
Design and Development of a Context-Aware Collaborative Autonomous

Real-Time Vehicle Systems Framework

by

Maria Joelma Pereira Peixoto

A thesis submitted to the

School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering

Faculty of Engineering and Applied Science

University of Ontario Institute of Technology (Ontario Tech University)

Oshawa, Ontario, Canada

November, 2023

© Maria Peixoto, 2023

THESIS EXAMINATION INFORMATION

Submitted by: Maria Joelma Pereira Peixoto

Doctor of Philosophy in Electrical and Computer Engineering

Thesis title: Design and Development of a Context-Aware Collaborative Autonomous

Real-Time Vehicle Systems Framework

An oral defense of this thesis took place on October 26, 2023 in front of the following

examining committee:

Examining Committee:

Chair of Examining Committee Dr. Khalid Elgazzar

Research Supervisor Dr. Akramul Azim

Examining Committee Member Dr. Khalil El-Khatib

Examining Committee Member Dr. Masoud Makrehchi

University Examiner Dr. Richard Pazzi

External Examiner Dr. Salimur Choudhury - Queens University

The above committee determined that the thesis is acceptable in form and content

and that a satisfactory knowledge of the field covered by the thesis was demonstrated

by the candidate during an oral examination. A signed copy of the Certificate of

Approval is available from the School of Graduate and Postdoctoral Studies.

ii

Abstract

The increasing autonomy of intelligent systems, with applications extending from

self-driving vehicles to home-based robots, has emerged as a critical area of focus in

modern research. Yet, to acknowledge the full potential of these systems, numerous

challenges must be addressed. This thesis encapsulates rigorous research resulting

in eight scientific papers investigating autonomous systems’ efficacy and efficiency.

Our study proposes the Context-Aware Collaborative Autonomous Real-Time Vehi-

cle Systems (CARVS) Framework and focuses on improving context awareness, sim-

plifying remote task processing, and quantifying prediction uncertainty in Machine

Learning (ML) algorithms. Our intention is to move forward the state-of-the-art in

autonomous systems based on our findings as we investigate the employment of noise

as a stimulus to boost agent exploration. We also address the development of map-

ping and task management systems for connected autonomous vehicles (CAVs) using

edge, fog, and cloud computing. Furthermore, we study the quantification of uncer-

tainty in ML algorithm predictions to describe their behaviours and decision-making

mechanisms. This research provides valuable insights for the continuous improvement

of autonomous learning and the ability to deal with uncertainties in dynamic and un-

predictable environments, which could lead to greater acceptance of such systems.

Keywords: Autonomous Intelligent Systems; Machine Learning Algorithms; Con-

text Awareness; Task Mapping and Management; Uncertainty Quantification.

iii

Author’s Declaration

I hereby declare that this thesis consists of original work which I have authored.

This is a true copy of the thesis, including any required final revisions, as accepted

by my examiners.

I authorize the University of Ontario Institute of Technology (Ontario Tech Uni-

versity) to lend this thesis to other institutions or individuals for the purpose of

scholarly research. I further authorize the University of Ontario Institute of Technol-

ogy (Ontario Tech University) to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research. I understand that my thesis will be made electronically

available to the public.

Maria Joelma Pereira Peixoto

iv

Statement of Contributions

The results of my thesis research have been shared through the following publications:

1. Peixoto, Maria J. P. and A. Azim, “A collaborative and distributed task

management system for real-time systems,” in 2023 IEEE 26th International

Symposium on Real-Time Distributed Computing (ISORC), 2023, pp. 117–125.

doi: 10.1109/ISORC58943.2023.00024

2. Maria J. P. Peixoto and A. Azim, “Design and development of a machine

learning-based task orchestrator for intelligent systems on edge networks,” IEEE

Access, vol. 11, pp. 33 049–33 060, 2023. doi: 10.1109/ACCESS.2023.3263483

3. Maria J. P. Peixoto, A. Azim, J. Sheehan, and D. Timothy, “An intelligent

traffic monitoring embedded system using video data mining,” in 2022 IEEE

Applied Imagery Pattern Recognition Workshop (AIPR), 2022, pp. 1–6. doi:

10.1109/AIPR57179.2022.10092207

4. Peixoto, Maria JP and A. Azim, “Improving environmental awareness for

autonomous vehicles,” Applied Intelligence, vol. 53, no. 2, pp. 1842–1854, 2022.

doi: https://doi.org/10.1007/s10489-022-03468-6

5. Maria J.P. Peixoto and A. Azim, “Using time-correlated noise to encour-

age exploration and improve autonomous agents performance in reinforcement

learning,” Procedia Computer Science, vol. 191, pp. 85–92, 2021, The 18th Inter-

national Conference on Mobile Systems and Pervasive Computing (MobiSPC),

v

https://doi.org/10.1109/ISORC58943.2023.00024
https://doi.org/10.1109/ACCESS.2023.3263483
https://doi.org/10.1109/AIPR57179.2022.10092207
https://doi.org/https://doi.org/10.1007/s10489-022-03468-6

The 16th International Conference on Future Networks and Communications

(FNC), The 11th International Conference on Sustainable Energy Information

Technology, issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2021

.07.014. [Online]. Available: https://www.sciencedirect.com/science/ar

ticle/pii/S187705092101406X

6. Peixoto, J.P. Maria and A. Azim, “Context-based learning for autonomous

vehicles,” in 2020 IEEE 23rd International Symposium on Real-Time Distributed

Computing (ISORC), 2020, pp. 150–151. doi: 10.1109/ISORC49007.2020.00

033

7. Peixoto, J.P. Maria and A. Azim, “Explainable artificial intelligence (XAI)

approach for reinforcement learning systems,” in The 39th ACM/SIGAPP Sym-

posium on Applied Computing (SAC), [Accepted], 2023

vi

https://doi.org/https://doi.org/10.1016/j.procs.2021.07.014
https://doi.org/https://doi.org/10.1016/j.procs.2021.07.014
https://www.sciencedirect.com/science/article/pii/S187705092101406X
https://www.sciencedirect.com/science/article/pii/S187705092101406X
https://doi.org/10.1109/ISORC49007.2020.00033
https://doi.org/10.1109/ISORC49007.2020.00033

Acknowledgements

I want to express my gratitude to my supervisor, Dr. Akramul Azim, for his wise

guidance and unwavering support throughout my journey. His belief in my potential

has been invaluable. I would also like to acknowledge the support of my colleagues

in the RTEMSOFT lab, whose contribution has been instrumental in my success.

Finally, I am grateful to the committee members for their insightful feedback.

Additionally, I want to thank my friends, siblings, and parents, Maria and José,

for supporting and encouraging me to follow and always believe in my goals. Also,

I am eternally grateful to the great love of my life, Andrei Bosco, for making this

difficult journey smooth and full of love, kindness and care.

I also would like to thank the love and friendship of Azula, Vandinha, Carolina

Maia and Hamilton de Vasconcellos in memoriam. Last but not certainly least, I

thank my psychoanalyst, Walmy Silveira, for helping me understand and calm some

voices in the madness of my mind.

I must not fear.
Fear is the mind-killer.
Fear is the little-death that brings total obliteration.
I will face my fear.
I will permit it to pass over me and through me.
And when it has gone past, I will turn the inner eye to see its path.
Where the fear has gone there will be nothing. Only I will remain.

(Litany Against Fear, Dune, Frank Herbert)

vii

Table of Contents

Thesis Examination Information . ii

Abstract . iii

Author’s Declaration . iv

Statement of Contributions . v

Acknowledgements . vii

List of Tables . x

List of Figures . xi

List of Abbreviations . xiii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Contributions . 5
1.4 Thesis Organization . 8

Chapter 2 Background and Related Work 10
2.1 Context awareness for autonomous real-time vehicle systems 11

2.1.1 Context Awareness . 11
2.1.2 Reinforcement learning . 12
2.1.3 Gaussian Process . 15
2.1.4 Ornstein-Uhlenbeck Process 15

2.2 Collaborative task management for autonomous real-time vehicle systems 16
2.2.1 Centralized approach . 17
2.2.2 Distributed approach . 19
2.2.3 Platooning . 20

2.3 Learning and continuous monitoring for autonomous real-time vehicle
systems . 21
2.3.1 Uncertainty in events . 21
2.3.2 Sensitivity analysis . 23
2.3.3 Explainable Artificial Intelligence (XAI) 25

2.4 Overview of related works . 29

Chapter 3 Proposed Context-Aware Collaborative Autonomous Real-
Time Vehicle Systems Framework 33

3.1 Context Awareness Module . 36
3.2 Collaborative Task Management Module 39
3.3 Learning and Continuous Monitoring Module 41

viii

Chapter 4 Context awareness for autonomous real-time vehicle sys-
tems . 43

Chapter 5 Collaborative task management for autonomous real-
time vehicle systems . 54

5.1 Centralized Approach . 54
5.2 Distributed Approach . 71

Chapter 6 Learning and continuous monitoring for autonomous
real-time vehicle systems 84

6.1 Scenario 1 . 87
6.2 Scenario 2 . 98

Chapter 7 Experimental Results and Discussion 100
7.1 Context Awareness for Autonomous Systems 100

7.1.1 Tasks with empty city . 106
7.1.2 Tasks with populated city . 108

7.2 Task Management in Autonomous Systems 113
7.3 Learning and Performance Monitoring of Autonomous Systems 116

Chapter 8 Conclusion and Future Works 133
8.1 Conclusion . 133
8.2 Future Work . 135

References . 138

ix

List of Tables

Table 2.1 Summary of related work (Not Mentioned (N.M)=Not Mentioned) 29

Table 5.1 Details of features selected as input 58
Table 5.2 Defined characteristics for each of the applications used 61
Table 5.3 Performance evaluation with 10-fold cross-validation 63
Table 5.4 Machine Learning (ML) algorithms performance evaluation 72
Table 5.5 Features used as inputs by task mapper 72
Table 5.6 Tasks defined for the simulation 76
Table 5.7 General comparison of the analyzed approaches 78
Table 5.8 Analysis of the processing success percentage of each approach to

CollisionPreventionTask . 83

Table 6.1 Models performance for the binary classification problem 94
Table 6.2 Models performance for the multi-level classification problem . . . 96
Table 6.3 Models performance for the regression problem 97
Table 6.4 Models performance for fire detection scenario 99

Table 7.1 Comparison with previously published works on hard exploration
(Private Eye, Gravitar and Pitfall) and one score exploit (Seaquest)
Atari games. 113

Table 7.2 Training details of evaluated agents 124
Table 7.3 Comparison of our approach and related works 132

x

List of Figures

Figure 2.1 Centralized approach for remote workload processing 17
Figure 2.2 Over-the-air task processing in a platooning scenario 20

Figure 3.1 Context-Aware Collaborative Autonomous Real-Time Vehicle Sys-
tems (CARVS) Framework . 33

Figure 3.2 Random walk simulation using python 37
Figure 3.3 Random walk result. Variability of the position x of the agent over

time. 38
Figure 3.4 Distribution of the agents’ displacement data during the random

walk. 39

Figure 4.1 Pendulum-v0 task - training . 47
Figure 4.2 LunarLander-v2 task - training 48
Figure 4.3 Humanoid-v2 task - training . 49
Figure 4.4 Pendulum-v0 task - evaluation . 51
Figure 4.5 LunarLander-v2 task - evaluation 52
Figure 4.6 Humanoid-v2 task - evaluation 53

Figure 5.1 Edge orchestrator workflow (RSU = Roadside Units/ CBS = Cel-
lular Base Station) . 55

Figure 5.2 Our one-stage proposed architecture 57
Figure 5.3 (S1 = first-order Sobol index, ST = total Sobol index) - Variance-

based sensitivity analysis to define ‘Selected features’. 58
Figure 5.4 Two-stage architecture proposed in [37] 60
Figure 5.5 Comparison of our proposal with the proposal presented in [37] . 64
Figure 5.6 Number of tasks that failed during simulation in EdgeCloudSim . 66
Figure 5.7 Orchestration algorithm overhead during simulation in EdgeCloudSim 67
Figure 5.8 Network delay of approaches during simulation in EdgeCloudSim 68
Figure 5.9 Algorithm simulation time duration in EdgeCloudSim 69
Figure 5.10 Average QoE for the number of vehicles 70
Figure 5.11 Tasks distributed percentage on each server by analyzed approach 79
Figure 5.12 Percentage of successfully completed tasks in total and by server . 80
Figure 5.13 Percentage of successfully completed tasks according to their crit-

icality on the AGX Edge Server 81
Figure 5.14 Percentage of successfully completed tasks according to their crit-

icality in Tesla Fog Server . 81
Figure 5.15 Percentage of successfully completed tasks according to their crit-

icality on the DGX Cloud Server 82

Figure 6.1 Conformal predictor workflow . 85
Figure 6.2 Comparison of the traffic network used in the simulation with the

real map of Toronto . 88
Figure 6.3 Proposed approach to estimate uncertainty in events 89
Figure 6.4 Sobol analysis to indicate priority input for binary classification

problem . 93

xi

Figure 6.5 Sobol analysis to indicate priority input for multi-level classification
problem . 95

Figure 6.6 Sobol analysis to indicate priority input for regression problem . . 97
Figure 6.7 Sobol analysis to indicate priority input for fire detection problem 98

Figure 7.1 Agent Asynchronous Advantage Actor Critic (A3C) model 102
Figure 7.2 Specification of the A3C agent connected to the CARLA simulator 103
Figure 7.3 Tasks performed with empty city 109
Figure 7.4 Tasks performed with populated city 110
Figure 7.5 Comparison between distributed and centralized approaches . . . 114
Figure 7.6 Success Rate by Processing Units 115
Figure 7.7 Task Success by Criticality . 117
Figure 7.8 Task Success Analysis . 118
Figure 7.9 Abstraction of our proposal Double Deep Q-Network (DDQN) with

uncertainty . 121
Figure 7.10 Simulation environment . 123
Figure 7.11 Scoring performance comparison between approaches with and with-

out uncertainty . 123
Figure 7.12 Details of the explainability screen in our proposal 125
Figure 7.13 Explanation of the behaviour and actions of the DDQN agent in

the obstacle avoidance scenario 128
Figure 7.14 Explanation of the behaviour and actions of the DDQN with un-

certainty agent in the obstacle avoidance scenario 130
Figure 7.15 Agent error explanation . 131

xii

List of Abbreviations

A2C Advantage Actor Critic

A3C Asynchronous Advantage Actor Critic

A3C-DP Asynchronous Advantage Actor Critic with Disturbed Policy

AI Artificial Intelligence

AL-DQN Advantage Learning - Deep Q-Network

CARLA Car Learning to Act

CARVS Framework Context-Aware Collaborative Autonomous Real-Time Vehi-
cle Systems Framework

CAVs Connected Autonomous Vehicles

CBS Cellular Network

CEP Complex Event Processing

DDQN Double Deep Q-Network

DeepCS Deep Code Search

DQN Deep Q-Network

EDFHC Earliest Deadline First and High Criticality

GPU Graphics Processing Unit

ICP Inductive Conformal Predictor

IPM Improved Probabilistic Model

KNN k-Nearest Neighbors

MAPE Mean Absolute Percentage Error

MDP Markov Decision Process

MEC Multi-access Edge Computing

ML Machine Learning

ML CP Machine Learning with Conformal Predictor

MLP MultiLayer Perceptron

xiii

MSE Mean Squared Error

N.M Not Mentioned

NPM Normal Probabilistic Model

OTA Over-The-Air

OU Ornstein-Uhlenbeck

PER Prioritized Experience Replay

POMDP Partially Observable Markov Decision Process

PPO Proximal Policy Optimization

PU Processing Unit

QoE Quality of Experience

ReLU Rectified Linear Unit

RL Reinforcement Learning

RLzoo Reinforcement Learning Zoo

RSU Roadside Unit

SAC Soft Actor Critic

SARFA Specific and Relevant Feature Attribution

SDE Stochastic Differential Equation

SOTA State-Of-The-Art

SUMO Simulation of Urban MObility

SVM Support Vector Machine

TCP Transductive Conformal Predictor

VM Virtual Machine

WAN Wide-Area Network

WLAN Wireless Local-Area Network

XAI Explainable Artificial Intelligence

xiv

Chapter 1. Introduction

1.1 Motivation

The ability of intelligent systems to operate independently and adapt to their sur-

roundings, known as autonomy, has become an increasingly important area of research

in recent years. This is crucial for their effectiveness in various applications, such as

self-driving vehicles and household robots. As the use of these autonomous agents

grows, it is essential for them to have a comprehensive understanding of their oper-

ating environment and context [1]. Despite this, there are still obstacles to overcome

before these systems can reach their full potential.

One of the challenges in autonomous systems is context awareness. For a system

to be truly autonomous, it must not only comprehend its surroundings but also adjust

to them [2]. This requires ongoing and efficient exploration of the environment, which

can be aided by introducing noise [3], [4]. This enables the system to be less confident

in its actions, allowing it to explore its surroundings more thoroughly.

Efficient task management and mapping are essential elements for autonomous

systems to succeed [5]. As these systems become more complex, they are required to

perform a diverse range of tasks, from autonomous driving and navigating in unstruc-

tured environments to complex interactions with humans in social situations. The

ability to manage and prioritize these tasks is necessary for the overall performance

and practicality of these systems.

1

Another point is learning and performance monitoring, vital for the effective op-

eration of autonomous systems, which constantly deal with uncertainties arising from

the dynamics and unpredictability of environments [6]. These systems must be able

to continuously learn from experience and adapt based on their performance, dealing

with uncertain situations, allowing them to improve over time and respond effectively

to new challenges.

In this way, this dissertation proposes to investigate these problems, seeking to

contribute to the advancement of state-of-the-art autonomous systems by developing

new techniques and approaches for context awareness, task management and map-

ping, and learning and performance monitoring based on uncertainty. We will facil-

itate the development of more effective and efficient autonomous systems, as well as

inform and guide the process of autonomous learning, paving the way for its broader

adoption in various applications and scenarios.

This research aims to develop real-time autonomous vehicle systems as the trans-

portation industry moves towards complete autonomy. One of the critical reasons for

pursuing this research is the real-time decision-making challenges that autonomous

vehicles face, which require processing and interpreting a vast amount of data from

various sensors and the need for the vehicle to communicate with other vehicles and

infrastructure. We assume that the environment is composed only of autonomous

vehicles. However, it can also be integrated into cars with human drivers to help

them make better decisions and improve traffic efficiency. Systems must work well

for autonomous and human-driven vehicles.

2

1.2 Problem Statement

Context awareness is crucial for making efficient and effective decisions in real-time

autonomous systems. In order to become context-aware, the system must interact

with the environment to understand its characteristics and functioning. Reinforce-

ment Learning (RL) is used to ensure this continuous interaction and learning, where

the agent is rewarded or punished for each action that affects the environment [7].

During the autonomous systems training in RL, the agent can repeat the same

action to have an acceptable reward. However, another motion may produce a much

greater reward, and the agent will never know if it is choosing only what it has al-

ready learned in the previous explorations. For this reason, the agent must explore

its environment a lot during training to get to know it well and better choose the

actions during the testing phase. There are numerous approaches to stimulate the

exploration of agents during the training phase, one of which is noise insertion [3], [8],

[9]. Nonetheless, RL exploration still has many unexplored challenges and research

opportunities. As in real life, we have several external factors when learning some-

thing new. The RL agent must go through interferences and noises that diminish its

certainty in action at the training moment and make it explore more options.

Considering that some specific systems, especially connected autonomous vehicles,

have limited processing capacity locally, they can take advantage of the resources on

remote servers that can support processing their workload in many situations. The

challenge is to develop a task management system that can handle the dynamic nature

3

of the environment and allocate tasks remotely, comparing and contrasting the real-

time performance of centralized and distributed approaches while considering factors

such as task priority and resource availability. Accordingly, we propose a concise one-

stage ML-based task mapper and scheduler to solve the limited onboard processing

capacity and minimize the response time for intelligent vehicles. The task mapper

counts on the support of ML to estimate the service time to upload and process a

task on the edge, fog or cloud. Based on this estimation, the best remote server

with the lowest estimated service time will be chosen. Also, the task mapper receives

numerous input features and cannot use all of them to predict the service time, as it

would cause a processing overload. Therefore, we use sensitivity analysis to decide

which input features of the model are decisive for forecast the required service time.

As Artificial Intelligence (AI) technology advances and impacts various industries

like healthcare, agriculture, and transportation [10], it becomes essential to under-

stand how these systems make decisions to establish trust and understanding. Com-

plex event processing systems create events that stem from other low-level primitive

events. These derived events result from rules that match patterns relevant to gener-

ating this complex event [11]. Therefore, we need to measure the level of uncertainty

linked to complex events to avoid potential harm. Then, to increase transparency

and comprehensibility for humans, AI explanation approaches have been developed.

One way to ensure that individuals understand the system’s limitations is to measure

and disclose the model uncertainty related to AI predictions [12]. This method will

help demonstrate that machine learning systems are not always completely accurate

4

and how much they can be trusted.

Thus, we evaluate the effectiveness of our proposed machine learning models by

measuring them against several metrics to determine how closely the model’s decisions

mimic those of a human driver. These metrics include Mean Squared Error (MSE),

which measures the accuracy of the model’s predictions regarding a car’s movements

like acceleration and braking. A low MSE score indicates the vehicle can navigate

efficiently and safely, with minimal chances of unexpected movements. Metrics such

as accuracy and sensitivity are used to assess the vehicle’s ability to detect objects and

respond to them appropriately, such as determining when to halt for a pedestrian or

another vehicle. High accuracy ensures that the autonomous vehicle will not confuse

a tree for a traffic sign, while high sensitivity guarantees that it will not miss a

pedestrian. In summary, these metrics serve as a report card for the autonomous

vehicle, accurately assessing how well it is learning and performing the tasks required

for safe and efficient driving.

1.3 Contributions

To address the challenges mentioned above, the main contributions of this research

work are summarized below.

• Researching, designing, implementing, and evaluating techniques that

improve exploration and recognition of the environment. This leads

5

to better context awareness for decision-making by autonomous agents.

We aim to research the behaviour of additive Gaussian noise and Ornstein-

Uhlenbeck (OU) [13] noise to encourage an autonomous agent to be further

stimulated to explore more action options efficiently during its training. Our

motivation comes from the assumption that agents are more vulnerable when

they have limited knowledge of the possible actions in the environment, which

is frequently subject to changes.

• Development and evaluation of a mapping and offloading technique

that uses machine learning to transfer incoming tasks to the appro-

priate remote server based on expected processing time, required

computation, criticality levels, and available resources.

We have a vehicle list V = {v1, v2, ...}, and each vehicle v generates several tasks

with a deadline, criticality, and size τ = {D,C, SZ}. Each vehicle has a task

mapping Ti = {τi,1, τi,2, ...} that checks the availability of resources R from other

vehicles, from the nearest roadside units and from the cloud to decide where to

send a task τ to execute on a remote server S. Each server has a task scheduling

responsible for managing a circular queue Q of processing tasks. Considering

the first task τ1 of this queue, we have a task with a short deadline and a high

criticality that starts to be processed. Meanwhile, the circular queue is being

reorganized by the task scheduler as new tasks with new deadlines, criticalities,

and sizes arrive. So, the second task τ2 to be processed also has a short deadline,

high criticality and is smaller than task τ1. Thus, the task scheduler considers

6

that if the deadline of task τ2 is smaller than that of task τ1 (τ2D < τ1D) and the

size of task τ2 is smaller than that of task τ1 (τ2SZ
< τ1SZ

), the task τ2 starts to

be processed while τ1 is on hold, back in the queue Q again. After processing

task τ2, task τ1 returns to be processed. Then, the remote server S returns the

processed task τ2 to the requesting node.

• Design and evaluation of uncertainty measurement in predicting events

by ML-based approaches. Furthermore, the use of this quantified un-

certainty as a technique to help explain the actions of autonomous

agents and understand their behaviour.

We are considering an autonomous system S that interacts with an environ-

ment E with a set of factors F = F1, F2, ..., Fm influencing the perception of the

system according to a set of available decisions D = D1, D2, ..., Dn. Given that

information, we have the uncertainty u definition as u : K → R, where K rep-

resents a set of all possible levels of knowledge that the system can have about

the environment, and R denotes the set of real numbers. Thus, the greater the

knowledge, the lesser the uncertainty: for all Ki, Kj ∈ K, if Ki < Kj, then

u (Ki) > u (Kj).

Due to the related above, we propose incorporating uncertainty into Explain-

able Artificial Intelligence (XAI) for autonomous systems combining Bayesian

deep learning and uncertainty-aware planning for interpretable and transparent

decision-making processes. Thus, we aim to implement visual indicators that

clearly show how the autonomous agent perceives its environment. Further-

7

more, these indicators should not only identify the factors that influence the

agent’s decision-making process but also demonstrate the impact of uncertainty

on its choices. Therefore, the indicators must provide absolute clarity.

1.4 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 offers an introduc-

tion to context definition, RL, Gaussian process, OU process, uncertainty in events,

sensitivity analysis, XAI, centralized and distributed approach, and platoon. Addi-

tionally, we present the key findings of the related works relevant to this research.

Chapter 3 proposes the Autonomous Connected Real-Time (ACT) Framework. This

framework consists of three central cores, which are described in detail in the fol-

lowing chapters: Context Awareness for Autonomous Systems, Task Management

in Autonomous Systems, and Learning and Performance Monitoring of Autonomous

Systems. In Chapter 4, we discuss the concept of context awareness for autonomous

systems. We explain the benefits of using noise to encourage exploration and pro-

vide experiments highlighting the advantages of incorporating this noise in training

autonomous agents. In Chapter 5, we discuss the challenges of managing tasks in au-

tonomous systems. We thoroughly examine centralized and distributed approaches to

task mapping. Chapter 6 explains how to measure uncertainty in predicting events

for autonomous systems. This uncertainty can help track the learning progress of

these systems and provide insight and explanations into their actions and behaviour.

8

Chapter 7 outlines the primary outcomes and debates regarding the three main com-

ponents that constitute our ACT Framework. Chapter 8 presents the conclusions,

limitations and plans for future work.

9

Chapter 2. Background and Related Work

In this chapter, we will explore important concepts and definitions that are essential

for understanding and discussing the research presented in this thesis. Our research is

divided into three main areas, each with its own background information and primary

works related to our study. These areas are:

1. Context awareness for autonomous real-time vehicle systems: This core ad-

dresses how autonomous systems perceive their surroundings and utilize con-

textual information to make decisions.

2. Collaborative task management for autonomous real-time vehicle systems: This

core focuses on tasks generated by autonomous systems and how these systems

handle them, considering factors such as deadlines, resource limitations, and

latency.

3. Learning and continuous monitoring for autonomous real-time vehicle systems:

After autonomous systems have acquired the necessary contextual knowledge

for appropriate decision-making and the ability to manage and allocate their

tasks effectively and efficiently, this core considers how we can ensure that these

systems take uncertainties present in the environment into account for decision-

making. Furthermore, it emphasizes the importance of ensuring that these

decisions align with the system’s understanding of the environment and meet

human expectations.

10

2.1 Context awareness for autonomous real-time

vehicle systems

This section discusses the context and contextual information regarding Chapter 4

- Context Awareness for Autonomous Systems. We also cover the concepts of RL,

Gaussian, and OU processes, which introduce uncertainty into the autonomous agent.

We also present the primary descriptions of related works.

2.1.1 Context Awareness

In order to understand context, we refer to the definitions of Dey [14] and Coutaz

[15]. According to Dey [14], context refers to any information that can help describe

the situation of a person, place, or object that is relevant to the interaction between

a user and an application. This information also includes the user as well as the

application itself. Therefore, a context-aware system, as defined by Dey [14], utilizes

context to provide valuable information and/or services to the user, with the value

being based on the user’s intentions.

According to [15], context refers to a collection of details that includes objects,

information, functions, and roles of entities, as well as the relationships and situations

they are involved in. This information is crucial for systems to operate effectively in

ever-changing environments.

11

In this research, the term “context” refers to all the information that defines

the state of an autonomous system at a specific time and place. For instance, if we

consider an autonomous vehicle, its context would include its location, speed, and the

conditions of the road it is driving on. It would also encompass information about

other agents present in the same environment, such as other vehicles, road signs, and

weather conditions that may affect the vehicle’s state.

In [16], the authors demonstrate a lane-keeping assist scenario where an au-

tonomous vehicle is trained and tested using deep reinforcement learning. The study

categorizes the environment into two types: discrete actions and continuous actions.

However, the research does not examine how well the trained agent interacts with

other agents that are also in the same environment. Additionally, the study does not

showcase the agent’s performance in environments other than the one it was trained

in, which would provide insight into the agent’s capability to handle and adjust to

different contexts.

2.1.2 Reinforcement learning

RL is related to the Markov Decision Process (MDP). In the MDP, the action space

A can be discrete (A = 1, ..., 100) or continuous (A = [−1, 1]). For both the discrete

and continuous action spaces, an agent in the state st ∈ S acts in ∈ A, receives a

reward r(st, at) ∈ R and moves to the next state st + 1.

A Partially Observable Markov Decision Process (POMDP) is a generalization

12

of the MDP in which the current system state is not necessarily known. Instead,

the decision maker remembers the decisions taken and the observations noticed over

time, and tries to use that information to take the next decision. It is possible

that, for example, instead of the “current system state”, a probability about the

states is maintained while the decisions are taken [17]. This model is already being

used to solve various problems, such as robot navigation, elevator controls, military

applications, medical diagnostics, and education [18].

RL has long struggled with the issue of exploration in different environments. As

a result, many studies have looked into ways to encourage exploration during agent

training. One such study [19] explored combining an actor-critical reinforcement

learning approach with a trajectory optimization model-based method, which opti-

mizes exploratory noise by creating a trajectory from the current state to ideal future

states. This is done using value functions learned by an RL algorithm. However,

projecting images into a latent embedding space can be challenging and may result

in the loss of relevant information.

A POMDP [17] is defined as a tuple: (S,A, T,R,Ω, O, γ), where:

• S is a set of states in which the process can be part of;

• A is a set of actions that may be executed in different decision moments;

• T : S x A x S 7−→ [0; 1] is a function that returns the probability of the

system going to state s′, given that it was at state s and the executed action

was a;

13

• R : S x A 7−→ IR is a function that returns the cost (or reward) for taking a

decision when the process is at state s;

• Ω is a set of observations that are obtained on every decision moment;

• O : S x A x Ω 7−→ [0, 1] is a function that returns the probability of an

observation being verified, given the state s and last executed action.

• γ ∈ [0, 1] is the discount factor.

In reality, it is not always possible to be fully aware of situations. Our agent op-

erates contextually by gathering and interpreting information from the environment.

To make informed assumptions, the agent must compare and contrast past events to

identify patterns and make the best decisions. Therefore, it requires a memory state

that determines which information to use at each timestep.

Exploration efficiency is a topic that has attracted the attention of countless re-

searchers who seek to encourage their autonomous agents to experiment with global

exploration strategies at higher levels. In that recent research [20], the authors con-

ducted a study that shows that the combination of fast and slow rewards in different

contexts, including those with noisy inputs, can be a promising method for high-level

exploration in reinforcement learning. The authors prove that noise combined with

other mechanisms helps the agent explore more efficiently and robustly. The evalua-

tion of that work does not include real-world tasks, and it only considers video game

environments.

14

A few other works seek to improve exploration through the diversification of states.

Skew-fit [21] makes a weighted probability distribution of actions based on maximum

entropy so that rare states receive higher weights. Thus the authors seek to encourage

agent exploration by maximizing entropy, not combining it with other mechanisms.

2.1.3 Gaussian Process

According to the paper [22], a Gaussian process can be defined by a collection of

random variables that follows a normal Gaussian distribution. Thus, the following

Equation (2.1) may be used to define it:

Gnoise ∼ GP (m(x), K(x, x′)) (2.1)

Where m(x) is the function that informs the mean at any point in the input space,

and K(x, x′) represents the function that defines the covariance between the points.

The mean can be any value, and the covariance matrix must be positive.

2.1.4 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck [23] process is responsible for generating temporally corre-

lated noise with zero means, and it is defined according to the following Stochastic

Differential Equation (SDE) [24]:

15

OUnoise ∼ α(µ−Xt)dt+ σdWt (2.2)

dWt is the Brownian motion scaled by volatility σ, which also controls the amount

of noise. Also, (α ≥ 0), µ and (σ > 0) are parameters. Xt ∈ R and for each t the

valuesXt follow a normal distribution. We define µ as the mean of the process (usually

0), α is the speed (how fast α varies with noise) of the mean reversion scaling the

distance between Xt, and µ.

The study “Using the Ornstein-Uhlenbeck Process for Random Exploration”, de-

veloped in [25], proposes using the OU process to generate random exploration. The

paper disposes of an approach to creating active agent orientation through the state

space by sampling speed instead of displacements. Although the proposal presented

also uses the OU process to encourage random exploration, those researchers do not

evaluate the difference between the Gaussian and OU noises, and the experiments

need more empirical tests. Another similar work is “Noisy Networks for Exploration”

[26], but the authors evaluate the proposal only in-game environments and tasks.

2.2 Collaborative task management for autonomous

real-time vehicle systems

In this section, we discuss the centralized and distributed approaches along with

the vision of the platoon. All these concepts are related to task management in

16

autonomous systems, covered in depth in Chapter 5.

2.2.1 Centralized approach

Figure 2.1 presents a centralized architecture in that each intelligent system sends

its workload to be processed in a digital infrastructure (cloud, fog or edge), which

updates the tasks those systems are supposed to perform in real-time.

Figure 2.1: Centralized approach for remote workload processing

The features of fog and edge computing have attracted extensive interest from

academia and industry, as they significantly reduce the network latency, concentrating

computing services closer to consumers [27]. On the other hand, cloud servers have

unrestrictedly more extensive processing and storage capacity than in the edge and fog

17

[27]. Therefore, our system requires low network load, low execution and response

times, and occasionally high processing power. Due to these characteristics, it is

necessary to decide on the processing target device based on the characteristics of

each task and the moment it arrives at the orchestrator, as we must consider vehicular

network context situations. Thus, this study intends to prioritize edge usage due to

previously listed advantages. Also, a recent study [28] shows that edge-offloaded

services can emit less CO2, which is highly relevant considering the current climate

change situation on our planet.

The paper [29] is a work that uses fuzzy logic as a basis for its study. The authors

use fuzzy logic to propose an edge computing infrastructure that must orchestrate the

workload coming from mobile devices. Furthermore, the investigation in [29] declares

that fuzzy logic is responsible for orchestration actions that consider the requirements

of the network, computation, and tasks to decide where to execute the tasks in their

proposal.

Although several works [29]–[32] use fuzzy logic as a basis, the difficulties in estab-

lishing rules correctly, the need to perform numerous simulations and tests, and also

the fact that there are no precise mathematical definitions [33] are disadvantages that

need to be pointed out. Due to this, works such as the ones developed in [34]–[36]

highlight the importance of approaches focused on intelligent offloading. Furthermore,

the authors of [34]–[36] emphasize that due to random and uncertain contexts that

vary over time, decision-making scenarios have elevated complexity to be optimized

using traditional approaches, such as game theory and fuzzy logic. Consequently,

18

that study recommends using artificial intelligence based on machine learning for

multi-access edge computing problems, with the justification that the edge network

can self-optimize and self-adapt in the constitution of an intelligent decision-making

system.

The study [37] uses machine learning as the basis of a workload orchestrator for

vehicular edge computing work. That study uses supervised learning and two-stage

architecture for the orchestrator’s decision-making. In the first step, a classification

indicates whether the target device has a chance of success or failure. Thus, only for

cases where there is a prediction of success, the orchestrator moves to the second ML

step, which estimates the service time in that target device. In this way, the orchestra-

tor chooses the remote server with the lowest expected service time. Unfortunately,

despite using machine learning, the research work [37] becomes very extensive and ex-

pensive since it is necessary to train six different models with different input features

for each of those models.

2.2.2 Distributed approach

Real-time intelligent systems are required to process and interpret numerous data

simultaneously, demanding high-performance computing and rigorous real-time re-

sponses to requested tasks. In the case of autonomous vehicles, we deal with lim-

iting factors such as battery life and constricted computing power that restricts the

processing load supported onboard. In this scenario, we must take advantage of ex-

ternal devices that can support the processing performed by the intelligent system

19

in real-time. Furthermore, with over-the-air communication, vehicles can share their

information with each other, in addition to using each other’s processing capacity to

perform possible tasks. The execution of tasks outside the origin node can also be

done using edge, fog or cloud resources. For example, Figure 2.2 presents a decen-

tralized task processing architecture in a car platoon scenario.

Task mapper

Task scheduler
RSU

Cloud

Platoon

Entities
communication

Figure 2.2: Over-the-air task processing in a platooning scenario

2.2.3 Platooning

As an example of distributed approaches, we have the platoons that are essential

to improve vehicle traffic and commute time. On the platoon, the cars follow a lead

vehicle at a close distance, with each car finding its optimal position to better account

for traffic conditions [38]. As shown in Figure 2.2, we have a platoon scenario where

the lead vehicle is the gray car in front of everyone.

In addition, other approaches are widely used, such as Round-Robin processing.

The papers [39] and [40] make use of this technique for task scheduling in vehicle

20

platooning scenarios. In that approach, a precisely equal slice of time is given to each

task in turns, so a task that requires more processing time will have to go through the

scheduler several times until its processing is fully completed. In this context, tasks

are placed in a circular queue, where all are treated without taking into account their

priority, having to wait in turns for the necessary CPU time slot.

2.3 Learning and continuous monitoring for au-

tonomous real-time vehicle systems

This section discusses the definition of uncertainty in events triggered by au-

tonomous agents. We also explore how a sensitivity analysis mechanism can support

identifying which inputs of the agent’s perception most influence the variation of this

uncertainty. Furthermore, we provide an explanation of what XAI is and its purpose.

These concepts are related to the core of Learning and performance monitoring of

autonomous systems discussed in Chapter 6.

2.3.1 Uncertainty in events

An event refers to all occurrences that take place in a particular location over a specific

duration. These events can be categorized into two groups: primitive and derived or

complex. This classification is outlined in [41]. For example, the data collected from

sensors, also known as sensor readings, are considered primitive events. On the other

hand, complex or derived events are created by processing primitive events based on

Complex Event Processing (CEP) rules, also known as Event Patterns.

21

When we want to trigger an event, whether it is simple or complex, we need

to acknowledge that there is always some uncertainty about whether the event will

occur. This uncertainty is present even in reliable measurements like rulers, clocks,

and thermometers [42]. To address this uncertainty, we store event predictions in

a list for every one-second time window. Then, we calculate the list’s mean and

standard deviation every second. The mean represents the value that characterizes

the triggered event, while the standard deviation represents the uncertainty [42], [43].

The standard deviation measures how much the forecasts are dispersed around the

mean, so a larger standard deviation implies more significant uncertainty about the

event. We can calculate the uncertainty using Equation 2.3:

uncertainty =
s√
n

(2.3)

where s is the standard deviation, and n is the number of event predictions stored

in the list.

The authors of “Complex Event Processing Over Uncertain Data” [44] present

a method that considers the production of new events in the face of uncertainty.

They have extended the complex event processing literature to manage data with

uncertainty. However, to our understanding, the authors of the work [44] do not

present the probability (which would indicate the degree of uncertainty) of the new

event produced occurring in the final result.

The work [45] states as a contribution the proposal of an input representation

22

with values of predicted visual abstractions and also confidence values related to that

prediction. Furthermore, the authors promise to capture uncertainty using images

representing the vehicle’s acting environment, displaying probabilistic patterns to

better deal with inconsistencies. That work performs with uncertainty as a measure

produced and provided by perception systems. The authors modelled observation (o)

as a pair of values o = (ŝ, c), where ŝ is the estimated state and c is the confidence

levels related to these estimated states.

The research [45] uses imitation learning to train a vehicle model in the Carla sim-

ulator and verify the success rate in tests performed with a described benchmark. The

proposal was to train the model with noisy data, representing the levels of uncertainty

in the sensing. The model was tested with inputs that contained the representation

of uncertainty through the insertion of confidence levels in the data that illustrated

the observation performed. Also, the authors claim that their proposal can be used

to handle false positives better. However, at no point in the article did the authors

expose how the data acquired from the Carla simulator were treated to fit and adapt

to the input format they proposed. Likewise, they do not detail how the uncertainty

was extracted from the simulator to be inserted into each observation made.

2.3.2 Sensitivity analysis

Sensitivity analysis is critical because it indicates how much each uncertain parameter

contributed to generating the output uncertainty. Then, we chose a variance-based

sensitivity analysis to determine how much the input variation influences the output

23

[46], [47]. Thus, we use the first-order Sobol indices. These indices identify the input

parameters with the most significant effect on output variability [48]–[50].

Sobol’s first-order sensitivity index is given by:

Si =
V ar(E(H | P))

V ar(H)
(2.4)

Where Si is the sensitivity index, H is the output resulting from the model with

uncertain input parameters list P. Thus, if we have a low sensitivity index, which

can vary with the range [0, 1], we will have that the variance in this parameter will

have little effect on the variance of the final result. Therefore, if the parameter’s

sensitivity index is high, any variation in this parameter will significantly affect the

model’s output.

The total Sobol index for a parameter belonging to P is defined according to the

following equation:

Sτi = 1− V ar(E(H | P−n))

V ar(H)
(2.5)

We have that V ar(E(H | P−n)) represents the variance of the expected value of

the output considering the simultaneous variation of all uncertain parameters of the

set P except for Pn. If we have Sτi = 0, we say that the variability of Pn has no

influence on the results and can be ignored in future analyses.

24

In the work “Complex Event Processing over Uncertain Data Streams” [41], the

authors work with one processing engine extension to support the complex events

processing in the face of uncertain data. The research also defined a model of how

the input and output data should be. In addition, the researchers calculated and

presented the confidence probability in the complex event’s output. In our opinion,

the definition of what the input data should look like tightens the input data space,

limiting the data that can be used as input to produce complex events. Another

difference in our approach to that work is no analysis in [41] of how much input data

contribute to the output uncertainty.

2.3.3 Explainable Artificial Intelligence (XAI)

As the complexity of decision algorithms increases, AI agents become more powerful,

but their decisions also become more challenging to understand. Therefore, it has in-

creased interest in developing explainable, transparent, and interpretable AI models

[51]–[53]. Thus, XAI is a branch of AI that seeks to make the decisions and processes

taken by machine learning algorithms more understandable and transparent to hu-

mans. This is especially important in critical or high-risk situations, like autonomous

vehicles, where understanding how the system works is crucial to ensure user safety

and trust.

The paper [54] highlights the importance of artificial intelligence models having

high interpretability, in addition to the ability to estimate uncertainty through un-

certainty wrapper frameworks. In this way, the research stresses the use of decision

25

tree structures to support interpretability. In addition, however, it emphasizes that

small changes in a single model factor can result in significant changes in uncertainty

estimation. With the argument defined above, the authors selected some approaches

to smooth the transitions between different levels of uncertainty with minimal re-

duction of the model’s interpretability. Furthermore, the authors intend to control

the increase in runtime complexity at low levels while ensuring that the uncertainty

estimation performance will not be adversely affected. The approaches chosen were

Random Forests, Fuzzy Decision Trees, Fuzzy Random Forests, Soft Decision Trees,

and Bagged Soft Decision Trees. The paper seeks to answer the following ques-

tion: ”How does the uncertainty estimation performance of the uncertainty wrapper

frameworks differ when softening approaches are used instead of a decision-tree-based

approach?” [54].

As a use case, that article [54] considered pedestrian detection by cameras of mov-

ing vehicles. The research also used the Carla simulator to define a vehicle travelling

at different times of the day in an urban traffic environment. The objective was to

locate pedestrians within a maximum distance of 25 meters from the vehicle under

different weather conditions. As an evaluation metric, the authors mainly considered

the Brier score. In conclusion, the authors could not highlight a single approach that

satisfied all the requirements listed by them. Thus, it is necessary to consider the

context of the use of the application to define the best approach to employ.

The work proposed in [55] brings an approach to explain the behaviour (action)

of an agent in a given situation (state). For this, the authors propose explaining an

26

agent’s decisions through similar situations in the agent’s training trajectory. That

is, the authors aim to identify which past experiences led the RL agent to behave

in a certain way. However, the authors restrict this approach to offline RL, which

has disadvantages compared to online RL in terms of adaptation to dynamic environ-

ments, besides the cost of data collection. In the real world, the agent’s environment

can change over time, and the online RL technique allows the agent to adapt to

these changes as it interacts, receives feedback and learns from that environment.

The offline RL agent, however, has its adaptation capacity affected due to the lack

of interaction with the environment since, in this case, learning takes place from

previously collected data and without direct interaction with the environment. Fur-

thermore, training an offline RL agent can also be quite expensive because of this

need for data collection.

Considering the applicability of RL algorithms to several real-world problems, the

authors of [56] highlight the challenges in explaining the behaviour of RL agents,

who autonomously learn to operate in their environment. From this, the paper [56]

proposes using formal model transforms to generate explanations that justify the

actions of the RL agent. The proposed framework involves three entities with specific

roles. First, an actor, the RL agent itself, seeks to maximize its accumulated reward

in interactions with the environment. Then there is an observer, the one to whom

the explanations will be directed, so this observer expects the actor to behave in

a certain way and follow a specific policy. Finally, there is an explainer, an agent

responsible for finding explanations for the actor’s actions. The explainer then seeks a

27

sequence of transformations to be applied to the environment so that the actor’s policy

in the transformed environment aligns with the policy anticipated by the observer.

However, those produced explanations need to be presented symbolically or intuitively

for human observers with non-specialized or with a minor specialization in developing

autonomous agents. Therefore, the explanation process in that work is more related

to the fact that an algorithm (observer) can understand the behaviour and actions

of another algorithm (actor) in an environment through the mediation of a third

algorithm (explainer).

Another widely used resource for explaining the actions of RL agents is the salience

maps applied to the characteristics of specific scenarios. For example, the work by [57]

proposes an approach called Specific and Relevant Feature Attribution (SARFA) to

generate saliency maps to explain the actions of RL agents, ensuring the highlighting

of only specific and relevant features to the action to be explained. However, the

authors point out that, even with the use of salience maps to explain the decisions

taken by the model in a specific scenario, their approach needs more information

to explain the general behaviour of the model. Thus, some limitations of SARFA

are related to the possibility of invalid states outside the allowed state space, as

the method inserts disturbances in the agent’s state to produce the salience maps.

Furthermore, the proposal must consider the dependency and correlation between the

analyzed features, which, if not done, can result in inaccurate saliency maps.

Considering the complexity of environments in the interaction of autonomous cars

and the need for safety and reliability in the vehicle, interpretability is an essential

28

factor in the composition of transparency in the decisions taken by the system. Based

on this, one of the paper’s contributions [58] is training an intelligent driving agent

with an interpretable environment model. Thus, the authors propose the composi-

tion of a bird-view semantic mask to graphically explain how the agent interprets

and understands the environment in which it operates. However, even with the vi-

sual presentation of interpretable explanations about how the agent understands the

environment, the proposal also needs to provide an explanation of how decisions are

made, knowing that the machine learning algorithm of that work is model-free, which

implies the absence of a policy. Therefore, among the information provided as output,

there is no way to intuit the reasons that led the agent to take a specific action over

another.

2.4 Overview of related works

Table 2.1 outlines the main related works. In addition, the last column of Table 2.1

highlights the limitations found when comparing these related works to our research.

Table 2.1: Summary of related work (N.M=Not Mentioned)

Paper Main Method
Test

Environment
Adaptability to
env. changes

Limitations

[16]
Reinforcement
Learning

Open Racing
Car Simulator
(TORCS)

N.M

Interactions with
other agents not
examined, agent’s
performance in
new scenarios not
showcased

29

Paper Main Method
Test

Environment
Adaptability to
env. changes

Limitations

[19]

Actor-
Critical
RL approach
combined
with Trajec-
tory Opti-
mization

DeepMind chee-
tah environment
and the task of
inserting a cylin-
der into the tube

No

Challenges in pro-
jecting images into
a latent embedding
space, loss of relevant
information

[25]

Reinforcement
Learning with
OU Process
for Random
Exploration

N.M N.M

Insufficient empirical
tests, do not com-
pare Gaussian and
OU noises

[26]
Deep Rein-
forcement
Learning

Game Environ-
ments

N.M
Evaluation only in-
game environments

[20]

Deep Re-
inforcement
Learning with
fast and slow
rewards

Game Environ-
ments

Randomized
object loca-
tions

Does not include
real-world tasks

[21]
Reinforcement
Learning with
imagined goal

MuJoCo [59]
and Real World
Visual Door
environments

No

Does not combine en-
tropy maximization
with other mecha-
nisms

[29]
Fuzzy logic-
based

EdgeCloudSim
Simulator

Dynamic envi-
ronment

Fuzzy Logic’s draw-
backs in rule estab-
lishment, need for
additional simula-
tions and tests, lack
of precise mathemat-
ical definitions

[37]
Supervised-
learning

EdgeCloudSim
Simulator

Dynamic envi-
ronment

Requirement to train
six different models
with different input
features for each
model

[39]
Round-Robin
Processing

Simulation of
Urban MObility
(SUMO)

Two types of
traffic: regular
traffic and ir-
regular traffic

Equal treatment of
tasks without consid-
ering their priority

30

Paper Main Method
Test

Environment
Adaptability to
env. changes

Limitations

[40]
Round-Robin
Processing

N.M N.M

There are no de-
tailed specifications
on where the simula-
tions were performed

[44]

Bayesian net-
work and the
sampling al-
gorithms

Simulation envi-
ronment

N.M
No probability indi-
cation of the new
event occurrence

[45]
Deep convo-
lutional pol-
icy network

Carla Simulator
Dynamic ob-
stacles

Lack of detail about
data treatment and
extraction of uncer-
tainty from the sim-
ulator

[41] Decision trees N.M N.M

Restrictive input
data definition, lack
of analysis of input
data contribution to
output uncertainty

[54] Decision trees Carla Simulator

Other traffic
participants
(vehicles,
trucks, mo-
torcycles,
bicycles, and
pedestrians)
and weather
parameters
(sun position,
cloudiness,
precipitation,
fog/wind inten-
sity, and road
wetness)

No single approach
satisfying all pre-
sented requirements,
context-dependent to
choose an approach

[55]
Offline Re-
inforcement
Learning

Grid-world,
Seaquest from
Atari, HalfChee-
tah from Mu-
JoCo

N.M
Limited to offline
RL, cost of data
collection

31

Paper Main Method
Test

Environment
Adaptability to
env. changes

Limitations

[56]

Reinforcement
Learning
Policy Expla-
nation

Frozen Lake,
Taxi, Apple-
Picking,
Sokoban, Blocks
World, Towers
of Hanoi, Snake,
Rearrange-
ment, Triangle
Tireworld,
and Exploding
Blocks.

N.M

Explanation process
more related to algo-
rithm understanding
another algorithm’s
actions

[57]
Deep rein-
forcement
learning

Board games
(Chess and
Go) and Atari
games (Break-
out, Pong and
Space Invaders)

No

Requirement of
more information for
explaining general
model behaviour,
issues with invalid
states and cor-
relation between
analyzed features

[58]

Latent Deep
Reinforce-
ment Learn-
ing

Carla Simulator
Different urban
scenarios

Absence of explana-
tions of how decisions
are made

32

Chapter 3. Proposed Context-Aware Collaborative

Autonomous Real-Time Vehicle Systems

Framework

In Chapter 2, we provide a brief overview of the three main proposed components of

this dissertation: Context awareness for autonomous real-time vehicle systems, Col-

laborative task management for autonomous real-time vehicle systems, and Learning

and continuous monitoring for autonomous real-time vehicle systems. These three

components are combined to create the Context-Aware Collaborative Autonomous

Real-Time Vehicle Systems Framework (CARVS Framework)igure 5.9 presents the

simu, enabling autonomous systems to act and make real-time decisions based on

their context and task management. The following Fig. 3.1 shows in detail the com-

position and operation of CARVS Framework.

Figure 3.1: Context-Aware Collaborative Autonomous Real-Time Vehicle Systems
(CARVS) Framework

Analyzing the Fig. 3.1, the connected autonomous agent provides context to the

context awareness module in real-time. This module then uses OU noise to create

33

uncertainty, which helps the agent explore more. The autonomous agent generates

tasks that the collaborative task management module handles. Also, the autonomous

agent connects to other agents and the infrastructure. Then, the processing server

gives the collaborative task management module the likelihood of success so it can

choose which server should process each task. The Autonomous Agent shares the

uncertainty it senses with the learning and continuous monitoring module, which

explains the autonomous agent’s actions and behaviours to the human agent. Finally,

the learning and continuous monitoring module also considers the uncertainty for the

autonomous agent’s decision-making (predicted value + confidence level) and shares

this information with the human agent.

This dissertation is based on three modules, as shown in Figure 3.1. The con-

text awareness module receives raw data from the autonomous vehicle’s sensors and

provides information about the vehicle’s context. The collaborative task manage-

ment module handles the order and processing location of tasks generated in the

autonomous vehicle. The learning and continuous monitoring module receives in-

formation about the agent’s interpretation of the environment, its following planned

actions, and the level of uncertainty associated with each action. Afterwards, it

presents this information visually on a dashboard that monitors how the autonomous

agent perceives and behaves in the environment.

In addition to the modules, the framework also includes several agents. The au-

tonomous agent is the primary agent of the structure, the autonomous vehicle that

encompasses the developed modules and performs movement actions in the environ-

34

ment. Other agents represent different vehicles that can serve as an edge structure

for the primary autonomous agent. Also, the human agent monitors the intentions

and behaviour of the primary autonomous agent through the dashboard.

Real-time systems must operate under strict time constraints, which can be chal-

lenging in rapidly changing environments. The ability to adapt while still meeting

time constraints is crucial for safety and success. Autonomous real-time vehicle sys-

tems require a strict commitment to time constraints for safety, efficiency, and func-

tionality. They represent the intersection of advanced robotics, artificial intelligence,

real-time systems, and automotive engineering. By integrating contextual percep-

tion and collaboration between vehicles, infrastructure, and other systems, we can

achieve context-aware collaborative autonomous real-time vehicle systems to improve

mobility, safety, and transport efficiency.

The CARVS Framework comprises multiple components and modules, making

it susceptible to challenges during implementation and operation in the real world.

The framework aims to make real-time decisions based on context, which requires

quick processing, low-latency communication, and fast data analysis. Any delay or

inefficiency can lead to outdated decisions. Implementing continuous learning can

be resource-intensive, requiring constant updating of knowledge and adaptation to

new data, thereby straining computing resources and bandwidth. Additionally, as

the number of vehicles or users of the system increases, it is vital to ensure that

the framework can scale effectively without any performance degradation. Further-

more, given the critical nature of autonomous vehicle systems, rigorous testing and

35

validation processes are necessary to ensure safety and reliability. Therefore, the

framework needs regular and continuous updates to adapt to evolving technologies

and new challenges without interrupting ongoing operations.

The first step in implementing our framework in a real environment is to select

an autonomous agent, such as a prototype car, wheelchair, or domestic robot. Once

this is decided, we must ensure the hardware requirements are met. This includes

having adequate processing power for support reinforcement learning and real-time

processing, sensors and actuators for environmental perception, and over-the-air com-

munication infrastructure.

After the hardware requirements are met, we must also ensure that the software

requirements are met. These requirements guarantee task deadlines, autonomous

decision-making, and adaptation to new contexts. It is essential to consider the

limitations that can affect the framework’s success in the real world, such as network

latency, security, and data privacy.

3.1 Context Awareness Module

We assume that the most effective approach for an RL agent during training is to

explore its possibilities by moving randomly. This allows the agent to gain a better

understanding of its context and make more informed decisions. The more an agent

moves, the better it becomes at exploring its surroundings and becoming context-

aware.

36

To assess the effectiveness of using noises in the random exploration of environ-

ments, we conducted a comparison between results from a random walk Fig. 3.2

simulation without noise, with Gaussian noise, and with OU noise.

Figure 3.2: Random walk simulation using python

As in Figure 3.2, we start with a one-dimensional random walk. Our agent starts

at x = 0. Then, by the time, it is like our agent flips a coin, then heads left ∆x = −1

or right ∆x = +1 with some probability based on the noise used. If at time step 1

the result of the coin flip is to head right, then its position at that time step becomes

x1 = x0 +∆x = 1. In this way, the agent position at time step k + 1 is given by:

xk+1 = xk +∆x

37

From Figures 3.3 and 3.4, we can infer that the use of OU noise is more suitable

to encourage greater exploration of the environment through random steps. In Figure

3.3, for example, the agent with OU noise is the one that most distanced itself from the

origin over time. We confirm in Figure 3.4 that the agent with OU noise has a larger

interquartile range, indicating greater variability in its position. So the agent with

OU noise explored more since it was at more diverse positions during the realization

of the random walk. That behaviour is a strong indication of the OU systems model

cognitive functions, which include decision-making.

Figure 3.3: Random walk result. Variability of the position x of the agent over time.

Based on experimental testing, the proposed context awareness module shows

that OU noise is the most effective method to encourage the random exploration of

autonomous agents in their training environments. This approach directly affects

the reinforcement learning algorithms, which interact with the environment as they

perform actions.

38

Figure 3.4: Distribution of the agents’ displacement data during the random walk.

3.2 Collaborative Task Management Module

In the autonomous real-time vehicle systems scenario, the collaborative task manage-

ment module plays a crucial role in coordinating safe and accurate decision-making.

During the event identification phase, the vehicles generate tasks that need to be pro-

cessed. The task management module handles and coordinates these tasks, ensuring

that the workload is optimized and adequately distributed across the vehicles and

infrastructure in the network. This ensures that the vehicles can operate seamlessly

and effectively, minimizing the risk of accidents and errors.

One of the biggest challenges for driverless vehicles is ensuring safe operation, con-

sidering the time constraints and having to deal with a large amount of daily data.

Considering some of the system restrictions, like mobility, bandwidth, and latency,

39

one of the solutions was the use of cloud infrastructure, as it allows on-demand services

and resource scalability [60]. Another alternative is the fog computing paradigm pro-

posed by Cisco Systems researchers [61]. The fog computing proposal emerged amid

the mobility, locality, and low latency requirements that extended cloud computing

services closer to the network’s border on a distributed scale [62].

Vehicle networks have to deal with highly dynamic environments where vehicle

dwell time under the covers of a fixed-edge server component, such as a Roadside

Unit (RSU), is short. So there is a high demand for data processing and resource

sharing with low latency and increased mobility, which gave rise to the Multi-access

Edge Computing (MEC) concept. Therefore, the main objective of MEC is to deploy

computing resources closer to end users, with processing and storage performed closer

to the origin place, further reducing the latency of requests [63].

Edge computing resources, such as RSUs, are strategically located at specific

points along the road. Due to the high mobility of vehicle traffic, we consider a

handover approach similar to the one proposed in [64], where the connection and

resource are shared among RSUs to meet vehicle requests that move from one RSU

coverage to another during the processing time of a task.

The collaborative task management module may face several limitations, mainly

when vehicles operate in low-density areas or with limited infrastructure. Some con-

cerns are related to network connectivity, latency, coverage area and resource avail-

ability. Therefore, to mitigate these limitations, we have fallback strategies such as

the autonomous decisions of the module’s algorithm, which allows the effective opera-

40

tion of the vehicle even when isolated. Additionally, Ad Hoc communication between

vehicles enables direct resource sharing without infrastructure.

3.3 Learning and Continuous Monitoring Module

In the learning and continuous monitoring module, the vehicle learns to choose ac-

tions based on the slightest predicted uncertainty. As autonomous vehicles navigate

different environments and situations, they encounter varied scenarios, some of which

may not have been anticipated during the initial training phase. The continuous

learning module ensures that the vehicle can learn from these new scenarios. An-

other important aspect of this module is monitoring the quality of decisions made by

the autonomous system, identifying anomalies or failures in the system and taking

corrective measures or, if necessary, moving the vehicle to a safe operating mode.

Context awareness is crucial for autonomous agents, like autonomous vehicles,

which operate in dynamic and uncertain environments. Therefore, it is essential to

quantify and consider this uncertainty during the agent’s training phase. However,

it is not sufficient to simply estimate uncertainty during one phase. Instead, it is

essential to continuously monitor and comprehend how the agent handles quantified

uncertainty during its decision-making in its environment.

Regarding uncertainty, there are two types: aleatoric and epistemic [65]. The first

is related to the input data imperfections, while the last is associated with the lack of

data or knowledge and errors in the prediction (model uncertainty). Aleatoric uncer-

41

tainty may be more relevant when we have tasks with large volumes of data because,

in that case, the epistemic uncertainty would be practically invalid due to the amount

of information available. On the other hand, in smaller datasets, the quality of these

data must be very high, which almost cancels out the aleatoric uncertainty. There-

fore, safety-critical application data must be highly qualified for timely information

processing. For this reason, we only consider epistemic uncertainty, as this impacts

the analysis of the information we want.

42

Chapter 4. Context awareness for autonomous real-

time vehicle systems

To generate an environmental disturbance, we verified that published works [3],

[8], [9] use Ornstein-Uhlenbeck Process to develop temporally correlated noise for

efficient exploration. It means that the Ornstein-Uhlenbeck Process produces a noise

associated with the previous one to prevent the noise from cancelling or freezing the

general training dynamics. Inspired by the studies mentioned above, we use the OU

process to achieve temporally correlated noise in our approach defined below.

A POMDP is a MDP generalization, and, in this case, we do not precisely know

the current system state. The decision-maker remembers the previous decisions and

the observations noticed over time, which helps it to make the next decision. Usually,

we do not have a “current system state”, but a probability distribution regarding the

states for each action choice [17]. The POMDP has immense applicability and is

used to model machine maintenance, computer vision, and even behaviour modelling.

Considering that we are working with POMDP and our evaluated algorithms are

actor-critical based (Soft Actor Critic (SAC), Proximal Policy Optimization (PPO)

and A3C), we have to use stochastic policy for sampling through a probability distri-

bution. So, we define our action sampling like Equation 4.1:

Sample action a′ ∼ πθ(a
′|s′) (4.1)

Based on a new observation s’, we have to choose an action a’ stochastically

43

from the distribution π. This distribution can indicate the agent’s certainty about

its choice. However, this certainty sometimes increases based on local policy and

not global, which prevents the agent from better exploring its environment. So, if

we generate a disturbance in the distribution π, we will make our agent explore the

environment more and, consequently, have higher scores during the evaluation phase.

Based on this, we combine the distribution with the OU process to decrease the

agent’s certainty.

(πθ(a
′|s′)) ∗ dXt (4.2)

By multiplying the time-correlated noise, as in Equation 2.3, by the distribution

π, as in Equation 4.1, we came up to Equation 4.2. We create a kind of exploration

gradient where the agent becomes less confident and explores the environment the

more negative the noise is. Besides, depending on the agent’s current position and

the observations it receives, the noise may cause more or less disturbance.

We use the three most recent State-Of-The-Art (SOTA) RL algorithms (SAC,

PPO and A3C) to compose our experiment. We use the Reinforcement Learning Zoo

(RLzoo) [66] library as the basis for our implementations and adjust as described in

the SOTA papers [67]–[69]. Besides, we also use the Gym [70] library as a training

and evaluation environment for our study. Thus, we chose different settings with

diverse tasks and complexity levels, with three environments with continuous action

space and discrete action space.

44

For continuous action space, all algorithms were tested and evaluated. Still, for

discrete action ones, only A3C and PPO were used, considering that the SAC ver-

sion presented in the paper [69] worked only for continuous action space. The first

environment used was classic control with the Pendulum task, which has simple con-

tinuous action. The goal is to swing it so that it is upright from a random starting

position. The second task, more advanced than the first one, was LunarLander from

the Box2D environment, whose objective is to land the landing module using four

discrete actions available: do nothing, fire left orientation engine, fire main engine,

fire right orientation engine. The third is Humanoid from the MuJoCo environment,

which has more complex continuous control tasks and whose goal is to control robots

as fast as possible.

The tasks were run without noise and with the noise of varying parameters per

1000 training episodes and ten evaluation episodes for each experiment. We used

a laptop computer with the following specification: AMD Ryzen 7 3800X 3.9 GHz

8-core processor, 32GB DDR4 3600, SSD NVMe 500GB, NVIDIA® GeForce RTX™

2060 8GB, an Ubuntu-based Linux 20.04 operating system.

We train all algorithms according to the parameters specified in their respective

published papers. The first training task was Pendulum-v0, which is a classic problem

in the control literature. There is no single, specific solution in this Pendulum task,

which means it does not have a specified reward threshold at which it’s considered

solved. In Figures 4.1a, 4.1b, and 4.1c, we have the training performance of the

studied algorithms with noise and without noise. It is possible to verify that the

45

difference between training with and without noise was not very significant in Figures

4.1a and 4.1b. For Figure 4.1c, the performance of training with noise seemed inferior

to training without the use of noise. We believe this happens due to task simplicity,

as there is not much to be explored due to the environment’s simplicity. Then, the

agent is able to explore the entire environment in a few steps without needing the

incentive to explore more for this specific task.

The second task, more complex than the first one, was Lunar Lander, which has

discrete action space and was executed with PPO and A3C versions, as shown in

Figures 4.2b and 4.2a respectively. This task rewards the agent for moving from the

top of the screen to the target landing point. The problem is solved through four

discrete actions available, and the goal is to get 200 points. Comparing training with

and without noise, we do not have a striking difference in those methods’ performance.

In 1000 episodes, only the PPO managed to get very close to solving the problem.

The third task is more complex, with continuous control, and is part of the Mu-

JoCo simulation environment. It is essential to make a three-dimensional bipedal

robot walk as fast as possible without falling into that Humanoid task. In training

carried out with Humanoid (Figures 4.3a, 4.3c and 4.3b), we were able to notice an

expressive performance improvement that the method with noise had compared to

the technique without noise in the three tested algorithms. The difference between

that task and the previous ones is that it is very relevant, in the Humanoid case, if

the environment is explored or not because there are countless alternatives to be done

46

(a) SAC training performance without noise and with noise. OU
noise parameters → α = 0.5; σ = 0.5

(b) A3C training performance without noise and with noise. OU
noise parameters → α = 0.3; σ = 0.9

(c) PPO training performance without noise and with noise. OU
noise parameters → α = 0.3; σ = 0.9

Figure 4.1: Pendulum-v0 task - training

47

(a) A3C training performance without noise and with noise. OU
noise parameters → α = 0.3; σ = 0.1

(b) PPO training performance without noise and with noise. OU
noise parameters → α = 0.3; σ = 0.1

Figure 4.2: LunarLander-v2 task - training

48

(a) SAC training performance without noise and with noise. OU
noise parameters → α = 0.3; σ = 0.5

(b) A3C training performance without noise and with noise. OU
noise parameters → α = 0.3; σ = 0.5

(c) PPO training performance without noise and with noise. OU
noise parameters → α = 0.3; σ = 0.5

Figure 4.3: Humanoid-v2 task - training

49

with the robot, where to take it, and there is also no single defined solution.

Figure 4.4 below shows the results of the evaluations performed with each trained

method. In this case, the difference between training with noise and without becomes

more evident. We can see how much the noise contributed to improving the algo-

rithms’ performance for the evaluation phase. As the Pendulum environment was the

simplest, there was practically no difference in evaluating the SAC algorithm (4.4a).

For the PPO algorithm (4.4b), the noise caused in the Pendulum environment was

harmful. And for the A3C method (4.4c) had a slightly better evaluation result for

the agent trained with noise.

As tasks and the environment become more complex, we realize the positive differ-

ence generated in the evaluation of methods trained with noise. We have a significant

performance gain with the PPO (4.5a) and A3C (4.5b) algorithms, trained with noise,

during the assessments of the LunarLander environment. This gain is even greater in

the evaluation of Humanoid (Figures 4.6a, 4.6b and 4.6c) task. We can affirm, based

on these results, that the approach proposed by us and performed with the SAC,

PPO and A3C methods generates an improvement in the agent’s performance in the

more complex the task and the environment.

50

(a) Evaluation tests for SAC algorithm training with and without noise

(b) Evaluation tests for PPO algorithm training with and without noise

(c) Evaluation tests for A3C algorithm training with and without noise

Figure 4.4: Pendulum-v0 task - evaluation

51

(a) Evaluation tests for PPO algorithm training with and without noise

(b) Evaluation tests for A3C algorithm training with and without noise

Figure 4.5: LunarLander-v2 task - evaluation

52

(a) Evaluation tests for SAC algorithm training with and without noise

(b) Evaluation tests for PPO algorithm training with and without noise

(c) Evaluation tests for A3C algorithm training with and without noise

Figure 4.6: Humanoid-v2 task - evaluation

53

Chapter 5. Collaborative task management for au-

tonomous real-time vehicle systems

We researched how to efficiently handle vehicle data and tasks, considering the

multiple devices involved, the constant vehicle movement, and the need for real-time

processing. Therefore, we examined two methods, centralized and distributed, for

mapping and processing these tasks.

5.1 Centralized Approach

We used the EdgeCloudSim simulator [71] to analyze our centralized approach that

uses machine learning-based load orchestration. We have chosen that simulator be-

cause it simulates computational and network resources inherent to edge computing

and supports cloud computing as well. Therefore, the most vital point of Edge-

CloudSim is the simulation of mobile devices, making it possible to simulate Wire-

less Local-Area Network (WLAN) and Wide-Area Network (WAN) networks. Those

main simulator features are essential for us, considering that we are working in the

autonomous vehicle domain, which has high dynamicity.

Figure 5.1 presents the workflow of our edge orchestrator. We start with con-

nected autonomous vehicles sending the tasks to the orchestrator. Then the shortest

service time to process the task is responsible for defining the node where the task will

be processed. After being processed, the task result is sent back to the orchestrator,

which sends it back to the autonomous requesting vehicle. Besides workflow, Algo-

rithm 1 brings the pseudocode to detail the edge orchestrator implementation. In this

54

way, the Algorithm 1 starts with a task as input and initializes available options from

remote servers. Then, for each of these options, it estimates the task processing time

using a machine learning algorithm. Finally, as the server with the shortest service

time is chosen, the algorithm checks which Virtual Machine (VM) is closest to the

user and returns the selected server as output so that the task can be offloaded to it.

Send tasks to be
processed

Autonomous
vehicle

Send processed
task

Analyze shortest
service timeOrchestrator

Return processed
tasks

Processing
service

Send to cloud
via RSU

Send to cloud
via CBS

Send to
edge

Dispatcher

Return processed
tasks

Processing
service

Edge node

Cloud node
Start point

Figure 5.1: Edge orchestrator workflow (RSU = Roadside Units/ CBS = Cellular
Base Station)

Since vehicles have several sensors and send different data to a remote server,

we need to select which of these data are essential for what is being processed at

the moment. Thus, if the vehicle sends a task related to navigation to be processed

over-the-air, it does not matter at that moment the data received and related to the

infotainment system, for example. Thus, according to our model presented in Figure

5.2, one of the first steps at the beginning of our approach is selecting the most

relevant input features using sensitivity analysis.

Initially, we had 12 different inputs to estimate the service time for the chosen

server. Thus, as shown in Figure 5.3, we had the following features: Decision, Vehi-

cleLocation, SelectedHostID, TaskLength, WANUploadDelay, WANDownloadDelay,

55

Algorithm 1: How our orchestrator handles task offloading
RSU = Roadside Units
CBS = Cellular Base Station
Output: selectedVM
Input: task

1 var device : integer;
2 var selectedVM : VM ;
3 var predictedServiceT ime : double;

4 Initialize servers options list ← [
EDGE DATACENTER,
CLOUD DATACENTER VIA RSU,
CLOUD DATACENTER VIA CBS];

5 for each server option in list do
6 predictedServiceT ime←ML model(selected input features);
7 end

8 if Edge = shortest predictedServiceT ime then
9 return device← EDGE DATACENTER;

10 else
11 if Cloud via RSU = shortest predictedServiceT ime then
12 return device← CLOUD DATACENTER V IA RSU ;
13 else
14 return device← CLOUD DATACENTER V IA CBS;
15 end

16 end

17 if device = CLOUD DATACENTER V IA RSU or
device = CLOUD DATACENTER V IA CBS then

18 var CloudHosts ← get the number of cloud hosts available;
19 var hostIndex ← get an index based on CloudHosts and user location;
20 var vmIndex ← get an index based on hostIndex;
21 return selectedVM with hostIndex and vmIndex;

22 else
23 var EdgeHosts ← get the number of edge hosts available;
24 var hostIndex ← get an index based on EdgeHosts and user location;
25 var vmIndex ← get an index based on hostIndex;
26 return selectedVM with hostIndex and vmIndex;

27 end

56

GSMUploadDelay, GSMDownloadDelay, WLANUploadDelay, WLANDownloadDe-

lay, AvgEdgeUtilization and NumOffloadedTask.

Features

Vehicles

Selected
features

Sensitivity
analysis

Result of estimated service time
{Value mean, variance}

One-stage
ML model

Task to be processed on
the closest server

Dispatcher

Target VM

M
L-

ba
se

d
ve

hi
cu

la
r o

rc
he

st
ra

to
r

Figure 5.2: Our one-stage proposed architecture

Furthermore, we performed a sensitivity analysis to determine the importance of

each of these 12 features. Thus, the most priority feature to estimate the service

time of a server is WLANUploadDelay, followed by Decision, TaskLength, NumOf-

floadedTask, then SelectedHostID and, finally, GSMUploadDelay. The other features

that were not chosen did not present relevance to impact the machine learning model

decision, as we can notice in Figure 5.3.

We used the sensitivity analysis explained in Section 2.3.2 and extracted our

experiment’s main input features. Table 5.1 brings the specification of these features

57

with a description for each one.

Figure 5.3: (S1 = first-order Sobol index, ST = total Sobol index) - Variance-based
sensitivity analysis to define ‘Selected features’.

Table 5.1: Details of features selected as input

Selected feature Feature Description
Decision If is to edge (1), cloud via RSU (2) or cloud via

CBS (3)
SelectedHostID Selected server hosting id
TaskLength Offloaded task size
GSMUploadDelay Upload delay via Cellular Base Station (CBS)
WLANUploadDelay Upload delay using wireless local-area network

(WLAN)
NumOffloadedTask Total number of tasks transferred to the se-

lected server in a recent past

Working with sensitivity analysis and feature selection has been demonstrated to

be essential for the system’s success. Our goal is to allow our system to work only

58

with the inputs essential for its decision. In the literature, many authors work with

the prior selection of inputs in their systems. For example, the paper [72] points out

that including excessive input variables that are not relevant to the target variable

can not only complicate the estimation and selection of the model but also impair its

performance. Similarly, the work [73] says that incorporating an excessive number of

variables in a model can produce significant outcomes but may not hold true in the

current population context.

To carry out our experiment, we used as a basis the work developed in [37].

The authors of [37] also propose a centralized, multi-tier architecture for vehicular

networks, with workload orchestration based on machine learning. However, the

two-stage structure based on ML presented (the red highlight in Figure 5.4) may be

simplified and improved to achieve better results. The suggested two-stage architec-

ture, shown in Figure 5.4, is divided to respond to three tiers: i) edge; ii) cloud via

RSU; iii) cloud via Cellular Network (CBS); and each of these layers needs two ML

models. The first model is to classify whether the unloaded task will succeed or fail,

and the other model calculates the service time of the tier predicted to be successful

in the offloading process. In total, the two-stage architecture needs to train six dif-

ferent machine learning models to make its predictions. In addition, each of the six

models uses various input features, and the reasons for such a choice in the two-stage

proposal are unclear [37].

As exemplified in Figure 5.2, we have our one-stage proposed architecture. First,

we transmit the vehicle output to the orchestrator, where we initially perform the

59

ML-Based Vehicular Edge Orchestrator

Results
(success/failure)

Stage 1

Classifier for Edge

Classifier for Cloud via RSU

Classifier for Cloud via CN

Stage 2

Regressor for Edge

Regressor for Cloud via RSU

Regressor for Cloud via CN
Service
times

Dispatcher

Features
Features

Figure 5.4: Two-stage architecture proposed in [37]

sensitivity analysis. Then the selected features go to our one-stage ML model respon-

sible for estimating the service time in interval ranges for each tier: edge, cloud via

RSU or cloud via CBS. We have an output with the interval mean and its variance

based on the predicted ranges for each tier. Based on the variance, we can estimate

the degree of uncertainty of the model regarding its prediction. Thus, the greater

the variance, the more uncertain the model prediction. From this, the choice for the

offloading process is made considering the lowest value of the mean and the lowest

variance value. Therefore, in addition to being concise and consistent, our proposal

considers the forecast’s uncertainty, which is not made in absolute numbers, but in

intervals that estimate the minimum and maximum of the service time may take.

Consequently, we always consider the service time estimation with the most minor

predicted interval for offloading.

In our experiment, the EdgeCloudSim simulator was configured to generate data

during a vehicular mobility simulation, in which 100 to 1800 vehicles were randomly

distributed at the beginning of the simulation with dynamic speeds, varying in each

segment along the road to represent different traffic densities. The simulated road

was modelled in a circular path so that the number of automobiles in the simulation

60

remained constant. For all experiments, we used a notebook with the following spec-

ification: AMD Ryzen 7 3800X 3.9 GHZ 8-core processor, 32GB DDR4 3600, SSD

NVMe 500GB, NVIDIA® GeForce RTX™ 2060 8GB and Ubuntu-based Linux 20.04

operating system.

The data obtained from the simulation are related to three applications: a nav-

igation app, a danger assessment app, and an infotainment app. Furthermore, the

produced data are as follows: Decision (edge, cloud via RSU or cloud via CBS),

Result (success or failure), ServiceTime, ProcessingTime, VehicleLocation, Selected-

HostID, TaskLength, TaskInput, TaskOutput, WANUploadDelay, WANDownload-

Delay, GSMUploadDelay, GSMDownloadDelay, WLANUploadDelay, WLANDown-

loadDelay, AvgEdgeUtilization and NumOffloadedTask. Therefore, considering these

data, we used only Result-related entries with success values, which gave us 11,533,902

entries. Furthermore, Table 5.2 presents a summary of the main characteristics de-

fined for each of the applications used.

Table 5.2: Defined characteristics for each of the applications used

Navigation
app

Risk Evaluation
app

Infotainment
app

Usage percentage ratio 30% 35% 35%
Task interarrival time (sec) 3 5 15
Max delay requirement (sec) 0.5 1 1.5
Delay sensitivity 0.5 0.8 0.25
Upload/Download data (KB) 20/20 40/20 20/80
Task length (GIPS) 3000 10000 20000
RSU/Cloud VM utilization 6%/1.2% 20%/4% 40%/8%

The first part of our proposal is related to the selected features to use as input

entries for our ML model stated in Figure 5.2. For this, we use variance-based sen-

61

sitivity analysis, with the first- and total-order Sobol indices [46], to determine the

inputs that most influence the ML model’s final decision. From that, we select the

most relevant input features. As Figure 5.3 shows, the main features chosen for our

experiment are Decision, SelectedHostID, TaskLength, GSMUploadDelay, WLANU-

ploadDelay, and NumOffloadedTask.

In a comparative study, we trained six models precisely as specified in paper

[37] for the two-stage architecture. First, we prepared three MultiLayer Perceptron

(MLP) models for each tier (edge, cloud via RSU or cloud via CBS) to classify suc-

cess and failure cases. The features used by the authors in [37] for each model were

divided as follows: the edge classifier used NumOffloadedTask, WLANUploadDelay,

WLANDownloadDelay, TaskLength and AvgEdgeUtilization as input; the cloud clas-

sifier via RSU used NumOffloadedTask, WANUploadDelay, and WANDownloadDelay

as input; the cloud classifier via CBS used as input NumOffloadedTask, GSMUpload-

Delay, and GSMDownloadDelay. Then, to predict the service time for task offload-

ing, three linear regression models also used different entries: the edge regressor

used TaskLength and AvgEdgeUtilization as input; the cloud regressor via RSU used

TaskLength, WANUploadDelay and WANDownloadDelay as input; the cloud regres-

sor via CBS used TaskLength, GSMUploadDelay and GSMDownloadDelay as input.

The regression models only estimated the service time of the classifier whose pre-

diction was equal to success, allowing the orchestrator to choose the shortest service

time among the estimated ones.

In the one-stage architecture, we studied machine learning algorithms suitable

62

for solving our regression problem. Therefore, as shown in Table 5.3, we analyzed

the following algorithms: linear regression, MLP, M5Rules, Support Vector Machine

(SVM) and random forest. Having the cross-validation results of Table 5.3 as a basis,

we chose the Random Forest algorithm that presented the best performance and,

consequently, is the one that best fitted the problem after our investigations.

Table 5.3: Performance evaluation with 10-fold cross-validation

Linear Re-
gression

MLP M5Rules SVM Random
Forest

Total Number of In-
stances

1048575 1048575 1048575 1048575 1048575

Correlation coeffi-
cient

0.7678 0.9986 0.9985 0.7281 0.9991

Mean absolute error 0.1874 0.0133 0.0139 0.1138 0.0099
Root mean squared
error

0.2541 0.0209 0.0218 0.2791 0.0168

Relative absolute er-
ror

77.2125% 5.4683% 5.7302% 57.2074% 4.0636%

Root relative squared
error

64.0659% 5.2775% 5.4848% 80.1651% 4.2359%

Thus, we isolated all dataset entries whose “Result” column was equal to success

and relabeled the “Decision” column as edge = 1, cloud via RSU = 2 and cloud

via CBS = 3. In this way, we trained our model to predict the service time on

each tier using the following input features: Decision, SelectedHostID, TaskLength,

GSMUploadDelay, WLANUploadDelay and NumOffloadedTask in only one-stage ar-

chitecture. Consequently, we use the same input features and the same model to

estimate the service time on edge, cloud via RSU or cloud via CBS.

We present in Figure 5.5 the result of the performance evaluation for the two ap-

proaches to predict the task offloading service time. We use the R2 score, MSE and

63

Mean Absolute Percentage Error (MAPE) as the proposal’s quality evaluation met-

rics. As shown in Figure 5.5, the result of our approach, the one-stage architecture,

significantly outperforms the results of the two-stage architecture. The one-stage

architecture’s R2 is incredibly better than the two-stage architecture’s R2. Further-

more, the two-stage architecture’s MAPE has a significantly poor result, and its MSE

is also worse than the one-stage architecture’s MSE in all three tiers. The results in

Figure 5.5 demonstrate that in addition to our proposal being concise, the results of

the one-stage architecture are still much more promising.

Figure 5.5: Comparison of our proposal with the proposal presented in [37]

After these preliminary results, we used the EdgeCloudSim simulator to perform

task-offload simulations on a remote server managed by the ML-based orchestrator.

Therefore, we compared the performance of our one-stage orchestrator, a two-stage

64

orchestrator by [37], and a random orchestrator. The experiments performed on

the EdgeCloudSim simulator were based on modelling computational and network

resources and the representation of mobile vehicles. We use the random orchestrator

to select the offload server randomly, so the probability of selecting a specific target

server is equal to the possibility of choosing any of the other available servers. A

random technique is used to represent the worst-case scenario.

In the simulated vehicular network, vehicles had some tasks that did not need

to be processed locally, so sending them to remote servers on the edge or cloud is

possible. Cloud servers can be accessed in two different ways, through RSU or CBS.

Therefore, the orchestrator is responsible for choosing the remote server based on the

computational load of the task and the execution time estimated through machine

learning. The base configuration of the simulator used in our experiment was the

same as described in the paper [37]. Thus, the vehicle applications used to generate

the offloaded tasks had different characteristics regarding the arrival time, duration,

and size of the upload and download data.

The results of the experiments performed with the EdgeCloudSim simulator are

presented below. In these results, we can visually compare the performance of the

approaches following different criteria. For example, Figure 5.6 demonstrates the

average failure rate of tasks according to the number of vehicles in the simulation.

In this way, our one-stage proposal outperforms the other two approaches. Initially,

the two ML-based model starts with the same margin of task failures. Then, as the

number of vehicles in the given scenario grows and surpasses the threshold of 1,200, the

65

one-stage model exhibits a significant improvement in reducing the average number of

tasks that fail to meet the specified requirements. This improvement consolidates the

one-stage model’s position as the most efficient and effective model for the provided

scenario.

Figure 5.6: Number of tasks that failed during simulation in EdgeCloudSim

Figure 5.7 shows the overhead suffered by the orchestration algorithms as the

number of vehicles in the simulation increases. The random model has little overhead

because it pushes random choices, making decisions fast, and not generating overhead,

but there is no service quality guarantee. The other two models, based on ML, need

time to make their decisions, which results in overhead. However, our one-stage

proposal presents the best results, considering that it also has the lowest average of

failed tasks.

66

Figure 5.8 illustrates the average network delay at the time of operation of each

approach. The random model has many inconsistencies, mainly between 1200 and

1800 vehicles, where the delay increases abruptly and then drops drastically. The

unpredictable nature of the random strategy can explain this behaviour of the random

model. The delay can vary widely depending on how resources are randomly allocated,

especially if the number of resources is limited or the demand is highly variable.

However, the two ML-based models, one-stage and two-stage, have the same average

network delay during their performance, demonstrating that both have similar quality

in this criterion. The inconsistency of the random model reinforces the importance

of more sophisticated methods, such as ML-based algorithms, which aim to optimize

network delay more predictably and reliably.

Figure 5.7: Orchestration algorithm overhead during simulation in EdgeCloudSim

67

Figure 5.8: Network delay of approaches during simulation in EdgeCloudSim

Figure 5.9 presents the simulation time in minutes for each orchestrator. Based on

this, the random algorithm has the shortest simulation time because of the arbitrary

decisions made with no elaborated rules. The other two algorithms spend more sim-

ulation time. However, the one-stage model still has a significantly better simulation

time than the two-stage model.

Overall, the results indicate that our approach best fits what is proposed, having

outperformed the experiments. In addition, we can save computational resources

when conducting sensitivity analysis, as there is no need to process all the data

received. Furthermore, by using the one-stage ML model that outputs the average of

the prediction interval and the variance of this interval, we can measure how confident

our model is in its prediction. Finally, the Equation formula 5.1 defines the Quality

68

Figure 5.9: Algorithm simulation time duration in EdgeCloudSim

of Experience Quality of Experience (QoE) that evaluates the service time provided

by the orchestrator and the number of lost tasks.

QoEi =



0, if Ti ≥ 2Ri

(1− Ti−Ri

Ri
).(1− Si), if Ri < Ti < 2Ri

1, if Ti ≤ Ri

(5.1)

Where Ti, as defined in [37], is the current service time, Ri is the delay requirement,

and Si is the delay sensitiveness of a task τi. The delay requirements define the

maximum available service time for the corresponding task. The average QoE value

decreases as task τi is completed after Ri. Delay sensitivity guides delay tolerance.

69

This value ranges from 0 to 1 and higher for applications with delay intolerance.

Figure 5.10 shows the average QoE associated with the number of automobiles. We

determine the delay requirements (by task sizes) and task delay sensitivities as in

Table 5.2.

As shown in Figure 5.10, the average QoE of models that use machine learning

presents the best results, as its objective is to minimize the service time for task

processing. On the other hand, the random approach does not seek to reduce the

service time and has the worst result.

200 400 600 800 1000 1200 1400 1600 1800
Number of Vehicles

10

20

30

40

50

60

70

80

A
ve

ra
ge

 Q
oE

 (
%

)

ML-based (one-stage(our))
ML-based (two-stage)
random

Figure 5.10: Average QoE for the number of vehicles

70

5.2 Distributed Approach

Real-time intelligent systems are required to process and interpret numerous data

simultaneously, demanding high-performance computing and rigorous real-time re-

sponses to requested tasks. In the case of autonomous vehicles, we deal with lim-

iting factors such as battery life and constricted computing power that restricts the

processing load supported onboard. In this scenario, we must take advantage of ex-

ternal devices that can support the processing performed by the intelligent system

in real-time. Furthermore, with over-the-air communication, vehicles can share their

information with each other, in addition to using each other’s processing capacity to

perform possible tasks. The execution of tasks outside the origin node can also be

done using fog or cloud resources.

We implemented a machine learning-based task mapper to select the best server for

a specific task. Thus, we tested some algorithms (Linear Regression, MLP, k-Nearest

Neighbors (KNN) Regressor, SVM and Random Forest), as presented in Table 5.4,

and we chose the Random Forest Regressor for presenting the best performance.

Furthermore, the Random Forest Regressor algorithm also proved to be the best

option in other work [74] for similar situations. To train and evaluate each of the

algorithms in Table 5.4, we collected 204316 data from a simulation with 1000 steps

performed in the Simpy-AD simulator [75]. The data used for this training include

those presented in Table 5.5 plus a column called ‘status’ with information about the

probability of success for processing the task. This probability of success is the target

71

Table 5.4: ML algorithms performance evaluation

Linear Re-
gression

MLP KNN Re-
gressor

SVM Random
Forest

R2 score 0.592 -819835332536004.5 0.595 0.185 0.761
Mean
absolute
error

0.242 9245813.765243515 0.175 0.203 0.120

Mean
squared
error

0.101 204958291958594.8 0.101 0.203 0.059

Median
absolute
error

0.170 2420636.0602586647 0.0 0.0 0.004

column of each evaluated algorithm and varies from 0 (no chance of success) to 1

(100% chance of success). Consequently, the task mapper chooses the server most

likely to process the requested task successfully based on the features listed in Table

5.5 and the closest available servers list.

Table 5.5: Features used as inputs by task mapper

criticality The importance degree of the task can vary
between high, medium or low.

deadline Deadline for task completing.
task size The task’s memory footprint.
task flop Computation capacity needed by the task.
pu actual memory Currently available server memory.
pu memory Total server memory.
pu task execution time Task execution time on the server.
pu task energy comsuption Task energy consumption on the server.
pu queue size Number of tasks in the server queue.
pu availability Amount of server processing available.

In order to validate our approach, we use the Simpy-AD simulator [75], which

is a tool for offloading tasks in an autonomous driving context. Furthermore, this

simulator allows the use and implementation of edge, fog and cloud communication

methods. Thus, it is possible to establish the sharing and collaboration of knowledge

72

and resources between edge, fog and cloud nodes. The Simpy-AD simulator is a

tool developed on top of the SimPy [76] framework. It is a process-based discrete-

event simulation representing real-world systems and processes, including urban car

platoons and their task processing systems.

In our work, we developed the task mapper based on machine learning as pre-

sented in Algorithm 2. In addition, we implemented a task scheduler that considers

each task’s deadline and criticality and creates a single circular queue in which tasks

that need more time to be processed can go back to the scheduler and be processed

again, taking into account their deadline. The pseudocode of our task scheduler is

represented in Algorithm 3. Finally, the tasks used in the simulation and their flop,

size and criticality are detailed in Table 5.6.

Algorithm 2: ML-based task mapper policy

1 Class MLTaskMappingPolicy()
2 Function init (env: simpy.Environment):
3 super(). init (env)
4 ML model← loaded ML model()

5 Function assignToPu(task, AvailableServers):
6 inputs = []
7 for each server in AvailableServers do
8 features = convertFeatureToVector(task, server)
9 Append features to inputs

10 bestServerProb = ML model.predict(inputs)
11 index = max(bestServerProb)
12 bestServer = AvailableServers[index]
13 Call bestServer.submitTask(task)

Managing tasks in an RSU can be made more efficient and straightforward using

a single queue. This approach reduces the complexity of organizing and prioritizing

73

tasks and allows for more effective monitoring with just one data structure. However,

having multiple queues increases the system complexity, requiring the task scheduler

to manage and synchronize several queues, which can lead to fairness and starva-

tion problems. Also, resource fragmentation may become an issue, as dividing the

resources among queues may not efficiently utilize the RSU’s total capacity. Addi-

tionally, synchronizing queues to prioritize critical tasks introduces delays and com-

plexity. Therefore, selecting a single queue maximizes efficiency and simplifies task

management while considering deadline and criticality constraints.

The Algorithm 2 has an assignToPu method that first calls the convertFeature-

ToVector method for each server in the server list (AvailableServers) to convert the

task and server to a feature vector. It then passes all these feature vectors to a pre-

trained machine learning model stored in ML model to get predicted success proba-

bilities for each server. It then selects the server with the highest predicted success

probability. Finally, it submits the task to the selected server.

The convertFeatureToVector method converts a task to a list of features for each

server analyzed, including the task’s criticality, deadline, size, and FLOPs and the

server’s available memory, execution time, energy consumption, queue size, and avail-

ability as stated in Table 5.5.

The Algorithm 3 has an addTaskInQueue method that adds a task to the schedul-

ing queue and increments the scheduler round of the task.

The getNextTask method returns the next task from the scheduling queue based

74

Algorithm 3: Earliest Deadline First and High Criticality (EDFHC) sched-
uler policy

1 Class EDFHCSchedulingPolicy()
2 Function addTaskInQueue(task list, task):
3 Append task to task list

4 Function getNextTask(task list):
5 while task list is not empty do
6 Sort task list by deadline and criticality
7 selected task ← first task in task list
8 Remove selected task from task list
9 return selected task

10 Function getQueueSize(task list):
11 return length of task list

12 Function getQuantum(quantum):
13 return quantum

on the earliest deadline and highest criticality. It first checks if the queue is not

empty, then sorts the task list based on the earliest deadline and highest criticality

using the sort method with a key function. Finally, it pops and returns the highest

priority task, which is the first task in the sorted list.

The getQueueSize method returns the number of tasks in the scheduling queue.

Furthermore, the getQuantum method returns the scheduling quantum (the time slice

(or time quantum) for each task) of the policy, which will help tasks return to the

scheduler if necessary.

To simulate a city scenario and establish random departure and arrival points for

vehicles and platoons, we use a routing service API, OpenRouteService [77]. With

this, we defined a city in North America with the respective latitude and longitude

in the simulation configuration file. In this way, when starting the simulation, each

75

Table 5.6: Tasks defined for the simulation

Task name Task FLOP Task
size

Task criti-
cality

ObjectDetectionTask 230000000 2100 High
ObjectTrackingTask 230000000 2100 Medium
MappingTask 230000000 2100 Medium
GameTask 230000000 2100 Low
MotionPredictionTask 230000000 2100 Medium
TrajectoryPlanningTask 2300000000 2100 High
CollisionPreventionTask 50000000000 2200 High
InformationServiceTask 2000000000 2100 Medium
MusicTasks 1000000000 200 Low
TrafficLightDetectionTask 40000000 100 High

vehicle and platoon has a randomly defined starting and arrival point.

We used the Simpy-AD simulator with 1000 simulation steps to validate our ap-

proach. In addition, we defined a total of 100 vehicles per simulation, 5 RSUs, and 5

data centers. Each platoon could have a maximum size of up to 5 vehicles. Each car

has an embedded NVIDIA Jetson AGX Xavier as an onboard processing unit. The

cars compose the edge nodes with sharing resources and information, which allows

them to request the available processing capacity from another vehicle member of the

platoon to offload their tasks. Each RSU makes up the fog level and has the Tesla

V100 Graphics Processing Unit (GPU) as the processing unit. Above that, the cloud

nodes with their data centers are composed of the DGX A100 server. Edge, fog, and

cloud nodes collaborated and shared resources and information.

For our collaborative task management system, we propose using a task mapper

based on machine learning as presented by Algorithm 2. Furthermore, we propose

a task scheduler, Algorithm 3, which prioritizes tasks with a shorter deadline and

76

high criticality. Our task scheduler also creates a circular queue for tasks requiring

extra processing time, considering their deadline limits. Thus, we call our approach

EDFHC ML, where the name’s first part Earliest Deadline First and High Criticality

(EDFHC) refers to the scheduler policy, and the second ML refers to the mapper

policy.

To confront the performance of our approach, we compared it with other models.

Thus, approach 2 is EDFHC random, which consists of our proposed scheduler policy

(EDFHC) with a random mapper policy. In the random task mapper, the choice of a

server to offload the task is made randomly without considering any choice constraint.

Approach 3 is RoundRobin random, consisting of the Round Robin task scheduler

policy, commonly used in computer operating systems and other real-time systems.

The Round Robin scheduler assigns a time slice (also known as a time quantum)

to each task in its queue without considering the specificities of each task. Finally,

approach 4 is RoundRobin ML, which uses the Round Robin scheduling policy and

the mapper policy proposed in this dissertation (Algorithm 2).

All approaches were performed under the same conditions. Table 5.7 presents an

overall result of the performance of the approaches considering the execution of tasks

on time. Based on this table, our EDFHC ML approach had the best performance in

executing tasks within the deadline, with a success rate of 64.00%, against 59.56% for

EDFHC random, 53.15% for RoundRobin random and 51.86% from RoundRobin -

ML. It is important to note that none of the approaches left tasks incomplete. How-

ever, only the RoundRobin ML approach did not leave any tasks unexecuted, possi-

77

bly due to the combination of the Round Robin scheduling policy with our ML-based

mapping policy. With that, our ML-based mapping policy considers the current con-

ditions of each server, such as queue size and available processing power, for receiving

specific tasks. Meanwhile, the Round Robin scheduling policy allocates a time slice to

each task without considering its specificities, ensuring all tasks are started on time,

even if they are completed after their deadline.

Table 5.7: General comparison of the analyzed approaches

EDFHC ML
(our)

EDFHC -
random

RoundRobin -
random

RoundRobin -
ML

All tasks 192610 268810 279010 168600
Success
tasks/ %

123265/
64.00%

160103/
59.56%

148290/
53.15%

87436/
51.86%

After dead-
line

69335 108697 130710 81164

To execute 10 10 10 0
Incomplete 0 0 0 0

With the simulation results obtained, we randomly selected the vehicle with ID

0 from each platoon to take the average and plot the results. Thus, Figure 5.11

presents the percentage of tasks distributed on each server according to the analyzed

approach. In this Figure 5.11, we can better view how the task mapper policy works.

Considering latency and possible response delays, it would be more coherent for most

tasks to be sent to the edge (AGX servers), a smaller number to the fog (Tesla servers),

and an even smaller number to the cloud (DGX servers). The mapping policy that

showed the most similar decision was the ML-based mapper in the EDFHC ML and

RoundRobin ML approaches, having sent a more significant number of tasks to the

AGX edge servers, then a smaller number to the Tesla fog servers, and lastly, an even

78

smaller number of tasks were sent to the DGX cloud server.

EDFHC_ML EDFHC_random RoundRobin_random RoundRobin_ML
Analyzed approaches

0

5

10

15

20

25

30

35

40

Of
flo

ad
ed

 ta
sk

s (
%

)

38.87
36.28 36.51

41.29

36.26

27.12

18.03

25.85

6.31

18.35

27.2

13.85

AGX
Tesla
DGX

Figure 5.11: Tasks distributed percentage on each server by analyzed approach

Considering only the vehicles with ID 0 from each platoon, Figure 5.12 displays

the percentage of tasks successfully completed in Total and on each server. Our

approach EDFHC ML had the best performance in executing tasks successfully in

the overall comparison and also on the AGX edge and DGX cloud servers. However,

in the Tesla fog server, the EDFHC random approach had a slight advantage over

our EDFHC ML approach. While our approach executed three tasks on the Tesla

fog server after the deadline, the EDFHC random approach executed only one task

after the deadline. However, comparing the type of task that missed the deadline in

both approaches, we have that in EDFHC ML, the three tasks were GameTasks, with

low criticality. In contrast, EDFHC random had one MappingTask with a medium

criticality that missed the deadline, as indicated in Table 5.6. Thus, we can say that

our approach has a better performance when compared to the successfully executed

tasks on the edge, fog, and cloud servers.

Regarding task criticality, Figures 5.13, 5.14, and 5.15 show the percentage of

79

Total AGX Tesla DGX0

20

40

60

80

100

Co
m

pu
te

d
su

cc
es

sf
ul

ly
 ta

sk
s (

%
)

55.16

32.39

99.98 100

52.61

19.7

99.99 99.98

51.58

25.76

84.84

98.84

47.72

29.93

83.58

99.26EDFHC_ML
EDFHC_random
RoundRobin_random
RoundRobin_ML

Figure 5.12: Percentage of successfully completed tasks in total and by server

successfully completed tasks according to their criticality in AGX edge servers, Tesla

fog servers, and DGX cloud servers, respectively. In Figure 5.13, we can see that

the EDFHC ML and EDFHC random approach focuses on executing high-criticality

tasks first and then proceeding to medium- and low-criticality tasks. On the other

hand, the RoundRobin random approach executes medium-criticality tasks first, then

low-criticality tasks, and finally, high-criticality tasks. Finally, the RoundRobin ML

approach executes medium-criticality tasks first, followed by high-criticality tasks and

then low-criticality tasks.

Figure 5.14 reveals the percentage of successfully completed tasks according to

their criticality on the Tesla fog server. Therefore, we can see that the RoundRobin -

random and RoundRobin ML approaches prioritize the processing of medium-criticality

tasks first, followed by low-criticality tasks, and then high-priority tasks. The EDFHC -

random approach prioritizes executing high- and low-criticality tasks first and then

processes medium-criticality tasks. The EDFHC ML approach gave priority to the

execution of high- and medium-criticality tasks and then processed low-priority tasks.

80

HIGH MEDIUM LOW
Degree of task criticality

0

10

20

30

40

Co
m

pu
te

d
su

cc
es

sf
ul

ly
 ta

sk
s (

%
)

44.92

27.19

17.92

35.37

11.02

6

22.31

29.41

25.21

28.36

33.84

25.67

AGX
EDFHC_ML
EDFHC_random
RoundRobin_random
RoundRobin_ML

Figure 5.13: Percentage of successfully completed tasks according to their criticality
on the AGX Edge Server

In Figure 5.15, we see that the RoundRobin random and RoundRobin ML tech-

niques first prioritized medium- and low-criticality tasks before executing high-priority

tasks on the DGX cloud server. Meanwhile, the EDFHC random approach considered

prioritizing low-criticality tasks first and then executing high- and medium-criticality

tasks. Our approach, EDFHC ML, executed all high, medium, and low criticality

tasks equally on the DGX cloud server.

HIGH MEDIUM LOW
Degree of task criticality

0

20

40

60

80

100

Co
m

pu
te

d
su

cc
es

sf
ul

ly
 ta

sk
s (

%
)

100 100 99.93100 99.98 100

83.21
86.36 85.06

81.8
85.65

82.43

Tesla

EDFHC_ML
EDFHC_random
RoundRobin_random
RoundRobin_ML

Figure 5.14: Percentage of successfully completed tasks according to their criticality
in Tesla Fog Server

81

HIGH MEDIUM LOW
Degree of task criticality

0

20

40

60

80

100

Co
m

pu
te

d
su

cc
es

sf
ul

ly
 ta

sk
s (

%
)

100 100 10099.98 99.98 100
97.1

100 10098.46 100 100
DGX

EDFHC_ML
EDFHC_random
RoundRobin_random
RoundRobin_ML

Figure 5.15: Percentage of successfully completed tasks according to their criticality
on the DGX Cloud Server

In a real-time system with tasks specified according to their criticality, high-

criticality tasks are always expected to be prioritized. If any task has to miss its

deadline, it is expected to be a low-criticality task, with medium-criticality tasks

being sacrificed only in favour of high-criticality tasks. With this in mind, we have

noticed that our EDFHC ML approach outperformed the other approaches, as it al-

ways considers executing high-criticality tasks first, followed by medium-criticality

tasks, and only then executing low-criticality tasks.

Analyzing the task definition Table (5.6), we can see that the CollisionPrevention-

Task is highly critical and requires more significant processing resources. Herefore, it

is common for this task to miss the deadline the most in all approaches. However,

the approach proposed by us in this dissertation (EDFHC ML) works in a circular

queue-like manner, where after the allotted processing time for the task has expired

and it has not yet been completely processed, it is reallocated in the server execution

queue considering its deadline and criticality concerning the remaining tasks in the

82

queue. As a result, we noticed in Table 5.8 that the CollisionPreventionTask was

successfully executed more times by our approach.

Table 5.8: Analysis of the processing success percentage of each approach to Colli-
sionPreventionTask

Approach Success for the CollisionPreventionTask
EDFHC ML 6.02%
EDFHC random 1.05%
RoundRobin random 2.28%
RoundRobin ML 0.83%

The demand for high-performance computing and real-time response in process-

ing and interpreting massive data has increased with the rise of intelligent systems,

particularly in the case of autonomous vehicles. However, battery life and constricted

computing power can limit the processing load supported onboard. Thus, offloading

tasks to external devices like fog or cloud resources and using over-the-air communi-

cation can be an effective solution. We used the Simpy-AD simulator to validate our

approach, and the results showed promising performance. Furthermore, with the help

of routing service APIs, random departure and arrival points for vehicles and platoons

can be established in a city scenario simulation. Overall, our approach can be benefi-

cial for developing intelligent systems that require high-performance computing and

real-time response.

83

Chapter 6. Learning and continuous monitoring for

autonomous real-time vehicle systems

According to the [78] and [47] papers, there are different methods for quantifying

uncertainty. Using statistical metrics [79], the typical way is to calculate the mean

or expected value and also the variance of the output. The following expression gives

the mean of the output:

E(H) =

∫ b

a

hf(h) dh (6.1)

Where E(H) is the expected value of the output H, defined by the integral with

range [a, b], which is the output space of H. Furthermore, hf(h) dh represents the

probability that H is in a range width dh around h.

The variance is defined as the expected value of the squared deviation from the

mean of H:

V ar(H) = E((H − E(H)2) (6.2)

To generate a prediction interval of our prediction (IH), we are going to use the

percentile method (P) to specify the thresholds:

IH = [P(a/2), P(1−a/2)] (6.3)

Therefore, we have a prediction range of 90% of the occurrence of 90% of all H

84

results. So 5% of those results are below this range, and 5% are above it. (a/2) is the

lower critical value and (1− a/2) is the upper critical value for the standard normal

distribution, and 100a% is the confidence level.

Conformal predictors [80] is a widely used approach when we are working with

uncertainties [81], [82], being able to make predictions around confidence thresholds.

Given a significance level α, a model is capable of making predictions within a 1− α

confidence limit. In other words, the probability of the correct label being within the

predicted confidence set is almost exactly 1− α.

Predictions will use ranges around the actual value in regression problems rather

than predicting a single absolute value. For classification problems, the prediction

will consider the possibility that each class in the data set is the proper label. Figure

6.1 shows the general operation of conformal predictor work.

Figure 6.1: Conformal predictor workflow

85

We use the conformal predictor shown in Figure 6.1 as part of our approach pro-

posed. Therefore, according to Figure 6.1, we first divided our dataset into training,

calibration and test sets. So we fit an ML model with the proper training set. Then,

we define a nonconformity function that makes a sample distribution based on scores

determined by the similarity of the elements in its set with those of the training set.

The nonconformity function then receives the calibration set and generates the cali-

bration scores. These scores feed the inductive conformal predictor, which is the top

layer of the model. Finally, that inductive conformal predictor layer is responsible

for generating predictions distributed according to the calibration scores, using as a

cut-off point the significance level that varies from 0 to 1. Therefore, for example,

we can say that we have an ordered set of 500 conformal scores. Then, if α = 0.1,

the cut-off point for statistical significance will be the conformal score at the 90th

percentile, in this case, the 450th conformal score.

We will use in our work an Inductive Conformal Predictor (ICP) [83] instead of the

Transductive Conformal Predictor (TCP) [84]. We decided to focus on ICP because

it is the most widely used approach to conformal predictions. Furthermore, it requires

that the ML model be trained one single time for all predictions until a new amount

of data is collected, and it is worth retraining to update the model [85].

We use two scenarios: a congestion identification scenario and a fire identification

scenario. We will use simulated data for the first scenario and real sensor data for

the second one.

86

6.1 Scenario 1

Congestion strongly influences mobility, accessibility and the emission of pollutants

but varies widely over time and across space [86]. Therefore, we consider that the

congestion detected event occurs when the traffic flow reaches its maximum value,

and the traffic density continues to increase.

For this scenario, we used a traffic dataset generated through the Simulation

of Urban MObility (SUMO) framework [87]. Thus, we used the net file with the

Downtown Toronto abstraction made in [88] to identify congestion points on city

roads, as revealed in Figure 6.2. The simulation map has 52 intersections and roads

with 1 or 2 lanes. Thus, we placed SUMO lane area detectors (E2) scattered along

the roads to measure the traffic generated by 1000 vehicles inserted in randomized

traffic for a defined time from 0 to 100000.

We split our dataset between the training and test sets, with the test set having

25% of the dataset’s data and the training set having 75% for experiments that did

not consider uncertainty. Then we kept the same 25% for the test dataset and split

the rest evenly between the training and calibration sets in the experiments that

considered uncertainty. The total number of entries in the dataset was 532,014, with

the test sample size always 177,338.

To quantify the uncertainty of our model, we use the percentile to determine what

range we would like our answer to fall in. Based on equation 6.3, we set this range

87

Figure 6.2: Comparison of the traffic network used in the simulation with the real
map of Toronto

to 97%. For this, we set the conformal prediction significance to α = 0.03. Thus,

every time our model predicted labels 0 or 1, there was a 97% probability that this

prediction was correct.

We performed three different tests to validate our approach in scenario 1. The

first experiment was a binary classification problem, the second was a multi-level

classification problem, and the third was a regression problem. For the three problems,

we had as input the data related to the average speed (m/s), the flow (counts), the

average occupancy (%) and the mean halting duration (s). Below we detail all the

experiments.

Consider the four primitive events consumed for complex event composition:

- AverageSpeed(timestamp=1647037870, m/s=13.5)

- Flow (timestamp=1647037870, counts=1.38)

88

- AverageOccupancy(timestamp=16470, percent=3.34)

- HaltingDuration(timestamp=1647037870, sec=1)

Our model presents the same structure for dealing with classification or regression

problems, using a combination of Random Forest Regressor [89], k-Nearest Neighbor

(kNN) [90] and conformal prediction as illustrated by Algorithm 4. First, as shown

in Figure 6.3, the model receives the inputs and verifies the essential ones through

sensitivity analysis. Afterward, the selected features enter the model, composed of

conformal prediction and an ML model as stated in Figure 5.4. So the prediction for

the classification or regression problems can be performed. Then, our model predicts

intervals from which we take the mean that indicates the prediction result.

input

ML + CP
model

Problem
type

Selected
features

Sensitivity
analysis

OutputClassification

OutputRegression

{Predicted label,
confidence}

{Predicted value
mean, variance}

Figure 6.3: Proposed approach to estimate uncertainty in events

For comparison, we implemented two other replicable approaches per the paper’s

information and definitions [91]. Thus, Algorithms 5 and 6 represent the Normal

Probabilistic Model (NPM) and Improved Probabilistic Model (IPM) approaches for

classification (Algorithm 5) and regression (Algorithm 6) problems. The difference

between NPM and IPM declared by the [91] authors is the probability distribution

function of the error, which in NPM is N(0, 1) and in IPM is the normal distribution

of the standard deviation representing the inaccuracy of sensors specified by the

manufacturer.

89

Algorithm 4: Proposed Machine Learning with Conformal Predictor (ML -
CP) model

1 Class
ML CP model(x train, y train, x calibrate, y calibrate, x test, problem type)

2 underlying model← RegressorAdapter(RandomForestRegressor())
3 normalizing model← RegressorAdapter(KNeighborsRegressor(n neighbors =

5))
4 normalizer ←

RegressorNormalizer(underlying model, normalizing model,AbsErrorErrFunc())
5 nc← RegressorNc(underlying model,AbsErrorErrFunc(), normalizer)
6 icp← IcpRegressor(nc)
7 icp.fit(x train, y train)
8 icp.calibrate(x calibrate, y calibrate)
9 prediction← icp.predict(x test, significance = 0.03)

10 prediction mean← np.mean([prediction[:, 0], prediction[:, 1]], axis = 0)
11 results← []
12 foreach value in prediction mean do
13 frac← value mod 1
14 confidence← 100 if frac < 0.1 else (1− frac) ∗ 100 if frac ≤ 0.5 else

frac ∗ 100
15 if problem type = “binary classification” then
16 results.append((1 if value > 0.5 else 0, confidence))
17 else
18 if problem type = “multi-classification” then
19 class prediction← len(thresholds)
20 foreach i, threshold in enumerate(thresholds) do
21 if value ≤ threshold then
22 class prediction← i
23 else
24 class prediction← i+ 1
25 end

26 end
27 results.append((class prediction, confidence))

28 else
29 var ← |prediction[:, 1]− prediction[:, 0]|
30 results.append((value, var))

31 end

32 end

33 end
34 return results

90

In scenario 1, we are working with simulated data, and therefore, we need infor-

mation regarding the factory inaccuracy of the sensors. Considering this, we assume

that sensor uncertainty is proportional to the standard deviation of the simulated data

(stds∗0.1). In this way, we have the probability distribution function of the error equal

to [N (0, 1),N (0, 1),N (0, 1),N (0, 1))] for NPM and [N (0, 0.7),N (0, 0.4),N (0, 1.0),N (0, 3.7)]

for IPM relative to the four input primitive events.

Algorithm 5: Probabilistic Model Classification

1 Class ProbabilisticModelClassification

2 Function init (self, detector stds){
3 self.means← None
4 self.stds← detector stds

5 }
6 Function Fit(self,X, y){
7 n features← length(X[1])
8 n classes← length(unique(y))
9 self.means← zero matrix(n classes, n features)

10 foreach label in range(n classes) do
11 X label← X[y == label]
12 self.means[label]← mean(X label)

13 end

14 }
15 Function Predict(self,X){
16 n classes← length(self.means)
17 log likelihoods← zero matrix(length(X), n classes)
18 foreach label in range(n classes) do
19 log likelihoods[:, label]←

sum(norm logpdf(X, self.means[label], self.stds))
20 end
21 return argmax(log likelihoods)

22 }

Analysis of the proposed method for a binary classification problem:

The first experiment is a simple binary classification problem. The objective is to

determine whether there is congestion (no-congestion=0, congestion=1).

91

Algorithm 6: Probabilistic Model Regression

1 Class ProbabilisticModelRegression

2 Function init (self, feature stds){
3 self.means← None
4 self.feature stds← feature stds

5 }
6 Function Fit(self,X, y){
7 n features← length(X[1])
8 self.means← zero array(n features)
9 foreach i in range(n features) do

10 self.means[i]← mean(y ∗X[:, i])
11 end

12 }
13 Function Predict(self,X){
14 y pred← zero array(length(X))
15 foreach i in range(length(X)) do
16 weights← 1/(self.feature stds2)
17 y pred[i]← sum(X[i, :] ∗ self.means ∗ weights)/sum(X[i, :] ∗ weights)
18 end
19 return y pred

20 }

With our proposed approach, the sensitivity analysis indicates “speed”, “occu-

pancy” and “mean Halting Duration (s)” as the essential inputs (Figure 6.4). S1

means first-order Sobol indices, and ST indicates total Sobol indices. First-order

Sobol indices consider each parameter’s direct contribution, excluding interaction

terms, to a specific output. The total Sobol indices provide a view of all interactions

of a given input, not providing details of which parameter this input interacts with

nor in which order.

Following the Algorithm 4, our approach initially predicts a range between 0 and

1, for which we calculate a mean. Then, the estimated mean value is used as a

confidence index to indicate the choice of a label. For example, if we have a mean

between 0 and 0.50, the output label will be 0, and the confidence index will range

92

Figure 6.4: Sobol analysis to indicate priority input for binary classification problem

from 50% to 100%, depending on the mean. On the other hand, if the mean is from

0.51 to 1, the chosen label will be 1, with a confidence index ranging from 51% to

100%. Consequently, if we have mean = 0.30, then label = 0 and confidence = 70%.

We calculated the sensitivity and specificity of each model as defined by Equations

6.4 and 6.5, respectively.

Sensitivity =
TP

TP + FN
(6.4)

Specificity =
TN

TN + FP
(6.5)

TP - the number of true positives.

FN - the number of false negatives.

TN - the number of true negatives.

93

FP - the number of false positives.

After the previous clarifications, we present the obtained results in Table 6.1.

Table 6.1: Models performance for the binary classification problem

ML CP NPM IPM
Accuracy 0.98 0.64 0.63
Sensitivity 0.97 0.31 0.29
Specificity 0.98 0.99 0.99

We analyzed the accuracy, sensitivity and specificity of each model. The sensitivity

indicates the proportion of label 1 classes that were actually classified as label 1 by

the model (true positive). On the other hand, specificity indicates the proportion of

label 0 that was classified as label 0 (true negative). Thus, considering sensitivity

and specificity, in addition to accuracy, the ML CP model presents the best results.

Although NPM and IPM have a marginally higher specificity rate than ML CP, it

does not necessarily mean that the NPM and IPM models were effective. The NPM

and IPM models tended to classify most of their predictions as 0, resulting in high

specificity but low sensitivity and accuracy.

Analysis of the proposed method for a multi-level classification problem:

For the experiment involving the multi-classification problem, we replaced the last

column of our dataset, which initially only indicated whether there was (label 1) or

not (label 0) congestion. In place of this last column, we now have three different

situations in case there is congestion: light congestion (label 1), moderate congestion

(label 2) and severe congestion (label 3), in addition to label 0 in case there is no

congestion. Also, we maintain the same four analysis features (speed, flow, occupancy

94

and halting duration). For the ML CP model, we only use the features selected

by sensitivity analysis presented in Figure 6.5, which means “mean Vehicle Number

(flow)”, “mean Occupancy (%)” and “mean Halting Duration (s)”.

Figure 6.5: Sobol analysis to indicate priority input for multi-level classification prob-
lem

The traffic jam level was defined based on the average jam length in meters.

Thus, when the average congestion length is less than or equal to 82.5 meters, we

have congestion level 1. When the congestion length is more significant than 82.5

meters and less than or equal to 165 meters, we define congestion as level 2. Finally,

if the congestion length exceeds 165 meters, we have congestion level 3.

Table 6.2 presents the performance of the models for this problem, quantifying the

global model sensitivity and specificity, as defined in Equations 6.4 and 6.5, respec-

tively. In addition, the table also discriminates the accuracy of each of the models.

95

Table 6.2: Models performance for the multi-level classification problem

ML CP NPM IPM
Accuracy 0.98 0.72 0.74
Sensitivity 0.97 0.71 0.74
Specificity 0.97 0.75 0.76

The models can classify their results with labels 0, 1, 2 or 3. As shown in Table

6.2, the results for the NPM and IPM models are pretty similar. The ML CP model

still has more promising results.

Analysis of the proposed method for a regression problem:

We use the same dataset used in the other two experiments for this regression

problem, changing only the target column. Thus, we have speed, flow, occupancy

and halting duration as default data features. In addition, we defined a mean max -

jam length in meters column as the target, ranging from zero to 250 meters. For this

problem, the model would have to predict the max value of the jam length considering

the provided features.

For the ML CP model, we used our proposal discussed above (Algorithm 4). The

inputs selected through sensitivity analysis for this problem are “mean Speed (m/s)”

and “mean Vehicle Number (flow)”, displayed in Figure 6.6. Thus, we calculated an

interval with a 97% chance of containing the value in meters of the congestion size,

which can vary from 0 to 250 meters. Then, we calculate the mean and the variance

based on the interval values found, which are our model outputs for the specified

regression problem.

The performance of regression models was evaluated, and the results are presented

96

Figure 6.6: Sobol analysis to indicate priority input for regression problem

in Table 6.3. The metrics used for evaluation were R2, mean absolute error, mean

squared error and median absolute error. The results of Table 6.3 indicate that our

ML CP proposal outperformed other models in this regression problem, as well as in

the classification problems previously analyzed.

Table 6.3: Models performance for the regression problem

ML CP NPM IPM
R2 0.99 -132.0 -8.11
Mean absolute error 0.29 234.39 59.4
Mean squared error 2.76 124276.16 8512.38
Median absolute error 0.003 118.93 36.07

97

6.2 Scenario 2

This scenario involves detecting fires in various environments by analyzing tempera-

ture, smoke, and flame characteristics. Scenario 2 was employed to demonstrate that

the uncertainty quantification technique proposed for vehicle scenarios can also be

extended to other scenarios. It is worth noting that the dataset used in this scenario

comprises real-world data collected and provided by the authors of [92]. To build

this dataset, the researchers used three sensors: a DHT11 for measuring tempera-

ture, an MQ-2 smoke sensor, and an LM393 flame sensor. This dataset was also used

to assess the effectiveness of the proposed DST-CEP [91]. Thus, we reproduce the

tests to evaluate and compare our approach (ML CP) with the DST-CEP, Normal

Probabilistic Model (NPM) and Improved Probabilistic Model (IPM).

Figure 6.7: Sobol analysis to indicate priority input for fire detection problem

In the sensitivity analysis of our model, shown in Figure 6.7, only the temperature

and smoke features were considered to be of high relevance for the detection (label 1)

98

or non-detection (label 0) of fire. Consequently, as input, we only use the temperature

and smoke values.

In Table 6.4, we have presented the results of our performance analysis compared

to three other approaches. The table clearly shows that our solution surpasses all

others in terms of Accuracy, Precision, Recall, and F-Measure metrics.

Table 6.4: Models performance for fire detection scenario

Approach Accuracy Precision Recall F-Measure
NPM 81.14% 67.32% 55.68% 60.95%
IPM 81.43% 68.21% 55.68% 61.31%
DST-CEP 95.00% 85.71% 97.30% 91.14%
ML CP 99.00% 98.00% 99.00% 99.00%

99

Chapter 7. Experimental Results and Discussion

In this chapter, we will be examining the outcomes of our proposed CARVS

Framework. This involves analyzing the results of the final experiments conducted

for Context Awareness for Autonomous Systems, Task Management in Autonomous

Systems, and Learning and Performance Monitoring of Autonomous Systems. These

three cores are depicted in Fig. 3.1 as the Context Awareness Core, Task Management

Core, and Learning and Performance Monitoring Core, respectively.

7.1 Context Awareness for Autonomous Systems

We prepare a solution to apply Gaussian or OU noises in an autonomous vehicle’s

training. As the Algorithm 7 shows, in line 9, we introduced our proposal to the A3C

model. Thus, N is the turbulence factor added to the policy, and it can be either

Gaussian or Ornstein-Uhlenbeck. We use σ = 0.02 as the noise factor for our tests

with both Gaussian and OU. After several tests, we found that the value of σ = 0.02

is the one that best contributes to the exploration of our agent. We can adjust this

value according to the problem objective. In general, the noise level does not need

to be high for extensive exploration by the higher-scoring agent. Tests performed by

other researchers, such as [93] and by us, point out that large noise induces the agent

to a local optimal or sub-optimal policy, and what we are looking for is an optimal

global policy.

The autonomous vehicle should act according to the above pseudocode, Algorithm

7. The first step is to initialize the global policy and the value network. Then, it

100

starts the global step count, and the episode begins. Each agent performs the steps

from line 4 to line 20 asynchronously. Thus, each agent resets its gradients to 0,

starts the internal time, and collects the first state observation. And then, the agent

repeatedly updates the reward amount according to policy-based action, taking into

account the global gradient and increments the time. Thus, if the state is the last,

the reward receives 0 and, if it is not the terminal one, the reward is updated with

the value function with the discount factor. Then, edit the gradients as the global

policy and value have been updated as well. Each local policy has entropy.

Algorithm 7: A3C with noise - pseudocode

1 //Assume global parameter vectors θ and θv;
2 //Initialize step counter t← 1;
3 //Initialize episode counter E ← 1;
4 repeat
5 Reset gradients: dθ ← 0 and dθv ← 0;
6 tstart = t;
7 Get state st;
8 repeat
9 Perform at according to policy π(at|st; (θ ← N));

10 Receive reward rt and new state st + 1;
11 t← t+ 1;

12 until terminal st or t− tstart == tmax;

13 R =

{
0 #for terminal st

V (st, θv) #for non-terminal st

14 for i ∈ {t− 1,, tstart} do
15 R← ri + γR;
16 Update gradients wrt:
17 θ : dθ ← dθ +∇θ log π(ai|si : θ)(R− V ((si : θv)) + 0.01(H(ai));

18 Perform an asynchronous update of θ using dθ and of θv using dθv;
19 E ← E + 1

20 until E > Emax;

The A3C forward view selects actions using its exploration policy for up to Emax.

The agent will then receive the rewards from the environment since its last update.

101

When updating the policy and the value function using the advantage method, actions

that perform better than the value function’s exception will receive more weight and

are more likely to be selected in the next steps.

We have the input passing into the neural network with the dimensions 84 x 84. As

Figure 7.1 shows, we use two convolutional layers with Rectified Linear Unit (ReLU)

function each. After that, we have a fully connected dense layer with 256 neurons,

and another fully connected layer outputs the Value function and the probabilities for

each action. This structure is a standard architecture used by the community when

working with the A3C approach.

Figure 7.1: Agent A3C model

Considering our autonomous driving agent, we have a limited number of possible

actions to move the agent from one state to another, which characterizes our con-

ditions as a discrete environment. Besides, current actions taken may affect future

activities, which describe a sequential environment [94].

Car Learning to Act (CARLA) is a suitable simulator for handling our assumptions

and constraints. CARLA simulator is an open-source autonomous driving research

simulator made in partnership with researchers from Intel Labs, Toyota Research

102

Institute, and Computer Vision Center [95]. Moreover, CARLA has system flexibility

and several available resources to run our experiments.

We started one server in the CARLA simulator for performing the tests. Each

asynchronous agent resulting from our A3C global agent had its copy of the envi-

ronment connected to the server as a client, as shown in Figure 7.2. We define the

number of asynchronous agents resulting from the global network with the Python

code: multiprocessing.cpu count(). According to our system specifications, we have

a total of 12 threads resulting from that Python process. It means that we could

train 12 asynchronous agents at the same time.

Figure 7.2: Specification of the A3C agent connected to the CARLA simulator

Since we are in a discrete environment, the agent’s actions are also discrete. It

can perform nine steps, including turning left, turning right, forward, and brake.

Therefore, we use 3-dimensional vectors, with the throttle, steer, and brake values,

respectively, to represent each action, as shown below:

103

actions = 0 : [1.0, 0.0, 0.0], Forward

= 1 : [0.0,−1.0, 0.0], Turn Left

= 2 : [0.0, 1.0, 0.0], Turn Right

= 3 : [1.0,−1.0, 0.0], Forward Left

= 4 : [1.0, 1.0, 0.0], Forward Right

= 5 : [0.0, 0.0, 1.0], Brake

= 6 : [0.0,−1.0, 1.0], Brake Left

= 7 : [0.0, 1.0, 1.0], Brake Right

= 8 : [0.0, 0.0, 0.0], No Action

We desire to find out what kind of noise would be most beneficial to the agent’s

policy, whether a more random or a temporally correlated one. Then, we perform the

modification shown in algorithm 8 in order to be able to compare the two types of

noise. First, we define the noise we will use, whether Gaussian or Ornstein-Uhlenbeck

OU, always setting the mean (µ) and the standard deviation (σ). Then, the policy

receives that noise and incorporates it into its decision estimates, which will not reach

very high certainties and stimulate significant exploration growth.

The twelve asynchronous copies of the A3C agent are initially placed at random

positions. They must move to a second position other than the initial one without

colliding with any object, as described in the list of Tasks detailed below.

• Task 1 - The vehicle is placed randomly in an initial position and aims to reach
a specific point of 5m in front of it. In this first Task, the vehicle needs to move
straight ahead.

• Task 2 - The vehicle is placed randomly in an initial position and aims to reach
a specific point of 30m distance. The vehicle is unlikely to make any right or
left turns.

104

Algorithm 8: A3C + Disturbance

1 //Decide which noise will be used;
2 Function getNoise(noise); // Specify Gaussian or

Ornstein-Uhlenbeck (OU) noise

3

4 if noise == Gaussian then
5 noise ∼ GP (m(x), K(x, x′));
6 else if noise == OU then
7 noise ∼ α(µ−Xt)dt+ σdWt

8 //Given A3C’s network policy;
9 Function worker network()

10 for policy network do
11 − log π(ai|si) ∗ A(s, a) + 0.01(−π ∗ log(π)) + getNoise();

12 for value network do
13 (rt + γ ∗ V (s′)− V (s))2;

14 return disturbed policy network, value network

• Task 3 - The vehicle is placed randomly in an initial position and aims to reach
a specific point of 200m. The vast majority of times, the vehicle will need to
turn right or left to reach its destination point.

If distance to the target point < initial distance/2, the vehicle gains a +1 re-

ward, as well as if it reaches the target point. Also, it receives a −1 reward if it col-

lides with an object or gets away from its destiny (distance to the target point >=

initial distance ∗ 2). In case of a collision, the episode is finished regardless of the

distance travelled. Each training session has a total of 300, 000 steps to be performed

in up to 1, 000 episodes.

We performed our tests with no noise, with Gaussian noise (σ = 0.02) and with

OU noise (σ = 0.02). We performed Tasks 1, 2, and 3 firstly with the city empty,

that is, without dynamic objects. After completing this first phase, we reran all three

Tasks with the city populated with 50 vehicles and 100 walkers that were always

105

moving around in the city.

7.1.1 Tasks with empty city

After running several tests, our experimental results are available below. Therefore,

Figure 7.3a presents the average reward obtained in each of the analyzed approaches

to fulfill Task 1. Based on this figure, we realize that the OU noise approach generates

a better return than the approaches without noise or even with Gaussian noise.

Figure 7.3c shows the average returns of the approaches during the performance

of Task 2. Again, the approach with OU noise presents the best results obtained

during the Task.

Figure 7.3e represents the models’ performance in the most difficult task performed

with the empty city, which means without the presence of other dynamic objects, such

as vehicles and pedestrians. The training conducted with OU noise had a significant

improvement in its reward compared to training without noise or with Gaussian noise.

We also evaluated agent displacement with no noise, Gaussian, and OU noise

during each reinforcement learning task. Figure 7.3b shows the normal distribution

of the agent’s displacement during the first Task in an empty urban environment.

Based on Figure 7.3b, the largest displacement is performed by the agent that used

Gaussian noise since the variance of its bell curve is the largest. We must consider

that the more concentrated on the positive side of the x-axis line, the closer the agent

gets to having accomplished 100% of the task objective. Thus, the further the agent

106

is from the mean going to the negative side of the graph, the further away from the

goal specified by the Task the agent is.

From this clarification, we realized that the agent with Gaussian noise was the

one that most distanced itself from the target point of Task 1. In this way, the agent

with OU noise represents the best displacement obtained by the agent during Task

1, even having a minor variance on its curve, but it has the smallest distance from

the mean to the negative side of the graph.

The agent displacement needs to be significant, not just wide. For example, the

agent can move to a position and then return to the original point, which leads to

the low significance of the environment exploration for our tasks. Instead of progress-

ing with the displacement, it keeps going and returning to its origin. Thereby, the

agent’s displacement with Gaussian noise has this behaviour. Therefore, the agent

may even go from position 0 to position 1 at first but returns to position 0 when it

should continue rising, for example, to position 2. Figure 3.3 illustrates precisely the

behaviour of agents with different types of noise.

The displacement of Task 2 in the empty city, represented in Figure 7.3d, was

performed more efficiently by the agent who also used OU noise since the variance

in the bell curve is the one that moves the least away from the mean to the negative

side of the graph.

In the displacement of Task 3, shown in Figure 7.3f, the agent that uses Gaussian

noise has the smallest variance among the curves, and it is completely located on the

107

positive side of the figure. The agent with OU noise has a great performance, but

it moves away to the negative side of the distribution by 2 standard deviations from

the mean and has a bigger variance than the agent with Gaussian noise. Thus, the

Gaussian noise agent seems to perform a better execution in carrying out the third

Task with the city empty.

7.1.2 Tasks with populated city

Figures 7.4a, 7.4c, and 7.4e show the average reward obtained by the agent during

the training of Tasks 1, 2, and 3, respectively. Figure 7.4a shows that, in general, the

agent with OU noise got the best return on the first Task with the city populated

with dynamic objects.

During the second Task execution with the populated city (Figure 7.4c), the agent

with OU noise obtained the best performance. Likewise, during Task 3, shown in

Figure 7.4e, the agent with OU noise also achieved the highest scores.

Figures 7.4b, 7.4d, and 7.4f show the normal distribution of displacements trav-

elled by agents in Tasks 1, 2 and 3, respectively. Analyzing Figure 7.4b, we can see

that the agent with OU noise, even having achieved a better reward as shown in Fig-

ure 7.4a, is not the best solution for Task 1 with a populated city, as it concentrates

the greatest variance. In this specific case, in which the task requires moving a short

distance (5m) with other dynamic objects around it, the agent with Gaussian noise

seems to be the best option, as it has less variance and is concentrated much more

108

(a) Average reward return during training -
Task 1 (5m)

(b) Standard normal distribution for the
agent displacement - Task 1

(c) Average reward return during training -
Task 2 (30m)

(d) Standard normal distribution for the
agent displacement - Task 2

(e) Average reward return during training -
Task 3 (200m)

(f) Standard normal distribution for the
agent displacement - Task 3

Figure 7.3: Tasks performed with empty city

109

(a) Average reward return during training -
Task 1 (5m)

(b) Standard normal distribution for the
agent displacement - Task 1

(c) Average reward return during training -
Task 2 (30m)

(d) Standard normal distribution for the
agent displacement - Task 2

(e) Average reward return during training -
Task 3 (200m)

(f) Standard normal distribution for the
agent displacement - Task 3

Figure 7.4: Tasks performed with populated city

110

on the positive side of the graph.

Figure 7.4d, the agents with Gaussian noise and OU noise have very similar vari-

ance, but the OU noise curve represents the best displacement for Task 2 with the

populated city. This is because that agent’s curve is concentrated on the most posi-

tive side of the graph and distances from the mean to the negative side by around 2

standard deviations.

In Figure 7.4f, we clearly perceive that the agent with OU noise is the best solution

for Task 3, as it is mostly concentrated on the positive side and moves away from the

average to the negative side only by 1 standard deviation.

According to the results presented, we can affirm that a good score obtained

during training does not always mean the best solution to controlling an autonomous

vehicle trained with reinforcement learning. However, in all Tasks, the agent with

OU noise proved to be a good solution, although in Task 3 with the empty city and

Task 1 with the populated city, the agent with Gaussian noise performed better.

Considering the results as a whole, we can conclude that OU noise for the control

training of autonomous vehicles seems to be the best solution, presenting the best

returns with an efficient exploration of the environment.

Exploring autonomous agents using noise can sometimes lead to discomfort and

distrust. However, we have considered several concerns and strategies to mitigate

possible risks. One is adjusting the OU noise variance over time as the agent be-

comes more familiar with its environment. We have also carefully defined the agent’s

111

reward system, ensuring that penalties for dangerous or unwanted actions are sig-

nificant enough to discourage the agent from taking them. Furthermore, our agents

must undergo rigorous testing and continuous performance reviews before and during

deployment in real-world environments. Our goal is to strike a balance between the

need for exploration to develop an effective policy through reinforcement learning and

the security and reliability requirements, ensuring that the resulting agent can adapt

and improve and is safe to use in critical applications.

Table 7.1 presents the result of the comparison of our model (Asynchronous Ad-

vantage Actor Critic with Disturbed Policy (A3C-DP)) with seven other approaches

in three hard exploration games (Private Eye, Gravitar and Pitfall) and the other

one score exploit game (Seaquest) from the Atari OpenAI [70]. Our model managed

to perform better than the other seven works presented in the Gravitar and Pitfall

games. In the Private Eye and Seaquest games, our approach had a higher ranking

than Random[96], PPO [68], Advantage Learning - Deep Q-Network (AL-DQN) [97],

Advantage Actor Critic (A2C) [98], A3C [98] and A3C+ [99], trailing only for Deep

Code Search (DeepCS) [100] scores in these games.

We proved that using the Ornstein-Uhlenbeck (OU) process to perturb the agent’s

certainty works much better than the Gaussian process. This improvement is be-

cause the OU process is time-correlated, so it always considers the previous noise

to increment the current noise. Thus, in our final approach, including the one used

to compare with other works already published, we employed only the OU process,

which we proved to be also efficient in the comparison tests performed (Table 7.1).

112

Mean Reward (at convergence)
Private Eye Gravitar Pitfall Seaquest

Random[96] 25 173 -229 68
PPO [68] 69.5 737.2 -32.9 1,204.5
DeepCS [100] 1,105 881 -186 3,443
AL-DQN [97] 153 540 -100 –
A2C [98] 91.3 194.0 -55.0 1,714.3
A3C [98] 206 269 -78 2,300
A3C+ [99] 99.32 238.68 - 259.09 2,015.55
A3C-DP 218.31 1,005.52 -0.94 2,380.30

Table 7.1: Comparison with previously published works on hard exploration (Private
Eye, Gravitar and Pitfall) and one score exploit (Seaquest) Atari games.

Furthermore, the Atari OpenAI Gym games were chosen for the comparison be-

cause it is a reinforcement learning environment widely used and well-known by re-

searchers in the field. In addition, the Private Eye, Gravitar, and Pitfall games are

complex environments to explore, being significant challenges for reinforcement learn-

ing applied to autonomous agents. Finally, Seaquest is a game of broad exploration,

which we have also chosen to demonstrate the efficient performance of our approach

to dealing with less complex environments.

7.2 Task Management in Autonomous Systems

In order to compare the centralized and distributed approaches, we utilized the def-

initions previously explained in the Section 5.1 and Section 5.2. The comparison

simulation was conducted using the parameters outlined in the Section 5.2. The key

distinction between the approaches is illustrated in the Fig. 7.5, where the distributed

approach displays vehicle communication while the centralized approach does not.

113

Figure 7.5: Comparison between distributed and centralized approaches

With data processing and resource sharing between Over-The-Air (OTA) devices,

we must highlight data security concerns from hacker attacks and malicious intrusions,

as detailed in [101], [102]. However, the cybersecurity approach in MEC networks is

outside the scope of this research. Still, we stress the importance of implementing

robust security measures across all system components, from edge devices to the task

orchestrator. These may include data encryption, user authentication, access control

and constant monitoring for suspicious and malicious activity [103], [104].

Fig. 7.6 presents a comparison between centralized (Fig. 7.6a) and distributed

(Fig. 7.6b) approaches to the analysis of task success by Processing Unit (PU). In

Fig. 7.6, we noticed that PUs from the distributed approach are more successful than

PUs from the centralized approach, which only has a higher success rate in TeslaV100

PUs.

In the Fig. 7.7, we can see the number of successful and failed tasks, categorized

by their criticality level. The graph includes data for both the centralized (Fig. 7.7a)

and the distributed (Fig. 7.7b) approaches. From analyzing Fig. 7.7, we can conclude

that the distributed approach has a higher success rate than the centralized approach.

114

(a) Centralized approach

(b) Distributed approach

Figure 7.6: Success Rate by Processing Units

115

Additionally, the most critical tasks in Fig. 7.7b have a higher success rate, which is

crucial for safe-critical systems as these tasks should have the highest priority.

The Fig. 7.8 displays the success rates of the different task types, including Object-

DetectionTask, ObjectTrackingTask, and MappingTask. The distributed approach

shown in Fig. 7.8b has the highest success rates for each task type. In conclusion,

after analyzing the results present in Fig. 7.6, Fig. 7.7 and Fig. 7.8, we conclude

that the distributed approach has the best performance in our data and resource

sharing scenario for the autonomous vehicles. This is because when the approach is

distributed and shared among vehicles, edge and cloud, the availability of resources

for processing tasks is much greater than when each vehicle has access only to its own

resources, to the edge and cloud.

7.3 Learning and Performance Monitoring of Au-

tonomous Systems

DDQN [105] is an improvement of the original Deep Q-Network (DQN) algorithm

and addresses the problem of Q-values overestimation by using two separate neural

networks to update and evaluate the Q-values. This technique helps stabilize learning

and improve model convergence. By combining DDQN with Prioritized Experience

Replay (PER) [106], the algorithm adds a priority layer to the experiences stored in

the replay buffer. This priority is based on the prediction error, which is the difference

between the predicted and target Q-values. Experiences with higher errors are more

likely to be selected for training, allowing the agent to learn more quickly from these

experiences. Accordingly, we will use the DDQN-PER in our work as a baseline. It

116

(a) Centralized approach

(b) Distributed approach

Figure 7.7: Task Success by Criticality

117

(a) Centralized approach

(b) Distributed approach

Figure 7.8: Task Success Analysis

118

learns from more relevant experiences and reduces the overestimation of Q-values,

resulting in more efficient and stable reinforcement learning.

We also use the DDQN plus PER approach with uncertainty estimation (DDQN-

PER with uncertainty) to compare with our baseline (DDQN-PER). For simplicity,

when we refer to the DDQN form in this section, we point to DDQN-PER. So our

baseline, ‘DDQN-PER’, will be treated as just DDQN, and our proposed ‘DDQN-PER

with uncertainty’ will be DDQN with uncertainty. An uncertainty-aware machine

learning approach is crucial to balancing exploration and exploitation. For example,

when an agent is uncertain about the quality of its actions, it needs to explore more

of the environment to gather additional information and improve its estimations, so

its actions improve in the face of uncertainties [107]. Also, when uncertainty is low,

the agent can concentrate on exploiting the actions it already knows well. Thus,

effective uncertainty management can create a better balance between exploration

and exploitation and, consequently, a more optimized policy.

Our objective in this study is to present information visually and graphically to

explain the behaviour and the motivations of the agents ‘DDQN’ and ‘DDQN with

uncertainty’ for their decision-making. Explainable Artificial Intelligence (XAI) is a

study field that seeks methods and techniques that can make artificial intelligence

(AI) models and systems more understandable and interpretable for humans [108].

AI agents have become highly capable with the increasing complexity of decision

algorithms, but their decisions are becoming more challenging to comprehend. This

has led to a growing demand for transparent, explainable, and easily interpretable

119

AI models. By understanding the behaviour and actions of an autonomous agent,

we are able to trust more in their decisions and accept the proposed model [109].

Another point to consider is that from the understanding of model decisions, experts

and developers can identify and correct possible errors or biases of this model, thus

improving its performance and effectiveness [109].

The most common methods used for explainability models include natural lan-

guage, saliency map, and gradients heatmap [109], [110]. However, explainability

approaches typically use only one or a few of these methods. Therefore, to develop

our explainability proposal, we are integrating a screen for rendering the environment

as seen by humans; a screen with the representation of the agent’s view, considering

that it receives an array as data input; the Q-values referring to each possible action;

the state value (V (s)) over time, where s is the state pointed out; a heatmap relative

to the agent’s input, so it is possible to see which features had more weight for deci-

sion making; and, finally, a visual presentation of the uncertainty associated with each

Q-value. By quantifying model uncertainty, we can provide additional information

about the predictions and decisions made by the model, improving human under-

standing and confidence in that model. For example, suppose our agent is making a

decision based on a Q-value of the action with high uncertainty. In that case, we can

inform that this decision can be unreliable and that more training and exploration

are needed to improve the model’s reliability. The proposal in Figure 7.9 suggests a

generalized way to estimate Q-value and uncertainty by calculating predictions’ mean

120

Initialize
input dim, output dim,
hyperparameters, state,

num samples

Create NN with
input dim, output dim,

hyperparameters

Add Dropout (0.5)
Set NN to evaluation mode

Predict next state using NN
with state, num samples

Store predictions

Calculate mean and
standard deviationOutput q value and

uncertainty

Figure 7.9: Abstraction of our proposal DDQN with uncertainty

and standard deviation.

Accordingly, to estimate the uncertainty of actions, we are combining deep learn-

ing, through a neural network and Bayesian inference, by calculating the mean and

standard deviation of predictions, for the composition of Bayesian deep learning as

presented by the Algorithm 9. As stated in the Algorithm 9, the expected output

is q value and uncertainty related to each action that the agent can perform. For

this, we create a neural network NN that receives as input input dim, output dim

and hyperparameters. In addition, one of the passed parameters is a dropout value

equal to 0.5, added after each dense layer in the Q network architecture, creating

a Bayes dropout network [111] necessary to estimate the uncertainty in the Q-value

predictions.

Then we have the function predict bayesian, which uses the neural network NN

121

Algorithm 9: Bayesian deep learning to get action uncertainty - DDQN
with uncertainty approach

Input: input dim, output dim, hyperparameters, state, num samples
Output: q value and uncertainty

1 Function create NN(input dim, output dim, hyperparameters):
2 NN ← create new neural network with input dim, output dim, and

hyperparameters

3 Function predict bayesian(state, num samples):
4 Set the neural network to evaluation mode
5 Adjust the dimension of the tensor state to be 2-dimensional
6 Initialize an empty list predictions
7 for i = 1 to num samples do
8 prediction← predict state using the neural network
9 Append prediction to predictions

10 Set the neural network back to training mode
11 Compute the mean and standard deviation of predictions
12 q value← mean of predictions
13 uncertainty ← standard deviation of predictions

to make predictions based on the given state. These predictions are stored in a list for

calculating and returning the mean and standard deviation. The standard deviation

value, mentioned here, represents the uncertainty [42], [112] that the agent has about

a given action (Q-value). The standard deviation provides a dispersion measure of

forecasts around the mean, so the more significant the standard deviation, the greater

the uncertainty in the action (Q-value) forecast. With that in mind, the uncertainty

calculation performed inside Algorithm 9 can be represented by Equation (2.3).

Thus, we use this measure of uncertainty to guide the choice of action to be

taken by our agent, ‘DDQN with uncertainty’, which makes it more cautious in

situations where its predictions are uncertain. Using model uncertainty as one more

explainability mechanism helps users understand which actions the model has less

confidence in and assess the impact of that uncertainty on agent performance. Also,

122

users can better understand model limitations by incorporating uncertainty into XAI.

(a) Sample view of CARLA simulator scenario
(b) Simulated city map layout
(Town 04)

Figure 7.10: Simulation environment

0 200 400 600 800 1000
Episode Number

5

6

7

8

9

10

11

12

Ro
llin

g
Ep

iso
de

 S
co

re
s

DDQN
DDQN with uncertainty

Figure 7.11: Scoring performance comparison between approaches with and without
uncertainty

We utilized the CARLA simulator [113], an open-source platform created for au-

tonomous driving research, to train and test two agents - DDQN and DDQN with

uncertainty - for obstacle avoidance over 1000 episodes. Figure 7.10 shows a visual

representation of the simulator. Thus, Figure 7.10a shows an example of an obstacle

123

avoidance scenario, while Figure 7.10b displays the city map, specifically town 04,

that we used in this study.

A comparison of the obtained reward of the two algorithms is shown in Figure 7.11

below. Analyzing this Figure 7.11, we notice that the results of the training scores

are pretty similar, with the ‘DDQN’ agent gaining an advantage at the beginning of

the training and the ‘DDQN with uncertainty’ agent doing better towards the end.

Table 7.2 presents the detailed specifications for both trained agents.

Table 7.2: Training details of evaluated agents

Learning rate 0.1
Batch size 256
Buffer size 20000
Epsilon 1.0
Epsilon decay rate denominator 1.0
Discount rate 0.9
Tau 0.01
Alpha prioritised replay 0.6
Beta prioritised replay 0.1
Incremental temporal-difference error 1e-08

We have created a proposal to explain why the agent makes certain decisions,

and we have provided a detailed explanation in Figure 7.12. The red square labelled

“1” shows the original environment as seen by humans. The red square labelled “2”

displays the Q-values for each possible action. Thus, the redder the square, the higher

the Q-value; the bluer the square, the lower the Q-value. The red square labelled “3”

indicates the level of uncertainty associated with each Q-value. Therefore, the bars

are longer and redder when there is more uncertainty and shorter and bluer when

there is less uncertainty. The uncertainty in this work ranges from 0 (no uncertainty)

to 1 (maximum uncertainty). Red square “4” provides an estimated value (V (s)) over

124

Figure 7.12: Details of the explainability screen in our proposal

time for the state, which describes the expected cumulative value of future rewards.

The red square labelled “5” illustrates the input features that are most important

when deciding on an action. The redder the circle, the more relevant the feature

is, and the bluer the circle, the less relevant the feature is. The red square “6”

presents the agent’s view of the environment in which it operates, so in the first

figure of square “6”, from right to left, we have the surrounding detected obstacles

represented as white circles. Next, we have information that defines drivable areas

and lane markings represented by white lines. Moreover, in the last figure referring

to square “6” from right to left, we see the ego vehicle as a white circle indicating its

direction with a white arrow attached to that circle. Finally, the red square “7” gives

the coming action, along with the Q and uncertainty values related to this desired

action.

In Figure 7.12, square “6” represents how the agent views its surroundings. It

125

is divided into three smaller squares to show the agent’s attention order. First, the

agent identifies obstacles (right frame), then the drivable area (middle frame), and

finally, its own position and direction in the environment (left frame). The input

features, represented by numbers 1 to 14, and actions, represented by numbers 0 to

7 in Figure 7.12, are explained below. Input features are the information the agent

receives from the environment during each interaction.

input features = 1 : Ego location (Y axis)

= 2 : Ego velocity (Y axis)

= 3 : Ego rotation (yaw)

= 4 : Ego angular velocity (Z axis)

= 5 : Left obstacle location (X axis)

= 6 : Left obstacle location (Y axis)

= 7 : Left obstacle location (Z axis)

= 8 : Right obstacle location (X axis)

= 9 : Right obstacle location (Y axis)

= 10 : Right obstacle location (Z axis)

= 11 : Left obstacle velocity (X axis)

= 12 : Left obstacle velocity (Y axis)

= 13 : Right obstacle velocity (X axis)

= 14 : Right obstacle velocity (Y axis)

actions = 0 : [0.1,−0.5, 0.], Turn Left

= 1 : [0.1, 0.5, 0.], Turn Right

= 2 : [0.7, 0., 0.], Forward

= 3 : [0.5,−0.5, 0.], Accelerate & Turn Left

= 4 : [0.5, 0.5, 0.], Accelerate & Turn Right

= 5 : [0.5, 0.1, 0.], Accelerate & Bear Right

= 6 : [0.5,−0.1, 0.], Accelerate & Bear Left

= 7 : [0.5, 0., 0.], Small Acceleration

126

Figure 7.13 presents the result of viewing the behaviour of the agent ‘DDQN’ after

training for 1000 episodes. Observing Figure 7.13a, we see that the first action to be

taken is 7 (small Acceleration), with the maximum Q-value and uncertainty of 0.95.

In addition, the agent focused mainly on features in order of priority 6, 14, 1 and

4 (left obstacle location (Y axis), right obstacle velocity (Y axis), ego location (Y

axis) and ego angular velocity (Z axis)). Observing the figures from 7.13a to 7.13f,

we realize that actions are taken based on the maximum value of Q and that the

uncertainty of the Q-values is not taken into account. Another interesting aspect is

that, based on the estimated value over time, we can follow the expected value of

future rewards over time, noticing that this forecast decreases, indicating that the

agent is not making the right decisions. Finally, in the last frame 7.13f of Figure

7.13, we see that even though the agent sees the vehicle in front of it, as it appears

represented in the agent-rendered screen, the agent does not try to make a detour

and then choose action 3 (Accelerate & Turn Left).

Figure 7.14 shows the behaviour and motivations of the agent ‘DDQN with uncer-

tainty’ to avoid obstacles after training. Analyzing the pictures from 7.14a to 7.14e,

we realize that the agent considers the highest value of Q, which also has the lowest

uncertainty value. Observing the estimated value over time, which shows the expec-

tation of future reward, we see that, initially in pictures 7.14b and 7.14c, this estimate

of reward is decreasing but starts to grow from of the frame 7.14d. This fact means

that the agent has improved its decision-making over time, as its objective is to learn

the policy that maximizes the expected value of future rewards, and this does not

127

(a) Observation of initial action taken (b) Observation of the second action taken

(c) Observation of the third action taken (d) Observation of the fourth action taken

(e) Observation of the fifth action taken (f) Observation of the sixth action taken

Figure 7.13: Explanation of the behaviour and actions of the DDQN agent in the
obstacle avoidance scenario

128

always mean choosing actions that lead to states with the highest possible values in

all situations. According to the information in the figure, we can see that our agent

‘DDQN with uncertainty’ can avoid the first obstacle that appears in front of it, but

it has difficulties bypassing the second. Analyzing the frames 7.14d and 7.14e and

comparing the human-rendered screen with the agent-rendered screen, we see that

in the human-rendered screen, the agent does not seem to have deviated from the

vehicle in front of it. However, on the agent-rendered screen, in addition to the space

between the agent and the obstacle that seems to be bigger than it really is, we can

see an attempt to rotate to the left with the move forward action, chosen in the last

frame 7.14e.

Comparing Figures 7.13 and 7.14, we can say that agent ‘DDQN with uncer-

tainty’ in Figure 7.14 performed better than agent ‘DDQN’ in Figure 7.13, as this

last one was unable to dodge any obstacles in front of it. Meanwhile, agent ‘DDQN

with uncertainty’ managed to avoid the obstacle by considering only high Q-values

whose uncertainty value is less than or equal to 0.6. Moreover, the input features

considered most relevant by the ‘DDQN with uncertainty’ agent are consistent with

its chosen actions. On the other hand, some input features considered relevant to

the ‘DDQN’ agent do not match the action. For example, the relevance that the

‘DDQN’ agent gives to input feature 1 (Ego location (Y axis)) when choosing action

7 (small acceleration) in Figure 7.13d. With the proposed explanation of the agent’s

behaviour and actions, we can understand how the agent thinks, which helps identify

and correct possible errors or biases in the model, thus improving its performance

129

(a) Observation of initial action taken (b) Observation of the second action taken

(c) Observation of the third action taken (d) Observation of the fourth action taken

(e) Observation of the fifth action taken

Figure 7.14: Explanation of the behaviour and actions of the DDQN with uncertainty
agent in the obstacle avoidance scenario

130

and effectiveness.

In Figure 7.15, we can see why the agent made the wrong decision. The human-

rendered screen shows that the agent was too close to the vehicle in front. However,

when looking at the agent-rendered screen, we see that there was actually more space

between the obstacle and the agent, making it appear closer to the side of the obstacle

rather than behind it. By analyzing the heatmap of input features, we can see that

the most relevant feature for decision-making was the Ego angular velocity (Z axis),

followed by the Right obstacle velocity (X axis), Ego location (Y axis), and Left

obstacle location (X axis). It shows that the left obstacle was given the most minor

importance in the decision-making process. Despite the chosen action (accelerate &

bear right) having a maximum Q-value and an uncertainty value lower than 0.6, it

can still result in a negative outcome: a collision with the obstacle ahead.

Figure 7.15: Agent error explanation

Table 7.3 compares the works related to our proposal. The points considered

131

for the analysis of each work are whether the approach offers a visualization of the

original environment (as seen by human beings), a visualization of what the agent’s

view of that same environment is like, a presentation of the action to be taken by the

agent, explanation of this action performed and the type of environment used in each

proposal (if the environment is more realistic or some game).

Table 7.3: Comparison of our approach and related works

Study Original
env.

Agent
vision of
the env.

Taken
action

Taken
action
expla-
nation

Test environment

[55] ✓ ✗ ✓ ✓ Grid-world,
Seaquest (Atari),
HalfCheetah (Mu-
JoCo)

[56] ✗ ✗ ✗ ✗ 12 different games
[57] ✓ ✗ ✗ ✓ Chess, Atari and

Go games
[114] ✓ ✗ ✗ ✓ Ms. Pacman game
[58] ✓ ✓ ✗ ✗ CARLA simulator
Our ✓ ✓ ✓ ✓ CARLA simulator

Analyzing Table 7.3, we noticed that most of the approaches used games to test

their proposals, only the work [58] and our approach used more realistic scenarios,

CARLA simulator. Most works also do not show how the agent sees the environment,

as it does not see it like humans. In summary, only our proposal satisfies all the points

analyzed in the table.

132

Chapter 8. Conclusion and Future Works

8.1 Conclusion

In conclusion, this dissertation results from extensive research, experiments and evalu-

ations that resulted in the development of eight scientific articles. These publications

discuss the significance of context awareness in enhancing the effectiveness of au-

tonomous systems. They also explore research and application of various techniques

to increase context awareness. Furthermore, our studies investigate effective and ef-

ficient ways of processing tasks remotely, knowing that some autonomous systems,

such as autonomous vehicles, have limited local resources. Another significant contri-

bution of this research is the proposal to quantify uncertainty in predictions made by

ML algorithms and how we can use this uncertainty to explain the decision-making

and behaviour of these algorithms, contributing to raising human confidence in ML

predictions.

We start presenting the use of noise as a valuable and efficient resource to encour-

age the exploration of autonomous agents. That is crucial because the RL approach

helps solve machine learning problems through self-exploration and when training

samples are not provided. In this way, knowing more and better its environment,

the autonomous agent becomes effectively aware of its context, which enables it to

make better decisions. Thus, we fuse the application of OU and Gaussian noises

with the RL agent policy network. This approach’s advantage is the decrease in

the autonomous agent’s action certainty for the training phase, which will take more

133

stochastic actions and, consequently, better exploit its training environment. Fur-

thermore, that fact favours a better response of the agent to unusual situations in the

environment. We present the potential and superiority of stochasticity in exploring

using autocorrelated temporal noise generated by the Ornstein-Uhlenbeck process,

improving the autonomous vehicle’s exploration, as well as other autonomous agents’

exploration, in the control tasks that provided better rewards.

Continuing with our study, we developed an edge-centric workload orchestration

proposal that takes advantage of the benefits offered by machine learning. In this way,

we managed the limited onboard processing capacity and minimized the response time

for connected autonomous vehicles. After this, we progressed our research toward the

development of a collaborative task management system for Connected Autonomous

Vehicles (CAVs) using edge, fog, and cloud computing. Then, we compared our

proposed approaches with other methods and found that our techniques performed

best in predicting the server service time and executing tasks within the deadline.

We also concluded that our proposed distributed approach had a better performance

when compared to our previous centralized one.

Also, we developed a model that considers ML, sensitivity analysis and uncer-

tainty measurements for complex events composition for classification and regression

problems. We have found that conformal prediction with machine learning mod-

els and sensitivity analysis allows for more accurate predictions of potential failures.

We also proposed enhancing the transparency and interpretability of decision-making

processes in autonomous systems by integrating uncertainties in XAI. We achieve this

134

by combining Bayesian deep learning with uncertainty-aware planning. To demon-

strate the impact of these uncertainties on the RL agent’s choices, we use the DDQN

algorithm as a reference and present graphs that visually depict the uncertainty esti-

mates.

This research has resulted in several significant contributions to the field of au-

tonomous systems. The proposed methodologies and models increase not only the

context perception of these systems but also present effective ways of managing re-

mote tasks and improving the decision-making process by incorporating uncertain-

ties. We demonstrate how the use of noise can benefit the learning of autonomous

agents and how a workload mapping approach can optimize the efficiency of connected

autonomous vehicles. Furthermore, our conformal prediction model and sensitivity

analysis, combined with integrating uncertainties into explainable AI, have proven to

be effective in predicting potential failures and improving the transparency and inter-

pretability of autonomous systems. We believe that these advances will substantially

contribute to the advancement and widespread acceptance of autonomous systems in

several practical applications, and we trust that this work will serve as a solid basis

for future investigations in the area.

8.2 Future Work

As the work in [115] highlights, efficient exploration remains one of the most signif-

icant issues in reinforcement learning, and every improvement made contributes to

135

increasing performance in this field. Therefore, in future works, more tests and ex-

periments need to be performed to analyze the power of noise generated by the OU

process in increasing RL agents’ performance in both continuous and discrete action

space. For the next steps, we should study how noise volatility acts during agent

training in different contexts and domains, such as autonomous vehicles. Besides, we

need to verify how the mean reversion speed variation can positively or negatively

affect the agent.

One of our limitations is related to the fact that we have not tested in real-

world environments. However, instead, we use simulators with different types of

simulations containing tasks with different difficulty levels. For example, we could

have developed an autonomous car prototype using technologies such as Arduino,

raspberry and Jetson, and different environment models where this car could perform

some tasks. Nonetheless, developing these tools would take too much time, limiting

the time for research application. Therefore, we used different simulators with tasks

of varying levels of complexity, ranging from pendulum and Atari games to humanoids

and vehicles.

In order to use our work in the real world, it is indispensable to use real-world task

datasets from automobiles in actual conditions, like trips from point A to point B,

including scenarios like traffic jams and accidents. Additionally, we can expand our

approach to other types of non-terrestrial automobiles, like drones and ships, when

considering mapping and scheduling tasks.

It is important to note that our work does not cover cybersecurity in MEC net-

136

works because it is outside our scope. However, we stress the significance of imple-

menting strong security measures in all system components, including mobile devices,

edge, fog, and cloud. This includes ensuring secure communication between them and

implementing measures like data encryption, user authentication, access control, and

consistent monitoring for any suspicious or malicious activity. The papers [103], [104]

have highlighted a handful of measurements as essential.

To quantify uncertainty and its use in explaining algorithm actions and behaviour,

we plan to explore how to incorporate other types of data, such as camera footage,

social media, and sensor data, into our proposal. Another way to expand on this

research is by exploring other methods of uncertainty, like hierarchical deep Bayesian

neural networks. These techniques can help improve the accuracy of uncertainty

predictions. Additionally, we plan to test our proposal with real users to confirm that

they understand the explanations provided.

Another limitation of our work to be raised is the fact that we have yet to test

our visual representation model that shows how uncertainty influences the agent’s

behaviour and decisions with other types of machine learning algorithms, such as

supervised and unsupervised learning. Our research mainly focuses on contextual

learning and how autonomous agents interact with their environment. Because of

this, we primarily consider reinforcement learning and its challenges. However, we

can evaluate our approach to other types of learning in future studies.

137

References

[1] H. Zhu, K.-V. Yuen, L. Mihaylova, and H. Leung, “Overview of environment
perception for intelligent vehicles,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 18, no. 10, pp. 2584–2601, 2017. doi: 10.1109/TITS.2
017.2658662.

[2] P. Lindemann, T.-Y. Lee, and G. Rigoll, “Catch my drift: Elevating situation
awareness for highly automated driving with an explanatory windshield display
user interface,” Multimodal Technologies and Interaction, vol. 2, no. 4, 2018,
issn: 2414-4088. doi: 10.3390/mti2040071. [Online]. Available: https://ww
w.mdpi.com/2414-4088/2/4/71.

[3] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T.
Asfour, P. Abbeel, and M. Andrychowicz, “Parameter space noise for explo-
ration,” Jun. 2017. [Online]. Available: http://arxiv.org/abs/1706.01905.

[4] Z. Ahmed, N. L. Roux, M. Norouzi, and D. Schuurmans, “Understanding the
impact of entropy on policy optimization,” Nov. 2018. [Online]. Available:
http://arxiv.org/abs/1811.11214.

[5] M. Li, N. Mao, X. Zheng, and T. R. Gadekallu, “Computation offloading in
edge computing based on deep reinforcement learning,” in Proceedings of In-
ternational Conference on Computing and Communication Networks: ICCCN
2021, Springer, 2022, pp. 339–353.

[6] L. Wells and T. Bednarz, “Explainable ai and reinforcement learning—a sys-
tematic review of current approaches and trends,” Frontiers in artificial intel-
ligence, vol. 4, p. 550 030, 2021.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,” Sep.
2015. [Online]. Available: http://arxiv.org/abs/1509.02971.

[9] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning with
deep energy-based policies,” Feb. 2017. [Online]. Available: http://arxiv.o
rg/abs/1702.08165.

[10] Y. Li, Y. Duan, A.-B. Spulber, H. Che, Z. Maamar, Z. Li, C. Yang,et al.Et
al., “Physical artificial intelligence: The concept expansion of next-generation
artificial intelligence,” arXiv preprint arXiv:2105.06564, 2021.

[11] G. Cugola and A. Margara, “The Complex Event Processing Paradigm,” in
Data Management in Pervasive Systems, ser. Data-Centric Systems and Ap-
plications, F. Colace, M. De Santo, V. Moscato, A. Picariello, F. A. Schreiber,
and L. Tanca, Eds., Cham: Springer International Publishing, 2015, pp. 113–
133, isbn: 978-3-319-20062-0. doi: 10.1007/978-3-319-20062-0_6.

138

https://doi.org/10.1109/TITS.2017.2658662
https://doi.org/10.1109/TITS.2017.2658662
https://doi.org/10.3390/mti2040071
https://www.mdpi.com/2414-4088/2/4/71
https://www.mdpi.com/2414-4088/2/4/71
http://arxiv.org/abs/1706.01905
http://arxiv.org/abs/1811.11214
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1702.08165
http://arxiv.org/abs/1702.08165
https://doi.org/10.1007/978-3-319-20062-0_6

[12] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learn-
ing for computer vision?” Advances in neural information processing systems,
vol. 30, 2017.

[13] A. Leite, M. Candadai, and E. J. Izquierdo, “Reinforcement learning beyond
the bellman equation: Exploring critic objectives using evolution,” Artificial
Life Conference Proceedings, no. 32, pp. 441–449, 2020. doi: 10.1162/isal
_a_00338.

[14] A. K. Dey, “Understanding and using context,” Personal and Ubiquitous Com-
puting, 2001.

[15] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan, “Context is key,” Com-
munications of the ACM, 2005.

[16] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “End-to-End Deep Rein-
forcement Learning for Lane Keeping Assist,” no. Nips, pp. 1–9, 2016. arXiv:
1612.04340. [Online]. Available: http://arxiv.org/abs/1612.04340.

[17] H. Kamalzadeh and M. Hahsler, “POMDP: Introduction to Partially Observ-
able Markov Decision Processes,” pp. 1–10, 2019.

[18] A. R. Cassandra, “A Survey of POMDP Applications,” Uncertainty in Artifi-
cial Intelligence, pp. 472–480, 1997.

[19] K. S. Luck, M. Vecerik, S. Stepputtis, H. B. Amor, and J. Scholz, “Improved
exploration through latent trajectory optimization in deep deterministic policy
gradient,” Nov. 2019. [Online]. Available: http://arxiv.org/abs/1911.068
33.

[20] N. Bougie1 and R. Ichise, Fast and slow curiosity for high-level exploration in
reinforcement learning, 2021. arXiv: 1511.06581 [cs.LG]. [Online]. Available:
https://doi.org/10.1007/s10489-020-01849-3.

[21] V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine, “Skew-fit:
State-covering self-supervised reinforcement learning,” Mar. 2019. [Online].
Available: http://arxiv.org/abs/1903.03698.

[22] C. E. Rasmussen, Gaussian Processes in Machine Learning, O. Bousquet, U.
von Luxburg, and G. Rätsch, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2004, pp. 63–71, isbn: 978-3-540-28650-9. doi: 10.1007/978-3-540-28
650-9_4. [Online]. Available: https://doi.org/10.1007/978-3-540-2865
0-9%5C_4.

[23] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,”
Phys. Rev., vol. 36, pp. 823–841, 5 Sep. 1930. doi: 10.1103/PhysRev.36.823.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.36.823.

[24] K. Bartoszek, S. Glémin, I. Kaj, and M. Lascoux, “Using the orn-
stein–uhlenbeck process to model the evolution of interacting populations,”
Journal of Theoretical Biology, vol. 429, pp. 35–45, Sep. 2017, issn: 10958541.
doi: 10.1016/j.jtbi.2017.06.011.

139

https://doi.org/10.1162/isal_a_00338
https://doi.org/10.1162/isal_a_00338
https://arxiv.org/abs/1612.04340
http://arxiv.org/abs/1612.04340
http://arxiv.org/abs/1911.06833
http://arxiv.org/abs/1911.06833
https://arxiv.org/abs/1511.06581
https://doi.org/10.1007/s10489-020-01849-3
http://arxiv.org/abs/1903.03698
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1007/978-3-540-28650-9_4
https://doi.org/10.1007/978-3-540-28650-9%5C_4
https://doi.org/10.1007/978-3-540-28650-9%5C_4
https://doi.org/10.1103/PhysRev.36.823
https://link.aps.org/doi/10.1103/PhysRev.36.823
https://doi.org/10.1016/j.jtbi.2017.06.011

[25] J. Nauta, Y. Khaluf, and P. Simoens, “Using the ornstein-uhlenbeck process
for random exploration,” 2019, pp. 59–66.

[26] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg, Noisy networks
for exploration, 2019. arXiv: 1706.10295 [cs.LG].

[27] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine learn-
ing meets computation and communication control in evolving edge and cloud:
Challenges and future perspective,” IEEE Communications Surveys & Tuto-
rials, vol. 22, no. 1, pp. 38–67, 2020. doi: 10.1109/COMST.2019.2943405.

[28] D. Kimovski, R. Mathá, J. Hammer, N. Mehran, H. Hellwagner, and R. Pro-
dan, “Cloud, fog, or edge: Where to compute?” IEEE Internet Computing,
vol. 25, no. 4, pp. 30–36, 2021. doi: 10.1109/MIC.2021.3050613.

[29] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy workload orchestration for edge
computing,” IEEE Transactions on Network and Service Management, vol. 16,
no. 2, pp. 769–782, 2019. doi: 10.1109/TNSM.2019.2901346.

[30] C. Anagnostopoulos, T. Aladwani, I. Alghamdi, and K. Kolomvatsos, “Data-
driven analytics task management reasoning mechanism in edge computing,”
Smart Cities, vol. 5, no. 2, pp. 562–582, 2022, issn: 2624-6511. doi: 10.3390
/smartcities5020030. [Online]. Available: https://www.mdpi.com/2624-6
511/5/2/30.

[31] V. Nguyen, T. T. Khanh, T. Z. Oo, N. H. Tran, E.-N. Huh, and C. S. Hong,
“Latency minimization in a fuzzy-based mobile edge orchestrator for iot appli-
cations,” IEEE Communications Letters, vol. 25, no. 1, pp. 84–88, 2021. doi:
10.1109/LCOMM.2020.3024957.

[32] M. D. Hossain, T. Sultana, M. A. Hossain, M. I. Hossain, L. N. T. Huynh,
J. Park, and E.-N. Huh, “Fuzzy decision-based efficient task offloading man-
agement scheme in multi-tier mec-enabled networks,” Sensors, vol. 21, no. 4,
2021, issn: 1424-8220. doi: 10.3390/s21041484. [Online]. Available: https:
//www.mdpi.com/1424-8220/21/4/1484.

[33] G. Gürsel, “Healthcare, uncertainty, and fuzzy logic,” Digital Medicine, vol. 2,
pp. 101–112, 2016.

[34] B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent offloading in
multi-access edge computing: A state-of-the-art review and framework,” IEEE
Communications Magazine, vol. 57, no. 3, pp. 56–62, 2019. doi: 10 . 1109
/MCOM.2019.1800608.

[35] S. Yu, X. Chen, L. Yang, D. Wu, M. Bennis, and J. Zhang, “Intelligent edge:
Leveraging deep imitation learning for mobile edge computation offloading,”
IEEE Wireless Communications, vol. 27, no. 1, pp. 92–99, 2020. doi: 10.110
9/MWC.001.1900232.

140

https://arxiv.org/abs/1706.10295
https://doi.org/10.1109/COMST.2019.2943405
https://doi.org/10.1109/MIC.2021.3050613
https://doi.org/10.1109/TNSM.2019.2901346
https://doi.org/10.3390/smartcities5020030
https://doi.org/10.3390/smartcities5020030
https://www.mdpi.com/2624-6511/5/2/30
https://www.mdpi.com/2624-6511/5/2/30
https://doi.org/10.1109/LCOMM.2020.3024957
https://doi.org/10.3390/s21041484
https://www.mdpi.com/1424-8220/21/4/1484
https://www.mdpi.com/1424-8220/21/4/1484
https://doi.org/10.1109/MCOM.2019.1800608
https://doi.org/10.1109/MCOM.2019.1800608
https://doi.org/10.1109/MWC.001.1900232
https://doi.org/10.1109/MWC.001.1900232

[36] N. A. Abu-Taleb, F. Hasan Abdulrazzak, A. T. Zahary, and A. M. Al-Mqdashi,
“Offloading decision making in mobile edge computing: A survey,” in 2022 2nd
International Conference on Emerging Smart Technologies and Applications
(eSmarTA), 2022, pp. 1–8. doi: 10.1109/eSmarTA56775.2022.9935407.

[37] C. Sonmez, C. Tunca, A. Ozgovde, and C. Ersoy, “Machine learning-based
workload orchestrator for vehicular edge computing,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 4, pp. 2239–2251, 2021. doi:
10.1109/TITS.2020.3024233.

[38] C. Quadri, V. Mancuso, M. A. Marsan, and G. P. Rossi, “Edge-based platoon
control,” Computer Communications, vol. 181, pp. 17–31, 2022, issn: 0140-
3664. doi: https://doi.org/10.1016/j.comcom.2021.09.021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0140
366421003583.

[39] L. Alekszejenkó and T. Dobrowiecki, “Simulating urban traffic as a multilay-
ered multiagent system,” in 27th PhD Minisymposium of the Department of
Measurement and Information Systems, Budapest University of Technology
and Economics, 2020, pp. 8–11.

[40] I. Srisomboon and S. Lee, “A round-robin position change algorithm in vehi-
cle platooning,” in 2022 International Conference on Information Networking
(ICOIN), IEEE, 2022, pp. 340–344.

[41] H. Kawashima, H. Kitagawa, and X. Li, “Complex event processing over uncer-
tain data streams,” in 2010 International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing, 2010, pp. 521–526. doi: 10.1109/3PGCIC.20
10.89.

[42] S. A. Bell, “A beginner’s guide to uncertainty of measurement.,” 2001.

[43] M. Désenfant and M. Priel, “Road map for measurement uncertainty evalua-
tion,” Measurement, vol. 39, no. 9, pp. 841–848, 2006.

[44] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin, “Complex event processing
over uncertain data,” in Proceedings of the Second International Conference
on Distributed Event-Based Systems, ser. DEBS ’08, Rome, Italy: Association
for Computing Machinery, 2008, pp. 253–264, isbn: 9781605580906. doi: 10
.1145/1385989.1386022.

[45] A. Bühler, A. Gaidon, A. Cramariuc, R. Ambrus, G. Rosman, and W. Burgard,
Driving through ghosts: Behavioral cloning with false positives, 2020. doi: 10
.48550/ARXIV.2008.12969. [Online]. Available: https://arxiv.org/abs/2
008.12969.

[46] I. Sobol’, “Global sensitivity indices for nonlinear mathematical models and
their monte carlo estimates,” Mathematics and Computers in Simulation,
vol. 55, no. 1, pp. 271–280, 2001, The Second IMACS Seminar on Monte Carlo
Methods, issn: 0378-4754. doi: https://doi.org/10.1016/S0378-4754(0
0)00270-6. [Online]. Available: https://www.sciencedirect.com/science
/article/pii/S0378475400002706.

141

https://doi.org/10.1109/eSmarTA56775.2022.9935407
https://doi.org/10.1109/TITS.2020.3024233
https://doi.org/https://doi.org/10.1016/j.comcom.2021.09.021
https://www.sciencedirect.com/science/article/pii/S0140366421003583
https://www.sciencedirect.com/science/article/pii/S0140366421003583
https://doi.org/10.1109/3PGCIC.2010.89
https://doi.org/10.1109/3PGCIC.2010.89
https://doi.org/10.1145/1385989.1386022
https://doi.org/10.1145/1385989.1386022
https://doi.org/10.48550/ARXIV.2008.12969
https://doi.org/10.48550/ARXIV.2008.12969
https://arxiv.org/abs/2008.12969
https://arxiv.org/abs/2008.12969
https://doi.org/https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/https://doi.org/10.1016/S0378-4754(00)00270-6
https://www.sciencedirect.com/science/article/pii/S0378475400002706
https://www.sciencedirect.com/science/article/pii/S0378475400002706

[47] S. Tennøe, G. Halnes, and G. T. Einevoll, “Uncertainpy: A python toolbox
for uncertainty quantification and sensitivity analysis in computational neuro-
science,” Frontiers in Neuroinformatics, vol. 12, p. 49, 2018, issn: 1662-5196.
doi: 10.3389/fninf.2018.00049. [Online]. Available: https://www.fronti
ersin.org/article/10.3389/fninf.2018.00049.

[48] A. Saltelli, “Making best use of model evaluations to compute sensitivity in-
dices,” Computer Physics Communications, vol. 145, no. 2, pp. 280–297, 2002,
issn: 0010-4655. doi: https://doi.org/10.1016/S0010-4655(02)00280-1.
[Online]. Available: https://www.sciencedirect.com/science/article/p
ii/S0010465502002801.

[49] A. Saltelli, Global sensitivity analysis: the primer. 2008, isbn: 9780470059975.
[Online]. Available: http://books.google.at/books?id=wAssmt2vumgC.

[50] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola,
“Variance based sensitivity analysis of model output. design and estimator
for the total sensitivity index,” Computer Physics Communications, vol. 181,
no. 2, pp. 259–270, 2010, issn: 0010-4655. doi: https://doi.org/10.1016/j
.cpc.2009.09.018. [Online]. Available: https://www.sciencedirect.com
/science/article/pii/S0010465509003087.

[51] P. P. Angelov, E. A. Soares, R. Jiang, N. I. Arnold, and P. M. Atkinson, “Ex-
plainable artificial intelligence: An analytical review,” Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 11, no. 5, e1424, 2021.

[52] A. Das and P. Rad, “Opportunities and challenges in explainable artificial
intelligence (xai): A survey,” arXiv preprint arXiv:2006.11371, 2020.

[53] F. K. Došilović, M. Brčić, and N. Hlupić, “Explainable artificial intelligence:
A survey,” in 2018 41st International convention on information and commu-
nication technology, electronics and microelectronics (MIPRO), IEEE, 2018,
pp. 0210–0215.

[54] P. Gerber, L. Jöckel, and M. Kläs, A study on mitigating hard boundaries of
decision-tree-based uncertainty estimates for ai models, 2022. doi: 10.48550
/ARXIV.2201.03263. [Online]. Available: https://arxiv.org/abs/2201.03
263.

[55] S. V. Deshmukh, A. Dasgupta, B. Krishnamurthy, N. Jiang, C. Agarwal, G.
Theocharous, and J. Subramanian, “Explaining RL decisions with trajecto-
ries,” in The Eleventh International Conference on Learning Representations,
2023. [Online]. Available: https://openreview.net/forum?id=5Egggz1q575
.

[56] M. Finkelstein, L. Liu, Y. Kolumbus, D. C. Parkes, J. S. Rosenschein, S.
Keren,et al.Et al., “Explainable reinforcement learning via model transforms,”
Advances in Neural Information Processing Systems, vol. 35, pp. 34 039–34 051,
2022.

142

https://doi.org/10.3389/fninf.2018.00049
https://www.frontiersin.org/article/10.3389/fninf.2018.00049
https://www.frontiersin.org/article/10.3389/fninf.2018.00049
https://doi.org/https://doi.org/10.1016/S0010-4655(02)00280-1
https://www.sciencedirect.com/science/article/pii/S0010465502002801
https://www.sciencedirect.com/science/article/pii/S0010465502002801
http://books.google.at/books?id=wAssmt2vumgC
https://doi.org/https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/https://doi.org/10.1016/j.cpc.2009.09.018
https://www.sciencedirect.com/science/article/pii/S0010465509003087
https://www.sciencedirect.com/science/article/pii/S0010465509003087
https://doi.org/10.48550/ARXIV.2201.03263
https://doi.org/10.48550/ARXIV.2201.03263
https://arxiv.org/abs/2201.03263
https://arxiv.org/abs/2201.03263
https://openreview.net/forum?id=5Egggz1q575
https://openreview.net/forum?id=5Egggz1q575

[57] P. Gupta, N. Puri, S. Verma, D. Kayastha, S. Deshmukh, B. Krishnamurthy,
and S. Singh, “Explain your move: Understanding agent actions using specific
and relevant feature attribution,” in International Conference on Learning
Representations (ICLR), 2020.

[58] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban au-
tonomous driving with latent deep reinforcement learning,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 6, pp. 5068–5078, 2021.

[59] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based
control,” in 2012 IEEE/RSJ international conference on intelligent robots and
systems, IEEE, 2012, pp. 5026–5033.

[60] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang,
and R. Ranjan, “Fog computing: Survey of trends, architectures, requirements,
and research directions,” IEEE Access, vol. 6, pp. 47 980–48 009, 2018. doi: 1
0.1109/ACCESS.2018.2866491.

[61] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role
in the internet of things,” in Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, ser. MCC ’12, Helsinki, Finland: As-
sociation for Computing Machinery, 2012, pp. 13–16, isbn: 9781450315197.
doi: 10.1145/2342509.2342513. [Online]. Available: https://doi.org/10
.1145/2342509.2342513.

[62] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform
for internet of things and analytics,” in Big Data and Internet of Things: A
Roadmap for Smart Environments. Cham: Springer International Publishing,
2014, pp. 169–186, isbn: 978-3-319-05029-4. doi: 10.1007/978-3-319-05029-
4_7. [Online]. Available: https://doi.org/10.1007/978-3-319-05029-4_7.

[63] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, and
E. Benkhelifa, “Sdmec: Software defined system for mobile edge comput-
ing,” in 2016 IEEE International Conference on Cloud Engineering Workshop
(IC2EW), 2016, pp. 88–93. doi: 10.1109/IC2EW.2016.45.

[64] P. Liu, J. Li, and Z. Sun, “Matching-based task offloading for vehicular edge
computing,” IEEE Access, vol. 7, pp. 27 628–27 640, 2019. doi: 10.1109/ACC
ESS.2019.2896000.

[65] A. Amini, W. Schwarting, A. Soleimany, and D. Rus, “Deep evidential regres-
sion,” Advances in Neural Information Processing Systems, vol. 33, pp. 14 927–
14 937, 2020.

[66] Z. Ding, T. Yu, Y. Huang, H. Zhang, L. Mai, and H. Dong, “Rlzoo: A
comprehensive and adaptive reinforcement learning library,” arXiv preprint
arXiv:2009.08644, 2020.

[67] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning,
2016. arXiv: 1602.01783 [cs.LG].

143

https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1109/ACCESS.2018.2866491
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1109/IC2EW.2016.45
https://doi.org/10.1109/ACCESS.2019.2896000
https://doi.org/10.1109/ACCESS.2019.2896000
https://arxiv.org/abs/1602.01783

[68] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal
policy optimization algorithms, 2017. arXiv: 1707.06347 [cs.LG].

[69] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.
arXiv: 1801.01290 [cs.LG].

[70] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, Openai gym, 2016. eprint: arXiv:1606.01540.

[71] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment for
performance evaluation of edge computing systems,” in 2017 Second Interna-
tional Conference on Fog and Mobile Edge Computing (FMEC), 2017, pp. 39–
44. doi: 10.1109/FMEC.2017.7946405.

[72] H. Yang and J. Moody, “Feature selection based on joint mutual information,”
in Proceedings of international ICSC symposium on advances in intelligent
data analysis, Citeseer, vol. 23, 1999.

[73] M. Z. I. Chowdhury and T. C. Turin, “Variable selection strategies and its
importance in clinical prediction modelling,” Family medicine and community
health, vol. 8, no. 1, 2020.

[74] Maria J. P. Peixoto and A. Azim, “Design and development of a machine
learning-based task orchestrator for intelligent systems on edge networks,”
IEEE Access, vol. 11, pp. 33 049–33 060, 2023. doi: 10.1109/ACCESS.2023.3
263483.

[75] H. Ouarnoughi, E. Grislin-Le Strugeon, and S. Niar, “Simulating multi-agent-
based computation offloading for autonomous cars,” Cluster Computing, pp. 1–
12, 2021.

[76] N. Matloff, “Introduction to discrete-event simulation and the simpy lan-
guage,” Davis, CA. Dept of Computer Science. University of California at
Davis. Retrieved on August, vol. 2, no. 2009, pp. 1–33, 2008.

[77] T. H. I. for Geoinformation Technology, Openrouteservice, Available at
https://openrouteservice.org/.

[78] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty in
machine learning: An introduction to concepts and methods,” Machine Learn-
ing, vol. 110, no. 3, pp. 457–506, Mar. 2021, issn: 1573-0565. doi: 10.1007/s
10994-021-05946-3. [Online]. Available: http://dx.doi.org/10.1007/s10
994-021-05946-3.

[79] A. Kimmig, B. Demoen, L. De Raedt, V. S. Costa, and R. Rocha, “On the im-
plementation of the probabilistic logic programming language problog,” Theory
and Practice of Logic Programming, vol. 11, no. 2-3, pp. 235–262, Jan. 2011,
issn: 1475-3081. doi: 10.1017/s1471068410000566. [Online]. Available: htt
p://dx.doi.org/10.1017/S1471068410000566.

[80] V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random
World. Berlin, Heidelberg: Springer-Verlag, 2005, isbn: 0387001522.

144

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1801.01290
arXiv:1606.01540
https://doi.org/10.1109/FMEC.2017.7946405
https://doi.org/10.1109/ACCESS.2023.3263483
https://doi.org/10.1109/ACCESS.2023.3263483
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1007/s10994-021-05946-3
http://dx.doi.org/10.1007/s10994-021-05946-3
http://dx.doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1017/s1471068410000566
http://dx.doi.org/10.1017/S1471068410000566
http://dx.doi.org/10.1017/S1471068410000566

[81] A. N. Angelopoulos and S. Bates, “A gentle introduction to conformal
prediction and distribution-free uncertainty quantification,” arXiv preprint
arXiv:2107.07511, 2021.

[82] J. Alvarsson, S. Arvidsson McShane, U. Norinder, and O. Spjuth, “Predicting
with confidence: Using conformal prediction in drug discovery,” Journal of
Pharmaceutical Sciences, vol. 110, no. 1, pp. 42–49, 2021, issn: 0022-3549.
doi: https://doi.org/10.1016/j.xphs.2020.09.055. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022354920305

89X.

[83] D. Boursinos and X. Koutsoukos, “Selective classification of sequential data
using inductive conformal prediction,” in 2022 IEEE International Conference
on Assured Autonomy (ICAA), 2022, pp. 46–55. doi: 10.1109/ICAA52185.2
022.00015.

[84] G. Cherubin, K. Chatzikokolakis, and M. Jaggi, “Exact optimization of con-
formal predictors via incremental and decremental learning,” in Proceedings
of the 38th International Conference on Machine Learning, M. Meila and T.
Zhang, Eds., ser. Proceedings of Machine Learning Research, vol. 139, Jul.
2021, pp. 1836–1845. [Online]. Available: https://proceedings.mlr.press
/v139/cherubin21a.html.

[85] H. Linusson, U. Johansson, H. Boström, and T. Löfström, “Efficiency com-
parison of unstable transductive and inductive conformal classifiers,” in Arti-
ficial Intelligence Applications and Innovations, L. Iliadis, I. Maglogiannis, H.
Papadopoulos, S. Sioutas, and C. Makris, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 261–270, isbn: 978-3-662-44722-2.

[86] T. Litman, Evaluating accessibility for transport planning - measuring people’s
ability to reach desired services and activities, 2021.

[87] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R.
Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Microscopic
traffic simulation using sumo,” in The 21st IEEE International Conference on
Intelligent Transportation Systems, 2018. [Online]. Available: https://elib
.dlr.de/124092/.

[88] F. Arasteh, “Network-aware multi-agent reinforcement learning for adaptive
navigation of vehicles in a dynamic road network,” M.S. thesis, York Univer-
sity, Toronto, Ontario, Canada, Sep. 2021.

[89] C.-X. Zhang, J.-S. Zhang, and G.-W. Wang, “An empirical study of using
rotation forest to improve regressors,” Applied Mathematics and Computation,
vol. 195, no. 2, pp. 618–629, 2008, issn: 0096-3003. doi: https://doi.org/1
0.1016/j.amc.2007.05.010. [Online]. Available: https://www.sciencedir
ect.com/science/article/pii/S0096300307005917.

145

https://doi.org/https://doi.org/10.1016/j.xphs.2020.09.055
https://www.sciencedirect.com/science/article/pii/S002235492030589X
https://www.sciencedirect.com/science/article/pii/S002235492030589X
https://doi.org/10.1109/ICAA52185.2022.00015
https://doi.org/10.1109/ICAA52185.2022.00015
https://proceedings.mlr.press/v139/cherubin21a.html
https://proceedings.mlr.press/v139/cherubin21a.html
https://elib.dlr.de/124092/
https://elib.dlr.de/124092/
https://doi.org/https://doi.org/10.1016/j.amc.2007.05.010
https://doi.org/https://doi.org/10.1016/j.amc.2007.05.010
https://www.sciencedirect.com/science/article/pii/S0096300307005917
https://www.sciencedirect.com/science/article/pii/S0096300307005917

[90] Y. Liao and V. Vemuri, “Use of k-nearest neighbor classifier for intrusion
detection,” Computers & Security, vol. 21, no. 5, pp. 439–448, 2002, issn:
0167-4048. doi: https://doi.org/10.1016/S0167- 4048(02)00514- X.
[Online]. Available: https://www.sciencedirect.com/science/article/p
ii/S016740480200514X.

[91] E. D. C. Bezerra, A. S. Teles, L. R. Coutinho, and F. J. da Silva e Silva,
“Dempster–shafer theory for modeling and treating uncertainty in iot applica-
tions based on complex event processing,” Sensors, vol. 21, no. 5, 2021, issn:
1424-8220. doi: 10.3390/s21051863. [Online]. Available: https://www.mdpi
.com/1424-8220/21/5/1863.

[92] U. Umoh, E. Udo, and E. Nyoho, “Support vector machine-based fire outbreak
detection system,” International Journal on Soft Computing, Artificial Intel-
ligence and Applications, vol. 08, pp. 01–18, May 2019. doi: 10.5121/ijscai
.2019.8201.

[93] R. Stekolshchik, “Noise, overestimation and exploration in deep reinforcement
learning,” Jun. 2020. [Online]. Available: http://arxiv.org/abs/2006.141
67.

[94] W. Lim, S. Lee, M. Sunwoo, and K. Jo, “Hierarchical Trajectory Planning of an
Autonomous Car Based on the Integration of a Sampling and an Optimization
Method,” IEEE Transactions on Intelligent Transportation Systems, vol. 19,
no. 2, pp. 613–626, 2018, issn: 15249050. doi: 10.1109/TITS.2017.2756099.

[95] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” in Proceedings of the 1st Annual Conference
on Robot Learning, 2017, pp. 1–16.

[96] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, Mastering atari with discrete
world models, 2021. arXiv: 2010.02193 [cs.LG].

[97] J. Ferret, O. Pietquin, and M. Geist, “Self-imitation advantage learning,” 2021.
[Online]. Available: www.ifaamas.org.

[98] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning,
2016. arXiv: 1602.01783 [cs.LG].

[99] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R.
Munos, Unifying count-based exploration and intrinsic motivation, 2016. arXiv:
1606.01868 [cs.AI].

[100] C. Stanton and J. Clune, Deep curiosity search: Intra-life exploration can im-
prove performance on challenging deep reinforcement learning problems, 2018.
arXiv: 1806.00553 [cs.AI].

[101] R. A. Nafea and M. Amin Almaiah, “Cyber security threats in cloud: Liter-
ature review,” in 2021 International Conference on Information Technology
(ICIT), 2021, pp. 779–786. doi: 10.1109/ICIT52682.2021.9491638.

146

https://doi.org/https://doi.org/10.1016/S0167-4048(02)00514-X
https://www.sciencedirect.com/science/article/pii/S016740480200514X
https://www.sciencedirect.com/science/article/pii/S016740480200514X
https://doi.org/10.3390/s21051863
https://www.mdpi.com/1424-8220/21/5/1863
https://www.mdpi.com/1424-8220/21/5/1863
https://doi.org/10.5121/ijscai.2019.8201
https://doi.org/10.5121/ijscai.2019.8201
http://arxiv.org/abs/2006.14167
http://arxiv.org/abs/2006.14167
https://doi.org/10.1109/TITS.2017.2756099
https://arxiv.org/abs/2010.02193
www.ifaamas.org
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1606.01868
https://arxiv.org/abs/1806.00553
https://doi.org/10.1109/ICIT52682.2021.9491638

[102] W. Ahmad, A. Rasool, A. R. Javed, T. Baker, and Z. Jalil, “Cyber security
in iot-based cloud computing: A comprehensive survey,” Electronics, vol. 11,
no. 1, 2022, issn: 2079-9292. doi: 10.3390/electronics11010016. [Online].
Available: https://www.mdpi.com/2079-9292/11/1/16.

[103] P. Dini and S. Saponara, “Analysis, design, and comparison of machine-
learning techniques for networking intrusion detection,” Designs, vol. 5, no. 1,
2021, issn: 2411-9660. doi: 10.3390/designs5010009. [Online]. Available:
https://www.mdpi.com/2411-9660/5/1/9.

[104] P. Dini, A. Begni, S. Ciavarella, E. De Paoli, G. Fiorelli, C. Silvestro, and S.
Saponara, “Design and testing novel one-class classifier based on polynomial
interpolation with application to networking security,” IEEE Access, vol. 10,
pp. 67 910–67 924, 2022. doi: 10.1109/ACCESS.2022.3186026.

[105] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Proceedings of the AAAI conference on artificial intel-
ligence, vol. 30, 2016.

[106] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience re-
play,” arXiv preprint arXiv:1511.05952, 2015.

[107] Peixoto, Maria JP and A. Azim, “Improving environmental awareness for
autonomous vehicles,” Applied Intelligence, vol. 53, no. 2, pp. 1842–1854, 2022.
doi: https://doi.org/10.1007/s10489-022-03468-6.

[108] P. Sequeira and M. Gervasio, “Interestingness elements for explainable rein-
forcement learning: Understanding agents’ capabilities and limitations,” Arti-
ficial Intelligence, vol. 288, p. 103 367, 2020.

[109] Y. Qing, S. Liu, J. Song, and M. Song, “A survey on explainable reinforcement
learning: Concepts, algorithms, challenges,” arXiv preprint arXiv:2211.06665,
2022.

[110] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable ai: A
review of machine learning interpretability methods,” Entropy, vol. 23, no. 1,
p. 18, 2020.

[111] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature de-
tectors,” arXiv preprint arXiv:1207.0580, 2012.

[112] M. Désenfant and M. Priel, “Road map for measurement uncertainty evalua-
tion,” Measurement, vol. 39, no. 9, pp. 841–848, 2006.

[113] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla: An
open urban driving simulator,” in Conference on robot learning, PMLR, 2017,
pp. 1–16.

[114] R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar, and K. Sycara, “Transparency and
explanation in deep reinforcement learning neural networks,” in Proceedings of
the 2018 AAAI/ACM Conference on AI, Ethics, and Society, 2018, pp. 144–
150.

147

https://doi.org/10.3390/electronics11010016
https://www.mdpi.com/2079-9292/11/1/16
https://doi.org/10.3390/designs5010009
https://www.mdpi.com/2411-9660/5/1/9
https://doi.org/10.1109/ACCESS.2022.3186026
https://doi.org/https://doi.org/10.1007/s10489-022-03468-6

[115] A. Lazaridis, A. Fachantidis, and I. Vlahavas, “Deep reinforcement learning:
A state-of-the-art walkthrough,” J. Artif. Intell. Res., vol. 69, pp. 1421–1471,
2020.

148

	Thesis Examination Information
	Abstract
	Author's Declaration
	Statement of Contributions
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Contributions
	Thesis Organization

	Background and Related Work
	Context awareness for autonomous real-time vehicle systems
	Context Awareness
	Reinforcement learning
	Gaussian Process
	Ornstein-Uhlenbeck Process

	Collaborative task management for autonomous real-time vehicle systems
	Centralized approach
	Distributed approach
	Platooning

	Learning and continuous monitoring for autonomous real-time vehicle systems
	Uncertainty in events
	Sensitivity analysis
	Explainable Artificial Intelligence (XAI)

	Overview of related works

	Proposed Context-Aware Collaborative Autonomous Real-Time Vehicle Systems Framework
	Context Awareness Module
	Collaborative Task Management Module
	Learning and Continuous Monitoring Module

	Context awareness for autonomous real-time vehicle systems
	Collaborative task management for autonomous real-time vehicle systems
	Centralized Approach
	Distributed Approach

	Learning and continuous monitoring for autonomous real-time vehicle systems
	Scenario 1
	Scenario 2

	Experimental Results and Discussion
	Context Awareness for Autonomous Systems
	Tasks with empty city
	Tasks with populated city

	Task Management in Autonomous Systems
	Learning and Performance Monitoring of Autonomous Systems

	Conclusion and Future Works
	Conclusion
	Future Work

	References

