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Abstract

Population-based metaheuristic algorithms play a crucial role in solving complex opti-

mization problems. The effectiveness of these algorithms is significantly influenced by the

initial population of candidate solutions. This thesis investigates the critical aspect of ini-

tialization in population-based metaheuristic algorithms. This research studies Uniform

Covering (UC) binary initialization method as the substitute for the Bit-string Uniform

(BU) binary population initialization method for population initialization step in binary

optimization algorithms. BU is the most commonly used random binary population ini-

tialization method in the literature, however, this research uncovers the adverse impact

of employing this approach on binary optimization algorithms. Study in this thesis re-

veals that UC method is capable of providing gene-wise uniformity and chromosome-wise

uniformity simultaneously, however BU method is not capable of providing chromosome-

wise uniformity in the population. Monte-Carlo simulation and mathematical proofs are

provided to demonstrate the limitations of the BU initialization in providing the diver-

sity and uniformity in population initialization, meanwhile the effectiveness of the UC

method is revealed as the alternative method, aiming to enhance algorithm convergence,

robustness, and solution quality. In order to illustrate the effect of the BU and UC

initialization on binary optimization algorithms, several experiments are conducted on

single-objective and multi-objective combinatorial optimization problems including fea-

ture selection and knapsack problems using GA and NSGA-II algorithms representative

of the binary optimization problems and binary optimization algorithms respectively.

The experiments outcome confirm that BU initialization drastically degrade the perfor-

mance of the algorithms and UC initialization is the proper way for the random binary

population initialization.

Keywords: Binary optimization; Uniform population initialization; Multi-objective

optimization; Single-objective optimization; Feature selection; Knapsack problem
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Statement of Contributions

The primary contributions of this thesis are as follows:

1. Detailed study on the prevalent binary population initialization method namely Bit-

string Uniform (BU) population initialization in meta-heuristic binary optimization

algorithms.

2. Deep Investigation on affects of the BU method regarding the uniformity and di-

versity of the population with Monte-Carlo simulation.

3. Proposal of Uniform Covering (UC) binary population initialization method as a

novel binary population initialization in metaheuristic binary optimization algo-

rithms which should be used as the alternative method of BU initialization.

4. Providing a comprehensive experiments to show the superiority of proposed UC

method to the traditional BU method in single-objective and multi-objective ver-

sions of feature selection and knapsack problems.
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Chapter 1

Introduction

Optimization, as a fundamental task in mathematics and computer science, is the pro-

cess of finding the best possible solution from a set of feasible alternatives. It plays a

crucial role in various real-world applications across diverse domains, such as engineer-

ing, economics, machine learning, and etc. The need for improving solutions has become

significantly important in the face of complex and large-scale problems that are often

encountered in today’s data-driven and interconnected world.

Evolutionary algorithms (EAs) as population-based metaheuristic optimization al-

gorithms are a class of optimization techniques known for their remarkable ability to

efficiently navigate complex solution spaces and find near-optimal solutions in diverse

problem domains [1]. These algorithms, inspired by natural phenomena or heuristic

principles, exhibit the power to handle high-dimensional and non-convex optimization

problems that traditional exact methods often struggle to solve [2, 3]. Their capacity to

efficiently explore solution spaces and offer viable solutions makes them a valuable as-

set in the toolkit of optimization techniques, particularly for real-world problems where

exact solutions may be elusive.

Evolutionary algorithms are composed of various operators and components that gen-

1



Chapter 1. Introduction 2

erally drive the search for optimal solutions. These algorithms typically include elements

such as population initialization, selection mechanisms, crossover (recombination), mu-

tation, and fitness evaluation. The population initialization phase constructs the founda-

tion by generating an initial set of candidate solutions. Selection mechanisms determine

which individuals should contribute to the next generation, often based on their fitness

values. Crossover and mutation operations facilitate the exploration of new solutions by

combining and altering existing individuals. The fitness evaluation assesses the quality

of these solutions according to the optimization criteria. Each of these components plays

a crucial role in the algorithm’s overall performance and effectiveness, with their inter-

actions organized to achieve the desired balance between exploration and exploitation of

the solution space.

The population initialization phase in population-based optimization algorithms has

an important role in shaping the trajectory and effectiveness of the entire optimization

process. This crucial step establishes the initial individuals of candidate solutions which

the algorithm will evolve over successive iterations. The quality and diversity of this

initial population significantly influence the algorithm’s ability to explore the solution

space thoroughly. Well-designed initialization strategies not only help in speeding up

convergence but also aid in preventing premature convergence to suboptimal solutions.

Moreover, a carefully created population initialization can enhance the algorithm’s ro-

bustness and adaptability across various problem domains. Approximately, the quality

and diversity of the initial population defines the stage for the entire optimization jour-

ney. So, emphasizing on the profound importance of this phase is important in achieving

successful and efficient optimization outcomes.

Various population initialization techniques have been introduced in the literature.

Population initialization techniques, regardless of the type of the problems and algo-

rithms, can be characterized into three categories including: randomness, composition-

ality, and generality [4]. Regarding randomness, a series of numbers can be perceived as
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completely deterministic to truly random and the classification method tries to catego-

rize the population form this point of view. Regarding the compsitionality, it is defined

as the number of independent procedures engaged in a population initialization method,

and finally, generality of the population initializer relates to the variety of the domains

that it can be applied to. It is worth mentioning that each categorization criteria char-

acterizes the method from a distinctive and independent perspective. As an example,

whether a technique is random or not, is not contingent on whether it is compositional

and/or general. This thesis focuses solely on population initialization, particularly from

the point of view of randomness and merely in binary population initialization for binary

optimization algorithm.

1.1 Motivation

Looking at the literature and studies conducted in random population initialization, we

can notice that the main concern for the researchers is to generate random numbers using

several tools in the population initialization step, which they including the properties of:

unpredictability, incompressibility and irregularity. Various methods and tests are intro-

duced for this goal and to provide and measure such properties for these individuals in the

population and sequence of numbers. The studies mainly focus on the generating random

number with stochastic or deterministic techniques [5]. In most of studies for stochastic

techniques the afford is to overcome the disability of deterministic machines (i.e., digi-

tal computers) and lack of efficient methods to sample random numbers from physical

phenomena (e.g., radioactive decay or atmospheric noise) and provide some algorithm to

tackle these challenges. Random number generators including Pseudo-Random Number

Generator (PRNG) and Quasi-Random Number Generators (QRNG) are known as the

most commonly used population initialization methods in EAs, believing that initializa-

tion is simple with these methods and at same time satisfies the uniformity condition in
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population [6]. However, this study uncovers that the way (strategy) of filling a string

of zero and ones in binary population initialization step has huge effect in uniformity

and distribution of the candidate solution in the search space. This thesis provides the

mathematical investigation and proof for the above mentioned issue that appears for

random binary population initialization methods and simultaneously, suggests an alter-

native method for random binary initialization which is not paid much attention due to

its vanished capability of expanding search space because of the mapping from binary to

integer, real, etc., search spaces exist in non-binary optimizations.

1.2 Objectives

The performance of population-based metaheuristic optimization algorithms, including

EAs, are highly affected by the way its each operator is defined and its parameter settings.

Population initialization is a fundamental component of optimization algorithms, and its

quality and effectiveness can significantly impact the algorithm’s overall performance,

efficiency, and ability to find high-quality solutions [7]. However, in binary optimization

algorithms, it seems that initialization step has not been investigated and valued as it is

needed. Reviewing the existing literature, one can find notable research studies that have

been carried out and achieved significant results in population initialization in general,

but when it comes to random binary population initialization, the traditional method of

standard zero/one equiprobable choice for every bit in each individual of the population

is the most commonly used method for initialization and its capability in generating the

qualified individuals in binary search space that are representative of candidate solution

has not been questioned for binary optimization to the best of our knowledge. In this

thesis, we have specifically targeted this method in binary optimization algorithm to see

if it really provides the uniformity in the search space and how it affects the performance

of the binary optimizers. This method has been introduced in the literature as a popular
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method due to its simplicity and uniformity. Only a few studies have discovered the

effect of the bias to the specific region of the binary search space with this initialization

method, however they have not studied and discovered how this steering of the algorithm

toward certain region can affect the optimization process for the binary and non-binary

algorithms separately. We have discovered that the bias to the specific region in binary

optimization problems kills the uniformity and diversity in the population. Several ex-

periments, besides the mathematical investigation are conducted to confirm the above

mentioned studies. We have also considered the NP-hard problems with the possible

search space of 2n (for n dimension) including evolutionary feature selection problem

and knapsack problem in both single-objective version and multi-objective version to

be solved using binary Genetic Algorithm (GA) and Non-dominated Sorting Genetic

Algorithm-II (NSGA-II) as the case studies to validate our research and investigation.

The main goals of this thesis are as the follows:

1. Detailed study on random binary population initialization methods.

2. Providing mathematical investigation and Monte-Carol simulation for investigating

uniformity and diversity of the Bitstring uniform (BU) and Uniform Covering (UC)

binary initialization methods.

3. Conducting comprehensive experiments in single-objective, multi-objective opti-

mization algorithms for solving feature selection and knapsack problems that are

the representative of combinitorial optimization problems for comparing BU and

UC initialization techniques.

The study focuses on using the proper strategy of random binary bitstring generation in

binary population initialization for binary optimization algorithms.
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1.3 Thesis Outline

This thesis comprises of five chapters, that are organized as follows:

Chapter 2 presents a background review that has relevance to the research, including

the concept of binary population initialization, definition and concept of the bit-wise and

chromosome-wise uniformity in a binary population. In addition, this chapter provides

an introduction and background review of single-objective population-based algorithm,

including Genetic Algorithm (GA) and also multi-objective population-based algorithm,

including, Non-dominated Sorting Genetic Algorithm II (NSGA-II). In addition, an in-

troduction to single-objective and multi-objective evolutionary feature selection problem

and also single-objective and multi-objective knapsack problems as the combinatorial

optimization problem is provided. Chapter 3 proposes an alternative binary population

initialization for the most commonly used random binary population initialization in the

literature and proves its superiority by providing the mathematical evidence and Monte-

Carlo simulation Chapter 4 investigates the effectiveness of the alternative method

through a series of comprehensive experimental analyses on combinatorial optimization

problems including feature selection and knapsack problems.

Chapter 5 includes the conclusion and suggests future research directions.



Chapter 2

Background Review

2.1 Literature Review

In this chapter, relevant studies to the random binary population initialization are re-

viewed regardless of the type of algorithm or application. In addition, the concept of

uniformity has been described and considered from bit-wise and chromosome-wise uni-

form distribution point of view.

A binary optimization problem is a type of mathematical optimization problem in

which the goal is to find the optimal combination of binary decision variables to maxi-

mize or minimize an objective function while satisfying a set of constraints. Binary op-

timization problems have wide applications in various fields, including computer science,

operations research, engineering, finance, and logistics. Some example of application of

binary optimization algorithms are:

Code Optimization in Compilers: Compilers often perform binary optimizations

to generate more efficient machine code from high-level programming languages. This

includes techniques like constant folding, loop unrolling, and dead code elimination.

Resource Allocation in Cloud Computing: In cloud computing environments,

binary optimization can be applied to allocate resources efficiently. This includes assign-

7



Chapter 2. Background Review 8

ing virtual machines to physical servers in a way that minimizes energy consumption,

maximizes resource utilization, and meets performance requirements.

Financial Portfolio Optimization: Investors use binary optimization techniques to

optimize their investment portfolios. The goal is to select the best combination of assets

that maximizes returns while minimizing risks, considering factors such as volatility,

correlation, and historical performance.

Job Scheduling in Manufacturing: In manufacturing processes, binary optimiza-

tion is applied to schedule production jobs on machines. This helps in minimizing pro-

duction time, reducing idle time, and optimizing the use of manufacturing resources.

Circuit Design: Binary optimization is used in electronic circuit design to optimize

the placement and routing of components on a chip. This helps in minimizing the physical

size of the circuit, reducing power consumption, and improving overall performance.

Solving binary optimization problems can be computationally challenging, as the

discrete nature of binary variables often leads to combinatorial explosions. Various algo-

rithms and techniques, such as branch and bound, branch and cut, integer linear program-

ming solvers, and metaheuristic, are used to tackle these problems and find near-optimal

or optimal solutions. The choice of method depends on the specific problem and its size

and complexity.

Population-based algorithms are a class of optimization techniques that are particu-

larly effective for solving binary optimization problems [8]. These algorithms maintain

a population of candidate solutions (often represented as binary strings) and iteratively

evolve this population to find better solutions. Among these algorithms, EAs are suc-

cessfully used for solving binary optimization problems for many decades, as one of the

population-based meta-heuristic algorithms [9]. Each EA has its main four components

including: population initialization, crossover, mutation, and selection steps. perfor-

mance of an EA is highly affected by the way each one of its four steps are defined and

implemented. Among these steps, despite some of the great researches that have been



Chapter 2. Background Review 9

Figure 2.1: General Framework for Evolutionary Algorithm.

conducted and attained great results [4, 10], it appears that initialization step has not

been investigated and valued as much as it is needed in binary optimization algorithms.

Figure 2.1 presents a a general framework for evolutionary algorithms.

The main goal of the population initialization step that serve as the starting point for

the evolutionary process, is to provide a diverse set of candidate solutions that uniformly

covers the search space as much as possible. For this goal, generally in EAs, randomness

is often introduced in the initialization process to ensure diversity and uniformity among

the initial population [11].

The population initialization techniques, can be categorized into three categories

based on randomness, compositionality, and generality. Regarding randomness, it consid-

ers if a series of numbers can be perceived completely deterministic or random. Regarding

compositionality, it is described as the number of independent procedures participated in

a population initialization method, and finally for generality, it considers how a popula-

tion initialization technique can relate to various domain and applications. The last two

categories are out of scope of this study, but the effect of randomness on uniformity and
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diversity of population particularly in binary optimization is the main concern in this

thesis, so we have focused on randomness category. Reviewing the literature in regard

to the randomness category, the random population initialization methods are divided

into stochastic and deterministic methods [12]. Pseudo-Random Number Generators

(PRNGs) and Chaotic Number Generators are two main stochastic techniques that are

commonly used for random population initialization specially in EAs. Simultaneously,

Uniform Experimental Design (UED) and Quasi-Random Sequence (QRS) are two main

divisions for deterministic approaches and again popular for EAs random population ini-

tialization in absence of prior knowledge about the problem [4]. Research in this field

mainly discuss the uniformity from the point that if the generated numbers are truly

random, whether they are statistically/computationally random or not, or providing the

tools and test to assess these type of concepts and definitions and mainly talk about the

systems itself rather than providing merely a strategy that can focus on producing the

random numbers in a way that fulfill the randomness and uniformity in distribution of

candidate solutions in a search space. It is believed that randomly generated individuals,

regardless of its strategy and application, can help explore a broader portion of the so-

lution space and provide the uniformity for the candidate solutions in the search space.

In studies [13, 14], also application of the Gaussian or normal distribution is proposed

to have a biased population and scatter the candidate solutions according to these dis-

tributions when it is preferred and based on problem’s needs. However, in this situation,

we encounter a fundamental question: Are these randomly generated individuals in the

initial population capable of covering the search space uniformly and do they provide

diversity in the initialized population, or uniformity in distribution of the candidate so-

lutions for binary population? If we look at the literature, there are plenty of various

and advanced methods and techniques that are introduced to enhance the quality of the

candidate solutions in population initialization step in general, however when it comes

to binary population initialization, these topics are rarely discussed and to the best of
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knowledge the effect of random number generators both systematically and strategically

have not been studied. Meanwhile, in binary optimization algorithms, the most popu-

lar and commonly used method for random binary population initialization is using the

standard 0/1 equiprobable choice for every bit in each chromosome using random number

generators formulated as follows:

x =

 1 rand(0, 1) ≤ 0.5

0 rand(0, 1) > 0.5
(2.1)

Where x is representative of any bit in any chromosome/bitstring in a population.

This method of random binary population initialization is widely used and is the main

method for random binary population initialization.

In what follows, we have discussed the algorithms and problems that have been used

about initialization methods in binary optimization problems at this thesis. We have

used GA and NSGA-II algorithm for solving single-objective and multi-objective feature

selection problem and single-objective and multi-objective knapsack problems [15, 16].

Accordingly, these topics are explained for comprehensive understanding of the next

chapters.

2.2 Evolutionary Feature Selection Algorithms

Feature selection is well-known and critical pre-processing step in data mining and ma-

chine learning tasks with various application in real-world such as:

Medical Diagnosis: In healthcare, feature selection is crucial for identifying the

most relevant biomarkers or clinical variables for diseases.

Image and Speech Recognition: In computer vision and speech processing, fea-

ture selection helps extract essential information from large datasets.

Text Classification and Natural Language Processing: Feature selection is
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employed in text mining and NLP applications to identify the most informative words

or features in documents.

Customer Relationship Management (CRM): Feature selection is applied in

CRM systems to identify key customer attributes affecting purchasing behavior and sat-

isfaction.

The main goal in feature selection problems is to select a subset or subsets of the

most relevant features (attributes) from a larger set of the features within a dataset.

There are quite very rich and abundant studies and researches in the literature in feature

selection [17, 18]. Feature selection is considered as a combinatorial optimization problem

which can be solved by binary variants of metaheuristic algorithms. There are of course

many other methods for solving feature selection problems and each one of them has its

own advantages and disadvantages, for an example, exhaustive methods can be used to

find the best feature subset(s) [19]. However, the search space of dataset including n

features, is 2n − 1 which its computation time will exponentially increase in case n is a

large number, which these days it is quite common to have such data with huge number

of features and also huge number of samples. Greedy search, random search, etc. are

other methods that can be used for feature selection problems. In most of the feature

selection algorithms, they still have enormous complexity, high computational costs, and

they also suffer from premature convergence, so it has become an active field of research

and study.

Recently, evolutionary feature selection algorithms have received much attention due

to the powerful search ability of evolutionary computation (EC) techniques. EAs demon-

strate advantages over traditional methods on solving feature selection problems consid-

ering them as both a single-objective problem or a multi-objective problem, requiring less

domain specific information. In evolutionary feature selection methods, the performance

of a machine model is define as an objective function, and then the evolutionary algo-

rithm tries to improve the performance of the model just by providing smaller number
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of features as much as possible by eliminating irrelevant and redundant information.

2.2.1 Single-objective Feature Selection

During the initial phase of research on feature selection, it was usually studied as a

single objective optimization problem. From this point of view, the optimizer’s main

goal is to enhance the performance of machine learning model as an objective function.

Single-objective feature selection can be mathematically described as follows:

Imagine that dataset S includes d number of features. The working mechanise of

feature selection algorithm is to select the relevant features from among d features with

respect to the fact that J is the single objective function to be optimized, which is

typically a performance metric (e.g., accuracy, F1-score, or a relevant criterion). Given

a dataset S = {f1, f2, f3, ..., fd}, the objective is to select the best subset from S for

optimizing J . Let us call the extracted subset Q = {f1, f2, f3, ..., fn} where n < d, and

f1, f2, f3, .. represent the features of any subset extracted. Accordingly, the objective is

to find best Q which gets the fittest value for J(Q).

Solving feature selection problem with EAs, the characteristics of these algorithms

remains the same including: population initialization, crossover, mutation and selection,

and apparently, there will be a criteria to stop the search algorithm from proceeding

at a right time. For binary optimization algorithm, binary population initialization will

take place by defining one as presence of a coresponding feature and zero as absence of

the feature. Genetic algorithm (GA) [20], ant colony optimization (ACO) [21], differ-

ential evolution (DE) [22], artificial bee colony (ABC) [23], particle swarm optimization

(PSO) [24] are commonly used population-based metaheuristic algorithms to solve the

single objective feature selection problems. Both binary and continues versions of these

algorithms such as DE and PSO are applicable for solving the feature selection prob-

lems, a good example could be continues version of PSO that has been introduced for

feature selection problems that uses a threshold value to chose a particular feature using
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a continues representation, however the continues versions are out of scope of this study,

but some of these studies has been presented in the following when different population

initialization techniques for feature selection are discussed.

Figure 2.2: The GA-based feature selection flowchart.

Genetic Algorithm:

In this thesis, we have use binary GA as the optimizer for single-objective feature

selection problem. GA-based feature selection algorithm has five important components

including: chromosome encoding, population initialization, fitness evaluation, genetic

operators including (crossover and mutation, selection) and criteria to stop the GA.

Figure 2.2 shows the flowchart of a GA-based feature selection algorithm with some

modification from [25, 26].

A subset of features, is defined as a chromosome in the population that is representa-

tive of presence or absence of features by assigning 1 or zero to the coresponding feature
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within the chromosome respectively. Again for feature selection problem, in population

initialization step, as previously mentioned, the prevalent binary population initialization

is most of the time with BU initialization method in almost most of these algorithms

including the GA.

In fitness evaluation step, each feature subset’s quality is assessed using a fitness

function tied to the performance of a machine learning model. Subsets that contribute

to better model performance receive higher fitness scores.

Genetic operator are responsible for generating offspring for continuing the evolution-

ary process. In crossover operation, selected feature subsets undergo crossover opera-

tions, wherein attributes from two or more subsets are combined to create new subsets.

Crossover introduces diversity into the population and can lead to the discovery of im-

proved feature combinations. There are various type of crossover in the litreture that can

be appied to the algorithm such as single point crossover, two point crossover, uniform

crossover, etc. that can be used in GA. In mutation operation, some feature subsets may

undergo mutation, introducing small, random changes to individual features. It means

that that an arbitrary bit(s) in a chromosome will be flipped from its initial (1 to 0 and

vice verse) state based on the mutation coefficient. Mutation helps explore new areas of

the search space, preventing the algorithm from getting stuck in local optima. Finally,

selection step selects the feature subsets based on their fitness value for reproduction.

And in the end, with defining a criterion, the process continues over multiple gener-

ations until the termination criterion is met, such as a maximum number of generations

or convergence to a satisfactory solution.

Initialization for Feature Selection

BU initialization is the prevalent binary population initialization method in GA-based

feature selection method and of course in many other algorithms with binary population

initialization. A few studies have proposed methods to improve the quality of the popu-

lation generated with BU initialization method in feature selection that are mentioned in
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what follows. In [27] preserving non-necessary number of the features even after perform-

ing GA-based feature selection have been investigated when using the BU initialization

method. Author in this study, proposes that setting a constrain on maximum number

of total features in feature subset would be beneficial to the algorithm. In [28] three

initialization methods have been proposed namely PSOIn1, PSOIn2 and, PSOIn3 using

small initialization, large initialization and the mixed initialization. Small initialization,

initializes each particle using a small number of features and large initialization, initial-

izes each particle using a large number of features. Small and large initialization schemes

in this paper are inspired by froward selection and backward selection respectively. In

mixed initialization, which is a combination of small and large initialization, some parti-

cles are initialised using a small number of features and rest of the particles are initialised

using large feature subsets. Another study, proposed a new initialization method for PSO

algorithm in feature selection problem which is called hybrid initialization strategy [29].

In this method, which is introduced as PSOIn4 population initialization method, half

of the particles start the process of initialization with small initialization and remain-

ing with the large initialization. In [30], an unsupervised feature selection mechanism

is proposed for feature selection problem which instead of predefined probability dis-

tribution such as Bernoulli probability, a function based on feature score is introduced

same as the probability distribution for generating 0 and 1 representative of absence or

presence of a feature. The segmented initialization mechanism is an other method of pop-

ulation initialization for feature selection problems which uses the Bernoulli probability

distribution with three different p values including 0.25, 0.5, 0.75 for binary population

initialization that divides total population into three section and initialize each section

with corresponding p value [31]. In [32] , a function is introduced for generation of 0 and 1

bitstring in multi-objective gray wolf optimization feature selection based on the fact that

for most dataset optimal number of features are less than half of the total features. So, a

function similar to previously mentioned probability functions with p selected from {0.1,
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0.2, 0.3, 0.4, 0.5} and feature positioning based on population factor strategy is proposed.

In [33], the method of small, medium, and large initialization has been applied to binary

ant lion optimizer (ALO) for feature selection problem and has achieved improvements in

feature selection problem. Another study [34] a Gaussian probability density function is

introduced for 0 and 1 bitstring generation in feature selection problem with considering

the fact that the parameters of the Gaussian function is generated using the feature score

and mutual information. In [35] A multi-objective evolutionary algorithm is introduced

for large-scale Feature Selection (FS), which utilizes an interval-based initialization ap-

proach and a self-adjusting crossover operator. The novel interval-based initialization

technique restricts the number of selected features in a solution to enhance the diversity

of the initial population within the seach space, and also reduces the similarity of the

initial population within the decision space.The key procedures involve establishing dif-

ferent intervals based on the number of selected features and evaluating the similarity

of each interval solution using Jaccard similarity. Subsequently, intervals exhibiting high

similarity will be initialized with a reduced number of solutions.

2.2.2 Multi-objective Feature Selection

Feature selection problems, inherently have characteristics of multi-objective optimiza-

tion problems with two conflicting objectives. The main two conflicting objectives com-

prises of:

• Maximizing the performance of the machine learning model

• Minimizing the size of the feature subset to overcome the curse of dimensionality

at the same time. Multi-objective feature selection can be mathematically explained as

follows:

Imagine that dataset S includes d number of features. The working mechanise of

feature selection algorithm is to select the relevant features from among d features with
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respect to the fact that J={J1, J2, ..., Jm} that is the set of objective functions, to be

optimized. Let us have a dataset S = {f1, f2, f3, ..., fd}, to be a binary vector of length

d, where fi is 1 if feature i is selected and 0 if it is not selected, let us name the extracted

subset Q = {f1, f2, f3, ..., fn} where n < d. Considering the above mentioned two main

objectives, J1 would be the performance of a machine learning model to be maximized,

and J2 would be the number of members in subset Q to be minimized at the same time.

The challenges and difficulties emerged for solving multi-objective feature selection

algorithms can be successfully tackled using multi-objective evolutionary algorithms.

There are various evolutionary multi-objective optimization algorithms in the liter-

ature that can be used for solving multi-objective feature selection problems. These

algorithms aim to find Pareto-optimal solutions, which represent trade-offs between mul-

tiple conflicting objectives and despite the single-objective optimization algorithms which

provide one solution, they provide a set of solutions that can be chosen based on the

preference. Here is a list of some popular evolutionary multi-objective optimization al-

gorithms for multi-objective feature selection:

Non-Dominated Sorting Genetic Algorithm (NSGA-II): NSGA-II is a widely used

multi-objective optimization algorithm [36]. It employs non-dominated sorting and crowd-

ing distance to maintain diversity in the Pareto front.

Multi-Objective Particle Swarm Optimization (MOPSO): MOPSO extends the con-

cept of particle swarm optimization to solve multi-objective problems [37]. It uses parti-

cles to explore the search space and maintain a diverse set of solutions.

Strength Pareto Evolutionary Algorithm (SPEA2): SPEA2 is another popular algo-

rithm that combines an external archive with elitism and tournament selection to find

Pareto-optimal solutions [38].

Multi-Objective Genetic Algorithm (MOGA): MOGA applies genetic algorithms to

multi-objective problems [39]. It uses techniques like Pareto dominance and fitness shar-

ing to evolve diverse and high-quality solutions.
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Multi-Objective Differential Evolution (MODE): MODE adapts the differential evo-

lution algorithm to handle multi-objective optimization problems [40]. It uses mutation,

crossover, and selection to find Pareto-optimal solutions.

Multi-Objective Ant Colony Optimization (MOACO): MOACO extends ant colony

optimization to multi-objective optimization [41]. It employs multiple pheromone matri-

ces to guide ants in the search for Pareto-optimal solutions.

Hybrid Algorithms: Many researchers have developed hybrid algorithms that combine

elements from different evolutionary multi-objective optimization methods to enhance

their performance on specific feature selection problems [18].

These algorithms offer various approaches and trade-offs in terms of exploration and

exploitation of the Pareto front, diversity maintenance, and convergence speed. The

choice of algorithm often depends on the specific characteristics of the multi-objective

feature selection problem and the goals of the optimization process.

NSGA-II algorithm:

In this thesis, NSGA-II algorithm is used for solving multi-objective feature selection

problem and multi-objective knapsack problem, consequently for comprehensive under-

standing of this thesis, it has been explained in detail in what follows. The NSGA-

II is a powerful multi-objective optimization algorithm that is widely used for solving

problems with multiple conflicting objectives. NSGA-II is an extension of the original

Non-dominated Sorting Genetic Algorithm (NSGA), designed to provide improved per-

formance in terms of convergence and diversity maintenance. In NSGA-II algorithm,

first, a random binary population is generated. At the same time the initial population

is sorted based on nondominated sorting method. Then, for generating the offspring pop-

ulation, the binary tournament selection, recombination and mutation are used. Then

parent and offspring population are merged in order to perform the nondomination sort-

ing. The total population is sorted according to nondomination sorting relation, and

new population is formed by gathering the solution from the first front and then the next
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fronts until the current parent size exceeds the population size. Each individuals will be

assigned a fitness value based on the front they belong to. In addition to the fitness value,

a new parameter named crowding distance is calculated for each individuals which is a

metric for describing how close an individual is close to its neighbors in its specific be-

longing front. Large average crowding distance value indicates that the individual, when

selected in the population will be better for the diversity of the population. Parents are

selected from the population based on their front rank and crowding distance using the

tournament selection mechanism. Then, the selected population generates the offspring

by using the crossover and mutation operators. The population with the current pop-

ulation and current offspring, will again be sorted based on nondomination sorting and

best N individuals are selected which N is predefined population size by the user (see

Appendix A) [42]. NSGA-II is particularly well-suited for solving multi-objective feature

selection problems, where the goal is to find a set of features that optimizes multiple ob-

jectives, such as classification accuracy, model complexity, and computational efficiency,

while considering the trade-offs between these objectives, however, in our study we have

considered only two conflicting objectives which they will be explained in detail in fol-

lowing chapters . In the following section, Knapsack problem has been explained for

comprehensive understanding of the studies in this thesis.

2.3 0-1 Knapsack problem

2.3.1 Single-objective 0-1 Knapsack Problem

The knapsack problem is a classic optimization problem in computer science, mathe-

matics, and operations research. It’s a problem of combinatorial optimization problem

with many real-world applications, including resource allocation, portfolio optimization,

project scheduling, tourist trip planning, DNA sequencing and genomics, and etc. The

0-1 Knapsack problem as a combinatorial problem has strong similarity with finding
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qualified set of features in feature selection algorithms. The multidimensional version of

multi-objective 0-1 knapsack problem (MOMKP) is used in this thesis to study the effect

of BU and UC initialization. The MOMKP problem is defined as follows [15]:

Imagine we have N items (i = 1, 2, ..., n) having m characteristics wi
j(j = 1, 2, ...,m)

such as weight, volume,... and p profits cik(k = 1, 2, .., p), some items should be selected

in a way to maximize the p total profits while not exceeding the m knapsack capacities

Wj regarding the various characteristics. The MOMKP problem is formulated as follows:

Max zk(x) =
∑n

i=1 c
i
kxi k = 1, ..., p

subject to
∑n

i=1w
i
jxi ≤ Wj j = 1, ...,m

xi ∈ {0, 1} i = 1, ..., n

(2.2)

In single-objective version of 0-1 knapsack problem, the k is determined 1 and there

is only one objective function to maximize. This means that there is only one specific

profit assigned to each items regardless of its characteristics including weight, volume,

and etc.

2.3.2 Multi-objective 0-1 Knapsack Problem

Multi-objective variant can be defined when k > 1. It means that each item has more

than 1 specific profit and consequently there are multiple objective functions to maximize

[15]. Again, same as single-objective version, characteristics of each item can be defined

independently from number of objectives (profits) for the 0-1 knapsack problem and these

characteristics represent the parameters of inequality constraints. The multi-objective

version of 0-1 knapsack problem can be defined as follows:
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Max z1(x) =
∑n

i=1 c
i
1xi

Max z2(x) =
∑n

i=1 c
i
2xi

...
...

Max zp(x) =
∑n

i=1 c
i
pxi

Min q =
∑n

i=1 xi

subject to
∑n

i=1wixi ≤ W

xi ∈ {0, 1} i = 1, ..., n

(2.3)

In this thesis both version of 0-1 knapsack problem can are solved using the population-

based metaheuristc algorithms. These two problem are great candidate in order to in-

vestigate the effect of binary population initialization method. So, in this thesis beside

the feature selection problem as combinitorial optimization problem the single-objective

knapsack and its multi-objective variant are selected to evaluate our proposed method

in binary population initialization step.

2.4 Summary

In this chapter, we discussed the binary population initialization and explained the con-

cepts of gene-wise and chromosome-wise uniformity in a 0/1 bitstrings or chromosomes in

the initial population of EAs as the metaheuristic optimization algorithms. Two different

population initialization methods including BU and UC, are explained in detail and dis-

advantages of BU method as prevalent binary population initialization is uncovered. At

the same time the superiority of UC method is explained simultaneously as an alterna-

tive method for BU technique. We have also explained the NSGA-II and GA algorithms

that are used in this thesis. Evolutionary Feature selection problem and 0-1 knapsack

problems also explained since our experiments are conducted on these problems. In the

next chapter we have provided mathematical proofs for our investigations on BU and UC
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initialization methods.



Chapter 3

Proposed Initialization for

Population-based Binary

Optimization Algorithms

3.1 Introduction

In this section, first, mathematical and Monte-Carlo based investigation of BU, bitstring

uniform initialization (BU), and uniform covering initialization (UC) in binary optimiza-

tion are explained. It has been proved that BU initialization is quite the contrary of

providing diversity in the initial population. Also, the powerful ability of uniform cover-

ing initialization in covering the total search space is unleashed.

3.2 Uniform Covering Initialization

First, for a better understanding we should elaborately determine the definition of the

uniformity in a binary population. In binary population initialization or bit-string ini-

tialization, uniformity of population can be considered from two perspective:

24
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Figure 3.1: If the gene-wise uniformity is fulfilled for an specific allele (gene index in
a chromosome), the counts of the number of ones and zeros that have appeared in the
population must be almost in equilibrium. For population of size N which gene-wise
uniformity is fulfilled, total number of ones that appeared in each allele must be almost
N/2, obviously the rest of the other N/2 are initialized with zeros.

1. Gene-wise uniformity: making population unbiased to the presence or absence of a

specific gene.

2. Chromosome-wise uniformity: making population unbiased to presence of specific

numbers of ones inside chromosomes, consequently unbiased to specific regions of

the search space and staying diverse in the search space.

Considering the gene-wise uniformity and in doing so, the genes at the same position

or index of the chromosomes (alleles), will almost keep same number of zeros and ones in

the initialized population, which it means, it makes the population not to be biased to the

presence or absence of specific genes. Figure 3.1 shows an specific allele in a population

with population size N , in order to have the gene-wise uniformity total number of ones

and zeros in each allele in the population must almost be in equilibrium which means

having almost N/2 ones and N/2 zeros.
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Figure 3.2: If the chromosome-wise uniformity is fulfilled for a population which its chro-
mosomes have M dimensions, the frequency of seeing each number in the set including
sum of ones for each chromosome must be almost the same. For population of size M
which chromosome-wise uniformity is fulfilled, distribution of the numbers of {0, ..,M}
is uniform.
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From the other perspective, the chromosome-wise uniformity means that chromo-

somes in the population, are not biased to have specific number of the genes inside them

and there is a uniform probability distribution for total number of the genes inside a

chromosome. This fact emphasizes on providing equal chance for each chromosome in

the search space to be selected for the initial population. Figure 3.2 illustrates the con-

cept of chromosome-wise uniformity in a population with dimension M . In order to

have chromosome-wise uniformity, the set of sum of total number of ones inside each

chromosome which is an integer number between [0,M ], must have a uniform probability

distribution for these numbers from 0 to M . For example, if each one of the chromo-

somes has almost equal number of ones and zeros inside them, then M/2 would be the

dominant number that can be seen in the set containing sums of ones for chromosomes

of population of any size. As previously mentioned, the common method in initialization

for the binary space {0, 1}n of fixed-length-(n) bitstrings is by using “Equation (2.1)”. In

what follows, we have introduced a few studies that have targeted the effect of zeros/one

bitstring initialization with probability of 0.5, then we have discussed a few methods that

are proposed in the evolutionary feature selection algorithms as the alternative methods

for this common method of binary population initialization.

Figure 3.3: For BU initialization method, Bernoulli probability distribution with p = 0.5
is used equally for the bitstrings/chromosomes of the population to fill them with 1/0.

In 1997, leila kallel et al [43], conducted a study on effect of prevalent 0/1 equiprobable
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Figure 3.4: In UC initialization method, for initializing each chromosome a separate
probability distribution will be chosen to fill the bitstrings. The p parameter is selected
randomly and uniformly in [0,1], then each bit will be defined 1 based on probability of
p.

bitstring initialization method and defined it as the bitstring-uniform standard initial-

ization procedure (BU) where assigns 0 or 1 with probability 0.5 to every bit. Figure 3.3

also shows the probability distribution known as Bernoulli distribution with determined

p = 0.5 for the case of BU initialization method for filling the bitstrings. The study

investigates the initialization particularly in bitstring genetic algorithms and it has been

argued that the BU initialization will not guarantee the chromosome-wise uniformity

and diversity in population in general binary framework for GA. However, the uniform

covering initialization procedure (UC) as a solution for this critical problem has been

proposed with focusing on the density of 1’s and 0’s for chromosomes to be originated

from a uniform distribution. Figure 3.4 presents the process of population initialization

using UC method.

The procedure for UC method is defined as: for each bitstring or chromosome, select

the density of ones represented as p parameter for Bernoulli distribution from between

[0,1] randomly, and then fill the bitstring with this randomly defined probability distribu-
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tion. It is worth mentioning that for BU method the p parameter for all chromosomes is

equally defined as 0.5 but for UC method p parameter can be take any number between

[0,1] differently for each chromosome.

This concepts have not been investigated for binary optimization problems and its

effect on binary optimization algorithms have not been uncovered due to the mapping

from binary to real numbers which eliminated the chromosome-wise bias. To the best

of our knowledge, BU initialization method with its inability in providing chromosome-

wise uniformity is still the dominant method in random binary population initialization.

However, looking at the literature, in some specific optimization problems such as feature

selection, the community have been attracted to improve the quality of the generated

bitstrings which have been generated with BU procedure in the population initialization

step, without specifically mentioning the impact of BU initialization on diversity and

uniformity in the search space.

3.3 Mathematical and Monte-Carlo based Investiga-

tion

In this section, the motivation behind this study and the important concepts and mathe-

matics for understanding the effect of prevalent binary initialization method in the litera-

ture and its proposed replacement are discussed. First the detailed effect and mechanism

of bitsrting formation with commonly used BU method and UC method as its replace-

ment are discussed, then Monte-Carlo simulation of BU initialization is performed for

exploring the way it fills the binary search space [44]. Finally, the main reason for un-

derestimating the effect of UC method in the literature have been explained.

For better understanding of BU and UC binary initialization, it has been illustrated

in Figure 3.4 the way each chromosome is initialized with zero and one using different

probability distribution functions. In BU binary initialization method which is common



Chapter 3. Proposed population initialization for binary optimization algorithm 30

method of population initialization in the literature, each chromosome uses the uniform

probability distribution on {0, 1} (equally for each individuals in the population), which

is exactly the same as filling a bitsring of a chromosome using a fair coin for producing

the head as one and tail as zero. Consequently, the probability distribution function

is a Bernoulli probability distribution with parameter p=0.5. However, in UC binary

initialization, the scenario is completely different. In this case probability distribution

function for filling each chromosome is not equal for the chromosomes (although it might

be equal for some chromosomes) in the population, and is generated by assigning a

random value for p which is a selected number(float) with uniform probability from [0,1].

In this case, the situation is exactly the same as filling a bitsrting of chromosome with

an unfair coin or a fair coin (based on random value assigned for p from [0,1]), however

each time a new coin with different amount of unfairness is used for generating zero and

one bitstring.

As previously mentioned, the concept of uniformity and uniform distribution must be

considered from two perspective: Gene-wise uniformity and chromosome-wise uniformity.

In Gene-wise uniformity, where the alleles (the genes at the same position or locus)

contain almost the equal number of zeros and ones, it is guaranteed that the population

is not biased to presence or absence of specific gene(s) inside the population. This means

that zero and one would have same probability of 0.5 to fill the alleles in the population

and consequently, in a population with N individuals, for each specific gene or an index

which is representative of a gene in a chromosome, almost N/2 of population are filled

with ones for this allele.

We have conduct an experiment, to investigate the accomplishment of this gene-wise

uniformity conditions in commonly used BU initialization method and UC initialization

method in population initialization step. In this experiment, two different population

with same number of 1000 individuals are generated with BU initialization and UC

initialization method respectively. Each individual also includes 80 genes. Figure 3.5
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Figure 3.5: Distribution of genes in a population with 1000 individuals and 80 genes
initialized with UC method (a) and BU method (b).

shows the histogram (distribution) of the presence of each gene, or index of a gene of

the chromosome, in the population for both BU and UC initialization methods. As we

can see, both methods comply with this criterion and there is a uniform distribution of

different genes in both methods.

Considering the chromosome-wise uniformity, we expect to fill the search space in

population initialization step, as uniform as and as diverse as possible, and providing an

equal chance for each different permutation of zeros and ones in a bitstring chromosome,

to be selected as a potential solution. The fact of providing equal chance for each differ-

ent permutation, or in other words, generating the candidate solutions from a uniform

probability distribution for different permutation is a must for fulfillment of having di-

versity and uniformity in binary search space. We have conducted another experiment

with the same number of population and genes, 1000 and 80 respectively, to investigate

if the chromosome-wise condition is accomplished with BU and UC methods. Figure 3.6

shows the histogram of presence of different permutations with equal amount of genes

assigned to 1 for BU and UC methods.

As we can see clearly, for BU method, predominant number of individuals include the

permutations which have almost half of the genes assigned to one and there are a few
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Figure 3.6: Distribution of chromosomes with total number of ones in a population with
1000 individuals and 80 genes initialized with UC method (a) and BU method (b).

other candidates representative of so many other different permutations. The histogram

is in this case a ring shape graph which indicated that population have been generated

from a Gaussian distribution where its chromosomes which have same amount of zeros

and ones, have the highest chance to be generated from this distribution. This type of

distribution is quite the contrary of proving equal chance for every possible permutation of

different number of zeros and ones, and will indeed drastically degrade the diversity in the

population. On the other hand, if we look at the histogram of UC method, permutations

with different amount of ones, have almost same frequency of existing in the population

which indicated the fact that these candidate solution have been generated from a uniform

probability distribution and each and every possible permutation of different number of

zeros and ones have exactly the same chance to be in the initial population. So, despite

BU method, UC method fulfills the diversity and uniformity in producing the random

candidate solution in the search space.

Mathematical and Monte-Carlo based Investigation:

To prove our investigation and also to see how generation of population using BU

method adversely affects its diversity and uniformity in binary search space, consider an

n-dimension binary search space as an n-dimensional unit hypercube. Imagining ver-

tices of the unit hypercube as potential solutions in the decision variable space, the total
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Figure 3.7: A 4-dimensional hypercube as a 4-dimensional binary search space with its
total candidate solutions represented as vertices. Red vertices in BU method have higher
chance in comparison to other vertices to participate in initial population and the initial
population is biased to this specific region of the search space.

number of the solutions is equal to 2n same as total vertices of an n-dimensional unit

hypercube. It is very important, especially for avoiding the premature convergence and

convergence speed of algorithms, to give equal chance to each one of these potential so-

lutions to be able to participate in initializing the population. As, previously mentioned,

BU generates candidate solutions randomly from a Gaussian distribution, which is equal

to being biased to do sampling from specific region of search space where the number

of zeros and ones are almost in balance. For better illustration, Figure 3.7 provides an

example of the 4-dimension unit hypercube with its total vertices as the total solutions

in 4-dimensional binary search space.

The process of initializing a population of size N , resembles the process of sampling

from a binary search space size n, N times (n > N). When sampling each time, a

vertex of this n-dimensional hypercube is introduced as a candidate solution. With BU

initialization, however, vertices with equilibrium states (almost same amount of zero and

ones) have higher chance in doing the sampling. For example, when initializing with BU
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method, vertices which are in red colors will have the maximum probability to be chosen

as a potential solution in sampling for population initialization and the other will have

lower chance to be selected.

Let us go back to n-dimensional space and consider the BU initialization method as

a sampling process. With BU method, the vertices with almost equal number of zeros

and ones (vertices in almost equilibrium states) have the highest chance in sampling for

generating the initial population. If we calculate the total number of available permuta-

tions that contain almost equal amount of zeros and ones, we can have an estimation of

available search space in BU method. Considering the total number of permutations for

the situations (vertices) which they have n
2
ones and considering them as quite sufficient

representatives of available sampling space in BU, almost the total number of accessible

search space can be approximately estimated as:

C(n,
n

2
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n

2
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n− n

2

)
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2
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C(n, n
2
) is representative of total different combinations of almost n

2
ones and n

2
zeros

inside an n-dimensional bitsrtring/chromosome. At the same time, we can clearly see

that the available search space in UC method is 2n which means that we have access to

all the search space and vertices in sampling for initialization the population. With a

simple comparison, we can understand that this condition is equal to shrinking search

space from 2n, to almost the amount of C
(
n, n

2

)
, which is a drastic reduction of available

points in a search space for sampling, especially in large dimensions. The estimated ratio

of accessible search space in BU method to UC method, can be be formulated as:

Number of accessible states by BU =
C(n, n

2
)

2n
=

n!

(n−n
2 )!(

n
2 )!

2n
(3.2)

The graph of estimate ratio for variable values for n also can be seen in Figure 3.8. It is

worth mentioning that, we could observe this ratio from other point of view and consider
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Figure 3.8: Ratio of accessible search space of BU method to UC method. Total available
search space in BU method is approximately C

(
n, n

2

)
, where the available search space

for UC method is 2n.

it as the percentage of available search space for BU method since the available search

space for UC is equal to entire search space. Figure 3.8. shows that the ratio of accessible

search spaces from BU to UC decreases drastically in larger values for n. If we look at

graph carefully, the BU initialization method can only sample from 0.025 percentage of

the entire search space for almost n > 300. This fact states a major problem for all

type of algorithms that their population initialization is accomplished using BU method,

since real-world problems mostly have larger dimensions. Even in smaller dimensions

such as n=25, BU can have access to only 10 percent of the entire search space which is

a very small number. This issue becomes more serious in large scale problems when the

dimension of problem are n > 1000 and the ratio drops to near zero value. This situation

will force the algorithms to start its exploration from a tiny and specific region of the

search space, which kills the ability of the algorithms to have access to remaining vast

number of potential solutions. It means that whole burden of finding optimal solution

has been laid on the optimizer or even worst, the optimizer needs to invest significantly

more additional effort to overcome the adverse impact of a poor initialization.This issue
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also indicates that, the common belief of increasing number of populations to increase its

diversity, has almost zero effect in larger dimensions on the diversification in this case,

since the accessible search space has confined already. However, here it comes the question

why the effect of such search space shrinkage have not been paid much attention through

the years? As previously mentioned, [43] introduced the UC method as a replacement

for BU method in population initialization in the GA algorithm. However, based on the

results and experiments conducted in the mentioned study, there was no huge difference

for the performance of GA algorithm regarding the problem of the huge shrinkage of

search space that has been solved by using the UC population initialization. At first

glance, one may think that algorithm can overcome the search space shrinkage problem,

but quite the contrary, the fact is that UC initialization method illustrates its power and

capabilities for binary optimization problems and algorithms. The fact is that because

of existing of a encoding step in the algorithm such as binary to real, binary to integer,

etc., the issue of shrinkage of space does not exist anymore. Consequently, based on the

discovery in this study, for binary optimization problems BU method drastically damages

the performance of the algorithm due to the massive search space shrinkage that exist

in the population initialization step and it is proven in this thesis that UC method is

highly effective when used properly for combinitorial optimization problems with binary

initialization rather than BU method.

Another metric for evaluating the quality of the generated binary populations, initial-

ized with BU as prevalent method and UC method, is to calculate the pair-wise Hamming

distance between the individuals. The Hamming distance between two binary bitstring or

vector is defined as follows: Given two vector U = (u1, 12, ..., un) and V = (v1, v2, ..., vn),

the Hamming distance between U and V is d(U, V ) that is the number of bit places where

U and V differ, so can simply be calculated by sum of the positional mismatches of the

two bit strings. In other words, Hamming distance is the number of bits that must be

changed in order to change one vector to another.
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The distribution of measured Hamming distances gives us information about the dif-

ferences or similarities between pairs of binary strings or sequences, accordingly it can

be beneficial for quantifying the amount of existing diversity in a population. We have

conducted an experiment to evaluate, measure, and compare the amount of diversity a

population can have when generated with BU method and UC method. Two populations

with N = 100 as population size, and n = 100 as number of genes are initialized with

BU and UC methods for this aim, then the pair-wise Hamming distance between the in-

dividuals is calculated. Finally, the distribution of the distances is illustrated by plotting

the histogram of distances for both BU and UC method for comparison. In conducted

experiment the minimum Hamming distance could be 0 (chromosomes are exactly the

same) and maximum Hamming distance could be n (all bits are completely different in

two chromosomes) which is 100 in here. It is worth mentioning that total number of

calculated distances for a population of size N would be (N× N−1
2

). Figure 3.9 shows the

histogram of Hamming distances for BU and UC methods. As we can see, in BU method,

the histogram is confined to a specific region and it is narrowed to a specific distance.

The narrow histogram of Hamming distance which is confined to a specific distances in

this population is indicator of several fact:

• Many strings are nearly identical or share a common pattern.

• The strings are tightly clustered in the search space and belong to the specific

subspace of the search space (initialization only targets one specific region in the

search space).

Consequently, with BU method the population will not be a representative of the

available search space and always confined the search space to a very tiny subspace which

they share a similar characteristic which in this case its having almost equal amount of

zeros and ones.

In UC method, As we can see the histogram of distances, the distribution of distances
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Figure 3.9: Histogram of pair-wise Hamming distances in BU initialization (a) and UC
initialization (b) for population size of N = 100 and dimension of n = 100.

in the population is scattered across various Hamming distance values and includes the

smallest (most similar individuals) and largest distance (completely different individu-

als) that can be defined for a string of 100 bits. The wide-spread histogram indicates

that the population has almost quite good samples of all types of available permutations,

representative of 2n total permutations. If we generate all total permutation of 2n, the

histogram for the population would have a Gaussian distribution as a most diverse pop-

ulation that we can ever have, however with UC method, even with very small number

of samples (N = 100 sample out of 2n), the population still could maintain such diver-

sity in the population. Consequently , this wide-spread distribution indicates that the

population contains a more diverse set of Hamming distances, and the data points may

exhibit a wider range of binary string patterns and heterogeneity and available search

space for sampling is not confined to any specific region.

3.4 Summary

In this section, we investigated the gene-wise uniformity and chromosome-wise uniformity

for both BU population initialization method and Uc population initialization method.
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It has been proved that gene-wise uniformity is fulfilled for both methods, however BU

method can not accomplish the chromosome-wise uniformity in a binary population.

This investigation is confirmed mathematically and also with Monte-Carlo simulation.

Finally, the capabilities of UC initialization method as the alternative method is discussed

and investigated. In the next chapter, several experiments including single-objective and

multi-objective combinatorial optimization problems are solved using binary optimiza-

tion algorithms initialized with both BU and UC initilization methods to confirm our

investigations.



Chapter 4

Experimental Results and Analysis

4.1 Introduction

In this chapter, different experiments are conducted to evaluate the effect of BU and UC

initialization methods on performance of the binary optimization algorithms including

GA and NSGA-II. Both single-objective and multi-objective type of optimization prob-

lems have been selected to investigate the effect of BU and UC initialization methods. It

is worth mentioning that proper method of population initialization that fulfills the diver-

sity and uniformity is important in single-objective, multi-objective, and many-objective

optimization all together, but in this thesis we have focused on single-objective and multi-

objective optimization. Single-objective problems are considered for the experiments in

order to eliminate the direct effect of the binary initialization that may affect the second

objective function in this study which may intensify the effect of search space shrinkage in

population initialization step of the optimization algorithm. The selective optimization

problems include feature selection problem and 0-1 knapsack problem, that are the rep-

resentative of combinitorial optimization problems in this thesis. In this study, GA and

NSGA-II algorithms are used as the representative of binary optimization algorithms.

Each optimization algorithm is initialized with two different population initialization

40
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methods including BU method and UC method, and the performance of each algorithm

with two different initialization are compared when initialized differently, to investigate

the effect of different initialization. In what follows, first multi-objective version of both

feature selection and 0-1 problems are studied and effect of BU and UC initialization are

investigated, finally the single-objective feature selection and single-object 0-1 knapsack

problems are studied.

4.2 Multi-objective Problems

4.2.1 Multi-objective Feature Selection

In this section feature selection problem is considered as a multi-objective optimiza-

tion problem. Feature selection problems have intrinsically the characteristics of multi-

objective optimization problems with two conflicting objective functions including:

• Improving the effectiveness of the machine learning model

• Reducing the number of the features

In this thesis, we have considered these two objectives as our objective functions, conse-

quently there is a bi-objective optimization problem.

For implementing the feature selection problem, simple binary coding scheme is used

to show presence or absence of a feature in a binary chromosome. Zero indicates the

absence of a corresponding feature in a chromosome and one shows its presence. For the

first objective function, the K-Nearest Neighbor, KNN classifier is introduced as the most

popular machine learning model for feature selection problem [45]. The accuracy score

of the KNN classifier is used as a evaluation metric to investigate the effectiveness of the

model, however it has been changed to the error, due to the compatibility of the problem

with the platform used for conducting the experiment. The NSGA-II algorithm with

two different initialization methods including the prevalent BU initialization method and
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UC initialization method, are used to discover the best feature subsets with minimum

number of the features and with better results for the KNN classifier. The performance

of the NSGA-II algorithm with two different initialization methods are compared with

each other in order to investigate the effect of BU and UC initialization. For NSGA-II

algorithm, the parameter setting is followed based on its original paper [36]. In this thesis,

the entire experiments are conducted on open source platform Pymoo [46] including

feature selection using NSGA-II algorithm. For both NSGA-II algorithms with different

initialization, single-point crossover and bit-flip mutation operators are used to generate

the offspring solutions [47, 48]. Control parameters including number of population

and value of K in KNN algorithm are set to be 50 and 5 respectively in solving the

MOEAs-based feature selection problem. Each optimization algorithm has a limited

budget to find the better solutions. In this study, we have defined maximum number of

iterations/generations as the stop criterion of the NSGA-II algorithm. A set of different

maximum number of iteration are defined to evaluate the performance of the algorithm

in its different stages, based on a dataset in general. Average ranking of the Pareto fronts

and average number of features for minimum errors in Pareto fronts in feature selection

problems respectively have been used for comparison. It is important to mention that

number of function evaluations is used in some results of experiments which is defined

as population size × iteration. Three different datasets are introduced for the feature

selection problem and We have run each algorithm on each dataset 31 times in order to

avoid the stochasticity in our results.

Dataset for MOEAs-based feature selection To show the performance of the

NSGA-II algorithm with different initialization on feature selection problems, 2 different

datasets are selected from UCI repository and 1 dataset from ASU repository [49]. The

datasets include different dimensions (number of features) and different sample sizes. The

selected datasets are quite the good example of small and large scale datasets in order

to have a comprehensive evaluation on performance of algorithm and its generalization
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capability with different initialization. In each experiment also, the ratio of the training

dataset to test dataset is set to be 80 to 20. Table 4.1 shows the description of the

datasets.

Table 4.1: Detailed information about used datasets in multi-objective feature selection

Dataset Number of Features Number of Samples Number of Classes
Madelon 500 2600 2
TOX-171 5748 171 4
Arcene 10000 900 2

Experimental Results and Analysis:

In order to assess the performance of the NSGA-II algorithm with different initial-

ization, a series of experiments are conducted on datasets described in Table 4.1. In

this section, we analyse the performance of NSGA-II algorithm with BU and UC initial-

ization methods and we have compared them. Besides, vividly, the distribution of the

Pareto front solutions in objective spaces is used to compare their performance. The

Pareto front solutions of an algorithm comprises of all nondominated solutions for 31

independent runs.

Results on Madelone dataset: Figure 4.1 shows the total generated Pareto front

solutions for both BU and UC initialization methods with the Madelon dataset after 31

runs. For the Madelon dataset, both algorithms are stopped after 200, 300, 500 itera-

tions in order to capture the evolution of the pareto fronts during the optimization. In

Figure 4.1 the total Pareto front solutions are illustrated in (d) and (e) separately for

BU and UC method respectively, after 500 iterations. In Figure 4.2, Results on Madelon

dataset evidently indicate the superiority of NSGA-II algorithm with UC initialization

method since after non-dominated sorting only Pareto front solutions of UC method exist.

Pareto fronts distribution graph indicate that NSGA-II algorithm with UC initialization

not only start optimization from a better region in the search space, it is also much pow-

erful when it comes to explore the search space for optimal solutions as we can see within

300 iteration NSGA-II with UC initialization is able to reach to least number of features
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with higher accuracy (lower error) for KNN model. Meanwhile, after 500 iterations,

NSGA-II with BU initialization even can not reach to UC method’s discovered Pareto

front solutions in iteration number 200. This illustrates that UC method has highly im-

proved the performance of the NSGA-II. Besides, all Pareto fronts points generated with

UC method dominate all Pareto fronts points generated using BU method. Table 4.2

presents the average minimum error on Pareto front with 31 runs and its corresponding

average number of the features for minimum error on Pareto front. As we can see, UC

method achieves the lower error for the classifier with fewer number of the features in

comparison to BU method.

Results on TOX-171 dataset: Figure 4.3 presents the total generated Pareto

front solutions for both BU and UC initialization same as the Madelon dataset. For the

TOX-171 dataset, both algorithms are stopped after 50, 200, 400 iterations in order to

capture the evolution of the Pareto fronts during the optimization. In Figure 4.3 the total

Pareto front solutions are separately illustrated in (d) and (e) for BU and UC method

respectively after 400 iterations. In Figure 4.4, Results on TOX-171 dataset evidently

indicate the superiority of NSGA-II algorithm with UC initialization method since after

non-dominated sorting only Pareto front solutions of UC method exist and also results

of average minimum error and number of features in Table 4.2 confirm the superiority of

UC method as well. Pareto fronts distribution graph confirm that NSGA-II algorithm

with UC initialization start its optimization from better solutions in the search space due

to its effective and wide-spread initialization. Optimizer’s empowered exploration and

exploitation abilities can be easily noticed from its faster convergence to optimal solution

with very fewer features and lower classification error. Within 200 iteration NSGA-II

with UC initialization is able to reach to least number of features with higher accuracy

(lower error) for KNN model. However, for NSGA-II with BU initialization even after

400 iterations, algorithm is much far away from NSGA-II with UC initialization method’s

initial search steps and its all Pareto front solutions are dominated by UC Pareto front
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(a)

(b)

(c)

Figure 4.1: Pareto fronts (31 runs) of Madelon dataset after (a) 200 iterations, (b) 300
iterations, (c) 500 iterations.
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Figure 4.2: Final Pareto front after non-dominated sorting of total points in objective
space for Madelon dataset

solutions in all stages. This experiment again illustrates that UC method has highly

improved the performance of the NSGA-II.

Results on Arcene dataset: Figure 4.5 presents the total generated Pareto front

solutions for both BU and UC initialization same as the previous datasets. For the

Arcene dataset, both algorithms are stopped after 50, 100, 250 iterations in order to

capture the evolution of the Pareto fronts during the optimization. In Figure 4.5 the

total Pareto front solutions are illustrated in (d) and (e) separately after 250 iterations

for BU and UC method respectively. In Figure 4.6, Results on Arcene dataset evidently

indicate the superiority of NSGA-II algorithm with UC initialization method since af-

ter non-dominated sorting only Pareto front solutions of UC method exist. Both average

minimum error and its average number of features in Table 4.2 and Pareto fronts distribu-

tion graph confirm that NSGA-II algorithm with UC initialization start its optimization

from better candidate solutions in the search space due to its effective initialization. Op-

timizer’s empowered exploration and exploitation abilities can be easily seen from its

rapid convergence to optimal solution with very fewer features and lower classification

error again for this experiment. Within 250 iteration NSGA-II with UC initialization

is able to reach to least number of features with higher accuracy (lower error) for KNN

model, however, for NSGA-II with BU initialization even after 250 iterations, algorithm
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(a)

(b)

(c)

Figure 4.3: Pareto fronts (31 runs) of TOX-171 after (a) 50 iterations, (b) 200 iterations,
(c) 400 iterations.
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Figure 4.4: Final Pareto front after non-dominated sorting of total points in objective
space for TOX-171 dataset

Table 4.2: Mean value of minimum errors for 31 runs and the corresponding average
number of features for the solution with minimum error in BU and UC method. Results
are compared based on t-test with p-value of 0.05.

Dataset Initialization Method Number of Feature Min Error

Arcene
BU 101 24.84
UC 99 6.96

Madelon
BU 1989 14.19
UC 114 2.58

TOX-171
BU 4271 4.68
UC 313 1.45

is far away from NSGA-II with UC initialization method’s Pareto front solutions in its

initial stages. This experiment again illustrates that UC method has highly improved the

performance of the NSGA-II since all Pareto front solutions generated with UC method

dominate Pareto front solutions generated with BU method. Besides, the algorithm in

UC method achieves lower error with fewer number of features in comparison to BU

method.
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(a)

(b)

(c)

Figure 4.5: Pareto fronts (31 runs) of Arcene dataset after (a) 50 iterations, (b) 100
iterations, (c) 250 iterations.
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Figure 4.6: Final Pareto front after non-dominated sorting of total points in objective
space for Arcene dataset

4.2.2 Multi-objective 0-1 Knapsack Problem

The multi-objective knapsack problem as a multi-objective combinatorial optimization

problem can be solved using evolutionary multi-objective optimization algorithms, so it

is a great candidate to assess the new initialization technique. 0-1 Knapsack problem

as a combinatorial problem has strong similarity with finding qualified set of features in

feature selection algorithms. Here, the multidimensional version of multi-objective 0-1

knapsack problem (MOMKP) is reviewed from chapter 2 for comprehensive understand-

ing. Imagine having N items (i = 1, 2, ..., n) with m characteristics wi
j(j = 1, 2, ...,m)

such as weight, volume, ... and p profits cik(k = 1, 2, .., p), some items should be selected

in a way to maximize the p total profits while not exceeding the m knapsack capacities

Wj regarding the various characteristics. The MOMKP problem is formulated as follows:

Max zk(x) =
∑n

i=1 c
i
kxi k = 1, ..., p

Min q =
∑n

i=1 xi i = 1, ..., n

subject to
∑n

i=1w
i
jxi ≤ Wj j = 1, ...,m

xi ∈ {0, 1} i = 1, ..., n

(4.1)

In our experiments for knapsack problem, k and j have only one value, k = 1 and j =
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1, meaning that there is only one constraint inequality, and also just one maximization

function regarding the profits of the items inside a knapsack which has been change to the

minimization problem due to the compatibility with performing optimization in Pymoo

platform. For this aim the maximization objective function has been multiplied to a

minus. Accordingly, in order to define a bi-objective knapsack problem in this thesis, we

have considered two objective functions defined as: sum of total items in the knapsack

which has to be minimized and another one is the objective function regarding the profit

of items inside knapsack, consequently the formulation of the first knapsack problem is

defined as:

Min f1(x) = z(x) = −
∑n

i=1 cixi

Min f2(x) =
∑n

i=1 xi

subject to
∑n

i=1 wixi ≤ W

xi ∈ {0, 1} i = 1, ..., n

(4.2)

Different values for n, which is representative of dimension of the knapsack problem is

determined, which include n = 50, 1000, 5000 to compare the performance the algorithms

in small and large scales. W is defined based on [46] and for the ci and wi as the profit

and weight characteristic of the item i respectively, random integer number have been

selected uniformly from [1, 100] for both coefficients for each item.

cik = uniform randomly selected from [1,100]

Ck = {c1k, ..., cik, .., cnk} i = 1, ..., n

wi = uniform randomly selected from [1,100] i = 1, ..., n

(4.3)

Experimental Results and Analysis: In order to investigate the effect of BU and

UC initialization, the knapsack problems with different number of items (dimensions)

n=50, 1000, 5000 are solved using the NSGA-II algorithm with different initialization.

Same as the multi-objective feature selection problem, different number of iterations are

used as stop criteria of the algorithms in order to do the comparison at different stage of
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the optimization. The parameter settings and control parameters are defined identical

to the multi-objective feature selection optimization problem. The Pareto front solutions

distribution for 31 runs and average ranking for Pareto front solutions are used to compare

the performance of the NSGA-II algorithm with different initialization. Since in Knapsack

problem, the optimal Pareto front solutions comprises both Pareto front solutions from

BU and UC method, the ranking score metric is used for comparison of BU and UC

method. Here for better understanding of evaluation, calculation of ranking score metric

is described. The final results also are compared based on t-test with p-value of 0.05.

Ranking Score: In the process of ranking each Pareto front, first the f1 objective

function is considered for solutions, and each solution in objective space will be ranked

based on the fitness value for this objective. It means that the Pareto front solution

with fitness value is ranked first with this method and the Pareto front solution with

worst fitness value is ranked last (number of the total points in the objective space).

Again, total Pareto front solutions are ranked based on their fitness value of f2 objective

function. Finally, for calculation of ranking score of a solution, the ranking score is

defined the average ranking of f1 and f2 in general. The ranking score for a Pareto

front is the average ranking score of all its Pareto front points and the Pareto front with

superior solutions has lower ranking score accordingly.

Results on Knapsack with n=50 items: Figure 4.7 shows the Pareto front solu-

tions for 31 runs after different iterations including 15, 25, 60 for the knapsack problem

with n=50 items. The f1 and f2 objective functions represent the total profit of the

items in the knapsack and number of the items in knapsack respectively, and both objec-

tive functions are minimization problems. Table 4.3 shows the average ranking score for

Pareto front solutions regarding first objective function, second objective function and

in general, average score of two objective functions. Due to the vast accessible search

space provided with UC method, NSGA-II starts the optimization from better candidate

solutions and its exploration and exploitation ability is boosted due to the diversity exist
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Table 4.3: The average ranking score for Pareto front solutions regarding first objective
function (f1), second objective function (f2) and in general, average score of two objective
functions defined as Ave-rank score for BU and UC method with different number of items
including 50, 1000, and 5000.

Items Initialization Method Avg-f1 rank Avg-f2 rank Avg-rank score

50
BU 5.9 11.8 8.85
UC 5.5 10.8 8.15

1000
BU 63.13 130.2 96.67
UC 125.4 64.53 95

5000
BU 49.3 155 102.15
UC 150.5 50.5 100.5

in its population from the initial steps of optimization. Results in Figure 4.7 indicate

that NSGA-II with UC method has almost reached to its optimal Pareto solutions with

25 iterations, however for NSGA-II with BU method it takes 60 iteration to reach to

the same Pareto solutions. This means that good initialization not only empowers the

algorithm to start the optimization from better candidate solutions, it also accelerate

the exploration and exploitation capability of the optimizer. The Ave-rank score for BU

method is 8.15 in comparison to BU method which is 8.85. Lower ranking score indi-

cates the Pareto front solutions achieved fittest values for f1 and f2 objective function in

general.

Results on Knapsack with n=1000 items: Here in this experiment, the number

of the items for the knapsack problem, is set to be 1000 to investigate the effect of BU and

UC population initialization in a different dimension. Figure 4.8 presents the results of the

experiment of solving knapsack problem with n=1000 using NSGA-II algorithm with BU

and UC population initialization methods. Again, both of the Pareto fronts distribution

and the average ranking score, indicate the superiority of NSGA-II algorithm with UC

initialization method to BU initialization method in solving the knapsack problem with

n=1000. The average ranking score for UC method is 95 which is lower in comparison

to BU method with average ranking value of 96.67. As we can see in the results, for

n=1000 the effect of UC initialization method is much powerful than lower dimensions
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(a)

(b)

(c)

Figure 4.7: Pareto fronts distribution (31 runs) in the objective space including: 1-total
profit of the items inside the knapsack and 2-number of the items inside the knapsack for
(a) 15 iterations, (b) 25 iterations, (c) 60 iterations with 50 population size, for knapsack
problem with n=50.
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such as n=50 and the Pareto fronts distributions is significantly different in BU and UC

methods. In NSGA-II algorithm with UC, only after 200 iterations, the optimal Pareto

front solutions are become widely distributed in the objective space, however, for NSGA-

II with BU initialization method, the Pareto front only covers tiny region in the objective

space and its poor population initialization forces the algorithm to use its budget on

exploring the search space for the optimal solutions in only small region of the search

space. Consequently, the convergence to optimal solution with BU method takes huge

time in comparison to UC method as we see in the graphs. For this experiment population

size is set to be 100. The main reason for this decision is that BU method is incapable in

finding feasible solutions in the beginning generations such as 200. Accordingly, it takes

to much time for BU method with lower population size to reach to a feasible solution.

One solution witch is slightly helpful with this issue is to increase the population size as

it used in this experiment.

Results on Knapsack with n=5000 items: Figure 4.9 shows the Pareto front

solutions for 31 runs after different iterations including 1000, 1500, 2000 for the knapsack

problem with n=5000 items. The Pareto fronts distribution and the average ranking

indicator, present the superiority of NSGA-II algorithm with UC method. The average

ranking for BU method is 102.15 which is higher the average ranking for UC method with

the value of 100.5. The lower rank for UC method indicates that Pareto front solutions

achieve better values for the f1 and f2 objective function in average. This experiment

also confirms our discovery on the severeness of shrinkage of search space due to the

BU initialization method in larger dimensions since the generated Pareto front with BU

method is distributed in a very tiny region in the objective space.
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(a)

(b)

(c)

Figure 4.8: Pareto fronts distribution (31 runs) in the objective space including: 1-total
profit of the items inside the knapsack and 2-number of the items inside the knapsack
for (a) 200 iterations, (b) 400 iterations, (c) 600 iterations with 100 population size, for
knapsack problem with n=1000.
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(a)

(b)

(c)

Figure 4.9: Pareto fronts distribution (31 runs) in the objective space including: 1-total
profit of the items inside the knapsack and 2-number of the items inside the knapsack
for (a) 1000 iterations, (b) 1500 iterations, (c) 2000 iterations with 100 population size,
for knapsack problem with n=5000.
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4.3 Single-objective Problems

4.3.1 Single-objective Feature Selection

In this section, we have conducted several experiments on feature selection problem using

the datasets described in Table 4.4. However, the feature selection problem is considered

as a single-objective problem where the objective function is defined as the effectiveness of

the machine learning model only. The main reason for the experiments on single-objective

problems using single-objective optimizers is to eliminate the direct effect of population

initialization that may affect the performance of the second objective (sum of number

of features or sum of number of items) directly. In this part, the GA is the introduced

population based metaheuristic algorithm which is responsible to find the optimal and

the most relevant features to achieve the fittest value for the objective function. The

KNN with k=5 for classification task is defined as the machine learning model and the

evaluation metric for effectiveness of the KNN model is determined the error of the KNN

algorithm. The ratio of train to test data is also 80 to 20 similar to previous experiments.

GA algorithm with two different population initialization including BU and UC methods,

are used to solve the feature selection problem and the performance of the algorithm with

different method of population initialization compared to each other. The parameter

settings for GA algorithm is originated form the Pymoo platform. Besides, the two

point crossover and bit flip mutation are defined as crossover and mutation operators

respectively in implemented GA algorithm using the Pymoo platform. Each algorithm

performs 31 times on each datasets. Average performance plot representative of best

accuracy of the KNN algorithm over the generations/iterations is used to compare the

GA algorithm with different initialization methods. The population size for all three

problems is 50 and, stop criterion for all the algorithms is defined maximum number of

generations equal to 150.
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Table 4.4: Detailed information about used datasets in single-objective feature selection

Dataset Number of Features Number of Samples Number of Classes
TOX-171 5748 171 4
Arcene 10000 900 2

GLA-BRA-180 49151 180 4

Table 4.5: Mean and variance of best solution (minimum error for KNN classifier) over
31 runs for the datasets

Mean Variance
Dataset BU UC BU UC
TOX-171 5 1 0.125 0.05
Arcene 25 22.22 0 0.0172

GLA-BRA-180 25 14 1.68 1.83

Dataset for single-objective feature selection: In order to compare the perfor-

mance of GA algorithm with BU population initialization and UC population initializa-

tion methods, 3 datasets are selected to perform GA-based feature selection.Table 4.4

shows the description of the datasets.

Experimental Results and Analysis:

To evaluate the effect of the proposed UC initialization method in GA algorithm that

is representative of a single-objective optimization algorithm, a series of experiments are

conducted in this section. Table 4.5 presents the average best error (performance) for

both BU and UC initialization for GA over 31 runs for three datasets in Table 4.4. The

results are compared based on t-test with p-value of 0.05.

Results on GA-based feature selection with two different initialization indicate the su-

periority of performance of the feature selection algorithm with UC initialization method

to feature selection algorithm with BU initialization method on these three datasets.Table

4.5 presents the mean value of best solutions (minimum error for KNN classifier) over

31 runs and the variance of the best solutions at the same time. Results show that the

GA algorithm is more successful in finding the best solution for single-objective feature

selection problem with GA initialized using UC method in all three datasets. The main
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reason for such behaviour of BU method is that, with poor initialization method, algo-

rithm is confined to search specific region of the search space. This phenomenon will

cause two major issues:

• algorithm is trapped into local optimal and can not find the local optima due to

the considering only specific region of the search space

• algorithm needs a huge budge in order to be able to expand its search direction

However, in GA with UC initialization method, because the GA algorithm starts its

optimization from almost the quite good candidate solutions which are representative

of entire search space, the chance of being trapped into local optimal decreases hugely.

Beside, since the algorithm has these effective candidate solutions from initial steps of

optimization, it convergence to the optimal solution is much faster in comparison to GA

algorithm with BU initialization method.

4.3.2 Single-objective 0-1 Knapsack Problem

In this section, the single-objective version of the 0-1 knapsack problem have been solved

using GA algorithm for evaluating the effect of BU and UC initialization in performance

of the binary optimization algorithm. Again, the GA algorithm is introduced as repre-

sentative of binary optimization algorithm in solving the single-objective 0-1 knapsack

problem representative of combinatorial optimization problems. We can formulate the

single-objective knapsack problem as follows:

Min f1(x) = z(x) = −
∑n

i=1 cixi

subject to
∑n

i=1 wixi ≤ W

xi ∈ {0, 1} i = 1, ..., n

(4.4)

Same as multi-objective 0-1 knapsack problem, different values for n including 1000, 5000

are defined to compare the performance of the algorithms in small and large scales. W
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is defined based on [46] and for the ci and wi random integer number have been selected

uniformly from [1, 100] for both coefficients for each item. The parameter setting for GA,

and control parameters are identical to the previous experiments on single-objective fea-

ture selection with GA. For knapsack problem with n=1000 the GA stops optimization

after 1000 iteration and for n=5000 the GA stops optimization after 3000 iterations. Pop-

ulation size is also 50 for both experiments, and both performance plot and constraint

violation graphs have been plotted over function evaluations (iterations × population

size).

Experimental Results and Analysis:

Figure 4.10 presents the performance plot and the minimum constraint violation of

all individuals in the population in each function evaluation (generation × population

size). To evaluate the effect of the BU and UC initialization, we have conducted two

experiments on single-objective 0-1 knapsack problem that is a representative of a combi-

natorial optimization problem. Same as previous experiments, to avoid the stochasticity

in our results, each algorithm runs 31 times on each different dimension of the knapsack

problems independently. The GA optimizer tries to find the best items to minimize the

objective function (the original objective is the maximization of the total profit of the

items inside the knapsack, however due to the compatibility with Pymoo platform it has

been changed to the minimization problem by multiplying it with a minus) with one

constrain on capacity of the knapsack defined as W again defined by Pymoo platform

based on the dimension of the knapsack problem.

Considering the performance plots of n=1000 and n=5000 in Figure 4.10a and Fig-

ure 4.10c, the best solution in UC method is in the feasible region from the first genera-

tion. On the other hand, in BU method, the performance plots first show an ascending

behaviour until finding the first feasible region which is determined by a vertical blue

line in the performance plot figures. Looking at the constraint violation graphs in Fig-

ure 4.10b and Figure 4.10d, it can be seen that GA with BU initialization is not able
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(a)

(b)

(c)

(d)

Figure 4.10: Performance plot of GA algorithm with BU and UC initialization in solving
single-objective knapsack problem for n=1000 and n=5000 (a) and (C). In the knapsack
problem with n=1000 and n=5000, the optimization is stopped after 300 and 3000 iter-
ations respectively. (b) and (d) present the minimum constraint violation (average of 31
runs)in the population over function evaluation.
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to find the solutions in the feasible region and in first generations the budget is mainly

used for reducing the constraint violation of the individuals. In this case, GA algorithm

almost starts the process of optimization when non of individuals violate the constraint.

This phenomena indicates that the BU method has delay in reaching to the best solution

of the problem in comparison to UC method and is not able to overcome the constraints

of the problem in first generations.

This phenomenon presents an other advantage of the UC method over BU method,

specifically in problems that include constraints and the algorithms are unable to find

the feasible solutions. This effect of this phenomenon is much intensive in problems

with larger dimensions as the graphs shows. For n=5000, the GA algorithm needs to

spend more budgets only to find the feasible solutions and continue the optimization

from that point. Again, the main reason for this issue is poor initialization with BU and

its bias to the specific region which may not include the optimal solutions in most of the

problems since it only can covers 10% of the available search space. However, for GA

with UC initialization method, due to the existence of the candidate solutions which are

representative of entire search space, algorithm can quickly have access to region with

optimal solution and local optima. This increase the same chance for solutions to be

in feasible region as well. It is worth mentioning that, the proposed UC initialization

method, regardless of its application in binary population initialization can be employed

in any other algorithm which uses a set of bit-strings for testing or sampling. Accordingly,

again providing diversity would play a crucial role when performing the sampling in these

cases. For example, in the case of a designing a digital circuit with 100 inputs using a

software that automatically performs this task, it would take a considerable time and

cost for the software to design and test the results based on the full truth-table which

has 2100 possible states to be selected. Evaluating these total possible solutions are not

manageable. If we want to provide some samples for the software to work, for example

106 samples form total 2100 possible states, then the software may use the proposed
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UC method as a technique which provides a small number of samples which fulfill the

diversity and uniformity and are quite good example of total available solutions. Finally

using these samples, the software would design and test the results with less cost and

time.

4.4 Summary

In this chapter, two combinatorial optimization problems including feature selection prob-

lem and knapsack problem have been selected to evaluate the effect of BU and UC

initialization on performance of the binary optimizer. Initially, the effect of different ini-

tialization first investigated in multi-objective variant of feature selection and knapsack

problems, which minimization of number of features and items are the second objective

function for feature selection and knapsack problem respectively. In the next step in

our study for this thesis, in order to eliminate the direct effect of population initializa-

tion on performance of the algorithm, we have considered single-objective variants of

the feature selection and knapsack problems. For multi-objective feature selection prob-

lem and knapsack problem, NSA-II algorithm with BU and UC initialization methods

have been used to perform the feature selection on three datasets and also solve the

knapsack problem with different number of the items including small, medium and large

range of numbers. The selection of different dimensions (small to large) for all problems

and experiments was introduced to evaluate the scalability of the proposed method and

comparing the performance of the BU and UC algorithms in various dimensions. Dis-

tribution of the Pareto front solutions for all experiments and also the average ranking

metrics confirm the significant superiority of UC initialization method to BU method.

Convergence speed and quality of the Pareto front solutions are highly improved using

UC initialization method. To eliminate the direct effect of the population initialization

which may affect the performance of the algorithms due to its direct participation as
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second objective function in multi-objective optimization problems, we have defined the

single-objective versions of feature selection and knapsack problem again with different

datasets and dimensions. These problems are solved using GA algorithm with BU and

UC initialization methods. Objective functions for feature selection and knapsack prob-

lem in this case are defined the KNN classifier error and minimized version of maximizing

total profit of the items inside a knapsack respectively. The performance plots indicate

again the superiority of GA algorithm when initialized with UC method. Overall, the

conducted experiments show that the suggested UC initialization method improves the

performance of the binary optimization algorithms drastically.
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Conclusion and Future Direction

5.1 Conclusion Remarks

Random binary population initialization with generating bitstrings of zeros and ones

originated form Bernoulli distribution with p = 0.5 is the prevalent random binary pop-

ulation initialization due to its simplicity and a general belief of providing uniformity of

distribution in the search space. However, the aforementioned binary population initial-

ization namely as Bitstring-Uniform (BU) procedure of population initialization should

be deeply studied to investigate its ability in covering the binary search space with its

randomly generated bitstrings. The importance of this thesis and study originates from

the fact that BU is still the most commonly used random binary population initialization

method in the literature.

In this thesis, a comprehensive study has been done on the concept of uniformity in

the binary search space. The concept of uniformity has been studied from two point

of views including the chromosome-wise uniformity and gene-wise uniformity. First, a

through research and investigation have been conducted to examine the fulfillment of

chromosome-wise uniformity and gene-wise uniformity with BU population initialization

method. Our deep investigation on BU initialization uncovered the fact that despite the

66
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gene-wise uniformity, BU method is not able to fulfill the chromosome-wise uniformity.

Using the Monte-Carlo simulation and mathematical proofs, the phenomenon of search

space shrinkage due to the poor initialization with BU method is investigated. As an

alternative method, the Uniform-Covering (UC) population initialization is a great solu-

tion for overcoming the adverse effect of search space shrinkage. However, this method

has not been valued as it is needed in the literature. The reason is that, in binary pop-

ulation initialization for non-binary optimization problems and algorithms, the effect of

the phenomenon of shrinkage of space vanished due to the existing mapping from binary

search space to other types of search spaces such as real value, integer, and etc. But the

fact is that phenomenon of shrinkage of search space due to BU initialization method

drastically degrades the performance of the binary optimization algorithms since there

is no mapping between the search spaces. A deep investigation on superiority of the UC

method to BU method has been conducted as well in this thesis.

In general we could say that UC method’s contributions are on three main directions:

1. Solving lack of diversity in initial population in binary optimization, diversity was

very low for BU.

2. Low diversity makes evolutionary operations (i.e., cross-over and mutation) unable

to create better candidate solutions, because of lack of diversity of initial population.

3. Proposed initialization creates a higher chance for initial population to be feasible

because of their high diversity, but traditional method has a lower chance because

of the lower diversity, starting with feasible candidate solutions is an important

factor in final performance of the algorithm.

Several experiments are conducted to confirm the superiority of the UC population

initialization to the BU population initialization method. First, as the case studies, the

multi-objective feature selection and multi-objective 0-1 knapsack problems are selected
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to evaluate the performance of an binary optimization algorithm when initialized dif-

ferently with BU and UC methods. The NSGA-II is also selected as representative of

multi-objective binary optimization algorithm. Three different datasets (Arcene, TOX-

171, GLA-BRA-180) are used for multi-objective feature selection problem and three

different dimensions n=50, 1000, 5000 are introduced for knapsack problem. In both

case studies, distribution of Pareto fronts in the objective space and also average ranking

metric confirm the phenomenon of shrinkage of search space due to the severe deteriora-

tion of the performance of the algorithm when initialized using BU method instead of UC

method. On the other hand, UC initialization, not only increases the convergence speed

but it also assist the algorithm to not become trapped in local optima. For investigating

the performance of the binary optimization algorithms in single-objective optimization

problems, single-objective versions of knapsack problem and feature selection problems

are studied. These experiments are conducted mainly to eliminate the direct effect of pop-

ulation initialization that is present in second objective of aforementioned multi-objective

case studies. During these experiments, we investigated the ability of the UC initializa-

tion method in finding feasible solutions due to its wide-spread solution in entire search

space from the initial step of the optimization. Overall, UC population initialization em-

powers the performance of the binary optimization algorithms drastically when employed

as its procedure of population initialization method. In addition due to its powerful abil-

ity to generate a quite great and representative samples from n dimensional binary space

with total 2n possible solution, UC method also can be used in sampling-based binary

optimization methods as well.

5.2 Future Direction

Although this thesis proposed the UC population initialization method as an alternative

for BU initialization method, there are still a lot of room for development. In this sub-
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section, potential improvements and some of recommendations are:

• Investigation of effect of BU and UC methods on other families of binary optimiza-

tion problems.

• Investigation on higher number of objectives (many-objective optimization).
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[21] M. Dorigo and T. Stützle, Ant colony optimization: overview and recent advances.

Springer, 2019.

[22] K. V. Price, “Differential evolution,” in Handbook of optimization: From classical to

modern approach, pp. 187–214, Springer, 2013.

[23] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical

function optimization: artificial bee colony (abc) algorithm,” Journal of global opti-

mization, vol. 39, pp. 459–471, 2007.

[24] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceedings of the

IEEE international conference on neural networks, vol. 4, pp. 1942–1948, Citeseer,

1995.



Bibliography 73

[25] O. H. Babatunde, L. Armstrong, J. Leng, and D. Diepeveen, “A genetic algorithm-

based feature selection,” 2014.

[26] O. H. Babatunde, L. Armstrong, J. Leng, and D. Diepeveen, “Zernike moments and

genetic algorithm: Tutorial and application,” 2014.

[27] R. Leardi, R. Boggia, and M. Terrile, “Genetic algorithms as a strategy for feature

selection,” Journal of chemometrics, vol. 6, no. 5, pp. 267–281, 1992.

[28] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimisation for feature

selection in classification: Novel initialisation and updating mechanisms,” Applied

soft computing, vol. 18, pp. 261–276, 2014.

[29] A.-D. Li, B. Xue, and M. Zhang, “Improved binary particle swarm optimization

for feature selection with new initialization and search space reduction strategies,”

Applied Soft Computing, vol. 106, p. 107302, 2021.

[30] M. Prasad, S. Tripathi, and K. Dahal, “Unsupervised feature selection and cluster

center initialization based arbitrary shaped clusters for intrusion detection,” Com-

puters & Security, vol. 99, p. 102062, 2020.

[31] H. Xu, B. Xue, and M. Zhang, “Segmented initialization and offspring modification

in evolutionary algorithms for bi-objective feature selection,” in Proceedings of the

2020 Genetic and Evolutionary Computation Conference, pp. 444–452, 2020.

[32] N. L. S. Albashah and H. M. Rais, “Population initialization factor in binary

multi-objective grey wolf optimization for features selection,” IEEE Access, vol. 10,

pp. 114942–114958, 2022.

[33] E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary ant lion approaches for

feature selection,” Neurocomputing, vol. 213, pp. 54–65, 2016.



Bibliography 74

[34] H. Lim and D.-W. Kim, “Mfc: Initialization method for multi-label feature selection

based on conditional mutual information,” Neurocomputing, vol. 382, pp. 40–51,

2020.

[35] Y. Xue, X. Cai, and F. Neri, “A multi-objective evolutionary algorithm with inter-

val based initialization and self-adaptive crossover operator for large-scale feature

selection in classification,” Applied Soft Computing, vol. 127, p. 109420, 2022.

[36] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast elitist non-dominated sort-

ing genetic algorithm for multi-objective optimization: Nsga-ii,” in Parallel Problem

Solving from Nature PPSN VI: 6th International Conference Paris, France, Septem-

ber 18–20, 2000 Proceedings 6, pp. 849–858, Springer, 2000.

[37] S. Mostaghim and J. Teich, “Strategies for finding good local guides in multi-

objective particle swarm optimization (mopso),” in Proceedings of the 2003 IEEE

Swarm Intelligence Symposium. SIS’03 (Cat. No. 03EX706), pp. 26–33, IEEE, 2003.

[38] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto

evolutionary algorithm,” TIK report, vol. 103, 2001.

[39] T. Murata, H. Ishibuchi, et al., “Moga: multi-objective genetic algorithms,” in

IEEE international conference on evolutionary computation, vol. 1, pp. 289–294,

IEEE Piscataway, 1995.

[40] B. Babu and M. M. L. Jehan, “Differential evolution for multi-objective optimiza-

tion,” in The 2003 Congress on Evolutionary Computation, 2003. CEC’03., vol. 4,

pp. 2696–2703, IEEE, 2003.

[41] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony system

algorithm for virtual machine placement in cloud computing,” Journal of computer

and system sciences, vol. 79, no. 8, pp. 1230–1242, 2013.



Bibliography 75

[42] R. Zakaria, M. Dib, and L. Moalic, “Multiobjective car relocation problem in one-

way carsharing system,” Journal of Modern Transportation, vol. 26, pp. 297–314,

2018.

[43] L. Kallel and M. Schoenauer, “Alternative random initialization in genetic algo-

rithms.,” in ICGA, pp. 268–275, Citeseer, 1997.

[44] C. Z. Mooney, Monte carlo simulation. No. 116, Sage, 1997.

[45] P. Agrawal, H. F. Abutarboush, T. Ganesh, and A. W. Mohamed, “Metaheuristic

algorithms on feature selection: A survey of one decade of research (2009-2019),”

Ieee Access, vol. 9, pp. 26766–26791, 2021.

[46] J. Blank and K. Deb, “pymoo: Multi-objective optimization in python,” IEEE Ac-

cess, vol. 8, pp. 89497–89509, 2020.

[47] F. A. Zainuddin, M. F. Abd Samad, and D. Tunggal, “A review of crossover methods

and problem representation of genetic algorithm in recent engineering applications,”

International Journal of Advanced Science and Technology, vol. 29, no. 6s, pp. 759–

769, 2020.

[48] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Hammouri, and

V. S. Prasath, “Choosing mutation and crossover ratios for genetic algorithms—a

review with a new dynamic approach,” Information, vol. 10, no. 12, p. 390, 2019.

[49] Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, and H. Liu, “Advancing

feature selection research,” ASU feature selection repository, pp. 1–28, 2010.

[50] J. Elhachmi and Z. Guennoun, “Cognitive radio spectrum allocation using ge-

netic algorithm,” EURASIP Journal on Wireless Communications and Networking,

vol. 2016, pp. 1–11, 2016.



Appendices

76



Appendix A

Optimization Algorithms

77



Appendix A. Optimization Algorithms 78

A.1 Genetic Algorithm (GA)

Algorithm 1: Genetic Algorithm-Pseudo Code [50]

Output: x∗ : Best candidate solution

Given:

N: Number of chromosomes. /∗ the size of population ∗/
MaxGeneration (Iteration): termination criterion for while loop.
begin:

k=1 ;
Generate initial population Xk = {xk

1, x
k
2, ..., x

k
N};

Calculate Fitness (xk
i ), for i = 1, ..., N ;

do
k=k+1 ;
for(iter=1; iter ≤N/2 ; iter=iter+1)
/∗ produce new generation Xnew ∗/
Randomly pick two chromosomes xp and xq from Xk−1;
Produce two new chromosomes xnew

p and xnew
q by crossovering xp and xp

with crossover probability pc;
Perform mutation operation on xnew

p and xnew
p with mutation probability pm;

Calculate Fitness(xnew
p ) and Fitness(xnew

p );

Insert xnew
p and xnew

p into Xnew ;
end for

Pick N best chromosome from Xk−1 and Xnew to form Xk;
x∗:= the best chromosome in Xk;
while(k ≤ MaxGeneration)

return x∗;
end
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A.2 Non-dominated Sorting Genetic Algorithm II

(NSGA-II)

Algorithm 2: NSGA-II Algorithm-Pseudo Code [42]

Output: X∗ : Pareto Optimal Solutions

Given:

N: Number of chromosomes. /∗ the size of population ∗/
MaxGeneration (Iteration): termination criterion for while loop.
begin:

/∗ initialize the population P with N random individuals ∗/
P ←− init(N);
/∗ initialize an empty population for children ∗/
Q ←− ∅;
eval(P ) /∗ eval means evaluation of each individual in P ∗/
for i=1 to N do

P ←− P ∪ Q ;
assignRank(P) /∗ based on Pareto dominance ∗/
for each front f ∈ P do;

setCrowdingDist(f);
end for
sort(P)) /∗ by rank and in each rank by crowding distance ∗/
P ←− P[0:N] ;
Q ←− buildNextGeneration(P) /∗ binary Tournament selection,

Crossover, and mutation ∗/
end for


