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Abstract

In this capstone report, our primary focus is on harnessing the capabilities of the 

GPT4 model to enhance password security through the generation of honeywords. 

Honeywords are decoy passwords designed to strengthen the security of sensitive sys-

tems by confusing potential attackers. The utilization of GPT4, a powerful language 

model developed by OpenAI, offers a n i nnovative a pproach t o t his c hallenge. By 

directly generating honeywords without relying on password segmentation, GPT4 

introduces a unique dimension to password security. This approach is particularly 

valuable in thwarting targeted attacks, as honeywords generated by GPT4 are de-

signed to deceive potential attackers effectively.

In addition to the exploration of GPT4, this report also delves into the realm 

of Chunk-GPT3. Chunk-GPT3, as detailed in previous research, employs advanced 

language models to generate honeywords through the segmentation of passwords into 

discrete chunks. These chunks are ingeniously recombined to form decoy passwords. 

The re-engineered Chunk-GPT3 approach incorporates enhancements to the password 

segmentation process, including ”mapping digits to alphabets” and ”removal of digits” 

functions. These modifications aim to produce more potent and effective honeywords, 

ultimately elevating password security.

The report includes a comprehensive comparative analysis of honeywords gen-

erated by the original Chunk-GPT3 approach and the re-engineered Chunk-GPT3
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approach, as well as honeywords created by GPT4. By assessing the effectiveness

of these honeyword generation methods using the HWSimilarity metric, the report

provides valuable insights into the strengths and weaknesses of each approach. Exam-

ining the capabilities of both GPT4 and Chunk-GPT3 in the context of honeyword

generation, this report aims to provide a holistic perspective on cutting-edge strategies

for safeguarding sensitive data in the ever-evolving digital landscape.

Keywords: Authentication, Chunks, Honeywords, Passwords, Segmentation, GPT4
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Chapter 1

Introduction

In the ever-evolving landscape of digital security, the imperative for robust password

protection and efficient breach detection systems has grown exponentially. Traditional

password databases have proven susceptible to breaches, leading to unauthorized

access and potential exploitation of sensitive information. The concept of honeywords,

or decoy passwords, introduced as a proactive measure alongside real passwords,

has been proposed to expedite the detection of breaches and to minimize the time

between compromise and response. The core idea underlying honeywords is that their

use triggers an alert, indicating a potential data breach and prompting immediate

countermeasures. However, the efficacy of honeywords hinges on their ability to

closely mimic real-world passwords, making it a formidable challenge for attackers to

distinguish between the two.

Passwords serve as the linchpin of network security, acting as the gatekeepers

to authenticate users and grant access to valuable digital resources. Yet, passwords

are not without their vulnerabilities and remain susceptible to a range of attacks,

including dictionary attacks and brute-force attempts [7]. For the security of systems

and the protection of sensitive data, the criteria for passwords are exacting. They
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must be strong, unique, and confidential while remaining memorable for users. An

ideal strong password typically encompasses a combination of lowercase and uppercase

letters, special symbols, and digits, spanning a length of 8 to 12 characters [16].

In response to the limitations of traditional passwords, honeywords have emerged

as a promising technique to enhance security. Honeywords are decoy passwords de-

signed to closely resemble genuine passwords, with the sole purpose of triggering alerts

when attackers attempt to use them during a breach. A plethora of Honeyword Gen-

eration Techniques (HGTs) have been proposed, each striving to create honeywords

that maintain their resemblance to real passwords, even in the presence of personally

identifiable information (PII) known to potential attackers [7] [16] [18].

1.1 Contribution

1. Research Focus: Our study explores Honeyword generation techniques, with

a particular emphasis on Chunk-GPT3, and GPT4, an innovative approach

employing advanced language models to enhance password security.

2. Refinement of Chunking Algorithm: In our research, we explored the im-

pact of refining the chunking algorithm, specifically by employing the techniques

of “mapping digits to letters” and “removal of digits.” The aim was to assess

whether these refinements could enhance the quality and effectiveness of Honey-

words generated by Chunk-GPT3. Notably, our findings align with those of my

previous capstone research, indicating that there was no substantial difference

in the results.

3. GPT4 Exploration: We explore an alternative approach by investigating

whether GPT4 can directly generate Honeywords without relying on the chunk-
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ing algorithm, thus expanding the scope of our research.

4. Comparative Analysis: We aim to conduct a comprehensive comparative

analysis, pitting Honeywords produced with the GPT4 which do not use a

chunking algorithm to generate honeywords, and also optimized chunking algo-

rithm against those generated by the original Chunk-GPT3 method to assess

the impact of the enhanced chunking algorithm.

5. Relevance to Password Security: Our research aligns with the mission

of strengthening password security and enhancing detection mechanisms for

potential data breaches within online systems.

1.2 Capstone Report Structure

The upcoming sections of this document are structured as follows:

• In Section 2, we explore previous related works and explain our approach by

outlining the changes made to the algorithm.

• Section 3 outlines our approach for generating honeywords using GPT4 without

the need for chunks.

• Section 4 delves into the experiments conducted to produce honeywords using

various models.

• Section 5 summarizes the results and evaluates HWSimilarity scores for Chunk-

GPT3, Modified Chunk-GPT3, and GPT4.

• Section 6 presents suggestions for potential research directions in the future.

• Finally, in Section 7, we draw conclusions based on our research findings.
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Chapter 2

Related Works

Numerous studies have explored the application of Natural Language Processing

(NLP) methods to the segmentation and classification of password samples, seek-

ing to enhance password security and understand the underlying patterns in users’

password choices. In this context, one prominent approach is the utilization of NLP

techniques to decompose passwords into coherent and meaningful parts, thereby en-

abling the inference of their syntactic function and semantic significance [15].

To address the syntactic classification required for this segmentation, part-of-

speech tagging has been identified as an essential step in the process. This tagging

procedure enables the algorithm to semantically classify nouns and verbs, refining

the accuracy of the results. Notably, the outcomes have demonstrated a successful

disambiguation of words based on contextual cues, as evident in passwords like ”gang-

sterlove” and ”ilovestacy,” where the word ”love” assumes distinct syntactic functions

as a noun and a verb, respectively [14].

The researchers propose a new approach to understanding passwords, treating

them as combinations of frequently occurring character sequences called “chunks.”

They create a specialized method to automatically segment passwords into these
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chunks and then build three different models for guessing passwords at the chunk level

using Markov, Probabilistic Context-free Grammar (PCFG), and neural networks

[14] [4]. After testing their models on a massive dataset of 250 million passwords,

the researchers observe substantial improvements in guessing efficiency. The Markov,

PCFG, and neural network models enhance guessing efficiency by 5.7%, 51.2%, and

41.9% respectively in offline guessing scenarios. This underscores the importance

of a suitable password representation in defending against attacks. The analysis of

these efficient attacks reveals that common chunks within passwords serve as stronger

indicators of vulnerability compared to the complexity of character classes.

Many studies have investigated honeyword generation techniques (HGTs) for en-

hancing password security. HGTs can be categorized into chaffing-by-tweaking and

chaffing-with-a-password-model. Chaffing-by-tweaking involves substituting random

letters, digits, and symbols in real passwords to create honeywords. However, this

method has been proven vulnerable to attacks. On the other hand, the chaffing-with-

a-password-model, exemplified by Kamouflage, tokenizes real passwords and substi-

tutes each token with a random one that matches its type. While this approach

is more resistant to attacks, it requires substantial modifications to the authentica-

tion system, impacting usability, and is limited in generating honeywords of varying

lengths and structures.

From one of the HGTs, we focus on the potential security threat presented by

GPT3 in its ability to distinguish actual passwords from honeywords and the strate-

gies proposed to address this challenge. The authors of the paper highlight three

key attributes of GPT3, emphasizing the importance of a clear prompt, tempera-

ture settings, and zero-shot and few-shot learning. The process of distinguishing

actual passwords from honeywords involves setting prompts and temperatures, creat-

ing sweet word lists, and using different prompts to predict the actual password from

5



the list. These steps were evaluated using real-world password datasets, myspace1,

and webhost2, to assess GPT3’s performance. It’s important to note that GPT3 is

a paid service and its cost increases with the number of passwords involved in the

analysis. Due to budget constraints, the analysis in the paper was limited to a subset

of the datasets. The paper’s findings are significant, as they highlight the security

concerns associated with GPT3. Attackers can reduce the ”trap size” by nearly 50

percent in some scenarios, posing a substantial threat to security. GPT3 also demon-

strated a high success rate in capturing actual passwords, underscoring the need for

proactive measures. To mitigate this security risk, the paper suggests that system

administrators have the flexibility to adjust system-wide security thresholds based on

their observations of the attacker’s efficacy and dataset size. This adjustment can

reduce the attacker’s success probability by a factor , enhancing overall security. [3]

For targeted honeyword generation, the challenge is to split real passwords into

tokens, retaining personally identifiable information (PII) tokens while replacing non-

PII tokens with random ones. To address this, a chunking algorithm is proposed to

divide passwords into semantic chunks, and a pre-trained generative model is used to

create honeywords based on these semantic chunks [4].

Overall, the research in this area highlights the importance of developing stronger

password chunks and develop better honeywords. However, challenges remain in

balancing security and usability while effectively creating honeywords that closely

resemble real passwords.

2.1 DataSet

The dataset comprises 1.4 billion email-password pairs sourced from various data

breaches discovered on the DarkWeb2 in December 2017. These breaches include
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data from well-known websites like Canva, Chegg, Dropbox, LinkedIn, and Yahoo!

To ensure uniqueness, duplicate email-password pairs were removed, resulting in 1.1

billion distinct emails and 463 million distinct passwords. For simplicity, only the

prefixes of email addresses were considered as usernames [15].

To obtain genuine passwords, those that were too short (less than 8 characters) or

too long (more than 32 characters) were excluded, as they are typically not allowed

by most authentication systems. This screening process yielded a final selection of

28,492 username-password pairs. The strength of each password was assessed using

the “zxcvbn” tool, revealing that 24,661 passwords had a zxcvbn score of 4, 2706

passwords scored 3, and 277 and 3 passwords had scores of 1 and 0, respectively.

Further, two sets of username-password combinations were created based on the

zxcvbn password scores. The first set called the zxcvbn-weak set, consisted of 1000

username-password pairs with the lowest zxcvbn scores, ranging from 0 to 2. The

second set, known as the zxcvbn-strong set, comprised 1000 username-password pairs

with the highest zxcvbn score of 4. Subsequently, the chunks in these two sets were

further analyzed and compared, and honeywords were generated using the proposed

method [16].

2.2 Honeyword-Generation Techniques

This section delves into the intricate world of honeyword-generation algorithms, a

crucial component of enhancing password security. These algorithms fall into two

primary categories: those that are independent of specific passwords and those that

depend on the characteristics of account passwords.
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2.2.1 Password-Independent Honeyword Generation

Password-independent algorithms are designed to create honeywords without rely-

ing on individual account passwords. Instead, they draw inspiration from password

models that have been pre-trained on a wide array of passwords. Four prominent

password models play a pivotal role in this approach: the list model, probabilistic

context-free grammar model, Markov model, and recurrent neural network, alongside

various combinations thereof. These models lay the groundwork for generating hon-

eywords that effectively confound potential attackers. In the context of this approach,

the algorithms are denoted as below, PCFG, Markov, RNN, and Combo.

2.2.2 Password-Dependent Honeyword Generation

In contrast, password-dependent algorithms take into account the difference of specific

account passwords when generating honeywords. These algorithms encompass two

distinct subcategories: password-strength-dependent and password-context-dependent

methods. Password-strength-dependent methods strive to ensure that generated hon-

eywords match the strength of the input password. However, recognizing the chal-

lenges posed by weaker passwords, these methods relax the requirement of exact

strength matching, shifting the focus to matching the length of the input password.

The latter category, password-context-dependent methods, introduces modifica-

tions to the input passwords to generate honeywords. This section explores four

distinct techniques within this category:

• Targeted password model-based generation

• Large language model-based generation (LLM)

• Random replacement-based tweaking
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• Deep neural network (DNN)-based tweaking.

Targeted password model-based generation leverages password templates to craft hon-

eywords. LLM-based generation involves querying extensive language models, such as

GPT3, using prompts derived from the input passwords. Random replacement-based

tweaking entails making random alterations to the characters of the input password,

while DNN-based tweaking harnesses deep neural networks to create honeywords by

tweaking the original password. Each technique within these methods is distinctly

labeled by appending specific symbols to the relevant password model. [6]

2.3 Chunk-GPT3

Chunk-GPT3 serves as a technique for generating honeywords, using the GPT model.

One of the primary challenges in constructing a Honeyword Generation Technique

(HGT) is to produce honeywords that can withstand targeted attacks. Such targeted

attacks are a significant concern in the realm of cybersecurity, as malicious actors often

exploit individuals’ personally identifiable information (PII) to guess their passwords,

elevating the risk of unauthorized account access. This problem is exacerbated by the

prevalence of data breaches, which make vast amounts of PII and passwords readily

available to attackers. If the honeywords generated by the HGT do not take PII into

account, the attacker’s ability to identify the password becomes considerably higher.

Chunk-GPT3, as an HGT, specializes in generating honeywords that resist targeted

attacks.

The initial step involves assessing password strength, which is accomplished us-

ing the zxcvbn library. Subsequently, the passwords are categorized based on their

zxcvbn strength and divided into two datasets, one containing strong passwords and

the other weak passwords. These datasets then undergo a process using the Pwd
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segment chunking algorithm to create password chunks for honeyword generation.

The chief advantage of this chunking algorithm lies in its ability to generate chunks

that exclusively consist of original password segments. To ensure that honeywords

are resilient to targeted attacks, GPT3 is employed to generate them by providing

prompts to the model.

Three crucial factors influence the generation of effective honeywords: the prompt,

the temperature, and the examples provided to the model (the generated chunks).

The temperature, a numeric value that can be set to 0 or 1, regulates the model’s

confidence level in producing accurate predictions. For optimal results, it is highly

recommended to keep the temperature at 1. Therefore, the password is divided into

chunks and presented as input to the model, such as requesting, ”Please generate

three passwords similar to ’Elena1986@327’ and containing ‘Elena,’ ‘1986,’ and ‘327’.

The evaluation of this approach is performed using flatness and success-number-

graphs. In a comparison with other HGTs, namely chaffing-by-tweaking and chaffing-

by-fasttext, Chunk-GPT3 excels by achieving a remarkable 85 percent similarity score

with honeywords. A notable limitation of this model is the significance of accurately

segmenting passwords. Incorrect segmentation can potentially provide attackers with

easier access to the password. [18]

2.4 Re-engineering Password Chunking Algorithm

Improving Chunk-GPT3 Model

In the Chunk-GPT3 model, we create chunks from passwords using a technique called

“PwdSegment.” PwdSegment is an algorithm that employs byte-pair encoding (BPE)

to break down plaintext passwords into chunk vocabularies. BPE is a commonly

used method in natural language processing (NLP) to split words into smaller parts.
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PwdSegment enhances BPE by allowing us to control the level of segmentation using

an average length parameter. It counts character pairs and stops combining them

when the resulting chunk vocabulary reaches the specified threshold length. The

algorithm keeps merging the most common character pairs until the average length

of the chunk vocabulary matches the threshold. This approach provides flexibility

in generating chunk vocabularies for password analysis. However, PwdSegment has

a limitation – it may not capture pieces of personally identifiable information (PII)

within passwords [17].

For example, consider the password “h2omegatania.” PwdSegment would create

the chunks ‘h2o’, ‘mega’, ‘-’, and ‘tania’, but it might miss the possibility that omega

or home could contain PII. This limitation directly affects Chunk-GPT3. To ad-

dress this, we re-engineered the PwdSegment algorithm to generate a larger number

of potential chunks, with the expectation that this would result in higher-quality

honeywords.

In the first phase of Capstone, our research focused on re-engineering the Password

Chunking Algorithm. This re-engineering focuses on enhancing the code used for

analyzing password fragments. The modified system introduces new capabilities,

including digit-to-alphabet mapping, digit deletion, and the analysis of plain text

passwords. These changes expand the code’s functionality beyond its initial focus on

analyzing both strong and weak passwords.

2.4.1 Mapping Digits to Alphabets

We introduced a new feature called “Digit-to-Alphabet Mapping.” This feature asso-

ciates individual digits in passwords with their corresponding alphabetic characters.

For instance, in the first scenario, passwords like “h0mega-tania” with a single

digit get mapped to its corresponding alphabetic character. In the second scenario,
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Digit Alphabet
0 o
1 l
2 z
3 e
4 a
5 s
6 g
7 t
8 b
9 g

Table 2.1: Mapping Digits to Alphabets.

passwords such as “h20mega-tania” with two consecutive digits are mapped accord-

ingly. However, in the third scenario, passwords like “h123mega-tania” with three

consecutive digits remain unchanged. This is because passwords with at least one in-

stance of three or more consecutive digits, like “h123mega-tania,” keep the numbers in

their original form since they might contain personally identifiable information (PII).

Similarly, if a password like “h123mega-98tania” contains three consecutive digits in

one position and two consecutive digits in another, it remains unchanged.

Original Password Mapped Password
h0mega-tania homega-tania
h20mega-tania hzomega-tania
h123mega-tania h123mega-tania

Table 2.2: Password Mapping

2.4.2 Removal of Digits

In addition to mapping single digits to their corresponding characters, as explained

above, we also modified passwords by removing single digits. This involves elimi-

12



nating a single numerical character, resulting in plain text passwords without any

numeric elements. By removing the single digit, it becomes possible to analyze pass-

words independently, without considering the presence or significance of the numeric

element. The resulting password, with the single digit removed, is referred to as

a “Text Password.” Using this method, the original password “h20mega-tania” is

transformed into the corresponding text password “hmega-tania” (in addition to the

“Digit-to-Alphabet Mapping” mentioned earlier). This enables the evaluation and

examination of the password’s security without considering the presence of a single

numerical digit.

2.4.3 Password Chunk Analysis

Our re-engineered code conducts chunk analysis on three different types of passwords:

original passwords, mapped passwords, and text passwords. Here are the steps taken

for each type:

1. Original Passwords: We start by reading original passwords from two CSV

files. One file contains 1000 zxcvbn-strong passwords, and the other contains

1000 zxcvbn-weak passwords. I add a new column to these CSV files, which

contains password chunks extracted using the Password Strength Meter (PSM)

library. This algorithm divides the passwords into smaller chunks, making it

easier to assess their strength accurately. Another column is added to count

the number of password chunks in each password. We then use these new

columns to create two additional CSV files, one for zxcvbn-strong passwords

and another for zxcvbn-weak passwords. These files contain the passwords and

their respective chunks, along with the count of chunks per password.

2. Mapped Passwords: Our re-engineered method introduces the concept of
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Figure 2.1: Data Frame of the columns related to original, mapped, and text password
chunks of Strong passwords.

Figure 2.2: Data Frame of the columns related to original, mapped, and text password
chunks of Weak passwords.

transformed passwords by applying the Digit-to-Alphabet mapping to the orig-

inal passwords. The resulting mapped passwords are stored in a new column.

Similar to the process for original passwords, we create two new CSV files with

the chunks and the number of chunks per password.

3. Text Passwords: In our re-engineered approach, we process original passwords

using the “Removal of Digits” method described earlier. Just like the process

applied to original and mapped passwords, we generate the chunks and record

the number of chunks per password.

2.4.4 Appending Chunks

The re-engineered method consolidates all chunks obtained for each of the original

passwords, including mapped and plain text passwords. We have divided the data

into two figures. These additions make it easy to compare and analyze password

representations, facilitating a comprehensive evaluation of password strength.
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2.4.5 Honeyword Generation using Re-engineered PwdSeg-

ment Chunks

We utilize the Chunk-GPT3 model to generate honeywords using the re-engineered

chunks. These honeywords are generated using the same prompts as in a previous

study [18], which include the original password, its chunks, and a length limit.

2.4.6 Results for Re-engineered PwdSegment Chunks

In the first phase of the capstone, we evaluated the performance of our improved

chunking algorithm by using a metric called ’HWSimilarity.’ This metric helps us

measure the similarity between the honeywords generated with our enhanced method

and the original passwords. Here are the key findings:

• Strong Passwords: The improved chunking algorithm achieved a HWSim-

ilarity score of 0.8409, slightly lower than the original chunking algorithm’s

score of 0.8525. This indicates that the honeywords created by my method are

somewhat more distinct from the original strong passwords.

• Weak Passwords: Notably, for weak passwords, the improved chunking algo-

rithm outperformed the original one with a score of 0.9048, compared to the

original algorithm’s score of 0.8367. This signifies that the enhanced approach

excels at generating honeywords that are significantly different from the original

weak passwords, providing enhanced security for these accounts.

In summary, our improved chunking algorithm, while slightly less similar to strong

passwords, is substantially more effective at generating distinct honeywords for weak

passwords. This means our approach offers an additional layer of security for accounts

with weaker passwords, which are often more susceptible to security threats.
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Chapter 3

Approach

We embarked on a comprehensive exploration of various honeyword generation tech-

niques to bolster password security. This journey began in the first phase of capstone

project, where we focused on re-engineering the chunking algorithm. The modified al-

gorithm, termed “Re-engineered Chunk-GPT3,” harnessed advanced language models

to create honeywords by segmenting passwords into distinct chunks, cleverly recom-

bining them to form decoy passwords. Notably, this approach exhibited remarkable

resilience against targeted attacks, showing promising potential to enhance password

security significantly [18].

In second phase of capstone project, we shifted my research focus towards the

evaluation of GPT4’s capability to directly generate honeywords without relying on

chunking. We examined whether honeywords generated by GPT4 were more potent

than those created with Chunk-GPT3. This approach introduced a novel dimension

to our research, offering insights into diverse methods for fortifying password security.

To gauge the strength of the honeywords generated, we utilized the HWSimilar-

ity metric. This metric serves as a valuable tool to compare and assess honeywords

produced using different techniques. Its primary function is to measure how closely
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honeywords resemble real passwords, making it challenging for potential attackers to

distinguish between them. The metric assigns a similarity score to each honeyword,

reflecting the degree to which it mirrors actual password attributes. Higher scores in-

dicate a stronger resemblance, while lower scores suggest less convincing honeywords.

My research involved conducting a comprehensive comparative analysis between

honeywords generated by the original Chunk-GPT3, honeywords produced by the

re-engineered Chunk-GPT3 approach, and those created directly by GPT4. This

evaluation aimed to determine the effectiveness of GPT4 in generating more potent

and effective honeywords. In doing so, our research aligned with the broader mis-

sion of enhancing password security and strengthening the detection mechanisms for

potential data breaches in online systems.

As the digital landscape continues to evolve, safeguarding sensitive data remains

a top priority. This thesis represents a significant step towards achieving heightened

password security, offering fresh insights and innovative solutions crucial for counter-

ing ever-evolving cyber threats.

3.1 Honeywords Generated by GPT4

The code we created uses a smart tool called GPT4 from OpenAI to generate fake

passwords, known as honeywords. These honeywords are like decoys, making it hard

for hackers to figure out the real passwords. We tested this code on two types of

passwords: strong ones, weak ones The main focus was comparing the honeywords

made for strong and weak passwords and seeing how changing passwords affected the

results.

Key Components of the Developed Code:
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1. Honeyword Generation Function

• This function utilizes OpenAI’s GPT4 model to generate honeywords for

a given real password.

• It constructs a chat-based message with the user role, providing a prompt

to derive 19 distinct passwords similar to the real password.

• The generated honeywords adhere to specified criteria, including a max-

imum length equal to the original password’s length and the absence of

digits at the end.

• The GPT4 response is processed, extracting and cleaning the generated

honeywords based on a defined length threshold.

• The function returns up to 19 cleaned honeywords.

2. Honeyword Generation for Password Sets (‘chaffing by GPT4‘)

• This function iterates through a DataFrame containing passwords (with

optional chunks, which have been removed in this version of the code).

• For each password in the DataFrame, the ‘honeywords generation GPT4‘

function is called to generate honeywords.

• The generated honeywords are stored in a dictionary with the real pass-

words as keys.

3. Category-Specific Honeyword Generation

• The code generates honeywords for the first 100 passwords from the strong

and weak password Data Frames as shown in the below figures. Adjust-

ments can be made to accommodate a larger dataset.
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Figure 3.1: 100 Generated Honeywords for strong passwords

Figure 3.2: 100 Generated Honeywords for weak passwords

• The generated honeywords, along with their corresponding real passwords,

are organized into a structured response.
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Chapter 4

Experiments

4.1 Honeywords Generation

Honeyword generation using language models like GPT3 and GPT4 represents an

innovative approach to enhancing password security. These models leverage the nat-

ural language understanding capabilities and text generation capabilities to create

convincing decoy passwords, known as honeywords. Honeywords are designed to

closely mimic real passwords and are interspersed within a password database to

increase security by confusing potential attackers.

4.1.1 Importance of Password Security

Passwords are a fundamental component of digital security, and their compromise

can lead to significant data breaches and unauthorized access. The need for robust

password security is underscored by the prevalence of cyberattacks. [1]
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4.1.2 Honeywords as a Security Measure

Honeywords add an extra layer of security to password databases. By introducing

convincing decoy passwords alongside real ones, honeywords make it challenging for

attackers to discern genuine passwords, thus improving the security of systems.

4.1.3 Role of AI and Language Models

AI-driven language models like GPT3 and GPT4 have shown remarkable capabilities

in natural language understanding and text generation. They are being harnessed

to generate honeywords that closely resemble real passwords, making it difficult for

attackers to distinguish between the two.

4.1.4 Customization and Fine-Tuning

Researchers and organizations often fine-tune language models to generate honey-

words tailored to specific security requirements. This customization allows for the

creation of honeywords that align with the unique characteristics of a system or pass-

word database. [8]

4.1.5 Evaluating Honeyword Quality

The effectiveness of honeywords is typically evaluated using metrics like HWSimilar-

ity, which assess how closely honeywords resemble real passwords. A higher HWSim-

ilarity score indicates a better honeyword generation technique. [9]

4.1.6 Strengths and Limitations

While GPT3 and GPT4 offer powerful tools for honeyword generation, there may

be limitations such as scalability and fine-tuning requirements. Researchers continue
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to explore the strengths and weaknesses of these models in the context of password

security. [10]

Incorporating GPT3 and GPT4 in honeyword generation is a promising step in

bolstering password security, and researchers are actively working to harness the full

potential of these models in safeguarding digital systems and data.

4.2 Honeywords Generation using Chunk-GPT3

4.2.1 Enhancing Password Security with Honeywords Gen-

erated by Chunk-GPT3

In today’s digital age, safeguarding sensitive information is of paramount importance.

Passwords are a fundamental aspect of this security framework, serving as a primary

barrier against unauthorized access to personal, corporate, or governmental systems.

However, the traditional approach to password security, which relies solely on the

secrecy of passwords, is increasingly vulnerable to various forms of attacks. Password

breaches, phishing attacks, and the prevalence of weak and easily guessable passwords

highlight the critical need for advanced security measures.

4.2.2 Honeywords and their Significance

One innovative solution that has emerged to bolster password security is the concept

of “honeywords.” Honeywords are essentially decoy passwords designed to confuse po-

tential attackers. They are inserted into password databases alongside real passwords

and are not meant to be used by legitimate users. The aim is to create a situa-

tion where an attacker who gains access to the database is unable to distinguish real

passwords from honeywords, thereby increasing the uncertainty of the attack. Hon-
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eywords are a proactive defense mechanism, designed not only to detect unauthorized

access but also to deter and disrupt attackers in their tracks.

4.2.3 Chunk-GPT3 as a Tool for Honeyword Generation

Generating honeywords that effectively mimic real passwords, and yet remain distinct

and secure, is a challenging task. This is where artificial intelligence, particularly

OpenAI’s GPT3 model, comes into play. GPT3 is a powerful language model that

has been trained on vast amounts of text data, enabling it to generate human-like

text and understand context.

The code presented in this thesis utilizes OpenAI’s GPT3 to generate honeywords

for real passwords. By providing GPT3 with a real password and associated password

chunks, the code prompts the model to produce a set of honeywords that resemble

the real password while adhering to specified criteria, such as length and character

constraints. GPT3’s natural language generation capabilities make it a valuable tool

for this task, as it can generate honeywords that are contextually convincing and,

thus, more likely to confuse potential attackers.

4.2.4 The Significance of This Approach

The utilization of GPT3 for honeyword generation offers several benefits. It allows

for the automatic and rapid creation of a large number of honeywords, making it a

scalable solution for enhancing password security. Furthermore, GPT3’s ability to

generate contextually relevant honeywords adds a layer of complexity that can sig-

nificantly deter attackers. By providing a robust defense against password breaches,

phishing attempts, and other forms of cyberattacks, honeywords generated by GPT3

contribute to overall information security and data protection.
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The code is designed to generate honeywords, which are fake or decoy passwords

used to enhance security by confusing potential attackers. It employs OpenAI’s GPT3

model to create these honeywords.

1. Honeyword Generation Process: The code consists of two main func-

tions: ‘GPT3 honeywords’ and ‘chaffing by GPT3’.

• GPT3 honeywords: This function generates honeywords for a given real pass-

word and a set of password chunks. It uses GPT3 to generate similar passwords

that adhere to certain criteria, such as length and the absence of digits at the

end.

• Chaffing by GPT3: This function iterates through a data frame containing real

passwords and their associated password chunks, using the ‘GPT3 honeywords’

function to generate honeywords for each real password.

2. API Key: The code requires an API key to access OpenAI’s GPT3 model.

It is essential to replace the placeholder API key with a valid one.

3. Data Source: The code appears to be using a data frame that consists of

strong as well weak password chunks to generate honeywords. You might want to

specify the source of this data in your thesis, as well as its significance.

4. Result Presentation: The code prepares the honeywords and their associ-

ated real passwords for presentation in the ‘Chunk-GPT3 honeywords’ list, which is

used for further analysis and calculating HWSimilarity.
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4.2.5 Honeyword Generation Methodology using Chunk-GPT3

In our honeyword generation study, we utilize the capabilities of GPT3 to create

honeywords for four distinct sets of passwords, each with its unique characteristics

and prompt criteria. Firstly, we have the “Strong Original Passwords” category, in

which honeywords are generated based on strong, unmodified original passwords. The

prompt for GPT3 instructs it to derive 19 distinct passwords that closely resemble the

original password, incorporating predefined password “chunks.” These honeywords

are created without adding digits at the end. For this category, we initially generated

honeywords for the first 100 strong, original passwords and subsequently assessed

their HWSimilarity.

Moving on, we have the “Weak Original Passwords” category, which parallels the

“Strong Original Passwords.” Here, honeywords are produced based on weak, unmod-

ified original passwords, utilizing the same GPT3 prompt. Similarly, we generated

honeywords for the first 100 weak, original passwords and evaluated their HWSimi-

larity.

The third and fourth categories introduce the concept of “Strong Modified Pass-

words” and “Weak Modified Passwords.” In these sets, honeywords are generated

based on strong and weak modified passwords, respectively. To create chunks for

these modified passwords, we employ a password segmentation algorithm. While the

GPT3 prompt criteria remain consistent with the previous categories, the chunks are

now derived from the modified passwords themselves. We have, once again, gener-

ated honeywords for the first 100 passwords in both the strong and weak modified

categories and measured their HWSimilarity. This approach allows us to comprehen-

sively assess the effectiveness of honeyword generation in various password scenarios,

incorporating both original and modified password data.This approach allows us to

compare the effectiveness of honeywords generated from both strong and weak orig-
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inal passwords and to assess the impact of password modifications on honeyword

generation. The first 100 passwords have been used as a sample set for this analysis,

and HWSimilarity serves as a key metric to evaluate the quality and effectiveness of

the generated honeywords.

4.3 Generating Honeywords with GPT4 without

Chunks

In our quest to enhance password security, we explore a unique approach using GPT4.

This approach is distinct from the traditional method of utilizing password chunks,

as it directly generates honeywords from real passwords.

GPT4, with its advanced natural language processing capabilities, is tasked with

creating honeywords that closely resemble real passwords, all without the interme-

diary step of using predefined password chunks. The GPT4 model is provided with

real passwords as input and is prompted to generate a set of honeywords that meet

specified criteria, such as length and character constraints.

This methodology offers a streamlined approach to honeyword generation, by-

passing the segmentation of passwords into predefined chunks. Instead, it leverages

GPT4’s linguistic prowess to craft honeywords that are contextually convincing and

apt to confuse potential attackers.

By directly generating honeywords from real passwords, this approach provides a

fresh perspective on password security enhancement, offering an alternative to tradi-

tional chunk-based methods. It allows for rapid and automated honeyword creation,

contributing to scalable solutions for bolstering password security. Moreover, the

contextually relevant honeywords generated by GPT4 add complexity to the security

landscape, making it more challenging for potential attackers to distinguish between
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real passwords and honeywords.

This approach aligns with the broader mission of strengthening password security

and fortifying defenses against unauthorized access and cyber threats in the digital

realm.

4.3.1 Honeyword Generation Methodology Using GPT4

In the GPT4 honeyword generation process, we craft a specific prompt to instruct the

model to “derive 19 distinct passwords that are similar to the given real password.”

Additionally, we specify that the length of these derived passwords should not exceed

the length of the original password, and we emphasize not adding digits to the end of

the passwords. The GPT4 model is employed for this task. Honeywords are produced

for both the strong and weak password sets, and while our analysis focuses on the

first 100 passwords for efficiency, it extends to assess the HWSimilarity. Notably, the

prompt does not involve the use of password chunks. Instead, GPT4 independently

generates similar passwords based on the original passwords, streamlining the honey-

word creation process and offering a comprehensive evaluation of security measures

for both strong and weak passwords.
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Chapter 5

Results

5.1 Evaluation

To compare the strength of the honeywords we have used the HWSimilarity metric.

The HWSimilarity metric is a method used to compare and evaluate the quality and

effectiveness of honeywords generated using different techniques or methods. It is a

measure specifically designed to assess how well honeywords resemble real passwords

and, by extension, how challenging it is for attackers to distinguish between them.

Here are some key aspects and characteristics of the HWSimilarity metric:

1. Resemblance to Real Passwords: The primary goal of honeywords is to

closely mimic genuine passwords, making it difficult for attackers to differentiate

between the two. The HWSimilarity metric is designed to quantify how closely hon-

eywords generated by a particular method resemble real passwords in terms of their

characteristics, such as patterns, complexity, and structure.

2. Scoring Mechanism: The metric typically assigns a score or a similarity value

to each honeyword generated by a method. This score reflects how well the honey-
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word aligns with the attributes of actual passwords. Higher scores indicate a better

resemblance, while lower scores suggest that the generated honeyword is less convinc-

ing.

3. Evaluation of Different Techniques HWSimilarity can be used to compare

honeywords generated by various techniques. This allows researchers and security

practitioners to determine which method is more successful in creating honeywords

that closely match real passwords.

4. Customizable Parameters The specific criteria and factors used to calculate

the similarity score may vary depending on the context and the goals of the evaluation.

Researchers can tailor the HWSimilarity metric to suit their specific needs.

5. Quantifying Effectiveness: The HWSimilarity metric helps in quantifying

the effectiveness of honeyword generation techniques. Techniques that produce hon-

eywords with higher similarity scores are considered more successful in deceiving

potential attackers.

6. Security Enhancement: The aim of using the HWSimilarity metric is to

improve the security of systems. By generating honeywords that are difficult to

distinguish from real passwords, the chances of early detection of data breaches are

enhanced, which in turn strengthens overall cybersecurity.

It’s important to note that the specific implementation and parameters of the

HWSimilarity metric may vary from one study or research project to another. Re-

searchers may customize the metric to align with their objectives and the characteris-

tics of the passwords and systems they are working with. Overall, the HWSimilarity

metric is a valuable tool for evaluating the effectiveness of honeyword generation
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Original Password Chunk-GPT3 Re-engineered Chunk-GPT3 GPT4
vitalik3104slon vitalik3104 vital3104slon VitalikSlon3104

vitalikslon vitali3104slon SlonVitalik3104
vitalik3104s vitalik3104scon vit4likSlon310

Table 5.1: Honeyword Generation Techniques

methods in enhancing password security and data breach detection.

5.2 HWSimilarity Scores

To evaluate the effectiveness of our improved honeywords, we employ the HWSim-

ilarity metric introduced in [8]. This metric leverages the capabilities of MPNet, a

pre-trained language model, to convert honeywords and passwords into vector rep-

resentations. By utilizing the semantic understanding embedded within MPNet, the

system calculates the cosine similarity between each honeyword vector and its corre-

sponding genuine password vector. This approach allows for a comprehensive assess-

ment of the semantic similarity between honeywords and real passwords, leading to

a more meaningful and reliable evaluation.

Let us illustrate some examples of the honeywords generated using the Re-engineered

PwdSegment technique and compare them with the honeywords produced by Chunk-

GPT3 as show in table 4.1. Additionally, we compare the overall similarity scores of

the weak and strong password datasets.

In our evaluation, we’re analyzing the HWSimilarity scores of three sets of gen-

erated honeywords to assess their effectiveness in mimicking real passwords as show

in table 4.2. These sets are Chunk-GPT3, which generates honeywords for strong

original and weak original passwords with the use of password chunks, Re-engineered

Chunk-GPT3, which generates honeywords for strong Re-engineered and weak Re-

engineered passwords with the same chunking technique, and GPT4, which generates
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Password Strength Chunk-GPT3 Re-engineered Chunk-GPT3 GPT4
Zxcvbn-strong 0.87 0.84 0.94
Zxcvbn-weak 0.83 0.90 0.65

Table 5.2: Comparision of Chunk-GPT3 and Re-engineered Chunk-GPT3 and GPT4

honeywords for strong passwords without utilizing any password chunks. The goal

is to compare these approaches and determine which one excels in creating honey-

words that closely resemble real passwords, particularly focusing on the zxcvbn-weak

password category.

The table below displays the HWSimilarity results for the honeywords generated

by the different approaches:

Password Strength: This column indicates the strength of the passwords being

evaluated, categorized as “Zxcvbn-strong” and “Zxcvbn-weak.” “Zxcvbn” typically

refers to a password strength estimation tool, and these categories denote the respec-

tive password strength levels.

Chunk-GPT3: This column represents the HWSimilarity score for honeywords

generated using the Chunk-GPT3 approach. For “Zxcvbn-strong” passwords, the

HWSimilarity score is 0.87, indicating that these honeywords closely resemble real

strong passwords. For “Zxcvbn-weak” passwords, the score is 0.83, suggesting a good

resemblance to real weak passwords.

Re-engineered Chunk-GPT3: This column displays the HWSimilarity score for

honeywords generated with the Re-engineered Chunk-GPT3 method. For “Zxcvbn-

strong” passwords, the score is 0.84, demonstrating a reasonable resemblance to strong

real passwords. In the case of “Zxcvbn-weak” passwords, the score is notably higher

at 0.90, indicating that this approach excels in mimicking real weak passwords.
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Figure 5.1: HWSimilarity Scores of Chunk-GPT3, Re-engineered Chunk-GPT3, and
GPT4 for zxcvbn strong passwords.

GPT4: This column presents the HWSimilarity score for honeywords generated

by GPT4 without the use of password chunks. For “Zxcvbn-strong” passwords, the

score is 0.94, signifying a very close resemblance to strong passwords. However, for

“Zxcvbn-weak” passwords, the score is lower at 0.65, suggesting that GPT4 may not

perform as well in creating honeywords that closely mimic weak passwords.

The table illustrates that GPT4 is highly effective in generating honeywords

closely resembling strong passwords, scoring 0.94 in the “Zxcvbn-strong” category.

However, for “Zxcvbn-weak” passwords, its performance is comparatively weaker,

scoring 0.65. In contrast, the Re-engineered Chunk-GPT3 approach excels in creat-

ing honeywords for weak passwords, with a score of 0.90, while Chunk-GPT3 performs

slightly better in the “Zxcvbn-strong” category. These results suggest that the re-

engineered chunking technique is particularly beneficial for zxcvbn-weak passwords.

Individual bar charts are generated for each password category (Zxcvbn-strong
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Figure 5.2: HWSimilarity Scores of Chunk-GPT3, Re-engineered Chunk-GPT3, and
GPT4 for zxcvbn weak passwords.

and Zxcvbn-weak) to provide a more detailed comparison of the HWSimilarity scores

for each approach. This allows for a focused assessment of how well each approach

performs for a specific password category.

The generated heatmap, as shown in figure 5.3, known as the “HWSimilarity

Comparative Matrix,” offers a comprehensive visual representation of the compara-

tive performance of three distinct honeyword generation approaches (Chunk-GPT3,

Re-engineered Chunk-GPT3, and GPT4) across two password categories: “Zxcvbn-

strong” and “Zxcvbn-weak.” Each cell in the heatmap contains a numerical HWSim-

ilarity score, reflecting how well the honeywords generated by a particular approach

align with real passwords. Darker colors denote higher scores, indicating that the hon-

eywords closely resemble real passwords, while lighter colors represent lower scores,

suggesting that the honeywords may not convincingly mimic real passwords within

the specific category. The annotations within each cell offer precise numerical values
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Figure 5.3: Heat map of HWSimilarity scores.

for quick reference. This visualization facilitates an in-depth analysis of the strengths

and weaknesses of each approach, aiding in the identification of trends and variations

in performance across different password categories, thus providing valuable insights

for assessing honeyword generation techniques in enhancing password security.
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Chapter 6

Future Work

When it comes to the scrutiny of passwords, it’s absolutely essential to take into

consideration specific patterns and data they may contain, particularly when it relates

to dates of birth (DOB) and random numbers. These patterns can serve as a key

insight into the potential vulnerabilities or risks associated with these passwords.

Let’s delve into the strategies for recognizing and effectively managing passwords

that incorporate DOB information or random numbers.

Passwords that integrate DOB details, such as “12tania1995,” call for meticulous

examination to unveil and mitigate any associations with birth dates and years. In

this context, “12” may correspond to the birth date, while “1995” signifies the birth

year. To detect these types of passwords, one can conduct searches for four-digit

numbers within the range of 1900 to 2100 to flag potential birth years. Additionally,

in the context of dates, considering a range from 1 to 31 may be valuable. It’s worth

noting that single-digit dates, like “2,” might also manifest as “02.” Keeping a sharp

eye out for these patterns is an effective means to pinpoint passwords that might

contain DOB information and assess the potential risks they pose. [14]

Passwords that include DOB-related information but are expressed with a two-
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digit birth year, such as “12tania95,” can pose a considerable challenge. Converting

these digits into alphabetic chunks can be intricate, adding an extra layer of com-

plexity to the analysis. Passwords with two-digit birth years may not readily lend

themselves to straightforward recognition or detection through conventional transfor-

mations.

When it comes to passwords featuring random numbers, as in “Tania4682,” a

hands-off approach is advisable. These random numbers within passwords often bear

connections to personal information, like the last four digits of a phone number,

a house number, or even a vehicle registration. Tampering with or altering these

random numbers could inadvertently strip away valuable context or compromise the

overall security of the password. Consequently, exercising vigilance and discretion

when dealing with passwords containing random numbers is paramount, as they may

hold significance for the individuals who use them. [2]

In certain situations, passwords with seemingly ambiguous numeric components,

like “07tania,” may give rise to concerns. The presence of “07” could be potentially

construed as a birth date or birth month. Introducing changes or transformations to

such passwords carries inherent risks, as the numeric component could bear personal

significance or hint at sensitive details. Therefore, special attention should be given to

the potential ramifications of modifying passwords in these particular scenarios. [13]

The analysis of passwords mandates a keen awareness of patterns tied to dates

of birth and random numbers. Detecting and managing passwords containing DOB-

related data necessitates a thorough assessment of birth years and dates. Passwords

containing random numbers should be treated with care due to their potential as-

sociations with personal information. [14] Furthermore, passwords featuring numeric

components that appear ambiguous, such as birth dates or birth months, should be

subject to a nuanced evaluation while considering the possible consequences of any
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modifications. [11] [5]

Looking ahead, there are several potential avenues for future research and im-

provement in the realm of honeyword generation and password security. One key

area of focus could involve enhancing the password chunking algorithm. As observed,

the HWSimilarity scores between Chunk GPT3 and Modified Chunk GPT3 do not ex-

hibit a significant difference. Therefore, refining and fine-tuning the password chunk-

ing process may lead to an increase in the HWSimilarity score. The above-mentioned

adjustments could involve optimizing the segmentation of passwords into chunks,

ensuring that they effectively confound attackers while maintaining usability for le-

gitimate users. This fine-tuning process could leverage the advanced capabilities of

models like GPT4 to create more robust honeywords.

Additionally, exploring the potential of Chunk GPT4 for modified chunks in hon-

eyword generation is a promising avenue for future work. With the continuous ad-

vancements in AI and natural language processing, GPT4 represents a cutting-edge

tool that can be harnessed for improving password security. Researchers and organi-

zations could investigate whether GPT4 can develop honeywords that outperform pre-

vious models in terms of resistance to targeted attacks. Its improved understanding

of context, multilingual capabilities, and fine-tuning options may offer new strategies

for generating highly secure honeywords. [12]

Moreover, it’s essential to maintain a keen eye on evolving threats and attacker

techniques. As attackers become more sophisticated, the field of honeyword gener-

ation must adapt to counter these emerging challenges. This necessitates ongoing

research to stay ahead of potential security threats and ensure that honeywords con-

tinue to effectively protect user accounts.

In summary, the future of honeyword generation and password security holds

great potential for refinement and innovation. By fine-tuning password chunking
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algorithms, exploring the capabilities of advanced models like GPT4, and staying

attuned to evolving cybersecurity threats, researchers and security experts can work

towards more robust and effective defenses against targeted attacks and unauthorized

access.
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Chapter 7

Conclusions

In conclusion, passwords play a critical role in keeping our digital world secure. They

are our first line of defense in online security. To make this defense stronger, we

need robust methods like Honeyword Generation Techniques (HGTs) to protect our

passwords from targeted attacks.

With the advancements in deep learning and natural language processing, at-

tackers face a tougher challenge when trying to crack passwords, especially when

honeywords closely resemble real passwords, even when they contain personal infor-

mation.

While Chunk-GPT3 has shown its effectiveness, it has some limitations, especially

in how it breaks down passwords into segments. Attackers could potentially exploit

these weaknesses. Our research compared different methods of generating honeywords

using GPT4, Modified Chunk-GPT3, and Chunk-GPT3. We found that GPT4 is

excellent at creating honeywords that look like strong passwords but not as great

with weak passwords. On the other hand, Modified Chunk-GPT3 does a fantastic job

with weak passwords, while Chunk-GPT3 is slightly better for strong passwords [18].

In the end, our research highlights the strengths and weaknesses of these honey-
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word generation methods, providing valuable insights into improving password secu-

rity in different situations. Despite some limitations, the enhancements made to the

PwdSegment technique have proven especially useful for weaker password datasets,

although they might not work as well for stronger ones. Even with these minor draw-

backs, honeywords remain effective as deceptive decoy passwords. They stay different

from real passwords, maintain the original chunk order, and don’t add numbers at

the end. By introducing case variations and numerical changes, honeywords become

more diverse and complex. Despite these limitations, honeywords still play a crucial

role in detecting and deterring unauthorized access attempts, confusing potential at-

tackers, and alerting administrators to potential threats. Integrating these advanced

technologies into network security holds a lot of promise and significantly improves

overall security measures.
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