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Abstract 

Automated quality control is essential across various industries to reduce manual 

inspection and improve operational efficiency. While there are advances in computer vision 

and machine learning for defect detection, challenges persist, such as defect variability and 

the computational burden. This thesis presents specialized deep learning architectures 

addressing defect classification, segmentation, and detection in textiles, civil engineering, 

and manufacturing. For textiles, a novel system merges capsule networks with 

convolutional neural networks and a spatial attention module, achieving a 99.42% accuracy 

on the TILDA dataset. In civil engineering, the DepthCrackNet model, optimized for 

pavement crack detection, attains mIoU scores of 77.0% and 83.9% on the Crack500 and 

DeepCrack datasets. In manufacturing, the E-UNet3+ model for steel defect detection 

showcases a mIoU score of 86.19% on the SD-saliency-900 dataset. The research's core 

contribution lies in pioneering deep learning architectures that precisely detect defects 

across sectors. 
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Chapter 1. Introduction 

1.1 Overview 

 In the era of Industry 4.0, advanced technologies like the Internet of Things (IoT), 

robotics, and machine learning are revolutionizing the landscape of manufacturing 

processes. These advancements significantly enhancing productivity, efficiency, and 

quality in various industrial settings. Machine learning and computer vision technologies 

are essential in manufacturing for tasks like object tracking [1], object recognition [2], 

visual servoing [3], pattern recognition [4], and defect detection [5], as depicted in Figure 

1.1. Deep learning techniques enhance the efficacy and accuracy of these applications [6]. 

 

Figure 1.1: Industrial computer vision applications. 

 The arrival of Industry 4.0 marks a new era where automation is essential element in 

manufacturing technologies. This revolution is not only transforming traditional 

manufacturing processes but also emphasizing the role of quality assurance in the entire 
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production pipeline. Defect detection and classification have thus become critical aspects 

that ensure quality control in industrial manufacturing processes [7]. Automated systems 

that can promptly and accurately identify and categorize defects in materials or products 

can significantly contribute to cost-efficiency and product reliability. The significance of 

this cannot be overstated in various industries such as automotive manufacturing, 

aerospace, and consumer electronics, where even minor defects can have critical safety or 

financial implications. 

 Traditionally, defect detection has been performed through visual inspection by 

human operators [8]. However, this approach has numerous limitations, including 

inefficiency and inconsistency. With advancements in computer vision and deep learning 

technologies, there has been a significant shift toward automated defect detection systems. 

These systems leverage the power of algorithms to scan, identify, and categorize defects in 

materials or products with high accuracy and efficiency [9]. 

1.2 Problem Statement and Research Questions 

 In the realm of manufacturing and infrastructure maintenance, the automatic 

detection and classification of defects play a crucial role in ensuring quality and safety. 

However, this task is filled with challenges, mainly because of the complexity and 

differences in the defects that must be detected. 

 

Firstly, in the textile industry, the quality control of fabrics is a significant concern. The 

diversity in textures, coupled with the irregular shapes, varying sizes, and complex 

backgrounds of fabric defects, poses a substantial challenge for automated systems. 
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Traditional approaches often fall short in accurately identifying these defects due to their 

limited capability in handling complex, multiscale features inherent in fabric images. 

Similarly, in the field of civil engineering, specifically in road maintenance, the automatic 

detection of pavement cracks is vital for road safety. The variability of cracks, differences 

in pavement materials, and the presence of various anomalies on the pavement surface add 

layers of complexity to the automated detection process. Existing systems struggle with 

effectively capturing and processing the 3D spatial relationships and contextual 

information necessary for accurate crack detection. Moreover, in steel manufacturing, the 

detection of surface defects is critical for maintaining product quality. Automated defect 

detection in this domain faces hurdles due to the varied types of defects, their subtle 

contrasts against complex backgrounds, and diverse sizes. The conventional defect 

detection methods often fail to achieve the high precision required due to limitations in 

feature extraction and the inability to focus on relevant features amidst diverse 

backgrounds. Addressing these challenges, this thesis proposes three novel deep learning 

models tailored for defect classification and segmentation in different contexts: textile 

fabrics, pavement surfaces, and steel surfaces. Each model introduces solutions to 

overcome the specific challenges encountered in its respective application domain. By 

leveraging advanced neural network architectures, attention mechanisms, and feature 

learning strategies, these models aim to set new standards in automated defect detection, 

ensuring both efficiency and accuracy in quality control across various industries. The 

overarching goal of this research is to push the boundaries of what's achievable with 

automated defect detection systems, demonstrating that with the right combination of deep 

learning techniques, these systems can not only match but surpass the capabilities of 
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traditional methods. The models proposed in this thesis aim to contribute significantly to 

their respective fields by providing more reliable, efficient, and accurate defect detection 

solutions, thus enhancing quality control and safety in various industrial and infrastructural 

sectors. 

1.2.1 Research Questions 

 This thesis seeks to advance the field of defect classification and segmentation using 

deep learning models in various industrial contexts. The research is specifically focused on 

developing models that can handle the complexities and variability of defects in textile 

manufacturing, road maintenance, and steel production. Based on these objectives, the 

research questions are as follows: 

 How can the proposed deep learning models be optimized to achieve superior 

performance in defect classification and segmentation compared to traditional 

methods in their respective industrial applications? This question involves a 

comparative analysis of the proposed models against existing methods, seeking to 

understand the advancements these models offer in terms of accuracy, efficiency, 

and reliability. 

 How can deep learning, specifically a capsule-based neural network, be enhanced to 

improve the accuracy of texture defect classification in fabrics? This question aims 

to explore the limitations of traditional capsule networks and investigate how 

integrating CNNs and spatial attention modules can enhance their capability to 

accurately classify complex fabric defects. 

 What deep learning architecture, particularly in the context of DepthCrackNet, is 

most effective for detecting and segmenting pavement cracks, considering their 
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variable nature and the presence of anomalies? This question seeks to assess the 

effectiveness of the DepthCrackNet model, focusing on its unique combination of 

3D spatial features and Multi-Head Attention mechanism, in accurately detecting 

pavement cracks under various public datasets. 

 In what ways can the UNet3+ model be modified, particularly through the integration 

of a MultiScale Feature Learning Module and CBAM, to enhance the detection of 

surface defects on steel? The aim here is to evaluate the effectiveness of the E-

Unet3+ model in detecting diverse types of defects on steel surfaces, focusing on 

how its enhanced feature learning capabilities and attention mechanisms contribute 

to its performance. 

By addressing these questions, this thesis aims to provide contributions to the field of 

automated defect detection, offering solutions that enhance the accuracy, efficiency, and 

adaptability of defect classification and segmentation processes in various industrial 

settings. 

 

1.3 Different Approaches in Defect Analysis 

 The field of defect analysis has multiple facets, and the problem can be subdivided 

into various approaches, each with its own set of challenges and requirements [10]. Below 

are the key tasks commonly encountered in defect analysis: 

a) Defect Classification: Classification of defects relies on identifying the 

specific type of defect presented in an image, usually by labeling it as one of 

several predefined classes. Machine learning models, particularly neural 
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networks, have shown great promise in performing this task. However, the 

majority of these models lack the capability to focus on localized, intricate 

patterns in the images, which is often crucial for identifying subtle defects. 

This is crucial for quality control processes that require an understanding of 

defect types. 

b) Defect Detection: Aims to not only classify the objects (or defects) in images 

but also to locate them by drawing bounding boxes around each object. This 

is particularly useful in scenarios where the spatial location of defects 

matters. 

c) Defect Segmentation: Segmentation tasks go beyond classification and 

object detection by identifying the precise pixel locations of the defect in the 

image. This enables a more detailed analysis, which is essential for 

applications where the extent and shape of the defect are crucial for assessing 

the severity and potential impact. 

d) Anomaly Detection: Anomaly detection stands apart as it does not rely on 

prior labeling of defect types. Instead, it learns the 'normal' state of an object 

or scene and identifies anomalies or deviations from this learned norm. This 

is particularly useful for identifying new or rare types of defects that have not 

been previously cataloged. 
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Figure 1.2: An illustration of defect classification, localization, and segmentation. 

 These tasks require sophisticated models that can understand the intricate patterns 

and variations in image data to make accurate predictions. The advances in machine 

learning algorithms and computational hardware have paved the way for more complex 

and efficient models capable of performing these tasks with high accuracy. However, with 

the rise of complex manufacturing processes that employ a wide range of materials and 

techniques, there is a growing need for robust and versatile defect detection systems. 

 This thesis aims to address these challenges by proposing three distinct but 

interconnected machine learning models. Each model is designed to solve a specific sub-

problem in this domain - ranging from a texture defect classification model using a capsule-

based neural network, pavement crack segmentation using 3D spatial features, steel surface 

defect segmentation using enhanced UNet3+. 
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1.4 Scope and Limitations 

1.4.1 Scope 

a) Which Defect Analysis Approach Covers (Technological Scope) 

 This research integrates machine learning and computer vision for industrial 

quality control applications. My focus is on identifying defects, with a 

special emphasis on their classification and segmentation. 

b) Where It Can Be Used (Industrial Scope) 

 The models I have created are particularly fine tuned for industrial 

applications such as texture defects, pavement cracks, and steel surface 

defects. Additionally, these models and models have potential utility in 

other sectors requiring accurate defect detection, like medical imaging in 

healthcare or infrastructure inspection in civil engineering. 

c) Range of Data Used (Dataset Scope) 

 The research will use multiple domain-specific datasets to train and validate 

and fine-tune the proposed models. Each dataset is selected to represent the 

type of defects that the corresponding model aims to detect, classify, or 

segment. These datasets include images with varying degrees of 

complexity, captured under different environmental conditions, to ensure 

that the models are robust and adaptable. 

1.4.2 Limitations 

a) Computational Complexity 
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 While aiming for high accuracy and precision, some of the proposed models 

involve complex architectures that may require substantial computational 

resources for training and inference. This could restrict their immediate use 

in settings with limited resources. 

b) Generalizability Across Materials 

 The thesis primarily focuses on specific types of defects on certain materials 

(e.g., fabric surface defects, steel surface defects). While the principles may 

apply broadly, the models might require fine-tuning or adaptation to work 

effectively on other types of materials or defects. 

c) Lack of Real-world Validation 

 Although the models are rigorously tested using available datasets, the 

validation will primarily be simulation-based. Actual industrial settings 

might present additional challenges, such as varying lighting conditions, 

that are not fully accounted for in the datasets used for training and 

validation. 

This thesis aiming to improve automated systems for detecting defects by introducing new, 

deep learning models. However, the research acknowledges its limitations in 

computational demands, generalizability, and real-world applicability. Understanding 

these limitations is essential for interpreting the results of this study and for figuring out 

where to focus future research. 
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1.5 Research Contributions 

 This thesis introduces improvements in the field of defect classification and 

segmentation through deep learning models, specifically targeting applications in textile 

manufacturing, road maintenance, and steel production. In summary, this thesis makes the 

following contributions: 

1.Advancements in Fabric Defect Classification with Capsule Networks and CNN 

Integration: 

 The thesis integrates Capsule Networks with traditional CNNs, utilizing 

pre-trained models like DenseNet201 and InceptionV3. This integration 

enhances the model's capability in capturing complex hierarchical feature 

relationships, crucial for accurate defect classification in fabric textures. 

 The research establishes a new benchmark on the TILDA texture datasets, 

demonstrating defect classification performance and effectively handling 

real-world fabric defect scenarios. 

2.Development of DepthCrackNet for Enhanced Pavement Crack Detection: 

 The DepthCrackNet model is another contribution of this thesis, employing 

the Double Convolutional Encoder (DCE) structure for optimized feature 

extraction and parameter efficiency. 

 A novel TriInput Multi-Head Spatial Attention (TMSA) mechanism is 

introduced, processing three input feature maps simultaneously. This 

mechanism uses multi-head attention to extract richer contextual 

information, thereby enhancing segmentation precision. 
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 The Spatial Depth Enhancer (SDE) module is another innovative addition, 

skillfully extending two-dimensional feature maps into a three-dimensional 

context to amplify depth perception and spatial representation. 

3.Creation of the Enhanced UNet3+ Model for Steel Surface Defect Detection: 

 The E-UNet3+ model is introduced with a novel encoder structure that 

incorporates varied dilation rates and DropBlock regularization. This 

structure is crucial for capturing multi-scale features, enhancing the model's 

adaptability and robustness. 

 An innovative adaptation involves augmenting traditional max-pooling in 

UNet3+ with strided Conv2D layers, followed by concatenation and a 1x1 

convolution. This approach helps retain critical feature information and 

elevates the model's predictive power. 

 Experimental evaluations demonstrate that the E-UNet3+ model exhibits 

enhanced performance compared to previous studies and state-of-the-art 

models. The architecture effectively identifies surface defects, including 

various types, background similarities, and diverse sizes, marking a 

substantial advancement in steel surface defect detection. 

These contributions collectively represent advancement in the realm of automated defect 

detection using deep learning. The findings and innovations presented here can contribute 

valuable insights and tools for enhancing quality control and safety in textile 

manufacturing, road maintenance, and steel production through advanced deep learning 

applications. 
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1.6 Thesis Outline 

 This thesis is divided into several chapters, each with a specific role that adds to the 

overall story of improving automated defect detection. Here's a summary of what each 

chapter covers: 

 Chapter 1 presents the context for the research, highlighting the significance 

of quality control and defect detection in various industries. 

 Chapter 2 offers a comprehensive overview of the existing literature in the 

field of machine learning models for defect detection and classification. It 

also identifies the gaps in the current state of the art, providing the academic 

backdrop against which this thesis is situated. 

 In chapter 3 the development and evaluation of a capsule-based neural 

network for texture defect classification are discussed. The chapter begins 

with the rationale behind choosing a capsule-based architecture, followed by 

a detailed explanation of the methodology, experiments, and results. 

 Chapter 4 focuses on a specialized model for pavement crack segmentation. 

The chapter outlines the model architecture, incorporating 3D spatial features 

and a multi-head attention mechanism, and presents experimental results 

validating its effectiveness. 

 Chapter 5 discusses a model developed for steel surface defect segmentation. 

It describes the enhanced UNet3+ architecture employed and how it 

incorporates multiscale feature learning and attention mechanisms for better 

segmentation performance. The model's efficacy is demonstrated through a 

series of experiments. 
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 Chapter 6 summarizes the findings from the research chapters and outlines 

avenues for future work. It also discusses the broader implications of the 

research and recommends subsequent studies to be conducted. 
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Chapter 2. Literature Review 

2.1 Introduction 

 Advances in technology and research are making more industries, like textiles and 

road safety, interested in using machines to detect defects. Manual inspections, although 

considered the traditional method, are not only labor-intensive but are also prone to human 

errors. With the increasing demand for high-quality products and the need for timely 

maintenance in infrastructures, the requirement for accurate, efficient, and swift automated 

defect detection systems has been more pressing than ever. The field of detecting and 

classifying defects has greatly evolved, with many methods developed to address the 

various challenges in different industries. In the textile industry, the main focus is on 

making sure the fabric is of good quality by correctly identifying fabric defects, which 

come in different patterns, shapes, and sizes and often blend into complicated backgrounds. 

Similarly, in road safety, effective identification of pavement cracks can substantially 

reduce accidents and maintain roads for longer. Meanwhile, the manufacturing sector, 

especially steel production, emphasizes the timely detection of surface defects to guarantee 

product quality. All these challenges converge on a common point: the necessity of 

automated defect detection systems that can outperform manual inspections in terms of 

accuracy and efficiency. Recent advances in deep learning and computer vision have led 

to new, innovative methods specifically designed to meet these challenges. Notably, the 

applications of advanced neural network architectures, such as capsule networks, U-Net 

shaped models, and transformers, have demonstrated considerable promise in enhancing 

defect and anomaly detection capabilities. Furthermore, these models often incorporate 
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mechanisms like spatial attention, multiscale feature learning, and novel encoding 

techniques to elevate their performance metrics. 

 This chapter delves into the existing literature on defect and anomaly detection, 

aiming to provide a comprehensive understanding of current methodologies, their 

underlying principles, and their practical applications. It also examines recent key studies 

to clearly explain the latest techniques used in specific areas like textile defect 

classification, pavement crack segmentation, steel surface defect detection, and general 

anomaly detection and localization. The following sections will go into detail about each 

area, providing a thorough review of significant research contributions and offering 

insights into their strengths, weaknesses, and possible future developments. 

2.2 Texture Defect Classification 

 In recent years, the textile industry has gained attention for its major impact on the 

world's economies. With increasing demand, ensuring the quality of fabrics has become a 

paramount concern for manufacturers. As fabric defect detection stands as a pivotal aspect 

of quality assurance, the advancements in computer vision and machine learning offer 

immense promise. By integrating these technologies, researchers hope to redefine the 

boundaries of fabric inspection, paving the way for both accuracy and efficiency. This 

literature review delves into the different methods used in detecting and classifying fabric 

defects, uncovering the challenges and successes of each approach. 

 Fabrics, with their intricate patterns and varying textures, pose unique challenges for 

defect detection. Imperfections can range from minuscule thread anomalies to significant 

texture variations. Traditional manual inspections, although detailed, are time-consuming 
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and can be prone to human errors. Hence, the quest for automated solutions has led to an 

influx of research in this realm. Numerous studies have embarked on the journey to 

decipher fabric anomalies using advanced algorithms [11]. When broadly categorizing the 

research efforts, one can identify four dominant paradigms: statistical, spectral, model-

based, and learning-based techniques. While each category has its distinct methodologies 

and principles, their unified goal remains consistent: to address and overcome the 

intricacies inherent in textile defect analysis [12]. 

 Statistical Methods: 

 A major fraction of fabric defect detection methodologies relies on statistical 

analysis, rooted deeply in fundamental image processing procedures. The essence of these 

methods lies in their capability to decipher variations in patterns, drawing upon the inherent 

statistical properties of fabrics. These techniques operate on a core assumption that fabrics, 

in their pristine state, exhibit a uniform statistical behavior. Thus, any deviation from this 

uniformity potentially signals a defect. The art of these methods lies in discerning these 

deviations from the norm. Widely recognized strategies in this domain include 

morphological operations [13] which focus on altering the structure of objects within an 

image, thresholding [14] that bifurcates an image into segments based on pixel intensity, 

and auto-correlation functions [15] which assess the similarity between sequences of pixels 

in an image. These techniques are often employed in tandem to enhance defect detection 

rates. A particularly noteworthy method integrates the Gray Level Co-occurrence Matrix 

(GLCM) with Local Binary Patterns (LBP) [16]. Here, LBP delves into capturing the 

minute nuances and variations in fabric images, thereby identifying local anomalies. On 

the other hand, GLCM zooms out to observe the broader picture, gathering data on the 
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global texture statistics of the fabric. This duality, combining both micro and macro 

perspectives, enriches the data pool, setting the stage for a more refined classification 

process. Another method couples Coordinated Clusters Representation with LBP, 

harnessing the power of the Rough Set Theory for a nuanced fabric classification [17]. In 

light of these developments, it's evident that statistical methods, with their foundational 

principles and innovative adaptations, continue to be a cornerstone in the world of fabric 

defect detection. As research progresses, it is anticipated that these methods will undergo 

further refinements, elevating their precision and applicability. 

 Spectral Methods: 

 At the intersection of mathematics and image processing, spectral methods have 

emerged as a dominant force in the fabric defect detection arena. They center on 

manipulating images across various domains, providing a unique lens to discern potential 

anomalies. These methods transition image data between the spatial and frequency 

domains, thereby highlighting aspects of the image that might not be evident in its native 

form. When applied to fabrics, these transitions can reveal subtle irregularities in texture 

and pattern, which might be indicative of defects. Three techniques often steal the spotlight 

in spectral analyses: the Wavelet transform, the Fourier transform, and the Gabor transform 

[18]. While the Wavelet transform is adept at capturing localized nuances across multiple 

orientations, the Fourier technique in converting signals from the time domain to the 

frequency domain, offering a broader overview [19]. The Gabor transform, with its 

versatility, straddles both domains, offering insights that are both detailed and 

comprehensive. The Gabor filter, for instance, has seen numerous implementations and 

refinements to optimize its defect detection capabilities [20], [21]. One standout approach 



18 

 

involved an adaptive wavelet-based feature extraction coupled with a Euclidean distance 

detector, yielding good results, especially in the context of plain and twill fabrics [22]. 

 Model-Based Methods: 

 As the name suggests, model-based approaches hinge on the use of a predetermined 

model, usually representing defect-free fabric, to compare and evaluate inspection images. 

These methods revolve around the principle of using a standard or reference. Any deviation 

from this reference, which represents the ideal fabric, potentially points to a defect. Among 

the forerunners in this domain are the Autoregressive models and the Markov Random 

Field methods [23]. The Autoregressive model, in particular, offers a computational edge, 

characterizing randomness based on the time domain and often yielding solutions derived 

from linear equations [24]. A noteworthy exploration in this category saw the use of the 

Gaussian Markov Random Field (GMRF) to emulate defect-free textures on fabric images 

[25]. This research framed defect detection as a statistical hypothesis testing challenge, and 

though the results were promising, it also highlighted the need for more expansive testing 

and evaluation. With the rise of machine learning, it was only a matter of time before its 

ability was harnessed for fabric defect detection. Learning-based methods utilize labeled 

data sets to train models, which then extrapolate from this learning to identify defects in 

new, unseen fabric images. At the heart of these methods lies the principle of learning from 

data. By feeding these models a plethora of examples, they "learn" to recognize patterns, 

which they subsequently use to identify anomalies in fabric samples. The techniques under 

this umbrella are varied, encompassing Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), Regression models, Nearest Neighbor (NN) techniques, and more 

elaborate methodologies. An intriguing proposal came from [26], who introduced the 
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MSCDAE network model for fabric defect detection, using defect-free images for training 

and incorporating data augmentation techniques. Another significant contribution emerged 

from [27], which melded Artificial Neural Networks with CoHog features, achieving real-

time detection efficiencies in an industrial context. A further innovation saw the 

introduction of a CNN-based approach [28], segmenting fabric images into patches and 

utilizing distance-matching functions for enhanced defect detection. 

In essence, the advancements in spectral, model-based, and learning-based methods 

underscore the dynamic and evolving nature of fabric defect detection. As technology and 

research converge, it's anticipated that these methods will see further refinements, pushing 

the boundaries of what's possible in the realm of fabric quality assurance. 

Method 

Category 
Description Reference Methodology Advantages Limitations 

S
ta

ti
st

ic
a
l 

Utilizes 

fundamental 

image 

processing and 

statistical 

analysis to detect 

variations in 

fabric patterns. 

[13] 
Morphological 

operations 

Can clarify and emphasize 

key structural features; 

robust against noise in 

binary images 

May alter or remove 

important features if not 

carefully applied; limited in 

handling color textures 

[14] 
Thresholding 

techniques  

Easy to implement; efficient 

for real-time applications; 

well-suited for binary and 

simple textures 

Poor performance under 

varying lighting conditions; 

not suitable for complex 

textures 

[15] 

Auto-

correlation 

functions 

Good for periodic pattern 

detection and textural 

feature analysis 

Performance degrades with 

noise; computational 

complexity can be high for 

large images 

[16] 
GLCM with 

LBP 

Offers a detailed textural 

analysis by combining two 

powerful descriptors 

GLCM is sensitive to the 

choice of distance and angle 

parameters; LBP may miss 

larger patterns due to local 

analysis 

[17] 

Coordinated 

Clusters with 

LBP and 

Rough Set 

Theory 

Integrates pattern 

recognition with uncertainty 

handling, which may offer 

robust performance in 

ambiguous scenarios 

Method complexity can 

hinder real-time application; 

may require extensive 

training and parameter 

tuning 
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S
p

ec
tr

a
l 

Employs 

mathematical 

transformations 

to reveal fabric 

defects by 

highlighting 

irregularities in 

different 

domains. 

[18] 

Spectral 

methods 

(Wavelet, 

Fourier, Gabor 

transforms) 

Effective in multi-scale and 

orientation-specific defect 

detection; useful for a wide 

range of textures 

Choosing the right transform 

or a set of parameters can be 

non-trivial; may not be 

optimal for non-periodic 

patterns 

[19] 
Fourier 

transform 

Excellent for identifying 

periodicity and global 

textural properties; 

relatively fast with FFT 

Ineffective for localizing 

defects in the spatial domain; 

can be less intuitive to 

interpret 

[20]  
Gabor filter 

optimizations 

Balances spatial and 

frequency information; 

tunable for specific 

orientations and scales 

Optimization process can be 

complex; Gabor filters 

generate a large amount of 

data which can be 

cumbersome to process 

[22] 

Adaptive 

wavelet-based 

feature 

extraction 

Particularly strong in 

capturing hierarchical and 

localized fabric defects 

Requires careful tuning of 

wavelet functions; may be 

computationally expensive 

M
o
d

el
-B

a
se

d
 

Uses a pre-

determined 

model 

representing 

defect-free 

fabric as a 

benchmark for 

detecting 

deviations 

indicative of 

defects. 

[23] 
Autoregressive 

models  

Utilizes time-series analysis 

techniques that can be 

powerful for texture 

modeling  

Assumptions of linearity and 

stationarity can be limiting 

for complex fabric patterns 

[25] 

Gaussian 

Markov 

Random Field 

(GMRF)  

Capable of modeling 

complex stochastic textures 

with spatial dependencies

  

Computationally intensive, 

especially for large-scale 

problems; sensitive to model 

parameters 

[26] 
MSCDAE 

network model 

Leverages the ability of 

deep networks to learn high-

level features; effective 

even with a small number of 

defect samples when using 

augmentation  

High computational resource 

demand during training; may 

not generalize well to unseen 

types of fabric or defects 

[27] 

ANN with 

CoHog 

features  

Combines classic feature 

extraction with powerful 

neural networks for 

potentially high accuracy

  

Requires substantial data for 

training; ANN models can be 

opaque ('black box') and 

challenging to troubleshoot 

[28] 

CNN-based 

patch 

segmentation  

CNNs are state-of-the-art in 

image recognition tasks; can 

handle raw image data 

effectively  

High computational costs for 

training and inference; 

requires large and diverse 

datasets for optimal 

performance 

Table 2.1: Comparative summary of methodologies in texture defect detection. 
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2.3 Pavement Crack Segmentation 

 Crack detection stands as a cornerstone in the realm of structural maintenance and 

safety assessment. The detection, identification, and analysis of cracks in various materials, 

from civil infrastructure to aerospace components, can be the difference between structural 

integrity and catastrophic failure. Historically, engineers and technicians relied heavily on 

manual inspections - a laborious and often error - prone process. The quest to refine 

accuracy and efficiency in this domain led to numerous technological breakthroughs. 

Traditional methods emerged as an initial answer, leveraging image processing and 

analysis to automate detection. However, as with all innovations, these techniques came 

with their own set of challenges. Wavelet Analysis, one such method, presents a fascinating 

case of how traditional crack detection techniques evolved over time, trying to overcome 

inherent limitations and enhance performance. 

a) Traditional Crack Detection Techniques 

 Traditional crack detection, in essence, refers to the array of techniques developed 

during the earlier phases of automated structural health monitoring. These techniques 

emerged as a response to the pressing need for automated, consistent, and objective crack 

detection methods that could outperform or, at the very least, complement manual 

inspections. Over time, researchers and experts identified distinct methods, each with its 

unique mechanism and application domain. The overarching aim was always clear: to 

capture the minutest of cracks efficiently and accurately to ensure structural safety. 

 Wavelet Analysis: 
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 One of the pioneering techniques in traditional crack detection was the Wavelet 

Analysis. The foundational idea behind wavelet analysis is to use wavelet transforms - a 

mathematical tool designed to dissect information based on different frequency 

components. At its core, wavelet analysis breaks down an image into different frequency 

bands. This allows for the differentiation between possible crack patterns (typically of a 

higher frequency due to their intricate and sudden nature) and the regular, undamaged 

patterns of a structure (which usually reside in the lower frequency bands). Wavelet 

analysis found particular favor in detecting cracks in pavements. For instance, research 

[29] showcased its application in automating crack detection in pavement images. This was 

achieved by employing the continuous wavelet transform to identify potential crack regions 

against the backdrop of the pavement's texture. However, like all techniques, wavelet 

analysis wasn’t without its challenges. A primary limitation surfaced when dealing with 

images that presented a diverse range of textures. As indicated in the same study [29], the 

wavelet-based approach faced difficulties in consistently performing on such images. This 

limitation underscored the challenge of distinguishing between genuine cracks and 

misleading patterns that could resemble cracks in varied textures. 

 This challenge led to more nuanced approaches. In another significant study [30], 

researchers attempted to enhance the robustness of wavelet-based crack detection. They 

processed pavement images through a wavelet transform, which allowed them to break the 

image into multiple frequency subbands. The objective was to isolate distress signals 

(indicative of cracks) from ambient noise by segregating high-amplitude wavelet 

coefficients (representing distresses) from low-amplitude coefficients (indicative of noise). 

 Image Thresholding: 
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 Image thresholding operates on a fundamental principle: by identifying and 

segmenting variations in pixel intensities within an image, one can potentially isolate 

features of interest, such as cracks. Image thresholding typically involves assigning a 

'threshold' value of pixel intensity. Pixels with intensities above this value are classified 

one way (e.g., as potential cracks), while those below are classified another (e.g., as 

background or non-crack regions). This method found prominence in studies [31]–[33] 

where preprocessing algorithms were first used to counteract any inconsistencies in 

illumination. Once uniformity was achieved, thresholding identified potential crack zones. 

The initial detections, though a step forward, were not always perfect and thus required 

further refinement. Post-thresholding, techniques such as morphological operations were 

used to enhance the accuracy of crack detections. Morphological operations, involving 

processes like dilation and erosion, can help in reducing noise and bridging small gaps in 

detected cracks. Another intriguing method was presented in [34], where crack images 

were segmented using a combination of histogram analysis and Ostu’s thresholding. Here, 

the image was partitioned into four equal sub-images, each undergoing individual analysis. 

The results were then integrated, providing a comprehensive overview of potential cracks, 

especially in images with a low signal-to-noise ratio. 

 Manual Feature Extraction and Classification: 

 Moving away from generalized image operations, some methodologies focused on 

the extraction of specific, manually-defined features from images. In this technique, certain 

characteristics or 'features' within an image are manually identified, extracted, and then 

used as descriptors for potential cracks. Many current crack detection techniques rely on 

such handcrafted features. As exemplified in studies [35], [36], [37], features like the 
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Histogram of Oriented Gradients (HOG) [35] were extracted from segments of an image 

to describe cracks. Once these features were extracted, they were fed into classifiers, often 

machine learning models like Support Vector Machines (SVMs). These classifiers were 

trained to recognize and differentiate between crack and non-crack features, thus 

automating the detection process. 

 Boundary Detection Techniques: 

 Boundary detection revolves around the idea that cracks often manifest as abrupt 

changes or 'edges' in an image. This technique emphasizes the identification and analysis 

of edges within an image. Since cracks create distinct boundaries, edge detection can be an 

effective way to spot them. Techniques such as the Sobel edge detection, as employed by 

[37], were used for crack identification after refining the image. This study further 

introduced a bidimensional empirical mode decomposition algorithm, aimed at reducing 

speckle noise which can interfere with edge detection. [38] took a slightly different route, 

incorporating morphological filters into their crack detection strategy. They leveraged a 

modified median filter to suppress noise, enhancing the clarity and precision of detected 

cracks. 

 Shortest Path Techniques: 

 Shortest Path Techniques focus on tracing the optimal path through an image, often 

capitalizing on the continuous nature of cracks. The idea is to identify paths or contours 

that resemble cracks in an image, even when some parts of the crack are not distinctly 

visible. A notable approach was introduced by [39], which employed an advanced minimal 

path method to detect contours, minimizing the need for prior knowledge about the crack’s 



25 

 

topology or endpoints. In [40], the technique began by highlighting potential crack areas 

using a windowed intensity path-based approach. After this preliminary identification, 

crack segmentation was carried out using a model that relied on a multivariate statistical 

hypothesis test, aiming for a more precise crack delineation. 

b) Deep Learning-based Crack Detection 

 The world of crack detection underwent a paradigm shift with the introduction of 

deep learning. Deep learning, a subset of machine learning, employs neural networks with 

many layers (hence "deep") to analyze various forms of data. Within the realm of image 

analysis and computer vision, deep learning techniques, especially Convolutional Neural 

Networks (CNNs), have emerged as game changers. Deep learning models are trained on 

vast datasets to recognize patterns. In the context of crack detection, these networks learn 

to identify and differentiate crack-like features from the myriad of other possible patterns 

in an image. They do so by processing images through multiple layers, each extracting and 

refining features, culminating in the ability to recognize even subtle cracks. Recent years 

have seen tremendous success in the application of deep learning to crack detection. A 

significant driver behind this has been the performance of CNNs in computer vision tasks. 

These networks, designed specifically for image data, leverage spatial hierarchies and 

patterns to extract features and make predictions. 

 With advancements in semantic segmentation tasks, researchers have been tailoring 

these techniques for crack detection. For instance, [41] presented a technique inspired by 

SegNet [42], optimized for video frames from remote visual inspections. By compiling 

crack likelihood across overlapping frames, this method offers a dynamic way to detect 

cracks in videos. Another remarkable work is that of [43], which introduced an 
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architectural amalgamation, fusing feature pyramid and hierarchical boosting components. 

This sophisticated approach aimed to allocate importance based on the complexity of image 

samples, potentially improving crack recognition in challenging scenarios. Addressing the 

challenge of limited datasets, [44] tapped into Generative Adversarial Networks (GANs) 

to augment data for crack detection. By generating synthetic yet realistic images of cracks, 

this method enhanced the diversity of training data, leading to more robust models. The 

study by [45] brought forward a semi-supervised technique for crack segmentation. This 

method produces supervision signals for unlabeled images, which can help in training 

models even when comprehensive labeled data is scarce. Beyond general-purpose CNNs, 

researchers have begun tailoring networks specifically for crack detection challenges. For 

example, [46] designed a semantic segmentation model to not only detect cracks in 

infrastructure but also measure their width precisely, a critical metric for assessing 

structural health. Some researchers, like those in [47], blended traditional techniques with 

deep learning. By merging the capabilities of CNNs with multi-scale structured forests, 

they aimed to harness localized information amidst intricate backgrounds, presenting a 

potential solution to challenges faced by older edge detection methods. It's essential to 

mention studies like [48], which took the deep learning models from the lab to real-world 

scenarios. Utilizing the popular AlexNet network, they enhanced the reliability of detection 

mechanisms, proving the feasibility and effectiveness of deep learning in practical crack 

detection tasks. 

 Despite its remarkable successes, deep learning-based crack detection isn't free from 

challenges. Models require vast amounts of labeled data for training, and while techniques 

like data augmentation address this to some extent, obtaining high-quality labeled data 



27 

 

remains a hurdle. Additionally, while these models excel in controlled environments, their 

performance in varied real-world scenarios - with differing lighting, textures, and noise 

levels - remains a topic of ongoing research. 

Method 

Category 
Reference Methodology Advantages Limitations 

T
ra

d
it

io
n

a
l 

[29] 
Wavelet 

Analysis 

Targets high-frequency crack 

patterns; Automates pavement 

crack detection  

Performance can degrade with complex 

textures; May confuse crack-like textures 

with actual cracks 

[30] 

Enhanced 

Wavelet 

Analysis 

Increased robustness through 

subband processing; Better 

isolation of distress signals  

Potentially more computationally 

intensive; May require fine-tuning for 

different textures 

[31]–[33] 

Image 

Thresholding 

with 

Preprocessing 

Addresses illumination 

inconsistencies; Simplifies the 

detection process  

Sensitive to threshold value selection; 

May miss fine cracks with uniform 

background 

[34] 

Histogram 

Analysis and 

Otsu’s 

Thresholding 

Effectively segments images with 

varying intensities; Suitable for 

low contrast images  

Requires separate processing for different 

image sections; Histogram-based 

methods can be fooled by noise 

[35] 

Manual 

Feature 

Extraction and 

Classification 

Can be highly accurate with well-

defined features; Good for 

controlled environments  

Time-consuming feature selection 

process; Classification accuracy depends 

on feature selection 

[38] 

Boundary 

Detection 

Techniques 

Directly identifies crack edges; 

Can be combined with noise 

reduction techniques  

Edge detection can be ambiguous in 

noisy images; May require additional 

processing to confirm crack detection 

[39] 
Shortest Path 

Techniques 

Can detect non-visible parts of 

cracks; Less dependent on image 

quality  

Complex implementation; May generate 

false positives if the path is incorrectly 

identified 

D
ee

p
 L

ea
rn

in
g

 

[41] 

CNNs with 

SegNet for 

Videos 

Allows for temporal analysis in 

video data; Can track crack 

propagation over time  

Requires significant computational 

resources; May need fine-tuning for 

different video qualities 

[43] 

Deep Learning 

with 

Architectural 

Amalgamation  

Adapts to the complexity of 

samples; Potential for better 

generalization  

Architectural complexity can lead to 

longer training times; May require 

extensive hyperparameter optimization 

[44] 
GANs for Data 

Augmentation 

Addresses data scarcity and 

diversity issues; Generates training 

data with novel crack patterns  

GAN-generated data may diverge from 

real-world scenarios; Training GANs is 

resource-intensive and complex 

[45] 

Semi-

supervised 

Deep Learning  

Utilizes unlabeled data, reducing 

annotation needs; Can work with 

partially labeled datasets  

Semi-supervised results may vary 

widely; Still requires a sufficient amount 

of labeled data for best performance 
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[46] 

Specialized 

Semantic 

Segmentation 

Models 

Provides precise crack dimensions; 

High utility for structural health 

monitoring  

Specialized models may not generalize 

well; Development and training can be 

resource-heavy 

[47] 

CNNs with 

Multi-scale 

Structured 

Forests 

Enhanced localized feature 

extraction; Integrates traditional 

and deep learning methods  

Integration can be challenging and may 

lead to overfitting; Complex models 

require extensive validation 

[48] 

AlexNet for 

Real-world 

Applications 

Proven effectiveness in diverse 

conditions; Beneficial for large-

scale deployment  

May not handle extreme variability well; 

Real-world application requires 

continuous model updating 

Table 2.2: Comparative summary of methodologies in pavement crack detection. 

2.4 Steel Surface Defect Segmentation 

 The journey of identifying surface defects has evolved remarkably over time. In the 

earliest phases of research, basic image processing techniques were the cornerstone for 

detecting these defects. Techniques such as thresholding, morphological operations, and 

Fourier transforms took center stage [49]. For instance, a study by [50] embraced 

rudimentary image processing techniques. They used tools like noise filtering, gradients, 

and morphological operations to zero in on the best thresholding values. Impressively, this 

method outperformed other established thresholding models, including OTSU. Meanwhile, 

another research [51] showcased a novel dynamic thresholding method that relied heavily 

on the distribution of pixel intensity. This technique demonstrated substantial potential, 

especially when applied to industrial steel images from a hot rolling apparatus. However, 

while powerful, these threshold-centric methods [50], [51] are not without vulnerabilities. 

They tend to be sensitive to noise, a consequence of depending heavily on pixel intensity 

distributions. On a tangent, another study [52] utilized the KNN classifier to pinpoint 

defects on standard surfaces. They refined their results by integrating fundamental image 

processing techniques, including edge detection and morphological processing. The 
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literature also introduced innovative methods, such as the entity sparsity pursuit (ESP) 

approach proposed by [53]. This method harnessed the Local Binary Patterns (LBP) for 

feature extraction, which was then segmented into easy-to-perceive and dense super-pixels. 

The ESP algorithm then took the reins to detect defects. [42] adopted an alternative angle, 

presuming the surface to be even, and then honed in on defect zones that deviated from this 

pattern. However, it's essential to acknowledge that while these methods produced 

commendable results, they weren't free from challenges. The most glaring among these are 

the limitations tied to manual feature extraction techniques, which are not only time-

intensive but also often lack broad applicability. Moreover, any deployment on varied 

surfaces often demands model recalibration. The realm of surface defect identification 

experienced a seismic shift with the advent of deep learning-based image segmentation 

techniques. Their unparalleled precision, computational efficacy, and user-friendliness set 

them apart. Unlike their predecessors, which demanded manual feature extraction followed 

by classification, deep learning models amalgamated these steps. They were adept at 

autonomously deriving the necessary features from training data, bypassing the need for 

expert-curated feature sets. Of these, encoder-decoder structures such as SegNet [42] and 

U-Net [54] have garnered immense attention, as have pyramid pooling structures like 

Deeplabv3+ [52] and PSPNet [55]. Capitalizing on these foundational architectures, 

several enhancements surfaced, bolstering model sturdiness and segmentation precision. 

These modifications fall broadly into three categories: attention-centric techniques, feature 

aggregation methods, and strategies rooted in Conditional Random Field (CRF). Delving 

deeper into feature aggregation, its essence lies in amplifying model accuracy in semantic 

segmentation undertakings. Presently, the literature chiefly recognizes two types of feature 
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aggregation techniques, multiscale and multi-level. The inception block [53] is a testament 

to multiscale feature aggregation. It amalgamates features gleaned using varied sizes of 

convolution kernels, facilitating a richer image representation. Conversely, multi-level 

feature aggregation is oriented towards fusing granular and broad features. This fusion, 

achieved by operations that upsample and downsample, ensures models harness both 

intricate details and the larger picture in images. An exemplar of this approach is [56], 

which devised a robust feature pyramid, yielding particularly good outcomes in remote 

sensing image segmentation. Feature aggregation, however, is not without its drawbacks. 

These techniques, while bolstering accuracy, increase the complexity of the models, which 

can be a double-edged sword. Recent times have seen the rise of attention-centric methods 

in deep learning, drawing inspiration from human vision mechanisms. Generally, these 

methods are categorized into channel attention, spatial attention, and non-local attention. 

For example, the SE module [57] emphasized the interplay between feature channels, while 

[58] underscored high-frequency features. CBAM [59] and subsequent improvements [60] 

balanced channel and spatial dimensions. However, while promising, these methods do 

pose computational challenges, particularly the non-local-based methods. Lastly, one 

notable shortcoming of traditional semantic segmentation models is their inability to 

capture adequate scene-level context, making object boundaries murky. To remedy this, 

researchers have turned to Conditional Random Fields (CRFs) for post-processing. An 

approach by [61] employed a Convolutional Neural Network (CNN) to construct 

superpixel potentials, which were then finessed using CRF parameters optimized by an 

SVM, yielding enhanced segmentation masks. In conclusion, the journey of surface defect 

identification has been transformative. From basic techniques to sophisticated deep 
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learning models, the evolution is palpable. Yet, as with any journey, there are milestones 

yet to be achieved, particularly in the realms of computational efficiency and model 

robustness. 

Reference Methodology Advantages Limitations 

[49] 
Basic image 

processing 

Pioneered surface defect detection with 

simple computational tools 

Simple techniques may not be as effective 

with complex or noisy images 

[50] 
Rudimentary image 

processing 

Surpassed established thresholding 

models; effective for specific 

applications 

Sensitive to variable lighting conditions 

and noise 

[51] 

Dynamic thresholding 

based on pixel 

intensity 

Flexible in dealing with different 

intensity distributions; beneficial for 

certain industrial applications 

Struggles with high levels of image 

variation and noise 

[52] 

KNN classifier with 

image processing 

techniques 

Combined traditional image processing 

with machine learning for improved 

accuracy 

Limited by the need for feature 

engineering and potential overfitting 

[53] 
ESP approach with 

LBP 

Enhanced defect detection by using 

texture-based features 

Can be computationally intensive due to 

the complexity of the algorithm 

[42] 
Surface evenness 

assessment 

Effective for planar surface defects; 

simple to apply to certain types of 

surfaces 

Not universally applicable; struggles with 

complex surface geometries 

[54] U-Net architecture 

High precision and efficacy in 

segmentation; capable of dealing with 

complex images 

Can require substantial computational 

resources; may need large datasets 

[55] PSPNet architecture 

Improved accuracy over other 

segmentation methods, especially in 

edge detail 

Higher complexity can lead to slower 

inference times 

[56] 

Feature pyramid for 

remote sensing image 

segmentation 

Capable of capturing multi-scale 

features for better segmentation 

Potential increase in computational cost 

due to multi-scale processing 

[57] 
SE module for 

channel attention 

Focused on relevant features, reducing 

the influence of irrelevant information 

May not always capture spatial 

dependencies, leading to incomplete 

context 

[58] 

Spatial attention for 

high-frequency 

features 

Highlighted textural and edge details 

for better segmentation 

High-frequency emphasis might miss out 

on lower-level, yet critical, features 

[59] 

CBAM for channel 

and spatial 

dimensions 

Aimed to capture both spatial and 

channel-wise feature dependencies 

Balancing the two dimensions can be 

difficult and computationally intensive 

[61] 
CNN with CRF post-

processing 

Generated highly refined segmentation 

masks by effectively combining CNN 

outputs with CRF 

Integration of CNN with CRF can be 

complex and requires careful parameter 

tuning 

Table 2.3: Comparative summary of methodologies in steel surface defect detection. 
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2.5 Summary 

 The field of defect detection and segmentation has experienced significant evolution 

across varied domains. This progression is evident across the three prominent areas 

examined in this thesis: texture defect classification, pavement crack segmentation, and 

steel surface defect segmentation. 

 Texture Defect Classification: 

 Historically, the focus was primarily on traditional image processing techniques, with 

wavelet transforms and various statistical measures like entropy and variance being the 

mainstays. As research progressed, machine learning models emerged, providing a more 

robust solution by classifying defects based on these extracted features. However, the 

principal challenge remains in striking a balance between accuracy and computational 

efficiency. 

 Pavement Crack Segmentation: 

 Pavement defect detection has seen an evolution from manual inspection to 

automated techniques. Earlier methods, such as thresholding and morphological 

operations, although effective, were susceptible to environmental factors and required 

constant calibration. The introduction of machine learning, particularly SVMs, delivered 

more accurate results, with the potential of reducing false positives. Deep learning models, 

particularly CNNs, then augmented this progress, proving highly competent in discerning 

intricate patterns and enhancing segmentation accuracy. 

 Steel Surface Defect Segmentation: 
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 Initial techniques were rooted in basic image processing, relying heavily on 

thresholding and pixel intensity distribution, despite their sensitivity to noise. The 

application of classifiers like KNN, alongside fundamental image processing, brought a 

degree of sophistication to this domain. Encoder-decoder structures, such as SegNet and 

U-Net, eliminated the need for manual feature extraction, thereby streamlining the process. 

Feature aggregation, while increasing accuracy, also added complexity to models. The 

recent rise of attention-centric methods in deep learning, inspired by human vision, and the 

application of Conditional Random Fields for post-processing, further fine-tuned the 

segmentation output. 

 Collectively, the journey from basic image processing to advanced deep learning 

models across these domains underscores the rapid advancements in defect detection and 

segmentation. While the strides have been impressive, challenges persist, especially in 

computational efficiency and model robustness, indicating ample opportunities for future 

research endeavors. 
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Chapter 3. Texture Defect Classification Model Using a 

Capsule-Based Neural Network 

3.1 Introduction and Problems 

 Textile materials, made from individual textile fibers, are crucial in our everyday 

lives. Their vast applications range from clothing to household items, making them an 

integral part of human life. However, the process of making textiles is filled with potential 

problems. During their production, textiles can develop a wide range of defects [62]. These 

defects can be caused by problems with equipment or poor-quality raw materials, resulting 

in lower quality fabric. Importantly, these defects can lead to serious financial losses. 

Imperfections can greatly decrease the retail value of these fabrics. , sometimes the value 

can drop by 45-65% [63]. This highlights the critical need for strict quality control in the 

textile industry. Maintaining top fabric quality is vital not only for protecting a brand's 

reputation but also for preventing possible economic losses [64]. Traditionally, the 

challenging task of finding these defects was mainly done by people using their hands and 

eyes. Skilled workers would carefully check rolls of fabric, looking for any irregularities. 

Once identified, these defects were then manually corrected. However, this method had its 

shortcomings. Some fabric defects are subtle, making them elusive to human detection 

[65], [5]. Relying on manual inspection also increases labor hours, leading to higher 

operational costs. Given the sheer number and variety of potential defects, there is an 

emerging need for an automated, more sophisticated inspection system. Such systems 

promise not just enhanced quality assurance but also significant reductions in labor costs 

[66]. Recent technological advancements have paved the way for a new era of textile 
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inspection. Contemporary inspection systems now leverage tools like machine learning, 

deep learning, and an array of machine vision technologies. These state-of-the-art methods 

have garnered substantial attention, both academically and industrially [67]. Their 

burgeoning appeal lies in their capability to revolutionize fabric inspection, heralding more 

efficient and effective quality control measures. 

However, identifying fabric defects is still a complex task, filled with various challenges 

(refer to Figure 3.1): 

a)  Defect Diversity: Textiles can have a wide range of possible defects, appearing in 

various shapes, patterns, and visual characteristics. Some defects are obvious and 

easy to detect, but others are subtle, blending into the fabric's natural texture. This 

complex nature of defects makes it difficult for traditional inspection methods, 

which usually depend on fixed criteria or standards. 

b)  Background Ambiguity: Sometimes, defects can look so much like the surrounding 

fabric that they are almost impossible to tell apart. This similarity between the 

defect and its background makes detection hard. Traditional methods often struggle 

with this, leading to defects being missed or wrongly classified. 

c)  Inconsistency in Defect Dimensions: The size of defects on fabric can vary greatly. 

Some might be tiny spots, while others could cover large areas. These irregularities 

present a big challenge for automated systems. Creating a detection algorithm that 

can effectively handle such a wide range of defect sizes is a difficult task. 
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Figure 3.1: Illustrations of fabric flaws (highlighted with red indicators) and their 

locations, corresponding to the challenges in fabric defect categorization: (a) Variety in 

Defect Types, (b) Similar Backgrounds, and (c) Differences in Defect Dimensions. 

 In this section, I present a framework for texture defect classification, which 

leverages the capabilities of a capsule-based neural network. The main goal is to greatly 

improve how accurately flaws in textured items like fabrics are detected and categorized. 

Traditional Capsule Networks, though promising, often struggle because they use just one 

convolutional layer to extract features. This constraint becomes even more pronounced 

when identifying defects within intricate fabric textures, where the subtle intricacies of 

such defects can often go unnoticed. To overcome these obstacles, my model adopts a 

pioneering strategy: it merges modern Convolutional Neural Networks (CNNs) with a 

spatial attention module. This combination not only enhanced the weaknesses of the usual 

capsule networks but also takes advantage of the benefits of transfer learning, streamlining 
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and fine-tuning the feature extraction journey. The advantage of using transfer learning is 

its ability to use the strengths of previously trained models, which are good at identifying  

feature representations from large datasets. This combination significantly reduces the need 

for large training datasets and computational power, a common challenge in traditional 

methods. My model unfolds in two essential and crucial phases: preprocessing, and a 

process of feature extraction and classification. In preprocessing, each texture image is 

enhanced through data augmentation, which increases the variety and robustness of the 

dataset. These images are then resized to a uniform n × n dimension for consistency and 

normalized to create a standardized input data spectrum, ultimately enhancing and 

stabilizing the training journey. We extract deep features by combining a spatial attention 

module with pre-trained models like DenseNet201 and InceptionV3, all within a transfer 

learning approach. The strategic collaboration of CNN models and the spatial attention 

component within the capsule network proves to be a combination for feature extraction. 

The spatial attention component intelligently focusing on crucial image areas, highlighting 

defect-prone areas. 

 The main contributions of this model can be listed as: 

 I utilized the Capsule Networks and conventional CNNs, addressing the 

shortcomings of CNNs in recognizing essential hierarchical feature relations, 

which are vital for precise defect detection in intricate fabric patterns. 

 By utilizing pre-trained DenseNet201 and InceptionV3 architectures, the 

system is tailored to meet the specific demands of texture flaw identification, 

ensuring effective feature extraction. 
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 On the widely-referenced TILDA texture datasets, the model proved its 

defect classification capabilities and illustrating its utility in addressing real 

fabric defect challenges. 

 

3.2 Background 

 In this section, my objective is to provide a comprehensive examination of the diverse 

methodologies that have been integrated into the proposed model. I commence the 

discourse by diving into the intricacies of Convolutional Neural Networks (CNNs), 

covered in Subsection 3.2.1 CNNs, as a fundamental component of deep learning, have 

transformed various applications, ranging from image recognition to natural language 

processing. This subsection aims to clarify the core principles, structure, and the important 

role of CNNs in the proposed model. Progressing further, Subsection 3.2.2 provides a 

comprehensive overview of Transfer Learning. This approach, frequently seen as a central 

component in contemporary machine learning, utilizes knowledge obtained from one 

domain to improve performance in another, albeit related, domain. By understanding the 

nuances of Transfer Learning, especially in scenarios where data might be limited or where 

pre-trained models offer a head start in the learning journey. Subsequently, in Subsection 

3.2.3, the attention shifts to the Spatial Attention Module. This module enhances the 

model's capability by allowing it to selectively focus on specific spatial regions within an 

input. By doing so, the model can efficiently filter out irrelevant information and amplify 

crucial features, leading to potentially improved performance in tasks like image 

classification or object detection. Lastly, Subsection 3.2.4 introduces Capsule Networks, a 

type of neural network architecture. Unlike traditional neural networks, Capsule Networks 
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are designed to better understand and preserve the spatial relationships in data, which can 

enhance their performance in certain tasks. This section will explore the distinct structure 

of Capsule Networks, how they work, and the benefits they might offer to the model being 

discussed. 

3.2.1 Convolutional Neural Network Models 
 In the area of Deep Learning, Convolutional Neural Networks (CNNs) are very 

important for tasks involving images. When looking closely at CNNs, we find they are 

made up of many layers, each with its own role. These layers work together to process and 

understand information from images in a complex but organized way. 

 The Convolutional Layer is a key part of CNNs (Convolutional Neural Networks). It 

has the important job of pulling out features from an image. This is done using special 

filters that process the image, automatically finding important details. Unlike older 

methods where features had to be manually identified, CNNs learn these directly from the 

data, making them more adaptable and accurate. Also, because the convolutional layer can 

understand the spatial layout of an image, it's really good at recognizing patterns no matter 

where they appear in the image. 

 After the convolutional layer in CNNs (Convolutional Neural Networks), there's the 

pooling layer, which is great at compressing data. This layer uses methods like max-

pooling or average-pooling to make the size of the feature maps smaller. This reduction 

helps in two ways: it cuts down the amount of computing needed, speeding up the training 

of the network, and it also helps prevent overfitting, making sure the model can work well 

with new, unseen data. An important aspect of the pooling layer is that even though it 
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simplifies the data, it keeps the most important information, ensuring that the key parts of 

the image are still captured. 

 The Fully Connected Layer is found deeper in the network, and it plays the role of a 

major integrator. In this layer, every neuron is connected to every neuron in the previous 

layer. This dense interconnection allows the fully connected layer to bring together all the 

processed information from earlier layers and use it to produce the final result. This layer 

is crucial whether the task is to classify an image into a category or to predict a value in a 

regression task. It's here that the network makes its final decisions based on the data it has 

received and processed. 

 CNNs (Convolutional Neural Networks) are especially good at learning features in a 

hierarchical way. The initial, or shallow, layers of a CNN focus on simple features like 

edges, gradients, or colors. As we go deeper into the network, these layers start to recognize 

more complex structures, patterns, and objects. This process is similar to building a 

structure: the early layers are like laying the bricks, and the deeper layers use these bricks 

to create walls, rooms, and eventually the entire building. The evolution of deep learning 

has seen many different CNN architectures, each marking a step forward in the field. For 

example, AlexNet was a significant development that began a new era in deep learning, 

showing how effective deep networks are at recognizing images. 

3.2.2 Transfer Learning 
 In the broad field of machine learning, Transfer Learning (TL) stands out as a highly 

efficient approach. It operates on a compelling premise: why start from scratch when one 

can capitalize on the reservoir of knowledge accumulated from a prior learning experience? 

This paradigm-shifting approach involves harnessing the insights from a pre-trained Deep 
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Neural Network (DNN) and then repurposing this foundational knowledge for a distinct, 

yet often related, task [68]. The transformative impact of Transfer Learning is especially 

pronounced within the domain of image processing, where vast datasets and 

computationally intensive training regimens are the norm. By tapping into pre-trained 

models, practitioners can sidestep the hurdles of extensive training, making the technique 

not only computationally economical but also time-saving. To grasp how Transfer 

Learning works, it's important to first look at the structure of Convolutional Neural 

Networks (CNNs). The layers in a CNN work together like a coordinated symphony, where 

each layer has its specific function: 

 The initial layers in a CNN serve as foundational elements, functioning like attentive 

guards. They focus on identifying basic visual components such as textures, colors, and 

edges. Since these simple patterns are common across various visual datasets, the 

knowledge gained in these layers is broadly applicable. This is similar to learning the basic 

grammar of a language, which can then be used in a wide array of conversations and 

contexts. 

 In a CNN, as we move to the deeper layers, the complexity increases. The advanced 

layers are tasked with interpreting more complex patterns and learning attributes specific 

to the dataset they are trained on. If the initial layers are like learning the basic grammar of 

a language, the advanced layers are equivalent to understanding idiomatic expressions and 

nuanced phrases that are unique to specific dialects or contexts. 

 Transfer Learning excels in its ability to effectively combine different layers of a 

CNN. It recognizes that the knowledge held in the initial layers of a pre-trained CNN is 

widely useful. In Transfer Learning, these initial layers are usually left unchanged, or 
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"frozen." This means the broad understanding of generic visual patterns these layers have 

developed is kept intact, ready for new tasks. However, for the model to effectively work 

with a new dataset's unique characteristics, some adaptability is necessary. This is where 

"fine-tuning" comes in. By "unfreezing" the top, more advanced layers and training them 

further, the model is fine-tuned. This process recalibrates the model to better align with the 

specifics of the new dataset. During this phase, the model fine-tunes its advanced layers to 

better capture the unique attributes of the new dataset [68]. This iterative process of 

adaptation ensures that while the model benefits from the foundational knowledge of the 

pre-trained layers, it also evolves to meet the specific demands of the new task. In a broader 

perspective, Transfer Learning is emblematic of a paradigm where knowledge is not siloed 

but is fluid, transferable, and evolutionary. By leveraging prior knowledge, it enables swift 

model development, potentially improving performance metrics and providing a practical 

solution, particularly in situations where data may be limited or computational resources 

are constrained. In the ever-changing field of deep learning, Transfer Learning serves as 

evidence of the strength of accumulated knowledge and continuous learning. 

3.2.3 Spatial Attention Module 
 The Spatial Attention Module [69] is an essential part of deep neural networks, 

especially in the field of computer vision. Its main role is to focus on the most important 

spatial areas within a feature map. Feature maps are complex graphical representations 

created by convolutional layers during image processing tasks. They display a range of 

visual patterns and characteristics found in the input data, capturing the subtle visual details 

of the input. The key strength of the Spatial Attention Module lies in its ability to 

understand the relationships between different spatial areas within a feature map. This 

helps in emphasizing and processing the most relevant information from the input. By 
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understanding how different spatial locations within the feature map interrelate, the module 

can identify and prioritize regions abundant with pertinent information while de-

emphasizing less relevant areas. To accomplish this, the Spatial Attention Module employs 

global pooling operations, typically global max pooling or global average pooling. These 

operations are designed to condense and summarize the spatial information present in each 

channel of the feature map. Once condensed, this summarized spatial data is processed 

through one or more fully connected layers, which then generate spatial-wise attention 

weights. These weights are indicative of the relative importance of each spatial location in 

the feature map. Utilizing these attention weights, the Spatial Attention Module modulates 

the original feature map. Through operations like addition or element-wise multiplication, 

the module can enhance critical regions and diminish those of lesser importance. This 

adjustment ensures the neural network hones its attention on key visual patterns, enhancing 

accuracy in tasks such as object localization and refining the overall representation of 

features. The integration of the Spatial Attention Module into neural networks offers 

significant advantages. In domains such as object detection, visual question answering, and 

image segmentation, pinpointing crucial spatial regions becomes invaluable. By enhancing 

the neural network's ability to discern and utilize spatial data, the module amplifies the 

discriminative capabilities of the network. Furthermore, the Spatial Attention Module aids 

the network in identifying meaningful relationships across the input data, leading to more 

robust and insightful feature representations. For a more visual representation of the Spatial 

Attention Module's operations, reference is made to Figure 3.2 This figure delineates the 

process flow of the module, starting with the F channel undergoing both maximum and 
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average pooling. The pooled outputs are then fused and undergo a convolutional operation. 

Following a sigmoid activation, the resultant is the spatial attention map, labeled as Ms. 

 

Figure 3.2: The structure of the Spatial Attention Module. [69] 

 

3.2.4 Capsule Network 
 In the constantly evolving field of neural networks, Capsule Networks have emerged 

as an innovative development. They were created to address the limitations of 

Convolutional Neural Networks (CNNs) regarding the understanding of spatial hierarchies 

in visual data. Capsule Networks bring a more detailed and refined approach to interpreting 

visual information. A key feature of these networks is the use of "capsules," which are 

groups of neurons working together. Each capsule is designed to carefully analyze and 

understand specific details and characteristics present in visual objects. 

 To appreciate the full depth and breadth of Capsule Networks, it's essential to unpack 

their core components: 

 Capsules: As foundational pillars of Capsule Networks, capsules are tasked 

with the responsibility of encoding diverse object attributes. Their spectrum 

of detection is vast, encompassing concrete traits like an object's size, hue, 
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and texture to more conceptual elements like its spatial orientation and 

relative positioning in a visual frame. The sophistication of capsules is further 

accentuated by the presence of an activation vector in each of them. This 

vector not only serves as a beacon, signaling the detection of a feature but 

also delineates the intricate properties and specifics of the detected feature, 

painting a comprehensive picture of the visual input. 

 Dynamic Routing: Breaking away from conventional neural network 

processes, Capsule Networks introduce dynamic routing, a mechanism that 

promotes synergistic interactions among capsules. This inter-capsule 

collaboration is no mere exchange; it's a meticulous process that enables 

capsules to converge on a shared understanding of more complex, high-level 

features. This is achieved by leveraging the insights and consensus drawn 

from the contributions of their lower-level brethren. The beauty of dynamic 

routing lies in its facilitation of the network's capacity to intuitively 

understand and map out both hierarchical relationships and intricate spatial 

hierarchies, leading to a more refined and efficient learning trajectory. 

 Capsule Voting: Seamlessly interwoven with the dynamic routing process is 

the concept of capsule voting. Here, capsules engage in a democratic process, 

casting votes to determine the activation of their senior, higher-level 

counterparts. This voting isn't arbitrary; it's predicated on the coherence 

between predicted poses. This meticulous voting process ensures that the 

Capsule Network maintains its resilience and accuracy, even when faced with 
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challenges like diverse poses or potential deformations in the visual data 

presented to it. 

 While the introduction of Capsule Networks into the neural network landscape holds 

significant promise, particularly with their enhanced robustness and potential for greater 

interpretability, their journey is still in its early chapters. Tapping into their full potential 

remains a fervent area of exploration. The effectiveness and ability of Capsule Networks 

are intricately tied to various factors, encompassing the finer details of the network's 

architectural design, the precision in hyperparameter tuning, and the judicious choice of 

training techniques befitting the specific tasks at hand. The forefront of current research is 

ardently focused on refining and optimizing Capsule Networks, with aspirations to deploy 

their advanced capabilities across a vast array of machine learning and computer vision 

domains. 

 

3.3 Proposed Model 

 The model I propose is structured around two fundamental phases: preprocessing and 

a combined process of feature extraction and classification. In the preprocessing phase, I 

treat all texture images in a three-step approach. Firstly, data augmentation techniques are 

applied to enhance the dataset's diversity. Following this, these images are resized to 

maintain consistent n × n dimensions, ensuring uniformity in processing. Lastly, 

normalization is performed, which helps in scaling the input data and making the model 

less sensitive to the scale of features. Transitioning to the feature extraction phase, my 

approach is rooted in drawing deep features by integrating a spatial attention module with 
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pre-trained models, namely DensNet201 and InceptionV3. The core of transfer learning 

involves using pre-trained models to extract relevant features without having to begin the 

learning process from the beginning. In this architecture, the convolutional neural network 

(CNN) models work together with the spatial attention module. They act as robust feature 

extractors that are particularly adept at discerning the subtle and complex patterns as well 

as spatial relationships found in fabric images. It's important to emphasize that the 

overarching strategy based on transfer learning plays a crucial role in ensuring the accurate 

and efficient extraction of these deep features. As a result, this significantly enhances the 

accuracy of the fabric defect classification process. To provide a comprehensive 

understanding of the proposed model, Figure 3.3 provides a visual representation that 

encapsulates the flow and interrelation of its various components. 

 

3.3.1 Preprocessing Phase 
 In the preprocessing phase, deep learning techniques are known for their accuracy, a 

recognition largely due to the extensive datasets they handle [70]. Yet, a challenge arises 

when faced with inadequate data. In such circumstances, there's a heightened risk of 

overfitting, which can, in turn, compromise the model's accuracy in real-world scenarios. 

To counteract this potential pitfall, data augmentation techniques are often introduced. In 

the context of this research, the foundational dataset comprised seven distinct balanced 

classes and totaled 349 images. Recognizing the limitations of such a dataset, I turned to 

data augmentation as a strategic solution. Techniques employed encompassed horizontal 

and vertical image flips and rotations across various degrees. The primary advantage of 

these techniques lies in their ability to preserve critical image attributes without 
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compromising the integrity of the data. Thus, they serve as a valuable remedy to the 

challenge posed by limited datasets. Following the augmentation, the data undergoes 

several crucial preprocessing steps before being ingested by the model. Firstly, dimension 

reduction is employed, wherein all images are resized to a more manageable size of 224 × 

224 pixels. Subsequent to this resizing, normalization is implemented. This process 

recalibrates the pixel values, centering them around zero and scaling to achieve a standard 

deviation of one. Such an approach ensures a standardized dataset, promoting data 

consistency and enhancing comparability - factors instrumental in optimizing the 

performance of deep learning models during their training phase and amplifying their 

resilience. The final step in the preprocessing phase involves dividing the data into two 

crucial subsets: training and testing datasets. The former, as the name suggests, is employed 

for the primary training of the model. In contrast, the latter is set aside for the evaluation 

phase and contains data previously unseen by the model. It's noteworthy that both datasets 

encompass a mix of all image classes and are presented in a randomized sequence, ensuring 

comprehensive representation and unbiased evaluation. 

3.3.2 Feature Extraction and Classification Phase 
 During the feature extraction and classification phase, intricate image classification 

methods, such as CNNs and their advanced variations, predominantly rely on expansive 

datasets with labeled training data. This reliance ensures the fine-tuning of parameters, 

thereby elevating their overall performance. Nevertheless, manually labeling a large 

dataset is a labor-intensive task. While increasing the depth of the network can potentially 

improve recognition abilities, it also extends training times due to the larger number of 

parameters that need to be optimized. A notable challenge encountered with the traditional 

CapsNet is its limited proficiency in defect detection accuracy. CapsNet, employing just a 
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single convolution layer for feature extraction, often misses out on capturing the deep 

multiscale features intrinsic to complex fabric images. Recognizing this limitation, I 

created a model specifically for fabric defect classification. The goal was to overcome the 

limitations of conventional methods. To do this, my approach harnesses the capabilities of 

both the InceptionV3 and DenseNet201 models. When coupled with the Spatial Attention 

Module, these models demonstrate enhanced ability in extracting features from texture 

images. InceptionV3  [71] and Densnet201 [72] adeptly extract hierarchical features, 

revealing the intricate details within fabric images. Concurrently, the Spatial Attention 

Module accentuates this extraction process by homing in on pivotal spatial regions that 

signify fabric anomalies. This collaboration between InceptionV3, Densnet201, and the 

Spatial Attention Module results in a robust feature extraction. Consequently, the proposed 

model stands out in delivering accurate and reliable defect classification. The next step 

involves classification, where the extracted features are passed into the Capsule Network. 

Capsule Networks are known for their dynamic routing mechanism, which enables 

connections between capsules across different layers. In this dynamic paradigm, upper-

layer capsules concur on the presence and nuances of high-level visual attributes. This 

consensus is predicated on the harmonious agreement amongst the capsules in the 

foundational layers. Such an arrangement arms the CapsNet with the capability to astutely 

recognize intricate patterns while adeptly managing variations in positioning and 

perspectives of fabric defects. During the classification phase, the Capsule Network refines 

its comprehension of fabric anomalies. It does so by tapping into the hierarchical 

representations embedded within the capsule layers. As it undergoes training, the network 

meticulously adjusts its parameters, striving for pinpoint accuracy across a spectrum of 
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defect classes. The culmination of this process sees the Capsule Network offering a 

probabilistic prediction for each defect category. Classification is then determined based 

on the class with the preeminent probability score.  

 

Figure 3.3: An overview of the proposed model. 

3.4 Experimental Work and Results 
 I conducted experimental tests on the model I proposed using the TensorFlow 

framework, which served as the computational foundation. These tests were carried out on 

a computing machine equipped with an NVIDIA 80 GB GPU card and a substantial 90 GB 

of RAM. The machine's computational infrastructure was situated on the Paperspace 

platform. Figure 3.4 illustrates the 10-fold cross-validation process, highlighting the 

individual fold performances (Ki values) and the cumulative assessment (Kort). 
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Figure 3.4: The diagram depicts the process of ten-fold cross-validation. In this approach, 

the dataset is divided into ten parts for assessing the model's precision. Nine parts are 

cyclically used for training, with one part reserved for testing. The mean value 'E' derived 

from the outcomes of the ten tests indicates the model's efficacy. This mean acts as the 

performance indicator for this K-fold cross-validation approach. 

 

3.4.1 Dataset 
 The TILDA fabric dataset, a product of the DFG's Texture Analysis program, 

comprises eight categories of fabric defects for training, testing, and evaluating models. 

[73]. Notably, this segmentation also includes a class devoted to items devoid of any 

defects. Each of these categories contains a collection of 50 images, all of which are in 

TIFF format. The standard dimensions for these images stand at 768 x 512 pixels, and each 

image is represented in a grey-level resolution to capture the intricate details of fabric 

textures. A selection of sample images from these categories can be seen in Figure 3.5. For 

my research, I strategically used a subset of the TILDA dataset, resulting in a collection of 

349 images. These images then underwent classification, resulting in a division into seven 

distinct categories. These categories, tailored to the research focus, were: No defects, 

Holes/Cuts, Stains/Colors, Thread issues, Foreign objects, Wrinkles, and Lighting changes. 

This categorization provided a robust foundation for the model training and evaluations. 
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Figure 3.5: Depictions of various defect categories: (a) Flawless (b) Perforations/Cuts (c) 

Discolorations/Spots (d) Yarn anomalies (e) Extraneous items (f) Creases (g) Alterations 

in illumination. 

3.4.2 Evaluation Metrics 
 To comprehensively understand the effectiveness and reliability of the classification 

system within the proposed model, I incorporated several key performance metrics. The 

chosen metrics, which include accuracy, precision, recall, specificity, and the F1 score, are 

used to evaluate the model from different perspectives: 

 Accuracy: This metric serves as a benchmark of the model's overall performance, 

indicating the fraction of instances that the model correctly classified out of the 

total instances. 

 Precision: Precision provides insight into the model's capability in classifying 

defects correctly. It quantifies the proportion of true defects among all the items 

that the model identifies as defects. 
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 Recall (or Sensitivity): This metric, in contrast to precision, assesses the model's 

proficiency in detecting actual defects. It measures the fraction of real defects that 

the model correctly identifies. 

 Specificity: Given the multiple defect classes, specificity becomes essential. It 

evaluates the model's effectiveness in correctly classifying the non-defective items, 

indicating the proportion of correctly identified non-defective samples. 

 F1 Score: The F1 score, also known as the F-measure, strikes a balance between 

precision and recall. It is the harmonic mean of these two metrics, ensuring a unified 

evaluation that emphasizes both defect detection and correct categorization. 

The respective equations for these metrics are detailed below: 

 

 

 

 

 

 

 To further clarify, the equations for these metrics employ specific terminologies 

derived from the outcomes of the classification process: 

 True Positive (TP): This term denotes defects that were correctly classified by the 

model. 

Accuracy =
TP + TN

TP + TN + FP + FN
 

Precision =
TP

TP + FP
 

Recall =
TP

TP + FN
 

Specifity =
TN

TN + FP
 

F1 score =  2 × Precision ×
Recall

Recall + Precision
 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 
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 False Positive (FP): This represents instances where the model incorrectly identified 

a non-defect as a defect. 

 False Negative (FN): This term covers defects that the model missed or incorrectly 

classified as non-defective. 

 True Negative (TN): This indicates non-defects that were correctly recognized and 

excluded from the defect categories by the model. 

 These classifications form the foundation for equations (1)–(4). Importantly, for the 

evaluations, the number of predictions made by the model that matched the true labels was 

found to be equivalent to the count of test samples that were correctly labeled. This 

synchronization is pivotal to ensure the validity of the evaluation. 

3.4.3 Implementation Details and Training 
 In this part, I explain how the model was built, focusing on the special settings, called 

hyperparameters, used during training. Choosing the right hyperparameters is very 

important because they greatly affect how well the model works. Since the best 

hyperparameters can vary depending on the dataset, it's crucial to adjust them specifically 

for each dataset to get the best results. Given the distinctive architecture and functionality 

of Capsule Networks (CapsNets), they have specialized methodologies for fine-tuning 

these hyperparameters, which come into play during the training phase. For the model's 

activation function, I incorporated the Softmax activation, well-suited for multi-class 

classification problems. I opted for a batch size of 8 instances during training, striking a 

balance between computational efficiency and gradient accuracy. The entire training 

process extended across 150 epochs, and for optimization, I employed the widely used 

Adam algorithm, which offers adaptive learning rates for individual parameters. 
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Further technical details of the model include: 

 Kernel Size: I built the model using a kernel size of 3x3, a common choice that 

enables the model to capture spatial patterns efficiently. 

 Capsule Routing Time: The process by which information is passed between 

capsules. For the model, I set this to 3 iterations to ensure adequate information 

routing without causing excessive computation. 

 Capsule Dimensions: Each individual capsule within the network was designed to 

have eight dimensions, providing a richer representation of data. 

 Length of Capsules: Both the primary capsules and the digit capsules were 

established with a length of seven. This determines the depth and complexity of 

information each capsule can hold. 

 Lastly, I made use of the ReduceLROnPlateau [74] callback function during the 

training process. This function is instrumental in adjusting the learning rate, a pivotal 

hyperparameter, based on the model's performance. Specifically, if the model doesn't 

register an improvement in its loss value over a pre-defined number of epochs (termed 

'patience'), the learning rate is multiplied by a certain factor to facilitate convergence. For 

this study, I set this factor to 0.2 and the patience to 10 epochs, ensuring that the learning 

rate is modified adaptively to foster efficient and effective training. 

3.4.4 Experimental Results 
 In the comprehensive exploration centered around fabric texture defect classification, 

the primary focus was the TILDA dataset, a collection of fabric textures showcasing varied 

defects. The ambition was to identify the Convolutional Neural Network (CNN) model that 

resonates best with the peculiarities of the TILDA dataset and delivers unmatched 
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performance in classifying fabric defects. To ensure the fidelity of my experiment, I 

employed the 10-fold cross-validation strategy during training. This approach ensured that 

I could confidently assess each model's adaptability to different data divisions. 

DenseNet201 emerged as the frontrunner, achieving an accuracy of 95.7% paired with an 

F1-score of 95.6%. This performance highlights its ability to strike a balance between 

precision and recall. Another contender, ResNet50, also demonstrated capabilities, 

achieving an accuracy of 93.7%. Although it delivered high accuracy, its F1-score slightly 

trailed DenseNet201. On the other hand, the Xception model, known for its distinctive 

architecture, performed well, achieving an accuracy of 93.1% and a closely matched F1-

score. Slightly behind in the ranking was ResNet152V2, which, while effective, couldn't 

surpass the performance of its counterparts in this classification challenge. 

EfficientNetV2B0 and InceptionV3 delivered similar performances, both achieving 

approximately 90% accuracy. This close match in their performance underscores the idea 

that, despite having different architectural foundations, models can exhibit similar behavior 

when applied to a particular dataset. On the other end of the spectrum, MobileNet and 

EfficientNetB0, known for their computational efficiency, demonstrated respectable 

performances, with accuracies just of 89%. A consistent thread running through the 

observations was the perfect specificity of 100% that was mirrored across all models. This 

unanimous result is a testament to the TILDA dataset's clarity of features, which provides 

an environment conducive for models to make clear distinctions between defective and 

non-defective textures. In essence, the journey through this experimental landscape 

underscores the brilliance of DenseNet201 in navigating the intricacies of the TILDA 

dataset. The varied performance metrics across the models emphasize the pivotal role the 
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right architecture plays in harmonizing with a dataset's idiosyncrasies, ensuring peak 

classification efficacy. 

Model Accuracy Specificity Precision Recall F1-score 

Xception [75] 93.11 98.00 94.94 93.14 92.92 

EfficientNetV2B0 [76] 89.97 100 93.29 89.92 90.02 

MobileNet [77] 88.80 100 92.35 88.78 88.88 

ResNet152V2 [78] 91.10 100 93.43 91.07 90.72 

EfficientNetB0 [79] 88.24 100 91.89 88.21 88.14 

ResNet50  [78] 93.69 100 95.45 93.64 93.63 

InceptionV3 [71] 89.68 100 92.21 89.64 89.73 

DenseNet201 [72] 95.70 100 96.40 95.71 95.62 

Table 3.1: Performance of the Common CNN models. 

In my subsequent study, I aimed to boost the defect identification in textures by adopting 

a new architectural method known as capsule networks. These networks excel at 

maintaining the structural order of features, making them apt for my purpose. I 

incorporated the capsule network architecture with the earlier discussed CNN models and 

retrained them on the dataset. As shown in Table 3.1, the outcomes were very promising. 

Impressively, all models showed marked enhancements in various metrics. For instance, 

the DenseNet201, already a top-performer in the initial study, increased its accuracy from 

95.7% to a remarkable 98.2%. Its F1-score, crucial for the study, also rose to 98.2%. 

Importantly, all models maintained a 100% specificity, indicating their consistent skill at 

correctly recognizing non-defective textures. Moreover, precision and recall of each model 

grew considerably upon adding the capsule network. For example, the InceptionV3 model 

improved its accuracy from 89.6% to 97.1%, with its F1-score also at 97.1%. This uplift 

was not restricted to just one model but was seen universally across all tested models, 

underscoring the effectiveness of the capsule network in this domain. The structure of the 

capsule network, which is adept at interpreting spatial relationships in data, seems to work 
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harmoniously with the CNNs' feature-detection ability. This synergy is evident in models 

like MobileNet, which saw an accuracy increase from 88.8% to 92.5%. Notably, 

DenseNet201 and InceptionV3 models stood out. With F1-scores of 98.2% and 97.1%, 

respectively, they demonstrate their capability to accurately identify defective textures with 

minimal errors. This indicates that when these models are combined with capsule networks, 

they might set new standards in texture defect identification. To conclude, merging capsule 

network architecture with the selected CNN models resulted in a significant enhancement 

in performance. The consistent improvement in accuracy, precision, recall, and F1-score 

across all models, without compromising specificity, speaks volumes about the value of 

this approach. 

Model Accuracy Specificity Precision Recall F1-score 

Xception [75] 95.68 100 96.42 95.71 95.61 

EfficientNetV2B0 [76] 95.70 100 96.51 95.71 95.73 

MobileNet [77] 92.53 100 94.60 92.50 92.50 

ResNet152V2 [78] 94.52 100 95.76 94.50 94.22 

EfficientNetB0 [79] 92.25 100 94.76 92.21 92.29 

ResNet50  [78] 95.41 100 96.56 95.42 95.33 

InceptionV3 [71] 97.11 100 97.75 97.07 97.13 

DenseNet201 [72] 98.28 100 98.52 98.28 98.27 

Table 3.2: Performance of the Common CNN models as backbone of Capsule Network. 

 In the final phase of the experimental series, I sought to further boost the model's 

efficiency by adding a spatial attention module to the system. This type of module is created 

to assist the model in focusing on the most important areas of an image, which can 

potentially improve its capacity to detect defects within textures. For the purpose of this 

study, I combined this module with the InceptionV3 model. This model had already shown 

impressive results in the prior assessments. After combining the spatial attention module 

with the InceptionV3, I saw notable improvements in its performance. The model's 
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accuracy shot up to an impressive 98.28%. Additionally, its specificity stood at 100%, 

while precision climbed to 98.64%. I recorded a recall rate of 98.21%, leading to an F1-

score of 98.24%. These figures indicate that the spatial attention module played a pivotal 

role in directing the model's attention to significant patterns and features within the texture 

images. Driven by these outstanding outcomes, I aimed higher for the last experiment. I 

decided to adopt a combined approach, utilizing the power of two distinct models - 

DenseNet201 and InceptionV3. I theorized that merging these two potent models would 

create a network that benefits from the strengths of both, potentially resulting in even more 

dependable and precise classifications. The theory turned out to be accurate. When I 

combined DenseNet201 and InceptionV3, the result was enhanced. This model set a new 

gold standard for identifying defects in textures, boasting an accuracy of 99.42% and 

preserving the perfect 100% specificity. Furthermore, it achieved a precision rate of 

99.52% and a recall of 99.36%, leading to an F1-score of 99.38%. For a visual 

representation, Figure 3.6 provides a confusion matrix for this model using the TILDA 

dataset. 

 To wrap it up, the last experiment, which involved the use of a spatial attention 

module, brought about significant advancements, especially when combined with the 

InceptionV3 model. The ultimate achievement, a combined model of DenseNet201 and 

InceptionV3, set new industry standards for classifying texture defects. This highlights the 

vast potential in merging neural network designs and techniques to address intricate image 

classification challenges. 
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Figure 3.6: Confusion matrices of the proposed model. 

3.5 Discussion 

3.5.1 Comparison with state of the art CNN models 
 In the realm of texture defect classification, the accuracy of the model is a crucial 

determinant of its effectiveness. This emphasis on accuracy has driven us to conduct a 

thorough analysis, comparing the newly proposed model to a selection of well-established 

standalone CNN models. This comparison is detailed in Table 3.1. The accuracies achieved 

by these standalone CNN models, as recorded in Table 3.1, vary notably. The range begins 

with MobileNet, which achieves an accuracy of 88.21%, and extends up to 95.71% 

achieved by DenseNet201. These figures serve as a critical benchmark, allowing us to 

assess the effectiveness of different models and, more importantly, to measure the 

performance of the new approach. The innovative model, which synergistically combines 

the strengths of DenseNet201 and InceptionV3, pushes the boundaries of this benchmark. 

It achieves an accuracy of 99.42%, marking a significant improvement - a boost of 3.71 
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percentage points - over the previous best result from DenseNet201. For a more intuitive 

understanding of this comparative performance, I direct attention to Figure 3.7. Here, since 

I evaluated the model a on balanced dataset only the accuracy is compared against the 

accuracies of the standalone CNN models. In this graphical representation, the X-axis 

denotes the different model architectures, while the Y-axis displays the corresponding 

accuracy percentages. A cursory look at Figure 3.7 reveals that the proposed model 

surpasses all other individual CNN models in accuracy, cementing its position as a solution 

in the field. 

 

Figure 3.7: Comparative analysis of the accuracy percentage between the proposed model 

and various pre-trained CNN models on TILDA dataset. 

3.5.2 Comparison with the Previous Studies 
 Texture classification is a field that has been extensively studied in the literature, as 

evidenced by the numerous research papers and studies available on the topic. A notable 

number of these studies have based their research on datasets crafted by the researchers 

themselves. Yet, it's the TILDA dataset, renowned for its diverse assortment of fabric 

defect textures, that has captured the interest of numerous scholars. To offer an objective 
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evaluation of the various studies, I can turn to Table 3.3, which showcases accuracy scores 

of different methods when applied to the TILDA dataset. This table also facilitates a direct 

comparison of the accuracy scores between the model introduced in the present study and 

those from prior research that employed the TILDA dataset for examination. The spectrum 

of methodologies in texture defect detection research is vast. Earlier approaches, 

highlighted by studies like those from references [80], [81], and [82], were built around 

feature extraction techniques. These include methods such as the Gray-Level Co-

occurrence Matrix (GLCM), Local Binary Patterns (LBP), among others. They also 

leveraged various classification techniques, including Support Vector Machines (SVM), 

Neural Networks, and the like. Of these classic methodologies, the study by [81] in 2020 

is particularly noteworthy, achieving an accuracy of 97.25%—the pinnacle among 

traditional techniques. However, the landscape of texture classification research has been 

transformed with the emergence of pre-trained deep learning models. This new era, 

exemplified by studies like the one from [83] in 2019, has adopted advanced models, with 

AlexNet being a prime example. Delving deep into this research evolution, a discernible 

pattern emerges: deep learning models seem to consistently eclipse traditional methods 

when it comes to texture classification tasks. 

Reference Year Method Accuracy Score 

[80] 2011 

Gray-Level Co-occurrence Matrix, Local 

Binary Patterns, and Support Vector 

Machines 

86.7% 

[82] 2019 
Random Decision Forest, Gray-Level Co-

occurrence Matrix and Gabor Wavelet  
84.5% 

[83] 2019 
Deep CNN utilizing Multi-scaling and based 

on AlexNet 
96.55% 

[81] 2020 

Support Vector Machines, Local Binary 

Patterns, Gray-Level Co-occurrence Matrix 

and SVM 

97.25% 
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Proposed 

model 
2023 

Capsule network, spatial attention block 
99.42% 

 

Table 3.3: Comparison of the proposed model's results with previous studies in the 

literature. 

3.5 Conclusion 
 In textile manufacturing, quality control is essential to ensure that the fabrics 

produced meet the highest quality standards. This research article introduces a texture 

defect classification mechanism, based on a capsule-based neural network model. Such a 

design takes into account the nuanced challenges associated with fabric anomalies, which 

typically manifest as erratic patterns over intricate backgrounds. I recognized the 

limitations of conventional Capsule Networks, which employ single convolutional layers 

for feature extraction. This arrangement could potentially limit their ability to detect subtle 

and complex fabric defects. To address this issue, I combined state-of-the-art convolutional 

neural networks (CNNs) with a spatial attention component, all within the capsule 

architecture. This combination is dual-pronged in its benefits: Firstly, it taps into the merits 

of transfer learning, augmenting the model's learning and generalizing capabilities. 

Secondly, it provides the model with an improved feature discernment capability, which is 

essential for detecting the subtle patterns and spatial intricacies present in fabric images. 

For assessment purposes, the model underwent a 10-fold cross-validation on the multi-

category TILDA dataset. The derived outcomes were commendable, with the model 

showcasing a accuracy of 99.42%. This research not only emphasizes the outstanding 

efficiency of the proposed model but also underlines its consistent superiority when 

juxtaposed with other methodologies.  
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Chapter 4. DepthCrackNet: Pavement Crack 

Segmentation Model Using 3D Spatial Features and a 

Multi-Head Attention Mechanism 

4.1 Introduction and Problems 

 The condition of road surfaces is a crucial aspect of traffic safety, and it can be 

jeopardized by the presence of cracks. The formation of these cracks can be attributed to 

various factors, including moisture content, the quality of road construction, and the 

volume of traffic it accommodates  [84]. An investigation in 2006 illuminated the economic 

repercussions of accidents in the U.S., which were precipitated by inferior road conditions, 

amounting to a staggering $217.5 billion [85]. Neglecting timely repair of these cracks can 

exacerbate the damage, endangering road users, reducing road lifespan, and potentially 

resulting in both human and material losses. With the surge in road usage, the risks 

multiply, and if unchecked, can culminate in tragic fatalities. Hence, it becomes imperative 

for the departments overseeing transportation maintenance to ensure roads are kept in 

optimum condition. A cornerstone of such endeavors is the detection of cracks. Traditional 

manual detection methods are fraught with issues: they are labor-intensive, disrupt regular 

traffic flow, consume a significant amount of time, and pose potential hazards to workers 

[86]. To streamline the inspection process and reduce the workload on professionals, the 

introduction of automated crack detection systems is essential. 

 With the advancements in computer vision, there has been a growing interest in 

leveraging these technologies for the automation of crack detection [87], [88]. However, 
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designing an efficient model tailored for identifying pavement cracks isn't devoid of 

challenges. Figure 4.1 delineates three primary obstacles that such models are likely to 

confront: 

 Variations of Cracks: Cracks aren't uniform. They manifest in a multitude of forms 

- differing in length, breadth, orientation, and curvature. This diversity complicates 

the development of a universally applicable segmentation strategy. 

 Different Pavement Types: The material composition of pavements, such as asphalt 

or concrete, introduces variability in textures and crack morphologies. This 

demands flexible and adaptable segmentation methodologies. 

 Assorted Objects and Irregularities: Images of road surfaces often feature 

miscellaneous items and anomalies like lane markings, depressions, inadvertent 

paint splatters, variable lighting effects, skid marks, and random debris. Some of 

these can mimic the appearance of cracks in terms of their shape, dimension, or 

texture, which introduces the possibility of false detections or unclear 

interpretations. 
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Figure 4.1: Example pictures used to identify cracks on pavement surfaces: (a) Variations 

of Cracks, (b) Different Pavement Types, (c) Assorted Objects and Irregularities. 

 The advancement of deep learning and improvements in image processing have 

accelerated the development of numerous automated methods for identifying cracks in 

pavements. In the foundational stages of this exploration, researchers like [86] and [89] 

favored threshold-based techniques, premised on the notion that pixels representative of 

cracks were perceptibly darker than their immediate surroundings. A myriad of features, 

encompassing wavelet characteristics [30], Histogram of Oriented Gradients (HOG) [35], 

and Gabor filters [90], were integrated for the detection of cracks. These methodologies, 

while adept at isolating the immediate attributes of cracks, often missed out on 

understanding the wider context within which the crack exists. Aiming for a holistic 

perception of crack detection, various investigations [91], [92] incorporated an 

amalgamation of photometric and geometric elements inherent in pavement crack visuals. 

The overarching goal of these strategies was to meticulously diminish noise and accentuate 

the connectivity of the detected cracks. However, these models encountered hurdles, 

particularly when deciphering cracks with irregular intensities or complex topological 
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nuances. To overcome these challenges, CrackForest [93] melded multi-tiered 

complementary features, tapping into the rich structural details embedded within crack 

segments. This approach surpassed its peers, notably Minimal Path Selection (MPS) [94], 

Free-Form Anisotropy (FFA) [95], CrackIT [96], and CrackTree [92] in terms of efficacy. 

Yet, a notable limitation of CrackForest [93] lies in its dependency on manually designed 

features, which may falter when discerning cracks against intricate backdrops punctuated 

with nuanced indicators. 

 In the current wave of research, the adoption of deep learning paradigms has become 

widespread, particularly in computer vision projects. A plethora of studies [88], [41], [97], 

[98] aspired to exploit the robust feature extraction capabilities of deep learning tailored 

for crack detection. For instance, works like [88], [41], and [97] utilized deep learning to 

perform patch-oriented classification, a tactic efficient but somewhat unwieldy and 

sensitive to the size of the patches in question. On the other hand, [88] approached crack 

detection as a segmentation task, utilizing deep learning to categorize individual pixels as 

either part of cracks or background elements. Yet, as articulated by [41], the endeavor of 

crack detection possesses inherent complexities, different from standard semantic 

segmentation, especially when considering the stark contrast between the primary subject 

(cracks) and the surrounding environment. To counter the intricate challenges of securing 

robust feature representations and navigating the distinct class imbalances inherent in 

automated crack detection, I introduce DepthCrackNet, an innovative model meticulously 

designed to autonomously detect cracks on pavements. 

 The core contributions of this research are delineated as follows: 
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 Incorporation of Double Convolutional Encoder (DCE): I integrate the Double 

Convolutional Encoder (DCE) into the segmentation framework. Constructed with 

successive convolution layers, the DCE is tailored to augment feature extraction 

capabilities while ensuring optimal utilization of parameters. 

 Introduction of TriInput Multi-Head Spatial Attention (TMSA): This research 

introduces the TMSA mechanism, an attention module capable of simultaneously 

processing three input feature maps. By employing multi-head attention, it aims to 

extract deeper contextual understanding, enhancing the accuracy of segmentation. 

 Adoption of the Spatial Depth Enhancer (SDE): The Spatial Depth Enhancer (SDE) 

module is another notable component of the model. It ingeniously transforms two-

dimensional feature maps to a three-dimensional milieu, which serves to accentuate 

the model's depth discernment and spatial articulation. 

 Superiority Demonstrated in Empirical Tests: The empirical evaluations, conducted 

using prominent crack datasets including Crack500, DeepCrack, and GAPS, 

consistently highlight the superiority of DepthCrackNet over contemporary state-

of-the-art models in the field of crack detection. 

 Through this research, I mark a significant leap forward in the field of automated 

pavement crack detection. 

4.2 Proposed Model 
 In the framework of my research, I conceptualize crack detection as an exercise in 

pixel-specific binary categorization. When presented with an input image that may contain 

a crack, the deep learning model aims to produce a predictive map that highlights the 

presence of cracks. In this generated map, areas identified as potentially containing cracks 
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are assigned higher probability scores, indicating a greater confidence in detecting real 

cracks in those areas. On the other hand, areas without cracks are indicated by lower 

probability scores, indicating a lower likelihood of actual cracks being present. A detailed 

representation of the model's architecture is presented in Figure 4.2. As shown in Figure 

4.2, the model is designed in a similar fashion to the U-Net framework. The encoder 

segment integrates a Double Convolution Encoder (DCE) module. This element 

encompasses a series of 2D convolutions, followed by batch normalization (BN) and ReLU 

activation layers, all meticulously crafted to optimally extract features from pavement-

centric images. To enhance this extraction, we've incorporated the Spatial Depth Enhancer 

(SDE) module within the encoder. This module employs a 3D convolution technique on 

the images, refining the model's feature identification capabilities. Diving into the decoder 

portion, we've embedded the TriInput Multi-Head Spatial Attention (TMSA) module, a 

mechanism responsible for fusing diverse feature maps. It's imperative to note that each 

attention head within this module functions autonomously, encompassing a spectrum of 

spatial interrelationships. The fruits of this intricate process are subsequently funneled to 

the Convolution Transpose Decoder (CTD). This decoder, built from 2D transpose 

convolution, batch normalization (BN), and ReLU layers, expands both the horizontal and 

vertical dimensions of the image. By harnessing these enriched feature sets, the CTD yields 

highly accurate crack identification outcomes. 

 In summary, the DepthCrackNet is architecturally rooted in four pivotal components. 

Each of these cornerstones -1) Double Convolution Encoder (DCE), 2) Spatial Depth 

Enhancer (SDE), 3) TriInput Multi-Head Spatial Attention (TMSA), and 4) Convolution 

Transpose Decoder (CTD) - will be dissected in depth in the ensuing sections of the study. 
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Figure 4.2: The architecture of the DepthCrackNet. 

4.2.1 Double Convolution Encoder (DCE) 
 Traditional Convolutional Neural Network (CNN) architectures rely on a structured 

sequence of layers, with each layer carrying out operations like convolution, Rectified 

Linear Unit (ReLU) activation, and batch normalization to effectively extract important 

features from images. However, a significant challenge arises: as these networks delve 

deeper to uncover more intricate semantic details, they often encounter the well-known 

problem of vanishing gradients [78], [79], [99]. To overcome this challenge, my 

investigation introduces the Double Convolution Encoder (DCE). Drawing from the 

architectural of the Inception V3 model [71], the DCE incorporates dual convolutional 

layers, each armed with distinct filter configurations. This architectural decision is 

carefully designed to capture spatial details meticulously without significantly increasing 

the model's parameter numbers. Furthermore, this architectural configuration enables the 

Deep Crack Extractor (DCE) to effectively mitigate the challenges commonly associated 

with deep Convolutional Neural Networks (CNNs). This ensures robust feature extraction, 
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particularly when dealing with a restricted training dataset [70]. In a broad context, 

Convolutional Neural Networks (CNNs) are fundamentally built upon three key pillars: the 

convolutional layers, batch normalization procedures, and activation functions [100]. 

 Convolutional Layer 

 At the heart of a Convolutional Neural Network (CNN) lies the convolutional layer, 

a pivotal component that executes a convolution operation on the input data. This operation 

essentially acts as a specialized filter mechanism. A visual representation of this 

convolution operation can be observed in Figure 4.3 as the model undergoes the training 

process, it meticulously adjusts the filter weights. This adjustment endows the filters with 

the capability to discern and accentuate features that are of utmost relevance to the specific 

task in question. In the given context, the term 'w' denotes the weight, 'x' stands for the 

input data, 'b' is indicative of the bias value, and Noutput portrays the resultant output, all 

of which can be gleaned from Eq. (6). 

N output = w × x + b 

 Batch Normalization Layer 

 Batch normalization stands as a pivotal mechanism in bolstering the consistency and 

efficacy of neural networks. At its core, this procedure entails the normalization of outputs 

originating from prior layers. Such normalization guarantees that the inputs directed to 

every ensuing layer maintain a uniform mean and variance. A significant merit of this 

process is its ability to mitigate the internal covariate shift, which subsequently facilitates 

a more rapid training cycle and lessens the reliance on initial weight setups. Moreover, the 

implementation of batch normalization often translates to more streamlined loss function 

terrains, which simplifies the overarching optimization journey. 

 

(6) 

  



72 

 

 Activation Layer 

 Following the convolutional procedure, the data progresses to the activation layer. In 

this phase, a specific transformation is imposed upon the output data emanating from the 

preceding layer. This transformation introduces a non-linear dynamic into the model's 

computations. The Rectified Linear Activation Unit (ReLU) stands out as a prevalent 

activation function for this stage, and its primary action is to negate any negative values by 

relegating them to zero. While ReLU enjoys widespread usage, there are other alternatives 

like "tanh" and "sigmoid." These counterparts similarly operate by confining the input data 

within a defined boundary. 

 

Figure 4.3: Illustration of the 2D convolution process in a convolutional layer. 

4.2.2 Spatial Depth Enhancer (SDE)  
 Within the segmentation model's encoder section, we've incorporated the Spatial 

Depth Enhancer (SDE) to amplify feature extraction and emphasize the depth-oriented 

characteristics evident in pavement crack images. At its core, the SDE aims to provide a 

more profound spatial interpretation of features, all the while being computationally 

efficient. This is actualized by transitioning from the customary 2D convolution approach 

to the more intricate 3D convolution methodology. To materialize this, the initial image is 

subdivided into segments of N×N, which subsequently serve as an additional dimensional 
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layer. The resulting architecture exhibits a notable resemblance to the 3D biomedical 

imagery structure, as referenced in [101].  Upon entry, the SDE module promptly modifies 

the input tensor's dimensions to make them amenable to 3D convolutional activities. This 

strategic alteration primes the tensor for ensuing depth-centric transformations. Post-

adjustment, the 3D convolution mechanism is set in motion. By infusing an extra depth 

dimension, the process is better poised to discern spatial structures and depth-pertinent 

traits, as compared to its 2D counterpart. Figure 4.4 offers an illustrative snapshot of the 

mechanics of a 3D convolution maneuver. It's noteworthy to mention that the convolution 

filter's depth is fluidly determined by the channels present in the input, ensuring a 

harmonious balance between adaptability and computational thriftiness. In the concluding 

stages, the tensor is reverted to a 2D framework after undergoing 3D convolution and 

subsequent activation. This transition ensures that the processed tensor meshes smoothly 

with ensuing model layers, specifically the TMSA module. 

 In summary, the Spatial Depth Extraction (SDE) module provides the segmentation 

model with an enhanced spatial understanding of the input image. This enhancement is 

especially crucial when the model is tasked with identifying subtle and intricate crack 

patterns on pavements, patterns that may go unnoticed by models limited to 2D 

convolutional layers. 
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Figure 4.4: Illustration of a 3D convolution operation. 

4.2.3 TriInput Multi-Head Spatial Attention (TMSA) 
 Attention mechanisms have provided a shift in the way deep learning architectures 

perceive and prioritize data [5], [102]. These mechanisms, rather than evenly distributing 

attention across all data points, enable the model to hone in on pertinent segments related 

to a task. The introduction of multi-head attention augments this by facilitating multiple 

focus points or 'perspectives' [103], [104], ensuring that a diverse range of spatial 

information is captured from various perspectives. In the domain of pavement crack 

detection via segmentation methodologies, the TriInput Multi-Head Spatial Attention 

(TMSA) stands out as a module crafted for the decoder segment. Intricacies like hue, 

contour, and texture are enmeshed within spatial nuances, while semantic details overflow 

with context-rich data—stellar for classification but often lacking in locational or 

morphological precision [105]. On the flip side, spectral aspects illuminate spatial ties 

across points in the input image, achieved via reshaping and 3D convolutional techniques, 

as delineated in [106]. Given that these facets are sourced via disparate channels, these 

maps inherently contain diverse content. This study introduces a novel approach where, 

instead of simply combining these maps, I design a 3D-input multi-head attention structure. 

The TMSA's blueprint is deeply rooted in the squeeze and excitation paradigm [57]. This 

module adeptly combines three distinct feature maps: the foundational feature maps 

extracted via double Conv2D layers (DCE) and transported through the encoder's skip 

pathways; the spatially-rich maps from the Spatial Depth Enhancer (SDE) that underscore 

depth-oriented subtleties; and maps from the Conv2DTranspose (CDC) module in the 

decoder, with a focus on recovering spatial details that may have been lost during the 

encoding process. 
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 The core of the TMSA module lies in its utilization of multi-head attention, a 

mechanism designed to concurrently focus on different spatial regions. Each head in the 

TMSA initiates by sequentially merging all three input streams, culminating in a cohesive 

feature map. Following this, a Global Average Pooling 2D layer computes the mean across 

spatial dimensions in this unified map. This computation crafts a holistic portrayal of the 

amalgamated feature maps, subsequently channeled through back-to-back dense layers, 

interspersed with a ReLU activation. Emerging from these layers, a sigmoid activation 

molds the output, deriving weights correlating to the unified feature map's spatial locales. 

Post this, these weights are reformulated and expanded to resonate with the spatial 

dimensions of the initial feature map input. The culmination is an element-wise product of 

the enlarged weights and the cohesive feature map, ensuring each spatial point within the 

map is bequeathed a weight emblematic of its relative significance. Upon each head's 

processing conclusion, their outputs are fused to form the ultimate attention-augmented 

feature map. Through its multifaceted attention orchestration, the TMSA module ensures 

the resultant feature map accentuates pivotal regions, concurrently fusing a plethora of 

spatial and depth nuances. This integration of spatial intelligence significantly improves 

the model's ability to accurately identify pavement cracks. 

4.2.4 Convolution Transpose Decoder (CTD) 
 The design of DepthCrackNet places significant emphasis on the central DCE and 

SDE modules within its encoder segment, which play a vital role in shaping robust feature 

maps. Nestled within the decoder partition of the DepthCrackNet, the Convolution 

Transpose Base Decoder (CTD) takes full advantage of these features to deliver exemplary 

crack detection outcomes. The CTD module, meticulously crafted, serves as the backbone 

of the decoding process. It incorporates a series of steps, including transpose convolution, 
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batch normalization, and the utilization of Rectified Linear Unit (ReLU) activation. These 

steps, working together, aim to recover the spatial details that may have been lost during 

the encoding process. At the core of the CTD is the Conv2DTranspose layer, which utilizes 

transposed convolutions, often known as deconvolutions, to expand the spatial dimensions 

of feature maps. To facilitate this spatial expansion, a (4,4) sized kernel partnered with a 

(2,2) stride is wielded, which effectively magnifies the spatial resolution twofold. A 

subsequent batch normalization is trailed by a ReLU activation, infusing the feature maps 

with non-linearity, which is pivotal for discerning intricate data patterns and relationships. 

An outstanding characteristic of the CTD module is its remarkable synergy with the 

preceding modules in the architecture, particularly the TriInput Multi-Head Spatial 

Attention (TMSA) and the Double Convolutional Encoder (DCE). This synergy ensures 

the seamless flow of information and the effective utilization of features for crack 

detection. With the integration facilitated by the TMSA, the module effectively combines 

the expanded tensor with the provided skip connections. Consequently, the decoder not 

only accesses the rich features from its deeper layers but also integrates them with spatial 

information from the network's early stages, ensuring the retention of essential details 

crucial for accurate crack detection. This integration enhances the model's overall 

performance and ability to detect cracks effectively. Structurally, the CTD network unfolds 

over five distinct levels. Within its architecture, the primary four levels encompass 

convolution transpose layers, TMSA, and DSC. As each tier unfolds, the feature map 

undergoes a metamorphosis. Conv2DTranspose layers are harnessed to augment its spatial 

dimensions. The TMSA, or Top-Down Skip Attention layer, plays a pivotal role by 

combining the initial high-level feature map with its low-level spectral and spatial 
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counterparts. After this integration, the fused feature map passes through the DSC (Deep 

Supervision Context) layer. This process enhances the model's ability to capture intricate 

spatial details and spectral information, contributing to more accurate crack detection. 

Advancing to the final stage of the CTD network, known as the output stage, the feature 

map undergoes further refinement through a sequence of operations including 

Conv2DTranspose, Batch Normalization (BN), and ReLU activations. These operations 

prepare the feature map for the crack detection task. The refined feature map then passes 

through the DSC layer, resulting in a feature map that matches the dimensions of the input 

image but contains 16 channels. In the pixel-wise classification step, the feature map 

undergoes a 1x1 convolution (Conv) operation followed by the application of a softmax 

function. This series of operations ultimately produces a 256x256x2 output matrix, which 

is used for crack detection. 

4.3 Experimental Work and Results 
 The effectiveness of the DepthCrackNet model was assessed by comparing its 

performance on two publicly datasets, Crack500 [43] and DeepCrack [107]. This 

comparison was benchmarked against renowned architectures such as R2U-Net [108], 

Attention U-Net [109], TransUNet [110], and Swin-Unet [111], which frequently surface 

in related academic literature. In this exploration: 

 In Chapter 4, a meticulous exploration of the underpinnings and evaluations of 

DepthCrackNet is undertaken. Section 4.3.1 provides an exhaustive review of the selected 

datasets, detailing their content and establishing their pertinence. Moving forward, Section 

4.3.2 delves into the selected evaluation metrics, which serve as the benchmark for 

assessing DepthCrackNet's performance in comparison to its counterparts. These metrics 
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provide a quantitative foundation for an objective assessment of the model's effectiveness. 

Going deeper, Section 4.3.3 unveils the intricate details of the model's development, from 

its inception to its training regimen. This discussion elucidates the reasoning behind crucial 

decisions related to the model's architecture, parameters, and optimization strategies. 

Finally, Section 4.3.4 serves as a culmination, where the experimental results undergo 

meticulous examination to determine the effectiveness of DepthCrackNet in relation to 

other models. 

4.3.1 Dataset 
 To validate the effectiveness of the proposed methodology, I conducted extensive 

experiments using two renowned pavement crack datasets, namely Crack500 [43] and 

DeepCrack [107]. I divided these datasets into three separate sets, maintaining a 

distribution ratio of 6:2:2.  [112]. Specifically, 60% of the data was earmarked for training, 

20% served as a validation set to fine-tune model parameters, and the remaining 20% 

constituted the test set to objectively assess the model's performance. With this systematic 

approach, I aimed to ensure that the model was exposed to a diverse range of data during 

training, allowing it to learn effectively and adapt to various scenarios. The selected 

datasets, each with its distinctive attributes, served as a robust benchmark for evaluating 

the effectiveness of the proposed methodology. 

Dataset Resolution Images Train Validation Test 

Crack500 [43] 640 × 360 3368 2020 674 674 

DeepCrack 

[107] 
Variable 537 429 54 54 

 

Table 4.1: Overview of the crack datasets utilized in the experiments. 
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Figure 4.5: Sample images and their associated true data from the research datasets used. 

(a) features images from the Crack500 collection, and (b) showcases images from the 

DeepCrack collection. 

4.3.1.1 Crack500 

 The Crack 500 dataset, as referenced in [43], is a comprehensive collection of 500 

images, each boasting a resolution approximately around 2000 x 1500 pixels. These images 

were taken within the boundaries of Temple University using a mobile phone camera. Due 

to constraints related to computing resources, these images were segmented into 16 unique, 

non-intersecting partitions. It's noteworthy to mention that only those segments with over 

1000 pixels explicitly depicting cracks were kept for further analysis. An additional layer 

of detail was added through the careful inclusion of pixel-level annotations for every image 

that displayed cracks. As a result of this meticulous process, the Crack 500 dataset has 

evolved to include sum of 3368 images showcasing cracks. 
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4.3.1.2 DeepCrack 

 The DeepCrack dataset, cited as [107], is an extensive collection of 537 images that 

are distinctive for their diverse crack scales and intricate backgrounds, providing a well-

rounded depiction of varying crack features. This dataset is enriched with three distinct 

textures, namely, bare, dirty, and rough. Moreover, it showcases two different scene 

categories: concrete and asphalt. A notable characteristic of the cracks displayed in these 

images is their varied widths, which can be as narrow as a single pixel and can expand up 

to a broad 180 pixels. Intriguingly, in each image, the area covered by cracks is only a 

fraction of the overall space, reflecting typical scenarios one might encounter in the real 

world. The manual annotation of each image in the dataset, resulting in binary 

representations of the presence or absence of cracks, adds a layer of precision and value to 

the dataset. This meticulous annotation process ensures that the ground truth information 

for crack detection is accurate and reliable, further enhancing the quality of the dataset for 

training and evaluation. 

4.3.2 Evaluation Metrics 
 For the assessment of the segmentation model's effectiveness, I relied upon several 

definitive metrics. These encompassed Precision, Recall, F1 Score, and mIoU. Precision 

gauges how adeptly defects are categorized, whereas Recall measures the proficiency in 

pinpointing negative samples. The F1 Score acts as a balance between Precision and Recall, 

providing an insight into the model's capability to discern and consistently differentiate 

between the segmented areas and the genuine target regions in the images. On the other 

hand, the Mean Intersection over Union (mIoU) measures the congruence between the 

model's predicted segmentation and the established ground truth. This metric serves as a 

testament to the model's spatial precision in demarcating objects or defects.  
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Below is the detailed equations for Mean Intersection over Union (mIoU): 

 

  

4.3.3 Implementation Details and Training 
 In this part of the study, I explore the detailed settings of my model, focusing on the 

important hyperparameters that were key during the training stage. The advanced model 

was subjected to testing via the TensorFlow framework. This procedure was facilitated by 

a robust computing configuration boasting an NVIDIA 80 GB GPU card complemented 

by 90 GB RAM, all operating seamlessly on the Paperspace platform. During the training 

segment for the proposed networks, I established the batch size at 32, while the epoch count 

was set at 200. The Adam optimization algorithm was the chosen tool for refining the 

network parameters. Intricately woven into the model is the TriInput Multi-Head Spatial 

Attention (TMSA), for which I designated the number of heads as 4. The extensive set of 

component impact analysis, which delved into a myriad of loss functions, eventually 

converged on the adoption of a weighted hybrid loss function. This specific function played 

a crucial role in making the learning process more efficient. It helped maintain a balance 

between accurate pixel-level predictions and the overall spatial alignment between the 

predicted and actual segmentations. This function is mathematically expressed as: 0.9 × 

Binary Cross-Entropy Loss + 0.1 × Dice Loss 0.9×Binary Cross-Entropy Loss+0.1×Dice 

Loss. Here, while the Binary Cross-Entropy Loss zeroes in on individual pixel accuracy, 

The Dice Loss is designed to enhance the similarity between the predicted and actual 

segmentation areas, leading to more precise and accurate segmentation results. In the 

pursuit to adjust the learning rate and identify the most favorable number of training 

mIoU =
pr ⋂ GT

pr ⋃ GT
 

 

(7) 
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epochs, I integrated the ReduceLROnPlateau and EarlyStopping callback mechanisms. The 

former, ReduceLROnPlateau, modulates the learning rate by scaling it with a designated 

factor, especially when there's a stagnation in the decrease of the loss value over a preset 

'patience' epoch count. In tandem, the EarlyStopping mechanism intervenes to terminate 

the training when deemed necessary. For the purposes of this research, both the factor and 

patience parameters for ReduceLROnPlateau were firmly set at 0.5. 

4.3.4 Experimental Results 
 In this section, I showcase the findings procured from the investigations using the 

Crack500 and DeepCrack datasets. These results are delineated into two categories: the 

visual interpretations and the quantitative analyses, which are comprehensively detailed in 

Subsections 4.3.4.1 and 4.3.4.2 respectively. 

4.3.4.1 Crack500: 

 In Figure 4.6, I provide a detailed visual comparison that places real ground-truth 

data from the Crack500 dataset side by side with segmentation outcomes from various 

methods, especially the DepthCrackNet. The layout of the figure is structured such that the 

initial two columns present the pristine images alongside their paired ground-truth 

segmentations. Intermediate columns, spanning from the third to the sixth, reveal the 

performances by distinct models like R2U-Net, Attention U-Net, TransUNet, and Swin-

Unet. Concluding this visual array, the seventh column displays the segmentation ability 

of DepthCrackNet. This illustrative presentation vividly captures the intricate challenges 

of pavement crack detection as represented in the Crack500 dataset. In the top row, which 

emphasizes the detection of minute cracks, the model distinctly stands out, boasting an IoU 

of 63%. This model's advanced ability to capture subtle details stands out when compared 

to similar models like R2U-Net, Attention U-Net, TransUNet, and Swin-Unet, which have 
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Intersection over Union (IoU) scores of 57%, 56%, 53%, and 56%, respectively. In the 

second row, which deals with identifying patterns against similar backgrounds, the model 

shows precision with an Intersection over Union (IoU) of 58%. This is slightly better than 

Swin-Unet, which scores 56%, highlighting the model's skill in detecting subtle 

differences. In the subsequent row, where the spotlight is on faint cracks against textured 

pavements, the model's commendable IoU of 81% is hard to miss. The model's ability to 

detect slight irregularities in complex environments becomes even more evident when 

compared to the formidable R2U-Net, which has a slightly lower performance at 79%. 

Additionally, in the analysis of large crack segmentation, shown in the fourth sequence, 

the model's Intersection over Union (IoU) of 73.19% underscores its strength in identifying 

obvious defects. This performance stands out, especially when compared to other 

significant architectures that hover around the 70% mark. The last sequence highlights the 

difficulties encountered due to different pavement materials. In this scenario, the model's 

adaptability is notable with an Intersection over Union (IoU) of 56%. On the other hand, 

Swin-Unet faces significant challenges, achieving an IoU of 0. This considerable difference 

emphasizes the need for an adaptive architectural design that can accurately interpret 
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various material textures in pavement crack detection.

 

Figure 4.6: A graphical comparison of the DepthCrackNet model with multiple top-

performing models using the Crack500 dataset. 

 Table 4.2 offers a side-by-side evaluation of the uniquely designed model against 

contemporary state-of-the-art alternatives, focusing specifically on their performances with 

the Crack500 dataset. While the table encompasses a myriad of performance metrics, the 

mean Intersection over Union (mIoU) stands out as a pivotal gauge of a model's proficiency 

in mapping the crack territories with precision. The model's performance is clearly 

demonstrated as it secures the highest position with a mean Intersection over Union (mIoU) 

of 77. This score highlights its proficiency in accurately identifying both areas with cracks 

and those without. Following closely, yet still behind, is the R2U-Net with a mIoU of 73.45. 

Although this is an admirable achievement, it still shows a noticeable gap in performance 
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compared to the top model. TransUNet also competes effectively, achieving a respectable 

mean Intersection over Union (mIoU) of 69.08. However, when compared with the model's 

score, it's clear that the innovative modifications we've incorporated into our model's 

architecture give it a significant advantage. The Attention U-Net, despite its specialized 

focus mechanisms, manages a mIoU of only 65.58. This somewhat underwhelming score 

indicates potential avenues for refining its approach to better grapple with Crack500's 

inherent intricacies. Contrarily, the Swin Transformer notches up a decent mIoU of 66.38. 

However, TransUNet's performance subtly suggests that there might be challenges in 

adapting transformer-based frameworks for this specific application. The model's leading 

mean Intersection over Union (mIoU) score is more than just a number—it confirms its 

robustness, flexibility, and adaptability, particularly in the complex task of pavement crack 

detection. This superiority isn't limited to the mIoU alone; its precision score of 87.00 

further highlights its unparalleled performance, surpassing all other models under 

consideration. 

Models Precision Recall F1 mIoU 

Attention U-Net 

[109] 
49.98 72.94 59.31 65.58 

R2U-Net [108] 81.21 67.10 73.49 73.45 

TransUNet [110] 67.10 64.17 65.61 69.08 

Swin-Unet [111] 67.01 57.67 61.99 66.38 

Proposed 

DepthCrackNet  
87.03 64.11 73.83 77.00 

Table 4.2: Assessment outcomes of the DepthCrackNet model compared to other models 

using the Crack500 dataset. 

4.3.4.2 DeepCrack: 

 Figure 4.7 highlights the effectiveness of the new segmentation model in comparison 

to well-known benchmarks such as R2U-Net, Attention U-Net, TransUNet, and Swin-
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Unet, using the detailed DeepCrack dataset. In the section focusing on the challenges of 

similar backgrounds, the model takes the lead with an Intersection over Union (IoU) of 

73%. This superior performance becomes even more notable when juxtaposed with the 

closely following Attention U-Net, which achieves an IoU of 71.82%. This difference 

highlights the model's remarkable ability to differentiate between actual crack defects and 

possible background distractions, a skill that is essential for practical, real-world 

applications. Exploring the challenge of identifying thin cracks, the model's capability 

becomes even more pronounced. It achieves an Intersection over Union (IoU) of 82.48%, 

showcasing its high level of precision. This is particularly evident when compared to 

TransUNet, which lags considerably with an IoU of only 57.25%. This vast discrepancy 

underscores potential shortcomings in the latter’s ability to identify minute and subtle 

defects. Addressing a real-world concern, the third row of the figure delves into scenarios 

showcasing a mix of crack sizes. In this rigorous test, my model continues its streak, 

clinching an IoU of 81%. The R2U-Net, however, offers stiff competition, slightly edging 

out at 82%. In comparison, TransUNet struggles with detecting cracks of various sizes, as 

shown by its relatively modest Intersection over Union (IoU) of 70%. This demonstrates 

the superior adaptability of my model to handle the variability and unpredictability of crack 

sizes. Evaluating the domain of thick cracks, the supremacy of my model becomes almost 

unassailable. With an awe-inspiring IoU of 91.38%, it leaves other models, including the 

next best performer, Attention U-Net (with an IoU of 85.93%), in its wake. This 

performance attests to my model’s finesse in mapping pronounced and distinct defect 

features. The grand finale, embodied in the fifth row, presents the Herculean challenge of 

detecting ultra-thin cracks. While many models struggle with this task, my model excels, 
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achieving an Intersection over Union (IoU) of 67.46%. In stark contrast, TransUNet fails 

completely, unable to detect any cracks and scoring a zero IoU. This significant difference 

in performance is a clear indication of the superior structure and design of my model, 

particularly in dealing with the most complex challenges of pavement crack detection.

 

Figure 4.7: A side-by-side visual representation of the DepthCrackNet model and various 

top-tier models on the DeepCrack dataset. 

 Table 4.3 given the quantifiable performance metrics of various models on the 

DeepCrack dataset, offering a discerning perspective into their adeptness in pavement 

crack detection. My proposed model sets a commendable benchmark with an mIoU of 83.9. 

This score emphasizes the model's skill not only in identifying cracks but also in effectively 

differentiating them from surrounding non-crack areas. Its nearest competitor, R2U-Net, 
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registers a mIoU of 79.23. While commendable in its own right, this score underscores the 

enhanced detection ability of my model, particularly when the numbers are juxtaposed. 

Delving deeper into the metrics, my model's holistic performance is evident. Boasting a 

Precision of 81.9 and a Recall of 84.9, it manifests a judicious balance in minimizing both 

false positives and false negatives. This equilibrium is further validated by an enviable F1 

score of 83.3, reflecting a harmonious blend of precision and recall. Attention U-Net, with 

its core rooted in enhancing feature discernment through attention mechanisms, yields a 

mIoU of 75.79. Despite its intrinsic architectural advantage geared towards refining feature 

understanding, it finds itself overshadowed by my model, especially when it comes to 

navigating the nuanced crack patterns endemic to the DeepCrack dataset. TransUNet, 

another contender in this evaluation, achieves a mIoU of 75.03. This demonstrates its 

reasonable ability in detecting cracks, even if it doesn't quite reach the zenith set by my 

model. In a somewhat surprising turn, Swin Transformer, despite its acclaimed ability to 

harness long-range interactions, ends up on the lower end of the spectrum with an mIoU of 

69.01. A particular point of concern is its Recall of 54.48, which exposes the bottlenecks 

transformer-based models might encounter in this domain. This suggests potential 

challenges in consistently and comprehensively identifying crack instances, a task made 

even more intricate by the diverse range of pavement textures and varying crack 

dimensions present in the dataset. 

Models Precision Recall F1 mIoU 

Attention U-Net 

[109] 
81.80 81.34 81.57 75.79 

R2U-Net [108] 87.95 89.09 88.52 79.23 

TransUNet [110] 82.31 76.68 79.40 75.03 

Swin-Unet [111] 81.94 54.48 65.45 69.01 

Proposed 

DepthCrackNet 
81.93 84.91 83.39 83.93 
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Table 4.3: Comparison outcomes of the DepthCrackNet model with other models based 

on the DeepCrack dataset. 

4.4 Discussion 
 This section is structured for an in-depth examination of three 

comprehensive subsections, each catering to a unique facet of the overarching topic. 

Section 4.4.1, titled "Component Impact Analysis" is dedicated to a detailed 

assessment of the component-wise contributions of the proposed model. In these 

studies, my aim is to gain a detailed understanding of the model's architecture. I'm 

trying to figure out which parts of the model are essential for its performance and 

which ones can be modified or removed without greatly affecting its accuracy. This 

methodical exploration allows for a profound appreciation of each component's 

significance within the model. Next, in Section 4.4.2, titled "Review of Related 

Research," I conduct a thorough examination of previous studies that are directly 

relevant to the datasets being analyzed. This evaluative process not only constructs 

a robust historical context but also underlines the advancements and gaps in 

knowledge that have taken shape over time. Such an assessment is paramount, as it 

provides a reference point against which the contemporary research can be gauged. 

Transitioning from the past to the present, Section 4.4.3, "Analysis of Model 

Limitations," pivots towards a focused investigation of the specific instances where 

the proposed model might show discrepancies. This section is crucial for 

highlighting areas that need more improvement, whether it's situations where the 

model doesn't meet expectations or errors in crack detection. By zeroing in on these 

limitations, the intent is to pave the way for enhancements in future iterations of the 
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model. This intricate organization of subsections assures a holistic exploration of 

the subject, balancing historical insights with practical analysis of the model's 

operational boundaries. 

4.4.1 Component Impact Analysis 
 The automatic detection of pavement cracks is an essential and intricate task. 

Addressing this complexity, the DepthCrackNet model was developed, featuring three 

primary modules. To determine the influence and value of each of these modules, a detailed 

component impact analysis was performed. This analysis centered on three components: 

the Double Convolution Encoder (DCE), the TriInput Multi-Head Spatial Attention 

(TMSA) module, and the Spatial Depth Enhancer (SDE) module. 

In DepthCrackNet's context, its performance was evaluated without the presence of each 

module, using the Crack500 and DeepCrack datasets, both established benchmarks in crack 

detection. Starting with the DCE component, removing it led to a significant drop in 

performance. The mIoU scores plummeted to 70.1% on Crack500 and 76.4% on 

DeepCrack. These figures, when compared to when DCE is active, highlight its essential 

role. The DCE, equipped with a series of convolution layers, offers a detailed interpretation 

of image data. This allows the model to identify cracks across different scenarios 

effectively. Next, the TMSA module's analysis showed that without it, mIoU scores 

reached 72.8% on Crack500 and 78.5% on DeepCrack. While this decline wasn't as 

dramatic as the DCE's removal, it still emphasizes TMSA's crucial role. The TMSA 

module, notable for its multiple attention heads, adeptly captures a diverse range of spatial 

dynamics. This feature bolsters the model's resilience, enabling it to adapt to varying 

pavement conditions and irregularities. Lastly, the study turned its focus to the SDE 
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module. In its absence, mIoU scores settled at 74.5% for Crack500 and 80.2% for 

DeepCrack. The noticeable change in these results affirms the significance of the SDE 

within the model. By providing a more profound insight into spatial aspects and improving 

feature extraction, the SDE guarantees DepthCrackNet's precise crack detection abilities. 

In summary, the ablation analysis solidly confirms the critical role of each module within 

DepthCrackNet. The DCE, TMSA, and SDE modules collectively enhance the model's 

performance, ensuring both robustness and accuracy in detecting pavement cracks. It 

presents an exciting avenue for future research to refine these modules or introduce 

innovative ones to push the boundaries of crack detection further. 

4.4.2 Comparison with the Previous Studies 
 The identification of cracks in pavements plays a pivotal role in maintaining quality 

standards. Over the years, a plethora of techniques rooted in image processing and machine 

learning have been developed with the aim to simplify and fully automate the crack 

detection mechanism. In the scope of this research, a unique model, named DepthCrackNet, 

has been introduced, with its primary objective being the automatic identification of surface 

defects. The efficacy of this model was rigorously tested using two renowned public 

datasets frequently mentioned in scholarly literature: Crack500 and DeepCrack. From the 

data presented in Table 4.4, several observations can be made regarding DepthCrackNet's 

performance on the Crack500 dataset. DepthCrackNet excels with a precision rate of 87, 

setting it apart from other models. The closest competitor, a model from [113] which 

employs a Feature Pyramid Network enhanced by a self-guided attention refinement 

module, trails with a precision of 83. While the model showcases ability in precision, it 

faces challenges in recall, scoring 64.1. In comparison, models like the one mentioned in 
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[114], which achieves a recall of 80 using DeepLab enhanced with Multi-Scale Attention, 

outperform it. DepthCrackNet records an F1 score of 73.8, which is competitive but falls 

short of the 79.4 score achieved by the model in [113]. Furthermore, the model stands out 

in terms of mIoU, achieving 77, thereby surpassing all peers and setting a benchmark. 

Previously, the best mIoU was 65.3 as recorded by the model in [115]. Shifting focus to its 

performance on the DeepCrack dataset, the model exhibits a respectable precision of 81.9. 

However, it doesn't top the charts, as the model in [116] clinches a higher precision of 88.3, 

utilizing an Attention Module combined with a Focal Loss Function. DepthCrackNet 

showcases its strength with a commendable recall of 84.9, outperforming all its 

contemporaries, signaling its ability in pinpointing genuine crack occurrences. While the 

model boasts an F1 score of 83.3, it's marginally overshadowed by the model in [117] 

which achieves an F1 score of 87.5, owing to the incorporation of a Morphology Branch 

paired with a Shallow Detail Branch. In this category, DepthCrackNet reigns supreme with 

an mIoU of 83.9, indicating its ability in correlating predicted segmentation with actual 

data. Upon analyzing the above metrics, it becomes evident that the incorporation of 3D 

spatial attributes and a sophisticated multi-head attention mechanism substantially bolsters 

DepthCrackNet's proficiency in accurately discerning pavement cracks. Despite certain 

setbacks, especially concerning recall in the Crack500 dataset, its enhanced precision and 

mIoU metrics underscore its potential in precise segmentation and minimizing false 

positives—factors of paramount importance for practical applications in pavement upkeep 

systems. 

 

References Methods Dataset Precision Recall F1 mIoU 
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[118] 
CNN, Pyramid 

Attention Network 

Crack500 

81.6 76.5 - 62.35 

[113] 

Feature pyramid 

network, self-

guided attention 

refinement module 

83 79.6 79.4 - 

[114] 

DeepLab With 

Multi-Scale 

Attention 

69.5 800 74.4 55.9 

[119] Unet based method - - - 60 

[115] CNN model 80.7 77.3 - 65.3 

[120] 

Self-Attention-

based Efficient U-

Net 

- - 77.5 66.3 

[121] 

ECA Channel 

Attention Module 

and FCNhead 

Decoding Dock 

- - - 63.97 

[116] 

RUC-Net with 

scSE Attention 

Module 

69.8 76.1 72.9 57.3 

[122] 

Joint Topology-

preserving and 

Feature-refinement 

Network 

68.81 69.0 65.7 - 

Proposed 

DepthCrackNet 

3D Spatial Features 

and Multi-Head 

Attention 

Mechanism 

87.0 64.1 73.8 77 

[116] 

Attention Module 

and Focal Loss 

Function 

DeepCrack 

88.3 81.2 84.6 73.3 

[117] 

Morphology 

Branch and 

Shallow Detail 

Branch 

- - 87.5 77.9 

Proposed 

DepthCrackNet 

3D Spatial Features 

and Multi-Head 

Attention 

Mechanism 

81.9 84.9 83.3 83.9 

 

Table 4.4: Results from prior research comparing performances on the Crack500 and 

DeepCrack datasets. 
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4.4.3 Error Analysis 
 The proposed model works well in identifying pavement cracks in various datasets, 

but it's important to carefully examine the cases where it didn't perform as expected. This 

will help us find ways to improve it. Figure 4.8 visually presents three instances where the 

model encountered difficulties in accurate crack detection. In the initial row of Figure 4.8, 

the model was entirely unsuccessful in discerning any cracks. This shortcoming might be 

due to certain complex elements in the images that could have confused the model. For 

example, backgrounds with similar textures or a lack of clear contrast between the cracks 

and their surrounding environment might have contributed to this issue. Understanding the 

subtleties of this limitation is crucial because it sets the foundation for strengthening the 

model's robustness in future iterations. Transitioning to the second row of Figure 4.8, I 

observe a situation where the model did detect cracks, reflected in an Intersection over 

Union (IoU) score of 56.32. Despite showcasing its capability to some extent, the IoU 

metric underscores the existence of ample scope to amplify the model's proficiency. 

Moving on to the third row of Figure 4.8, I once again encounter a situation akin to the first 

row where the model failed to discern any cracks. This reiterates the model's present 

limitations in contending with certain crack types or specific visual contexts within the 

image. Comprehending the root causes behind these lapses is instrumental in finetuning 

the model to ensure heightened accuracy and dependability. Future research efforts should 

be directed towards addressing these identified challenges. Possible strategies may include 

expanding the training dataset to include a wider range of crack examples, enhancing the 

model's ability to discern features, and experimenting with advanced post-processing 

techniques. These adjustments aim to curtail false negatives, thereby augmenting the 

model's overarching efficacy in crack identification. 
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Figure 4.8: Part (a) displays the visual results of failures for the Crack500 dataset, while 

part (b) shows the same for the DeepCrack dataset. 

4.5 Conclusion 
 In this study, I introduced DepthCrackNet, a model inspired by the U-Net framework. 

The primary goal of this model is to transform the task of detecting pavement cracks, which 

is a significant step toward enhancing road safety. DepthCrackNet boasts a unique 

architectural composition, blending the Double Convolution Encoder (DCE), the TriInput 

Multi-Head Spatial Attention (TMSA) module, and the Spatial Depth Enhancer (SDE) 

module. This structure is meticulously curated to adeptly navigate the intricate challenges 

presented by the diverse nature of cracks and the assortment of irregularities found on road 

surfaces. To ascertain its efficacy, DepthCrackNet underwent stringent testing using two 

esteemed public datasets: Crack500 and DeepCrack. The results were encouraging, with 

the model registering mIoU scores of 77.0% on the Crack500 dataset and an even more 

83.9% on the DeepCrack dataset. A side-by-side evaluation with prevailing models 
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highlighted DepthCrackNet's commendable performance, amplifying its viability for 

practical integration within pavement management frameworks.  
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Chapter 5. E-UNet3+: Steel Surface Defect Segmentation 

Model Using an Enhanced UNet3+ with Multiscale 

Feature Learning and Attention Mechanisms 

5.1 Introduction and Problems 

 Surface imperfections in manufactured products not only reduce the overall quality 

of the goods but also have a substantial financial impact on production [70], [123], [124]. 

While technological advancements have transformed many sectors, a considerable segment 

of the manufacturing industry remains dependent on manual, human-driven inspections to 

identify these imperfections. These manual methods, while traditional, are labor-intensive 

and often lack the precision and efficiency of automated systems [5]. Recognizing these 

drawbacks, there is a growing momentum towards integrating automated techniques for 

surface defect detection, which are proving their worth in various industrial scenarios. Strip 

steel is integral to numerous sectors, spanning from construction engineering to aerospace 

and the automotive industry. Ensuring the quality of this pivotal material directly 

influences the durability and reliability of the finished products within these industries. 

Thanks to technological advancements, a range of computer vision and machine learning 

techniques have emerged to transform the process of detecting surface defects in steel.  

[125]–[127]. Yet, as illustrated in Figure 5.1, there exist three predominant challenges that 

any prospective model for defect detection needs to confront: 

a)  Diversity of Defects: The surface of steel can manifest various defect types, 

including but not limited to corrosion, pitting, and scratches. Given this variety, it's 
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imperative for detection systems to be versatile, capable of recognizing and 

categorizing a myriad of defect forms. 

b)  Ambiguous Background Textures: Frequently, the natural textures found on steel 

surfaces can resemble defects, creating significant challenges in accurately 

distinguishing them. This underscores the need to integrate advanced image 

processing methods to differentiate real defects from deceptive background 

patterns. 

c)  Range in Defect Sizing: The dimensions of defects on steel surfaces can span a 

broad spectrum, from minuscule inclusions to more pronounced dents. Thus, it's 

crucial for the detection system to employ a multiscale approach, ensuring accurate 

detection across all sizes of defects. 

 

Figure 5.1: Difficulties in identifying imperfections on steel surfaces (defects are 

indicated by white areas in the reference image): a) Diversity of defects, b) Ambiguous 

background textures, c) range in defect sizing. 
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 Recent studies underscore the value of computer vision techniques and models in 

identifying surface anomalies in strip steel. These techniques can be broadly grouped into 

two primary sectors: conventional methods and deep learning-based strategies. When 

discussing traditional techniques, I see three primary subclasses: statistical, spectral, and 

model-centric methodologies. To clarify, statistical techniques identify defects by 

analyzing variations in pixel distributions between the anomalous region and the standard 

background texture [124]. A study by [128] dived into pixel distribution patterns within 

defects on hot-rolled steel, aiming to fine-tune segmentation thresholds. Similarly, [129] 

utilized a region-specific, adjustable threshold to counterbalance inconsistent surface 

attributes induced by scaling. However, these statistical methods tend to perform well with 

images that have high contrast but struggle when dealing with the frequently encountered 

low-contrast images in industrial settings. The muted luminance blurs defect edges, thereby 

diminishing the efficacy of these techniques. To tackle this issue, [130] amalgamated 

Gabor filters with morphological traits to spot pinholes in flawed steel. In a related vein, 

[131] harnessed optimized Gabor filters to pinpoint the least energy divide between defects 

and their background, assisting in better segmentation. Expanding on this, [49] proposed a 

wavelet-centric algorithm tailored to separate defects from grainy backgrounds. While 

spectral techniques can be highly efficient, they often demand intricate adjustments to 

parameters like Gabor and wavelet filters. Bypassing these intricacies, several model-

driven techniques have been spotlighted. One notable instance is [51]'s use of the Markov 

random field model to refine sheet-metal imagery for a streamlined analysis. Nevertheless, 

these model-based strategies grapple with the challenge of pinpointing defects marked by 

slight intensity variations or those with muted contrasts, irrespective of their supervised or 
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semi-supervised nature. In contrast, methods rooted in deep learning stand out for their 

superior ability, mainly due to their innate capability to autonomously discern crucial 

features. A case in point is [132]'s introduction of a dedicated VSD network tailored for 

steel defect sorting, which surpassed benchmarks set by renowned architectures like 

VGG19 and ResNet. Further enhancing this domain, [133] incorporated a semi-supervised 

learning paradigm with generative adversarial networks, aiming to produce unlabeled 

defect specimens to bolster classification accuracy. While such classification-focused 

methods tout accuracy metrics, they often omit granular details regarding defects' exact 

locations and morphologies. Bridging this knowledge gap, pioneering research has zeroed 

in on automated techniques for defect detection. A highlight includes [134]'s adoption of 

deformable convolutions as a replacement for standard convolutions within the Faster R-

CNN framework, amplifying its efficacy in spotting diminutive object defects. But, these 

object detection-centric techniques, although adept at pinpointing defect locales, often 

stumble when delineating defect perimeters and configurations. Mitigating this limitation, 

[135] unveiled a saliency detection framework harnessing channel-weighted and residual 

decoder segments for sharper defect spotting. While strides have been made in semantic 

segmentation and saliency detection concerning capturing edge shapes, there remains an 

urgent call for deeper research to fine-tune detection boundaries, augment feature 

extraction, and reinforce model resilience. 

 In my research, I present an augmented version of the UNet3+ model [136], enhanced 

with Multiscale Feature Learning and Attention Mechanisms, tailored explicitly for steel 

defect segmentation. This advanced E-UNet3+ model, comprised of 6.7 million 

parameters, showcases good outcomes, largely credited to its streamlined yet potent 
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architecture. This represents a notable departure from its predecessor, the original UNet3+ 

model[136], which boasts a hefty 26.9 million parameters. Moreover, when juxtaposed 

with contemporary benchmarks, my model distinctly surpasses them in overall efficiency. 

 The main highlights of my research encompass: 

a)  The inception of an innovative encoder framework, weaving in varied dilation rates 

and DropBlock regularization. This design captures features across different scales, 

amplifying the model's flexibility and resilience. 

b)  I enhanced the conventional max-pooling procedure inherent in UNet3+ by 

integrating strided Conv2D layers. This, when paired with subsequent 

concatenation and a 1x1 convolution, preserves pivotal feature details, boosting the 

model's predictive ability. 

c)  By embedding the Convolutional Block Attention Module (CBAM) within the skip 

pathways of UNet3+, I fine-tuned the model's concentration on vital attributes 

pivotal for defect identification. 

d)  Assessments revealed that the proposed E-UNet3+ model stands superior to 

previous models. Furthermore, this revamped architecture exhibited proficiency in 

surface defects, accounting for the variety in defect nature, resemblance to the 

background, and the broad spectrum of defect dimensions. 

5.2 Proposed Model 
 In this study, I introduce an enhanced version of the UNet3+ model, finely tuned for 

the specific purpose of detecting defects in steel. This model incorporates three crucial 

improvements that enhance its abilities in feature extraction, down-sampling functions, and 
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strengthening skip connections. A visual depiction of the entire framework of the E-

UNet3+ model can be found in Figure 5.2. 

 Delving deeper into the core components employed: 

 Within the encoder segment of the structure, I infuse a Multiscale Feature Learning 

Module (MSFLM). This specialized module is crafted to assimilate multiscale 

contextual data. Its efficacy is further amplified by integrating DropBlock, a 

regularization strategy which enhances the model's adaptability to diverse datasets. 

In this context, my model utilizes filter dimensions of 16, 32, 64, and 128. 

 In contrast to the traditional down-sampling techniques, typically executed via max-

pooling layers in the original UNet3+ model, my refined version blends max-

pooling with strided convolutions in a novel hybrid approach. The ensuing feature 

sets, derived from both techniques, are seamlessly concatenated and processed 

through a 1x1 convolution. This not only retains but also magnifies the model's 

ability to represent intricate features. 

 A pivotal addition to my architecture is the integration of the Convolutional Block 

Attention Module (CBAM) within the model's skip pathways. This sophisticated 

module meticulously refines the feature maps, zeroing in on key areas, rendering 

the model acutely attuned to subtle defect intricacies on steel facades. 

 Collectively, these modifications result in the E-UNet3+ model surpassing its 

predecessor, the original UNet3+, and competing with other state-of-the-art models in the 

field of steel defect detection. 



103 

 

 

Figure 5.2: The architecture of the proposed E-UNet3+ model. 

5.2.1 Multiscale Feature Learning Module (MSFLM) 
 In the realm of Convolutional Neural Network (CNN)-driven designs, especially 

when targeting defect detection, There is an ongoing balancing act between the complexity 

of a system and its functional effectiveness. Conventional frameworks like the classic U-

Net and its derivatives predominantly harness a blend of convolutional tiers, ReLU 

activations, and batch normalization for feature derivation. To enhance these designs, 

researchers often increase the number of layers to access richer and more semantic features. 

[78], [79], [99]. However, such augmentation comes with its own set of challenges: 

 Vanishing Gradient Dilemma: Amplifying the layer count, while theoretically 

beneficial for feature capture, accentuates the notorious vanishing gradient issue, 

impeding effective network learning. 

 Computational Strain: Every added convolutional operation inflates the parameter 

count, ratcheting up the computational demands, making these deep structures 

increasingly taxing. 
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 Data Dearth: The field of defect detection frequently faces challenges related to 

dataset limitations [[59], [109]]. This shortage of data makes training these complex 

networks more challenging, as they typically require a substantial amount of 

training data. 

 Given these challenges, my research introduces the Multiscale Feature Learning 

Module (MSFLM), which is seamlessly integrated into the UNet3+ framework. The core 

strength of MSFLM lies in its ability to incorporate context from various scales, thereby 

enhancing the defect detection capabilities of my UNet3+-based model. MSFLM replaces 

the conventional convolutional segment found in the original UNet3+ architecture. Its 

primary purpose is to extract multiscale information from the input using dilated 

convolutions and then integrate these insights into a comprehensive feature map. A visual 

representation of this configuration can be seen in Figure 5.3. 

 As illustrated in Figure 5.3, the MSFLM is structured around three core elements: 

5.2.1.1 Foundational Convolution Layer 

 Initially, the input navigates through a convolutional layer equipped with a 1 × 1 

kernel dimension. This process yields a feature map, serving as a cornerstone for the 

ensuing stages. Within the figure, this is labeled as the 'initial conv2D'. 

5.2.1.2 Dilated Convolutional Assemblies 

 The MSFLM features a trio of primary assemblies, each encompassing a collection 

of Conv2D layers distinguished by unique dilation rates. Every assembly is tailored to 

implement dilated convolutions on the input, striving to harvest features across varied 

scales without substantially amplifying the receptive field dimensions or inflating the 

parameter count. To bolster generalization and reinforce the model's resilience, DropBlock 
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regularization is embedded within each assembly. In addition to this, each pathway 

includes batch normalization combined with ReLU activation patterns. These jointly work 

to standardize feature value distributions while simultaneously infusing the system with 

necessary non-linear properties. Furthermore, residual pathways emerge as pivotal. 

Following the synthesis of feature maps after every assembly, these maps undergo element-

wise fusion with the preliminary feature map—a methodology termed 'residual 

connection'. This strategy plays a crucial role in addressing the vanishing gradient problem, 

thereby strengthening the network's learning capabilities. 

5.2.1.3 Feature Integration 

 In the final stage, the feature maps obtained from each assembly are merged along 

the channel axis, followed by the application of a ReLU activation pattern. This culminates 

in an integrated feature map saturated with multiscale insights. By assimilating Multiscale 

feature learning within the encoder segment of UNet3+ blueprint, the ambition is to 

augment the model's competency in adeptly identifying an array of steel defects, ensuring 

both precision and resilience. 
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Figure 5.3: The structures of Multiscale Feature Learning Module (MSFLM). 

5.2.2 Improved Down-Sampling Module (IDS) 
 Conventional down-sampling strategies predominantly employ pooling layers, such 

as max-pooling or average pooling, to diminish the spatial dimensions of an image. While 

these approaches facilitate computational efficiency, they present two primary 

shortcomings:  

 There is a tendency to exclude essential spatial information, which can lead to 

reduced performance, particularly in complex tasks such as object detection or 

segmentation. 

 These layers are static, indicating they remain unaltered during the learning phase. 

This non-adaptive nature can culminate in less than optimal outcomes. 
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To confront these issues, particularly the potential erosion of essential feature details during 

the down-sampling phase, the research introduces the Improved Down-Sampling (IDS) 

mechanism. Crafted to execute the down-sampling function with heightened efficiency 

relative to its traditional counterparts, the IDS module forgoes typical pooling layers. 

Instead, it harnesses the power of a 3×3 convolution with 2×2 strides. This is seamlessly 

followed by Batch Normalization and a ReLU activation process. This design doesn't 

simply reduce the spatial dimensions of feature maps; it also allows the convolution process 

to evolve and capture representations, thereby enhancing the expressiveness of the feature 

map for subsequent layers. 

5.2.3 Convolutional Block Attention Module (CBAM) 
 In CNN-inspired architectures like U-Net and its derivatives, skip connections serve 

a pivotal role. They channel lower-level features to the network's more profound depths, 

thus facilitating a more refined reconstruction of the resultant output. Yet, a notable 

limitation of traditional skip connections lies in their indiscriminate transmission of 

features. Rather than prioritizing, they transfer all features uniformly. This non-selective 

amalgamation can occasionally overshadow and water down paramount features, 

potentially hindering optimal outcomes in specialized operations such as image 

segmentation and object detection. To navigate this impediment, the research harnesses the 

capabilities of the Convolutional Block Attention Module (CBAM) [59]. This module is 

meticulously crafted to refine the efficacy of the E-UNet3+ model's skip connections. 

CBAM operates with a dual focus: it engages both the channel and spatial dimensions of 

feature maps. This dual attention mechanism ensures that the most vital channels and 
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regions within the feature maps are emphasized. Such a deliberate concentration on pivotal 

channels and spatial regions translates to a superior quality of feature transmission, which 

in turn accentuates the ability of E-UNet3+ model. The intricacies of CBAM's architecture 

are vividly laid out in Figure 5.4.   

 

Figure 5.4: Convolutional block attention module (CBAM) structure. 

 The entire attention procedure can be summarized as follows [59]: 

F’= Mc (F) ⊗ F 

F’’= Ms (F’) ⊗ F’ 

Where the symbol ⊗ denotes element-wise multiplication. 𝐹′ is the outcome when the 

feature map is multiplied by the channel attention map, and 𝐹″ is the result when 𝐹′ is 

further multiplied by the spatial attention map, producing the final output. 

5.2.3.1 Channel Attention Module 

 Critical to the improvement of feature extraction in convolutional networks is the 

channel attention module. Its primary role is to carefully evaluate channels, emphasizing 

those that are essential for effective feature extraction. A fundamental challenge that this 

module addresses is maintaining data integrity and minimizing data loss during the feature 
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selection process. To overcome this challenge, the module cleverly combines the 

capabilities of two distinct pooling layers: global average pooling and global max pooling. 

These layers work together to compress the feature map in the spatial dimension. Delving 

deeper, as depicted in Figure 5.5, the global average pooling layer operates as a detector of 

overarching, common features in the feature map. In stark contrast, the global max pooling 

layer hones in on the intricate discrepancies and variations peppered throughout the feature 

map. Remarkably, the combined might of these two layers transcends their individual 

capacities. Their synergistic interplay ensures that feature extraction is both comprehensive 

and nuanced, showcasing superior performance in comparison to either of the pooling 

layers functioning autonomously. 

 

Figure 5.5: Channel attention module. 

 Following the pooling layers, the squeezed feature maps 𝐹C𝑎𝑣𝑔 and 𝐹Cmax  are 

passed through a shared Multi-Layer Perceptron (MLP) network consisting of a single 

hidden layer. The MLP operates at a predetermined compression ratio to lower 

computational complexity and the number of parameters. A sigmoid activation function is 

then applied to produce the channel attention map 𝑀C(𝐹) ∈ 𝑅C×1×1 the process of which 

was as follows [59]: 
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𝑀C(𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑝𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐹)))  

= 𝜎(𝑊1(𝑊0(𝐹C𝑎𝑣𝑔)) + 𝑊1(𝑊0(𝐹Cmax))) 

In this scenario, 𝐹C𝑎𝑣𝑔 and 𝐹Cmax are the feature maps obtained after applying the global 

average pooling and global max pooling layers, respectively. The sigmoid function is 

represented by σ. The weight matrices W0 and W1  of the MLP have dimensions RC/r×C 

and RC×C/r, respectively, where r is the compression ratio. 

5.2.3.2 Spatial Attention Module 

 As shown in Figure 5.6, the spatial attention module is shown to focus more on 

certain regions of the feature map that are more responsive compared to what the channel 

attention module targets. For the feature maps outputted by the spatial attention module, 

both the global average pooling and global max pooling layers are employed to squeeze 

the feature maps into two 2D maps, 𝐹S𝑎𝑣𝑔 and 𝐹Smax, along the channel dimension. This 

is done to accentuate regions of the feature map that contain crucial information. 

 

Figure 5.6: Spatial attention module. 

 After concatenating the two 2D feature maps, 𝐹S𝑎𝑣𝑔 and 𝐹Smax, an effective 

feature map is formed, which then undergoes a convolution operation. Subsequently, a 
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sigmoid function is applied to this convolved feature map to compute the spatial attention 

map, denoted as MS (F) with dimensions 1×H×W [59]. 

𝑀𝑠(𝐹) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))  

= 𝜎 (𝑓7×7([𝐹S𝑎𝑣𝑔; 𝐹Smax])) 

In this setup, 𝐹S𝑎𝑣𝑔 and 𝐹Smax are the channel-dimension-squeezed feature maps, while 

𝜎 signifies the sigmoid function. The introduction of CBAM into the CNN brings an 

attention mechanism that enables both the channel and spatial modules to work 

collaboratively. 

5.3 Experimental Work and Results 
 In the delineation of the research methodology, I begin with Section 5.3.1, which 

provides an in-depth understanding of the dataset I employed for this study, touching upon 

its composition, source, and how it aligns with the research objectives. Following this, 

Section 5.3.2 shifts focus to the evaluation metrics. These metrics serve as essential tools, 

enabling us to gauge the effectiveness and precision of my model's performance in real-

world scenarios. Furthering the exploration, Section 5.3.3 delves into the intricate details 

of my model's implementation. This section provides insights into the details of the training 

process, including hyperparameter configurations and other crucial settings that have a 

significant impact on the model's learning progress. Lastly, I transition to Section 5.3.4, 

where I present the culmination of my efforts—the experimental results. Here, readers are 

introduced to a comprehensive evaluation, enriched with both visual demonstrations and 

quantitative assessments. This twofold analysis offers a well-rounded perspective on the 

model's capabilities and performance benchmarks. By progressing through these 
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systematically structured sections, readers can acquire a comprehensive and granular 

understanding of the research methodology and its subsequent results. 

5.3.1 Dataset 
During the experimental phase, I selected the SD-saliency-900 [135] dataset, which is a 

publicly accessible resource, to evaluate the efficacy of the proposed model. Comprising 

900 steel surface defect images, this dataset has been segmented into three primary defect 

categories: inclusion, patches, and scratches. A visual representation of some of these 

images is displayed in Figure 5.7. With each category containing an equal distribution of 

300 images, the standard resolution for these images stands at 200 × 200 pixels. To enhance 

the research methodology, the dataset also furnishes pixel-level labels specific to each 

defect type. This granularity facilitates not only the training of E-UNet3+ model but also 

its in-depth evaluation. To ensure compatibility with the UNet3+ architecture, I undertook 

a standardization process wherein all images from the dataset were resized to a consistent 

224 × 224 pixel resolution. Following this, I divided the standardized dataset into distinct 

segments: training, validation, and testing, with the specific distributions and details 

elucidated in Table 5.1. 
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Figure 5.7: Example pictures along with their respective reference data from the SD-

saliency-900 dataset, highlighting the three main types of steel surface imperfections: a) 

inclusions, b) patches, and c) scuffs. 

Dataset Resolution Images Train Validation Test 

SD-saliency-900 

[135] 
200 × 200 900 624 156 120 

 

Table 5.1: Overview of the SD-saliency-900 dataset utilized in the experiments. 

5.3.2 Evaluation Metrics 
 When measuring the performance of the proposed segmentation model, I chose 

several vital metrics: Precision, Recall, F1 Score, and Mean Intersection over Union 

(mIoU). Precision focuses on the model's ability to make accurate predictions when 

classifying defects, ensuring minimal false alarms. Recall, on the other hand, emphasizes 

the model's proficiency in identifying all genuine defects, thereby reducing missed 

detections. The F1 Score provides a comprehensive understanding of the model's overall 

accuracy by striking a balance between Precision and Recall. Mean Intersection over Union 
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(mIoU) measures the overlap between the model's predicted segmentation and the actual 

ground truth, effectively gauging the model's spatial accuracy in defect detection. 

5.3.3 Implementation Details and Training 
 In this section, I discuss the choices made regarding hyperparameters during the 

training phase. My model's architecture was developed using the TensorFlow and Keras 

frameworks, both of which are renowned open-source platforms dedicated to deep 

learning. During training, I employed a batch size of 8 and trained the model for a total of 

100 epochs. To update the network's parameters, I used Adam's optimizer. As for the 

computational setup, the experiments were executed on an Ubuntu 20.04 system. This 

system was augmented with the power of an NVIDIA 80 GB GPU card and equipped with 

90 GB of RAM. All these computations were performed within the Paperspace 

environment, ensuring a seamless and efficient training process. 

5.3.4 Experimental Results 
 In this section, I present the research findings, which include both visual and 

quantitative insights. We have compared the model's performance with top models in the 

field using the SD-saliency-900 dataset as a benchmark. To ensure a fair comparison, it's 

crucial to note that each model underwent identical training and testing conditions. 

Additionally, I maintained consistency during the training phase of all models in the study 

by using the same set of parameters. 

 In Figure 5.8, I offer a visual comparison using sample ground-truth images from the 

SD-saliency-900 dataset's test set, placing them side by side with segmentation results from 

the proposed model and several existing models in the field. The initial two columns 

display the original images and their corresponding ground-truth segmentations. Columns 
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ranging from the third to the eighth feature segmentation results from renowned models, 

including UNet [54], LinkNet [137], FPN [138], ResUnet-a [139], Attention U-net [109], 

and PSPNet [55]. In contrast, the segmentation outcomes of the novel UNet3+ model are 

displayed in the ninth column. A closer look at Figure 5.8 reveals the diverse challenges 

inherent to the SD-saliency-900 dataset, especially when it comes to detecting steel surface 

defects. This complexity arises from a myriad of factors, such as varying types of defects, 

similarities in the background textures, and the sheer diversity in defect sizes. To offer a 

comprehensive view, the first three rows of Figure 5.8 showcase sample images that 

illustrate the various types of defects encountered. By evaluating the model performance 

using Intersection over Union (IoU) percentages, it becomes evident that UNet3+ model 

surpasses its counterparts in detecting all three key defect categories, namely small 

inclusions, patches, and linear scratches, marking its definitive edge over other state-of-

the-art models. Upon analyzing various models' performance on the SD-saliency-900 

dataset, certain trends and insights emerge. Both UNet and Attention U-Net, while 

showcasing versatility across different defect types, exhibit substantial variability in their 

performance metrics. This variation implies that while these models can adapt to various 

tasks, they may not be the optimal choice for the broad spectrum of steel defects present. 

On the other hand, models like LinkNet and FPN demonstrate only a moderate 

performance, especially when compared to architectures that are more specialized in their 

approach. An exception to this trend is FPN's notable excellence in detecting small 

inclusion defects. Such a performance underscores FPN's adeptness at integrating 

multiscale features, thereby effectively capturing and representing different defect scales. 

Further observations bring ResUnet-a into focus, a model that consistently performs well 
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across all defect categories. However, even with its strong performance backed by residual 

connections, it still doesn't match up to the superiority of the proposed model in terms of 

the Intersection over Union (IoU) scores. Similarly, while the PSPNet stands out with its 

pronounced efficiency in identifying lines and patches, it doesn't offer the same level of 

versatility as my model when encountering varied defect types. The consistent top 

performance of my model across different defect types is a testament to its robustness and 

adaptability. This adaptability becomes even more crucial when dealing with the diverse 

nature of steel defects, which can range from inclusions to patches or scratches. To further 

emphasize the model's capabilities, one only needs to examine rows 4, 5, and 6 of Figure 

5.8. These rows provide a deep dive into the challenges posed by the background similarity, 

a factor that significantly elevates the intricacy of defect detection tasks. A case in point is 

the inclusion defect category highlighted in row 4. In this particularly challenging category, 

the model excels with an IoU score of 90%, highlighting its unmatched ability in defect 

detection even in complex backgrounds. The model's ability becomes particularly evident 

when compared to other top-performing models. It significantly outperforms the second-

best performer, LinkNet, by a substantial margin of 7 percentage points. When delving into 

the nuances of patches and scratches defects, the consistent superiority of the model is 

unmistakable, recording IoUs of 89%. This score not only underscores the model's 

adeptness but also its unwavering capability to manage a diverse array of defect types, even 

when set against intricate backgrounds. While models like LinkNet and FPN do carve out 

commendable performances in some categories, they falter when it comes to delivering 

consistent excellence across the spectrum. Consistent and outstanding performance like 

this becomes the hallmark of the model, setting it apart in the field of defect detection. 
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Additional insights from Figure 5.8, specifically from rows 7 through 9, provide valuable 

information about the model's ability to deal with defects of different sizes. An example of 

this is the model's performance with small inclusion defects in row 7, where it achieves an 

IoU of 87%. This performance, when set side by side with FPN's 84%, highlights the 

model's superior architectural nuances, optimized for grasping features spanning different 

scales. Even in the patches defect category, while formidable models like LinkNet, FPN, 

and ResUnet-a do stake out scores in the high-80s realm, the model transcends this 

benchmark, reaching an IoU of 91%. This performance trajectory continues in the scratches 

domain as well, with the model achieving an 88% IoU, distinctively outpacing PSPNet's 

86%. The key takeaway from these results is the model's consistent superiority, regardless 

of the type or size of defects. Such consistent supremacy suggests that the model 

architecture has not only been meticulously crafted but also fine-tuned to seamlessly adapt 

to myriad scales. The inference here is that the model likely embodies advanced multiscale 

feature integration techniques, rendering it more proficient than its counterparts in the 

comparison. 
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Figure 5.8: Visual representations from the SD-saliency-900 sample test set, divided into 

three segments: a) various defect classifications, b) resemblance in background, and c) a 

range in defect dimensions. 

 Table 5.2 offers a detailed breakdown of performance metrics emanating from the 

explorative ventures into steel defect detection. Standing tall amidst an array of state-of-

the-art models, E-UNet3+ model notches an mIoU score of 86.19%. This metric, which 

evaluates both false positives and negatives across categories, holds particular weight in 
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the realm of segmentation tasks. Its importance is further amplified in contexts like steel 

defect detection, where accurate delineation of defects is more critical than just detection. 

While the LinkNet model showcases its ability with an admirable F1-score of 88.47%, it 

doesn't quite match up to my model in terms of mIoU, clocking in at 83.99%. Despite its 

precise detections as evinced by its high F1-score, LinkNet's performance isn't consistently 

exemplary across all evaluation yardsticks. This suggests that it might be grappling with 

the multifaceted challenges inherent to steel defect detection—varying defect typologies, 

sizes, and intricate background patterns. Another contender, the FPN—renowned for 

managing multiscale information adeptly—posts an F1-score of 86.10% and an mIoU of 

82.40%. Even with its robust architectural underpinnings, it doesn't eclipse the model. 

Furthermore, the ResUnet-a, known for its residual connections and feature discernment 

capabilities, falls behind with an mIoU of 81.52%. Both Attention U-Net and PSPNet, 

despite their well-regarded stature, manifest mIoUs of 78.21% and 80.26% in succession, 

underlining certain constraints in this particular use-case. The foundational UNet 

architecture, while pioneering, reflects a subdued performance, registering the least mIoU 

at 76.89%. Its heightened recall signifies sensitivity, but this doesn't necessarily translate 

to pinpoint defect identification. This observation highlights the idea that models like E-

UNet3+ are better suited to address contemporary challenges. In essence, E-UNet3+ 

combines the architectural strengths of various models, enhancing them with innovative 

features that enhance feature integration and representation. This assertion is supported by 

its outstanding performance metrics, establishing it as the most comprehensive and skilled 

model designed for steel defect identification. 

Model Precision Recall F1-score mIoU 

UNet [54] 69.36 95.39 80.32 76.89 
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LinkNet [137] 87.95 89.00 88.47 83.99 

FPN [138] 84.89 87.36 86.10 82.40 

ResUnet-a [139] 83.29 88.11 85.63 81.52 

Attention U-net [109] 79.58 86.14 82.73 78.21 

PSPNet [55] 81.49 85.48 83.44 80.26 

Proposed E-UNet3+ 86.26 89.63 87.91 86.19 

 

Table 5.2: Numerical test results of the SD-saliency-900 dataset. 

5.4 Discussion 
 This section is organized into three parts to facilitate a thorough examination. Section 

5.1 delves deep into the network's intrinsic components, dissecting the influence each has 

on the cumulative outcome. Moving forward, Section 5.2 shifts its lens to a retrospective 

look at prior investigations associated with the dataset in use. The Section 5.3 engages in a 

critical discourse on occasions when the proposed model may falter or misidentify defects. 

5.4.1 Component Impact Analysis 
In this ablation study, I systematically assess the modifications implemented in the 

foundational UNet3+ model, tailored for steel defect detection. These modifications were 

carefully examined and their effects were analyzed using the available sd-saliency-900 

dataset. The results were detailed across metrics such as Precision, Recall, F1-score, and 

mIoU. Table 5.3 summarizes these ablation results, highlighting a progressive 

improvement in the model's performance with each adjustment. My analysis highlighted 

that each strategic change elevated the UNet3+ model's competence, adeptly navigating 

the intricacies of steel defect detection. For instance, the CBAM integration marked a 

notable upswing in precision, albeit with a slight recall dip. However, this didn't deter the 

mIoU's growth, emphasizing CBAM's ability in channeling the model's attention towards 

pivotal features. The subsequent integration of IDS not only balanced precision and recall 
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but also increased the mIoU. This underscores its efficacy in preserving intricate details 

during the downsampling phase. The subsequent fusion of MSFLM witnessed a significant 

recall surge, with minimal trade-offs in precision or mIoU. MSFLM emerges as an 

instrumental feature, adept at identifying diverse steel defects, spanning different sizes and 

intricacies. DropBlock's subsequent integration marginally pulled down precision but 

accentuated recall and F1-score. This adjustment indicates DropBlock's proficiency in 

refining the model's adaptability, fostering a well-rounded performance metrically. In 

essence, the advanced UNet3+ model, embedding all these enhancements, triumphantly 

registers an unparalleled mIoU of 86.19%. 

Methods Precision Recall F1-score mIoU 

UNet3+ 85.43 89.03 87.20 84.86 

UNet3 + CBAM 88.70 84.80 86.70 85.03 

UNet3 + CBAM + IDS 87.17 88.10 87.63 85.87 

UNet3 + CBAM + IDS + MSFLM 86.37 89.21 87.85 85.61 

UNet3 + CBAM + IDS + MSFLM 

+ DropBlock 
86.26 89.63 87.91 86.19 

 

Table 5.3: Ablation experimental results of SD-saliency-900 dataset. 

5.4.2 Comparison with the Previous Studies 
 In my investigation, I meticulously contrasted the advanced E-UNet3+ model against 

benchmarks set by previous research undertakings, all leveraging the SD-saliency-dataset. 

The comparative insights are encapsulated in Table 5.4. It's evident that E-UNet3+ model 

posted a mIoU of 86.19%. Additionally, the strategy presented by [140], integrating a 

Residual Attention Network with bidirectional convolutional LSTM, clocked in a 

commendable mIoU of 82. Another technique that employed non-convex total variation 

regularized RPCA with kernelization exhibited an accuracy rate of 88.64 and a notable 
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AUC at 92.55. Significantly, none of the past endeavors on the SD-Saliency-900 dataset 

managed to match or exceed the mIoU achieved by E-UNet3+. This accentuates the 

unmatched ability of the proposed structure in steel defect detection. In a nutshell, set 

against prior research on the SD-Saliency-900 dataset, E-UNet3+ stands unparalleled, 

registering the most commendable mIoU amidst all appraised techniques. 

Reference Methods mIoU Dice Accuracy AUC 
F1-

score 

[141] 

Chained atrous spatial 

pyramid pooling 

network 

78.20 - - - - 

[142] 
Depth-wise separable 

convolution 
- 80.80 95.42 - - 

[140] 

Residual attention 

network, bidirectional 

convolutional long 

short-term memory 

- 82.0 96.20 - - 

[143] 

Nonconvex total 

variation, regularized 

RPCA with 

kernelization 

- - 88.64 92.55 57.87 

Proposed 

E-UNet3+ 

Multiscale feature 

learning, attention 

mechanisms 

86.19 87.93 97.37 99.36 87.91 

 

Table 5.4: Results of previous studies using SD-saliency-900 dataset. 

5.4.3 Error Analysis 
 In E-UNet3+, we observed significant progress in detecting steel imperfections using 

the SD-saliency-900 dataset. Nevertheless, it's essential to examine cases where the model 

faced challenges and identify areas for improvement. Figure 5.9 provides insights into three 

scenarios where the model's detection capability seemed limited. The images in the first 

two rows of Figure 5.9 illustrate situations where the model detected a higher number of 

defects than what was documented in the reference ground truth. These detections occurred 
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in areas that bore a strong resemblance to genuine defects. Crucially, it merits attention that 

the defect variants showcased in the first couple of images are somewhat infrequent within 

the dataset. Such limited exposure during training might have spurred the model's amplified 

alertness towards these sporadic configurations. A potential remedy to this hiccup might 

be enriching future training cycles with more of these rare defect instances, honing the 

model's aptitude to discern between these atypical formations and innocuous variations. In 

Figure 5.9's third row, I illustrate an instance related to patches where the model clocked 

an IoU score of 73, pointing towards areas needing further refinement. While the proposed 

model has showcased proficiency, there are instances, as evidenced in Figure 5.9, where it 

overestimates defect regions compared to the ground truth annotations. Tackling this 

hurdle, future endeavors might emphasize refining the model's discernment between 

authentic defects and analogous image patterns. Additionally, integrating post-processing 

mechanisms could elevate the precision of patch-level forecasts. Infusing the training set 

with a broader assortment of rare defects might also bolster model generalization, thereby 

trimming down erroneous detections. As advancements in deep learning for defect 

identification continue to progress, addressing these nuances can pave the way for even 

more robust and accurate detection frameworks, particularly in the field of industrial 

applications.  
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Figure 5.9: Sample challenging cases on the SD-saliency-900 dataset. 

5.5 Conclusion 
 The journey towards devising adept, precise, and economical deep learning models 

tailored for detecting defects on steel surfaces remains a pivotal challenge, quintessential 

for elevating the standards and dependability of production methodologies. This research 

introduces E-UNet3+, a revamped variant of UNet3+, melding Multiscale Feature 

Learning with Attention Mechanisms, specifically designed to navigate the intricate terrain 

of automatic steel surface flaw identification. The input stems from meticulous refinements 

applied to the UNet3+ encoder. The infusion of the Multiscale Feature Learning Module 

capacitates the model to assimilate defect characteristics across varying scales, facilitating 

a nuanced grasp of multifaceted defect motifs. By deploying Conv2D layers with diverse 

dilation metrics, paired with DropBlock stabilization and batch normalization, the model 

acquires a versatile feature discernment ability. By transitioning from classic max-pooling 

to a novel downscaling technique utilizing strided Conv2D layers, the model achieves 
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superior feature discernment and portrayal. One feature of E-UNet3+ is its incorporation 

of the Convolutional Block Attention Module (CBAM) within the skip pathways. This 

enhances the model's ability to focus on relevant defect detection features. These combined 

improvements result in a model that excels in performance while keeping its network 

parameters compact. E-UNet3+'s capabilities are confirmed using the SD-saliency-900 

dataset, where it outperforms contemporary models, achieving an mIoU of 86.19%. This 

is a testament to its proficiency in accurately identifying steel defects with unmatched 

precision. To encapsulate, E-UNet3+ stands as a monumental leap in automated steel 

surface defect identification, heralding significant cost and time savings in production 

contexts, ultimately ushering in augmented product caliber and streamlined industrial 

operations. 
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Chapter 6. Conclusion and Future Work 

6.1 Conclusion 

 In this thesis, I have explored and developed advanced deep learning models for 

quality control in manufacturing and infrastructure maintenance, focusing on fabric 

production, pavement crack detection, and steel surface defect detection. The culmination 

of this work is presented in three pivotal papers, each contributing uniquely to the field. 

 In Chapter 3, I addressed the complexities of fabric defect detection. The 

development of a texture defect classification system using a capsule-based neural network 

marked a significant advancement in the field. This system, enhanced by state-of-the-art 

convolutional neural networks (CNNs) and a spatial attention module, demonstrated an 

enhanced accuracy in identifying intricate and subtle defects in fabrics. The integration of 

these technologies not only improved the model's learning and generalization capabilities 

but also its feature extraction efficiency, as evidenced by a 99.42% accuracy rate on the 

TILDA dataset. 

 In Chapter 4, I introduced DepthCrackNet, a novel model designed for the critical 

task of pavement crack detection. This U-Net shaped model, featuring a Double 

Convolution Encoder, TriInput Multi-Head Spatial Attention module, and Spatial Depth 

Enhancer, was specifically tailored to navigate the challenges posed by crack variability 

and miscellaneous on-road anomalies. DepthCrackNet's performance, validated on the 

Crack500 and DeepCrack datasets, showed promising mIoU scores, underscoring its 

potential for real-world deployment in pavement maintenance and road safety. 
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 Chapter 5 detailed the development of E-UNet3+, an enhanced version of the 

UNet3+ architecture for steel surface defect detection. This model, incorporating 

Multiscale Feature Learning and Attention Mechanisms, underwent significant 

architectural modifications. Notably, the introduction of the Convolutional Block Attention 

Module in the skip connections and the use of Conv2D layers with different dilation rates, 

provided a comprehensive understanding of complex defect patterns. E-UNet3+ achieved 

a mIoU score of 86.19% on the SD-saliency-900 dataset, outperforming existing models 

and demonstrating its effectiveness in high-precision defect identification. 

 Together, these chapters represent a significant advancement in the application of 

deep learning models to quality control in various industrial and infrastructural contexts. 

Each model exhibits a unique blend of innovative architectural features and practical 

application potential, setting a new standard for future research in automated defect 

detection and quality assurance. These advancements contribute towards more efficient, 

accurate, and cost-effective manufacturing and maintenance processes, ultimately ensuring 

higher standards of quality and safety in these critical sectors. 

6.2 Future Work 

 The path ahead, illuminated by the findings and achievements of the three studies, 

hints at an era where I not only refine the models but also venture into territories uncharted, 

aligning technological advancements with pressing industry needs. 

 Beginning with the textile defect detection model, real-time analysis stands out 

as an imperative goal. Delving deeper, it's not just about real-time feedback but 

also about integrating the model within the manufacturing ecosystem. This 
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integration involves making sure that the machinery and software communicate 

seamlessly, potentially pausing production lines instantaneously when a defect is 

detected. Further exploration could also look into multi-modal data inputs – 

perhaps combining visual data with sensor data from the machinery itself, 

creating a more comprehensive defect detection system. There's also a promising 

avenue in exploring adaptive learning, where the model continuously refines its 

accuracy by learning from any defects it might miss initially, essentially evolving 

with each production cycle. 

 For DepthCrackNet, the future landscape is expansive. Beyond real-time 

operations, there's an emergent need for developing an end-to-end pavement 

health monitoring system. Such a system would not just detect cracks but predict 

their progression based on various external factors like traffic load, weather 

conditions, and material quality. This predictive maintenance approach could 

fundamentally alter urban planning and maintenance schedules. Another 

intriguing avenue is the potential integration with autonomous vehicles. As self-

driving cars become more prevalent, they could be equipped with 

DepthCrackNet, transforming every vehicle into a mobile pavement inspection 

unit, offering continuous feedback to city maintenance departments. 

 E-UNet3+ paves the way for a plethora of advancements in the realm of industrial 

manufacturing. The initial steps would involve diversifying the model's training 

with a wider array of manufacturing materials, ensuring its robustness across 

different production scenarios. This universality can be complemented by 

embedding feedback mechanisms into industrial machinery, allowing for 
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instantaneous corrections during manufacturing processes. Moreover, the realm 

of defect detection can be expanded to encompass predictive analytics. By 

analyzing patterns of defects over time, combined with data on production 

processes and raw material quality, the model could potentially predict defect 

occurrences, allowing preemptive measures. Furthermore, the integration of 

augmented reality (AR) tools could provide technicians with real-time visual 

insights into defects, streamlining repair and maintenance tasks. 

 In essence, the forward trajectory for these models transcends mere refinements. It's 

about creating interconnected ecosystems where deep learning models operate in harmony 

with machinery, human operators, and overarching industrial objectives. This holistic 

approach, which blends detection, prediction, and prevention, promises a future where 

quality assurance is not just a checkpoint but an integrated, evolving entity, driving 

industries towards unprecedented levels of efficiency and excellence.  
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