3.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 49

• Preprocessing and Functional Properties Identification

• Feature Discovery using LDA and BERT

• BERT-Enhanced Requirement Extraction

Preprocessing and Functional Properties Identification

To analyze the source code, we first investigate its functional characteristics and then prepare it for further

examination (preprocessing).

• Functional Properties Identification:

– Function Call Graph: The function call graph, denoted as G = (V,E), displays how functions

in the software interact. Here:

G = {V,E}

With:

* V being the set of all functions.

* E representing the interactions between these functions.

– Function Relations and Dependencies: We express relationships between functions using a ma-

trix D. Each element dij shows the type of relation between function vi and vj :

D =

d11 d12 . . . d1n

d21 d22 . . . d2n
...

...
. . .

...

dn1 dn2 . . . dnn

– Function Group Identification: Functions are grouped based on their role. We denote functions

as F , and each function ϕ is assigned to a group G(ϕ):

G : ϕ→ {Core, Auxiliary, Dependent, Exclusive}

Where:

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 50

* Core are functions that are fundamental to the software’s operation.

* Auxiliary functions supplement or enhance the Core functions.

* Dependent functions require one or more Core or Auxiliary functions.

* Exclusive functions cannot co-exist with certain other functions.

• Preprocessing:

– Artifact Extraction: We transform the source code into a series of artifacts. Depending on the

programming paradigm and software architecture, these artifacts may represent functional units,

object-oriented modules, classes, or other code segments. Let A be an artifact, representing a

segment of source code. The granularity of A can range as:

A ∈ {function, module, class, application}

– Tokenization: Each component A is further divided into smaller units called tokens, represented

by the set T :

A→ T = {t1, t2, ..., tn}

– Cleaning and Refinement: We remove non-essential tokens, represented as T ′, to get a refined

set Tclean:

T ′ = {whitespace, delimiter, ...}

Tclean = T − T ′

– Pattern Analysis: The Longest Common Unit (LCU) technique helps identify redundancies or

shared functionalities and patterns among shared artifacts. For a set of source code artifacts

A1, A2, ..., Am, the LCU is defined as:

LCU(Ai, Aj) = max
k,l
{tk ∈ Ai, tl ∈ Aj |tk = tl}

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 51

Algorithm 3: Features and Requirements Identification from Embedded Software
Input : Collection of source code files C
Output: Identified features, requirements, and their mappings F
/* Static Code Analysis */

1 T ← TokenizeSourceCode(C)
2 corpus← BuildCorpus(T)
/* Topic Modeling using LDA */

3 ldaModel← TrainLdaModel(corpus)
4 topics← ExtractTopics(ldaModel)
/* BERT-enhanced Feature and Requirement Extraction */

5 Function Identification(topics, T)
/* Provide LDA topics and tokens to BERT */

6 bi← CombineTopicsAndTokens(topics, T)
/* Feature Extraction using BERT */

7 F (X)← BERTExtractFunctionNames(bi)
/* Requirement Extraction using BERT */

8 Rf (X)← BERTExtractConditions(bi)
9 Rnf (X)← BERTExtractComments(bi)

10 R(X)← Combine(⊕Rf (X), ⊗Rnf (X))
/* Map Requirements to Features */

11 f map← BERTSimilarity(F (X), R(X))
12 F ← F (X) ∪ ⊕Rf (X) ∪ ⊗Rnf (X) ∪ f map
13 return F

Feature Discovery using LDA and BERT

Upon the completion of preprocessing and identifying functional properties, the next step involves the ex-

ploration of potential features within the source code artifacts. To determine the features, we focus on dom-

inating functionalities and characteristics of the software, avoiding granular and low-level code details that

might not represent a meaningful feature in the context of embedded systems. This is crucial to ensure that

the discovered features are significant, actionable, and not lost amidst the minute code intricacies.

This section presents the methods and models utilized for this purpose, blending conventional and ad-

vanced techniques to extract relevant software features and requirements. Starting with the basic representa-

tion, for any artifact A, its Bag-of-Words vector is denoted as V :

V = {f(t1), f(t2), ..., f(tn)}

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 52

Figure 3.5: Workflow of feature identification, transitioning from source code artifacts to potential
feature extraction

Here, f(ti) indicates the occurrence count of token ti in A. Additionally, to stress the significance of each

token across the entire dataset, we utilize the TF-IDF weighting:

TF-IDF(ti, A) = f(ti, A)× log

(
|A|

1 + count(ti, A)

)

• Latent Feature Extraction with LDA

LDA is then applied to find out hidden topics or themes within the data. These latent topics often

resonate with potential software features or requirements. This phase of topic extraction can be visu-

alized in Figure 3.5. In our approach, the number of topics for LDA was decided based on iterative

testing and evaluation, aiming to balance granularity and coherence. We experimented with a range

of values and observed the topics’ relevance and distinctiveness, settling on a number that offered our

data’s most meaningful and distinct topics. Additionally, we acknowledge the existence of alterna-

tive algorithms to LDA, such as Non-Negative Matrix Factorization (NMF) and Hierarchical Dirichlet

Process (HDP), which could offer different perspectives in topic modeling. Future work could explore

the integration of these methods to enhance our feature extraction process.

• Semantic Refinement using BERT

The CodeBERT [111] model, known for its prowess in understanding code context, is tailored for our

dataset:

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 53

1. Initially, BERT is fine-tuned to capture the domain-specific semantics.

2. The topics classified by LDA and codebase are added to BERT’s embeddings, offering a richer

semantic understanding.

3. By aligning the classifications from BERT with the LDA topics, we ensure a comprehensive and

semantically accurate identification of features.

BERT-enhanced Requirements Extraction

In the process of software requirement extraction, differentiation between functional and non-functional re-

quirements is important. While BERT’s capabilities enrich the semantic extraction process, additional meth-

ods and heuristics are necessary to grasp the intricacies of both requirement types.

• Functional Requirements Extraction:

Functional requirements describe what the system should do, often encapsulated in the logic and con-

ditions of the code.

– Extracting Conditional Constructs: As an initial heuristic, conditions in if, while, and for

loops provide insight into system behaviors and rules.

– Function and Method Analysis: Function names and method signatures often describe actions

or operations, indicating the functionalities the software provides.

• Non-functional Requirements Extraction:

Non-functional requirements capture system properties or characteristics rather than behaviors. Here’s

a more nuanced approach:

– Extracting Comments: While comments are a starting point, not all comments correspond to

non-functional requirements. Comments that capture constraints, quality attributes, or overarch-

ing goals are prioritized.

– Documentation Analysis: Often, non-functional requirements like performance, scalability, and

security are better documented in READMEs, architecture documents, or inline documentation

blocks.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 54

– Code Patterns and Libraries: Certain code patterns or imported libraries may hint at non-functional

requirements. For instance, importing a security library might indicate security concerns.

To verify that the requirements are satisfied by the identified features, we cross-referenced the extracted

features and requirements with the manually established ground truth. Additionally, we compute the cosine

similarity to evaluate the alignment between the identified features and requirements extracted using the

BERT model. This step ensures that the requirements identified are present in the code and functionally

relevant.

Referring to Listing 3.3, the functional requirements of the electric water heater system are predominantly

derived from its core functionalities. Features such as initializeHeater and fillTank clearly de-

scribe specific operations the system is expected to perform. For example, conditions like user pref ==

AUTO and !safetyCheck() describe the system’s behavior under certain situations, illustrating func-

tional requirements. On the other hand, comments and annotations like User Mode Selection: Manual or

Auto serve as a reflection of the non-functional requirements.

The overall feature and requirement identification process is detailed in Algorithm 3. Initially, source

code files undergo static analysis, followed by tokenization, setting the stage for topic extraction through

Latent Dirichlet Allocation (LDA). The hyperparameters for the LDA algorithm, including the number of

topics, were set based on an initial fixed choice of 10 and the first top topic (features) is then extracted

from the topics of each group. Leveraging the LDA topics and tokens, a BERT-enhanced method pinpoints

software features and differentiates between functional and non-functional requirements. Lastly, BERT’s

capabilities map the discovered features to the relevant requirements, offering a concise overview of the

software’s intrinsic structure and objectives.

3.3.3 Feature Model Construction

Feature modeling presents a systematic approach to portray the variability and interdependence within soft-

ware systems. The function frequency, and LCU analysis, enriched by TF-IDF and LDA (as previously

discussed), form the basic layer of feature extraction. By incorporating BERT, we augment this base by ac-

counting for semantic nuances embedded in code comments and related documentation, allowing for a more

enriched and precise feature model construction.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 55

Listing 3.3: Electric Water Heater Code

1 void initializeHeater () {

2 temperatureControl () ; // Core feature, hence Mandatory

3 }

4 // User Mode Selection: Manual or Auto

5 if(user pref == MANUAL) {

6 setTemperatureManually() ; // XOR with autoTemperatureSetting due to the mutually

exclusive if-else condition.

7 } else if (user pref == AUTO) {

8 autoTemperatureSetting () ; // XOR with setTemperatureManually.

9 } else {

10 defaultTemperatureSetting () ; // Optional

11 }

12 // Dependent functions "Requires" relationship.

13 bool fillTank () {

14 if (!safetyCheck()) { // The fillTank operation depends on the safetyCheck

15 return false;

16 }

17 // Fill tank logic

18 return true;

19 }

20 bool safetyCheck() {

21 // Check safety conditions

22 return conditionsSafe;

23 }

24 //"Excludes" relationship.

25 void activateEcoMode() { // Activates energy-saving mode

26 deactivateTurboMode() ;

27 }

28 void deactivateTurboMode() { // Represents an "Excludes" relationship with activateEcoMode.}

29 // "OR" relationship.

30 for(int i = 0; i < MAX POWER LEVELS; i++) {

31 if(isPowerLevelSuitable (i)) {

32 setPowerLevel(i) ;

33 break;

34 }

35 }

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 56

Feature Relationships

BERT’s prowess in understanding contextual nuances in textual data plays a pivotal role in discerning intricate

relationships between software features. These relationships include:

• Mandatory: A feature that must be included whenever its parent feature is selected.

• Optional: A feature that can be chosen at discretion when its parent feature is included.

• OR: One or more among the child features must be selected if the parent is included.

• XOR (Alternative): Exactly one among the child features can be chosen when the parent is selected.

• Requires: The presence of one feature necessitates the presence of another.

• Excludes: The presence of one feature prohibits the inclusion of another.

Mapping Function Categories to Features

With BERT’s enhanced capability, the semantic context surrounding functions becomes clearer. This clarity is

leveraged to augment the categorization of functions into Core, Auxiliary, Dependent, or Exclusive, forming

a robust foundation for our feature model.

Code Analysis

Consider the given code snippet in Listing 3.3 of the Electric Water Heater System:

From the above code Listing 3.3:

• Mandatory: Functions like initializeHeater() serve as the foundation of the system.

• XOR: The ‘if-elseif-else’ structure used for temperature settings denotes an XOR relationship.

• Optional: Functions like defaultTemperatureSetting() act as optional features.

• Requires: The direct function call within fillTank() denotes a ‘Requires’ relationship with safety-

Check().

• Excludes: The mutual inhibition between activateEcoMode() and deactivateTurboMode() shows an

‘Excludes’ relationship.

• OR: The loop iterating through power levels signifies an OR relationship.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 57

The integration of BERT within the system promises to further refine these classifications by analyzing

the semantics surrounding the code constructs and their associated comments. This could, for instance, high-

light deeper interdependencies or requirements not immediately evident through structural analysis alone.

Theorem 1. LetF be a set of features. A feature modelM accurately represents the relationships among

features in F if and only if, for each feature f ∈ F ,M satisfies the constraints set by these relationships.

Proof. To explain, let the relationships be denoted as: mandatory (M), optional (O), OR (R), XOR (X),

requires (Q), and excludes (E).

Consider a particular feature f ∈ F . The very nature of relationships involving f dictates how f inte-

grates with other features in F . As an illustration, if f is mandatorily related to another feature g, it signifies

that the selection of g mandates the selection of f as well.

(⇒) Commence with the assumption thatM captures the entirety of relationships in F . By this virtue,

for every feature f ∈ F ,M inherently satisfies the constraints (M, O, R, X, Q, E) involving f .

(⇐) On the flip side, presume that for each feature f ∈ F ,M upholds the constraints (M, O, R, X, Q, E)

associated with f . Relying on the definitive nature of these relationships, one can infer thatM encapsulates

the entire fabric of relationships amongst features in F .

Feature Model Visualization

Figure 3.6: Feature model for electric water heater

The feature model for the Electric Water Heater (EWH), as visualized in Figure 3.6, presents a structured

hierarchy that encapsulates the relationships, interdependencies, and intricacies of the functionalities. This

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 58

structure is founded upon the core node, labeled Electric Water Heater.

Through BERT’s semantic analysis of the associated comments and documentation, the model gains

further precision. For example, the system’s emphasis on user experience is clarified, highlighting the sig-

nificance of user mode selection. This aids in understanding why, within Initialization, the XOR

group UserModeSelection exists, offering alternatives like ManualSetting and AutoSetting.

Similarly, a semantic analysis may highlight the prominence of energy efficiency concerns within the system,

offering insights into why modes like EcoMode and TurboMode are present and mutually exclusive.

3.4 Evaluation of Automated Feature and Requirements Extraction

To validate the effectiveness of our approach, we deployed a series of experiments using real-world code-

bases from various domains, particularly Electric Water Heaters [112] and Microwaves [113], followed by

the Autonomous Vehicle Systems (AVS) as a comparative analysis. This multi-steps approach ensured a

comprehensive evaluation of our methodology. To establish ground truth for our evaluation, we manually

analyzed the GitHub projects, identifying and listing features and requirements present in the code. This

manual process involved a detailed source code inspection, comments, and available documentation. The

ground truth thus established served as a benchmark for comparing the results of our automated feature and

requirement extraction methodology.

Table 3.1: Feature and requirement identification results

Metrics Electric Water Heater Microwave
LDA based TF-IDF BERT LDA based TF-IDF BERT

Total number of Functions 129 53
Features Identified 17 29 16 18
Functional Requirements 63 61
Non-Functional Requirements 10 4

3.4.1 Feature and Requirement Identification

Table 3.1 presents the outcome of our feature and requirement identification phase. For the Electric Water

Heater and Microwave projects, both LDA-based TF-IDF and BERT demonstrated efficiency, even though

different features were identified. The Electric Water Heater had a greater number of functions, possibly due

to its complexity, compared to the Microwave. In our case, we consider the top five topics to analyze where

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 59

the number of words for each topic is set to two.

Figure 3.7: Feature coherence evaluation for electric water heater and microwave using LDA+TF-
IDF on GitHub projects

Case Study 1: Electric Water Heater

The Electric Water Heater software’s analysis shed light on the LDA-based TF-IDF methodology’s compe-

tence in highlighting essential features. The disparity of coherence between the BoW and TF-IDF methods

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 60

Table 3.2: Evaluation of selected features for electric water heater

Features Associated Top Functionality
OS Tick Init INT Global Init, SET BIT

EEPROM Init I2C Master Init, SET BIT
EEPROM ReadByte SET BIT, I2C Read Byte, I2C Write Byte, GET BIT

SW Init GPIO SetPinDirection, SW Init
SSD Init GPIO SetPinDirection, SSD Init

TMP SENSOR Init ADC Inite, ADC Inite
HEATER Init GPIO SetPinDirection
COOLER Init GPIO SetPinDirection

LED Init GPIO SetPinDirection, LED Off
SW Update SW Update Period

TMP SENSOR Update ADC Start, ADC Read Buffer
TMP Update TMP Required Update, TMP Sensed Update, HEATER Set
SSD Update SSD Update Mode, SW Period Ended, SSD Off

HEATER Update LED Set Mode, HEATER Update Mode
COOLER Update COOLER Update Mode

LED Update LED On, LED Blink, LED Off
EEPROM Update I2C Start, EEPROM Write Byte

shown in Figure 3.7 underlines this fact. One of the features, EEPROM Init, showcased a coherence score

of 0.4481 using BOW, which improved significantly to 0.8750 using TF-IDF. The functionalities linked to

this feature, namely I2C Master Init and SET BIT, indicate functional roles that closely align with

the initialization of EEPROM, portraying a direct relationship and relevance. Table 3.2 offers a detailed insight

into the identified features of the electric water heater, along with their associated top functionalities.

Figure 3.8: Cosine similarities between Features
and requirements for electric heater

Figure 3.9: Comparison of BERT and LDA
based on different metrics

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 61

Case Study 2: Microwave

Table 3.1 presents another case study for analyzing Microwave software and its corresponding features and

requirements. From Figure 3.7, we find that a majority of the features exhibit higher coherence scores when

using the TF-IDF method as compared to BOW. This signifies that TF-IDF provides a more refined and

precise measure, particularly in finding important terms within the dataset. For instance, the LED Init

feature improved from a coherence score of 0.7324 with BOW to 0.7932 with TF-IDF. Similarly, noticeable

uplifts in coherence can be observed for features like HEATER Init, DOOR Init, and FAN Init. The

bars depict a general trend wherein TF-IDF exhibits superior coherence scores, proving its efficacy over BoW.

BERT-enabled Feature and Requirements Identification

We used BERT, specifically the CodeBERT model designed for code-related tasks, for a detailed analysis.

Figure 3.8 shows the similarities between various features and requirements for the Electric Water Heater. A

key point to note is that higher similarity values mean a stronger link between the feature and the requirement.

With the help of CodeBERT, we were able to understand the code better, which improved BERT’s accuracy

in identifying features and requirements.

Furthermore, using BERT helped us see connections in the code that might be missed by LDA. This was

particularly useful when identifying the differences between functional and non-functional requirements,

giving us a clearer view of the software’s functions.

BERT vs. LDA

In Figure 3.9, we compare the outcomes of BERT and LDA across several metrics—Coverage, Rele-

vance, Granularity, and Diversity. Each metric offers a unique lens through which the methods’ efficiency

can be evaluated:

• Coverage: LDA excels by capturing the complete set of features or requirements, with BERT trailing

behind.

• Relevance: BERT shines with a higher score, suggesting that it can identify more contextually perti-

nent features or requirements than LDA.

• Granularity: Here, BERT stands out. It indicates the method’s capability to determine detailed or

nuanced features and requirements, more so than LDA.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 62

• Diversity: LDA tends to be more diverse, identifying a wider range of features or requirements com-

pared to BERT.

Through our experiments, we observe that:

1. Both LDA-based TF-IDF and BERT hold merit, with each being suitable for different contexts and

needs.

2. TF-IDF generally offers higher coherence scores, suggesting its effectiveness in feature extraction.

3. BERT tends to be more granular and relevant, whereas LDA shines in terms of coverage and diversity.

Figure 3.10: Features and requirements mapping
for AVS

Figure 3.11: Comparison of BERT with Rule-
based approach

3.4.2 Comparative Analysis with Other Approaches

We applied our proposed BERT-enabled Topic Modeling LDA Approach to identify different features for the

Autonomous Vehicle System (AVS) [114]. Our goal was to compare our BERT-Enabled approach with tradi-

tional techniques: the manual and the rule-based methods. In the manual method, the codebase is examined

step by step, whereas the rule-based method uses set rules to automatically find features and requirements.

For the AVS, our method pinpointed approximately 65 features along with 180 functional and 30 non-

functional requirements. The heatmap of our experiment, shown in Figure 3.10, displays some of the features

we identified and their requirements through BERT and topic modeling. We noticed that certain features, such

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 63

Figure 3.12: Feature model for object detection

as lane detection, object detection, and speed control, were frequently mentioned in the

source code. On the other hand, obstacle avoidance had various functional requirements. Addition-

ally, the network security feature was linked with the non-functional requirement of unauthorized

access.

Our evaluation employed precision, recall, and F1-score metrics to assess the effectiveness of our ap-

proach. Specifically, we achieved a precision of 0.92, a recall of 0.88, and an F1-score of 0.89. These results

highlight the balanced performance of our method in terms of both precision (correctness of the identified

features) and recall (completeness in identifying relevant features), leading to a high F1-score that effectively

balances these two aspects. This score surpassed the ones from the other two methods, illustrated in Fig-

ure 3.11. Our method also reduced the time taken to search for features by 59% and 71.7% compared to the

rule-based and manual methods, respectively. These improvements are attributed to BERT’s advanced lan-

guage understanding capabilities, which enable more precise and quicker feature extraction from embedded

software code than manual or rule-based approaches.

The feature model (Figure 3.12) shows the Object Detection System’s architecture. At its core is Object

Detection, branching into essential features like LoadModel, LoadImage, DetectObjects, and

DisplayDetections . The DisplayDetections feature is dependent on DetectObjects, ensur-

ing objects are detected before being displayed.

Chapter 3. FEATURE-BASED REUSABLE EMBEDDED SOFTWARE DESIGN 64

The LoadModel feature offers optional components, such as TrafficMonitoring, and provides

multiple model selection options through an ‘OR’ relation among SSD Context, YOLO Context, and

FasterRCNN Context. An exclusion link between SSD Context and TrafficMonitoring in-

dicates they cannot be active simultaneously. The system also emphasizes performance metrics, marking

detection time under DetectObjects as a non-functional requirement.

This comprehensive feature model for the Object Detection System provides valuable insights into the

software’s structure and dependencies. By understanding these relations and conditions, developers can en-

sure a cohesive design and avoid potential conflicts, especially when making updates or expansions to the

system.

3.5 Summary

This chapter delved into combining advanced Natural Language Processing (NLP) techniques with conven-

tional software engineering practices. The primary aim was to identify software features within C code using

a combination of BERT and LDA. Software reuse is of paramount importance in developing Cyber-Physical

Systems (CPS), given its advantages like cost efficiency, expedited deployment, and risk mitigation. How-

ever, finding reusable features from legacy repositories, especially GitHub, poses challenges. These arise due

to the intricacies of domain-specific knowledge and often the paucity of comprehensive documentation. To

navigate these challenges, we introduced an automated approach that binds static code analysis with deep

learning (leveraging the BERT model) and topic modeling techniques (using TF-IDF in tandem with LDA).

This methodology is threefold in nature:

1. An extraction algorithm grounded in static code analysis to identify potential features, requirements,

and their interrelationships.

2. A semantic discernment module, aided by the BERT model, to grasp the code’s semantic nuances and

associated documentation.

3. A topic modeling segment employs TF-IDF and LDA to distill the structural core of the codebase.

Our approach showcased respectable performance and resilience when juxtaposed against manual and rule-

centric methods on real-world CPS repositories. This underscores its efficacy and hints at its promise in

fostering software reuse and refinement in the realm of CPS.

65

Chapter 4

NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN

4.1 Introduction

The continuous progression of embedded systems technology presents both opportunities and challenges.

Embedded software, integral to devices ranging from smartphones to advanced vehicular systems, stands at

the center of these developments. Meeting the varied demands of next-generation embedded applications

requires the strategic design of sophisticated features into their software base.

A key paradigm facilitating this design process is fog computing. Traditional computing models often

relied heavily on central servers, which, while powerful, introduce significant delays due to data transmission

and processing times. This can be a barrier for applications where time is of the essence, like vehicular

systems. Fog computing offers a solution by decentralizing data processing, bringing it closer to the data

sources. This means processing data at the edge of the network or even on the devices themselves, thus

reducing latency. However, the successful implementation of fog computing necessitates efficient resource

management. Without strategically developed algorithms that adjust resources in alignment with real-time

conditions, the system may encounter augmented communication delays or inefficient resource utilization.

Alongside fog computing, the design of Deep Neural Networks (DNNs) within fog and edge devices has

gained traction. The capability of DNNs to efficiently process vast datasets renders them a good choice for

modern smart devices. Nevertheless, the deployment of extensive DNN models on edge devices, which are

often constrained by computational capacities, is challenging. This challenge has led to the development of

methods that partition DNNs, distributing the computational demands across multiple devices. Yet, achieving

optimal partitioning remains intricate due to various factors, including DNN layer interdependencies and the

specific architectural constraints of edge devices.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 66

Furthermore, as edge devices become increasingly autonomous, ensuring the safety of online model

training and inference is paramount. The real-time adaptation requirement introduces complexities associated

with online model training. Methodologies such as triple-modular redundancy (TMR) have been proposed to

navigate these complexities while ensuring system reliability and integrity.

This chapter will explore the aforementioned topics in-depth, emphasizing the relationship between fog

computing and edge networks. Edge computing operates as a subset of the broader fog computing paradigm.

While fog computing spans from cloud servers to edge devices, edge computing specifically emphasizes the

devices themselves. This relationship is key to understanding the importance of next-generation embedded

application design in modern software ecosystems. The subsequent sections will offer detailed insights,

supported by empirical case studies and data, highlighting the prevailing challenges, proposed solutions, and

prospective directions for embedded software in a rapidly evolving technological environment.

• Enabling Fog Computing for Next-Gen Embedded Applications: This segment focuses on the

deployment strategies for fog-enabled applications, with an in-depth examination of OTA software

updates. The system model will illustrate the deployment infrastructure, followed by a methodology

that describes the deployment process and subsequent performance evaluation.

• ML-based Fog Assisted Embedded Application Design: This section addresses the importance of

parallel computing models, aiming to optimize training and inference processes. The system model

will provide a schematic representation of the parallel architecture, supplemented by a methodology

that explains the mechanisms of achieving enhanced parallelism.

• Safe Online ML Model Training: Emphasizing the importance of safety in online model training,

this section introduces the Triple-Modular Redundancy (TMR) technique. A robust system model will

present the safety layers and protocols, with the methodology elaborating on the practical implemen-

tation of TMR.

To understand how the next-generation applications can leverage the advanced computing paradigms, we

show an architectural overview to integrate them. The architecture, as illustrated in Figure 4.1, is constructed

on multiple layers and components:

Cloud Computing: Centralized cloud service providers (e.g., AWS, Microsoft Azure) that host the pri-

mary servers, making them the epicenter for resource intensive computations. It can also house aggregated

data or model updates relayed from the edge or fog layers.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 67

Figure 4.1: Next-generation embedded applications computing architecture

Fog Computing Nodes: These nodes, strategically placed between the cloud and edge devices, serve two

primary purposes. These nodes undertake a part of the model training using the technique of model splitting.

They also store intermediate ML model states and are responsible for distributing OTA updates to the edge

devices. The fog layer helps in reducing the latency for real-time tasks and lessens the computational burden

on edge devices.

Middleware: This layer ensures seamless communication between the fog nodes and the embedded soft-

ware, enabling applications such as real-time insights from machine learning and the facilitation of OTA

updates. Furthermore, this middleware aids in the customization of software solutions. Depending on the

requirements, specific functionality can be incorporated or excluded to optimize the software for its intended

purpose, especially when these applications are designed to run on fog or edge platforms.

Edge and Embedded Devices: These are the actual devices at the far end, interfacing directly with the

environment or user. They can either process data locally or send it up the chain to the fog nodes or even the

cloud, depending on the computational and latency requirements. The integrated next-generation embedded

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 68

applications in these devices ensures that data processing and decision-making can happen in real-time.

Summary: The training of machine learning and over-the-air software updates, orchestrated by fog

computing, indicates a new generation of embedded software. This integration ensures that the software

remains adaptive, intelligent, and customizable, catering to the dynamic needs of modern applications.

4.2 Enabling Fog Computing Architecture for Next-generation Embedded Applications

To select a computing platform closer to the embedded systems and offload tasks to a decentralized infras-

tructure, we need to design an framework for explicit and well-formalized operations. The next-generation

ML-based embedded applications have different characteristics to enable safety, security, mobility, resource

optimization, and reliable performance for computing tasks. Considering this, we propose a fog-assisted ar-

chitecture depicted in Figure 4.2. The architecture presents an over-the-air vehicular software update solution

as a case study for next-generation embedded application design. The OTA software update process shows

how the fog-assisted architecture manages fog computing resources and helps autonomous vehicles to receive

software updates with faster computation compared to the cloud. To implement an OTA update process for

next-generation software, we divide our approach into the following steps:

a) Calculate required computational resource: We compute the demanded resource by formulating a traffic

cluster in a region at different time intervals.

b) Fog computing resource distribution and optimization: We present a dynamic resource allocation ap-

proach to assist in assigning resources when needed.

c) Predicting the communication delay: A transfer learning approach is proposed to estimate the communi-

cation delay for making an early decision in selecting the suitable fog node for computation.

d) Calculating the OTA update time: An algorithm is presented to calculate an OTA update time considering

mobility, handover, and communication delay.

4.2.1 Fog Computing for Time-Sensitive Embedded Applications

Cloud computing has established itself as a premier choice for the data processing and storage of contem-

porary applications. However, the considerable propagation delay between the cloud data center and data

generation sources might not always be the best solution for time-sensitive applications. On the contrary, fog

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 69

<< Fog Node n >><< Fog Node n >><< Fog Node 2 >><< Fog Node 2 >><< Fog Node 1 >><< Fog Node 1 >>

Time Slots Time Slots Time Slots

Cloud

Features
T
ra

in
in

g

d
a
ta

Predicted Traffic
Load

Better utilization
enabling/disabling

fog nodes

Data Processing &
Optimization

...
Vehicles

 Fog computing network Fog computing network

Figure 4.2: Fog computing enabled system architecture

computing has surfaced as a promising alternative for immediate data processing by minimizing communica-

tion delays between nodes and data sources. Even with these benefits, establishing an effective infrastructure

for fog node management, especially focusing on fog resource allocation, remains an active area of research.

Some efforts have been made in this direction, such as the one by Hou [115]. However, many existing works

do not focus on resource allocation influenced by traffic load, leading to sub-optimal utilization of fog nodes

and, consequently, elevated deployment and running costs.

An application that stands to benefit from an optimized fog computing platform is OTA software updates

for intelligent vehicles [23]. Modern vehicles necessitate periodic software updates, which encompass a

variety of modifications, from firmware revisions to the introduction of novel features. As indicated by recent

survey results [116], the adoption and reliance on OTA software updates are growing, with industry giants

like Tesla at the forefront. However, the conventional approach of downloading these updates from vehicle

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 70

manufacturer cloud data centers presents challenges. The evident propagation delay and the accompanying

security vulnerabilities are significant deterrents.

This backdrop brings our work into focus. Our efforts highlight and address the inherent challenges asso-

ciated with fog computing, especially in the context of OTA updates. These challenges span communication

delay prediction, the dynamics of vehicle mobility, and the intricacies of handover delay calculations. In real-

world scenarios, these delays can be variable, influenced by a plethora of network and system parameters.

Any inaccuracies in accounting for these delays can result in extended OTA update times, potentially leading

to compromised system performance. One way to navigate these challenges is to adopt predictive strategies

that can closely approximate communication delay, as evidenced by studies such as the one by Kim [117].

Furthermore, the mobility of vehicles introduces another layer of complexity. As vehicles traverse, they

engage with a multitude of fog nodes, each potentially offering OTA updates. Transitioning between these

nodes, especially transferring the context of software from one node to another, known as a handover, can

be resource-intensive. Efficient handovers are crucial to curtailing OTA update times. While newer network

architectures like 4G and 5G promise reduced handover latencies, they might not be the silver bullet for OTA

updates. Challenges such as the influence of network operators, sporadic packet losses, overheads due to

signaling, and prohibitive costs can be limiting factors [118], [119].

Our work presents a comprehensive OTA software update approach that accounts for these challenges

and provides solutions centered on efficient fog node distribution and precise OTA update time calculations.

By leveraging a combination of machine learning, clustering techniques, and transfer learning, our approach

optimizes resource allocation, forecasts traffic loads, and accurately predicts communication delays. This

ensures that vehicles, irrespective of whether they are stationary or mobile, can receive their OTA updates

swiftly and securely.

In light of recent advancements, such as Tesla’s use of the Starlink Satellite Internet for simultaneous OTA

update delivery [120], the significance of our work becomes even more pronounced. By enabling continuous

OTA updates in dynamic environments and accounting for variables like traffic load, network parameters,

and communication delay, our work provides a novel perspective on the realm of connected vehicles and

embedded software. The overarching aim is to offer robust solutions that can enhance the efficiency and

security of OTA software updates.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 71

Table 4.1: Symbol description

Symbols Definitions
Ci Cluster number i; 1 ≤ i ≤ m;m ∈N
n Number of fog nodes
Fk kth fog node where 1 ≤ k ≤ n and n ∈N
Uf
k Maximum resource utilization capacity of fog Fk

Csize
i Size of Cluster Ci

Cf
i Capacity of fog node Fi (requests/second)

N(Ci) Number of fog nodes in Cluster Ci

N ′(Ci) Number of active fog nodes in Cluster Ci

V (Ci) Number of vehicle requests in Cluster Ci

pj Computational power required by vehicle Vj
A(Ci) Number of active fog nodes required to handle V (Ci)

Ssize
j Software update size for vehicle Vj , j ∈N
Pktarrivej jth packet arrival time to destination, j ∈N
DRj Network throughput for software size Ssize

j

Pktsendj jth packet sending time, j ∈N
Tj Total time taken to update Ssize

j for vehicle Vj
cdik Communication distance between ith vehicle and kth fog node
T p
i Propagation/communication delay between ith vehicle and kth fog node
T t
i Processing or transfer time
T lt
i Network Latency
Yi Actual target value
∆i Handover delay
Y ′
i Predicted delay value
Wi Worst-case delay
Ap

i Accuracy in predicted model
Ap

i Expected accuracy set by engineer
Z+ Positive Integer numbers

4.2.2 System Model and Key Assumptions

The fundamental assumption of our research revolves around a fog computing-based network designed for

specific regions and varying time intervals. Acknowledging that traffic load demonstrates fluctuations over

time across different areas, our model envisions regions with multiple clusters of vehicles. Each of these

clusters consists of a variable number of fog nodes. An important assumption here is the visualization of

each area as a circular range. The maximum distance from its central position to the farthest traffic location

is calculated to determine this range.

We start our experiments leveraging a real-traffic dataset. However, as time progresses and demands

shift, this dataset is updated using fresh traffic data collections. A centralized clustering approach serves as

the foundation for calculating the OTA update time for location-aware vehicles. In this paradigm, vehicles

connect to the nearest fog node, marked by minimal distance and robust signal strength. The central fog node

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 72

shoulders the responsibility of all computational processing. It’s worth noting that while the fog nodes are sta-

tionary in their distribution, their activation status is dynamic, contingent upon the update requirements. The

centralized methodology aids in pinpointing the cluster size, which is influenced by the number of vehicles

in specific locations.

Our architectural model focuses on two important aspects:

1. Efficient distribution of fog nodes across different areas with varied traffic loads.

2. Precise estimation of the OTA update time for vehicles transitioning between locations.

Key Symbols and Resource Allocation Modelling

A comprehensive understanding of our system architecture necessitates familiarity with the various symbols

and their corresponding definitions, as showcased in Table 4.1. Exploring further the intricacies of our model,

we recognize that each traffic zone is represented byCi, for every i inm. m is an element of the set of positive

integers, N+. The size of each cluster is denoted by Csize, with Csize
i representing the traffic volume of

cluster Ci.

The centroid of each cluster is identified by c centroidi, and the radius of each cluster is c radiusi. This

is measured as the maximum distance between a vehicle position and its cluster centroid position. The range

c rangei is defined as the circular area of a cluster from its centroid position.

In our model, we assume that the number of fog nodes is n. Formally, the set of fog nodes is denoted

by F , where Fi becomes the ith fog node. Note that here, 1 ≤ i ≤ n and n ∈ N+. Moreover, the set of

capacities of all available fog nodes is defined as Cf , where Cf = {Cf
1 , C

f
2 , . . . , C

f
n}. The distribution of

these fog nodes needs to be performed across clusters, with the requirement that there is at least one fog node

in each cluster.

A uniform distribution is followed while placing fog nodes, so as to cover the total range of each cluster.

Based on the fog node utilization capacity and traffic load, clusters may contain many fog nodes. Let

the number of fog nodes in a cluster Ci be given by N(Ci). Then, the following needs to be satisfied:

N(C) = N(Ci) + N(Ci+1) + . . . + N(Cn), where N(Ci) ̸= 0. The number of requests/second that a

fog node can handle defines its computational capacity. The assumption here is that vehicles can generate

many requests/second. A request is represented as a time requirement. The quantity Uf
k defines the resource

utilization of the kth fog node. Next, we calculate the maximum utilization of the kth fog node, at time = t,

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 73

as follows:

Uf
k (t) =

∑V (Ci)
j=1 pj(t)

Cf
k

(4.1)

Now, the utilization for all nodes can be calculated as follows:

U(t) =

n∑
k=1

Uf
k (t) (4.2)

Assume that cluster Ci contains N(Ci) nodes. Let A(Ci) denote the number of active nodes that are

needed for taking care of requests of smart vehicle V (Ci). Here, 1 ≤ A(Ci) ≤ N(Ci) ∈ N. Note that the

rest of the fog nodes shall remain inactive, till there is additional traffic in Ci. The sum of the computational

capacities of individual fog nodes that reside in a cluster Ci defines the computational capacity of the cluster.

For the sake of simplicity, we assume that vehicles generate singular requests, and that all requests need

an equal amount of time. Furthermore, each request is for an OTA update. Let the computation requirement

of a vehicle Vj be given by Pj , ∀j ∈ V (Ci). In addition, let Cf
k denote the capacity of the kth fog node,

∀k ∈ A(Ci). In this case, the following needs to hold:

V (Ci)∑
j=1

pj ≤
A(Ci)∑
k=1

Cf
k such that i ∈ m (4.3)

Note that here, A(Ci) ≤ N(Ci). Equation 4.3 advises us to fit in V (Ci) vehicles under A(Ci) active

fog nodes. In addition, this equation provides an interesting insight:
∑N(Ci)

k=1 Uf
k (t)−

∑A(Ci)
k=1 Uf

k (t) of the

resource utilization and N(Ci) − A(Ci) of the fog nodes shall be unused in Ci. Therefore, these fog nodes

must be kept inactive until we see more traffic in Ci.

OTA Update Time Calculation

The essence of our analysis revolves around the OTA update time calculation. As illustrated in Figure 4.2,

vehicles connect to fog nodes via a wireless connection, while the cloud maintains a direct connection with

the fog nodes. Our model envisages scenarios wherein the kth fog node, Fk, broadcasts an OTA software

update to various vehicles in V .

Our primary objective is to compute the OTA update time, denoted by Ti. This time encapsulates various

components: T t
i (the update transfer time), and T p

i (the update propagation time). Notably, T t
i is calculated

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 74

as the ratio of update size Ssize
i to the network bandwidth bwi. T

p
i denotes the time taken for the first bit

from Fk to reach Vi. Our approach leverages transfer learning to estimate T p
i .

The total update time for Vi is - Ti = T t
i + T p

i + ∆i. Note that ∆i denotes the delay due to handover.

In addition, we calculate network latency (T lt
i) and throughput (DRi). These are calculated from the data

packet sending time (Pktsendi) and the arrival time (Pktarrivei) for updating any software size Ssize
i . The

latency shown in Equation 4.4 specifies the total time taken, including processing and propagation for all

the packets to transfer from fog nodes to a vehicle, whereas the average throughput refers to the amount of

successfully transferred data within a certain period of time in the network.

Latency, T lt
i =

x∑
j=1

Pktjarrive − Pkt
j
send (4.4)

Avg. Throughput, DRi =

∑x
j=1 Pkt

j
size∑x

j=1(Pkt
j
arrive − Pkt

j
send)

(4.5)

Transfer Learning for Communication Latency Prediction

Transfer learning is a technique that capitalizes on the knowledge acquired while addressing one problem,

applying it to a different but related challenge [121]. Unlike traditional machine learning models, transfer

learning models train for one problem and subsequently apply the learned knowledge to related problems.

The salient advantages of transfer learning include reduced training time, minimized data requirements for

training, and enhanced accuracy.

In the context of our work, the potency of transfer learning emerges in predicting the communication

delay between vehicles and fog nodes. The European coverage data of the WiFi hot-spot signal strength

dataset [122] serves as our starting point. To make the NYC dataset [123] conducive for transfer learning, we

enriched it with communication delay data gathered from real-time observations. Our methodology employs

a deep neural network machine learning model to forecast the communication delay. Figure 4.3 offers a

bird’s-eye view of the transfer learning model deployed.

4.2.3 Proposed Fog-Assisted OTA Update Approach for Vehicular Networks

Based on the architecture depicted in Figure 4.2, we first create various clusters, according to the different

time intervals of diverse regions. The size or load of each cluster is then calculated by determining the

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 75

Figure 4.3: Transfer learning model

number of vehicles that exist in the cluster. Each cluster possesses a center point, called its centroid. From

this centroid, we define the cluster’s range, calculating the maximum distance (as a radius) of a vehicle

position.

The steps of the proposed algorithm are as follows: (a) cluster formulation, (b) fog node distribution and

optimization, (c) predicting the communication delay and (d) calculating the OTA update time. The OTA

update time combines the predicted propagation delay, handover delay and transmission delay for a vehicle

that travels from one location to another. Algorithm 4 shows the calculation of the OTA update time in the

proposed scheme. We now discuss the details of each step of the proposed algorithm.

Cluster Formation

In order to view different areas in the form of clusters, we divide a region based on the traffic locations,

associating different time intervals in a day. For an area, a traffic data set has been used to create clusters

of different traffic patterns. Alternatively, we may split the data set based on various intervals of time. For

the purpose of clustering, we may consider a host of features: drop off location, drop off date-time, pickup

location, pickup date-time.

Next, we apply the k-means clustering scheme on this data set. The main reasons behind the selection

of the k-means are that: it is relatively simple to implement, it suits large data sets, and most importantly, it

guarantees convergence. Moreover, our goal is to create location-aware traffic clustering for allocating fog

resources dynamically. Each fog node would be assigned to a cluster, and all vehicles in a cluster would

download OTA updates from this particular fog node. We form the traffic clusters based on the measure of

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 76

Algorithm 4: OTA Update Time Calculation

1 Input: ClusterSet C[], Pickup, Dropoff, Software Size, Speed.
2 Initialize: c centroids=[], c radius=[], c range=[].
3 for cluster, c ∈ ClusterSet C[] do
4 /* zip iterates the locations to find the centroid*/
5 c centroids[c]← list(zip(c centers[:, 0], c centers[:, 1]))[c]

6 c radius[c]← max([subtract(i, c centroids[c] for i in zip(x, y)])

7 c range[c]← Circle(c centroids[c], c radius[c])

8 end
9 /* get the clusters with distributed fog nodes*/

10 Cas[] = Fog node distribution ()
11 /* Calculate the communication delay using transfer learning
12 T p[] = communication delay predict ()
13 for Vechicle Vi do
14 distance, d← Distance(Pickup, Dropoff)
15 handover delay, ∆i← Delay(d, speed, Cas[], c range[])
16 Ti = OTA update time (∆i, Ssize

i , Fk, bwi, T
req
i , T p

i [])

17 end

“closeness” or “similarity”, where we use the distance measure to identify the closeness. The k-means algo-

rithm is preferred to implement the distance measure function using the Euclidean distance matrix for creating

traffic clusters. Although the k-means clustering has some shortcomings, such as the random selection of the

initial cluster and isolated vehicle locations, we use this technique due to its robustness over other approaches,

like the density-based approach and expectation-maximization. Moreover, we use the elbow curve method

shown in Figure 4.4(a) to identify the initial optimal number of clusters. The k-means score is measured

through an objective function that computes the intra-cluster distance relative to inner-cluster distance. The

simple implementation and the unsupervised learning approach for location-aware traffic clustering make

k-means an effective option for integration into our proposed approach.

The time complexity for each iteration of the k-means algorithm isO(k∗n∗tdist), where k is the number

of clusters, n is the number of points and tdist is the time to calculate the distance between two points. The

number of generated clusters is m. Each cluster has a diverse number of vehicles in a time interval. The next

step involves the random selection of m cluster centers. Using the Euclidean distance criterion, we calculate

the distance between the cluster center and each data point. Within a Euclidean space, the length of a straight

line between two points can be measured by the euclidean distance. Equation 4.6 illustrates the Euclidean

distance between point A(a1, a2, ..., aD) and point B(b1, b2, ..., bD).

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 77

d(A,B) =∥A,B∥ =

√√√√ D∑
n=1

(ain − bjn)2 (4.6)

Here, D represents the dimensional space. Based on the minimum distance from the data point to all

cluster centers, each of the data points is placed in a cluster center.

The objective function to assign each data point xi to the closest cluster (centroid) is as follows:

J =

M∑
i=1

K∑
k=1

wik

∥∥xi − c centers[k]∥∥2 (4.7)

Here, if the data point xi belongs to cluster k, the value of wik becomes 1, otherwise wik will be 0. In

addition, c centers[k] represents the centroid of xi data point’s cluster. This results in a minimization prob-

lem that has two parts: firstly, we need to minimize J w.r.t. wik, and treat c centers[k] as fixed. Secondly,

we need to minimize J w.r.t. c centers[k], and treat wik as fixed.

Fog Node Distribution and Resource Optimization

Once the cluster formation is done, we need to distribute the fog nodes in various regions. This fog node

distribution is the topic of this subsection.

Initially, the clusters are arranged based on Csize
i , their cluster size. Note that this represents the number

of vehicles. Next, based on their capacity, the fog nodes are arranged in an increasing order. Now, traffic

areas are arranged from high traffic areas to low traffic areas. The idea is that high traffic areas are assigned

high capacity fog nodes. Next, using equations 4.1 and 4.2, the total utilization is calculated. We assume here

that all computation requests are of equal size. The assignment of fog nodes continues in this fashion, till the

total computation requirement is fulfilled by x fog nodes. Now, we proceed to the next traffic region and try

to meet its OTA update computation demand. This process continues till we cover all traffic areas using the

available fog nodes.

Next, we evaluate the load due to traffic, and the computation capacity of each fog node. This will be

needed to determine the optimized number of fog nodes needed per cluster. We define the minimum number

of active fog nodes for each cluster below.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 78

N(Ci) = f(Csize
i) =

0 : for Csize

i = 0

x : Csize
i∑x

i=1 Cf
i

≤ 1

where, 0 < i ≤ n and x ≤ A(Ci) ≤ N(Ci).

The assumption here is that the number of fog nodes available is sufficient to process all the traffic load.

In other words, there is no traffic area that is assigned a lesser number of fog nodes than required. Once this

step is over, we are left with a preliminary number of fog nodes for each traffic area/cluster.

Algorithm 5: Fog node distribution ()
Output: Minimum number of fog nodes in each cluster

1 Cluster, C[] = {C1, C2, . . . , Cm};
2 Assigned computation, Cas

i [m][] = 0
3 Required Computation, Creq

i [m]
4 Number of clusters = m;
5 Total number of fog nodes = n;
6 struct cluster contains
7 string name;
8 int size;
9 end

10 struct cluster Cas
i [m]; /*0 < Cas

i ≤ m*/
11 for i =1 to m do
12 Creq

i ←
∑V (Ci)

j=1 pj

13 end
14 F=sort(F , F + n, greater<int>());
15 for k =1 to n do
16 for i =1 to m do
17 if Creq

i > Cas
i then

18 Cas
i ← Cf

k

19 break;
20 else
21 continue;
22 end
23 end
24 end
25 return Cas

Next, the same data set that was used before is employed for predicting the traffic load. This load is

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 79

predicted for each cluster for a specific date and accordingly, the cluster size is recalculated to get the number

of active fog nodes that are required. Now, if there is an arrival of a new load in a cluster, we would definitely

need more fog nodes to process the OTA updates. Say, the initial cluster size is> the traffic load. In this case,

we need a smaller number of fog nodes. We note that the traffic load varies according to many factors. Hence,

we observe that it would be wasteful to keep all the available fog nodes in an active state. We advise that the

fog nodes that are not being used for a particular time interval may be deactivated into a sleep state. Upon an

increase in the traffic, those fog nodes may be activated again. We acknowledge that frequent activating and

deactivating will introduce an overhead. However, we observe that traffic patterns are generally predictable.

Hence, this overhead will not be too significant. If we observe that the traffic load is > the overall capacity of

all available fog nodes, some OTA update requests could be offloaded to the cloud. This will have an effect

of decreasing the system overload [124]. As a final step, our proposed method predicts the number of fog

nodes and the particular fog nodes that need to be activated and deactivated. We discuss the selection of the

optimal number of fog nodes in Lemma 4.2.1.

Lemma 4.2.1. Assume a set of fog nodes F , that is distributed among a set of traffic regions or clusters C on

the basis of computational capacity. For each cluster Ci, the number of active fog nodes N ′(Ci) is optimal

with respect to the initially defined number of fog nodes N(Ci). Therefore, N ′(Ci) ≤ N(Ci).

Proof. Suppose we have a cluster set, where Creq
i is the required computational power for a particular cluster

size Csize
i . According to Algorithm 5, the distribution of fog nodes for each cluster should be followed by

Equation 4.8.
Creq

i

Cas
i

≤ 1 (4.8)

Therefore, ∑V (Ci)

j=1 pj(t)∑x
k=1 Cf

k

≤ 1 : where x ≤ n.

Now, the unused computational capacity, UCi = Cas
i − C

req
i .

In real-time, the cluster size may either increase or decrease.

Case 1: If the new required computational power (Creq′

i) becomes less than previous Creq
i , the new

unused computational capacity UC ′
i will be:

UC ′
i = UCi + (Cas

i − C
req′

i)

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 80

If Creq′
i∑l

k=1 Cf
k

≥ 1 and UC′
i∑x

k=(l−1) C
f
k

≥ 1 , then Equation 4.9 is always true for l(1 ≤ l ≤ x), the optimal

number of fog nodes in cluster Ci.

⇒ Creq′

i

Cas′
i

≤ 1 (4.9)

Here Cas′

i is the total computational capacity of all active fog nodes, which meets the requirement of

cluster Ci. Therefore, (x − l) is the number of inactive fog nodes and N ′(Ci) = l is the optimal number of

fog nodes which is always less than or equal to x.

Case 2: If the required computational power of a cluster increases, the additional required computational

power ACi should be less than or equal to the remaining unused capacity UCi, as we assume that the initial

cluster size Csize
i is the maximum size for each cluster. However, if it goes beyond the maximum limit, then

we propose to offload the excess computation to the cloud.

Therefore, it is proved that the number of active fog nodes N ′(Ci) becomes optimal in both cases.

Corollary 4.2.2. If N(Ci) and N ′(Ci) are positive integer numbers then

∀x;N ′(Ci) + x ≤ N(Ci) + x; where x ∈ Z+

Proof. While x is a positive integer number, the range of the value always remains between [N ′(Ci), N(Ci)+

x]. According to the mean value theorem, if f(x) is a function (f(x) = N(Ci)+x) on the closed interval [a, b]

and differentiable, then the point c in (a,b) follows the rule given below:

f ’(c) =
f(b)-f(a)
b− a

=⇒ f ’(c) =
N(Ci) +N(Ci) + x−N(Ci)−N ′(Ci)

N(Ci) + x−N ′(Ci)

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 81

The derivative of a constant value c is zero and the value is a positive integer. Thus,

=⇒ 0 ≤ N(Ci) + x−N ′(Ci)

N(Ci) + x−N ′(Ci)

=⇒ 0 ≤ 1

Therefore, it is proved that the statement of Corollary 4.2.2 remains true for any value of x ∈ Z+.

Predicting the Communication Delay

To calculate the OTA update time, we use the transfer learning approach to predict the communication delay.

A deep neural network has been used to find the delay bound. The worst-case delay is improvised to ensure

the safety bound of the communication delay. To do so, we consider two scenarios. In one scenario, the target

domain contains a training and testing dataset with known output. Thus, the target value denotes the actual

expected value and the worst-case delay is calculated from the engineer defined threshold value. In another

scenario, the target domain data set does not have the actual output. Therefore, we propose to set the target

value by taking the average of the actual delays from the training data set and calculate the worst-case delay

taking a threshold that depends on the user inputs. Algorithm 6 shows the details of selecting delay values.

The Mean Absolute Error (MAE) loss function is used to determine how far a target value is from a predicted

value.

MSE =

∑m
i=1 |Ei|
m

(4.10)

In Equation 4.7 above, Ei is (Yi − Y ′
i), where Yi is the actual value, Y ′

i is the predicted value, and m

represents the total number of training examples.

We have a source domain Ds with corresponding task Ts and a target domain Dt with target task Tt. Our

objective is to learn the conditional probability distribution P (Yt|Xt) in Dt, using the knowledge retrieved

from Ds. We compared the predicted communication delay with the worst case delay dw. We achieved 88%

accuracy on the data-set [122].

Proposition 4.2.3. For a given known domain Ds and a target domain Dt, the task is to predict the com-

munication delay for different locations in Dt. The delay value selection shows the relaxation with an upper

bound or worst-case delay for which di ≤Wi.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 82

Algorithm 6: Relaxed delay bound check()
Input : One training dataset DFs and one test dataset DFt

Output: Make decision in selecting delay value
1 set the threshold, ϵi
2 set the expected accuracy, Ar

i

3 if target domain has known output then
4 Target value, Yi = actual data
5 else
6 Target value, Yi = mean of delays from training data
7 end
8 Worst case delay, Wi = Yi + ϵi%
9 Initialize the deep neural network N;

10 Train Deep neural network using Ds;
11 Y ′

i ← Predicted delay value
12 Ap

i ← Accuracy in predicted model
13 if (Yi ≤ Y ′

i ≤Wi) && (Ap
i > Ar

i) then
14 /*carry on with in-network predicted value*/
15 di = Y ′

i

16 else
17 /*select the worst-case delay*/
18 di =Wi

19 end

Proof. Let us assume y′ is the predicted value for the given model using y′ = w.x, where x denotes the

vector of data used for training, and w is the weight. To find the distance between the predicted value and the

actual (expected) value, the mean absolute error (MSE) loss function is used.

difference =
∣∣y′ − y∣∣

Due to the absolute result, the cost function will always return the positive value for which the predicted

value will never be a negative number.

For target dataset,

Dt = (xi, y
′
i)

m
i=1

where y′i = (yi, y
′
1, y

′
2, . . . , y

′
m)T , yi is the real value and y′1, y

′
2, . . . , y

′
m are the predicted values. Now,

according to Algorithm 6, the predicted value y′i = Predictor(xi). Here, the target value is set to either yi,

or to the mean of all the delays that are defined in dataset Ds. Therefore, y′i can be higher or less than yi. If

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 83

the predicted delay remains between the targeted delay yi and the worst-case delay Wi, then y′i is selected

to calculate the OTA update time. At the same time, the accuracy of the prediction needs to be satisfied

to ensure the safety bound. However, if the prediction goes out of the user-defined worst-case delay, the

proposed algorithm suggests selecting Wi as the delay. Hence, it shows that the algorithm selects the delay

value that always maintains the uppermost bound for safe prediction.

(a) Elbow curve to determine the opti-
mal number of clusters

(b) K-means clustering on NYC taxi dataset

Figure 4.4: Clustering to find the traffic pattern and the number of vehicles

OTA Update Time Calculation

In order to calculate the OTA update time, the proposed approach tracks a vehicle’s route between its pickup

and drop off location. The vehicle’s route helps in identifying the clusters that reside along its path. As a

result, the total distance is an indirect indication of how many fog nodes can potentially provide service to the

vehicle during a software update. The propagation delay between the vehicle and the fog node is calculated

using transfer learning. We use the Wi-Fi Hotspot dataset to predict the delay for any particular location or

area. As the propagation varies from one location to another, we propose to transfer the previous knowledge

in predicting the delay to a new location. Therefore, we calculate the communication or propagation delay

for a vehicle in establishing a connection to a fog network. This helps in selecting fog nodes which incur

minimum communication delay while providing updates/connectivity to the vehicles in the cluster.

For the OTA update time calculation, we consider various constraints, and evaluate the proposed fog

node allocation scheme. It is the assumption that a software update Ssize
i in size is needed by a vehicle Vi.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 84

Moreover, the update needs to be delivered within time T req
i . We need to calculate now Ti, which is the total

required time. For this, we need to calculate the propagation delays for various traffic locations. We use the

transfer machine learning approach for this.

In addition, we also calculate ∆i, which is the delay due to handover. This quantity is based on the

distance covered by the vehicle, and can be obtained from the trip time and speed of the vehicle. Next, within

that distance, we calculate the number of fog nodes that are required. We then calculate the handover delay.

After that, the total transmission time T t
i needed for downloading the OTA update of size Ssize

i is calculated.

Next, the total time Ti that it takes to deliver an OTA update of size Ssize
i to the vehicle is calculated. The

OTA update process is described in detail in Algorithm 7. The optimization problem for updating the vehicle

software amounts to minimizing the overall OTA update time by ensuring that the propagation delay and

handover delay is minimum.

Minimize

n∑
i=1

Ti

subject to:

∀i ∈ n Ti = T p
i + T t

i +∆i.

In order to ensure that the overall OTA update time is minimized, the OTA manager will select the fog

nodes which offer minimum communication delay. Moreover, the manager will ensure that the number of

fog nodes providing the software updates to vehicles is minimized, so as to keep ∆i low.

4.2.4 Evaluation of Fog-Assisted OTA Software Update Approach

To evaluate the performance of our proposed OTA update algorithm, we conduct several experiments and

analyze the results. The broad goals for these experiments are given below:

• Using k-means clustering, we label and envision the various traffic regions, using the rate of flow of

traffic.

• Through efficient distribution, find the optimal number of fog resources required for satisfactorily

providing OTA updates to vehicles.

• Analyze the OTA update time using Mininet-WiFi, with handover delay and propagation delay as its

components. The propagation or communication delays are obtained and integrated from the predicted

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 85

Algorithm 7: OTA update time ()
Input : Ssize

i , Fk, bwi, T
req
i ,∆i

1 OTA fog manager monitors the fog node utilization
2 while node utilization is less than 1 do
3 T p

i = communication delay predict();
4 T t

i = Ssize
i /bwi;

5 Calculate the total OTA update time, Ti = T p
i + T t

i +∆i;
6 if Ti ≤ T req

i then
7 Update Manager triggers transition
8 if Update for Ssize

i failed then
9 Fk restores it

10 else
11 continue with next update
12 end
13 end
14 end

transfer learning mechanism that uses WiFi hotspot and 5G datasets.

Optimized Fog Resource Allocation

In order to comprehend the pattern of traffic and to efficiently distribute the fog nodes, we analyzed the NYC

taxi drive data set [123] for the month of March (31 days). The following features were extracted from

this data set: id, dropoff datetime, pickup datetime, dropoff latitude, dropoff longitude, pickup latitude,

pickup longitude, speed, distance, and trip time.

Initially, based on datetime and traffic location, we determine the number of clusters. For each day’s

data of the dataset, we execute the k-means algorithm to determine the number of clusters and cluster sizes.

Consider the elbow curve of Figure 4.4(a). We use this curve to find the optimal number of clusters in the

NYC data set. The optimal number of clusters is hence defined as five. We find the maximum size of each

cluster post application of the k-means algorithm for each day. Figure 4.4(b) shows the distribution of traffic

in each cluster, where each cluster has a different number of vehicles. According to our system model, we

assume that each cluster size has the maximum amount of traffic. In addition, we find the centroids of each

cluster following Algorithm 4, and calculate the distance of each vehicle from its centroid position. Finding

the maximum distance for a vehicle from a centroid in each cluster, we calculate the radius of each cluster.

Figure 4.5 shows the range of each cluster and sample points of vehicles in each cluster with the centroids.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 86

Figure 4.5: Range and size of each cluster

F1: 575

F2: 480

F4: 450

F3: 475

F5: 425

F6: 425

F7: 385

F8: 300

F9: 500

F10: 530

F11: 550

F12: 435

C1 [1615]

F12
F4
F2

1840

C2 [894] C3 [674]

C4 [1949] C5 [1228]

 C [Cluster Number] [Size]
 Fog Node : Capacity

Inactive Fog NodeX

Active Fog Node

Assigned Fog Nodes with Initial Max. Cluster Size Optimized Allocation for New Cluster Size

Predicted Cluster Size

F13: 250

F14: 330

F15: 400

F16: 300

F17: 250

F3

F8
F14
F7

1015

F17
F13
F16

800

F10
F11
F1

2155

F9

F15
F6
F5

1250

C`1 [944]

F12
F4
F2

955

C`2 [648] C`3 [690]

C`4 [1603] C`5 [815]

F3

F8
F14
F7

715

F17
F13
F16

800

F10
F11
F1

1655

F9

F15
F6
F5

850

×
× ×

×

×

(a) Resource allocation example

0

20

40

60

80

100

C1 C'1 C2 C'2 C3 C'3 C4 C'4 C5 C'5

R
e

s
o

u
r
c
e

 i
n

 p
e

r
c
e

n
t
a

g
e

 (
%

)

Clusters

Resource utilized Resource unused Net-reserved (saved) resource

(C → Initial cluster with max. capacity, C'→ New cluster using prediction)

(b) Allocated fog nodes utilization in different
clusters

Figure 4.6: Fog nodes distribution using Algorithm 2 and resource utilization calculation in different
clusters

Using Algorithm 5, we calculate the initial cluster size of diverse locations at specific times. Please

see Figure 4.6(a) for the results. This experiment was done with the number of fog nodes equal to 17. The

capacities of various fog nodes are shown in Figure 4.6(a).

The fog nodes are sorted in a descending order based on their capacities and then distributed among

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 87

different clusters. This process is carried out till all the cluster requests are satisfied by the fog nodes. We do

note that the traffic size in a cluster does not always take the maximum value. Hence, using neural network

machine learning, we predict the cluster size. This has the effect of optimizing the fog resources at hand.

The assumption here is that the predicted cluster size is not greater than the initial cluster size, leading to

a smaller number of fog resources. The number of available fog nodes in a cluster is enough to handle all

incoming traffic to that cluster. If the fog nodes do not have enough capacity to accommodate the vehicles in

that cluster or if any fog node(s) becomes faulty, the traffic is offloaded to the cloud data center. The proposed

framework can handle variable traffic. If the incoming load in any cluster is less than its capacity, then the

idle fog nodes will be put on inactive mode. Later on, when the traffic increases, the inactive fog nodes will

become active according to the new requirement.

It is our advice that the fog nodes that are not needed to service the requests of the newly sized cluster

be kept in an inactivate state. These inactive fog nodes become part of the net reserve of fog resources,

as shown in Figure 4.6(a). We note that this optimization of fog nodes maximizes resource utilization and

minimizes power consumption. For the next experiment, we define three different indicators in Figure 4.6(b):

fog resource utilized, fog resource unused, and fog net reserve. The resource utilized symbolizes the total

amount of used resource of all fog nodes in a cluster at a particular time. The unused resource determines the

amount of resource that is allocated, but not in use. It is inversely proportional to the resource utilization of

fog nodes. On the other hand, the net reserve resource is the actual resource (not allocated) that can be used

for other purposes. Therefore, if the resource utilization and unused resource decrease, then the net reserve

resources will also increase, and it can be distributed following Algorithm 5. The symbols C1 - C5 correspond

to the clusters before application of our proposed algorithms and the symbols C’1 - C’5 refer to the clusters

after application of our proposed algorithms. From Figure 4.6(b), we observe that for each cluster, we see an

average of 93.69% fog node utilization upon allocation, 6.31% of unused fog resources, and the net reserve

(after optimization) of fog resources. We observe that there is a 26.57% increment in the overall net reserve

fog resources on average, which reflects good system performance as a result of our proposed approach.

Communication Delay Prediction

In this experiment, we discuss the transfer learning approach to predict the propagation/communication delay,

which is used to calculate the final OTA update time for different software sizes, vehicle locations and cellular

technologies. We employ a neural network model for this delay prediction.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 88

(a) Delay prediction (b) Delay in NYC dataset using transfer learning

Figure 4.7: Propagation delay prediction using transfer learning

Figure 4.8: Propagation delay prediction using 5G dataset [125]

In order to train the neural network model, we used the European coverage data of the WiFi hotspot

signal strength dataset [122] and a 5G dataset [125]. WiFi hotspot signal strength dataset has been collected

by a crowd-sourced application called netBravo. This dataset includes a grid shape and a csv file based on

the GRID ETRS86 reference system. We split the dataset into two parts: 75% of the data is used to train

the model, while 25% of the data is used to test the model. On the other hand, the 5G dataset is a 5G

trace collected from a major Irish mobile operator. This dataset is composed of static and dynamic mobility

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 89

Figure 4.9: Propagation delay prediction with Transfer Learning and Neural Network on 5G dataset

patterns. It has been created on the basis of two applications: video streaming and file download.

In terms of machine learning models, we used Linear Regression, XGBoost, Random Forest Regressor

and Deep Neural Networks for training. Among all of these models, the Deep Neural Network demonstrated

better prediction results. Specifically, in order to predict the communication delay, we used a deep neural

network with three hidden layers, with each hidden layer having 256 nodes. On the output layer, we employed

a linear activation function.

The WiFi hotspot signal strength dataset has features such as: x, y, type, upload, download and technol-

ogy. X and y are the coordinates of the cell grid, type represents whether the connection is WiFi or cellular,

technology may be of five types: 2.5 & 5 GHz in case of WiFi and 2G, 3G & 4G in case of cellular. Upload

& download are the upload and download speeds respectively, in Kbps.

Figure 4.7(a) shows the performance of our neural network on the European coverage data of the WiFi

hotspot signal strength data-set. The red line represents the predicted value, and the blue line represents the

actual value. As the figure shows, most of the observations have a delay between 40 ms and 150 ms. In a

real time environment, the communication delay mostly follows this interval. In some cases, the delay goes

above or below this range. The x-axis represents the dataset samples. Each sample represents a point in the

geographical area given in the WiFi hotspot dataset. Figure 4.7(b) shows the predicted communication delay

in the vehicular network. The x-axis represents a point in the geographical area given in the NYC dataset.

Now, for each coordinate in NYC dataset, we have one predicted value representing the communication delay

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of epochs

0

10

20

30

40

50

60

Tr
ai

ni
ng

 ti
m

e
(s

)

with transfer learning
with neural network

Figure 4.10: Transfer learning performance on training time

between a fog node and the vehicles in its cluster.

Figure 4.8 shows the delay prediction performance using the 5G dataset. Figure 4.9 depicts the perfor-

mance comparison between the ML models: with and without transfer learning, using the 5G dataset. The

Transfer Learning approach has been compared with a neural network model consisting of one input layer,

three hidden layers and one output layer. The input layer has 128 nodes, the hidden layers have 64 nodes

each and the output layer has 1 node. As shown in Figure 4.9, the transfer learning prediction is much closer

to actual values. This is because, for the model with neural network, we had less data to train the model. In

the transfer learning model, we used an already trained model, hence there was better training. The accuracy

achieved with neural network is 72%, compared to the 81% achieved with transfer learning.

To understand the impact of transfer learning on calculating the OTA update time, we compare it to

the regular approach of DNN without transfer learning. Figure 4.10 shows a performance comparison for

the training time between the “transfer learning” and the empirical approach. We record the training time

for different number of epochs. The dataset is divided into a number of batches (with default batch size

32), and each epoch feeds the required number of batches to pass through the entire training dataset once.

The machine learning algorithm updates the internal model parameters in each epoch to improve the model

accuracy and training loss. In transfer learning, we add the new training data on a pre-trained model whereas

the other approach appends the new data in the earlier training data. In Figure 4.10, it is clearly visible that the

transfer learning approach requires lower training time in comparison because of its pre-trained model. The

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 91

training time shows a consistent difference between these two approaches as transfer learning uses the pre-

trained model. However, the difference gradually decreases when the required number of epochs increases for

training a larger dataset. Therefore, if the training dataset of the target domain is not too large, the proposed

approach with transfer learning will benefit the model in terms of both training time and accuracy.

Figure 4.11: Mininet-WiFi network architecture for cluster 3

OTA Update Time Calculation using Mininet-WiFi

This experimental subsection discusses the implementation of the proposed OTA update scheme on the

Mininet-WiFi [88], which supports vehicle mobility and wireless communication under the simulated fog

architecture. Mininet provides a simple and inexpensive network testbed for developing OpenFlow appli-

cations compared to other emulators. The architecture provides the specification of flows following the

software-defined network (SDN) and allows us to add a network of virtual hosts, switches, controllers, and

links. The flow specification contains the link delay, bandwidth, vehicle speed, network topology, and switch

information. The simulation calculates the OTA update time for different software sizes exploring the re-

quired handover delay.

This experiment was performed employing five cars/vehicles and three fog nodes in a 250x250 meter

area. The Mini net-WiFi network uses the 802.11g standard for transmitting data over a wireless network.

The bandwidth of the WiFi-network is 2.4 GHz and the maximum data transfer rate is 50 Mbps. We attempt

to find out the OTA update time for software of various sizes within a cluster, which is cluster 3 shown in

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 92

0 1 2 3 4 5 6 7 8 9 10
Time (s)

70

60

50

40

30

20

Sig
na

l s
tre

ng
th

(dB
m)

car1
car2
car3
car4
car5

Figure 4.12: Signal strength of each car over the time

Table 4.2: Mininet-WiFi network parameters

Artifacts/Parameters Values
Number of cars/vehicles 5
Number of fog nodes 3
Vehicle speed 14m/s or 36km/hr
Bandwidth of links 50Mbps
Predicted propagation delay (ms) 76.030876, 70.1916, 64.80096,

72.4002 and 97.80364
Propagation model logDistance
Association control ssf (Strongest-Signal-First)
Range of each fog node 30m
Interface Wlan0, Wlan1

Figure 4.6(a). The details of the experimental architecture are shown in Figure 4.11.

Our proposed solution evaluates the effectiveness of the predicted communication delay by calculating

the handover delay and OTA update time in the presence of multiple traffic requests in the network. Table 4.2

lists all the network parameters used.

For this experiment, we take into account five cars moving at a speed of 14m/s (meters/second) from

their pickup locations to their drop-off locations. Each car will be connected to a fog node when it goes under

its coverage area. Once the vehicles start moving from one position to another, the signal strength of the

fog node connections also varies over time. The ranges of fog nodes overlap where the vehicles select the

strongest-signal connection. We find the signal strength after every second for each car, when it changes its

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 93

100 200 300 400 500 600 700
Number of delivered Packets (50KB/pkts)

1000

2000

3000

4000

5000

6000

O
TA

 u
pd

at
e

tim
e

(m
s)

Predicted OTA update time (ms)
Worst case OTA update time (ms)

(a) OTA update time for different data size

100 200 300 400 500 600 700
Number of delivered Packets (50KB/pkts)

50

60

70

80

90

100

110

Av
g.

 d
el

ay
 (m

s)

Avg. propagation delay (ms)
Avg. handover delay (ms)

(b) Handover and propagation delay

Figure 4.13: OTA update time and handover delay

position towards the drop-off location. Figure 4.12 shows the variations of signal strength for 10 seconds.

During times equal to 5 and 8 seconds, the signal strength goes to its lowest, and each car performs a handover

to connect with the strongest fog node signal. Thus, we see a gradual increase in fog node signal strength.

This indicates a successful handover in the overlapping region.

Simultaneously, the mobility starting and ending points are added for each car and the speeds of the cars

are set at 10m/s. When the cars start moving while following their route, they get connected in the middle of

the route with different fog nodes, such as fog node 13, 16, and 17. At the beginning, all the cars remain under

the coverage of fog node 13 through interface Wlan0, while the other interfaces remain off. The bandwidth

of the links is set to 50 Mbps.

During the time the car is mobile, we calculate the total OTA update time by varying the number of

transmitted data packets. We note that owing to variations in the distance, the data transmission rates may

fluctuate. We assume that an update consisting of a number of data packets starting from 100 to 500, is

pushed from fog nodes to the cars, where each data packet is equivalent to 50Kb. We set the predicted

propagation delays in the transmission flow, which are 76.030876, 70.1916, 64.80096, 72.4002, and 97.80364

ms, respectively. Based on the OTA update Algorithm 7, we calculate the data transmission time measuring

the time taken to complete the update transfer. As the last step, the propagation time and transfer time are

subtracted in order to obtain the handover delay. The handover delay (∆i) includes the following delays:

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 94

∆i = Drang +Dreq +Dres +Dex (4.11)

Here,

• Drang = Time required for initial ranging process. This finds out the fog nodes with a maximum

coverage area.

• Dreq = Time required for requesting to connect to a new node.

• Dres = Time required to register with target fog node.

• Dex = Time required for message exchange.

In order to make a comparison with the worst-case scenario of propagation delay, we calculate the OTA

update time maintaining the same procedure as before. In this case, the worst-case time is selected from the

maximum of all the predicted propagation delays.

The results of this experiment are shown in Figure 4.13. Looking at Figure 4.13(a), we see that the OTA

update time is 940.31 ms for 100 data packets, and 5437.18 ms for 700 data packets. With the worst-case

propagation delay, the OTA update time increases to 1037.34 ms and 5599.45 ms for 100 and 700 packets,

respectively. We observe that the average overall OTA update time is reduced by 5.34%.

Figure 4.13(b) shows the comparison of the average predicted propagation delay and the average han-

dover delay for all five cars. When the number of delivered packets varies, the average handover delay

changes with respect to propagation delay. We observe from the figure that the handover delay fluctuates,

leading to a high value when the propagation delay is high, and low value when the propagation delay is low.

The intuition is that the correct prediction of the propagation delay can help to determine the handover delay

and overall OTA update time. Therefore, the proposed scheme using transfer learning offers a better solution

in calculating the OTA update time for making any decision at an earlier time. It helps to decide whether the

OTA update process should proceed or not. The transfer learning approach benefits in training the model to

find the expected communication delay for which the OTA update time calculation becomes faster.

We conduct another experiment to see the effect of varying the number of vehicles in the proposed

architecture. The number of vehicles was varied from 10 to 100, and the corresponding OTA update time, the

sum of propagation delay and handover delay were recorded. The result of this experiment is shown in Table

4.3. The experiment sends 100 data packets for each run where each data packet comprises a 50 Kilobytes

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 95

Table 4.3: Effect on OTA update time for increasing number of vehicles

Vehicles # Fog Nodes Ti (ms) Delay (ms) (T p
i +∆i)

10 3 1060.82 174.5
20 3 1081.43 184.2
30 3 1064.39 163.1
40 3 1095.34 175.3
50 3 1130.10 205.1
60 3 1125.21 169.4
70 3 1136.26 167.6
80 3 1159.77 186.4
100 3 1168.43 175.4
10 4 1067.34 176.79
20 4 1074.67 174.69
30 4 1092.3 190.1
40 4 1106.5 198.57
50 4 1100.28 177.5
60 4 1117.23 186.34
70 4 1128.52 203
80 4 1136.41 204.88
90 4 1149.38 214.13
100 4 1150.54 206.7

of zero inside of it. We observe that the average OTA update time increases when the number of vehicles

increases. When the number of fog nodes increases from three to four, the propagation delay decreases, but

the handover delay increases lightly. Therefore, the OTA update either remains close to the previous result

or starts rising when the number of cars increases. The reason behind the increased OTA update time is an

increase in the overall resource utilization and communication delay. With a 95% confidence level in OTA

update times listed in Table 4.3, the upper limit of the confidence interval (CI) is 1130.75ms, and the lower

limit is 1099.00ms. In the case of delay calculation, the standard mean of delay is 184.64ms, and the error is

almost 3.5% where the estimated upper CI is 192.09ms and the lower CI is 177.19ms for a 95% confidence

level. The confidence interval at 95% produces a small bound for OTA update time and delay calculations.

From these results, we conclude that our proposed approach is scalable and can offer the desired performance,

even for a large number of vehicles.

Effect upon varying packet sizes and vehicles

To understand the impact of varying the number of vehicles on the software update process, we measure

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 96

the average throughput after latency calculation. The throughput (DRi) is the total amount of transferred

data from fog nodes to any vehicle with respect to time. Equations 4.4 and 4.5 determine the throughput for

sending different number of packets (Pktjsize) against varying traffic size.

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100 110

A
v
g
.

th
ro

u
g
h
p
u
t

(m
b
p
s
)

Number of cars

Avg. Throughput (100Pkts) Avg. Throughput (200Pkts)
Avg. Throughput (300Pkts) Avg. Throughputt (400Pkts)
Avg. Throughput (500Pkts) Avg. Throughput (600Pkts)
Trendline for 100Pkts Trendline for 200Pkts
Trendline for 300Pkts Trendline for 400Pkts
Trendline for 500Pkts Trendline for 600Pkts

Figure 4.14: Effect on throughput for increasing number of vehicles and software sizes

10 20 30 40 50 60 70 80 90 100
Number of cars

40

50

60

70

80

90

100

Pro
pa

ga
tio

n/c
om

m.
 de

lay
 (m

s)

Predicted delay using transfer learning
Actual delay (simulated) with neural network

Figure 4.15: Actual communication delay comparison with predicted delay using Transfer Learning

Figure 4.14 show the average throughput against different software sizes for an increasing number of cars.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 97

It is visible that the throughput changes while varying the number of vehicles. Moreover, we observe that the

throughput is maximized in most cases when the traffic size (number of cars) remains small. For example,

when the number of cars is 10, the average throughput for different software sizes is about 45 Mbps. The

standard deviation among these throughputs is also small. However, when the number of cars increases, we

see that the average throughputs for small software sizes are comparatively higher than the larger software

sizes. For updating the software sizes of 500 and 600 packets, the average throughput is always below 40

Mbps due to larger resource demand with propagation delay. On the other hand, the trend line for 100 packets

shows how the throughput changes with a small deviation for low resource utilization and low propagation

delay. Similarly, the trend line for 800 packets has a larger deviation than the others.

Apart from this, we compare the predicted communication delay for an individual car with the actual

communication delay (simulated), where the predicted communication delay is either close to the actual value

or a little higher than the actual. Figure 4.15 shows the comparison between the predicted communication

delay using transfer learning and the actual communication delay (simulated) with neural network.

4.3 ML-based Fog-Assisted Embedded Applications Development Framework

4.3.1 Resource-intensive ML-based Next-Gen Embedded Applications

The rapidly evolving landscapes of embedded systems and Cyber-physical Systems (CPS) have seen a sig-

nificant upsurge in the incorporation of Deep Neural Networks (DNNs). Innovative advancements in fields

like autonomous driving, robotics, unmanned aerial vehicles (UAVs), industrial automation, and the Internet

of Things (IoT) owe their success to DNNs due to their unparalleled proficiency in handling intricate tasks

with precision [126], [127].

However, with the demand for intelligent systems surging, the architecture of computing platforms has

been forced to evolve, especially to accommodate the necessities of faster computations vital for real-time

decision-making [128], [129]. Delegating the execution of DNNs to distant servers, such as those in cloud

configurations, might introduce significant latency. This delay, primarily induced by the transmission of

voluminous data over networks, often culminates in prolonged processing intervals. Practical scenarios, such

as UAV operations in hostile environments, further accentuate these challenges due to factors like weather

adversities affecting both communication and processing [130].

Herein, fog computing, a paradigmatic extension of cloud computing, offers a promising solution. By

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 98

provisioning computational capabilities at the edge of the network, closer to data sources, fog computing

effectively diminishes latency, enhancing application response times. This mode of computing encompasses

edge computing, where the computational processes are shifted to edge devices. These devices, being proxi-

mate to the data sources, further reduce the latency, providing a more distributed computing framework.

Deploying DNN models, especially on edge devices that form an integral part of the fog computing

framework, is not devoid of challenges. The constraints of computational power and memory on these de-

vices often preclude the deployment of extensive DNN models. For instance, the large size and computational

demands of Convolution Neural Networks (CNNs), a variant of DNNs, make them unsuitable for singular

core edge devices [131]. The traditional approach, wherein machine learning-driven CPS applications op-

erated sequentially on single-core processors or devices, is rapidly becoming obsolete [42]. The pressing

requisites of advanced applications have necessitated the shift towards parallel computing.

4.3.2 Need for Parallelizing ML Model Training on Embedded Architectures

• Resource Limitations: Embedded systems often have limited computational and memory resources.

Therefore, parallelizing the training process helps to reduce the overall computation.

• Timing Constraints: Training a large and complex DNN takes significant time, and embedded appli-

cations often have timing constraints. Parallelizing the process lowers the training time by partitioning

the workload across multiple processors.

• Complex Models: As model size and complexity continue to grow, parallelizing the training on multi-

ple processors can manage the complexities of the workload.

• Improved Accuracy: Training a DNN on large datasets can potentially improve the accuracy, compared

to training on smaller datasets. Therefore, the parallel training architecture can facilitate achieving

improved accuracy.

4.3.3 Challenges in Model Parallelism and Performance Metrics

Distributed parallel computing, particularly in the realm of DNNs, faces multiple challenges. At the forefront

are architectural dependencies and communication latency, which critically shape the performance outcomes

of models [40]. Overlooking these elements could precipitate unbalanced workloads and resource inefficien-

cies. The allure of model parallelism, with its promise of enhanced performance, is nonetheless fraught with

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 99

its own set of complications. The task of partitioning and coordinating DNNs across a range of edge devices

is a challenge. The constricted bandwidth and computational prowess of edge devices can further reduce the

efficiency of parallelism.

In our pursuit to optimize performance on edge devices, this research underscores the need for efficient

DNN model partitioning and pipelined model parallelism. These considerations are crucial for harnessing

the full potential of edge devices within the fog computing framework.

Another pivotal metric in assessing the computational demands of DNNs is FLOPs, or floating-point

operations. FLOPs enumerate the arithmetic operations (like additions, subtractions, multiplications, and

divisions) a neural network undertakes during its training or inference phase. This metric is indispensable for

gauging the computational footprint of a neural network and often serves as a yardstick for contrasting the

efficiencies of diverse models.

To illustrate this we consider the AlexNet deep convolutional neural network [44]. The FLOPs needed

to compute the output of each layer can be approximated by tallying the arithmetic operations undertaken

by that layer. For instance, the inaugural convolutional layer of AlexNet comprises 96 filters, each spanning

11×11. The layer’s input is a 227×227×3 image, employing a stride of 4 and zero padding. The operations

needed to generate the layer’s output can be broken down as follows:

FLOPs: FLOPs (floating-point operations) is a measure of the number of arithmetic operations (such

as additions, subtractions, multiplications, and divisions) performed by a neural network during training or

inference. It is used to estimate the computational cost of a neural network and is often used as a metric for

comparing the efficiency of different models. For example, in the case of AlexNet [44] deep convolutional

neural network, we can estimate the FLOPs required to compute the output of each layer by counting the

number of arithmetic operations performed by the layer. The first convolutional layer of AlexNet has 96

filters, each with a size of 11 × 11. The input to the layer is a 227 × 227 × 3 image. The layer uses a stride

of 4 and padding of size 0. To compute the output of the layer, we need to perform the following operations:

Calculation of FLOPs: We have to apply convolution operation to the input image using all filters. For

example, Convolution layer one has 96 filters. For each filter, we perform 11× 11 multiplications. Since the

output size is 55× 55× 96, the total number of operations:

FLOPs for Conv = Number of Kernel× Kernel Shape× Output Shape

= 96× (11× 11× 3)× (55× 55) ≈ 105M [conv1]

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 100

FLOPs for Fully Connected Layer = Input Shape× Output Size

= (6× 6× 256)× 4096 ≈ 37M [FC6]

• Number of Kernel: the number of filters in the first layer (96)

• Kernel Shape: the size of each filter (11 x 11 x 3)

• Output Shape: the size of the output tensor (55 x 55 x 96)

The total FLOPs for all AlexNet layers is approximately 725M [132], as shown in Table 4.4.

Table 4.4: FLOPs calculation for AlexNet

Layer Input Size Filter Output Size FLOPs
Conv1 227x227x3 11x11x3 55x55x96 105,705,600
Conv2 27x27x96 5x5x48 27x27x256 223,948,800
Conv3 13x13x256 3x3x256 13x13x384 149,520,384
Conv4 13x13x384 3x3x192 13x13x384 112,140,288
Conv5 13x13x384 3x3x192 13x13x256 74,760,192
FC6 6x6x256 4096 37,748,736
FC7 4096 4096 16,777,216
FC8 4096 1000 4,096,000
Total - - - 725,147,008

The significance of FLOPs extends beyond just model evaluation. It serves as a predictor for estimating

model training durations.

Estimating Training time from FLOPs:

• Calculate the total number of iterations: Assuming a batch size of 128 and a total of 1000 images, we

can estimate the number of iterations required to complete one epoch of training. Specifically, we will

have 1000/128 = 7.8125 iterations per epoch. Since we train our model for 100 epochs, the required

total number of iterations will be 7.8125 ∗ 100 = 781.25.

• Calculate the total number of FLOPs: As we calculated before, the total number of FLOPs required

to process one image through the AlexNet model is approximately 725 million. Since we are using

a batch size of 128, the total number of FLOPs per iteration is 725 million∗ 128 = 92.8 billion.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 101

Therefore, the total number of FLOPs required for training is 92.8 billion ∗ 781.25 = 72.4 trillion

FLOPs.

• Estimate the training time: Given a Raspberry Pi 4 with 4GB RAM and 1.5 GHz quad-core ARM

Cortex-A72 CPU, the peak performance is around 2.8 GFLOPS. Each core can perform two floating-

point operations per cycle, leading to a theoretical 3.0 GFLOPs; however, considering real-world

factors, we assume a 2.8 GFLOPs peak performance. We can estimate the training time by dividing

the total number of FLOPs by the processing power of the device:

Training time = Total FLOPs/Device Performance

= 72.4 trillion/2.8 billion FLOPS ≈ 25,857 seconds

4.3.4 Problem Formulation and Optimization

Partitioning a DNN model M across a set of N edge devices, each with different computational capacities,

is a challenge. The goal is to minimize the total execution time of the model. Mathematically, this can be

expressed as:

min
P

L∑
i=1

N∑
k=1

xik · Tik (4.12)

Where P = {xik} is a set of binary variables representing the assignment of each layer i to an edge

device k. This assignment must satisfy certain constraints:

Capacity constraint: The computational workload of each layer assigned to an edge device must not

exceed the computational capacity of that device:

L∑
i=1

Fi · xik ≤ Ck, ∀k ∈ 1, 2, . . . , N (4.13)

Communication constraint: The communication time for each layer assigned to an edge device must

not exceed the worst-case execution time of the layer on an edge device with minimum computational capac-

ity Cworst:
L∑

i=1

∆ik · xik ≤ Tworst, ∀i, k (4.14)

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 102

Partitioning constraint: Each layer must be assigned to exactly one edge device:

N∑
k=1

xik = 1, ∀i ∈ 1, 2, . . . , L (4.15)

Here, Fi is the number of FLOPs of layer i in the DNN model M , ∆ij is the communication overhead

between layer i and edge device k, which includes both the communication costs associated with partitioning

the DNN layers across edge devices and the communication costs incurred during the training process, such

as exchanging weight updates and aggregating them among workers. Moreover, Ck is the computational

capacity of the k-th edge device, D is the input data size, Tik is the execution time of layer i on edge

device k, Tworst is the worst-case execution time of layer i on an edge device with minimum computational

capacity Cworst in the considered network, and L is the total number of layers in the DNN model. The

objective function seeks to minimize the total execution time of the model across all edge devices by finding

the optimal assignment of layers to edge devices, subject to capacity and communication constraints. The

partitioning constraints ensure that each layer is assigned to exactly one edge device.

In our work, we utilize mixed-integer linear programming (MILP) solvers such as IBM CPLEX or Gurobi

to handle this optimization challenge. These solvers efficiently handle binary variables, linear constraints,

and integer constraints. We further enhance the solution process by introducing problem-specific heuristics.

The outcome aims to optimize the DNN model’s performance on edge devices with restricted computational

resources and bandwidth.

4.3.5 System Architecture and Assumptions

Our proposed system model for DNN model partitioning focuses on pipelined model parallelism, utilizing

a heterogeneous multiprocessor edge device platform tailored for DNN deployment. The primary aim is

to optimally partition the DNN model into sub-models and allocate them among edge devices or multi-core

processors, ensuring parallelism. We assume that a multiprocessor edge device is equipped with several cores

designed for parallel computation, and it could either be a general-purpose or an embedded processor.

Using the AlexNet CNN architecture as a baseline, our methodology divides the CNN model into sub-

modules, mapping them for parallel execution using a task graph model. The parallel execution of these

sub-modules should generate the same output as running the program on a single processor. The design

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 103

architecture for the proposed DNN model partitioning for cyber-physical or embedded applications is illus-

trated in Figure 4.16. It is assumed that DNN applications require faster model training to meet their task

requirements, which is facilitated by N number of edge devices or processors. For executing partitioned

sub-modules, a task graph, represented as a directed acyclic graph (DAG), captures computational tasks,

communication costs, and dependencies between the DNN model layers. The proposed DNN model par-

titioning algorithm determines the optimal number of partitions for the DNN model while considering the

available edge resources and their communication times. The tasks controller then analyzes the partitioned

modules and schedules their execution in a pipeline fashion to reduce computation time.

Figure 4.16: Design overview for DNN model execution on edge devices

4.3.6 Proposed Solutions for Model Partitioning and Pipeline Execution

In our work, we present a strategy for determining the number of partitions needed for the parallel execution

of the Deep CNN model on edge devices. The partitioned modules are then allocated to the available edge

devices, taking into account their computational capabilities and the inter-process communication latency.

By integrating both data parallelism and model parallelism, our approach aims to achieve faster computation

as opposed to the traditional sequential DNN model training.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 104

Model Partitioning

Central to the concept of CNN model parallelism are its layers, showcased in Figure 4.17. These layers

consist of convolutional and fully connected components, which can be spread across multiple processors to

optimize model training.

However, dividing all the layers equally may result in increased communication overhead during training.

Therefore, identifying the ideal number of partitions is a crucial aspect of deep learning model parallelism.

We propose Algorithm 8 to determine the optimal partitions for running CNN layers on edge devices.

Algorithm 8: Finding Optimal DNN Model Partitions for Edge Devices
Input : DNN model M , Number of partitions S, Set of edge devices N , Computational

capacity Ck, Input data size D, Communication overhead ∆ik

Output: Optimal partitions of Model M for edge devices
1 begin
2 Compute FLOPs Fi of each layer in M
3 Compute total FLOPs Ftotal =

∑L
i=1 Fi

4 Compute the execution time Ti for each layer i
5 Compute Tworst for M on a single edge device with capacity Cworst = mink Ck

6 Initialize optimal partitions P ∗ = {} and obj∗ =∞
7 for n = 1 to S do
8 Initialize binary variable xi,k for each layer i and edge device k
9 Define objective function objn

10 Define capacity constraint for all k ∈ N
11 Define communication time for all i and k
12 for i = 1 to L do
13 for each k in {1, 2} within N do
14 Define communication constraint
15 end
16 end
17 Solve MILP problem to find Pn and objn
18 if objn < obj∗ then
19 Set P ∗ = Pn and obj∗ = objn
20 end
21 end
22 return P ∗

23 end

The proposed algorithm aims to optimize the training time of a deep neural network (DNN) model by

partitioning it across a set of edge devices. The algorithm requires the DNN model, the number of edge

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 105

devices, and the computational capacity and communication overhead of each device as input. Initially, the

algorithm computes the FLOPs of each layer and the worst-case execution time of the model on a single-edge

device with the minimum capacity. It then initializes the optimal partition and best objective value to empty

and infinity, respectively.

Next, the algorithm sets up a mixed-integer linear programming (MILP) problem for each layer and

edge device with binary variables. The objective function is set to minimize the total execution time of

the model, taking into account the FLOPs of each layer and the time taken to execute the layer on each

edge device. Capacity and communication constraints are added to prevent the computational workload and

communication time from exceeding the available resources.

The algorithm then solves the MILP problem for each partition to determine the optimal partition and

corresponding objective value. If the objective value is lower than the current best objective value, the optimal

partition and best objective value are updated accordingly. The algorithm continues this process for each

partition and returns the optimal partition with the minimum execution time. This approach can enhance the

performance of DNN models on edge devices with limited computational resources and bandwidth.

An Illustrative Example

To illustrate our proposed partitioning algorithm, we provide an example of how to optimally partition the

AlexNet DNN model across four edge devices with computational capacities of approximately 200M, 100M,

70M, and 50M FLOPs/s. We first calculate the FLOPs for each layer of the AlexNet model, as shown in

Table 4.4, with a total of approximately 725M FLOPs for all layers. We then compute the execution time for

each layer on each device using the FLOPs and the computational capacity of each device, as presented in

Table 4.5. To determine the optimal partitions for the AlexNet DNN model, we continue with the following

steps:

• We compute the worst-case execution time of AlexNet on a single edge device with a capacity of

Cworst = min(Ck): Cworst = 50, 000, 000 FLOPs/s (capacity of Device 4), and Tworst=Ftotal/Cworst

=14.503 s.

• For each partition n (in this case, we try with S = 4 possible partitions), we define the capacity and

communication time (assuming 0.1s) constraints.

• Finally, we run the MILP optimization, which yields the optimal partition P ∗ and the best objective

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 106

Table 4.5: Execution time of AlexNet layers on different edge devices

Layer FLOPs Device 1 Device 2 Device 3 Device 4
1 238,878,720 1.19 s 2.37 s 3.56 s 4.74 s
2 1,074,042,624 5.37 s 10.73 s 16.10 s 21.46 s
3 231,211,264 1.16 s 2.32 s 3.47 s 4.63 s
4 231,211,264 1.16 s 2.32 s 3.47 s 4.63 s
5 173,408,256 0.87 s 1.73 s 2.60 s 3.46 s
6 86,704,640 0.43 s 0.87 s 1.30 s 1.73 s
7 41,943,040 0.21 s 0.42 s 0.63 s 0.84 s
8 2,097,152 0.01 s 0.02 s 0.03 s 0.04 s

value obj∗. However, many factors, such as the choice of objective function and communication

constraints, can affect the performance of the partitioning algorithm in practice.

Table 4.6: Optimal partitioning of AlexNet DNN model over four distinct edge devices

Partition Number Layers Devices Execution Time
1 1, 2, 3, 4, 5 1 12.03 s
2 6, 7 2 0.137 s
3 8 3 0.007 s

Total 12.202 s

The optimal partitioning result of the AlexNet model is presented in Table 4.6. The optimization algo-

rithm has determined that the optimal partitioning of the AlexNet model is to divide it into three partitions,

with the first partition consisting of layers 1 to 5, the second partition consisting of layers 6 and 7, and the

third partition consisting of layer 8. This partitioning results in an overall execution time of 12.202 seconds,

which is faster than the worst-case execution time on a single-edge device. This shows the advantage of using

edge computing and optimal partitioning to speed up the execution of DNN models.

Pipelined Execution

According to the designed architecture shown in Figure 4.16, the task controller is responsible for distributing

the partitioned modules of the CNN model to different processors based on edge resources. Algorithm 8 is

responsible for finding the optimal partitions of the model, as shown in Figure 4.17 for the AlexNet model.

This model consists of five consecutive convolutional layers and three fully connected layers. For better

performance, data parallelism is more effective in training convolutional layers, while model parallelism is

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 107

Figure 4.17: Pipelined model parallelism on edge devices

more suitable for dense or fully connected layers. The framework implements data parallelism by duplicating

the convolution layers on computing processors to run input batch data in parallel. On the other hand, the

fully connected layers are split into two parts, and model parallelism is applied to train them across the model

dimension.

To achieve efficient data parallelism and optimize processor utilization when training the convolutional

layers, we propose implementing a pipeline execution of mini-batch input data. Figure 4.17 illustrates this ap-

proach, where each processing core handles an input batch data and runs the partitioned model. For instance,

if a multi-core edge device is assigned to execute a partitioned module containing all convolution layers, the

first core sequentially runs the convolution layers using the first input batch data, while other processing cores

begin computing subsequent input batches using the pipeline approach. As soon as the first core completes

the execution of the last layer, the next available core immediately starts executing the next input batch.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 108

Model Training on Edge Devices

The proposed approach in Figure 4.17 for DNN model training employs a dispatcher that sends input data

batches to dense layers once convolution layers complete their training. Fully connected layer partitions re-

ceive the batch data for training the sub-module, and the dispatcher sends the input batch data sequentially to

maintain the forward and backward propagation. During training, the number of workers, w, is determined

based on the number of available processors. Each worker is assigned to an edge device with the correspond-

ing partitioned portion of the model. Workers update weights using gradient descent, and the primary worker

aggregates weights from all other workers. The performance of the optimal number of partitions is evaluated

based on the communication latency and execution time of each layer, and memory usage is monitored for

under-utilization or overloading.

4.3.7 Evaluation of Proposed Model Partitioning Framework

Environment Setup and Dataset:The proposed framework’s performance was evaluated for image object

detection on an embedded system functioning as an edge device. The experiments were conducted on various

architectures, including AlexNet [44], ResNet [133], and VGG-16 [134], considering their relevance, compu-

tational complexity and popularity. Experiments were performed on the NVIDIA Jetson Nano [135], which is

equipped with Quad-core ARM Cortex-A57 processors. The operating system used for the experiments was

Ubuntu 20.04 LTS, and the Jetson Nano had 4 GB of 64-bit LPDDR4 memory. In this experiment, an image

dataset [136] for plant leaf disease detection is utilized, consisting of over 50,000 images, each classified into

one of 38 disease classes. The dataset is divided into training and testing sets, with 80% for training and 20%

for testing, after resizing the images to 227× 227.

Efficiency Evaluation

The purpose of this experiment is to assess the effectiveness of different CNN architecture partitioning tech-

niques for model parallelism, with the goal of reducing the model training time. The training is performed

using the python multiprocessing library, Ray [137], on a Jetson Nano board with an SGD optimizer, for 20

epochs, where each epoch has 200 steps with a batch size of 32. The net execution time is measured for each

epoch as the model is partitioned into varying numbers of cores. The experiment is conducted on a Jetson

Nano board with four available processors. The proposed algorithm, Algorithm 8, is utilized to determine the

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 109

optimal number of partitions for the AlexNet, ResNet50, and VGG-16 architectures. The maximum number

of partitions is limited to four, due to the limited number of CPU cores, with the optimal number of partitions

being found to be three, four, and four, respectively. The net execution times for the three architectures are

analyzed for different numbers of partitions.

Table 4.7: Pipelined model parallelism performance for different CNN networks

Networks Layers
(L) FLOPs Partitions

(S) Epochs Pipelined Parallel
Training Time

Sequential
Training Time

Accuracy
(Pipelined)

AlexNet [44] 8 725M 3 20 3129.4s 6950.7s 96.1%
ResNet50 [133] 50 3.8G 4 20 1574.5s 4956.5s 97.6%
VGG-16 [134] 16 16G 4 20 5525.6s 10792.3s 90.3%

The optimized function given in Equation 4.12 was used to calculate the training time Tij of each layer,

as shown in Table 4.7. The results reveal that pipelined parallel computing for AlexNet, with three optimal

splits, takes approximately 3129.4s, yielding a speed-up of 2.3 times over serial execution on a single core.

Similarly, the ResNet50 and VGG-16 models show the lowest execution time when split into four CPU cores,

with speed-ups of 3.2 times and 2.0 times, respectively, over sequential executions.

(a) Training time for partitioning model randomly (b) Comm. time for different number of partitions

Figure 4.18: Comparison of training time and communication time for model partitioning

To evaluate the effectiveness of pipelined model parallelism for optimal partitioning, we compared the

training time of the random partitioning approach, which partitions the model randomly. Figure 4.18(a) shows

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 110

the comparison of training time among the non-partitioning (sequential), random, and optimal partitioning

approaches. It is observed that the optimal partitioning approach minimizes the training times for all three

CNN networks. Figure 4.18(b) illustrates the communication latency for different partitions over available

edge devices or processors. The results indicate that the latency rises with the increasing number of model

splits, particularly for large DNN models with a significant number of trainable parameters. VGG-16, with

its high number of parameters, demonstrates the highest latency. The experiment demonstrates an average

speed-up of 2.5 times with pipelined model parallelism over sequential executions. The potential of pipelined

model parallelism to enhance the performance of DNN applications in multiprocessor edge devices is evident.

We expect the acceleration to improve further with increasing training epochs for larger DNN models.

Threats to Validity

To ensure the scope and applicability of our work, we identify potential threats to the validity of our proposed

approach.

Generalizability to all DNN applications: Our approach is focused on the CNN architecture, which

is a specific type of DNN. Therefore, the effectiveness of our model-splitting approach may be limited to

architectures that have a similar structure to CNN.

Applicability to GPU-enabled edge device: While GPU support is available, our work mainly focuses on

supporting multiprocessor edge devices that predominantly use multi-core CPUs. This is to enable the reuse

of existing embedded systems and avoid additional costs. However, our approach can be extended to support

multi-GPU edge devices as well.

4.4 Safe Online ML Model Training and Inference

The prominence of edge networks in contemporary cyber-physical system (CPS) applications, such as au-

tonomous driving systems, robotics, and health monitoring, has expanded rapidly [138]. These applications

heavily leverage real-time machine learning (ML) decision-making capabilities, resulting in edge networks

becoming instrumental in facilitating continuous adaptation of ML algorithms like SVM, RF, and DNNs in

CPS applications [139]. However, online model training, particularly in an edge environment, introduces sub-

stantial challenges related to model parallelization, safety considerations, and more [91]. Addressing these

challenges is vital for enhancing ML model performance on edge networks and ensuring system reliability.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 111

4.4.1 Current Landscape and Limitations

Although various studies have delved into optimizing ML model training on edge networks [27], many of

these solutions focus on data and model parallelism, overlooking safety and reliability issues intrinsic to ML

model partitioning. While the works of Wen Sun et al. [140], Guangxu et al. [141], and Sina et al. [142]

emphasized reducing training time and offloading, the safety and reliability of online model training were

less emphasized. An approach that is comprehensive in its design, optimizing model splits, and adhering to

safety standards like IEC 61508, ISO 26262, and UL 4600 is indispensable.

4.4.2 Safety Constraints Integration for Safe Online Model Training

Our primary goal is to devise an optimal method for ML model partitioning across edge devices, balancing

training time, communication latency, and TMR time. The optimization problem can be written as:

min
sk∈S,∀k

∑
mi∈sk

tmi
+ β

∑
mi∈sk

lmi
+ γ

3∑
k=1

TTMRk,mi
(4.16)

The equation 4.16 has three main components. The first term in the optimization problem represents

the total training time for all splits assigned to edge devices in each partitioning strategy. The second term

denotes the total communication latency for all splits assigned to edge devices in every partition, capturing

the costs associated with transmitting data between devices. The third term corresponds to the total time

spent on TMR, which ensures the system’s reliability by incorporating redundancy into the distributed ML

model. We introduce two weighting factors, β and γ, to balance the trade-offs between these components:

• β: A weighting factor that balances the importance of communication latency in the optimization

problem. A higher value of β emphasizes minimizing latency, whereas a lower value focuses more on

minimizing training time.

• γ: A weighting factor that balances the importance of TMR time in the optimization problem. A higher

value of γ emphasizes minimizing TMR time, whereas a lower value focuses on balancing training

time and communication latency.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 112

Constraints

• Model Partition Constraint: This constraint ensures that the ML model is properly partitioned across

the edge devices.

m⋃
i=1

sk,i =M ; ∀k = 1, . . . , |S| (CT1)

Constraint (CT1) ensures that the union of all model splits across all partitions and edge devices covers

the entire set of model splits, which is equal to the full model M .

S = {s1, s2, . . . , sn} : sk ∈ S, k = 1, . . . , n (CT2)

Here, sk represents the k-th partition assigned to different edge devices. The set S contains all possible

assignments of partitions to edge devices. For our example with 6 model splits (m1, m2, m3, m4,

m5,m6) and 3 edge devices, the set S could contain possible partitions like:

S = {({m1,1,m2,1}, {m3,2,m4,2}, {m5,3,m6,3}),

({m1,1,m2,1,m3,1}, {m4,2}, {m5,3,m6,3}),
...,

({m1,1,m2,1}, {m3,2,m4,2,m5,2}, {m6,3})}

So, tuple sk = (sk,1, sk,2, ..., sk,e), where e is the number of edge devices, and sk,i is the set of model

splits assigned to the i-th edge device in the k-th partition. The optimization problem aims to find the

best assignment of partitions (sk ∈ S) to minimize the total training time and communication latency

while considering TMR.

• Processing Capability Constraints:

These constraints ensure that the requirements of assigned model splits (processing, memory, and

bandwidth) do not exceed each edge device’s capabilities.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 113

∑
m∈sk,i

wm ≤ pi; ∀k = 1, . . . , |S|; i ∈ n (CT3)

Constraint (CT3) ensures that the processing requirements (wm) of assigned model splits do not exceed

a device’s processing power (pi).

∑
m∈sk,i

Rm ≤ RMi
; ∀k = 1, . . . , |S|; i ∈ n (CT4)

∑
m∈sk,i

bm ≤ bBi
; ∀k = 1, . . . , |S|; i ∈ n (CT5)

Constraint (CT4) guarantees that memory requirements (Rm) of assigned model splits do not exceed

a device’s memory capacity (RMi
). Similarly, Constraint (CT5) makes sure that the bandwidth re-

quirements (bm) for transmitting assigned model splits do not exceed a device’s bandwidth capacity

(bBi).

• TMR and Safety Constraint:

e∑
k=1

xk,j,mi
= 1; j = 1, . . . , 3 (CT6)

In this constraint, xk,j,mi
represents the binary decision variable for the mi-th model split assigned to

the k-th edge device in the j-th TMR instance. The constraint ensures that exactly one edge device is

assigned to each TMR instance for themi-th model split, which is important for ensuring the reliability

of the TMR configuration and preventing errors or failures, contributing to the system’s overall safety

by minimizing the likelihood of incorrect or damaging outputs.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 114

Figure 4.19: Machine learning-enabled edge networks

e∑
k=1

xk,j,mi
TTMRk,mi

≤ Tfail,mi
(CT7)

The constraint CT7 ensures that the total time for training the redundant models and performing TMR

in each TMR instance for themi-th model split does not exceed the specified failure threshold Tfail,mi
,

determined by system designers or domain experts.

4.4.3 Proposed Safe ML Model Training Framework for Edge Networks

We introduce a robust framework designed to partition ML models for online training on edge networks. This

framework, mindful of safety constraints and requirements, aspires to balance training time, communication

latency, and resource utilization, ensuring reliable model updates on edge devices. Central to our approach is

an intelligent partitioning algorithm that divides ML models into sub-models suitable for parallel execution

across multiple edge devices. To further guarantee safety and reliability during online model training, the

Triple Modular Redundancy (TMR) technique, a recognized Single Event Upset (SEU) solution, has been in-

corporated [143]. By leveraging TMR, our algorithm ensures system integrity even when faced with potential

faults or hardware compromises.

Our proposed system is modelled around an autonomous vehicle system, which requires real-time ML

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 115

Figure 4.20: Proposed framework for ML model partitioning

model training for decision-making applications such as object detection. The system architecture, comprised

of edge devices and a centralized server for model management, is depicted in Figure 4.19.

Framework Workflow and Methodology

Building on the aforementioned system, our framework presents a parallel computing architecture tailored

for edge networks. Figure 4.20 outlines the detailed workflow of this proposed framework. Here, an optimal

decision is made by minimizing the net training time, emphasizing a split decision module. This module

employs a partitioning algorithm, determining not only the model splits but also their optimal execution

environment, further enhancing application performance.

Model Partitioning Given the computational constraints of edge devices, we employ Algorithm 9 to

discern the optimal partitioning s∗ and map model splits to edge devices. This algorithm is particularly suited

for models like SVM and RF, which we leverage in this study.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 116

Algorithm 9: Optimal Model Partitioning and Mapping for Edge Networks
Input: ML model M , edge devices processing capability pi for device di, ∀i ∈ n, β, γ,

communication latency lmi , training data
Output: Optimal partitioning s∗ and mapping of model splits to edge devices
/* Initialize search space randomly */

1 S ← s1, s2, . . . , sk
2 while ∆f(sk) ≥ ϵ do

/* Evaluate the obj function for each sk */

3 for each partitioning sk ∈ S do
4 f(sk)← evaluateObjectiveFunction(sk) based on Equation (4.16)
5 end

/* Update the search space */

6 S ← S ±∆sk to improve f(sk)
7 Sort edge devices: sort(P, pi)

/* Assign model splits to edge devices */

8 for each submodel m do
9 pmin ← argmin

pi∈P
pi s.t. (CT3)

/* Update the available capacity */

10 pmin ← pmin − wm

11 end
12 Calculate lmi for each model split mi

13 Sort model splits based on lmi : sort(M, lmi)
/* Schedule mi ∈ m on edge & update time */

14 for each model split mi do
15 dj : dj ← dj ∪mi; s.t. to (CT6) and (CT7)
16 tmi ← calculateTrainingTime(mi, dj)
17 TMRmi ← calculateTMRTime(mi)

18 end
19 Calculate ∆f(sk) = f(sold

k) - f(snew
k)

20 end
/* Select the best partitioning */

21 Select s∗ = argmin
sk∈S

f(sk)

22 Train split mi on edge device with training data
23 For each model split mi, perform TMR: ymi ← majority(y1mi

, y2mi
, y3mi

)
24 return s∗, mapping of model splits to edge devices

Algorithm Overview The proposed algorithm iteratively explores the solution space S with a set of

random model partitionings s1, s2, . . . , sk. It evaluates each partitioning based on an objective function and

updates the search space to improve the function value. The search process continues until the change in the

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 117

objective function ∆f(sk) is below a threshold ϵ. For each partitioning sk ∈ S, the algorithm evaluates the

objective function f(sk) using Equation (4.16) and updates the search space accordingly.

Edge Device Mapping: Post identifying the optimal partitioning, the algorithm maps each model split to

an edge device based on its processing power. It sorts edge devices by processing capacity (sort(P, pi)) and

assigns each submodel m to the edge device with the least available capacity (pmin) in line with Constraint

(CT3), updating the device’s available capacity.

Scheduling and TMR Constraints: The algorithm schedules model splits for training on edge devices,

considering communication latency lmi and TMR constraints. Model splits, ordered by their communica-

tion latency, are scheduled on assigned edge devices (dj), optimizing training time while adhering to TMR

constraints. Training and TMR times for each model split mi on edge device dj are computed and updated.

Training and TMR Integration: After selecting the optimal partitioning s∗, the framework conducts

online training for each model splitmi on assigned edge devices, enabling real-time adaptation. Concurrently,

it implements TMR for each mi by selecting the output with at least two matching instances. The framework

then returns the optimal partitioning s∗ and model-to-device mapping. This optimal partition minimizes

training time while ensuring worst-case execution or failure threshold Tfail is not exceeded, and the processor

utilization remains within acceptable limits. This problem is solved using mixed integer linear programming

(MILP), allowing continuous model improvement in a dynamic context.

Time Complexity Analysis of Algorithm 9: The time complexity of Algorithm 9 is driven by its key

operations. The initialization of the search space S takes constant time, O(1). The main loop, iterating

over the total number of possible partitions, nS , until the objective function change (∆f(sk)) is below a

threshold ϵ, has time complexity O(E · nS) for the evaluation of the objective function and O(U · nS) for

updating the search space, where E is the time taken by objective function evaluation and U represents

the time consumed in updating the search space. Sorting and assignment of edge devices and model splits

result in complexities of O(e log e) and O(nm · e) respectively, where e is the number of edge devices and

nm is the number of model splits. Finally, the calculation of latency and scheduling of model splits add

complexities O(nm log nm) and O(nm), respectively. The overall time complexity can be approximated as

O(E · nS + U · nS + e log e + nm · e + nm log nm + nm). This explains the algorithm’s scalability and

efficiency with larger datasets and complex partitioning scenarios.

SVM on Edge Devices: SVMs can be effectively deployed on edge devices by partitioning the training

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 118

Figure 4.21: SVM model partition for paral-
lel computing

Figure 4.22: RF model partition for parallel
computing

dataset and training multiple binary classifiers in parallel. For multi-class classification, one-vs-one or one-vs-

rest approaches can be adopted, each binary classifier distinguishing between class pairs or one class against

the rest, respectively. The partitioned classifiers can be assigned to different edge devices. After individual

classifier training, outputs are combined using majority voting or other ensemble techniques to determine

the final class label. This parallel structure, illustrated in Figure 4.21, allows for scalable, efficient SVM

deployment on edge devices.

RF on Edge Devices: Training RF models on edge devices involves dividing decision trees and allocating

them to different devices dj . This method reduces the overall training time by leveraging the combined

processing power. After training, outputs from individual trees are combined for the final prediction, as

shown in Figure 4.22.

Dispatching Partitioned Models

This step assigns partitioned models to edge devices, maintaining execution order via associated threads. We

use a global queue to join all processes and return the trained models to the master edge device. The master

device combines all models to predict the training input. During partitioned model training, the master device

ensures the correct integration of all processes.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 119

Safe Integration using TMR

Safe execution is essential when partitioning models across edge devices. To counter issues like resource

unavailability, aging, hardware compromise, data corruption, and side-channel attacks that may cause edge

devices to produce incorrect results, we propose the integration of the TMR technique. This proven method

enhances system reliability in edge network machine learning training. TMR, implemented in parallel on

three devices, uses a majority voting system to eliminate single failure points. To ensure trusted computation,

we calculate the training module’s reliability. The reliability for training a partitioned model mi at time t can

be calculated using Equation 4.17, where R is the reliability of correct execution.

R(t) = R3(mi, t) + 3(1−R(mi, t)) ∗R2(mi, t)

R(t) = 3R2(mi, t)− 2R3(mi, t)

(4.17)

In the above Equation 4.17, R3(mi, t) represents the probability that all three edge devices produce the

correct output, and 3(1 − R(mi, t)) ∗ R2(mi, t) is the probability that two out of the three edge devices

produce the correct output while one fails. The final equation simplifies this computation.

4.4.4 Evaluation of the Proposed Safe Online Model Training

To evaluate the effectiveness of our proposed framework, we conduct different experiments in parallel com-

puting architecture for multi-class classification problems using SVM and RF. We investigate the performance

of the model partitioning algorithm for minimizing the net training time.

Dataset: The dataset employed in this study, titled “Traffic, Driving Style, and Road Surface Con-

dition” [144] was sourced from Kaggle and initially used by Ruta et al. [145] to develop machine learn-

ing models for Internet of Things (IoT) applications. The data, comprising 24,957 data points, were col-

lected from two vehicles, a Peugeot 207 1.4 HDi, and an Opel Corsa 1.3 HDi, using an OBD device paired

with a smartphone. The dataset encompasses 14 features such as altitude change, engine load,

speed variance, fuel consumption, etc. A comprehensive feature list and descriptions are avail-

able at [145]. The dataset is categorized into three sub-problems: road surface conditions, road traffic condi-

tions, and driving style.

Environment: The experiments are conducted in multiprocessor systems, representative of advanced

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 120

Figure 4.23: Training accuracy for online model training with input size 200

edge networks, with a shared network and a Linux 5.1.0-52-generic (x86 64) kernel integrated into the

Ubuntu 20.04 LTS operating system. The multiprocessor systems consist of four Xeon(R) CPU E5-2623

v4 @ 2.60GHz processors, each endowed with eight cores, 4 GB of RAM, a 256 KiB L1 cache, and a 2 MiB

L2 cache. This configuration provides a total of 16 GB RAM across the system, accommodating the SVM

and RF models employed in our study. Additionally, the shared network offers sufficient bandwidth to meet

the data flow requirements of our setup.

Figure 4.24: Training time for different training
instances

Figure 4.25: Inference time for different train-
ing instances

We opted for multiprocessor systems as an edge network to emulate modern edge devices’ multicore

structure. This allows us to explore parallel processing, resource allocation, and crucial inter-processor com-

munication. This choice makes our study reflective of current edge capabilities and ensures relevance for

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 121

real-world edge computing scenarios.

Figure 4.26: Training time for different number
of model splits

Figure 4.27: Comm. time and TMR overhead
for different numbers of splits

Analysis of ML Model Parallel Computing on Edge

In this experiment, we used a pre-trained model as the basis for online model training. This initial model

was trained on a dataset of 10,000 samples, which captured the general characteristics of the problem. For

the online training phase, we utilized a batch size of 200 for partial model training, applying a learning

rate of 0.001. The Algorithm 9 determined the optimal model splits by considering the communication

latency and processing capability of each processor in the multiprocessor system. This approach enabled

the efficient distribution of the model into four partitions across two edge devices or processors. For the

training and testing datasets, the input feature shapes were (19965, 14) and (4992, 14). The online model

training process incrementally updated the model using the remaining 9,965 samples beyond the initial 10,000

samples, allowing the model to adapt to new data patterns over time.

Accuracy The SVM and RF algorithms are evaluated based on their training accuracy. From Figure 4.23,

it can be observed that the SVM model has a stable performance over the RF model. The SVM accuracies

range from approximately 85% to 90%, while the RF accuracies range from around 82% to 93%. The

performance improvement in the SVM model can be attributed to its ability to find an optimal hyperplane

that maximizes the margin between different classes, making it well-suited for high-dimensional datasets like

the one used in this experiment.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 122

The learning rate (0.001) in this experiment impacts model training by modulating weight updates. Lower

learning rates promote thorough solution space exploration, potentially increasing model accuracy despite

slower convergence. Conversely, higher rates may lead to faster convergence, risking model accuracy due to

the potential overshooting of the optimal solution. Our chosen rate of 0.001 seems to strike a balance between

fast convergence and accuracy.

Training and Inference Time

We analyze the online model training time for both SVM and RF algorithms, which are used to process a

batch size of 200 for the remaining 9,965 training samples on top of the pre-trained model. The training time

for SVM and RF exhibits different trends, as shown in Figure 4.24. For the SVM, the training process utilizes

the One vs. All (OVA) approach for multi-class classification. This enables the training of multiple binary

classifiers in parallel, which results in reduced training time. On the other hand, the RF algorithm constructs

an ensemble of 100 random decision trees, which can be computed in parallel by distributing the trees evenly

among the available processors. The optimization algorithm finds the optimal distribution of the trees in a for

loop parallelization, minimizing the overall training time.

Both classifiers are implemented using the sklearn library with default hyperparameters, ensuring con-

sistent configurations across the models. During the training process, the model split is executed on a separate

processor, and the inter-processor communication time is recorded to assess the impact of parallel compu-

tation. We observe that the SVM generally takes less time in training than the RF. This difference can be

attributed to the efficiency of the OVA approach in SVM training, which allows for faster parallelization and

computation compared to the RF’s decision tree construction and aggregation process.

Furthermore, we examine the inference times for 100 sample test inputs using the trained SVM and RF

models. The inference times for both SVM and RF models are illustrated in Figure 4.25. It is apparent that

both SVM and RF algorithms typically exhibit lower inference times. However, the RF model tends to have

faster inference times compared to SVM. The maximum inference time for SVM is approximately 30.5 ms,

whereas RF has an inference time of about 24.9 ms. In real-world CPS applications, inference time is crucial

in determining the system’s responsiveness, particularly when real-time decision-making is essential.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 123

Figure 4.28: CPU and memory usage (%) for SVM model training

Comparing Net Training Time and Communication Latency

Net Training Time In our experiment, we analyzed the net training time for different numbers of model splits

using both SVM and RF. We considered five different scenarios: no split (0), 2 splits, 3 splits, 4 splits, 5

splits, and 6 splits. For the no-split case (model split zero), the model is trained as a single unit without any

partitioning. From split 2 onwards, the model is divided into the respective number of parts.

As illustrated in Figure 4.26, training time generally decreases with more splits, with exceptions noted

for SVM at 5 and 6 splits. This indicates that the workload distribution across sub-models reduces training

time efficiently up to 4 splits. Beyond this, no significant improvements were observed, while additional

communication latency was incurred. The optimal split number for both SVM and RF was found to be 4,

resulting in net training times of 60.48 and 123.5 seconds, respectively.

Communication Latency and TMR Overhead As shown in Figure 4.27, communication latency and TMR

overhead were analyzed for various model splits. Communication latency tends to increase with the num-

ber of splits. This increase in communication latency can negatively affect the optimal number of model

partitioning, as it can offset the benefits of reduced training time achieved through parallelization.

For the optimal number of splits (in this case, 4), SVM and RF models exhibited total latencies of

1.9784 and 3.58 seconds, respectively. Corresponding TMR overheads were 1.2785 and 1.6424 seconds.

By integrating TMR into model training and operating devices in parallel, we efficiently ensure reliability,

without significant delays in model training.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 124

Resource Utilization Comparison:

In this experiment, we compare resource utilization across three SVM model training scenarios. Each con-

siders different splits, and we measure CPU usage, memory usage, and training time with online training data

(see Figure 4.28).

• Scenario 1: Single-edge device training (no split)

• Scenario 2: Training with two edge devices (4 splits)

• Scenario 3: Training with three edge devices (6 splits)

Scenario 1: Single-edge training (no split) Training is conducted on a single-edge device, utilizing one

core. The remaining cores handle TMR configurations. CPU usage is 37.5% (3 cores out of 8), and memory

usage is 33% for 4GB. As only one core is active, training takes longer (138.35 seconds), which may not

always be efficient for real-time applications. This delay could impede real-time applications, highlighting

the need for more efficient multi-core processing solutions.

cenario 2: Training with two edge devices (4 splits)

In this scenario, the model is divided into four and trained on two devices. Each edge device uses two of

its cores to run two model splits in parallel and allocates the other cores for TMR.

As the number of utilized cores increases, the CPU usage rises from 37.5% to 75%, and memory usage

rises to 70.2% for 8GB. However, due to parallel processing, training time reduces to 60.48 seconds, showing

a 56.3% improvement over Scenario 1. This approach allows for more efficient and suitable training for

real-time applications.

Scenario 3: Training with three edge devices (6 splits)

With six model parts assigned across three devices, more cores are used, leading to 93.2% CPU usage

and 90% memory usage. Training time reduces further to 64.48 seconds but slightly longer than Scenario

2. This indicates that while more edge devices and model splits can increase resource usage, training time

improvement may not necessarily scale proportionally.

However, optimal balance in device count, model splits, and resource utilization is key for efficient

training in real-time applications. Scenario 2 appears to be the most efficient, but the optimal configuration

will depend on specific application needs and edge device resources.

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 125

4.5 Summary

Enabling Fog Computing Architecture for Next-Gen Embedded Designs: Fog computing holds promise

for the timely execution of latency-sensitive tasks. Using fog computing for faster OTA software updates in

smart vehicles throws open some interesting challenges, such as handling handover, efficient fog node assign-

ment for OTA updates, predicting communication delays and network traffic. Using k-means clustering, we

offer a technique for distributing fog nodes post-traffic pattern analysis. With the predicted traffic load, we

are able to enable or disable certain OTA updates delivering fog nodes in a particular region. This leads to the

maximization of the net fog resource reserves and better utilization of such fog resources. We employ transfer

learning that predicts the communication delay with less training time. This delay prediction helps evaluate

the OTA update time sooner and more accurately. We demonstrate how to calculate the OTA update time in

a cluster of vehicles. The effectiveness of the proposed approach is shown through the measured OTA update

time, which confirms an improvement compared to the worst-case scenario. Moreover, we demonstrate the

scalability of our proposed approach by showing how the system throughput changes for varying traffic and

software size.

ML-based Fog-Assisted Software Development for Next-Gen Embedded Systems: In this section,

we presented a new approach for the partitioning and pipelined execution of DNN models, specifically the

CNN architecture, on edge devices. We demonstrated how the AlexNet DNN model can be optimally par-

titioned across edge devices with different computational capacities through an illustrative example. The

pipelined execution strategy was discussed, detailing how each processing core handles input batch data and

optimizes the execution of convolutional layers. We also addressed the training of DNN models on edge

devices, emphasizing the importance of weight updates and gradient descent in a distributed setting.

Safe ML Training and Inference in Next-Gen Embedded Systems: Training machine learning models

on edge networks are gaining traction, especially in the realm of real-time applications. Edge networks,

with their inherent benefits of privacy, reduced overhead, and rapid decision-making capabilities, pose as a

promising solution for many applications. However, their universal suitability is still under scrutiny. For

real-time applications that prioritize fast responses, such as drones or autonomous vehicles, edge networks

emerge as a potent contender. Nevertheless, the decision to employ edge networks should be intricately

tied to the application’s specific needs. One critical determinant of online model training’s success on edge

networks is the learning rate. This parameter orchestrates various aspects, including resource allocation,

Chapter 4. NEXT-GENERATION EMBEDDED APPLICATIONS DESIGN 126

model adaptability, speed of convergence, and the overarching performance of the model. The art of fine-

tuning the learning rate is, hence, paramount. Future research trajectories are poised toward its optimization

for edge-based training.

In our exploration, we spotlighted the SVM and RF models, cherry-picking them for their distinctive

learning algorithms and ubiquitous applications. With their modest computational requirements, these mod-

els made for an apt starting point, especially when considering devices with limited computational resources.

However, these findings serve as a springboard. Their scalability to more intricate architectures, such as

DNNs, is an imminent research challenge, paving the way for a broader assessment of the proposed ap-

proach’s performance and applicability. Safety and reliability in online training are paramount, especially

in real-time applications. The integration of the TMR technique in the proposed framework is a testament

to this commitment. TMR ensures trusted computation by providing redundancy, thus safeguarding against

potential faults or discrepancies during online training. This added layer of protection guarantees that even if

one part of the system encounters an issue, the majority rule of TMR can identify and rectify it, ensuring safe

and reliable model training. As ML models expand in intricacy and computational demands, the allure of

parallel computing architectures in edge networks becomes undeniable. Our proposed framework, designed

with optimal model partitioning and the safety net of the TMR technique, emphasizes the future of reliable

and efficient ML model training on edge networks.

127

Chapter 5

FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE

DEVELOPMENT

5.1 Introduction

Embedded systems, being integral components of Cyber-Physical Systems (CPS) and the Internet of Things

(IoT), are increasingly shaping our interconnected world, with significant impacts on sectors like autonomous

vehicles, smart cities, and precision agriculture [146]. These systems are at the forefront of technology, yet

they are not without challenges.

The increased reliance on embedded systems has underscored the importance of robust and adaptable

software development practices. One of the primary challenges arises from the need to integrate next-

generation embedded applications and their computing paradigms. The current state-of-the-art [147], [148]

struggles to fully leverage advanced applications, resulting in rigid and difficult-to-adapt or reuse systems.

While these applications and paradigms promise unprecedented capabilities, they also introduce complexi-

ties. The inherent complexity and rigidity in many of the current systems often inhibit their adaptability to

evolving requirements. Additionally, they complicate effectively managing feature dependencies, versioning,

customization, and configuration, especially in distributed settings [149].

This chapter introduces a new perspective on next-generation applications by viewing them through the

lens of feature-based software development. Instead of merely seeing machine learning and over-the-air

(OTA) software updates as standalone applications, we interpret the core functionalities of these applica-

tions as advanced features. The essence of our approach lies in transforming the advanced functionalities

of next-generation applications into features, laying the basis for feature-based next-generation embedded

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 128

software. Through this, we aim to construct feature models that serve as blueprints for developing adaptable

and scalable embedded software.

However, integrating new features into legacy applications presents another layer of challenges. Striking

a balance between innovation and preservation demands an intricate understanding of the existing codebase.

This integration requires careful planning for modularity, feasibility assessments, and incremental feature

implementations. Such challenges highlight the need for structured frameworks to navigate this intricate

landscape, ensuring compatibility and stability while promoting modernization.

5.2 FeaMod: A Framework for Enhancing Modularity, Adaptability and Code Reuse

This chapter introduces FeaMod, a framework conceived to address the outlined challenges. FeaMod in-

tegrates feature-based modularity with adaptive feature modeling to facilitate efficient embedded software

design. At the core of FeaMod is the idea of understanding next-generation applications’ functionalities as

distinct features, which can then be modularized and integrated into diverse software environments. One

of the steps of our approach is the transformation of non-modular code into feature-based modular code.

This transformation based on advanced static code analysis, notably leveraging the BERT model. The preci-

sion of the BERT model enhances the accuracy of feature identification, ensuring contextually relevant and

comprehensive feature extraction.

By aiding the identification and abstraction of computational features from existing codebases of next-

generation applications, our methodology facilitates an environment conducive to software reuse and dynamic

configuration. This, in turn, lays the foundation for designs that are not only flexible and maintainable but

also testable [150], leading to reduced development time and costs.

Central to FeaMod is its unique adaptive feature model that encapsulates computational features, per-

mitting dynamic configuration and system integration tailored to evolving requirements. Recognizing the

dynamism required in the realm of embedded systems, we have introduced a set of rules governing feature

relationships. These rules are integral to our approach, endowing the model with the flexibility to adapt to

changing system requirements, user preferences, and environmental conditions.

This chapter’s primary contributions encompass:

• The introduction of FeaMod, a holistic framework that synergizes feature-based modularity and adap-

tive feature modeling. This integration is made more robust with the precision of the BERT model.

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 129

• The presentation of a rule set that facilitates the identification of features, relationships, and constraints

from source code, leading to the construction of the Adaptive Feature Model (AFM). This ensures

adaptability and flexibility in response to shifting system requirements.

• A discussion on transforming next-generation applications, like machine learning and fog computing,

into modular features. This perspective ensures that next-generation application functionalities are

seamlessly integrated into embedded software environments, paving the way for efficient development,

testing, and, consequently, more reliable systems.

The subsequent sections of this chapter will provide a deep dive into the FeaMod framework, exploring

its methodologies, applications, and potential impact on the future of embedded software development.

5.3 FeaMod Framework: System Model and Assumptions

Our system model, illustrated in Figure 5.1, comprises various components that provide insights into the

FeaMod framework. The FeaMod feature-based modeling framework distinguishes itself from traditional

software development models by focusing on functionalities of next-generation applications, treating them as

advanced features, and integrating the existing legacy next-generation application code. It employs automated

feature extraction, modularity, and adaptability techniques to transform the code into a dynamic, easy-to-

maintain format. Moreover, by reusing existing code, the design and development efforts are substantially

reduced, resulting in significant efficiency gains. Transitioning from the foundational concept of modularity,

a feature in embedded software is denoted as a distinct unit of functionality encapsulated as a computational

unit or function [3] in any next-generation application.

Adaptive Feature Model (AFM): Moving beyond the static nature of traditional feature models, the AFM

offers dynamic adaptability, allowing features to modify functionalities in real-time based on various contex-

tual variables, thereby enhancing the system’s responsiveness.

Despite numerous methods existing for locating and retrieving higher-level concepts from source code,

most of them are manual or partially automated for building feature models directly from the source code.

Therefore, the challenge lies in developing a framework that can facilitate automated feature extraction from

existing software artifacts and construct an adaptive feature model, while also managing the translation of

non-modular code into modular structures. This challenge can be formalized as follows:

Let P be a set of programs, F be a set of features in a program p ∈ P , and Ω be the set of all modularized

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 130

Figure 5.1: System model architecture (Feature-based vs Traditional software development ap-
proach)

versions of programs in P . The problem is to find a function ϕ : P → Ω that transforms each program into

modular code, and a function ψ : P → 2F that extracts the features from each program. Further, we also

aim to create a function ξ : 2F → 2M , where M is the adaptive feature model constructed from the features

F . The ultimate challenge is to develop the FeaMod framework that enables ϕ, ψ, and ξ to automate the

conversion of non-modular code into modular structures, extract features, and construct an adaptive feature

model, respectively.

Assumptions

• We target non-modular Python programs used in advanced tasks such as machine learning-based object

detection. Although C is prevalent in embedded systems [2], we opted for Python, given its growing

relevance in next-generation applications.

• Utilizing the CodeBERT, a derivative of the BERT model fine-tuned for code analysis, leverages its

strength in understanding code context and language tasks, thereby offering a robust solution for our

feature extraction processes based on its proven proficiency in contextual embeddings derived from

natural language understanding.

• The codebase can be parsed into an Abstract Syntax Tree (AST) using the Python ast or similar

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 131

module.

Figure 5.2: Proposed FeaMod framework

5.4 Detailed Methodology of the FeaMod Framework

The FeaMod framework utilizes modular and feature-oriented programming principles to identify features

and requirements from source codes of advanced or next-generation applications. This adaptive methodology,

comprising modularization, feature identification, and adaptive feature model creation, is delineated in the

subsequent subsections and illustrated in Figure 5.2.

5.4.1 From Non-Modular Code to Modular Code: The Process of Modularization

In the initial phase of the FeaMod process, non-modular code is segmented into discrete modules using

Python’s AST module, which parses the source code into an abstract syntax tree. This tree aids in identifying

and separating distinct tasks or related groups of tasks into individual functions, thus preserving the original

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 132

logic while enhancing the code’s readability and maintainability. The approach is designed to align with the

following rules defined for transforming non-modular code into modular code.

Rule 1 - Reusability: Abstract similar code segments using metrics like cosine similarity on AST repre-

sentations, facilitated by clone detection techniques.

Rule 2 - Cohesion: Group code performing a single task into one module, guided by variable usage

frequency, function calls, and other dependencies metrics.

Rule 3 - Encapsulation: Bundle related data and functions into units using metrics such as Data Abstrac-

tion Coupling (DAC) that focus on the count of abstract data types in a unit.

Rule 4 - Conditional Segmentation: Modularize operations in conditional constructs using cyclomatic

complexity to identify targets for modularization.

Rule 5 - Loop Abstraction: Abstract repetitive tasks in loops into separate functions, targeting complex

structures identified through loop depth metrics.

Rule 6 - Loose Coupling: Enhance code independence by reducing dependencies between code parts,

guided by Coupling Between Object (CBO) metrics.

Rule 7 - Error Handling: Standardize error handling by encapsulating common try-except blocks, using

frequency metrics to streamline common patterns.

Rule 8 - Grouped Imports: Consolidate common imports into single modules, employing frequency

metrics to create logically grouped modules with descriptive names.

Listing 5.1: Non-Modular Object Detection Code Snippet

1 # Start time for object detection

2 start time = time. time ()

3 model = cv2.dnn.readNetFromCaffe(”deploy. prototxt ” ,

” res10 300x300 ssd iter 140000 .caffemodel”)

4 image path = ”input . jpg”

5 image = cv2.imread(image path)

6 blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0))

7 model. setInput (blob)

8 detections = model.forward()

9 for i in range(detections .shape [2]) :

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 133

10 confidence = detections [0, 0, i , 2]

11 if confidence > 0.5:

12 ...

13 mean confidence = np.mean([detections [0, 0, i , 2] for i in range(detections .shape [2])])

14 try :

15 print (f”Mean confidence for image {image path}: {mean confidence}”)

16 except Exception as e:

17 print (f”Error : {e}”)

18 cv2.imshow(”Output”, image)

19 # End time for object detection

20 end time = time. time ()

21 print (f”Detection time: {end time − start time } seconds”)

Listing 5.2: Refactored Modular Object Detection Code Snippet

def load model() : # Rule 1

return cv2.dnn.readNetFromCaffe(”deploy. prototxt ” ,

” res10 300x300 ssd iter 140000 .caffemodel”)

def load image(image path) : # Rule 1

return cv2.imread(image path)

def process image(image): # Rule 2

return cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0))

def detect objects (model, blob) : # Rule 2

model. setInput (blob)

return model.forward()

Rule 4 and Rule 5

def display detections (image, detections) :

for i in range(detections .shape [2]) :

...

cv2.imshow(”Output”, image)

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 134

def mean confidence(detections) : # Rule 2

return np.mean([detections [0, 0, i , 2] for i in range(detections .shape [2])])

def display mean confidence (image path, mean confidence): # Rule 7

try :

...

def main(image path): # Rule 6: Loose Coupling

model = load model()

image = load image(image path)

blob = process image(image)

detections = detect objects (model, blob)

...

main(”input . jpg”)

In transforming a non-modular code segment (e.g., Listing 5.1) into a modular like load model(),

load image(image path) shown in Listing 5.2, we start by applying transformation Rules to pinpoint

different parts of the code. Utilizing Python’s ast module, we parse the code into an Abstract Syntax

Tree (AST). Following this, we identify and extract the nodes corresponding to the reusable code segment,

which forms the body of a new ast.FunctionDef node. This node represents our new function. This new

function encapsulates the reusable operations, accepts arguments, and returns the outcome of the encapsulated

code. Subsequently, this function is inserted into the AST in place of the original code segment. The final step

involves unparsing the modified AST back into source code using the astunparse module. As a result,

we obtain the load model() and load image(image path) function that encapsulates the original

code and can now be invoked wherever required, thus enhancing the code’s reusability and maintainability.

The code snippet in Listing 5.2 presents several functions or features, each dedicated to a specific op-

eration, such as loading a machine learning model (load model), reading an image file (load image),

processing the image (process image), identifying objects in the processed image (detect objects),

and visualizing the detection results (display detections).

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 135

5.4.2 Techniques for Feature Identification and Requirements Extraction

Identifying Functional Features

Every function in the codebase denotes a distinct feature, representing a unique operation or functionality

within the system. Leveraging the BERT model fine-tuned with domain-specific semantics aids in extracting

potential features from function names and global variables, creating a semantic space to identify functional

and non-functional requirements. We apply established classifications to characterize these features system-

atically [3], i.e., Mandatory, Optional, OR, XOR, Requires, and Excludes. The FeaMod framework uses a set

of rules to categorize features into:

• Mandatory: A feature that must be included whenever its parent feature is selected (e.g., load model).

• Optional: May or may not be present depending on the conditions (e.g., display mean confidence).

• OR: One or more among the child features must be selected if the parent is included.

• XOR (Alternative): Exactly one among the child features can be chosen when the parent is selected.

• Requires: The presence of one feature necessitates the presence of another.

• Excludes: The presence of one feature prohibits the inclusion of another.

Identifying Non-Functional Features

To identify non-functional features in software artifacts, we employ a fine-tuned BERT model, taking advan-

tage of its deep understanding of context and semantics, as detailed in Algorithm 10. The process starts with

the tokenization of each document di in set D, followed by forming a dictionary Dictdi
to map each token to

its frequency in di. We then use TF-IDF scores to select the top N tokens as candidate features (CFdi) [18].

Next, the BERT model creates embeddings Etj for each token in CFdi
, which are clustered to group

semantically similar tokens. A representative token RTCk
from each cluster is chosen as a potential non-

functional feature.

Example: For instance, in a source code with frequent mentions of the term security, our method

initially recognizes it as a candidate feature through high TF-IDF scoring. BERT then discerns different

contexts of the term, like data security and network security, and groups them under the broader

feature - security.

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 136

Algorithm 10: Identifying Non-Functional Features
Input: D = {d1, d2, ..., dn}, a set of documents including code artifact, associated comments
Output: Potential non-functional features

1 for each di in D do
2 Tokenize di into separate identifiers (tokens);
3 Create a dictionary Dictdi

mapping each token;
4 Calculate TF-IDF score for each token in Dictdi

;
5 Select the top N tokens based on the TF-IDF scores as candidate features; set is CFdi ;
6 end

7 Fine-tune BERT using domain-specific data (if available);

8 for each di in D do
9 for each token tj in CFdi do

10 Create an embedding Etj using BERT;
11 end
12 Cluster the embeddings {Et1 , Et2 , ..., Etn} to group semantically similar tokens, obtaining

clusters C1, C2, ..., Cm;
13 for each cluster Ck do
14 Identify the representative token RTCk

from Ck as a potential non-functional feature;
15 end
16 end
17 return Non-functional features for each document;

Figure 5.3: Features and requirements map for
face detection

Figure 5.4: Comparison of BERT with Rule-
based approach

BERT-enhanced Requirements Extraction

Leveraging BERT’s semantic analysis capabilities, we delineate a strategy for extracting both functional and

non-functional requirements efficiently from software artifacts.

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 137

• Functional Requirements Extraction: These encapsulate the core functionalities that the system is

designed to execute.

– Extracting Conditional Constructs: We identify functional requirements by analyzing conditions

in if, while, and for loops using BERT, facilitating a deep semantic understanding.

– Function and Method Analysis: We utilize BERT to interpret function names and method signa-

tures, helping to identify potential functionalities even in ambiguous scenarios.

• Non-functional Requirements Extraction: These involve system attributes such as performance and

security.

– Extracting Comments: BERT assists in analyzing comments semantically to pinpoint non-

functional requirements effectively.

– Documentation Analysis: Non-functional aspects are often detailed in READMEs and architec-

tural documents.

– Code Patterns and Libraries: Specific code patterns and libraries can signal non-functional re-

quirements, such as security considerations.

5.4.3 Building an Adaptive Feature Model

The Adaptive Feature Model (AFM) creation facilitates dynamic reconfiguration of feature models, offering

enhanced flexibility and efficiency by adapting to variations in system state and other factors. Considering

a system with features denoted as fi, we introduce the Feature Interaction Graph (FIG) G = (V,E) to

represent feature interactions, where where the vertices V = f1, f2, . . . , fn represent features, and edges

E = eij represent interactions between features. For each feature fi, we define an interaction set Ii, which

includes all the features that interact with fi. The construction of the AFM involves:

1. Construction of the FIG: Identifying feature interactions through code analysis and representing

them in the FIG.

2. Weight Assignment: Quantifying feature interactions using metrics such as call frequency or param-

eter interactions and assigning weights to the edges in the FIG.

3. Feature Clustering: Utilizing graph clustering algorithms like K-means to identify groups of closely

related features, which form subsystems in the final model.

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 138

Figure 5.5: Adaptive feature model for face detection

4. Feature Configurations: Each feature fi has an associated set of possible versions, denoted as

FCi = {vi1, vi2, . . . , vim}. Given the dynamic nature of software systems and ever-evolving re-

quirements, feature versioning is a critical component in the feature model, enabling it to manage

complex, changing requirements in distributed systems efficiently. A feature model configuration is

considered valid if it includes all the feature configurations on which it depends.

Table 5.1: Feature model statistics for face detection

Feature Model Attribute Case Study [151]
Number of functional Features 22

Number of Non-Functional Features 2
Number of Constraints 2

Number of Valid Feature Configurations 42

5.5 Evaluation of the FeaMod Framework

To evaluate the FeaMod framework, we utilized the publicly accessible Face Detection GitHub reposi-

tory [151] as a case study. The analysis focused on the framework’s proficiency in identifying features,

recognizing feature relationships, and setting up configurations, coupled with assessing the adaptive feature

model’s construction time.

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 139

Case Study: Feature-Based Modularization in Face Detection

The FeaMod, powered by the Graphviz library for visualization, employed a series of steps to generate

the application’s Feature Model. Initially, the code was modularized to isolate specific features and make their

functions more distinct and manageable. Subsequently, FeaMod identified the key features of the application,

such as DeviceSelection, Open image capture, Read Model, Preprocess image, FaceDetectionRecognition,

Output, and Video Writer. These features were categorized as mandatory, optional, or non-functional based

on their roles within the application. Two non-functional features, Performance Metrics and Logging, were

identified using the TF-IDF and BERT as discussed in Algorithm 10. Performance Metrics and Logging are

classified as non-functional features because they address the system’s operational qualities like efficiency

and maintainability rather than its core functionalities. For example, Logging library provides a mechanism

for tracking the system’s behavior, errors, and operational data, facilitating debugging and system monitoring,

which improves maintainability and reliability but is not part of the system’s primary functional processes.

To validate the effectiveness of our approach in identifying the features and associated requirements, a cosine

similarity analysis was performed, the results of which are depicted in Figure 5.3. The diagonal elements

of the cosine similarity matrix, representing the similarity scores between each feature and its corresponding

requirement, were notably higher. This indicates a strong correlation between the identified features and their

corresponding requirements, highlighting the accuracy of the proposed method in capturing the semantic

relationship between features and requirements.

In this face detection case study, the manual approach identified 26 features and 39 requirements. Our

BERT-enabled approach successfully identified 22 of these features and 34 requirements, demonstrating a

balanced performance with high precision and recall, as detailed in Figure 5.4. This approach outperforms

the rule-based method, achieving F1 scores of 86.5% and 86% for feature and requirement identification,

respectively, and showcasing its effectiveness in deriving insightful results through the automated analysis of

source code and comments. This underlines the potential of our approach in facilitating more accurate and

comprehensive feature and requirement identification in software development.

The relationship and constraints among the features were then established. For instance, Output was

found to require FaceDetectionRecognition and Video Writer for it to function correctly. The DeviceSelec-

tion feature was determined to have an OR relationship among its sub-features: CPU, GPU, FPGA. The

constructed adaptive feature model is shown in Figure 5.5. To ensure feature configuration, FeaMod checks

for the existence of required features and the consistency of constraints among features, such as OR, XOR,

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 140

Figure 5.6: Execution time compare for different attributes using FeaMod

and exclusionary relationships.

Table 5.1 delineates the breakdown of different feature model attributes of the face detection application

examined in case study 1. The execution times for the various attributes of the FeaMod are illustrated in Fig-

ure 5.6. The most time-intensive task was the identification and extraction of features, taking approximately

150s — a reflection of the computational demands of discerning 22 features. Following this, the construction

of the feature model necessitated 65s, and ensuring feature model configuration overhead consumed around

50s. Detection latency remained minimal at a mere 2.5s. Despite the computational demands, the data mani-

fests the potential for further optimization in performance, specifically in the realms of feature identification

and model construction.

5.6 Summary

In the field of adaptive feature modeling, our framework sets itself apart with its unique utilization of the

BERT model to provide a dynamic and adaptable feature modeling process. While other researchers like

Alam et al. [52] tackled concern-driven strategies, FeaMod stands out with its component functionality-

centered perspective. The landscape of adaptive feature modeling is filled with various innovative approaches,

especially in its capacity to adjust to changing system requirements.

The proposed FeaMod framework, a feature-based modularity and adaptive feature modeling synthesis,

emerges as a transformative solution in embedded software development. To reuse advanced features code,

Chapter 5. FEATURE-BASED NEXT-GENERATION EMBEDDED SOFTWARE DEVELOPMENT 141

our framework shows how to identify functional and non-functional features from source codes and their in-

terdependencies. This offers a fresh perspective on code reuse and dynamic adaptability. With the potential to

reshape the embedded software development landscape, our framework holds promise for future refinements

and broader applications. As we move forward, it will be exciting to see how this framework evolves and

what new horizons it might explore.

By bridging gaps left by previous works and introducing new methodologies, FeaMod stands as a tes-

tament to the continuous evolution of software development practices. The journey ahead holds immense

promise, with opportunities for further refinement and expansion of the framework’s applications.

142

Chapter 6

RESULTS ANALYSIS AND DISCUSSION

6.1 Introduction

This chapter is dedicated to addressing and clarifying the research questions that are mentioned in the Intro-

duction chapter 1 of this thesis. These questions relate to code reuse and advanced application requirements

in designing and developing next-generation embedded software, particularly in understanding features and

requirements. Alongside the evaluation experiments presented in chapters 3 to 5, we conduct additional ex-

periments to clarify these research questions further. We undertake a detailed analysis of these additional

experiments, which are conducted across two primary categories:

a) Investigating legacy embedded software to facilitate the design and development of next-generation em-

bedded systems.

i) Feature model creation from legacy software

ii) Analysis of feature search time within the feature model

b) Integration of fog computing architecture for next-generation embedded applications.

i) Design and implementation of a testbed for the proposed OTA update algorithm.

ii) Optimal partitioning of ML models for enhanced performance.

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 143

6.2 Investigate Legacy Software for Design and Development Embedded Software

Feature Model Creation from Legacy Software

To apply our proposed approach, we select a GitHub project “Software Controller for Vehicles” [152] written

in C programming language. This GitHub project is the demo implementation of a car’s software systems,

and we use it to demonstrate our proposed method. To obtain each function’s information, we run the function

flow graph generator cflow and generate a function list. The C keywords and library functions (e.g., malloc,

fopen, printf) are ignored to simplify the process.

From the function call graph, we extract 38 reusable functions as features for the implementation of

a car’s software systems. According to our proposed approach, initially, we find the mandatory and op-

tional features where we retrieve 21 mandatory features and eight optional features. For example, feature

car software has one mandatory feature system and one optional feature test. After that, we iden-

tify the feature relationships defined in Chapter 2 and we get four alternatives, and four OR relations feature

relationships. The maximum level of each feature is extracted from the call graph and determines the potential

parent and child list for each feature. After that, we apply the feature model construction actions discussed in

Chapter 3 to update the placement of features in different levels if required.

Figure 6.1: Feature model creation from GitHub project “Software Controller for Vehicles” [152]

The output of our proposed approach for “Software Controller for Vehicles” is shown in Figure 6.1.

In this figure, each feature is associated with its parent and child nodes. The hierarchy of the parent-child

features is shown based on the level of each feature, where car software is placed at Level 0 as a root

node. Besides, we find the requires and excludes relationships to understand the dependency of the features.

To test the feature called vehicle velocity, it needs requires relation with another feature wheel that

counts the wheels’ rotation. Similarly, manual and automatic features are mutually exclusive. One feature

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 144

excludes other features.

A feature may have or may not have constraints. We use the C parser pycparser to generate the Abstract

Syntax Tree (AST) and extract the code artifact along with constants, variables, as well as constraints. As an

example, infotainment systems and light controller are features without constraints. These fea-

tures may be called periodically/aperiodically with user inputs. On the other hand, features with constraints

are engine, gear shift, airbag, brake, etc. These features require validating certain constraints to

ensure the safety of the system. The necessary test cases need to be executed before adding any feature in the

model to satisfy the constraints.

Feature Search Time Analysis

(a) Feature search in smart ele-
vator system

(b) Feature search in infotain-
ment system

(c) Feature search in health mon-
itoring system

Figure 6.2: Search time comparison for finding a feature (deepest leaf node) among different
GitHub embedded systems projects

In the experiment, we collect three different GitHub projects which a) smart elevator system, b) infotain-

ment system, and c) health monitoring system. We create an individual feature model for each application

and calculate the search time to find a feature located in the deepest leaf node. Figure 6.2 shows the com-

parison of search time among these three different GitHub embedded systems projects. In all three projects,

we observe that the search time for finding a selected feature using the feature model is much lower than the

manual search in the codebase. The manual search reads the codebase sequentially, starting from the first line

to the end. In Figure 6.2, the x-axis represents the number of features and the y-axis represents the required

search time for finding a feature over a varying number of features.

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 145

Moreover, the experiment result states that the searching times vary for changing the number of features.

Although the search time for a small embedded system application does not vary much, our approach outper-

forms the manual search approach for a large-scale project with a large number of features. In our approach,

the feature search times for three different projects (smart elevator system [153], infotainment system [154],

and health monitoring system [155]) get reduced by 59.0%, 49.8%, and 74.5% for 50, 25, and 50 number of

features, respectively.

6.3 Integrating Fog Architecture for Next-generation Embedded Application

Network Router 1 Network Router x

...

......

 C
lu

st
er

s
Fo

g
C
om

p
u
ti
ng

 S
er

vi
ce

s

Vehicle cluster Vehicle cluster

QEMU Emulator [ARM Architecture]

Fog
Node 1

Fog
Node 2

Fog
Node n

Communication delay
prediction using Transfer

Learning

Figure 6.3: Our experimental testbed design for faster OTA updates

6.3.1 Design and Implementation of a Testbed for Fog-enabled OTA Update Algorithm

In order to show the efficacy of our proposed OTA update algorithm in the real-world, we design and im-

plement a testbed. The testbed architecture is shown in Figure 6.3. The architecture incorporates fog nodes

that provide OTA software updates to various vehicles. The network communication delay between the fog

nodes and the vehicles is calculated using the proposed transfer learning method. The fog nodes are connected

through network routers that operate at different WiFi ranges. Fog nodes and vehicles have been implemented

as Virtual Machines (VMs), using the QEMU virtualizer. These VMs are executed on different laptops. The

QEMU emulates the ARM hardware architecture, which has gained popularity in the automotive industry for

its reduced production cost and power efficiency. For example, the R-Car H3 provides computational services

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 146

to in-vehicle infotainment and safety support systems [156]. It uses the Arm Cortex-A53 CPU architecture

which implements the widely deployed ARMv8-A 64-bit instruction set.

Fog Node 1 300 Mbps Wireless Router

Fog Node 3

Fog Node 2

30 meters30 meters

3
0
 m

e
te

rs

Car1Car1

Car 7Car 7

Car 6Car 6

Car 8Car 8

Car 3Car 3Car2Car2 Car 4Car 4 Car 5Car 5

Download speed: 40.0 to 76.6 Mbps
Upload speed: 43.0 to 48.0 Mbps

VMs VMs

VMs

VMs

Figure 6.4: OTA updates for three fog nodes and eight cars in our experimental testbed

We implement our experimental testbed which includes software, hardware, and networking components.

We integrate a pre-existing OTA update framework called Uptane [89] into our testbed. Figure 6.4 shows the

experimental setup of our proposed architecture. We create multiple VMs and assign them as different fog

nodes and vehicles/cars. Each VM is configured with 4GB RAM and runs Linux. The connection between a

vehicle and the fog node is created through a 300Mbps N TPLink wireless router (TL-WR841N), which uses

Transmission Control Protocol/Internet Protocol (TCP/IP) for data transmission. The maximum coverage

area for each router is roughly 70 meters. We create three fog nodes (1, 2, and 3) and assign them at a

distance of 30 meters from the router, as shown in Figure 6.4. We assume that these fog nodes are uniformly

distributed in a cluster. A total of eight (8) VMs are created and considered as vehicles in a cluster. Though we

consider cars, the work can be applied to any vehicle that requires OTA software updates: trucks, ships. We

assume that the cars are moved at a speed of 1.35m/s, for 30 meters. While passing the maximum coverage

area of a fog node, a car performs a handover to connect with the nearest available fog nodes. We adjust our

algorithm to select a fog node that is near to the vehicle and has a strong network connection. The download

speed for data transmission is between 40Mbps to 76.6Mbps, and the upload speed is between 43Mbps to

48Mbps.

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 147

5.6 10.1 15.2 20.4 25.5 30.7 35.6
Software sizes (MB)

0

10

20

30

40

Av
era

ge
 O

TA
 up

da
te

tim
e (

se
co

nd
s)

(a) OTA update time (Ti) calculation for various
sizes of software (Ssize

i) at 95% confidence inter-
val

Avg. OTA
Update Time (s)

Propagation
delay (s)

Handover
delay (s)

Uptane
Overhead (s)

0

10

20

30

40

Du
rat

ion
 (s

ec
on

ds
)

Software Size = 35.6MB
Number of Cars = 1
Number of Cars = 8

(b) Comparison of OTA update time (Ti), handover
delay (∆i), propagation delay(T p

i) and overhead
for using Uptane

Figure 6.5: OTA update time and delay comparison for various software and traffic sizes

Afterwards, we perform an experiment to update software of various sizes using Algorithm 7. We con-

sider software sizes between 5MB to 40MB and calculate the average OTA update time. The experimental

results are shown in Figure 6.5(a). We observe that the required OTA update time is much shorter for a

smaller size of software and vice versa. For a small software size of 5.6MB, the average OTA update time

is around 2.80s with a 95% confidence interval and ±0.51s margin of error. On the other hand, the average

OTA update time for a large software size of 35.6MB is around 43.21s with a 95% confidence interval and

±2.22s margin of error. We observe that the margin of error for a large software size is higher than that of a

small software size. Propagation and handover delay are the main causes of high margin of error for larger

software updates. An update of a smaller size software less likely causes a handover situation, and therefore

the error remains low. Moreover, larger software requires more transmission time, where propagation delay

and handover delay increase proportionally with size. Apart from the calculation of OTA update or software

download time, we also measure the overhead of using the Uptane framework.

In order to observe the effect of number of vehicles on OTA updates, we calculate the total OTA update

time with the software of size 35.6MB for one car and eight cars. We calculate the propagation delay after 10

repeated runs in updating a fixed size of the software. We take the maximum propagation delay from these

repeated runs and define the value as the worst-case propagation delay (see Algorithm 6). According to our

experiments, the propagation delay is about 3.75s when there is only one car carrying out the software update

and 5.34s when eight cars perform the updates at the same time. Figure 6.5(b) presents the comparison among

OTA update time, propagation delay, handover delay and the overhead for using the Uptane framework.

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 148

Results show that the propagation and handover delays are higher for eight cars compared to one car. This

is expected because we notice similar outcomes in our simulations. Our small-scale experimental analysis

on the testbed partially validates the simulation results we obtain and thus demonstrates that our proposed

mechanisms offer faster fog computing based OTA updates using transfer learning.

6.3.2 Optimal ML Model Partitioning for Accelerated Performance

Experimental Setup: The experiments have been conducted on the Linux 5.1.0-52-generic (x86 64) kernel

with Ubuntu 20.04 LTS operating system. We consider that our embedded system has general-purposed

processors for running DNN applications. The CPU is configured with Core i5-9400F, a 2.90GHz processor,

16GB RAM, and six cores with 6x4100.00MHz. However, we also evaluate the performance of our proposed

framework for different architectures (e.g., AlexNet [44], ResNet [133], VGG-16 [134]) in a NVIDIA Jetson

Nano [135] Quad-core ARM Cortex-A57 processor with the same operating systems. The Jetson Nano is

equipped with 4 GB of 64-bit LPDDR4 memory. The proposed approach has been implemented in python3

using TensorFlow-Keras, whereas AlexNet has been used as the underlying DNN architecture.

ImageNet Dataset: In this implementation, the AlexNet Convolutional Neural Network (CNN) archi-

tecture is utilized for image object classification. This architecture is trained on the ImageNet dataset [157],

which originally consists of millions of training images classified into 1000 classes. However, in this experi-

ment, a customized dataset is created using 2000 training images and 1000 validation images, with a reduced

number of target classes limited to two for running the experiment with different scenarios. The model com-

prises five convolution layers, five max-pooling layers, and three fully-connected layers, and is trained for

100 iterations (epochs) to evaluate its performance.

Finding Optimal Splits

The performance of a deep neural network (DNN) model’s training is closely tied to the partitioning strategy

during parallel computation. In our study, we use the AlexNet CNN architecture and partition it into various

sub-modules based on layer dependencies and the number of available computing devices. We conduct

experiments with four scenarios, splitting the network into zero, two, three, and four parts. Using the available

six processing cores, we experimentally analyze these optimal sets returned by Algorithm 8.

We first run the complete AlexNet model on a single CPU core as a baseline without splitting the net-

work. As shown in Table 6.1, the net execution time was 7.65 x 103 seconds for training the model over

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 149

Table 6.1: Comparing DNN model (AlexNet) parallel training for different numbers of splits
(epochs = 100, batch size = 128)

Network
Execution

Number
of Splits

Split Positions
(Conv-FC)

Net Execution
Time (sec)

CPU
Cores

Memory
Usage (%)

Sequential
Model 0 0 7.65x103 1 88%

Data Parallelism 2
Conv1 to 5

FC 1 to 3 (x neurons) 4.60x103 2 47%

Pipeline Model
Parallelism 3

Conv1 to 5
FC 1 to 3 (x/2 neurons)
FC 1 to 3 (x/2 neurons)

4.21x103 3 60%

Pipeline Model
Parallelism 4

Conv1 to 3
Conv 4 to 5

FC 1 to 3 (x/2 neurons)
FC 1 to 3 (x/2 neurons)

4.33x103 4 32%

Figure 6.6: Training and validation accuracy for AlexNet pipeline model parallelization

100 epochs with 128 mini-batch sizes. In the next scenario, we created two networks that replicated the

AlexNet model, with each network containing both the convolution and fully connected layers. To take

advantage of data parallelism, we executed the convolution layers in a pipelined manner (as shown in Fig-

ure 4.17) and executed the fully connected layers sequentially. This approach reduced the computation time

by nearly 3.05 x 103 seconds and reduced memory utilization to under 50%, highlighting the possibility of

poor resource utilization.

Next, we apply our proposed Algorithms 8 and 8 to determine the optimal number of splits for six CPU

cores. The results indicate that the possible splits are three and four, as they result in a lower net execution

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 150

time compared to other numbers of splits. As shown in Table 6.1, the net execution time of the pipeline model

parallelism is lower for three and four splits compared to the other configurations. However, it is worth noting

that the memory usage for three splits is approximately 12% higher than for four splits. Higher memory

usage is often preferred for model partitioning as it can improve performance, load balancing, scalability, and

avoid underutilization of resources. This suggests that the optimal number of splits for AlexNet with this

experimental configuration should be three. Hence, this approach implements data parallelism in multi-core

processors for the convolution layers and model parallelism for the fully connected layers.

To further evaluate the performance of the optimal number of splits, i.e., three, we conduct a training

experiment using the proposed pipeline model parallelism approach on the ImageNet dataset with AlexNet as

the CNN architecture. The training losses and optimization method, using stochastic gradient descent (SGD),

are incorporated through the TensorFlow module. The comparison of training and validation accuracy is

presented in Figure 6.6, with results showing training accuracy of around 88% and validation accuracy of

approximately 80% after 100 epochs. In a separate experiment, our findings indicate that the AlexNet model

without model parallelism achieved a training accuracy of approximately 90% after 100 epochs. Thus, our

approach effectively reduces the computation time for model training without compromising accuracy.

(a) Average execution time (per epoch) comparison
of each layer for AlexNet CNN architecture

(b) Communication latency comparison for split-
ting the AlexNet using pipeline model parallelism

Figure 6.7: Average execution time and communication latency comparison for splitting AlexNet

Layer Execution Time Comparison

In order to evaluate the effectiveness of the proposed pipeline model parallelism framework, we assess the

average execution time of each layer of the AlexNet architecture in this experiment. One of the objectives

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 151

of this paper is to minimize the net execution time by splitting the network into an optimal number of splits.

Figure 6.7(a) illustrates the average execution times of different layers, calculated after 100 iterations. The

workload is distributed with a batch size of 128. The convolutional layers require a longer processing time due

to the high volume of parameters (e.g., 62,378,344) and weights they contain compared to the fully connected

layers. As a result, the average execution times of the convolutional layers are comparatively higher than

those of the fully connected layers. Furthermore, we compare the performance of the data parallelism with

our proposed approach. The results show that the pipeline model parallelism reduces the average execution

time when the model is split into three parts, with each layer having a lower execution time.

Communication Latency Comparison

In this experiment, we evaluate the impact of the number of splits on communication latency in parallel

processing. To understand the communication latency between the layers, we measure the time required to

transfer the first data packet from one layer to another during a single iteration. It measures the communi-

cation delay between two adjacent layers in a parallel processing system. We compare the communication

latency for different numbers of model splits on the available CPU cores with varying frequency distributions.

Figure 6.7(b) shows the comparison of latency among all the layers for various numbers of splits. The com-

munication latency for two and three splits does not differ significantly, but a substantial increase in latency

is observed when the number of splits increases to four. The latency for four splits was found to be over six

seconds, as the number of computing processors increases with the number of splits. This experiment high-

lights the importance of finding the optimal number of splits to minimize communication latency in DNN

parallel processing.

6.4 Threats to Validity

To understand the scope of our work, we report threats to the validity of our proposed approach.

6.4.1 Embedded Software Reuse

• Scope and Generalizability: While our methodology is grounded in the context of C code, its foun-

dational principles bear the potential for adaptation to other object oriented programming languages.

This adaptability is especially promising given the similarities in procedural or functional structures

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 152

across various languages.

• Identifying Non-Functional Features from Poorly Documented Code: Identifying non-functional re-

quirements in embedded systems arises from the quality of software documentation. We rely on de-

veloper comments in the code and libraries related to non-functional features as primary sources of

information. However, suppose the program code is not adequately documented or fails to maintain

the coding standards, especially lacking informative developer comments. There is a chance of over-

looking necessary non-functional features in that case. This limitation could lead to an incomplete

understanding of these requirements. We plan to incorporate dynamic analysis in our future work

to overcome this. This would allow us to explore non-functional features more deeply, potentially

uncovering aspects not immediately evident through static code analysis alone.

• Model Biases and Refinements: The inherent biases of language models and machine learning models,

such as LDA and BERT, present challenges in the accurate interpretation of code artifacts. How-

ever, the avenue of fine-tuning them with domain-specific datasets offers a promising countermeasure,

allowing these models to be more attuned to the nuances and specificities of the source code.

• Reproducibility of the Experimental Results: Given the unique nature of embedded software and the

specific configurations of their development environments, replicating our findings in different settings

might yield a different result. However, using uniformity in the versions of language models and the

parameter settings of our machine learning models, we expect to achieve consistent results across

similar experimental setups.

• Detail Granularity: The level of granularity in the feature extraction process emerged as a pivotal con-

sideration. The flexibility to tailor extraction, be it from a broad overview or a granulated perspective,

ensures that the process remains aligned with the desired level of intricacy.

The integration of advanced NLP models with static code analysis signifies a transformative shift in software

engineering methodologies. By harnessing the semantic prowess of BERT in conjunction with topic model-

ing, we have charted new territories in requirements extraction and feature modeling. While the results are

promising, they underscore the importance of a unified blend of traditional and contemporary techniques.

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 153

6.4.2 ML-based Fog Assisted Embedded Software Development

• Can we generalize the approach for all DNN applications?: In this work, we have worked especially

on the CNN architecture, which is a particular type of DNN. Therefore, our model-splitting approach

only applies to those architectures with a structure that is similar to CNN.

• Is this approach applicable for GPU-enabled embedded systems?: This work mainly focuses on sup-

porting multiprocessor embedded systems that largely have multi-core CPUs. Although GPU support

is open, the embedded systems community still needs multiprocessor CPU-enabled solutions to reuse

the existing embedded systems, avoiding additional costs. However, this work is easily extensible to

support multi-GPU embedded systems.

• Does this approach tune the hyper-parameters during model training?: The proposed approach only

identifies how the model can be split onto multiple processors. Therefore, during our experiment, we

use the default configurations of the hyper-parameters of all the CNN architectures. Thus, the result

may vary if one tunes the parameters in different computing platforms. However, we can analyze this

in the future to determine what hyper-parameters impact performance acceleration.

6.5 Clarifying Research Questions

In this section, we clarify how each research question mentioned in Section 1.3 has been tackled through

various experiments and analyses conducted during this research. The findings are discussed in relation to

each research question, offering clear insights into how the objectives of the thesis were met.

• RQ1: Essential Criteria for Identifying Reusable Features from Legacy Embedded Software

The identification and extraction of reusable features from legacy embedded software were achieved

using a combination of BERT and topic modeling techniques discussed in Chapter 3. In addressing

RQ1, our methodology distinguished between functional and non-functional features within the legacy

embedded software. For functional features, we adopted the principle that every user-defined function

in the codebase represents a potential feature, each denoting a unique operation or functionality within

the system. We prioritize user-defined functions in our analysis as they typically contain the core logic

and unique features specific to the embedded software, providing a more accurate representation of its

functionality.

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 154

However, to minimize the granularity of considering functions as features, we apply LDA and BERT

on the Longest Common Unit (LCU) technique of function calls to find the potential features. The

frequency of function calls and the presence of conditional statements within the code were ana-

lyzed, serving as key indicators of feature reusability and interrelationships. On the other hand, for

non-functional features, we focused on program libraries and comments associated with each func-

tion. These elements often provide critical insights into the context, purpose, and constraints of the

functions, thereby enriching our understanding of the software’s broader architecture and design con-

siderations.

Our examination of the “Software Controller for Vehicles” GitHub project (see Figure 6.1) demon-

strated our ability to extract and identify 38 reusable functions. Utilizing tools such as cflow and

pycparser, along with NLP models like BERT and topic modeling, we determine mandatory and op-

tional features and their interrelations (OR, XOR, Requires, Excludes). This process validated our

approach to identifying reusable features from legacy embedded software.

• RQ2: Expedited Development Process through Feature Identification and Reuse

Feature modeling is an established software product line approach demonstrating the practical and

time-saving aspects of reusing legacy code and core assets. The feature model includes already tested

or verified features, facilitating faster software development. Addressing RQ2, the constructed feature

model can significantly reduce the feature search time along with its valid configuration. The feature

model’s efficiency was highlighted by comparing feature search times with manual methods, proving

its effectiveness in large-scale development. As depicted in Figure 6.2, the feature search times in the

smart elevator system, infotainment system, and health monitoring system projects were reduced by

59.0%, 49.8%, and 74.5%, respectively. This reduction in search time and feature localization high-

lights the efficiency of our feature identification approach in the faster development of next-generation

embedded software.

• RQ3: Efficacy of BERT and Topic Modeling Techniques in n identifying and extracting features

and requirements

To address Research Question RQ3 on the efficacy of BERT and topic modeling in identifying fea-

tures from embedded software, our investigations involved Electric Water Heaters, Microwaves, and

Autonomous Vehicle Systems (AVS). Table 3.1 showcases the identified features and requirements

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 155

for the Electric Water Heater and Microwave, using both LDA-based TF-IDF and BERT methods.

BERT’s effectiveness is further highlighted in Table 3.2 where BERT identified 29 features compared

to 17 by LDA-based TF-IDF, indicating a more comprehensive feature extraction for Electric Water

Heater project.

Figure 3.7 illustrates the feature coherence evaluation, demonstrating TF-IDF’s precision in feature

extraction. BERT’s nuanced identification capabilities are evident in Figure 3.8, showcasing the simi-

larities between various features and requirements for the Electric Water Heater. A comparative analy-

sis of BERT and LDA across metrics like Coverage, Relevance, Granularity, and Diversity is depicted

in Figure 3.9. BERT excels in Relevance and Granularity, while LDA shows better Coverage and

Diversity.

For the AVS project, our BERT-enabled approach identified approximately 65 features, achieving

an F1-score of 0.89, which notably surpassed the scores from manual and rule-based methods (Fig-

ure 3.11). The feature model for the AVS’s Object Detection System (Figure 3.12) further confirms the

intricate structure and interdependencies of features, offering valuable insights for efficient software

development. Our findings confirm that BERT and topic modeling techniques are highly effective in

extracting features and requirements from embedded software, providing detailed and context-specific

insights that improve the extraction process significantly.

• RQ4: Performance of Fog-Enabled Architecture

To address RQ4 on the performance of fog-enabled architecture in satisfying embedded software con-

straints, our experimental testbed, depicted in Figures 6.3 and 6.4, played a crucial role. This setup

effectively simulated a fog-assisted OTA update environment, allowing us to observe and evaluate the

architecture’s real-world capabilities. Notably, our testbed demonstrated significant improvements in

OTA update times and network efficiency, vital in the context of embedded software systems.

The comparative analysis of fog-based predicted OTA update times and handover delays against worst-

case scenarios, shown in Figure 4.13, validated the effectiveness of our fog computing approach. These

comparisons revealed that fog computing adeptly manages update times and handover delays, essential

for maintaining seamless operation in embedded systems. The results from our testbed experiments

provided a robust answer to RQ4. They confirmed that fog-enabled architecture effectively meets the

diverse and often stringent constraints of embedded software, highlighting its potential as a leading

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 156

solution for next-generation systems.

• RQ5: Optimal Training of Large Machine Learning Models on Edge Network

RQ5 focused on addressing the challenge of training large ML models on edge devices by optimizing

model partitioning. Our experiments with the AlexNet model (as detailed in Table 6.1 and Figure 6.6)

showcased that strategic model partitioning leads to significant acceleration in training performance,

maintaining accuracy. The experiment demonstrates an average speed-up of 2.5 times with our pro-

posed pipelined model parallelism over sequential executions. In addition, we use the TMR technique

for safe online model training on edge devices, which is discussed in Section 4.4.

6.6 Summary

This chapter addresses and clarifies the key research questions outlined in the Introduction chapter, focus-

ing on next-generation embedded software development. Through a series of designed experiments and

comprehensive analyses, we have validated our approaches across different facets of embedded software

development, integrating advanced methodologies and modern computing paradigms.

• Investigating Legacy Embedded Software: The process of identifying and extracting reusable features

from legacy embedded software is successfully executed using a combination of BERT and topic

modeling techniques. The study on a GitHub project highlights our capability to determine functional

and non-functional features from legacy systems.

• Integration of Fog Computing Architecture: Our experimental testbed underlined the effective per-

formance of fog-enabled architecture in embedded systems. The OTA update times and network ef-

ficiency analysis confirm the dominance of fog computing in managing update times and handover

delays, which is essential for next-generation embedded software systems.

• Optimizing ML Model Training on Fog/Edge Architecture: The experimental setup, involving the

AlexNet model and outlined in Table 6.1 and Figure 6.6, demonstrate the importance of optimal model

partitioning in accelerating machine learning model training on edge devices. This aspect of our study

showcases the potential of integrating advanced machine learning models within embedded systems.

In summary, this chapter illustrates the applicability of our proposed approaches toward improving embedded

Chapter 6. RESULTS ANALYSIS AND DISCUSSION 157

software reuse. By integrating current computing techniques, such as fog and edge computing for large ma-

chine learning model training, into the framework of legacy software, we have demonstrated a clear pathway

toward the evolution of next-generation embedded systems. These findings validate the potential of reusing

legacy software and highlight the transformative role of modern methodologies in bridging traditional and

contemporary software development practices.

158

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Research Outcomes

The rapid evolution of embedded systems, particularly in the domain of Cyber-Physical Systems (CPS), has

accentuated the need for agile software development methodologies. This research aimed to harness the

potential of legacy software for developing reusable feature-based next-generation embedded systems. By

integrating static analysis with topic modeling and the Bidirectional Encoder Representations from Trans-

formers (BERT), the study identified reusable features from legacy software to expedite development and

requirements analysis.

Key outcomes of the research include:

• Feature and Requirement Analysis for Improving Reusability: Developed a Python tool that auto-

mates the extraction of features from legacy software. This tool visually presents the requirements and

constraints of features but also aids in constructing a comprehensive feature model. This innovation

led to a significant 74.5% improvement in feature search times, enhancing the overall efficiency of the

software development process.

• A Framework for OTA Software Updates: Successfully implemented and validated a fog comput-

ing testbed. This testbed showcases the efficacy of fog-assisted OTA updates in real-world scenarios,

specifically focusing on vehicular software systems. The case study on vehicular OTA updates demon-

strates the effectiveness of the proposed methodology in practical applications.

• A Machine Learning Model Parallelism Tool: Developed an advanced tool for optimizing machine

learning model performance. This tool facilitates the partitioning of large ML models across edge

Chapter 7. CONCLUSION AND FUTURE WORK 159

devices, ensuring optimal use of resources and improving computation efficiency. This approach is

essential for integrating advanced functionalities of next-generation applications into feature-based

embedded software.

7.2 Implications and Recommendations

This research presents advancements in embedded software development, setting the background for trans-

formative changes in the industry. The methodologies and tools developed facilitate development and demon-

strate the process of integrating cutting-edge technologies into embedded systems. This study offers insights

and guidelines for current and future applications in this rapidly evolving field. The key implications and

recommendations derived from our research are:

1. Software Reusability: Reusing legacy software can considerably reduce the time and cost of devel-

oping new software applications. This is especially beneficial in a competitive market where timely

product releases are crucial.

2. Enhanced Software Development: With the ability to extract and visualize features and their re-

quirements, developers can better understand software requirements, thus streamlining the design and

development processes.

3. Integration of Advanced Technologies: The research emphasizes integrating advanced features like

machine learning and fog computing to modernize embedded systems. Such integrations can lead to

more efficient and reliable systems, especially within distributed environments.

Recommendations for industry and academia include:

• Adopt the Feature-based Approach: Organizations should consider adopting the proposed feature-

based modular embedded software development approach, which can lead to faster, more efficient,

and reliable software development.

• Continuous Validation: While the current validation has shown promising results, continuous testing

and validation in diverse real-world scenarios are essential.

• Training and Education: As the approach integrates advanced tools and methodologies, organi-

zations should invest in training and education to ensure that their teams can effectively use these

methods.

Chapter 7. CONCLUSION AND FUTURE WORK 160

7.3 Future Work

As we look ahead, the findings and methodologies of this research open up new scope in embedded software

development. The potential for expansion and enhancement in various areas presents exciting opportunities

for further innovation and refinement. These possibilities unfold current technologies and lay the groundwork

for future demands. Here are some key areas of future work that stem from this study:

1. Expand Language Scope: While this research primarily focused on C-based software, there is po-

tential to extend the methodology to other programming languages, broadening its applicability. We

have shown how Python code of advanced features can be transformed into modular form to improve

reusability.

2. Improve the Tool: The Python tool developed can be further improved, fine tuning CodeBERT, in-

corporating more features, better user interfaces, and integrations with popular development environ-

ments.

3. Analyze More Machine Learning Algorithms: As machine learning becomes more ingrained in

embedded systems, there is scope to examine more optimizing models, ensuring their real-time per-

formance, and exploring new algorithms that can be integrated.

4. Scalability: The current approach, while effective, needs to be tested for scalability, especially in

large-scale embedded software projects. It would be worthwhile to explore how the methodology

fares in larger, more complex environments.

5. Integrating More Advanced Features: Beyond fog computing and machine learning, future embed-

ded systems might incorporate other advanced features. Research can explore the seamless integration

of these features using the proposed approach.

In conclusion, this research has paved the way for a more agile, efficient, and feature-rich future in

embedded software development. By leveraging the potential of legacy software, integrating advanced tech-

nologies, and focusing on a feature-based approach, the next-generation of embedded systems promises to be

more robust, efficient, and aligned with the demands of the modern world.

161

Bibliography

[1] D. Fuller, “System design challenges for next generation wireless and embedded systems,”

in 2014 Design, Automation Test in Europe Conference Exhibition (DATE), 2014, pp. 1–1.

DOI: 10.7873/DATE.2014.014.

[2] B. P. Douglass, Design patterns for embedded systems in C: an embedded software engi-

neering toolkit. Elsevier, 2010.

[3] M. Al Maruf, A. Azim, and O. Alam, “Facilitating reuse of functions in embedded soft-

ware,” IEEE Access, vol. 10, pp. 88 595–88 605, 2022.

[4] J. Krüger, W. Mahmood, and T. Berger, “Promote-pl: A round-trip engineering process

model for adopting and evolving product lines,” in Proceedings of the 24th ACM Conference

on Systems and Software Product Line: Volume A-Volume A, 2020, pp. 1–12.

[5] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source code,” IEEE Trans-

actions on software engineering, vol. 29, no. 3, pp. 210–224, 2003.

[6] J. J. Labrosse, “Operating systems,” in Software Engineering for Embedded Systems, Else-

vier, 2019, pp. 153–206.

[7] V. Garousi, M. Felderer, Ç. M. Karapıçak, and U. Yilmaz, “Testing embedded software: A

survey of the literature,” Information and Software Technology, vol. 104, pp. 14–45, 2018.

[8] G. Xie, G. Zeng, Z. Li, R. Li, and K. Li, “Adaptive dynamic scheduling on multifunc-

tional mixed-criticality automotive cyber-physical systems,” IEEE Transactions on Vehicu-

lar Technology, vol. 66, no. 8, pp. 6676–6692, 2017.

https://doi.org/10.7873/DATE.2014.014

Bibliography 162

[9] P. Müller, K. Narasimhan, and M. Mezini, “Fex: Assisted identification of domain features

from c programs,” in 2021 IEEE 21st International Working Conference on Source Code

Analysis and Manipulation (SCAM), IEEE, 2021, pp. 170–180.

[10] G. K. Michelon, L. Linsbauer, W. K. Assunccao, S. Fischer, and A. Egyed, “A hybrid feature

location technique for re-engineeringsingle systems into software product lines,” in 15th

International Working Conference on Variability Modelling of Software-Intensive Systems,

2021, pp. 1–9.

[11] N. Islam and A. Azim, “Feature characterization for cps software reuse,” in Proceedings of

the 10th ACM/IEEE International Conference on Cyber-Physical Systems, 2019, pp. 314–

315.

[12] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane, “Feature identification from the source

code of product variants,” in 2012 16th European Conference on Software Maintenance and

Reengineering, IEEE, 2012, pp. 417–422.

[13] A. Burger and S. Gruner, “Finalist 2: Feature identification, localization, and tracing tool,”

in 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), IEEE, 2018, pp. 532–537.

[14] R. Williams, T. Ren, L. De Carli, L. Lu, and G. Smith, “Guided feature identification and

removal for resource-constrained firmware,” ACM Transactions on Software Engineering

and Methodology (TOSEM), vol. 31, no. 2, pp. 1–25, 2021.

[15] N. Peinelt, D. Nguyen, and M. Liakata, “Tbert: Topic models and bert joining forces for

semantic similarity detection,” in Proceedings of the 58th annual meeting of the association

for computational linguistics, 2020, pp. 7047–7055.

[16] S. Zhou, U. Alon, S. Agarwal, and G. Neubig, “Codebertscore: Evaluating code generation

with pretrained models of code,” 2023. [Online]. Available: https://arxiv.org/ab

s/2302.05527.

https://arxiv.org/abs/2302.05527
https://arxiv.org/abs/2302.05527

Bibliography 163

[17] J. Delvin and M. Chang, Open source bert: State-of-the art pre-training for natural lan-

guage processing, 2018.

[18] M. A. Maruf and A. Azim, “Automated features and requirements identification for improv-

ing cps software reuse using topic modeling,” in Proceedings of the ACM/IEEE 14th Inter-

national Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), 2023, pp. 262–

263.

[19] D. Blouin, R. Al-Ali, M. Iacono, B. Tekinerdogan, and H. Giese, “An ontological foundation

for multi-paradigm modelling for cyber-physical systems,” in Multi-Paradigm Modelling

Approaches for Cyber-Physical Systems, Elsevier, 2021, pp. 9–43.

[20] L. Li, Y. Zheng, M. Yang, et al., “A survey of feature modeling methods: Historical evo-

lution and new development,” Robotics and Computer-Integrated Manufacturing, vol. 61,

p. 101 851, 2020.

[21] D. Hinterreiter, K. Feichtinger, L. Linsbauer, H. Prahofer, and P. Grunbacher, “Supporting

feature model evolution by lifting code-level dependencies: A research preview,” in Interna-

tional Working Conference on Requirements Engineering: Foundation for Software Quality,

Springer, 2019, pp. 169–175.

[22] J. Shi, J. Bian, J. Richter, et al., “Modes: Model-based optimization on distributed embedded

systems,” Machine Learning, vol. 110, no. 6, pp. 1527–1547, 2021.

[23] D. L. Lewis, Over-the-air vehicle systems updating and associate security protocols, US

Patent 9,464,905, Oct. 2016.

[24] D. A. Wood, Chrysler pacifica uconnect problems cause lawsuit, URL: https://www.c

arcomplaints.com/news/2019/chrysler-pacifica-uconnect-proble

ms-lawsuit.shtml, Last Accessed: June 26, 2021. [Online].

[25] M. A. Maruf and A. Azim, “Automated features and requirements identification for im-

proving cps software reuse using topic modeling,” in Proceedings of the ACM/IEEE 14th

https://www.carcomplaints.com/ news/2019/chrysler-pacifica-uconnect-problems-lawsuit.shtml
https://www.carcomplaints.com/ news/2019/chrysler-pacifica-uconnect-problems-lawsuit.shtml
https://www.carcomplaints.com/ news/2019/chrysler-pacifica-uconnect-problems-lawsuit.shtml

Bibliography 164

International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), ser. IC-

CPS ’23, San Antonio, TX, USA: Association for Computing Machinery, 2023, pp. 262–

263, ISBN: 9798400700361. DOI: 10.1145/3576841.3589626. [Online]. Available:

https://doi.org/10.1145/3576841.3589626.

[26] M. Al Maruf, A. Azim, N. Auluck, and M. Sahi, “Towards safe online machine learning

model training and inference on edge networks,” in 2023 International Conference on Ma-

chine Learning and Applications (ICMLA), IEEE, 2023. DOI: 10.1109/ICMLA58977

.2023.00161.

[27] M. A. Maruf and A. Azim, “Optimizing DNNs Model Partitioning for Enhanced Perfor-

mance on Edge Devices,” Proceedings of the Canadian Conference on Artificial Intelli-

gence, Jun. 2023, https://caiac.pubpub.org/pub/ly32gqd5.

[28] A. Azim and M. Al Maruf, “Cognitive mobile computing for cyber-physical systems (cps),”

in Towards a Wireless Connected World: Achievements and New Technologies, A.-S. K.

Pathan, Ed. Cham: Springer International Publishing, 2022, pp. 203–222, ISBN: 978-3-031-

04321-5. DOI: 10.1007/978-3-031-04321-5_9. [Online]. Available: https://d

oi.org/10.1007/978-3-031-04321-5_9.

[29] M. A. Maruf, A. Singh, A. Azim, and N. Auluck, “Faster fog computing based over-the-air

vehicular updates: A transfer learning approach,” IEEE Transactions on Services Comput-

ing, 2021.

[30] M. Al Maruf, A. Singh, A. Azim, and N. Auluck, “Resource efficient allocation of fog nodes

for faster vehicular ota updates,” in 2020 International Symposium on Networks, Computers

and Communications (ISNCC), IEEE, 2020, pp. 1–6.

[31] M. Majthoub, M. H. Qutqut, and Y. Odeh, “Software re-engineering: An overview,” in 2018

8th International Conference on Computer Science and Information Technology (CSIT),

IEEE, 2018, pp. 266–270.

https://doi.org/10.1145/3576841.3589626
https://doi.org/10.1145/3576841.3589626
https://doi.org/10.1109/ICMLA58977.2023.00161
https://doi.org/10.1109/ICMLA58977.2023.00161
https://doi.org/10.1007/978-3-031-04321-5_9
https://doi.org/10.1007/978-3-031-04321-5_9
https://doi.org/10.1007/978-3-031-04321-5_9

Bibliography 165

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[33] Z. Jiang, A. El-Jaroudi, W. Hartmann, D. Karakos, and L. Zhao, “Cross-lingual information

retrieval with bert,” arXiv preprint arXiv:2004.13005, 2020.

[34] M. Marques, J. Simmonds, P. O. Rossel, and M. C. Bastarrica, “Software product line

evolution: A systematic literature review,” Information and Software Technology, vol. 105,

pp. 190–208, 2019.

[35] D. Brugali, “Software product line engineering for robotics,” Software Engineering for

Robotics, pp. 1–28, 2021.

[36] J. M. Ferreira, S. R. Vergilio, and M. Quinaia, “Software product line testing based on

feature model mutation,” International Journal of Software Engineering and Knowledge

Engineering, vol. 27, no. 05, pp. 817–839, 2017.

[37] K. Czarnecki and A. Wasowski, “Feature diagrams and logics: There and back again,” in

11th International Software Product Line Conference (SPLC 2007), IEEE, 2007, pp. 23–

34.

[38] R. Mamata and A. Azim, “Work-in-progress: A resource-aware optimization model for real-

time systems analysis and design,” in 2022 International Conference on Embedded Software

(EMSOFT), IEEE, 2022, pp. 9–10.

[39] A. Larkin, Disadvantages of Cloud Computing. Cloud Adoption, Cloud Academy, Last ac-

cessed: November 16 2021, https://cloudacademy.com/blog/disadvantag

es-of-cloud-computing/, 2019.

[40] M. A. Maruf and A. Azim, “Requirements-preserving design automation for multiprocessor

embedded system applications,” Journal of Ambient Intelligence and Humanized Comput-

ing, vol. 12, pp. 821–833, 2021.

https://cloudacademy.com/blog/disadvantages-of-cloud-computing/
https://cloudacademy.com/blog/disadvantages-of-cloud-computing/

Bibliography 166

[41] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka, “Rt-wifi: Real-time

high-speed communication protocol for wireless cyber-physical control applications,” in

2013 IEEE 34th Real-Time Systems Symposium, IEEE, 2013, pp. 140–149.

[42] R. Hilbrich, “How to safely integrate multiple applications on embedded many-core systems

by applying the “correctness by construction” principle,” Advances in Software Engineer-

ing, 2012.

[43] S. Mittal, P. Rajput, and S. Subramoney, “A survey of deep learning on cpus: Opportuni-

ties and co-optimizations,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 33, no. 10, pp. 5095–5115, 2022. DOI: 10.1109/TNNLS.2021.3071762.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-

tional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[45] T. V. Renuka and B. Surekha, “Acute-lymphoblastic leukemia detection through deep trans-

fer learning approach of neural network,” in Proceeding of First Doctoral Symposium on

Natural Computing Research, Springer, 2021, pp. 163–170.

[46] A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,” arXiv

preprint arXiv:1404.5997, 2014.

[47] Y. Huang, Y. Cheng, A. Bapna, et al., “Gpipe: Efficient training of giant neural networks

using pipeline parallelism,” Advances in neural information processing systems, vol. 32,

2019.

[48] M. Abadi, P. Barham, J. Chen, et al., “{Tensorflow}: A system for {large-scale} machine

learning,” in 12th USENIX symposium on operating systems design and implementation

(OSDI 16), 2016, pp. 265–283.

[49] B. Hasheminezhad, S. Shirzad, N. Wu, P. Diehl, H. Schulz, and H. Kaiser, “Towards a scal-

able and distributed infrastructure for deep learning applications,” in In IEEE/ACM Fourth

Workshop on Deep Learning on Supercomputers (DLS), 2020, pp. 20–30.

https://doi.org/10.1109/TNNLS.2021.3071762

Bibliography 167

[50] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, and Y. Le Traon, “Bottom-up adoption

of software product lines: A generic and extensible approach,” in Proceedings of the 19th

International Conference on Software Product Line, 2015, pp. 101–110.

[51] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed, “The ecco tool: Extraction

and composition for clone-and-own,” in 2015 IEEE/ACM 37th IEEE International Confer-

ence on Software Engineering, IEEE, vol. 2, 2015, pp. 665–668.

[52] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software design,” in Interna-

tional Conference on Model Driven Engineering Languages and Systems, Springer, 2013,

pp. 604–621.

[53] M. Pfannemuller, C. Krupitzer, M. Weckesser, and C. Becker, “A dynamic software prod-

uct line approach for adaptation planning in autonomic computing systems,” in 2017 IEEE

International Conference on Autonomic Computing (ICAC), IEEE, 2017, pp. 247–254.

[54] U. Sabir, F. Azam, S. U. Haq, M. W. Anwar, W. H. Butt, and A. Amjad, “A model driven

reverse engineering framework for generating high level uml models from java source code,”

IEEE access, vol. 7, pp. 158 931–158 950, 2019.

[55] E. Kang and D. Jackson, “A model-based framework for security configuration analysis,”

Unpublished manuscript. Available at: http://people. csail. mit. edu/eskang/papers/security-

configuration. pdf,

[56] J. Carbonnel, M. Huchard, and C. Nebut, “Towards the extraction of variability information

to assist variability modelling of complex product lines,” in Proceedings of the 12th Inter-

national Workshop on Variability Modelling of Software-Intensive Systems, 2018, pp. 113–

120.

[57] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, and Y. Le Traon, “Automating the extraction

of model-based software product lines from model variants (t),” in 2015 30th IEEE/ACM

Bibliography 168

International Conference on Automated Software Engineering (ASE), IEEE, 2015, pp. 396–

406.

[58] Y. Tang and H. Leung, “Sticprob: A novel feature mining approach using conditional prob-

ability,” in 2017 IEEE 24th International Conference on Software Analysis, Evolution and

Reengineering (SANER), IEEE, 2017, pp. 45–55.

[59] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceability with topic model-

ing,” in Proceedings of the 32nd ACM/IEEE international conference on Software Engineering-

Volume 1, 2010, pp. 95–104.

[60] F. Perez, R. Lapena, A. C. Marcen, and C. Cetina, “Topic modeling for feature location in

software models: Studying both code generation and interpreted models,” Information and

Software Technology, vol. 140, p. 106 676, 2021.

[61] H. Abukwaik, A. Burger, B. K. Andam, and T. Berger, “Semi-automated feature traceability

with embedded annotations,” in 2018 IEEE International Conference on Software Mainte-

nance and Evolution (ICSME), IEEE, 2018, pp. 529–533.

[62] M. S. Haris, T. A. Kurniawan, and F. Ramdani, “Automated features extraction from soft-

ware requirements specification (srs) documents as the basis of software product line (spl)

engineering,” Journal of Information Technology and Computer Science, vol. 5, no. 3, pp. 279–

292, 2020.

[63] A. E. Yaacoub, L. Mottola, T. Voigt, and P. Rümmer, “Timing analysis of embedded soft-

ware updates,” arXiv preprint arXiv:2304.14213, 2023.

[64] M. Azanza, A. Irastorza, R. Medeiros, and O. Diaz, “Onboarding in software product lines:

Concept maps as welcome guides,” in 2021 IEEE/ACM 43rd International Conference on

Software Engineering: Software Engineering Education and Training (ICSE-SEET), IEEE,

2021, pp. 122–133.

Bibliography 169

[65] T. Bhowmik, N. Niu, A. Mahmoud, and J. Savolainen, “Automated support for combina-

tional creativity in requirements engineering,” in 2014 IEEE 22nd International Require-

ments Engineering Conference (RE), IEEE, 2014, pp. 243–252.

[66] J. Kruger, T. Berger, and T. Leich, “Features and how to find them: A survey of manual fea-

ture location,” Software Engineering for Variability Intensive Systems, pp. 153–172, 2019.

[67] R. Li, L. B. Allal, Y. Zi, et al., “Starcoder: May the source be with you!” arXiv preprint

arXiv:2305.06161, 2023.

[68] S. Nadi, T. Berger, C. Kastner, and K. Czarnecki, “Mining configuration constraints: Static

analyses and empirical results,” in Proceedings of the 36th international conference on soft-

ware engineering, 2014, pp. 140–151.

[69] R. Damaševičius, P. Paškevičius, E. Karčiauskas, and R. Marcinkevičius, “Automatic ex-

traction of features and generation of feature models from java programs,” Information

Technology and Control, vol. 41, no. 4, pp. 376–384, 2012.

[70] M. Steger, C. A. Boano, T. Niedermayr, et al., “An efficient and secure automotive wireless

software update framework,” IEEE Transactions on Industrial Informatics, vol. 14, no. 5,

pp. 2181–2193, 2018.

[71] T. Mirfakhraie, G. Vitor, and K. Grogan, “Applicable protocol for updating firmware of

automotive hvac electronic control units (ecus) over the air,” in 2018 IEEE International

Conference on Internet of Things (iThings) and IEEE Green Computing and Communica-

tions (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE

Smart Data (SmartData), 2018, pp. 21–26.

[72] S. Ingle and M. Phute, “Tesla autopilot: Semi autonomous driving, an uptick for future

autonomy,” International Research Journal of Engineering and Technology, vol. 3, no. 9,

2016.

Bibliography 170

[73] S. Nie, L. Liu, Y. Du, and W. Zhang, “Over-the-air: How we remotely compromised the

gateway, bcm, and autopilot ecus of tesla cars,” BlackHat USA, Las Vegas, NV, pp. 1–19,

2018.

[74] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio signal clas-

sification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168–

179, 2018.

[75] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez, “Computation resource al-

location and task assignment optimization in vehicular fog computing: A contract-matching

approach,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3113–3125,

2019.

[76] S. Memon and M. Maheswaran, “Using machine learning for handover optimization in

vehicular fog computing,” in Proceedings of the 34th ACM/SIGAPP Symposium on Applied

Computing, ACM, 2019, pp. 182–190.

[77] S. Wang, J. Wu, S. Zhang, and K. Wang, “Ssds: A smart software-defined security mech-

anism for vehicle-to-grid using transfer learning,” IEEE Access, vol. 6, pp. 63 967–63 975,

2018.

[78] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization of task scheduling and

image placement in fog computing supported software-defined embedded system,” IEEE

Transactions on Computers, vol. 65, no. 12, pp. 3702–3712, 2016.

[79] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “Fogbus: A blockchain-based lightweight frame-

work for edge and fog computing,” Journal of Systems and Software, vol. 154, pp. 22–36,

2019.

[80] M. Maheswaran, T. Yang, and S. Memon, “A fog computing framework for autonomous

driving assist: Architecture, experiments, and challenges,” arXiv preprint arXiv:1907.09454,

2019.

Bibliography 171

[81] A. A. Khan, M. Abolhasan, and W. Ni, “5g next generation vanets using sdn and fog com-

puting framework,” in 2018 15th IEEE Annual Consumer Communications & Networking

Conference (CCNC), IEEE, 2018, pp. 1–6.

[82] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “Ifogsim2: An extended ifogsim

simulator for mobility, clustering, and microservice management in edge and fog computing

environments,” Journal of Systems and Software, p. 111 351, 2022.

[83] A. Vladyko, A. Khakimov, A. Muthanna, A. A. Ateya, and A. Koucheryavy, “Distributed

edge computing to assist ultra-low-latency vanet applications,” Future Internet, vol. 11,

no. 6, p. 128, 2019.

[84] J. Zhu, J. Hu, M. Zhang, Y. Chen, and S. Bi, “A fog computing model for implementing

motion guide to visually impaired,” Simulation Modelling Practice and Theory, vol. 101,

p. 102 015, 2020.

[85] N. Suryadevara, A. Negi, and S. R. Rudraraju, “A smart home assistive living framework

using fog computing for audio and lighting stimulation,” in Advances in Decision Sciences,

Image Processing, Security and Computer Vision, Springer, 2020, pp. 366–375.

[86] D. N. Jha, K. Alwasel, A. Alshoshan, et al., “Iotsim-edge: A simulation framework for

modeling the behavior of internet of things and edge computing environments,” Software:

Practice and Experience, vol. 50, no. 6, pp. 844–867, 2020.

[87] G. Kim and I. Y. J. and, “Integrity assurance of ota software update in smart vehicles,”

International Journal on Smart Sensing and Intelligent Systems, vol. 12, no. 1178-5608,

pp. 1–8, 2019. DOI: 10.21307/ijssis-2019-011.

[88] Y. Bi, G. Han, C. Lin, Q. Deng, L. Guo, and F. Li, “Mobility support for fog computing: An

sdn approach,” IEEE Communications Magazine, vol. 56, no. 5, pp. 53–59, 2018.

[89] T. Karthik, A. Brown, S. Awwad, et al., “Uptane: Securing software updates for automo-

biles,” in International Conference on Embedded Security in Car, 2016, pp. 1–11.

https://doi.org/10.21307/ijssis-2019-011

Bibliography 172

[90] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia, “Memory-efficient pipeline-

parallel dnn training,” in International Conference on Machine Learning, PMLR, 2021,

pp. 7937–7947.

[91] D. Narayanan, A. Harlap, A. Phanishayee, et al., “Pipedream: Generalized pipeline paral-

lelism for dnn training,” in Proceedings of the 27th ACM Symposium on Operating Systems

Principles, 2019, pp. 1–15.

[92] M. Tanaka, K. Taura, T. Hanawa, and K. Torisawa, “Automatic graph partitioning for very

large-scale deep learning,” in In IEEE International Parallel and Distributed Processing

Symposium (IPDPS), 2021, pp. 1004–1013.

[93] A. A. Moreno, J. Olivito, J. Resano, and H. Mecha, “Analysis of a pipelined architecture

for sparse dnns on embedded systems,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 28, no. 9, pp. 1993–2003, 2020.

[94] D. Saguil and A. Azim, “A layer-partitioning approach for faster execution of neural network-

based embedded applications in edge networks,” IEEE Access, vol. 8, pp. 59 456–59 469,

2020.

[95] L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu, “Adaptive parallel

execution of deep neural networks on heterogeneous edge devices,” in Proceedings of the

4th ACM/IEEE Symposium on Edge Computing, 2019, pp. 195–208.

[96] A. Harlap, D. Narayanan, A. Phanishayee, et al., “Pipedream: Fast and efficient pipeline

parallel dnn training,” arXiv preprint arXiv:1806.03377, 2018.

[97] S. Fan, Y. Rong, C. Meng, et al., “Dapple: A pipelined data parallel approach for training

large models,” in Proceedings of the 26th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, 2021, pp. 431–445.

Bibliography 173

[98] B. Yang, J. Zhang, J. Li, C. Ré, C. Aberger, and C. De Sa, “Pipemare: Asynchronous

pipeline parallel dnn training,” Proceedings of Machine Learning and Systems, vol. 3, pp. 269–

296, 2021.

[99] V. Kianzad and S. S. Bhattacharyya, “Efficient techniques for clustering and scheduling

onto embedded multiprocessors,” IEEE Transactions on Parallel and Distributed Systems,

vol. 17, no. 7, pp. 667–680, 2006.

[100] H.-I. Wu, D.-Y. Guo, H.-H. Chin, and R.-S. Tsay, “A pipeline-based scheduler for optimiz-

ing latency of convolution neural network inference over heterogeneous multicore systems,”

in 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems

(AICAS), 2020, pp. 46–49. DOI: 10.1109/AICAS48895.2020.9073977.

[101] D. Jeong, J. Kim, M.-L. Oldja, and S. Ha, “Parallel scheduling of multiple sdf graphs onto

heterogeneous processors,” IEEE Access, vol. 9, pp. 20 493–20 507, 2021.

[102] L. E. Rubio-Anguiano, A. C. Trabanco, J. L. B. Velasco, and A. Ramirez-Trevino, “Max-

imizing utilization and minimizing migration in thermal-aware energy-efficient real-time

multiprocessor scheduling,” IEEE Access, vol. 9, pp. 83 309–83 328, 2021.

[103] E. A. Lee, “The past, present and future of cyber-physical systems: A focus on models,”

Sensors, vol. 15, no. 3, pp. 4837–4869, 2015.

[104] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: The next computing

revolution,” in Proceedings of the 47th design automation conference, 2010, pp. 731–736.

[105] Z. Sharafi, Z. Soh, and Y.-G. Gueheneuc, “A systematic literature review on the usage

of eye-tracking in software engineering,” Information and Software Technology, vol. 67,

pp. 79–107, 2015.

[106] I. Alazzam, A. Aleroud, Z. Al Latifah, and G. Karabatis, “Automatic bug triage in software

systems using graph neighborhood relations for feature augmentation,” IEEE Transactions

https://doi.org/10.1109/AICAS48895.2020.9073977

Bibliography 174

on Computational Social Systems, vol. 7, no. 5, pp. 1288–1303, 2020. DOI: 10.1109

/TCSS.2020.3017501.

[107] T.-H. Chen, S. W. Thomas, M. Nagappan, and A. E. Hassan, “Explaining software defects

using topic models,” in 2012 9th IEEE working conference on mining software repositories

(MSR), IEEE, 2012, pp. 189–198.

[108] D. Yu and B. Xiang, “Discovering topics and trends in the field of artificial intelligence:

Using lda topic modeling,” Expert Systems with Applications, p. 120 114, 2023.

[109] P. Wu, J. Wang, and B. Tian, “Software homology detection with software motifs based on

function-call graph,” IEEE Access, vol. 6, pp. 19 007–19 017, 2018.

[110] E. Bendersky, Pycparser. github repository 2020, URL: https://github.com/elib

en/pycparser.

[111] Z. Feng, D. Guo, D. Tang, et al., “Codebert: A pre-trained model for programming and

natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[112] A. Elbanawi, Electric-water-heater, URL: https://github.com/AhmedElbanawi

/Electric-Water-Heater.git, Accessed: 2023-0-20, 2020.

[113] A. Elbanawi, Microwave, URL: https://github.com/AhmedElbanawi/Micro

Wave.git, Accessed: 2023-07-12, 2020.

[114] M. A. Maruf, Autonomous vehicle systems, URL: https://doi.org/10.6084/m9

.figshare.22237105, 2023.

[115] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular fog computing: A viewpoint

of vehicles as the infrastructures,” IEEE Transactions on Vehicular Technology, vol. vol. 65,

no. 6, pp. 3860–3873, 2016.

[116] S. Halder, A. Ghosal, and M. Conti, “Secure ota software updates in connected vehicles: A

survey,” arXiv preprint arXiv:1904.00685, 2019.

https://doi.org/10.1109/TCSS.2020.3017501
https://doi.org/10.1109/TCSS.2020.3017501
https://github.com/eliben/pycparser
https://github.com/eliben/pycparser
https://github.com/AhmedElbanawi/Electric-Water-Heater.git
https://github.com/AhmedElbanawi/Electric-Water-Heater.git
https://github.com/AhmedElbanawi/MicroWave.git
https://github.com/AhmedElbanawi/MicroWave.git
https://doi.org/10.6084/m9.figshare.22237105
https://doi.org/10.6084/m9.figshare.22237105

Bibliography 175

[117] D. Kim, S. Kim, and J. H. Park, “Remote software update in trusted connection of long

range iot networking integrated with mobile edge cloud,” IEEE Access, vol. 6, pp. 66 831–

66 840, 2017.

[118] X. Jin, A survey on network architectures for mobility, 2006.

[119] G. Hampel, K. L. Clarkson, J. D. Hobby, and P. A. Polakos, “The tradeoff between coverage

and capacity in dynamic optimization of 3g cellular networks,” in 2003 IEEE 58th Vehicular

Technology Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484), IEEE, vol. 2, 2003,

pp. 927–932.

[120] M. Kane, “Mass over-the-air update of tesla cars captured on video,” InsideEVs (Electric

Vehicle News, Reviews, and Reports), Last Accessed: June 27, 2021.

[121] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of Big

Data, 2016. DOI: https://doi.org/10.1186/s40537-016-0043-6.

[122] P. Chawdhry, G. Folloni, S. Luzardi, and S. Lumachi, European wifi hotspot signal strength

coverage, 2016. [Online]. Available: http://data.europa.eu/89h/jrc-netbra

vo-netbravo-od-eu-wifi.

[123] D. A. King and J. F. Saldarriaga, “Access to taxicabs for unbanked households: An ex-

ploratory analysis in new york city,” Journal of Public Transportation, vol. 20, no. 1, p. 1,

2017.

[124] M. A. Maruf and A. Azim, “Extending resources for avoiding overloads of mixed-criticality

tasks in cyber-physical systems,” IET Cyber-Physical Systems: Theory & Applications,

2019.

[125] D. Raca, D. Leahy, C. J. Sreenan, and J. J. Quinlan, “Beyond throughput, the next genera-

tion: A 5g dataset with channel and context metrics,” in Proceedings of the 11th ACM Mul-

timedia Systems Conference, ser. MMSys ’20, Istanbul, Turkey: Association for Computing

https://doi.org/https://doi.org/10.1186/s40537-016-0043-6
http://data.europa.eu/89h/jrc-netbravo-netbravo-od-eu-wifi
http://data.europa.eu/89h/jrc-netbravo-netbravo-od-eu-wifi

Bibliography 176

Machinery, 2020, pp. 303–308, ISBN: 9781450368452. DOI: 10.1145/3339825.3394

938. [Online]. Available: https://doi.org/10.1145/3339825.3394938.

[126] X. Chen, A. Azim, X. Liu, S. Fischmeister, and J. Ma, “Dts: Dynamic tdma scheduling for

networked control systems,” Journal of Systems Architecture, vol. 60, no. 2, pp. 194–205,

2014.

[127] X. Wang, X. Wu, S. Cheng, J. Shi, X. Ping, and W. Yue, “Design and experiment of control

architecture and adaptive dual-loop controller for brake-by-wire system with an electric

booster,” IEEE Transactions on Transportation Electrification, vol. 6, no. 3, pp. 1236–1252,

2020.

[128] K. Cao, S. Hu, Y. Shi, A. W. Colombo, S. Karnouskos, and X. Li, “A survey on edge and

edge-cloud computing assisted cyber-physical systems,” IEEE Transactions on Industrial

Informatics, vol. 17, no. 11, pp. 7806–7819, 2021.

[129] M. Al Maruf, A. Singh, A. Azim, and N. Auluck, “Faster fog computing based over-the-air

vehicular updates: A transfer learning approach,” IEEE Transactions on Services Comput-

ing, vol. 15, no. 6, pp. 3245–3259, 2022.

[130] M. Jouhari, A. K. Al-Ali, E. Baccour, et al., “Distributed cnn inference on resource-constrained

uavs for surveillance systems: Design and optimization,” IEEE Internet of Things Journal,

vol. 9, no. 2, pp. 1227–1242, 2021.

[131] J. Na, H. Zhang, J. Lian, and B. Zhang, “Partitioning dnns for optimizing distributed in-

ference performance on cooperative edge devices: A genetic algorithm approach,” Applied

Sciences, vol. 12, no. 20, p. 10 619, 2022.

[132] M. Shahshahani, P. Goswami, and D. Bhatia, “Memory optimization techniques for fpga

based cnn implementations,” in 2018 IEEE 13th Dallas Circuits and Systems Conference

(DCAS), IEEE, 2018, pp. 1–6.

https://doi.org/10.1145/3339825.3394938
https://doi.org/10.1145/3339825.3394938
https://doi.org/10.1145/3339825.3394938

Bibliography 177

[133] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,

pp. 770–778.

[134] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[135] A. Menshchikov, D. Shadrin, V. Prutyanov, et al., “Real-time detection of hogweed: Uav

platform empowered by deep learning,” IEEE Transactions on Computers, vol. 70, no. 8,

pp. 1175–1188, 2021.

[136] I. Z. Mukti and D. Biswas, “Transfer learning based plant diseases detection using resnet50,”

in 2019 4th International conference on electrical information and communication technol-

ogy (EICT), IEEE, 2019, pp. 1–6.

[137] P. Moritz, R. Nishihara, S. Wang, et al., “Ray: A distributed framework for emerging {ai}

applications,” in 13th USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI 18), 2018, pp. 561–577.

[138] J. M. G. Sánchez, N. Jörgensen, and M. Törngren, “Edge computing for cyber-physical

systems,” ACM Trans. Cyber-Phys. Syst., 2022.

[139] S. Hamdan, S. Almajali, M. Ayyash, H. B. Salameh, and Y. Jararweh, “An intelligent edge-

enabled distributed multi-task learning architecture for large-scale iot-based cyber–physical

systems,” Simulation Modelling Practice and Theory, vol. 122, p. 102 685, 2023.

[140] W. Sun, J. Liu, and Y. Yue, “Ai-enhanced offloading in edge computing: When machine

learning meets industrial iot,” IEEE Network, vol. 33, no. 5, pp. 68–74, 2019.

[141] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an intelligent edge: Wire-

less communication meets machine learning,” IEEE communications magazine, vol. 58,

no. 1, pp. 19–25, 2020.

Bibliography 178

[142] S. Shahhosseini, D. Seo, A. Kanduri, et al., “Online learning for orchestration of inference

in multi-user end-edge-cloud networks,” ACM Transactions on Embedded Computing Sys-

tems, vol. 21, no. 6, pp. 1–25, 2022.

[143] T. Arifeen, A. S. Hassan, and J. Lee, “Approximate triple modular redundancy: A survey,”

IEEE Access, vol. 8, pp. 139 851–139 867, 2020.

[144] Kaggle, Traffic, driving style, and road surface condition, Available online: https://www.kaggle.com/datasets/gloseto/traffic-

driving-style-road-surface-condition (accessed on 20 March 2023), 2023.

[145] M. Ruta, F. Scioscia, G. Loseto, A. Pinto, and E. Di Sciascio, “Machine learning in the

internet of things: A semantic-enhanced approach,” Semantic Web, vol. 10, no. 1, pp. 183–

204, 2019.

[146] R. Tong, Q. Jiang, Z. Zou, T. Hu, and T. Li, “Embedded system vehicle based on multi-

sensor fusion,” IEEE Access, 2023.

[147] V. Kamath and A. Renuka, “Deep learning based object detection for resource constrained

devices-systematic review, future trends and challenges ahead,” Neurocomputing, 2023.

[148] J. Lee, M. Stanley, A. Spanias, and C. Tepedelenlioglu, “Integrating machine learning in em-

bedded sensor systems for internet-of-things applications,” in 2016 IEEE international sym-

posium on signal processing and information technology (ISSPIT), IEEE, 2016, pp. 290–

294.

[149] A. Ballesteros, M. Barranco, J. Proenza, L. Almeida, F. Pozo, and P. Palmer-Rodriguez, “An

infrastructure for enabling dynamic fault tolerance in highly-reliable adaptive distributed

embedded systems based on switched ethernet,” Sensors, vol. 22, no. 18, p. 7099, 2022.

[150] J. D. S. Eleuterio, B. B. de Francca, C. M. Rubira, and R. de Lemos, “Realising variability in

dynamic software product lines,” in Software Engineering for Variability Intensive Systems,

Auerbach Publications, 2019, pp. 195–223.

Bibliography 179

[151] O. Toolkit, Face detection mtcnn python* demo, https://github.com/openvinot

oolkit/open_model_zoo/tree/master/demos/face_detection_mtcnn

_demo, Accessed: 2023-07-12, 2023.

[152] U. T. Pedro Coser, Software controller for vehicles . github repository 2020, URL: https

://github.com/PCoser/Software-Programing-in-C.

[153] J. Liang, Elevator simulation. github repository 2016, URL: https://github.com

/JustinLiang/ElevatorSimulation.

[154] Y. Malinov, Car infotainment. github repository 2015, URL: https://github.com

/YMalinov/car-infotainment.git.

[155] vikrant thakur, Health monitoring system. github repository 2020, URL: https://gith

ub.com/vikrantdeveloper/health-monitoring-system.

[156] R-Car H3 High-end Automotive System-on-Chip (SoC) for In-vehicle Infotainment and

Driving Safety Support, Renesas Electronics, URL: https://www.renesas.com/us

/en/application/automotive/r-car-h3-m3-h2-m2-e2-documents-so

ftware, Last accessed: April 20, 2021.

[157] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in 2009 IEEE conference on computer vision and pattern

recognition, Ieee, 2009, pp. 248–255.

https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/face_detection_mtcnn_demo
https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/face_detection_mtcnn_demo
https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/face_detection_mtcnn_demo
https://github.com/PCoser/Software-Programing-in-C
https://github.com/PCoser/Software-Programing-in-C
https://github.com/JustinLiang/ElevatorSimulation
https://github.com/JustinLiang/ElevatorSimulation
https://github.com/YMalinov/car-infotainment.git
https://github.com/YMalinov/car-infotainment.git
https://github.com/vikrantdeveloper/health-monitoring-system
https://github.com/vikrantdeveloper/health-monitoring-system
https://www.renesas.com/us/en/application/automotive/r-car-h3-m3-h2-m2-e2-documents-software
https://www.renesas.com/us/en/application/automotive/r-car-h3-m3-h2-m2-e2-documents-software
https://www.renesas.com/us/en/application/automotive/r-car-h3-m3-h2-m2-e2-documents-software

180

Appendices

181

Appendix A

List of Symbols

• X denotes a given code segment.

• G(X) = {ϕ1(X), ϕ2(X), ..., ϕn(X)} represents the function call graph of code segment X .

• ϕi(X) denotes a specific function and its interactions within the code snippet X .

• f1, f2 are features within a feature model, subject to requires and excludes constraints.

• F(X) = {f1, f2, ..., fk} is a vector representing features of a code segment X .

• R(X) = {⊕rf1,⊕rf2,⊗rnf1,⊗rnf2, ...} is a vector representing functional and non-functional require-

ments of X .

• ⊕ symbolizes functional requirements.

• ⊗ symbolizes non-functional requirements.

• Rf ,Rnf categorize requirements into functional and non-functional types.

• M(F),M′(F) are mappings from features to functional and non-functional requirements respectively.

• Fin is a matrix defining the number of incoming function calls for each feature.

• dij stores the degree of incoming function calls to feature fi from fj .

• V,E in graphG = (V,E) represent the set of all functions and the interactions between these functions

respectively.

• D is a matrix where each element dij shows the type of relation between functions vi and vj .

• G(ϕ) assigns functions ϕ to groups based on their role within the software.

Appendix A. List of Symbols 182

• A is an artifact representing a segment of source code.

• T is a set of tokens obtained from artifact A.

• T′ represents non-essential tokens removed during preprocessing.

• Tclean is the refined set of tokens after cleaning.

• LCU(Ai,Aj) identifies the Longest Common Unit between artifacts Ai and Aj .

• V is the Bag-of-Words vector for any artifact A.

• f(ti) indicates the occurrence count of token ti in A.

• TF− IDF(ti,A) represents the Term Frequency-Inverse Document Frequency weighting for token ti

in artifact A.

• F is a set of features in a feature model.

• M is a feature model representing relationships among features in F .

• ∆i denotes the total handover delay for the ith vehicle.

• Drang represents the time required for the initial ranging process to find fog nodes with maximum

coverage.

• Dreq is the time required to request a connection to a new fog node.

• Dres indicates the time required to register with the target fog node.

• Dex is the time required for message exchange during the handover process.

• β is a weighting factor emphasizing the importance of communication latency.

• γ is a weighting factor balancing the significance of TMR time in optimization.

• sk denotes a set of partitions for edge devices.

• tmi
represents the training time for model split mi.

• lmi
denotes the communication latency for model split mi.

• TTMRk,mi
is the TMR time for partition k of model split mi. .

• Ci denotes Cluster number i; where 1 ≤ i ≤ m; m ∈ N.

Appendix A. List of Symbols 183

• n represents the number of fog nodes.

• Fk is the kth fog node where 1 ≤ k ≤ n; n ∈ N.

• Uf
k indicates the maximum resource utilization capacity of fog Fk.

• Csize
i is the size of Cluster Ci.

• Cf
i denotes the capacity of fog node Fi (requests/second).

• N(Ci) is the number of fog nodes in Cluster Ci.

• N′(Ci) refers to the number of active fog nodes in Cluster Ci.

• V(Ci) signifies the number of vehicle requests in Cluster Ci.

• pj is the computational power required by vehicle Vj .

• A(Ci) is the number of active fog nodes required to handle V (Ci).

• Ssizej is the software update size for vehicle Vj ; j ∈ N.

• Pktarrivej is the jth packet arrival time to the destination; j ∈ N.

• DRj is the network throughput for software size Ssize
j .

• Pktsendj is the jth packet sending time; j ∈ N.

• Tj is the total time taken to update Ssize
j for vehicle Vj .

• cdik is the communication distance between ith vehicle and kth fog node.

• Tp
i is the propagation/communication delay between ith vehicle and kth fog node.

• Tt
i represents the processing or transfer time.

• Tlt
i denotes the network latency.

• Yi is the actual target value.

• ∆i indicates the handover delay.

• Y′
i is the predicted delay value.

• Wi represents the worst-case delay.

• Ap
i denotes the accuracy in the predicted model.

Appendix A. List of Symbols 184

• Ap
i (second instance) represents the expected accuracy set by the engineer.

• Z+ denotes positive integer numbers.

185

Appendix B

Extracted Features of Software Car Controller

Appendix B. Extracted Features of Software Car Controller 186

F id Feature Type /
Relation

Requires /
Excludes Variables and Constraints Sub-features

1 System Mandatory V:{vehicle status}

{bus controller, airbag,
infotainment, engine,
sensors,actuators, engine,
gear shift, light controller}

2 Test Optional {software, hardware}

3 bus controller Mandatory
V:{gas pedal pos,
brake pedal pos,
Comm bus message }

4 airbag Mandatory
V:{crash threshold, inflate speed}
CL:{crash threshold=10mph,
inflate speed=100mph}

5 infotainment Mandatory V:{ICE WARNING DELAY} {display, communication}

6 engine Mandatory
V:{Temp refresh interval}
CL:{Temp refresh interval=3000ul} {gasolin, electric}

7 gear shift Mandatory

V:{eLimitedSpeed, minRPMs, redline}}
CL:{
Gear(0, 0, 0, true, eLimitedSpeed, minRPMs, redline),
Gear(1, 35, 0, false, eLimitedSpeed, minRPMs, redline),
Gear(2, 65, 8, false, eLimitedSpeed, minRPMs, redline),
Gear(3, 95, 30, false, eLimitedSpeed, minRPMs, redline),
Gear(4, 110, 45, false, eLimitedSpeed, minRPMs, redline),
Gear(5, 125, 60, false, eLimitedSpeed, minRPMs, redline),
Gear(6, 155, 85, false, eLimitedSpeed, minRPMs, redline),
Gear(-1, -30, 0, false, eLimitedSpeed, minRPMs, redline)
}

{manual, automatic}

10 actuators Mandatory
V:{brake actuator pos, fuel actuator pos,
direction actuator pos}
CL: {event action(time, period)}

{direction, fuel, brake,}

11 sensors Mandatory
V: {vehicle wheel rotation, detection time}
CL: {collect data()}

{gas pedal, brake pedal,
steering wheel, wheel
sensor}

12 light controller Mandatory V:{light status, light pos} {sidelight, low beam,
high beam, auto set}

13 gas pedal Mandatory
V:{gas pedal pos}
CL:{change speed(speed)}

14 brake pedal Mandatory V:{brake pedal pos}
15 steering wheel Mandatory V:{steering wheel pos}

16 wheel Mandatory
V:{avgWheelPeriod, wheelMode, wheel angle}
CL:{lockUpValue(), , wheel rotation count()}

17 manual Alternative
{Excludes:
automatic}

18 automatic Alternative
{Excludes:
manual}

19 direction Mandatory
20 fuel Mandatory V:{fuel actuator pos}

21 brake Mandatory

V: {ADC brake value, brake mode}
CL:{EMERGENCY STOP=1000,
MIN BRAKE=10, MIN PERIOD=60,
ADC FREQUENCY=50}

22 gasoline Mandatory
23 electric Optional
24 sidelight Mandatory
25 low beam Mandatory
26 high beam Mandatory

27 auto set Equivalent

{Requires:
sidelight,
low beam,
high beam}

28 vehicle velocity Optional
{Requires:
wheel} V:{wheel rotation, distance}

29 communication Mandatory V:{comm type} {gps, weather}
38 weather OR V:{location, weather status}

Table B.1: Extracted features from GitHub project “Software Controller for Vehicles” [152].

	Thesis Examination Information
	Abstract
	Author's Declaration
	Statement of Contributions
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Contributions
	Scope of the Research
	Organization of the Thesis

	Background and Related Work
	Background
	Reverse Engineering
	Static Code Analysis
	Software Product Line
	Decentralized Computing for Embedded Systems
	Parallel Computing for Machine Learning in Embedded Systems

	Related Work
	Traditional Approaches for Features Identification from Source Code
	Advanced Methodologies in Feature Identification and Traceability
	Fog Enabled Distributed Computing for Embedded Systems
	Distributed Machine Learning on Fog/Edge-Enhanced Embedded Systems

	Summary

	Feature-based Reusable Embedded Software Design
	Introduction
	System Architecture for Next-Gen Embedded Design
	Methodologies for Legacy Code Reuse
	Base Approach for Reusable Function Identification and Feature Model Construction
	Enhancing Feature and Requirements Identification using Topic Modeling and BERT
	Feature Model Construction

	Evaluation of Automated Feature and Requirements Extraction
	Feature and Requirement Identification
	Comparative Analysis with Other Approaches

	Summary

	Next-Generation Embedded Applications Design
	Introduction
	Enabling Fog Computing Architecture for Next-generation Embedded Applications
	Fog Computing for Time-Sensitive Embedded Applications
	System Model and Key Assumptions
	Proposed Fog-Assisted OTA Update Approach for Vehicular Networks
	Evaluation of Fog-Assisted OTA Software Update Approach

	ML-based Fog-Assisted Embedded Applications Development Framework
	Resource-intensive ML-based Next-Gen Embedded Applications
	Need for Parallelizing ML Model Training on Embedded Architectures
	Challenges in Model Parallelism and Performance Metrics
	Problem Formulation and Optimization
	System Architecture and Assumptions
	Proposed Solutions for Model Partitioning and Pipeline Execution
	Evaluation of Proposed Model Partitioning Framework

	Safe Online ML Model Training and Inference
	Current Landscape and Limitations
	Safety Constraints Integration for Safe Online Model Training
	Proposed Safe ML Model Training Framework for Edge Networks
	Evaluation of the Proposed Safe Online Model Training

	Summary

	Feature-Based Next-Generation Embedded Software Development
	Introduction
	FeaMod: A Framework for Enhancing Modularity, Adaptability and Code Reuse
	FeaMod Framework: System Model and Assumptions
	Detailed Methodology of the FeaMod Framework
	From Non-Modular Code to Modular Code: The Process of Modularization
	Techniques for Feature Identification and Requirements Extraction
	Building an Adaptive Feature Model

	Evaluation of the FeaMod Framework
	Summary

	Results Analysis and Discussion
	Introduction
	Investigate Legacy Software for Design and Development Embedded Software
	Integrating Fog Architecture for Next-generation Embedded Application
	Design and Implementation of a Testbed for Fog-enabled OTA Update Algorithm
	Optimal ML Model Partitioning for Accelerated Performance

	Threats to Validity
	Embedded Software Reuse
	ML-based Fog Assisted Embedded Software Development

	Clarifying Research Questions
	Summary

	Conclusion and Future Work
	Research Outcomes
	Implications and Recommendations
	Future Work

	Appendices
	 List of Symbols
	 Extracted Features of Software Car Controller

