
CATEGORIES in
CONTROL SYSTEMS SOFTWARE

toward a unified theory of
programming & control

by TIMOTHY A.V. TEATRO

A thesis submitted to the
School of Graduate and Postdoctoral Studies in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy in
Electrical and Computer Engineering

Department of Electrical,
Computer & Software Engineering

Oshawa, Ontario, Canada
December 2023

Copyright © Timothy A.V. Teatro, 2023 — All Rights Reserved

THESIS EXAMINATION INFORMATION

Submitted By: Timothy A. V. Teatro

Doctor of Philosophy in Electrical and Computer Engineering

Thesis title:
Categories In Control Systems Software:

Toward a Unified Theory of Programming & Control

An oral defense of this thesis took place on December 8, 2023 in front of the fol-
lowing examining committee.

Examining Committee:

Chair of Examining Committee Dr. Haoxiang Lang

Research Supervisor Dr. J. Mikael Eklund

Co-research supervisor Dr. Ruth Milman

Examining Committee Member Dr. Lixuan Lu

Examining Committee Member Dr. Ramiro Liscano

University Examiner Dr. Ken Pu

External Examiner Dr. Fabrice Colin, Laurentian University

The above committee determined that the thesis is acceptable in form and content
and that a satisfactory knowledge of the field covered by the thesis was demon-
strated by the candidate during an oral examination. A signed copy of the Certifi-
cate of Approval is available from the School of Graduate and Postdoctoral Studies.

ii

ABSTRACT

Category theory is applied to the design and modeling of control systems
application software with emphasis on feedback control. The language of
application is iso standard c++17, though the design is abstract and can be
gainfully applied in any language expressive enough to embed domain spe-
cific languages for event stream processing with sufficient structure. The
design is derived in a category, Cpp, of a subset of c++ programs where
types are modelled as sets and programs/routines are modelled as func-
tions. This gives a forgetful functor from Cpp to 𝕊𝗲𝘁, the category of sets
which, in theory, facilitates broader compatibility with theories of dynam-
ical systems in concrete categories.

A library of abstract datatypes (struct templates) and natural transfor-
mations (parametrically polymorphic function templates) is developed to
demonstrate that (1) Cpp carries a bicartesian closed structure and (2) this
structure has representation as standard compliant code. The axioms of
this structure are encoded as unit-tests. And from this structure we spe-
cialise “machines” in the sense of Goguen (or more generally, Arbib &
Manes), which actualise in Cpp as Moore machines. These Moore ma-
chines are then used as a basic model for the i/s/o structure of a control
program.

Categorical Moore machines can be cast in terms of algebra and coal-
gebra which give natural mechanism to the input-driven evolution of in-
ternal state of the control programs, and infinite records of behaviour. The
internal language of that model is consonant with sufficiently structured
domain specific event-stream processing languages. The core examples
and a case study use Rx, but frp is a stated ideal and avenue for future
work for modeling of interconnected and hybrid systems with computer
controlled components.

The architecture is applied in two examples: (1) a simulated spring-
mass-damper system with pid-force control, where comparison is made
to analytical results, and (2) nmpc path tracking of a mobile robot with
obstacle avoidance through soft constraint.

Keywords: Category theory; Control systems software; Functional Pro-
gramming; Software Engineering; Coalgebra

iii

AUTHOR'S DECLARATION

I authorize the University of Ontario Institute of Technology (Ontario Tech
University) to lend this thesis to other institutions or individuals for the
purpose of scholarly research. I further authorize University of Ontario
Institute of Technology (Ontario Tech University) to reproduce this the-
sis by photocopying or by other means, in total or in part, at the request
of other institutions or individuals for the purpose of scholarly research.
I understand that my thesis will be made electronically available to the
public.

Timothy A. V. Teatro

iv

STATEMENT of CONTRIBUTIONS

I hereby certify that I am the sole author of this thesis. I have used standard
referencing practices to acknowledge ideas, research techniques, or other
materials that belong to others. Furthermore, I hereby certify that I am the
sole source of the creative works and/or inventive knowledge described in
this thesis.

Part of this thesis was published in [184] and [135] and coauthored
with my supervisors.

v

ACKNOWLEDGEMENTS

First, I feel profoundly grateful to my supervisors, Professors J. Mikael
Eklund and Ruth Milman, for their unwavering patience and faultless di-
rection. From the bottom of my heart, thank you both.

I am thankful to the Natural Sciences and Engineering Research Coun-
cil and Defence Research and Development Canada for their generous
funding.

Thanks to Nelson Niu, Ivan Čukić, Stephen Blackheath, Ben Deane
and Sy Brand for insightful and encouraging conversations. Also, thanks
to Bartosz Milewski, David I. Spivak, Brendan Fong, Michael Barr, Charles
Wells and Edward Kmett for creating a vast wellspring of educational ma-
terial on the application of category theory to computer science and do-
nating it freely to the world.

I want to express my deepest appreciation to my incredible wife, Lind-
say. Your dedication, encouragement and faith sustained me to the end. I
have been truly fortunate to have you by my side.

Miles and Julia, my precious children, your joyous presence brought
light to my darkest moments. You are yet to young to understand how I
was moved by your bitter-sweet longing when Daddy had to spend time
with his papers and books.

To my parents, Vera and Bill, I am grateful your love and sacrifices to
support my academic journey.

A special thanks toWendy Orton for her expert editing and proofread-
ing in the 11th hour.

A warm thanks to my kind friend and lab mate Munachiso (Chisom)
Ilokah for his faith, encouragement and reliable perspective.

vi

CON TEN TS

thesis examination information ii

abstract iii

author’s declaration iv

statement of contributions v

acknowledgements vi

contents vii

list of figures xii

list of tables xv

preface xviii

Style & Notation . xix

1 introduction 1

1.1 Control Programs . 5

1.2 Goals and Contributions 8

1.3 Overview of the Thesis 8

1.3.1 Chapter Synopses 9

2 background literature 11

2.1 Introduction . 11

2.2 Categorical Systems & Control 12

2.2.1 The First Automata in Categories 12

2.2.2 Rapprochement of Automata & Control 13

2.2.3 Lawvere Algebraic Automata 14

2.2.4 Arbib and categories 15

2.2.5 Goguen’s Machines in a Category 15

2.2.6 General Machines in a Category 16

2.2.7 Systems & Coalgebra 19

2.3 Functional Programming 21

2.3.1 Would That It Were Loopless 24

2.3.2 Asynchronous Lists 28

vii

2.4 Applied Category Theory as a Field 33

2.4.1 Machines in ℙ𝗼𝗹𝘆 34

3 theoretical preliminaries 38

3.1 Introduction . 38

3.1.1 Section Synopses 38

3.1.2 Prerequisites 41

3.1.3 Categorical setting 42

3.2 Polynomial Functors 43

3.3 Algebras & Coalgebras 47

3.4 Algebras for a Monad & Free Monoids 49

3.5 Categorical Monoids & Monoid Actions 53

3.5.1 Monoid Actions 60

3.6 Categorification of Classical Automata 62

3.6.1 Transition domain functors and their algebras . . 64

3.6.2 State Stepping & Monoid Actions 64

3.6.3 Equipping initial state 67

3.6.4 Goguen machines & behaviour 71

3.6.5 ̂𝘐•-algebra structure on 𝐼 ∗ ⊸ 𝑂 74

3.6.6 Behaviour & Running Machines 78

3.7 Fixpoints of Endofunctors 80

3.7.1 Catamorphisms 87

3.7.2 Anamorphisms 88

3.7.3 Polynomial Functors Have Initial Algebras &
Terminal Coalgebras 89

3.8 Snoc Lists as Fixpoints 90

3.8.1 Snoc List Catamorphism 94

3.8.2 List scans . 96

3.9 Moore About Dynamical Systems 97

3.9.1 Terminal Moore Machines 98

3.10 Async lists & Observer-Iterator Duality 101

3.10.1 The ReactiveX (Rx) Observable Interface 107

viii

3.10.2 RxCpp: a Brief Tutorial 109

3.10.3 Kálmán Filtering Examples 112

4 a platonic category of c++ programs 114

4.1 Chapter Synopsis . 114

4.2 A Category of c++ Programs 116

4.2.1 Category axioms of Cpp 119

4.3 Endofunctors on Cpp 123

4.4 Natural Transformations in Cpp 130

4.5 Cartesian Monoidal Structure in Cpp 132

4.6 Cartesian Closure in Cpp 143

4.6.1 Arbitrary Finite Products 145

4.6.2 Equivalence of C++ Argument Lists & Tuples . . . 146

4.7 Cocartesian monoidal structure 147

4.8 Fixpoints & Snoc-Lists 165

4.8.1 𝜇 to Mu . 165

4.8.2 T̂• to SnocList⟨T⟩ 166

4.8.3 Building SnocLists 167

4.8.4 SnocList isomorphic to std∷vector 168

4.8.5 SnocList-catamorphisms 169

4.9 Limitations of the Model 174

4.10 Summary & Conclusion 178

5 categories to controller code 181

5.1 Outline of Control Programs 182

5.1.1 Control Programs & Moore Automata 187

5.2 Algebra & Coalgra of Moore Machines 187

5.3 Moore Machines In Code 189

5.4 From Folds to Scans 197

5.5 The Coalgebraic Model of Control Programs 198

5.6 Example: PID Controller 199

5.6.1 The Plant . 201

5.6.2 The Control Program 202

ix

5.6.3 The Test Examples 206

5.7 Limitations . 208

6 bishop robot: a case study 209

6.1 Nonlinear Model Predictive Control of Bishop 210

6.1.1 Vehicle Dynamics 213

6.1.2 Open-loop optimisation 214

6.1.3 The nmpc algorithm 219

6.2 Operating Environment 219

6.2.1 Integration with move_base 220

6.3 Implementation . 221

6.3.1 The Plant & Controller State Types 221

6.3.2 The Nmpc Algebra 225

6.3.3 The main Function of the Ros Node 229

6.4 Obstacle Avoidance . 234

6.5 Discussion & Conclusion 239

6.5.1 Future Development 243

6.5.2 Conclusion . 244

7 discussion & conclusion 246

7.1 Contribution . 247

7.2 Discussion . 249

7.2.1 Limitations . 249

7.3 Outlook & Future Directions 250

appendix a mathematical notation 252

A.1 Notation not Otherwise Documented 252

A.2 Table of Notation . 256

appendix b category theory 264

B.1 Definition of a Category 264

B.1.1 The (or a) Category of Sets and Functions 268

B.2 Epimorphism, Monomorphism & Isomorphism 270

B.3 Initial/Terminal Objects 271

B.4 Global Elements . 272

x

B.5 Duality and Opposite Categories 272

B.6 Functors . 273

B.6.1 Diagrams in a Category 274

B.7 Natural Transformations 276

B.8 Limits and Colimits . 280

B.9 Products . 288

B.9.1 Products in 𝕊𝗲𝘁 reprised 290

B.10 Coproducts . 292

B.10.1 Coproducts in 𝕊𝗲𝘁 reprised 294

B.11 Monoidal Structures in Categories 296

B.12 𝕊𝗲𝘁 as a Cartesian Monoidal Category 300

B.13 𝕊𝗲𝘁 as a Cocartesian Monoidal Category 302

B.14 Monads . 303

B.15 Closed Categories . 305

B.16 Adjuctions . 309

B.16.1 Free construction & free-forgetful adjunction . . . 314

appendix c selected code listings 317

C.1 From Chapter 3 . 317

C.2 From Chapter 4 . 318

C.3 From Chapter 6 . 332

bibliography 336

xi

L I S T OF F IGURE S

1.1 The category Cpp is at the centre of the illustrated relation-

ships, and contains a subset of iso/iec 14882:2017, [158], com-

pliant c++ (c++17) programs including control programs. A

forgetful functor (translucent blue gradient) injects Cpp into

the category of sets. The internal structure of Cpp has (non-

unique) representations as actual iso iso/iec 14882:2017, [158],

compliant c++ (c++17) compliant code. 4

1.2 A block diagram illustrating a general architecture of a com-

puter controlled system. Since some sensors and actuators

contain their A–D and D–A converters, the boundaries of the

control computer may not be clear (two posibilities are drown

with dashed and dotted lines). 6

3.1 Iterator pattern class diagram from [69, p. 259]. 103

3.2 Observer pattern class diagram from [69, p. 294]. 107

3.3 Marble diagram for RxCpp’s buffer operator with count (that

is, buffer_with_count). The vertical stacks of data represent

std∷vectors that the buffer operator emits. 110

4.1 Pseudo c++ expansion of compose(f,g,h). The ^^.{} nota-

tion indicates the contents of the variadic parameter pack. The

distracting noise from argument forwarding and std^:invoke

are removed. The boxes and lines indicate expansion of comose

in each iteration. 120

5.1 Marble diagram of the combine_latest combinator. nb: data

intervals need not be constant. 184

5.2 Marble diagram for the scan combinator. 185

xii

5.3 Marble diagram for the map combinator. nb: this combinator

does not hold state. 185

5.4 A wiring diagram with Rx marbles overlaid on wires. To be

interpreted as a frame with animated marbles moving from

left to right in time. 187

5.5 The unit-step response curves for each of the itemized test-

cases: (A) Proportional (p)-, (B) Proportional-Derivative (pd)-,

(C) Proportional-Integral (pi)- and (D) Proportional-Integral-

Derivative (pid)-control. In each case, control is applied to the

damped harmonic oscillator. The solid lines illustrate simula-

tion results using the developed ReactiveX (Rx) control and

numerically integrated oscillator; the dotted lines illustrate

closed-form analytical solutions. 207

6.1 CrossWing’s Bishop. 209

6.2 (top) An exploded view if Bishop’s internals. (bottom) a top-

down view of Bishop’s triangular, 3-omniwheel base. 213

6.3 Component/information-flowdiagram for selected components

of Bishop’s Robot Operating System (ros)-based navigation

stack—including catnav. 221

6.4 Illustration of the process of turning an occupancy grid into

a gradient. (A) an occupancy grid, black pixels are clear and

grey pixels occupied. (B) Gaussian blur and pixel-wise expo-

nential power is applied to (A). (C) OpenCV’s Scharr filter is

applied to numerically differentiate (B); pixel brightness indi-

cates magnitude of gradient and hue indicates angle accord-

ing to (D). (D) Hue colour key for angle of (C) image; +𝑥-axis
is right (toward red) and +𝑦-axis is up (toward yellow-green)

and are indicated with thin black lines; angle is measured ccw

from +𝑥 . 236

xiii

B.1 Depicted are Categories 𝟭 (left) and 𝘾 (right, arrows omitted

for clarity, objects are gray dots). Functor 𝘍 maps () to 𝘍 () ∈ 𝘾
and their identities accordingly as per ax. f-2. 275

B.2 Objects 𝐴 and 𝐵 are chosen in 𝕊𝗲𝘁 by 𝘋𝐴,𝐵. Spans over and

cospans under𝐴, 𝐵 ∈ 𝕊𝗲𝘁 (grey dots and arrows) are numerous.

Cartesian product and disjoint union highlighted as the limit

and colimit respectively. 282

xiv

L I S T OF TABLE S

4.1 Summary of Bicartesian Closed Category (biccc) structures

and c++ types upon which they can be modelled. 115

4.2 Summary of Bicartesian Closed Category (biccc) structures

and c++ types upon which they can be modelled. 179

5.1 The signatures for the co/structure maps of algebras and coal-

gebras for the functors ̂𝘐 = − × 𝐼 and 𝘌𝐼 = 𝐼 ⊸ −. ̂𝘐-coalgebra
and 𝘌𝐼 -algebras are de-emphasised because they do not con-

tribute to the discussion. 188

5.2 For each of the test examples, a tabulation of rmsd and per-

cent difference of Steady State Error (sse) between analytic

solution and pid simulation result. 207

xv

ACRONYMS & IN I T IAL I SMS

act Applied Category Theory

ai artificial intelligence

aka Also Known As

ams American Mathematical Society

api Application Programming Interface

biccc Bicartesian Closed Category

c++11 iso/iec 14882:2011 (See reference [116].)

c++17 iso/iec 14882:2017, [158], compliant c++ (See reference [158].)

c++20 iso/iec 14882:2020 compliant cpp (See reference [171].)

c++23 iso/iec 14882:2023

ca. ca. (Circa.)

ccc Cartesian Closed Category

ccw counter-clockwise

cf. cf. (Confer.)

cpu Central Processing Unit

ct Category Theory

dcpo Directed-Complete Partial Order

dsl Domain Specific Language

fp Functional Programming

frp Functional Reactive Programming

gfp greatest fixpoint

gnu GNU (A recursive acronym: Gnu ’s Not Unix)

GoF Gang of Four (Named in reference to the four authors of the

book Design Patterns: Elements of Reusable Object-Oriented
Software [69].)

i/o input/output

i/s input/state

i/s/o input/state/output

ieee Institute of Electrical and Electronic Engineers

iso International Organisation for Standardisation

ivp Initial Value Problem

json JavaScript Object Notation

lfp least fixpoint

lqr Linear Quadratic Regulator

xvi

http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/79358.html

mcu microcontroller unit

mpc model predictive control

nmpc Nonlinear Model Predictive Control

nrvo Named Return Value Optimisation

oo Object-Oriented

p Proportional (Controller)

pd Proportional-Derivative (Controller)

pi Proportional-Integral (Controller)

pid Proportional-Integral-Derivative (Controller)

pod “plain ol’ data”

raii Resource Acquisition Is Initialization

rmsd Root-Mean-Square Deviation

ros Robot Operating System

Rx ReactiveX

sloc Software Lines of Code

sse Steady State Error

stl Standard Template Library

tco Tail Call Optimization

uml Unified Modeling Language

ump “universal mapping property”

yaml Yet AnotherMarkup Language is a terse, human-readable data-

serialization language, similar in spirit (but not in syntax) to

json.

xvii

PRE FACE

Since starting my doctoral work I had become deeply interested in

the questions of how to best design control software. With the help

of my supervisors, I wrote my first Nonlinear Model Predictive Control

(nmpc) program for an autonomous mobile robot in 2013 [125], and an-

other for a nuclear reactor in 2015 [138]. That experience led me to design

a general Object-Oriented (oo) architecture for nmpc software [151], but

I never found that design satisfying. It was clunky and covered in human

fingerprints. As a computational physicist, I see control systems as a very

natural process of information exchange among components of a system.

Of course, programming languages themselves are artificial structures, but

then again, so is pure mathematics. Yet there is something of mathemat-

ics that comports with the natural order and transcends its human origins.

Language is a relational structure: a way of assigning meaning to symbols.

I saw no reason that a sufficiently expressive computer programming lan-

guage should be unable to reflect systems theoretical models. There ought

to be something of the natural order that could be better reflected in the

design of control systems software.

Around the time I began asking these questions, I became aware of a

circulation of literature among a cadre of computer scientists applying a

branch of abstract mathematics, Category Theory (ct), to program struc-

ture. There, ct is typically used to lend theoretical support to the paradigm

of Functional Programming (fp). Fp leads the programmer to structure

programs in terms of expressions instead of statements. This seemed per-

tinent because mathematics is an expression oriented language. Perhaps

expression orientedness is a necessary condition to capture natural order—

it makes intuitive sense to me. After all, every quantitative relationship I

have ever studied was couched in sets and relations as its fundament. If

ct enables one to resolve programs into mathematical expressions, it may

xviii

be a key to the essential nature of control systems software.

With all of this profundity and mystery on my mind, one day I read

this tweet from an American physicist and software engineer, who at that

time, was working on autonomous aerial vehicles at Amazon Prime Air.

Dr. Brian Beckman
@lorentzframe

Controllers have type signature state → (state, action). They
are thus instances of the state monad and dual to Bayesian
filters.

https://twitter.com/lorentzframe/status/954786729617051648

Monads are a fairly ordinary structure in ct but are particularly key

in fp. I was aware of the intriguing mathematical duality between Linear

Quadratic Regulators and Kálmán filters, and I wondered if that was what

Beckman was alluding to in his tweet. Could such a deep mathematical

connection be so plainly reflected in program structure? If so, then the

analysis supported by ct could shed light on the fundamental questions

of software for computer controlled systems, and I had found the right

tooling to approach the problem. This document and its mixture of the-

ory and applications is an artefact of my ongoing grappling with those

questions.

style & notation

may we? shall i? I quote from the preface of Hindley and Seldin’s

book:

…, a note about ‘we’ in this book: ‘we’ will almost always

mean the reader and the authors together, not the authors

alone. –[102]

As this thesis has one author, I am left saying ‘I’. On the best advice of cog-

nitive neuroscientists and linguists, who study effective styles of written

xix

https://twitter.com/lorentzframe/status/954786729617051648

technical communication [132], I favour classic style. In so keeping, I do

not shy away from self-references with the first-person pronoun.

mathematical notation The mathematical notation in this thesis

is the result of many hours disjoining overlaps, accommodating and har-

monising conventions, balancing costs/benefits and, anticipating confu-

sion. This is to be expected when a work such as this sits astride so many

bodies of academic literature: pure category theory, automata theory, the-

oretical computer science, control systems theory and engineering, soft-

ware engineering and, dynamical systems theory. It is become such a be-

hemoth task that it fills its own chapter, so I encourage the reader to use

Appendix A as a companion.

typographical style The thesis is set in my own flavour of Robert

Bringhurst’s signature typographical style, exhibited in his venerable book [118],

which has become known as the Typographers’ Bible. I hope he would ap-

prove of my modifications, which are an attempt to harmonise somewhat

with ieee-style publication.

xx

1
I N TRODUCT ION

Mathematical reasoning does play an essential role in
all areas of computer science which have developed or
are developing from an art to a science. Where such
reasoning plays little or no role in an area of computer
science, that portion of our discipline is still in its
infancy and needs the support of mathematical thinking
if it is to mature.

— Anthony Ralston & Mary Shaw
Is Computer Science Really That Unmathematical? [43]

This thesis is committed to the province of control systems engineer-

ing; but it trespasses the borders of several academic disciplines. It

borrows from the overlap in automata theory and formal methods in com-

puter science unified under ct. A model of a control program is presented

in a category of a subset of standards compliant1 c++17 programs and

implemented using an ReactiveX (Rx) pipeline. The model is both alge-

braic [52, 55] and coalgebraic [170]. The primary contribution of the thesis

is conceptual. It is about deepening our understanding of control systems

application software by mathematical reasoning and using the resulting

model to inform software design. The thesis does not lead to difficult

new theorems—its merit lies in the fact that it organises a mass of fine

detail that is usually left open to interpretation of the programmer who

has been handed a mathematical specification from a controls engineer

and left to implement it. This organisation takes the form of an algebraic

structure that should, one day soon, prove susceptible to formal verifica-

tion and novel analysis techniques in composite with continuous-time dy-

namical systems coming from the literature of Applied Category Theory
1 iso/iec 14882:2017, [158].

1

https://www.iso.org/standard/68564.html

2

(act). The abstract nature of the model means that it can be grafted into a

variety of programming languages. This gives flexibility to the engineer in

his praxis, while also giving theoretical purchase to the computer scientist

wielding languages for formal proof.

A control program runs on a computer connected to a machine form-

ing a composite dynamical system. The goal of the program is to generate

instructions for the computer to intervene in the natural dynamics of the

machine in order to drive or constrain its behaviour. Common examples

include
• thermostats for controlling a room’s temperature,
• electronic speed controllers which manage turn-rate of a rotor in an

electric motor
• automatic pilot for driving autonomous vehicles,
• chemical reactors which modulate chemical concentrations, agita-

tion and temperature of a live chemical reaction,
• distillation columns which fractionate mixtures of liquids with dif-

ferent volatilities,
and so on.

A set is a gathering
together into a
whole of definite,
distinct objects of
our perception or of
our thought–which
are called elements
of the set.

— Georg Cantor

Translated from
Beiträge zur Be-

gründung der trans-
finiten Mengenlehre

So how does ct relate to programming? Categories consist of a collec-

tion (read set) of objects and collections of directed arrows between the

objects, with an associative, unital composition operator. If you can de-

fine a type of thing such that we can collect all the things in a set and

draw some sort of arrows representing a structured relationship among

the things, then you might be able to create a category of the things. But

the focus is on the arrows. The objects are viewed as mere points with no

internal structure. This means the category theorist is a sophisticated sort

of astronomer, deriving meaning from constellations (which sounds sus-

piciously like astrology, so let us not stress the analogy). Instead of peer-

ing into the objects with a microscope, the ct-orist gazes outward with

a telescope to identify objects by their relationships to all other objects.

The internal properties of the objects are not erased, but are reflected as

a unique existence of certain arrows within constellations. If we indulge

3

in a little philosophical reflection, we might phrase the previous idea as “a

thing is not given by its private internal properties, but in how it relates to

all other such things”. This leads to a notion of “universal things”—objects

and arrows that fulfill existence and uniqueness properties thatmake them

distinguished parts of these constellations (commutative diagrams) which

then serve as “universal properties”.

Returning to the point, theoretical computer scientists can express

programs in categories with “types” as objects and programs as arrows

transforming input to output. This yielding a algebraic, compositional,

approach to programming. Programs can be derived, manipulated and

simplified with all assumptions, identities and axioms made explicit and

testable, and implementation is a matter of detail, forming types and func-

tions which conform to the semantics. But more than this, ct gives a

unique view into programming because it directs the programmer’s mind

away from operation and toward expression. That is, the invisible inter-

nal structure of a type determines the sensible operations (programs) that

operate on it. If we know what we want to capture about the internals, we

can figure out how that manifests as a commutative diagram of programs

from which we can formally judge a “best fit”.

In the present thesis, we will define a platonic category Cpp of a subset

of c++17 programs where objects are types and arrows are programs. It

is therefore trivial to identify programs with 𝕊𝗲𝘁-functions and types with

sets, so we have a forgetful functor Cpp → 𝕊𝗲𝘁. In our case, a control pro-

gram will be built from “universal” arrows arising from functor-algebras

and -coalgebras capturing notions of input, state, output, behaviour and

co/recursion. These will exist simultaneously in Cpp, where it takes mean-

ing as a c++ encoded program, and in 𝕊𝗲𝘁 where it takes meaning as a

dynamical system. Of course, there is work involved in demonstrating

that the structure in Cpp has some relationship to iso c++17 compliant

code. In order to build a universal control program within Cpp, Cpp must

be shown to admit the structure of a Bicartesian Closed Category (biccc).

4

Cpp
c++17 programs
live here

𝕊𝗲𝘁
dynamical systems
live here

control program

representation(s)

control program model

figure 1.1: The category Cpp is at the centre of the illustrated relationships, and
contains a subset of c++17 programs including control programs. A forgetful
functor (translucent blue gradient) injects Cpp into the category of sets. The
internal structure of Cpp has (non-unique) representations as actual iso c++17
compliant code.

This means it has finite products, finite coproducts, initial and terminal

objects, and exponential objects. A particular representation of the biccc

structure is developed in ch. 4 giving a programming model collectively

referred to as Cpp/c++. These relationships are illustrated in fig. 1.1.

Why Category Theory?

Category theory is infamous, even among mathematicians, for being ab-

stract. For practitioners of software and control systems engineering, there

is a deep allure—there are many aspects of our practice that remain unjus-

tified on any formal basis, but nonetheless feel true to experienced minds.

Ct offers not only to ground these truths and bring justification to our

day-to-day work, but to make control software specification much more

explicit.

Any structure we define in ct will necessarily entail both objects and
the arrows. Thus begins the marriage of structure and behaviour. In set

theory, we can define the Cartesian product of two sets, 𝐴 × 𝐵, in terms

5

of the elements of 𝐴 and 𝐵: 𝐴 × 𝐵 = { (𝑎, 𝑏) | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 }. Very

little imagination is required to find the projections 𝜋1∶ 𝐴 × 𝐵 → 𝐴 and

𝜋2∶ 𝐴 × 𝐵 → 𝐵 that take (𝑎, 𝑏) ↦ 𝑎 and (𝑎, 𝑏) ↦ 𝑏 respectively. But the

fundamental thing from the point of view of set theory is the elements

that make up 𝐴 × 𝐵. We can derive the Cartesian product using ct (see

§B.9.1) where we obtain the projections as part of the derivation. The

ct-ical derivation captures the fundamental notion of what it means for

a single set to reflect the relationship 𝐴 and 𝐵. Because ct is blind to the

inner-life of its objects, it cannot uniquely define a product. We only get

the Cartesian product up to isomorphism So there is a trade-off. What do

we gain for that trade-off? Generality!

Categorical thinking gives us a recipe for finding products in whatever

category we wish. Products in Cppmight be represented as std∷pairwith

std∷get as projections (or members .fst/.snd), or simply struct {A a;

B b} with member access for projections. Generality allows us to unite

concepts across fields that are often nontrivial and not at all obvious. And

because arrows are necessary parts of categorical questions and answers,

we get a fusion of structure and behaviour.

That is why act is an attractive and growing area of research. Two

of the most active sub-areas are dynamical systems and computer science.

This thesis collects ideas from both and applies them to the practice of pro-

gramming control application software with a view toward its modeling

and design.

1.1 control programs

Control application software may be a composite of interacting control

programs. What I have in mind when I say control program, is a piece

of software running on the control computer that intervenes in the time-

evolution of a targeted dynamical system. This is achieved by computing

a series of commands to be carried out by attached electromechanical de-

vices. The targeted dynamical system, called the plant, usually progresses

6

along continuous time governed by laws of physics. The whole arrange-

ment is called feedback control if the computation of the control program

is informed by data from a measurement apparatus. I aim at feedback

control programs where non-feedback control is just a special case. The

goal of the program is to manipulate the behaviour of the plant. Plants

are often complex assemblies where subcomponents can be individually

controlled, leading to a hierarchy of control.

An introductory text on digital control may illustrate a controlled sys-

tem as a block diagram such as fig. 1.2. In this figure, a plant is the target of

Plant
Actuators Sensors

Clock

Control
Program A-DD-A

Control Computer

Controlled System

Measured
Output

Control
Input

Controlled OutputExogeneous Input

figure 1.2: A block diagram illustrating a general architecture of a computer con-
trolled system. Since some sensors and actuators contain their A–D and D–A
converters, the boundaries of the control computer may not be clear (two posi-
bilities are drown with dashed and dotted lines).

some control effort exerted by a set of actuators integrated into the plant.

The essence of the digital control problem is to engineer the dynamics of

the controller (hardware and software) to ensure that the plant behaviour2

conforms to some constraints on the set of all possible behaviours.
2 The term behaviour has technical meaning, but for now, the colloquial use gives the

right idea.

7

Mathematical modelling is a core part of the control system design pro-

cess. Perhaps more than any other engineering discipline, control systems

engineering is rooted in physics, dynamical systems and analysis. All too

often this is at odds with the fact that a majority of controllers are imple-

mented as programs running on digital devices. Despite the great care

taken to model a given plant, the decision is almost universally made to

merely identify the software component with the engineered control law,

ignoring the dynamics of the program itself.

While introducing the vision of Software Enabled Control, Helen Gill

and John Bay emphasize this point with admonition:

… we must avoid the temptation to think of software as sim-

ply the language of the implementation. Control code … is a

dynamic system. It has an internal state, responds to inputs,

and produces outputs. It has time scales, transients, and satu-

ration points. It can also be adaptive and distributed. … if we

take this software dynamic system and couple it to the plant

dynamics through the sensor and actuator dynamics, we have

a composite system whose properties cannot be decided from

the subsystems in isolation. [92, p. 4]

That was in 2003, and progress has been slow because there is a fundamen-

tal divide between software engineering and its siblings: software has no

fundamental theory. Electrical and mechanical devices are modelled in

physics and analysed in the language of mathematics providing a founda-

tion for a formal design process. Ordinary computer code lacks algebraic

structure and is correspondingly resistant to analysis.

In elementary algebra if it is written that 𝑎 = 𝑏 and later that 𝑎 = 𝑐
then we can infer that 𝑏 = 𝑐. In a program:

int a = b;
^/ …
a = c;
if (b ^= c)
printf("What a coincidence!");

8

there is no reason to expect 𝑏 = 𝑐 because in c++, the equals (=) operator

(almost always3) means assignment. The algebraic version enables clear

reasoning while the assignment is a statement of action and introduces an

discrete concept of time. Each assignment pushes program’s execution, a

tick marking a split of before and after. It is important to attend to this

tick and behold it for what it is: dynamics.

1.2 goals & contributions

The main goals are

• a deeper understanding of control systems software that organises

the fine detail of these programs in a way that eases specification

and implementation,

• a mathematically motivated design of a control program written in

c++,

• a model of a control program that bears interpretation in the same

categorical setting as ordinary dynamical systems, and

• demonstration of the above by means of simulation and by means

of implementation on a real electromechanical device designed for

a non-academic purpose.

I feel each has been achieved, and that will be demonstrated in the pages

to come. I hope that the reader will benefit from these contributions and

find them useful to their own work. In the end, my only real goal is to be

of use to the community of academics and practitioners who strive for a

constant renewal of their understanding of the world around them.

1.3 overview of the thesis

I have attempted to organise the thesis to demarcate pre-existing theory

and my contribution. I have been told that my collection, organisation,
3 In the special case of initialisation, an equals sign can be used to initialise without

assignment, but this is an unimportant technicality.

9

adaptation and exposition of the pre-existing theory across domains is a

contribution in and of itself. Nonetheless, Chapters 2 and 3 are from my

reading of the literature while Chapters 4 and 5 are contributory descrip-

tions of my research. Here is a synopsis of each chapter.

1.3.1 Chapter Synopses

chapter 2 provides the reader with a review of relevant literaturewrit-

ten in a non-mathematical and more historical voice. It tells a story of

how many of the mathematical and computer scientific concepts I rely

on arose as a cross-disciplinary collaborative enterprise. Topics include

the rapprochement of automata theory and control, the categorification of

automata and systems theory, functional programming, applied category

theory and polynomial functors providing a general theory of interaction.

chapter 3 If Chapter 2 is history then Chapter 3 is archaeology. This

section excavates the key mathematical tools from the literature that will

later be used to form the fundament of the thesis. Key topics include:

categorical i/s/o systems, Co/algebra and fixpoints, snoc-lists, and intro-

duction to Rx and the iterator/observer duality and Moore machines as

systems in the theory of universal coalgebra.

chapter 4 presents Cpp and its bicartesian closed structure. This chap-

ter is where the mathematics meets the code. To demonstrate biccc struc-

ture, a support library is written to demonstrate that praxis tracks with

theory and limitations are discussed. This all justifies the use of c++17

code aimed at modelling a category theoretical model of a program. Each

structure and relationship in the biccc is given a representation in code,

and each axiom turned into a unit test.

chapter 5 draws the lines from a categoricalmodel ofMooremachines

to a general design for control programs in c++17, and its coalgebraic sys-

10

tems model. A control program is reduced to an expression in an algebra

of event streams that simultaneously has meaning as a Goguen or Moore

machine in Cpp and implementation in Rx. The chapter finishes with an

example of application to a classic Proportional-Integral-Derivative (pid)

control exercise where we can run discrete-time simulations for compari-

son to continuum time analytical results.

chapter 6 presents a case study of the Bishop robot developed as part

of a multi-disciplinary project for the Ministry of Defence through a multi-

university and industry partnership. Prof. Eklund’s team was responsible

for navigation and tracking systems in the robot which used catnav, an

implementation of my architecture for Robot Operating System (ros). The

chapter closes with an anecdotal account of the east of development and

extension of catnav over the 3-year duration of the project.

2
BACKGROUND L I TERAT URE

We cannot solve the
problems we have
created with the
same thinking that
created them.

— Unknown
(Possibly Ram Daas

but commonly misat-
tributed to Einstein)

The theory presented in this dissertation applies concepts from several

major and convergent lines of research collaboration in mathematics,

automata theory, logic and computer science. This chapter is intended to

deliver a broad and historical view of the developments, describing some

of the motivations and contributions in the context of their time. I also de-

scribe how the developments relate to the present thesis. The next chapter,

Theoretical Preliminaries, will detail the mathematical concepts, extracted

from this literature and streamlined for the thesis.

Though I developed a lot of my ideas independently, I came to learn

late inmy PhD research that, tomy delight, I was in agreementwith a great

history of academic development. Moreover, that development came at

the hands of skilled mathematicians who proved a great many lemmas and

theorems. Consequently, I could see the way toward my goal of bringing

categorical insight to the engineering of control systems software.

2.1 introduction

In the early 1960s, analogies between the theories of automata and control

had been drawn. It was a particularly opportune moment in history to

make that leap: most of automata theory focused on understanding digital

computers and language; and computer controlled systemswere emerging

as prominent in research and practice of controls engineering. (The space

race was a strong driving force here, with the need to computerise space

guidance and navigation.)

In 1965–66, Michael Arbib gives a mathematical rapprochement of au-

tomata theory and control [5, 10].mm-61 (The details also appear in Part III
-61 Michael Arbib (1940–) is a prominent computational neuroscientist. When he began

11

12

of the 1969 textbook Topics in mathematical system theory [20] coauthored

by Rudolf Kálmán, Peter Falb and Arbib.) In 1968, Arbib would begin to

conceptualise a general class of arbitrary sequential “input processing” sys-

tems within the context of category theory, wherein standard algebraic

automata and finite automata are special cases. The resulting model har-

monised well with parallel developments in theoretical computer science,

which is why they are of particular importance to the thesis.

This section traces this history, extending to more recent generalisa-

tions and their place in computer science and functional programming.
The story to unfold in the sections to follow.

2.2 categorical systems & control

2.2.1 The First Automata in Categories

In the year between 1965–66, at least two branches of the U.S. Military

funded research in the area of formal language and automata theory at

the University of Michigan, led by Burks [11]. In particular, they investi-

gated the application of logic and mathematics to computing automata. A

PhD student at the time, Yehoshafat Give’on studied the structure of cate-

gories of abstract automata which were disseminated in a series of techni-

cal reports, [6, 7, 12], the later becoming Give’on’s PhD thesis. These are

perhaps the earliest literature demonstrating the application of category

theory to automata.

Give’on, building on the contemporary view of finite automata as mon-

oidal algebras, studied a category he denoted 𝕊𝗲𝘁𝑊 of transition systems

over a monoid, 𝑊 , of inputs. Give’on gives a fairly thorough account of

structure in that category, which is all very revealing of the intricate alge-

his undergraduate work he had a deep appreciation for the beauty of pure mathematics,
and consequently intended to study it. He was encouraged to read Norbert Wiener’s
Cybernetics, causing a chain reaction of literary exploration of cybernetics, automata,
theoretical foundations of computer science, information theory, neural networks, neu-
ropsychology and ultimately neuroscience.

13

braic relationships, such as the isomorphism between the automorphism

group of 𝑊 and the semigroup of 𝑊 acting on itself. This first categorisa-

tion of automata is an historically critical starting point but is very specific

to automata viewed as monoidal algebras in the category of sets—which

is a point of view that is eventually abstracted away.

note. Around this time, Günter Hotz, a German mathematician, was

writing about automata using string diagrams in 𝔽𝗶𝗻𝗦𝗲𝘁 with a Cartesian

monoidal structure [8, 9]. These papers are in German (except for the

translated abstracts). Qualitatively it resembles later work on general no-

tions of interconnectivity and interaction, cf. [139].

2.2.2 Rapprochement of Automata & Control

Starting around the mid 1960s one can find various suggestions and ten-

dencies in literature to notice connections between the theories of au-

tomata and control. One of the early and most direct efforts toward a for-

mal rapprochement was penned by Arbib in 1964 with “A common frame-

work for automata theory and control theory,” [5]. (See also [10].) Leav-

ing aside the fact that the motivations and methods of automata and con-

trol theories are different—automata theory leans on combinatorial tech-

niques while control theory is based in analysis and optimisation—both

rest upon on an input/state/output (i/s/o) apparatus that processes mat-

ter, energy and/or information.1 There are clear analogies in the notions

of behaviour and realization for both theories. Arbib’s thesis was based

on an analysis of Kálmán’s paradigm shifting results for minimal realisa-

tion and duality of observability and controllability in state-based linear

systems theory, [20, pt. I & IV].

Then in 1969, during their mutual occupation at MIT, Arbib and Zeiger

deepened Arbib’s rapprochement [18]. They,
1 It was not unnoticed in the literature that computers and languages could also be

encompassed by such a view.

14

…present the startling thesis that linearity has little to dowith

linear machines, and that certain peculiarities of the category

of real vector spaces have acted to obscure the conventional

view of the way linear machines run!

The key result in this paper is the startling generalisation of Kálmán dual-

ity to what is now called Arbib-Zeiger duality in sequential machines.

It is important to note at this point (the late 1960s) that no formal at-

tempt has been made by Arbib to apply ct to automata or systems. But it

was clear to him that that was the approach he had to take [161].

2.2.3 Lawvere Algebraic Automata

In the late 1960s, the most abstract approaches to automata theory are set

in the algebra of modules, monoids, semigroups, actions on state spaces,

and so on. In the 1967 paper, [13], Eilenberg and Wright2 use Lawvere’s

categorisation of universal algebra [4] as the setting to describe the semi-

group and monoid (action) pictures of automata. Lawvere theories are

categories that capture the platonic idea of an algebraic structure. Take

the theory 𝙏 of semigroups or monoids or such, then a model of that alge-

braic structure internal to a category 𝘾 as a product preserving (Cartesian)

functor 𝙏 → 𝘾 . The idea here is that the functor takes formal expressions

in the theory (morphisms in 𝙏) to their meaning (morphisms in 𝘾). A

language theorist might say that this is a relationship taking syntax to se-

mantics. This is a powerful generalisation of automata that subtends a

broader class of i/s/o systems.
2 Eilenberg was Lawvere’s PhD supervisor, and admittedly did not read Lawvere’s

thesis until years later, [99, §2]. I presume [13] resulted once he did.

15

2.2.4 Arbib and categories

In 1968, Arbib and Give’on would cross paths at Stanford as research as-

sociates of Kálmán.3 They collaborated on twin papers, [15, 16], which

further develop Give’on’s categorical view of automata and Arbib’s con-

solidation of automata theory and control theory. The first paper provides

a theory of algebras regarded as automata—in prelude for its younger twin.

It takes a view that is simultaneously computer scientific and universal-

algebraic. Algebra automata are seen not as stateful processors of input se-

quences but as processors of trees—a set of rules for processing an instruc-

tion set viewed as something like a syntax tree with leaves of data. The

second builds on that groundwork, recapitulating Eilenberg and Wright’s

paper, specifying it to encompass a notion of algebra automata that could

be viewed as symbolic dynamics of systems.

2.2.5 Goguen’s Machines in a Category

By the late 1970s, Arbib had sketched a “general theory of machines in

a category” with automata resulting when construction is carried out in

𝕊𝗲𝘁, and linear systems when construction is in 𝕍𝗲𝗰𝘁ℂ. In [18], Arbib

and Zeiger avoid identifying their methods as categorical, they promise

a forthcoming paper The Category Theory of System Realization, which

did not materialize as such. At that time, Arbib’s knowledge of ct what

insufficient to complete his sketch [161, §4.1]. Arbib discussed his sketch

with Joseph Goguen who located Arbib’s missing pieces in the concept of

adjoint functors.

note. Arbib and Manes later wrote a paper in 1974, “Foundations of

system theory” [27] that deliberately and carefully draws the generalis-

ing line from Kálmán’s module theoretic approach using the full power of

category theory. I suspect it is the paper Arbib and Zeiger would like to
3 Arbib had first met Give’on in 1963, when he visited the University of Michi-

gan [161].

16

have written, except that they intentionally made their paper accessible

to control theorists with little algebraic background beyond matrices and

vectors.

Goguen borrowed inspiration from Arbib and in 19714 submitted an

article, [33], 5 detailing the role of adjunctions in a categorical realisation

theory of machines. Section 3.6 is largely a modernisation of the core of

Goguen’s categorical machine.

Aside from categorifying the definition of (a subclass of) automata, the

key contribution of Goguen’s paper is a theory of realisation delivered by a

full categorification of “behaviour.” By this, the definition of reachability is

extended, but not observability or controllability. This is perhaps a missed

opportunity.

Because Goguen’s machines are based on tensor algebras, their scope

is limited. They can not, for example, encompass linear systems or other

more complex input structures because the tensor functor is not going to

carry these models. So Arbib’s intuitions for an abstract sequential sys-

tems as “machines in a category” had not been fully answered by Goguen.

2.2.6 General Machines in a Category

Sometime ca. 1971 at the University ofMassachusetts, Arbibmeets a gifted

young algebraist named Ernest Manes who received a PhD in 1968 for his

work on monadic algebras [14]. In [161], Arbib writes

Ernie [Manes] had what I had been missing in my search for

a theory of machines in a category, and it was given by his

thesis work….

In April 1972, Manes presented a preliminary report on his work with

Arbib at the 693rd meeting of the American Mathematical Society (ams)
4 The paper would not be published until 1975.
5 Trivia: although Goguen gives Arbib ample credit for his intellectual contribution

in [33], Arbib had imagined a collaborative effort and was somewhat disappointed when
Goguen published independently.

17

titled Machines in a Category [23]. The details would come to print two

years later [28]. Their approach was to generalise the tensor algebra of

Goguen’s approach to any endofunctor that has free-forgetful adjunction

and an initial algebra. In that case, the endofunctor is called an input pro-
cess (later, recursion processes [40] or varietors [45]). It is not common

nomenclature, but for convenience I will call Arbib and Manes’ model

of automata Arbib-Manes machines. Arbib-Manes machines are demon-

strated to capture input processes of several kinds: linear systems, stochas-

tic systems, algebra automata and tree automata which are all demon-

strated in the paper. And for all these situations, we have notions of reach-

ability, observability and realization appropriate to the context of their do-

mains. Nerode’s algorithm is further generalised to suit the abstraction.

Goguen’s automata can be seen as the special case of Arbib-Manes

machines when the input process is a tensor product of state and input

objects.

It was shown in [37] that the definition of Arbib-Manes machines is

not “too wide” in the sense that the conditions of an endofunctor being an

input process is sufficient to expect that minimal realizations of input/out-

put (i/o)-relationships exist.

In later work, Arbib and Manes study input processes of “state-behav-

iour machines” where the free-forgetful adjunction of the input process

has a cofree right adjoint: a free-forgetful-cofree adjunction [31]. (They

did not use this word, but theywere dealing in coalgebra. Cofree coalgebra,
actually.)

Around 1975, a group of Czech mathematicians began applying in-

sights from pure category theory to Arbib and Manes’ work. The group

was originally led by Vĕra Trnková and consisted of her graduate students

Jirí Adámek, Václav Koubek and Jan Reiterman. The thread of research

started with [25, 36] as a followup to [30], re-framing Arbib-Manes ma-

chines in slightly more general mathematical terms of free algebra, giving
a construction algorithm with existence conditions and relating them to

18

monads through the work of Michael Barr [21].6 In the mathematical liter-

ature, there is a distinction drawn between “algebra in the sense of Lambek
7” and “algebra in the sense of Eilenberg-Moore”, the monadic flavour be-

ing the later. Eilenberg-Moore co/algebras are a full sub-category of the

category of co/algebras of an endofunctor [66]. Input processes are predi-

cated on free-forgetful adjunction and all adjunctions induce a monad [81,

§VI.1 (p. 138)].

2.2-1 Goguenmachines are a special casewhere the free-functor is specif-

ically the free monoid functor which induces a very important monad for

computer scientists: the list monad.
Adámek’s doctoral (RNDr) thesis was on categorical automata theory

and its relationship to universal algebra. The trajectory of Adámek’s aca-

demic career would become interwoven along the seam between pure cate-

gory theory and computer science. His most notable collaborators include

theoretical computer scientists Stefan Milius and Lawrence S. Moss. His

body of research is exemplary of the close relationship between categori-

cal systems theory, automata theory and computer science. Fixpoints of

functors are fundamental to data and codata types, but are also at the root

of categorical systems models. This is because they systematise induction

and coinduction within a category. Because input processes have initial

algebras, and initial algebras have invertible structure maps, those initial

algebras are also coalgebras. (Not necessarily terminal coalgebras!)
Toward a general theory of fixpoints, Adámek and collaborators pro-

duce a series of literature on the topic: [38, 39, 70, 140]; and ultimately,

the modern survey [160].
6 Trivia: Michael Barr (1937–) is the Peter Redpath Emeritus Professor of Pure Mathe-

matics at McGill University. He coauthored [82] with Charles Wells, which is on my list
of recommended sources for ct. My Canadian pride compels me to mention his place of
tenure.

7 Trivia: Joachim Lambek (1922–2014) was a Canadian mathematician and the Peter
Redpath Emeritus Professor of Pure Mathematics at McGill University. He was the first
to study fixpoints of functors, and I will reference his famous lemma several times in the
thesis. This is yet another indulgence of Canadian pride.

19

2.2-2 The paper [39] deserves special mention as it is the first to give

a canonical construction of the least fixpoint of an endofunctor which is

now a fundamental tool in algebraic data structures. Adámek brilliantly

extends the Kleene fixed-point theorem which, by the ascending Kleene

chain starting from the bottom element, gives the least fixpoint of a (well

behaved) function. Adámek had the intuition of constructing analogous

chains for endofunctors on categories, starting from an initial object and

yielding a least fixpoint as the colimit of the chain. (See rem. 3.7-4.) The

colimit construction provides an algebra structure and thus fixpoints are

initial algebras (see §3.7).

Least fixpoints are in the cluster of ideas including terms like free alge-

bras, initial algebras, induction iteration and recursion. The dual cluster

is greatest fixpoints, cofree coalgebras, terminal coalgebras, coinduction,

coiteration and corecursion. Both play a part in observable sequential pro-

cesses and studied by Adámek an colleagues: [37, 41, 44, 45, 55].

2.2-3 Dually to 2.2-2, in 1993, Barr flips the arrows around and gives

a construction of the greatest fixpoint as the limit of a descending chain

from the terminal object [66]. This gives terminal coalgebras.

2.2.7 Systems & Coalgebra

Coalgebra seems to be the mathematics of computational dynamics. As a

mathematical topic,

… is still in its infancy but promises a perspective on unifying,

say, the theory of differential equations with automata and

process theory and with biological and quantum computing,

by providing and appropriate semantical basis with associated

logic. — Jacobs [159]

This is of course, a very broad claim! But it is born out in the modern liter-

ature of applied category theory. (Visit the Topos Institute website [201]

and see their colloquia [200] for a stunning variety of applications—all of

them unified by ct.)

20

The term “universal coalgebra” seems to originate from Robert Davis,

who produced a series of papers starting in 1970 with [22] and ending

with [53] in 1986. Arbib and Manes include an example in their textbook

on program semantics, in the section on fixpoints of functors [52, §10.2,

eg. 18]. (In essence, the example is a simplification of Davis’ developments,

but seems to have come directly from their insight in [31].)

Research into universal coalgebra really built momentum when Dutch

researcher Jan J. M. M. Rutten began a systematic investigation. His first

publication on the topic was in 1995 [71], which lead to a number of sub-

sequent studies too numerous to list here. It influenced the thinking of

important researchers: Lawrence S. Moss [79, 83], Goguen [85], Grant

Malcolm [74] and Bart Jacobs [73, 80, 87]. But the landmark publication

on the topic is the venerable 2000 article “Universal coalgebra: a theory

of systems” [88]. More recently, there is also the 2019 textbook by Rut-

ten [170], The Method of Coalgebra, written just prior to his retirement.

Excellent companions to these sources are the 2017 textbook, [159] by Ja-

cobs and the survey paper [160] by Adámek et al. which usefully collects

and rehearses key results.

Having not been very mathematically explicit in this chapter, let me

provide some intuition. Initial algebras are things like term-algebras, finite

trees, things that are built up from below: starting from a null or empty

base and iteratively layering the structure a countable number of times.

Construction of the natural numbers (or ordinals) are a routine example

of an algebraic construction from a simple 𝕊𝗲𝘁-functor: 𝘕 ≔ 𝑋 ↦ 𝟣 + 𝑋 .

Folding over an algebra gives something like recursive or inductive con-

densation of a structure into an element. Final coalgebras are more like

counting down from infinity, starting with a potentially infinite structure

and deconstructing layers corecursively. Unfolding them from an element

gives something like structures or records of infinite behaviour. The termi-

nal coalgebra of 𝘕 is the set of natural numbers, including infinity: ℕ⊔{ω}.

note (personal aside). A surprising amount of the literature in the devel-

21

opment of a categorical theory of systems and automata was carried out

by people interested in cybernetics and neurology. Kleene was one of the

great logicians of the 20th century, but his early work in automata was a

byproduct of his grappling to understand the animal nervous system [2].

Though Arbib’s collaborative efforts are a central focus of this section, fun-

damental systems theory was only a small part of his career as a computa-

tional neuroscientist. Automata theory is also at the core of many models

of language, both artificial and natural [46]. It is evident that categorical

automata theory organises deep relationships that pervade models of in-

formation processing and interaction. Currently, David I. Spivak, Nelson

Niu and colleagues in the act domain are relocating automata theory as

a special case in a general theory of interaction [182]. This more general

theory encompasses Bayesian learning and entropy, leading recently to

some of humanity’s most comprehensive models of the brain [189]. I ad-

mit that I have become intellectually preoccupied by the application of ct

to models of brains and theories of mind. It appears to me that applied cat-

egory theory is like a wonderful mental virus—ameme in the true sense of

Richard Dawkins—that is utterly incurable and fortunately produces long

term sequela.

2.3 functional programming

One of the things that’s fun about functional
programming is that theory and practice come
particularly close together. So, often you find things that
arise in a somewhat of a pointy-headed theoretical kind
of way that actually have immediate practical utility.

— Simon Peyton Jones
Compiling without Continuations

Functional Programming (fp) is an open, active and fruitful area of re-

search [61]. A concise way of describing fp is “programming with λ-

https://youtu.be/-IsbsfV3jmw?t=229

22

calculus.” Lambda calculus was introduced by the logician Alonzo Church

in the 1930s as an alternative structure for the foundations ofmathematics—

based on operations instead of sets. It formalises the process of build-

ing functions from variables and constants and expressing application,

abstraction and reduction of terms. Λ-calculus and combinatory logic

are two systems which serve us as (equivalent) abstract programming

languages. An excellent introduction and reference companion to both

is Lambda-calculus and combinators by J. Roger Hindley and Jonathan

Seldin [102]. What is usually called λ-calculus is actually a collection of

several formal systems with varying structures of types, terms and equa-

tions, so one tends to speak of “λ-calculi”.

Equivalences lie at
the heart of any
practical calculus.
— Edsger Dijkstra

Et al. [50]

In theoretical computer science, a language is often given (denota-

tional) semantics by identifying programs with λ-terms.

Alternatively, instead of thinking of programs in terms of λ-calculi, we

are free instead to interpret them equivalently as categories. As Steven

Awody puts it:

ccc ∼ λ-calculus. —[109, §6.6]

In words, simply typed λ-calculus (one of the λ-calculi) is the internal lan-

guage of a ccc, meaning that an expression in a λ-calculus is equivalent

to and expression in terms of the structure of a cccs. (And vise versa!) So
I prefer to look at fp as “programming with category theory.”

Less mathematically and more toward the keyboard, fp is a paradigm
of programming standing in contrast to more common paradigms of oo

and procedural programming. I make this point to emphasise that a pro-

grammer can base their entire career on writing functional programs with-

out ever knowing how they are wielding ct. Functional languages are

identifiable by the style they encourage through syntax, defaults. There

are a variety of modern programming languages aimed at fp: Haskell,

O’Caml, F♯, Erlang, Clojure, Scala, to name a few. Python has Coconut8

which is a superset syntax to facilitate fp in python. For an excellent his-
8 https://coconut-lang.org/

https://coconut-lang.org/

23

tory of functional programming languages, seeDavid Turner’s survey [126]9.

Many popular language are adding features to facilitate functional style,

a fact I will capitalise on in this thesis by attempting functional style in

c++17.

This section will focus on literature in fp (and theoretical computer sci-

ence more broadly) that are important to expressing categorical automata.

This means we are concerned with structural recursion (where recursion

is a result of canonical manipulations of data structures reflecting recur-

sive construction) and corecursion, and manipulation of asynchronous

streams.

For a more general discussion of fp, a classic introduction is John

Hughes’ “Why Functional Programming Matters” [56] and the more mod-

ern retrospective “How functional programming mattered” [137] by Hu et
al. On programming with ct, I recommend Jan-Willem Buurlage’s [162]

or Bartosz Milewski’s [169]. For a non-mathematical perspective on fp in

c++, recommend Ivan Čukić’s [163], which I reviewed for the publisher10.

note. In the 1960s and 70s, while researchers on the side of systems

theory were on a campaign to understand the mathematical essence of se-

quential systems, the parallel campaign was being carried out as algebraic
semantics, nucleated at the intersection of mathematical logic and com-

puter science and language theory. The research crossed over at many

points. Goguen himself was not a pure mathematician, but a computer sci-

entist. My favourite example of this sort of crossover is when computer

scientist Robin Milner rediscovered the work of logician J. Roger Hind-

ley [19] to develop what is now called theHindley-Milner type system, used

in many functional languages (particularly those descended from ML).
9 Turner masterfully presents the history at Lambda Days 2017, https://youtu.be/

QVwm9jlBTik?si=Y6n7QINOI9Y2hk97.
10 Which I note for transparency’s sake.

https://youtu.be/QVwm9jlBTik?si=Y6n7QINOI9Y2hk97
https://youtu.be/QVwm9jlBTik?si=Y6n7QINOI9Y2hk97

24

2.3.1 Would That It Were Loopless

The basic idea of a category of types or program category is to have objects

representing the data types of the language and arrows representing as

programs as i/o relationships with input in the domain and output in the

codomain. Because the arrows of a category have compositional proper-

ties, programming is viewed as composing the arrows of the category to

write the program in terms of sub-programs (functions). In order to sup-

port fp, a program category should at least be Cartesian closed. (But we

can ask for much more, at some peril.)

The categories 𝕊𝗲𝘁 and 𝔽𝗶𝗻𝗦𝗲𝘁 are both Cartesian closed, and further-

more bicartesian closed. They are appealing as programming categories

because they are extremely well understood; but they are overly permis-

sive (that is, lacking structure that ensures programs are sensible), par-

ticularly where general recursion is concerned. We are able to construct

programs with the arrows of those categories that do not terminate. (One

quickly finds mischief with the so-called fixpoint combinator, since not

all 𝕊𝗲𝘁-functions have fixpoints.) There are more sophisticated choices

for program categories that infuse topology and lattice theory so that all

programs are well formed. Dana Scott’s domain theory [48] is a theory

of types and computability that accommodates recursive definitions of

both functions and of types. Types are lattices and functions are Scott-
continuous, meaning they satisfy properties including monotonicity. In

brief and rough terms, Scott continuitymeans that finite information about

function values is determined by finite information about the inputs. There-

fore we expect the output information volume to scale sensibly with the

that of the input. This handles both issues of partial data and infinite data.

Categorical functional programmers derive data types such as lists or

trees as (greatest or least) fixpoints of polynomial endofunctors in program

categories. These constructions also appear to in categorical theories of

automata as free-monoids [33] or more generally as input processes [42,

55]. Subject to their existence and other caveats, it is generally the case

25

that least fixpoint constructions yield finite structures (such as lists and

trees) while greatest fixpoints yield possibly infinite structures (such as

streams or infinite trees).

In this thesis, they are used both ways: as semantics for data struc-

tures woven through control programs, and also seen as tools to analyse

behaviour of the control program in a systems theoretic sense.

I have avoided being very mathematical in this chapter, but I suspect

an example of what a data type as a fixpoint looks like, at this point, would

be clarifying. In the thesis I make heavy use of the model of lists (of the

snoc variety, growing from the right) as a fixpoint of the parameterised

(family of) 𝕊𝗲𝘁-endofunctors �̂�• ≔ 𝑋 ↦ 𝟣 + 𝑋 × 𝐴. The least fixpoint

(cf. [39]) of this functor is the smallest set (or type) 𝑋 that satisfies the

relation

�̂�• 𝐿𝐴 ≅ 𝐿𝐴. (2.3.1)

The witness of (2.3.1) in forward is an algebra 𝜅 ∶ �̂�• 𝐿𝐴 → 𝐿𝐴 called a con-
structor in computer science circles. This is makes some sense: expanding

the signature gives 𝟣 + 𝐿 × 𝐴 → 𝐿 which can be read as:

Give me no data (𝟣), and I can give you an (empty) list, or give
me a list and an 𝐴-element and I’ll give you a new list, with
your element appended to the right.

The inverse of (2.3.1) is is a coalgebra 𝜅−1∶ 𝐿 → �̂�• 𝐿𝐴 called a destructor,
which expands as 𝐿𝐴 → 𝟣 + 𝐿𝐴 × 𝐴 and read as

Give me an empty list and I’ll give you no data (𝟣). Give me a
non-empty list and I’ll give you a pair containing its head and
tail.

The smallest solution 𝐿𝐴 is the set of all finite lists of 𝐴s, which are natu-

rally regarded as a sort of binary tree with 𝜅 on the nodes and 𝐴 elements

on the leaves. The terminating leaf is the empty list []. The conventional

notation for a least fixpoint is the operator 𝜇, so 𝜇�̂�• is the solution to

(2.3.1). The notation can be overloaded to mean either the set 𝐿𝐴, or the

algebra (𝐿𝐴, 𝜅) when context permits. The set 𝐿𝐴 ≔ 𝜇�̂�• is isomorphic

26

to the Kleene-closure 𝐴∗. This is the monoid at the basis of Goguen’s ma-

chines, but for a general input process 𝘍 , the fixpoint construction 𝜇𝘍 is

howArbib, Manes and Trnková/Adámek’s group generalise to the broader

class of automata [36]. The greatest solution to (2.3.1) is the superset of

𝜇�̂�• that includes infinite lists: 𝐴∗+{𝐴ω}. This is denoted with the greatest

fixpoint operator as 𝜈�̂�•.
Fixpoint solutions become most useful in the category theoretical con-

text because of initiality/terminality, when the fixpoint is either an initial

object (𝜇𝘍 , 𝜅𝘍) ∈ 𝘍 -𝗔𝗹𝗴 or a terminal object (𝜈𝘍 , 𝜅−1𝘍) ∈ 𝘍 -𝗰𝗼𝗔𝗹𝗴 (or si-

multaneously both, which happens in some categories). The unique mor-

phisms from/to these structures provides a rigorous notion of co/recursion

or co/induction [170]. The unique morphisms from 𝜇𝘍 are called catamor-
phisms generally, and are often called folds in functional programming.

Dually, the unique morphisms to 𝜈𝘍 are called anamorphisms generally

and are often called unfolds in functional programming. This has a re-

lationship to free-forgetful adjunction. Under the right conditions, free

𝘍 -algebras are also initial, and the dual statement for forgetful-cofree ad-

junction and coalgebras. Bear in mind that all of this is subject to the ex-

istence and other sufficiencies of rigour which are not taken for granted.

Scott’s domain theory was largely designed to make rigorous the con-

struction of these sorts of types based on recursive construction in ways

that guarantees program termination. Michael B. Smyth11 and Gordon D.

Plotkin categorify the construction in Scott domains [49]. This bridges

the functional semantics of dependent types with the pure category theo-

retical construction. Because codata types (those based on terminal coal-

gebras) potentially contain infinite values, care must be taken within set-

theoretic semantics. Barr shows that the existence of terminal coalgebras

for a 𝕊𝗲𝘁 endofunctor inwell-founded set theory [66], and that the terminal

coalgebra is the Cauchy-completion of the initial algebra of the functor [66,

thm. 3.2]. These arguments require constraints that do not work well for
11 Trivia: Smyth’s doctoral advisor was Dana Scott.

27

computer scientific ends. Barr then points out that, although he cannot

prove it generally, specifically polynomial functors and others that arise

in practice will satisfy the properties. (Polynomial functors are the key for

this thesis.) As an example, he specifically uses the functor 𝑋 ↦ 𝟣+𝐴×𝑋
(isomorphic to �̂�• by the associator of a ccc.)

An issue in domain theory with particular relevance to the thesis is

that for many conceptions of domains, bicccs are logically at odds with

the structure required for lawful general recursion [54, §3]. Perhaps un-

fortunately for me, I intend to define control programs in a biccc of c++

programs, Cpp, using recursively defined types!

It’s not wise to
violate rules until
you know how to
observe them

— T.S. Eliot

Learn the rules like
a pro so you can
break them like an
artist.

— Pablo Picasso
2.3-1 So how will I justify it? If I were to press the issue, I suspect I

would find success in Gunter’s category of profinite domains [51]. This

level of analysis is not quite right for the present thesis. The choice of

program domain amounts to a type system of a language, and the only

type system I aim to satisfy is c++’s which is not based on a grand or

beautiful theory, and is itself overly permissive, just like 𝕊𝗲𝘁. All I want

is for Cpp to faithfully map to 𝕊𝗲𝘁 and have representations in c++17 that

comport with the c++ type checker.12 Co/recursive data types built from

polynomial endofunctors in bicccs comes from the landmark paper of Ar-

bib and Manes, “Parametrized data types do not need highly constrained

parameters” [47]. To further justify that my construction of control pro-

grams are valid in a more practical sense, I will invoke the idiom that

“fast and loose reasoning is morally correct”. This phrase comes from the

2006 paper, another landmark, of Nils Danielsson, John Hughes, Patrik

Jansson and Jeremy Gibbons titled after the phrase [97]. In that paper,

the authors define a language with two different denotational semantics:

one set-theoretic (total) and the other domain-theoretic (partial). They es-

tablish a partial equivalence relation between the two showing that if two
12 And beyond the type checker, c++17 does not support general recursion since it

does not enforce Tail Call Optimization (tco): recursive functions are always in danger
of overflowing the stack.

28

closed terms have the same semantics in the total language then they have

related semantics in the partial language. A biccc type category follows,

where they disallow all fixpoints except well-behaved ones; those that can

be expressed as folds and unfolds.13 This approach serves us well in the

construction of control programs, as I shall define them almost entirely in

those terms. Interpreting the conclusions of that paper in the context of

c++ is more complex since c++ is not a lazy language (which has implica-

tions for infinite data) nor does it contain a formal “undefined value“, ⊥.
(Later, in ch. 4, I do approximate an initial object type, Never, serving as

the unit of the coproduct in Cpp, which leads to the same sort of misery

when equational reasoning about recursion.) The point remains that if we

are only interested in processing finite and total values then the control

programs we derive in Cpp should be sensible, terminating programs.

Grant Malcolm’s PhD work [57, 58] shows that some very important

properties and laws related to folds and unfolds that come for free, for any

data type, when one defines a data type to be an initial algebra, or dually, a

terminal coalgebra. His PhD thesis was my introduction to the concept of

these types and operations. The more common reference is Erik Meijer’s

et al.14 whimsically titled “Functional Programming with Bananas, Lenses,

Envelopes and Barbed Wire” [62], but as an introduction I found it too

terse and abstract.

2.3.2 Asynchronous Lists

When one iterates through an array or list using a loop, they tacitly pre-

sume the next value is waiting in memory to be used; this is called pull-
based access because the data is figuratively pulled from memory at the

behest of the consuming code. When data are distributed not in memory,
13 Alternatively, we could disallow recursion on coproducts, limiting us to monomial

recursion, but this is incompatible with the aims of the thesis.
14 This is the same Meijer that invented the Rx interface to observable streams that is

used later, and described in §3.10.

29

but in time, what should the interface to the consumer look like? A dual-

ity lurks here: push vs. pull. If one inverts the flow, the calculation does

not pull at awaiting data, but instead, data is fed or pushed to an awaiting

calculation.

If we manipulate lists as a whole, with operations that abstract away

element-wise processing then we obtain expressions as a sort of pipeline

for data manipulation. For example, in 𝕊𝗲𝘁 let

𝑎 ≔ [1, 2, 3]∶ 𝐴∗ and 𝑓 ≔ 𝑥 ↦ 𝑥2∶ ℤ → ℤ.

Then we can express the element-wise application of 𝑓 to 𝑎 using the

functor part of the list-monad (mentioned in passing in 2.2-1) to lift 𝑓
to 𝑓 ∗∶ ℤ∗ → ℤ∗ so

𝑓 ∗(𝑎) = [𝑓 (1), 𝑓 (2), 𝑓 (3)] = [1, 4, 9].

The iso/iec 14882:2020 compliant cpp (c++20) spelling is much less terse.

Using the ranges library:

const auto f = [](int x) -> int { return x * x; };
const auto a = std^:list<int>{1, 2, 3};
const auto a_sqr = a | std^:views^:transform(f);

Here, the pipe operator, |, feeds the expression on the left to the expres-

sion on the right. The transform operator implements the element-wise

function lifting. Now, if we wanted to see the output,

auto show_int = [](int x) { std^:printf("%d ", x); };
std^:ranges^:for_each(a_sqr, show_int);

prints “1, 4, 9” as you might expect.15 But now, the calculation from

input to output has a life of its own: it is defined algebraically by compo-

sition of operations, like arrow composition in a category. The list can be

pushed through the calculation regardless of its quality as an iterable quan-

tity in memory or an observable quantity in time. The control program
15 See the code on Compiler Explorer: https://godbolt.org/z/sW3f6bvWh.

https://www.iso.org/standard/79358.html
https://godbolt.org/z/sW3f6bvWh

30

application we will develop in Cpp/c++ will be similarly agnostic, which is

good for testing!

Two non-equivalent Domain Specific Languages (dsls) for asynchronous

lists pervade current programming practises,

1. Functional Reactive Programming (frp), developed by Conal Elliot

in the early 1990s and eventually with Paul Hudak from 1996–2014,

and

2. ReactiveX (Rx) developed by Erik Meijer and others at Microsoft in

the early 2000s.

Note that there is a wide spectrum of reactive programming models [121].

I highlight frp as being perhaps the most theoretically pure and the pre-

decessor of many others, and Rx as being the most widely applied. Ul-

timately, my primary c++ representation of abstract control programs,

demonstrated in ch.5 and 6, uses Rx. But Rx was developed industrially,

so academic literature is comparatively sparse. A demonstration of a c++

control program underpinned by frp (instead of Rx) can be found in one

of the demo repositories accompanying the thesis [183]. I mention this to

point out that frp and Rx provide roughly equivalent bases for the thesis’

payload, despite their principle differences. Section 3.10 contains a reason-

ably thorough account of the important literature on Rx, so I reserve the

remainder of the section for a brief account of frp as a future direction.

Frp is actually much more than a model for asynchronous data. It is

a dsl for expressing computation on the time continuum, that has with

simple and precise denotational semantics. As Elliott says,

[frp] lays it[s values] out in one dimension … that we relate

to as time. —https://youtu.be/rfmkzp76M4M?si=USnRbN9v9Cp_Nsxf&t=560

Elliott’s ideas for this dsl evolved over many years as he worked on differ-

ent graphics projects at Sun Microsystems and Microsoft Research. And it

went by several names during its evolution: TBAG [68], RBML (based on

the language ML), ActiveVRML, DirectAnimation, RBMH (written when

Elliott found Haskell), Fran (functional reactive animation) [78] and fi-

https://youtu.be/rfmkzp76M4M?si=USnRbN9v9Cp_Nsxf&t=560

31

nally Functional Reactive Programming (frp). In 1996, Hudak was a pro-

fessor at Yale who studied functional programming. He was invited to talk

at Microsoft where Elliott was working at the time. Elliot introduced him

to the RBML incarnation, and he was excited by the potential. The two

collaborated extending the implementations and applications of frp, until

Hudak’s untimely death in 2015.16 In that time, it has been been given

new context in Hughes calculus of arrows [86], as arrowised frp [100], ex-

tended to real-time systems [91], then to real-time robotic applications [93],

small embedded applications [150] and given push-based implementation [103].

Computer science
is not about ma-
chines, in the same
way that astronomy
is not about tele-
scopes. There is an
essential unity of
mathematics and
computer science.

— M. R. Fellows

[60]

Frp is based around two abstract data types [78, 90], behaviours and

events:

behaviour⟨𝐴⟩ ≅ ℝ → 𝐴 and event⟨𝐵⟩ ≅ (ℝ × 𝐵)∗.

Behaviours model time-signals of a value type𝐴, and events are sequences

of monotonically non-decreasing pairs of a time stamp and event type 𝐵
(for any types 𝐴 and 𝐵). The two compose, so we can have “events of be-

haviours” or reactive behaviours. It is actually this interaction that makes

frp reactive, which is why other dsls for reactive programming tend to

focus on events. In frp, this all has simple and immaculate denotational

semantics and is surely a theoretical masterpiece. Unfortunately it is noto-

riously difficult to implement with fidelity to the denotational semantics.

The issues revolve around object lifetime: potential space- and time-leaks

that take various forms depending on the language’s evaluation strategy

(lazy or not) and garbage collection.

C++ has a strict evaluation policy (unless one uses indirection to cir-

cumvent it) and no garbage collection (unless one implements it). This

means c++ implementations of frp have to manually handle object life-

time and so the problems do not go away—they get uglier. C++ program-
16 The names Fran and frp are due to Hudak. Although graphics was originally the

target application of frp, Hudak and Elliott were well aware that the dsl had nothing
specific to graphics, and Hudak proposed the ultimate tile of Functional Reactive Pro-
gramming (frp).

32

mers often delight in pointing out that the language bestows an arsenal

of sharp and heavy tools prone to plummet unexpectedly onto toes, from

a great height.17 Manual memory and object lifetime management defi-

nitely require the keys to the armory.

The leading c++ implementation of frp is Sodium [195] by Stephen

Blackheath, alongwith the accompanying book [147]. It is known to suffer

these issues and as Blackheath politely puts it: the memory management
is not quite right yet. I briefly worked with Blackheath on Sodium-C++,

but the collaboration was put on hold when I chose Rx for the thesis. I do

plan to return to work on Sodium-C++. I think a good future direction for

the present research is implementation in frp. It was shown in [150] that

frp is viable in targeting small, real-time embedded systems. Most inter-

estingly, one cannot fail to notice that a language of continuous functions

and discrete events should harmonise beautifully with hybrid systems the-

ory. (This was well noted in [93], so I take no credit for the thought.) But

from my point of view, the denotational semantics is a road to categori-

fication where undiscovered insight may lurk in the intersection of the

computer science and systems theories.

note. At the closing of this section I do not want to leave the reader with

the impression that Rx, in comparison to frp, is just a muddy workhorse.

Rx is still mathematically beautiful. It was never based on frp so it had

no commitment to denotational semantics and continuum time. It was

conceived following the observation that, with a little bit of squinting, the

Gang of Four (GoF) iterator and observer design patterns were roughly

dual. By some formality of dualising the iterator pattern, one derives the

rudiments of the Rx dsl (see §3.10). Despite arising from an oo design pat-

tern, what comes out of the derivation looks very much like frp’s events

and it can be used functionally. Toward that point, note that Rx has official

implementations in statedly functional languages: RxScala, RxClojure and

RxElixer (Elixer is based on Erlang); along with several unofficial imple-
17 One might wonder about steel-toed boots in this analogy. Static analysers perhaps?

33

mentations in Haskell18 See the full list of current official implementations

at

reactivex.io/languages.html.

note. There is more current research on event streams from a sheaf

theoretic perspective [176]. There is also a generalisation of monoidal

streams to arbitrary monoidal categories [177].

2.4 applied category theory as a field

Functional programming in particular and automata/language theory in

general are widely regarded as some of the first applications of ct. But as

its own entitled discipline, Applied Category Theory is a relatively young

and emerging area of mathematics [168]. As the name suggests, it is the

study of ct in application to a variety of domains including language the-

ory, engineering design, economics, chemistry and reaction kinetics, game

theory, information theory, databases, programming language theory (fp

and domain theory), mechanics, quantum field theory, control theory, neu-

roscience and many more in a quickly growing list. A brisk introduction

to ct is provided in Appendix B, where some literary sources are recom-

mended. At the time of writing, I am only aware of a single introductory

textbook on act: [168] by Brendan Fong and David I. Spivak. See also, a

favourite reference of mine, “Physics, Topology, Logic and Computation:

A Rosetta Stone” [115] by American mathematical physicist John C. Baez.

(Fair warning: as a theoretical physicist, I admit some bias in this recom-

mendation.) The Topos Institute regularly hosts colloquia [200] showcas-

ing a stunning variety of applications of ct dispersed across science, art,

mathematics and engineering.
18 eg., see hackage.haskell.org/package/RxHaskell.

reactivex.io/languages.html
hackage.haskell.org/package/RxHaskell

34

2.4.1 Machines in ℙ𝗼𝗹𝘆

Many applications of ct are growingly regarded as instances of a general

theory of interaction provided by a calculus of polynomial functors. The

stage for this rich calculus is the category ℙ𝗼𝗹𝘆, where objects are the

full subcategory of endofunctors on 𝕊𝗲𝘁 spanned by coproducts of repre-

sentable functors and where arrows are the natural transformations. (You

can build categories of polynomial functors on other categories to obtain

more specific interactions [188].)

A representable functor (in the sense of Yoneda) on 𝘾 is any functor

𝘍 ∶ 𝘾 → 𝕊𝗲𝘁 such that 𝘍 is isomorphic to a hom-functor 𝘾(𝑋 , −) → 𝕊𝗲𝘁.
The representing object 𝑋 is seen as embodying the structure of the func-

tor. Let 𝘾 = 𝕊𝗲𝘁, and further consider the functor 𝑦𝑋 ≔ 𝕊𝗲𝘁(𝑋 , −) that
sends

• each set 𝑍 to the hom-set 𝑍𝑋 = 𝕊𝗲𝘁(𝑋 , 𝑍) = 𝑋 ⊸ 𝑍 , and

• each function 𝑓 ∶ 𝐴 → 𝐵 to 𝑋 ⊸ 𝑓 ∶ (𝑋 ⊸ 𝐴) → (𝑋 ⊸ 𝐵).
These are the functors represented by 𝑋 , and for all 𝑋 ∈ 𝕊𝗲𝘁 collectively,
the representables. Coproducts (sums) of these representables are polyno-

mial functors, or simply polynomials.
Polynomial functors were well studied in the 2010s by computer scien-

tists Daniel Ahman, TarmoUustalu, Nicola Gambino and JoachimKock [122,

127, 141, 149]. Then around 2020 David I. Spivak, following conversa-

tions with Kock, discovered that ℙ𝗼𝗹𝘆 embodied many of the structures

and relationships he had been studying for many years! This led to a

series of articles [172, 175, 190]. Later, Nelson Niu and Spivak began writ-

ing the textbook (still a work in progress) [182]. Further on, this has led

to application in computer science [185] and logic [174], pure mathemat-

ics [181, 186], database theory [191], deep learning and prediction mar-

kets [187], collectives in economics [180], information theory [192] and

neuroscience [189]. David Jaz Myers in particular studies dynamical sys-

tems (including the ones normally thought of in terms of differential equa-

tions or integral manifolds and associated machinery) [178, 179], which I

35

expect to be important to follow on work for this thesis.

The study and application of ℙ𝗼𝗹𝘆 has been rapidly developing as I

have been writing this document. Everything in the theory of ℙ𝗼𝗹𝘆 is

compatible with what I will present in this thesis: in fact, ℙ𝗼𝗹𝘆 subsumes
it. It will be exciting in the future to recast the present thesis in the context

of ℙ𝗼𝗹𝘆, I could not rewrite my thesis to keep pace with the development.

However, a few remarks are certainly in order to show how my thesis ties

in.

Consider the simple cases ofmonomials, 𝘱 ≔ 𝑆 𝑦𝑆 and 𝘲 ≔ 𝑂 𝑦 𝐼 , where

𝐼 , 𝑆, 𝑂 ∈ 𝕊𝗲𝘁. (In this context, it is customary to denote the Cartesian

product by juxtaposition.) A morphism 𝜑 ∶ 𝑝 → 𝑞 can be regarded as a

pair (𝜑1, 𝜑♯) where

𝜑1∶ 𝑆 → 𝑂 and 𝜑♯∶ 𝑆 × 𝐼 → 𝑆.

(See marginalium 19) If 𝐼 , 𝑆, 𝑂 are regarded as the input, state and output

sets of a machine, then 𝜑1 is a state readout map and 𝜑♯ is a state transition

map!

This leads to the notion of a Moore machine in ℙ𝗼𝗹𝘆 as particular kind

of map.

lemma 2.4-1 ([175, Prop. 2.12]). An (𝐼 , 𝑂)-Moore machine with states

𝑆 can be identified with a map of polynomial functors 𝑆 𝑦𝑆 → 𝑂 𝑦 𝐼 and

hence, with a 𝑂𝑦 𝐼 -coalgebra 𝑆 → 𝑂 𝑦 𝐼 ∘ 𝑆. 20

Machines in ℙ𝗼𝗹𝘆 offer a great deal more flexibility than this. For ex-

amples, interconnection can be dynamic (composite systems can require

themselves) and input can depend on state (like in the case of control bun-

dles).
19 Morphisms between polynomials can be regarded as dependent lenses, of which

this is a simple case due to the fact that 𝘱 and 𝘲 are monomial. More generally, 𝜑1 would
be a function 𝘱(𝟣) → 𝘲(𝟣) and 𝜑♯ would be a family of functions a little too involved to
describe here.

20 Composition of a functor with a set, in this context, is functor application

36

As I mentioned, the present work is subsumed by this business of poly-

nomial functors. A key point of ingress is given in Spivak’s following

lemma:

lemma 2.4-2 ([175, Prop. 2.11]). A 𝘱-coalgebra (𝑆, 𝜍) can be identified

with the lens 𝑆𝑦𝑆 → 𝑝 by the isomorphism

ℙ𝗼𝗹𝘆(𝑆, 𝘱(𝑆)) ≅ ℙ𝗼𝗹𝘆(𝑆 × (𝑆 ⊸ −), 𝘗).

In this case, the category 𝘱-𝗰𝗼𝗔𝗹𝗴 is identified as the category of dy-

namical systems with interface (input/output) given by 𝘱.
Later on, the reader can compare the contents of §3.9 and ch. 5 to the

previous lemma to see the relationship in fuller view.

I want the reader to leave this section with some perspective on the

sort of unification that is going on in act at the moment, in the words of

Jaz Myers [178]:

Moore machines, differential equations, and Markov decision

processes are each dynamical systems understood in a differ-

ent theory.

1. A Moore machine is a dynamical system in a discrete

and deterministic systems theory.

2. A system of differential equations is a dynamical system

in a differential systems theory.

3. A Markov decision process is a dynamical system in a

stochastic systems theory.

If you can provisionally take that at face value, then perhaps you can see

why I think designing control systems programs as categorical Moore ma-

chines is the right direction for a unified theory of systems and software.

∗ ∗ ∗

There are simply too many giants, and each of them with two shoulders

to stand upon. This chapter has necessarily been incomplete. I feel poorly

37

for the authors left unmentioned and their works left un-cited. (I suspect

the reader knows this feeling and can sympathise.) However, it is time to

be more specific in moving toward the theoretical payload of the thesis.

The next chapter excavates and details the mathematical technology

from these references which I will use in Chapters 4 and 5 to erect a cate-

gorical model of control application software.

3
THEORET ICAL PREL IM INAR I E S

3.1 introduction

This chapter explicates the key mathematical technology that was

sketched in historical context in the previous chapter. The first of

two goals is to lay foundation for a definition of control programs as a

particular notion of dynamical system that arises from the categorical rap-

prochement of algebra automata and control systems theory. The second

goal is to describe the notions of computer programming with which the

mathematical notion of a control program can be realised.

contributions All of the definitions, theorems and propositions in

this chapter are assembled from preexisting literature. There is obviously

some art in the selection, exposition and harmonisation of these topics

(especially where notation is involved). So while I do add unique insight,

especially in the intermediating text, this chapter is not to be generally

regarded as contributory—except insofar as it brings together and makes

accessible the mathematical development of others and tailors them to the

present thesis.

3.1.1 Section Synopses

§3.2 polynomial functors The familiar concept of a polynomial

functions from school math is extended to functors in bicccs. While some

intuition frompolynomial functions is useful for understanding these coun-

terparts, there are other useful ways of thinking about them, as trees or

generalised bundles, especially in the case of polynomial functors on 𝕊𝗲𝘁.
But these intuitions carry straightforwardly to concrete categories such as

Cpp.

38

39

§3.3 algebras & coalgebras For an arbitrary endofunctor 𝘍 on a

category 𝘾 , 𝘍 -algebras, 𝘍 -algebra homomorphisms and the induced cat-

egory of 𝘍 -algebras, 𝘍 -𝗔𝗹𝗴 are given, along with their duals (coalgebra

and friends). Some notation is given, especially 𝜇𝘍 and 𝜈𝘍 for the initial

algebra and terminal coalgebra, respectively.

§3 .6 categorification of classical automata is largely a re-

hearsal of the 1975 of Goguen [33] with notation and presentation more

consistent with modern literature (and more specifically, the notation of

the thesis) and much more explanatory discussion. The notion of Goguen
machines are defined for a biccc, 𝘾 . Goguen machines are a categorifi-

cation of the notion of sequential automata ordinarily modelled as right-

actions of a monoid of input values on a set of states (which, depending

on the structure of the states, can give a module structure.) Generalisa-

tion of Kleene closure, (−)∗, to cartesian monoidal categories facilitates

abstraction. The result is a structurally recursive, input driven calcula-

tion for state evolution: a discrete i/s/o system. A similar construction on

pure i/o gives behaviours, of which an i/s/o system can be regarded as a

representation. Definitions for reachability and equivalence follows.

§3 .7 fixpoints of endofunctors describes themathematical tech-

nology required to further generalise Goguen machines. In §3.6, the input

driven state propagation comes from algebras of the functor ̂𝘐• ≔ (𝟣+−⊗𝐼)
for an input object 𝐼 . That functor is a specific instance of an input process.
The categorical progression from ̂𝘐• to machine, including the free monoid

construction are specific instances of fixpoint construction on the input

process functor. When fixpoints are coincident with initial algebra, there

are unique algebra homomorphisms called catamorphisms which give re-

cursion in the context of input processes the meaning of state evolution.

The dual construction on coalgebra leads to anamorphisms which gener-

alise behaviour. Toward a fuller understanding of this more general notion

40

ofmachines and behaviour, this section presents the notions of fixpoints of

functors and their relationships to initial algebras and terminal coalgebras.

In computer science, these are used to define data and codata structures,

especially lists (data) and streams (codata). This is where automata the-

ory and functional programming overlap, which is the motivation for the

section.

§3 .8 snoc lists as fixpoints gives a category theoretical descrip-

tion of snoc-lists as fixpoints of 𝕊𝗲𝘁-functors. In fact, this is the same func-

tor as ̂𝘐• above! But in 𝕊𝗲𝘁 it is denoted �̂�• ≔ 𝟣 + − × 𝐴 and the carrier of

𝜇�̂�• gives 𝐴∗, the Kleene-closure: the set of all finite lists of elements of 𝐴.

Catamorphisms of 𝜇�̂�• are the computer scientific right fold, a useful re-

cursion scheme for algebraic program calculation. The section closes with

the mention of scans which are very much like folds, but lack a category

theoretical universal property. In ch. 5, I will demonstrate that scans are

obtained by an endofunctor on the category �̂�•-𝗔𝗹𝗴, since we will want

it to describe control programs which output intermediate values of their

recursive state evolution process.

§3 .9 moore about dynamical systems extends the reasoning

about machines, using the generalised input process and fixpoint construc-

tion to define the evolution and behaviour of Moore machines, which can

be seen as Goguen machines in 𝕊𝗲𝘁.

§3 .10 async lists & observer-iterator duality A slightly

informal presentation of the ReactiveX (Rx) interface for derived by du-

alising the classical iterator design pattern. This yields a mathematical

interface specification for asynchronous collections of values which can

be readily implemented in most programming languages.

41

3.1.2 Prerequisites

The fundament of my thesis rests upon the body of literature I suspect

the reader to be least familiar with: Category Theory (ct). Appendix B

gives a brisk introduction to the theory. The 1945 paper of Eilenberg and

MacLane [1] is widely regarded as the foundational document of ct. The

definitive textbook on the subject is Mac Lane’s Categories for the Work-
ing Mathematician [81], but this is unlikely to be the ideal introduction

for non-mathematicians (as the title hints). A more approachable intro-

duction than Mac Lane’s, but still aimed at a mathematical audience, is

Awodey’s [109], which I cite many times in the thesis. Arbib and Manes

wrote [32], with the express intent of “make[ing] category theory […] ac-

cessible to computer scientists and control theorists.” A briefer and more

classical algebraic approach along these lines is “Basic Concepts of Cate-

gory Theory Applicable to Computation and Control” [26] by the same

authors. To the reader inclined toward computer science and program-

ming, I usually recommend any or all of

• Barr and Wells’ [82],

• Buurlage’s [162], and

• Milewski’s [169].

Buurlage and Milewski are particularly accessible texts, not only in peda-

gogical approach but also because they are freely available online.1 More

specifically, prerequisites for this chapter include,

Co/limits: See §B.8; externally, see [109, ch. 5], [32, §2.4], [81, ch. III].

Categorical products and coproducts: §B.9 and §B.10; externally, see

[32, §1.2], [82, ch. 5] [109, §2.4, §3.2], [162, ch. 3].

Monoidal closed categories: monoidal §B.11; closed §B.15; externally,

see [81, §VII.7], [82, §16.1].
1 For which I owe the authors a special thanks for their generosity. I would also

thank Igal Tabachnik for this effort, collecting Milewski’s works and moulding them into
a book.

42

Cartesian Closed Categories (cccs): def. B.15-8; which is a category

monoidal closed with respect to the categorical product; externally,

see [81, §IV.6], [109, §6.2], [82, ch. 5].

Bicartesian Closed Categories (bicccs): def. B.15-10; externally, see

[67] for a thorough definition, but bicccs seem to be understood

well enough as composite cartesian closed and cocartesian mon-

oidal categories that they are taken for granted.

Adjoint functors: §B.16; externally, see [81, ch. IV], [109, ch. 9], [162,

ch. 6], [82, ch. 13].

3.1.3 Categorical setting

For this chapter, the category 𝘾 always has a symmetric monoidal closed

structure. The constituents of that structure will be denoted

𝘾, ⊗, ⊸, 1𝘾 , 𝛼 , ℓ, 𝜚, 𝛾 ,

with product unit 1𝘾 , associator 𝛼 , left/right unitors ℓ/𝜚 and symmetric

braiding 𝛾 . Exponentials are denoted (⊸)∶ 𝘾op × 𝘾 → 𝘾 , which forms

adjunctions

− ⊗ 𝑋 ⊣ 𝑋 ⊸ −,
for any 𝑋 ∈ 𝘾 , with hom-transposition 𝜆 witnessing

hom(𝐴 ⊗ 𝐵, 𝐶) ⥲ hom(𝐴, 𝐵 ⊸ 𝐶).

Evaluation is denoted

ev𝐴, 𝐵 ∶ 𝐴 ⊗ (𝐴 ⊸ 𝐵) → 𝐵.

When required, 𝘾 will also have cocartesianmonoidal structure2 denu-
merable coproducts. By that I mean colimits over discrete finite diagrams

�̇� → 𝘾 for arbitrary 𝑛 ∈ ℕ. They will be denoted by the bifunctor + with
2 def. B.11-11.

43

unit/initial object 0𝘾 . Coproducts have an associator, unitors and braid-

ing as well, but their notation is not needed for this section. The product

must distribute over the coproduct. We will make use of the distributor,

denoted 𝑑 , in various forms:

𝐴 ⊗ (𝐵 + 𝐶) ⥲ (𝐴 ⊗ 𝐵) + (𝐴 ⊗ 𝐶)
𝐴 ⊗∑

𝑚
𝐵𝑛 ⥲ ∑

𝑛
(𝐴 ⊗ 𝐵𝑛)

(∑
𝑛
𝐴𝑛) ⊗ 𝐵 ⥲ ∑

𝑛
(𝐴𝑛 ⊗ 𝐵)

(∑
𝑚

𝐴𝑚) ⊗ (∑
𝑛
𝐵𝑛) ⥲ ∑

(𝑚, 𝑛)
(𝐴𝑚 ⊗ 𝐵𝑚). (3.1.1)

(see [33, prop. 2.2] or [81, §vii.3, thm. 2].) These distributors exist by

virtue of the closure on ⊗. It is a basic fact of ct that left-adjoints preserve
colimits and right-adjoints preserve limits (cf. [109, §9.6]). Since the prod-

uct is closed, there are adjunctions −⊗𝑋 ⊣ 𝑋 ⊸ − and so −⊗𝑋 preserves

colimits (and thereby coproducts). Since ⊗ is symmetric, −⊗𝑋 𝛾⥲ −⊗𝑋
and the product preserves colimits in both arguments. See also [24].

Despite the fact that we are endeavouring to assume nothing about

the inner lives of the objects in 𝘾 (since ct provides no tools of direct

introspection) I will occasionally use

𝘾 = 𝕊𝗲𝘁, ⊗ = ×, + = ⊔, 1𝘾 = 𝟣, 0𝘾 = 𝟢, ⊸ = hom

where we can regress to set theory for visual intuition. The associators,

unitors, braidings and distributor for the bicartesian closure of 𝕊𝗲𝘁 are

detailed in §B.12. As I write the thesis, this is always my mental model.

3.2 polynomial functors

The category theoretical concept of a polynomial functor varies slightly by

author and application. In fact, the same concept has been reinvented sev-

eral times in different domains. Herein, a “polynomial functor” is roughly

44

identical to the notions of container functors in theoretical computer sci-

ence.

Polynomial functors are so called because they are a categorification of

the concept of polynomial functions. In other words, they are recognisable

as combinations of sums, products and exponents. For example,

𝑃 𝑋 ≔ 𝟥𝑋 𝟦 + 𝑋 𝟤 + 𝟣. (3.2.2)

Here the variable 𝑋 and each of the constants are sets: 𝟥 ≅ {0, 1, 2}, and so

on. The sum, product and exponentials are from the category’s structure

(requiring biccc-structure).

notation 3.2-1 (Enumeration set). Given a non-negative integer 𝑛 ∈ ℕ,

the sans serif symbol 𝘯 denotes the set { 0, …, 𝑛 − 1 }. Likewise with literal

digits: 𝟢 = { }, 𝟣 = { 0 }, 𝟤 = { 0, 1 } and so on. Such sets may be called

enumeration sets.

Consider that a 𝕊𝗲𝘁-function 𝑝∶ 𝐸 → 𝐵 can be thought of as inducing

a family of sets (𝐸𝑏)𝑏∈𝐵 regarded of as fibres over the base point 𝑏. That is,

𝐸𝑏 = { 𝑒 ∶ 𝐸 | 𝑝(𝑏) = 𝑒 }.

We can make this more concise as a preimage 𝐸𝑏 = 𝑝−1(𝑏), but bear in

mind that the −1 superscript does not mean that 𝑝 is bijective.

definition 3.2-2. An endofunctor 𝘗 ∶ 𝕊𝗲𝘁 → 𝕊𝗲𝘁 is a polynomial functor

in 𝕊𝗲𝘁 if there exists a morphism 𝑝∶ 𝐸 → 𝐵 inducing family of sets (𝐵𝑖)𝑒∈𝐸
and such that

𝘗 𝑋 ≅ ∑
𝑏∈𝐵

𝑋𝐸𝑏 ≡ ∑
𝑏∈𝐵

𝐸𝑏 ⊸ 𝑋.

More generally, a robust calculus of polynomial functors can be con-

structed in any locally Cartesian closed category [122]. For the thesis, we

can work comfortably in 𝕊𝗲𝘁.

45

There are at least two other useful descriptions: as bundles and as

trees [182]. Recalling (3.2.2), the polynomial 𝟥𝑋 𝟦 + 𝑋 𝟤 + 𝟣 might be visu-

alised as a bundle like this,

𝐸

𝟥𝑋 𝟦 𝑋 𝟤 𝟣

𝐵

𝑝

,

or as trees like this,

• • • • •
𝟥𝑋 𝟦 𝑋 𝟤 𝟣

In the bundle picture, the base points, collected from the coefficient sets,

cast fibres which are the exponent sets. In the tree picture, the base-points

are interpreted as nodes from which fibre elements emanate as edges.

Two identities to keep in mind are,

∑
𝑏∈𝐵

𝑋 ≅ 𝐵 × 𝑋 and ∏
𝑒∈𝐸

𝑋 ≅ 𝐸 ⊸ 𝑋.

The first is why the monomial 𝟥𝑋 𝟦 = ∑𝑏∈𝟥 𝑋 𝟦 appears as three terms

apparent in the bundle and tree pictures.

Just like polynomial functions, polynomial functors can be composed:

𝘗 ∘𝘘 . Moreover, the result is polynomial, so polynomials are closed under

composition [190]. We will be particularly concerned with expressions

like 𝘗 ∘ 𝘗 ∘ ⋯ = 𝘗𝑛 where a polynomial is composed with itself some 𝑛-
times. The tree picture is particularly useful for understanding what the

composite looks like. When two polynomial functors are composed, the

46

nodes and edges of the second are placed onto the edges of the first, in

every possible combination, and condensed downward. Let

𝘗 ≔ 𝑋 ↦ 𝑋 𝟤 + 𝑋 or • •

and

𝘘 ≔ 𝑋 ↦ 𝑋 𝟥 + 𝟣 or • •

then we could intuit by school algebra that 𝘗 ∘ 𝘘 ≅ 𝑋 ↦ 𝑋 𝟨 + 𝟥𝑋 𝟥 + 𝟤.
Indeed, we can arrive at that conclusion graphically. The trees from 𝘘 are

affixed to the edges of trees from 𝘗 in every combination:

•
• •

•
• •

•
• •

•
• •

•
•

•
• trees from 𝘗

trees from 𝘘 (3.2.3)

The two-tier structure is then condensed into a single layer by contracting

along the 𝘗-edges to give

𝘗 ∘ 𝘘 ≅ 𝑋 ↦ 𝑋 𝟨 + 𝟥𝑋 𝟥 + 𝟤 or • • • • • •

The two-tier structure of (3.2.3) makes clearer how to interpret the edges.

Though all base-points in 𝘗 and 𝘘 were drawn with bullets, the base point

of 𝘗 with two edges is different than the base point with one. The bases

are sets with distinct elements, and the data of the polynomial associates

the edges (collectively a fibre) to the individual points in the base set. 𝘗
and 𝘘 have two different base sets, so the association of the elements of

each 𝘗-fibre with a 𝘘-base element is important data in the composite.

That is, each fibre element in the condensed picture is actually a choice of

𝘗-base element, 𝘗-fibre element, 𝘘-basepoint and 𝘘-fibre element. While

the condensed picture is technically correct, it obscures that fact.

remark 3.2-3. So far, the examples have had finite set coefficients and

exponets, but there is nothing to preclude terms like ℝ𝑋ℤ, except that

they are difficult to illustrate.

47

3.3 algebras & coalgebras

Algebras and Coalgebras of endofunctors on an arbitrary category 𝘾 are

essential instruments in the construction of the thesis’ model. Functor al-

gebras, in certain contexts, can be thought of as maps for evaluation or

interpretation of structure [47]. They are used in the categorification of

universal algebra to encode algebras without laws or anarchic algebras [64,
§2.2]. Functor algebras form categories, and when those categories have

initial objects they become the essence of process, recursion and induc-

tion [40], [169, ch. 24] Dually with coalgebras we get behaviour, corecur-

sion and coinduction [170].

With all of that promise, here are the definitions that deliver it; the

triplet: functor algebra, algebra homomorphism, category of algebras of a

functor; and then the duals.

definition 3.3-1. Given an endofunctor 𝘍 on a category 𝘾 , an 𝘍 -algebra
is a pair (𝐴, 𝛼) consisting of,
 an object 𝐴 ∈ Ob𝘾 called the carrier object, and
 an arrow 𝛼 ∶ 𝘍 𝐴 → 𝐴, called the structure map of the algebra.

definition 3.3-2. For an endofunctor 𝘍 on 𝘾 , an 𝘍 -algebra homomor-
phism, ℎ∶ (𝐴, 𝛼) → (𝐵, 𝛽), is a 𝘾-arrow |ℎ|∶ 𝐴 → 𝐵 such that the follow-

ing diagram commutes:

𝘍𝐴 𝘍𝐵

𝐴 𝐵

𝘍 ℎ

𝛼 𝛽

ℎ

, (3.3.4)

thereby preserving the 𝘍 -algebra structure.

definition 3.3-3. An endofunctor 𝘍 on 𝘾 induces a category of its alge-

bras, 𝘍 -𝗔𝗹𝗴(𝘾), with
objects: all 𝘍 -algebras,

Ob 𝐹 -𝗔𝗹𝗴 ≔ ∑
𝐴∶ 𝘾

{ 𝘍𝐴 → 𝐴 },

48

and

arrows: all algebra homomorphisms among them,

𝐹 -𝗔𝗹𝗴((𝐴, 𝛼), (𝐵, 𝛽)) ≔ { ℎ ∈ 𝘾(𝐴, 𝐵) | ℎ ∘ 𝛼 = 𝛽 ∘ 𝘍 ℎ }.

When clarity permits, the category is omitted from the notation: 𝘍 -𝗔𝗹𝗴.

notation 3.3-4. If 𝘍 -𝗔𝗹𝗴 for 𝘍 ∶ 𝘾 → 𝘾 has an initial object then it is

denoted in whole as 𝜇𝘍 or in components (𝜇𝘍 , in𝘍). The subscript on in

can be omitted when clarity permits.

And now the duals.

definition 3.3-5. Given an endofunctor 𝘍 on a category𝘾 , an 𝘍 -coalgebra
is a pair (𝐴, 𝛼) consisting of

• an object 𝐴 ∈ Ob𝘾 called the carrier object, and
• an arrow 𝛼 ∶ 𝐴 → 𝘍 𝐴, called the costructure map of the algebra.

definition 3.3-6. For an endofunctor 𝘍 on 𝘾 , a 𝘍 -coalgebra homomor-
phism, ℎ∶ (𝐴, 𝛼) → (𝐵, 𝛽), is a 𝘾-arrow |ℎ|∶ 𝐴 → 𝐵 preserving the 𝘍 -
coalgebra structure by making the following diagram commute:

𝘍𝐴 𝘍𝐵

𝐴 𝐵

𝘍 ℎ

𝛼
ℎ

𝛽 .

definition 3.3-7. An endofunctor 𝘍 on 𝘾 induces a category of its coal-

gebras, 𝘍 -𝗰𝗼𝗔𝗹𝗴(𝘾) with

objects: all 𝘍 -coalgebras:

Ob 𝐹 -𝗰𝗼𝗔𝗹𝗴 ≔ ∑
𝐴∶ 𝘾

{ 𝐴 → 𝘍𝐴 }

arrows: all algebra homomorphisms among them:

𝐹 -𝗰𝗼𝗔𝗹𝗴((𝐴, 𝛼), (𝐵, 𝛽)) ≔ { ℎ ∈ 𝘾(𝐴, 𝐵) | 𝛽 ∘ ℎ = 𝘍 ℎ ∘ 𝛼 }

49

When clarity permits, the category is omitted from the notation: 𝘍 -𝗰𝗼𝗔𝗹𝗴.

notation 3.3-8. If 𝘍 -𝗰𝗼𝗔𝗹𝗴 for 𝘍 ∶ 𝘾 → 𝘾 has an terminal object then

it is denoted in whole as 𝜈𝘍 or in components (𝜈𝘍 , out𝘍). The subscript

on out can be omitted, clarity permitting.

algebras vs. coalgebras Although algebras and coalgebras are

dual structures, it is not the case that 𝘍 -𝗔𝗹𝗴 and 𝘍 -𝗰𝗼𝗔𝗹𝗴 are dual cate-

gories, [108]. In fact,

(𝘍 -𝗔𝗹𝗴)op = (𝘍 op)-𝗰𝗼𝗔𝗹𝗴.

The consequences of this relationship are deep and interesting, especially

in the context of dynamical systems and control. But more on that later.

3.4 algebras for a monad & free monoids

This illustrates the
well-known prin-
ciple of universal
algebra: all infor-
mation is in the
free algebras
— Arbib & Manes

[32, p. 171]

As I mentioned in the last chapter, there is a distinction drawn between

“algebra in the sense of Lambek” and “algebra in the sense of Eilenberg-

Moore”. The afore definitions are algebras in the Lambek style. When

the functor 𝘍 𝘓 additionally carries the structure of a monad (§B.14) then

everything above specifies to Eilenberg-Moore algebras simply monad al-
gebras [81, ch. VI].

definition 3.4-1. Given a monad 𝘛 = (𝘛 , 𝜂, 𝜇) in a category 𝘾 , a 𝘛 -
algebra is a pair (𝐴, 𝛼) consisting of,

• an object 𝐴 ∈ Ob𝘾 called the carrier object, and
• an arrow 𝛼 ∶ 𝘍 𝘓𝐴 → 𝐴, called the structure map, that preserves the

monadic structure by satisfying

𝐴 𝘛𝐴

𝐴

𝜂𝐴

𝛼 and
𝘛 2𝐴 𝘛 𝐴

𝘛 𝐴 𝐴

𝜇𝐴

𝘛 𝛼 𝛼

𝛼

.

50

Homomorphisms of 𝘛 -algebras are the same as for functor algebras

because (3.3.4) will respect whatever monadic structure 𝘛 carries.

The category of 𝘛 -algebras and their homomorphisms over a category

𝘾 is called the Eilenberg-Moore category of the monad, and is denoted 𝘾 .

theorem 3.4-2 ([109, prop. 10.3]). Every adjunction

(𝘾 𝘿
𝘍

𝘜⊣ , 𝜂, 𝜀)

with unit 𝜂∶ id𝘋 ⇒ 𝘜𝘍 and counit 𝜀 ∶ 𝘍 𝘜 ⇒ id𝘾 , induces amonad (𝘛 , 𝜂, 𝜇)
on 𝘾 where

𝘛 𝐶 = 𝘜𝘍 𝑋 ∶ 𝘾 → 𝘾
𝜂𝐶 = 𝜂𝐶 (the unit of the adjunction)

𝜇𝐶 = 𝘜𝜀𝘍 𝐶 .

for 𝐶 ∈ 𝘾 .

construction 3.4-3 (Free 𝕊𝗲𝘁-monoids). Recall from def. B.11-4, that

𝗠𝗼𝗻(𝕊𝗲𝘁) is the category of all algebraic monoids (sets with unital asso-

ciative operation) with a forgetful functor 𝘜𝗠𝗼𝗻∶ 𝗠𝗼𝗻(𝕊𝗲𝘁) → 𝕊𝗲𝘁.
Let 𝐴 be an arbitrary set. A word or list over 𝐴 is a finite sequence of

its elements, [𝑎1, 𝑎2, …]. The set of all such lists is denoted and defined

𝐴∗ ≔ ∑𝑛∈ℕ𝐴×𝑛 (called the Kleene closure or Kleene-star), which includes

the empty word []. This set is closed under the operation of concatenation,

denoted ⧺, where two lists are concatenated as

[𝑎, 𝑏, 𝑐] ⧺ [𝑐, 𝑏, 𝑎] = [𝑎, 𝑏, 𝑐, 𝑐, 𝑏, 𝑎].

This forms an algebraic monoid since, for any words 𝑤, 𝑤 ′⋯ ∈ 𝐴∗,
• 𝑤 ⧺ 𝑤 ′ ∈ 𝐴∗, giving closure

• 𝑤 ⧺ (𝑤 ′ ⧺ 𝑤″) = (𝑤 ⧺ 𝑤 ′) ⧺ 𝑤″ giving associativity, and

• 𝑤 ⧺ [] = [] ⧺ 𝑤 = 𝑤 giving left and right identity.

51

Therefore objects (𝑋 ∗, ⧺, []) are algebraic monoids.

We will sketch a routine construction of (𝐴∗, ⧺, []) for𝐴 ∈ 𝕊𝗲𝘁 as free
objects in 𝗠𝗼𝗻(𝕊𝗲𝘁) by defining a “free” functor 𝘍 𝘓 as a left adjoint to the

forgetful 𝘜𝘓 ≔ 𝑈𝗠𝗼𝗻.
The free functor takes each set to our proclaimed free monoid as

𝘍 𝘓∶ 𝕊𝗲𝘁 → 𝗠𝗼𝗻(𝕊𝗲𝘁)
𝑋 ↦ (𝑋 ∗, ⧺, [⃗])
𝑋

𝑌
𝑓 ↦

(𝑋 ∗, ⧺, [⃗])

(𝑌 ∗, ⧺, [⃗])
𝘍 𝘓𝑓 ,

where 𝘍 𝘓𝑓 is defined by pointwise application,

𝘍 𝘓𝑓 ∶ 𝑋 ∗ → 𝑌 ∗; [𝑥1, 𝑥2, …] ↦ [𝑓 (𝑥1), 𝑓 (𝑥2), …]

and of course 𝘍 𝘓𝑓 ([]) = [].
We pose the free-forgetful adjunction 𝘍 𝘓 ⊣ 𝘜𝘓 by defining the unit and

counit. The unit is a natural “insertion of generators”,

𝜂∶ id𝕊𝗲𝘁 ⇒ 𝘜𝘓𝘍 𝘓 with components 𝜂𝐴∶ 𝐴 → 𝐴∗; 𝑥 ↦ [𝑥].

For any given element in the generating set 𝐴, 𝜂𝐴 simply pics out the

singleton list in 𝐴∗ containing that element. Comparatively, the counit

does a lot more work. Given any monoid 𝑀 = (|𝑀|, Ⓜ, 𝑒𝑀) ∈ 𝗠𝗼𝗻(𝕊𝗲𝘁),
the counit

𝜀 ∶ 𝘍 𝘓𝘜𝘓 ⇒ id𝗠𝗼𝗻
maps the free-monoid on |𝑀| back into 𝑀 . The only data on hand to per-

form such a procedure is Ⓜ and 𝑒𝑀 , so we pass straightforwardly to the

mapping

𝜀𝑀 ∶ (𝑀∗, ⧺, [⃗]) → (𝑀, Ⓜ, 𝑒𝑀)

{ [] ↦ 𝑒𝑀
[𝑚1, 𝑚2, 𝑚3, …, 𝑚𝑛] ↦ 𝑚1 Ⓜ 𝑚2 Ⓜ 𝑚3 Ⓜ⋯Ⓜ 𝑚𝑛

(3.4.5)

52

In words, we take the underlying set of 𝑀 and generate from it the free

monad (|𝑀|∗, ⧺, [⃗]) of all finite strings of 𝑀-elements; then each of those

strings, which may be regarded as [𝑚1] ⧺ [𝑚2] ⧺ ⋯ maps to the same

expression but with the brackets removed and ⧺ replaced by Ⓜ: 𝑚1 Ⓜ
𝑚2 Ⓜ⋯.

If unfamiliar, I shall leave it to the reader to convince themselves that

this co/unit satisfy the triangle identities, (B.16.21), or perhaps consult a

more generous presentation: [109, eg. 10.7], [82, ch. 13], [169, ch. 13]. In

short,

𝘜𝘓𝜀 ∘ 𝜂𝘜𝘓 = id𝘜𝘓

is satisfied because, starting from a monoid (𝑀, Ⓜ, 𝑒𝑀),
• forgetting the structure gives 𝑀 = {𝑒𝑀 , 𝑚1, 𝑚2, …}, then
• inserting the generators into𝑀∗ gives the image {[𝑒𝑀], [𝑚1], [𝑚2], …},
then

• applying to that the forgotten 𝜀, has the effect of simply removing

the list-brackets, leaving us where we started.

And

𝜀𝘍 𝘓 ∘ 𝘍 𝘓𝜂 = id𝘍 𝘓

is satisfied because, starting from a set 𝐴,

• applying 𝘍 𝘓 gives (𝐴∗, ⧺, []), then
• applying 𝘍 𝘓𝜂 identifies the lists of 𝐴∗ as generators in 𝐴∗∗, giving
(𝐴∗∗, ⧺, []), all lists of lists of 𝐴-elements, then

• applying 𝜀𝘍 𝘓 concatenates the outer layer of lists giving back the set

of all lists of 𝐴, still in the monoid (𝐴∗, ⧺, []).

construction 3.4-4 (The list monad). By thm. 3.4-2, we know the ad-

junction 𝘍 𝘓 ⊣ 𝘜𝘓 gives rise to a monad 𝘓 = (𝘜𝘓𝘍 𝘓, 𝜂, 𝜇) where

𝜂 = 𝜂∶ id ⇒ 𝘓 (i.e., the monad unit is the adjunction unit)

and

𝜇 = 𝘜𝘓𝜀𝘍 ∶ 𝘓2 ⇒ 𝘓,

53

taking “lists of lists” to lists by concatenation. (See [81, p. IV.4].) This

“free monoid monad” is the list-monad, ubiquitous in the community of

fp-programmers.

construction 3.4-5 (𝘓-algebras). Consider the 𝘓-algebras, (𝐴, 𝛼 ∶ 𝘓𝐴 →
𝐴). The structure map 𝛼 must be equivalent to a collection of maps to

distill each word in 𝐴∗ to a single 𝐴-value. But all the structure of the

adjunction allows us to be more concise. Substituting 𝛼 into the “universal

mapping property” (ump) of the adjunctive unit, (B.16.22), we get

(𝐴∗, ⧺, []) 𝘍 𝘓𝐴 (𝐴, Ⓐ, 𝑎0)

𝘜𝘓𝘍 𝘓𝐴 𝘓𝐴 𝐴 𝘜𝘓 (𝐴, Ⓐ, 𝑎0)

𝐴

= 𝜀∘𝘍 𝘓𝛼

= 𝛼 =
𝜂𝐴

which shows that themapping of 𝛼 is tantamount to the choice of amonoid

(𝐴, Ⓐ, 𝑎0) as

𝛼 ∶ { [] ↦ 𝑎0
[𝑎1, 𝑎2, 𝑎3, …, 𝑎𝑛] ↦ 𝑎1 Ⓐ 𝑎2 Ⓐ 𝑎3 Ⓐ⋯Ⓐ 𝑎𝑛

Notice then that 𝘓-algebras have inbuilt, the monoid axioms suggesting

something interesting about the relationship between the Eilenberg-Moore

category 𝕊𝗲𝘁𝘓 and 𝗠𝗼𝗻(𝕊𝗲𝘁). (I leave that to the reader’s imagination, as

it is something I shall not use.)

3.5 categorical monoids & monoid actions

In this section we see how algebras over a monad generalise “actions of a

monoid” for monoids in an arbitrary category. The slogan I borrow from

Arbib and Manes is “sets are functors”, but paraphrased to objects are func-
tors; this view being facilitated by a monoidal product. Let 𝘾 be monoidal

closed, as per §3.1.3.

54

definition 3.5-1. The functor 𝘗 assigns, to each 𝘾-object, a functor; and

to each arrow, a natural transformation as

𝘗 ∶ 𝘾 → 𝘾𝘾

𝑋 ↦ − ⊗ 𝑋
𝐴

𝐵
𝑓 ↦

id− ⊗ 𝐴

id− ⊗ 𝐵
id− ⊗ 𝑓 .

Let us embrace the notion of objects as functors and denote in short �̂� =
𝘗 𝐴, �̂� = 𝘗 𝐵 and so on. Likewise, any 𝑓 ∶ 𝐴 → 𝐵 becomes ̂𝑓 ∶ �̂� ⇒ �̂�,
satisfying the naturality square

�̂� 𝑋 �̂� 𝑌

�̂� 𝑋 �̂� 𝑌

�̂� 𝑔

̂𝑓 ̂𝑓
�̂� 𝑔

for any 𝑔 ∶ 𝑋 → 𝑌 .
Since ℂ𝗮𝘁 is Cartesian closed, we can regard⊗∶ 𝘾 ×𝘾 → 𝘾 as curried:

𝘾 → 𝘾𝘾 , and 𝘗 just lambda-lifts the second position instead of the first.

theorem 3.5-2. The natural transformations ̂𝑓 are unique, and in bijec-

tion with arrows hom(𝐴, 𝐵), so 𝘗 is fully faithful, and it is additionally

injective on objects

Proof. Cf. [32, §10.2].

In other words, this construction embeds 𝘾 as a full subcategory of

𝘾𝘾 . This is alluding to the fact that monoids in 𝘾 will also be monoids in

𝘾𝘾 , as we shall later see.

observation 3.5-3. Composition of these left-tensor functors mirrors

the monoidal composition of the product:

�̂� ∘ �̂� = (− ⊗ 𝐴) ⊗ 𝐵

55

observation 3.5-4. Iterated products can be constructed as iterated com-

posites:

�̂�0 1𝘾 = 𝐴⊗0 = 1𝘾
�̂�1 1𝘾 ≅ 𝐴⊗1 = 𝐴 (since ℓ𝐴∶ 1𝘾 ⊗ 𝐴 ⥲ 𝐴)
�̂�2 1𝘾 ≅ 𝐴⊗2

�̂�3 1𝘾 ≅ 𝐴⊗3

⋮
�̂�𝑛 1𝘾 ≅ 𝐴⊗𝑛

This way, abstract lists (that take their precise meaning depending on ⊗)

can be built as chains

1𝘾 �̂� 1𝘾 �̂�2 1𝘾 ⋯

𝐴⊗0 𝐴⊗1 𝐴⊗2 ⋯

�̂� �̂�

ℓ𝐴∼

�̂�

ℓ ⊗ id∼

−⊗𝐴 −⊗𝐴 −⊗𝐴

This foreshadows amore rigorous and general construction later: fixpoints

of endofunctors.

notation 3.5-5. For each 𝐴 ∈ 𝘾 , the functor �̂� will have algebras of

the form (𝐵, 𝛽 ∶ �̂� 𝐵 → 𝐵). Since we have identified these functors with

objects, let us call them object algebras.

We now position ourselves to describe monoids internal to 𝘾 , which

will have an interesting relationship to object algebras.

definition 3.5-6 (monoid object). In a monoidal category (𝘾, ⊗, 1𝘾), a
monoid object in 𝘾 , aka an internal monoid, aka a 𝘾-monoid, is a dia-

gram of shape

1𝘾 𝑀 𝑀 ⊗𝑀 ,
𝑒𝑀 Ⓜ (3.5.6)

specified as a tuple (𝑀, Ⓜ, 𝑒𝑀) where,

 𝑀 , a 𝘾-object (the monoid object),

56

 Ⓜ∶ 𝑀 ⊗ 𝑀 → 𝑀 , a morphism called the multiplication of the

monoid,

 𝑒𝑀 ∶ 1𝘾 → 𝑀 , and a global element determining a monoidal unit;
all subject to the commutativity of the association pentagon3

𝑀

𝑀 ⊗𝑀 𝑀 ⊗𝑀

𝑀 ⊗ (𝑀 ⊗𝑀) (𝑀 ⊗𝑀) ⊗ 𝑀 ,

Ⓜ Ⓜ

id𝑀 ⊗Ⓜ

𝛼

Ⓜ ⊗ id𝑀

and the unitor diagrams

1𝘾 ⊗𝑀 𝑀 ⊗𝑀 𝑀 ⊗ 1𝘾 .

𝑀

𝑒𝑀 ⊗ id𝑀

ℓ𝑀
Ⓜ

id𝑀 ⊗ 𝑒𝑀

𝜚𝑀

note. It is often useful to denote a monoid’s operation with an infix

symbol, 𝑚1Ⓜ𝑚2, as above. When it is of benefit to clarity, an infix symbol

may be put between parentheses and treated as an prefix morphism 𝑚1 Ⓜ
𝑚2 ≡ (Ⓜ)(𝑚1, 𝑚2), as per ntn. A.1-10.

Notice that algebraic monoids are exactly (𝕊𝗲𝘁, ×, 𝟣)-monoids; but cat-

egorical monoids generalise to any monoidal category.

Monoid homomorphisms are also manifest at the internal level of anal-

ysis.

definition 3.5-7. A 𝘾-arrow ℎ∶ 𝑀 → 𝑀′ is a 𝘾-monoid homomor-
phism if it preserves the associativity and unitor diagrams by commuta-

3 Trivia: sometimes called “Mac Lane’s pentagon” after Saunders Mac Lane who
wrote [81]

57

tivity of the diagrams

𝑀 ⊗𝑀 𝑀′ ⊗𝑀′

𝑀 𝑀′

ℎ ⊗ ℎ

𝜇 𝜇′
ℎ

and
1𝘾

𝑀 𝑀′

1⃗𝑀 1⃗𝑀′

ℎ
.

This leads to a category!

definition 3.5-8. The category of 𝘾-monoids, 𝗠𝗼𝗻(𝘾) is comprised of
objects: all monoid objects in 𝘾 and
arrows: all monoid object homomorphisms.

When 𝘾 is clear from context, we just write 𝗠𝗼𝗻.
observation 3.5-9. Every𝘾-monoid (𝑀, Ⓜ, 𝑒𝑀) induces amonad (�̂�, 𝜇, 𝜂)
with

𝜇 ≔ (id × Ⓜ) ∘ 𝛼−1∶ �̂�2 − ⇒ �̂� −, where
 𝛼−1 is the (inverse) product associator:

(− ⊗ 𝑀) ⊗ 𝑀 ⥲ − ⊗ (𝑀 ⊗𝑀)
and

𝜂 ≔ (id ⊗ 𝑒𝑀) ∘ 𝜚−1∶ − ⇒ �̂� −, where
 𝜚−1 is the (inverse) right unitor: − → − ⊗ 1.

These 𝜇, 𝜂 observe the monad laws,

�̂�3 �̂�2

�̂�2 �̂�

�̂� 𝜇

𝜇�̂� 𝜇

𝜇

and
�̂� �̂�2 �̂�

�̂�

�̂�𝜂

𝜇

�̂��̂�

So, for anymonoid𝑀 ∈ 𝗠𝗼𝗻(𝘾)wehave amonad in𝘾𝘾 given by (�̂�, 𝜇, 𝜂)
above!

This observation if surprising, may at least have been predictable. The

functor 𝘗 maps 𝘾 into the functor category 𝘾𝘾 . There is a now famous

slogan within fp lore that “monads are just monoids in the category of

endofunctors”. So we can reason just on a semantic level that, through 𝘗 ,
the image of monoids in 𝘾 will be monoids 𝘾𝘾 and thus are monads.

58

There is a forgetful functor 𝘜 ∶ 𝗠𝗼𝗻(𝘾) → 𝘾 which has a ‘free’ left

adjoint, taking each 𝘾-object to the free monoid it generates.

construction 3.5-10 (Free 𝘾-monoids). This construction parallels ex-

actly the construction of 𝕊𝗲𝘁-monoids from const. 3.4-3, only now we

lack the insight of element-wise thinking. But because multi-products are

countably iterated applications of ⊗, there is a natural ordering that was

illustrated in obs. 3.5-4. Thereby, iterated products inherit the ordering of

the natural numbers making them amenable to inductive reasoning.

First, we define the functor (−)∗ (re-using the Kleene-star) as follows:

(−)∗∶ 𝘾 → 𝘾
𝑋 ↦ ∑

𝑛∈ℕ
𝑋⊗𝑛

𝑋

𝑌
𝑓 ↦ ∑

𝑛∈ℕ
𝑓⊗𝑛 ∶

𝑋 ∗

𝑌 ∗
ℎ .

Objects 𝑋 ∗ are the coproduct of all finite ⊗-powers of 𝑋 .4 Likewise, 𝑓 ∗ is

𝑓 applied to each factor in a given power of 𝑋 : for 𝑋⊗𝑛 we have

𝑓 ∗ 𝜄𝑛←− 𝑓⊗𝑛 = 𝑓 ⊗ 𝑓 ⊗ ⋯ ⊗ 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛−times

∶ 𝑋⊗𝑛 → 𝑌⊗𝑛.

In 𝕊𝗲𝘁 with ⊗ = × and + = ⊔, then (−)∗ is the Kleene start and 𝑓 ∗ is just

the pointwise application of 𝑓 to a tuple of𝑋 s producing a tuple of 𝑌 s. One

can swiftly verify that (−)∗ obeys the functor axioms: (𝑔 ∘𝑓)∗ = 𝑔∗ ∘𝑓 ∗ and
id∗𝑋 = id𝑋 ∗ . We can then construct free monoids from the free-forgetful

4 If the reader is familiar with graded structures, this definition makes it apparent
that (𝑋 ∗, ⧺, 𝜄0) is a graded monoid with the coproduct preserving the degree. Then we
have 𝑋⊗𝑚 ⊗ 𝑋⊗𝑛 ≅ 𝑋⊗(𝑚+𝑛), ∀ 𝑚, 𝑛 ∈ ℕ.

59

adjunction 𝘍 𝘓 ⊣ 𝘜𝘓 with

𝘍 𝘓∶ 𝘾 → 𝗠𝗼𝗻(𝘾)
𝑋 ↦ (𝑋 ∗, ⧺, 𝜄0)
𝑋

𝑌
ℎ ↦

(𝑋 ∗, ⧺, 𝜄0)

(𝑌 ∗, ⧺, 𝜄0)
ℎ∗

⊣

𝘜𝘓∶ 𝗠𝗼𝗻(𝘾) → 𝘾
(𝑋 , 𝜇𝑋 , 1⃗𝑋) ↦ 𝑋
(𝑋 , 𝜇𝑋 , 1⃗𝑋)

(𝑌 , 𝜇𝑌 , 1⃗𝑌)
ℎ ↦

𝑋

𝑌
ℎ

where the unit 𝜄0∶ 1𝘾 → 𝑋 ∗ is the 0-th coproduct injection sending the

1𝘾 to 𝑋⊗0 = 1𝘾 : the empty product. Multiplication ⧺∶ 𝑋 ∗ ⊗ 𝑋 ∗ →
𝑋 ∗ is a generalised concatenation: 𝑋⊗𝑚 ⊗ 𝑋⊗𝑛 ≅ 𝑋⊗𝑚+𝑛 defined by the

calculation

𝑋 ∗ ⊗ 𝑋 ∗

= {by definition}

(∑𝑚 𝑋⊗𝑚) ⊗ (∑𝑛 𝑋⊗𝑛)

⥲ {applying the distributor (3.1.1)}
∑𝑚, 𝑛 𝑋⊗𝑚 ⊗ 𝑋⊗𝑛

⥲ {consolidating with 𝜛𝑚,𝑛
𝑋 , prop. B.9-6}

∑𝑚, 𝑛 𝑋⊗(𝑚+𝑛)

→ {injection of the coproduct 𝑋 ∗ by 𝜄𝑚+𝑛}
𝑋 ∗

As a composite,

⧺ ≔ 𝑋 ∗ ⊗ 𝑋 ∗ 𝜛𝑚,𝑛
𝑋 ∘ 𝑑−−−−−−→ ∑

𝑚, 𝑛
𝑋⊗(𝑚+𝑛) ∑𝑚, 𝑛 𝜄𝑛+𝑚−−−−−−−→ 𝑋 ∗

= (∑
𝑚, 𝑛

𝜄𝑛+𝑚) ∘ 𝜛𝑚,𝑛
𝑋 ∘ 𝑑.

This means for 𝑥𝑚 ∈ 𝑋⊗𝑚 and 𝑥𝑛 ∈ 𝑋⊗𝑛, 𝑥𝑚 ⧺ 𝑥𝑛 ∈ 𝑋⊗(𝑚+𝑛) ∈ 𝑋 ∗ is

formed by simply regrouping 𝑥𝑚 and 𝑥𝑛 into a single product object 𝑥𝑚, 𝑛 ∈

60

𝑋⊗(𝑚+𝑛) which has the 𝑚 factors of 𝑥𝑚 with the 𝑛 factors of 𝑥𝑛 appended

to the right. Those data are then injected to 𝑋 ∗.

Mac Lane shows the adjunction 𝘍 𝘓 ⊣ 𝘜𝘓 by defining 𝜂 and demon-

strating that it fulfills the universal mapping property of the adjunction

unit [81, §VII.3, thm. 2]. Instead, I will briefly describe the unit and counit

in analogy to the ones defined for (𝕊𝗲𝘁, ×) in const. 3.4-3. The unit of

the adjunction, 𝜂 = 𝜄1, an abstract insertion of generators provided by the

natural coproduct injection. The counit extends a monoidal operation to

evaluate iterated products by recursive use of the monoidal unit, analo-

gous to (3.4.5), but now without the point-wise internals.

Given a monoid 𝐴 = (𝐴, Ⓐ, 𝑎0) ∈ 𝗠𝗼𝗻(𝘾) and the free monoid

𝘍 𝘓𝘜𝘓𝐴 = (𝐴∗, ⧺, 𝜄0) the counit at coordinate 𝐴 is

𝜀𝐴 ≔ ∑
𝑛∈ℕ

Ⓐ(𝑛)

where

Ⓐ(0) ≔ 𝑎0, Ⓐ(1) ≔ id𝐴, Ⓐ(2) ≔ Ⓐ, Ⓐ(𝑛+1) ≔ (Ⓐ) ∘ (Ⓐ𝑛 ⊗ id𝐴).

The inductive definition of Ⓐ𝑛 is a bit ad-hoc and the whole operation

will be naturally systematised later; and obs. 3.5-4 pointing out chains of

iterated functor application was an early hint at the process.

3.5.1 Monoid Actions

definition 3.5-11. Given a𝘾-monoid𝑀 = (𝑀, Ⓜ, 𝑒𝑀), a right𝑀-action
is a tuple

(𝑆, 𝑀, 𝑆 ⊗ 𝑀 𝜌−→ 𝑆)

61

where (𝑆, 𝜌) is an𝘔-algebra that additionally preserves the monadic struc-

ture of 𝑀 by observing commutativity of the diagrams

𝑆 ⊗ (𝑀 ⊗𝑀) 𝑆 ⊗ 𝑀

(𝑆 ⊗ 𝑀) ⊗ 𝑀

𝑆 ⊗ 𝑀 𝑆

id𝑆 ⊗Ⓜ

𝛼
𝜌

𝜌 ⊗ id𝑀
𝜌

and

𝑆 ⊗ 1𝘾 𝑆 ⊗ 𝑀

𝑆

id𝑆 ⊗ 𝑒𝑀

𝜚 𝜌 .

When 𝑆 can be safely inferred, we simply identify the right𝑀-action with

𝜌.

note. Since we only discuss right actions, let it be understood that an

𝑀-action is a right 𝑀-action.

observation 3.5-12 ([32, §10.2, obs. 8]). Let (𝑀, Ⓜ, 𝑒𝑀) be a monoid

with correspondingmonad (�̂�, 𝜇, 𝜂) as per obs. 3.5-9. Any𝘾-arrow 𝜌 ∶ 𝑆⊗
𝑀 → 𝐴 is a monoid action if and only if

�̂�2 𝑆 �̂� 𝑆

�̂� 𝑆 𝑆

𝜇

�̂� 𝜌 𝜌
𝜌

and
𝑆 �̂� 𝑆

𝑆

𝜂

𝜌

commute. And, these are exactly the conditions for 𝜌 to be an �̂�-algebra.
Namely, associativity and unital conditions.

definition 3.5-13. An𝑀-action homomorphism is a 𝘾-arrow ℎ∶ 𝑆 → 𝑆′
such that

𝑆 ⊗ 𝑀 𝑆′ ⊗𝑀

𝑆 𝑆′

ℎ ⊗ id𝑀

𝜌 𝜌′
ℎ

(3.5.7)

commutes.

62

observation 3.5-14. Rehearsing (3.5.7) with the domains expressed through

�̂� gives

�̂� 𝑆 �̂� 𝑆′

𝑆 𝑆′

�̂� ℎ

𝜌 𝜌′
ℎ

it immediately follows from comparison to (3.3.4) that𝑀-action homomor-

phisms are �̂�-algebra homomorphisms as well.

definition 3.5-15. The category of right 𝑀-actions in 𝘾 , 𝗔𝗰𝘁𝑀 (𝘾) is

comprised of

objects: all right 𝑀-actions in 𝘾 and
arrows: all right 𝑀-action homomorphisms.

observation 3.5-16. Monadic �̂�-algebras are exactly 𝑀-actions. From

the point of view of systems theory, we are particularly interested in an

adjoint situation between𝗔𝗰𝘁𝑀∗ and the Lambek algebra category �̂�-𝗔𝗹𝗴,
to be discussed in §3.6 where it will be more tangibly described in the

context of automata.

3.6 categorification of classical automata

The definitions, calculations and results of this section are meant to form

an interface from ordinary algebraic reasoning about automata, which I

hope will be familiar to the reader, to the more abstract setting of ct. It

is largely a modernised summary of a 1975 paper by Goguen [33], with a

view toward abstracting further in later sections.

With that said, let us start with something familiar: a fairly typical

definition of an automaton/machine/discrete system:

definition 3.6-1. A discrete, sequential input/state/output (i/s/o) sys-
tem is specified as a tuple

(𝐼 , 𝑆, 𝑂, 𝑆 × 𝐼 𝛿−→ 𝑆, 𝑆 𝑟−→ 𝑂, 𝑠0)

63

where
 𝐼 , 𝑆, 𝑂 are sets of values for input, state and output, respectively;
 𝛿 ∶ 𝑆 × 𝐼 → 𝑆 is the state transition function, which encodes the

input-evolution of the systems state, sometimes viewed with the ad-

ditional structure of a right action of 𝐼 on 𝑆;
 𝑟 ∶ 𝑆 → 𝑌 is the readout function, mapping internal states to ex-

ternally observable variables; and
 𝑠0 ∈ 𝑆 is the initial state describing the starting configuration of

the system prior to any input driven transitions.

In the literature, this base definition reflects some commonalities but

are often embellished with data and axioms based on the topic of discus-

sion. For examples, sometimes the sets are required to be finite.

definition 3.6-2 (Preliminary). Given a discrete sequential i/s/o system

𝛴 = (𝐼 , 𝑆, 𝑂, 𝛿, 𝑟 , 𝑠0), if 𝑆 is a finite set and 𝐼 , 𝑂 are non-empty finite sets,

then 𝛴 is a Moore machine.
Sometimes the sets are replaced with vector spaces and 𝛿, 𝑟 are linear

maps giving discrete linear machines. Sometimes time-dynamics are in-

cluded by appending some notion of time and replacing 𝛿 with difference

or differential equations.

note. Many definitions do not include an initial state, most prominently,

Kálmán’s [20, §1.4] and Arbib’s [28] definitions of machines. This has

deep algebraic (and philosophical) repercussions that will be exposed in

this section and laid bare in the next and in ch. 5. It is related to the

algebra/coalgebra duality, which extends to a duality of an i/s-systemwith

initial state and an i/s/o-system without initial state.

Categorification5 of discrete sequential i/s/o systems proceeds along

the following lines,
5 Trivia: the term categorified was coined by American mathematician and theoreti-

cal physicist Louis Crane, who is perhaps best known (at least to me) for his contributions
in topological quantum field theory. Web-search “Barrett–Crane model” for some partic-
ulars.

64

• the sets 𝐼 , 𝑆, 𝑂 become objects in a biccc 𝘾 ;
• 𝛿 and 𝑟 become arrows in this category; and
• iteration of the state transitions is induced naturally as the action of

the free monoid generated by the input object.
This will then lead to the generalisation of reachability and behaviours.

3.6.1 Transition domain functors and their algebras

Let 𝘾 be a category, as described in §3.1.3, with closed monoidal structure

and denumerable coproducts. Also let

𝛴 = (𝐼 , 𝑆, 𝑂, 𝑆 ⊗ 𝐼 𝛿−→ 𝑆, 𝑆 𝑟−→ 𝑂, 𝑠0)

be an i/s/o system like def. 3.6-1, but with the sets 𝐼 , 𝑆, 𝑂 replaced by 𝘾-

objects and 𝛿, 𝑟 by 𝘾-arrows. The initial state 𝑠0 becomes a global element,

𝑠0∶ 1𝘾 → 𝑆.

observation 3.6-3. We can immediately spot that (𝑆, 𝛿 ∶ ̂𝘐 𝑆 → 𝑆) in

𝛴 is an ̂𝘐-algebra. The functor ̂𝘐 should be regarded as “transforming the

state space 𝑆 into a new object, ̂𝘐 𝑆 on which the dynamics act [31, p. 315].

3.6.2 State Stepping & Monoid Actions

An ordinary algebraic treatment of sequential machine theory may in-

clude the formulation of the “right-action” of the free monoid of input

on the set of states. This extends the machinery in 𝛴 to operate on se-

quences of input. This idea terms of sets and functions is this: when given

a sequence of input 𝑤 ∈ [𝑖0, 𝑖1, …], we have to hand-crank the iteration

of 𝛴 by accumulating state transitions in the first argument of 𝛿 :

𝑠′ = ⋯𝛿(⋯𝛿(𝛿(𝑠0, 𝑖0), 𝑖1), …)⋯ (3.6.8)

at arbitrary depth. Organised as a right action

(𝑆, (𝐼 ∗, ⧺, 𝜄0), ·∶ ̂𝘐∗ 𝑆 → 𝑆)),

65

we can write this more simply as

𝑠′ = 𝑠0 [𝑖0, 𝑖1, …].

Iteration still underpins this cleaner notation as we work through the list:

𝑠′ = (𝑠0 𝑖0) [𝑖1, …] = ((𝑠0 𝑖0) 𝑖2) […],

but it is intentionally obscured as an automaticity by the juxtaposition of

𝑠0 with a word.

Section 3.5.1 gives a categorification of right monoid actions. By ex-

tension of obs. 3.5-12, each monoid (𝐼 ∗, ⧺, 𝜄0) gives an equivalent monad

(̂𝘐∗, 𝜇, 𝜂), implying an equivalence between𝗔𝗰𝘁𝐼 ∗ and the Eilenberg-Moore

category 𝘾 (̂𝘐∗, 𝜇, 𝜂). But that section ends with an unsupported claim that

even the categories𝗔𝗰𝘁𝐼 ∗ and ̂𝐼 -𝗔𝗹𝗴 (the category of 𝐼 -object-algebras) are
adjoint. Here is the place we elucidate that situation in earnest.

theorem 3.6-4 ([33, thm. 3.2]). If 𝘾 is a closed symmetric monoidal

category with denumerable coproducts, then

𝗔𝗰𝘁𝐼 ∗ ≅ ̂𝘐-𝗔𝗹𝗴

for all 𝐼 ∈ 𝘾 .

Proof. cf. [33]6.

3.6-5 The proof of this theorem is in simply witnessing the adjunction

with a pair of functors and then showing they are mutually inverse. We

shall not herein demonstrate the inverse relationship those functors (thought

it is straightforward to do so) but we will go into the details of the functors

themselves as they relate to automata theory. Let us denote them,

̄(−)∶ 𝗔𝗰𝘁𝐼 ∗ → ̂𝘐-𝗔𝗹𝗴 and (−)+∶ ̂𝘐-𝗔𝗹𝗴 → 𝗔𝗰𝘁𝐼 ∗ .
6 Goguen’s [33] spelled ̂𝘐-𝗔𝗹𝗴 as 𝗠𝗼𝗻𝗱𝐼 . What I call object-algebras, Goguen called

“𝐼 -monadic algebras”, but in that time he used term “monad” differently. At that point in
history, the more common term for monad was “triple”, though the term “monad” was
introduced by Bénabou in 1967.

66

In the first, we can pre-compose a given 𝜌 with id𝑆 ⊗ 𝜄1 which adapts

the domain, restricting from 𝑆 ⊗ 𝐼 ∗ to 𝑆 ⊗ 𝐼 as

𝑆 ⊗ 𝐼 𝑆 ⊗ 𝐼 ∗ 𝑆.id ⊗ 𝜄1 𝜌
(3.6.9)

More explicitly we define,

̄(−)∶ 𝗔𝗰𝘁𝐼 ∗ → ̂𝘐-𝗔𝗹𝗴
𝜌 ↦ ̄𝜌 ≔ 𝜌 ∘ (id𝑆 ⊗ 𝜄1)
𝜌

𝜌′
ℎ ↦

̄𝜌

̄𝜌′
ℎ̄ which are both just

𝑆

𝑆′
ℎ ∈ 𝘾.

If we think concretely of sets, then (3.6.9) maps thusly: (𝑠, 𝑖) ↦ (𝑠, [𝑖]) ↦
𝜌(𝑠, [𝑖]). The action on 𝗔𝗰𝘁𝐼 ∗-arrows is practically identity since they are

both just 𝘾-arrows between state objects.

The second functor, (−)+∶ ̂𝘐-𝗔𝗹𝗴 → 𝗔𝗰𝘁𝐼 ∗ is slightly more involved

because we need an inductively defined family of morphisms to enact it-

eration for every 𝐼⊗𝑛 in 𝐼 ∗.
(−)+∶ ̂𝘐-𝗔𝗹𝗴 → 𝗔𝗰𝘁𝐼 ∗

𝛿 ↦ 𝛿+
𝛿

𝛿′
ℎ ↦

𝛿+

(𝛿′)+
ℎ+ which are both just

𝑆

𝑆′
ℎ ∈ 𝘾.

The maps on arrows is nearly identity since ℎ is just a 𝘾-arrow from 𝑆 to

𝑆′.
The mapping from 𝛿 ↦ 𝛿+ is defined inductively. Let

𝑐0∶ 𝑆 ⊗ 1𝘾 → 𝑆 ≔ 𝜚 (the right unitor),
as the base case of the induction. Then 𝑐𝑛+1 is composed from the calcula-

tion

𝑆 ⊗ 𝐼⊗(𝑛+1)
= {applying id𝑆 ⊗ (𝜛𝑛,1

𝐼)−1, with 𝜛 from prop. B.9-6}

67

𝑆 ⊗ (𝐼⊗𝑛 ⊗ 𝐼)
⥲ {application of the associator, 𝛼}

(𝑆 ⊗ 𝐼⊗𝑛) ⊗ 𝐼
→ {application of 𝑐𝑛 ⊗ id𝐼 }

𝑆 ⊗ 𝐼
→ {application of 𝛿}

𝑆

Thereby,

𝑐𝑛+1∶ 𝑆 ⊗ 𝐼⊗(𝑛+1) → 𝑆 ≔ 𝛿 ∘ (𝑐𝑛 ⊗ id𝐼) ∘ 𝛼 ∘ (id𝑆 ⊗ (𝜛𝑛,1
𝐼)−1),

and thus we define

𝛿+ ≔ ∑
𝑛 ∈ ℕ

𝑐𝑛 ∶ 𝑆 ⊗ 𝐼 ∗ → 𝑆.

The inductive definition applied to functional structure equates to recur-

sion. This recursion provides a mathematical “call stack” that holds the

state of the system as the state of the calculation, as in (3.6.8).

note. This pattern will be a leitmotif, rehearsed thought the thesis at

different levels of abstraction.

3.6.3 Equipping initial state

Many mathematical definitions of a state system (as in def. 3.6-1) parcel

an initial state with the dynamical machinery. To have an equivalence

between those classical systems and the categorical definition, we need

to enshrine initial state within the categorical data. This is done in two

parts: (1) shifting to pointed object algebras, ̂𝘐•-algebras by appending a

global elements 𝑠0 ∈ 𝘾(1𝘾 , 𝑆) and requiring the homomorphisms preserve

them, yielding the category ̂𝘐•-𝗔𝗹𝗴; and (2) likewise embellishing the cate-

gory 𝗔𝗰𝘁− with a pointed structure: 𝗔𝗰𝘁−• ; This will once again lead to an

68

isomorphism of categories formalising the equivalence of single-step and

iterative state progression, but now bringing along the initial state.

definition 3.6-6. For any 𝐼 ∈ 𝘾 let ̂𝘐• be the functor ̂𝘐• − ≔ 1𝘾 + ̂𝘐 −. An

algebra of this functor satisfies

1𝘾 + ̂𝘐 𝑆 1𝘾 + ̂𝘐 𝑆′

𝑆 𝑆′

1𝘾+ ̂𝘐 ℎ

𝑠0▽𝛿 𝑠′0▽𝛿 ′
ℎ

where 𝑠0∶ 1𝘾 → 𝑆 and 𝑠′0∶ 1𝘾 → 𝑆′ are global elements. This is equivalent

to the simultaneous commutativity of the pair of diagrams:

1𝘾

𝑆 𝑆′
𝑠0 𝑠′0

ℎ
and

̂𝘐 𝑆 ̂𝘐 𝑆′

𝑆 𝑆′

̂𝘐 ℎ

𝛿 𝛿 ′
ℎ

Notice that this gives a means to appoint a state transition map in 𝛴
with its initial state. We can also append basepoints to the trio of defini-

tions for 𝑀-actions.

definition 3.6-7. Given a 𝘾-monoid 𝑀 , a pointed right 𝑀-action is a

tuple

(𝑆, 𝑆 ⊗ 𝑀 𝜌−→ 𝑆, 𝑠0),

where (𝑆, 𝜌) is a right 𝑀-action and 𝑠0 is a global element of 𝑆 called the

base point.

definition 3.6-8. A pointed 𝑀-action homomorphism is an 𝑀-action

homomorphismwhich preserves base points by additionally observing the

commutativity of
1𝘾

𝑆 𝑆′
𝑠0 𝑠′0

ℎ
.

69

definition 3.6-9. The category 𝗔𝗰𝘁𝑀• (𝘾) of pointed right 𝑀-actions in

𝘾 , is comprised of

objects: all pointed right 𝑀-actions in 𝘾 and

arrows: all pointed right 𝑀-action homomorphisms.

The pointed equivalent of thm. 3.6-4 follows.

theorem 3.6-10 ([33, thm. 3.3]7). If 𝘾 is a closed symmetric monoidal

category with countable coproducts then

𝗔𝗰𝘁𝐼 ∗• ≅ ̂𝘐•-𝗔𝗹𝗴

for any 𝐼 ∈ 𝘾 .

The isomorphism relating ̂𝘐•-𝗔𝗹𝗴 and𝗔𝗰𝘁𝐼 ∗• , is substantially the same as

thm. 3.6-4, but with base-points carried along. We can immediately recog-

nise that, by definition, (𝐼 ∗, ⧺̄, 𝜄0) is a pointed 𝐼 ∗-action and that (𝐼 ∗, 𝜄0▽⧺̄)
is a pointed object algebra. Denote ⧺̄• ≔ 𝜄0 ▽ ⧺̄.

theorem 3.6-11 ([33, thm. 3.4]). In the category ̂𝘐•-𝗔𝗹𝗴(𝘾), the algebra

(𝐼 ∗, ⧺̄•) is an initial object.

Proof. By definition, (𝐼 ∗, ⧺̄•) is initial in ̂𝘐•-𝗔𝗹𝗴 if an only if there exist

unique ̂𝘐-algebra homomorphisms

(𝐼 ∗, ⧺̄•) → 𝐴 for all 𝐴 = (𝑆, 𝑠0 ▽ 𝛿) ∈ ̂𝘐•-𝗔𝗹𝗴 .

The nature of this arrow can only depend on the behaviour of 𝑠0 ▽ 𝛿 , so
the notation will centre on that: call it ⦇𝑠0 ▽ 𝛿 ⦈. 8

Before describing ⦇𝑠0 ▽ 𝛿 ⦈, note that we can provide an inverse for ⧺̄
as

⧺̄−1
• ∶ 𝐼 ∗ → 1𝘾 + 𝐼 ∗ ⊗ 𝐼

7 Goguen’s [33] spells ̂𝘐•-𝗔𝗹𝗴 as 𝗠𝗼𝗱𝐼 .
8 I will later define ⦇−⦈ more generally as a universal arrow called a catamorphism,

which are the unique algebra homomorphisms from any initial functor-algebra.

70

defined piecewise as follows. Let

𝑐0 ≔ (𝜄0)•∶ 𝐼⊗0 → 1𝘾 + 𝐼 ∗ ⊗ 𝐼 ,

where (𝜄0)• is the 0-th coproduct injection into the sum 1𝘾 + 𝐼 ∗ ⊗ 𝐼 . This
merely maps the empty product to the term 1𝘾 . Let

𝑐1 ≔ 𝐼⊗1 = 𝐼 ℓ−1𝐼−−→ 1𝘾 ⊗ 𝐼 (𝜄0)𝐼 ∗⊗id−−−−−−−→ 𝐼 ∗ ⊗ 𝐼 (𝜄1)•−−−→ 1𝘾 + 𝐼 ∗ ⊗ 𝐼

where (𝜄0)∗𝐼 is the unit of (𝐼 ∗, ⧺, 𝜄0)with the subscript to disambiguate from

(𝜄)•. Then for 𝑛 ∈ ℕ≥2 let

𝑐𝑛 ≔ 𝐼⊗𝑛 = 𝐼⊗𝑛−1 ⊗ 𝐼 (𝜄𝑛−1)𝐼 ∗⊗id−−−−−−−−−→ 𝐼 ∗ ⊗ 𝐼 (𝜄1)•−−−→ 1𝘾 + 𝐼 ∗ ⊗ 𝐼 .

Finally,

⧺̄−1
• ≔ ∑

𝑛∈ℕ
𝑐𝑛.

(This inverse is a generalisation of the safe head/tail list deconstruction in

functional programming.) Specialising (3.3-2) to our particular case,

̂𝘐• 𝐼 ∗ 1𝘾 + 𝐼 ∗ ⊗ 𝐼 1𝘾 + 𝑆 ⊗ 𝐼 ̂𝘐• 𝑆

𝐼 ∗ 𝑆

=
⧺̄•⧺̄−1

•

̂𝘐• ⦇𝑠0▽𝛿 ⦈

𝑠0▽𝛿

=

⦇𝑠0▽𝛿 ⦈
,

the addition of the inverse ⧺̄−1
• , allows us to chase through a definition of

⦇𝑠0 ▽ 𝛿 ⦈ as

⦇𝑠0 ▽ 𝛿 ⦈ = 𝛿 ∘ ̂𝘐 ⦇𝑠0 ▽ 𝛿 ⦈ ∘ ⧺̄−1
•

= 𝛿 ∘ (1𝘾 + ⦇𝑠0 ▽ 𝛿 ⦈ ⊗ id𝐼) ∘ ⧺̄−1
• .

This unambiguously prescribes ⦇𝑠0 ▽ 𝛿 ⦈, which is only enabled by the iso-

morphism ̂𝘐• ≅ 𝐼 ∗ mediated by ⧺̄• and its inverse. (We will later recognise

this more generally as an application of Lambek’s lemma.) Conclude there-
fore that ⦇𝑠0 ▽ 𝛿 ⦈ is determined uniquely and hence, (𝐼 ∗, ⧺̄•) is initial.

71

The intuition here is that these unique ̂𝘐•-algebra homomorphisms, call

them ̂𝘐•-folds because they fold a structure map over a product of input

data in 𝐼 ∗, recursively applying it starting from 𝑠0. Using 𝘾 = 𝕊𝗲𝘁, much

more intuition will be provided in §3.8. But for now, if we take a list

[𝑖0, 𝑖1, 𝑖2] ∈ 𝐼 ∗ and then

⦇𝑠0 ▽ 𝛿 ⦈[𝑖0, 𝑖1, 𝑖2] = 𝛿(𝛿(𝛿(𝑠0, 𝑖0), 𝑖1), 𝑖2), (3.6.10)

is just the iteration of 𝛿 carrying the state of the calculation in the call-

stack along the first argument of 𝛿 . More generally, given a machine 𝛴 in

𝘾 , these catamorphisms give an arrow 𝐼 ∗ → 𝑆, relating sequenced input

to the state object by recursive composition of 𝛿 with 𝑠0 as a base case.

definition 3.6-12. A ̂𝘐•-algebra (𝑆, 𝑠0 ▽ 𝛿) is called reachable just in case

⦇𝑠0 ▽ 𝛿 ⦈ is an epimorphism in 𝘾 .

In 𝕊𝗲𝘁, epimorphisms are exactly surjections. So one can connect their

intuitions of reachability with the notion that a system is reachable if all

states are reachable by at least one input sequence. But it is not that

case that epimorphisms are the analogue of surjections in every category.

Many papers on this topic start with structuring 𝘾 with a formal epi/mono

factorisation system, which is equipment I have avoided.

corollary 3.6-13. Considering the theorems

• 3.6-10 showing that ̂𝘐•-algebras (and their homomorphisms) are in

isomorphism with pointed 𝐼 -actions (and their homomorphisms);

and

• 3.6-11 sowing that 𝐼 ∗ is initial in ̂𝘐-𝗔𝗹𝗴;
together, conclude that (𝐼 ∗, ⧺, 𝜄0) is also initial in 𝗔𝗰𝘁𝐼• .

3.6.4 Goguen machines & behaviour

The system 𝛴 from the previous chapter is now formally defined as a

Goguen machine.

72

definition 3.6-14. AGoguenmachine is an i/s/o-system in 𝘾 specified

as a tuple

(𝐼 , 𝑆, 𝑂, 𝑆 ⊗ 𝐼 𝛿−→ 𝑆, 𝑆 𝑟−→ 𝑂, 𝑠0)
where

 𝐼 , 𝑆, 𝑂 are 𝘾-objects marking input, state and output, respectively;

 (𝑆, 𝑠0 ▽ 𝛿) is a ̂𝘐•-algebra in 𝘾 ;

 𝑟 ∶ 𝑆 → 𝑂 is a 𝘾-arrow called the readout arrow.

Such a system is called reachable just in case its ̂𝘐•-algebra is reachable.

For the remainder of this section, Goguen machines will just be called

machines.
Morphisms of machines will involve arrows between the input, state

and output objects preserving the basepoint, ̂𝘐-algebra structure and the

readout maps.

definition 3.6-15. Given 𝘾-machines

𝛴 = (𝐼 , 𝑆, 𝑂, 𝛿, 𝑟 , 𝑠0)

and

𝛴′ = (𝐼 ′, 𝑆′, 𝑂′, 𝛿′, 𝑟 ′, 𝑠′0),

a homomorphism of machines 𝛴 → 𝛴′ is a triple of 𝘾-arrows

(𝐼 𝑓−→ 𝐼 ′, 𝑆 𝑔−→ 𝑆′, 𝑂 ℎ−→ 𝑂′)

such that

1𝘾

𝑆 𝑆′
𝑠0 𝑠′0

𝑔
,

𝑆 ⊗ 𝐼 𝑆′ ⊗ 𝐼

𝑆 𝑆′

𝑔⊗𝑓

𝛿 𝛿 ′
𝑔

and
𝑆 𝑆′

𝑂 𝑂′

𝑔

𝑟 𝑟 ′
ℎ

commute.

73

definition 3.6-16. The category of Goguen machines in 𝘾 , 𝗠𝗮𝗰𝗵(𝘾) is
comprised of

objects: all Goguen machines in 𝘾 , and

arrows: all machine homomorphisms.

There are also the full subcategories𝗠𝐼 ↪ 𝗠𝗮𝗰𝗵 of reachable 𝘐-machines,

with 𝑓 ∶ 𝐼 → 𝐼 ′ = id𝐼 in all homomorphisms.

I/o-behaviour exists independently in 𝘾 : after all, state is just an arte-

fact of modelling—but input/output relationships are empirically observ-

able. From that philosophical point comes the notion of representation of

an i/o-behaviour by an i/s/o-system.

definition 3.6-17. A i/o-behaviour , or simply behaviour in 𝘾 is a 𝘾-

arrow 𝑦 ∶ 𝐼 ∗ → 𝑂.

definition 3.6-18. A homomorphism of behaviours in 𝘾 is a pair of ar-

rows (𝑓 , ℎ) such that

𝐼 ∗ (𝐼 ′)∗

𝑂 𝑂′

𝑓 ∗

𝑦 𝑦 ′
ℎ

commutes.

definition 3.6-19. The category of behaviours in 𝘾 , 𝗕𝗲𝗵(𝘾) is com-

prised of

objects: all behaviours in 𝘾 and

arrows: all behaviour homomorphisms.

There is also the full subcategory 𝗕𝐼 (𝘾) ↪ 𝗕𝗲𝗵(𝘾) of behaviours with

domain 𝐼 ∗.

Given a Goguen machine we can straightforwardly assemble its ex-

ternal behaviour from its constituents. This fact leads to a functor from

𝗠𝗮𝗰𝗵 to 𝗕𝗲𝗵.

74

definition 3.6-20. Given a 𝘾-machine 𝛴, the functor

𝘉∶ 𝗠𝗮𝗰𝗵(𝘾) → 𝗕𝗲𝗵(𝘾)
𝛴 ↦ 𝑟 ∘ ⦇𝑠0 ▽ 𝛿 ⦈∶ 𝐼 ∗ → 𝑂

(𝑓 , 𝑔, ℎ) ↦ (𝑓 , ℎ)
is the external behaviour functor. In the case of reachable machines, the

functor restricts to 𝘉∶ 𝗠𝐼 → 𝗕𝐼 .

The inner workings of the calculation are mostly carried out by the

catamorphism ⦇𝑠0 ▽ 𝛿 ⦈. Recall, most crucially that the catamorphism in-

ternally encodes the state transition and the initial state. Thinking in 𝕊𝗲𝘁,
the function ⦇𝑠0▽𝛿 ⦈ iterates state transitions along a given input sequence

𝑤 ∈ 𝐼 ∗ so that ⦇𝑠0 ▽ 𝛿 ⦈(𝑤) ∈ 𝑆 is the resultant state. The readout function

then produces the output. Since the state transitions are all performed in-

ternally to the expression, no state information is ever externally available

and 𝘉𝛴 only produces external observables.

definition 3.6-21. Given a behaviour 𝑦 , it is said that a machine 𝛴 is a

realisation of 𝑦 just in case 𝘉𝛴 = 𝑦 .
We then come to the questions of identification and realisation we

know from elementary systems theory that state representations are non-

unique. So if we are handed a behaviour 𝑦 , we can expect there may be

many machines that represent it equivalently.

3.6.5 ̂𝘐•-algebra structure on 𝐼 ∗ ⊸ 𝑂

Since𝘾 is Cartesian closed, it has objects internally that encode behaviours.

Using the intuition of 𝕊𝗲𝘁, these objects are function spaces. We can there-

fore think of the objects of 𝗕𝐼 as elements of 𝐼 ∗ ⊸ 𝑂. More generally,

Ob𝗕𝐼 ≅ 𝘾(1𝘾 , 𝐼 ∗ ⊸ 𝑂)
with

𝗕𝐼 (𝑦 , 𝑦 ′) ≅ 𝘾(𝐼 ∗ ⊸ 𝑂, 𝐼 ∗ ⊸ 𝑂′).

75

Diagrammatically, given (id𝐼 ∗ , ℎ) ∈ 𝗕𝐼 (𝑦 , 𝑦 ′) we have commutativity of

𝑦 𝐼 ∗ ⊸ 𝑌

1𝘾

𝑦 ′ 𝐼 ∗ ⊸ 𝑌 ′
(id, ℎ) id ⊸ ℎ

𝑦

𝑦 ′

But much more is true: we have pointed algebras in 𝘾 so we have

important structure playing out in 𝘐∗• -𝗔𝗹𝗴. Given a 𝑦 ∈ 𝗕𝐼 , we can always

get the output resulting from null input. Define ev𝘉 by the composite

ev𝘉 ≔ (𝐼 ∗ ⊸ 𝑂) 𝜚−1−−−→ (𝐼 ∗ ⊸ 𝑂) ⊗ 1𝘾
id⊗𝜄0−−−−→ (𝐼 ∗ ⊸ 𝑂) ⊗ 𝐼 ∗ ev−−→ 𝑂.

If there were an underlying machine 𝑦 = 𝘉𝑀 then ev𝘉 (𝘉𝑀) ∈ 𝑂 is the

output of the internal initial state. But there need not be an underlying

machine and behaviours on their own have some notion of a starting con-

figuration.

Thinking in 𝘾 = 𝕊𝗲𝘁, we might imagine that starting with a chosen

behaviour 𝑦 and input 𝑖 ∈ 𝐼 , then there is a behaviour 𝑦 ′ such that

𝑦 ′([] ⧺ 𝑤) = 𝑦([𝑖] ⧺ 𝑤) for all 𝑤 ∈ 𝐼 ∗. (3.6.11)

The idea here is that there is some notion of a continuation of evolutionary

behaviour. For two 𝕊𝗲𝘁-systems

𝑦 = 𝘉(𝐼 , 𝑆, 𝑂, 𝛿, 𝑟 , 𝑠0) and 𝑦 ′ = 𝘉(𝐼 , 𝑆, 𝑂, 𝛿, 𝑟 , 𝑠′0),

if (3.6.11) holds it means 𝑠′0 = 𝛿(𝑠0, 𝑖). This is suggestive of an ̂𝘐•-algebra
structure on behaviours, which allows a behaviour to take input and pro-

duce a continuation of the behaviour.

A base point for a behaviour is given as a global element (a point)

𝑦 ∶ 1𝘾 → (𝐼 ∗ ⊸ 𝑂),

76

representing the starting configuration which can be evolved successively

by input through an ̂𝘐-algebra
𝜑 ∶ (𝐼 ∗ ⊸ 𝑂) ⊗ 𝐼 → (𝐼 ∗ ⊸ 𝑂).

with a ̂𝘐• algebra arising from the combination 𝑦 ▽ 𝜑.
We can specialise the commuting diagrams for ̂𝘐•-algebra homomor-

phisms to the present case where we are only transforming along 𝑂:

̂𝘐• (𝐼 ∗ ⊸ 𝑂) ̂𝘐• (𝐼 ∗ ⊸ 𝑂′)

𝐼 ∗ ⊸ 𝑂 𝐼 ∗ ⊸ 𝑂′
𝑦▽𝜑

̂𝘐•(𝐼 ∗⊸ℎ)

𝑦 ′▽𝜑′
𝐼 ∗⊸ℎ

(3.6.12)

The structure map 𝜑 can be constructed from the arrows we have iden-

tified in 𝘾 . That said, the following proposition gives a tool to ease the

definition.

proposition 3.6-22.9 Since 𝑋 ⊸ 𝑌 ≅ 𝘾(𝑋 , 𝑌) for all 𝑋, 𝑌 ∈ 𝘾 , and since

a category axiomatically contains all composite arrows, there is an arrow

for composition of internal homs,

(𝐵 ⊸ 𝐶) ⊗ (𝐴 ⊸ 𝐵) (⋄)−−→ (𝐴 ⊸ 𝐶)
that makes the following triangle commute:

(𝐵 ⊸ 𝐶) ⊗ (𝐴 ⊸ 𝐵) ⊗ 𝐴 (𝐴 ⊸ 𝐶) ⊗ 𝐴

𝐶

(⋄) ⊗ id

ev ∘ (id ⊗ ev)
ev

(This is evident if 𝘾 is regarded as enriched in 𝕊𝗲𝘁.)
Now we define 𝜑 by the calculation

dom 𝜑 = (𝐼 ∗ ⊸ 𝑂) ⊗ 𝐼
→ {injecting 𝐼 into 𝐼 ∗ with (id ⊗ 𝜄1)}
9 Thanks to FShrike for helping me work this through. See https://math.

stackexchange.com/a/4749826/49718.

https://stackexchange.com/users/17837223/fshrike
https://math.stackexchange.com/a/4749826/49718
https://math.stackexchange.com/a/4749826/49718

77

(𝐼 ∗ ⊸ 𝑂) ⊗ 𝐼 ∗
→ {lambda-lifting 𝐼 ∗ with curried ⧺: (id ⊗ 𝜆⧺)}

(𝐼 ∗ ⊸ 𝑂) ⊗ (𝐼 ∗ ⊸ 𝐼 ∗)
→ {composing hom-objects with (⋄)}

𝐼 ∗ ⊸ 𝑂.

So in point-free style we write

𝜑 ≔ (⋄) ∘ (id ⊗ 𝜆⧺) ∘ (id ⊗ 𝜄1) = (⋄) ∘ (id ⊗ (𝜆⧺ ∘ 𝜄1)).

This 𝜑 gives a means of stepping forward a behaviour on a per-input basis,

and when appointed with a base, 𝑦 ▽ 𝜑 gives a ̂𝘐•-algebra as per (3.6.12).

proposition 3.6-23 ([33, prop. 4.1]). The assignment of an ̂𝘐•-algebra
structure on 𝐼 ∗ ⊸ 𝑂 to a behaviour 𝘾(𝐼 ∗, 𝑂) is functorial:

𝗕𝐼 → ̂𝘐•-𝗔𝗹𝗴
𝑦 ↦ (𝐼 ∗ ⊸ 𝑂, 𝑦 ▽ 𝜑)

(id, ℎ) ↦ 𝐼 ∗ ⊸ ℎ

The proof can be found in [33], though the current presentation de-

parts from Goguen, who (probably for the sake of ease) decided to de-

fine 𝜑+ instead of 𝜑 implicitly relying on thm. 3.6-10 to carry over his

results. The claim is the same: a given (𝐼 , ℎ∶ 𝑂 → 𝑂′)∶ 𝗕𝐼 (𝑦 , 𝑦 ′) there
is a corresponding ̂𝘐•-algebra homomorphism, where the diagram (3.6.12)

commutes. This can be done from some straightforward diagram chasing

facilitated by naturality conditions.

This is a fact that will become interesting later on. Using thm. 3.6-10,

the extension of the functor into the category of right-actions,

𝗕𝐼 → ̂𝘐•-𝗔𝗹𝗴
̄(−)−−−→ 𝗔𝗰𝘁𝐼 ∗• ,

is a right adjoint to the forgetful 𝗔𝗰𝘁𝐼 ∗ → 𝘾 . That is to say 𝐼 ∗ ⊸ 𝑂 is

cofree, generated by 𝑂.

78

observation 3.6-24. Since, for a given monoid 𝑀 , 𝑀-actions are ex-

actly monadic �̂�-algebras, then conclude that 𝑀∗ ⊸ 𝑂 carries the cofree

coalgebra. In later chapters this will play out as initial algebra vs. terminal
coalgebra, but that is a reflection of the duality of free algebra vs. cofree

coalgebra. An earlier remark pointed out that this duality relates to a dis-

crete system having initial state vs. having output, and this is the first hint

of the output side of the dual.

3.6.6 Behaviour & Running Machines

Recall (from thm. 3.6-11) that (𝐼 ∗, 𝜄0▽⧺̄) initial in ̂𝘐•-𝗔𝗹𝗴, and that catamor-

phisms (the unique arrows) give a way of processing sequential input by

recursion of the algebra of the codomain, called folding. These catamor-

phisms may be regarded as running the machine. Endowing behaviours

with an ̂𝘐•-algebra structure makes them amenable to this mechanism as

well. But catamorphisms on behaviours are morphisms from a free object

to a cofree object, so some additional profundity is to be expected. We

will obtain a beautiful set of relationships that relate machines and their

behaviour.

Given a behaviour 𝑦 ∈ 𝗕𝐼 , a behaviour catamorphism has the form

⦇𝑦 ▽ 𝜑⦈∶ 𝐼 ∗ → (𝐼 ∗ ⊸ 𝑂).
Let us relate this to the internals of a given amachine 𝛴 = (𝐼 , 𝑆, 𝑂, 𝛿, 𝑟 , 𝑠0)
where

𝑦𝛴 = 𝘉𝛴 = 𝑟 ∘ ⦇𝑠0 ▽ 𝛿 ⦈∶ 𝐼 ∗ ⊸ 𝑂,
is the external behaviour of 𝛴.

First, given a machine 𝛴 we can map the state object into the space of

behaviours by currying the arrow

𝑟 ∘ 𝛿+∶ 𝑆 ⊗ 𝐼 ∗ → 𝑂
to obtain

̌𝑟 ≔ 𝜆(𝑟 ∘ 𝛿+)∶ 𝑆 → (𝐼 ∗ ⊸ 𝑂).

79

It is immediately apparent that ̌𝑟 is a ̂𝘐•-𝗔𝗹𝗴 homomorphism from the

diagrams

1𝘾

𝑆 𝐼 ∗ ⊸ 𝑂

𝑠0 𝑦𝛴
̌𝑟

and
𝑆 ⊗ 𝐼 (𝐼 ∗ ⊸ 𝑂) ⊗ 𝐼

𝑆 𝐼 ∗ ⊸ 𝑂
𝛿

̌𝑟⊗id

𝜑
̌𝑟

.

(The commutativity of these diagrams can be proven straightforwardly

from substitution of definitions, as per [33, p. 32].) I include these diagrams

separately for additional clarity, but per the observation in def. 3.6-6, they

are equivalent to the single diagram with algebras 𝑠0 ▽ 𝛿 and 𝑦𝛴 ▽ 𝜑:

̂𝘐• 𝑆 ̂𝘐• (𝐼 ∗ ⊸ 𝑂)

𝑆 𝐼 ∗ ⊸ 𝑂
𝑠0▽𝛿

̂𝘐• ̌𝑟

𝑦𝛴▽𝜑
̌𝑟

. (3.6.13)

To further elucidate the relationships including catamorphisms, we

rewrite (3.6.13) to include the initial algebra (𝐼 ∗, 𝜄0 ▽ ⧺̄•) and behaviour

evaluation morphism:

̂𝘐• 𝐼 ∗ ̂𝘐• 𝑆 ̂𝘐• (𝐼 ∗ ⊸ 𝑂)

𝐼 ∗ 𝑆 𝐼 ∗ ⊸ 𝑂 𝑂
⧺̄•

̂𝘐 ⦇𝑠0▽𝛿 ⦈

𝑠▽𝛿

̂𝘐 ̌𝑟

𝑦𝛴▽𝜑⧺̄−1
•

⦇𝑠0▽𝛿 ⦈ ̌𝑟 ev𝘉

̂𝘐 ⦇𝑦𝛴▽𝜑⦈

⦇𝑦𝛴▽𝜑⦈

. (3.6.14)

Two particularly contrasting equations for ⦇𝑦𝑀 ▽ 𝜑⦈ can be read from the

squares:

⦇𝑦𝛴 ▽ 𝜑⦈ = 𝜑 ∘ ̂𝘐• ⦇𝑦𝛴 ▽ 𝜑⦈ ∘ ⧺̄−1
• (3.6.15)

= ̌𝑟 ∘ ⦇𝑠0 ▽ 𝛿 ⦈ (3.6.16)

80

This is the natural connection between the intrinsic and the extrinsic evo-

lution of i/o-behaviour. The first, (3.6.15) does not thread through a ma-

chine’s internal transitions—it uses only the arrows 𝐼 ∗ → 𝑂 (encoded in

𝐼 ∗ ⊸ 𝑂) to fold over an input sequence—and hence transcending repre-

sentation. The second, (3.6.16), conversely runs through every facet of

the inner workings of 𝛴 and shows that ⦇𝑦𝛴 ▽ 𝜑⦈ can be factored through

⦇𝑠0 ▽ 𝛿 ⦈. In fact, the full composition along the bottom:

𝘉𝛴 = 𝐼 ∗ ⦇𝑠0▽𝛿 ⦈−−−−−→ 𝑆 ̌𝑟−→ 𝐼 ∗ ⊸ 𝑂 ev𝘉−−−→ 𝑂
is called the intrinsic factorisation of 𝘉𝛴 [33, thm. 4.5]. Most importantly,

this gives a tangible notion of “running” an i/s/o machine.

At the beginning of the section, I pointed out that many definitions

of “machine” that one finds in literature does not bundle internal state

with the dynamical equipment. This has implications on what exactly

one means by “behaviour”. The arrow ̌𝑟 maps internal machine states to

behaviour by our definition. If the system did not have an initial state

installed by definition then ̌𝑟 would be the more fundamental notion.

Personally, I am partial toWillems’ notion of behaviour [101], of which

this section’s definition is a simulacrum. Willems definition has an intrin-

sic notion of time, but we are presently using input to drive state transfor-

mation, not a time arrow.

3.7 fixpoints of endofunctors

The previous section builds a notion of i/s/o-systems using object alge-

bras, pointed object algebras (̂𝘐-𝗔𝗹𝗴 and ̂𝘐•-𝗔𝗹𝗴) andmonoid actions (𝗔𝗰𝘁𝐼 ∗•).

This section generalises some of those foundations. We use any polyno-

mial functor to provide a generalisation of the tensor algebras 𝑆 ⊗ 𝐼 → 𝑆,
which were the bedrock of Goguen machines. Arbib & Manes and others

went to exquisite lengths to generalise machines in this way to capture a

wider variety of sequential state processing machines [29, 40]. However,

my motivation for viewing machines more broadly is that the underlying

81

tooling of Arbib-Manes machines is fixpoints of functors, which Adámek

was keen to point out [37]. This is an important point of crossover for us

because fixpoints of functors are also used in theoretical computer science

to model abstract datatypes [49], and codata-types [110]. At that level of

analysis we are able to reconcile with computer scientific notions that lead

to a semantics for processing linear data structures (like iterated products),

leading to the next section, §3.8.

In thm. 3.6-11 the algebra (𝐼 ∗, ⧺̄•) was shown to be initial in ̂𝘐•-𝗔𝗹𝗴.
Along the way, it was shown that the structure map ⧺̄• was only a re-

arranger of data, and therefore admitted an inverse. That fact was already

enough to identify initiality, by revealing that algebra as a fixpoint.
The term “fixpoint” is evocative of the notion of the fixpoints of a func-

tion where the sequence

{ 𝑓 (𝑧), 𝑓 (𝑓 (𝑧)), 𝑓 (𝑓 (𝑓 (𝑧))), … }

approaches a value 𝑥 . In other words, there is some special value 𝑥 ∈
dom 𝑓 such that 𝑓 (𝑥) = 𝑥 .

For an endofunctor 𝘍 , what would it mean to have 𝘍𝑋 = 𝑋? Equality

is too strong in the categorical context: we have no tooling to judge two

objects as equal, but we can see isomorphism in the arrows. The fixpoint

of a functor is an object 𝑋 together with a pair of functions underwriting

an isomorphism: 𝘍𝑋 ≅ 𝑋 . So, quite incredibly, it is both an 𝘍 -algebra and

𝘍 -coalgebra. Lambek’s lemma connects fixpoints and initial algebras (or

in dual, terminal coalgebras).

lemma 3.7-1 (Lambek [109, §10.5]). Given an endofunctor 𝘍 if

(𝐼 , 𝑖∶ 𝘍 𝐼 → 𝐼)

is an initial object in 𝘍 -𝗔𝗹𝗴 then then 𝑖 is an isomorphism:

𝘍 𝐼 ≅ 𝐼 .

82

Using fixpoint operators introduced in ntn. 3.3-4, if an initial 𝘍 -algebra
is a fixpoint:

𝘍 (𝜇𝘍) ≅ 𝜇𝘍 .
Dually, a terminal coalgebra is also a fixpoint. But even though a fixpoint

is both an algebra and a coalgebra, initial algebras and terminal coalgebras

do not necessarily coincide on the same fixpoint, but an adjunction may

sit between them.

The thesis leans heavily on fixpoints of polynomial functors, because

polynomial combinations of sets encode structure in data (products and

coproducts) and transformations (exponentials). Recall from def. 3.5-6

that a monoid 𝑀 = (|𝑀|, Ⓜ, 𝑒) in a monoidal category, let us use 𝕊𝗲𝘁 for
now, can be represented as a diagram (3.5.6) reprinted here:

1𝘾 𝑀 𝑀 ⊗𝑀 ,
𝑒𝑀 Ⓜ .

This admits a simple representation as an algebra of a nearly familiar poly-

nomial functor𝘔 ≔ 𝑋 ↦ 𝟣+𝑋 𝟤. Forget about the “algebra” part for now

and focus only on 𝘔. The tree view10 of 𝘔 looks like this:

• •

A value 𝑚 ∈ 𝘔𝑀 is either () or a node with two 𝑀-elements as leaves (a

pair of 𝑀-elements). Now consider 𝘔2 = 𝘔 ∘ 𝘔; the tree view looks like

this: • •
• •

•
• •

•
• •

•
• •

This is the abstract set of all depth-2 monoid expressions we can build.

So 𝘔2𝑀 includes expressions like (𝑚1 ○ 𝑚2) ○ 𝑒. Fixpoints of polynomial

endofunctors capture (possibly infinite) repetitions of structure.

Returning to the notion of fixpoints, what would a fixpoint of 𝘔 en-

code? The intuition from function fixpoints says that it may have some-

thing to do with the sequence {𝘔 𝑋 , 𝘔2 𝑋, 𝘔3 𝑋, …}, similar to the se-

quence from obs. 3.5-4. We are not concerned with how elements of any
10 See §3.2.

83

particular set interact with𝘔. Wewant to collect the trees that𝘔 encodes:

combinations of leaves (∈ 1) and binary nodes. Sowemaywell look at how

𝘔 interacts with the empty set 𝟢, initial in 𝕊𝗲𝘁, meaning it has exactly one

(trivial) arrow in hom(𝟢, 𝐴) for any set 𝐴. This will be important later.

The sequence {𝘔0 𝟢, 𝘔1 𝟢, 𝘔2 𝟢, 𝘔3 𝟢, …} collects the trees:

𝘔0 𝟢 ≅ ∅

𝘔1 𝟢 ≅ { • }

𝘔2 𝟢 ≅ { • •
• •

, }

𝘔3 𝟢 ≅ {
• •

• •
•

•
• •

•
•

• •
• •

•
•

• •
•

• •

, , , ,
}

⋮ ≅ ⋮

One might get the impression that the fixpoint of 𝘔 is something like

𝑆 = ∑𝑛∈ℕ𝘔𝑛 𝟢, but this is not quite right. The elements of 𝘔𝑛−1 𝟢 are

also in 𝘔𝑛 𝟢, which is not very parsimonious. That means that this 𝑆 will

not fulfil a universal property requiring that there is no simpler represen-

tation11. Set coproducts are a colimit of the diagram �̇� → 𝕊𝗲𝘁.12 A colimit

is the right approach here too, but with a more interesting diagram.

definition 3.7-2. Consider the linear order of integers, ω = (ℕ, ≤). It

can be regarded as a category13, 𝞈, with Ob𝞈 = ℕ and exactly one arrow

in Hom(𝑛1, 𝑛2) if and only if 𝑛1 ≤ 𝑛2. Taken as the index for a diagram,
11 Universal properties for a construction have a requirement that a solution comes

along with morphisms so that all other candidates uniquely factor through it. This means
the solution is optimal in terms of information content and all other candidates have
either too much or too little information. Moreover, the factorising morphisms are often
extremely useful in their own right, as will be the case here.

12 See §B.9, p. 288.
13 See §B.1-8, p. 267.

84

𝘋∶ 𝞈 → 𝘾 , the image of the diagram is a sequence of 𝘾-objects and 𝘾-

arrows:

𝑋0 𝑋1 𝑋2 ⋯𝑥0 𝑥1 𝑥3

called an ω-chain.

definition 3.7-3. In a categorywith an initial object the initial sequence
of an endofunctor 𝘍 is a particular 𝞈-chain:

𝟢 𝘍 𝟢 𝘍 𝘍 𝟢 𝘍 3 𝟢 ⋯!𝘍 𝟢 𝘍 !𝘍 𝟢 𝘍 𝘍 !𝘍 𝟢 𝘍 3 !𝘍 𝟢

where !𝘍 𝟢∶ 𝟢 → 𝘍 𝟢 denotes the unique arrow from the initial object to

𝘍 𝟢.

The colimit of 𝘍 ’s initial sequence is a terminal cocone14 with 𝜇𝘍 at its

coapex. That is

𝜇𝘍 = colim𝑛<𝜔 𝘍 𝑛 𝟢,
and by Lambek’s lemma we know it is a fixpoint. Denote the fixpoint’s

algebra (𝜇𝘍 , 𝜅 ∶ 𝘍 𝜇𝘍 → 𝜇𝘍)
and coalgebra (𝜇𝘍 , 𝜅−1∶ 𝜇𝘍 → 𝘍 𝜇𝘍),

where the co/structure maps15 are mutually inverse: 𝜅 ∘ 𝜅−1 = 𝜅−1 ∘ 𝜅 = id.

The structure map provides a way to trace back through the initial chain,

forming the cocone faces:

𝟢 𝘍 𝟢 𝘍 𝘍 𝟢 ⋯ 𝘍 𝑛 𝟢 ⋯

𝜇𝘍 𝘍 𝜇𝘍 𝘍 𝘍 𝜇𝘍 ⋯ 𝘍 𝑛𝜇𝘍 ⋯

!𝘍 𝟢

!𝜇𝘍

𝘍 !𝘍 𝟢

𝘍 !𝜇𝘍

𝘍 𝘍 !𝘍 𝟢

𝘍 𝘍 !𝜇𝘍 ⋯

𝘍 𝑛−1!𝘍 𝟢 𝘍 𝑛!𝘍 𝟢

𝘍 𝑛!𝜇𝘍
𝜅 𝘍 𝜅 𝘍 𝘍 𝜅 𝘍 𝑛−1𝜅 𝘍 𝑛𝜅

(3.7.17)

14 def. B.8-11, p. 286.
15 The pneumonic behind 𝜅 is the Greek word for constructor, which Google Translate

tells me is “κατασκευαστής”.

85

The edges of the cone faces 𝑘𝑛 ∶ 𝘍 𝑛 𝟢 → 𝜇𝘍 are found by chasing (3.7.17)

from any 𝘍 𝑛 𝟢 down and back to 𝜇𝘍 :

{ 𝑘0 = !𝜇𝘍
𝑘𝑛 = 𝜅 ∘ 𝘍 𝜅 ∘ 𝘍 2𝜅 ∘ ⋯ ∘ 𝘍 𝑛−1𝜅 ∘ 𝘍 𝑛!𝘍 𝟢

Since any and all squares or rectangles in (3.7.17) commute, the tuple

(𝜇𝘍 , 𝑘𝑛) indeed constitutes a cocone.

We can construct cocones under the initial sequence for arbitrary 𝘍 -
algebras. Take (𝑋 , 𝜒) which produces the cocone (𝑋 , 𝑥𝑛), constructed as

above. What makes (𝜇𝘍 , 𝑘𝑛) the initial cocone is the existence of a unique

cocone morphism (𝜇𝘍 , 𝑘𝑛) → (𝑋 , 𝑥𝑛). This unique map is determined

entirely by 𝜒 so its notation emphasises it: ⦇𝜒 ⦈.16 The cocone homomor-

phism makes the diagrams:

𝘍 𝑛 𝟢

𝜇𝘍 𝑋
𝑘𝑛 𝑥𝑛

⦇𝜒 ⦈
∃!

(3.7.18)

commute for all 𝑛 ∈ 𝞈.

remark 3.7-4. A fixpoint that gives an initial algebra is called a least
fixpoint (lfp) [39]. The term comes from order theory. In fact, Lambek’s

lemma is a categorification of Tarski’s fixpoint theorem [17]. Adámek’s

canonical construction of the lest fixpoint [39] is then a categorified appli-

cation of the Kleene fixed-point theorem. That is, if you have a dcpo with

a bottom element and a continuous (in the sense of Scott), monotone end-

ofunction on the dcpo, then the function has a lfp which is the supremum

of the ascending Kleene chain.

As a final note, we can show the isomorphism 𝘍 𝜇𝘍 ≅ 𝜇𝘍 in the current

setup without the direct insight of Lambek. The colimit operation com-

muteswith application of 𝘍 (becausewe require that 𝘍 is𝞈-cocontinuous)17.
16 The banana brackets notation ⦇𝜒 ⦈ comes from [62].
17 Explained later, in §3.7.3.

86

That enables the following identifications:

𝘍 𝜇𝘍 = 𝘍 (lim𝑛<𝜔 𝘍
𝑛 𝟢) ≅ lim𝑛<𝜔 𝘍 𝘍

𝑛𝟢 = lim𝑛<𝜔 𝘍
𝑛 𝟢 = 𝜇𝘍 .

Another way to look at this is we can apply 𝘍 to the entire initial chain:

𝟢 𝘍 𝟢 𝘍 𝘍 𝟢 𝘍 3 𝟢 ⋯!𝘍 𝟢 𝘍 !𝘍 𝟢 𝘍 𝘍 !𝘍 𝟢 𝘍 3 !𝘍 𝟢

becomes

𝘍 𝟢 𝘍 2 𝟢 𝘍 3 𝟢 𝘍 4 𝟢 ⋯!𝘍 𝟢 𝘍 !𝘍 𝟢 𝘍 𝘍 !𝘍 𝟢 𝘍 3 !𝘍 𝟢 .

Since the morphism !𝘍 𝟢 is unique, there is exactly one way we can prepend

(𝟢 →) to the front of the new chain, thereby reverting it back to the initial

chain. The whole process can be cycled yet again: applying 𝘍 to the initial

chain and undone by prepending (𝟢 →). We thus conclude the chains are

isomorphic. Since colimits are unique up to isomorphism, we conclude

the witnesses of 𝘍 𝜇𝘍 ≅ 𝜇𝘍 are unique.

proposition 3.7-5 ([109, prop. 10.14]). If 𝘾 has finite coproducts then

given an endofunctor 𝘍 ∶ 𝘾 → 𝘾 the following conditions are equivalent:

1. 𝘍 -algebras are algebras for a monad (𝘛 , 𝜂, 𝜇) and there is and equiv-

alence 𝘍 -𝗔𝗹𝗴 ≅ 𝘾 that preserves the respective forgetful functors.

2. The forgetful functor 𝘍 -𝗔𝗹𝗴 → 𝘾 has a left adjoint (a free-functor).

3. For each object𝐴 ∈ 𝘾 the endofunctor𝐴+𝘍 − has an initial algebra.

remark 3.7-6. Recall the previous section ̂𝘐•-𝗔𝗹𝗴 was shown to have

an initial object (thm. 3.6-11). By implication, there is a corresponding

monad and its Eilenberg-Moore category is isomorphic to ̂𝘐•-𝗔𝗹𝗴. Indeed,
const. 3.4-4 shows that ̂𝘐• is the basis for the list monad which will be

reiterated for the case of snoc-lists in §3.8.

87

3.7.1 Catamorphisms

The special morphism in (3.7.18) can be straightforwardly derived. To

(3.7.18), affix the algebras:

𝘍 𝑛 𝟢

𝜇𝘍 𝑋

𝘍 𝜇𝘍 𝘍𝑋

𝑘𝑛 𝑥𝑛

⦇𝜒 ⦈
∃!

𝜅 𝜅−1

𝘍 ⦇𝜒 ⦈

𝜒

Chasing from 𝜇𝘍 to 𝑋 gives the equation:

⦇𝜒 ⦈ = 𝜒 ∘ 𝘍 ⦇𝜒 ⦈ ∘ 𝜅−1. (3.7.19)

The morphism ⦇𝜒 ⦈ is called a catamorphism [62], [77, §2.6].

definition 3.7-7. Given an endofunctor 𝘍 with fixpoint (𝜇𝘍 , 𝜅), An 𝘍 -
catamorphism is the unique 𝘍 -algebra homomorphism making the fol-

lowing diagram commute:

𝘍 𝜇𝘍 𝘍𝑋

𝜇𝘍 𝑋

𝘍 ⦇𝜒 ⦈

𝜅 𝜒

⦇𝜒 ⦈
∃!

𝜅−1

What does a catamorphism do? That depends entirely on the meaning

of 𝘍 . But we can give concrete meaning to the running example of the

monoid functor, 𝘔 ≔ 𝑋 ↦ 𝟣 + 𝑋 2. A monoid algebra, (𝑋 , 𝑒 ▽ Ⓜ∶ 𝘔𝑋 →
𝑋), gives interpretation to the unit and binary operation and could be used

to evaluate a single term in the monoid. (Note that, at this point, there is

nothing to enforce that 𝑒 andⓂ obey the monoid laws.) An element of 𝜇𝘔
is an expression tree and

⦇𝑒 ▽ Ⓜ⦈∶ 𝜇𝘔 → 𝑋
evaluates expressions, reducing them to a single value of the monoid.

88

remark 3.7-8. Recall from the last section (in thm. 3.6-11) that I prema-

turely introduced the notation ⦇𝑠0 ▽ 𝛿 ⦈ for ̂𝘐•-folds. These were catamor-

phisms.

remark 3.7-9. Its chain construction gives a natural ordering to layers

of structure and catamorphisms give a way of recursively processing the

structure. On polynomials, this gives a way to structurally represent in-

duction, since the algebras will contain a notion of evaluation of a “base

case” on the leaves and inductive steps ascending through the layers of

structure.

3.7.2 Anamorphisms

The whole construction from 𝞈-chain to catamorphism dualises.

definition 3.7-10. The terminal sequence of an endofunctor 𝐹 requires

the existence of a terminal object and is the𝞈op-chain that runs contralat-

erally to the initial sequence:

𝟣 𝘍 𝟣 𝘍 𝘍 𝟣 𝘍 3 𝟣 ⋯!𝘍 𝟣 𝘍 !𝘍 𝟣 𝘍 𝘍 !𝘍 𝟣 𝘍 3 !𝘍 𝟣

where now, !𝘍 𝟢∶ 𝘍 𝟣 → 𝟣 denotes the unique arrow to the terminal object.

In dual, the colimit under the initial chain that gave the initial algebra

becomes a limit over the terminal chain:

𝜈𝘍 = lim𝑛∈𝞈op
𝘍 𝑛.

By the dual of Lambek’s lemma, we know that 𝜈𝘍 carries a coalgebra that is

also an algebra. The coalgebra, (𝜈𝘍 , 𝜅−1), is a terminal object in 𝘍 -𝗰𝗼𝗔𝗹𝗴:
a terminal coalgebra.

Finally, the catamorphism dualises to anamorphism.

definition 3.7-11. Given an endofunctor 𝘍 with terminal coalgebra (𝜈𝘍 , 𝜅),
an 𝘍 -anamorphism is the unique 𝘍 -coalgebra homomorphism making

89

the following diagram commute, for any given coalgebra (𝑍 , 𝜁):

𝘍 𝑍 𝘍 𝜈𝘍

𝑍 𝜈𝘍

𝘍 ⟬𝜁 ⟭

𝜅𝜁

⟬𝜁 ⟭
∃!

𝜅−1

This gives the equation:

⟬𝜁 ⟭ = 𝜅 ∘ 𝘍 ⟬𝜁 ⟭ ∘ 𝜁 .

remark 3.7-12. Because the initial algebra construction is based on the

initial chain, “counting up” the ordinals from 0, it gave the lfp. The 𝞈op

category is more like “counting down” from infinity and potentially con-

tains infinite structures. So a fixpoint that gives an terminal coalgebra is

called a greatest fixpoint (gfp) [70]. In computer science, it is often taken

for granted that initial algebras and terminal coalgebras are coincident at

the same fixpoints (with different carriers), but this is not generally the

case. It is worth noting however that it does happen often with many

functors worth studying.

remark 3.7-13. In dual to rem. 3.7-9 Terminal coalgebras on polynomi-

als and anamorphisms gives a way to structurally represent coinduction
and corecursion.

3.7.3 Polynomial Functors Have Initial Algebras & Terminal Coalgebras

A functor 𝘍 ∶ 𝘾 → 𝘿 is called 𝙅-continuous if

𝘍 (lim𝘎) ≅ lim 𝘍𝘎.

for all diagrams 𝘎 ∈ 𝘾𝙅 . It is 𝙅-cocontinuous if the same is true for colim-

its.

In our case, we are concerned with whether or not a functor preserves

𝞈-chains or𝞈op-chains. This is a prerequisite for having a fixpoint. We re-

90

quire the fixpoint because it is a prerequisite for the existence of an initial

algebra.

lemma 3.7-14 ([36, Thm. II.4]). A 𝕊𝗲𝘁 functor has an initial algebra if

and only if it has a fixpoint.

The dual is also true of coalgebra. The thesis only relies on initial alge-

bras and terminal coalgebras of polynomial functors. So any construction

of catamorphisms and anamorphisms of polynomial functors is underwrit-

ten in the following lemmas.

lemma 3.7-15 ([162, Lem. 8.13 & Prop. 8.14]). Every polynomial functor

on 𝕊𝗲𝘁 is 𝞈-cocontinuous and hence has initial algebras.

lemma 3.7-16 ([88, Thm. 10.1]). Every polynomial functor on 𝕊𝗲𝘁 is 𝞈-

continuous and hence has terminal coalgebras.

This justifies the constructions in the coming chapters.

3.8 snoc lists as fixpoints

In computer science, a “cons” list, [72, p. 115], is a fundamental data struc-

ture used inmany functional programming languages to represent sequences

of data. The name “cons” originated from the Lisp programming language

and is a truncation of the word “constructor”. A cons list is built by “cons-

ing” a new value onto an existing list (starting from the empty list) result-

ing in a new list that begins with the newly added element. That is to say,

the list grows to the left. For example, in Lisp we would build a list of

integers [1, 2, 3] as
(cons 1 (cons 2 (cons 3 nil)))

with nil representing the empty list.

A “snoc” list, on the other hand, is a variant of the cons list which

grows to the right:

(snoc (snoc (snoc nil 1) 2) 3)

91

The name “snoc” is cons spelled backward.

We have already seen snoc lists in the previous section as arising out

of the free forgetful adjunction 𝘍 𝘓 ⊣ 𝘜𝘓: const. 3.4-3. In this section, we

further elucidate a mathematical model of snoc lists as fixpoints of a poly-

nomial and understand the resulting catamorphisms and anamorphisms

using the tree-view of polynomials.

3.8-1 snoc constructor, mathematically Recall the “objects are func-

tors in monoidal categories” view, def. 3.5-1, now in the context of 𝕊𝗲𝘁.
The value of the functor 𝘗 at any 𝐴 ∈ 𝕊𝗲𝘁 is denoted

�̂�∶ 𝕊𝗲𝘁 → 𝕊𝗲𝘁
𝑋 ↦ 𝑋 × 𝐴
𝑓 ↦ 𝑓 × id𝐴.

Also recall the free 𝕊𝗲𝘁-monoids, const. 3.4-3, that for all words in the

Kleene-closure,

𝐴∗ = ∑
𝑛∈ℕ

𝐴𝘯,

we have the natural concatenation operator

⧺∶ 𝐴∗ × 𝐴∗ → 𝐴∗

which is associative, closed and unital with the empty list, []. There is also

a natural inclusion of generators,

𝜂𝘓𝐴∶ 𝐴 → 𝐴∗; 𝑎 ↦ [𝑎].

From 3.6-5 we can modify ⧺ to act as an �̂�-algebra by the composite:

⧺̄ ≔ 𝐴∗ × 𝐴 id⊗𝜂𝘓𝐴−−−−−→ 𝐴∗ ⊗ 𝐴∗ ⧺−→ 𝐴∗,

which maps like this:

([𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛], 𝑎) ↦ [𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑎].

92

So a snoc list of 𝐴s, 𝑤 ∈ 𝐴∗, can be constructed as an expression:

𝑤 = [𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛] = [] ⧺̄ 𝑎1 ⧺̄ 𝑎2 ⧺̄⋯ ⧺̄ 𝑎𝑛. (3.8.20)

which can be represented visually as a syntax tree like so:

𝑤 =
⧺̄

⋰
⧺̄

⧺̄
[] 𝑎1

𝑎2
⋰

𝑎𝑛 (3.8.21)

This tree notion bears non-coincidental resemblance to the depiction of

polynomial functors as trees.

3.8-2 snoc lists are fixpoints The tree construction in the previous

paragraph is suggestive of a polynomial functor. The lfp of this functor

should be carried by 𝐴∗. Perhaps a first guess is that �̂� is the functor in

question, but on inspection, this functor has no lfp: �̂�𝑛 𝟢 = 𝟢 for any

𝑛.18 The empty list is a hint to the solution: in the last section, pointed

functors allowed us to model monoids with the unit as the distinguished

point, and (𝐴∗, ⧺, []) is a monoid. As in the previous section, denote by

�̂�• the functor

�̂�•∶ 𝕊𝗲𝘁 → 𝕊𝗲𝘁
𝑋 ↦ 𝟣 + 𝑋 × 𝐴
𝑓 ↦ id𝟣 + (𝑓 × id𝐴).

A computer scientist might call this the “maybe-pair” functor. We can give

⧺̄ a pointed structure, making it an �̂�• algebra:

⧺̄• ≔ [⃗] ▽ ⧺̄∶ 1𝘾 + 𝐴∗ × 𝐴 → 𝐴∗,
18 It does, however, have a gfp: 𝐴ω which are infinite streams.

93

where [⃗] is the global element mapping () ↦ []. The functor �̂�• is polyno-
mial, has a lfp—the colimit under the chain

𝟢 �̂�• 𝟢 �̂�2•𝟢 ⋯! �̂�• ! (�̂�•)2 ! ,
that is,

𝜇�̂�• = colim𝑛<𝜔 �̂�𝑛• 𝟢.

Consider a pictographic representation of �̂�• as a pair of an 𝐴-value on

the right with an empty box on the left, awaiting an argument:

�̂�• ∋ (, 𝑎) where 𝑎 ∈ 𝐴
Forget for a moment that the asterisk indicates that �̂�• − can also be 1, a
null value, instead of a pair. An unbounded recursion would then look as

if we were staring into an infinity-mirror:

𝜇�̂�• ≅ �̂�•�̂�•�̂�•�̂�•⋯ ∋ ((((((⋯ , 𝑎𝑛−5) , 𝑎𝑛−4) , 𝑎𝑛−3) , 𝑎𝑛−2) , 𝑎𝑛−1) , 𝑎𝑛)
with 𝑛 → ω. The null value can terminate our decent into the infinity

mirror at any level, fixing the length at the null iteration. The set 𝜇�̂� is

therefore the set of all lists we could make, of any denumerable length:

𝜇�̂�• ≅ ∑
𝑛∈ℕ

𝐴𝑛 = 𝐴∗,

as desired. This is all mediated by the isomorphism ⧺̄•:

⧺̄• ≔ [⃗] ▽ (⧺̄) ∶ �̂�•𝐴∗ → 𝐴∗

{ ()
([𝑎0, 𝑎1, …], 𝑎)

↦ []
↦ [𝑎0, 𝑎1, … , 𝑎]

.
(3.8.22)

with its inverse defined (more generally) in the proof of thm. 3.6-11, but

can be simplified in 𝕊𝗲𝘁 to reflect (3.8.22):

⧺̄−1
• ∶ 𝐴∗ → �̂�•𝐴∗

{ []
[𝑎0, 𝑎1, … , 𝑎]

↦ ()
↦ ([𝑎0, 𝑎1, …], 𝑎)

.

94

We can still build lists as in (3.8.20),

[𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛] = ((⧺̄•) ()) ⧺̄• 𝑎1 ⧺̄• 𝑎2 ⧺̄• ⋯ ⧺̄• 𝑎𝑛.

and view it as a tree,

[𝑎1, 𝑎2, 𝑎3] =

⧺̄•
⧺̄•

⧺̄•
⧺̄•

()
𝑎1

𝑎2
𝑎3

.

3.8.1 Snoc List Catamorphism

Since 𝜇�̂�• ≅ 𝐴∗ and �̂�•𝐴∗ ≅ 𝐴∗, as witnessed by the bijection ⧺̄•, then we

know that (𝜇�̂�•, ⧺̄•) is an initial algebra. This means that there is a unique

algebra homomorphism from it to any other �̂�•-algebra, say, (𝑋 , 𝜒):

�̂�•𝐴∗ 𝟣 + 𝐴∗ × 𝐴 𝟣 + 𝑋 × 𝐴 �̂�• 𝑋

𝐴∗ 𝑋

=
⧺̄•⧺̄−1

•

�̂�• ⦇𝜒 ⦈

𝜒
=

⦇𝜒 ⦈
, (3.8.23)

The equation for the catamorphism can be read directly from (3.8.23), and

is of course the same as (3.7.19),

⦇𝜒 ⦈ = 𝜒 ∘ 𝘗𝐴 ⦇𝜒 ⦈ ∘ ⧺̄−1
• ,

which is a recursive definition since ⦇𝜒 ⦈ appears on the right and left hand

side of the equality operator. The structure of �̂�• determines the structure

of its algebras. In functional terms, all �̂�•-algebras can be written in the

form 𝑥0 ▽ 𝑓 where 𝑓 ∶ 𝑋 × 𝐴 → 𝐴 is a �̂�-algebra. When ⦇𝜒 ⦈ is applied

to a list of 𝐴-elements, ⧺̄−1
• deconstructs the list into a pair containing

the right-most element and the remainder of the list. This exposes the

95

right-most item for the present level of calculation, while next, 𝘗𝐴 ⦇𝜒 ⦈ ap-
plies the catamorphism to the remaining portion of the list. Assuming we

startedwith a list withmore than one element, 𝜒 cannot evaluate anything

at any layer until we have a fully unpacked (by deconstruction) the entire

list finally yielding an empty list which is evaluated by 𝜒 as 𝑥0. Then the

call tree generated by the recursive expansion can be collapsed upward

from 𝑥0 by applying 𝜒 which will use 𝑓 to accumulate a final result. This

is perhaps more easily seen by illustration. Given a word 𝑤 = [𝑎1, 𝑎2, 𝑎3]
regarded as an expression tree as in (3.8.21), we may view the catamor-

phism as transforming the expression tree by substitution of the opera-

tions at each node:

⧺̄•
⧺̄•

⧺̄•
⧺̄•

()
𝑎1

𝑎2
𝑎3

𝜒
𝜒

𝜒
𝜒

()
𝑎1

𝑎2
𝑎3

⦇𝜒 ⦈

(3.8.24)

Keeping in mind

⧺̄•
()

= (⧺̄•) () = [⃗] () = [],

and 𝜒

()
= 𝜒 () = 𝑥0 () = 𝑥0

Using 𝜒 ≔ 𝑥0 ▽ 𝑓 , previous tree then expresses the mapping

[𝑎1, 𝑎2, 𝑎3] 𝑓 (𝑓 (𝑓 (𝑥0(), 𝑎1), 𝑎2), 𝑎3).
⦇𝑥▽𝑓 ⦈

The essential nature of a catamorphism on polynomials is simply replacement—

we transform the tree in the initial algebra, built from construction oper-

ations, by replacing the constructors with evaluating operations. This is

96

true of algebra homomorphisms in general, but what is special here is the

initial algebra collects values into a structure to produce tree structures.

In functional programming this pattern of recursion on lists is called a

fold [77]. These are prefixed with a direction, left- and right-fold depend-

ing on the direction it processes the input list.19 Specifically, we have

described a left-fold on snoc-lists.

Snoc list catamorphisms models a notion of state: as the calculation

is performed on a list, element by element, a value of an arbitrary type

is passed up through the call chain allowing one level of calculation (See

(3.8.24)) to depend on previous ones.

3.8.2 List scans

A possible deficit of folds is that they deny access to intermediate values

in the calculation. Given an �̂�•-algebra (𝑋 , 𝜒 ≔ 𝑥0 ▽ 𝑓) and given a word

𝑤 = [𝑎1, 𝑎2, 𝑎3, …, 𝑎𝑛] ∈ 𝐴∗, ⦇𝜒 ⦈ (𝑤) is a value in 𝑋 . A scan will perform

the same computation but will produce a list of intermediate values as a

word in 𝑋 ∗. In terms of our tree picture, a scan produces

⧺̄
[𝑥0] ⧺̄

𝑓 (𝑥0, 𝑎1) ⧺̄
𝑓 (𝑓 (𝑥0, 𝑎1), 𝑎2) ⧺̄
𝑓 (𝑓 (𝑓 (𝑥0, 𝑎1), 𝑎2), 𝑎3) ⋯

⧺̄
⦇𝜒 ⦈(𝑤)

or more compactly,

[𝑥0, 𝑓 (𝑥0, 𝑎1), 𝑓 (𝑓 (𝑥0, 𝑎1), 𝑎2), … , ⦇𝜒 ⦈(𝑤)].
19 While left-fold is a catamorphism on snoc-lists, right-fold is catamorphism on cons-

lists.

97

This interpretation of a scan will be important later. As we shall see, it

represents exactly the pattern of iteration upon which a control program

operates, and when combined with a push based list interface, gives us the

semantics we want for writing control programs.

Some readersmay notice that, while catamorphisms seemwell grounded

in ct, scans are defined ad hoc, with an obvious resemblance to catamor-

phisms, but without categorical backing. In a later (contributory) chap-

ter of the thesis, I will show that there is a functor in the category of �̂�•-
algebras that maps each catamorphism into a scan.

3.9 moore about dynamical systems

According to Rutten, “coalgebra = system” Rutten, for coalgebras of some

endofunctor that encodes the structure of iterated evolution over some

state dynamics. Initial algebras of input processes capture a notion of ma-

chines evolving forward an arbitrary but finite number of steps. Terminal

coalgebras capture the records of potentially infinite behaviour. In this

section, we are concerned with a particular type of system: Moore ma-
chines.

The preliminary definition def. 3.6-2 is the traditional one, of an i/s/o

system with finite sets 𝐼 , 𝑆, 𝑂 and 𝐼 , 𝑂 non-empty. Goguen machines gen-

eralise i/s/o systems to arbitrary monoidal categories with finite coprod-

ucts and adds categorical machinery to support behaviours in general, ex-

ternal behaviour of machines and an intrinsic factorisation. Based on that,

we now renew the definition of a Moore machine in terms of Goguen’s.

definition 3.9-1. A Moore machine is a Goguen machine in 𝕊𝗲𝘁 (or in

Cpp) with the Cartesian closed monoidal structure (𝕊𝗲𝘁, ×, 𝟣) and finite

coproducts furnished by the cocartesian monoidal structure (𝕊𝗲𝘁, +, 𝟢).

Let 𝛴 = (𝐼 , 𝑆, 𝑂, 𝛿, 𝑟 , 𝑠0) be a Moore machine and recall the diagram

(3.6.14) summarising key relationships inGoguen’smodel, modified slightly

98

in light of the past few sections:

̂𝘐• 𝐼 ∗ ̂𝘐• 𝑆 ̂𝘐• (𝐼 ∗ ⊸ 𝑂)

𝐼 ∗ 𝑆 𝐼 ∗ ⊸ 𝑂 𝑂
⧺̄•

̂𝘐 ⦇𝑠0▽𝛿 ⦈

𝑠▽𝛿

̂𝘐 ⟬ ̀𝛿△𝑟⟭𝘔

𝑦𝛴▽𝜑⧺̄−1
•

⦇𝑠0▽𝛿 ⦈ ⟬ ̀𝛿△𝑟⟭𝘔 ev𝘉

̂𝘐 ⦇𝑦𝛴▽𝜑⦈

⦇𝑦𝛴▽𝜑⦈

. (3.9.25)

Themain difference is that ̌𝑟 is replaced by an anamorphism ⟬ ̀𝛿 △𝑟⟭𝘔 where
̀(−) denotes the exponential transpose (i.e., currying, so ̀𝛿 = 𝜆𝛿) and the

functor 𝘔 is defined in the next subheading.

observation 3.9-2. The arrow ̌𝑟 from §3.6, was introduced ad-hoc a

useful tool to connect machine internals to behaviour. Now it has a deeper

categorical root:

̌𝑟 = ⟬ ̀𝛿 △ 𝑟⟭𝘔 = 𝜆(𝑟 ∘ ⦇𝑠0 ▽ 𝛿 ⦈)∶ 𝑆 → 𝐼 ∗ ⊸ 𝑂.
The equality above is true from the standpoint of value, but the calculation

of ⟬ ̀𝛿 △𝑟⟭𝘔 is quite different from ̌𝑟 , which has implications for the software

to come.

3.9.1 Terminal Moore Machines

notation 3.9-3. let 𝘌𝐴 be an alias for the covariant internal hom-functor

𝘌𝐴 𝑋 = 𝐴 ⊸ 𝑋.
notation 3.9-4. Let𝘔𝐼𝑂 ≔ �̂� ∘𝘌𝐼 = (𝐼 ⊸ −)×𝑂. The obvious mnemonic

here is “𝘔oore”. Since 𝑂 and 𝐼 will be consistently used for the output and

input spaces, the scripts will be omitted: 𝘔 = 𝘔𝐼𝑂 .

Given a Moore machine 𝛴 = (𝐼 , 𝑆, 𝑂, 𝛿, 𝑟 , 𝑠0), an𝘔-coalgebra (𝑆, 𝜍) is
a set of states and a costructure map of form:

𝜍 = ̀𝛿 △ 𝑟 ∶ 𝑆 → (𝐼 ⊸ 𝑆) × 𝑂. (3.9.26)

99

Pointwise, (3.9.26) reads

𝜍(𝑠) = (𝑖 ↦ 𝛿(𝑠, 𝑖), 𝑟(𝑠)),

A terminal coalgebra of 𝘔 will be carried by an object 𝜈𝘔 and, as a

fixpoint, will have an isomorphism

𝜅𝘔 ∶ 𝘔(𝜈𝘔) ⥲ 𝜈𝘔

and, by definition, for any 𝘔-coalgebra (𝑆, 𝜍), there is a unique coalgebra

homomorphism

⟬𝜍⟭𝘔 ∶ (𝑆, 𝜍) → (𝜈𝘔, 𝜅−1𝘔)
satisfying

𝘔𝑆 𝘔(𝜈𝘔)

𝑆 𝜈𝘔

𝘔 ⟬𝜍⟭𝘔

𝜅𝘔𝜍

⟬𝜍⟭𝘔
∃!

𝜅−1𝘔 . (3.9.27)

We can read off the corecursive equation

⟬𝜍⟭ = 𝜅 ∘ 𝘔 ⟬𝜍⟭ ∘ 𝜍.

We already know that 𝐼 ∗ ⊸ 𝑂 must carry the terminal coalgebra of 𝘔
because it is the codomain of ⟬ ̀𝛿 △ 𝑟⟭𝘔. We also know from obs. 3.6-24 that

the forgetful functor on 𝕊𝗲𝘁 ̂𝘐 has a cofree (right) adjoint and that 𝐼 ∗ ⊸ 𝑂
is cofree generated by 𝑂. Yet playful curiosity may lead one to casually

write out 𝜈𝘔 as an iterated application of 𝘔 (similarly to 3.8-2 for the lfp

of �̂�). This gives:

⋯𝘔𝘔𝘔⋯ ≅
⋯ (𝐼 ⊸ (𝐼 ⊸ (𝐼⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

input

⊸ (⋯) × 𝑂) × 𝑂) × 𝑂) × 𝑂 ⋯⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
output

. (3.9.28)

Though informal, it does illustrate how 𝜈𝘔 structurally encodes the pro-

cess of exchanging input for output—nowhere in (3.9.28) is the appearance

100

of state—it is obscured in the “call stack” of nested function spaces20. Us-

ing 𝜈𝑀 = 𝐼 ∗ ⊸ 𝑂, the diagram (3.9.27) elaborates to:

(𝐼 ⊸ 𝑆) × 𝑂 (𝐼 ⊸ (𝐼 ∗ ⊸ 𝑂)) × 𝑂

𝑆 𝐼 ∗ ⊸ 𝑂

𝘔 ⟬𝜍⟭𝘔

𝜅𝘔𝜍

⟬𝜍⟭𝘔
∃!

𝜅−1𝘔 .

So the terminal object in 𝘔-𝗰𝗼𝗔𝗹𝗴 is the coalgebra (𝐼 ∗ ⊸ 𝑂, 𝜅−1𝘔) where

the costructure map is

𝜅−1𝘔 ∶ 𝐼 ∗ ⊸ 𝑂 → (𝐼 ⊸ (𝐼 ∗ ⊸ 𝑂)) × 𝑂;
𝑦 ↦ (𝑖 ↦ (𝑤 ↦ 𝑦 ([𝑖] ⧺ 𝑤)), 𝑦[]).

(One can consult [88, eg. 10.2] or [52, §10.2, eg. 18] for detailed proof.)

3.9-5 The unique ⟬𝜍⟭𝘔 assigns to each state a function 𝐼 ∗ ⊸ 𝑂, that
consumes a list of 𝐼 -values and produces the output that results following

all of the state transitions induced by each input. Consider a behaviour

𝑦𝛴 ∈ 𝐼 ∗ ⊸ 𝑂 associated by ⟬𝜍⟭ to 𝑠0. Such 𝑦𝛴 works internally by propa-

gating the state transitions associated with each input in a word 𝑤 ∈ 𝐼 ∗,
so that 𝑦𝛴 𝑤 ∈ 𝑂 is the output of the Moore machine at the terminus of the

induced state-trajectory:

𝑤 = [𝑖0, 𝑖1, 𝑖2, … 𝑖𝑛] 𝑟 ∘ 𝛿(⋯ 𝛿 (𝛿 (𝛿 (𝑠0, 𝑖0), 𝑖1), 𝑖2)⋯ , 𝑖𝑛).
𝑦𝛴

observation 3.9-6. The above displayed equation looks very similar to

the pattern of recursion in (3.6.10), which shows how the catamorphism

⦇𝑠0 ▽ 𝛿 ⦈ automates state-stepping. But recall from §3.8.1 that catamor-

phisms on snoc lists compute by traversing the list to its root, building a

call stack before hitting the recursive “base case” (the empty list) and eval-

uating from the there up. 𝘔-anamorphisms are corecursive and traverse

the other way around. In the case of state-stepping, they can start from
20 If 𝑟 is a bijection, then we can recover the internal state. So the state is obscured to

the extent that it can be determined by output.

101

an initial state and iterate ad infinitum, driven one input at a time. This

has consequences for the thesis’ model because feedback control systems

software gets input from the external world one datum at a time: not all

up front as is required by catamorphisms. Keep this in mind when reading

the next section on asynchronous lists.

The picture of Moore machines as coalgebra has been known since at

least 1975 [32]. For more a full reading of “systems as coalgebras”, see the

landmark paper [88], the textbook [170], or, in the context of act, the see

[182, §3.1] or the draft textbook [178].

3.10 async lists & observer-iterator duality

John A De Goes,
American Author and Software Engineer
@jdegoes

Functional reactive programming ‘failed’ because it is leaky
atop the procedural foundations of computing.

The more practical alternative to FRP is potentially infi-
nite streams (subscriptions), combined with functional effects.

It’s not as beautiful as FRP but it works.

https://twitter.com/jdegoes/status/1153642841601691648

The previous sections have given a mathematical model of lists and the

operations that come along with category theoretical machinery. But the

mathematics consider neither memory nor time.

In standard list-like collections like std∷vector or std∷list, the con-

sumer of the list is in charge of the traversal, pulling data as needed. Feed-

back control systems and estimators are more naturally reactive. Rather

than pulling data from a structure, data values are pushed though a com-

putation pipeline as they become available from sensors or clocks, driv-

ing output of dependent quantities. In other words, we want to compose

the calculation as an expression in a calculus of operations on sequences

https://twitter.com/jdegoes/status/1153642841601691648

102

of values—distributed not in the computer’s memory, but through time.

From the point of view of the math, that distinction is only a matter of

interface.

In this section, an interface for push-based “observable” collections is

derived as the categorical dual to the pull-based “iterable” collections. The

derivation is attributed toMeijer, Dyer and others atMicrosoft in the devel-

opment of Rx.NET which eventually became the popular cross-language

ReactiveX (Rx) libraries [113].

The derivation of the asynchronous collection interface consistsmerely

of transcribing the Unified Modeling Language (uml) [96] diagram for the

GoF iterator pattern, [69], into a category theory like diagram of arrows

and then reversing the arrows to get the dual interface. There are several

informal/non peer reviewed references demonstrating the process: [112,

117, 120] and a conference presentation, [131]. It is also described in the

many books on the topic of Rx. Perhaps the best academic reference is the

Masters thesis of Bertoluzzo [154].

∗ ∗ ∗

Iterators are commonplace in mainstream programming, which is why it

may be the most well known of the so called Gang of Four (GoF) patterns
presented by Gamma et al. in [69].21 The GoF say that iterators…

provide a way to access the elements of a aggregate object

sequentially without exposing its underlying representation.
This is achieved using two abstract interfaces: an Aggregate, which pro-

duces iterator objects and Iterators which provide an interface for ad-

vancing through the collection and retrieving values. Those interfaces are

illustrated in the uml diagram, fig. 3.1.

It is important to distinguish between internal and external iterators.
When the client controls the iteration by advancing the traversal and re-

questing data, then this is an external iterator. If the client provides a
21 The GoF book is widely regarded as a seminal on the topic of oo software design

patterns.

103

figure 3.1: Iterator pattern class diagram from [69, p. 259].

function to the iterator and the iterator handles the traversal and appli-

cation then it is an internal iterator. Internal iterators have very nice

properties, and have deep categorical underpinnings [104]. However, the

GoF Iterator Pattern describes an external iterator, and this is the starting

point of our derivation.

notation 3.10-1. This notation is exclusive to only this section. First, let

() represent the singleton set. This gives routines with codomain 𝟣 the ap-

pearance of a nullary function call. Let 𝑎∶ A⟨T⟩ be an object, an “instance”

of type A⟨T⟩.22 Furthermore, let A⟨T⟩ be a class with a member function foo.

Member functions implicitly take instances as an argument, so 𝑎.foo() is
morally equivalent23 to foo(𝑎). To simplify type arrow specification for

interfaces, let

() foo−−−→ ()⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A⟨T⟩

denote that the member function foo is nullary (except for the implicit

argument), allowing us to avoid naming an instance of A⟨T⟩. Since foo

returns nothing you might guess that its reason for being is to mutate its
22 The angle-bracket syntax for type arguments is borrowed from languages like c++

or c♯. The thesis will eventually use formal iso c++, so this is a natural choice.
23 This equivalence was proposed as a “unified call syntax” for c++ [134].

104

instance. Member functions that mutate their instance are indicated by a

harpoon:

() foo−−−⇀↽−−− B⏟⏟⏟⏟⏟⏟⏟⏟⏟
A⟨T⟩

If we have another member function, bar, in the interface, we stack the

member functions:

() foo−−−⇀↽−−− ()

B
bar−−−→ C⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A⟨T⟩

or
foo∶ () ⇌ ()
bar∶ B → C⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

A⟨T⟩

.

Here, bar still takes its implicit argument but additionally takes an argu-

ment of type B. Finally, a (possibly mutating) member function that takes

no (non-implicit) arguments and returns any type of value, say () → D,

is a generalised notion of a getter . “Getter” is a programmer’s argot for

member functions that retrieve values from an instance. Its dual, D ⇌ (),
is a generalised notion of a setter . . “Setter” is a programmer’s argot for a

member function that sets values in its instance. All setters are presumed

to mutate their instance, since that is the point of them in the first place.

Returning to the derivation of an interface for asynchronous collec-

tions, first consider the abstract Aggregate from fig. 3.1. It facilitates the

creation of an iterator for a collection which can be sequentially traversed.

It consists of a single method:

() CreateIterator−−−−−−−−−−−−→ Iterator⟨T⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Aggregate⟨T⟩

(3.10.29)

where T is the element type of the collection.

The Iterator further consists of several member functions. We focus

105

on the following subset:

Next∶ () ⇌ ()
IsDone∶ () → bool

CurrentItem∶ () → T⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Iterator⟨T⟩

Next advances the iterator which mutates it so that it points to the next

value in the aggregate sequence. It may be viewed as a setter. IsDone

method allows the consumer to detect the end of the iteration, when the it-

erator has advanced to the end of the aggregate. Both IsDone and CurrentItem

can be seen as getters. CurrentItem can take on the functionality of IsDone

if it is modified to return an optional value (modelled by the disjoint union

() + T):
Next∶ () ⇌ ()

CurrentItem∶ () → () + T⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Iterator⟨T⟩

This version of CurrentItem returns a null value, (), just in case the end

of the aggregate is reached and the traversal is over. Now the remaining

two member functions can be merged into a single one that advances the

iterator and returns the (optional) current value:

NextItem∶ () ⇌ () + T⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Iterator⟨T⟩

Substituting this into (3.10.29) gives a composite description of how one

obtains an iterator and uses it to interface with an aggregate:

() CreateIterator−−−−−−−−−−−−→⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Aggregate⟨T⟩

(() NextItem−−−−−−−⇀↽−−−−−−− () + T)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Iterator⟨T⟩

This diagram illustrates a getter which retrieves another getter: a getter

of values that returns something new each time it is called (until it does

106

not). Of course, we have to keep in mind that these getter arrows have

side effects, but we may now reverse the arrows (and change the names)

to dualise the diagram:

(() + T
Update−−−−−→ ())⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Observer

Attach−−−−−→ ()⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Subject

. (3.10.30)

The getters have nowbecome setters: effectful functionswith () as codomain.

The Iterator, an arrow producing values becomes the Observer, an arrow

which accepts values. Iterators were retrieved through the Aggregate

interface. Observers are subscribed (Attached) through the Subject inter-

face. Iterators allowed values to be pulled from an Aggregate, Observers

accept values pushed from Subjects.

A client holding an iterator is in charge of traversing the Aggregate,

so the data must be all simultaneously be present in memory (lest the

iterator advancement block the thread). Because Subjects push data, they

can promulgate values leaving their Observers to react. An observer is a

glorified callback.

The GoF book describes the Observer Pattern [69, p. 293] which:

[defines] a one-to-many dependency between objects so that

when one object changes state, all its dependants are notified

and updated automatically.

The observer pattern is summarised in the class diagram fig. 3.2. The

resemblance between the GoF Observer Pattern (with Subject/Observer)

to the dualised form of the Aggregate/Iterator is no mere coincidence.24

The canonical GoF observer pattern has several issues which are well

documented by Blackheath and Jones in [147, Ch. 1] and by Pai and Abra-

ham in [165, Ch. 5]. Those issues are solved in reactivemodels such asMei-

jer’s Rx and Elliott andHudak’s Functional Reactive Programming (frp) [78,
147], so we shall not dwell on the GoF version.

24 Though, at the time Gamma et al. wrote GoF, the observer-iterator duality was not
known. (At least, not to anyone who wrote about it.)

107

figure 3.2: Observer pattern class diagram from [69, p. 294].

The thesis focuses on Rx as implemented by Shoop in [198]. There is

also some attention given to frp as implemented by Blackheath in [195]

as an alternative.

3.10.1 The Rx Observable Interface

The Observer interface in (3.10.30) can be split back into two member

functions:

(T
OnNext−−−−−→ ()

() OnComplete−−−−−−−−−→ ()
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Observer⟨T⟩

Subscribe−−−−−−−−→ ()
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Observable⟨T⟩⏟⏟⏟

Subscription⟨T⟩

(3.10.31)

The Notify method has also been renamed to Subscribe in keeping with

the Rx convention [113]. The OnNext method is a channel from an observ-

able to each of its subscribers. It is the dual of the iterator’s NextValue

member and is called each time a new value is to be published to the sub-

scribers. The OnComplete method is the dual of the iterator’s IsDone and

is used by the observable to signal the end of the collection to each of the

subscribers.

There are two mechanisms present in Rx that are missing from the

model in (3.10.31):

108

1. the observer should have an OnError method that accepts an excep-

tion object, and
2. the observable (the subject in the GoF pattern) should have a way

of unsubscribing.
So (3.10.31) should look like this:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

T
OnNext−−−−−→ ()

() OnComplete−−−−−−−−−→ ()
() OnError−−−−−−→ ()

⎞
⎟
⎟
⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Observer⟨T⟩

Subscribe−−−−−−−−→ ()

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Observable⟨T⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Unsubscribe−−−−−−−−−−→ ()

⏟⏟⏟
Subscription⟨T⟩

(3.10.32)

In practice, the OnComplete and OnError functions are optional, but

should be provided for any stream that terminates during the program

lifetime, or has any possibility of throwing an exception. You will see this

in the upcoming example. When we apply this to control programs, we

will design T to optionally contain error information so that errors can be

handled in course of normal operation. Wewill also assume that incoming

data does not “complete” since we expect our feedback sources (sensors

and operator input) do not terminate before controller shutdown.

Meijer et al. derive the Rx subscription from c♯’s IEnumerable/IEnu-

merator interface (not the GoF iterator pattern). IEnumerator is a subtype

of IDisposable, which provides an interface for releasing the iterator ac-

quired from an IEnumerable instance. As a result, Subscribe returns a

disposable resource handle. This is consonant with the GoF observer pat-

tern because the Subject has a Detach member function. In RxCpp, there

is a corresponding unsubscribe member function on a subscription. In

control systems programs, we will identify the program (as a dynamical

system) with the subscription, so we do not in any case manually unsub-

scribe. (That will all be handled by c++’s Resource Acquisition Is Initial-

ization (raii) mechanism at program termination when the subscription

109

goes out of scope.) So we do not retain a handle (a named variable) for the

subscription object.

3.10.2 RxCpp: a Brief Tutorial

The idea behind Rx programming is thatwe build a computation pipeline

as an expression in a dsl providing an algebra of observables. Rx imple-

mentations comewith a battery of operators for manipulating observables.

The website https://reactivex.io/documentation/operators.html pro-

vides detailed descriptions of the standard operators and tabulations of

their implementations in each supported language’s Rx library. They are

too many operators to list here and, moreover, different implementations

may be more or less complete. For an account of RxCpp’s supported op-

erators, you can consult the documentation [198]. The book C++ Reactive
Programming by Pai and Abraham [165] covers key operators and the fun-

damentals of building reactive applications with RxCpp.

An example of a simple Rx operator is map, which takes a function as

an argument and applies it elementwise to the observable sequence. It

has category theoretical backing. Recalling the conventional list-functor

which maps each 𝐴 ∈ 𝕊𝗲𝘁 to 𝐴∗, the conventional action on arrows is

pointwise application: given 𝑓 ∶ 𝐴 → 𝐵,

𝑓 ∗∶ 𝐴∗ → 𝐵∗; [𝑎1, 𝑎2, …] ↦ [𝑓 (𝑎1), 𝑓 (𝑎2), …]

and 𝑓 ∗[] = []. In functional languages, this operation is often called map,

as it is in Rx.

example 3.10-2. Our program is written in c++17 with the RxCpp library.

scenario We have a problem with a noisy sensor and we want to

smooth the signal with a simple box filter of width 𝑁 . Our sensor source

is of type observable⟨double⟩.

https://reactivex.io/documentation/operators.html

110

solution We can then write the box filtered output signal as a com-

posite of the Rx built-in buffer and map operators.

The buffer(𝑁 , skip) operator stores 𝑁 values as a std∷vector, with

skip elements between consecutive buffers. Choosing skip = 1 makes

a standard ring-buffer of size 𝑁 . Rx operators can be illustrated in a

nice visual style called marble diagrams25. A marble diagram illustrating

buffer(3, 1) is shown in fig. 3.3. In these diagrams, time runs from

1 2 3 4 5 6 |

buffer(3, 1)

1

2

3

2

3

4

3

4

5

4

5

6

5

6
6 |

figure 3.3: Marble diagram for RxCpp’s buffer operator with count (that is,
buffer_with_count). The vertical stacks of data represent std∷vectors that the
buffer operator emits.

left to right and each stream (observable) is represented by a line. Data is

transformed from top to bottomwith a datum illustrated as a bead one one

of the stream lines. Beads can be distinguished by shape, colour or content

(though bead shape sometimes indicates type). Operators are illustrated

as boxes instead of lines, and data sequencing and alignment is indicated

by dashed arrows.

Begin by declaring the source from the sensor:

rxcpp^:observable<double> source = …

25 I cannot be sure from whom marble diagrams originated but they appear in primi-
tive form in the US patent applications for the Rx interface [117].

111

Since we do not have a specific device or driver in mind, the ellipsis is

as specific as we can get. When source emits its values, we collect them

with buffer. When the buffer emits its payload as a std∷vector, we then

average the values using map. We will need to provide mapwith a function

that averages the values in a vector of doubles:

auto avg_buffer =
[](const std^:vector<double> &buffer) -> double {

auto sum = std^:accumulate(buffer.begin(), buffer.end(), 0.);
return sum / buffer.size();

};

Now we can write an expression defining output in terms of operations

on the source:

auto output = source | rx^:buffer(N, 1) | rx^:map(avg_buffer);

Output is also an observable⟨double⟩ and we need to subscribe to it to

have access to the values. Recall from (3.10.32) that an observer is a pair

of functions/routines that handle the OnNext and OnComplete cases (or op-

tionally as a triple with OnError). We will subscribe a pair of lambda func-

tions that print the OnNext and OnComplete cases:

output.subscribe(
[](double x) { printf("OnNext: %.2f\n", x); },
[]() { printf("OnComple\n"); });

This is a pair of lambdas instead of a trio because we decline to handle the

OnError case. If we gave only a single lambda, we would also be declining

to handle the OnComplete case.

As a test, if we let 𝑁 = 5 and

auto source =
rxcpp^:observable<>^:range(1, 10)
| rx^:map([](auto x) -> double { return (double) x; });

(that is, the integers 1, … 10 converted to double). This setup gives output:

OnNext: 3.00
OnNext: 4.00
OnNext: 5.00

112

OnNext: 6.00
OnNext: 7.00
OnNext: 8.00
OnNext: 8.50
OnNext: 9.00
OnNext: 9.50
OnNext: 10.00
OnComplete

The output after “OnNext:␣8.00” is not quite what we might expect from

a typical box filter. This is because, as you can see from fig. 3.3, there is

a “wind-down” effect where the buffer narrows after the input sequence

is exhausted. If we want to avoid the wined-down, we can terminate

the stream as soon as the buffer begins to narrow. We do this with the

take_while operator which accepts a predicate and calls on_completed the

first time it fails:

constexpr auto bufw = 5;
auto output =
source

| rx^:buffer(bufw, 1)
| rx^:take_while([](auto& v){return v.size() ^= bufw;})
| rx^:map(avg_buffer);

The preceding snippets are included (in full, with unit test) in the demo

code accompanying the thesis [194] and in lst. C.1.1 of Appendix C, p. 317.

3.10.3 Kálmán Filtering Examples

A more advanced demonstration using Kálmán filtering is provided in my

demo repository26 [199]. The scenarios include: estimating the altitude

of a free-falling object with noisy radar readings27 and; estimating the

coefficients of an unknown cubic polynomial from noisy samples. The
26 https://github.com/timtro/kalman-folding
27 Borrowed from the book Fundamentals of Kalman Filtering by Zarchan and Mu-

soff [107, pp. 159–171].

https://github.com/timtro/kalman-folding

113

demos are thrice rehearsed: in frp using SodiumFRP [195], in RxCpp, and

using ordinary list catamorphism (folds)28. The examples are based on a

series of papers by Beckman: [142–146]. Also see his conference talk [152]

based partly on those papers.

28 See §3.8.1.

4
A PLATON IC B ICCC OF C++ PROGRAMS

Always design a
thing by consider-
ing it in its larger
context—a chair in
a room, a room in
a house, a house in
an environment, an
environment in a
city plan.

— Eliel Saarinen

4.1 chapter synopsis

The aim of this chapter is to present a (platonic) category, Cpp, of c++

programs with a cartesian monoidal, a cocartesian monoidal and ul-

timately, a bicartesian closed structure (def. B.15-10). And alongside that,

c++17 standard compliant code that models the structure. This code is a

particular representation of Cpp, similar to how column vectors are repre-

sentations of vector spaces. I denote this representation Cpp/c++.

The purpose of Cpp/c++ is not to create a useful c++ sublanguage. The

purpose is,

• to demonstrate that the structure of Cpp can be represented in a way

that a standards compliant c++ compiler can implement,

• to make vividly clear where and how the axioms of Cpp constrain

the design of c++ programs so that, when we must, we can break

those constraints deliberately and artfully,

• to demonstrate that, with some amount of squinting, we can treat

appropriately constrained c++ programs as reflections of constella-

tions in 𝕊𝗲𝘁, and
• apply some “fast and loose reasoning” that is morally correct, in the

sense of [97].

Table 4.1 summarises the key structures of a biccc and the c++ types

upon which they will be modelled.

motivation This structure is what will allow us to model Moore ma-
chines in the category of c++ programs. Compatible Moore machines can

be composed in series or parallel and such a composite is used to model

control programs. This chapter is also important because in the literature

114

115

table 4.1: Summary of biccc structures and c++ types upon which they can be
modelled.

Biccc structure Definition C++ structure

Product B.9-3 pod-struct or std∷pair
Coproduct B.10-2 std∷variant

Initiator/termintor B.3-1 Singleton types/void

Exponentials B.15-3 std∷function
lambda functions

of ct applied to programming there are many choices for modeling. Some

of those choices are determined by the language of application and oth-

ers by the aspects of programs we wish to capture. So this chapter makes

clear what we are and are not modeling in the c++ language.

contribution This chapter is the first I have seen that establishes

foundations for a platonic category of c++ programs. Conversations about

ct applied to c++ are rare but not unheard of. In the book Category The-
ory for Programmers, [169], Milewski often uses c++ in explorations of

category theoretical programming patterns. And though it is not a math-

ematical book, Čukić has a nice book on fp in c++, [163] 1. Since c++ is a

very pragmatic industrial language, it is probably counter-cultural to have

an abstract mathematical model.

I have made the code listed in this section publicly available in a git

repository [194]. The repository also contains a suite of unit tests that

demonstrate how the provided code can be used and how it interacts with

c++ mechanisms such as copy and move semantics. Similar code also

appears in the public repository for my experimental library tfunc [166]

where you can additionally find benchmarks.
1 I count [163] even though it is not steeped in ct because functional programming

is the oldest and most mature example of applied ct.

116

mixed c++ and math notation In mathematical expressions Cpp

objects and arrows appear in the same typewriter text as the code listings

while also following the isomath convention of italicising variables. More-

over, these entities are given c++17-standard compliant names. Function

application is indicated with parentheses f(x), despite the fact that this

is unconventional in functional programming and ct. We will come to

the notion of functors and natural transformations as particular types of

c++ templates where the language notation is to use angle-brackets for

template arguments. This will carry into the mathematical notation; so

a functor F acts on a type variable T and the notation is F⟨T⟩. Outside

of these standards, we adopt the convention that types will be named in

PascalCase while variables and functions are named in snake_case (except

when the name of a type appears in the name of a variable).

4.1-1 code preamble The code in the Chatper’s examples use some sim-

ple equality-comparable singleton types,

struct A {bool operator^=(const A) const { return true; }};
struct B {bool operator^=(const B) const { return true; }};
struct C {bool operator^=(const C) const { return true; }};
struct D {bool operator^=(const D) const { return true; }};

and as some functions among them,

^/ f : A → B
const auto f = [](A) -> B { return {}; };
^/ g : B → C
const auto g = [](B) -> C { return {}; };
^/ h : C → D
const auto h = [](C) -> D { return {}; };

They are defined in the header file include/test-tools.hpp from the the-

sis demo repository [194].

4.2 a category of c++ programs

In a category of programs, objects are structural representations of vari-

able/object types (in the type-theoretical sense, like floating point values,

https://github.com/timtro/TeatroThesisDemos/blob/master/include/test-tools.hpp

117

32-bit integers, arrays and alike) and arrows are functional routines that

map arguments to return values.

Any program is a
model of a model
within a theory
of a model of an
abstraction of some
portion of the world
or of some universe
of discourse
— Meir M. Lehman

Programs, Life Cy-
cles, and Laws of

Software Evolution

In the simplest cases, the objects of these program categories are sets.

But type theory offers more sophisticated options that allow us to model

some aspects of the runtime environment. For example, it is common in

type theory to have a bottom type which is a subtype of all other types

and with a bottom value denoted ⊥. If an arrow has some subset of its

domain that causes undefined behavior, infinite recursion, exceptions or

otherwise unrecoverable errors, then the image of that subset is ⊥.
For this thesis, we follow the approach of Malcolm, [57, 58], and use

sets as our types, and mathematical functions as our arrows.

definition 4.2-1. The category Cpp has

objects for each c++ type, a set of that type’s values.

arrows pure functions mapping types to other types.

For examples, the types int32_t, bool and std∷vector⟨double⟩ are all in

Cpp. A simple example of an arrow in Cpp(int32_t, bool) would be the

closure,

[](int32_t x) -> bool { return x ^= 5; }

The domain and codomain of the arrows are the argument and return

types, respectively. Named functions are also, of course, perfectly good

Cpp-arrows. Member functions can be regarded as functions with their

first argument (the object upon which they are called) is curried in. Defi-

nition B.1-1 introduces the notation hom(𝑇 , 𝑈) as the collection of arrows

between objects 𝐴 and 𝐵 of a category. The c++ Standard Template Li-

brary (stl) provides std∷function2 that can wrap callable entities such as

named function, function pointers, closures, callable objects, pointers-to-

member-functions. This provides a uniform interface to callable objects.

It is known to incur a performance penalty, but for the exemplary code of

this chapter it is a favourable trade. The expression std∷function⟨U(T)⟩,
2 in the <functional> header.

118

as a notation, is verbose and does not harmonise with mathematical nota-

tion. The code in lst. C.2.1 defines the templates Hom and Dom which are a

thin layer of template metaprogram around std∷function allowing us to

write

Hom⟨T, U⟩ instead of std∷function⟨U(T)⟩.
For functions of more than one variable, we have an additional notational

device, Doms, to mark the domain,

Hom⟨Doms⟨T, U⟩, V⟩ instead of std∷function⟨V(T, U)⟩.

function purity The emphasised term pure in the former definition

refers to the small minority of c++ functions behave like mathematical

ones. To the c++ programmer, a function is a callable block of instruc-

tions that may or may not take arguments and may or may not return a

value. To the mathematician, a function is a set relation that is left-total

and right-unique. Mathematical functions produce output consistent with

their arguments.

Take a mathematical function 𝑓 and a value 𝑥 ∈ dom 𝑓 , then 𝑦 = 𝑓 𝑥
is a value in cod 𝑓 ; and everywhere we write 𝑓 𝑥 we can replace it with 𝑦 .
This is called referential transparency.

definition 4.2-2. Let us call a general c++ “function” a routine. A rou-

tine that is left-total, right-unique and referentially transparent, is called

a c++ function. To emphasise adherence to these properties, it may be

called a pure function.

Some examples of impurities are: reading from a random number gen-

erator, polling system time, printing to the screen and taking input from

the keyboard (or anywhere other than arguments). Milewski popularised

a useful litmus for purity: a routine that can be memoised3 behaves purely

enough to call a function.
3 Memoisation is a way to improve the performance of expensive function at the ex-

pense of memory. A memoised function is wrapped in a routine that keeps a cache of

119

Purity is important because it allows us to discuss values, expressions

and behaviour in equivalent terms. So the arrows of Cpp are pure functions

and any c++ routine that is not pure is not in Cpp.

4.2.1 Category axioms of Cpp

To give Cpp the structure of a category we must identify structures

in the c++ language that model the data and axioms of a category as per

def. B.1-1. Namely, we need to demonstrate

1. closed function composition, Appendix c-1,

2. associativity of functions composition, Appendix c-2 and

3. identity functions, Appendix c-3.

4.2.1.1 1. Functional Closure in Cpp

Nested call expressions such as f(g(x)) are of course valid c++, and does

what we might think. If f and g are pure, and their signatures are compat-

ible, then this will compile into something behaving as f ∘ g. But there is

no builtin function composition in c++17. We can create lambdas on the

fly:

auto fog = [=](auto x){ return f(g(x)); }

but to satisfy Appendix 1, we have an operation for composing arbitrary

functions,

auto fogoh = compose(f, g, h);

The following implementation is used in parts of the thesis demo repos-

itory [194].

template <typename F, typename^^. Fs>
constexpr decltype(auto) compose(F f, Fs^^. fs) {
if constexpr (sizeof^^.(fs) < 1)

return [f](auto ^&x) -> decltype(auto) {

prior results that are keyed/indexed by the arguments. When a memoised function is
called with previously seen arguments, the cached value is returned instead of recomput-
ing it.

120

[f, …{g,h}](auto x) {
return f(compose(g, h)(x))};

[g, …{h}](auto x) {
return g(compose(h)(x))};

[h](auto x) {
return h(x)};

figure 4.1: Pseudo c++ expansion of compose(f,g,h). The ^^.{} notation indi-
cates the contents of the variadic parameter pack. The distracting noise from
argument forwarding and std^:invoke are removed. The boxes and lines indi-
cate expansion of comose in each iteration.

return std^:invoke(f, std^:forward<decltype(x)>(x));
};

else
return [f, fs^^.](auto ^&x) -> decltype(auto) {
return std^:invoke(

f, compose(fs^^.)(std^:forward<decltype(x)>(x)));
};

}

This compose routine is recursively defined on a variadic list of arguments.

Those arguments are the functions for composition. In the base case,

where only one argument is given (and sizeof^^.(fs) < 1), the call to

compose merely wraps the argument function in a lambda that perfectly

forwards its argument to the given function. Successive iterations pro-

duce a nested structure of lambdas that take (by capture) copies of the

functions provided in the argument list. As a simple example, Figure 4.1

illustrates in a sort of simplified c++ pseudocode how the compiler will

expand compose(f, g, h). While this implementation of compose is rel-

atively economical in terms of Software Lines of Code (sloc), it does suf-

fer inefficiencies. Each layer contains copies of the functions in the lay-

ers below. Anecdotally, I have crudely benchmarked this implementation

121

against others and there is ameasurable squander ofmemory and cpu time.

For composites of 4 functions or less, the Cpp/c++ code in this chapter,

uses a less general, more verbose yet more straightforward (and explicitly

typed) solution that can be found in lst. C.2.3.

In general, I recommended as alternatives alternatives the compose or

demux functions from Louis Dionne’s Boost.Hana [156], or compose from

Paul Fultz’s Fit [196] (which is now Boost.HOF [164]). Both of those alter-

natives are high quality implementations which have passed a peer review

process (as all Boost libraries have).

4.2.1.2 2. Associativity of Composition

The c++ standards prescribe a strict evaluation strategy: expressions are

evaluated as soon as they are bound to a variable or function argument.

In a call such as f(g(·), h(·), j(·)), the arguments of f are evaluated

ahead of the function body but the sequence in which the arguments are

evaluated is explicitly unspecified by the standard [158, §8.2.2/5]. The or-

der is known to differ among compilers and even architecture. If the func-

tions f, g, and h are referentially transparent, the order is unobservable. It

cannot change the behaviour of the program. So, referentially transparent

functions compose associatively, satisfying c-2.

4.2.1.3 3. Compositional Identity

The identity axiom c-3 of a category requires, for each object, an identity

arrow such that for all arrows 𝑓 ,

𝑓 ∘ id𝐴 = 𝑓 = id𝐵 ∘ 𝑓 .

In c++ we might approximate this as a template function:

template <typename T>
constexpr decltype(auto) id(T ^&x) {
return std^:forward<T>(x);

}

122

This definition has some edge cases straining fidelity to c-3. Consider the

following examples.

• The initialisations

int adamsMeaning = id({41});
const char kernighansGreeting[] = id("hello, world\n");

will fail to compile because braced-initialisers or string literals are

special cases in the context of initialisers as described in [158, §11.6]

and wrapping them in a function removes them from that context.

• When id is applied to a returned expression (such as return id(foo);)

it will interfere with Named Return Value Optimisation (nrvo), po-

tentially forcing unnecessary copies. Those copies are not observ-

able in a pure context4, but may have an undesirable performance

impact.

• When a temporary value is passed to id which is then used in an

initializer

Foo myFoo = id(Foo(x));

idwill interferewith lifetime extension of temporaries [158, §15.2/5]

which may lead to unexpected access violations.

There are certainly more exceptions, so identity in Cpp is imperfectly

witnessed by these proposed (or possibly any) identity functions. Within

the context of the present research, those issues do not present practical

problems.

In the demo repository [194], you can find unit test cases such as:

TEST_CASE("f ^= f ∘ id_A ^= id_B ∘ f.") {
REQUIRE(f(A{}) ^= compose(f, id<A>)(A{}));
REQUIRE(f(A{}) ^= compose(id, f)(A{}));
REQUIRE(compose(f, id<A>)(A{}) ^= compose(id, f)(A{}));

}

4 Impurities in the copy constructor can observe the copy. For example, if the copy
constructor writes to a log.

123

remark 4.2-3. Since writing this section, an identity function, std∷-
identity, was proposed in [167, §19.14.10] and added to the <functional>

header in c++20.

As an aid to the c++ type system, we wrap the identity function in a

std∷function
template <typename T>
auto id = Hom<T, T>{tf^:id<T>};

(where the afore-listed id function template originates in the tf names-

pace.)

4.3 endofunctors on Cpp

In c++ programming, the term functor is often used for an object with

a call operator defined. Here we obviously use the term in the sense of

ct defined in §B.6. Furthermore, an edofunctor on Cpp is called a type
functor. That is, it is a map from types to types with corresponding action

on functions. In c++ the “types-to-types” part is achievable through the

template system. For example, std∷vector allows us to map any type to

a random-access list of elements of that type. But this has no intrinsic

action on functions. For that, we need to define a map on arrows, usually

called fmap in functional programming.

definition 4.3-1. In c++ a type functor consists of
• a map of Cpp objects manifest as a class/struct template of a single

type variable: template<typename> F,
• a map of arrows—a function of type (T → U) → (F⟨T⟩ → F⟨U⟩), that
preserves composition and identity.

Preserving composition and identity means that the image of the dia-

gram,

𝐴 𝐵 𝐶 ,
𝑓

𝑔∘𝑓

𝑔

124

through the functor, commutes. For the purpose of discussion we can

organise the former definition in a namespace 5 that groups the relevant

object-map as an alias template, Of, and the arrow-map as a function tem-

plate, fmap.

namespace F {
template <typename T>
using Of = …;

template <typename Fn>
auto fmap(Fn f) -> Hom<Of<Dom<Fn>>, Of<Cod<Fn>>>;

}; ^/ namespace F

Now we can be clear about what it means to preserve composition and

identity. If we draw the arrow closure diagram in Cpp, its image through

a type functor F should commute as well:

Cpp

Cpp

F

F∷Of⟨T⟩ F∷Of⟨U⟩ F∷Of⟨V⟩

A B C .

F∷fmap(f)

F∷fmap(compose(g, f))

id⟨F∷Of⟨T⟩⟩

F∷fmap(g)

id⟨F∷Of⟨U⟩⟩ id⟨F∷Of⟨V⟩⟩

f

compose(g, f)

id⟨T⟩
g

id⟨U⟩ id⟨V⟩

(4.3.1)

The bottom commutes axiomatically since Cpp is a category. The top will

commute axiomatically if F is a functor. Using the tools described in 4.1-1,
we can write unit-test REQUIREments based on the commutativity condi-

tions of (4.3.1).

TEST_CASE("Check the functor laws for F") {
auto fa = F^:Of<A>{…};

^/ F∷fmap(g) ∘ F∷fmap(f) = F∷fmap(g ∘ f)
REQUIRE(

5 … or, similarly, a struct.

125

compose(F^:fmap(g), F^:fmap(f))(fa)
^=

F^:fmap(compose(g, f))(fa)
);

^/ F∷fmap(id⟨−⟩) = id⟨f∷Of⟨−⟩⟩
REQUIRE(F^:fmap(id<A>)(fa) ^= id<F^:Of<A>>(fa));

}

example 4.3-2 (std∷vector as a List-functor). Wecan regard std∷vector⟨T⟩
as an object map and define an arrow map to complete a functor. The typ-

ical arrow map on linear (list- or array-like) structures behaves ask

fmap (f) ([a1, a2, …, a𝑁]) = [f(a1), f(a2), …, f(a𝑁)]

The underlying algorithm for this exists in the stl algorithm header as

std∷transform. We need only provide the fmap interface to it:

namespace Vector {
template <typename T>
using Of = std^:vector<T>;

template <typename Fn>
auto fmap(Fn fn) -> Hom<Of<Dom<Fn>>, Of<Cod<Fn>>> {

using T = Dom<Fn>;
using U = Cod<Fn>;
return [fn](Of<T> t_s) {
Of<U> u_s;
u_s.reserve(t_s.size());

std^:transform(
cbegin(t_s), cend(t_s), std^:back_inserter(u_s), fn);

return u_s;
};

};
}; ^/ namespace Vector

And now check that the functor preserves composition and identity in Cpp:

TEST_CASE("Check the functor laws for Vector^:fmap") {
^/ Alias for std∷vector<A>
^/ ↓
auto a_s = Vector^:Of<A>{A{}, A{}, A{}};

126

REQUIRE(
compose(Vector^:fmap(g), Vector^:fmap(f))(a_s)

^=
Vector^:fmap(compose(g, f))(a_s));

REQUIRE(Vector^:fmap(id<A>)(a_s) ^= id<Vector^:Of<A>>(a_s));
}

This next example will be a little different than Vector because we will

be creating a family of functors—one for each type in Cpp. It is an impor-

tant example because it is a prelude to two important concepts: 1. natural

transformations, and 2. bifunctors.

example 4.3-3 (Constant functor). In introductory ct texts, the constant
functor is often one of the first examples. In Cpp, a constant type functor

maps all Cpp-objects to a single type, T, and all Cpp-arrows to id⟨T⟩.
One such functor exists for each object in Cpp, but each one behaves

the same way. It is natural to write code that will produce such a functor

over any given type. That is, for any type T we create a constant func-

tor with the object map Of⟨U⟩ = T, for all U, and fmap(f) = id⟨T⟩. The

most straightforward way (that I know of) to make such a thing is to nest

templates

template <typename T>
struct Always {
template <typename>
using Given = T;

};

So Always⟨T⟩∷Given⟨U⟩ always evaluates to the typename T for all U ∈ Cpp.

Now we would define the functor Const⟨T⟩ that, for any T. In the previous

example, we organised Vector in a namespace; but now that we have a

family of functors, we need to template the functor on T. So instead of

using a namespace, we switch to a struct and make the fmap a static

member

template <typename T>

127

struct Const {

template <typename U>
using Of = typename Always<T>^:template Given<U>;

template <typename Fn>
static auto fmap(Fn) -> Hom<T, T> {

return id<T>;
};

};

Now confirm that Const is functorial, (at least for the case of Const⟨A⟩)
TEST_CASE("Functor axioms of Const<A>.") {
REQUIRE(

compose(Const<A>^:fmap(g), Const<A>^:fmap(f))(A{})
^=
Const<A>^:fmap(compose(g, f))(A{})

);

REQUIRE(Const<A>^:fmap(id<A>)(A{}) ^= A{});
^/ Interestingly, id will be mapped to id<A> too:
REQUIRE(Const<A>^:fmap(id)(A{}) ^= A{});
^/ as will id<C^:
REQUIRE(Const<A>^:fmap(id<C>)(A{}) ^= A{});

}

example 4.3-4 (sptr non-functor). C++ (via its C heritage) has a system

by which we can obtain and manipulate the addresses of various objects

and entities. Pointers hold these addresses and comewith the dereferencing
operation, denoted with the unary-star operator *(−), by which we can

retrieve the value at the end of a pointer. Pointers are typed so that we

know how to interpret those values. (Never mind the nasty business of

void-pointers.) iso/iec 14882:2011 (c++11) [116] introduced smart pointers,
which hold manifold benefits over working with raw C-style pointers.

It will later be useful to adapt a normal function in Hom⟨T, U⟩ to accept

and return std∷shared_ptrs: Hom⟨std∷shared_ptr⟨T⟩, std∷shared_ptr⟨U⟩⟩
This may smell of a functor, but not quite. Consider this implementation:

namespace sptr {
template <typename T>

http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372

128

using Of = std^:shared_ptr<T>;

template <typename Fn>
auto map(Fn fn) -> Hom<Of<Dom<Fn>>, Of<Cod<Fn>>> {

return [fn](Of<Dom<Fn>> x_ptr) -> Of<Cod<Fn>> {
const auto result = fn(*x_ptr);
using Result = std^:remove_cv_t<decltype(result)>;

return std^:make_shared<Result>(result);
};

}
} ^/ namespace sptr

Here, I have refrained from using the name fmap, instead using map. This

is because sptr is not functorial: it does not preserve commuting triangles

or identities. Rather, it is functorial up to natural transformation:

sptr∷Of⟨T⟩ sptr∷Of⟨U⟩ sptr∷Of⟨V⟩

A B C .

sptr∷fmap(f)

sptr∷fmap(compose(g, f))

id⟨sptr∷Of⟨T⟩⟩

*(-)
sptr∷fmap(g)

id⟨sptr∷Of⟨U⟩⟩

*(-)

id⟨sptr∷Of⟨V⟩⟩

*(-)

f

compose(g, f)

id⟨T⟩
g

id⟨U⟩ id⟨V⟩

In the diagram above, the squiggle-arrows indicate that those do not

participate in the commutativity of their interior. Instead, we have to

dereference the values (using the unary-star operator) to get commutativ-

ity. Given a pointer p of type std∷shared_ptr⟨T⟩, if we called sptr^:map(f)(p)

several times, none of the results would be equal because we would get a

pointer to a new piece of memory each time. On pointers, equality com-

parison checks if two pointers point to the samememory address. So if the

values at the ends of the pointers are the same, the addresses are different

and therefore not equal. This is why we must dereference before we get

any satisfying compositional properties.

129

Here is the usual functor unit-tests for sptr, with the subtle change:

TEST_CASE("ptr is functorial 'up to natural transformation'") {
auto a_ptr = std^:make_shared<A>();

REQUIRE(
*compose(sptr^:map(g), sptr^:map(f))(a_ptr)

^=
*sptr^:map(compose(g, f))(a_ptr)

);

REQUIRE(id<sptr^:Of<A>>(a_ptr) ^= a_ptr);

REQUIRE(*sptr^:map(id<A>)(a_ptr) ^= *id<sptr^:Of<A>>(a_ptr));

^/ Note that we have to dereference for the test.
^/ This is not a functor without

}

Note well that the familiar functor laws are embellished with dereferenc-

ing operations. So we can build composite in the image of sptr, but

commutativity does not hold until we drop back down into the preimage,

through the dereferencing operation.

∗ ∗ ∗

4.3-5 Grouping the object and arrow maps in a namespace or struct is

simply an organisational convenience. In practice, it serves the program-

mer perfectly well to have fmap as a free function or member function—

with a name that best reflects what fmap means in the context of that

functor. For example, iso proposal P0798 [155] proposes transform as a

member function of std∷optional which acts as an fmap on the so called

maybe functor based on std∷optional. Later in the chapter, we will define

the categorical products and coproducts and it will be more convenient to

have their arrow-maps as free functions with more semantically relevant

names. From a mathematical point of view, the important things are that

the object-map works for all template typename arguments, and that the

arrow map preserves the structure of the category.

130

4.4 natural transformations in Cpp

Natural transformations, (§B.7, def. B.7-1) are functor-homomorphisms,

describing how tomap one functor into another. A natural transformation

in Cpp between type functors F and G can be drawn as

Cpp Cpp

F

G

eta or more compactly as eta∶ F ⇒ G.

It represents a family of functions,

(F∷Of⟨T⟩ G∷Of⟨T⟩)
T ∈ Cpp

,eta⟨T⟩

subject to naturality constraints. They are straightforwardly represented

as a special kind of function template.

definition 4.4-1. Consider type functors F and G. In Cpp/c++, a template

function is a natural transformation if, for all T in Cpp, it can be viewed as

a member of

template<typename T> Hom<F<T>, G<T>>;

subject to the commutativity of the naturality square:

G∷Of⟨T⟩ G∷Of⟨U⟩

F∷Of⟨T⟩ F∷Of⟨U⟩

G∷fmap(f)

F∷fmap(f)

eta⟨T⟩ eta⟨U⟩ (4.4.2)

Not all c++ function templates can be viewed as natural transforma-

tions. C++ function templates are ad-hoc polymorphic while the afore

def. 4.4-1 implies that, in order to be a natural transformation, the func-

tion template must be parametrically polymorphic. This means that the

function template must be well formed for any and all template type argu-

ments T ∈ Cpp, without specialisation. The body of the function template

can only deal in the structure of F and G and must not affect contained T

values.

131

example 4.4-2. Consider the Vector functor from earlier. The only thing

a Vector∷Of⟨int⟩ and a Vector∷Of⟨bool⟩ have in common is the std∷-
vector interface. A function that tells you the length of a std∷vector
obviously has no regard the type of the contained elements, and therefore

can be viewed as a natural transformation from Vector to the constant

functor at std∷size_t.
To demonstrate that, we can define the natural transformation,

len∶ Vector ⇒ Const⟨std∷size_t⟩,

which simply returns the result from std∷vector’s size() member func-

tion:

template <typename T>
auto len(Vector^:Of<T> t_s) -> Const<std^:size_t>^:Of<T> {
return t_s.size();

}

We can test against the naturality square (4.4.2):

TEST_CASE("Test naturality square for len.") {
constexpr std^:size_t actual_length = 5;

auto a_s = Vector^:Of<A>(actual_length);

^/ Does what it is supposed to:
REQUIRE(len(a_s) ^= actual_length);

^/ Satisfies the naturality square:
REQUIRE(

compose(len, Vector^:fmap(f))(a_s)
^=
compose(Const<std^:size_t>^:fmap(f), len<A>)(a_s)

);
}

This is not an exhaustive test since actual_length is fixed; but it makes

the point.

∗ ∗ ∗

132

In the afore sections of this chapter, I have defined the category Cpp. For

this category to have practical substance, it was developed in the text

alongside a representation denoted Cpp/c++. This representation demon-

strates conformity to the category axioms and the ability to express type

functors and their natural transformations. I would now augment Cppwith

the structure of a biccc and further develop Cpp/c++ to support it. This will

enable us to model programs in terms of algebraic datatypes with opera-

tions of pairing, projection, disjointly uniting, choosing/visiting, function

application and currying.

4.5 cartesian monoidal structure in Cpp

Anatural approach to developing Cpp as a ccc6 is to start by demonstrating

the existence of a categorical product and then extend it with associativity,

identity, self-inverse braiding (creating a symmetric monoidal structure)

and currying (which closes the monoid). This approach is executed in this

section and the next. In this section focuses on the development of a carte-

sian monoidal structure in Cpp as well as a representation in c++ code. In

the next section, §4.6, the cartesian monoid is given closure by demon-

strating internal homs, internal evaluation and currying with respect to

the cartesian product.

the categorical product The construction of products 7 in Cpp

echos their construction in 𝕊𝗲𝘁 (§B.9.1, p. 290). Since Cpp ismodelled on 𝕊𝗲𝘁
and the categorical product of 𝕊𝗲𝘁 is the familiar set-theoretical Cartesian

product, we start from there.

Consider a type-bifunctor P. The forgetful functor 𝘜Cpp∶ Cpp → 𝕊𝗲𝘁
associates each Cpp type to its underlying set of values in 𝕊𝗲𝘁. The categor-
ical product in 𝕊𝗲𝘁 is the cartesian product. Any T, U ∈ Cpp are associated

6 def. B.15-8, p. 309
7 §B.9, p. 288.

133

through 𝘍 to the sets 𝑇 , 𝑈 . Furthermore, se associate 𝑇 × 𝑈 to the image

P⟨T, U⟩ through 𝘜Cpp.
A binary Cartesian product is well modelled by the stl class template,

std∷pair:
template <typename T, typename U>
struct P : std^:pair<T, U> {
using std^:pair<T, U>^:pair;

};

The pneumonic here is P-roduct, since pairs and tuples are usually called

product types.

Recall that a (binary) categorical product is a limit of a discrete diagram

with two objects. A cone in Cpp over this diagram is a span: a tuple of

(C, f, g), related as: T C U
f g . The limit of such is a terminal cone:

a cone through which every other cone uniquely factors.

Now consider P at the apex of such a limit cone, through which any

other cone factors:

C

T P⟨T, U⟩ U .

f g∃! u

proj_l proj_r

(4.5.3)

This prescribes a unique u that facilitates the commutativity of the left and

right triangles, each subtended by the projections. The projects are natural

transformations, though we need not focus on naturality: it is sufficient

that they participate in the commutativity of the diagram. It does however

mean that they will be represented as template functions in Cpp/c++:

template <typename T, typename U>
auto proj_l(P<T, U> tu) -> T {
return std^:get<0>(tu);

}

template <typename T, typename U>
auto proj_r(P<T, U> tu) -> U {
return std^:get<1>(tu);

}

134

We can witness P at the apex of a terminal cone by defining the unique

u, which is an operator parameterised by the functions f and g. Often

called fanout, u maps c ↦ {f(c), g(c)}. In Cpp/c++:

template <typename Fn, typename Gn,
typename T = Dom<Fn>, typename U = Dom<Gn>,
typename X = Cod<Fn>, typename Y = Cod<Gn>>

auto fanout(Fn fn, Gn gn) -> Hom<T, P<X, Y>> {
static_assert(std^:is_same_v<T, U>);
return [fn, gn](auto t) -> P<X, Y> {

static_assert(std^:is_invocable_v<Fn, decltype(t)>);
static_assert(std^:is_invocable_v<Gn, decltype(t)>);

return {fn(t), gn(t)};
};

}

which we can see occasions the commutativity of (4.5.3):

TEST_CASE(
"Commutativity of left and right triangles in (4.7.7)") {

auto a_to_c = [](A) { return C{}; };
auto b_to_c = [](B) { return C{}; };

auto left_triangle_path =
compose(fanin(a_to_c, b_to_c), inject_l<A, B>);

REQUIRE(left_triangle_path(A{}) ^= a_to_c(A{}));

auto right_triangle_path =
compose(fanin(a_to_c, b_to_c), inject_r<A, B>);

REQUIRE(right_triangle_path(B{}) ^= b_to_c(B{}));
}

when T, U, V = A, B, C.
In c++, “plain ol’ data” (pod) structures can also be regarded as types

with projections provided by member access via the dot-operator. It is

difficult to define the fan-out operation for these structures in general, but

nonetheless, they are amply fit for most purposes of product types. Based

on the std∷pair datatype as a product, we turn our attention in pursuit

of a braided monoidal structure def. B.11-7.

135

A braided monoidal structure on P is the tuple

(P, I, associator_fd, l_unitor, r_unitor, braid)

where

 P, as the product, must be shown as a bifunctor.

 I is a terminal Cpp-object acting as the monoidal unit

 associator_fd, the associator, a natural isomorphismwithwith com-

ponents

associator_fd⟨T, U, V⟩∶ P⟨T, P⟨U, V⟩⟩ ⥲ P⟨P⟨T, U⟩, V⟩,

for all T, U, V ∈ Cpp, with inverse associator_rv.

 l_unitor_fd and r_unitor_fd, natural isomorphisms called (respec-

tively) the left- and right-unitors with components of the forms

l_unitor_fd⟨T⟩∶ P⟨I, T⟩ ⥲ T

r_unitor_fd⟨T⟩∶ P⟨T, I⟩ ⥲ T,

for all T ∈ Cpp, with inverses postfixed _rv instead of _fd.

 braid, the braiding natural isomorphism with components

braid⟨T, U⟩∶ P⟨T, U⟩ ⥲ P⟨U, T⟩,

which are self inverse.

These data are subject the commutativity of the associator (B.11.14), the

unitor (B.11.15) and the braiding (B.11.16) diagrams. The following titled

passages give Cpp/c++ implementations along with unit tests demonstrat-

ing their facility to make those diagrams commute.

pair-bifunctor In order to construct the morphisms of the associa-

tor, unitor and braiding diagrams, we must be able to construct products

of functions, and not just types. This means that P must be bifunctorial—

functorial in both the left and right parameters: P∶ Cpp × Cpp → Cpp. In

136

the category of sets, the cartesian product of functions, denoted 𝑓 × 𝑔, is
a map from (dom 𝑓) × (dom 𝑔) to (cod 𝑓) × (cod 𝑔), defined elementwise

by (𝑥, 𝑦) ↦ (𝑓 𝑥, 𝑔 𝑦). This is a bimap (two-variable fmap) of a bifunctor.

The Cpp/c++ spelling is much less terse:

template <typename Fn, typename Gn,
typename T = Dom<Fn>, typename U = Dom<Gn>,
typename X = Cod<Fn>, typename Y = Cod<Gn>>

auto prod(Fn fn, Gn gn) -> Hom<P<T, U>, P<X, Y>> {
return [fn, gn](P<T, U> tu) -> P<X, Y> {

auto [t, u] = tu;
return {fn(t), gn(u)};

};
}

Here, I abuse the default template argument system somewhat, using it to

define T, U, X and Y before the function declarator in order to uncomplicate

the function’s signature.

As per 4.3-5, prod, the bimap of P, is left as a free function (template)

without structurally associating it to P using a namespace or struct.

We can confirm that prod of functions makes P functorial in the left

and right factors individually, using the same REQUIREments as for Functor.

We simply place id in the factor we are not testing:

TEST_CASE("P (via prod) is functorial in both factors.") {
auto ab = P<A, B>{};

REQUIRE(
compose(prod(g, id), prod(f, id))(ab)
^=
prod(compose(g, f), id)(ab)

);

REQUIRE(
compose(prod(id<A>, h), prod(id<A>, g))(ab)
^=
prod(id<A>, compose(h, g))(ab)

);

REQUIRE(prod(id<A>, id)(ab) ^= id<P<A, B>>(ab));
}

137

the associator The associator for P mediates an equivalence of var-

ious nested groupings of products. Specifically, it mediates the isomor-

phism:

P⟨T, P⟨U, V⟩⟩ ≅ P⟨P⟨T, U⟩, V⟩,
in forward (_fd) and reverse (_rv) directions. Note that the order of vari-

ables, (T, U, V), is the same on the left and right sides of the above equation

and the difference is whether the inner pairing is on the left or right fac-

tor of the outer pairing. The associator must satisfy commutativity of the

associator diagram:

P⟨P⟨T, U⟩, P⟨V, W⟩⟩

P⟨T, P⟨U, P⟨V, W⟩⟩⟩ P⟨P⟨P⟨T, U⟩, V⟩, W⟩

P⟨T, P⟨P⟨U, V⟩, W⟩⟩ P⟨P⟨T, P⟨U, V⟩⟩, W⟩ .

associator_fd⟨P⟨T, U⟩, V, W⟩
associator_fd⟨T, U, P⟨V, W⟩⟩

prod(id⟨T⟩, associator_fd⟨U, V, W⟩)

associator_fd⟨T, P⟨U, V⟩, W⟩

prod(associator_fd⟨T, U, V⟩,id⟨W⟩)

The associator can be represented, in forward and reverse directions, by

the template functions:

template <typename T, typename U, typename V>
auto associator_fd(P<T, P<U, V>> t_uv) -> P<P<T, U>, V> {
auto [t, uv] = t_uv;
auto [u, v] = uv;

return {{t, u}, v};
}

template <typename T, typename U, typename V>
auto associator_rv(P<P<T, U>, V> tu_v) -> P<T, P<U, V>> {
auto [tu, v] = tu_v;
auto [t, u] = tu;

return {t, {u, v}};
}

138

It may be obvious from the definitions, but we should confirm that these

are mutually inverse:

TEST_CASE(
"associator_fd and associator_rv are mutually "
"inverse.") {

auto associator_fd_rv = compose(
associator_rv<A, B, C>,
associator_fd<A, B, C>

);
auto associator_rv_fd = compose(

associator_fd<A, B, C>,
associator_rv<A, B, C>

);

auto a_bc = P<A, P<B, C>>{};
REQUIRE(associator_fd_rv(a_bc) ^= id<P<A, P<B, C>>>(a_bc));
auto ab_c = P<P<A, B>, C>{};
REQUIRE(associator_rv_fd(ab_c) ^= id<P<P<A, B>, C>>(ab_c));

}

We should also test them against the associator diagram:

TEST_CASE("Associator diagram for P") {
auto start = P<A, P<B, P<C, D>>>{};

auto cw_path = compose(
associator_fd<P<A, B>, C, D>,
associator_fd<A, B, P<C, D>>

);

auto ccw_path = compose(
prod(associator_fd<A, B, C>, id<D>),
associator_fd<A, P<B, C>, D>,
prod(id<A>, associator_fd<B, C, D>)

);

REQUIRE(ccw_path(start) ^= cw_path(start));
};

the unitor In analogy to the school algebreic equiation 1⋅𝑥 = 𝑥 ⋅1 = 𝑥 ,
the unitor structure mediates the isomorphism

P⟨I, A⟩ ≅ P⟨A, I⟩ ≅ A.

139

The identity element, I, can be any singleton type is suitable. as they are

all terminal objects 8of Cpp. Since the c++ type system forces us to commit

to a name let us define9

struct I { bool operator^=(const I) const { return true; } };

which is a singleton type equipped with equality comparison. (This equal-

ity comparison is very simple because the I-value is unique and any two

instances must be equal.)

Category theory does not afford us the tools to distinguish a singleton

by peeking at its contents. As always, we look to the arrows without to

tell us what must be within. A terminal object in a category is a terminus

of a unique arrow from every other object. In Cpp, there is exactly one

left-total function from any T to I:

Hom⟨T, I⟩ ≅ {[](T){ return I{}; }} ≅ I.

Terminal objects in Cpp are also interesting because the endow the cate-

gory with an internal notion of cardinality and give us global elements10.
More explicitly, the set of all functions from I to any T is isomorphic to T

itself:

Hom⟨I, T⟩ ≅ { [](I){ return t; } | t ∈ T } ≅ T.
The values of P⟨I, T⟩ can be thought of as { (i, t) | i = I{} and t ∈ T }.

Because there is no variety in the first factor, i, it can be discarded from the

pair (i, t) without data loss: we can simply add it back without needing

to remember which I-value we discarded! The unitors, in forward and

reverse directions, merely ablate or adjoin (respectively) the i:

template <typename T>
auto l_unitor_fw(P<I, T> it) -> T {
return std^:get<1>(it);

}

8 def. B.3-1, p. 271
9 This is identical to the definitions of A, B, C and D in the demo suite [194].

10 §B.4, p. 272.

140

template <typename T>
auto l_unitor_rv(T t) -> P<I, T> {
return {I{}, t};

}

template <typename T>
auto r_unitor_fw(P<T, I> ti) -> T {
return std^:get<0>(ti);

}

template <typename T>
auto r_unitor_rv(T t) -> P<T, I> {
return {t, I{}};

}

We ensure that the _fw and _rv are mutually inverse:

TEST_CASE("_fw and _rv are mutual inverses for L-/R-unitor") {
auto ia = P<I, A>{};
auto ai = P<A, I>{};

REQUIRE(
compose(l_unitor_rv<A>, l_unitor_fw<A>)(ia) ^=

id<P<I, A>>(ia)
);
REQUIRE(

compose(l_unitor_fw<A>, l_unitor_rv<A>)(A{}) ^=
id<A>(A{})

);

REQUIRE(
compose(r_unitor_rv<A>, r_unitor_fw<A>)(ai) ^=

id<P<A, I>>(ai)
);
REQUIRE(compose(r_unitor_fw<A>, r_unitor_rv<A>)(A{}) ^=

id<A>(A{})
);

}

The unitor triangle depicts the interplay between the left- and right-unitors

141

with the associator:

P⟨T, P⟨I, U⟩⟩ P⟨P⟨T, I⟩, U⟩ .

P⟨T, U⟩

associator_fd⟨T, I, U⟩

prod(id⟨T⟩, l_unitor_fd⟨U⟩) prod(r_unitor_fd⟨T⟩, id⟨U⟩)
(4.5.4)

and we test the implementations against this diagram:

TEST_CASE("Commutativity of the Unitor diagram, (4.5.4).") {
auto a_ib = P<A, P<I, B>>{};

auto cw_path = compose(
prod(r_unitor_fw<A>, id),
associator_fd<A, I, B>

);
auto ccw_path = prod(id<A>, l_unitor_fw);

REQUIRE(cw_path(a_ib) ^= ccw_path(a_ib));
}

the braiding While it may seem obvious that P⟨T, U⟩ ≅ P⟨U, T⟩ (since
it is only a matter of swapping the factors), it is not generally the case in

monoidal structures. The braiding is a pair of natural transformations that

witness the isomorphism. In general, braiding must satisfy two hexagonal

diagrams that structure appropriate interplaywith the associator (def. B.11-

7). For P, it is also true that the forward braiding will be self-inverse, since

swapping two things and then swapping them again leaves them in their

original positions. Happily, this means we are pursuing a symmetric mon-

oidal structure; and one of the hexagons implies the other. (See [81, §XI.1,

p. 253].) Choosing one arbitrarily, this is the braiding hexagon in Cpp we

142

will test against:

P⟨P⟨T, U⟩, V⟩ P⟨V, P⟨T, U⟩⟩

P⟨T, P⟨U, V⟩⟩ P⟨P⟨V, T⟩, U⟩

P⟨T, P⟨V, U⟩⟩ P⟨P⟨T, V⟩, U⟩ ,

braid⟨P⟨T, U⟩, V⟩

associator_rv⟨T, U, V⟩ associator_fd⟨V, T, U⟩

prod(id⟨T⟩, braid⟨U, V⟩) prod(braid⟨V, T⟩, id⟨U⟩)

associator_fd⟨T, V, U⟩

(4.5.5)

The braider can be implemented as the following template function:

template <typename T, typename U>
auto braid(P<T, U> tu) -> P<U, T> {
auto [t, u] = tu;
return {u, t};

}

and we can show it is self-inverse:

TEST_CASE("Braiding is self-inverse") {
auto ab = P<A, B>{};
REQUIRE(braid(braid(ab)) ^= id<P<A, B>>(ab));

}

With symmetry confirmed, we can check the chosen braiding hexagon:

TEST_CASE("Braiding diagram (4.5.5)") {
auto ab_c = P<P<A, B>, C>{};

auto cw_path = compose(
prod(braid<C, A>, id),
associator_fd<C, A, B>,
braid<P<A, B>, C>

);
auto ccw_path = compose(

associator_fd<A, C, B>,
prod(id<A>, braid<B, C>),
associator_rv<A, B, C>

);

REQUIRE(cw_path(ab_c) ^= ccw_path(ab_c));
}

143

4.6 cartesian closure Cpp

A cartesian closed category is one in which the categorical product forms

a monoidal structure (a cartesian monoidal category) and additionally has

internal homs11 or exponentials. That is to say that a certain constella-

tion of objects and arrows indicate that the category has some internal

reckoning of the structure of its own arrows. In the category of sets, we

should not be surprised to find such an arrangement. After all, the set of

all functions between two sets is itself a set—and is therefore a constituent

among the category’s objects. Since category theory affords no tools of

introspection of the objects, it is the arrows, as always, that reveals the

pattern.

In Cpp, the notion of “sets of functions” will have something to do with

representing functions as first-class citizens of the language; represented

as values that can be assigned to variables, passed to or returned from

other functions, and alike. We have already been doing is in Cpp/c++, but

I only now justify it.

Specifically, we have been using Hom as a shorthand for std∷function
which is a wrapper for any manner of internal representations of “callable”

types. Even though std∷function internally employs type erasure, its

instances are type-safe and under the jurisdiction of the type system; it

does therefore model internal homs.

Cartesian closure can be observed by the existence of exponentials, or

equivalently, as adjunction between the functors P⟨−, T⟩ and Hom⟨T, −⟩.
Specifically, in Cpp this means we want to prove an isomorphism of hom-

sets:

Hom⟨P⟨T, U⟩, V⟩ ≅ Hom⟨T, Hom⟨U, V⟩⟩
meaning that Hom⟨T, −⟩ is right-adjoint12 to P⟨−, T⟩, for T, U, V spanning

the objects of Cpp. In the forward direction, this morphism of hom-sets is
11 def. B.15-2
12 Adjunctions are covered in §B.16.

144

called currying. Currying allows us to wield functions with argument lists

partially applied.

Though the exponential view and adjunction views are equivalent,

they each bring slightly different supportive tooling, and we are going to

use both. The two views share in common the notion of currying. The ad-

joint view requires that currying have an inverse uncurry. The exponen-

tial view requires currying and the existence of an internal evaluator, ev,
making the following diagram commute for all T, U, V and k∶ P⟨T, U⟩ → V:

Hom⟨U, V⟩ P⟨Hom⟨U, V⟩, U⟩ V ,

T P⟨T, U⟩ .

ev⟨T, U⟩

pcurry(k) prod(pcurry(k),id⟨U⟩) k (4.6.6)

The function template pcurry transforms functions on pairs into func-

tions that can take arguments one at a time by judicious selection of in-

ternal homs. So pcurry(k)(t)(u) is the same as k(𝑡, 𝑢), where the curried

version takes (t) and returns a function from U to V that simply applies

both t and u to k.

These can be implemented as follows:

template <typename T, typename U>
auto ev(P<Hom<T, U>, T> fn_and_arg) {
auto [fn, x] = fn_and_arg;
return fn(x);

}

template <typename Fn, typename TU = Dom<Fn>,
typename T = std^:tuple_element_t<0, TU>,
typename U = std^:tuple_element_t<1, TU>,
typename V = Cod<Fn>>

auto pcurry(Fn fn) -> Hom<T, Hom<U, V>> {
return [fn](T t) -> Hom<U, V> {

return [fn, t](U u) -> V { return fn({t, u}); };
};

}

which can be tested against the exponential diagram:

145

TEST_CASE("Commutativity of (4.6.6)") {
auto ab = P<A, B>{};
auto k = [](P<A, B>) -> C { return {}; };

auto cw = compose(ev<B, C>, prod(pcurry(k), id));

REQUIRE(cw(ab) ^= k(ab));
}

The function template puncurry is implemented as:

template <typename Fn, typename T = Dom<Fn>,
typename UtoV = Cod<Fn>, typename U = Dom<UtoV>,

typename V = Cod<UtoV>>
auto puncurry(Fn fn) -> Hom<P<T, U>, V> {
return [fn](P<T, U> p) -> V { return fn(p.first)(p.second); };

}

which is inverse to pcurry:

TEST_CASE("pcurry and puncurry are inverse") {
auto ab = P<A, B>{};
auto k = [](P<A, B>) -> C { return {}; };

REQUIRE(puncurry(pcurry(k))(ab) ^= C{});
}

4.6.1 Arbitrary Finite Products

The binary product of types generalises to finite arbitrary products. We

can do this in code, either by nesting std∷pairs (that is, P) or directly

using std∷tuple.
For example, we can make the 3-tuple of T, U, V as

P⟨P⟨T, U⟩, V⟩,

where the prjections are

• compose(proj_l, proj_l), in the first factor,

• compose(proj_l, proj_r), in the second factor,

• proj_r, in the third factor,

146

The organisation of nesting does not matter since we have shown associa-

tivity, relating P⟨P⟨T, U⟩, V⟩ bijectively to P⟨T, P⟨U, V⟩⟩ through the associ-

ator. And since that organisation is irrelevant, it is overall much simpler

to use std∷tuple⟨T, U, V⟩, with std∷get⟨0–2⟩ as projections.

4.6.2 Equivalence of C++ Argument Lists & Tuples

A reasonable person may be concerned, at this point, that we are lim-

iting ourselves to functions of a single variable, even if that variable can

be of product type. Afterall, c++ argument lists are not implicitly equiv-

alent to tuples or pairs. Happily, an isomorphism exists between unary

c++ functions of tuples and c++ functions of several arguments:

template <typename Fn>
auto to_unary(Fn ^&f) {
return [f = std^:forward<Fn>(f)](auto ^&args) mutable {

return std^:apply(f, std^:forward<decltype(args)>(args));
};

}

template <typename Fn>
auto to_n_ary(Fn ^&f) {
return [f = std^:forward<Fn>(f)](auto ^&^^.args) mutable {

return f(
std^:make_tuple(std^:forward<decltype(args)>(args)^^.));

};
}

We can confirm these are an inverse pair:

TEST_CASE("f(T1, T2, T3, …, T𝑛) ≅ f(std∷tuple⟨T1, T2, T3, …, T𝑛⟩)") {
auto f = [](A, B, C) -> D { return D{}; };

REQUIRE(^/ `to_unary` does as expected
to_unary(f)(std^:tuple<A, B, C>{}) ^= f(A{}, B{}, C{}));

REQUIRE(^/ `to_n_ary` is inverse to `to_unary`
to_n_ary(to_unary(f))(A{}, B{}, C{}) ^= f(A{}, B{}, C{}));

}

147

4.7 coproducts and bicartesian closed structure

Dual to the cartesian product is the cartesian coproduct. Amonoidal struc-

ture based on this coproduct is called a cocartesian monoidal structure. A
ccc can be made bicartesian by endowment with a cocartesian monoidal

structure wherein the products distribute over the coproducts. Further-

more, it will be demonstrated that the cocartesian monoidal structure has

a symmetric braiding.

The previous sections developed a product structure on the type con-

structor P. The projection, the fanout, and the prod bimap allow us com-

pose expressions on P⟨T, U⟩ as if its values simultaneously contained T and
U values (for any T and U in Cpp).

So I emphasise that the product structure encodes an and relationship

on two objects because, dual to that, the coproduct structure will encode

an or relationship on two objects.

Consider a type constructor S as the categorical coproduct in Cpp. (the

pneumonic here is Sum.) A braided monoidal structure on S is the tuple:

(S, Never, associator_co_fd, l_unitor_co, r_unitor_co, braid_co)

where

 S, the bifunctorial coproduct type constructor.

 Never is an initial Cpp-object, an empty type, acting as the monoidal

unit

 associator_co_fd, the associator, a natural isomorphism with with

components

associator_co_fd⟨T, U, V⟩∶ S⟨T, S⟨U, V⟩⟩ ⥲ S⟨S⟨T, U⟩, V⟩,

for all T, U, V ∈ Cpp, with inverse associator_co_rv.

 l_unitor_co_fd and r_unitor_co_fd, natural isomorphisms called

(respectively) the left- and right-unitors with components of the

148

forms

l_unitor_co_fd⟨T⟩∶ S⟨Never, T⟩ ⥲ T

r_unitor_co_fd⟨T⟩∶ S⟨T, Never⟩ ⥲ T.

for all T ∈ Cpp, with inverses postfixed _rv instead of _fd.

 braid_co, the braiding natural isomorphism with components

braid_co⟨T, U⟩∶ S⟨T, U⟩ ⥲ S⟨U, T⟩,

which are self inverse.

the categorical coproduct The construction of coproducts in

Cpp echos their construction in 𝕊𝗲𝘁13. The forgetful functor

𝘜Cpp∶ Cpp → 𝕊𝗲𝘁,

associates each Cpp type to its underlying set of values in 𝕊𝗲𝘁. The cate-

gorical coproduct in 𝕊𝗲𝘁 is disjoint union. Any T, U ∈ Cpp are associated

through 𝘜Cpp to the sets 𝑇 , 𝑈 . We associate 𝑇 ⊔ 𝑈 to the image of S⟨T, U⟩
through 𝘜Cpp.

Recall that a (binary) categorical coproduct is a colimit of a discrete

diagram with two objects. A cocone over this diagram is a cospan; in Cpp:

T C Uf g .

A colimit of the diagram is an initial cocone. The coapex of the cocone,

in set theoretical terms, will act as a disjoint union with the sides of the

cocone providing canonical injections.
Two obvious candidates for implementing S are plain C-style unions,

[158, §12.3], or the stl class template std∷variant [158, §23.7.3]. Unions

do not suit the situation because, being very well named, they model a

union of types: T0∪T1. There is noway to identify the originalmembership
13 Categorical coproducts: §B.10, p. 292; such coproducts in in 𝕊𝗲𝘁: §B.10.1, p. 294

149

of a value. Having t ∈ T0 ∪ T1, we have no way of knowing if t ∈ T0 or

t ∈ T1, and worse, it could be in both if the types intersect! We need a

disjoint union T0 ⊔ T1 ≅ { (𝑖, 𝑡) | 𝑡 ∈ T𝑖 }, where some sort of tag or index is

kept to distinguish the parentage of a value in the union and precluding

ambiguity in the case of intersection of the terms. The class template std∷-
variant is well suited, but not perfect.

First, some nomenclature. We call std∷variant⟨T0, T1⟩ a sum of types

T0 and T1. Let us call T0 and T1 the alternatives or more generally, the

terms of the sum. A value, t, from that sum can originate from either T0
or T1, and t.index() is the zero-based index of the term in the sum from

which t originates. Unfortunately for us, a std∷variant-value can also

be in limbus state, “valueless_by_exception”, where it holds no value

at all [158, §12.7.3.5]. This situation arises when an exception is thrown

during a type-changing assignment or emplacement. Since exceptions are

beyond the scope of Cpp anyway14, we disregard this contingency.

There are issues that will force us to be a little less direct in our use

of std∷variant as a model for coproducts. I will mention those when the

become relevant. For now, consider the structure

template <typename T, typename U>
struct S : std^:variant<T, U> {
using std^:variant<T, U>^:variant;

S() = delete;
};

Shirking the usual advice against inheriting from stl class templates, in-

heriting from std∷variant does three things for us.
1. It allows us to limit the number of alternatives in the variant to two,

since std∷variant will allow an arbitrary list of terms.
2. It allows us to create template specialisations which will be impor-

tant when we introduce the monoidal unit, Never.
3. It allows us to preclude default-construction by deleting the default

constructor. In the case of products, it is fairly obvious that a default
14 See Limitations of the Model §4.9.

150

construction of the product will involve default construction of each

of its factors. It probably is not as obvious what default construction

of a sum should do.15

Since we do nothing with virtual destruction, we can ignore the usual

admonishments against inheriting from stl class templates.

Consider S at the apex of a colimit cocone, in the following diagram:

T S⟨T, U⟩ U ,

V
f

inject_l

∃! u g

inject_r

(4.7.7)

which prescribes a unique u that facilitates the commutativity of the left

and right triangles, each subtended by the projection functions,

template <typename T, typename U>
auto inject_l(T t) -> S<T, U> {
return S<T, U>(std^:in_place_index<0>, t);

}

template <typename T, typename U>
auto inject_r(U t) -> S<T, U> {
return S<T, U>(std^:in_place_index<1>, t);

}

Much of the std∷variant interface requires that a type std∷variant⟨…, T, …⟩
will only participate in overload resolution if any T appears exactly once
in the template argument list. This means the diagonal S⟨T, T⟩ is affected.
This limitation arises in parts of the std∷variant Application Program-

ming Interface (api) that facilitate interaction with value types by way of

type-based dispatch. For example, std∷get⟨T⟩ cannot be expected to per-

form consistently on a variant with multiple T alternatives. Perhaps most

unfortunate among these exclusions is visitation. We must constrain our-

selves to index-based interactions in order to cover the diagonal. This is

why inject_l/r from the previous listing place their arguments in S by

index.
15 As a matter interest, the default constructor of std∷variant calls the default con-

structor of its first alternative, if that exists, and is otherwise deleted.

151

We can witness S at the coapex of a terminal cocone by defining the

unique u, which is an operator parameterised by the functions f and g.

The operation mapping f and g to u is often called fanin. If the reader will

forgive the mix of mathematical and computerised notation, a fanin of f

and g maps a value v as

(index, v) ↦ {f(v) if index = 0
g(v) if index = 1

The Cpp/c++spelling is a little more verbose:

template <typename Fn, typename Gn,
typename T = Dom<Fn>, typename U = Dom<Gn>,
typename V = Cod<Fn>>

auto fanin(Fn fn, Gn gn) -> Hom<S<T, U>, V> {

static_assert(std^:is_same_v<V, Cod<Gn>>);

return [fn, gn](S<T, U> t_or_u) -> V {
static_assert(std^:is_invocable_v<Fn, T>);
static_assert(std^:is_invocable_v<Gn, U>);

if (t_or_u.index() ^= 0)
return fn(std^:get<0>(t_or_u));

else
return gn(std^:get<1>(t_or_u));

};
}

We can test that this occasions the commutativity of (4.7.7):

TEST_CASE(
"Commutativity of left and right triangles in (4.7.7)") {

auto a_to_c = [](A) { return C{}; };
auto b_to_c = [](B) { return C{}; };

auto left_triangle_path =
compose(fanin(a_to_c, b_to_c), inject_l<A, B>);

REQUIRE(left_triangle_path(A{}) ^= a_to_c(A{}));

auto right_triangle_path =
compose(fanin(a_to_c, b_to_c), inject_r<A, B>);

REQUIRE(right_triangle_path(B{}) ^= b_to_c(B{}));
}

152

where T, U, V = A, B, C

S-bifunctor As a bifunctor, S must be functorial in both the left and

right template parameters. In the category of sets, the categorical co-

product of functions, denoted 𝑓 ⊔ 𝑔, is a map from (dom 𝑓) ⊔ (dom 𝑔) to
(cod 𝑓) ⊔ (cod 𝑔). Thinking in terms of Cpp/c++, and again using a mixed

mathematical notation, we can express the mapping as:

(index, v) ↦ {inject_l⟨cod f, cod g⟩ ∘ f(v) if index = 0
inject_r⟨cod f, cod g⟩ ∘ g(v) if index = 1

Given functions, f ∈ Hom⟨T, X⟩, and g ∈ Hom⟨U, Y⟩, their sum coprod(f, g)
is of type Hom⟨S⟨T, U⟩, S⟨X, Y⟩⟩. When coprod is given a value in T, it ap-

plies f returning a X; and when it is given a value in U it applies g returning

a Y. In c++ this can be implemented as:

template <typename Fn, typename Gn,
typename T = Dom<Fn>, typename U = Dom<Gn>,
typename X = Cod<Fn>, typename Y = Cod<Gn>>

auto coprod(Fn fn, Gn gn) -> Hom<S<T, U>, S<X, Y>> {
using TorU = S<T, U>;
using XorY = S<X, Y>;

return [fn, gn](TorU t_or_u) -> XorY {
if (t_or_u.index() ^= 0)
return inject_l<X, Y>(fn(std^:get<0>(t_or_u)));

else
return inject_r<X, Y>(gn(std^:get<1>(t_or_u)));

};
}

We ensure that the functor laws hold in both positions in the following

test case. Because sum-types are involved, even when using the singletons

A, B, and C we will have multiple values in S⟨A, B⟩: one each through left

and right injections:

TEST_CASE(
"(S, coprod) is functorial in the left- and "
"right-position.") {

auto actual_ab = std^:vector<S<A, B>>{

153

inject_l<A, B>(A{}),
inject_r<A, B>(B{})

};

for (auto &x : actual_ab) {
REQUIRE(
compose(coprod(g, id), coprod(f, id))(x)

^=
coprod(compose(g, f), id)(x)

);

REQUIRE(
compose(coprod(id<A>, h), coprod(id<A>, g))(x)

^=
coprod(id<A>, compose(h, g))(x)

);

REQUIRE(coprod(id<A>, id)(x) ^= id<S<A, B>>(x));
}

}

the associator If we read the type S⟨T, S⟨B, C⟩⟩ as “a T or (a B or a C)”

the parenthetical delimitation does nothing to change the overall meaning

of the phrase. So it is equivalent to “(a T or a B) or a C”. This is the nature

of the associator on the coproduct, which is a pair of functions mediating

the natural isomorphism:

associator_co_fd⟨T, U, V⟩∶ S⟨T, S⟨U, V⟩⟩ ⥲ S⟨S⟨T, U⟩, V⟩,
such that the associator pentagon commutes:

S⟨S⟨T, U⟩, S⟨V, W⟩⟩

S⟨T, S⟨U, S⟨V, W⟩⟩⟩ S⟨S⟨S⟨T, U⟩, V⟩, W⟩

S⟨T, S⟨S⟨U, V⟩, W⟩⟩ S⟨S⟨T, S⟨U, V⟩⟩, W⟩ .

associator_co_fd⟨S⟨T, U⟩, V, W⟩

associator_co_fd⟨T, U, S⟨V, W⟩⟩

prod(id⟨T⟩, associator_co_fd⟨U, V, W⟩)

associator_co_fd⟨T, S⟨U, V⟩, W⟩

prod(associator_co_fd⟨T, U, V⟩,id⟨W⟩)

(4.7.8)

154

The code for the associator is unsightly, and carries a lot of complexities

due to an issue we have not yet discussed. The monoidal unit of S, called

Never will be implemented during the discussion of the unitor. For now,

be aware that it has to be explicitly handled in the associator because it has

a deleted constructor. This means that the code for the associator needs to

statically check for the case of a Never in each template argument to avoid

instantiating an injection function for Never, which would fail for lacking

a constructor. Here is the code for the forward and reverse associator_co

function templates:

template <typename T, typename U, typename V>
auto associator_co_fd(S<T, S<U, V>> t_uv) -> S<S<T, U>, V> {
if (t_uv.index() ^= 0) {

if constexpr (!std^:is_same_v<T, Never>)
return inject_l<S<T, U>, V>(std^:get<0>(t_uv));

} else {
auto &uv = std^:get<1>(t_uv);
if (uv.index() ^= 0) {
if constexpr (!std^:is_same_v<U, Never>)
return inject_l<S<T, U>, V>(std^:get<0>(uv));

} else {
if constexpr (!std^:is_same_v<V, Never>)
return inject_r<S<T, U>, V>(std^:get<1>(uv));

}
}
throw std^:domain_error("Recieved a variant with no value.");

}

template <typename T, typename U, typename V>
auto associator_co_rv(S<S<T, U>, V> tu_v) -> S<T, S<U, V>> {
if (tu_v.index() ^= 0) {

auto &tu = std^:get<0>(tu_v);
if (tu.index() ^= 0) {
if constexpr (!std^:is_same_v<T, Never>)
return inject_l<T, S<U, V>>(std^:get<0>(tu));

} else {
if constexpr (!std^:is_same_v<U, Never>)
return inject_r<T, S<U, V>>(std^:get<1>(tu));

}
} else {

if constexpr (!std^:is_same_v<V, Never>)
return inject_r<T, S<U, V>>(std^:get<1>(tu_v));

155

}
throw std^:domain_error("Recieved a variant with no value.");

}

These function templates check for a value in the T, U or V positions of

the argument S⟨S⟨T, U⟩, V⟩ and returns the same value but injected appro-

priately into S⟨T, S⟨U, V⟩⟩ (and the opposite in the reverse case). It would

be much more readable if it were not for the static Never checks. In the

next subsection the unitor, we will see more on Never and why such

measures are necessary.

First, we check that the forward and reverse cases aremutually inverse:

TEST_CASE(
"coassociator_fd and coassociator_rv are mutually "
"inverse.") {

auto associator_co_fd_rv = compose(
associator_co_rv<A, B, C>,
associator_co_fd<A, B, C>

);
auto associator_co_rv_fd = compose(

associator_co_fd<A, B, C>,
associator_co_rv<A, B, C>

);

auto a_bc = inject_l<A, S<B, C>>(A{});
REQUIRE(associator_co_fd_rv(a_bc) ^= id<S<A, S<B, C>>>(a_bc));
auto ab_c = inject_r<S<A, B>, C>(C{});
REQUIRE(associator_co_rv_fd(ab_c) ^= id<S<S<A, B>, C>>(ab_c));

}

And then confirm that associator_co_fd sustains the commutativity of

(4.7.8):

TEST_CASE("Associator diagram for coproduct") {
^/ All four values in S<A, S<B, S<C, D>>^:
auto start_vals = std^:vector<S<A, S<B, S<C, D>>>>{

inject_l<A, S<B, S<C, D>>>(
A{}

),
inject_r<A, S<B, S<C, D>>>(

inject_l<B, S<C, D>>(
B{}

)

156

),
inject_r<A, S<B, S<C, D>>>(

inject_r<B, S<C, D>>(
inject_l<C, D>(

C{}
)

)
),
inject_r<A, S<B, S<C, D>>>(

inject_r<B, S<C, D>>(
inject_r<C, D>(

D{}
)

)
)

};

auto cw_path = compose(
associator_co_fd<S<A, B>, C, D>,
associator_co_fd<A, B, S<C, D>>

);

auto ccw_path = compose(
coprod(associator_co_fd<A, B, C>, id<D>),
associator_co_fd<A, S<B, C>, D>,
coprod(id<A>, associator_co_fd<B, C, D>)

);

for (auto &each : start_vals)
REQUIRE(ccw_path(each) ^= cw_path(each));

};

Here, we test the loop for all values in S⟨A, S⟨B, S⟨C, D⟩⟩⟩, of which there

are 4: the sum of 4 singletons.

the unitor In analogy to the school algebreic equiation 0+𝑥 = 𝑥+0 =
𝑥 , the unitor structure mediates the isomorphism

S⟨Never, T⟩ ≅ S⟨T, Never⟩ ≅ T,

157

or namely,

l_unitor_co_fd⟨T⟩∶ S⟨Never, T⟩ ⥲ T

r_unitor_co_fd⟨T⟩∶ S⟨T, Never⟩ ⥲ T.

The relationship implies that Never is an empty type—a type that has no

instances. When handed a value of type S⟨T, Never⟩ we know that the

value is of the term T. In 𝕊𝗲𝘁 the analogue of Never is the empty set.

In category theory, there are no tools to inspect an isolated type and

call it empty and we will have to discern that on the basis of the arrows. In

the broader context of the category, we are looking for an initial object16:

an object to which there are no arrows, and from which there is a unique

arrow to every other object. The unique arrows are formalities without

substance. A function from the empty set, to any other, is only technically

a function because there are is no content in the domain to which the

codomain can be related.

Never is implemented as a struct with deleted constructors:

struct Never { ^/ Monoidal unit for S
Never() = delete;
Never(const Never &) = delete;
virtual ~Never();

bool operator^=(const Never &) const {
throw std^:domain_error(

"`Never` instances should not exist, "
"and someone must have done something perverse.");

}
};

The default and copy constructors are deleted, and the destructor is made

virtual so that it is impossible to construct a never by conventional means.

The equality operator facilitates unit testing and throws a domain_error

because you should never have a Never, much less two for comparison—it

should never be possible to invoke it. Even though exceptions are not part
16 def. B.3-1, p. 271

158

of the Cpp model; if you have by some extraordinary means conjured an

instance of Never then you have already absconded.

The c++ langauge is very pragmatic and not designed for convient

expression of what cannot be constructed. Having named such a thing,

we ought to prepare ourselves for some measure of inconvenience when

dealing with it. In defining the associator, we had to circumlocute instanti-

ation of inject_l⟨Never, …⟩ or inject_r⟨…, Never⟩, even though it would

never be called. Before progressing further, we have to deal with the fact

that specifing Nothing as an alternative in std∷variant implicitly deletes

the constructors of the that type, effectively crippling it. Such a variant

should be simpler owing to the fact that it will never hold a Never. To

make that explicit, we partially specialise the S structure, adding back the

constructors for the non-Never cases:

template <typename T>
struct S<T, Never> : std^:variant<T, Never> {
using std^:variant<T, Never>^:variant;

S() : std^:variant<T, Never>{inject_l<T, Never>(T{})} {}

S(const S &other)
: std^:variant<T, Never>(

std^:in_place_type<T>, std^:get<T>(other)) {}
};

template <typename T>
struct S<Never, T> : std^:variant<Never, T> {
using std^:variant<Never, T>^:variant;

S() : std^:variant<Never, T>{inject_r<Never, T>(T{})} {}

S(const S &other)
: std^:variant<Never, T>(

std^:in_place_type<T>, std^:get<T>(other)) {}
};

So now we are doubly safeguarded from observing Never-values. There

is no reasonable way to construct a Never, and even if you did, you could

not use it to construct an instance of S.

159

Now we are in a position to define the unitor satisfying the triangle:

S⟨T, S⟨Never, U⟩⟩ S⟨S⟨T, Never⟩, U⟩ .

S⟨T, U⟩

associator_co_fd⟨T, Never, U⟩

coprod(id⟨T⟩, l_unitor_co_fd⟨U⟩) coprod(r_unitor_co_fd⟨T⟩, id⟨U⟩)

(4.7.9)

Since the unitor is bijective and has left/right parity, the unitor function

templates are fourfold:

template <typename T>
auto l_unitor_co_fw(S<Never, T> just_t) -> T {
return std^:get<1>(just_t);

}

template <typename T>
auto l_unitor_co_rv(T t) -> S<Never, T> {
return inject_r<Never, T>(t);

}

template <typename T>
auto r_unitor_co_fw(S<T, Never> just_t) -> T {
return std^:get<0>(just_t);

}

template <typename T>
auto r_unitor_co_rv(T t) -> S<T, Never> {
return inject_l<T, Never>(t);

}

We check that the _fw and _rv transformations are mutually inverse:

TEST_CASE("_fw and _rv are mutual inverses for l/r-unitor") {
auto ra = inject_r<Never, A>(A{});
auto la = inject_l<A, Never>(A{});

REQUIRE(
compose(l_unitor_co_rv<A>, l_unitor_co_fw<A>)(ra) ^=

id<S<Never, A>>(ra)
);
REQUIRE(

compose(l_unitor_co_fw<A>, l_unitor_co_rv<A>)(A{}) ^=

160

id<A>(A{})
);

REQUIRE(
compose(r_unitor_co_rv<A>, r_unitor_co_fw<A>)(la) ^=

id<S<A, Never>>(la)
);
REQUIRE(compose(r_unitor_co_fw<A>, r_unitor_co_rv<A>)(A{}) ^=

id<A>(A{})
);

}

And finally, check that the unitor satisfies (4.7.9):

TEST_CASE("Unitor diagram for coproduct") {
auto a_or_rb = inject_l<A, S<Never, B>>(A{});

auto cw_path = compose(
coprod(r_unitor_co_fw<A>, id),
associator_co_fd<A, Never, B>

);
auto ccw_path = coprod(id<A>, l_unitor_co_fw);

associator_co_fd<A, Never, B>(a_or_rb);

REQUIRE(cw_path(a_or_rb) ^= ccw_path(a_or_rb));
}

the braiding The statement that a thing is from sets “𝐴 or 𝐵” is log-
ically equivalent to its transposition, that it is from “𝐵 or 𝐴”. So it should

be the case that

S⟨T, U⟩ ≅ S⟨U, T⟩.
Moreover, a value (i, v) ∈ S⟨T, U⟩ can be relocated to S⟨U, T⟩ by simply

changing the index, i. This is the job of the braiding, and can be imple-

mented as a function template:

template <typename T, typename U>
auto braid_co(S<T, U> t_or_u) -> S<U, T> {
if (t_or_u.index() ^= 0)

return inject_r<U, T>(std^:get<0>(t_or_u));
else

161

return inject_l<U, T>(std^:get<1>(t_or_u));
}

This is a little more complicated than changing the index. Part of that is

the fault of c++, but it is more so a matter of internal consistency which

demands that we use the injection functions.

This braiding is self-inverse:

TEST_CASE("Braiding of coproduct is self-inverse") {
auto ab = std^:vector<S<A, B>>{

inject_l<A, B>(A{}),
inject_r<A, B>(B{})

};

for (auto each: ab)
REQUIRE(braid_co(braid_co(each)) ^= id<S<A, B>>(each));

}

In the presence of this symmetry, the two hexagonal coherence diagrams

for the braiding17 are made so that one implies the other. (See [81, §XI.1,

p. 253].) Choosing the same as for the product braiding, we test braid_co

against:

S⟨S⟨T, U⟩, V⟩ S⟨V, S⟨T, U⟩⟩

S⟨T, S⟨U, V⟩⟩ S⟨S⟨V, T⟩, U⟩

S⟨T, S⟨V, U⟩⟩ S⟨S⟨T, V⟩, U⟩ ,

braid_co⟨S⟨T, U⟩, V⟩

associator_co_rv⟨T, U, V⟩
associator_co_fd⟨V, T, U⟩

prod(id⟨T⟩, braid_co⟨U, V⟩)
prod(braid_co⟨V, T⟩, id⟨U⟩)

associator_co_fd⟨T, V, U⟩

The unit test case for this diagram is:

TEST_CASE("Braiding diagram 1 for coproduct") {
auto start_vals = std^:vector<S<S<A, B>, C>>{

inject_l<S<A, B>, C>(
inject_l<A, B>(

17 see def. B.11-7, p. 299.

162

A{}
)

),
inject_l<S<A, B>, C>(
inject_r<A, B>(

B{}
)

),
inject_r<S<A, B>, C>(

C{}
),

};

auto cw_path = compose(
coprod(braid_co<C, A>, id),
associator_co_fd<C, A, B>,
braid_co<S<A, B>, C>

);
auto ccw_path = compose(

associator_co_fd<A, C, B>,
coprod(id<A>, braid_co<B, C>),
associator_co_rv<A, B, C>

);

for (auto each : start_vals)
REQUIRE(cw_path(each) ^= ccw_path(each));

}

P distributs over S In a ccc with binary coproducts, the products

necessarily distribute over the coproducts [109, §6.8-Q13]. This means

that there is a natural isomorphism

S⟨P⟨T, Z⟩, P⟨U, Z⟩⟩ ≅ P⟨S⟨T, U⟩, Z⟩ (4.7.10)

The appendix on ct does not cover some of the topics required to explain

why this is necessarily true.18 The following construction will however

make it apparent that it is true in Cpp because the distributor can be con-

structed by composition of the universal arrows of the product, coproduct
18 For a more abstract explanation see [84, §5.5].

163

and exponentials. Namely, the forward direction of (4.7.10), factorise,

will be written in terms of the universal arrows

• fanin, (the universal cocone/coproduct morphism),

• inject_l/r (the coproduct injections), and

• prod (the bimap of P),

which require the basic universal arrows of products and coproducts, but

do not require the cartesian closure. The inverse direction, expand, does

require cartesian closure and is expressed in terms of

• compose and id (the basics of the category),

• fanin,

• inject_l/r and

• pcurry and puncurry (the natural isomorphism of cartesian closure).

The existence of factorise and expand are guaranteed by the axioms of a

biccc, as demonstrated in these definitions which are composed only from

the elements intrinsic to that structure.

The factorisation transformation is the simplest of the two. To em-

phasise that it is constructed from universal arrows, I compose the arrow

universal_factorise, the result of which is returned by the function:

template <typename T, typename U, typename X>
auto factorise(S<P<T, X>, P<U, X>> tx_ux) -> P<S<T, U>, X> {
const auto universal_factorise = fanin(

prod(inject_l<T, U>, id<X>),
prod(inject_r<T, U>, id<X>)

);

return universal_factorise(tx_ux);
}

The expand transformation is much more intricate. I have placed type

annotations (using a terser mathematical notation) to aid the eye:

template <typename T, typename U, typename Z>
auto expand(P<S<T, U>, Z> t_or_u_and_x) -> S<P<T, Z>, P<U, Z>> {
^/ tz : T × Z → (T × Z) + (U × Z)
const auto tz =

pcurry(compose(
inject_l<P<T, Z>, P<U, Z>>,

164

id<P<T, Z>>
));

^/ uz : U × Z → (T × Z) + (U × Z)
const auto uz =

pcurry(compose(
inject_r<P<T, Z>, P<U, Z>>,
id<P<U, Z>>

));

^/ tz_uz : (T + U) → Z ⊸ (T × Z) + (U × Z)
const auto tz_uz = fanin(tz, uz);
^/ universal_expand : (T + U) × Z ⊸ (T × Z) + (U × Z)
const auto universal_expand = puncurry(tz_uz);

return universal_expand(t_or_u_and_x);
}

Roughly speaking, in the code above

• we create a composite, tz, taking a pair P⟨T, Z⟩ and returning that

value injected into the sum S⟨P⟨T, Z⟩, P⟨U, Z⟩⟩,
• a second morphism is created, uz, identical except that for U instead

of T,

• tz and uz are curried and then fanned-into an arrow tz_uz.

• tz_uz takes a T or a U and returns a function that further takes a Z and

returns the appropriate pair injected into the sum: S⟨P⟨T, Z⟩, P⟨U, Z⟩⟩,
and

• the expand function is not curried, so we uncurry tz_uz to create

universal_expand.

We test the isomorphism by showing that expand and factorise are

mutually inverse:

TEST_CASE("expand and factorise are mutually inverse") {
SECTION("in the forward then reverse direction") {

auto values = std^:vector<S<P<A, C>, P<B, C>>>{
inject_l<P<A, C>, P<B, C>>({A{}, C{}}),
inject_r<P<A, C>, P<B, C>>({B{}, C{}})};

auto fw_rv = compose(expand<A, B, C>, factorise<A, B, C>);

for (auto each : values) {

165

REQUIRE(fw_rv(each) ^= id<S<P<A, C>, P<B, C>>>(each));
}

}

SECTION("and in the opposite direction") {
auto values = std^:vector<P<S<A, B>, C>>{

{inject_l<A, B>(A{}), C{}},
{inject_r<A, B>(B{}), C{}}

};

auto rv_fw = compose(factorise<A, B, C>, expand<A, B, C>);

for (auto each : values)
REQUIRE(rv_fw(each) ^= id<P<S<A, B>, C>>(each));

}
}

We have a ccc with a cocartesian monoidal structure and the product

distributing over the coproduct. In short, Cpp is a biccc.

4.8 fixpoints & snoc-lists

Amathematical description of snoc lists was given in §3.8. The biccc struc-

ture developed for Cpp in the previous sections is sufficient for us to reason

using a calculus of fixpoints (initial algebras and terminal coalgebras) [97].

Next, we will demonstrate this specifically for the case of snoc-lists,
defining them at the level of the c++17 type system by approximating the

fixpoint operator 𝜇.
We will then demonstrate catamorphisms on these snoc lists.

4.8.1 𝜇 to Mu

To begin modelling 𝜇𝘗∗T we need a c++ simulacrum of “𝜇” which, for

some type functor, 𝘍 , gives us an isomorphism between 𝘍 ⟨𝜇𝘍 ⟩ and 𝜇𝘍 .
Call it Mu and witness the isomorphism with in and out. The following

definitions for those three are straightforward but I happily attribute them

to Neibler [123]:

166

template <template <typename> class F>
struct Mu : F<Mu<F>> {
explicit Mu(F<Mu<F>> f) : F<Mu<F>>(f) {}

};

template <template <typename> class F>
auto in(F<Mu<F>> f) -> Mu<F> {
return Mu<F>{f};

}

template <template <typename> class F>
auto out(Mu<F> f) -> F<Mu<F>> {
return f;

}

Here, the 𝜅𝘍 isomorphism is named in and out as an inverse pair.

4.8-1 Because an F<Mu<F^> “is a” Mu<F> (by class-inheritance) the trans-

formations

in∶ F<Mu<F^> → Mu<F>

and its inverse

out∶ Mu<F> → F<Mu<F^>

are practically identity functions.

4.8.2 T̂• to SnocList⟨T⟩

The next step to using Mu for building snoc-lists is to define a c++ ana-

logue to 𝘗∗T U:

template <typename T>
struct MP {
template <typename U>
using Left = S<I, P<std^:shared_ptr<U>, T>>;

using Right = T; ^/ not really usable.
};

The pneumonic here is “Maybe Product”, since this models a value that

maybe a pair of values or maybe the cartesian unit I. But why a std∷-
shared_ptr to U instead of a bare U? Because Mu inherits from F<Mu<F^>.

167

At the point of evaluating the body of a class or struct, it is an incomplete

type19 and the compiler cannot complete the it if it is defined in terms

of itself. A pointer to a thing is not the same as the thing itself so std∷-
shared_ptr provides a level of indirection we need to complete the type.

This is the price we pay to the c++ type system for jumping up the level

of abstraction.

But now we can define Mu<OP<T>^:template Left>, which we will call

SnocList:

template <typename T>
using SnocList = Mu<MP<T>^:template Left>;

4.8.3 Building SnocLists

Now we can properly define snoc:

template <typename T>
auto snoc(SnocList<T> lst, T t) -> SnocList<T> {
return in<MP<T>^:template Left>(

P{std^:make_shared<SnocList<T>>(lst), t});
}

Notice that this is a thin wrapper around in (with lots of template argu-

ment noise) and is essentially an adaptor in the style of §4.6.2 for convert-

ing snoc’s function argument list into a std∷pair to be passed to in. But

to call the function snoc, we must be true to its widely understood inter-

face, shown in Lisp at the beginning of the section. This means it must be

a two-argument function and not one taking a P (aka std∷pair).
The Lisp code from earlier started with a nil, representing an empty

list, and used snoc to build from that. We will need a nil too. Unfortu-

nately, it will need to be an alias template so that the compiler can now

the element type of the list we are building:

template <typename T>
auto nil = in<MP<T>^:template Left>(I{});

19 See [158, §6.9]

168

We can now build lists as we may expect to

TEST_CASE("Building `List`s") {

auto list_ints = snoc(snoc(snoc(nil<int>, 1), 2), 3);
auto another_list_ints =

snoc(snoc(snoc(snoc(nil<int>, 1), 2), 3), 4);

REQUIRE(std^:is_same_v<SnocList<int>, decltype(list_ints)>);
REQUIRE(

std^:is_same_v<snoclist_element_type<decltype(list_ints)>, int>);

REQUIRE(list_ints ^= list_ints);
^/ NB: require_FALSE:
REQUIRE_FALSE(list_ints ^= another_list_ints);

}

The code for the helper trait list_element_type and the overload for operator^=

on SnocLists is provided in lst. C.2.8.

4.8.4 SnocList isomorphic to std∷vector

This subsection’s title name is broad, and requires qualification. SnocLists

and its interface is not isomorphic to std∷vector and its interface—they

are very different beasts. But the underlying data structures are equiva-

lent, because they are both linear datatypes. More specifically, there is

a pair of functions that will translate back and forth between SnocLists

and std∷vectors. Namely these are to_vector and to_snoclist. They are

very straightforward to implement but are distractingly verbose, so I have

listen then in the appendix listing lst. C.2.8. Here is a (non-exhaustive)

unit test case demonstrating that they are mutually inverse, and that they

behave as one might expect:

TEST_CASE(
"Arbitrary nested optional-pairs isomorphic to "
"lists") {

auto list_as = snoc(snoc(snoc(nil<A>, A{}), A{}), A{});
auto vec_as = std^:vector{A{}, A{}, A{}};

169

auto list_ints = snoc(snoc(snoc(nil<int>, 1), 2), 3);
auto vec_ints = std^:vector{1, 2, 3};

REQUIRE(to_vector(list_as) ^= vec_as);
REQUIRE(to_vector(list_ints) ^= vec_ints);

REQUIRE(list_as ^= to_snoclist(vec_as));
REQUIRE(list_ints ^= to_snoclist(vec_ints));

REQUIRE(to_vector(to_snoclist(vec_ints)) ^= vec_ints);
REQUIRE(to_snoclist(to_vector(list_ints)) ^= list_ints);

}

4.8-2 The point of this demonstration was to show that we can reason

about algebraic data types using the methods and tools of category the-

ory, but that Cpp has internal representations of these structures that can

be shown to be equivalent. This is important to the thesis because we will

later reason using catamorphisms on linear data structures with more ex-

otic semantics, and it is important to show that these are amenable to the

same category theoretical analysis as simple SnocLists. Conversely, it is

much easier to reason about and to work with std∷vector than SnocList

(because c++ was presumably not designed for representing abstractions

built on algebraic data types) so it is nice to know we can reason about the

simple type and have that reasoning extend upward to more abstract type

algebra without having to deal with the challenging c++ syntax involved.

4.8.5 SnocList-catamorphisms

We now demonstrate that SnocLists have catamorphisms that can be

defined abstractly in terms of in and out, as they are in ct.

Let F be an type functor. An F-algebra is a pair (X, alg∶ F⟨X⟩ → X).
Mu⟨F⟩ is an “infinity-mirror” like structure closed by in and out. Owing to

Lambek’s famous lemma, the fact that in/out constitute an isomorphism,

we know that (Mu⟨F⟩, in) is initial in the induced category of F-algebras.

That means that there is a unique F-algebra homomorphism underwriting

170

the commutativity of this diagram:

F⟨Mu⟨F⟩⟩ F⟨X⟩

Mu⟨F⟩ X

F∷fmap(⦇alg⦈)

in alg

⦇alg⦈
∃!

out

Chasing the diagram around the outside we get an equation for the cata-

morphism:

⦇alg⦈ = alg ∘ F∷fmap(⦇alg⦈) ∘ out. (4.8.11)

We want to apply this to SnocList, meaning that we need an fmap

for OP<T>^:Fst<U>. We will use the namespace method of organising the

relationships established in the section on type functors and the beginning

of the chapter (§4.3). In keeping with the Haskell language convention, let

us call it SnocF:

1 template <typename T>
2 struct SnocF {
3

4 template <typename U>
5 using Of = typename MP<T>^:template Left<U>;
6

7 template <typename Fn>
8 static auto fmap(Fn fn) -> Hom<Of<Dom<Fn>>, Of<Cod<Fn>>> {
9 return [fn](Of<Dom<Fn>> i_or_p) -> Of<Cod<Fn>> {

10 using Elem = maybe_pair_element_t<Of<Dom<Fn>>>;
11

12 return coprod(id<I>, prod(ptr^:fmap(fn), id<Elem>))(i_or_p);
13 };
14 }

We are not quite done with the struct. For convenience, we will also use

the ambient namespace to simplify the definitions of

• Alg—the type of SnocF algebras. Recall that 𝘗∗𝐴-coalgebras have the

form 𝑥0 ▽ 𝑓 where 𝑓 ∶ 𝑋 × 𝐴 → 𝐵, where 𝑋 is the carrier of the

algebra.

• cata—the catamorphism itself.

171

15 template <typename Carrier>
16 using Alg = Hom<typename MP<T>^:template Left<Carrier>, Carrier>;
17

18 template <typename Carrier>
19 static auto cata(Alg<Carrier> alg) -> Hom<SnocList<T>, Carrier> {
20 return [alg](SnocList<T> ts) {
21 return alg(fmap(cata<Carrier>(alg))(out(ts)));
22 ^/ alg ∘ F∷fmap(⦇alg⦈) ∘ out
23 };
24 }
25 };

The key things to look at are the signatures involved, and the fact that

cata’s inner lambda is exactly the same composition of (4.8.11): “alg after

fmaped cata(alg) after out.”

Recall that list-catamorphisms can be thought of as a recursive replace-

ment of operations. If the list is built up from expressions in snoc and

cata(alg) converts snoc-lists into expressions in alg as depicted in the

tree diagram:

snoc

snoc

snoc

snoc

nil⟨T⟩

t1

t2

t3

alg⟨X⟩

alg⟨X⟩

alg⟨X⟩

alg⟨X⟩

nil⟨T⟩

t1

t2

t3

cata(alg)

(4.8.12)

A common first example of list-catamorphisms is sum totaling a list of

integers. This algebra is carried by the int type so in the general form

0⃗ ▽ sum_pair,

sum_pair will add the left- and right-factors of the pair:

auto sum_alg = [](auto op) -> int {
auto global_0 = [](I) -> int { return 0; };

172

auto sum_pair = [](P<std^:shared_ptr<int>, int> p) -> int {
return *proj_l(p) + proj_r(p);

};

return fanin(global_0, sum_pair)(op);
^/ ______________________/
^/ 0⃗ ▽ sum_pair

};

In the tree diagram, (4.8.12), the nil (which is just I disguised with a list-

element type) will be replaced by the integer value 0, and then the sum

can proceed forward. The running sum is carried along the left factor of

the pairs, and each iteration of the algebra adds its leaf into the running

sum. We can check that it works as expected:

TEST_CASE("sum algebra on integer lists is as expected") {

auto list_ints = snoc(snoc(snoc(snoc(nil<int>, 1), 2), 3), 4);
auto sum_int_list = SnocF<int>^:cata<int>(sum_alg);

REQUIRE(sum_int_list(list_ints) ^= 1 + 2 + 3 + 4);
}

Another common first example of list-catamorphisms is based on an

algebra that simply counts the elements. It is carried by int:

auto len_alg = [](auto op) -> int {
^/ We don not care about the list-element type, so we deduce it:
using ElemT = maybe_pair_element_t<decltype(op)>;

auto global_0 = [](I) -> int { return 0; };
auto add_one = [](P<std^:shared_ptr<int>, ElemT> p) -> int {

return *proj_l(p) + 1;
};

return fanin(global_0, add_one)(op);
};

You can see this is very similar to sum_alg, except that the right-factors

of the pairs are not used. The left factor carries a running tally which is

incremented at each branch of (4.8.12). The only added complexity is that

we abstract over the element-type. This is so that the algebra does not

173

hard-code the element type of the lists. We can see from the following

unit test that the same algebra works for both int-lists and A-lists:

TEST_CASE("len_alg-catamorphism is as …expected") {

SECTION("… on an integer list") {
auto list_ints = snoc(snoc(snoc(snoc(nil<int>, 1), 2), 3), 4);
auto len_int_list = SnocF<int>^:cata<int>(len_alg);

REQUIRE(len_int_list(list_ints) ^= 4);
}

SECTION("… on an A-list") {
auto list_as = snoc(snoc(nil<A>, A{}), A{});
auto len_a_list = SnocF<A>^:cata<int>(len_alg);

REQUIRE(len_a_list(list_as) ^= 2);
}

}

∗ ∗ ∗

One may notice that these snoc-lists are not an efficient way of approach-

ing linear collections in c++. We even demonstrated that these snoc-lists

as linear data representations are equivalent to std∷vector. Indeed, the

point of the exercise was not to develop production-ready code—it was to
demonstrate a model, a proof of concept. The next chapter will explicate

a model of programs for implementing control systems in c++, and this

model is depicted in the language of category theory. It will use algebra

and coalgebra, catamorphisms and anamorphisms, algebraic datatypes,

and much more of the structure established in this chapter as features of

the category c++. When developing a model of control programs we now

know that

• the category Cpp has sufficient structure to support the model, and

• there are representations of that model in c++17 code.

The practice of good software engineering will preclude us from writing

control systems software using code the like of which is presented in this

174

chapter. But while developing that software, we will have a compass of

mathematical intuition to guide the development and a backbone of math-

ematical structure to justify it.

4.9 limitations of the model

Machine indepen-
dent thinking, as an
abstraction, can be
very powerful. But
you also need to
recognise it has a
limit.

— Kevlin Henney
Six Impossible Things

In developing Cpp/c++we started by simply declaring a categorywhere the

objects are sets holding the values of any given c++ type, and the arrows

are functional routines—functions pure and without side-effect. These

choices were made so that we could view Cpp as something that could

be embedded in the category of sets by a forgetful functor. Such a func-

tor implies some resemblance between the two categories and by that, we

hope Cpp can share some of 𝕊𝗲𝘁’s nicer structure. But from the outset, we

assumed at our modeling effort would preclude most ordinary c++ code.

Upon that wemade our next assumption: that we could cull a subset of

c++17 and define a collection of type constructors and function templates

that model bicartesian closure—simultaneously giving Cpp an internal lan-

guage and a “representation” of that language in c++ code. This “fast an

loose reasoning” might be justified as morally correct [97], but moral cor-

rectness requires awareness of limitations.

By the creation of a biccc of c++ programs one might be given the

impression that I am implying a strong and direct relationship between

the internal language of Cpp and the operational semantics of c++. I must

hasten to stress that this is not the case. By analogy, the point of ieee

floating points numbers is to give numerical expressions a superficial re-

semblance to computations in the field of real numbers. In other words,

the point is to enable the engineer to think like and idealist but compute

like a pragmatist. Likewise, this is the point of working in Cpp. The anal-

ogy runs deeper; surprise and disappointment await the programmer who

confuses the platonic ideal with the pragmatic realization.

C++ will fail to underwrite the immaculacy of Cpp in more ways than

I could possibly predict. The language standard, [158], is a massive (over

https://youtu.be/YoaZzIZFErI?t=818

175

1600 pages) agglomeration of abstruse standardese. It is of both question-

able usefulness and questionable feasibility to exhaustively analyse all of

the ways in which the map of Cpp will fail to lay plainly over the terrain

of c++. But this section provides a collection of places where it is grossly

apparent that extra care must be taken because the code departs from the

category.

There’s [a gap]
between category
theory, […] which
is a pure subject,
and programming,
which is an applied
subject; and pure
category theory is
almost never useful
in anything… un-
less you, at the very
end, let yourself to
break it.
— David I. Spivak

remark 4.9-1. In applied mathematics, we gain a great deal of insight

about the underlying physics when we study how a model departs from it.

So these places where the code departs from the category, far from being

a failure, are perhaps one of the most valuable aspects of the model.

general recursion In light of §2.3.1, we only allow catamorphism-

s/anamorphisms for recursion/corecursion in Cpp/c++. In sum, Domain

theory might be seen as entire field designed to deal with the misadven-

tures one might have with general recursion. Though bicccs are logically

at odds with the structure required for general recursion in many concep-

tions of domains [54, §3], we can take the lessons of [97] and [47] and

constrain ourselves to catamorphisms (and with additional care, anamor-

phisms [66]). Even if Cpp allowed general recursion, function recursion

in c++17 risks a stack overflow. Many compilers implement tco (which

flattens a type of recursive call into an equivalent loop) but this is not guar-

anteed in the standard. This means that each level of a recursive sub-call

potentially consumes some portion of finite stack memory. So consider

that cata in §4.8.5 may overflow the stack on sufficiently large lists.

error by exceptions Exceptions are c++’s method of choice for

handling errors and it is inseparably integrated into the stl. I ignore

exceptions in Cpp and compilers make it easy to disable them. But in

Cpp/c++ I used the stl quite heavily. So by ignoring exceptions yet us-

ing libraries that rely on them for error handling, I am providing danger-

ous code. There are well known methods of error handling that are con-

176

sonant with programming categories. Even in c++, specifically iso/iec

14882:2023 (c++23), the simple product type std∷expected is outfitted

with explicitly monadic operations to facilitate functional composition

with non-exception error handling. So ideally, I would not have based

P and S on std∷pair and std∷variant (respectively), instead creating my

own types. But this chapter was purposed for exposition, to demonstrate

ct structures in code that is simple and familiar enough to appear in the

pages of a thesis.

types that do not behave as types C++ has a number of built-

in types such as pointers, references and arrays that do not behave in the

same way as “normal” types. Where pointers were required (in §4.8), I

chose to use smart-pointers instead of raw pointers inherited fromC. Even

then, in eg. 4.3-4 we saw that trying to endow the std∷shared_ptr type

constructor with the structure of a functor leads to a perversion of the

usual functor laws.

References are tools for performance to avoid needless copying of func-

tion arguments. They are not modelled in Cpp. Outside the context of

concurrency and lifetime issues, it is reasonable to have const-references

in function arguments without endangering the categorical essence. An

important exception is the common c++ (originally C) practice of using

“output parameters”. That is, function arguments which are mutated in

the body of the function. This amounts to side-effects which are verboten

by the axioms of Cpp.

control flow In Cpp, programs are expressions so operational con-

trol structures such as branches or loops must be handled differently and

are not directly captured in Cpp. Instead, branching is achieved through

the use of sum types and loops are modelled by structural recursion. No-

tice, for example, that the implementations of fanin, coprod and other

members of the cocartesian structure use if-statements. Vector^:fmap

177

internally used std∷transform (which is written with a loop in all stl im-

plementations I have checked). Those lower level details were obscured

by the categorical abstraction surfaces. We can make efficient use of con-

trol flow structures if we wrap them tightly in functional interfaces. In the

case of recursion, it is practically a requirement that we do so. Since tco

is not prescribed in the c++17 standard, recursion must be unrolled into

loops to avoid risk of stack overflow.

variant for coproduct The coproduct type constructor S inherits

from std∷variant. As pointed out in the previous paragraph on excep-

tions, S is a proof of concept and a more sound implementation would not

have used std∷variant. With that in mind, there are a few things to be

aware of:

• variants can not hold arrays ([158, pp. 12.7.3–3]), and

• variants can become valueless_by_exception if an exception is thrown

during a type-changing assignment or emplacement.

Since raw C-style arrays have a strange relationship with raw pointers,

and we have excluded raw pointers from Cpp, wemust take bare arrays out

of the model. The use of C-style arrays is discouraged by many important

sets of best-practices and guidelines due to type-safety issues and their

relationship to pointers. The stl provides std∷array which is a type-safe

statically-sized array that takes their place.

unnatural function templates In §4.4, it was pointed out that

natural transformations are well represented as function templates. How-

ever, not all function templates are natural transformations. The differ-

ence is parametric vs. ad-hoc polymorphism: natural transformations re-

quire parametric polymorphism. For function templates to model natural

transformations, they should work for any given template typename argu-

ment without specialisation.

178

type-casting Our model relies on the c++ type system: though all

of this we have let types guide the design. As I was writing all of the test

cases of the chapter, I was warned about each mistake because the types

did not align. For better (and sometimes worse) c++ affords programmers

the tools to circumvent the type system. To model homs we used std∷-
functionwhich uses type erasure for better, and improves type safety. But
static_cast and dynamic_cast sidestep the type system which means de-

parting from Cpp. The case of std∷function shows that when this is done

judiciously, it can be used to good effect. But it is a breach of the categor-

ical model and should only be done locally, within a type-safe wrapper.

object lifetime Object lifetime is an operational reality of c++ that

has no depiction in Cpp. It is up to the programmer to ensure that expres-

sions in Cpp/c++ are composed of living objects sharing a scope with the

expression.

stack vs. heap allocation The category Cpp has no regard for

c++’s underlying memory model. For that matter, it does not know about

cache layers, cpu memory paging of anything else about how data is laid

out. It is still the programmer’s art to optimise memory.

4.10 summary & conclusion

The chapter started off defining a category of c++17 programs, Cpp. This

category borrows structure from 𝕊𝗲𝘁, representing types as the set of their

values and arrows as functions. So some hand waving and squinting gives

Cpp the structure of a biccc, and since Cpp is platonic, these things on

their own mean very little. The interesting part is the representation. A

particular (non-unique) representation is given alongside the development

of the structure which is denoted Cpp/c++.

After demonstrating that Cpp/c++ could satisfy the category axioms

(§4.2.1), we moved on to demonstrating type functors, defined as endofunc-

179

tors on Cpp. Examples given include

• Vector, a functor on the std∷vector type constructor (eg. 4.3-2),

• Const, the family of constant functors fixed at any given Cpp-object

(eg. 4.3-3), and

• sptr, based on the std∷shared_ptr type constructor, which is actu-

ally not a functor but is functorial up to isomorphism (eg. 4.3-4).

In §4.4 we covered natural transformations, where, as an example, a

function was defined to compute the length of a std∷vector as a natural

transformation

len∶ Vector ⇒ Const⟨std∷size_t⟩,

from the Vector functor to the Constant functor over std∷size_t.
With the basic trinity of category theory: (1) categories, (2) functors

and (3) natural transformations; each demonstrated in Cpp, our attention

turned to mapping out Cpp as a biccc. Table 4.2 is a summary of the

Cpp/c++ names of type constructors and function templates involved in

carrying that structure.

table 4.2: Summary of biccc structures and c++ types upon which they can be modelled.

biccc

ccc

Category Exponential Product Coproduct

• Hom • pcurry • P type constructor • S type constructor
• Dom • puncurry • associator_fd/rv • associator_co_fd/rv
• Cod • ev • unit, I • unit, Nothing
• compose • unitor_fw/rv • unitor_co_fw/rv

• braid • braid_co

product distribution over coproduct

• factorise
• expand

180

These structures build up in abstraction with each layer depending on

the previous.

A core concept in the control-systems portion of the thesis is the no-

tion of fixpoints. In particular, initial algebras or terminal coalgebras of

functors modeling linear datatypes. We used a fixpoint operator Mu to

build fixpoints of a type constructor MP with a functor instance SnocF,

modeling the functor 𝟣 + − × T (for any T). This modelled snoc-lists. Sec-

tion 4.8 demonstrates that these fixpoints and their universal algebra ho-

momorphisms (catamorphisms) can be built upon the universal arrows of

Cpp/c++.

The motivation of this effort is to provide a foundation for categorical

reasoning about c++ programs, including control programs. In the next

chapter we will develop a model of control programs based on a category

theoretical depiction of Moore machines [88]. These Moore machines are

structures existing in the category of sets. Because we built Cpp as a cate-

gory that can trivially be embedded in 𝕊𝗲𝘁, and showed that it has repre-

sentations in c++ code, we can confidently employ some morally correct

“fast and loose reasoning” to design control software in the next chapter.

5
CATEGOR I E S TO CON TROLLER CODE

Talk is cheap. Show
me the code.

— Linus Torvalds

This chapter brings together theory and c++ code to yield two things:

1. a theoretical model of a control program as a constellation of uni-

versal arrows in the category Cpp, and

2. an abstract c++ architecture that accommodates any choice of con-

trol algorithm.

It is written in a bottom-up approach: first I will describe the software

design, a simple expression in Rx that embodies the i/s/o relationships

inherent in feedback control application software. From there, we will use

the mathematics of ch. 3 and the structure Cpp/c++ of ch. 4 to work up

and underpinning and justification of the design. In particular, we will

see that the design lends itself to a view of control programs as Moore

machines.

5.0-1 The next section introduces a simple c++ structure called Moore-

Machine, that embodies that data of the classical notion as a Goguen ma-

chine in 𝔽𝗶𝗻𝗦𝗲𝘁. The definition of a MooreMachine will be the central data

structure that is used to ground all of the more abstract mathematical con-

cepts that category theory serves. The mathematical framework does not

add data to the MooreMachine concept, rather, it captures the pattern of

iteration that comes organically when Moore machines are animated as

instances of Arbib’s input processes. In other words, because ct construc-

tions necessarily includes arrows as well as objects, by taking a categori-

cal approach to Moore machines we simultaneously capture both the data

and mechanism of the classical Moore machine. And further, because we

situate this in a category of c++ programs, we get the code as a result.

In the final section of the chapter, I give a working example: a pid-

controller running with a simulated plant. This example is well placed

because pid controllers (for better or worse) are ubiquitous in industrial

181

https://lkml.org/lkml/2000/8/25/132

182

control systems. But better yet, they admit analytical solutions to which

we can compare the numerically simulated results.

The next chapter is a fuller case study involving an advanced control

technique (nmpc) running on a multi-system autonomous mobile robot.

5.1 outline of control programs

The construction at which this chapter aims is very intricate; a detailed

clockwork of precision that spans many layers of abstraction. The ulti-

mate goal is something simple and concrete: a small piece of c++ code

that, depending on some user defined types and functions, implements

any control algorithm. As in ch. 4.2, we take program to mean an arrow

of Cpp—and control programs are therefore a subset of those arrows. The

starting point is the concept that a controller is a dynamical system in

its own right; and a control program is regarded as a Moore machine in

Cpp that embodies the relationship between input and output which are

structured as asynchronous lists.

Control computers take, as input, time-series data arriving from sen-

sors and operators1, and produces a time-series of actuator commands.

These streams of values are like lists or arrays except that the values they

hold are not distributed through memory but through time. We cannot in-

dex into them, or pull values at will, so these streams are observable but not
decomposable. Instead, we can then compose a chain of operations that

gives an expression for the output stream in terms of the input streams,

with no reference to individual values in the stream. When values become

available in any input stream, they are pushed through the computation

pipeline and any dependent output values are updated with the new infor-

mation. This means that the flow of data drives the computation; pushing

data rather than pulling it in from a loop-structure.

I give an overview of this sort of list/stream processing dsl in §2.3.2,
1 Operators are people or supervisory software directing the controller by providing

setpoints, reference values and other non-feedback input.

183

and a derivation with tutorial on Rx §3.10. While there are various li-

braries that will work for our purposes, I use RxCpp since it is actively

maintained, expertly developed and well used2.

Consider two observable streams

const observable<Y> plant_state = ^^.;
const observable<R> reference = ^^.;

Sensor readings take value in the type Y and operator input take value in

the type R. One then defines an initial state for the controller, a value from

the type C:

const S s0 = ^^.;

Now define the stream of control instructions, controls, as

listing 5.1.1:

const auto controls =
plant_state

| combine_latest(reference)
| scan(c0, state_transition_function)
| map(r);

The combine_latest, scan and map combinators are off-the-shelf compo-

nents in any Rx implementation. The pipe operator, (|), denotes that the

observable stream on the left is fed to the combinator on the right3 pro-

ducing a new (transformed) observable stream.

The combine_latest does what you may expect: it produces values in

𝑌 × 𝑅 that is always a pair of the latest values in the streams plant_state

and reference. When a new value is pushed along either stream, the

combinator emits the pair of latest values from both. This is illustrated in

Figure 5.1 as a marble diagram.

The scan combinator is where the bulk of the calculation goes on and

it is where the state of the control computation is held. Starting from the
2 It is well used since it is the official implementation on reactivex.io.
3 If you are familiar with the posix shell “pipe” operator, then you have a good intu-

ition for its meaning here.

http://reactivex.io/languages

184

0 1 2 3 |

A B C |

combine_latest

0

A

1

A

2

A

2

B

3

B

3

C

|

figure 5.1: Marble diagram of the combine_latest combinator. nb: data intervals
need not be constant.

initial controller state, and given a function

state_transition_function∶ S × (Y × R) → C,

the scan combinator produces a stream of controller states updated by

new input, according to state_transition_function. Traditional control

algorithms will involve some combination of numeric integrals, finite dif-

ference schemes and anything else computed from the history of input

values can be held and updated in the controller state, and propagated by

state_transition_function.

The map combinator applies a function pointwise to a stream. In this

case, the readout function,
r ∶ S → U,

which maps the controller’s state to a value in U which can be exported to

the actuators4.
4 Maybe through some sort of driver api or direct manipulation of hardware pin

states.

185

𝑖0 𝑖1 𝑖2 𝑖3 𝑖4 |

scan(𝑐0, 𝑓)

𝑓 (𝑐0 , 𝑖0)

𝑓 (𝑓 (𝑐0 , 𝑖0), 𝑖1)

𝑓 (𝑓 (𝑓 (𝑐0 , 𝑖0), 𝑖1), 𝑖2)
𝑓⋯(𝑐0 , 𝑖0), 𝑖1), 𝑖2), 𝑖3

𝑓⋯(𝑐0 , 𝑖0), 𝑖1), 𝑖2), 𝑖3), 𝑖4)

|

figure 5.2: Marble diagram for the scan combinator.

𝑠0 𝑠1 𝑠2 𝑠3 𝑠4 |

map(𝑟)

𝑟 𝑠0 𝑟 𝑠1 𝑟 𝑠2 𝑟 𝑠3 𝑟 𝑠4 |

figure 5.3: Marble diagram for the map combinator. nb: this combinator does not
hold state.

186

This composition of combine_latest, scan and map can be summarised

in a formal wiring diagram:

combine_latest scan 𝑟
Controller

𝑌
𝑅 𝑌 ′ 𝑆 𝑈

, (5.1.1)

which sits in the context of the larger system:

Plant

Controller

System

𝑅
𝐷

𝑈

𝑌

.

Although this system wiring diagram looks like (and is certainly compa-

rable to) the block diagram fig. 1.2, wiring diagrams are a pictographic

expression language for composition in certain types of categories. They

are cousins of string diagrams, and should be thought of as mathematical

expressions, not thin visual metaphors. Their interpretation as such will

not be a topic for now, but I direct the interested reader to [124, 182].

For intuition, one might combine the notions of marble and wiring

diagrams. Instead of having time on a spatial axis, imagine a running

animation wheremarbles travel along wires. You can see this illustrated in

fig. 5.4. The marbles enter combinators from the left and are transformed

and passed back out to the right. Themarbles can travel at different speeds

and the combinators can introduce delay between input and output. In this

model, it is the arrival of the marbles at the ports of the control program

that drives the computation pipeline.

This slender code, the wiring diagrams, and the marble diagrams—are

the results at which the remaining sections aims.

187

combine_latest scan 𝑟

Controller

𝑌

𝑅 𝑌 ′ 𝐶 𝑈

figure 5.4: Awiring diagramwith Rxmarbles overlaid onwires. To be interpreted
as a frame with animated marbles moving from left to right in time.

5.1.1 Control Programs & Moore Automata

In the point of view presented in this thesis, a control program is a com-

posite of smaller i/s/o components each interacting through their input

and output ports. We model these components as Moore machines or au-
tomata.

In this section, we categorify Moore machines in Cpp to capture the

control program’s i/s/o relationship and give it a representation in code.

More specifically, we list and demonstrate a simple data structure named

MooreMachine which will be an input for later category theoretically mo-

tivated transformations. By capturing the Moore structure and its be-

haviour in a universal constellation of Cpp-arrows, we will have obtained

two dependent structures, one algebraic and one coalgebraic, for mapping

input values to output values while lawfully maintaining state.

5.2 algebra & coalgra of moore machines

Moore machines can be regarded as the instance of Goguen machines

erected in the category 𝕊𝗲𝘁. That is to say, they can be viewed as an al-

gebraic construction. Section 3.9 describes how Moore machines can be

regarded as coalgebra. To design the control program, we will lean heav-

ily on the algebraic side to get us there, but the behaviour of the program

will by defined by coalgebra.

188

Recall from def. 3.9-1 that a Moore machine is a 6-tuple,

(𝐼 , 𝑆, 𝑂, 𝛿, 𝑟 , 𝑠0),

where:
 𝑆 is a set of states and 𝑠0 is a global element evaluating as an initial

state,
 𝐼 and 𝑂 are sets of input and output values respectively,
 𝛿 ∶ 𝑆 × 𝐼 → 𝑆, the transition function is an ̂𝘐-algebra, mapping the

state and input to a successor state and,
 𝑟 ∶ 𝑆 → 𝑂, the readout function mapping the state to the observable

output.
We can render this as a 𝕊𝗲𝘁-diagram:

𝑆 × 𝐼 𝑆 𝑂

𝟣

𝛿 𝑟

𝑠0
. (5.2.2)

Now consider the two functors: − × 𝐼 and 𝐼 ⊸ − denoted as ̂𝘐 and 𝘌𝐼
respectively. Table 5.1 shows the signatures of the co/structure maps of

the algebras and coalgebras of these functors.

table 5.1: The signatures for the co/structure maps of algebras and coalgebras
for the functors ̂𝘐 = − × 𝐼 and 𝘌𝐼 = 𝐼 ⊸ −. ̂𝘐-coalgebra and 𝘌𝐼 -algebras are de-
emphasised because they do not contribute to the discussion.

̂𝘐 𝑆 𝘌𝐼 𝑆
algebra 𝑆 × 𝐼 → 𝑆 𝐼 ⊸ 𝑆 → 𝑆

coalgebra 𝑆 → 𝑆 × 𝐼 𝑆 → 𝐼 ⊸ 𝑆

observation 5.2-1. Notice that the ̂𝘐-algebra over 𝑆 is exactly the sig-

nature of 𝛿 and 𝘌𝐼 -coalgebra over 𝑆 is exactly ̀𝛿 . This is not a coincidence

since products and exponentials are adjoints [109, eg. 9.7, p. 215], so ̂𝘐-𝗔𝗹𝗴
and 𝘌𝐼 -𝗰𝗼𝗔𝗹𝗴 are related in kind. That is, any ̂𝘐-algebra can be curried into

an 𝘌𝐼 -coalgebra

189

note. Soon we will be using c++17 to express Moore machines, but

the standard (and certainly the compilers) disallow single-charater Greek

names like 𝛿 . So from hereon, we use f in code and 𝛿 interchangeably,

with 𝑓 /f leaning toward use in code listings as well as the specific case

state-transition functions of control algorithms.

We can add ̀𝛿 into (5.2.2):

𝑆 × 𝐼 𝑆 𝐼 ⊸ 𝑆

𝟣 𝑂

𝛿 ̀𝛿

𝑟𝑠0

algebra coalgebra

.

Through a progression of code examples building on Cpp/c++, we will

start from a naïve example of a Moore machine, to and algebraic model

with catamorphisms before arriving at a coalgebraic model with Rx ob-

servables.

5.3 moore machines in code

We can render the data of the classical Moore machine in a simple struct

template:

template <typename I, typename S, typename O>
struct MooreMachine {
S s0;
std^:function<S(S, I)> tmap;
std^:function<O(S)> rmap;

};

In the actual control systems code, we do not define MooreMacine: the

structure is a tool for demonstration.

The following example establishes a leitmotif upon which the subse-

quent examples build.

190

example 5.3-1. Our Moore machine is

𝛴 = (𝑆 = int, 𝑠0 = 0,
𝐼 = int,
𝑂 = int,
𝑓 = (𝑠, 𝑖) ↦ 𝑠 + 𝑖,
𝑟 = id𝑆),

which keeps a running sum of the inputs as its state, and has full state-

output. We can avail ourselves of a few (global) type aliases aimed at our

running-sum problem.

using State = int;
using Output = int;
using Input = int;

This will disambiguate the three in the code, and leave I, S and O as tem-

plate variables.

The following code is intentionally obtuse. It demonstrates very ex-
plicitly the pattern of induction we wish to capture. We will revisit the

example as we develop category theoretical tools that encompass the be-

haviour, making the iteration automatic—a consequence of the essential

structure of the category theoretical objects.

listing 5.3.1: A Catch2 TEST_CASE demonstrating how the constituents of a
MooreMachine are used to turn a list of input to a list of output using a simple
running-sum of integers.

1 TEST_CASE(
2 "Given a MooreMachine where,\n"
3 " S = O = I = int\n"
4 " s0 = 0\n"
5 " 𝑓 = (i, s) ↦ s + i\n"
6 " 𝑟 = s ↦ s,\n"
7 "and given an input vector `i_s` and manually computed "
8 "`running_sum…`") {
9 const State s0 = 0;

10 const auto f = [](State s, Input i) -> State { return s + i; };

191

11 const auto r = id<State>;
12 const auto mm = MooreMachine<Input, State, Output>{s0, f, r};
13

14 const auto i_s = std^:vector<Input>{0, 1, 2, 3, 4};
15 const auto running_sum = ^/ { 𝑠0, 𝑟 ∘ 𝑓 (𝑠𝑘 , 𝑖𝑘) }4𝑘=0.
16 std^:vector<Output>{0, 0, 1, 3, 6, 10};
17 ^/ ↑
18 ^/ Initial state
19 AND_GIVEN(
20 "a function that explicitly demonstrates the "
21 "recursion of 𝑓 while generating a sequence of "
22 "successive output values.") {
23

24 auto manual_moore_machine =
25 [&i_s, &mm]() -> std^:vector<Output> {
26 const auto [s0, f, r] = mm;
27 return {
28 r(s0),
29 r(f(s0, i_s[0])),
30 r(f(f(s0, i_s[0]), i_s[1])),
31 r(f(f(f(s0, i_s[0]), i_s[1]), i_s[2])),
32 r(f(f(f(f(s0, i_s[0]), i_s[1]), i_s[2]), i_s[3])),
33 r(f(f(f(f(f(s0, i_s[0]), i_s[1]), i_s[2]), i_s[3]), i_s[4]))
34 };
35 };
36

37 THEN("we should expect the running sum including the output "
38 "of the initial state.") {
39 REQUIRE(manual_moore_machine() ^= running_sum);
40 }
41 }

MooreMachines can be converted into algebras of the snoc list structure

from §4.8. First, let us define a helper to reduce verbosity:

template <typename T, typename Carrier>
using SnocAlg = typename SnocF<T>^:template Alg<Carrier>;

Now we can turn any Moore machine into a SnocAlg by:

template <typename S>
auto moore_to_snoc_algebra(MooreMachine<Input, S, Output> mm)

-> SnocAlg<Input, S> {
auto global_s0 = [mm](PUnit) -> S { return mm.s0; };
auto state_trans = [mm](P<std^:shared_ptr<S>, Input> p) -> int {

192

auto [s, i] = p;
return mm.tmap(*s, i);

};

return fanin(global_s0, state_trans);
}

In principle, all we have done is rearrange the data in a form that can

be given life, animated by the categorical machinery of catamorphisms.

This is what the last example looks like in that context. In the following

example, recall the functor 𝘉 from def. 3.6-20, mapping machines to i/o

behaviours as

𝛴 ↦ 𝑟 ∘ ⦇𝑠0 ▽ 𝛿 ⦈∶ 𝐼 ∗ → 𝑂.

example 5.3-2. Extending eg. 5.3-1 (scope repeated in grey) the following

test-case demonstrates that moore_to_snoc_algebra maps MooreMachines

such that we can construct 𝘉 mm.
TEST_CASE(

"Given a MooreMachine where,\n"
" S = O = I = int\n"
" s0 = 0\n"
" 𝑓 = (i, s) ↦ s + i\n"
" 𝑟 = s ↦ s,\n"
"and given an input vector `i_s` and manually computed "
"`running_sum…`") {

State s0 = 0;
auto f = [](State s, Input i) -> State { return s + i; };
auto r = id<State>;
auto mm = MooreMachine<Input, State, Output>{s0, f, r};

auto i_s = std^:vector<Input>{0, 1, 2, 3, 4};
^/ running_sum = { 𝑠0, 𝑟 ∘ 𝑓 (𝑠𝑘 , 𝑖𝑘) }4𝑘=0.
auto running_sum = std^:vector<Output>{0, 0, 1, 3, 6, 10};
^/ ↑
^/ Initial state
AND_GIVEN(

"An ̂𝘐•-algebra embodying 𝛿 and 𝑠0, and "
"corresponding I/O response function "
"phi= 𝘉 mm = 𝑟 ∘ ⦇alg⦈") {

auto alg = moore_to_snoc_algebra(mm);
auto phi = compose(mm.rmap, SnocF<Input>^:cata<State>(alg));

193

auto total =
mm.rmap(std^:accumulate(cbegin(i_s), cend(i_s), 0));

auto snoc_is = to_snoclist(i_s);

THEN("phi applied to an empty list should produce the "
"initial state.") {

REQUIRE(phi(nil<Input>) ^= mm.rmap(mm.s0));
}

THEN("phi applied to i_s should produce its sum total.") {
REQUIRE(phi(snoc_is) ^= total);

}

^/ A new test will be added here in a moment.
}

}

And indeed, this is a passing test included in [193].

nb: note the comment line at the end telling of an addition we will

make soon.

The problem here is that we need access to the intermediate states

in the calculation: a control program must produce output at every step.

What we want is not 𝘉 mm but a snoc-scan (§3.8.2). In the next section 5.4,

I will show that every pointed object-algebra can be transformed (functo-

rially) into algebras producing a scans as their catamorphisms. For now,

in code, it is simply a function template:

template <typename I, typename S>
auto snoc_scanify(SnocAlg<I, S> alg) -> SnocAlg<I, SnocList<S>> {

return [alg = alg](auto unit_or_p) -> SnocList<S> {
auto global_snoc_s0 = [&alg](PUnit) {
return snoc(nil<S>, alg(PUnit{}));

};

auto accum_trans =
[&alg](P<std^:shared_ptr<SnocList<S>>, Input> p)
-> SnocList<S> {

auto [accum, val] = p;

194

const auto s0 = unsafe_head(*accum);
return snoc(*accum, alg(P{std^:make_shared<S>(s0), val}));

};
return fanin(global_snoc_s0, accum_trans)(unit_or_p);

};
}

This takes an algebra alg∶ ̂𝘐• 𝑆 → 𝑆 returns an algebra of type ̂𝘐• 𝑆∗ → 𝑆∗.
Given an empty list, the “scanified” algebra produces [𝑠0] (the initial value
wrapped in a snoc list) and given a pair (𝑤, 𝑖) ∈ 𝑆∗ × 𝐼 taking the head of

the list of states, passes it to 𝛿 along with 𝑖 and then returning 𝑤 with the

new state appended.

Now to the test case in eg. 5.3-2 we can add (where indicated)

THEN("The scanified version of that algebra should produce "
"a list (i.e., SnocList) of the running sum.") {

auto running_sumer = SnocF<Input>^:cata<SnocList<State>>(
snoc_scanify<Input, State>(alg));

REQUIRE(running_sumer(snoc_is) ^= to_snoclist(running_sum));
}

which passes.

Now we we should like to start working toward the Rx-based inter-

face. It was shown in §4.8.4 that snoc lists are isomorphic to std∷vectors—
grounding the type-system based list into an object. In the 2020 version

of the c++ standard, [171], partly adopted Eric Niebler’s range-v3 library,

which gives iterable collections the “pipe” syntax with the aim of making

algorithms on collections composable. Notably, this includes vectors. The

thesis demo code includes an example with range-v3, as an intermediate

step between std∷vectors and asynchronous collections in Rx. Without

repeating the full test here, the interesting part of the code is:

template <typename I, typename S, typename O>
auto rang_v3_moore_machine(MooreMachine<I, S, O> mm)

-> Hom<std^:vector<I>, std^:vector<S>> {
using namespace ranges;
return [mm](std^:vector<I> i_s) {

const auto o_s =
i_s | views^:exclusive_scan(0, mm.tmap) | views^:transform(mm.rmap);

return std^:vector(std^:cbegin(o_s), std^:cend(o_s));

195

};
}

which uses std∷exclusive_scan and std∷transform (adapted for ranges)

in the expression for o_s. The vector of values 𝑖_𝑠 is fed into the scan,

which is then mapped over by r. Contrast that with the nearly identical

version for Rx:

listing 5.3.2:

template <typename I, typename S, typename O>
auto rx_moore_machine(MooreMachine<I, S, O> mm)

-> Hom<rx^:observable<I>, rx^:observable<S>> {
return [mm](rx^:observable<I> i) {

return i | rx_scanl(mm.s0, mm.tmap) | rx^:map(mm.rmap);
};

}

The combinator rx_scanl is a slight modification of RxCpp’s built-in scan.

This is to address (imperfectly) an issue that many scan algorithms dis-

agree onwhether or not the initial state is included in the output. Wewant

the initial state in the output, and unfortunately for us, RxCpp’s scan does

not. Here is the modification, where we explicitly start_with the initial

state:

template <typename I, typename S>
auto rx_scanl(S s0, Hom<Doms<S, I>, S> f)

-> Hom<rx^:observable<I>, rx^:observable<S>> {
return [s0, f](rx^:observable<I> obs) {

return obs.scan(s0, f).start_with(s0);
};

}

And now, here is the full example.

example 5.3-3. Extending eg. 5.3-1 (scope repeated in grey) the follow-

ing test-case demonstrates the Rx expression above produces the output

sequence of the Moore machine.

TEST_CASE(
"Given a MooreMachine where,\n"
" S = O = I = int\n"

196

" s0 = 0\n"
" 𝑓 = (i, s) ↦ s + i\n"
" 𝑟 = s ↦ s,\n"
"and given an input vector `i_s` and manually computed "
"`running_sum…`") {

State s0 = 0;
auto f = [](State s, Input i) -> State { return s + i; };
auto r = id<State>;
auto mm = MooreMachine<Input, State, Output>{s0, f, r};

auto i_s = std^:vector<Input>{0, 1, 2, 3, 4};
^/ running_sum = { 𝑠0, 𝑟 ∘ 𝑓 (𝑠𝑘 , 𝑖𝑘) }4𝑘=0.
auto running_sum = std^:vector<Output>{0, 0, 1, 3, 6, 10};
^/ ↑
^/ Initial state
AND_GIVEN("With rx_moore_machine") {

auto custom_moore_scan = [&i_s, &mm]() -> std^:vector<Output> {
auto oi = make_vector_observable(i_s);
auto oo = oi | rx_moore_machine(mm);

std^:vector<Output> output;
oo.subscribe([&output](Output v) { output.push_back(v); });

return output;
};

THEN("expect a running sum without output from the initial "
"state.") {

REQUIRE(custom_moore_scan() ^= running_sum);
}

}
}

And indeed, this is a passing test included in [193].

5.3-4 In transitioning from std∷vector to Rx observables, we havemade

an interesting shift. While scans on std∷vectors were underpinned by

snoc-catamorphisms, asynchronous collections do not compute catamor-

phically because they do not (and can not) traverse the list to its root before

yielding a result. See obs. 3.9-6 for more context. We have somehow tran-

sitioned into something behaving anamorphically. In spirit, the RxCpp

197

scan produces a stream of intermediate results from ⟬ ̀𝑓 △ id⟭ 𝑐0, where the

readout is identity. This is why in lst. 5.3.2 we applied r using the map

combinator, which is the fmap of the list functor.

5.4 from folds to scans

Ordinary folds can be made into scans by means of the endofunctor:

scanify∶ ̂𝘐•-𝗔𝗹𝗴 → ̂𝘐•-𝗔𝗹𝗴
(𝐴, 𝛼) ↦ (𝐴∗, 𝛼′) (5.4.3)

𝑓 ↦ 𝑓 ∗.

where

𝛼′(𝑎) = {[𝛼()] if 𝑎 = ()
𝑤 ⧺ [𝜋2 ∘ 𝛼(𝜅−1, 𝑖)] if 𝑎 = (𝑤 ∶ 𝐴∗, 𝑖∶ 𝐼).

Because free −̂•-algebras are known to exist as fixpoints in −̂•-𝗔𝗹𝗴, we can

press them into service of this operation, thus the appearance of (−)∗ on

the output of the machine.

It can be shown that for (5.4.3) respects the functor axioms (§B.6-1).

That is, given any (𝐴, 𝛼),

scanify(id(𝐴, 𝛼)) = idscanify (𝐴, 𝛼)

and given compatible algebra homomorphisms 𝑓 , 𝑔,

scanify(𝑔 ∘ 𝑓) = scanify(𝑔) ∘ scanify(𝑓).

The algebra homomorphisms in ̂𝘐•-𝗔𝗹𝗴 are just 𝕊𝗲𝘁-functions that preserve
the structure of the algebra. In this case, showing functionality is a familiar

exercise to functional programmers because scanify’s action on arrows is

just the standard list-functor in 𝕊𝗲𝘁. Moreover, though it is not needed

for the present work, it can be shown that one can revert 𝛼′ back to 𝛼 by

simply taking the head of 𝑤 after 𝛼′.

198

5.5 the coalgebraic model of control programs

In lst. 5.3.2, an implementation of a Moore machine was given as an Rx

expression. Confer that with the control expression, lst. 5.1.1, and the

only difference is that the control expression combines, as input, a refer-

ence signal and a (measured or estimated) plant state into a unified input

to the scan. And, as pointed out in 5.3-4, we are now working in coal-

gebras and anamorphisms. Recall the diagram (3.9.25), repeated here for

convenience:

̂𝘐• 𝐼 ∗ ̂𝘐• 𝑆 ̂𝘐• (𝐼 ∗ ⊸ 𝑂)

𝐼 ∗ 𝑆 𝐼 ∗ ⊸ 𝑂 𝑂
⧺̄•

̂𝘐 ⦇𝑠0▽𝛿 ⦈

𝑠▽𝛿

̂𝘐 ⟬ ̀𝛿△𝑟⟭𝘔

𝑦𝛴▽𝜑⧺̄−1
•

⦇𝑠0▽𝛿 ⦈ ⟬ ̀𝛿△𝑟⟭𝘔 ev𝘉

̂𝘐 ⦇𝑦𝛴▽𝜑⦈

⦇𝑦𝛴▽𝜑⦈

.

Listing 5.1.1 makes a control program into a Moore machine where we

only observe output. The control algorithm is encoded in 𝛿 (or 𝑓). As

mentioned in 5.3-4, the scan produces intermediate values of a calculation

that amounts to ⟬ ̀𝑓 △ id⟭𝘔 𝑐0, where 𝑐0 is the initial state of the controller.

State readout is effected afterward by mapping 𝑟 over the intermediates in

the pipline. What remains then is to give a full componentwise coalgebraic

description of the three transformations in the pipeline, illustrated in the

wiring diagram (5.1.1). This portion of the thesis was published as a paper

[184] which I coauthored with my supervisors.

The combine_latest block collects the measured plant state and ref-

erence values, which may arrive asynchronously, and puts out a value

reflecting the most recent updates to each. For simplicity, let 𝑌 ′ ≔ 𝑌 × 𝑅.
So the block’s state and output are from 𝑌 × 𝑅, but its input is from 𝑌 ⊔ 𝑅.
Whichever value arrives is remembered in the state, which is passed on

199

as output. The state dynamics can be modelled as a 𝘔𝑌⊔𝑅𝑌×𝑅 -coalgebra

(𝑌 × 𝑅, 𝜓 ∶ 𝑌 × 𝑅 → (𝑌 + 𝑅 ⊸ 𝑌 × 𝑅) × (𝑌 × 𝑅)).

where 𝜓 is the costructure map of a Moore machine as in (3.9.26):

𝜓(𝑝 ∶ 𝑌 × 𝑅) = ((𝑚∶ 𝑌 + 𝑅) ↦ 𝑓 (𝑝, 𝑚), 𝑝)

with

𝑓 (𝑝, 𝑚) ≔ { (𝑚, 𝜋2(𝑝)) if 𝑚 ∈ 𝑌
(𝜋1(𝑝), 𝑚) if 𝑚 ∈ 𝑅.

The compute block encodes the control algorithm. Its state, from set 𝐶
and beginning with 𝑐0, holds all information required for that running cal-

culation. To model the dynamics as a Moore machine, we first need a state

transition function 𝑓 ∶ 𝐶 × 𝑌 ′ → 𝐶 , taking the value from combine_latest

along with the previous state of the controller to give an updated state.

Then, we define the costructure map:

𝜑(𝑐 ∶ 𝐶) = ((𝑦 ∶ 𝑌 ′) ↦ 𝑓 (𝑐, 𝑦), 𝑐).

The computation of control values is then reduced to a scan over the input,

⟬𝜑⟭.
Finally, the third block, simply labelled 𝑟 , reads the control output from

the state of the controller: 𝑟 ∶ 𝐶 → 𝑈 . It has no state, so it does not need

to be modeled by anything more than it is: a function.

5.6 example: pid controller

Pid controllers, along with Proportional (p), Proportional-Integral (pi) and

Proportional-Derivative (pd) controllers are a class of automatic reference

tracking feedback control techniques widely used in industry [173]. They

take, as input, the error between a desired setpoint and the actual process

output, producing a control signal as the sum of three terms over the error

200

signal: one proportional, one integral, and one derivative:

𝑢(𝑡) = 𝑘𝑝 𝑒(𝑡) + 𝑘𝑖 ∫
𝑡

0
𝑒(𝑡′) d𝑡′ + 𝑘𝑑 d

d𝑡 𝑒(𝑡). (5.6.4)

where:

 𝑡 ∈ ℝ[0, ∞) is the additive monoid of continuous time,

 𝑢 is the control signal,

 𝑒 is the error signal, and

 𝑘𝑝 , 𝑘𝑖 and 𝑘𝑑 are scaling coefficients or “gain” for each term.

Each of these terms has purposes and balanced trade-offs:

The proportional term helps in reducing steady-state error, but can

lead to overshoot and oscillations if the gain is too high,

The integral term reduces steady-state error, but can lead to instability

if the gain is too high,

The derivative term reduces overshoot and damps oscillations, but is

prone to amplify high frequency noise in the system.

The balance is struck my judicious choice of scaling coefficients, 𝑘𝑝 , 𝑘𝑖 and
𝑘𝑑 .

To demonstrate the control program model, we use a discrete-time im-

plementation of pid. Indeed, most modern applications of pid control are

for computer controlled systems5.

The simplest (perhaps crudest) techniques to discretise (5.6.4) are to

approximate the derivative by 2-point forward difference and the integral

by right-rectangular approximation. Consider the space of monotonically

increasing sequences (ℝ, <)(ℕ,<), 6 mapping ℕ ∋ 𝑛 ↦ 𝑡𝑛 ∈ ℝ,. The time-

derivative of 𝑒 is discretely approximated as

d𝑒
d𝑡 (𝑡𝑛) ≈

𝑒(𝑡𝑛) − 𝑒(𝑡𝑛−1)
𝑡𝑛 − 𝑡𝑛−1

, (5.6.5)

5 Servomotors are a quintessential example here.
6 Where (ℝ, <) and (ℕ, <) are strict total orders with the usual “less than” ordering

on real or natural numbers, respectively. Functions that preserve the ordering, 𝑎 < 𝑏
implies 𝑓 (𝑎) < 𝑓 (𝑏), are monotonically increasing.

201

and the integral is approximated as

∫
𝑡𝑛

0
𝑒(𝑡) d𝑡 ≈ 𝑒(𝑡𝑛) (𝑡𝑛 − 𝑡𝑛−1) +

𝑛−1
∑
𝑖=1

𝑒(𝑡𝑖) (𝑡𝑖 − 𝑡𝑖−1). (5.6.6)

The first term is pulled out of the sum because that sum will end up in

an accumulator in the final program. Substituting (5.6.5) and (5.6.6) into

(5.6.4), we obtain an expression for the computation of a discrete-time pid

control signal:

𝑢(𝑡𝑛) = 𝑘𝑝 𝑒(𝑡𝑛) + 𝑘𝑖 (𝑒(𝑡𝑛) (𝑡𝑛 − 𝑡𝑛−1) +
𝑛−1
∑
𝑖=1

𝑒(𝑡𝑖) (𝑡𝑖 − 𝑡𝑖−1))

+ 𝑘𝑑
𝑒(𝑡𝑛) − 𝑒(𝑡𝑛−1)

𝑡𝑛 − 𝑡𝑛−1
. (5.6.7)

5.6-1 One final thing to discuss is what happens with (5.6.7) at 𝑡0, where

neither the derivative nor integral terms can produce a value. At this point

we, simply define 𝑢(𝑡0) ≝ 0. This introduces a lag suffered by the discrete

pid that is not present in the continuous case. When we abstract the con-

trol algorithm into a state model, we could then adopt the nomenclature

of Willems [75], that the control has 1-finite memory or a memory span

of 1. This means that we must specify exactly 1 initial value to seed the

calculation of the sequence 𝑢.

5.6.1 The Plant

The plant in this example is a damped harmonic oscillator with the addi-

tion of a static/dc force. The differential equation for the position of the

oscillator is:

𝑚 d2𝑧
d𝑡2 (𝑡) = −𝜅 𝑧(𝑡) − 𝛽 d𝑧

d𝑡 (𝑡) − 𝜌 − 𝑢(𝑡),
where

 mass, 𝑚,

 𝑧 ∶ ℝ → ℝ is the position of the oscillator in time and

202

 𝜅 ∈ ℝ>0 is the Hooke’s law constant, scaling the strength of the

restoring force.
 𝛽 ∈ ℝ≥0 is the damping coefficient, scaling the strength of the speed

dependent damping.
 𝑢∶ ℝ → ℝ is the controller output.

The customary approach to this problem is to reduce it to an initial value

problem in the first order of a vector-valued state variable:

d
d𝑡 [

𝑧(𝑡)
̇𝑧(𝑡)] = [0 1

−𝜅/𝑚 −𝛽/𝑚] [𝑧(𝑡)̇𝑧(𝑡)] + [0
𝜌 + 𝑢(𝑡)] (5.6.8)

with initial conditions

[𝑧(0)̇𝑧(0)] = [𝑧0𝑣0
]

Here, the state, 𝒙 = [𝑧 ̇𝑧]⊤ ∈ 𝑋 = ℝ2×1, consists of position and velocity

to furnish the double integration of the original problem.

Equation (5.6.8) will be solved numerically, using the 4th-order Runge-

Kutta method provided in Boost.Numeric.Odeint [136], so we need not

explicitly discretise the problem here.

5.6.2 The Control Program

The heart of the control program is the same expression derived in the

previous section:

const auto s_controls =
world_ix.get_plant_observable()
| rx^:combine_latest(position_error, world_ix.setpoint)
| rx^:scan(c0, pid_algebra(k_p, k_i, k_d))
| rx^:map([](CState c) -> double { return c.value.u; });

In words, we have a stream of control values, s_controls, that is defined

in terms of a pipeline starting at the (simulated) world interface world_ix

which provides an observable stream of plant states. In the next stage

of the pipline, those plant states are combined with the setpoint using a

203

function position_error to produce the error signal. This is passed to

the streaming scan computation which evolves the state of the controller,

starting at initial state c0 and marching forward through application of

the algebra produced by pid_algebra which takes as arguments the coef-

ficients for the p, i and d terms.

Unpacking that expression further requires a breakdown of the types

involved. The plant state is

^/ ┌ · ┐ ^/ time
^/ PState = │ ┌ · ┐ │ ^/ position
^/ └ └ · ┘ ┘ ^/ velocity
^/ ^ ^
^/ │ value
^/ SignalPt
using PState = SignalPt<std^:array<double, 2>>;

where

template <typename T, typename Clock = chrono^:steady_clock>
struct SignalPt {
chrono^:time_point<Clock> time;
T value;

};

which templates on the clock type from the std∷chrono library. 7 The ar-

ray of two double-precision floating point numbers emcompases the state

vector from (5.6.8), [𝑧 ̇𝑧]⊤ ∈ 𝑋 = ℝ2×1.
The setpoint is the position of the oscillator that the controller will

drive toward. Its type is aliased:

using SetPt = double;

The error signal is just the difference between the oscillator position and

the setpoint.

inline auto position_error(PState x, SetPt setp) -> ErrPt {
return {x.time, setp - x.value[0] };

}

7 In this section, we simply use the default of steady_clock, but we retain the felxi-
bility of choice through templates.

204

where ErrPt is another alias of a signal of double:

using ErrPt = SignalPt<double>;

The state of the pid controller is

struct PIDState {
double err_accum;
double error;
double u;

};

where:

• err_accum stores the accumulation for the integral term, the sum in

(5.6.6),

• error stores the value of 𝑒 for the next iteration, and

• u is the control output.

Since the controller performs numerical differentiation and integration, it

needs to keep track of time. So the controller state will be wrapped as a

SignalPt too:

^/ ┌ · ┐ ^/ time
^/ │ ┌ · ┐ │ ^/ accumulated error
^/ CState = │ │ · │ │ ^/ error
^/ └ └ · ┘ ┘ ^/ control value
^/ ^ ^
^/ │ value
^/ SignalPt
using CState = SignalPt<PIDState>;

The algebra for the scan embodies the expression for the discrete-time

pid signal, (5.6.7):

1 auto pid_algebra(double k_p, double k_i, double k_d)
2 -> Hom<Doms<CState, ErrPt>, CState> {
3 return [k_p, k_i, k_d](CState prev_c, ErrPt cur_err) -> CState {
4

5 const auto delta_t = seconds_in(cur_err.time - prev_c.time);
6

7 if (delta_t ^= 0) ^/ Default to P-control if 𝛥t ≤ 0
8 return {prev_c.time,
9 { prev_c.value.error

205

10 , prev_c.value.err_accum
11 , k_p * cur_err.value
12 }};
13

14 const auto integ_err =
15 std^:fma(cur_err.value, delta_t, prev_c.value.err_accum);
16

17 const auto diff_err =
18 (cur_err.value - prev_c.value.error) / delta_t;
19

20 const auto u =
21 k_p * cur_err.value + k_i * integ_err + k_d * diff_err;
22

23 return {cur_err.time, {integ_err, cur_err.value, u}};
24 };
25 }

In addition to the straightforward calculation of (5.6.6), it is worth point-

ing out that in lines 7–12 handle the matter of 5.6-1. The timestamps

on the initial states of the plant and controller are initialised with time

provided by the runtime system at program startup. In the first call to a

pid_algebra, we expect delta ^= 0. In that case, or in any other where

we lose sequencing order of input timestamps, we bypass calculation of

the integral and derivative terms and default to p-control. In this exam-

ple, we can expect the timestamps to increase monotonically from then

on due to the guarantees provided by steady_clock [158, §23.17.7.2]. If

we had a completely asynchronous environment where we did not have

ordering guarantees on timestamps, this behaviour would still be reason-

able. If time sequence violation precludes calculation of the derivative and

integral approximations, we have three options:

1. return the proportional term alone,

2. halt andwait for either temporal coherence or operator intervention,

or

3. repeat the previously computed control value until coherence re-

turns.

For this example, a simple solution suffices.

206

The world interface not only provides the observable stream of plant

states, it also has a member function to accept a control value and step

the internal simulation of the plant dynamics. So the control expression

begins and ends on the interface of world_ix and the subscription

s_controls.subscribe([&world_ix](double u) {
world_ix.controlled_step(u);

});

closes the feedback loop.

5.6.3 The Test Examples

The unit-step response of the pid-controller was simulated for four

combinations of pid-coefficients:

(A) p-control, (𝑘𝑝 , 𝑘𝑖, 𝑘𝑑) = (300, 0, 0);
(B) pd-control, (𝑘𝑝 , 𝑘𝑖, 𝑘𝑑) = (300, 0, 10);
(C) pi-control, (𝑘𝑝 , 𝑘𝑖, 𝑘𝑑) = (30, 70, 0); and
(D) pid-control, (𝑘𝑝 , 𝑘𝑖, 𝑘𝑑) = (350, 300, 50)

These are each applied to a harmonic oscillator with 𝑚 = 1, 𝜅 = 10/𝑚,

𝛽 = 20/𝑚, 𝜌 = 1. The simulation time was 2 s with a constant sample

interval of 0.001 s.
Simulation results are compared to analytical solutions for the contin-

uous pid-controller with results illustrated in Figure 5.5. The agreement

of the lines in that figure make it difficult to discern and characterise dif-

ferences at the scale of the plots. Insofar as visual inspection can note a

deviation of the simulation line, it is “leading” (reacting faster) than the

analytical line at tight contours near the rise- and peak-times. This is pre-

dictable algorithmic error due in-part to the initial lag in the first discrete

time step where the simulated pid controller initially gives nil output lead-

ing to a larger error accumulation than the continuous model. Table 5.2

provides a quantitative summary, tabulating the Root-Mean-Square Devi-

ation (rmsd) and the percent-difference in Steady State Error (sse) of the

simulated results from the analytical results. The rmsd for all cases is in

207

1

1

0 0.5 1 1.5 0.5 1 1.5 2

(A) (B)

Time [s]

(C)

Time [s]

Simulated Analytical

(D)

figure 5.5: The unit-step response curves for each of the itemized test-cases: (A)
p-, (B) pd-, (C) pi- and (D) pid-control. In each case, control is applied to the
damped harmonic oscillator. The solid lines illustrate simulation results using
the developed Rx control and numerically integrated oscillator; the dotted lines
illustrate closed-form analytical solutions.

table 5.2: For each of the test examples, a tabulation of rmsd and percent differ-
ence of sse between analytic solution and pid simulation result.

(A) (B) (C) (D)

rmsd 3.908 3.976 8.948 4.259
sse diff. 0.334 0.333 0.068 0.038

the order of one part in a thousand on data that is of unit order; and the

sse of the simulation results deviates from the analytic solution by about

⅓rd of a percent or less. Note that even for the (C) and (D) cases with

higher rmsd, the sse difference is relatively low, suggesting that devia-

208

tions in the acute activity of the discrete controller are transient and do

not predict deviant behaviour on longer timescales.

Although the point of this exercise is not to achieve high numerical

fidelity, I personally find these results satisfying. The rmsd are comfort-

ably within tolerances we might hope for—considering the simplicity of

the numerical model.

5.7 limitations

The main limitation with the Rx representation of the model is that merg-

ing event streams is non-deterministic: when the streams contain simulta-

neous events, sometimes one occurrence is merged before the other, and

sometimes the other way around. This is one of many motivations for

eventually moving to frp, once there is a clean and hardened implemen-

tation available.

6
B I SHOP ROBOT : A CASE ST UDY

figure 6.1: Cross-
Wing’s Bishop.

SENTRYnet was a project from the Innovation for Defence Intelligence

and Security (IDEaS) program by the DRDC. The focus of the project was

an autonomous robot supplied by CrossWing Inc., called Bishop (pictured

in Figure 6.1). The project was a cooperative distributed across several

universities and industrial partners, and Prof. Eklund was an investigator

on the project. As his graduate student, I developed the motion control

system, including obstacle avoidance, for Bishop. That project was called

trusted motion control and the system was developed under the codename

catnav 1 used the software design detailed in ch. 5, and is the subject of

this chapter.

Chapter 5 concluded with the example of pid-control of a simulated

harmonic oscillator. The key differences between that example and this

case study are:

• Integration: catnav is a component of a larger system integrated

through ros. This means that observables have to come in through

ros topics and output is published to a ros topic.

• Algorithmic complexity: catnav uses an nmpc algorithm for com-

puting control output.

• Plant dynamics: the robot, as a plant, is more complex. Its state

representation has many more variables and is nonlinear.

• Input: the input is much more complex. It includes an entire path

for tracking reference (vis-à-vis the simple set-point of the pid) but

also information about obstacles and transformations between co-

ordinate frames.
1 The pneumonic is CATegory theoretical NAVigation

209

210

6.1 nonlinear model predictive control of bishop

nmpc is an optimization based method for feedback control of systems

with nonlinear dynamics. One of its key uses is in tracking problems like

Bishop’s. Given a model of the state dynamics of the plant, the controller

predicts the behaviour of the plant over a finite window of future time

(called the prediction horizon). The plant behaviour depends, of course,

on the control signal over that horizon. So the controller can forecast the

behaviour of the plant that would result from any given control signal

(or control plan) over the horizon. That ability is used at the heart of an

optimization step which finds the control plan that minimises some cost

functional. In Bishop’s case, the cost functional penalises deviation from a

reference path through its environment, control effort (aggressive steering

commands) and proximity to local obstacles. Some portion of that optimal

control plan is executed before the calculation is repeated, with the hori-

zon shifted ahead in time. (This is why model predictive control (mpc) is

sometimes called receding-horizon control.)

In the present formulation, we will be using discrete time. The horizon

is internal to the calculation of the control program, so we have the luxury

of a fixed time-step interval. The horizon will be divided into a monoton-

ically ascending sequence of 𝑁 ∈ ℕ time steps. The set 𝑇 = {𝑡0, …, 𝑡𝑁−1},
with 𝑡𝑛 ∈ ℝ collects these time steps. Each of the 𝑁 intervals is evenly

timed:

Δ𝑡 = Δ𝑡𝑘 = 𝑡𝑘 − 𝑡𝑘−1
for 𝑘 ∈ {1, …, 𝑁 }.

More formally, recall the notation 𝘕 = {0, … , 𝑁 − 1} and let (𝘕 , <)
be a restriction of the strict total order (ℕ, <). For each horizon there is a

straightforward homomorphism of strict total orders, a sequencing map:

𝜏 ∶ (𝘕, <) → (𝑇 , <),
where (𝑇 , <) inherits the ordering relation from the strict total order (ℝ, <
). The requirement that the sequencing map is a homomorphism of strict

211

total orders is equivalent to the requirement that 𝑇 , as a sequence, is mono-

tonically increasing. The map 𝜏 gives 𝑇 the structure of a sequence and

provides indexing so that 𝜏 (𝑛) = 𝑡𝑛 for 𝑛 ∈ 𝘕 .

definition 6.1-1. The pair (𝑇 , 𝜏) as specified above, constitutes a time
horizon.

𝘕 is obtained from the cardinality of 𝑇 or the domain of 𝜏 .
In c++ and other languages, this sequencing map is roughly equiva-

lent to the indexing operator, operator[] [158, §26.2.3, Table 88.], or the

bounds checked atmember function [158, §26.2.3, ¶15], in supporting stl

containers. But those are set-maps and do not restrict the codomain (time)

to be monotonically increasing. Given a supporting container of type

F⟨U, …⟩ the subscripting operator is in the hom-set: operator[]∶ F⟨U, …⟩×
std∷size_t → U and does not restrict the domain to the bounds of the con-

tainer, so the programmer can pass subscripts not in 𝘕 causing undefined

behaviour2. The atmember function is more careful: at∶ F⟨U, …⟩×𝘕 → U.

notation 6.1-2. The field of real numbers that underlies 𝑇 , we have

addition and subtraction. It shall be understood that,

• 𝑡𝑛 + 0 s = 𝑡𝑛 ,
• 𝑡𝑛 + 𝑚Δ𝑡 = 𝑡𝑛+𝑚 ,
• 𝑡𝑛 − 𝑚Δ𝑡 = 𝑡𝑛−𝑚 , and
• 𝑡𝑚 − 𝑡𝑛 = (𝑛 − 𝑚)Δ𝑡 ,

with appropriate care taken since 𝑇 is not closed under these operations.

That is, 𝑇 cannot carry the structure of an additive group because addition

and subtraction in the underlying real field can produce values not in 𝑇 .

While the state 𝒙 has value for each 𝑡 ∈ 𝑇 , the value 𝒙0 = 𝒙(𝑡0) comes

from a sensor measurement (possible via estimation filter) and is provided

as input to the controller. The prediction step propagates from thereon by

induction over 𝑇 ∖ 𝑡0.
2 Causing a segmentation fault in the best case, or unreported bad behaviour in the

worst.

212

notation 6.1-3. As a compact notation, we use subscripts to indicate in-

dices in sequences spanning the horizon. For example, a sequence 𝑝∶ 𝑇 →
𝑍 (arbitrary 𝑍) has values { 𝑝𝑛 = 𝑝 ∘ 𝜏 (𝑛) | 𝑛 ∈ 𝘕 }, and 𝑞 ∶ 𝘕 → 𝑍 has

values { 𝑞𝑛 = 𝑞(𝑛) | 𝑛 ∈ 𝘕 }. In c++17 where we are using stl containers

to organise data over the horizon, 𝑝𝑛 will be roughly equivalent to p[n],

modulo the ever present precarities of approximating real numbers with

ieee floating point.

Over a given horizon, (T, τ), the nmpc controller solves the discrete

finite horizon open loop optimization,

�̆� = argmin
𝑢

𝐽 (…, 𝒙, 𝑢), (6.1.1)

where,

 �̆� ∶ 𝑇 ∖ {𝑡𝑁−1} → 𝑈 is the control plan that minimises 𝐽 ,
 𝒙 ∶ 𝑇 → 𝑋 is a free sequence of plant states,
 𝑢∶ 𝑇 ∖ {𝑡𝑁−1} → 𝑈 is a free sequence of controls,
 𝐽 ∶ ⋯ × (𝑇 → 𝑋) × (𝑇 → 𝑈) → ℝ is a real-valued cost function

depending on 𝒙, 𝒖 and may depend on other ancillary values, and
 ⋯ the ellipses leave room for those ancillary values.

The ancillary values can always be curried into 𝐽 so that it may be regarded

as

𝐽 ∶ (𝑇 → 𝑋) × (𝑇 → 𝑈) → ℝ.
The optimizationwill additionally be constrained so that the state-trajectory

obeys a model of the plant:

𝒇 ∶ 𝑋 × 𝑈 → 𝑋,

which propagates state through the Initial Value Problem (ivp):

{ 𝒙𝑛+1 = 𝒇 ∘ (𝒙 △ 𝒖) ∘ 𝜏 (𝑛) = 𝒇 (𝒙𝑛, 𝒖𝑛),
𝒙(𝑡0) = 𝒙0.

for 𝑛 ∈ 𝘕 ∖ { 𝑁 − 1 }. (6.1.2)

So given an initial 𝒙0, the state trajectory is determined by 𝒖.

213

notation 6.1-4. In the context of horizon (𝑇 , 𝜏), given an initial state 𝒙0
and a control sequence 𝒖, let 𝒙𝒖 denote the sequence resultant from the

solution of (6.1.2).

6.1.1 Vehicle Dynamics

In catnav, Bishop’s state was modelled as an aggregate of position, speed,

steering angle; and steering rate as the control variable. The steering an-

gle was identified with the direction of travel (precluding the possibility

of slipping). Nmpc is computationally expensive and wheel turn rates are

controlled at a lower hardware layer by pid controllers; so for the sake

of any given nmpc horizon, the speed is taken to be constant at value 𝑣 .
Speed changes could be scripted separately for smoother maneuvering,

high speed cruising, and ramping up (or down) to (or from) rest. So cat-

nav controls motion by modulating the direction of travel (by varying the

steering rate) and by starting or stopping travel.

figure 6.2: (top)
An exploded view
if Bishop’s inter-
nals. (bottom) a
top-down view of
Bishop’s triangular,
3-omniwheel base.

The 𝑥, 𝑦-position of the robot takes values in the Euclidean space ℝ2
so that the components of the derivative of position, ̇𝑥 and ̇𝑦 , also take

values in ℝ2. (That is, the tangent space at any state 𝑝 ∈ ℝ2 is T𝑝ℝ2 =
ℝ2.) So the combined rectangular position and velocity takes values in

ℝ4. Appending the steering angle, 𝜃 ∈ (−𝜋, 𝜋], gives Bishop’s state space:

𝑋 = ℝ4 × (−𝜋, 𝜋]. The steering angle is closed under modular arithmetic,

so it can be given the structure of a circle, isomorphic to 𝑆1. The tangent

space over any 𝑝 ∈ 𝑆1 is ℝ, so the controls take value in 𝑈 = ℝ. A state

space vector 𝒙 ∈ 𝑋 is organised as a column:

𝒙 = [𝑥 ̇𝑥 𝑦 ̇𝑦 𝜃]⊤

which express the rectangular 𝑥 and 𝑦 coordinates with corresponding

velocity components ̇𝑥 and ̇𝑦 , along with steering angle 𝜃 (measured the

from the 𝑥-axis). The origin and orientation of the axes is determined at

Bishop’s startup, where it is considered to be positioned at the origin and

pointing toward +𝑥 . The controls are steering rate: 𝑢 = ̇𝜃 .

214

We discretise over the time horizon (𝑇 , 𝜏) and when forecasting the

state trajectory we integrate the equations of motion

{
𝒙𝑛+1 = 𝒇 ∘ (𝒙 △ 𝑢) ∘ 𝜏 (𝑛)
𝒙0 = [𝑥0 ̇𝑥0 𝑦0 ̇𝑦0 𝜃0]⊤,

for 𝑛 ∈ 𝘕 ∖ { 𝑁 − 1 }, (6.1.3)

with a first-order Euler scheme. Ordinary kinematics gives the transition

function:

𝒙𝑛+1 = 𝒇 (𝒙𝑛, 𝑢𝑛) =

⎡⎢⎢⎢⎢⎢⎢
⎣

𝑥𝑛 + ̇𝑥𝑛 Δ𝑡
𝑣 cos 𝜃𝑛+1
𝑦𝑛 + ̇𝑦𝑛 Δ𝑡
𝑣 sin 𝜃𝑛+1
𝜃𝑛 + 𝑢𝑛 Δ𝑡

⎤⎥⎥⎥⎥⎥⎥
⎦

(6.1.4)

Notice that the cartesian velocity components depend on 𝜃𝑛+1, so the angle

variable must be computed prior to ̇𝑥 and ̇𝑦 .
Also note that this is a nominal model under which perturbations are

not explicitly accounted for. We assume motion without slipping.

6.1.2 Open-loop optimisation

In the continuous setting the nmpc performance index3, the mathematical

device to be optimised, is a functional of the state-space trajectory, control-

space trajectory and ancillary values. In the discrete setting the functional

becomes a function of the sampled discretised/sampled state and control

trajectories. In our case, given the context of the horizon (𝑇 , 𝜏), we choose

a performance cost function,

𝐽 (𝒙ref, 𝒙tgt, 𝛷, 𝒙, 𝑢) = 𝜙(𝒙tgt, 𝒙𝑁−1) +
𝑁−2
∑
𝑛=0

𝐿(𝒙ref𝑛 , 𝛷, 𝒙𝑛, 𝑢𝑛), (6.1.5)

where,

 𝑢∶ 𝑇 → 𝑈 is the sequence of controls,
3 The cost functional to be minimised, reward functional to be maximised. The two

are equivalent and the choice between them is a matter of personal taste.

215

 𝒙 ∶ 𝑇 → 𝑋 is a sequence of plant states,

 𝒙ref∶ 𝑇 → 𝑋 ref where 𝑋 ref is the subspace of 𝑋 covering the Eu-

clidean map: ℝ × {0} × ℝ × {0} × {0}; and 𝒙ref the tracking reference

path sampled at intervals of 𝑣 Δ𝑡 to align with the spatial sampling

of 𝒙𝑢 ,
 𝒙tgt ∈ 𝑋 ref is the ultimate target, the terminus of the path of which

𝒙ref is a segment,

 𝐿∶ 𝑋 ref × 𝑋 × 𝑈 → ℝ is called the running cost,
 𝜙 ∶ 𝑋 ref × 𝑋 → ℝ is called the terminal cost, and

 𝛷∶ ℝ2 → ℝ is a scalar potential field of soft constraints—regions of

the cartesian map to be avoided.

Catnav uses quadratic cost terms,

𝜙(𝒙tgt, 𝒙𝑁−1) = (𝒙𝑁−1 − 𝒙tgt)⊤𝑸0(𝒙𝑁−1 − 𝒙tgt)

and

𝐿(𝒙ref𝑛 , 𝛷, 𝒙𝑛, 𝑢𝑛) = 𝑅𝑢2𝑛 + �̃�⊤𝑛 𝑸�̃�𝑛 + 𝛷(𝑥𝑛, 𝑦𝑛)

where,

 �̃�𝑘 is the tracking error, �̃�𝑘 = 𝒙𝑘 − 𝒙ref
𝑘 .

 𝑅 ∈ ℝ is a positive scalar weighting coefficient, and 𝑸0, 𝑸 ∈ ℝ5×5
are diagonal matrices of positive weighting coefficients to shift the

balance of priority in the optimisation step.

Quadratic cost functions provide a convenience in their simple geometry

so we do not need to check Hessians for positive-definity. The intention

is to use a simple gradient decent algorithm to solve the optimisation. Of

course, 𝛷 is not quadratic, so attention must be paid to complexities it

might introduce.

6.1-5 To simplify the forthcoming derivation, assume that for each hori-

zon, the values 𝒙ref, 𝛷 and 𝒙tgt have been curried into 𝐽 so that it may be

regarded as a function 𝐽 (𝒙, 𝑢). Likewise for 𝜙(𝒙𝑁−1) and 𝐿(𝒙𝑛, 𝑢𝑛), which

also have their ancillary dependencies curried in.

216

In the optimisation, the terminal cost 𝜙(𝒙𝑁−1) biases the curvature of

𝒙𝑢 toward 𝒙tgt. This is important because in the context of a finite horizon

(limiting foresight) and unknown 𝛷, the radial symmetry of the quadratic

terms can easily lead to limit cycles or otherwise sub-optimal progress

toward a global target. Computational expense grows quickly with 𝑁 , so

including 𝜙 in 𝐽 is a frugal way to inject some global perspective without

increasing 𝑁 .

The weighting scalar 𝑅 deserves a brief note because Bishop’s drive

design (Figure 6.2) is capable of instantaneous direction changes: it is an-

halonomic. The kinematics model couples the direction of travel to the

orientation of the robot and forces steering instead of instantaneous orien-

tation changes. The magnitude of 𝑅 adds turn radius into the cost balance.

The value of 𝑅 can even be a function of velocity so that narrower turns

can be executed at lower speeds.

Following similar derivations in [89, 98, 119] which seem to have origi-

nated in [35, §2.2], we solve the minimization problem (6.1.1) by discretely

solving the Euler-Lagrange differential equations to obtain a variational

expansion obtain gradient elements. These may all be regarded as a dis-

critisation of the optimal control problem based on Pontryagin’s maxi-

mum principle [94, §III.5]. These are used in a gradient descent scheme to

Trivia: because
he spoke Russian,
after the soviet
war, Lotfi Zadeh
was one of the first
American engi-
neers to become
familiar and to
popularise Pon-
tryagin’s maximum
principle. See [76]
for the fact, and
see [3] if you read
Russian.

solve the open-loop cost minimisation. We choose boundary conditions

with 𝑡𝑁−1 fixed and 𝒙𝑁−1 free [94, §5.1, CASE I.]. So the optimisation

problem at hand (considering 6.1-5) given a horizon (𝑇 , 𝜏), is

�̆� = argmin
𝑢

𝐽 (𝒙, 𝑢) s.t. 𝒙 = 𝒙𝑢 .

The constraint 𝒙 = 𝒙𝑢 is equivalent to 𝒙𝑛+1 − 𝒇 (𝒙𝑛, 𝑢𝑛) = 0. To enforce

them the cost measure (6.1.5) is augmented with a set of Lagrange multi-

217

pliers 𝝀∶ 𝘕 ∖ { 0 } → ℝ5 with one dimension for each in 𝑋 :

𝐽 aug(𝒙, 𝑢) = 𝜙(𝒙𝑁−1)

+
𝑁−2
∑
𝑛=0

(𝐿(𝒙ref𝑛 , 𝒙𝑛, 𝑢𝑛) + 𝝀⊤𝑛+1(𝒇 (𝒙𝑛, 𝑢𝑛) − 𝒙𝑛+1)).

There is no value of 𝝀 associated with initial state 𝒙0 since that is given at

the outset as part of the ivp. The initial state is the current or last known

state of the robot and is provided as input to the algorithm. As it is fixed

at all parts of the open-loop calculation it makes no sense to constrain it.

Next, introduce the control Hamiltonian sequence 𝐻 ∶ 𝑋 × 𝑈 → ℝ as

𝐻𝑛(𝒙𝑛, 𝑢𝑛) = 𝐿(𝒙𝑛, 𝑢𝑛) + 𝝀⊤𝑘+1 𝒇 (𝒙𝑛, 𝑢𝑛). (6.1.6)

Rewriting 𝐽 aug in terms of 𝐻 and extracting the 𝑛 = 0 term from the sum

gives

𝐽 aug = 𝜙(𝒙𝑁−1) + 𝝀⊤𝑁−1 + 𝐻0 +
𝑁−2
∑
𝑘=1

(𝐻𝑛 − 𝝀⊤𝑛 𝒙𝑛).

In order to obtain the gradient of 𝐽 aug, we take its differential

d𝐽 aug = (∂𝜙(𝒙𝑁−1)
∂𝒙𝑁−1

− 𝝀⊤𝑁−1𝒙𝑁−1) d𝒙𝑁−1 +
∂𝐻0
∂𝒙0

d𝒙0 +
∂𝐻0
∂𝑢0

d𝑢0

+
𝑁−2
∑
𝑛=1

((∂𝐻𝑛
∂𝒙𝑛

− 𝝀⊤𝑛) d𝒙𝑛 +
∂𝐻𝑛
∂𝑢𝑛

d𝑢𝑛), (6.1.7)

and concern ourselves with its variation with respect to 𝑢𝑛. Since 𝒙 is

ultimately determined by 𝑢 and 𝑢 is the target of optimisation, we can

choose the Lagrange multipliers to eliminate terms of d𝒙𝑛,

𝝀⊤𝑁−1 =
∂𝜙

∂𝒙𝑁−1
and 𝝀⊤𝑛 = ∂𝐻𝑛

∂𝒙𝑛
+ ∂𝐻𝑛

∂�̃�𝑛
∂�̃�𝑛
∂𝒙𝑛

or more explicitly

𝝀⊤𝑁−1 = �̃�⊤𝑁−1 𝑸0
∂�̃�𝑁−1
∂𝒙𝑁−1

, (6.1.8)

218

and

𝝀⊤𝑛 = �̃�⊤𝑛 𝑸 d�̃�𝑛
d𝒙𝑛

+ 𝝀⊤𝑛+1
∂𝒇
∂𝒙𝑛

+ ∂𝛷(𝑥𝑛, 𝑦𝑛)
∂𝒙𝑛

, (6.1.9)

where

∂𝛷(𝑥𝑛, 𝑦𝑛)
∂𝒙𝑛

=

⎡⎢⎢⎢⎢⎢⎢
⎣

∂𝛷(𝑥𝑛 ,𝑦𝑛)
∂𝑥𝑛
0

∂𝛷(𝑥𝑛 ,𝑦𝑛)
∂𝑦𝑛
0
0

⎤⎥⎥⎥⎥⎥⎥
⎦

. (6.1.10)

The constant factors from all of the derivatives in d𝐽 aug and 𝝀 are absorbed

into the weighting parameters. The choice of Lagrange multipliers conse-

quently reduces (6.1.7) to

d𝐽 aug =
𝑁−1
∑
𝑘=1

∂𝐻𝑛
∂𝑢𝑛

d𝑢𝑛 + 𝝀⊤0 d𝒙0.

Of course, d𝒙0 = 0 since it is fixed. This leaves

d𝐽 aug = ∂𝐻𝑛
∂𝑢𝑛

d𝑢𝑛,

thus ∂𝐻𝑛/∂𝑢𝑛 is the gradient of 𝐽 aug with respect to the sequence 𝑢. By

expanding and differentiating (6.1.6) we obtain an explicit formula for the

gradient elements
∂𝐻𝑛
∂𝑢𝑛

= 𝑅𝑢𝑛 + 𝝀⊤𝑘+1
∂𝒇
∂𝑢𝑛

. (6.1.11)

6.1-6 gradient descent A basic gradient descent algorithm that in-

cludes steps for forecasting and computation of the Lagrange multiplier

sequence,

1. 𝒙0 and some initial guess for �̆� is created,

2. 𝒙 is forecast from 𝒙0 and 𝑢 by iteration of (6.1.3),

3. 𝝀𝑁−1 is computed from (6.1.8),

4. 𝝀𝑘 is computed from (6.1.9),

5. gradient elements ∂𝐻𝑛/∂𝑢𝑛 are computed from (6.1.11),

219

6. the guess for �̆� is updated by elementwise subtracting ∂𝐻𝑛/∂𝑢𝑛 (mul-

tiplied by a step-factor) from 𝑢𝑛, and
7. the above steps are repeated against the updated estimate of �̆� until

the norm of the gradient elements (with the sequence treated as a

vector) is sufficiently small, indicating proximity to a minimum of

𝐽 .
This gradient descent, compared to more advanced methods, sacrifices ele-

gance and performance for simplicity. We had always planned to replace

it with more sophisticated technology, but it performed well enough to

carry the research to the end of the grant.

6.1.3 The nmpc algorithm

Catnav’s nmpc algebra is templated on a static value for𝑁 . In the simplest

case, when the nmpc algebra receives an input of 𝒙0, 𝒙ref, 𝒙tgt and 𝛷, the
open-loop optimisation step is begun using the algorithm outlined in 6.1-
6, yielding an estimate of �̆�. The first element of that estimate is executed

and the process is repeated when the next input package arrives.

Section 6.3 will provide finer details, but this is the basic nmpc algo-

rithm.

6.2 operating environment

SENTRYnet teams had a standardised running environment facilitated by

Docker. The image was based on Ubuntu 18.04 and ros melodic (ros-1).

This, even at the time, was slightly out of date but was assumed to be

more reliable and familiar to the research groups. The image included the

following packages:

• python-rosdep,

• ros-melodic-desktop-full,

• ros-melodic-dingo-control,

• ros-melodic-dingo-description,

220

• ros-melodic-effort-controllers,

• ros-melodic-global-planner,

• ros-melodic-move-base,

• ros-melodic-ridgeback-gazebo-plugins,

• ros-melodic-slam-toolbox,

• ros-melodic-teb-local-planner, and

• ros-melodic-tf2-sensor-ms.

OpenCV is also brought in as a dependency.

Catnav additionally requires the packages

• ros-melodic-rxros, and

• ros-melodic-rxros-tf

which builds on RxCpp to provide tooling, such as observables/observers

for ros topics and the tf system.

6.2.1 Integration with move_base

The standard ros move_base package includes a “local_planner” to ac-

complish the navigation task. It takes the path provided by the global_planner

while dealingwith fine-grained details of execution and the local_costmap

Catnav replaces that component: it takes the occupancy grid (local_costmap)

and global path and interacts directly with the mobile base. The dataflow

among components is illustrated in Figure 6.3

Catnav uses the local_costmap, which is simply an occupancy grid

centred on the robot, to obtain 𝛷, (see §6.4). It uses the path from the plan

from the global_planner to compute 𝒙ref. Additionally, catnav obtains

coordinate transformations broadcast on the tf/tf2 system.

221

sensors,
odometry,

etc.

slam_toolbox

global_costmap

mobile base

catnav
local_costmap

global_planner

move_base

plan

environment map, robot’s pose

𝑢

figure 6.3: Component/information-flow diagram for selected components of
Bishop’s ros-based navigation stack—including catnav.

6.3 implementation

6.3.1 The Plant & Controller State Types

The plant state type is dubbed WorldState in the code, for largely historical

reasons 4. It contains a time-stamp, the pose of the robot, the global target,

the desired cruising speed, the path from the global planner and a function

modeling ∂𝛷(𝑥, 𝑦)/∂𝒙 ∶ ℝ2 → ℝ2 from (6.1.10):

template <typename Clock = std^:chrono^:steady_clock>
struct WorldState {
typename Clock^:time_point time;
Pose pose;
std^:optional<Target> target;
double cruise_speed;
std^:vector<XY> global_plan;
std^:function<std^:optional<XY>(XY)> Dphi

= [](XY) { return std^:nullopt; };
};

The XY type (lst. C.3.1.) is a simple type modeling a 2-dimensional (2d)

Euclidean vector as a pair of doubles. It has basic equality and linear-

algebraic operations and can be converted to a std∷tuple for structured

binding.
4 Confer the term world interface from the pid example from the end of ch. 5.

222

6.3-1 A Pose is the position and orientation of the robot

struct Pose {
XY position = {0, 0};
double yaw = 0.;

};

where yaw is measured counter-clockwise (ccw) from the 𝑥-axis. A Target

is a pose with some extra tooling for proximity detection

struct Target {
BallTolerable<XY> position;
BallTolerable<double> yaw;

};

Because we must determine if a target has been reached by comparing the

current pose of the robot to the target, we must be very particular about

what we mean by “reached”. The errors in measurement, floating-point

calculation and the mechanics of the robot all contribute to the brute fact

that we can never expect a strict equality of the pose of the robot with an

arbitrary target. The BallTolerable type expects difference and absolute-

value operations so that we can see if one value is within a ball swept by

a radius

template <typename T>
struct BallTolerable {
T value;
double tolerance;
bool is_tolerable(T& x) { return abs(x - value) ^= tolerance; }

};

So a Target is a Pose where position and yaw have a radius tolerance for

the inequality comparison is_tolerable. Note that a BallTolerable is a

slight variation5 of what Kálmán calls a “tolerance space” in [20, Pt. I, §6.4]

(the definition is thereby attributed to Zeeman). In the case of an XY, the

function abs returns the square-norm (ℓ2-norm) of the vector.
5 Zeeman’s description (via. Kálmán) is of a pair (𝑋 , 𝜉) of a set 𝑋 and reflexive sym-

metric relation 𝜉 on 𝑋 where (𝑥, 𝑦) ∈ 𝜉 just in case 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑋 are tolerably close,
by some measure.

223

Note that Dphi is a std∷function and not Hom as in previous chapters.

The demo code libraries of the previous chapters was not included in cat-

nav.

The state of the nmpc controller is large and mostly comprised of val-

ues for the horizon and open-loop optimisation and templates on the hori-

zon size, 𝑁 .

template <std^:size_t N, typename Clock = std^:chrono^:steady_clock>
struct NMPCState {
std^:chrono^:time_point<Clock> time;
std^:chrono^:duration<double> dt =

std^:chrono^:duration<double>(1. / 3);
^/ State Vector:
std^:array<double, N> x = {{0}};
std^:array<double, N> y = {{0}};
std^:array<double, N> th = {{0}};
std^:array<double, N> Dx = {{0}};
std^:array<double, N> Dy = {{0}};
std^:array<double, N - 1> Dth = {{0}};
std^:array<double, N - 1> v = {{0}};
^/ Tracking reference and resulting error (𝑥, 𝑦) − (𝑥ref, 𝑦ref):
std^:array<double, N - 1> xref = {{0}};
std^:array<double, N - 1> yref = {{0}};
std^:array<double, N> ex = {{0}};
std^:array<double, N> ey = {{0}};
^/ Obstacle potential gradient for all but starting point of
^/ the trajectory:
std^:array<double, N - 1> Dphi_x = {{0}};
std^:array<double, N - 1> Dphi_y = {{0}};
^/ Lagrange Multipliers:
std^:array<double, N - 1> px = {{0}};
std^:array<double, N - 1> py = {{0}};
std^:array<double, N - 1> pDx = {{0}};
std^:array<double, N - 1> pDy = {{0}};
std^:array<double, N - 1> pth = {{0}};
^/ Optimisation gradients:
std^:array<double, N - 1> grad = {{0}};
double curGradNorm = 0;
double prvGradNorm = 0;
^/ Coefficients
double R = 0, ^/ Control effort penalty

Q = 0, ^/ Tracking error penalty
Q0 = 0; ^/ Terminal error penalty

224

^/ Collection of obstacles used to compute (DPhiX, DPhiY).
InfoFlag infoFlag = InfoFlag^:OK;

};

Instead of storing the horizon (𝑇 , 𝜏), we simply have the horizon size 𝑁 ,

starting time, time, and the (constant) sampling interval Δ𝑡 , dt, and (𝑇 , 𝜏)
can be computed from them. The state vector

[𝑥 ̇𝑥 𝑦 ̇𝑦 𝜃]⊤

for the horizon are stored as individual arrays of doubles: x, Dx, y, Dy and

th.

The position error �̃� is stored as ex and ey and will be calculated from

the tracking references xref and yref storing data for 𝒙ref.

The values Dphi_x/y are populated with the gradient of 𝛷 at (𝑥𝑛, 𝑦𝑛).
The Lagrange multipliers correspond to each dimension of the state

vector. In the derivation, they were denoted by 𝝀. C++ does not allow

names to start with Greek letters, so I chose p, as we physicists tend to

denote them in Lagrangian mechanics due to their relationship with mo-

mentum.

The gradient elements ∂𝐻𝑛/∂𝑢𝑛 are stored in grad. We also store two

values (current and previous) of the square-norm of the array grad, treated

as an 𝑁 − 1-dimensional vector.

The InfoFlag is a value from the enumeration

enum class InfoFlag {
OK,
TargetReached,
NoTarget,
MissingWorldData,
STOP,
Null

};

which can be used to log, make choices or handle errors during the state

transition calculations in the nmpc-algebra to be described in the next sub-

section.

225

6.3.2 The Nmpc Algebra

The nmpc algebra is, superficially, fairly simple

template <std^:size_t N, typename Clock>
constexpr auto nmpc_algebra(

NMPCState<N, Clock> c,
const WorldState<Clock>& w) -> NMPCState<N, Clock> {

if (!w.target) {
c.infoFlag = InfoFlag^:TargetReached;
return dtl^:with_init_from_world(c, w);

}
if (w.time - c.time ^= std^:chrono^:seconds{0}) {

c.infoFlag = InfoFlag^:STOP;
return c;

}
if (l2norm(w.target.value().position.value - w.pose.position)

< w.target.value().position.tolerance) {
c.infoFlag = InfoFlag^:TargetReached;
return dtl^:with_init_from_world(c, w);

}

c.infoFlag = InfoFlag^:OK;
return dtl^:sd_optimise(

dtl^:plan_reference(dtl^:with_init_from_world(c, w), w), w);
}

The bulk is logic regarding the infoFlag and WorldState integrity; and

then the return line is a composite expression. With the namespaces re-

moved

sd_optimise(plan_reference(with_init_from_world(c, w), w), w);

Each of these functions is type

NMPCState⟨N, Clock⟩ × WorldState⟨Clock⟩ → NMPCState⟨N, Clock⟩,

so they compose along the first argument. Each function uses data from

the world, w, and the contents of the controller state c, to make an updated

controller state.

The routine with_init_from_world is impure. It the world state to set

𝒙0 and 𝑣 :

226

template <std^:size_t N, typename Clock>
constexpr NMPCState<N, Clock> with_init_from_world(

NMPCState<N, Clock> c, const WorldState<Clock>& w) noexcept {
c.time = Clock^:now();
c.x[0] = w.pose.position.x;
c.y[0] = w.pose.position.y;
c.th[0] = w.pose.yaw;
for (auto& each : c.v) each = w.cruise_speed;
c.Dx[0] = c.v[0] * std^:cos(c.th[0]);
c.Dy[0] = c.v[0] * std^:sin(c.th[0]);

return c;
}

It is impure because it calls out to Clock∷now. It can be made pure if the

clock were to come in as a separate source, but this adds needless com-

plexity.

The function plan_reference, as its name suggests, populates xref

and yref in c. Recall that the global_plan is included in the WorldState

as a std∷vector⟨XY⟩. It is a discretely sampled set of map coordinates. It

is not, in general, sampled appropriately for xref and yref which need to

be spaced 𝑣 Δ𝑡 appart. This function resamples the global_path by linear

interpolation populating xref/yref. While it is a simple calculation, it is

understandably verbose, and so not presented here.

The sd_optimise function implements the algorithm outlined in 6.1-6

template <std^:size_t N, typename Clock>
constexpr NMPCState<N, Clock> sd_optimise(

NMPCState<N, Clock> c, const WorldState<Clock>& w) noexcept {
const auto step = [&w](auto c) noexcept {

return descend(lagrange_gradient(forecast(c, w)));
};

constexpr auto gradNorm_outside = [](double epsilon) {
return [epsilon](auto& c) noexcept { return c.curGradNorm ^= epsilon; };

};

const double tol = ((c.R + c.Q) * (N - 1) + c.Q0) / N / c.dt.count() / 100;

return iterate_while(step, gradNorm_outside(tol), c);
}

227

The tolerance calculation is somewhat arbitrary and is based on the idea

that there is a certain amount of sub-optimality per horizon step. The

iterate_while function does step(c)while gradNorm_outside(tol). The

interesting part is the function step, which returns

descend(lagrange_gradient(forecast(c, w)))

The forecast function computes 𝒙𝑢 and populates x/yref and Dphi_x/y:

template <std^:size_t N, typename Clock>
constexpr NMPCState<N, Clock> forecast(NMPCState<N, Clock> c,

const WorldState<Clock>& w) noexcept {
for (std^:size_t k = 1; k < N; ^+k) {

c.th[k] = fma(c.Dth[k - 1], c.dt.count(), c.th[k - 1]);
c.x[k] = fma(c.Dx[k - 1], c.dt.count(), c.x[k - 1]);
c.Dx[k] = c.v[k - 1] * std^:cos(c.th[k]);
c.y[k] = fma(c.Dy[k - 1], c.dt.count(), c.y[k - 1]);
c.Dy[k] = c.v[k - 1] * std^:sin(c.th[k]);

c.ex[k - 1] = c.x[k] - c.xref[k - 1];
c.ey[k - 1] = c.y[k] - c.yref[k - 1];

if (auto Dphi = w.Dphi({c.x[k], c.y[k]})) {
std^:tie(c.Dphi_x[k - 1], c.Dphi_y[k - 1]) = Dphi.value();

} else {
c.infoFlag = InfoFlag^:MissingWorldData;
c.Dphi_x[k - 1] = 0.;
c.Dphi_y[k - 1] = 0.;

}
}

if (w.target) {
c.ex[N - 1] = c.x[N - 1] - w.target->position.value.x;
c.ey[N - 1] = c.y[N - 1] - w.target->position.value.y;

} else {
c.ex[N - 1] = 0;
c.ey[N - 1] = 0;

}

return c;
}

The bulk of the calculation is iteration of (6.1.4). You can see an error

flag set if, for whatever reason, w.Dphi returns a std∷nullopt. Before the

228

return statement, you can see that if there is a w.target, then �̃�𝑁−1 is set

relative to the global target for the calculation of the terminal cost 𝜙(𝒙𝑁−1).
The lagrange_gradient function populates the Lagrange multipliers

by (6.1.8) and (6.1.9) and c.grad by (6.1.11).

constexpr NMPCState<N, Clock> lagrange_gradient(
NMPCState<N, Clock> c) noexcept {

static_assert(N ^= 3, "Gradient calculation requires N ^= 3.");

^/ Starting with (6.1.8):
c.prvGradNorm = c.curGradNorm;
c.px[N - 2] = c.Q0 * c.ex[N - 2];
c.py[N - 2] = c.Q0 * c.ey[N - 2];
c.pDx[N - 2] = 0;
c.pDy[N - 2] = 0;
c.pth[N - 2] = 0;
c.grad[N - 2] = c.pth[N - 2] * c.dt.count() + c.Dth[N - 2] * c.R;
c.curGradNorm = c.grad[N - 2] * c.grad[N - 2];

for (unsigned int k = N - 3; k ^= UINT_MAX; k--) {
^/ Now use (6.1.9):
c.px[k] = c.px[k + 1] + c.Q * c.ex[k] - c.Dphi_x[k];
c.pDx[k] = c.px[k + 1] * c.dt.count();
c.py[k] = c.py[k + 1] + c.Q * c.ey[k] - c.Dphi_y[k];
c.pDy[k] = c.py[k + 1] * c.dt.count();
c.pth[k] =
c.pth[k + 1] + c.pDy[k + 1] * c.v[k] * std^:cos(c.th[k])
- c.pDx[k + 1] * c.v[k] * std^:sin(c.th[k]);

^/ Compute the gradient elements ∂𝐻/∂𝑢𝑘 by (6.1.11):
c.grad[k] = c.R * c.Dth[k] + c.pth[k + 1] * c.dt.count();
c.curGradNorm += c.grad[k] * c.grad[k];

}
c.curGradNorm = std^:sqrt(c.curGradNorm);

return c;
}

Finally, the descend function subtracts a fraction of c.grad from c.Dth

elementwise

template <std^:size_t N, typename Clock>
constexpr NMPCState<N, Clock> descend(NMPCState<N, Clock> c) noexcept {
constexpr double sdStepFactor = 0.01;

229

for (std^:size_t i = 0; i < N - 1; ^+i) {
c.Dth[i] -= sdStepFactor * c.grad[i];

}

return c;
}

Once the sd_optimise loop breaks and the nmpc_algebra returns, the

controller state is left with c.Dth optimal to within tolerance, and the rest

of the horizon values correspondingly set.

In the next section, the readout after the scan only needs to extract

Dth[0] from the controller state and broadcast it over a ros topic to be

received and executed by the mobile base.

6.3.3 The main Function of the Ros Node

The main function of the program begins as any ros node

int main(int argc, char** argv) {
ros^:init(argc, argv, "catnav");

and it will end with ros∷spin.
6.3-2 the control expression The controller includes the same RxCpp

pipeline expression derived in the last chapter

const auto controls =
global_plan
| combine_latest(

combine_reference_and_feedback,
odometry,
obstacle_Dphi)

| scan(c0, nmpc_algebra<N, Clock>);

When we close the loop by subscription to controls, you can see the first

use of RxROS, to publish to a ros topic

const auto closed_loop =
controls

| map(extract_vel_cmd_from_cstate)
| rxros^:operators^:

publish_to_topic<geometry_msgs^:Twist>("/cmd_vel");

230

The string argument to publish_to_topic is the topic identifier.

The observables global_plan, odometry and obstacle_Dphi come in

from ros topics. In ros, each topic is strongly typed and has a Unix path-

like identifier.

The global_plan is defined as:

const auto global_plan = rxros^:observable^:from_topic<nav_msgs^:Path>(
"/move_base/GlobalPlanner/plan");

The string argument to from_topic is the topic identifier. The …/plan

topic’s type is Path from ros’s nav_msgs6. The global plan is used straight-

forwardly, but the odometry and obstacle gradient have additional pro-

cessing.

The expression for obstacle_Dphi builds on an observable topic pub-

lished by move_base

const auto obstacle_Dphi =
rxros^:observable^:from_topic<nav_msgs^:OccupancyGrid>(

"/move_base/local_costmap/costmap") ^/ in `map` frame
| map(

[](nav_msgs^:OccupancyGrid& m) {
return GradientOfGrid(m);

}
);

The topic type of …/costmap is nav_msgs∷OccupancyGrid7. Over the topic’s

observable, wemap the object constructor for the catnav type GradientOfGrid.

The details of this type will be expounded in §6.4. So obstacle_Dphi’s

value type is GradientOfGrid.

The odometry observable is intricate because it involves timing

const auto odometry =
rxros^:observable^:from_topic<nav_msgs^:Odometry>(

"/odom") ^/ in `odom` frame
| debounce(10ms)
| combine_latest(

[](auto o, auto tr) {

6 See http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Path.html
7 See https://docs.ros.org/en/noetic/api/nav_msgs/html/msg/OccupancyGrid.

html

http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Path.html
https://docs.ros.org/en/noetic/api/nav_msgs/html/msg/OccupancyGrid.html
https://docs.ros.org/en/noetic/api/nav_msgs/html/msg/OccupancyGrid.html

231

const Pose p = {
{
o.pose.pose.position.x,
o.pose.pose.position.y

}
, tf2^:getYaw(o.pose.pose.orientation)

};

return transform_pose(tr, p);
},
odom_to_map_transform

);

The /odom topic’s messages (of type nav_msgs∷Odometry8) are debounced

to a 10ms interval, meaning that data arriving through the topic are ig-

nored except every 10ms, at which point a new value is allowed into the

observable stream. This emulates a 100Hz update frequency by rejecting

intermediate values. This is done because the odometry updates rapidly

compared to the other observables and we do not want to overdrive the

control calculation. Next, the poses undergo a coordinate transform fa-

cilitated by the combine_latest combinator, which allows us to combine

the odometry stream with a stream of value type tf∷StampedTransform.
The source of the coordinate transform is ros’s tf package, which is also

exposed by RxROS

const auto odom_to_map_transform =
rxros^:observable^:from_transform("odom", "map").retry();

The transform_pose function in part of catnav and is a straightforward

c++ spelling of the linear algebra involved. Its signature is

transform_pose∶ tf∷StampedTransform × Pose → Pose,

so the value type of the stream is catnav’s Pose type (from 6.3-1). The Rx

standard retry combinator9 overrides the on_error contingency of Rx ob-

servables forcing a re-subscription instead. This is necessary because, as
8 See https://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Odometry.html
9 See https://reactivex.io/documentation/operators/retry.html for details.

https://docs.ros.org/en/noetic/api/nav_msgs/html/msg/Odometry.html
https://reactivex.io/documentation/operators/retry.html

232

the ros system is coming online, catnav is often started before this trans-

form becomes available.

∗ ∗ ∗

Now knowing the structure of the input observables, we can understand

how combine_reference_and_feedback takes the global tracking reference

path p, odometry estimated pose o, and the GradientOfGrid modeling the

gradient of the obstacle potential field, and packs these into a WorldState,

w

auto combine_reference_and_feedback(
nav_msgs^:Path p,
Pose o,
std^:function<std^:optional<XY>(XY)> f) -> PState {

PState w;
w.time = std^:chrono^:steady_clock^:now();

w.pose = o;

if (p.poses.size() > 0) {
w.target = {
{
{
p.poses.back().pose.position.x,
p.poses.back().pose.position.y

}
, 0.25

},
{
tf2^:getYaw(p.poses.back().pose.orientation),
5. * M_PI / 180.

}
};

w.global_plan.reserve(p.poses.size());
for (auto& plan_pose : p.poses) {
w.global_plan.push_back(

{plan_pose.pose.position.x, plan_pose.pose.position.y});
}

w.cruise_speed = 0.25; ^/ m/s

233

} else {
w.target = {};
w.global_plan = {};

}

w.Dphi = f;

return w;
}

The world state is time-stamped and the pose from the odometry reading

o sets w.pose. If a non-empty tracking reference path is provided by the

global planner then data is organised into w as follows:

• The terminus of p is used to set w.target, and then all of p’s map

locations are copied into w.global_plan.

• The speed of the nominal (cruising) speed of the robot was planned

to come as input from another SENTRYnet component project, but

that never came to be. So w.cruise_speed is set to a safe but arbi-

trary value.

Otherwise, if no global plan is available, then the target and global plan in

w are empty/nullopt. The potential gradient w.Dphi is straightforwardly

assigned the GradientOfGrid object coming in from obstacle_Dphi.

Finally, the scan in the control expression must be seeded by an initial

controller state. This is where the coefficients and horizon are set

constexpr CState c0 = []() {
CState c;
c.infoFlag = InfoFlag^:NoTarget;
for (auto& each : c.v) each = 0.25;
c.dt = 1.s / 5;
for (auto& each : c.Dth) each = 0.5;
c.Q0 = 0;
c.Q = 8;
c.R = 0.25;

return c;
}();

The main function ends with the usual ros∷spin:

234

ros^:spin();

return EXIT_SUCCESS;
}

Some details were kept out of the description of the main function, but

nearly all of the complexity comes from conversions dealing with various

message types from ros topics. The core of catnav is in the simple control

expression, 6.3-2 and in the nmpc-algebra, §6.3.2. One important mecha-

nism remains: the gradient of the obstacle potential encompasses in the

GradientOfGrid type, covered in the next section.

6.4 obstacle avoidance

Equation (6.1.5) for the objective function 𝐽 has a running cost that

includes a scalar potential field 𝛷∶ ℝ2 → ℝ that causes 𝐽 to accumulate

value based on the 𝑥 and 𝑦 coordinates along the state trajectory 𝒙 . Mini-

mization of 𝐽 requires only the gradient

∂𝛷(𝑥𝑛, 𝑦𝑛)
∂𝒙𝑛

=

⎡⎢⎢⎢⎢⎢⎢
⎣

∂𝛷(𝑥𝑛 ,𝑦𝑛)
∂𝑥𝑛
0

∂𝛷(𝑥𝑛 ,𝑦𝑛)
∂𝑦𝑛
0
0

⎤⎥⎥⎥⎥⎥⎥
⎦

.

This potential field is the mechanism by which obstacles in the map (pro-

vided by move_base) are avoided. That is to say that an obstacle emits a

potential field that is large in proximity to the obstacle and declines with

distance. Minimization of 𝐽 encourages the robot to accumulate as little

of this potential as possible over the course 𝒙 by keeping distance from

the obstacles.

In the previous section, the expression for obstacle_Dphi was

const auto obstacle_Dphi =
rxros^:observable^:from_topic<nav_msgs^:OccupancyGrid>(

"/move_base/local_costmap/costmap") ^/ in `map` frame

235

| map(
[](nav_msgs^:OccupancyGrid& m) {
return GradientOfGrid(m);

}
);

where topic type of the costmap is nav_msgs∷OccupancyGrid. In practice,

the costmap is in fact a simple occupancy grid. The grid’s resolution is

included in the nav_msgs∷OccupancyGrid data structure, allowing us to

turn map coordinates into a grid index

auto xy_coord_to_map_idx(const nav_msgs^:MapMetaData& grid, XY p)
-> std^:optional<std^:pair<size_t, size_t>> {

const auto origin = grid.origin.position;
if (p.x < origin.x ^| p.y < origin.y) return std^:nullopt;

const auto cells_x = grid.width;
const auto cells_y = grid.height;
const auto resolution = grid.resolution;

const auto mp = std^:optional<std^:pair<size_t, size_t>>{
{static_cast<size_t>((p.x - origin.x) / resolution),
static_cast<size_t>((p.y - origin.y) / resolution)}};

return (mp->first < cells_x ^& mp->second < cells_y) ? mp : std^:nullopt;
}

Internally, move_base maintains the grid so that the robot is always

(roughly) centered in the grid.

The potential field is computed from the occupancy grid. The tools

used to do so are routines included in OpenCV (namespace cv in code to

follow). The occupancy grid is converted into a raster image or rather, a

cv∷Mat. That image is then blurred (with a Gaussian kernel), raised to a

power (pixelwise), differentiated (via Scharr filter), normalised and then

scaled. The process is illustrated in Figure 6.4. The resulting gradient is

stored in the GradientOfGrid structure

struct GradientOfGrid {
cv^:Mat grad_x, grad_y;
nav_msgs^:MapMetaData info;

236

(A) (B)

(C) (D)

figure 6.4: Illustration of the process of turning an occupancy grid into a gradi-
ent. (A) an occupancy grid, black pixels are clear and grey pixels occupied. (B)
Gaussian blur and pixel-wise exponential power is applied to (A). (C) OpenCV’s
Scharr filter is applied to numerically differentiate (B); pixel brightness indicates
magnitude of gradient and hue indicates angle according to (D). (D) Hue colour
key for angle of (C) image; +𝑥-axis is right (toward red) and +𝑦-axis is up (to-
ward yellow-green) and are indicated with thin black lines; angle is measured
ccw from +𝑥 .

237

GradientOfGrid(nav_msgs^:OccupancyGrid);
std^:optional<XY> operator()(XY) const;

};

and here is the constructor

GradientOfGrid^:GradientOfGrid(nav_msgs^:OccupancyGrid grid)
: info(grid.info) {

cv^:Mat costmap(^/ convert grid to a Mat signed 8-bit ints.
grid.info.height,
grid.info.width,
CV_8S,
grid.data.data()

);

costmap.convertTo(costmap, CV_64F); ^/ 8-bit ints to 64-bit floats.

cv^:Mat costmap_smooth(grid.info.height, grid.info.width, CV_64F);

const auto kernel_size = cv^:Size(91, 91);
^/ Using rule of thumb that the kernel diameter should be
^/ approximately 6𝜎:
const double sigma =

static_cast<double>(kernel_size.width - 1) / 6.;

cv^:GaussianBlur(
costmap,
costmap_smooth,
kernel_size,
sigma,
sigma,
cv^:BORDER_ISOLATED

);
cv^:pow(costmap_smooth, 4, costmap_smooth);
cv^:Scharr(costmap_smooth, grad_x, CV_64F, 1, 0); ^/ 𝑥-axis
cv^:Scharr(costmap_smooth, grad_y, CV_64F, 0, 1); ^/ 𝑦-axis

auto image_norm = max_norm(grad_x, grad_y);

if (image_norm ^= 0) {
const auto scalef = -2 / image_norm;
grad_x = grad_x * scalef;
grad_y = grad_y * scalef;

}
}

238

The max_norm function returns the highest absolute value in the given

cv∷Mats. Due to a lack of a thorough refactoring process, there are a few

so-called magic numbers:
• 91 × 91, the size of the Gaussian kernel, which was tuned based on

the size of the occupancy grid, 200 × 200 pixels in Bishop’s case.

• 4, the power to which each pixel was raised. This was tuned to how

quickly the potential should fade with distance from the occupied

grid. This was determined manually, and is otherwise unjustified.

We studied the diffraction properties of the robot through doorways:

if the robot had difficulty entering doorways then the drop-off was

too gradual.

• 2, the scale factor of the normalised image, which was likewise man-

ually tuned in proportion to the coefficients 𝑅, 𝑸0 and 𝑸 of the op-

timisation problem. Good sense would have this number in the opti-

misation calculation instead of in the constructor of GradientOfGrid,

which would have happened in a final refactoring pass. In that case,

it could be set when c0 is created, and could change dynamically.

Once the constructor computes and sets grad_x/y, it is operator() which

gives access to the gradient in terms of map coordinates:

std^:optional<XY> GradientOfGrid^:operator()(XY p) const {
if (const auto mp = xy_coord_to_map_idx(this->info, p)) {

const auto cv_pt = cv^:Point(mp->first, mp->second);
return {{grad_x.at<double>(cv_pt), grad_y.at<double>(cv_pt)}};

} else
return std^:nullopt;

}

A null value is returned just in case p references a coordinate exceeds the

bounds of the occupancy grid, otherwise the gradient values are retrieved

from grad_x/y and returned as an XY.

239

6.5 discussion & conclusion

This chapter on the catnav project is described as a case study for the cate-

gory theoretically motivated control program design described in the pre-

vious chapter. Having described how the design was used to implement

an nmpc controller for Bishop’s motion control and obstacle avoidance,

let us conclude with a discussion of the benefits and consequences of the

design from a software engineering standpoint.

modularity The design enabled a particularly clean separation of con-

cernswith loose coupling and good functional cohesion. The nmpc-algebra

and related code had no dependence on any part of ros or Rx. The nmpc al-

gebra was included in the catnav ros node as header-only. The nmpc_alg-

ebra header only includes standard library headers, XY.hpp, and geometry.hpp

which has tools for interpolating along the global plan to get the tracking

reference sampled for the horizon. And both of those headers only include

standard library headers.

The design would have been simpler if NMPCState and WorldState in-

ternally used ros’s types: those in geometry_msgs and nav_msgs names-

paces. However, this would have reduced memory economy, possibly

impacting iteration time due to additional heap allocation and ultimately

cache thrashing. It also would have needlessly increased coupling. Cross-

Wing, the company that designed Bishop’s hardware, ultimately wants a

software infrastructure independent of ros, so adding those dependencies

to the nmpc code would have required them to later modify the code. As

it is, the ros dependencies are limited to RxROS and the types required

to retrieve data from topics and the tf transforms. Writing ros out of the

control system only requires that RxROS is replacedwith plain RxCpp, and

that whatever messaging system they choose to replace topics is adapted

as an RxCpp observable.

The design of the nmpc algebra is very function-oriented with no real

240

data-hiding. In theory, there are disadvantages to this: the lack of a ridged

interface to the NMPCStatemeans that anyone extending functionalitymay

fail to consider contracts and invariants that would otherwise be encoded

in the interface. This is balanced by the fact that everything is exposed to

for extensive unit testing.

testability In the nmpc related components of catnav, the data struc-

tures are pure structures: they have no member functions or private mem-

bers. Recall that the most core and complex structures are the NMPCState

and WorldState. Their interface may be regarded as the collection of free

functions in which they appear as factors of the domain and codomain.

This arrangement is ideal for testing because data hiding can often make

it difficult to isolate components for tests. Moreover, state changes can be

well tracked during integration tests. However, this design choices comes

at the cost of strict invariants.

In the ros node where the control expression lives, the majority of

code is merely free functions to extract or convert data from the ros topics.

So that is similarly straightforward to test.

The RxCpp and RxROS libraries is independently tested, so there are

no additional tests for their components. That said, it is quite straightfor-

ward to test that expressions in the Rx dsl mean what they are expected

to mean. Since observable collections can be converted to/from lists, test-

ing an Rx expression is a matter of creating a mock input-sequence and

validating the output.

extensibility In my and others experiences working on catnav, the

design has proven to be very extensible. Because of the good margins

separating domains of the code and the expression oriented nature of the

Rx-oriented design of the controller interface, extension requires little or

no accidental complexity.

241

Future control and software engineers attempting to extend the code

will benefit from two key design choices:

• To the controls engineers, the nmpc algebra and subordinate compo-

nents are designed with loose coupling and simple functional inter-

faces. The abstraction boundaries in the nmpc code are straightfor-

wardly motivated by (or depicted in) the underlying mathematical

relationships. So, insofar as a controls engineer is able to grapple

with the mathematics of the algorithm they should be able to ex-

tend the code.

• To the software engineers, the Rx is very well documented in many

web-sites and books, and is a fairly common skill in the general

labour pool of programmers. The Rx expressions are to program-

ming what pipes are to plumbing, so adding input is a matter of

subscribing to a source, extending the WorldState and making the

necessary accommodations in the control algebra.

There is one particular aspect of the design that is possibly detrimental

to extension: purely public data in the NMPCState. Normally invariants are

enforced by a public interface to private data. In the case of NMPCState, we

might expect the values of the prediction horizon 𝒙 to be always coherent

with the values of the control horizon 𝑢. With public data, a programmer

can change Dth and neglect to call forecast, meaning that the arrays of

the prediction horizon are no longer consistent with the control horizon.

In the future, it may be beneficial to redesign the free-function interface

to be finer-grained so that invariants are at least better communicated, if

not strictly enforced.

maintainability Because the external dependency footprint is nar-

row, version drift should not be a problem in the foreseeable future—except

for one very notable exception. At the beginning of the SENTRYnet project,

the investigators adopted a ros-1 platform which was already superseded

by ros-2 at that time. However, because the ros components are well iso-

242

lated from the rest of the system, even a migration to ros-2 would require

no modification of the core components related to control calculation.

Regarding the Rx components, Rx is well established as an abstraction

for linear, asynchronous collections and has a stable and consistent im-

plementation across many programming languages. Even though RxCpp

may mature, there should be few, if any, breaking changes to the interface.

RxROS, which started as an academic project, was adopted by the ROSin
project,10 a European Union-funded project aimed at developing and main-

taining open-source ros tooling for industrial application. Hopefully, this

means it will be well maintained in the future. Since it is a straightfor-

ward wrapping of RxCpp over ros topics, it is not a large or complicated

codebase and CrossWing is sufficiently resourced to fork and maintain it

internally if necessary.

performance The development began with a deliberate effort not to

pessimise or prematurely optimise for performance. Instead, once the cat-

nav node was properly integrated with components from the other SEN-

TRYnet projects, there was a planned process of performance and mem-

ory benchmarking that would drive a cycle of refactoring for performance.

This effort would have been well supported by the suite of unit tests. Un-

fortunately, the SENTRYnet project ended before the teams could collabo-

rate on integration.

During the lifetime of the project, performance was never an issue. In

fact, the catnav node ran fast enough that we had to debounce the odom-

etry stream to limit the throughput of the controller.

logging & error handling How well does the design handle er-

ror conditions, exceptions, and edge cases? Is there proper error reporting,

logging, and graceful recovery mechanisms?
10 http://rosin-project.eu/

http://rosin-project.eu/

243

The catnav node does not use exceptions for error handling. This is a

point of weakness, since it relies on stl components which do in fact use

exceptions for error feedback. Eventually, CrossWing will want catnav to

work in a real-time environment. Since c++’s exceptions do not yet have a

system to make stack-unwinding a deterministic-time process, all current

standards for c++ in an industrial real-time context preclude their use for

error handling.

In functional languages, functions that can fail often return a sum type

with terms for a target value or an object encoding errors. The std∷-
optional template is the simplest example of that mechanism. The reader

may have noticed that some of the members of the controller and world

states are optional. It was planned that some of the optional returns would

be extended with more descriptive error indicators. This is especially true

in the horizon optimisation routines. As mentioned earlier, the optimiser

was supposed to be rewritten to wrap the functionality of a scientific/in-

dustrial grade library component. The resulting interface would return an

optimised controller state or an error type encoding whatever feedback is

available from the chosen library. A monadic interface such as the one

for the proposed std∷expected [129, 157] greatly simplifies the process of

composing functions that return these sorts of error sums.

The debug compilation target for catnav includes verbose logging out-

put. This is done using the Rx tap combinator. Both the NMPC and World-

States have routines to “stringafy” them into yaml.

6.5.1 Future Development

Unfortunately, the project ended with the control system unfinished. The

unfinished portions largely has to do with integration with other SEN-

TRYnet components, with new kinds of input and output values for those

interactions. That stage was to be in place before the final phases of devel-

opment such as performance tuning and fault hardening/error handling.

In particular:

244

• Refactoring was needed to eliminate magic numbers, select better

names and eliminate some regrettable design choices.

• Performance based optimization would have eliminated needless

copying (particularly in function arguments where reference seman-

tics would be indicated). Finalisation of the input/output structures

of the controller would was also to facilitate heap/stack usage anal-

ysis and to optimise for cpu cache behaviour on Bishop’s specific

hardware.

• Open-loop speed control was not properly implemented because

speed scripting was supposed to come from an external planner

downstream from a specialised computer vision system and an arti-

ficial intelligence (ai)-based system for human-robot interaction.

• We intended to adopt a more a more efficient and robust optimi-

sation algorithm, ideally from an off-the-shelf optimisation library

(such as from the GNU (gnu) scientific library). Along with that

update, a monadic error reporting and handling system was to be

implemented. This also relied on a finalisation of the plant model

which would was to include summary state information from other

components.

6.5.2 Conclusion

Though catnav was not fully completed vis-à-vis the SENTRYnet project

goals, it faithfully implemented the control program design of the previ-

ous chapter. It functioned well as a basic motion/tracking controller, es-

pecially as compared to our prior designs using more conventional soft-

ware designs, [135, 151]. Still more importantly, the SENTRYnet project

required a great deal of adaptation and extension of the design in order

to integrate with the ros-based platform; and the design proved to be am-

ply flexible and extensible. I conjecture that this is due to the abstraction

boundaries arising from the mathematical design of the architecture. In

particular, there is a separation of concerns that reduces internal coupling

245

of the code (compared to other designs I and my coworkers have consid-

ered) and facilitates a straightforward mental model of the program logic.

During extension, parts of the programming process feel more like plumb-

ing than programming because it is a matter of matching and joining input

to output in a functional pipeline. Emphasis in the code is shifted toward

expressions of meaning rather than instruction of operation. Of course, at

the lowest levels of the program, the code looks like more typical c/c++—

but this is where reasoning is local and the scope of complexity is limited

to what a human programmer can reasonably behold.

7
D I SCUS S ION & CONCLUS ION

This dissertation set forth to study control systems software at its

foundation. This foundation rests not on silicon chips or copper wire,

but on the science of structure, order, and relation. It is true of all engineer-

ing that the fundamentals of practice take root in mathematical models of

dynamical interplay among information, matter and energy. Yet somehow,

this is less true of software engineering than of its elder siblings. And to

suggest so is not pejorative of software engineering! It is indicative of a

horizon to be explored; an undiscovered country to which coming gener-

ations of researchers will stake claim. I repeat an epigram of an earlier

chapter, a quote from Anthony Ralston and Mary Shaw [43]:

Mathematical reasoning does play an essential role in all areas

of computer science which have developed or are developing

from an art to a science. Where such reasoning plays little

or no role in an area of computer science, that portion of our

discipline is still in its infancy and needs the support of math-

ematical thinking if it is to mature.

I feel this idea resonates in the parts of software engineering that depend

on computer science: the architecture, design and implementation of soft-

ware programs.

Control systems software, the target of the thesis’ aims, is an interest-

ing contact surface. Controls engineering, in contrast to software, is one

of the most mathematically rich of the engineering disciples. When con-

trols engineers pass specifications to software engineers who in turn pass

it to code, there is surely a disruption at the boundary where the mathe-

matics ends and the software begins. Despite this boundary, the tendency

is to simply identify the software with the math. As others have pointed

out, [92], the software should be treated as a dynamical system in its own

246

247

right.

I have posited that the solution is to formulate an algebraic theory that

treats dynamical system at a level of abstraction that subsumes the dynam-

ics of all components of the controlled system, including its software. This
way, a specification can be carried from the hands of the controls engi-

neer all the way to the code by way of the same unifying mathematical

language. This places the onus equally on the controls and software engi-

neers to renew or extend their practice.

7.1 contribution

In §1.2, I itemised the main goals as

• a deeper understanding of control systems software that organises

the fine detail of these programs in a way that eases specification

and implementation,

• a mathematically motivated design of a control program written in

c++,

• a model of a control program that bears interpretation in the same

categorical setting as ordinary dynamical systems.

• demonstration of the above by means of simulation and by means

of implementation on a real electromechanical device designed for

a non-academic purpose,

Toward that ends, I have presented an algebraic (and coalgebraic) model

of a control program borne out in c++17 code. That model is a thin assem-

blage, but it is built upon a deep and profound calculus of relationships

found in the literature of theoretical computer science and abstract alge-

bra. How thin is this assemblage exactly? We can measure–5-simple lines

of code:

listing 7.1.1: The control expression

1 const auto controls =
2 plant_state
3 | combine_latest(reference)

248

4 | scan(c0, state_transition_function)
5 | map(r);

This short code snippet is deceptively simple because it has a precisemean-

ing in an algebraic language internal to a category of c++ programs, intro-

duced in this thesis. Nothing is left open to interpretation, and every

Simple can be
harder than com-
plex: You have to
work hard to get
your thinking clean
to make it sim-
ple. But it’s worth
it in the end be-
cause once you get
there, you can move
mountains.

— Steve Jobs

exquisite detail is accounted for. This expression was suggested by the

math and not the other way around. The mathematical structure does not

provide the implementation, but gives us a set of abstraction boundaries

for architecture and design. So while it can be implemented in a variety

of ways, the engineer has a clear, coherent mental model, test surfaces

amenable to intense scrutiny, and tests which are themselves suggested

by the axioms of the structure. This gives the application architecture

with
• loosely coupled internals,
• flexibility for extension, and
• a constabulary test suite.

Even though an engineer may come to this code on their own, through in-

tuition, the mathematical formulation gives scientific justification to what

would otherwise be art.

In abstract, lst. 7.1.1 represents a sequential state machine in the cat-

egory Cpp. The description of this category and its bicartesian closure is

also one of the main contributions of the thesis. Cpp is a mathematical

object and does not prescribe implementation. It is not a mathematical

model of c++, but rather a model of data, structure and computation that

can be implemented in c++ in non-unique ways. A particular implemen-

tation is given which demonstrates the ability of c++ to, in some capacity,

be mathematically faithful. Also, the axioms of the category are encoded

in c++ as unit tests.

Two examples were given of software control implemented using the

model:
1. in silicio: stabilisation of a simulated spring-mass-damper with pid,

and

249

2. in vivo: motion tracking of a mobile robot with nmpc.

7.2 discussion

The practice in computer science of structuring programs so that they can

be identified with certain types of mathematical structures is known as fp.

This is not always an explicitly category theoretical endeavour, but that

relationship has been established at least since the 1970s. A 1975 paper by

Goguen [34] cites some relevant literature and even notes that control the-

ory and computer science both share a common concern with realisation

theory. In purely mathematical terms, the rapprochement of control and

automata theory began in the 1960s [5, 10]. The idea of controlling robots

with functional (reactive) programming techniques was explored in the

early 2000s [93], in the language Haskell, which is quintessentially func-

tional. But it remained a challenge to implement these ideas in a systems

language like c++ that is most commonly used for control applications.

This thesis addresses the issue of using these theoretical tools in c++,

with immediate application to any language supporting the implementa-

tion of a dsl for asynchronous lists, such as Rx.

7.2.1 Limitations

It is a reality of applied mathematics that one must always be concerned

with the limitations of their model, aware of obvious failure and vigilant

for the unexpected ones. Limitations of Cpp are discussed at the end of

ch. 4, with the caveat that there may certainly be ways in which Cpp and

c++ diverge that I have not yet found or imagined, and many I would find

surprising. I just can not resist bringing out the old cliche: the map is
not the terrain. But I very much think of Cpp as my map when I write

c++ programs. I plan my route through the category, and make detours

when necessary, due to either inconsistencies of the map, realities of code

performance, or most importantly: where it is simply too unwieldy to

250

write category theory in c++ spelling. That last point is an important en-

gineering trade-off because warping a language to fit a model will make

the program code less clear to the detriment of maintainers and collabora-

tors. In both of the two implementation examples there were points where

I detoured from the functional model into imperative or oo programming

style for the sake of ease. But even then, having boundaries prescribed by

the model made those departures safer: I had contractual obligations that

limited the scope of the departures.

The expression lst. 7.1.1, is fairly unlimited in terms of the behaviour

of control programs by which can be implemented. It is merely a fac-

torisation of the program into an i/s/o system, which can describe any

state-mediated input/output relationship that the computer running it is

capable of producing. It is limited in terms of the fact that programmers

should conform to the fp model near these abstraction boundaries. For ex-

ample, the state transition and readout functions, f and r, should be pure

functions, without side effects. If the programmer does otherwise, they

should do it with deliberation and care. The implementation of the dsl

for the push-based list interface may introduce performance issues and

those should be addressed at the level of the library. Moreover, on mcus

where programs are organised into a setup and loop functions instead of

a main function, then the expression no longer makes sense at an archi-

tectural level. But interpretation of control programs as a sequential state

machine in Cpp can still be applied with some additional effort. (This is

perhaps a future direction for research.)

7.3 outlook & future directions

The broader picture is of a categorical unification of systems both of the

discrete variety of the present case and continuous models associated with

physical processes. This is currently an active area of research, cf. [87, 148,

153, 176]. In particular, the efforts of the Spivak and colleagues [172, 178]

are particularly intriguing because of their broad view that treats inter-

251

connection, dynamics and interaction simultaneously, which can all be

couched in the stunningly well appointed category of polynomial func-

tors [190] and lenses. In fact, while writing this thesis I became aware

that if I attempted to set my thesis in the context of their work, I would

be chasing a moving target. While their work did nothing to invalidate

my own, they accomplished quite a lot that located the present model in

a context as a special case of something much greater. One of the natural

follow-on directions is to reformulate the mathematics in therms of ℙ𝗼𝗹𝘆,
and in terms of the sheaf theoretic view of event based systems described

in [176].

In ch. 2, I briefly described frp and mentioned that I planned to work

with Blackheath on an implementation of frp in c++23 which would then

allow me to harmonise with Hudak group’s research in Haskell [93]. This

has the appeal of explicitly adding continuous time, which is fundamental

to frp, to the present model.

All told, there is already a vast and rich literature of categorical systems

theory that is still rapidly developing. There is so much to be understood

about how this theory can be passed to praxis and the benefits of doing so.

My personal research interests, reflected in the present thesis, is merely to

bridge that gap between theory and praxis, and understanding the benefits

and trade-offs.

a
MATHEMAT ICAL NOTAT ION

We could, of course,
use any notation
we want; do not
laugh at notations;
invent them, they
are powerful. In
fact, mathematics
is, to a large extent,
invention of better
notations.

— Richard
P. Feynman

By relieving the
brain of all unnec-
essary work, a good
notation sets it free
to concentrate on
more advanced
problems, and in
effect increases the
mental power of the
race.
— A.N. Whitehead

Perhaps because the thesis overlaps several disciplines across engineer-
ing, mathematics and science, I feel a particular responsibility to be

unusually careful and clear about notation.
As a starting reference, the mathematics in this document generally

adheres to the provisions set forth in the iso/iec standard formathematical
signs and symbols [106], iso/iec 80000-2:2009. Beyond the scope of that
standard, or where where we depart from it, notation is introduced as it
naturally falls in first-use, either in definitions or demarcated in numbered
passages:

notation A.0-1 (Notation block). This is the body of a notation block.
Such passages shall be referenced as ntn. A.0-1.

This appendix has two purposes and to those ends, is organised into
two sections. The first describes general mathematical notation that does
not fall naturally into the exposition of the thesis. This includes

• some features of iso/iec 80000-2:2009,
• conventions specific to subfields of engineering, science or mathe-
matics and

• specific uses of things, like delimiters, that are often ambiguous from
author to author.

The remaining section is a tabular reference guide to collect and index
important notation from across these pages and iso/iec 80000-2:2009—
mostly as a summary aid to those not following in linear progression.

A.1 notation not otherwise documented

The iso/iec 80000-2:2009 document is an international standard and has
some provisions that may land strangely on the North American eye. So
to begin, let us highlight some features of the standard.

Quantities which are not variable across time or context (such as im-
mutable constants of mathematics) are set in upright type. For examples,

• the imaginary unit: i2 = −1,
• Euler’s number: e = exp(1),

252

253

• the ratio of a circle’s diameter to its circumference (in flat spaces) is
π

• differential/integral operators, as in

d𝑓
d𝑥 or ∂𝑥𝑓 or 𝖣𝑥𝑓 or ∫𝑓 (𝑥) d𝑥,

and so on. Variables, parameters, contextual constants, running numbers
and alike are set in italic type. So in the expression ∑𝑖 𝑎𝑖 = 2 + 4i, the
italic 𝑖 is a counter while the upright i is the imaginary unit.1 Likewise for
functions, we write 𝑓 (𝑥) with an italic 𝑓 for some contextual definition of
𝑓 , but sin(𝑥) is in upright type. (In TEX documents, it is particularly easy
to forget the backslash in \sin(x) giving “𝑠𝑖𝑛(𝑥)” which recognisable as a
common error. So the only unusual thing here is seeing this convention
of uprights extended to constants.)

∗ ∗ ∗
Compliant with iso/iec 80000-2:2009 Item № 2-7.19, but beyond its scope,
we disambiguate the use of delimiters.

notation A.1-1. Parentheses, (…), will be used as traditional delimiters
in mathematical expressions, indicating or disambiguating order of opera-
tions. They will also be used to indicate tupeling as in (𝑎, 𝑏, 𝑐) ∈ 𝐴 × 𝐵 × 𝐶 ,
when contents are conjoined with commas.

notation A.1-2. Braces, {…}, identify sets. For example, { 𝑎1, 𝑎2, … , 𝑎𝑛 }.
notation A.1-3. The previous set may also be expressed with ranged
brace notation: { 𝑎𝑘 }𝑛𝑘 = 1.

notation A.1-4. Brackets, […], will be used to enclose composite struc-
tures such as lists, vectors and matrices. Commas will distinguish lists
from row vectors:

a list [1, 2, 3] vs. a row vector [1 2 3].
notation A.1-5 (Set membership & judgement). An expression of mem-
bership 𝑎 ∈ 𝐴 is a logical proposition and has a truth value. We can say
that something holds if or when or for 𝑎 ∈ 𝐴, but it is not a judgement. To
declare that 𝑎 is in 𝐴 we write 𝑎∶ 𝐴.

1 Of course, one should not foster confusion by needlessly overloading letters in a
single expression.

254

In function declarations as 𝑓 ∶ 𝐴 → 𝐵, the colon notation for type
judgement is quite conventional. But in light of colon meaning type judge-
ment, the expression 𝐴 → 𝐵 can be thought of as the set of functions be-
tween 𝐴 and 𝐵 (and making clear that the arrow → is itself an operator).

notation A.1-6 (Function application). Given a function 𝑓 ∶ 𝐴 → 𝐵
and a value 𝑎∶ 𝐴, then the juxtaposed 𝑓 𝑎 indicates function application.
This is in agreement with standard practices in functional programming
literature, but deviates from iso/iec 80000-2:2009.

Parentheses, as in 𝑓 (𝑎), may be used for clarity, especially where the
parameter is an expression and order of operations may be unclear. Since
parentheses are also used in conjunction with the comma operator for
tupeling (see ntn. A.1-1) application of amultivariate function, say 𝑓 ∶ 𝐴×
𝐵 → 𝐶 , is more familiar: 𝑓 (𝑎, 𝑏).

In a sufficiently abstract setting, functions themselves are seen as mere
values of a set. It is important then to be able to depict these valueswithout
naming them and stressing the economy of our namespace.

notation A.1-7 (Lambda functions). Wemake use of themaps-to arrow
(↦) to express elements of function sets without giving them names. Tak-
ing for example 𝑓 as defined above, we could simplywrite (𝑎 ↦ 𝑓 𝑎) ∈ 𝐴 →
𝐵, with some redundancy since we have already named 𝑓 . But the target
on the right side of the maps-to arrow can be, for example, an expression
in some sort of algebra.

For example of the above ntn. A.1-7, take (𝑥 ↦ 𝑥2) ∈ ℝ → ℝ, the
square function on real numbers. We could then write (𝑥 ↦ 𝑥2)(2.5) =
6.25.
notationA.1-8 (Function definition). Stacking the notions of type judge-
ment and lambda-notation, we obtain a thorough notation for defining
named functions:

𝑓 ∶ 𝐴 → 𝐵
𝑎 ↦ 𝑓 𝑎.

where presumably, 𝑓 𝑎 would be some sensible expression rather than a
circular redundancy. The notation may also be adapted inline using a
semicolon: 𝑓 ∶ 𝐴 → 𝐵; 𝑎 ↦ 𝑓 𝑎.

255

In general, sets will be denoted with italic roman capitals 𝐴, 𝐵, 𝐶, ….

notation A.1-9 (Assumed set elements). If a passage of text refers to a
set denoted with a roman capital, then lowercase variables of that letter,
possibly with super/sub-scripts or other decorations will be understood to
denote arbitrary members of that set. For examples, 𝑖 ∈ 𝐼 , 𝑥′ ∈ 𝑋 , 𝑠0 ∈ 𝑆
and so on.

notation A.1-10 (Infix vs. prefix morphisms). Given a binary infix mor-
phism, for example ⊗, if it benefits clarity at any point to use it in prefix
form, it will be placed in parentheses: (⊗)(𝐴, 𝐵) ≡ 𝐴 ⊗ 𝐵. In reverse,
I borrow notation from Haskell in decorating a prefix morphism 𝑓 with
back-ticks, turning it into an infix morphism: 𝑓 (𝑎, 𝑏) ≡ 𝑎 ‵𝑓 ‵ 𝑏.

256

A.2 table of notation

This section curates, tabulates and indexes key pieces of notation from
across the text. This includes those defined in notation blocks and
those in iso/iec 80000-2:2009. It is not exhaustive, but should include
everything that may be unusual, is unusually nuanced, or is ambigu-
ous. For examples: function application without parentheses, 𝑓 𝑥 , is
unusual; the notation 𝑓 ∶ 𝐴 → 𝐵 is standard, but the fact that it may
also be used for category arrows is unusually nuanced; the notation
ℕ for the set of natural numbers is common but different authors dis-
agree on whether or not ℕ includes zero, so it is ambiguous.

table A.1: Notation with… Ref № is a reference to a passage in this text, or a table line item in
iso/iec 80000-2:2009.

Ref № Expression Meaning Remarks/Examples

iso 2-6.1 ℕ the set of natural numbers

ℕ = { 0, 1, 2, 3, … }
Restrictions can be specified with
subscript: ℕ>0 = { 1, 2, 3, … }

iso 2-6.2 ℤ the set of integers

ℤ = { …, −2, −1, 0, 1, 2, … }
Restrictions can be specified with
subscript: ℤ≥0 = ℕ, for example

iso 2-6.4 ℝ the set of all real numbers Restrictions can be specified with
subscript: ℝ≥0 = { 𝑥 ∈ 𝑅 ∣ 𝑥 ≥ 0 }

ntn. 3.2-1 𝘯, 𝟣, 𝟤, … the 𝑛-th enumeration set Sans-serif lowercase variables or
sans-serif uppercase numerals.

Given 𝑛 ∈ ℕ, 𝘯 = { 0, …, 𝑛 − 1 }.
E.g. 𝟥 = { 0, 1, 2 }
Corner case: in this document, most
often 𝟣 = { () } instead of { 0 }. See
B.1-12.

def. B.1-2
def. B.1-3
def. B.8-6

𝟭, 𝟮, 𝟯 the —th finite category Bold sans-serif uppercase digits.

Categories with a finite number of
objects (specified by the digit) and
arrows. Only 𝟭–𝟯 are used, and no
general/inductive definition is given.

257

Ref № Expression Meaning Remarks/Examples

ntn. B.9-1 �̇�, �̇�, �̇�, …, �̇� the 𝑛-th discrete finite cate-
gory

Bold, sans-serif uppercase digit with
over-dot, or bold lowercase sans-serif
letter.

For some 𝑛 ∈ ℕ, the category with
enumerated objects 1, 2, …, 𝑛, and
where the only arrows are identities:

�̇� ≔ 1 2 ⋯ 𝑛 .

ntn. A.1-3 { 𝑎𝑘 }𝑛𝑘 = 𝑚
{ 𝑎𝑘 }𝑘 = { 𝑚,…, 𝑛 }

the set of values 𝑎𝑘 where 𝑘
ranges from 𝑚 to 𝑛

E.g. { 𝑎𝑛 }𝑛 = 𝟥 = { 𝑎𝑛 }2𝑛 = 0 = { 𝑎0, 𝑎1, 𝑎2 }

ntn. B.6-6 (𝑎𝑖)𝑖 ∈ 𝘯 an 𝘯-indexed family of
𝐴-values.

For a set 𝐴 and values 𝑎𝑖 ∈ 𝐴, and enu-
meration set 𝘯.
Note: not to be confused with an
indexed set, or ranged brace. The
parentheses invoke tupeling, which
has a formal equivalence with func-
tions 𝘯 → 𝐴.

ntn. B.1-12 () • the empty tuple
• the unique member of a
singleton

With enumeration set 𝟣 = { 0 }, it is
useful to denote the lone element as
(). This way, functions with domain
𝟣 can be given empty argument as in
𝑓 () instead of 𝑓 0.

ntn. B.1-4 𝘼, 𝘽, 𝘾, … arbitrary categories Italic sans-serif Latin capitals.

ntn. B.1-5 𝐴, 𝐵, 𝐶, … category-objects Sans serif, bold-italic Latin capitals.

ntn. B.1-4 𝑓 , 𝑔, ℎ • category-arrows
• morphisms

Italic Latin miniscules.

iso 2-11.3 𝑓 ∶ 𝐴 → 𝐵 𝑓 takes 𝐴 to 𝐵 The morphism or category-arrow 𝑓
has domain 𝐴 and codomain 𝐵

258

Ref № Expression Meaning Remarks/Examples

def. B.1-1 𝐴 𝐵𝑓 𝑓 takes 𝐴 to 𝐵
𝑓 ∶ 𝐴 → 𝐵

To be read as a small diagram mean-
ing the morphism or category-arrow
𝑓 has domain 𝐴 and codomain 𝐵.

Not mere redundency with
iso 2-11.3, this notation makes com-
mutative diagrams a first-class citizen
with respect to inline mathematics.

def. B.2-1 𝐴 ↪ 𝐵 • An injection from 𝐴 to 𝐵.
(Injective function.)
• Monomorphism in a cate-
gory from 𝐴 to 𝐵.

An injection is a mono in 𝕊𝗲𝘁. More
generally, authors in ct use ↣ instead
of the hook-arrow. Since the present
work focuses on concrete categories,
the hook-arrow is appropriately sug-
gestive of inclusion, and a necessary
precursor for the sub-set relationship:
𝐴 ⊂ 𝐵,

def. B.2-2 𝐴 ↠ 𝐵 • A surjection from 𝐴 to 𝐵.
(Surjective function.)
• Epimorphism in a category
from 𝐴 to 𝐵.

A surjection is an epi in 𝕊𝗲𝘁.

ntn. B.6-2 𝘍 , 𝘎, 𝘏 arbitrary functors Sans serif, Latin capitals.

ntn. A.1-5 𝑎∶ 𝐴 asserting 𝑎 is of 𝐴 Like 𝑎 ∈ 𝐴, but is a judgement, not a
propositional function.

E.g. we can say if a ∈ A then …, but
we can assert that we have 𝑎∶ 𝐴.

iso 2-5.16 𝐴 × 𝐵 the Cartesian product of sets
𝐴 and 𝐵
the categorical product of
objects 𝐴 and 𝐵

The elements belonging to 𝐴1 and 𝐴2,
with information about which they
came from.

𝐴 × 𝐵 ≅ { (𝑎, 𝑏) ∣ 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 }

— 𝐴1 ⊔ 𝐴2 the disjoint union of sets 𝐴1
and 𝐴2
aka the discriminated union
of sets 𝐴1 and 𝐴2

The elements belonging to 𝐴1 and 𝐴2,
with information about which they
came from.

𝐴1⊔𝐴2 ≅ {(𝑖, 𝑥) ∣ 𝑥 ∈ 𝐴𝑖 and 𝑖 ∈ {1, 2 } }

259

Ref № Expression Meaning Remarks/Examples

iso 2.5-13 𝐴 ∖ 𝐵 𝐴 minus 𝐵 The elements belonging to 𝐴 but not
to 𝐵.
𝐴 ∖ 𝐵 = { 𝑎 ∣ 𝑎 ∈ 𝐴 and 𝑎 ∉ 𝐵 }

ntn. A.1-6 𝑓 (𝑥)
𝑓 𝑥

𝑓 at 𝑥 Function application is basic: the
main reason for including it here is
to highlight that the parentheses are
optional.

ntn. A.1-7 (𝑥 ↦ 𝑓 𝑥) the lambda function map-
ping any 𝑥 in the domain to
𝑓 𝑥 of the codomain

A notation for making anonymous
functions. Typically, the expression
on the right-hand side of the maps-to
arrow would not simply be a named
function.

E.g. (𝑥 ↦ 𝑥2)(3) = 9

ntn. A.1-8 𝑓 ∶ 𝐴 → 𝐵
𝑎 ↦ 𝑓 𝑎

𝑓 ∶ 𝐴 →
𝐵; 𝑎 ↦ 𝑓 𝑎

the morphism 𝑓 takes 𝐴 to 𝐵
by mapping 𝑎 ∈ 𝐴 to 𝑓 𝑎 ∈ 𝐵

Combines iso 2-11.3 with Nota-
tion ntn. A.1-7 to give a comprehen-
sive way of defining morphisms.

ntn. B.9-7 𝑓 △ 𝑔 𝑓 and 𝑔 If 𝑓 ∶ 𝐶 → 𝐴 and 𝑔 ∶ 𝐶 → 𝐵 then 𝑓 △
𝑔 ∶ 𝐶 → 𝐴⊗ 𝐵 where ⊗ is the product
operator in the ambient category.

E.g. in 𝕊𝗲𝘁 take sin △ cos∶ ℝ[0, 2π) →
ℝ × ℝ which maps the 2π-interval to
the unit circle.

260

Ref № Expression Meaning Remarks/Examples

ntn. B.10-3 𝑓 ▽ 𝑔 𝑓 or 𝑔 If 𝑓 ∶ 𝐴 → 𝑋 and 𝑔 ∶ 𝐵 → 𝑋 then
𝑓 ▽ 𝑔 ∶ 𝐴 ⊕ 𝐵 → 𝑋 where ⊕ is the
coproduct operator in the ambient
category. E.g. in 𝕊𝗲𝘁 where ⊕ = ⊔,
take 𝑋 ≔ { “red”, “black” },
𝑓 ≔ {♥, ♦, ♠, ♣} → 𝑋 and
𝑔 ≔ {■, ■, ♦} → 𝑋 ,
mapping the symbols to their colour
in the obvious way. Then,
𝑓 △ 𝑔 ∶ {♥, ♦, ♠, ♣} ⊔ {■, ■, ♦} →
{ “red”, “black” },
in the obvious way, but accepting
items from either domain. But note
that “♦” is distinct in the domain:
there are two red triangles distinguish
as being from the left or right of the ⊔
symbol.

iso 2-11.7 𝑔 ∘ 𝑓
𝑔𝑓

𝑔 after 𝑓 𝐴 𝐵 𝐶𝑓
𝑔∘𝑓

𝑔

Composition of functions, maps
or category-arrows. In the case of
functions,

(𝑔 ∘ 𝑓)(𝑥) = 𝑔𝑓 = 𝑔(𝑓 (𝑥)).
NB: 𝑔𝑓 is not part of the iso standard.

ntn. B.1-7 𝑓 ⨾ 𝑔 𝑓 then 𝑔 or
𝑔 after 𝑓

Like the ring operator, but with argu-
ments reversed: 𝑓 ⨾ 𝑔 = 𝑔 ∘ 𝑓
𝐴 𝐵 𝐶𝑓

𝑓 ⨾𝑔
𝑔

§B.4 𝑎 the global element 𝑎 For 𝑎 in any set 𝐴, 𝑎∶ 𝟣 → 𝐴; () ↦ 𝑎.
E.g. given π ∈ ℝ, π⃗() = π

ntn. B.11-3 |𝐴| underlying set of 𝐴 For monoids, groups and other alge-
braic structures over sets, the operator
|·| references their underlying set.

E.g. for a monoid, |(𝑀, ○, 𝑒)| = 𝑀

261

Ref № Expression Meaning Remarks/Examples

§B.16.1 𝘜 A forgetful functor: of
monoids, of groups, of
programs, etc.

For monoids, groups and other alge-
braic structures over sets, the functor
𝘜 maps to their underlying sets and
their homomorphisms to underlying
functions in 𝕊𝗲𝘁.
E.g. for a monoid, 𝘜 (𝑀, ○, 𝑒) = 𝑀 ,
identical to the universal alge-
braic concept of underlying set:
|(𝑀, ○, 𝑒)| = 𝑀 .

ntn. B.6-3 𝘍 ∶ 𝘾 → 𝘿

{ 𝑋𝑓
↦ 𝘍𝑋
↦ 𝘍𝑓

functor 𝘍 takes 𝘾 to 𝘿 by
mapping objects 𝑋 to 𝘍𝑋
and arrows 𝑓 to 𝘍 𝑓

Like ntn. A.1-8, but with a brace and
two mappings to reflect the twofold
nature of functors: having maps for
both objects and arrows.

ntn. B.7-2 𝛼, 𝛽, 𝛾 , … arbitrary natural transforma-
tions

Greek miniscules.

def. B.7-1 𝛼 ∶ 𝘍 ⇒ 𝘎
𝘍 𝛼=⇒ 𝘎

the natural transformation
𝛼 maps the functor 𝘍 to the
functor 𝘎

The double arrow ⇒ distinguishes
these from other morphisms. Note
that in a category of functors, ⇒
becomes →.

def. B.7-1 𝛼𝑋 the component of the nat-
ural transformation 𝛼 at
object 𝑋

Given functors 𝘍 , 𝘎 ∶ 𝘾 → 𝘿, if
𝛼 ∶ 𝘍 ⇒ 𝘎 and 𝑋 ∈ 𝘾 then 𝛼𝐴 is the
component of 𝛼 at the object 𝑋 .

‹B.7-6› 𝜗 ∗ 𝜂 the horizontal composite of
𝜗 and 𝜂

Given functors
𝘍 , 𝘎 ∶ 𝘾 → 𝘿 and 𝘍 ′, 𝘎′ ∶ 𝘿 → 𝙀 ,

and natural transformations
𝜂∶ 𝘍 ⇒ 𝘎 and 𝜗 ∶ 𝘍 ′ ⇒ 𝘎′,

the horizontal composite has two
equivalent (componentwise) formulas,
one of which is: (𝜗 ∗ 𝜂)𝑋 = 𝘎′𝜂𝑋 ∘ 𝜗𝘍𝑋

def. B.2-3 𝐴 ≅ 𝐵 𝐴 is isomorphic to 𝐵 To objects are isomorphic if there
exists a pair of arrows 𝑓 , 𝑔 such that
𝑔 ∘ 𝑓 = id𝐴 and 𝑓 ∘ 𝑔 = id𝐵

262

Ref № Expression Meaning Remarks/Examples

ntn. B.15-6 ̀() or ̀𝑓 “𝑓 curried”
The exponential transpose
of the arrow 𝑓 .

In a symmetric monoidal category,
(𝘾, ⊗), with internal homs (⊸) there
is a bijection

𝘾(𝐴 ⊗ 𝐵, 𝐶) ⥲ 𝘾(𝐴, 𝐵 ⊸ 𝐶).
Given an arrow

𝑓 ∶ 𝐴 ⊗ 𝐵 → 𝐶 then ̀𝑓 ∶ 𝐴 → 𝐵 ⊸
𝐶 .
The operation is called currying,
and the bijective inverse is called
uncurrying.

ntn. B.16-2 𝘓 ⊣ 𝘙

𝘾 𝘿
𝘙

𝘓⊣

For functors 𝘓, 𝘙, 𝘓 is the left
adjoint of 𝘙 and 𝘙 is the right
adjoint of 𝘓

nb: In all cases, the post of the turn-
stile symbol, ⊣, points toward the left
adjoint.

ntn. 3.3-4 𝜇𝘍 The least-fixpoint (initial
algebra) of the functor 𝘍 .

An endofunctor 𝘍 induces a category
𝘍 -𝗔𝗹𝗴 and 𝜇𝘍 denotes its initial ob-
ject. In the context of the category on
which 𝘍 maps, 𝜇𝘍 instead refers only
to the underlying object |𝜇𝘍 |.

ntn. 3.3-8 𝜈𝘍 The greatest-fixpoint (termi-
nal coalgebra) of the functor
𝘍 .

An endofunctor 𝘍 induces a category
𝘍 -𝗰𝗼𝗔𝗹𝗴 and 𝜈𝘍 denotes its terminal
object. In the context of the category
on which 𝘍 maps, 𝜈𝘍 instead refers
only to the underlying object |𝜈𝘍 |.

— 𝑤 ⧺ 𝑤 ′ Concatenation of tuples,
lists or strings.

def. 3.5-1 𝘗𝐴 𝐵 The Cartesian product 𝐵 × 𝐴. A notational convenience for com-
posing more complex functors and
discussion of fixpoints.

Eg. The greatest fixpoint 𝜈𝘗𝐴 is
carried by the set of all infinite se-
quences, 𝐴ω and the least fixpoint,
𝜇(𝟣 + 𝘗𝐴), is carried by the set of all
finite sequences (or words), 𝐴∗.

263

Ref № Expression Meaning Remarks/Examples

def. 3.5-1 �̂�, �̂�, … Object functors: 𝘗𝐴, 𝘗𝐵 , … A notation that gives purchase on
the notion of “objects as functors” in
categories with Cartesian products.

def. 3.6-6 �̂�•, �̂�•, … Pointed object functors:
𝟣 + 𝘗𝐴, 𝟣 + 𝘗𝐵 , …

Object functor summed with a ter-
minal object, which gives “pointed”
algebras. That is, algebras with a
global element or base-point.

ntn. 3.9-3 𝘌𝐴 Covariant internal hom-
functor: 𝘌𝐴 𝑋 = 𝐴 ⊸ 𝑋 .

A notational convenience for com-
posing more complex functors and
discussion of fixpoints.

— 𝑆1 The 1-dimensional circle
manifold, aka the 1-sphere.

See [95, p. 7].

b
CATEGORY THEORY

A mathematical object is determined by its relationships
to other objects. Practically speaking, this suggests that
an often fruitful way to discover properties of an object
is not to investigate the object itself, but rather to study
the collection of maps to or from the object.

— Tai-Danae Bradley
https://www.math3ma.com/blog/the-most-obvious-secret-in-mathematics

“Abstract-nonsense”—is an idiom many people hear upon introduc-
tion to Category Theory (ct). Practitioners use the term affection-

ately, with tongue-in-cheek. The idiom is a recognition of ct as a general
theory of structure and abstraction without context. Categorical construc-
tions inherit meaning from their domain of application. While this makes
the theory feel somewhat nebulous at first reading, a sufficient study of ct
opens a door in the mind that remains permanently ajar. Light from this
door illuminates patterns of organisation and abstraction anywhere you
see structured relationships. This might leave you with the impression
that category theory is meant to be applied, and I endorse that view.

This appendix provides an introduction to basic ct with emphasis on
topics that aid the presentation of the present thesis. For general intro-
ductions, I recommend the texts of Awodey [109], Leinster [130] and Spi-
vak [133]. For the reader with computer scientific inclination, Barr and
Wells’ [82] is an excellent introduction, as is Pierce [64] and Buurlage [162].
The standard reference in category theory is the venerable text of Mac
Lane [81]. Most definitions in this appendix are based on these sources,
with some variation in structure, focus, detail and approach.

B.1 definition of a category

The following definition of a category is formidable, but let us front-load
it with this intuitive summary: a category is a collection of objects as
nodes with a composable network of directional arrows connecting them,
forming a directed graph. The arrows must be closed under composition:
any two compatible arrows must be equivalent to a third arrowwith equal

264

https://www.math3ma.com/blog/the-most-obvious-secret-in-mathematics

265

meaning. The composition must further be associative and unital. This
means that each objectmust have a special arrow that loops back on itself—
its identity arrow that composes with other arrows in such a way that the
composition has no net effect, the same way multiplying any number by
1 has no net effect.

definition B.1-1 (Category). A category, 𝘾 , consists of the following
data:
 a collection of objects: 𝐴, 𝐵, 𝐶, … collectively denoted ob𝘾 ,
 a collection of arrows among the objects: 𝑓 , 𝑔, ℎ, …, collectively de-
noted hom𝘾
 to each arrow 𝑓 is associated two objects called its

domain, denoted dom 𝑓 , and
codomain, denoted cod 𝑓 ,

which is summarised as 𝑓 ∶ 𝐴 → 𝐵, or equivalently 𝐴 𝐵𝑓
, both

symbolising dom 𝑓 = 𝐴 and cod 𝑓 = 𝐵,
 a binary product on arrows (∘) denoting composition.

These data are obliged to the following axioms:
c-1: (Closure) Given arrows 𝑓 and 𝑔 where cod 𝑓 = dom 𝑔, there is a

composite arrow 𝑔 ∘ 𝑓 , making the following diagram commute:

𝐴 𝐵 𝐶 .
𝑓

𝑔∘𝑓

𝑔

c-2: (Associativity) Given compatible arrows 𝑓 , 𝑔, ℎ, the composition is
associative: ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓 , reflected in the commutativity
of the diagram

𝐴 𝐵

𝐷 𝐶 .

𝑓

ℎ∘𝑔∘𝑓
𝑔∘𝑓

𝑔
ℎ∘𝑔

ℎ
c-3: (Identity) For each 𝘾-object, 𝐴 ∈ ob𝘾 , there is an identity arrow,

denoted id𝐴∶ 𝐴 → 𝐴, acting as the left- and right-unit for the
composition operator. So for any arrow, 𝑓 ∶ 𝐴 → 𝐵, the following
diagram commutes:

𝐴 𝐵id𝐴
𝑓

id𝐵 .

266

This means that 𝑓 ∘ id𝐴 = 𝑓 = id𝐵 ∘ 𝑓 .
Let us see some trivial examples. In set theory, we might start with

the empty set and singleton sets as the simplest examples. The analogues
for categories are the empty category, 𝟬, and singleton category, 𝟭.
definition B.1-2. The empty category, 𝟬, has no objects and therefore
no arrows. The category can be depicted as

𝟬 ≔ .

definition B.1-3. The singleton category, 𝟭, contains a single object
and a single arrow. Each object in any category has an identity arrow.
Since 𝟭 only has the single arrow, the lone arrow must be the identity
arrow. The category 𝟭 can be illustrated graphically as:

𝟭 ≔ () id() ,

with the lone object represented as an empty tuple as we do with singleton
sets. Since identity arrows are axiomatically required, they are customar-
ily omitted from diagrams:

𝟭 ≔ () .

This is also a trivial example of a discrete category, inwhich all arrows
are identity arrows.

notation B.1-4. Arbitrary categories will be labelled with a sans-serif
bold-italic uppercase Latin letter: 𝘼, 𝘽, 𝘾, 𝘿 and so on. Established cat-
egories will be denoted in boldface with initial-case, such as in 𝕊𝗲𝘁, the
category of sets and functions, which will be defined later.

notation B.1-5 (Category-objects). Given a category 𝘾 , any object 𝐴 ∈
ob𝘾 is called a 𝘾-object. We may simply write 𝐴 ∈ 𝘾 .

notationB.1-6 (Category-arrows). The collection of arrows between𝘾-
objects 𝐴 and 𝐵 is denoted 𝘾(𝐴, 𝐵). Any arrow in 𝘾 is called a 𝘾-arrow.
When we want to refer to arrows without reference to their category, we
can write hom(𝐴, 𝐵).

267

The associative binary operation on arrows, denoted with the ring op-
erator (∘) in def. B.1-1, is sometimes at odds with clarity. This is because
the arrow notation,

𝐴 𝐵 𝐶𝑓 𝑔 ,
reads contralaterally to the argument order of the ring operator: 𝑔 ∘ 𝑓 .
notation B.1-7 (Reversed composition operator, ⨾). Given two compat-
ible arrows 𝑓 , 𝑔, their composite 𝑔 ∘ 𝑓 may be written as 𝑓 ⨾ 𝑔 when it
benefits clarity.

The following is the associativity diagram from c-2, rephrased with
the reversed operator:

𝐴 𝐵

𝐷 𝐶 .

𝑓

𝑓 ⨾𝑔⨾ℎ
𝑓 ⨾𝑔

𝑔
𝑔⨾ℎ

ℎ

I suspect the reader may find that diagram generates a little less cognitive
friction when following the arrows around.

B.1-8 ordinals and linear orders as categories Linear orders are
posets with the additional property that for any two elements 𝑎, 𝑏 if 𝑎 ≠ 𝑏
then either 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎. For any 𝑛 ∈ ℕ, the 𝑛-th linear order consists
of the pair (𝘯, ≤) of the 𝑛-th enumeration set with the usual linear ordering
on integers. Illustrated as a category,

0 1 2 3 ⋯ 𝑛 − 1≤ ≤ ≤ ≤ ≤ .

Any finite linear order is of the preceding form, and is therefore isomor-
phic1 to (𝘯, ≤) for some 𝘯.

The collection of objects in a category may either be a set or a proper
class, and so too for the collection of arrows. If those collections are both
proper classes, the category is called a large category. If both are sets, then
it is a small category. If a category has a proper class of objects, but for

1 def. B.2-3 defines isomorphism, or read as bijective for now.

268

any objects 𝐴, 𝐵, hom(𝐴, 𝐵) is a set, then the category is locally small.
Unless there is specific emphasis on size, the arrows in any hom is called
a hom-set.

B.1.1 The (or a) Category of Sets & Functions

Perhaps the most venerable category in all of ct, the category of sets and
functions is the setting for most of the present thesis.

definition B.1-9 (The category of sets and functions). Denoted 𝕊𝗲𝘁, the
category has

objects: the class of all sets
arrows: all functions from each set into another.

The identity on a given set 𝑋 is the identity function:

id𝑋 ∶ 𝑋 → 𝑋
𝑥 ↦ 𝑥.

Functions have set-theoretical domains and codomains which agree per-
fectly with the notion of domain and codomain of categorical arrows. Fur-
thermore, function composition provides the composition operation on
arrows.

B.1-10 𝕊𝗲𝘁 is a substrate for numerous others. By adding structure to
the sets and restricting the morphisms to those that preserve the struc-
ture, we get categories of groups, posets, rings and so on. A map exists
between these categories and 𝕊𝗲𝘁 that forgets the additional structure, al-
lowing them to reveal their inner character as a play of shadow in 𝕊𝗲𝘁. In a
sense, 𝕊𝗲𝘁 can be seen as a sort of minimal structure from which algebraic
objects may be cultivated. Intuitively, this has something to do with the
spirit of set theory as the foundational system for mathematics. By study-
ing sets in the context of ct, we obtain deeper insights that carry across
boundaries of mathematical theories—the relationships deep enough to
transcend the internal details to which ct is so apathetic.

This does have some limitations. Without being able to inspect the
labels of the elements, any two sets with the same cardinality may as
well be the same. For this reason, many constructions in set will only
be unique up to bijection. Later, we will define products in 𝕊𝗲𝘁 which
is in part the Cartesian product of sets. From a category theoretical per-
spective, the product 𝐴 × 𝐵 of sets 𝐴 and 𝐵 can be any set that has car-
dinality (card𝐴)(card𝐵)—ct cannot tell us the difference. Certainly, the

269

traditional𝐴×𝐵 = {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}minimizes cognitive overhead,
and nothing stops us from imagining it in place, while being aware that is
not a unique representation of the data.

∗ ∗ ∗
Notice that def. B.1-1 and all of the subsequent notations completely avoid
any tooling that might give a view into the objects. In a category, objects
are like points in a space: they have no internal life of their own. Instead
have interrelationships to other points. Like Ernest Rutherford revealing
the structure of the atom by indirect observation of scattered rays, cate-
gory theorists do not need direct means to measure the inner structure of
the objects that make up their worlds. Instead of peering inward as with
a microscope, they gaze outward as with a telescope to the constellation
of objects and the arrows connecting them. This is why categories take
their meaning from the context of application, and why they are a basis to
reveal patterns across those contexts.

B.1-11 It is perhaps not too early to give a taste of this telescopic view.
So called global elements 2 will play an important role in the thesis: specif-
ically, global elements in 𝕊𝗲𝘁. In §B.3 the notion of terminal objects will
be properly introduced. These are objects in a category with a unique ar-
row from every other object in the category terminating there. In 𝕊𝗲𝘁, any
singleton (or single-element) set has that property.

B.1-12 (Singletonwith empty tuple). It is standard in ct to name termi-
nal objects 1. In 𝕊𝗲𝘁, singletons are terminal. For notational simplicity, we
often name the single element (), so 𝟣 = {() }. This collides with ntn. 3.2-1
for enumeration sets which says 𝟣 = { 0 }. We tolerate it as a corner case
because the empty tuple is superior in application of ct to software.

Let us take 𝟣 = { () } ∈ 𝕊𝗲𝘁 as our singleton. While any set 𝐴 has
only a single function in 𝕊𝗲𝘁(𝐴, 𝟣), turning the spotlight around, 𝕊𝗲𝘁(𝟣, 𝐴)
is bijective with 𝐴 itself. That is, each choice of function in 𝕊𝗲𝘁(𝟣, 𝐴) is
equivalent to a choice of and element of 𝐴. This fact is so well used in the
thesis that is convenient to have a special notation to make a mechanism
of it:

2 See §B.4, p. 272.

270

notation B.1-13. (Global Set-Elements) Given a set 𝐴, for each 𝑎 ∈ 𝐴
the function 𝑎∶ 𝟣 → 𝐴 (with the arrow over the element label) is the
function such that 𝑎() = 𝑎. So π⃗ ∶ 𝟣 → ℝ gives π⃗() = 3.14159… .

The next three sections will formalise these concepts, allowing us to
properly generalise.

B.2 epimorphism, monomorphism & isomorphism

Stage the following definitions in an arbitrary category, 𝘾 . Also consider
arbitrary 𝘾-objects 𝐴, 𝐵, 𝐶 and 𝘾-arrows 𝑔, ℎ, 𝑖, 𝑗 related as follows.

definition B.2-1 (Monomorphism). An arrow 𝑓 ∶ 𝐴 → 𝐵 is amonomor-
phism (denoted 𝑓 ∶ 𝐴 ↪ 𝐵) if, for all other 𝐶 and all 𝑔, ℎ as in

𝐶 𝐴 𝐵
𝑔
ℎ

𝑓 , (B.2.1)

it holds that 𝑓 ∘ 𝑔 = 𝑓 ∘ ℎ implies 𝑔 = ℎ.
In 𝕊𝗲𝘁, in order for 𝑔 and ℎ to be truly arbitrary functions and to ensure

that 𝑓 ∘ 𝑔 = 𝑓 ∘ ℎ implies 𝑔 = ℎ, 𝑓 must be injective. Of course, injections
do not map more than one element of the domain to any given element
of the codomain. If there exists an 𝑏 ∈ 𝐵 such that the preimage through
𝑓 has more than one element then we could find witnesses 𝑔 and a ℎ that
would differ only in that preimage, giving 𝑓 𝑔 = 𝑓 ℎ while 𝑔 ≠ ℎ.
definition B.2-2 (Epimorphism). An arrow 𝑓 ∶ 𝐴 → 𝐵 is a epimor-
phism (denoted 𝑓 ∶ 𝐴 ↠ 𝐵) if, for all other 𝐶 and all 𝑔, ℎ as in

𝐴 𝐵 𝐷𝑓 𝑔
ℎ

,

it holds that 𝑔𝑓 = ℎ𝑓 implies 𝑔 = ℎ.
This time in 𝕊𝗲𝘁, in order for 𝑔 and ℎ to be truly arbitrary functions

and to ensure that 𝑔𝑓 = ℎ𝑓 implies 𝑔 = ℎ, 𝑓 must be surjective. Of course,
the image of a surjection covers its entire codomain. If it did not, then we
could find witnesses 𝑔, ℎ that differ in their mapping of elements outside
of the image of 𝑓 , but give 𝑔𝑓 = ℎ𝑓 .

Epimorphisms andmonomorphisms are also called “epis” and “monos”.
An arrow may be described as “epic” or “monic”.

271

Isomorphisms, sometimes simply called “isos” are a stricter but simpler
idea.

definition B.2-3. An arrow 𝑓 is an isomorphism, denoted 𝑓 ∶ 𝐴 ⥲ 𝐵, if
there exists another arrow 𝑔 ∶ 𝐵 → 𝐴 such that

𝑔 ∘ 𝑓 = id𝐴 and 𝑓 ∘ 𝑔 = id𝐵.
When an isomorphism exists between two objects, they are said to be
isomorphic, denoted symbolically as 𝐴 ≅ 𝐵.

In 𝕊𝗲𝘁, isomorphisms correspond to bijections, where the 𝑔 is simply
denoted 𝑓 −1. Bijections are functions which are simultaneously injective
and surjective.

In general, all isos are epic and monic. The converse is not generally
true: epi-monos are not necessarily isos—but in 𝕊𝗲𝘁 they are.

B.3 initial/terminal objects

definition B.3-1 (Initial & terminal objects). Consider an arbitrary cat-
egory 𝘾 . A 𝘾-object 𝟢 is initial if, for all 𝐴 ∈ 𝘾 , there exists a unique

arrow 𝟢 𝐴0𝐴 . Dually, an object 1 is terminal if, for all 𝐴 ∈ 𝘾 , there ex-

ists a unique arrow 𝐴 𝟣!𝐴 .3 An object that is both initial and terminal is
called a zero object.

When a category has these objects, the objects are unique up to iso-
morphism.

As we saw in ‹B.1-11›, singleton sets are terminal in 𝕊𝗲𝘁. There are
infinitely many singletons, but they are all isomorphic. The empty set,
𝟢 = { } is initial in 𝕊𝗲𝘁, and it happens to be unique. (There is no content
in 𝟢 to vary.)

There are even initial and terminal categories.

definition B.3-2. The category ℂ𝗮𝘁 has
objects: all small categories,
arrows: functors among the categories.

Analogous to 𝕊𝗲𝘁, the initial object is the empty category, 𝟬, and any 𝟭
is terminal. Though we have yet to discuss what a map 𝟭 → 𝘾 might look
like.

3 Morphisms to terminal objects or from initial objects are often called !, possibly
emphasising their uniqueness as in the notation ∃! meaning “there exists a unique…”.

272

B.4 global elements

In 𝕊𝗲𝘁, there are is an isomorphism for each 𝕊𝗲𝘁-object 𝐴:

𝐴 ≅ 𝕊𝗲𝘁(𝟣, 𝐴)
owing to the fact that each function in the hom-set picks an element from
𝐴. These what we called global elements of 𝐴, back in ‹B.1-11›. For each
𝑎 ∈ 𝐴, its global element is denoted with a small arrow: 𝑎 (ntn. B.1-13).

Two functions, 𝑓 , 𝑔 ∶ 𝐴 → 𝐵 are equal if, for each 𝑎 ∈ 𝕊𝗲𝘁(𝟣, 𝐴), 𝑓 ∘ 𝑎 =
𝑔 ∘ 𝑎. In light of this, reconsider monos as injections. In 𝕊𝗲𝘁, instead of
considering the entire category aswe did in (B.2.1), it is sufficient to inspect
an arbitrary arrow 𝑓 ∶ 𝐴 → 𝐵 with respect to the global elements:

1 𝐴 𝐵 .
𝑎1
𝑎2

𝑓

If for all 𝑎1, 𝑎2 ∈ 𝕊𝗲𝘁(1, 𝐴), 𝑓 𝑎1 = 𝑓 𝑎2 if an only if 𝑎1 = 𝑎2, then 𝑓 is clearly
injective. It reads almost exactly as the typical set-theoretical definition.

This may all seem like a way to smuggle set-theory into ct, but this is
only because we are focusing in the category of sets. But it should not be
surprising that the structure of the objects will be manifest in the arrows
of the category.

B.5 duality and opposite categories

Proofs in ct have a twofold economy for effort. Any category theoret-
ical construct that is based on statements about objects, arrows and the
tools and axioms provided in def. B.1-1 has a dual construct. These duals
arise by formal reversal of arrows. We have already seen some examples.
Monos are the duals of epis, and terminal objects are dual to initial objects.

definition B.5-1. Every category 𝘾 has an opposite category 𝘾op where
they share the same objects and arrows but all of𝘾op’s arrows are formally
reversed: 𝘾(𝐴, 𝐵) = 𝘾op(𝐵, 𝐴).

The dual of everything true in 𝘾 is true in 𝘾op. Each arrow 𝑓 in 𝘾 has
a counterpart 𝑓 op in 𝘾op where dom 𝑓 = cod 𝑓 op and cod 𝑓 = dom 𝑓 op.
Moreover,

• if 𝑓 is monic then 𝑓 op is epic,

273

• if 𝑓 is an isomorphism so it is in 𝑓 op,
• terminal objects in 𝘾 are initial objects in 𝘾op and vise-versa.

The dual of a construct is often named with the prefix “co-”.
The duality principle (see [81, Ch. II]) implies that any proof is likewise

a proof of the dual concept. If you have developed a theorem, you need
not provide proof of the dual theorem.

The structure of the theory presented herein is based on four key du-
alities,

• algebras and coalgebras,
• catamorphism and anamorphism,
• control and estimation, and
• observable and iterable structures.

Catamorphism and anamorphism form the core of the control and estima-
tion software models. But to find and formalise these structures, we must
map in and among categories themselves. As functions relate sets in and
among themselves, functors relate categories.

B.6 functors

Functors are structure preservingmaps between categories. Since the data
of a category consists of two collections, a functor embodies a map for
each.

definition B.6-1. Given categories 𝘾 and 𝘿, a functor 𝘍 , mapping the
first to the second is denoted

𝘍 ∶ 𝘾 → 𝘿,
and consists of

• an object map assigning to each 𝘾-object a 𝘿-object,
• an arrow map assigning to each 𝘾-arrow a 𝘿-arrow,

preserving categorical structure by the following axioms:
f-1: (Functors preserve composition) For any composite 𝘾-arrow, 𝑔 ∘ 𝑓 ,

𝘍 (𝑔 ∘ 𝑓) = 𝘍 𝑔 ∘ 𝘍 𝑓 ,
f-2: (Functors preserve identity) For any 𝘾-object 𝑋 ,

𝘍 id𝑋 = id𝘍𝑋 .
notation B.6-2. Arbitrary functors will be denoted by uppercase italic
sans-serif Latin letters: 𝘍 , 𝘎, 𝘏, and so on.

274

Functors come in covariant and contravariant types. The difference is
that a contravariant functor reverses the arrows in the image of the functor.
This will be covered in more detail later. For now, we focus on covariant
functors.

The following diagram depicts the structure preserving nature of co-
variant functors:

𝘿

𝘾
𝘍

𝘍𝐴 𝘍𝐵 𝘍𝐶

𝐴 𝐵 𝐶 .

𝘍 𝑓

𝘍 (𝑔𝑓)

id𝘍𝐴

𝘍 𝑔
id𝘍 𝐵 id𝘍 𝐶

𝑓

𝑔𝑓

id𝐴

𝑔
id𝐵 id𝐶

The bottom half is an amalgam of the diagrams of category axioms c-1 and
c-2, and the top half is the image of the diagram through the functor. The
top and bottom are not connected because they live in two different cate-

gories.4 It is the small diagram on the left showing 𝘾 𝘿𝘍 that connects
the top to bottom.

To define a functor is to define two functional maps. That inspires the
following notation.

notation B.6-3. We extend the traditional notation for defining func-
tions 𝑓 ∶ 𝐴 → 𝐵; 𝑎 ↦ 𝑓 𝑎 to functors by adding a brace encompassing the
two maps:

𝘍 ∶ 𝘾 → 𝘿

{ 𝑋𝑓
↦ 𝘍𝑋
↦ 𝘍𝑓

B.6.1 Diagrams in a Category

B.6-4 choosing an object Passage ‹B.1-11› describes how maps from
a singleton set to a given set are in one-to-one correspondence with a

4 In circles of functional programmers, the functions 𝑓 and 𝑔 are commonly said to
be “lifted” into the functor as 𝘍 𝑓 and 𝘍 𝑔 respectively.

275

()

id()

𝘍 ()
id𝐹()

𝟭 𝘾𝘍

figure b.1: Depicted are Categories 𝟭 (left) and 𝘾 (right, arrows omitted for clar-
ity, objects are gray dots). Functor 𝘍 maps () to 𝘍 () ∈ 𝘾 and their identities
accordingly as per ax. f-2.

choice of elements from that given set. That can be extended for functors
as well. Given a category 𝘾 , consider a functor 𝘍 ∶ 𝟭 → 𝘾 . The image of 𝟭
in 𝘾 will consist of a 𝘾-object and its identity (see fig. B.1 in the margin).
Therefore, a choice of 𝘍 is equivalent to a choice of a 𝘾-object: the set of
functors 𝟭 → 𝘾 is bijective to ob𝘾 .

Categories offer much more structure than sets, so perhaps it is not
surprising that this idea of choosing an object can be generalised to locate
much more complex structures. It turns out that this is a key idea that
opens the door to much of ct.

definition B.6-5 (Diagram). Let 𝙄 and 𝘾 be categories. An 𝙄-shaped di-
agram in 𝘾 is a (covariant) functor 𝘋∶ 𝙄 → 𝘾 . The category 𝙄 is called
the index category.

Notice that if 𝙄 = 𝟭, we recover the notion of ‹B.6-4›. In fact, diagrams
are generalisation of indexed families. For example, given a set 𝐴 and an
enumeration set 𝘯, an 𝘯-indexed family of 𝐴-values, (𝑎𝑖)𝑖 ∈ 𝘯, is equivalent
to a function of type 𝘯 → 𝐴.

notation B.6-6 (Indexed family). An 𝘯-indexed family of 𝐴 values is
written (𝑎𝑖)𝑖 ∈ 𝘯.

The index category does much more because it also picks out arrows.

276

In the next section, we study transformations between functors: natu-
ral transformations. Together with diagrams, they lead to a formal frame-
work for identifying unique or optimal manifestations of a particular struc-
ture within a category—a universal construction.

B.7 natural transformations

definitionB.7-1. Given categories𝘾 and𝘿 and two functors, 𝘍 , 𝘎 ∶ 𝘾 →
𝘿, a natural transformation, 𝜂∶ 𝘍 ⇒ 𝘎 is a family of 𝘿-arrows,

(𝘍𝐴 𝘎𝐴)𝐴 ∈ 𝘾 ,𝜂𝐴

indexed by the 𝘾-objects such that for every pair 𝐴, 𝐵 of 𝘾-objects, and
each (𝐴, 𝐵)-arrow 𝑓 , it holds that

𝜂𝐵 ∘ 𝘍 𝑓 = 𝘎𝑓 ∘ 𝜂𝐴. (B.7.2)

The arrows in the family are individually called the components of the
natural transformation. If each component of a natural transformation
is an isomorphism, then the natural transformation is called a natural
isomorphism.5

notation B.7-2. Arbitrary natural transformations will be lowercase
italic Greek letters: 𝛼, 𝛽, 𝛾 , … and so on.

Natural transformations are summarised in the following:

𝘿 𝘎𝐴 𝘎𝐵

𝘍𝐴 𝘍𝐵

𝘾 𝐴 𝐵

𝘎𝑓

𝘍 𝑓
𝜂𝐴 𝜂𝐵

𝘍 𝘎𝜂

𝑓

(B.7.3)

Note how 𝜂 is represented in the diagram as a double (⇒) between the two
functor arrows. The bottom row of the diagram exists in 𝘾 , and the upper

rows are in 𝘿. The functors 𝘍 and 𝘎 lift the diagram 𝐴 𝑓−→ 𝐵 forming
5 Isomorphism is defined in §B.2. If the reader is unfamiliar with the notion, it will

suffice to think about invertible mappings such as bijections on sets.

277

the rows of the rectangle in 𝘿. The components 𝜂𝐴 and 𝜂𝐵 of the natu-
ral transformation connect the rows. The constraint (B.7.2) is called the
naturality condition and it is encoded in the diagram above as the com-
mutativity condition of the square diagram—where there are two paths
from 𝘍𝐴 to 𝘎𝐵 each with two edges, and both paths must be equivalent.
That diagram is called a naturality square.
B.7-3 ιd, the identity natural transformation The analogue of
the identity function, the identity natural transformation on a functor
𝘍 ∶ 𝘾 → 𝘿, denoted with a Greek “ι” instead of an “i” (just to be cute):
ιd𝘍 . As a family of functions, it is simply (id𝘍𝑋)𝑋 ∈ 𝘾

Natural transformations are maps, so we should expect them to com-
pose. They give rise to interesting composite structures that interact with
functors. These come in two varieties: vertical and horizontal composi-
tion. A special case of horizontal composition called whiskering is also
important.

B.7-4 Vertical composition is the most straightforward. Given cate-
gories 𝘾, 𝘿 and functors 𝘍 , 𝘎, 𝘏 ∶ 𝘾 → 𝘿, two natural transformations
𝜂∶ 𝘍 ⇒ 𝘎 and 𝜗 ∶ 𝘎 ⇒ 𝘏 may be composed so that

𝘾 𝘿

𝘍

𝘎

𝘏

𝜂

𝜗
becomes 𝘾 𝘿 .

𝘍

𝐻

𝜗𝜂

This composition is performed componentwise, using the underlying com-
position of arrows in 𝘿:

(𝜗𝜂)𝑋 = 𝜗𝑋 ∘ 𝜂𝑋 for all 𝑋 ∈ ob𝘾.
The naturality square from (B.7.3), is extended by the composite as

𝘏𝐴 𝘏𝐵

𝘎𝐴 𝘎𝐵

𝘍𝐴 𝘍𝐵 ,

𝘏𝑓

𝘎𝑓
𝜗𝐴 𝜗𝐵

𝘍 𝑓
𝜂𝐴 𝜂𝐵

278

where all paths commute. For example, 𝜂𝐴 ⨾ 𝜗𝐴 ⨾ 𝘏𝑓 = 𝜂𝐴 ⨾ 𝘎𝑓 ⨾ 𝜗𝐵, which is
a slightly more involved equation than we have seen in diagrams before
now.

This suggests a category!

definition B.7-5. A functor category 𝗙𝘂𝗻(𝘾, 𝘿) consists of
Objects: the collection of all functors from 𝘾 to 𝘿, and
Arrows: natural transformations among the functors.

The identity arrows are the identity natural transformations ιd, and ar-
rows are closed under vertical composition.

In these functor categories, because the arrows are natural transfor-
mations, they are written with a single arrow, →, instead of the double
⇒.

B.7-6 Horizontal composition is slightly more intricate, involving a
third category 𝙀 with functors 𝘍 ′, 𝘎′∶ 𝘿 → 𝙀 . Natural transformations
are now 𝜂∶ 𝘍 ⇒ 𝘎 and 𝜗 ∶ 𝘍 ′ ⇒ 𝘎′. and their horizontal composite is
denoted 𝜂 ∗ 𝜗 . With horizontal composition,

𝘾 𝘿 𝙀
𝘍

𝘎

𝜂

𝘍 ′

𝘎′

𝜗 becomes 𝘾 𝙀
𝘍 ′𝘍

𝘎′𝘎

𝜗∗𝜂 . (B.7.4)

Each object 𝑋 ∈ ob𝘾 gives rise to the following naturality square in 𝘿,
the diagonal of which is the component of 𝜗 ∗ 𝜂 at 𝑋 :

𝘍 ′𝘍 𝑋 𝘍 ′𝘎 𝑋

𝘎′𝘍 𝑋 𝘎′𝘎 𝑋 .

𝘍 ′𝜂𝑋

𝜗𝘍𝑋
(𝜗∗𝜂)𝑋 𝜗𝘎𝑋

𝘎′𝜂𝑋

(B.7.5)

This yields two formulas for the composite, one for each non-diagonal
path from 𝘍 ′𝘍 𝑋 to 𝘎′𝘎 𝑋 :

(𝜗 ∗ 𝜂)𝑋 = 𝜗𝘍𝑋 ⨾ 𝘎′𝜂𝑋 or 𝘎′𝜂𝑋 ∘ 𝜗𝘍𝑋 , (B.7.6i)

279

and
= 𝘍 ′𝜂𝑋 ⨾ 𝜗𝘎𝑋 or 𝜗𝘎𝑋 ∘ 𝘍 ′𝜂𝑋 , (B.7.6ii)

which are equivalent as a consequence of naturality.

B.7-7 left- and right-wiskering Special cases of horizontal compo-
sition, were the left or right side is ιd, gives rise to an operation called left
and right whiskering.

Starting with (B.7.4) and letting 𝘎 = 𝘍 and 𝜂 = ιd𝘍 gives

𝘾 𝘿 𝙀𝘍
𝘍 ′

𝘎′

𝜗 becoming 𝘾 𝙀
𝘍 ′𝘍

𝘎′𝘍

𝜗𝘍 .

The natural transformation 𝜗𝘍 is called the left whiskering of 𝜗 and 𝘍 , ap-
pearing, perhaps oddly, as the composite of a functor and a natural trans-
formation. The components (𝜗𝘍)𝑋 for𝑋 ∈ ob𝘾 can be derived from either
(B.7.6i) or (B.7.6ii) by substituting 𝘎 = 𝘍 and 𝜂 = ιd𝘍 :

(𝜗𝘍)𝑋 ≔ (𝜗 ∗ ιd𝘍)𝑋
= {substituting (B.7.6i) and 𝜂𝑋 = id𝑋 }

𝘎′id𝑋 ∘ 𝜗𝘍𝑋
= {𝘎′id𝑋 = id𝘎′𝑋 by axiom f-2 and can be factored out by c-3.}

𝜗𝘍𝑋
So

(𝜗𝘍)𝑋 = 𝜗𝘍𝑋 ∶ 𝘍 ′𝘍 𝑋 → 𝘎′𝘍 𝑋 .
Starting again from (B.7.4) and this time letting 𝘎′ = 𝘍 ′ and 𝜗 = ιd𝘍 ′

gives

𝘾 𝘿 𝙀
𝘍

𝘎

𝜂 𝘍 ′ becoming 𝘾 𝙀
𝘍 ′𝘍

𝘍 ′𝘎

𝘍 ′𝜂 .

The natural transformation 𝘍 ′𝜂 is called the right whiskering of 𝘍 ′ and
𝜂 and as with the left case, the components can be derived from either
(B.7.6i) or (B.7.6ii) by substitution and simplification giving

(𝘍 ′𝜂)𝑋 = 𝘍 ′𝜂𝑋 ∶ 𝘍 ′𝘍 𝑋 → 𝘍 ′𝘎 𝑋.

280

Interplay between vertical and horizontal composition is governed by
the interchange law. Given three categories and functors with natural
transformations related as

𝘾 𝘿 𝙀

𝘍

𝘎

𝜂

𝜗

𝘍 ′

𝘎′

𝜂′

𝜗 ′
,

the following equivalence holds:

(𝜗 ′ ∗ 𝜗)(𝜂′ ∗ 𝜂) = (𝜗 ′𝜂′) ∗ (𝜗𝜂)∶ 𝘍 ′𝘍 → 𝘎′𝘎.
We can now rewrite (B.7.5) cast in the functor category 𝗙𝘂𝗻(𝘾, 𝙀)

where arrows are natural transformations, including the whiskers:

𝘍 ′𝘍 𝘍 ′𝘎

𝘎′𝘍 𝘎′𝘎 .

𝘍 ′𝜂

𝜗𝘍 𝜗∗𝜂 𝜗𝘎

𝘎′𝜂

This cleaner style is free of componentwise tedium.

B.8 limits & colimits

Co/limits of diagrams reveal single objects within a category that individ-
ually capture some aspect of a relationship or substructure among other
objects—a sort of single-object embodiment of a structure.

Let 𝙄 be the discrete category with ob 𝙄 = { 1, 2 } and consider the
diagram

𝘋𝐴,𝐵 ∶ 𝙄 → 𝕊𝗲𝘁

{ 1
id1

↦ 𝐴; 2 ↦ 𝐵
↦ id𝐴; id2 ↦ id𝐵.

Because the index category contains only two objects (and their identity
arrows) this diagram “chooses” two fixed sets, 𝐴 and 𝐵, in 𝕊𝗲𝘁. Now, enter-
tain what may seem a strange question: could a single object in 𝕊𝗲𝘁 embody

281

the structure of the image? In this simple case, that would entail a single
set 𝐶 that somehow embodies the data of both 𝐴 and 𝐵. To make the re-
lationship complete, we would need morphisms relating 𝐶 with 𝐴 and 𝐵.
This can go one of two ways.

1. Morphisms from 𝐶 to each of 𝐴 and 𝐵—functions to “unpack” 𝐶
elements, giving an 𝐴 and a 𝐵:

𝐴 𝐶 𝐵 .
𝑝1 𝑝2

A diagram of this particular shape is called a span and 𝐶 is called
the centre of the span.

2. Morphisms from each of 𝐴 and 𝐵 to 𝐶—functions embedding the
elements of 𝐴 and 𝐵 into 𝐶 , giving elements of 𝐶 a quality of either
𝐴 or 𝐵:

𝐴 𝐶 𝐵 .
𝑖1 𝑖2

A diagram of this particular shape is called a cospan and 𝐶 is the
centre of the cospan.

Compare the span (item 1) with the binary Cartesian product of sets,
along with canonical projections 𝜋1 and 𝜋2:

𝐴 𝐴 × 𝐵 𝐵 .
𝜋1 𝜋2

There is no coincidence here. The elements of the Cartesian product set
are an optimal simultaneous embodiment of the elements of “𝐴 and 𝐵,”
for some definition of “optimal.” Limits of diagrams formalise this notion
of optimality, and the Cartesian product is the categorical product in 𝕊𝗲𝘁.
Dually, the colimit of 𝘋𝐴,𝐵 gives the “optimal” cospan (item 2) embodying
“𝐴 or 𝐵,” for some definition of “optimal.” This leads to the dual of the
Cartesian product—the disjoint union of sets:

𝐴 𝐴 ⊔ 𝐵 𝐵 .
𝜄1 𝜄2

The disjoint union, in relation to the Cartesian product, is called the co-
product in 𝕊𝗲𝘁.

Of course, there are infinitely many spans and cospans in 𝕊𝗲𝘁, with
many choices for their central objects and arrows. The co/limit construc-
tions privilege the “optimal” ones in a way that will become clear once
those concepts are properly defined.

282

𝕊𝗲𝘁

0 1
𝙄

𝐴 𝐵𝘋𝐴,𝐵 ∶ 𝙄 → 𝕊𝗲𝘁

𝐴 × 𝐵••⋯

𝐴 ⊔ 𝐵••⋯

lim𝘋𝐴,𝐵

colim𝘋𝐴,𝐵

figure b.2: Objects 𝐴 and 𝐵 are chosen in 𝕊𝗲𝘁 by 𝘋𝐴,𝐵. Spans over and cospans
under 𝐴, 𝐵 ∈ 𝕊𝗲𝘁 (grey dots and arrows) are numerous. Cartesian product and
disjoint union highlighted as the limit and colimit respectively.

Before introducing rigour, it is useful to step back and recapitulate the
steps taking us from the two-object index category to the product and
coproduct in 𝕊𝗲𝘁. Illustrated in fig. B.2, the two object category casts an
image in 𝕊𝗲𝘁 through the diagram 𝘋𝐴,𝐵, fixing the objects 𝐴 and 𝐵 as the
target of the construction. Any of the gray dots • ∈ 𝕊𝗲𝘁 from fig. B.2
(along with their co/spanning arrows) may be candidates for the role of
single-object embodiment. The span centred on the Cartesian product
with canonical projections is the limit, lim𝘋𝐴,𝐵, and the cospan centred
on the disjoint union with canonical injections is the colimit, colim𝘋𝐴,𝐵.
The co/limit construction allows us to pick the true categorical products
and coproducts out of the infinity of spans and cospans in the category.

This intuitive characterisation generalises to diagrams of various shapes
like this:

• limits tend to collect aspects of their diagram into a structures with
sequential order.

• colimits tend to collect aspects of their diagram into a unification
that requires selection on the basis of membership.

remark B.8-1. Computer scientists will readily recognise the contrast
of the previous itemization as the distinction of

• “sequence vs. selection”, or
• “parallel vs. sequential” execution.

Both are correct. They are distinguished only technically, by the duality
of memory and time.

283

remark B.8-2. (Co)limits of variously shaped diagrams give interesting
structures. For examples, Initial and terminal objects are the limit and
colimit (respectively) of the single-object discrete diagram, and pullbacks
and pushouts are generated as limits of the diagram of a span and cospan
respectively.

remarkB.8-3. The foregone discussion has focussed on diagrams in 𝕊𝗲𝘁,
but concepts like tupeling and unions make no sense in many categories,
where there are no underlying elements in the objects. The product in a
poset category is the greatest lower bound operator [109, §2.5] and dually
the coproduct is the lest upper bound [109, §3.2].

∗ ∗ ∗
There are several equivalent ways to define (co)limits. I choose a main-
stream approach in this section drawing inspiration from of [130], [81]
and [109].6 We have already assembled some of the concepts we need:
diagrams, index categories, natural transformations and initial/terminal
objects. Limits and colimits will be defined in terms of these things, plus
one additional notion: (co)cones.

definition B.8-4 (Cone). Given a category 𝘾 , a small category 𝙄 called
the index category and a diagram𝘋∶ 𝙄 → 𝘾 , a cone on𝘋 is a pair (𝐴, 𝛥𝐴 𝘋𝜆)
of
 𝐴, a 𝘾-object called the cone-point,
 𝜆, a family of morphisms from the cone-point to the objects in the
image of 𝘋 thought of as a natural transformation from the constant
functor 𝛥𝐴 to the diagram.

The naturality condition on 𝜆 enforces commutativity of the diagrams

𝐴

𝘋𝐼 𝘋𝐽 ,

𝜆𝐽𝜆𝐼

𝘋𝑓

(B.8.7)

for all 𝐼 , 𝐽 ∈ 𝙄 and 𝑓 ∈ 𝙄(𝐼 , 𝐽). The diagrams (B.8.7) are called the faces of
the cone.

6 Spivak takes a more structured approach in [133] that I personally favour, however
it requires some tools that would otherwise go unused in the thesis.

284

At the beginning of the section, the Cartesian product was used to
introduce the notion of a limit. In that example, illustrated in fig. B.2,
spans over the sets 𝐴 and 𝐵 are cones.

B.8-5 cone faces In the progression of finite categories, we have al-
ready seen 𝟬 and 𝟭 (def. B.1-2 and def. B.1-3).

B.8-6 . The category 𝟯 is depicted as

𝟯 ≔
𝑋 𝑌

𝑍

𝑓𝑋𝑌

𝑓𝑌𝑍𝑓𝑍𝑋
,

where the objects and arrows have been labelled for use in this example.

Let 𝘋∶ 𝟯 → 𝘾 be a diagram of 𝟯 in an arbitrary category 𝘾 . A cone
on 𝘋, (𝐴, 𝜆), looks like this:

𝐴

𝘋𝑋 𝘋𝑌 ,

𝘋𝑍

𝜆𝑋 𝜆𝑌
𝑓𝑋𝑌

𝑓𝑌𝑍𝑓𝑍𝑋

𝜆𝑍
(B.8.8)

where the image of 𝘋 has been faded grey for clarity and the constituents
of the pair (𝐴, 𝜆) are drawn black.7 Each triangular face of the cone must
commute.

Since a cone is a constellation of objects and arrows in the codomain
of a diagram, the arrows of the codomain can map between cones if they
preserve the cone structure.

definition B.8-7 (Cone morphism). Given two cones (𝐴, 𝛼), (𝐵, 𝛽) over
a diagram 𝘋∶ 𝙄 → 𝘾 , a morphism 𝑓 ∶ (𝐴, 𝛼) → (𝐵, 𝛽) between the cones
is a 𝘾-arrow 𝑓 ∶ 𝐴 → 𝐵 such that the following diagram commutes for
each 𝐽 ∈ 𝙄 :

𝐴 𝐵 .

𝘋𝐽

𝑓

𝛼𝐽 𝛽𝐽
(B.8.9)

7 Roughly speaking, if one imagines a sort of volume of rotation swept by the arrows
𝜆 as the triangular base is rotated, the motivation behind the name cones is apparent.

285

Having a collection of cones over a diagram and morphisms among
them suggests a category.

definitionB.8-8 (Cone category). Adiagram𝘋 induces a category𝗖𝗼𝗻𝗲𝘋
with

objects: cones over 𝘋
arrows: cone morphisms.

A limit then will stand out as a special object the category of cones.

definition B.8-9. A limit of a diagram 𝘋, denoted lim𝘋, is a terminal
object in 𝗖𝗼𝗻𝗲𝘋 . This is a so-called universal cone.

Perhaps a good way to visualise this is by taking a cross-section of
𝗖𝗼𝗻𝗲𝘋 in 𝘾 along a single face as in (B.8.7). Connecting the cones, we will
also have the commuting triangles from (B.8.9). For a diagram 𝘋∶ 𝙄 → 𝘾
and for each 𝐼 , 𝐽 ∈ 𝙄 , the corresponding faces of the cones in 𝗖𝗼𝗻𝗲𝘋 (with
cone points • and terminal object lim𝘋) form the following series of nested
commuting triangles with cone morphisms drawn red:

•
⋮
•

lim𝘋

𝘋𝐼 𝘋𝐽 .

𝜆𝐽𝜆𝐼

𝘋𝑓

(B.8.10)

Intuitively, lim𝘋 can be seen as the purest, simplest, or “closest” cone. Any
other cone (𝐴, 𝛼) has a morphism 𝑓 ∶ 𝐴 → lim𝘋 such that for all 𝐼 , 𝐽 ∈ 𝙄 ,
it holds that 𝛼𝐼 = 𝜆𝐼 ∘ 𝑓 . In this sense, all other cones are said to “factor”
through lim𝘋. Compare that to the informal illustration for the opening
example of the section, Figure B.2.

B.8-10 Aside from the product, we have seen another example of a
limit: terminal objects (§B.3). The index category for the construction of
a terminal object is 𝟬, the empty category8:

𝘋∶ 𝟬 → 𝘾
8 For empty category, see def. B.1-2, p. 266

286

Clearly, there can be no data in 𝘋 since its domain is empty: 𝘋 is only a
functor in the trivial sense. The cones over the empty diagram are sim-
ilarly rendered vacant: since there is no image of 𝟬 through 𝘋 then the
cone is merely a cone-point: no edges and thus no faces. Put plainly,
ob𝗖𝗼𝗻𝗲𝘋 = ob𝘾 , and all of the requisite cone-face relationships are sat-
isfied vacuously. The limit “cone” is the 𝘾-object to which every other
cone-point has a unique morphism. Therefore, the limit over the empty
diagram is precisely a terminal object in 𝘾 .9

∗ ∗ ∗
As cones are to limits, cocones are to colimits. Cocones are cones with the
arrows from the cone-point reversed. (That is, a cocone is a cone in 𝘾op.)

definition B.8-11. Consider an arbitrary category 𝘾 , an index category

𝙄 and a diagram 𝘋∶ 𝙄 → 𝘾 . A cocone under 𝘋 is a pair (𝑍 , 𝘋 𝛥𝑍
𝛾) of

 𝑍 , a 𝘾-object called the cocone-point,
 𝛾 , a family of morphisms from the objects in the image of 𝘋 to the
cocone-point that can be thought of as a natural transformation
from the diagram to the constant functor 𝛥𝑍 .

B.8-12 The cocone analogue of (B.8.8) from B.8-5 (p. 284) is

𝘋𝑍
𝘋𝑋 𝘋𝑌 .

𝐴

𝑓𝑍𝑋

𝛾𝑍
𝑓𝑋𝑌

𝛾𝑋

𝑓𝑌𝑍

𝛾𝑌

B.8-13 cocones in binary disjoint union At the beginning of the
section, the disjoint union was used to introduce the notion of a colimit.
In that example, illustrated in Figure B.2, cospans under the sets 𝐴 and 𝐵
are cocones.

9 It is a common abuse of notation to identify a limit (which is a cone) with the limit
cone-point—but in this unique situation it is correct because cones over the empty dia-
gram are just cone-points.

287

Given two cocones (𝐴, 𝛼), (𝐵, 𝛽) under a diagram 𝘋∶ 𝙄 → 𝘾 , a mor-
phism 𝑓 ∶ (𝐴, 𝛼) → (𝐵, 𝛽) between the cones is a 𝘾-arrow 𝑓 ∶ 𝐴 → 𝐵 such
that the following diagram commutes for each 𝐽 ∈ 𝙄 :

𝐴 𝐵 .

𝘋𝐽

𝑓
𝛼𝐽 𝛽𝐽

As with the category of cones, a diagram 𝘋 dually presents a category
𝗖𝗼𝗰𝗼𝗻𝗲𝘋 of cones under 𝘋.
definition B.8-14. A colimit of a diagram 𝘋, denoted colim𝘋, is an
initial object in𝗖𝗼𝗰𝗼𝗻𝗲𝘋 . This is a so-calleduniversal cocone that factors
through all other cocones.

As in (B.8.10), we can look at a cross section of the cocones in 𝘾 :

𝘋𝐼 𝘋𝐽 .

colim𝘋

•
⋮
•

𝘋𝑓
𝛾𝐼 𝛾𝐽

(B.8.11)

Compare this to the informal illustration for the opening example of the
section, fig. B.2.

B.8-15 In ‹B.8-10› we see that terminal objects are definable through
limits. Since terminal objects are dual to initial objects, it should come
as little surprise that initial objects are definable as colimits. They are
colimits of the diagram of the empty category:

𝘋∶ 𝟬 → 𝘾.
The cocones under the empty diagram contain only the cocone-point, so
all the requisite cocone-face relationships are vacuously satisfied. The col-
imit is precisely a 𝘾-object from which every other cocone-point has a
unique morphism. In other words, the colimit of the empty diagram is
precisely an initial object.

288

B.9 products

This section opened with a discussion of products and coproducts in 𝕊𝗲𝘁
to lend intuition. With limits defined we circle around to formally define
categorical products in general.

Abstract products in a category 𝘾 are limits of diagrams of discrete
finite categories:

�̇� ≔ 1 2 ,
�̇� ≔ 1 2 3 ,
�̇� ≔ 1 2 3 4 ,

⋮ .
An 𝑛-fold product is determined by the limit of a diagram with the shape
of a discrete category with 𝑛 objects.

notation B.9-1. For 𝑛 ∈ ℕ, the 𝑛-th discrete finite category is the
category with enumerated objects 1, 2, …, 𝑛, and where the only arrows
are identities:

�̇� ≔ 1 2 ⋯ 𝑛 .
Let us first reconstruct10 the simplest such object, the 2-fold (binary) prod-
uct, before moving to the 𝑛-fold case.

B.9-2 Let 𝘋 be the diagram 𝘋∶ �̇� → 𝘾; 1 ↦ 𝐴; 2 ↦ 𝐵. A cone over 𝘋
with cone-point 𝐶 ∈ 𝘾 is a span,

𝐴 𝐶 𝐵 .
𝑓𝐴 𝑓𝐵

A binary product in 𝘾 is a span (𝐴⊗𝐵, {𝜋1, 𝜋2 }) = lim𝘋. That is, if for all
other spans (𝐶, { 𝑓𝐴, 𝑓𝐵 }), there exists a unique morphism 𝑢∶ 𝐶 → 𝐴 ⊗ 𝐵
such that the following diagram commutes:

𝐶

𝐴 𝐴 ⊗ 𝐵 𝐵 .

𝑓𝐴 𝑓𝐵
∃! 𝑢

𝜋1 𝜋2

(B.9.12)

10 This was done informally and in the specific context of 𝕊𝗲𝘁 in the beginning of this
section, ca. p. 280.

289

Equation (B.9.12) is a specialisation of (B.8.10) to the case of the binary
product. Since the commutativity condition of (B.9.12) requires that 𝜋1𝑢 =
𝑓𝐴 and 𝜋2𝑢 = 𝑓𝐵, the only information we need to construct 𝑢 is the pair 𝑓𝐴
and 𝑓𝐵. In this sense, an arrow into a product object is reducible to a pair
of arrows. In many texts on general ct, 𝑢 is denoted ⟨𝑓𝐴, 𝑓𝐵⟩, but a more
specialised notation will be introduced later. (See the “fan-out operator”,
ntn. B.9-7.)

Higher order products, multifunctors of the form 𝐴 ⊗ 𝐵 ⊗ 𝐶 ⊗ ⋯, are
constructed the sameway, but on diagrams with more discrete objects. An
𝑛-ary or 𝑛-fold product is constructed from a diagram of �̇� → 𝘾 .

definition B.9-3 (𝑛-fold product). Given an arbitrary category 𝘾 and
some 𝑛 ∈ ℕ≥2, consider a diagram 𝘋∶ �̇� → 𝘾 that sends 𝑖 ∈ �̇� to 𝑋𝑖 ∈ 𝘾 .
Cones on the diagram are 𝑛-spans:

𝐶 𝑋𝑖
𝑓𝑋𝑖 for all 𝑖 ∈ �̇�.

The 𝑛-fold product is universal cone:

lim𝘋 = (⨂
𝑗 ∈ �̇�

𝑋𝑗 𝑋𝑖
𝜋𝑖)

𝑖 ∈ �̇�
,

This means that for all other cones there exists a unique arrow 𝑢 making
the following diagrams commute:

𝐶

⨂
𝑖 ∈ �̇�

𝑋𝑖 𝑋𝑗

∃! 𝑢
𝑓𝑋𝑗

𝜋𝑗

for all 𝑗 ∈ �̇�.

proposition B.9-4 ([109, Prop. 2.7, p. 40]). Products in a category, when
they exist, are unique up to isomorphism.

notation B.9-5. Consider a category (𝘾, ⊗, 1𝘾) with countable prod-
ucts and terminal object. In the special cases of iterated products on the
same 𝘾-object, that is, limits of the constant diagrams �̇� ∋ 𝑛 ↦ 𝑋 for fixed
𝑋 ∈ 𝘾 , we enjoy the compact notation:

𝑋⊗𝑛 ≔ ⨂
𝑛

𝑋,

290

with 𝑋⊗0 ≅ 1𝘾 , 𝑋⊗1 ≅ 𝑋 and inductively 𝑋⊗𝑛 ≅ 𝑋⊗(𝑛−1) ⊗ 𝑋 .

Intuition from the case (𝘾, ⊗, 1𝘾) = (𝕊𝗲𝘁, ×, 𝟣) is that 𝑋 ×𝑛 the set of
all 𝑛-tuples of 𝑋 , which will be made explicit in §B.9.1.

The Greek word
for “consolidate”
is “παγιώνω”, ac-
cording to Google.
Since 𝜋 is already
used for product
projection, I use
the variant form
of pi, 𝜛, for the
consolidation of
products.

proposition B.9-6 ([33, Prop. 2.5]). In a category with countable prod-
ucts there exists a natural isomorphism:

𝜛𝑚,𝑛
𝑋 ∶ 𝑋⊗𝑚 ⊗ 𝑋⊗𝑛 ⥲ 𝑋⊗(𝑚+𝑛)

for 𝑚, 𝑛 ∈ ℕ, called consolidation.

B.9.1 Products in 𝕊𝗲𝘁 reprised

In the beginning of the section we discussed products in 𝕊𝗲𝘁. From an intu-
itive but informal approach, we arrived at the Cartesian product. We are
now in a position to approach it with the formal definition of a categorical
product and see once again that the categorical product is the Cartesian.

Consider a 𝕊𝗲𝘁-span centered on the singleton 𝟣:

𝐴 𝟣 𝐵 ,𝑎 �⃗�

where 𝐴 and 𝐵 are any sets. Global elements reveal the elements of a set,
manifesting them as arrows: { 𝑛 | 𝑛 ∈ ◌ } ≅ hom(𝟣,◌).11 We will use this
span of global elements to probe the elements of the categorical product
by substituting it into (B.9.12):

𝟣

𝐴 𝐴 ⊗ 𝐵 𝐵 .

𝑎 �⃗�
∃! 𝑢

𝜋1 𝜋2

The singleton element () contains no information in and of itself so the
fact that

𝜋1 ∘ 𝑢() = 𝑎() = 𝑎 and 𝜋2 ∘ 𝑢() = �⃗�() = 𝑏
implies that 𝜋1 ∘ 𝑢 and 𝜋2 ∘ 𝑢 hold any structural information required to
locate and retrieve 𝑎 and 𝑏 from𝐴⊗𝐵. Specifically, 𝑢 locates an element in

11 See §B.4.

291

𝐴⊗𝐵 that can be “unpacked” by the projections to give an 𝐴-element and
a 𝐵-element—making clear that the elements of 𝐴⊗𝐵 contain both. Since
𝑢 is unique, there can be only one such element in 𝐴 ⊗ 𝐵, constraining
the product to a minimal representation. An ordered pair is the minimal
structured expression of 𝑎 and 𝑏 implying that 𝑢() = (𝑎, 𝑏). Next, like some
sort of categorical solid of revolution, we can vary 𝑎 over all𝐴 and likewise
for 𝐵, mapping out the full contents of𝐴⊗𝐵 and revealing that the product
is indeed the Cartesian product:

𝐴 ⊗ 𝐵 = 𝐴 × 𝐵 = { (𝑎, 𝑏) | 𝑎 ∈ 𝐴; 𝑏 ∈ 𝐵 }.
This makes the projections

𝜋1∶ 𝐴 × 𝐵 → 𝐴
(𝑎, 𝑏) ↦ 𝑎, and

𝜋2∶ 𝐴 × 𝐵 → 𝐵
(𝑎, 𝑏) ↦ 𝑏.

The previous exercise demonstrates that the unique factorization 𝑢∶ 𝟣 →
𝐴 × 𝐵 is determined by the choice of 𝑎 and �⃗�. Likewise, going back to the

general case of spans 𝐴 𝐶 𝐵𝑓𝐴 𝑓𝐵 , illustrated in (B.9.12), the unique fac-
torization 𝑢∶ 𝐶 → 𝐴 × 𝐵 is determined by the choice of 𝑓𝐴 and 𝑓𝐵. Given
an element 𝑐 ∈ 𝐶 , 𝑢 must produce a pair by applying 𝑓𝐴 and 𝑓𝐵 separately
and packaging the results into a pair. This operation has enough general
utility to warrant special notation, 𝑢 = 𝑓𝐴 △ 𝑓𝐵.
notation B.9-7. The operator △, sometimes called fan-out, is defined
in 𝕊𝗲𝘁 as

𝑓𝐴 △ 𝑓𝐵 ∶ 𝐶 → 𝐴 × 𝐵
𝑐 ↦ (𝑓𝐴 𝑐, 𝑓𝐵 𝑐).

As a mnemonic aid, think of △ as as geometric amalgam of the logical
“and” operator, ∧, and function composition, ∘, since we combine the left
and right functions giving a two-fold map.

For example, take sin △ cos∶ ℝ[0, 2π) → ℝ[−1, 1] × ℝ[−1, 1] which maps
the 2π-interval to the unit circle. So sin △ cos (π/3) = (√3/2, 1/2).

Though the foregone discussion has focussed on the binary product,
it all generalises straightforwardly to 𝑛-ary finite Cartesian products. In
fact, it will soon be made clear that, in the category of sets,

𝐴 × 𝐵 × 𝐶 ≅ 𝐴 × (𝐵 × 𝐶) ≅ (𝐴 × 𝐵) × 𝐶,

292

so higher order products can be constructed from iterated binary prod-
ucts. Furthermore, the notation 𝑋 ×𝑛 extrapolated from ntn. B.9-5 sim-
plifies nicely to 𝑋 𝘯, for 𝑛 ∈ ℕ and 𝘯 = { 0, … , 𝑛 }. This suggests (quite
correctly) that Hom(𝑛, 𝑋) ≅ 𝑋 ×𝑛. This allows us to think of an array of
𝑋 -values indexed by 𝘯, with 𝑋 𝟢 ≅ 𝟣, 𝑋 𝟣 ≅ 𝑋 (the global elements) and
inductively 𝑋 𝘯 ≅ 𝑋 {0, … , 𝑛−1} × 𝑋 . Pick any 𝑚, 𝑛 ∈ ℕ, the natural iso-
morphism 𝑋𝘮 × 𝑋 𝘯 ≅ 𝑋𝘮 ⊔ 𝘯 is like concatinating an 𝑚-tuple and 𝑛-tuple
(forward) or splitting an (𝑚 + 𝑛)-tuple into 𝑚- and 𝑛-tuples (reverse).
remark B.9-8. In 𝕊𝗲𝘁 one can construct a product for any finite collec-
tion of sets. We could say that 𝕊𝗲𝘁 admits all limits of discrete shape, but
more naturally we say that it admits all finite products. This leads to the
notion of multivariate functions as arrows from product sets: 𝕊𝗲𝘁(𝐴 × 𝐵 ×
⋯, 𝑍).12

B.10 coproducts

Coproducts are dual to products, so the following discussion strongly par-
allels §B.9. Abstract coproducts in a category 𝘾 , also called the categori-
cal sum, are colimits of diagrams of discrete finite categories:

�̇� ≔ 1 2 ,
�̇� ≔ 1 2 3 ,
�̇� ≔ 1 2 3 4 ,

⋮ .
An 𝑛-fold coproduct is determined by the colimit of a diagram with the
shape of a discrete categorywith 𝑛 objects. We shall construct the simplest
such object, the 2-fold (binary) coproduct before moving to the 𝑛-fold case.

B.10-1 Let 𝘋 be the diagram 𝘋∶ �̇� → 𝘾; 1 ↦ 𝐴; 2 ↦ 𝐵, selecting the
summands. A cocone over 𝘋 with cocone-point 𝐶 ∈ 𝘾 is a cospan,

𝐴 𝐶 𝐵 .
𝑓𝐴 𝑓𝐵

A binary coproduct in 𝘾 is a cospan (𝐴 ⊕ 𝐵, { 𝜄1, 𝜄2 }) = colim𝘋. That
is, if for all other cospans (𝐶, { 𝑓𝐴, 𝑓𝐵 }), there exists a unique morphism

12 This is how categories and operads can be related.

293

𝑢∶ 𝐴 ⊕ 𝐵 → 𝐶 such that the following diagram commutes:

𝐴 𝐴 ⊕ 𝐵 𝐵 .

𝐶

𝜄1

∃! 𝑢

𝜄2

𝑓𝐴 𝑓𝐵
(B.10.13)

The previous diagram is a specialisation of (B.8.11) to the case of the
binary coproduct. A coproduct is precisely a product in𝘾op so if they exist,
they too are unique up to isomorphism. The functions 𝜄 are called injections
in contrast to projections, but they need not be injective (or epi).13 The
commutativity condition of (B.10.13) requires that 𝑢 𝜄1 = 𝑓𝐴 and 𝑢 𝜄2 = 𝑓𝐵.
In this sense, an arrow from a coproduct object is reducible to a pair of
arrows. In mainstream texts on general ct, the arrow 𝑢 is denoted [𝑓𝐴, 𝑓𝐵],
but a more specialised notation will be introduced later. (See the “fan-in
operator”, ntn. B.9-7.)

Higher order coproducts, 𝐴⊕𝐵⊕𝐶 ⊕⋯, are constructed on diagrams
with more discrete objects.

definition B.10-2. Given an arbitrary category 𝘾 and some 𝑛 ∈ ℕ≥2,
consider a diagram 𝘋∶ �̇� → 𝘾 that sends 𝑖 ∈ �̇� to 𝑋𝑖 ∈ 𝘾 . Cocones on the
diagram are 𝑛-cospans:

𝐶 𝑋𝑖
𝑓𝑋𝑖 for all 𝑖 ∈ �̇�.

The 𝑛-fold coproduct is universal cocone:

colim𝘋 = (⨁
𝑗 ∈ �̇�

𝑋𝑗 𝑋𝑖
𝜄𝑖)

𝑖 ∈ �̇�
,

This means that for all other cones there exists a unique arrow 𝑢 making
the following diagrams commute:

⨁
𝑗 ∈ �̇�

𝑋𝑗 𝑋𝑖

𝐶

𝜄𝑖

∃! 𝑢 𝑓𝑋𝑖
for all 𝑖 ∈ 𝐼 .

13 Awodey briefly calls them “coprojections” in [109], which has a satisfying clarity,
but is not conventional terminology.

294

Products in a category, when they exist, are unique up to isomorphism.

B.10.1 Coproducts in 𝕊𝗲𝘁 reprised

Products in 𝕊𝗲𝘁 (from the last section, §B.9.1) entail the organisation and
unpacking of tuples—sequences of elements of sets. In this sense, there is
a deep relationship between 𝕊𝗲𝘁-products and sequencing. Dually to that
sense, there is a deep relationship between 𝕊𝗲𝘁-coproducts and selection.
Instead of tuples, the machinery around coproducts will entail case-wise
structures.

In the beginning of the section we discussed coproducts in 𝕊𝗲𝘁. From
an intuitive but informal approach, we arrived at the Cartesian product.
We are now in a position to approach it from the general notion of a cate-
gorical product and land once again on the disjoint union.

As with we did with binary 𝕊𝗲𝘁-products14, we will try to use a simple
probe to tease meaning out of these diagrams. Consider the case where
𝐴 = 𝐵 = 𝟣, then given 𝑐1 ∈ 𝐶 and 𝑐2 ∈ 𝐶 the corresponding cospan is

𝟣 𝐶 𝟣 .
𝑐1 𝑐2

Substituting it into (B.10.13) we get the commutative diagram

𝟣 𝟣 ⊕ 𝟣 𝐵 .

𝟣

𝜄1

∃! 𝑢

𝜄2

𝑐1 𝑐2

which encodes
𝑢 ∘ 𝜄1 = 𝑐1 and 𝑢 ∘ 𝜄2 = 𝑐2.

The injections are canonical, and locate the element of each summand
into the coproduct object 𝟣 ⊕ 𝟣. It is the job of 𝑢 to map the images of the
injections to their targets in 𝐶 as determined by 𝑐1, 𝑐2. But the summands,
the left- and right-hand singletons, are identical: how does 𝑢 discern when
to use 𝑐1 or 𝑐2? The object 𝟣 ⊕ 𝟣 must not only embody the elements of
the summands, but must also encode their origin in either the left or right
summand.

𝟣 ⊕ 𝟣 ≅ { (𝑎, 1), (𝑏, 2) },
14 in §B.9.1, p. 290

295

which is a disjoint union of the singletons, 𝟣⊔𝟣, as expected. The tags15 “1”
and “2” mirror the injection labels. The injections conspire in the scheme
by appending the appropriate tag:

𝜄1∶ 𝟣 → 𝟣 ⊔ 𝟣
() ↦ ((), 1) and

𝜄2∶ 𝟣 → 𝟣 ⊔ 𝟣
() ↦ ((), 2).

Allowing the summands as 𝐴 and 𝐵 to vary among all sets, the situa-
tion generalises back to

𝐴 𝐴 ⊔ 𝐵 𝐵 ,

𝐶

𝜄1

∃! 𝑢

𝜄2

𝑓𝐴 𝑓𝐵

with injections

𝜄1∶ 𝐴 → 𝐴 ⊔ 𝐵
𝑎 ↦ (𝑎, 1) and

𝜄2∶ 𝐵 → 𝐴 ⊔ 𝐵
𝑏 ↦ (𝑏, 2).

The unique 𝑢∶ 𝐴 ⊔ 𝐵 → 𝐶 encompasses as a special composite of 𝑓𝐴
and 𝑓𝐵 and gets its own notation. Dual to the fan-out operator, △, we have

notation B.10-3. The operator ▽, sometimes called fan-in, is defined
in 𝕊𝗲𝘁 as

𝑓𝐴 ▽ 𝑓𝐵 ∶ 𝐴 ⊔ 𝐵 → 𝐶

(𝑥, 𝑖) ↦ { 𝑓𝐴 𝑥 if 𝑖 = 1
𝑓𝐵 𝑥 if 𝑖 = 2

As a mnemonic aid, think of ▽ as visually similar to logical “or” oper-
ator, ∨, since it applies the left or right function depending on the tag of
the argument.

Though the foregone discussion has focussed on the binary coproduct,
it all generalises straightforwardly to 𝑛-ary finite coproducts. In fact, it
will soon be made clear that, in the category of sets,

𝐴 ⊔ 𝐵 ⊔ 𝐶 ≅ 𝐴 ⊔ (𝐵 ⊔ 𝐶) ≅ (𝐴 ⊔ 𝐵) ⊔ 𝐶,
so higher order coproducts can be constructed from binary coproducts.

15 The tags themselves are not important. We could use text strings “A” and “B” or
“left” and “right” or anything else that uniquely identifies the source of each element.”

296

remark B.10-4. We can construct a coproduct for any finite collection
of sets. We could say that 𝕊𝗲𝘁 admits all colimits of discrete shape, but
more naturally we say that it admits all finite coproducts.

B.11 monoidal structures in categories

Monoids are sometimes called a group without inverses or a semigroup
with identity. Since monoids will be a thread throughout the thesis, we
should define it formally:

definition B.11-1. An (algebraic)monoid is a triple (𝑀,Ⓜ, 𝑒) consisting
of
 a set 𝑀 ,
 a binary operation, Ⓜ∶ 𝑀 × 𝑀 → 𝑀 , and
 a value 𝑒 ∈ 𝑀

which obey three axioms:
m-1: (Closure) for any 𝑎, 𝑏 ∈ 𝑀 , (𝑎 Ⓜ 𝑏) ∈ 𝑀 .
m-2: (Associativity) for any 𝑎, 𝑏, 𝑐 ∈ 𝑀 , (𝑎 Ⓜ 𝑏) Ⓜ 𝑐 = 𝑎 Ⓜ (𝑏 Ⓜ 𝑐)
m-3: (Identity) The element 𝑒 ∈ 𝑀 , called the identity element and for

any 𝑎 ∈ 𝑀 , 𝑒 Ⓜ 𝑎 = 𝑎 Ⓜ 𝑒 = 𝑎
definition B.11-2. Given monoids (𝐴, Ⓐ, 𝑒𝐴) and (𝐵, Ⓑ, 𝑒𝐵), a homo-
morphism of monoids is a function 𝑓 ∶ 𝐴 → 𝐵 such that:
 ℎ(𝑎 Ⓐ 𝑎′) = ℎ(𝑎) Ⓑ ℎ(𝑎′)
 ℎ(𝑒𝐴) = 𝑒𝐵,

thus respecting the structure of the monoids.

notation B.11-3 (Underlying set of a monoid). Given a monoid 𝑀 , the
set that underlies it is denoted |𝑀|. At the risk of self-referencing defini-
tions, we may introduce arbitrary monoids as 𝑀 = (|𝑀|, Ⓜ, 𝑒).
definition B.11-4. There is a category of algebraic monoids, 𝗠𝗼𝗻(𝕊𝗲𝘁)
with

objects: all algebraic monoids,
arrows: all monoid homomorphisms, def. B.11-2, as arrows in 𝕊𝗲𝘁 that

respect the structure of the monoids.
The forgetful functor 𝘜𝗠𝗼𝗻∶ 𝗠𝗼𝗻(𝕊𝗲𝘁) → 𝕊𝗲𝘁 maps each monoid 𝑀 to
its underlying set |𝑀| and each monoid homomorphism ℎ to its underlying
function |ℎ|.

297

Monoids provide a very fundamental model of composition and it is
perhaps unsurprising that monoidal structures are readily seen within cat-
egories which are all about composition. Examples of monoids are prolific:
some familiar ones are (ℕ, +, 0), (ℝ, ×, 1). In this section, we discuss and
classify monoidal structures made from the objects and arrows of a cate-
gory.

A binary operation on the constituents of a category will take the form
of binary functors or bifunctors. These can be thought of as functors of two
arguments, or a single-variate functor on products in ℂ𝗮𝘁. A bifunctor
○∶ 𝘾 × 𝘿 → 𝙀 (written in infix notation) satisfies

{ id𝐴 ○ id𝐵 = id𝐴○𝐵
(𝑓 ○ 𝑔)(𝑓 ′ ○ 𝑔′) = (𝑓 𝑓 ′) ○ (𝑔𝑔′)

when the composites are well formed.
The product and coproduct operators are bifunctors:

⊗,⊕∶ 𝘾 × 𝘾 → 𝘾.
on a category 𝘾 . In order to build monoidal structure from these bifunc-
tors, we need to find units and demonstrate associativity and identity. In a
category, we might relax the monoid axioms as associativity and identity
up to natural isomorphism. So, instead of demanding that (𝐴 ⊗ 𝐵) ⊗ 𝐶 =
𝐴⊗(𝐵⊗𝐶), we need only demonstrate a natural isomorphism associating
both sides of the equation.

definition B.11-5. A monoidal structure in a category 𝘾 is a tuple
(○, 𝐼 , 𝛼, ℓ, 𝜚) consisting of
 ○∶ 𝘾 × 𝘾 → 𝘾 , a bifunctor called the monoidal product (or some-
times tensor product) in the category,
 𝐼 , a 𝘾-object called the monoidal unit (or tensor unit),
 𝛼 , a natural isomorphism called the associator with components of
the form

𝛼𝐴,𝐵,𝐶 ∶ 𝐴 ○ (𝐵 ○ 𝐶) ⥲ (𝐴 ○ 𝐵) ○ 𝐶 for all 𝐴, 𝐵, 𝐶 ∈ ob𝘾,
 ℓ, 𝜚, natural isomorphisms called (respectively) the left- and right-
unitors with components of the forms

ℓ𝐴∶ 𝐼 ○ 𝐴 ⥲ 𝐴
𝜚𝐴∶ 𝐴 ○ 𝐼 ⥲ 𝐴,

for all 𝐴 ∈ ob𝘾 .

298

For all 𝘾-objects 𝐴, 𝐵, 𝐶, 𝐷, the monoidal structure observes the commu-
tativity of the following two diagrams:

1. The associator diagramdepicting the equivalence of the various group-
ings of the product 𝐴 ○ 𝐵 ○ 𝐶 ○ 𝐷:

(𝐴 ○ 𝐵) ○ (𝐶 ○ 𝐷)

𝐴 ○ (𝐵 ○ (𝐶 ○ 𝐷)) ((𝐴 ○ 𝐵) ○ 𝐶) ○ 𝐷

𝐴 ○ ((𝐵 ○ 𝐶) ○ 𝐷) (𝐴 ○ (𝐵 ○ 𝐶)) ○ 𝐷 .

𝛼(𝐴 ○ 𝐵), 𝐶, 𝐷
𝛼𝐴, 𝐵, (𝐶 ○ 𝐷)

id𝐴 ○ 𝛼𝐵,𝐶,𝐷

𝛼𝐴, (𝐵 ○ 𝐶), 𝐷

𝛼𝐴,𝐵,𝐶 ○ id𝐷

(B.11.14)

2. The unitor diagram depicting the behaviour of the left- and right-
unitors on the product 𝐴 ○ 𝐼 ○ 𝐵 grouped on the left and right:

𝐴 ○ (𝐼 ○ 𝐵) (𝐴 ○ 𝐼) ○ 𝐵 .

𝐴 ○ 𝐵

𝛼𝐴,𝐼 ,𝐵

id𝐴 ○ ℓ𝐵
𝜚𝐴 ○ id𝐵

(B.11.15)

Having relaxed the associativity and unitary conditions to isomorphisms,
a strict monoidal structure is one in which 𝛼 , ℓ and 𝜚 are identities.

remarkB.11-6. The subscripts on the natural transformations of (B.11.14)
and (B.11.15) may be helpful but are unnecessary. The index of a natural
transformation is uniquely determined by its signature. It is often helpful
to be explicit—especially in a diagram purposed for revealing the intrica-
cies of the natural transformation. Other times, it is desirable to suppress
the visual noise they present.

Because the associator and unitors are isomorphisms, they have in-
verses:

𝛼−1∶ (𝐴 ○ 𝐵) ○ 𝐶 ⥲ 𝐴 ○ (𝐵 ○ 𝐶)
ℓ−1∶ 𝐴 ⥲ 𝐼 ○ 𝐴
𝜚−1∶ 𝐴 ⥲ 𝐴 ○ 𝐼

299

definitionB.11-7. A braidedmonoidal structure is a tuple (○, 𝐼 , 𝛼, ℓ, 𝜚, 𝛾),
a monoidal structure with the addition of a natural isomorphism, 𝛾 , with
components

𝛾𝐴,𝐵 ∶ 𝐴 ○ 𝐵 ⥲ 𝐵 ○ 𝐴
called the braiding. Braiding constitutes a weak commutative relation-
ship in the monoid. The braiding is compatible with the associator (in in
turn, the unitors) by commutativity of the diagrams:

(𝐴 ○ 𝐵) ○ 𝐶 𝐶 ○ (𝐴 ○ 𝐵)

𝐴 ○ (𝐵 ○ 𝐶) (𝐶 ○ 𝐴) ○ 𝐵

𝐴 ○ (𝐶 ○ 𝐵) (𝐴 ○ 𝐶) ○ 𝐵 ,

𝛾(𝐴○𝐵),𝐶

𝛼−1 𝛼

id𝐴○𝛾𝐵,𝐶 𝛾𝐶,𝐴○id𝐵
𝛼

𝐴 ○ (𝐵 ○ 𝐶) (𝐵 ○ 𝐶) ○ 𝐴

(𝐴 ○ 𝐵) ○ 𝐶 𝐵 ○ (𝐶 ○ 𝐴)

(𝐵 ○ 𝐴) ○ 𝐶 𝐵 ○ (𝐴 ○ 𝐶) .

𝛾𝐴,(𝐵○𝐶)

𝛼 𝛼−1

𝛾○id𝐶 id𝐵○𝛾
𝛼−1

(B.11.16)

definition B.11-8. If the braiding of a braided monoidal structure is self-
inverse,

𝛾 ∘ 𝛾 = id,
then the structure is called a symmetric monoidal structure.

When the category associated with these structures appear alongside
them in a tuple, they are named to reflect the monoidal structure.

definition B.11-9. A monoidal category is a category 𝘾 together with
a monoidal structure on 𝘾 that can be summarised by the tuple (𝘾, ○, 𝐼)
where it is understood that the monoidal product and unit have the struc-
ture of def. B.11-5. The terms strict monoidal category, braided mon-
oidal category and symmetric monoidal category are defined likewise,
with the additional structure implicit.

remark B.11-10. Any category with finite categorical products is mon-
oidal [81, §VII.1].

definitionB.11-11 (Co/cartesianmonoidal category). Themonoidal cat-
egory with monoidal structure given by the category theoretic product,
and the monoidal unit given by a terminal object is called a Cartesian

300

monoidal category. Amonoidal category with monoidal structure given
by the categorical coproduct an unit provided by an initial object is called
a Cocartesian monoidal category.

A truly erudite treatment of monoidal categories and braided/symmet-
ric monoidal categories is found in Mac Lane’s [81, §VII.1] and [81, Ch. XI]
respectively. Mac Lane does not take the approach of distinguishing a
monoidal category from its monoidal structure, but the foregone descrip-
tion is otherwise deliberately compatible. In [168, §4.4.3], Fong and Spivak
put forth less formal but very succinct and intuitive definitions and pro-
vide a wealth of insights relating to the application of monoidal categories
and the graphical calculus they import [114].

B.12 𝕊𝗲𝘁 as a cartesian monoidal category

The category of sets togetherwith the Cartesian product and any singleton
set, (𝕊𝗲𝘁, ×, 𝟣), constitutes a Cartesian monoidal category. In this section,
the details of the associator, left- and right-unitors and the braiding are
given. The main ideas are this:

• The set𝐴×𝐵×𝐶 is isomorphic to (𝐴×𝐵)×𝐶 and𝐴×(𝐵×𝐶) since the
tuples (𝑎, 𝑏, 𝑐), ((𝑎, 𝑏), 𝑐) and (𝑎, (𝑏, 𝑐)) are mutually interchangeable
by merely rearranging parentheses. This gives the associator.

• A set 𝐴 is isomorphic to 𝐴× 𝟣 and 𝟣 ×𝐴 because the singleton intro-
duces no opportunity for choice. Any such pair (𝑎, ()) can be pro-
jected back to just 𝑎 restored by re-appending the singleton. This
gives the unitors.

• The set 𝐴 × 𝐵 is isomorphic to 𝐵 × 𝐴 since any pair (𝑎, 𝑏) can be
rearranged as (𝑏, 𝑎) and back. This gives the braiding.

First, consider the associator for the Cartesian product. If we use the
strictly binary form of the product, we can construct the type (𝐴 × 𝐵) × 𝐶
by first taking the product 𝐴 × 𝐵 and then applying the binary product
again with 𝐶 on the right. Given elements 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝑐 ∈ 𝐶 , we can
construct an element of (𝐴 × 𝐵) × 𝐶 as ((𝑎, 𝑏), 𝑐). From that, it is a trivial
exercise in rearranging parentheses to form (𝑎, (𝑏, 𝑐))∶ 𝐴 × (𝐵 × 𝐶). This
is the job of the associator:

𝛼𝐴,𝐵,𝐶 ∶ 𝐴 × (𝐵 × 𝐶) ⥲ (𝐴 × 𝐵) × 𝐶
(𝑎, (𝑏, 𝑐)) ↦ ((𝑎, 𝑏), 𝑐)
(𝑎, (𝑏, 𝑐)) ↤ ((𝑎, 𝑏), 𝑐)

301

As the above notation makes apparent, the inverse follows trivially from
the forward operations since reordering parentheses is not a destructive
operation: no information is lost, so no external relationships determine
the inverse. It is short work to show that this definition satisfies (B.11.14).

Now to the unitors. The singleton, with its lone element, adds no va-
riety to a product: 𝟣 × 𝐴 is just { ((), 𝑎) | 𝑎 ∈ 𝐴 } which is in 1-to-1 corre-
spondence to 𝐴. The same is true, of course, if the singleton appears on
the right of the product. Therefore, the left- and right-unitors are merely
product projections in one direction, with the obvious inverse. For the
left-case,

ℓ𝐴∶ 𝟣 × 𝐴 → 𝐴
((), 𝑎) 𝜋2↦ 𝑎
((), 𝑎) ↤ 𝑎

The inverse operation relies on the fact that () is the only possibility for
the left element. With only a single element, 𝟣 can only provide embellish-
ment to a product, not variety. And so, ((), 𝑎), 𝑎 and (𝑎, ()) are equivalent
representations of the same information, with only adornment to distin-
guish them. Likewise,

𝜚𝐴∶ 𝐴 × 𝟣 → 𝐴
(𝑎, ()) 𝜋1↦ 𝑎
(𝑎, ()) ↤ 𝑎.

It is short work, once again, to verify that these definitions for 𝛼 , ℓ and 𝜚
satisfy (B.11.15).

The Cartesian monoidal structure on 𝕊𝗲𝘁 is symmetric. The braiding
merely swaps the order of pairs. For all sets 𝐴, 𝐵,

𝛾𝐴,𝐵 ∶ 𝐴 × 𝐵 ⥲ 𝐵 × 𝐴
(𝑎, 𝑏) ↦ (𝑏, 𝑎)
(𝑎, 𝑏) ↤ (𝑏, 𝑎)

Moreover, doubly applying this braiding to a pair (𝑎, 𝑏) ∈ 𝐴 × 𝐵 is in-
effectful:

𝛾 𝛾 (𝑎, 𝑏) = (𝑎, 𝑏),
making the braiding symmetric.

302

B.13 𝕊𝗲𝘁 as a cocartesian monoidal category

Now, consider the Cocartesian monoidal category (𝕊𝗲𝘁, ⊔, 𝟢). In this sec-
tion, the details of the associator, left- and right-unitors and the braiding
are given. The main ideas are this:

• The sets 𝐴 ⊔ 𝐵 ⊔ 𝐶 , 𝐴 ⊔ (𝐵 ⊔ 𝐶) and (𝐴 ⊔ 𝐵) ⊔ 𝐶 are either equal
or isomorphic depending on choice of tag structure. The tag struc-
ture exists only to distinguish the original membership of the union
elements and is not unique. If these sets differ, then they can be
interchanged by manipulating the tags. This gives the associator.

• A set 𝐴 is isomorphic to 𝐴 ⊔ 𝟢 and 𝟢 ⊔ 𝐴 since the empty set con-
tributes nothing to the union. An element of 𝐴⊔𝟢 or 𝟢⊔𝐴 can only
be an element of 𝐴, and can therefore be placed in 1-to-1 correspon-
dence with 𝐴. This gives the left- and right-unitors.

• The sets 𝐴 ⊔ 𝐵 and 𝐵 ⊔ 𝐴 are equal or isomorphic since they differ
(at most) by tags.

Braving a descent into pedantry, consider a construction of these ternary
disjoint unions by repeated application of the binary disjoint union as de-
fined in §B.10.1:

𝐴 ⊔ (𝐵 ⊔ 𝐶) = { (𝑎, 1) | 𝑎 ∈ 𝐴 } ∪ { (𝑥, 2) | 𝑥 ∈ 𝐵 ⊔ 𝐶 }
where

𝐵 ⊔ 𝐶 = { (𝑏, 1) | 𝑏 ∈ 𝐵 } ∪ { (𝑐, 2) | 𝑐 ∈ 𝐶 }
and

(𝐴 ⊔ 𝐵) ⊔ 𝐶 = { (𝑥, 1) | 𝑥 ∈ 𝐴 ⊔ 𝐵 } ∪ { (𝑐, 2) | 𝑐 ∈ 𝐶 }
where

𝐴 ⊔ 𝐵 = { (𝑎, 1) | 𝑎 ∈ 𝐴 } ∪ { (𝑏, 2) | 𝑏 ∈ 𝐵 }.
This awkwardly yields elements of varying product structure, like (𝑎, 2)
and ((𝑏, 1), 2), but this ismerely a notational inconvenience—a consequence
of naïvely using the binary product to construct the ternary products. The
associator fomented by this accounting system is merely a “re-tagger:”

𝛼𝐴,𝐵,𝐶 ∶ 𝐴 ⊔ (𝐵 ⊔ 𝐶) ⥲ (𝐴 ⊔ 𝐵) ⊔ 𝐶

{
(𝑥, 1)

((𝑥, 1), 2)
((𝑥, 2), 2)

↦ ((𝑥, 1), 1) (will be 𝑥 ∈ 𝐴)
↦ ((𝑥, 2), 1) (will be 𝑥 ∈ 𝐵)
↦ (𝑥, 2) (will be 𝑥 ∈ 𝐶)

303

Because the labels are unique, the associator is really a bijection between
the sets of tags, and this is therefore an isomorphism; the directions of the
maplet arrows above may be simply reversed to obtain 𝛼−1.

The empty set provides a unit for disjoint union because it contributes
no elements:

𝐴 ⊔ 𝟢 = { (𝑎, 1) | 𝑎 ∈ 𝐴 } ≅ 𝟢 ⊔ 𝐴 ≅ 𝐴
and

𝟢 ⊔ 𝐴 = { (𝑎, 2) | 𝑎 ∈ 𝐴 } ≅ 𝐴 ⊔ 𝟢 ≅ 𝐴.
The canonical injections, 𝜄1, 𝜄2, for such coproducts are merely decorators,
furnishing the elements of𝐴with a tag. The left- and right-unitors discard
the tag (by projection) inversely to the injection:

ℓ𝐴∶ 𝟢 ⊔ 𝐴 ⥲ 𝐴
(𝑥, 2) 𝜋1↦ 𝑥
(𝑥, 2) 𝜄2↤ 𝑥

and

𝜚𝐴∶ 𝐴 ⊔ 𝟢 ⥲ 𝐴
(𝑥, 1) 𝜋1↦ 𝑥
(𝑥, 1) 𝜄1↤ 𝑥.

From all this, we can also find braiding:

𝛾 ∶ 𝐴 ⊔ 𝐵 ⥲ 𝐵 ⊔ 𝐴

{ (𝑥, 1)(𝑥, 2)
↦ (𝑥, 2)
↦ (𝑥, 1)

that is self-inverse: 𝛾 𝛾 = id (by inspection of the above). Therefore, the
Cocartesian category, (𝕊𝗲𝘁, ⊔, 𝟢), is a symmetric monoidal category.

remark B.13-1. Instead of using integers as tags to implement disjoint
union, one could use some sort of string label uniquely determined by
the sets in the coproduct. In that case, relabelling would not have been
necessary.

B.14 monads

All told, a monad 𝑋 is just a monoid in the category of
endofunctors of 𝑋 , with product × replaced by
composition of endofunctors and unit set by the identity
endofunctor.

— Saunders MacLane
[81, p. 138]

304

Monads encapsulate algebraic theories and algebras are models of those
theories. Culturally, monads has obtained a legendary status among some
programmers because of its usefulness in modelling computations with
side effects [59, 63].The sub-section’s opening epigraph is often wrongly
attributed to Wadler possibly because of the following quote from Iry’s A
Brief, Incomplete, andMostlyWrongHistory of Programming Languages [105]:

1990 - A committee formed by Simon Peyton-Jones, Paul Hu-
dak, Philip Wadler, Ashton Kutcher, and People for the Ethi-
cal Treatment of Animals creates Haskell, a pure, non-strict,
functional language. Haskell gets some resistance due to the
complexity of using monads to control side effects. Wadler
tries to appease critics by explaining that “amonad is amonoid
in the category of endofunctors, what’s the problem?”

Humour aside, this is actually an effective scholarly description, even if
it is unhelpful as an answer to the question, “what is a monad, anyway?”
So the approach in this section will be to clarify Mac Lane’s portrayal,
building from the tools we have already established.

Recall that an endofunctor is a functor from a category into itself. A
natural transformation 𝜗 ∶ 𝘍 ⇒ 𝐺 between endofunctors 𝘍 , 𝘎 ∶ 𝘾 → 𝘾
is an assignment to each 𝘾-object an appropriately structure preserving
𝘾-arrow, collectively called the components of 𝜗 . Structure preserving
means that for all 𝑓 ∈ Hom𝘾 it holds that

𝜗cod 𝑓 ∘ 𝘍 𝑓 = 𝘎𝑓 ∘ 𝜗dom 𝑓 .
That is the naturality condition given in (B.7.2) and the commutativity
condition of the square diagram in (B.7.3).

Endofunctors on a category constitute a special case of a functor cat-
egory, 𝗘𝗻𝗱𝘾 = 𝗙𝘂𝗻(𝘾, 𝘾). Because signature alignment is guaranteed
by definition, endofunctors can be iterated ad libitum. Each endofunctor
𝘛 entails 𝘛 2, 𝘛 3, … ∈ 𝗘𝗻𝗱𝘾 , enabling us to build natural transformations
among them. This gives us a set, and a mechanism for defining operations
on the set. For a natural transformation 𝜇 ∶ 𝘛 2 ⇒ 𝘛 the domain 𝘛 2 should
be regarded as a binary product as in 𝑀 ○ 𝑀 from def. 3.5-6 where the
binary operation is functor composition.

definition B.14-1. A monad, 𝘛 , in a category 𝘾 is a monoid object of
𝗘𝗻𝗱𝘾

id𝘾 𝘛 𝘛 2 ,
𝜂 𝜇 ,

specified as a triple (𝘛 , 𝜂, 𝜇) where,

305

 𝜂 is a natural transformation called the unit.
 𝜇 is a natural transformation called the multiplication,

such that the identity triangles and the associativity square (ordered re-
spectively) commute:

𝘛 𝘛 2 𝘛

𝘛

𝘛 𝜂

ιd𝑇
𝜇

𝜂𝘛

ιd𝑇
and

𝘛 3 𝘛 2

𝘛 2 𝘛

𝜇𝘛

𝘛 𝜇 𝜇

𝜇

definition B.14-2. A monad (𝘛 ∶ 𝘾 → 𝘾, 𝜂, 𝜇) induces a category 𝘾𝘛
with

objects: Algebras, (𝐴, 𝘛 𝑋 𝛼−→ 𝐴) for all 𝐴 ∈ 𝘾 ; and
arrows: Algebra homomorphisms ℎ observing

𝘛 𝐴 𝘛 𝐵

𝐴 𝐵
𝐴

𝘛 ℎ

𝛽
ℎ

This is often called the Eilenberg-Moore category of the monad.

B.15 closed categories

It is a great philosophical curiosity (and very useful fact) that the collec-
tion of arrows between two sets, 𝕊𝗲𝘁(𝐴, 𝐵), is itself a set and is therefore a
citizen among the objects of 𝕊𝗲𝘁. In this strange way, the category of sets
knows itself, embodying a reflection of its outer structure among its inter-
nal constituents. This internal knowledge is organised by the hom-functor.

The homoperatorwas introduced in the definition of a category (def. B.1-
1) as the notational device to reference the collection of arrows between
two objects. To promote it to a functor we need to restrict the discussion
to small categories and define the action of hom on arrows.

definition B.15-1 (Hom functor). Given a locally small category 𝘾 , ar-
bitrary objects 𝐴, 𝐵, 𝑋 , 𝑌 ∈ 𝘾 and arrows

• 𝑓 ∶ 𝑋 → 𝐴
• 𝑔 ∶ 𝐵 → 𝑌

306

the hom-functor is

hom∶ 𝘾op × 𝘾 → 𝕊𝗲𝘁

{ (𝐴, 𝐵)(𝑓 , 𝑔)
↦ hom(𝐴, 𝐵)
↦ (ℎ ↦ 𝑔 ∘ ℎ ∘ 𝑓)

such that the following diagram commutes:

hom(𝐴, 𝐵) hom(𝑋 , 𝐵)

hom(𝐴, 𝑌) hom(𝑋 , 𝑌) .

hom(𝑓 ,𝐵)

hom(𝐴,𝑔) hom(𝑋 ,𝑔)
hom(𝑓 ,𝑌)

In the covariant argument, hom(𝐴, 𝑔), 𝑔 is lifted to ℎ ↦ 𝑔 ∘ ℎ for all
ℎ ∈ hom(𝐴, 𝐵). Likewise in the contravariant argument, in hom(𝑓 , 𝐵) the
function 𝑓 is lifted to ℎ ↦ ℎ∘𝑓 for ℎ ∈ hom(𝐴, 𝐵). Then the diagonal in the
diagram, mapping hom(𝐴, 𝐵) to hom(𝑋 , 𝑌), is the composite ℎ ↦ 𝑔 ∘ ℎ ∘ 𝑓 .

The special property of 𝕊𝗲𝘁 having internal knowledge of itself is make
explicit by substituting 𝘾 = 𝕊𝗲𝘁 in the previous definition. But some mon-
oidal categories can mirror this self-knowledge in more abstract ways by
admitting their own internal hom-functor.

definitionB.15-2 (Internal hom-functor, currying& evaluation). Agiven
monoidal category (𝘾, ⊗, 𝐼) has internal homs if it admits an internal
hom-functor , (⊸)∶ 𝘾op × 𝘾 → 𝘾 , that sends pairs (𝐴, 𝐵) ∈ 𝘾 × 𝘾 to
an “object of morphisms” or hom-object from 𝐴 to 𝐵 such that there is a
natural isomorphism

𝜆∶ hom(𝐴 ⊗ 𝐵, 𝐶) ⥲ hom(𝐴, 𝐵 ⊸ 𝐶),
called currying, along with a special arrow ev called evaluation both
reflected in the commutativity of the diagram

𝐵 ⊸ 𝐶 (𝐵 ⊸ 𝐶) ⊗ 𝐵 𝐶 .

𝐴 𝐴 ⊗ 𝐵 .

ev

𝜆𝑓 (𝜆𝑓) ⊗ id𝐵 𝑓

307

On arrows, the internal hom-functor acts through composition as the set-
valued one:

𝐴 ⊸ 𝐵 𝑋 ⊸ 𝐵

𝐴 ⊸ 𝑌 𝑋 ⊸ 𝑌 ,

𝑓 ⊸ 𝐵

𝐴 ⊸ 𝑔 𝑋 ⊸ 𝑔
𝑓 ⊸ 𝑌

for 𝐴, 𝐵, 𝑋 , 𝑌 ∈ 𝘾 and 𝑓 ∶ 𝑋 → 𝐴, 𝑔 ∶ 𝐵 → 𝑌 .
This is a formidable definition on its own, so here is some intuition.

Function application is a very concrete matter of daily activity while work-
ing with sets and functions. To think of it in the abstract, so that it may be
encoded in the arrows of an arbitrary category, we think about it in func-
tional terms. In the definition, let us substitute (𝘾, ⊗, 𝐼) = (𝕊𝗲𝘁, ×, 𝟣) so we
can speak in familiar terms. Further, let us suppose we have 𝑔 ∈ 𝐵 ⊸ 𝐶
and some 𝑏 ∈ 𝐵. Application looks like (𝑔, 𝑏) (𝑔𝑏 ∈ 𝐶)ev . Like any other

universal construction 16, we consider a morphism 𝐴 ⊗ 𝐵 𝐶𝑓
purport-

ing tomirror the behaviour of (𝐵 ⊸ 𝐶) ⊗ 𝐵 𝐶ev , and state that theremust
be a unique arrow (𝜆𝑓)⊗ id𝐵 so that it factors through ev . Of course, using
(𝕊𝗲𝘁, ×, 𝟣) gave us two conceptual conveniences: (1) we were able to think
in terms of elements and functions and (2) we were able to conceptualise
the monoidal product as Cartesian. But the definition relies on neither of
those ideas.

remarkB.15-3. In fact, it is a special case where themonoidal operation
in def. B.15-2 is the categorical product. Just in that case, hom-objects are
called exponential objects. They are traditionally denoted as 𝐵𝐴 ≔ 𝐴 ⊸
𝐵, but we will prefer the infix symbol.

B.15-4 a word on currying The natural transformation 𝜆 is no mere
scaffolding to support def. B.15-2, but is extremely useful in its own right.
Given a function 𝑓 ∶ 𝐴 × 𝐵 → 𝐶 , 𝜆𝑓 ∶ 𝐴 → (𝐵 ⊸ 𝐶) allows us to partially
apply variables in multivariate functions. The curried version of 𝑓 allows
us to write 𝜆𝑓 (𝑎)(𝑏) = 𝑓 (𝑎, 𝑏). This currying operation is a cornerstone of
functional programming, and in some languages (notably Haskell [111],
named after Haskell Curry) functions are curried by default. This will be
important in the thesis, allowing us to write functions on infinite products

16 Unlike other universal constructions we have seen that use co/limits, hom objects
are examples of a universal that are not expressible as co/limits.

308

that model an internal notion of state and produce intermediate values in
an infinite (stateful) calculation.

Recall that 𝜆 is a natural isomorphism. In the category of sets, a curried
function 𝑓 ′∶ 𝐴 → 𝐵 ⊸ 𝐶 , may be uncurried quite simply with the tools
at hand:

𝜆−1𝑓 ′ = ev ∘ (𝑓 ′ ⊗ id𝐵)∶ 𝐴 ⊗ 𝐵 → 𝐶.
Furthermore, 𝜆−1𝜆 𝑓 = 𝑓 and 𝜆 𝜆−1 𝑓 ′ = 𝑓 ′. This isomorphism is actually
a manifestation of the exponential relationship,

𝐴 ⊗ 𝐵 ⊸ 𝐶 ≅ 𝐴 ⊸ 𝐵 ⊸ 𝐶,
which is perhaps more familiar in the exponential notation:

𝐶𝐴⊗𝐵 ≅ (𝐶𝐵)𝐴.
If 𝐴, 𝐵 and 𝐶 were real numbers, the above isomorphism would be a famil-
iar identity from school-math.

notationB.15-5. The arrow and ringmap operators are right-associative,
so in the later case,

𝐴 ⊸ (𝐵 ⊸ (𝐶 ⊸ 𝐷))) = 𝐴 ⊸ 𝐵 ⊸ 𝐶 ⊸ 𝐷.
Also, and without much ado, we might also curry functions of arbitrary
arity:

𝐴 ⊗ 𝐵 ⊸ 𝐶 ≅ 𝐴 ⊸ 𝐵 ⊸ 𝐶
𝐴 ⊗ 𝐵 ⊗ 𝐶 ⊸ 𝐷 ≅ 𝐴 ⊸ 𝐵 ⊸ 𝐶 ⊸ 𝐷

𝐴 ⊗ 𝐵 ⊗ 𝐶⊗ ⊸ 𝐸 ≅ 𝐴 ⊸ 𝐵 ⊸ 𝐶 ⊸ 𝐷 ⊸ 𝐸
⋮

notation B.15-6. As a shorthand for currying, given 𝑓 ∶ 𝐴 ⊗ 𝐵 → 𝐶
let the decoration (̃) denote the curried form ̃𝑓 ∶ 𝐴 → 𝐵 ⊸ 𝐶 satisfying
𝑓 (𝑎, 𝑏) = ̃𝑓 𝑎 𝑏.

And now, a bit more nomenclature of categories with hom-functors.

definition B.15-7. A closed category is a braided or symmetric mon-
oidal category that admits internal homs with currying.

309

definition B.15-8. A Cartesian Closed Category (ccc) is a monoidal
closed category where the monoidal operation is the categorical product.

remark B.15-9. Awodey in [109, §6.6] writes “ccc ∼ λ-calculus”. In
fact, Church’s simply typed λ-calculus is the internal language of ccc, a
relationship upon which functional programming leans heavily.

definition B.15-10. A ccc that is extended with finite coproducts is
called a bicartesian closed category (biccc).

proposition B.15-11 ([33, Prop. 2.1]). If a ccc has binary coproducts ⊕
then there exist a natural isomorphism

𝑑𝐴,𝐵,𝐶 ∶ 𝐴 ⊗ (𝐵 ⊕ 𝐶) ⥲ (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶),
called the distributor , defined over objects 𝐴, 𝐵, 𝐶 spanning 𝘾 . By exten-
sion to countable coproducts, we have natural isomorphisms:

𝐴 ⊗⨁
𝑛

𝐵𝑛 ⥲ ⨁
𝑛
(𝐴 ⊗ 𝐵𝑛)

(⨁
𝑛

𝐴𝑛) ⊗ 𝐵 ⥲ ⨁
𝑛
(𝐴𝑛 ⊗ 𝐵)

(⨁
𝑚

𝐴𝑚) ⊗ (⨁
𝑛

𝐵𝑛) ⥲ ⨁
𝑚,𝑛

(𝐴𝑚 ⊗ 𝐵𝑛)

for 𝑚, 𝑛 ∈ ℕ. These are also denoted with 𝑑 , relying on the domain to
indicate which particular distributive law is being called to service.

propositionB.15-12 ([128]). In a biccc, products always distributes over
coproducts.

B.16 adjuctions

Indeed, I will make the admittedly provocative claim
that adjointness is a concept of fundamental logical and
mathematical importance that is not captured elsewhere
in mathematics.

— Steve Awodey
[109, p. 207]

310

In a chapter of brisk summaries and definitions, this section is a stands out.
It will present adjunctions visually to lend intuition, but this section will
do little justice to the very deep topic. For a more comprehensive view of
adjunctions, see sources such as [109, Ch. 9], [133, §7.1], [81, Ch. IV] and
[64, §2.4].

Adjunctions provide a comprehensive means of universal construc-
tion. Products (§B.9), coproducts (§B.10) and exponential objects (§B.15)
are common textbook examples of adjunctions. Exponential objects are
particularly interesting examples because they cannot be defined by lim-
it/colimit constructions.

The term adjunction is a shorthand for “an adjoint pair of functors”.
Consider the diagram in ℂ𝗮𝘁:

𝘾 𝘿 .
𝘙

𝘓

If it turned out that

𝘙𝘓 = id𝘿 and 𝘓𝘙 = id𝘾 (B.16.17)

then we would conclude that 𝘾 ≅ 𝘿. Isomorphism of categories is a very
stringent constraint! To relax that constraint, change equality in (B.16.17)
to isomorphism:

𝘙𝘓 ≅ id𝘿 and 𝘓𝘙 ≅ id𝘾
This is called an equivalence of categories 𝘾 and 𝘿. Adjunction is a further
relaxation of equivalence.

definitionB.16-1. (Preliminary definition) An adjunction between cat-
egories 𝘾 and 𝘿 is a pair of functors 𝘙∶ 𝘾 → 𝘿 and 𝘓∶ 𝘿 → 𝘾 such that
for all 𝐶 ∈ 𝘾 and 𝐷 ∈ 𝘿 there is an isomorphism of hom-sets:

𝘾(𝘓𝐷, 𝐶) ≅ 𝘿(𝐷, 𝘙𝐶) (B.16.18)

natural in 𝐶 and 𝐷.

311

The data of the former definition can be illustrated in respect to their
categories:

𝘾 𝘿

𝘓𝐷 𝐷

𝐶 𝘙𝐶

𝘾(𝘓𝐷, 𝐶) 𝘿(𝐷, 𝘙𝐶) ,

…

𝘓

…

𝘙
∼

where the arrow𝘾(𝘓𝐷, 𝐶) 𝘿(𝐷, 𝘙𝐶)∼ , at the bottom indicates a bijection
between the hom-sets shown with gray arrows. Since this bijection exists
for any choice of 𝐶 and𝐷, then there is a family of bijections for any choice
of 𝐶 and 𝐷: a natural isomorphism.

notation B.16-2. The adjoint relationship is not symmetrical. We say
that 𝘓 is the left adjoint of 𝘙 and 𝘙 is the right adjoint of 𝘓 written 𝘓 ⊣ 𝘙 or
in full display:

𝘾 𝘿
𝘙

𝘓⊣

(nb: In all cases, the post of the turnstile symbol, ⊣, points toward the left
adjoint.)

A less intuitive (perhaps) but often useful way to define adjunction is
in terms of two natural transformations, the so-called unit, 𝜂, and counit,
𝜀, of the adjunction. Recall that

𝘙𝘓 ≅ id𝘿 (B.16.19)

and
𝘓𝘙 ≅ id𝘾 . (B.16.20)

The unit comes from (B.16.19) as a natural transformation

𝜂∶ id𝘿 ⇒ 𝘙𝘓,

312

which is one half of that natural isomorphism. Likewise the counit is one
direction of (B.16.20):

𝜀 ∶ 𝘓𝘙 ⇒ id𝘾 .

If we let 𝐶 = 𝘓𝐷 in (B.16.18), we get 𝘾(𝘓𝐷, 𝘓𝐷) ≅ 𝘿(𝐷, 𝘙𝘓𝐷). The
hom-set 𝘾(𝘓𝐷, 𝘓𝐷) has at least one arrow: id𝘓𝐷 , and since it is in bijection
with 𝘿(𝐷, 𝘙𝘓𝐷) we can expect at least one arrow there too. That arrow is
𝜂𝐷 , the component of the unit at 𝐷. Graphically, this looks like:

𝘾 𝘿

𝘓𝐷 𝐷

𝘙𝘓𝐷
𝘙

𝘓

𝜂𝐷

Similarly for the counit, let 𝐷 = 𝘙𝐶 in (B.16.18) giving 𝘾(𝘓𝘙 𝐶, 𝐶) ≅
𝘿(𝑅𝘊, 𝘙𝐶). We know that id𝘙𝐶 ∈ 𝘿(𝘙𝐶, 𝘙𝐶) and we map that through
the natural isomorphism of hom-sets to obtain the component of 𝜀 at 𝐶 .
Graphically,

𝘾 𝘿

𝐶 𝘙𝐶

𝘓𝘙 𝐶

𝘙

𝘓

𝜀𝐶

Because the unit and counit are parts of a larger natural isomorphism,
(B.16.18), they must be constrained to preserve forward and backward
mapping. That leads to the triangle identities in the following definition.

definitionB.16-3. An adjunction between categories𝘾 and𝘿 is a quin-
tuple (𝘓, 𝘙, 𝜂, 𝜀) consisting of pair of functors

𝘓∶ 𝘿 → 𝘾 and 𝘙∶ 𝘾 → 𝘿

313

and natural transformations

𝜂∶ id𝘿 ⇒ 𝘓𝘙 and 𝜀 ∶ 𝘙𝘓 ⇒ id𝘾 ,
called unit and counit respectively, both satisfying the triangle identities:

𝘓 𝘓𝘙𝘓

𝘓

𝘓𝜂

id𝘍
𝜀𝘍 and

𝘙 𝘙𝘓𝘙

𝘙

𝜂𝘙

id𝘙
𝘙𝜀 (B.16.21)

which live in 𝗘𝗻𝗱𝘾 and 𝗘𝗻𝗱𝘿 respectively.

Of course, def. B.16-1 and def. B.16-3 are equivalent. To connect the
two, we can show how to obtain the isomorphism of hom-sets from the
unit and counit.

Let ℎ∶ 𝘓𝐷 → 𝐶 be an arrow in 𝘾(𝘓𝐷, 𝐶). By means of the adjunction
𝘓 ⊣ 𝘙 we know that 𝘾(𝘓𝐷, 𝐶) is isomorphic to 𝘿(𝐷, 𝘙𝐶). Call the partner
arrow, the image of ℎ on the other side of the isomorphism, ℎ′∶ 𝐷 → 𝘙𝐶 .
We have the unit and counit components to work with:

𝜂𝐷 ∶ 𝐷 → 𝘓𝘙𝐷 and 𝜀𝐶 ∶ 𝘙𝘓 𝐶 → 𝐶.
Putting these into diagrams we have

𝐷

𝘙𝘓𝐷 𝘙𝐶
ℎ′

𝜂𝐷

𝘙ℎ

and
𝘓𝐷

𝐶 𝘓𝘙 𝐶
ℎ 𝘓ℎ′

𝜀𝐶

the commutativity of which gives us the equations

ℎ′ = 𝑅ℎ ∘ 𝜂𝐷
and

ℎ = 𝜀𝐶 ∘ 𝘓ℎ′.
This works for all ℎ and ℎ′ in their respective hom-sets, and simple sub-
stitution shows that these are isomorphisms under the constraints of the
triangle equalities of def. B.16-3.

314

B.16.1 Free construction & free-forgetful adjunction

Many structures in mathematics consist of a set with adorning structure.
Monoids, groups, rings, magmas, vector spaces, topological spaces, mani-
folds, and many others are all erected atop an “underlying” set. These are
often termed “sets with additional structure”. Categorical analysis places
these objects into categories as objects connected along their respective
homomorphisms. These homomorphisms are functions between under-
lying sets that preserve the additional structure. Let 𝘾 be such a cate-
gory. Then a forgetful functor , commonly denoted 𝘜 , is a faithful func-
tor 𝘾 → 𝕊𝗲𝘁 that maps 𝘾-objects to their underlying sets, and 𝘾-arrows to
their underlying functions. When it exists, the left adjoint 𝘍 ⊣ 𝘜 is called
the “free functor”, mapping sets to free objects in 𝘾 . So if 𝘾 = 𝗠𝗼𝗻(𝕊𝗲𝘁),
then 𝘍 maps sets to free monoids over those sets.

Right-adjoints, dually, are called cofree:
free ⊣ forgetful ⊣ cofree.

but cofreeness is not covered here.
The unit, 𝜂, of a free-forgetful adjunction, depicted:

𝘾 𝘿

𝘍𝐷 𝐷

𝘜𝘍 𝐷
𝘜

𝘍

𝜂𝐷

is regarded as an “insertion of generators”. That is to say that the free
𝘾-object over a set 𝐷 can be regarded as containing all expression trees
in the semantics of 𝘾 ’s constituents (monoids, groups, etc) with leaves on
𝐷. This set of expression trees is once again a set, and 𝜂 identifies the
singleton (single-leaf-only) trees, one for each 𝐷.

315

Conversely, the counit 𝜀 of the adjunction acts in 𝘾 :

𝘾 𝘿

𝐶 𝘜𝐶

𝘍𝘜 𝐶

𝘜

𝘍

𝜀𝐶
.

The set at the heart of every 𝘾-object, 𝐶 , maps to its free counterpart 𝘍 𝘜 𝐶 .
This free object may be regarded as embodying all free expressions of the
algebraic structures captured in 𝘾 , taking constants in 𝘜𝐶 . The counit 𝜀
can be seen as an evaluator of all of those free expressions, giving them a
value in 𝐶 .

There is a more “local” notion, a “universal mapping property” (ump),
that captures the concept of a free object. The whole situation is depicted
in the following diagram:

𝐶 𝘜𝘍 𝐴 𝘜𝐶

𝘍𝐴 𝐴

𝘾 𝘿

𝘜𝑓 ′

𝜂𝐴
𝑓

𝑓 ′∃!

𝘜

𝘍
⊤

𝘍

𝘜

𝘜

(B.16.22)

Given an arbitrary𝑁 ∈ 𝘾 and arbitrary function 𝑓 ∶ 𝐴 → 𝘜𝑁 , the diagram
inscribes the existence of a unique𝘾-arrow 𝑓 ′∶ 𝘍𝐴 → 𝑁 that underwrites
the commutativity of the triangle in 𝘿. That triangle gives the universal
condition:

𝑓 = 𝘜𝑓 ′ ∘ 𝜂𝐴.
This is actually the ump for the unit. Likewise, there is a ump for the counit
as well [109, p. 214]. It reads, for any 𝐶, 𝐷 ∈ 𝘾, 𝘿 and 𝑔 ∶ 𝘍 𝐶 → 𝐷, there
exists a unique 𝑔′∶ 𝐶 → 𝘜 𝐷 such that

𝑔 = 𝜀𝐷 ∘ 𝘍 𝑔′.

316

This can all be generalised by replacing 𝕊𝗲𝘁 by an arbitrary category,
which is covered in ch. 3.

c
S E LECTED CODE L I S T INGS

C.1 From Chapter 3

listing C.1.1: Creating a box-filter from RxCpp components. Running this test
also prints output with timing data.

1 TEST_CASE("RxCpp box filter test.") {
2 ^/ clang-format off
3 auto avg_buffer =
4 [](const std^:vector<double> &buffer) -> double {
5 auto sum = std^:accumulate(buffer.begin(), buffer.end(), 0.);
6 return sum / buffer.size();
7 };
8

9 const auto start_time = std^:chrono^:steady_clock^:now();
10 const auto now_string = [&start_time]() -> std^:string {
11 auto now = std^:chrono^:steady_clock^:now();
12 auto duration = std^:chrono^:duration_cast<std^:chrono^:microseconds>
13 (now - start_time).count();
14 std^:ostringstream oss;
15 oss << "[" << std^:setw(4)
16 << std^:setfill(' ')
17 << duration << " μs]";
18 return oss.str();
19 };
20

21 auto source =
22 rx^:observable<>^:range(1, 6)
23 | rx^:map([](auto x) -> double { return (double) x; });
24

25 constexpr auto bufw = 3;
26

27 auto output =
28 source
29 | rx^:tap([&](double x){
30 printf("%s src: %.2f\n", now_string().c_str(), x); })
31 | rx^:buffer(bufw, 1)
32 | rx^:take_while([](auto& v){return v.size() ^= bufw;})
33 | rx^:tap([&](const std^:vector<double>& v){

317

318

34 printf("%s buf: ", now_string().c_str());
35 for (const auto& each : v) printf("%.2f ", each);
36 printf("\n");
37 })
38 | rx^:map(avg_buffer);
39

40 auto output_record = std^:vector<double>();
41

42 output.subscribe(
43 [&](double x) {
44 printf("%s OnNext: %.2f\n", now_string().c_str(), x);
45 output_record.push_back(x);
46 },
47 [&](){ printf("%s OnComplete\n", now_string().c_str()); });
48

49 REQUIRE(output_record ^= std^:vector<double>{2., 3., 4., 5.});
50 ^/ clang-format on
51 }

C.2 from chapter 4

listing C.2.1: The hom and dom notation are implemented as a thin layer of tem-
plate metaprogram around std∷function. Though it is simple, credit here goes
to Igor Tandetnik on the StackExchange post https://stackoverflow.com/q/
75668291/1827360.

1 template <typename^^. Ts>
2 struct dom {};
3

4 template <typename Dom, typename Cod>
5 struct Hom : public std^:function<Cod(Dom)> {
6 using std^:function<Cod(Dom)>^:function;
7 };
8

9 template <typename Cod, typename^^. Ts>
10 struct Hom<dom<Ts^^.>, Cod>
11 : public std^:function<Cod(Ts^^.)> {
12 using std^:function<Cod(Ts^^.)>^:function;
13 };
14

15 template <typename T>
16 constexpr decltype(auto) id(T ^&x) {
17 return std^:forward<T>(x);

https://stackoverflow.com/q/75668291/1827360
https://stackoverflow.com/q/75668291/1827360

319

18 }

∗ ∗ ∗

listing C.2.2: Fundamental types, traits and operators representing Cpp in c++.

1 template <typename^^. Ts>
2 struct Doms {};
3

4 template <typename Dom, typename Cod>
5 struct Hom : public std^:function<Cod(Dom)> {
6 using std^:function<Cod(Dom)>^:function;
7 };
8

9 template <typename Cod, typename^^. Ts>
10 struct Hom<Doms<Ts^^.>, Cod> : public std^:function<Cod(Ts^^.)> {
11 using std^:function<Cod(Ts^^.)>^:function;
12 };
13

14 namespace impl {
15 template <typename T>
16 struct function_traits;
17

18 template <typename T>
19 struct function_traits
20 : public function_traits<decltype(&T^:operator())> {};
21

22 template <typename Ret, typename^^. Args>
23 struct function_traits<Ret (*)(Args^^.)> {
24 using return_type = Ret;
25 using arg_types = std^:tuple<Args^^.>;
26 };
27

28 template <typename Ret, typename T, typename^^. Args>
29 struct function_traits<Ret (T^:*)(Args^^.)> {
30 using return_type = Ret;
31 using arg_types = std^:tuple<Args^^.>;
32 using struct_type = T;
33 };
34

35 template <typename Ret, typename T, typename^^. Args>
36 struct function_traits<Ret (T^:*)(Args^^.) const> {
37 using return_type = Ret;
38 using arg_types = std^:tuple<Args^^.>;
39 using struct_type = T;

320

40 };
41

42 template <typename Ret, typename T, typename^^. Args>
43 struct function_traits<Ret (T^:*)(Args^^.) volatile> {
44 using return_type = Ret;
45 using arg_types = std^:tuple<Args^^.>;
46 using struct_type = T;
47 };
48

49 template <typename Ret, typename T, typename^^. Args>
50 struct function_traits<Ret (T^:*)(Args^^.) const volatile> {
51 using return_type = Ret;
52 using arg_types = std^:tuple<Args^^.>;
53 using struct_type = T;
54 };
55

56 template <typename Ret, typename^^. Args>
57 struct function_traits<std^:function<Ret(Args^^.)>> {
58 using return_type = Ret;
59 using arg_types = std^:tuple<Args^^.>;
60 };
61

62 } ^/ namespace impl
63

64 template <typename Fn>
65 using Dom = typename std^:tuple_element_t<0,
66 typename impl^:function_traits<Fn>^:arg_types>;
67

68 template <typename Fn>
69 using Cod = typename impl^:function_traits<Fn>^:return_type;

∗ ∗ ∗

listing C.2.3: Cpp/c++: more efficient and explicitly typed implementations of
composition and currying.

1 template <typename Fn>
2 constexpr auto compose(Fn fn) {
3 return [fn](Dom<Fn> x) -> Cod<Fn> { return fn(x); };
4 }
5

6 template <typename Fn, typename Gn>
7 constexpr auto compose(Fn fn, Gn gn) {

321

8 return [fn, gn](Dom<Gn> x) -> Cod<Fn> { return fn(gn(x)); };
9 }

10

11 template <typename Fn, typename Gn, typename Hn>
12 constexpr auto compose(Fn fn, Gn gn, Hn hn) {
13 return [fn, gn, hn](Dom<Hn> x) -> Cod<Fn> {
14 return fn(gn(hn(x)));
15 };
16 }
17

18 template <typename Fn, typename Gn, typename Hn, typename In>
19 constexpr auto compose(Fn fn, Gn gn, Hn hn, In in) {
20 return [fn, gn, hn, in](Dom<In> x) -> Cod<Fn> {
21 return fn(gn(hn(in(x))));
22 };
23 }
24

25 template <typename F>
26 constexpr auto curry(F f) {
27 if constexpr (std^:is_invocable_v<F>) {
28 return std^:invoke(f);
29 } else if constexpr (
30 std^:tuple_size_v<
31 typename impl^:function_traits<F>^:arg_types> ^= 1) {
32 return [f](Dom<F> x) -> Cod<F> { return f(x); };
33 } else if constexpr (
34 std^:tuple_size_v<
35 typename impl^:function_traits<F>^:arg_types> ^= 2) {
36

37 using Dm0 = std^:tuple_element_t<0,
38 typename impl^:function_traits<F>^:arg_types>;
39 using Dm1 = std^:tuple_element_t<1,
40 typename impl^:function_traits<F>^:arg_types>;
41

42 return [fn = f](Dm0 d0) -> Hom<Dm1, Cod<F>> {
43 return [&fn, d0](Dm1 d1) {
44 return std^:invoke(fn, d0, d1);
45 };
46 };
47 } else if constexpr (
48 std^:tuple_size_v<
49 typename impl^:function_traits<F>^:arg_types> ^= 3) {
50

51 using Dm0 = std^:tuple_element_t<0,
52 typename impl^:function_traits<F>^:arg_types>;

322

53 using Dm1 = std^:tuple_element_t<1,
54 typename impl^:function_traits<F>^:arg_types>;
55 using Dm2 = std^:tuple_element_t<2,
56 typename impl^:function_traits<F>^:arg_types>;
57

58 return [fn = f](Dm0 d0) -> Hom<Dm1, Hom<Dm2, Cod<F>>> {
59 return [&fn, d0](Dm1 d1) -> Hom<Dm2, Cod<F>> {
60 return [&fn, &d0, d1](Dm2 d2) -> Cod<F> {
61 return std^:invoke(fn, d0, d1, d2);
62 };
63 };
64 };
65 } else if constexpr (
66 std^:tuple_size_v<
67 typename impl^:function_traits<F>^:arg_types> ^= 4) {
68

69 using Dm0 = std^:tuple_element_t<0,
70 typename impl^:function_traits<F>^:arg_types>;
71 using Dm1 = std^:tuple_element_t<1,
72 typename impl^:function_traits<F>^:arg_types>;
73 using Dm2 = std^:tuple_element_t<2,
74 typename impl^:function_traits<F>^:arg_types>;
75 using Dm3 = std^:tuple_element_t<3,
76 typename impl^:function_traits<F>^:arg_types>;
77

78 return [fn = f](Dm0 d0)
79 -> Hom<Dm1, Hom<Dm2, Hom<Dm3, Cod<F>>>> {
80 return [&fn, d0](Dm1 d1) -> Hom<Dm2, Hom<Dm3, Cod<F>>> {
81 return [&fn, &d0, d1](Dm2 d2) -> Hom<Dm3, Cod<F>> {
82 return [&fn, &d0, &d1, d2](Dm3 d3) -> Cod<F> {
83 return std^:invoke(fn, d0, d1, d2, d3);
84 };
85 };
86 };
87 };
88 }
89 }

∗ ∗ ∗

listing C.2.4: Cpp/c++ product type and supporting structure.

1 template <typename T, typename U>
2 struct P : std^:pair<T, U> {
3 using std^:pair<T, U>^:pair;

323

4 };
5

6 template <typename T, typename U>
7 P(T, U) -> P<T, U>;
8

9 namespace std {
10 template <typename T, typename U>
11 struct tuple_element<0, P<T, U>> {
12 using type = T;
13 };
14

15 template <typename T, typename U>
16 struct tuple_element<1, P<T, U>> {
17 using type = U;
18 };
19 } ^/ namespace std
20

21 template <typename T, typename U>
22 auto proj_l(P<T, U> tu) -> T {
23 return std^:get<0>(tu);
24 }
25

26 template <typename T, typename U>
27 auto proj_r(P<T, U> tu) -> U {
28 return std^:get<1>(tu);
29 }
30

31 template <typename Fn, typename Gn,
32 typename T = Dom<Fn>, typename U = Dom<Gn>,
33 typename X = Cod<Fn>, typename Y = Cod<Gn>>
34 auto prod(Fn fn, Gn gn) -> Hom<P<T, U>, P<X, Y>> {
35 return [fn, gn](P<T, U> tu) -> P<X, Y> {
36 auto [t, u] = tu;
37 return {fn(t), gn(u)};
38 };
39 }
40

41 struct Pair {
42

43 template <typename T, typename U>
44 using Of = P<T, U>;
45

46 template <typename Fn, typename Gn>
47 static auto bimap(Fn f, Gn g)
48 -> Hom<P<Dom<Fn>, Dom<Gn>>, P<Cod<Fn>, Cod<Gn>>> {

324

49 return prod(std^:forward<Fn>(f), std^:forward<Gn>(g));
50 }
51 };
52

53 template <typename Fn, typename Gn,
54 typename T = Dom<Fn>, typename U = Dom<Gn>,
55 typename X = Cod<Fn>, typename Y = Cod<Gn>>
56 auto fanout(Fn fn, Gn gn) -> Hom<T, P<X, Y>> {
57 static_assert(std^:is_same_v<T, U>);
58 return [fn, gn](auto t) -> P<X, Y> {
59 static_assert(std^:is_invocable_v<Fn, decltype(t)>);
60 static_assert(std^:is_invocable_v<Gn, decltype(t)>);
61

62 return {fn(t), gn(t)};
63 };
64 }
65

66 template <typename T, typename U, typename V>
67 auto associator_fd(P<T, P<U, V>> t_uv) -> P<P<T, U>, V> {
68 auto [t, uv] = t_uv;
69 auto [u, v] = uv;
70

71 return {{t, u}, v};
72 }
73

74 template <typename T, typename U, typename V>
75 auto associator_rv(P<P<T, U>, V> tu_v) -> P<T, P<U, V>> {
76 auto [tu, v] = tu_v;
77 auto [t, u] = tu;
78

79 return {t, {u, v}};
80 }
81

82 struct I { ^/ monoidal unit for P
83 bool operator^=(const I) const { return true; }
84 };
85

86 template <typename T>
87 auto l_unitor_fw(P<I, T> it) -> T {
88 return std^:get<1>(it);
89 }
90

91 template <typename T>
92 auto l_unitor_rv(T t) -> P<I, T> {
93 return {I{}, t};

325

94 }
95

96 template <typename T>
97 auto r_unitor_fw(P<T, I> ti) -> T {
98 return std^:get<0>(ti);
99 }

100

101 template <typename T>
102 auto r_unitor_rv(T t) -> P<T, I> {
103 return {t, I{}};
104 }
105

106 template <typename T, typename U>
107 auto braid(P<T, U> tu) -> P<U, T> {
108 auto [t, u] = tu;
109 return {u, t};
110 }

∗ ∗ ∗

listing C.2.5: Cpp/c++ closure of the cartesian monoidal structure.

1 template <typename T, typename U>
2 auto ev(P<Hom<T, U>, T> fn_and_arg) {
3 auto [fn, x] = fn_and_arg;
4 return fn(x);
5 }
6

7 template <typename Fn, typename TU = Dom<Fn>,
8 typename T = std^:tuple_element_t<0, TU>,
9 typename U = std^:tuple_element_t<1, TU>,

10 typename V = Cod<Fn>>
11 auto pcurry(Fn fn) -> Hom<T, Hom<U, V>> {
12 return [fn](T t) -> Hom<U, V> {
13 return [fn, t](U u) -> V { return fn({t, u}); };
14 };
15 }
16

17 template <typename Fn, typename T = Dom<Fn>,
18 typename UtoV = Cod<Fn>, typename U = Dom<UtoV>,
19 typename V = Cod<UtoV>>
20 auto puncurry(Fn fn) -> Hom<P<T, U>, V> {
21 return [fn](P<T, U> p) -> V { return fn(p.first)(p.second); };
22 }

326

∗ ∗ ∗

listing C.2.6: Cpp/c++ sum type and supporting structure.

1 template <typename T, typename U>
2 struct S : std^:variant<T, U> {
3 using std^:variant<T, U>^:variant;
4

5 S() = delete;
6 };
7

8 template <typename T, typename U>
9 S(T, U) -> S<T, U>;

10

11 template <std^:size_t N, typename S>
12 struct sum_term;
13

14 template <typename T, typename U>
15 struct sum_term<0, S<T, U>> {
16 using type = T;
17 };
18

19 template <typename T, typename U>
20 struct sum_term<1, S<T, U>> {
21 using type = U;
22 };
23

24 template <std^:size_t N, typename S>
25 using sum_term_t = typename sum_term<N, S>^:type;
26

27 struct Never { ^/ Monoidal unit for S
28 Never() = delete;
29 Never(const Never &) = delete;
30 bool operator^=(const Never &) const {
31 throw std^:domain_error(
32 "`Never` instances should not exist, "
33 "and someone must have done something perverse.");
34 }
35 };
36

37 template <typename T, typename U>
38 auto inject_l(T t) -> S<T, U> {
39 return S<T, U>(std^:in_place_index<0>, t);
40 }
41

327

42 template <typename T, typename U>
43 auto inject_r(U t) -> S<T, U> {
44 return S<T, U>(std^:in_place_index<1>, t);
45 }
46

47 template <typename Fn, typename Gn,
48 typename T = Dom<Fn>, typename U = Dom<Gn>,
49 typename V = Cod<Fn>>
50 auto fanin(Fn fn, Gn gn) -> Hom<S<T, U>, V> {
51

52 static_assert(std^:is_same_v<V, Cod<Gn>>);
53

54 return [fn, gn](S<T, U> t_or_u) -> V {
55 static_assert(std^:is_invocable_v<Fn, T>);
56 static_assert(std^:is_invocable_v<Gn, U>);
57

58 if (t_or_u.index() ^= 0)
59 return fn(std^:get<0>(t_or_u));
60 else
61 return gn(std^:get<1>(t_or_u));
62 };
63 }
64

65 template <typename Fn, typename Gn,
66 typename T = Dom<Fn>, typename U = Dom<Gn>,
67 typename X = Cod<Fn>, typename Y = Cod<Gn>>
68 auto coprod(Fn fn, Gn gn) -> Hom<S<T, U>, S<X, Y>> {
69 using TorU = S<T, U>;
70 using XorY = S<X, Y>;
71

72 return [fn, gn](TorU t_or_u) -> XorY {
73 if (t_or_u.index() ^= 0)
74 return inject_l<X, Y>(fn(std^:get<0>(t_or_u)));
75 else
76 return inject_r<X, Y>(gn(std^:get<1>(t_or_u)));
77 };
78 }
79

80 struct Either {
81 template <typename T, typename U>
82 using Of = P<T, U>;
83

84 template <typename Fn, typename Gn>
85 static auto bimap(Fn fn, Gn gn) {
86 using T = Dom<Fn>;

328

87 using U = Dom<Gn>;
88 using X = Cod<Fn>;
89 using Y = Cod<Gn>;
90 using TorU = S<T, U>;
91 using XorY = S<X, Y>;
92

93 return [fn, gn](TorU t_or_u) -> XorY {
94 if (t_or_u.index() ^= 0)
95 return inject_l<X, Y>(fn(std^:get<0>(t_or_u)));
96 else
97 return inject_r<X, Y>(gn(std^:get<1>(t_or_u)));
98 };
99 };

100

101 template <typename Fn, typename U>
102 static auto lmap(Fn fn) {
103 return [fn](Of<Dom<Fn>, U> tu) { return bimap(fn, id<U>); };
104 };
105

106 template <typename Gn, typename T>
107 static auto rmap(Gn gn) {
108 return [gn](Of<T, Dom<Gn>> tu) { return bimap(id<T>, gn); };
109 };
110 };
111

112 template <typename T, typename U, typename V>
113 auto associator_co_fd(S<T, S<U, V>> t_uv) -> S<S<T, U>, V> {
114 if (t_uv.index() ^= 0) {
115 if constexpr (!std^:is_same_v<T, Never>)
116 return inject_l<S<T, U>, V>(std^:get<0>(t_uv));
117 } else {
118 auto &uv = std^:get<1>(t_uv);
119 if (uv.index() ^= 0) {
120 if constexpr (!std^:is_same_v<U, Never>)
121 return inject_l<S<T, U>, V>(std^:get<0>(uv));
122 } else {
123 if constexpr (!std^:is_same_v<V, Never>)
124 return inject_r<S<T, U>, V>(std^:get<1>(uv));
125 }
126 }
127 throw std^:domain_error("Recieved a variant with no value.");
128 }
129

130 template <typename T, typename U, typename V>
131 auto associator_co_rv(S<S<T, U>, V> tu_v) -> S<T, S<U, V>> {

329

132 if (tu_v.index() ^= 0) {
133 auto &tu = std^:get<0>(tu_v);
134 if (tu.index() ^= 0) {
135 if constexpr (!std^:is_same_v<T, Never>)
136 return inject_l<T, S<U, V>>(std^:get<0>(tu));
137 } else {
138 if constexpr (!std^:is_same_v<U, Never>)
139 return inject_r<T, S<U, V>>(std^:get<1>(tu));
140 }
141 } else {
142 if constexpr (!std^:is_same_v<V, Never>)
143 return inject_r<T, S<U, V>>(std^:get<1>(tu_v));
144 }
145 throw std^:domain_error("Recieved a variant with no value.");
146 }
147

148 template <typename T>
149 struct S<T, Never> : std^:variant<T, Never> {
150 using std^:variant<T, Never>^:variant;
151

152 S() : std^:variant<T, Never>{inject_l<T, Never>(T{})} {}
153

154 S(const S &other)
155 : std^:variant<T, Never>(
156 std^:in_place_type<T>, std^:get<T>(other)) {}
157 };
158

159 template <typename T>
160 struct S<Never, T> : std^:variant<Never, T> {
161 using std^:variant<Never, T>^:variant;
162

163 S() : std^:variant<Never, T>{inject_r<Never, T>(T{})} {}
164

165 S(const S &other)
166 : std^:variant<Never, T>(
167 std^:in_place_type<T>, std^:get<T>(other)) {}
168 };
169

170 template <typename T>
171 auto l_unitor_co_fw(S<Never, T> just_t) -> T {
172 return std^:get<1>(just_t);
173 }
174

175 template <typename T>
176 auto l_unitor_co_rv(T t) -> S<Never, T> {

330

177 return inject_r<Never, T>(t);
178 }
179

180 template <typename T>
181 auto r_unitor_co_fw(S<T, Never> just_t) -> T {
182 return std^:get<0>(just_t);
183 }
184

185 template <typename T>
186 auto r_unitor_co_rv(T t) -> S<T, Never> {
187 return inject_l<T, Never>(t);
188 }
189

190 template <typename T, typename U>
191 auto braid_co(S<T, U> t_or_u) -> S<U, T> {
192 if (t_or_u.index() ^= 0)
193 return inject_r<U, T>(std^:get<0>(t_or_u));
194 else
195 return inject_l<U, T>(std^:get<1>(t_or_u));
196 }

∗ ∗ ∗

listing C.2.7: Cpp/c++’s distributive structure of Cpp’s product over its coproduct.

1 template <typename T, typename U, typename X>
2 auto factorise(S<P<T, X>, P<U, X>> tx_ux) -> P<S<T, U>, X> {
3 const auto universal_factorise = fanin(
4 prod(inject_l<T, U>, id<X>),
5 prod(inject_r<T, U>, id<X>)
6);
7

8 return universal_factorise(tx_ux);
9 }

10

11 template <typename T, typename U, typename Z>
12 auto expand(P<S<T, U>, Z> t_or_u_and_x) -> S<P<T, Z>, P<U, Z>> {
13 ^/ tz : T × Z → (T × Z) + (U × Z)
14 const auto tz =
15 pcurry(compose(
16 inject_l<P<T, Z>, P<U, Z>>,
17 id<P<T, Z>>
18));
19 ^/ uz : U × Z → (T × Z) + (U × Z)

331

20 const auto uz =
21 pcurry(compose(
22 inject_r<P<T, Z>, P<U, Z>>,
23 id<P<U, Z>>
24));
25

26 ^/ tz_uz : (T + U) → Z ⊸ (T × Z) + (U × Z)
27 const auto tz_uz = fanin(tz, uz);
28 ^/ universal_expand : (T + U) × Z ⊸ (T × Z) + (U × Z)
29 const auto universal_expand = puncurry(tz_uz);
30

31 return universal_expand(t_or_u_and_x);
32 }

∗ ∗ ∗

listing C.2.8: A collection of templates for helping SnocList (§4.8.2) and estab-
lishing an isomorphism between SnocList and std∷vector.

1 template <typename T>
2 using maybe_pair_element_t = typename sum_term_t<1, T>^:second_type;
3

4 template <typename Lst>
5 using snoclist_element_type = typename std^:remove_reference<
6 decltype(std^:get<1>(out(std^:declval<Lst>())))>^:type^:
7 second_type;
8

9 template <typename T, typename U>
10 constexpr bool has_pair(S<I, P<T, U>> const &i_or_val) {
11 return i_or_val.index() ^= 1;
12 }
13

14 template <typename Lst, typename T = snoclist_element_type<Lst>>
15 auto operator^=(Lst const &lhs, Lst const &rhs) -> bool {
16 auto l = out(lhs);
17 auto r = out(rhs);
18

19 while (has_pair(l) ^& has_pair(r)) {
20 auto [lhs_tail, lhs_val] = std^:get<1>(l);
21 auto [rhs_tail, rhs_val] = std^:get<1>(r);
22 if (!(lhs_val ^= rhs_val)) {
23 return false;
24 }

332

25 l = *lhs_tail;
26 r = *rhs_tail;
27 }
28

29 ^/ If one of l or r still hold a pair at this point, then lhs
30 ^/ and rhs are different lengths and are not equal.
31 return !has_pair(l) ^& !has_pair(r);
32 }

C.3 from chapter 6

listing C.3.1: The XY type modelling a 2d Euclidean vector.

1 struct XY {
2 double x;
3 double y;
4

5 template <typename T>
6 inline operator std^:tuple<T &, T &>() {
7 return std^:tuple<T &, T &>{x, y};
8 }
9 };

10

11 inline constexpr bool operator^=(const XY &a, const XY &b) noexcept {
12 return (a.x ^= b.x) ^& (a.y ^= b.y);
13 }
14

15 inline constexpr bool operator^=(const XY &a, const XY &b) noexcept {
16 return !(a ^= b);
17 }
18

19 inline constexpr XY operator+(const XY &a, const XY &b) {
20 return XY{a.x + b.x, a.y + b.y};
21 }
22

23 inline constexpr XY operator-(const XY &a, const XY &b) {
24 return XY{a.x - b.x, a.y - b.y};
25 }
26

27 inline constexpr XY operator*(const double c, const XY &p) {
28 return XY{c * p.x, c * p.y};
29 }
30

31 inline constexpr XY operator*(const XY &p, const double c) { return c * p; }

333

32

33 inline constexpr XY operator/(const XY &p, const double c) {
34 return {p.x / c, p.y / c};
35 }
36

37 inline constexpr double dot(const XY& a, const XY& b) {
38 return a.x * b.x + a.y * b.y;
39 }
40

41 ^/ TODO: #1 std^:hypot isn't constexpr. If I replace with multiplication, then
42 ^/ l2norm can be constexpr.
43 inline double l2norm(const XY &p) { return std^:hypot(p.x, p.y); }
44

45 inline double abs(const XY &p) { return l2norm(p); }
46

47 inline constexpr double quadrance(const XY &p) { return p.x * p.x + p.y * p.y; }
48

49 inline XY normalise(const XY &p) {
50 const double norm = l2norm(p);
51 return {p.x / norm, p.y / norm};
52 }

GLOS SARY

Alias Template A type alias with template parameters. I.e., A name that refers
to a family of types.

c♯ C♯ is a general-purpose, high-level, multi-paradigm, statically
typed programming language developed at Microsoft. It bor-
rows from OCaml and can therefore be regarded as a descen-
dant of ml.

CAML An acronym for Categorical Abstract Machine Language,
Caml is a dialect of ml developed from the mid 1980s until
ca. 2002. Notably, OCaml is a descendant in common usage
today.

Catch2 The Catch2 unit testing framework for C++ [197]. See https:
//github.com/catchorg/Catch2.

Clang The native C language family front-end for llvm
concrete category A category with a faithful functor into 𝕊𝗲𝘁. Most notably, cat-

egories with forgetful functors into 𝕊𝗲𝘁 are concrete.
Denumerable is a special case of a countable set. A set is countable iff its

cardinality is less than or equal to ℵ0. A set is denumerable iff
its cardinality is exactly ℵ0.

Erlang Ageneral-purpose, concurrent, functional high-level program-
ming language originally developed by Ericsson in the mid
1980s for concurrent, real-time telecommunications applica-
tions.

f♯ F♯ is a mostly-functional but multiple paradigm, general-
purpose, statically typed programming language developed at
Microsoft Research.

g++ The gnu compiler collection’s c++ compiler
Haskell The quintessential functional programming language named

for Haskell Curry, the discoverer of 𝜆-calculus. It was largely
developed in academia but has been adopted by parts of the
software industry. See the language specification, [111].

llvm The llvm compiler infrastructure, a portable set of compiler
and toolchain technologies includingC andC++ compilers and
static analysis tools.

loset Linearly ordered set, aka a total order.
member function A C++ function formally associated with a data structure (a

struct or class) through the language and type system. When
the class is instantiated as an object a, if the class has amember
function foo then a.foo() is like calling foo(&a) because all
member functions take a pointer to an instance as an implicit
first argument. In the body of the definition of the member
function, the implicit pointer is called this.

334

https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2

335

ml Meta Language (ML) is a general-purpose functional program-
ming language, known for its use of the Hindley-Milner type
system. It was developed academically and is the basis for
many popular functional programming languages. (As pop-
ular as a functional language can be at this point in history.)

NumPy A Python library that provides a multidimensional array ob-
ject, various derived objects (such as masked arrays and ma-
trices), and an assortment of routines for fast operations on
arrays, including mathematical, logical, shape manipulation,
sorting, selecting, I/O, discrete Fourier transforms, basic linear
algebra, basic statistical operations, random simulation and
much more. See http://numpy.org/.

O’Caml An extension to the CAML dialect of ml, with object oriented
features.

poset Partially ordered set.
posix Ieee Portable Operating System Interface (The ieee family of

standards for a portable operating system interface.)
Scala A JVM-based language aimed specifically at combining object-

oriented and functional programming. (Note: Scala can also
be compiled to native machine code through an experimental
LLVM front-end.)

Terminator Any particular terminal object in a category (see §B.3.) In
short, a terminator 𝟣 in a category 𝘾 is a 𝘾-object for which
𝘾(𝐴, 𝟣) has exactly one arrow for all 𝐴 ∈ 𝘾 .

http://numpy.org/

B I B L IOGRAPHY

[1] S. Eilenberg and S. MacLane, “General theory of natural equivalences,” Trans-
actions of the American Mathematical Society, vol. 58, pp. 231–294, 1945, issn:
0002-9947. doi: 10.1090/S0002-9947-1945-0013131-6. JSTOR: 1990284.

[2] S. C. Kleene, “Representation of events in nerve nets and finite automata,”
Automata Studies: Annals of Mathematics Studies, no. 34, p. 3, 1956.

[3] Л. С. Понтрягин, В. Г. Болтянский, Р. В. Гамкрелидзе, and Е. Ф. Мищенко,
“Математическая теория оптимальных процессов. (towards a theory of
optimal processes),” Доклады Академии Наук СССР—Proceedings of the USSR
Academy of Science, vol. 110, no. 1, pp. 7–10, 1956.

[4] F. W. Lawvere, “Functorial semantics of algebraic theories and some algebraic
problems in the context of functorial semantics of algebraic theories,” Ph.D.
dissertation, Columbia University, 1963.

[5] M. A. Arbib, “A common framework for automata theory and control theory,”
Journal of the Society for Industrial and Applied Mathematics Series A Control,
vol. 3, no. 2, pp. 206–222, 1965. doi: 10.1137/0303017.

[6] Y. Give’on, “Toward a homological algebra of automata,” University of Michi-
gan, Logic of Computers Group, Ann Arbor, MI, Tech. Rep., Feb. 1965, U.S.
Army Research Office, Durham NC, Grant № DA-ARO(D)-31-124-G588,
Project № 4049-M and Office of Naval Research, DC., Contract № Nonr-
1224(21).

[7] ———, “Transparent categories and categories of transition systems,” Univer-
sity of Michigan, Logic of Computers Group, Tech. Rep., May 1965, U.S. Office
of Naval Research, DC., Contract № Nonr-1224(21).

[8] G. Hotz, “Eine algebraisierung des syntheseproblems von schaltkreisen i.,”
Elektronische Informationsverarbeitung und Kybernetik, vol. 1, no. 3, pp. 185–
205, 1965. [Online]. Available: https : / / ncatlab . org / nlab / files /
HotzSchaltkreise.pdf.

[9] ———, “Eine algebraisierung des syntheseproblems von schaltkreisen i.,” Elek-
tronische Informationsverarbeitung und Kybernetik, vol. 1, no. 4, pp. 209–
231, 1965. [Online]. Available: https : / / ncatlab . org / nlab / files /
HotzSchaltkreise.pdf.

[10] M. A. Arbib, “Automata theory and control theory—a rapprochement,” Auto-
matica, vol. 3, no. 3, pp. 161–189, 1966, issn: 0005-1098. doi: 10.1016/0005-
1098(66)90011-2.

[11] A. W. Burks, “Language and automata, Final report,” University of Michigan,
Logic of Computers Group, Ann Arbor, MI, Tech. Rep., Oct. 1966, U.S. Army
Research Office, Durham NC, Grant № DA-ARO(D)-31-124-G665.

336

https://doi.org/10.1090/S0002-9947-1945-0013131-6
http://www.jstor.org/stable/1990284
https://doi.org/10.1137/0303017
https://ncatlab.org/nlab/files/HotzSchaltkreise.pdf
https://ncatlab.org/nlab/files/HotzSchaltkreise.pdf
https://ncatlab.org/nlab/files/HotzSchaltkreise.pdf
https://ncatlab.org/nlab/files/HotzSchaltkreise.pdf
https://doi.org/10.1016/0005-1098(66)90011-2
https://doi.org/10.1016/0005-1098(66)90011-2

337

[12] Y. Give’on, “On some categorical algebra aspects of automata theory: The
categorical properties of transition systems,” University of Michigan, Logic of
Computers Group, Ann Arbor, MI, Tech. Rep., Feb. 1966, U.S. Army Research
Office, Durham NC, Grant № DA-ARO(D)-31-124-G665, Project № 4049-M and
Office of Naval Research, DC., Contract № Nonr-1224(21).

[13] S. Eilenberg and J. B. Wright, “Automata in general algebras,” Information and
Control, vol. 11, no. 4, pp. 452–470, 1967, issn: 0019-9958. doi: 10.1016/S0019-
9958(67)90670-5.

[14] E. G. Manes, “Manes a tripie miscellany, Some aspects of the theory of alge-
bras over a triple,” Ph.D. dissertation, Wesleyan University, 1967.

[15] M. A. Arbib and Y. Give’on, “Algebra automata I, Parallel programming as a
prolegomena to the categorical approach,” Information and Control, vol. 12,
no. 4, pp. 331–345, 1968, issn: 0019-9958. doi: 10.1016/S0019-9958(68)90374-
4.

[16] Y. Give’on and M. A. Arbib, “Algebra automata II, The categorical framework
for dynamic analysis,” Information and Control, vol. 12, no. 4, pp. 346–370,
1968, issn: 0019-9958. doi: 10.1016/S0019-9958(68)90381-1.

[17] J. Lambek, “A fixpoint theorem for complete categories,” Mathematische
Zeitschrift, vol. 103, pp. 151–161, 2 1968, issn: 1432-1823. doi: 10 . 1007 /
BF01110627.

[18] M. A. Arbib and H. P. Zeiger, “On the relevance of abstract algebra to control
theory,” Automatica, vol. 5, no. 5, pp. 589–606, 1969, issn: 0005-1098. doi: 10.
1016/0005-1098(69)90026-0.

[19] J. R. Hindley, “The principal type-scheme of an object in combinatory logic,”
Transactions of the American Mathematical Society, vol. 146, pp. 29–60, 1969,
issn: 0002-9947.

[20] R. E. Kálmán, P. L. Falb, and M. A. Arbib, Topics in mathematical system theory
(International series in pure and applied mathematics), W. T. Martin and E. H.
Spainer, Eds. New York: McGraw-Hill, 1969.

[21] M. Barr, “Coequalizers and free triples,” Mathematische Zeitschrift, vol. 116,
no. 4, pp. 307–322, Dec. 1970, issn: 1432-1823. doi: 10.1007/BF01111838.

[22] R. Davis, “Universal coalgebra and categories of transition systems,” Mathe-
matical systems theory, vol. 4, no. 1, pp. 91–95, Mar. 1970, issn: 1433-0490. doi:
10.1007/BF01705889.

[23] M. A. Arbib and E. G. Manes, “Machines in a category, Preliminary report,” in
Notices of the American Mathematical Society, vol. 19, 1972, (A–)389.

[24] M. L. Laplaza, “Coherence for distributivity,” in Coherence in Categories, G. M.
Kelly, M. Laplaza, G. Lewis, and S. Mac Lane, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 1972, pp. 29–65, isbn: 978-3-540-37958-4.

[25] J. Adámek, “Free algebras and automata realizations in the language of cate-
gories,” Commentationes Mathematicae Universitatis Carolinae, vol. 15, no. 4,
pp. 589–602, 1974.

https://doi.org/10.1016/S0019-9958(67)90670-5
https://doi.org/10.1016/S0019-9958(67)90670-5
https://doi.org/10.1016/S0019-9958(68)90374-4
https://doi.org/10.1016/S0019-9958(68)90374-4
https://doi.org/10.1016/S0019-9958(68)90381-1
https://doi.org/10.1007/BF01110627
https://doi.org/10.1007/BF01110627
https://doi.org/10.1016/0005-1098(69)90026-0
https://doi.org/10.1016/0005-1098(69)90026-0
https://doi.org/10.1007/BF01111838
https://doi.org/10.1007/BF01705889

338

[26] M. A. Arbib and E. G. Manes, “Basic concepts of category theory applicable
to computation and control,” in Proceedings of the Proceedings of the First Inter-
national Symposium on Category Theory Applied to Computation and Control,
Berlin, Heidelberg: Springer-Verlag, 1974, pp. 1–34, isbn: 978-3-540-07142-6.

[27] ———, “Foundations of system theory, Decomposable systems,” Automatica,
vol. 10, no. 3, pp. 285–302, 1974, issn: 0005-1098. doi: 10.1016/0005-1098(74)
90039-9.

[28] ———, “Machines in a category: An expository introduction,” SIAM Review,
vol. 16, no. 2, pp. 163–192, 1974. doi: 10.1137/1016026.

[29] S. Alagić, “Natural state transformations,” Journal of Computer and System
Sciences, vol. 10, no. 2, pp. 266–307, 1975, issn: 0022-0000. doi: 10.1016/S0022-
0000(75)80045-6.

[30] M. A. Arbib and E. G. Manes, “A categorist’s view of automata and systems,”
in Category Theory Applied to Computation and Control, E. G. Manes, Ed.,
vol. 25, Berlin, Heidelberg: Springer Berlin Heidelberg, 1975, pp. 51–64, isbn:
978-3-540-37426-8. doi: 10.1007/3-540-07142-3_61.

[31] ———, “Adjoint machines, state-behavior machines, and duality,” Journal of
Pure and Applied Algebra, vol. 6, no. 3, pp. 313–344, 1975, issn: 0022-4049. doi:
10.1016/0022-4049(75)90028-6.

[32] ———, Arrows, Structures, and Functors, The Categorical Imperative. New York:
Academic Press, 1975.

[33] J. A. Goguen, “Discrete-time machines in closed monoidal categories. i,” Jour-
nal of Computer and System Sciences, vol. 10, no. 1, pp. 1–43, 1975, issn: 0022-
0000. doi: 10.1016/S0022-0000(75)80012-2.

[34] J. A. Goguen, “Semantics of computation,” in Lecture Notes in Computer Sci-
ence, Springer Berlin Heidelberg, 1975, pp. 151–163. doi: 10.1007/3- 540-
07142-3_75.

[35] A. E. B. Jr. and Y.-C. Ho, Applied Optimal Control, Optimization, Estimation,
and Control. Taylor & Francis, 1975, isbn: 978-0-89116-228-5.

[36] V. Trnková, J. Adámek, V. Koubek, and J. Reiterman, “Free algebras, input
processes and free monads,” Commentationes Mathematicae Universitatis Car-
olinae, vol. 16, no. 2, pp. 339–351, 1975.

[37] J. Adámek, “Realization theory for automata in categories,” Journal of Pure and
Applied Algebra, vol. 9, no. 2, pp. 281–296, 1977, issn: 0022-4049. doi: 10.1016/
0022-4049(77)90071-8.

[38] J. Adámek and V. Koubek, “Remarks on fixed points of functors,” in Fundamen-
tals of Computation Theory, M. Karpiński, Ed., Berlin, Heidelberg: Springer,
1977, pp. 199–205, isbn: 978-3-540-37084-0.

[39] ———, “Least fixed point of a functor,” Journal of Computer and System Sciences,
vol. 19, no. 2, pp. 163–178, 1979, issn: 0022-0000. doi: 10.1016/0022-0000(79)
90026-6.

https://doi.org/10.1016/0005-1098(74)90039-9
https://doi.org/10.1016/0005-1098(74)90039-9
https://doi.org/10.1137/1016026
https://doi.org/10.1016/S0022-0000(75)80045-6
https://doi.org/10.1016/S0022-0000(75)80045-6
https://doi.org/10.1007/3-540-07142-3_61
https://doi.org/10.1016/0022-4049(75)90028-6
https://doi.org/10.1016/S0022-0000(75)80012-2
https://doi.org/10.1007/3-540-07142-3_75
https://doi.org/10.1007/3-540-07142-3_75
https://doi.org/10.1016/0022-4049(77)90071-8
https://doi.org/10.1016/0022-4049(77)90071-8
https://doi.org/10.1016/0022-0000(79)90026-6
https://doi.org/10.1016/0022-0000(79)90026-6

339

[40] M. A. Arbib and E. G. Manes, “Intertwined recursion, tree transformations and
linear systems,” Information and Control, vol. 40, no. 2, pp. 144–180, 1979, issn:
0019-9958. doi: 10.1016/S0019-9958(79)90370-X.

[41] J. Adámek, H. Ehrig, and V. Trnková, “On an equivalence of system-theoretical
and categorical concepts.,” Kybernetika, vol. 16, no. 5, pp. 389–410, 1980.

[42] M. A. Arbib and E. G. Manes, “Machines in a category,” Journal of Pure and
Applied Algebra, vol. 19, pp. 9–20, 1980, issn: 0022-4049. doi: 10.1016/0022-
4049(80)90090-0.

[43] A. Ralston and M. Shaw, “Curriculum ’78—is computer science really that
unmathematical?” Commun. ACM, vol. 23, no. 2, pp. 67–70, Feb. 1980, issn:
0001-0782. doi: 10.1145/358818.358820.

[44] J. Adámek, “Observability and nerode equivalence in concrete categories,”
in Fundamentals of Computation Theory, F. Gécseg, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 1981, pp. 1–15, isbn: 978-3-540-38765-7.

[45] J. Adámek and V. Trnková, “Varietors and machines in a category,” Algebra
Universalis, vol. 13, no. 1, pp. 89–132, 1981, issn: 1420-8911. doi: 10.1007/
BF02483826.

[46] S. A. Greibach, “Formal languages: Origins and directions,” IEEE Annals of the
History of Computing, vol. 3, no. 1, pp. 14–41, 1981. doi: 10.1109/mahc.1981.
10006.

[47] M. A. Arbib and E. G. Manes, “Parametrized data types do not need highly
constrained parameters,” Information and Control, vol. 52, no. 2, pp. 139–158,
1982, issn: 0019-9958. doi: 10.1016/S0019-9958(82)80026-0.

[48] D. S. Scott, “Domains for denotational semantics,” in Automata, Languages and
Programming, M. Nielsen and E. M. Schmidt, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 1982, pp. 577–610, isbn: 978-3-540-39308-5.

[49] M. B. Smyth and G. D. Plotkin, “The category-theoretic solution of recursive
domain equations,” SIAM Journal on Computing, vol. 11, no. 4, pp. 761–783,
1982. doi: 10.1137/0211062.

[50] E. W. Dijkstra et al., “Invariance and non-determinacy,” Philosophical Trans-
actions of the Royal Society of London. Series A, Mathematical and Physical
Sciences, vol. 312, no. 1522, pp. 491–499, 1984. doi: 10.1098/rsta.1984.0072.

[51] C. Gunter, “Profinite solutions for recursive domain equations,” Ph.D. disserta-
tion, Carnegie-Mellon University, 1985.

[52] M. A. Arbib and E. G. Manes, Algebraic Approaches to Program Semantics,
1st ed. New York, NY: Springer, 1986, isbn: 978-1-4612-4962-7. doi: 10.1007/
978-1-4612-4962-7.

[53] R. C. Davis, “Toposes, monoid actions, and universal coalgebra,” Proceedings
of the American Mathematical Society, vol. 98, no. 4, pp. 547–552, 1986. doi:
10.1090/s0002-9939-1986-0861747-9.

https://doi.org/10.1016/S0019-9958(79)90370-X
https://doi.org/10.1016/0022-4049(80)90090-0
https://doi.org/10.1016/0022-4049(80)90090-0
https://doi.org/10.1145/358818.358820
https://doi.org/10.1007/BF02483826
https://doi.org/10.1007/BF02483826
https://doi.org/10.1109/mahc.1981.10006
https://doi.org/10.1109/mahc.1981.10006
https://doi.org/10.1016/S0019-9958(82)80026-0
https://doi.org/10.1137/0211062
https://doi.org/10.1098/rsta.1984.0072
https://doi.org/10.1007/978-1-4612-4962-7
https://doi.org/10.1007/978-1-4612-4962-7
https://doi.org/10.1090/s0002-9939-1986-0861747-9

340

[54] P. Dybjer, “Category theory and programming language semantics, An overview,”
in Category Theory and Computer Programming: Tutorial and Workshop, Guild-
ford, U.K. September 16–20, 1985 Proceedings, D. Pitt, S. Abramsky, A. Poigné,
and D. Rydeheard, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986,
pp. 163–181, isbn: 978-3-540-47213-1. doi: 10.1007/3-540-17162-2_121.

[55] J. Adámek and V. Trnková, Automata and Algebras in Categories (Mathematics
and its Applications), 1st ed. Springer Dordrecht, 1989, isbn: 978-0-7923-0010-
6.

[56] J. Hughes, “Why functional programming matters,” The Computer Journal,
vol. 32, no. 2, pp. 98–107, Feb. 1989. doi: 10.1093/comjnl/32.2.98.

[57] G. R. Malcolm, “Algebraic data types and program transformation,” Ph.D. dis-
sertation, Rijksuniversiteit Groningen, 1990.

[58] ———, “Data structures and program transformation,” Science of Computer
Programming, vol. 14, no. 2, pp. 255–279, 1990, issn: 0167-6423. doi: 10.1016/
0167-6423(90)90023-7.

[59] P. Wadler, “Comprehending monads,” in Proceedings of the 1990 ACM Confer-
ence on LISP and Functional Programming, ser. LFP ’90, Nice, France: ACM,
1990, pp. 61–78, isbn: 0-89791-368-X. doi: 10.1145/91556.91592.

[60] M. R. Fellows, “Computer science and mathematics in the elementary schools,”
1991.

[61] Journal of Functional Programming 1991–, Published by Cambridge University
Press, issn: 1469-7653.

[62] E. Meijer, M. Fokkinga, and R. Paterson, “Functional programming with ba-
nanas, lenses, envelopes and barbed wire,” in Proc. 5th ACM Conference on
Functional Programming Languages and Computer Architecture, J. Hughes, Ed.,
vol. 523, Springer-Verlag, Aug. 1991, pp. 124–144.

[63] E. Moggi, “Notions of computation and monads,” Information and computation,
vol. 93, no. 1, pp. 55–92, 1991, issn: 0890-5401. doi: 10.1016/0890-5401(91)
90052-4.

[64] B. C. Pierce, Basic Category Theory for Computer Scientists. Cambridge, Mas-
sachusetts: The MIT Press, 1991, isbn: 0-262-66071-7.

[65] P. Wadler, “The essence of functional programming,” in ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, New York, New
York, USA: ACM Press, 1992, pp. 1–14, isbn: 0897914538. doi: 10.1145/143165.
143169.

[66] M. Barr, “Terminal coalgebras in well-founded set theory,” Theoretical Com-
puter Science, vol. 114, no. 2, pp. 299–315, 1993, issn: 0304-3975. doi: 10.1016/
0304-3975(93)90076-6.

[67] D. Čubrić, “Interpolation property for bicartesian closed categories,” Archive
for Mathematical Logic, vol. 33, no. 4, pp. 291–319, 1994, issn: 1432-0665. doi:
10.1007/BF01270628.

https://doi.org/10.1007/3-540-17162-2_121
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1016/0167-6423(90)90023-7
https://doi.org/10.1016/0167-6423(90)90023-7
https://doi.org/10.1145/91556.91592
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/143165.143169
https://doi.org/10.1016/0304-3975(93)90076-6
https://doi.org/10.1016/0304-3975(93)90076-6
https://doi.org/10.1007/BF01270628

341

[68] C. Elliott, G. Schechter, R. Yeung, and S. Abi-Ezzi, “Tbag: A high level frame-
work for interactive, animated 3d graphics applications,” in Proceedings of
the 21st Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’94, New York, NY, USA: Association for Computing Machin-
ery, 1994, pp. 421–434, isbn: 978-0-89791-667-7. doi: 10.1145/192161.192276.

[69] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed. Addison-Wesley Professional, Nov.
1994, isbn: 0201633612.

[70] J. Adámek and V. Koubek, “On the greatest fixed point of a set functor,” Theo-
retical Computer Science, vol. 150, no. 1, pp. 57–75, 1995, issn: 0304-3975. doi:
10.1016/0304-3975(95)00011-K.

[71] J. J. M. M. Rutten, “A calculus of transition systems (towards universal coalge-
bra),” Amsterdam, The Netherlands, Tech. Rep., 1995.

[72] H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Pro-
grams, 2nd. Cambridge, MA, USA: MIT Press, 1996, isbn: 0-262-01153-0.

[73] B. Jacobs, “Objects and classes, co-algebraically,” in Object Orientation with
Parallelism and Persistence, B. Freitag, C. B. Jones, C. Lengauer, and H.-J. Schek,
Eds. Boston, MA: Springer US, 1996, pp. 83–103, isbn: 978-1-4613-1437-0. doi:
10.1007/978-1-4613-1437-0_5.

[74] G. R. Malcolm, “Behavioural equivalence, bisimulation, and minimal realisa-
tion,” in Recent Trends in Data Type Specification, M. Haveraaen, O. Owe, and
O.-J. Dahl, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 359–
378, isbn: 978-3-540-70642-7.

[75] J. C. Willems, “The behavioural approach to systems and control,” European
Journal of Control, vol. 2, no. 4, pp. 250–259, 1996, issn: 0947-3580. doi: 10.
1016/S0947-3580(96)70050-X.

[76] L. A. Zadeh, “The evolution of systems analysis and control: A personal per-
spective,” IEEE Control Systems Magazine, vol. 16, no. 3, pp. 95–98, 1996. doi:
10.1109/37.506401.

[77] R. Bird and O. de Moor, Algebra of Programming (International Series in Com-
puter Science), C. Hoare, Ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1997,
isbn: 0-13-507245-X.

[78] C. Elliott and P. R. Hudak, “Functional reactive anmation,” ACM SIGPLAN
Notices, vol. 32, no. 8, pp. 263–273, 1997.

[79] L. S. Moss and N. Danner, “On the foundations of corecursion,” Logic Journal
of the IGPL, vol. 5, no. 2, pp. 231–257, Mar. 1997, issn: 1367-0751. doi: 10.1093/
jigpal/5.2.231.

[80] B. Jacobs, “Coalgebraic reasoning about classes in object-oriented languages,”
Electronic Notes in Theoretical Computer Science, vol. 11, pp. 231–242, 1998,
CMCS ’98, First Workshop on Coalgebraic Methods in Computer Science,
issn: 1571-0661. doi: 10.1016/S1571-0661(04)00061-1.

https://doi.org/10.1145/192161.192276
https://doi.org/10.1016/0304-3975(95)00011-K
https://doi.org/10.1007/978-1-4613-1437-0_5
https://doi.org/10.1016/S0947-3580(96)70050-X
https://doi.org/10.1016/S0947-3580(96)70050-X
https://doi.org/10.1109/37.506401
https://doi.org/10.1093/jigpal/5.2.231
https://doi.org/10.1093/jigpal/5.2.231
https://doi.org/10.1016/S1571-0661(04)00061-1

342

[81] S. Mac Lane, Categories for the Working Mathematician, 2nd ed. Springer, 1998,
isbn: 978-0-387-98403-2.

[82] M. Barr and C. Wells, Category Theory for Computing Science. Centre de
Recherches Mathématiques, 1999.

[83] L. S. Moss, “Coalgebraic logic,” Annals of Pure and Applied Logic, vol. 96, no. 1,
pp. 277–317, 1999, issn: 0168-0072. doi: 10.1016/S0168-0072(98)00042-6.

[84] P. Taylor, Practical Foundations of Mathematics (Cambridge Studies in Ad-
vanced Mathematics). Cambridge University Press, 1999, isbn: 0-521-63107-6.

[85] J. Goguen and G. R. Malcolm, “A hidden agenda,” Theoretical Computer Sci-
ence, vol. 245, no. 1, pp. 55–101, 2000, issn: 0304-3975. doi: 10.1016/S0304-
3975(99)00275-3.

[86] J. Hughes, “Generalising monads to arrows,” Science of Computer Programming,
vol. 37, no. 1, pp. 67–111, 2000, issn: 0167-6423. doi: 10.1016/S0167-6423(99)
00023-4.

[87] B. Jacobs, “Object-oriented hybrid systems of coalgebras plus monoid actions,”
Theoretical Computer Science, vol. 239, no. 1, pp. 41–95, 2000, issn: 0304-3975.
doi: 10.1016/S0304-3975(99)00213-3.

[88] J. J. M. M. Rutten, “Universal coalgebra: A theory of systems,” Theoretical Com-
puter Science, vol. 249, no. 1, pp. 3–80, 2000, Modern Algebra, issn: 0304-3975.
doi: 10.1016/S0304-3975(00)00056-6.

[89] G. J. Sutton and R. R. Bitmead, “Performance and computational implementa-
tion of nonlinear model predictive control on a submarine,” in Nonlinear Model
Predictive Control, ser. Progress in Systems and Control Theory, F. Allgöwer,
A. Zheng, and C. I. Byrnes, Eds., vol. 26, Birkhäuser Basel, 2000, pp. 461–472,
isbn: 978-3-0348-8407-5. doi: 10.1007/978-3-0348-8407-5_27.

[90] Z. Wan and P. Hudak, “Functional reactive programming from first princi-
ples,” ACM SIGPLAN Notices, 2000.

[91] Z. Wan, “Functional reactive programming for real-time reactive systems,”
Ph.D. dissertation, Yale University, 2002, isbn: 978-0-493-87916-1.

[92] H. Gill and J. Bay, “Introduction to the SEC vision,” in Software-Enabled Con-
trol: Information Technology for Dynamical Systems, T. Samad and G. Balas,
Eds., Wiley-IEEE Press, 2003, ch. 1, pp. 3–8, isbn: 978-0-471-23436-4.

[93] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows, robots, and func-
tional reactive programming,” in Summer School on Advanced Functional Pro-
gramming 2002, Oxford University, ser. Lecture Notes in Computer Science,
vol. 2638, Springer-Verlag, 2003, pp. 159–187.

[94] D. E. Kirk, Optimal Control Theory: An Introduction. Dover Publications, 2004,
isbn: 0486434842.

[95] M. Spivak, A comprehensive introduction to differential geometry. 3rd ed. Hous-
ton, Texas, USA: Publish or Perish Inc., 2005, vol. I, isbn: 0-914098-70-5.

[96] Unified modeling language specification, 19501, ISO/IEC, 2005.

https://doi.org/10.1016/S0168-0072(98)00042-6
https://doi.org/10.1016/S0304-3975(99)00275-3
https://doi.org/10.1016/S0304-3975(99)00275-3
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1016/S0304-3975(99)00213-3
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1007/978-3-0348-8407-5_27

343

[97] N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons, “Fast and loose rea-
soning is morally correct,” SIGPLAN Not., vol. 41, no. 1, pp. 206–217, Jan. 2006,
issn: 0362-1340. doi: 10.1145/1111320.1111056.

[98] F. Fahimi, “Non-linear model predictive formation control for groups of au-
tonomous surface vessels,” International Journal of Control, vol. 80, no. 8,
pp. 1248–1259, Aug. 2007, issn: 0020-7179. doi: 10.1080/00207170701280911.

[99] M. Hyland and J. Power, “The category theoretic understanding of universal
algebra, Lawvere theories and monads,” Electronic Notes in Theoretical Com-
puter Science, vol. 172, pp. 437–458, 2007, issn: 1571-0661. doi: 10.1016/j.
entcs.2007.02.019.

[100] H. Liu and P. Hudak, “Plugging a space leak with an arrow,” Electronic Notes
in Theoretical Computer Science, vol. 193, pp. 29–45, 2007, issn: 1571-0661. doi:
10.1016/j.entcs.2007.10.006.

[101] J. C. Willems, “The behavioral approach to open and interconnected systems,”
IEEE Control Systems Magazine, vol. 27, no. 6, pp. 46–99, Dec. 2007, issn: 1066-
033X. doi: 10.1109/MCS.2007.906923.

[102] J. R. Hindley and J. P. Seldin, Lambda-calculus and combinators, an introduc-
tion, 2nd ed. Cambridge University Press, 2008, isbn: 978-0-521-89885-0.

[103] C. M. Elliott, “Push-pull functional reactive programming,” in Proceedings of
the 2nd ACM SIGPLAN Symposium on Haskell, ser. Haskell ’09, Edinburgh,
Scotland: Association for Computing Machinery, 2009, pp. 25–36, isbn: 978-1-
60558-508-6. doi: 10.1145/1596638.1596643.

[104] J. Gibbons and B. C. d. S. Oliveira, “The essence of the iterator pattern,” Jour-
nal of Functional Programming, vol. 19, no. 3-4, pp. 377–402, 2009. doi: 10 .
1017/S0956796809007291.

[105] J. Iry. “A brief, incomplete, and mostly wrong history of programming lan-
guages.” (2009), [Online]. Available: http://james-iry.blogspot.com/2009/
05/brief-incomplete-and-mostly-wrong.html (visited on 07/08/2023).

[106] Quantities and units–Part 2: Mathematical signs and symbols to be used in the
natural sciences and technology, 80000-2:2009, ISO/IEC TC12, 2009.

[107] P. Zarchan and H. Musoff, Fundamentals of Kalman Filtering, A Practical Ap-
proach (Progress in Astronautics and Aeronautics), 3rd ed., F. K. Lu, Ed. Amer-
ican Institute of Aeronautics & Astronautics, 2009, vol. 232, isbn: 978-1-60086-
718-7. doi: 10.2514/4.867200.

[108] J. Adámek, S. Milius, and L. S. Moss, “Initial algebras and terminal coalge-
bras, A survey,” Unplished draft, used as course text at the European Summer
School in Logic, Language and Information 2010, 2010.

[109] S. Awodey, Category Theory, 2nd ed. Oxford University Press, 2010, isbn: 978-
0-19-923718-0.

https://doi.org/10.1145/1111320.1111056
https://doi.org/10.1080/00207170701280911
https://doi.org/10.1016/j.entcs.2007.02.019
https://doi.org/10.1016/j.entcs.2007.02.019
https://doi.org/10.1016/j.entcs.2007.10.006
https://doi.org/10.1109/MCS.2007.906923
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1017/S0956796809007291
https://doi.org/10.1017/S0956796809007291
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://doi.org/10.2514/4.867200

344

[110] R. Hinze, “Reasoning about codata,” in Central European Functional Program-
ming School: Third Summer School, CEFP 2009, Budapest, Hungary, May 21-
23, 2009 and Komárno, Slovakia, May 25-30, 2009, Revised Selected Lectures, Z.
Horváth, R. Plasmeijer, and V. Zsók, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 42–93, isbn: 978-3-642-17685-2. doi: 10.1007/978-3-
642-17685-2_3.

[111] S. Marlow, Ed., Haskell 2010 language report, haskell.org, 2010. [Online]. Avail-
able: https://wiki.haskell.org/Language_and_library_specification.

[112] E. Meijer, “Subject/observer is dual to iterator,” in FIT: Fun Ideas and Thoughts
at the Conference on Programming Language Design and Implementation, 2010.

[113] Rx design guidelines, version 1.0, Microsoft Corp., 2010. [Online]. Available:
http://go.microsoft.com/fwlink/?LinkID=205219.

[114] P. Selinger, “A survey of graphical languages for monoidal categories,” in New
Structures for Physics (Lecture Notes in Physics), B. Coecke, Ed., Lecture Notes
in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, vol. 813,
pp. 289–355, isbn: 978-3-642-12821-9. doi: 10.1007/978-3-642-12821-9_4.

[115] J. C. Baez and M. Stay, “Physics, topology, logic and computation: A rosetta
stone,” in New Structures for Physics, B. Coecke, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 95–172, isbn: 978-3-642-12821-9. doi: 10.1007/
978-3-642-12821-9_2.

[116] Information technology–programming languages–C++, 3rd ed., 14882:2011, ISO/
IEC JTC1/SC22/WG21, 2011.

[117] H. J. M. Meijer, J. W. Dyer, and D. A. Manolescu, “Push-based application pro-
gram interface based on duals of a pull-based application program interface,”
Appl. № 12/633,160, Pub. №. US 2011/0138403 A1, 2011, US Cl. 719/328.

[118] R. Bringhurst, The Elements of Typographic Style. 2012, isbn: 978-0-88179-110-
5.

[119] J. M. Eklund, J. Sprinkle, and S. S. Sastry, “Switched and symmetric pursuit-
/evasion games using online model predictive control with application to
autonomous aircraft,” IEEE Transactions on Control Systems Technology, vol. 20,
no. 3, pp. 604–620, May 2012, issn: 1063-6536. doi: 10 . 1109 / TCST . 2011 .
2136435.

[120] E. Meijer, “Your mouse is a database,” Queue, vol. 10, no. 3, 20:20–20:33, Mar.
2012, issn: 1542-7730. doi: 10.1145/2168796.2169076. [Online]. Available:
http://doi.acm.org/10.1145/2168796.2169076.

[121] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and W. d. Meuter,
“A survey on reactive programming,” ACM Computing Surveys, vol. 45, no. 52,
4 Aug. 2013, issn: 0360-0300. doi: 10.1145/2501654.2501666.

[122] N. Gambino and J. Kock, “Polynomial functors and polynomial monads,” Math-
ematical Proceedings of the Cambridge Philosophical Society, vol. 154, no. 1,
pp. 153–192, 2013. doi: 10.1017/S0305004112000394.

https://doi.org/10.1007/978-3-642-17685-2_3
https://doi.org/10.1007/978-3-642-17685-2_3
https://wiki.haskell.org/Language_and_library_specification
http://go.microsoft.com/fwlink/?LinkID=205219
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1007/978-3-642-12821-9_2
https://doi.org/10.1109/TCST.2011.2136435
https://doi.org/10.1109/TCST.2011.2136435
https://doi.org/10.1145/2168796.2169076
http://doi.acm.org/10.1145/2168796.2169076
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1017/S0305004112000394

345

[123] E. Neibler. “F-algebras and C++.” (2013), [Online]. Available: http://ericniebler.
com/2013/07/16/f-algebras-and-c/.

[124] D. I. Spivak, “The operad of wiring diagrams: Formalizing a graphical lan-
guage for databases, recursion, and plug-and-play circuits,” May 2013. eprint:
arXiv:1305.0297[cs.DB].

[125] T. A. V. Teatro and J. M. Eklund, “Nonlinear model predictive control for om-
nidirectional robot motion planning and tracking,” English, in Canadian Con-
ference on Electrical and Computer Engineering, Ieee, May 2013, pp. 1–4, isbn:
978-1-4799-0033-6. doi: 10.1109/ccece.2013.6567713.

[126] D. A. Turner, “Some history of functional programming languages,” in Trends
in Functional Programming, H.-W. Loidl and R. Peña, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 1–20, isbn: 978-3-642-40447-4.

[127] D. Ahman and T. Uustalu, “Coalgebraic update lenses,” Electronic Notes in
Theoretical Computer Science, vol. 308, pp. 25–48, 2014, Proceedings of the 30th
Conference on the Mathematical Foundations of Programming Semantics,
issn: 1571-0661. doi: 10.1016/j.entcs.2014.10.003.

[128] M. Benini, “Cartesian closed categories are distributive,” Jun. 2014. arXiv: 1406.
0961 [math.CT].

[129] V. J. B. Escribá and P. Talbot, Proposal to add a utility class to represent expected
monad, N4015, ISO/IEC JTC1/SC22/WG21/LWG, 2014. [Online]. Available:
https://wg21.link/n4015.

[130] T. Leinster, Basic Category Theory. Cambridge University Press, 2014, isbn:
978-1-107-04424-1. doi: 10.1017/CBO9781107360068.

[131] E. Meijer. “What does it mean to be Reactive?”, Talk presented at React
Conference. (2014), [Online]. Available: https://youtu.be/sTSQlYX5DU0.

[132] S. Pinker, The sense of style, The thinking person’s guide to writing in the 21st
century. Penguin Books, 2014, isbn: 978-0-670-02585-5.

[133] D. I. Spivak, Category theory for the sciences. Cambridge, Massachusetts: The
MIT Press, 2014, isbn: 978-0-262-02813-4.

[134] H. Sutter, Unified call syntax, N4165, ISO/IEC JTC1/SC22/WG21/EWG, 2014.
[Online]. Available: https://wg21.link/n4165.

[135] T. A. V. Teatro, J. M. Eklund, and R. Milman, “Nonlinear model predictive con-
trol for omnidirectional robot motion planning and tracking with avoidance
of moving obstacles,” Canadian Journal of Electrical and Computer Engineering,
vol. 37, no. 3, pp. 151–156, 2014, issn: 0840-8688. doi: 10.1109/cjece.2014.
2328973.

[136] K. Ahnert and M. Mulansky. “Boost.Numeric.Odeint.” Boost C++ Libraries.
(2015), [Online]. Available: https://www.boost.org/libs/numeric/odeint/.

[137] Z. Hu, J. Hughes, and M. Wang, “How functional programming mattered,”
National Science Review, vol. 2, no. 3, pp. 349–370, Sep. 2015. doi: 10.1093/
nsr/nwv042.

http://ericniebler.com/2013/07/16/f-algebras-and-c/
http://ericniebler.com/2013/07/16/f-algebras-and-c/
arXiv:1305.0297 [cs.DB]
https://doi.org/10.1109/ccece.2013.6567713
https://doi.org/10.1016/j.entcs.2014.10.003
https://arxiv.org/abs/1406.0961
https://arxiv.org/abs/1406.0961
https://wg21.link/n4015
https://doi.org/10.1017/CBO9781107360068
https://youtu.be/sTSQlYX5DU0
https://wg21.link/n4165
https://doi.org/10.1109/cjece.2014.2328973
https://doi.org/10.1109/cjece.2014.2328973
https://www.boost.org/libs/numeric/odeint/
https://doi.org/10.1093/nsr/nwv042
https://doi.org/10.1093/nsr/nwv042

346

[138] T. A. V. Teatro, P. McNelles, and J. M. Eklund, “A formulation of rod based
nonlinear model predictive control of nuclear reaction with temperature ef-
fects and xenon poisoning,” in Proceedings of the 23rd International Conference
on Nuclear Engineering, Chiba, Japan: Jsme, 2015.

[139] D. Vagner, D. I. Spivak, and E. Lerman, “Algebras of open dynamical systems
on the operad of wiring diagrams,” Theory and Applications of Categories,
vol. 30, no. 51, pp. 1793–1822, 2015.

[140] J. Adámek, V. Koubek, and T. Palm, “Fixed points of set functors: How many
iterations are needed?” Applied Categorical Structures, vol. 24, no. 5, pp. 649–
661, Oct. 2016, issn: 1572-9095. doi: 10.1007/s10485-016-9451-1.

[141] D. Ahman and T. Uustalu, “Directed containers as categories,” Electronic Pro-
ceedings in Theoretical Computer Science, vol. 207, pp. 89–98, Apr. 2016. doi:
10.4204/eptcs.207.5.

[142] B. Beckman. “Kalman folding.” version 1. viXra: 1606.0328. (2016), [Online].
Available: http://vixra.org/abs/1606.0328.

[143] ———, “Kalman folding 1.5: Running statistics.” version 1. viXra: 1609.0044.
(2016), [Online]. Available: http://vixra.org/abs/1609.0044.

[144] ———, “Kalman folding 2: Tracking and system dynamics.” version 2. viXra:
1606.0348. (2016), [Online]. Available: http://vixra.org/abs/1606.0348.

[145] ———, “Kalman folding 3: Derivations.” version 1. viXra: 1607.0059. (2016),
[Online]. Available: http://vixra.org/abs/1607.0059.

[146] ———, “Kalman folding 4: Streams and observables.” version 1. viXra: 1607.
0141. (2016), [Online]. Available: http://vixra.org/abs/1607.0141.

[147] S. Blackheath and A. Jones, Functional Reactive Programming. Manning Publi-
cations, 2016, isbn: 978-1-63343-010-5.

[148] B. Fong, P. Sobociński, and P. Rapisarda, “A categorical approach to open
and interconnected dynamical systems,” in Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, ser. LICS ’16, New York,
NY, USA: Association for Computing Machinery, 2016, pp. 495–504, isbn:
9781450343916. doi: 10.1145/2933575.2934556.

[149] J. Kock, “Notes on polynomial functors,” 2016. [Online]. Available: http://mat.
uab.cat/~kock/cat/polynomial.html.

[150] K. Sawada and T. Watanabe, “Emfrp: A functional reactive programming lan-
guage for small-scale embedded systems,” in Companion Proceedings of the
15th International Conference on Modularity, ser. MODULARITY Companion
2016, Málaga, Spain: Association for Computing Machinery, 2016, pp. 36–44,
isbn: 978-1-4503-4033-5. doi: 10.1145/2892664.2892670.

[151] T. A. V. Teatro and J. M. Eklund, “An object oriented framework for a generic
model predictive controller,” in Proceedings of the Canadian Conference on
Electrical and Computer Engineering, IEEE, May 2016, pp. 1–4, isbn: 978-1-
4673-8721-7. doi: 10.1109/ccece.2016.7726652.

https://doi.org/10.1007/s10485-016-9451-1
https://doi.org/10.4204/eptcs.207.5
1606.0328
http://vixra.org/abs/1606.0328
1609.0044
http://vixra.org/abs/1609.0044
1606.0348
http://vixra.org/abs/1606.0348
1607.0059
http://vixra.org/abs/1607.0059
1607.0141
1607.0141
http://vixra.org/abs/1607.0141
https://doi.org/10.1145/2933575.2934556
http://mat.uab.cat/~kock/cat/polynomial.html
http://mat.uab.cat/~kock/cat/polynomial.html
https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1109/ccece.2016.7726652

347

[152] B. Beckman. “Kalman folding for the brave and true,” YOW! 2017 confer-
ence talk. (2017), [Online]. Available: https://youtu.be/peJFVe-4qz4.

[153] M. Behrisch, S. Kerkhoff, R. Pöschel, F. M. Schneider, and S. Siegmund, “Dy-
namical systems in categories,” Applied Categorical Structures, vol. 25, no. 1,
pp. 29–57, Feb. 2017, issn: 1572-9095. doi: 10.1007/s10485-015-9409-8.

[154] E. Bertoluzzo, “The essence of reactive programming, A theoretical approach,”
Master’s thesis, Delft University of Technology, 2017.

[155] S. Brand, Monadic operations for std^:optional, P0798r0, ISO/IEC JTC1/SC22/
WG21/[SG14,LEWG], 2017. [Online]. Available: https://wg21.link/p0798r0.

[156] L. Dionne. “Boost.Hana.” Boost C++ Libraries. (2017), [Online]. Available:
http://boostorg.github.io/hana/.

[157] N. Douglas. “Introduction to the Proposed std^:expected,”, Talk presented
at Meeting C++ 2017. (2017), [Online]. Available: https : / / youtu . be /
JfMBLx7qE0I.

[158] Information technology–programming languages–C++, 5th ed., ISO/IEC 14882:2017,
ISO/IEC JTC1/SC22/WG21, 2017.

[159] B. Jacobs, Introduction to coalgebra, towards mathematics of states and observa-
tion (Cambridge tracts in theoretical computer science 59). Cambridge, United
Kingdom: Cambridge University Press, 2017, isbn: 978-1-107-17789-5.

[160] J. Adámek, S. Milius, and L. S. Moss, “Fixed points of functors,” Journal of
Logical and Algebraic Methods in Programming, vol. 95, pp. 41–81, 2018, issn:
2352-2208. doi: 10.1016/j.jlamp.2017.11.003.

[161] M. A. Arbib, “From cybernetics to brain theory, and more, a memoir,” Cogni-
tive Systems Research, vol. 50, pp. 83–145, 2018, issn: 1389-0417. doi: 10.1016/
j.cogsys.2018.04.001.

[162] J.-W. Buurlage, Categories and Haskell, commit hash: 02f119a. 2018, A
manuscript based on lecture notes for a seminar at Centrum Wiskunde & In-
formatica, Netherlands. [Online]. Available: https://github.com/jwbuurlage/
category-theory-programmers.

[163] I. Čukić, Functional Programming in C++. Manning Publications, 2018, isbn:
978-1-61729-381-8.

[164] P. Fultz II. “Boost.HOF.” Boost C++ Libraries. (2018), [Online]. Available: http:
//boostorg.github.io/hof/.

[165] P. Pai and P. Abraham, C++ Reactive Programming. Packt Publishing Limited,
2018, isbn: 978-1-78862-977-5.

[166] T. A. V. Teatro, tfunc–FP utilities in C++17,, 2018. [Online]. Available:
https://github.com/timtro/tfunc.

[167] Working draft–standard for programming–language C++, N4762, ISO/IEC
JTC1/SC22/WG21, 2018. [Online]. Available: https://wg21.link/standard.

https://youtu.be/peJFVe-4qz4
https://doi.org/10.1007/s10485-015-9409-8
https://wg21.link/p0798r0
http://boostorg.github.io/hana/
https://youtu.be/JfMBLx7qE0I
https://youtu.be/JfMBLx7qE0I
https://doi.org/10.1016/j.jlamp.2017.11.003
https://doi.org/10.1016/j.cogsys.2018.04.001
https://doi.org/10.1016/j.cogsys.2018.04.001
https://github.com/jwbuurlage/category-theory-programmers
https://github.com/jwbuurlage/category-theory-programmers
http://boostorg.github.io/hof/
http://boostorg.github.io/hof/
https://github.com/timtro/tfunc
https://wg21.link/standard

348

[168] B. Fong and D. I. Spivak, An Invitation to Applied Category Theory: Seven
Sketches in Compositionality. Cambridge University Press, 2019, isbn: 978-1-
108-71182-1.

[169] B. Milewski, Category Theory for Programmers, I. Tabachnik, Ed. Blurb, 2019,
isbn: 978-0-464-24387-8. [Online]. Available: https://github.com/hmemcpy/
milewski-ctfp-pdf.

[170] J. J. M. M. Rutten, The Method of Coalgebra, exercises in coinduction. Amster-
dam, The Netherlands: Centre for Mathematics and Computer Science, 2019,
isbn: 978-90-6196-568-8.

[171] Information technology–programming languages–C++, 6th ed., ISO/IEC 14882:2020,
ISO/IEC JTC1/SC22/WG21, 2020.

[172] D. I. Spivak, “Poly: An abundant categorical setting for mode-dependent
dynamics,” 2020. doi: 10 . 48550 / ARXIV . 2005 . 01894. arXiv: 2005 . 01894
[math.CT].

[173] R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID
control, tuning methods and applications,” International Journal of Dynamics
and Control, vol. 9, no. 2, pp. 818–827, Jul. 2021. doi: 10.1007/s40435-020-
00665-4.

[174] T. Clingman, B. Fong, and D. I. Spivak, Regular calculi I: Graphical regular logic,
2021. arXiv: 2109.14123 [math.CT].

[175] D. I. Spivak, “Learners’ languages,” 2021. arXiv: 2103.01189 [math.CT].

[176] G. Zardini, D. I. Spivak, A. Censi, and E. Frazzoli, “A compositional sheaf-
theoretic framework for event-based systems,” Electronic Proceedings in Theo-
retical Computer Science, vol. 333, pp. 139–153, Feb. 2021. doi: 10.4204/eptcs.
333.10.

[177] E. Di Lavore, G. de Felice, and M. Román, “Monoidal streams for dataflow pro-
gramming,” in Proceedings of the 37th Annual ACM/IEEE Symposium on Logic
in Computer Science, ser. LICS ’22, Haifa, Israel: Association for Computing
Machinery, 2022, isbn: 978-1-4503-9351-5. doi: 10.1145/3531130.3533365.

[178] D. J. Myers, Categorical systems theory, commit hash: 8e662c5. 2022–. [On-
line]. Available: https://github.com/DavidJaz/DynamicalSystemsBook, in
preparation.

[179] ———, “Double categories of open dynamical systems (extended abstract),” D. I.
Spivak and J. Vicary, Eds., 2022. doi: 10.4204/EPTCS.333.11.

[180] N. Niu and D. I. Spivak, Collectives: Compositional protocols for contributions
and returns, 2022. arXiv: 2112.11518 [math.CT].

[181] B. T. Shapiro and D. I. Spivak, Duoidal structures for compositional dependence,
2022. arXiv: 2210.01962 [math.CT].

[182] D. I. Spivak and N. Niu, Polynomial Functors, A General Theory of Interaction.
Topos Institute, 2022, Draft of July 5, 2023.

https://github.com/hmemcpy/milewski-ctfp-pdf
https://github.com/hmemcpy/milewski-ctfp-pdf
https://doi.org/10.48550/ARXIV.2005.01894
https://arxiv.org/abs/2005.01894
https://arxiv.org/abs/2005.01894
https://doi.org/10.1007/s40435-020-00665-4
https://doi.org/10.1007/s40435-020-00665-4
https://arxiv.org/abs/2109.14123
https://arxiv.org/abs/2103.01189
https://doi.org/10.4204/eptcs.333.10
https://doi.org/10.4204/eptcs.333.10
https://doi.org/10.1145/3531130.3533365
https://github.com/DavidJaz/DynamicalSystemsBook
https://doi.org/10.4204/EPTCS.333.11
https://arxiv.org/abs/2112.11518
https://arxiv.org/abs/2210.01962

349

[183] T. A. V. Teatro. “Pid-unfolding,”. (2022), [Online]. Available: https : / /
github.com/timtro/tfunc.

[184] T. A. V. Teatro, J. M. Eklund, and R. Milman, “Toward a coalgebraic model of
control programs,” in 2022 IEEE Canadian Conference on Electrical and Com-
puter Engineering (CCECE), 2022, pp. 328–335. doi: 10.1109/ccece49351.2022.
9918479.

[185] K. Brown and D. I. Spivak, Dynamic tracing: A graphical language for rewriting
protocols, 2023. arXiv: 2304.14950 [cs.LO].

[186] O. Lynch, B. T. Shapiro, and D. I. Spivak, All concepts are ℂat#, 2023. arXiv:
2305.02571 [math.CT].

[187] B. T. Shapiro and D. I. Spivak, “Dynamic operads, dynamic categories: From
deep learning to prediction markets,” Electronic Proceedings in Theoretical
Computer Science, vol. 380, pp. 183–202, Aug. 2023. doi: 10.4204/eptcs.380.
11.

[188] ———, Structures on categories of polynomials, 2023. arXiv: 2305.00167 [math.CT].

[189] T. S. C. Smithe, “Mathematical foundations for a compositional account of the
bayesian brain,” Ph.D. dissertation, Oxford University, 2023. arXiv: 2212.12538
[q-bio.NC].

[190] D. I. Spivak, “A reference for categorical structures on Poly,” 2023. arXiv:
2202.00534 [math.CT].

[191] ———, Functorial aggregation, 2023. arXiv: 2111.10968 [math.CT].

[192] ———, “Polynomial functors and shannon entropy,” Electronic Proceedings in
Theoretical Computer Science, vol. 380, pp. 331–343, Aug. 2023. doi: 10.4204/
eptcs.380.19.

[193] T. A. V. Teatro, ct-control-program-cpp demo,, 2023. [Online]. Available:
https://github.com/timtro/ct-control-program-cpp.

[194] ———, Thesis demo code,, 2023. [Online]. Available: https://github.com/
timtro/phd-thesis-demos.

[195] S. Blackheath, SodiumFRP C++,. [Online]. Available: https://github.com/
SodiumFRP/sodium-cxx.

[196] P. Fultz II, Fit: C++ function utility library,. [Online]. Available: https://
github.com/pfultz2/Fit.

[197] P. Nash et al., Catch2, A modern, C++-native, header-only, test framework for
unit-tests, TDD and BDD,. [Online]. Available: https : / / github . com /
catchorg/Catch2.

[198] K. Shoop, RxCpp,, version 2. [Online]. Available: https://github.com/
ReactiveX/RxCpp.

[199] T. A. V. Teatro, Kalman-folding—categorical structure in the Kalman filter,.
[Online]. Available: https://github.com/timtro/kalman-folding.

https://github.com/timtro/tfunc
https://github.com/timtro/tfunc
https://doi.org/10.1109/ccece49351.2022.9918479
https://doi.org/10.1109/ccece49351.2022.9918479
https://arxiv.org/abs/2304.14950
https://arxiv.org/abs/2305.02571
https://doi.org/10.4204/eptcs.380.11
https://doi.org/10.4204/eptcs.380.11
https://arxiv.org/abs/2305.00167
https://arxiv.org/abs/2212.12538
https://arxiv.org/abs/2212.12538
https://arxiv.org/abs/2202.00534
https://arxiv.org/abs/2111.10968
https://doi.org/10.4204/eptcs.380.19
https://doi.org/10.4204/eptcs.380.19
https://github.com/timtro/ct-control-program-cpp
https://github.com/timtro/phd-thesis-demos
https://github.com/timtro/phd-thesis-demos
https://github.com/SodiumFRP/sodium-cxx
https://github.com/SodiumFRP/sodium-cxx
https://github.com/pfultz2/Fit
https://github.com/pfultz2/Fit
https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2
https://github.com/ReactiveX/RxCpp
https://github.com/ReactiveX/RxCpp
https://github.com/timtro/kalman-folding

350

[200] “The topos institute colloquium.” (), [Online]. Available: https://topos.site/
topos-colloquium/.

[201] “The topos institute website.” (), [Online]. Available: https://topos.institute/.

https://topos.site/topos-colloquium/
https://topos.site/topos-colloquium/
https://topos.institute/

I NDEX

A category
𝟭 (singleton), 266
𝟯, 284
ℂ𝗮𝘁, 271
𝗖𝗼𝗻𝗲𝘋 , 285
Cpp, 117
𝗘𝗻𝗱◌, (— of endofunctors),

304
𝘍 -𝗔𝗹𝗴, 47
𝘍 -𝗰𝗼𝗔𝗹𝗴, 48
𝗙𝘂𝗻(◌1,◌2), (— of functors),

278
𝗠𝗼𝗻(𝕊𝗲𝘁), 296
𝞈, 83
𝕊𝗲𝘁, 268

A functor
constant —, 126
hom —, 305

A monad
list, 18
list, 𝘓, 52

A natural transformation
𝜂, generator insertion, 51
ιd, (identity), 277
𝜄1, 𝜄2, … (canonical coproduct

injections), 293
𝜋1, 𝜋2, … (canonical product

projections), 289
A Type

S, 149
Adjunction, 310, 312

counit of —, 312
unit of —, 312

Algebra

category of —, 47
homomorphisms of —, 47
of a functor, 47
of a monad, 49

Algebraic monoid, 296
Automata

and control theory, 13

Bifunctors, 297
Braiding, 299

Cartesian Closed Category, 309
Cartesian monoidal category,

300
Categorical sum, see coproduct
Category, 265

— axioms, 265
Cartesian closed —, 309
discrete —, 266
empty —, 266
large —, 267
locally small —, 268
monoidal —, 299
small —, 267

Coalgebra
homomorphisms of, 48
of a functor, 48

Cocartesian monoidal category,
300

Cocone, 286
Coinduction, 89
combine_latest, 183
Cone, 283

— face, 283
— category, 285

351

352

Control program, 5
Coproduct, 292

distribution over products,
309

— in 𝕊𝗲𝘁, 281, 294
— injections, 𝜄1, 𝜄2, …, 293

Corecursion, 89
Cospan/span, 281
Costructure map, 48
Counit of an adjunction, 312
Cpp structures

initial objects, 157
terminal objects, 139

Currying, 144
uncurrying, 144

Diagram, 274
Distributor, 309

Epimorphism (or, an epi), 270
𝜂

natural insertion of
generators, 51

Exponential objects, 307

𝘍 -algebra, 47
Fan-in operator, ▽, 295
fan-out operator, △, 291
fanin, 151
Fixpoint (of an endofunctor), 81
Functor, 273

— category, 278
diagram, 274
type —, 123

Functor category, 278
Functors

internal hom —, 306

Generator
insertion of —, 314

Generator, insertion of, 51
Getter, see also Setter
Global elements

in 𝕊𝗲𝘁, 269
Hom-functor, 305

internal —, 306
Hom-set, 268

Identity function, id, 268
Identity natural transformation,

ιd, 277
Indexed family, 275
Induction, 88
Initial object, 271

as colimit, 287
in Cpp, 157

Intial 𝘍 -sequence, 84
Insertion of generators, 314
Internal evaluator, 144
Internal hom-functor, 306
ISO/IEC 80000-2:2009, 252
Isomorphism (or, an iso), 271
Iterator, 102

external, 102
internal, 102

𝘓-algebra, 53
Limit of a diagram, 285
Linear order, 267
List

algebra, 53
monad, 52

List monad, 18, 52

Marble diagram, 110
Monad, 303

from adjunction, 50
Monoid, 296

algebraic —, 296

353

— axioms, 296
free, 𝕊𝗲𝘁, 50
— object, 55

Monoidal category, 299
braided —, 299
Cartesian —, 300
Cocartesian —, 300
strict —, 299
symmetric —, 299

Monoidal structure, 297
braided —, 299
symmetric —, 299

Monomorphism (or, a mono), 270

Natural transformation, 276
interchange law, 280
natural isomorphism, 276
naturality condition, 277
naturality square, 277
vertical composition of —s,

277
Naturality square, 277
Notation

braces, {…}, 253
brackets, […], 253
𝘾-object, 266
delimiters, 253
▽, fan-in operator, 295
△, fan-out operator, 291
function definition, 254
functors, 273
parentheses, (…), 253
Ranged brace, 253

𝜔-chain, 83
Order

linear —, 267
Ordinal, 267

finite —, 267

pcurry, 144
Product, 288

consolidation, 𝜛, 290
distributivity with

coproduct, 309
— in 𝕊𝗲𝘁, 281, 290
— projections, 𝜋1, 𝜋2, …, 289

Products
uniqueness, 289

ReactiveX
combine_latest, 183
marble diagrams, 110

Recursion, 88
Referential transparency, 118
Routine (vs. function), 118

Sequencing map, 210
Setter, see also Getter
Span/cospan, 281
Standard

ISO/IEC 80000-2:2009, 252
std∷pair, 133
Structure map, 47

Terminal object, 271
as a limit, 285
in Cpp, 139

Terminal 𝘍 -sequence, 88
type constructors

std∷pair, 133
Uncurrying, 144
Unit of an adjunction, 312

Whiskering, 279
left, 279
right, 279

	Thesis Examination Information
	Abstract
	Author's Declaration
	Statement of Contributions
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Preface
	Style 🙵 Notation

	1 Introduction
	1.1 Control Programs
	1.2 Goals and Contributions
	1.3 Overview of the Thesis
	1.3.1 Chapter Synopses

	2 Background Literature
	2.1 Introduction
	2.2 Categorical Systems 🙵 Control
	2.2.1 The First Automata in Categories
	2.2.2 Rapprochement of Automata 🙵 Control
	2.2.3 Lawvere Algebraic Automata
	2.2.4 Arbib and categories
	2.2.5 Goguen's Machines in a Category
	2.2.6 General Machines in a Category
	2.2.7 Systems 🙵 Coalgebra

	2.3 Functional Programming
	2.3.1 Would That It Were Loopless
	2.3.2 Asynchronous Lists

	2.4 Applied Category Theory as a Field
	2.4.1 Machines in ℙ𝐨𝐥𝐲

	3 Theoretical Preliminaries
	3.1 Introduction
	3.1.1 Section Synopses
	3.1.2 Prerequisites
	3.1.3 Categorical setting

	3.2 Polynomial Functors
	3.3 Algebras 🙵 Coalgebras
	3.4 Algebras for a Monad 🙵 Free Monoids
	3.5 Categorical Monoids 🙵 Monoid Actions
	3.5.1 Monoid Actions

	3.6 Categorification of Classical Automata
	3.6.1 Transition domain functors and their algebras
	3.6.2 State Stepping 🙵 Monoid Actions
	3.6.3 Equipping initial state
	3.6.4 Goguen machines 🙵 behaviour
	3.6.5 I•-algebra structure on [I*, O]
	3.6.6 Behaviour 🙵 Running Machines

	3.7 Fixpoints of Endofunctors
	3.7.1 Catamorphisms
	3.7.2 Anamorphisms
	3.7.3 Polynomial Functors Have Initial Algebras 🙵 Terminal Coalgebras

	3.8 Snoc Lists as Fixpoints
	3.8.1 Snoc List Catamorphism
	3.8.2 List scans

	3.9 Moore About Dynamical Systems
	3.9.1 Terminal Moore Machines

	3.10 Async lists 🙵 Observer-Iterator Duality
	3.10.1 The Rx Observable Interface
	3.10.2 RxCpp: a Brief Tutorial
	3.10.3 Kálmán Filtering Examples

	4 a platonic category of c++ programs
	4.1 Chapter Synopsis
	4.2 A Category of C++ Programs
	4.2.1 Category axioms of 𝐂𝐩𝐩

	4.3 Endofunctors on 𝐂𝐩𝐩
	4.4 Natural Transformations in 𝐂𝐩𝐩
	4.5 Cartesian Monoidal Structure in 𝐂𝐩𝐩
	4.6 Cartesian Closure in 𝐂𝐩𝐩
	4.6.1 Arbitrary Finite Products
	4.6.2 Equivalence of C++ Argument Lists 🙵 Tuples

	4.7 Cocartesian monoidal structure
	4.8 Fixpoints 🙵 Snoc-Lists
	4.8.1 μ to 𝙼𝚞
	4.8.2 μ𝘗•_T to SnocList<T>
	4.8.3 Building SnocLists
	4.8.4 𝚂𝚗𝚘𝚌𝙻𝚒𝚜𝚝 isomorphic to 𝚜𝚝𝚍::𝚟𝚎𝚌𝚝𝚘𝚛
	4.8.5 SnocList-catamorphisms

	4.9 Limitations of the Model
	4.10 Summary 🙵 Conclusion

	5 Categories to Controller Code
	5.1 Outline of Control Programs
	5.1.1 Control Programs 🙵 Moore Automata

	5.2 Algebra 🙵 Coalgra of Moore Machines
	5.3 Moore Machines In Code
	5.4 From Folds to Scans
	5.5 The Coalgebraic Model of Control Programs
	5.6 Example: PID Controller
	5.6.1 The Plant
	5.6.2 The Control Program
	5.6.3 The Test Examples

	5.7 Limitations

	6 Bishop robot: A Case Study
	6.1 Nonlinear Model Predictive Control of Bishop
	6.1.1 Vehicle Dynamics
	6.1.2 Open-loop optimisation
	6.1.3 The nmpc algorithm

	6.2 Operating Environment
	6.2.1 Integration with move_base

	6.3 Implementation
	6.3.1 The Plant 🙵 Controller State Types
	6.3.2 The Nmpc Algebra
	6.3.3 The main Function of the ROS Node

	6.4 Obstacle Avoidance
	6.5 Discussion 🙵 Conclusion
	6.5.1 Future Development
	6.5.2 Conclusion

	7 Discussion 🙵 Conclusion
	7.1 Contribution
	7.2 Discussion
	7.2.1 Limitations

	7.3 Outlook 🙵 Future Directions

	A Mathematical Notation
	A.1 Notation not Otherwise Documented
	A.2 Table of Notation

	B Category Theory
	B.1 Definition of a Category
	B.1.1 The (or a) Category of Sets and Functions

	B.2 Epimorphism, Monomorphism 🙵 Isomorphism
	B.3 Initial/Terminal Objects
	B.4 Global Elements
	B.5 Duality and Opposite Categories
	B.6 Functors
	B.6.1 Diagrams in a Category

	B.7 Natural Transformations
	B.8 Limits and Colimits
	B.9 Products
	B.9.1 Products in 𝕊𝐞𝐭 reprised

	B.10 Coproducts
	B.10.1 Coproducts in 𝕊𝐞𝐭 reprised

	B.11 Monoidal Structures in Categories
	B.12 𝕊𝐞𝐭 as a Cartesian Monoidal Category
	B.13 𝕊𝐞𝐭 as a Cocartesian Monoidal Category
	B.14 Monads
	B.15 Closed Categories
	B.16 Adjuctions
	B.16.1 Free construction 🙵 free-forgetful adjunction

	C Selected Code Listings
	C.1 From Chapter 3
	C.2 From Chapter 4
	C.3 From Chapter 6

	Bibliography

